aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/bpf_verifier.h
diff options
context:
space:
mode:
authorDaniel Borkmann <daniel@iogearbox.net>2018-05-24 02:32:53 +0200
committerAlexei Starovoitov <ast@kernel.org>2018-05-24 08:15:43 -0700
commitc93552c443ebc63b14e26e46d2e76941c88e0d71 (patch)
treea9f74173e8e13c68a257f705ca1e4e8dcc8c0b05 /include/linux/bpf_verifier.h
parentselftests: net: reuseport_bpf_numa: don't fail if no numa support (diff)
downloadlinux-dev-c93552c443ebc63b14e26e46d2e76941c88e0d71.tar.xz
linux-dev-c93552c443ebc63b14e26e46d2e76941c88e0d71.zip
bpf: properly enforce index mask to prevent out-of-bounds speculation
While reviewing the verifier code, I recently noticed that the following two program variants in relation to tail calls can be loaded. Variant 1: # bpftool p d x i 15 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:5] 3: (05) goto pc+2 4: (18) r2 = map[id:6] 6: (b7) r3 = 7 7: (35) if r3 >= 0xa0 goto pc+2 8: (54) (u32) r3 &= (u32) 255 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 5 5: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B # bpftool m s i 6 6: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B Variant 2: # bpftool p d x i 20 0: (15) if r1 == 0x0 goto pc+3 1: (18) r2 = map[id:8] 3: (05) goto pc+2 4: (18) r2 = map[id:7] 6: (b7) r3 = 7 7: (35) if r3 >= 0x4 goto pc+2 8: (54) (u32) r3 &= (u32) 3 9: (85) call bpf_tail_call#12 10: (b7) r0 = 1 11: (95) exit # bpftool m s i 8 8: prog_array flags 0x0 key 4B value 4B max_entries 160 memlock 4096B # bpftool m s i 7 7: prog_array flags 0x0 key 4B value 4B max_entries 4 memlock 4096B In both cases the index masking inserted by the verifier in order to control out of bounds speculation from a CPU via b2157399cc98 ("bpf: prevent out-of-bounds speculation") seems to be incorrect in what it is enforcing. In the 1st variant, the mask is applied from the map with the significantly larger number of entries where we would allow to a certain degree out of bounds speculation for the smaller map, and in the 2nd variant where the mask is applied from the map with the smaller number of entries, we get buggy behavior since we truncate the index of the larger map. The original intent from commit b2157399cc98 is to reject such occasions where two or more different tail call maps are used in the same tail call helper invocation. However, the check on the BPF_MAP_PTR_POISON is never hit since we never poisoned the saved pointer in the first place! We do this explicitly for map lookups but in case of tail calls we basically used the tail call map in insn_aux_data that was processed in the most recent path which the verifier walked. Thus any prior path that stored a pointer in insn_aux_data at the helper location was always overridden. Fix it by moving the map pointer poison logic into a small helper that covers both BPF helpers with the same logic. After that in fixup_bpf_calls() the poison check is then hit for tail calls and the program rejected. Latter only happens in unprivileged case since this is the *only* occasion where a rewrite needs to happen, and where such rewrite is specific to the map (max_entries, index_mask). In the privileged case the rewrite is generic for the insn->imm / insn->code update so multiple maps from different paths can be handled just fine since all the remaining logic happens in the instruction processing itself. This is similar to the case of map lookups: in case there is a collision of maps in fixup_bpf_calls() we must skip the inlined rewrite since this will turn the generic instruction sequence into a non- generic one. Thus the patch_call_imm will simply update the insn->imm location where the bpf_map_lookup_elem() will later take care of the dispatch. Given we need this 'poison' state as a check, the information of whether a map is an unpriv_array gets lost, so enforcing it prior to that needs an additional state. In general this check is needed since there are some complex and tail call intensive BPF programs out there where LLVM tends to generate such code occasionally. We therefore convert the map_ptr rather into map_state to store all this w/o extra memory overhead, and the bit whether one of the maps involved in the collision was from an unpriv_array thus needs to be retained as well there. Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to '')
-rw-r--r--include/linux/bpf_verifier.h2
1 files changed, 1 insertions, 1 deletions
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h
index 7e61c395fddf..52fb077d3c45 100644
--- a/include/linux/bpf_verifier.h
+++ b/include/linux/bpf_verifier.h
@@ -142,7 +142,7 @@ struct bpf_verifier_state_list {
struct bpf_insn_aux_data {
union {
enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
- struct bpf_map *map_ptr; /* pointer for call insn into lookup_elem */
+ unsigned long map_state; /* pointer/poison value for maps */
s32 call_imm; /* saved imm field of call insn */
};
int ctx_field_size; /* the ctx field size for load insn, maybe 0 */