aboutsummaryrefslogtreecommitdiffstats
path: root/net/core/sock.c
diff options
context:
space:
mode:
authorMartin KaFai Lau <kafai@fb.com>2019-04-26 16:39:39 -0700
committerAlexei Starovoitov <ast@kernel.org>2019-04-27 09:07:04 -0700
commit6ac99e8f23d4b10258406ca0dd7bffca5f31da9d (patch)
treeb5f3d4885b1f7cf357ab86c397f65e8718c150b1 /net/core/sock.c
parentMerge branch 'writeable-bpf-tracepoints' (diff)
downloadlinux-dev-6ac99e8f23d4b10258406ca0dd7bffca5f31da9d.tar.xz
linux-dev-6ac99e8f23d4b10258406ca0dd7bffca5f31da9d.zip
bpf: Introduce bpf sk local storage
After allowing a bpf prog to - directly read the skb->sk ptr - get the fullsock bpf_sock by "bpf_sk_fullsock()" - get the bpf_tcp_sock by "bpf_tcp_sock()" - get the listener sock by "bpf_get_listener_sock()" - avoid duplicating the fields of "(bpf_)sock" and "(bpf_)tcp_sock" into different bpf running context. this patch is another effort to make bpf's network programming more intuitive to do (together with memory and performance benefit). When bpf prog needs to store data for a sk, the current practice is to define a map with the usual 4-tuples (src/dst ip/port) as the key. If multiple bpf progs require to store different sk data, multiple maps have to be defined. Hence, wasting memory to store the duplicated keys (i.e. 4 tuples here) in each of the bpf map. [ The smallest key could be the sk pointer itself which requires some enhancement in the verifier and it is a separate topic. ] Also, the bpf prog needs to clean up the elem when sk is freed. Otherwise, the bpf map will become full and un-usable quickly. The sk-free tracking currently could be done during sk state transition (e.g. BPF_SOCK_OPS_STATE_CB). The size of the map needs to be predefined which then usually ended-up with an over-provisioned map in production. Even the map was re-sizable, while the sk naturally come and go away already, this potential re-size operation is arguably redundant if the data can be directly connected to the sk itself instead of proxy-ing through a bpf map. This patch introduces sk->sk_bpf_storage to provide local storage space at sk for bpf prog to use. The space will be allocated when the first bpf prog has created data for this particular sk. The design optimizes the bpf prog's lookup (and then optionally followed by an inline update). bpf_spin_lock should be used if the inline update needs to be protected. BPF_MAP_TYPE_SK_STORAGE: ----------------------- To define a bpf "sk-local-storage", a BPF_MAP_TYPE_SK_STORAGE map (new in this patch) needs to be created. Multiple BPF_MAP_TYPE_SK_STORAGE maps can be created to fit different bpf progs' needs. The map enforces BTF to allow printing the sk-local-storage during a system-wise sk dump (e.g. "ss -ta") in the future. The purpose of a BPF_MAP_TYPE_SK_STORAGE map is not for lookup/update/delete a "sk-local-storage" data from a particular sk. Think of the map as a meta-data (or "type") of a "sk-local-storage". This particular "type" of "sk-local-storage" data can then be stored in any sk. The main purposes of this map are mostly: 1. Define the size of a "sk-local-storage" type. 2. Provide a similar syscall userspace API as the map (e.g. lookup/update, map-id, map-btf...etc.) 3. Keep track of all sk's storages of this "type" and clean them up when the map is freed. sk->sk_bpf_storage: ------------------ The main lookup/update/delete is done on sk->sk_bpf_storage (which is a "struct bpf_sk_storage"). When doing a lookup, the "map" pointer is now used as the "key" to search on the sk_storage->list. The "map" pointer is actually serving as the "type" of the "sk-local-storage" that is being requested. To allow very fast lookup, it should be as fast as looking up an array at a stable-offset. At the same time, it is not ideal to set a hard limit on the number of sk-local-storage "type" that the system can have. Hence, this patch takes a cache approach. The last search result from sk_storage->list is cached in sk_storage->cache[] which is a stable sized array. Each "sk-local-storage" type has a stable offset to the cache[] array. In the future, a map's flag could be introduced to do cache opt-out/enforcement if it became necessary. The cache size is 16 (i.e. 16 types of "sk-local-storage"). Programs can share map. On the program side, having a few bpf_progs running in the networking hotpath is already a lot. The bpf_prog should have already consolidated the existing sock-key-ed map usage to minimize the map lookup penalty. 