aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm/book3s/64/pgtable.h
diff options
context:
space:
mode:
authorAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>2015-12-01 09:06:28 +0530
committerMichael Ellerman <mpe@ellerman.id.au>2015-12-14 15:19:05 +1100
commit3dfcb315d81e663bf70401de61940c1b4de2deea (patch)
treebc9d411e750e1f06c6aacf0b64cb1e4321fc7bca /arch/powerpc/include/asm/book3s/64/pgtable.h
parentpowerpc/mm: move pte headers to book3s directory (diff)
downloadlinux-dev-3dfcb315d81e663bf70401de61940c1b4de2deea.tar.xz
linux-dev-3dfcb315d81e663bf70401de61940c1b4de2deea.zip
powerpc/mm: make a separate copy for book3s
In this patch we do: cp pgtable-ppc32.h book3s/32/pgtable.h cp pgtable-ppc64.h book3s/64/pgtable.h This enable us to do further changes to hash specific config. We will change the page table format for 64bit hash in later patches. Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to '')
-rw-r--r--arch/powerpc/include/asm/book3s/64/pgtable.h626
1 files changed, 626 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/book3s/64/pgtable.h b/arch/powerpc/include/asm/book3s/64/pgtable.h
new file mode 100644
index 000000000000..cdd5284d9eaa
--- /dev/null
+++ b/arch/powerpc/include/asm/book3s/64/pgtable.h
@@ -0,0 +1,626 @@
+#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
+#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
+/*
+ * This file contains the functions and defines necessary to modify and use
+ * the ppc64 hashed page table.
+ */
+
+#ifdef CONFIG_PPC_64K_PAGES
+#include <asm/pgtable-ppc64-64k.h>
+#else
+#include <asm/pgtable-ppc64-4k.h>
+#endif
+#include <asm/barrier.h>
+
+#define FIRST_USER_ADDRESS 0UL
+
+/*
+ * Size of EA range mapped by our pagetables.
+ */
+#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
+ PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
+#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+#define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
+#else
+#define PMD_CACHE_INDEX PMD_INDEX_SIZE
+#endif
+/*
+ * Define the address range of the kernel non-linear virtual area
+ */
+
+#ifdef CONFIG_PPC_BOOK3E
+#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
+#else
+#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
+#endif
+#define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
+
+/*
+ * The vmalloc space starts at the beginning of that region, and
+ * occupies half of it on hash CPUs and a quarter of it on Book3E
+ * (we keep a quarter for the virtual memmap)
+ */
+#define VMALLOC_START KERN_VIRT_START
+#ifdef CONFIG_PPC_BOOK3E
+#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
+#else
+#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
+#endif
+#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
+
+/*
+ * The second half of the kernel virtual space is used for IO mappings,
+ * it's itself carved into the PIO region (ISA and PHB IO space) and
+ * the ioremap space
+ *
+ * ISA_IO_BASE = KERN_IO_START, 64K reserved area
+ * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
+ * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
+ */
+#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
+#define FULL_IO_SIZE 0x80000000ul
+#define ISA_IO_BASE (KERN_IO_START)
+#define ISA_IO_END (KERN_IO_START + 0x10000ul)
+#define PHB_IO_BASE (ISA_IO_END)
+#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
+#define IOREMAP_BASE (PHB_IO_END)
+#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
+
+
+/*
+ * Region IDs
+ */
+#define REGION_SHIFT 60UL
+#define REGION_MASK (0xfUL << REGION_SHIFT)
+#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
+
+#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
+#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
+#define VMEMMAP_REGION_ID (0xfUL) /* Server only */
+#define USER_REGION_ID (0UL)
+
+/*
+ * Defines the address of the vmemap area, in its own region on
+ * hash table CPUs and after the vmalloc space on Book3E
+ */
+#ifdef CONFIG_PPC_BOOK3E
+#define VMEMMAP_BASE VMALLOC_END
+#define VMEMMAP_END KERN_IO_START
+#else
+#define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
+#endif
+#define vmemmap ((struct page *)VMEMMAP_BASE)
+
+
+/*
+ * Include the PTE bits definitions
+ */
+#ifdef CONFIG_PPC_BOOK3S
+#include <asm/book3s/64/hash.h>
+#else
+#include <asm/pte-book3e.h>
+#endif
+#include <asm/pte-common.h>
+
+#ifdef CONFIG_PPC_MM_SLICES
+#define HAVE_ARCH_UNMAPPED_AREA
+#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
+#endif /* CONFIG_PPC_MM_SLICES */
+
+#ifndef __ASSEMBLY__
+
+/*
+ * This is the default implementation of various PTE accessors, it's
+ * used in all cases except Book3S with 64K pages where we have a
+ * concept of sub-pages
+ */
+#ifndef __real_pte
+
+#ifdef CONFIG_STRICT_MM_TYPECHECKS
+#define __real_pte(e,p) ((real_pte_t){(e)})
+#define __rpte_to_pte(r) ((r).pte)
+#else
+#define __real_pte(e,p) (e)
+#define __rpte_to_pte(r) (__pte(r))
+#endif
+#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
+
+#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
+ do { \
+ index = 0; \
+ shift = mmu_psize_defs[psize].shift; \
+
+#define pte_iterate_hashed_end() } while(0)
+
+/*
+ * We expect this to be called only for user addresses or kernel virtual
+ * addresses other than the linear mapping.
