aboutsummaryrefslogtreecommitdiffstats
path: root/curve25519-fiat64.c
blob: ed8119f989178c038cab81745c8515180981ba40 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
/* SPDX-License-Identifier: GPL-2.0
 *
 * Copyright (C) 2015-2016 The fiat-crypto Authors.
 * Copyright (C) 2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 *
 * This is a machine-generated formally verified implementation of curve25519 DH from:
 * https://github.com/mit-plv/fiat-crypto
 */

#include <linux/kernel.h>
#include <linux/string.h>

typedef __uint128_t u128;

enum { CURVE25519_POINT_SIZE = 32 };

static __always_inline void normalize_secret(u8 secret[CURVE25519_POINT_SIZE])
{
	secret[0] &= 248;
	secret[31] &= 127;
	secret[31] |= 64;
}

/* fe means field element. Here the field is \Z/(2^255-19). An element t,
 * entries t[0]...t[4], represents the integer t[0]+2^51 t[1]+2^102 t[2]+2^153
 * t[3]+2^204 t[4].
 * fe limbs are bounded by 1.125*2^51.
 * Multiplication and carrying produce fe from fe_loose.
 */
typedef struct fe { u64 v[5]; } fe;

/* fe_loose limbs are bounded by 3.375*2^51.
 * Addition and subtraction produce fe_loose from (fe, fe).
 */
typedef struct fe_loose { u64 v[5]; } fe_loose;

static __always_inline void fe_frombytes_impl(u64 h[5], const u8 *s)
{
	// Ignores top bit of s.
	u64 a0 = le64_to_cpup((__force __le64 *)(s));
	u64 a1 = le64_to_cpup((__force __le64 *)(s+8));
	u64 a2 = le64_to_cpup((__force __le64 *)(s+16));
	u64 a3 = le64_to_cpup((__force __le64 *)(s+24));
	// Use 51 bits, 64-51 = 13 left.
	h[0] = a0 & ((1ULL << 51) - 1);
	// (64-51) + 38 = 13 + 38 = 51
	h[1] = (a0 >> 51) | ((a1 & ((1ULL << 38) - 1)) << 13);
	// (64-38) + 25 = 26 + 25 = 51
	h[2] = (a1 >> 38) | ((a2 & ((1ULL << 25) - 1)) << 26);
	// (64-25) + 12 = 39 + 12 = 51
	h[3] = (a2 >> 25) | ((a3 & ((1ULL << 12) - 1)) << 39);
	// (64-12) = 52, ignore top bit
	h[4] = (a3 >> 12) & ((1ULL << 51) - 1);
}

static __always_inline void fe_frombytes(fe *h, const u8 *s)
{
	fe_frombytes_impl(h->v, s);
}

static __always_inline u8 /*bool*/ addcarryx_u51(u8 /*bool*/ c, u64 a, u64 b, u64 *low)
{
	/* This function extracts 51 bits of result and 1 bit of carry (52 total), so
	 *a 64-bit intermediate is sufficient.
	 */
	u64 x = a + b + c;
	*low = x & ((1ULL << 51) - 1);
	return (x >> 51) & 1;
}

static __always_inline u8 /*bool*/ subborrow_u51(u8 /*bool*/ c, u64 a, u64 b, u64 *low)
{
	/* This function extracts 51 bits of result and 1 bit of borrow (52 total), so
	 * a 64-bit intermediate is sufficient.
	 */
	u64 x = a - b - c;
	*low = x & ((1ULL << 51) - 1);
	return x >> 63;
}

static __always_inline u64 cmovznz64(u64 t, u64 z, u64 nz)
{
	/* all set if nonzero, 0 if 0 */
	t = -!!t;
	return (t&nz) | ((~t)&z);
}

