aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/psi_types.h
diff options
context:
space:
mode:
authorJohannes Weiner <hannes@cmpxchg.org>2018-10-26 15:06:27 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-10-26 16:26:32 -0700
commiteb414681d5a07d28d2ff90dc05f69ec6b232ebd2 (patch)
tree69e37010954e597b404709ecd9a11b9f7373cf0f /include/linux/psi_types.h
parentsched: introduce this_rq_lock_irq() (diff)
downloadlinux-dev-eb414681d5a07d28d2ff90dc05f69ec6b232ebd2.tar.xz
linux-dev-eb414681d5a07d28d2ff90dc05f69ec6b232ebd2.zip
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to '')
-rw-r--r--include/linux/psi_types.h92
1 files changed, 92 insertions, 0 deletions
diff --git a/include/linux/psi_types.h b/include/linux/psi_types.h
new file mode 100644
index 000000000000..2cf422db5d18
--- /dev/null
+++ b/include/linux/psi_types.h
@@ -0,0 +1,92 @@
+#ifndef _LINUX_PSI_TYPES_H
+#define _LINUX_PSI_TYPES_H
+
+#include <linux/seqlock.h>
+#include <linux/types.h>
+
+#ifdef CONFIG_PSI
+
+/* Tracked task states */
+enum psi_task_count {
+ NR_IOWAIT,
+ NR_MEMSTALL,
+ NR_RUNNING,
+ NR_PSI_TASK_COUNTS,
+};
+
+/* Task state bitmasks */
+#define TSK_IOWAIT (1 << NR_IOWAIT)
+#define TSK_MEMSTALL (1 << NR_MEMSTALL)
+#define TSK_RUNNING (1 << NR_RUNNING)
+
+/* Resources that workloads could be stalled on */
+enum psi_res {
+ PSI_IO,
+ PSI_MEM,
+ PSI_CPU,
+ NR_PSI_RESOURCES,
+};
+
+/*
+ * Pressure states for each resource:
+ *
+ * SOME: Stalled tasks & working tasks
+ * FULL: Stalled tasks & no working tasks
+ */
+enum psi_states {
+ PSI_IO_SOME,
+ PSI_IO_FULL,
+ PSI_MEM_SOME,
+ PSI_MEM_FULL,
+ PSI_CPU_SOME,
+ /* Only per-CPU, to weigh the CPU in the global average: */
+ PSI_NONIDLE,
+ NR_PSI_STATES,
+};
+
+struct psi_group_cpu {
+ /* 1st cacheline updated by the scheduler */
+
+ /* Aggregator needs to know of concurrent changes */
+ seqcount_t seq ____cacheline_aligned_in_smp;
+
+ /* States of the tasks belonging to this group */
+ unsigned int tasks[NR_PSI_TASK_COUNTS];
+
+ /* Period time sampling buckets for each state of interest (ns) */
+ u32 times[NR_PSI_STATES];
+
+ /* Time of last task change in this group (rq_clock) */
+ u64 state_start;
+
+ /* 2nd cacheline updated by the aggregator */
+
+ /* Delta detection against the sampling buckets */
+ u32 times_prev[NR_PSI_STATES] ____cacheline_aligned_in_smp;
+};
+
+struct psi_group {
+ /* Protects data updated during an aggregation */
+ struct mutex stat_lock;
+
+ /* Per-cpu task state & time tracking */
+ struct psi_group_cpu __percpu *pcpu;
+
+ /* Periodic aggregation state */
+ u64 total_prev[NR_PSI_STATES - 1];
+ u64 last_update;
+ u64 next_update;
+ struct delayed_work clock_work;
+
+ /* Total stall times and sampled pressure averages */
+ u64 total[NR_PSI_STATES - 1];
+ unsigned long avg[NR_PSI_STATES - 1][3];
+};
+
+#else /* CONFIG_PSI */
+
+struct psi_group { };
+
+#endif /* CONFIG_PSI */
+
+#endif /* _LINUX_PSI_TYPES_H */