+ */
+#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
+
+#endif /* __real_pte */
+
+
+/* pte_clear moved to later in this file */
+
+#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
+#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
+
+#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
+#define pmd_none(pmd) (!pmd_val(pmd))
+#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
+ || (pmd_val(pmd) & PMD_BAD_BITS))
+#define pmd_present(pmd) (!pmd_none(pmd))
+#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
+#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
+extern struct page *pmd_page(pmd_t pmd);
+
+#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
+#define pud_none(pud) (!pud_val(pud))
+#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
+ || (pud_val(pud) & PUD_BAD_BITS))
+#define pud_present(pud) (pud_val(pud) != 0)
+#define pud_clear(pudp) (pud_val(*(pudp)) = 0)
+#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
+
+extern struct page *pud_page(pud_t pud);
+
+static inline pte_t pud_pte(pud_t pud)
+{
+ return __pte(pud_val(pud));
+}
+
+static inline pud_t pte_pud(pte_t pte)
+{
+ return __pud(pte_val(pte));
+}
+#define pud_write(pud) pte_write(pud_pte(pud))
+#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
+#define pgd_write(pgd) pte_write(pgd_pte(pgd))
+
+/*
+ * Find an entry in a page-table-directory. We combine the address region
+ * (the high order N bits) and the pgd portion of the address.
+ */
+#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
+
+#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
+
+#define pmd_offset(pudp,addr) \
+ (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
+
+#define pte_offset_kernel(dir,addr) \
+ (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
+
+#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
+#define pte_unmap(pte) do { } while(0)
+
+/* to find an entry in a kernel page-table-directory */
+/* This now only contains the vmalloc pages */
+#define pgd_offset_k(address) pgd_offset(&init_mm, address)
+extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
+ pte_t *ptep, unsigned long pte, int huge);
+
+/* Atomic PTE updates */
+static inline unsigned long pte_update(struct mm_struct *mm,
+ unsigned long addr,
+ pte_t *ptep, unsigned long clr,
+ unsigned long set,
+ int huge)
+{
+#ifdef PTE_ATOMIC_UPDATES
+ unsigned long old, tmp;
+
+ __asm__ __volatile__(
+ "1: ldarx %0,0,%3 # pte_update\n\
+ andi. %1,%0,%6\n\
+ bne- 1b \n\
+ andc %1,%0,%4 \n\
+ or %1,%1,%7\n\
+ stdcx. %1,0,%3 \n\
+ bne- 1b"
+ : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
+ : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
+ : "cc" );
+#else
+ unsigned long old = pte_val(*ptep);
+ *ptep = __pte((old & ~clr) | set);
+#endif
+ /* huge pages use the old page table lock */
+ if (!huge)
+ assert_pte_locked(mm, addr);
+
+#ifdef CONFIG_PPC_STD_MMU_64
+ if (old & _PAGE_HASHPTE)
+ hpte_need_flush(mm, addr, ptep, old, huge);
+#endif
+
+ return old;
+}
+
+static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
+ unsigned long addr, pte_t *ptep)
+{
+ unsigned long old;
+
+ if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
+ return 0;
+ old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
+ return (old & _PAGE_ACCESSED) != 0;
+}
+#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
+#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
+({ \
+ int __r; \
+ __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
+ __r; \
+})
+
+#define __HAVE_ARCH_PTEP_SET_WRPROTECT
+static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
+ pte_t *ptep)
+{
+
+ if ((pte_val(*ptep) & _PAGE_RW) == 0)
+ return;
+
+ pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
+}
+
+static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
+ unsigned long addr, pte_t *ptep)
+{
+ if ((pte_val(*ptep) & _PAGE_RW) == 0)
+ return;
+
+ pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
+}
+
+/*
+ * We currently remove entries from the hashtable regardless of whether
+ * the entry was young or dirty. The generic routines only flush if the
+ * entry was young or dirty which is not good enough.