static __always_inline void fe_freeze(u64 out[5], const u64 in1[5])
{
	{ const u64 x7 = in1[4];
	{ const u64 x8 = in1[3];
	{ const u64 x6 = in1[2];
	{ const u64 x4 = in1[1];
	{ const u64 x2 = in1[0];
	{ u64 x10; u8/*bool*/ x11 = subborrow_u51(0x0, x2, 0x7ffffffffffed, &x10);
	{ u64 x13; u8/*bool*/ x14 = subborrow_u51(x11, x4, 0x7ffffffffffff, &x13);
	{ u64 x16; u8/*bool*/ x17 = subborrow_u51(x14, x6, 0x7ffffffffffff, &x16);
	{ u64 x19; u8/*bool*/ x20 = subborrow_u51(x17, x8, 0x7ffffffffffff, &x19);
	{ u64 x22; u8/*bool*/ x23 = subborrow_u51(x20, x7, 0x7ffffffffffff, &x22);
	{ u64 x24 = cmovznz64(x23, 0x0, 0xffffffffffffffffL);
	{ u64 x25 = (x24 & 0x7ffffffffffed);
	{ u64 x27; u8/*bool*/ x28 = addcarryx_u51(0x0, x10, x25, &x27);
	{ u64 x29 = (x24 & 0x7ffffffffffff);
	{ u64 x31; u8/*bool*/ x32 = addcarryx_u51(x28, x13, x29, &x31);
	{ u64 x33 = (x24 & 0x7ffffffffffff);
	{ u64 x35; u8/*bool*/ x36 = addcarryx_u51(x32, x16, x33, &x35);
	{ u64 x37 = (x24 & 0x7ffffffffffff);
	{ u64 x39; u8/*bool*/ x40 = addcarryx_u51(x36, x19, x37, &x39);
	{ u64 x41 = (x24 & 0x7ffffffffffff);
	{ u64 x43; addcarryx_u51(x40, x22, x41, &x43);
	out[0] = x27;
	out[1] = x31;
	out[2] = x35;
	out[3] = x39;
	out[4] = x43;
	}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_tobytes(u8 s[32], const fe *f)
{
	u64 h[5];
	fe_freeze(h, f->v);

	s[0] = h[0] >> 0;
	s[1] = h[0] >> 8;
	s[2] = h[0] >> 16;
	s[3] = h[0] >> 24;
	s[4] = h[0] >> 32;
	s[5] = h[0] >> 40;
	s[6] = (h[0] >> 48) | (h[1] << 3);
	s[7] = h[1] >> 5;
	s[8] = h[1] >> 13;
	s[9] = h[1] >> 21;
	s[10] = h[1] >> 29;
	s[11] = h[1] >> 37;
	s[12] = (h[1] >> 45) | (h[2] << 6);
	s[13] = h[2] >> 2;
	s[14] = h[2] >> 10;
	s[15] = h[2] >> 18;
	s[16] = h[2] >> 26;
	s[17] = h[2] >> 34;
	s[18] = h[2] >> 42;
	s[19] = (h[2] >> 50) | (h[3] << 1);
	s[20] = h[3] >> 7;
	s[21] = h[3] >> 15;
	s[22] = h[3] >> 23;
	s[23] = h[3] >> 31;
	s[24] = h[3] >> 39;
	s[25] = (h[3] >> 47) | (h[4] << 4);
	s[26] = h[4] >> 4;
	s[27] = h[4] >> 12;
	s[28] = h[4] >> 20;
	s[29] = h[4] >> 28;
	s[30] = h[4] >> 36;
	s[31] = h[4] >> 44;
}

/* h = f */
static __always_inline void fe_copy(fe *h, const fe *f)
{
	memmove(h, f, sizeof(fe));
}

static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
{
	memmove(h, f, sizeof(fe));
}

/* h = 0 */
static __always_inline void fe_0(fe *h)
{
	memset(h, 0, sizeof(fe));
}

/* h = 1 */
static __always_inline void fe_1(fe *h)
{
	memset(h, 0, sizeof(fe));
	h->v[0] = 1;
}

static __always_inline void fe_add_impl(u64 out[5], const u64 in1[5], const u64 in2[5])
{
	{ const u64 x10 = in1[4];
	{ const u64 x11 = in1[3];
	{ const u64 x9 = in1[2];
	{ const u64 x7 = in1[1];
	{ const u64 x5 = in1[0];
	{ const u64 x18 = in2[4];
	{ const u64 x19 = in2[3];
	{ const u64 x17 = in2[2];
	{ const u64 x15 = in2[1];
	{ const u64 x13 = in2[0];
	out[0] = (x5 + x13);
	out[1] = (x7 + x15);
	out[2] = (x9 + x17);
	out[3] = (x11 + x19);
	out[4] = (x10 + x18);
	}}}}}}}}}}
}

/* h = f + g
 * Can overlap h with f or g.
 */
static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
{
	fe_add_impl(h->v, f->v, g->v);
}

static __always_inline void fe_sub_impl(u64 out[5], const u64 in1[5], const u64 in2[5])
{
	{ const u64 x10 = in1[4];
	{ const u64 x11 = in1[3];
	{ const u64 x9 = in1[2];
	{ const u64 x7 = in1[1];
	{ const u64 x5 = in1[0];
	{ const u64 x18 = in2[4];
	{ const u64 x19 = in2[3];
	{ const u64 x17 = in2[2];
	{ const u64 x15 = in2[1];
	{ const u64 x13 = in2[0];
	out[0] = ((0xfffffffffffda + x5) - x13);
	out[1] = ((0xffffffffffffe + x7) - x15);
	out[2] = ((0xffffffffffffe + x9) - x17);
	out[3] = ((0xffffffffffffe + x11) - x19);
	out[4] = ((0xffffffffffffe + x10) - x18);
	}}}}}}}}}}
}

/* h = f - g
 * Can overlap h with f or g.
 */
static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
{
	fe_sub_impl(h->v, f->v, g->v);
}

static __always_inline void fe_mul_impl(u64 out[5], const u64 in1[5], const u64 in2[5])
{
	{ const u64 x10 = in1[4];
	{ const u64 x11 = in1[3];
	{ const u64 x9 = in1[2];
	{ const u64 x7 = in1[1];
	{ const u64 x5 = in1[0];
	{ const u64 x18 = in2[4];
	{ const u64 x19 = in2[3];
	{ const u64 x17 = in2[2];
	{ const u64 x15 = in2[1];
	{ const u64 x13 = in2[0];
	{ u128 x20 = ((u128)x5 * x13);
	{ u128 x21 = (((u128)x5 * x15) + ((u128)x7 * x13));
	{ u128 x22 = ((((u128)x5 * x17) + ((u128)x9 * x13)) + ((u128)x7 * x15));
	{ u128 x23 = (((((u128)x5 * x19) + ((u128)x11 * x13)) + ((u128)x7 * x17)) + ((u128)x9 * x15));
	{ u128 x24 = ((((((u128)x5 * x18) + ((u128)x10 * x13)) + ((u128)x11 * x15)) + ((u128)x7 * x19)) + ((u128)x9 * x17));
	{ u64 x25 = (x10 * 0x13);
	{ u64 x26 = (x7 * 0x13);
	{ u64 x27 = (x9 * 0x13);
	{ u64 x28 = (x11 * 0x13);
	{ u128 x29 = ((((x20 + ((u128)x25 * x15)) + ((u128)x26 * x18)) + ((u128)x27 * x19)) + ((u128)x28 * x17));
	{ u128 x30 = (((x21 + ((u128)x25 * x17)) + ((u128)x27 * x18)) + ((u128)x28 * x19));
	{ u128 x31 = ((x22 + ((u128)x25 * x19)) + ((u128)x28 * x18));
	{ u128 x32 = (x23 + ((u128)x25 * x18));
	{ u64 x33 = (u64) (x29 >> 0x33);
	{ u64 x34 = ((u64)x29 & 0x7ffffffffffff);
	{ u128 x35 = (x33 + x30);
	{ u64 x36 = (u64) (x35 >> 0x33);
	{ u64 x37 = ((u64)x35 & 0x7ffffffffffff);
	{ u128 x38 = (x36 + x31);
	{ u64 x39 = (u64) (x38 >> 0x33);
	{ u64 x40 = ((u64)x38 & 0x7ffffffffffff);
	{ u128 x41 = (x39 + x32);
	{ u64 x42 = (u64) (x41 >> 0x33);
	{ u64 x43 = ((u64)x41 & 0x7ffffffffffff);
	{ u128 x44 = (x42 + x24);
	{ u64 x45 = (u64) (x44 >> 0x33);
	{ u64 x46 = ((u64)x44 & 0x7ffffffffffff);
	{ u64 x47 = (x34 + (0x13 * x45));
	{ u64 x48 = (x47 >> 0x33);
	{ u64 x49 = (x47 & 0x7ffffffffffff);
	{ u64 x50 = (x48 + x37);
	{ u64 x51 = (x50 >> 0x33);
	{ u64 x52 = (x50 & 0x7ffffffffffff);
	out[0] = x49;
	out[1] = x52;
	out[2] = (x51 + x40);
	out[3] = x43;
	out[4] = x46;
	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}

