/* -*- c++ -*- */ /* * Copyright 2015,2016 Free Software Foundation, Inc. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "dvbt_demap_impl.h" #include #include namespace gr { namespace dtv { dvbt_demap::sptr dvbt_demap::make(int nsize, dvb_constellation_t constellation, dvbt_hierarchy_t hierarchy, dvbt_transmission_mode_t transmission, float gain) { return gnuradio::get_initial_sptr( new dvbt_demap_impl(nsize, constellation, hierarchy, transmission, gain)); } /* * The private constructor */ dvbt_demap_impl::dvbt_demap_impl(int nsize, dvb_constellation_t constellation, dvbt_hierarchy_t hierarchy, dvbt_transmission_mode_t transmission, float gain) : block("dvbt_demap", io_signature::make(1, 1, sizeof(gr_complex) * nsize), io_signature::make(1, 1, sizeof(unsigned char) * nsize)), config(constellation, hierarchy, gr::dtv::C1_2, gr::dtv::C1_2, gr::dtv::GI_1_32, transmission), d_nsize(nsize), d_constellation_size(0), d_step(0), d_alpha(0), d_gain(0.0) { // Get parameters from config object d_constellation_size = config.d_constellation_size; d_transmission_mode = config.d_transmission_mode; d_step = config.d_step; d_alpha = config.d_alpha; d_gain = gain * config.d_norm; d_constellation_points = (gr_complex*)volk_malloc( sizeof(gr_complex) * d_constellation_size, volk_get_alignment()); if (d_constellation_points == NULL) { GR_LOG_FATAL(d_logger, "DVB-T Demap, cannot allocate memory for d_constellation_points."); throw std::bad_alloc(); } d_sq_dist = (float*)volk_malloc(sizeof(float) * d_constellation_size, volk_get_alignment()); if (d_sq_dist == NULL) { GR_LOG_FATAL(d_logger, "DVB-T Demap, cannot allocate memory for d_sq_dist."); volk_free(d_constellation_points); throw std::bad_alloc(); } make_constellation_points(d_constellation_size, d_step, d_alpha); } /* * Our virtual destructor. */ dvbt_demap_impl::~dvbt_demap_impl() { volk_free(d_sq_dist); volk_free(d_constellation_points); } void dvbt_demap_impl::make_constellation_points(int size, int step, int alpha) { // The symmetry of the constellation is used to calculate // 16QAM from QPSK and 64QAM from 16QAM int bits_per_axis = log2(size) / 2; int steps_per_axis = sqrt(size) / 2 - 1; for (int i = 0; i < size; i++) { // This is the quadrant made of the first two bits starting from MSB int q = i >> (2 * (bits_per_axis - 1)) & 3; // Sign for correct calculation of I and Q in each quadrant int sign0 = (q >> 1) ? -1 : 1; int sign1 = (q & 1) ? -1 : 1; int x = (i >> (bits_per_axis - 1)) & ((1 << (bits_per_axis - 1)) - 1); int y = i & ((1 << (bits_per_axis - 1)) - 1); int xval = alpha + (steps_per_axis - x) * step; int yval = alpha + (steps_per_axis - y) * step; int val = (bin_to_gray(x) << (bits_per_axis - 1)) + bin_to_gray(y); // ETSI EN 300 744 Clause 4.3.5 // Actually the constellation is gray coded // but the bits on each axis are not taken in consecutive order // So we need to convert from b0b2b4b1b3b5->b0b1b2b3b4b5(64QAM) x = 0; y = 0; for (int j = 0; j < (bits_per_axis - 1); j++) { x += ((val >> (1 + 2 * j)) & 1) << j; y += ((val >> (2 * j)) & 1) << j; } val = (q << 2 * (bits_per_axis - 1)) + (x << (bits_per_axis - 1)) + y; // Keep corresponding symbol bits->complex symbol in one vector // Normalize the signal using gain d_constellation_points[val] = d_gain * gr_complex(sign0 * xval, sign1 * yval); } } int dvbt_demap_impl::find_constellation_value(gr_complex val) { float min_dist = std::norm(val - d_constellation_points[0]); int min_index = 0; volk_32fc_x2_square_dist_32f( &d_sq_dist[0], &val, &d_constellation_points[0], d_constellation_size); for (int i = 0; i < d_constellation_size; i++) { if (d_sq_dist[i] < min_dist) { min_dist = d_sq_dist[i]; min_index = i; } } // return d_constellation_bits[min_index]; return min_index; } int dvbt_demap_impl::bin_to_gray(int val) { return (val >> 1) ^ val; } void dvbt_demap_impl::forecast(int noutput_items, gr_vector_int& ninput_items_required) { ninput_items_required[0] = noutput_items; } int dvbt_demap_impl::general_work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { const gr_complex* in = (const gr_complex*)input_items[0]; unsigned char* out = (unsigned char*)output_items[0]; // TODO - use DFE (Decision Feedback Equalizer) for (int i = 0; i < (noutput_items * d_nsize); i++) { out[i] = find_constellation_value(in[i]); } consume_each(noutput_items); // Tell runtime system how many output items we produced. return noutput_items; } } /* namespace dtv */ } /* namespace gr */