+ *
+ * We should be more intelligent about this but for the moment we override
+ * these functions and force a tlb flush unconditionally
+ */
+#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
+#define ptep_clear_flush_young(__vma, __address, __ptep) \
+({ \
+ int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
+ __ptep); \
+ __young; \
+})
+
+#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
+static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
+ unsigned long addr, pte_t *ptep)
+{
+ unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
+ return __pte(old);
+}
+
+static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
+ pte_t * ptep)
+{
+ pte_update(mm, addr, ptep, ~0UL, 0, 0);
+}
+
+
+/* Set the dirty and/or accessed bits atomically in a linux PTE, this
+ * function doesn't need to flush the hash entry
+ */
+static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
+{
+ unsigned long bits = pte_val(entry) &
+ (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
+
+#ifdef PTE_ATOMIC_UPDATES
+ unsigned long old, tmp;
+
+ __asm__ __volatile__(
+ "1: ldarx %0,0,%4\n\
+ andi. %1,%0,%6\n\
+ bne- 1b \n\
+ or %0,%3,%0\n\
+ stdcx. %0,0,%4\n\
+ bne- 1b"
+ :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
+ :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
+ :"cc");
+#else
+ unsigned long old = pte_val(*ptep);
+ *ptep = __pte(old | bits);
+#endif
+}
+
+#define __HAVE_ARCH_PTE_SAME
+#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
+
+#define pte_ERROR(e) \
+ pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
+#define pmd_ERROR(e) \
+ pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
+#define pgd_ERROR(e) \
+ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
+
+/* Encode and de-code a swap entry */
+#define MAX_SWAPFILES_CHECK() do { \
+ BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
+ /* \
+ * Don't have overlapping bits with _PAGE_HPTEFLAGS \
+ * We filter HPTEFLAGS on set_pte. \
+ */ \
+ BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
+ } while (0)
+/*
+ * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
+ */
+#define SWP_TYPE_BITS 5
+#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
+ & ((1UL << SWP_TYPE_BITS) - 1))
+#define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT)
+#define __swp_entry(type, offset) ((swp_entry_t) { \
+ ((type) << _PAGE_BIT_SWAP_TYPE) \
+ | ((offset) << PTE_RPN_SHIFT) })
+
+#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) })
+#define __swp_entry_to_pte(x) __pte((x).val)
+
+void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
+void pgtable_cache_init(void);
+#endif /* __ASSEMBLY__ */
+
+/*
+ * THP pages can't be special. So use the _PAGE_SPECIAL
+ */
+#define _PAGE_SPLITTING _PAGE_SPECIAL
+
+/*
+ * We need to differentiate between explicit huge page and THP huge
+ * page, since THP huge page also need to track real subpage details
+ */
+#define _PAGE_THP_HUGE _PAGE_4K_PFN
+
+/*
+ * set of bits not changed in pmd_modify.
+ */
+#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
+ _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
+ _PAGE_THP_HUGE)
+
+#ifndef __ASSEMBLY__
+/*
+ * The linux hugepage PMD now include the pmd entries followed by the address
+ * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
+ * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
+ * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
+ * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
+ *
+ * The last three bits are intentionally left to zero. This memory location
+ * are also used as normal page PTE pointers. So if we have any pointers
+ * left around while we collapse a hugepage, we need to make sure
+ * _PAGE_PRESENT bit of that is zero when we look at them
+ */
+static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
+{
+ return (hpte_slot_array[index] >> 3) & 0x1;
+}
+
+static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
+ int index)
+{
+ return hpte_slot_array[index] >> 4;
+}
+
+static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
+ unsigned int index, unsigned int hidx)
+{
+ hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
+}
+
+struct page *realmode_pfn_to_page(unsigned long pfn);
+
+static inline char *get_hpte_slot_array(pmd_t *pmdp)
+{
+ /*
+ * The hpte hindex is stored in the pgtable whose address is in the
+ * second half of the PMD
+ *
+ * Order this load with the test for pmd_trans_huge in the caller
+ */
+ smp_rmb();
+ return *(char **)(pmdp + PTRS_PER_PMD);
+
+
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
+ pmd_t *pmdp, unsigned long old_pmd);
+extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
+extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
+extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
+extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
+ pmd_t *pmdp, pmd_t pmd);
+extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
+ pmd_t *pmd);
+/*
+ *
+ * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
+ * page. The hugetlbfs page table walking and mangling paths are totally
+ * separated form the core VM paths and they're differentiated by
+ * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
+ *
+ * pmd_trans_huge() is defined as false at build time if
+ * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
+ * time in such case.