static __always_inline void fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
{
	fe_mul_impl(h->v, f->v, g->v);
}


static __always_inline void fe_sqr_impl(u64 out[5], const u64 in1[5])
{
	{ const u64 x7 = in1[4];
	{ const u64 x8 = in1[3];
	{ const u64 x6 = in1[2];
	{ const u64 x4 = in1[1];
	{ const u64 x2 = in1[0];
	{ u64 x9 = (x2 * 0x2);
	{ u64 x10 = (x4 * 0x2);
	{ u64 x11 = ((x6 * 0x2) * 0x13);
	{ u64 x12 = (x7 * 0x13);
	{ u64 x13 = (x12 * 0x2);
	{ u128 x14 = ((((u128)x2 * x2) + ((u128)x13 * x4)) + ((u128)x11 * x8));
	{ u128 x15 = ((((u128)x9 * x4) + ((u128)x13 * x6)) + ((u128)x8 * (x8 * 0x13)));
	{ u128 x16 = ((((u128)x9 * x6) + ((u128)x4 * x4)) + ((u128)x13 * x8));
	{ u128 x17 = ((((u128)x9 * x8) + ((u128)x10 * x6)) + ((u128)x7 * x12));
	{ u128 x18 = ((((u128)x9 * x7) + ((u128)x10 * x8)) + ((u128)x6 * x6));
	{ u64 x19 = (u64) (x14 >> 0x33);
	{ u64 x20 = ((u64)x14 & 0x7ffffffffffff);
	{ u128 x21 = (x19 + x15);
	{ u64 x22 = (u64) (x21 >> 0x33);
	{ u64 x23 = ((u64)x21 & 0x7ffffffffffff);
	{ u128 x24 = (x22 + x16);
	{ u64 x25 = (u64) (x24 >> 0x33);
	{ u64 x26 = ((u64)x24 & 0x7ffffffffffff);
	{ u128 x27 = (x25 + x17);
	{ u64 x28 = (u64) (x27 >> 0x33);
	{ u64 x29 = ((u64)x27 & 0x7ffffffffffff);
	{ u128 x30 = (x28 + x18);
	{ u64 x31 = (u64) (x30 >> 0x33);
	{ u64 x32 = ((u64)x30 & 0x7ffffffffffff);
	{ u64 x33 = (x20 + (0x13 * x31));
	{ u64 x34 = (x33 >> 0x33);
	{ u64 x35 = (x33 & 0x7ffffffffffff);
	{ u64 x36 = (x34 + x23);
	{ u64 x37 = (x36 >> 0x33);
	{ u64 x38 = (x36 & 0x7ffffffffffff);
	out[0] = x35;
	out[1] = x38;
	out[2] = (x37 + x26);
	out[3] = x29;
	out[4] = x32;
	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
{
	fe_sqr_impl(h->v, f->v);
}

static __always_inline void fe_sq_tt(fe *h, const fe *f)
{
	fe_sqr_impl(h->v, f->v);
}

static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
{
	fe t0;
	fe t1;
	fe t2;
	fe t3;
	int i;

	fe_sq_tl(&t0, z);
	fe_sq_tt(&t1, &t0);
	for (i = 1; i < 2; ++i)
		fe_sq_tt(&t1, &t1);
	fe_mul_tlt(&t1, z, &t1);
	fe_mul_ttt(&t0, &t0, &t1);
	fe_sq_tt(&t2, &t0);
	fe_mul_ttt(&t1, &t1, &t2);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 5; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 10; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t2, &t2, &t1);
	fe_sq_tt(&t3, &t2);
	for (i = 1; i < 20; ++i)
		fe_sq_tt(&t3, &t3);
	fe_mul_ttt(&t2, &t3, &t2);
	fe_sq_tt(&t2, &t2);
	for (i = 1; i < 10; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t2, &t1);
	for (i = 1; i < 50; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t2, &t2, &t1);
	fe_sq_tt(&t3, &t2);
	for (i = 1; i < 100; ++i)
		fe_sq_tt(&t3, &t3);
	fe_mul_ttt(&t2, &t3, &t2);
	fe_sq_tt(&t2, &t2);
	for (i = 1; i < 50; ++i)
		fe_sq_tt(&t2, &t2);
	fe_mul_ttt(&t1, &t2, &t1);
	fe_sq_tt(&t1, &t1);
	for (i = 1; i < 5; ++i)
		fe_sq_tt(&t1, &t1);
	fe_mul_ttt(out, &t1, &t0);
}

static __always_inline void fe_invert(fe *out, const fe *z)
{
	fe_loose l;
	fe_copy_lt(&l, z);
	fe_loose_invert(out, &l);
}

/* Replace (f,g) with (g,f) if b == 1;
 * replace (f,g) with (f,g) if b == 0.
 *
 * Preconditions: b in {0,1}
 */
static __always_inline void fe_cswap(fe *f, fe *g, u64 b)
{
	unsigned i;
	b = 0-b;
	for (i = 0; i < 5; i++) {
		u64 x = f->v[i] ^ g->v[i];
		x &= b;
		f->v[i] ^= x;
		g->v[i] ^= x;
	}
}

/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
static __always_inline void fe_mul_121666_impl(u64 out[5], const u64 in1[5])
{
	{ const u64 x10 = in1[4];
	{ const u64 x11 = in1[3];
	{ const u64 x9 = in1[2];
	{ const u64 x7 = in1[1];
	{ const u64 x5 = in1[0];
	{ const u64 x18 = 0;
	{ const u64 x19 = 0;
	{ const u64 x17 = 0;
	{ const u64 x15 = 0;
	{ const u64 x13 = 121666;
	{ u128 x20 = ((u128)x5 * x13);
	{ u128 x21 = (((u128)x5 * x15) + ((u128)x7 * x13));
	{ u128 x22 = ((((u128)x5 * x17) + ((u128)x9 * x13)) + ((u128)x7 * x15));
	{ u128 x23 = (((((u128)x5 * x19) + ((u128)x11 * x13)) + ((u128)x7 * x17)) + ((u128)x9 * x15));
	{ u128 x24 = ((((((u128)x5 * x18) + ((u128)x10 * x13)) + ((u128)x11 * x15)) + ((u128)x7 * x19)) + ((u128)x9 * x17));
	{ u64 x25 = (x10 * 0x13);
	{ u64 x26 = (x7 * 0x13);
	{ u64 x27 = (x9 * 0x13);
	{ u64 x28 = (x11 * 0x13);
	{ u128 x29 = ((((x20 + ((u128)x25 * x15)) + ((u128)x26 * x18)) + ((u128)x27 * x19)) + ((u128)x28 * x17));
	{ u128 x30 = (((x21 + ((u128)x25 * x17)) + ((u128)x27 * x18)) + ((u128)x28 * x19));
	{ u128 x31 = ((x22 + ((u128)x25 * x19)) + ((u128)x28 * x18));
	{ u128 x32 = (x23 + ((u128)x25 * x18));
	{ u64 x33 = (u64) (x29 >> 0x33);
	{ u64 x34 = ((u64)x29 & 0x7ffffffffffff);
	{ u128 x35 = (x33 + x30);
	{ u64 x36 = (u64) (x35 >> 0x33);
	{ u64 x37 = ((u64)x35 & 0x7ffffffffffff);
	{ u128 x38 = (x36 + x31);
	{ u64 x39 = (u64) (x38 >> 0x33);
	{ u64 x40 = ((u64)x38 & 0x7ffffffffffff);
	{ u128 x41 = (x39 + x32);
	{ u64 x42 = (u64) (x41 >> 0x33);
	{ u64 x43 = ((u64)x41 & 0x7ffffffffffff);
	{ u128 x44 = (x42 + x24);
	{ u64 x45 = (u64) (x44 >> 0x33);
	{ u64 x46 = ((u64)x44 & 0x7ffffffffffff);
	{ u64 x47 = (x34 + (0x13 * x45));
	{ u64 x48 = (x47 >> 0x33);
	{ u64 x49 = (x47 & 0x7ffffffffffff);
	{ u64 x50 = (x48 + x37);
	{ u64 x51 = (x50 >> 0x33);
	{ u64 x52 = (x50 & 0x7ffffffffffff);
	out[0] = x49;
	out[1] = x52;
	out[2] = (x51 + x40);
	out[3] = x43;
	out[4] = x46;
	}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}

