/* -*- c++ -*- */ /* * Copyright 2010-2016,2018 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #include "gr_uhd_common.h" #include "usrp_sink_impl.h" #include #include #include #include #include #include #include using namespace std::chrono_literals; namespace gr { namespace uhd { usrp_sink::sptr usrp_sink::make(const ::uhd::device_addr_t& device_addr, const ::uhd::stream_args_t& stream_args, const std::string& length_tag_name) { check_abi(); return usrp_sink::sptr(new usrp_sink_impl( device_addr, stream_args_ensure(stream_args), length_tag_name)); } usrp_sink_impl::usrp_sink_impl(const ::uhd::device_addr_t& device_addr, const ::uhd::stream_args_t& stream_args, const std::string& length_tag_name) : usrp_block("usrp_sink", args_to_io_sig(stream_args), io_signature::make(0, 0, 0)), usrp_block_impl(device_addr, stream_args, length_tag_name), _length_tag_key(length_tag_name.empty() ? pmt::PMT_NIL : pmt::string_to_symbol(length_tag_name)), _nitems_to_send(0), _async_event_loop_running(true) { message_port_register_out(ASYNC_MSGS_PORT_KEY); _async_event_thread = gr::thread::thread([this]() { this->async_event_loop(); }); _sample_rate = get_samp_rate(); } usrp_sink_impl::~usrp_sink_impl() { _async_event_loop_running = false; _async_event_thread.join(); } ::uhd::dict usrp_sink_impl::get_usrp_info(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_usrp_tx_info(chan); } void usrp_sink_impl::set_subdev_spec(const std::string& spec, size_t mboard) { return _dev->set_tx_subdev_spec(spec, mboard); } std::string usrp_sink_impl::get_subdev_spec(size_t mboard) { return _dev->get_tx_subdev_spec(mboard).to_string(); } void usrp_sink_impl::set_samp_rate(double rate) { for (const auto& chan : _stream_args.channels) { _dev->set_tx_rate(rate, chan); } _sample_rate = this->get_samp_rate(); } double usrp_sink_impl::get_samp_rate(void) { return _dev->get_tx_rate(_stream_args.channels[0]); } ::uhd::meta_range_t usrp_sink_impl::get_samp_rates(void) { return _dev->get_tx_rates(_stream_args.channels[0]); } ::uhd::tune_result_t usrp_sink_impl::set_center_freq(const ::uhd::tune_request_t tune_request, size_t chan) { _curr_tx_tune_req[chan] = tune_request; chan = _stream_args.channels[chan]; return _dev->set_tx_freq(tune_request, chan); } ::uhd::tune_result_t usrp_sink_impl::_set_center_freq_from_internals(size_t chan, pmt::pmt_t direction) { if (pmt::eqv(direction, direction_rx())) { // TODO: what happens if the RX device is not instantiated? Catch error? _rx_chans_to_tune.reset(chan); return _dev->set_rx_freq(_curr_rx_tune_req[chan], _stream_args.channels[chan]); } else { _tx_chans_to_tune.reset(chan); return _dev->set_tx_freq(_curr_tx_tune_req[chan], _stream_args.channels[chan]); } } double usrp_sink_impl::get_center_freq(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_freq(chan); } ::uhd::freq_range_t usrp_sink_impl::get_freq_range(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_freq_range(chan); } void usrp_sink_impl::set_gain(double gain, size_t chan, pmt::pmt_t direction) { chan = _stream_args.channels[chan]; if (pmt::eqv(direction, direction_rx())) { return _dev->set_rx_gain(gain, chan); } else { return _dev->set_tx_gain(gain, chan); } } void usrp_sink_impl::set_gain(double gain, const std::string& name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_gain(gain, name, chan); } void usrp_sink_impl::set_normalized_gain(double norm_gain, size_t chan) { _dev->set_normalized_tx_gain(norm_gain, chan); } double usrp_sink_impl::get_gain(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain(chan); } double usrp_sink_impl::get_gain(const std::string& name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain(name, chan); } double usrp_sink_impl::get_normalized_gain(size_t chan) { return _dev->get_normalized_tx_gain(chan); } std::vector