+ *
+ * For ppc64 we need to differntiate from explicit hugepages from THP, because
+ * for THP we also track the subpage details at the pmd level. We don't do
+ * that for explicit huge pages.
+ *
+ */
+static inline int pmd_trans_huge(pmd_t pmd)
+{
+ /*
+ * leaf pte for huge page, bottom two bits != 00
+ */
+ return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
+}
+
+static inline int pmd_trans_splitting(pmd_t pmd)
+{
+ if (pmd_trans_huge(pmd))
+ return pmd_val(pmd) & _PAGE_SPLITTING;
+ return 0;
+}
+
+extern int has_transparent_hugepage(void);
+#else
+static inline void hpte_do_hugepage_flush(struct mm_struct *mm,
+ unsigned long addr, pmd_t *pmdp,
+ unsigned long old_pmd)
+{
+
+ WARN(1, "%s called with THP disabled\n", __func__);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+static inline int pmd_large(pmd_t pmd)
+{
+ /*
+ * leaf pte for huge page, bottom two bits != 00
+ */
+ return ((pmd_val(pmd) & 0x3) != 0x0);
+}
+
+static inline pte_t pmd_pte(pmd_t pmd)
+{
+ return __pte(pmd_val(pmd));
+}
+
+static inline pmd_t pte_pmd(pte_t pte)
+{
+ return __pmd(pte_val(pte));
+}
+
+static inline pte_t *pmdp_ptep(pmd_t *pmd)
+{
+ return (pte_t *)pmd;
+}
+
+#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
+#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
+#define pmd_young(pmd) pte_young(pmd_pte(pmd))
+#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
+#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
+#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
+#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
+#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
+
+#define __HAVE_ARCH_PMD_WRITE
+#define pmd_write(pmd) pte_write(pmd_pte(pmd))
+
+static inline pmd_t pmd_mkhuge(pmd_t pmd)
+{
+ /* Do nothing, mk_pmd() does this part. */
+ return pmd;
+}
+
+static inline pmd_t pmd_mknotpresent(pmd_t pmd)
+{
+ pmd_val(pmd) &= ~_PAGE_PRESENT;
+ return pmd;
+}
+
+static inline pmd_t pmd_mksplitting(pmd_t pmd)
+{
+ pmd_val(pmd) |= _PAGE_SPLITTING;
+ return pmd;
+}
+
+#define __HAVE_ARCH_PMD_SAME
+static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
+{
+ return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
+}
+
+#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
+extern int pmdp_set_access_flags(struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmdp,
+ pmd_t entry, int dirty);
+
+extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
+ unsigned long addr,
+ pmd_t *pmdp,
+ unsigned long clr,
+ unsigned long set);
+
+static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
+ unsigned long addr, pmd_t *pmdp)
+{
+ unsigned long old;
+
+ if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
+ return 0;
+ old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
+ return ((old & _PAGE_ACCESSED) != 0);
+}
+
+#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
+extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmdp);
+#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
+extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmdp);
+
+#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
+extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
+ unsigned long addr, pmd_t *pmdp);
+
+#define __HAVE_ARCH_PMDP_SET_WRPROTECT
+static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
+ pmd_t *pmdp)
+{
+
+ if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
+ return;
+
+ pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
+}
+
+#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
+extern void pmdp_splitting_flush(struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmdp);
+
+extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmdp);
+#define pmdp_collapse_flush pmdp_collapse_flush
+
+#define __HAVE_ARCH_PGTABLE_DEPOSIT
+extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
+ pgtable_t pgtable);
+#define __HAVE_ARCH_PGTABLE_WITHDRAW
+extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
+
+#define __HAVE_ARCH_PMDP_INVALIDATE
+extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
+ pmd_t *pmdp);
+
+#define pmd_move_must_withdraw pmd_move_must_withdraw
+struct spinlock;
+static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
+ struct spinlock *old_pmd_ptl)
+{
+ /*
+ * Archs like ppc64 use pgtable to store per pmd
+ * specific information. So when we switch the pmd,
+ * we should also withdraw and deposit the pgtable
+ */
+ return true;
+}
+#endif /* __ASSEMBLY__ */
+#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */