aboutsummaryrefslogtreecommitdiffstats
path: root/block
diff options
context:
space:
mode:
authorVivek Goyal <vgoyal@redhat.com>2010-02-02 20:45:46 +0100
committerJens Axboe <jens.axboe@oracle.com>2010-02-02 20:46:10 +0100
commit1efe8fe1c2240acc476bed77740883df63373862 (patch)
tree9aab2376b46432d721cdb7cf6f3be992a8951c0c /block
parentblk-cgroup: Fix potential deadlock in blk-cgroup (diff)
downloadlinux-dev-1efe8fe1c2240acc476bed77740883df63373862.tar.xz
linux-dev-1efe8fe1c2240acc476bed77740883df63373862.zip
cfq-iosched: Do not idle on async queues
Few weeks back, Shaohua Li had posted similar patch. I am reposting it with more test results. This patch does two things. - Do not idle on async queues. - It also changes the write queue depth CFQ drives (cfq_may_dispatch()). Currently, we seem to driving queue depth of 1 always for WRITES. This is true even if there is only one write queue in the system and all the logic of infinite queue depth in case of single busy queue as well as slowly increasing queue depth based on last delayed sync request does not seem to be kicking in at all. This patch will allow deeper WRITE queue depths (subjected to the other WRITE queue depth contstraints like cfq_quantum and last delayed sync request). Shaohua Li had reported getting more out of his SSD. For me, I have got one Lun exported from an HP EVA and when pure buffered writes are on, I can get more out of the system. Following are test results of pure buffered writes (with end_fsync=1) with vanilla and patched kernel. These results are average of 3 sets of run with increasing number of threads. AVERAGE[bufwfs][vanilla] ------- job Set NR ReadBW(KB/s) MaxClat(us) WriteBW(KB/s) MaxClat(us) --- --- -- ------------ ----------- ------------- ----------- bufwfs 3 1 0 0 95349 474141 bufwfs 3 2 0 0 100282 806926 bufwfs 3 4 0 0 109989 2.7301e+06 bufwfs 3 8 0 0 116642 3762231 bufwfs 3 16 0 0 118230 6902970 AVERAGE[bufwfs] [patched kernel] ------- bufwfs 3 1 0 0 270722 404352 bufwfs 3 2 0 0 206770 1.06552e+06 bufwfs 3 4 0 0 195277 1.62283e+06 bufwfs 3 8 0 0 260960 2.62979e+06 bufwfs 3 16 0 0 299260 1.70731e+06 I also ran buffered writes along with some sequential reads and some buffered reads going on in the system on a SATA disk because the potential risk could be that we should not be driving queue depth higher in presence of sync IO going to keep the max clat low. With some random and sequential reads going on in the system on one SATA disk I did not see any significant increase in max clat. So it looks like other WRITE queue depth control logic is doing its job. Here are the results. AVERAGE[brr, bsr, bufw together] [vanilla] ------- job Set NR ReadBW(KB/s) MaxClat(us) WriteBW(KB/s) MaxClat(us) --- --- -- ------------ ----------- ------------- ----------- brr 3 1 850 546345 0 0 bsr 3 1 14650 729543 0 0 bufw 3 1 0 0 23908 8274517 brr 3 2 981.333 579395 0 0 bsr 3 2 14149.7 1175689 0 0 bufw 3 2 0 0 21921 1.28108e+07 brr 3 4 898.333 1.75527e+06 0 0 bsr 3 4 12230.7 1.40072e+06 0 0 bufw 3 4 0 0 19722.3 2.4901e+07 brr 3 8 900 3160594 0 0 bsr 3 8 9282.33 1.91314e+06 0 0 bufw 3 8 0 0 18789.3 23890622 AVERAGE[brr, bsr, bufw mixed] [patched kernel] ------- job Set NR ReadBW(KB/s) MaxClat(us) WriteBW(KB/s) MaxClat(us) --- --- -- ------------ ----------- ------------- ----------- brr 3 1 837 417973 0 0 bsr 3 1 14357.7 591275 0 0 bufw 3 1 0 0 24869.7 8910662 brr 3 2 1038.33 543434 0 0 bsr 3 2 13351.3 1205858 0 0 bufw 3 2 0 0 18626.3 13280370 brr 3 4 913 1.86861e+06 0 0 bsr 3 4 12652.3 1430974 0 0 bufw 3 4 0 0 15343.3 2.81305e+07 brr 3 8 890 2.92695e+06 0 0 bsr 3 8 9635.33 1.90244e+06 0 0 bufw 3 8 0 0 17200.3 24424392 So looks like it might make sense to include this patch. Thanks Vivek Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Diffstat (limited to 'block')
-rw-r--r--block/cfq-iosched.c2
1 files changed, 1 insertions, 1 deletions
diff --git a/block/cfq-iosched.c b/block/cfq-iosched.c
index ee130f14d1fc..17b768d0d42f 100644
--- a/block/cfq-iosched.c
+++ b/block/cfq-iosched.c
@@ -1803,7 +1803,7 @@ static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
* Otherwise, we do only if they are the last ones
* in their service tree.
*/
- return service_tree->count == 1;
+ return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
}
static void cfq_arm_slice_timer(struct cfq_data *cfqd)