16 has enough runway to grow. All sk-local-storage data will be removed from sk->sk_bpf_storage during sk destruction. bpf_sk_storage_get() and bpf_sk_storage_delete(): ------------------------------------------------ Instead of using bpf_map_(lookup|update|delete)_elem(), the bpf prog needs to use the new helper bpf_sk_storage_get() and bpf_sk_storage_delete(). The verifier can then enforce the ARG_PTR_TO_SOCKET argument. The bpf_sk_storage_get() also allows to "create" new elem if one does not exist in the sk. It is done by the new BPF_SK_STORAGE_GET_F_CREATE flag. An optional value can also be provided as the initial value during BPF_SK_STORAGE_GET_F_CREATE. The BPF_MAP_TYPE_SK_STORAGE also supports bpf_spin_lock. Together, it has eliminated the potential use cases for an equivalent bpf_map_update_elem() API (for bpf_prog) in this patch. Misc notes: ---------- 1. map_get_next_key is not supported. From the userspace syscall perspective, the map has the socket fd as the key while the map can be shared by pinned-file or map-id. Since btf is enforced, the existing "ss" could be enhanced to pretty print the local-storage. Supporting a kernel defined btf with 4 tuples as the return key could be explored later also. 2. The sk->sk_lock cannot be acquired. Atomic operations is used instead. e.g. cmpxchg is done on the sk->sk_bpf_storage ptr. Please refer to the source code comments for the details in synchronization cases and considerations. 3. The mem is charged to the sk->sk_omem_alloc as the sk filter does. Benchmark: --------- Here is the benchmark data collected by turning on the "kernel.bpf_stats_enabled" sysctl. Two bpf progs are tested: One bpf prog with the usual bpf hashmap (max_entries = 8192) with the sk ptr as the key. (verifier is modified to support sk ptr as the key That should have shortened the key lookup time.) Another bpf prog is with the new BPF_MAP_TYPE_SK_STORAGE. Both are storing a "u32 cnt", do a lookup on "egress_skb/cgroup" for each egress skb and then bump the cnt. netperf is used to drive data with 4096 connected UDP sockets. BPF_MAP_TYPE_HASH with a modifier verifier (152ns per bpf run) 27: cgroup_skb name egress_sk_map tag 74f56e832918070b run_time_ns 58280107540 run_cnt 381347633 loaded_at 2019-04-15T13:46:39-0700 uid 0 xlated 344B jited 258B memlock 4096B map_ids 16 btf_id 5 BPF_MAP_TYPE_SK_STORAGE in this patch (66ns per bpf run) 30: cgroup_skb name egress_sk_stora tag d4aa70984cc7bbf6 run_time_ns 25617093319 run_cnt 390989739 loaded_at 2019-04-15T13:47:54-0700 uid 0 xlated 168B jited 156B memlock 4096B map_ids 17 btf_id 6 Here is a high-level picture on how are the objects organized: sk ┌──────┐ │ │ │ │ │ │ │*sk_bpf_storage─────▶ bpf_sk_storage └──────┘ ┌───────┐ ┌───────────┤ list │ │ │ │ │ │ │ │ │ │ │ └───────┘ │ │ elem │ ┌────────┐ ├─▶│ snode │ │ ├────────┤ │ │ data │ bpf_map │ ├────────┤ ┌─────────┐ │ │map_node│◀─┬─────┤ list │ │ └────────┘ │ │ │ │ │ │ │ │ elem │ │ │ │ ┌────────┐ │ └─────────┘ └─▶│ snode │ │ ├────────┤ │ bpf_map │ data │ │ ┌─────────┐ ├────────┤ │ │ list ├───────▶│map_node│ │ │ │ └────────┘ │ │ │ │ │ │ elem │ └─────────┘ ┌────────┐ │ ┌─▶│ snode │ │ │ ├────────┤ │ │ │ data │ │ │ ├────────┤ │ │ │map_node│◀─┘ │ └────────┘ │ │ │ ┌───────┐ sk └──────────│ list │ ┌──────┐ │ │ │ │ │ │ │ │ │ │ │ │ └───────┘ │*sk_bpf_storage───────▶bpf_sk_storage └──────┘ Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to '')
-rw-r--r--net/core/sock.c5
1 files changed, 5 insertions, 0 deletions
diff --git a/net/core/sock.c b/net/core/sock.c
index 443b98d05f1e..9773be724aa9 100644
--- a/net/core/sock.c
+++ b/net/core/sock.c
@@ -137,6 +137,7 @@
#include <linux/filter.h>
#include <net/sock_reuseport.h>
+#include <net/bpf_sk_storage.h>
#include <trace/events/sock.h>
@@ -1709,6 +1710,10 @@ static void __sk_destruct(struct rcu_head *head)
sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
+#ifdef CONFIG_BPF_SYSCALL
+ bpf_sk_storage_free(sk);
+#endif
+
if (atomic_read(&sk->sk_omem_alloc))
pr_debug("%s: optmem leakage (%d bytes) detected\n",
__func__, atomic_read(&sk->sk_omem_alloc));