static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
{
	fe_mul_121666_impl(h->v, f->v);
}

bool curve25519_fiat64(u8 out[CURVE25519_POINT_SIZE], const u8 scalar[CURVE25519_POINT_SIZE], const u8 point[CURVE25519_POINT_SIZE])
{
	fe x1, x2, z2, x3, z3, tmp0, tmp1;
	fe_loose x2l, z2l, x3l, tmp0l, tmp1l;
	unsigned swap = 0;
	int pos;
	u8 e[32];

	memcpy(e, scalar, 32);
	normalize_secret(e);

	/* The following implementation was transcribed to Coq and proven to
	 * correspond to unary scalar multiplication in affine coordinates given that
	 * x1 != 0 is the x coordinate of some point on the curve. It was also checked
	 * in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2
	 * = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the
	 * underlying field, so it applies to Curve25519 itself and the quadratic
	 * twist of Curve25519. It was not proven in Coq that prime-field arithmetic
	 * correctly simulates extension-field arithmetic on prime-field values.
	 * The decoding of the byte array representation of e was not considered.
	 * Specification of Montgomery curves in affine coordinates:
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
	 * Proof that these form a group that is isomorphic to a Weierstrass curve:
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
	 * Coq transcription and correctness proof of the loop (where scalarbits=255):
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
	 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
	 * preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0
	 */
	fe_frombytes(&x1, point);
	fe_1(&x2);
	fe_0(&z2);
	fe_copy(&x3, &x1);
	fe_1(&z3);

	for (pos = 254; pos >= 0; --pos) {
		/* loop invariant as of right before the test, for the case where x1 != 0:
		 *   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero
		 *   let r := e >> (pos+1) in the following equalities of projective points:
		 *   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
		 *   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
		 *   x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P)
		 */
		unsigned b = 1 & (e[pos / 8] >> (pos & 7));
		swap ^= b;
		fe_cswap(&x2, &x3, swap);
		fe_cswap(&z2, &z3, swap);
		swap = b;
		/* Coq transcription of ladderstep formula (called from transcribed loop):
		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
		 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
		 * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
		 * x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
		 */
		fe_sub(&tmp0l, &x3, &z3);
		fe_sub(&tmp1l, &x2, &z2);
		fe_add(&x2l, &x2, &z2);
		fe_add(&z2l, &x3, &z3);
		fe_mul_tll(&z3, &tmp0l, &x2l);
		fe_mul_tll(&z2, &z2l, &tmp1l);
		fe_sq_tl(&tmp0, &tmp1l);
		fe_sq_tl(&tmp1, &x2l);
		fe_add(&x3l, &z3, &z2);
		fe_sub(&z2l, &z3, &z2);
		fe_mul_ttt(&x2, &tmp1, &tmp0);
		fe_sub(&tmp1l, &tmp1, &tmp0);
		fe_sq_tl(&z2, &z2l);
		fe_mul121666(&z3, &tmp1l);
		fe_sq_tl(&x3, &x3l);
		fe_add(&tmp0l, &tmp0, &z3);
		fe_mul_ttt(&z3, &x1, &z2);
		fe_mul_tll(&z2, &tmp1l, &tmp0l);
	}
	/* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2) */
	fe_cswap(&x2, &x3, swap);
	fe_cswap(&z2, &z3, swap);

	fe_invert(&z2, &z2);
	fe_mul_ttt(&x2, &x2, &z2);
	fe_tobytes(out, &x2);

	return true;
}