usrp_sink_impl::get_gain_names(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain_names(chan); } ::uhd::gain_range_t usrp_sink_impl::get_gain_range(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain_range(chan); } ::uhd::gain_range_t usrp_sink_impl::get_gain_range(const std::string& name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_gain_range(name, chan); } bool usrp_sink_impl::has_power_reference(size_t chan) { #ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL if (chan >= _stream_args.channels.size()) { throw std::out_of_range("Invalid channel: " + std::to_string(chan)); } const size_t dev_chan = _stream_args.channels[chan]; return _dev->has_tx_power_reference(dev_chan); #else GR_LOG_WARN(d_logger, "UHD version 4.0 or greater required for power reference API. "); return false; #endif } void usrp_sink_impl::set_power_reference(double power_dbm, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL if (chan >= _stream_args.channels.size()) { throw std::out_of_range("Invalid channel: " + std::to_string(chan)); } const size_t dev_chan = _stream_args.channels[chan]; _dev->set_tx_power_reference(power_dbm, dev_chan); #else GR_LOG_ERROR(d_logger, "UHD version 4.0 or greater required for power reference API."); throw std::runtime_error("not implemented in this version"); #endif } double usrp_sink_impl::get_power_reference(size_t chan) { #ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL if (chan >= _stream_args.channels.size()) { throw std::out_of_range("Invalid channel: " + std::to_string(chan)); } const size_t dev_chan = _stream_args.channels[chan]; return _dev->get_tx_power_reference(dev_chan); #else GR_LOG_ERROR(d_logger, "UHD version 4.0 or greater required for power reference API."); throw std::runtime_error("not implemented in this version"); #endif } ::uhd::meta_range_t usrp_sink_impl::get_power_range(size_t chan) { #ifdef UHD_USRP_MULTI_USRP_POWER_LEVEL if (chan >= _stream_args.channels.size()) { throw std::out_of_range("Invalid channel: " + std::to_string(chan)); } const size_t dev_chan = _stream_args.channels[chan]; return _dev->get_tx_power_range(dev_chan); #else GR_LOG_ERROR(d_logger, "UHD version 4.0 or greater required for power reference API."); throw std::runtime_error("not implemented in this version"); #endif } void usrp_sink_impl::set_antenna(const std::string& ant, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_antenna(ant, chan); } std::string usrp_sink_impl::get_antenna(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_antenna(chan); } std::vector usrp_sink_impl::get_antennas(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_antennas(chan); } void usrp_sink_impl::set_bandwidth(double bandwidth, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_bandwidth(bandwidth, chan); } double usrp_sink_impl::get_bandwidth(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_bandwidth(chan); } ::uhd::freq_range_t usrp_sink_impl::get_bandwidth_range(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_bandwidth_range(chan); } std::vector usrp_sink_impl::get_lo_names(size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->get_tx_lo_names(chan); #else throw std::runtime_error("not implemented in this version"); #endif } const std::string usrp_sink_impl::get_lo_source(const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->get_tx_lo_source(name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } std::vector usrp_sink_impl::get_lo_sources(const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->get_tx_lo_sources(name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } void usrp_sink_impl::set_lo_source(const std::string& src, const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->set_tx_lo_source(src, name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } bool usrp_sink_impl::get_lo_export_enabled(const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->get_tx_lo_export_enabled(name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } void usrp_sink_impl::set_lo_export_enabled(bool enabled, const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->set_tx_lo_export_enabled(enabled, name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } ::uhd::freq_range_t usrp_sink_impl::get_lo_freq_range(const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->get_tx_lo_freq_range(name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } double usrp_sink_impl::get_lo_freq(const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->get_tx_lo_freq(name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } double usrp_sink_impl::set_lo_freq(double freq, const std::string& name, size_t chan) { #ifdef UHD_USRP_MULTI_USRP_TX_LO_CONFIG_API chan = _stream_args.channels[chan]; return _dev->set_tx_lo_freq(freq, name, chan); #else throw std::runtime_error("not implemented in this version"); #endif } void usrp_sink_impl::set_dc_offset(const std::complex& offset, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_dc_offset(offset, chan); } void usrp_sink_impl::set_iq_balance(const std::complex& correction, size_t chan) { chan = _stream_args.channels[chan]; return _dev->set_tx_iq_balance(correction, chan); } ::uhd::sensor_value_t usrp_sink_impl::get_sensor(const std::string& name, size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_sensor(name, chan); } std::vector usrp_sink_impl::get_sensor_names(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_sensor_names(chan); } ::uhd::usrp::dboard_iface::sptr usrp_sink_impl::get_dboard_iface(size_t chan) { chan = _stream_args.channels[chan]; return _dev->get_tx_dboard_iface(chan); } #if UHD_VERSION >= 4000000 std::vector usrp_sink_impl::get_filter_names(const size_t chan) { return _dev->get_tx_filter_names(chan); } ::uhd::filter_info_base::sptr usrp_sink_impl::get_filter(const std::string& path, const size_t chan) { return _dev->get_tx_filter(path, chan); } void usrp_sink_impl::set_filter(const std::string& path, ::uhd::filter_info_base::sptr filter, const size_t chan) { _dev->set_tx_filter(path, filter, chan); } #else std::vector usrp_sink_impl::get_filter_names(const size_t /*chan*/) { return _dev->get_filter_names("tx"); } ::uhd::filter_info_base::sptr usrp_sink_impl::get_filter(const std::string& path, const size_t /*chan*/) { return _dev->get_filter(path); } void usrp_sink_impl::set_filter(const std::string& path, ::uhd::filter_info_base::sptr filter, const size_t /*chan*/) { _dev->set_filter(path, filter); } #endif void usrp_sink_impl::set_stream_args(const ::uhd::stream_args_t& stream_args) { _update_stream_args(stream_args); if (_tx_stream) { _tx_stream.reset(); } } /*********************************************************************** * Work **********************************************************************/ int usrp_sink_impl::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { int ninput_items = noutput_items; // cuz it's a sync block // default to send a mid-burst packet _metadata.start_of_burst = false; _metadata.end_of_burst = false; // collect tags in this work() const uint64_t samp0_count = nitems_read(0); get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items); if (not _tags.empty()) this->tag_work(ninput_items); if (not pmt::is_null(_length_tag_key)) { // check if there is data left to send from a burst tagged with length_tag // If a burst is started during this call to work(), tag_work() should have // been called and we should have _nitems_to_send > 0. if (_nitems_to_send > 0) { ninput_items = std::min(_nitems_to_send, ninput_items); // if we run out of items to send, it's the end of the burst if (_nitems_to_send - long(ninput_items) == 0) _metadata.end_of_burst = true; } else { // There is a tag gap since no length_tag was found immediately following // the last sample of the previous burst. Drop samples until the next // length_tag is found. Notify the user of the tag gap. static auto formatted_log_entry = boost::format("Tag gap (nitems_read = %d): no more items to send in " "current burst, but got %d more items; dropping them."); GR_LOG_ERROR(d_logger, formatted_log_entry % samp0_count % ninput_items); _metadata.time_spec += ::uhd::time_spec_t(0, ninput_items, _sample_rate); return ninput_items; } } // send all ninput_items with metadata boost::this_thread::disable_interruption disable_interrupt; const size_t num_sent = _tx_stream->send(input_items, ninput_items, _metadata, 1.0); boost::this_thread::restore_interruption restore_interrupt(disable_interrupt); // if using length_tags, decrement items left to send by the number of samples sent if (not pmt::is_null(_length_tag_key) && _nitems_to_send > 0) { _nitems_to_send -= long(num_sent); } // increment the timespec by the number of samples sent _metadata.time_spec += ::uhd::time_spec_t(0, num_sent, _sample_rate); // Some post-processing tasks if we actually transmitted the entire burst if (not _pending_cmds.empty() && num_sent == size_t(ninput_items)) { static auto debug_msg = boost::format("Executing %d pending commands."); GR_LOG_DEBUG(d_debug_logger, debug_msg % _pending_cmds.size()); for (const auto& cmd_pmt : _pending_cmds) { msg_handler_command(cmd_pmt); } _pending_cmds.clear(); } return num_sent; } /*********************************************************************** * Tag Work **********************************************************************/ void usrp_sink_impl::tag_work(int& ninput_items) { // the for loop below assumes tags sorted by count low -> high // This is OK since get_tags_in_range returns sorted tags // extract absolute sample counts const uint64_t samp0_count = this->nitems_read(0); uint64_t max_count = samp0_count + ninput_items; // Go through tag list until something indicates the end of a burst. bool found_time_tag = false; bool found_eob = false; // For commands that are in the middle of the burst: std::vector commands_in_burst; // Store the command uint64_t in_burst_cmd_offset = 0; // Store its position for (const auto& my_tag : _tags) { const uint64_t my_tag_count = my_tag.offset; const pmt::pmt_t& key = my_tag.key; const pmt::pmt_t& value = my_tag.value; if (my_tag_count >= max_count) { break; } /* I. Tags that can only be on the first sample of a burst * * This includes: * - tx_time * - tx_command TODO should also work end-of-burst * - tx_sob * - length tags * * With these tags, we check if they're on the first item, otherwise, * we stop before that tag so they are on the first item the next time round. */ else if (pmt::equal(key, COMMAND_KEY)) { if (my_tag_count != samp0_count) { max_count = my_tag_count; break; } // TODO set the command time from the sample time msg_handler_command(value); } // set the time specification in the metadata else if (pmt::equal(key, TIME_KEY)) { if (my_tag_count != samp0_count) { max_count = my_tag_count; break; } found_time_tag = true; _metadata.has_time_spec = true; _metadata.time_spec = ::uhd::time_spec_t(pmt::to_uint64(pmt::tuple_ref(value, 0)), pmt::to_double(pmt::tuple_ref(value, 1))); } // set the start of burst flag in the metadata; ignore if length_tag_key is not // null else if (pmt::is_null(_length_tag_key) && pmt::equal(key, SOB_KEY)) { if (my_tag.offset != samp0_count) { max_count = my_tag_count; break; } // Bursty tx will not use time specs, unless a tx_time tag is also given. _metadata.has_time_spec = false; _metadata.start_of_burst = pmt::to_bool(value); } // length_tag found; set the start of burst flag in the metadata else if (not pmt::is_null(_length_tag_key) && pmt::equal(key, _length_tag_key)) { if (my_tag_count != samp0_count) { max_count = my_tag_count; break; } // If there are still items left to send, the current burst has been // preempted. Set the items remaining counter to the new burst length. Notify // the user of the tag preemption. else if (_nitems_to_send > 0) { GR_LOG_ERROR(d_logger, "tP"); } _nitems_to_send = pmt::to_long(value); _metadata.start_of_burst = true; } /* II. Tags that can be on the first OR last sample of a burst * * This includes: * - tx_freq * * With these tags, we check if they're at the start of a burst, and do * the appropriate action. Otherwise, make sure the corresponding sample * is the last one. */ else if (pmt::equal(key, FREQ_KEY) && my_tag_count == samp0_count) { // If it's on the first sample, immediately do the tune: GR_LOG_DEBUG(d_debug_logger, "Received tx_freq on start of burst."); pmt::pmt_t freq_cmd = pmt::make_dict(); freq_cmd = pmt::dict_add(freq_cmd, cmd_freq_key(), value); msg_handler_command(freq_cmd); } else if (pmt::equal(key, FREQ_KEY)) { // If it's not on the first sample, queue this command and only tx until here: GR_LOG_DEBUG(d_debug_logger, "Received tx_freq mid-burst."); pmt::pmt_t freq_cmd = pmt::make_dict(); freq_cmd = pmt::dict_add(freq_cmd, cmd_freq_key(), value); commands_in_burst.push_back(freq_cmd); max_count = my_tag_count + 1; in_burst_cmd_offset = my_tag_count; } /* III. Tags that can only be on the last sample of a burst * * This includes: * - tx_eob * * Make sure that no more samples are allowed through. */ else if (pmt::is_null(_length_tag_key) && pmt::equal(key, EOB_KEY)) { found_eob = true; max_count = my_tag_count + 1; _metadata.end_of_burst = pmt::to_bool(value); } } // end foreach if (not pmt::is_null(_length_tag_key) && long(max_count - samp0_count) == _nitems_to_send) { found_eob = true; } // If a command was found in-burst that may appear at the end of burst, // there's two options: // 1) The command was actually on the last sample (eob). Then, stash the // commands for running after work(). // 2) The command was not on the last sample. In this case, only send() // until before the tag, so it will be on the first sample of the next run. if (not commands_in_burst.empty()) { if (not found_eob) { // ...then it's in the middle of a burst, only send() until before the tag max_count = in_burst_cmd_offset; } else if (in_burst_cmd_offset < max_count) { for (const auto& cmd_pmt : commands_in_burst) { _pending_cmds.push_back(cmd_pmt); } } } if (found_time_tag) { _metadata.has_time_spec = true; } // Only transmit up to and including end of burst, // or everything if no burst boundaries are found. ninput_items = int(max_count - samp0_count); } // end tag_work() void usrp_sink_impl::set_start_time(const ::uhd::time_spec_t& time) { _start_time = time; _start_time_set = true; _stream_now = false; } // Send an empty start-of-burst packet to begin streaming. // Set at a time in the near future to avoid late packets. bool usrp_sink_impl::start(void) { if (not _tx_stream) _tx_stream = _dev->get_tx_stream(_stream_args); _metadata.start_of_burst = true; _metadata.end_of_burst = false; // Bursty tx will need to send a tx_time to activate time spec _metadata.has_time_spec = !_stream_now && pmt::is_null(_length_tag_key); _nitems_to_send = 0; if (pmt::is_null(_length_tag_key)) { // don't execute this part in burst mode _metadata.start_of_burst = true; _metadata.end_of_burst = false; _metadata.has_time_spec = false; if (!_stream_now) { _metadata.has_time_spec = true; if (_start_time_set) { _start_time_set = false; // cleared for next run _metadata.time_spec = _start_time; } else { _metadata.time_spec = get_time_now() + ::uhd::time_spec_t(0.15); } } _tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0); } return true; } // Send an empty end-of-burst packet to end streaming. // Ending the burst avoids an underflow error on stop. bool usrp_sink_impl::stop(void) { _metadata.start_of_burst = false; _metadata.end_of_burst = true; _metadata.has_time_spec = false; _nitems_to_send = 0; if (_tx_stream) { _tx_stream->send(gr_vector_const_void_star(_nchan), 0, _metadata, 1.0); } return true; } void usrp_sink_impl::setup_rpc() { #ifdef GR_CTRLPORT add_rpc_variable(rpcbasic_sptr(new rpcbasic_register_handler( alias(), "command", "", "UHD Commands", RPC_PRIVLVL_MIN, DISPNULL))); #endif /* GR_CTRLPORT */ } void usrp_sink_impl::async_event_loop() { typedef ::uhd::async_metadata_t md_t; md_t metadata; using clock = std::chrono::steady_clock; auto millisecond_cast = [](auto timediff) { return std::chrono::duration_cast(timediff); }; unsigned int underflow_counter = 0; unsigned int time_error_counter = 0; unsigned int sequence_error_counter = 0; auto last_underflow_log = clock::now(); auto last_time_err_log = clock::now(); auto last_sequence_err_log = clock::now(); auto log_interval = std::chrono::milliseconds( gr::prefs::singleton()->get_long("uhd", "logging_interval_ms", 750)); auto uflow_msg = boost::format("In the last %d ms, %d underflows occurred."); auto time_msg = boost::format("In the last %d ms, %d cmd time errors occurred."); while (_async_event_loop_running) { // The Tx Streamer does not exist until start() was called. After that, // we poll it with a 100ms timeout for async messages. if (!_tx_stream || !_tx_stream->recv_async_msg(metadata, 0.1)) { std::this_thread::sleep_for(100ms); continue; } pmt::pmt_t event_list = pmt::PMT_NIL; if (metadata.event_code & md_t::EVENT_CODE_BURST_ACK) { event_list = pmt::list_add(event_list, BURST_ACK_KEY); } if (metadata.event_code & md_t::EVENT_CODE_UNDERFLOW) { event_list = pmt::list_add(event_list, UNDERFLOW_KEY); ++underflow_counter; } if (metadata.event_code & md_t::EVENT_CODE_UNDERFLOW_IN_PACKET) { event_list = pmt::list_add(event_list, UNDERFLOW_IN_PACKET_KEY); ++underflow_counter; } if (metadata.event_code & md_t::EVENT_CODE_SEQ_ERROR) { event_list = pmt::list_add(event_list, SEQ_ERROR_KEY); ++sequence_error_counter; } if (metadata.event_code & md_t::EVENT_CODE_SEQ_ERROR_IN_BURST) { event_list = pmt::list_add(event_list, SEQ_ERROR_IN_BURST_KEY); ++sequence_error_counter; } if (metadata.event_code & md_t::EVENT_CODE_TIME_ERROR) { event_list = pmt::list_add(event_list, TIME_ERROR_KEY); ++time_error_counter; } if (!pmt::eq(event_list, pmt::PMT_NIL)) { pmt::pmt_t value = pmt::dict_add(pmt::make_dict(), EVENT_CODE_KEY, event_list); if (metadata.has_time_spec) { pmt::pmt_t time_spec = pmt::cons(pmt::from_long(metadata.time_spec.get_full_secs()), pmt::from_double(metadata.time_spec.get_frac_secs())); value = pmt::dict_add(value, TIME_SPEC_KEY, time_spec); } value = pmt::dict_add(value, CHANNEL_KEY, pmt::from_uint64(metadata.channel)); pmt::pmt_t msg = pmt::cons(ASYNC_MSG_KEY, value); message_port_pub(ASYNC_MSGS_PORT_KEY, msg); } if (underflow_counter) { auto now = clock::now(); auto delta = now - last_underflow_log; if (delta > log_interval) { auto ms = millisecond_cast(delta).count(); GR_LOG_ERROR(d_logger, uflow_msg % ms % underflow_counter); last_underflow_log = now; underflow_counter = 0; } } if (time_error_counter) { auto now = clock::now(); auto delta = now - last_time_err_log; if (delta > log_interval) { auto ms = millisecond_cast(delta).count(); GR_LOG_ERROR(d_logger, time_msg % ms % time_error_counter); last_time_err_log = now; time_error_counter = 0; } } if (sequence_error_counter) { auto now = clock::now(); auto delta = now - last_sequence_err_log; if (delta > log_interval) { auto ms = millisecond_cast(delta).count(); GR_LOG_ERROR(d_logger, time_msg % ms % sequence_error_counter); last_sequence_err_log = now; time_error_counter = 0; } } } } } // namespace uhd } // namespace gr