aboutsummaryrefslogtreecommitdiffstats
path: root/net/tipc/core.c
diff options
context:
space:
mode:
authorHoang Le <hoang.h.le@dektech.com.au>2019-10-29 07:51:21 +0700
committerDavid S. Miller <davem@davemloft.net>2019-10-29 17:55:38 -0700
commitf73b12812a3d1d798b7517547ccdcf864844d2cd (patch)
tree3ab432a0980c76940145d467af99cfc2ea84277d /net/tipc/core.c
parentinet: do not call sublist_rcv on empty list (diff)
downloadlinux-dev-f73b12812a3d1d798b7517547ccdcf864844d2cd.tar.xz
linux-dev-f73b12812a3d1d798b7517547ccdcf864844d2cd.zip
tipc: improve throughput between nodes in netns
Currently, TIPC transports intra-node user data messages directly socket to socket, hence shortcutting all the lower layers of the communication stack. This gives TIPC very good intra node performance, both regarding throughput and latency. We now introduce a similar mechanism for TIPC data traffic across network namespaces located in the same kernel. On the send path, the call chain is as always accompanied by the sending node's network name space pointer. However, once we have reliably established that the receiving node is represented by a namespace on the same host, we just replace the namespace pointer with the receiving node/namespace's ditto, and follow the regular socket receive patch though the receiving node. This technique gives us a throughput similar to the node internal throughput, several times larger than if we let the traffic go though the full network stacks. As a comparison, max throughput for 64k messages is four times larger than TCP throughput for the same type of traffic. To meet any security concerns, the following should be noted. - All nodes joining a cluster are supposed to have been be certified and authenticated by mechanisms outside TIPC. This is no different for nodes/namespaces on the same host; they have to auto discover each other using the attached interfaces, and establish links which are supervised via the regular link monitoring mechanism. Hence, a kernel local node has no other way to join a cluster than any other node, and have to obey to policies set in the IP or device layers of the stack. - Only when a sender has established with 100% certainty that the peer node is located in a kernel local namespace does it choose to let user data messages, and only those, take the crossover path to the receiving node/namespace. - If the receiving node/namespace is removed, its namespace pointer is invalidated at all peer nodes, and their neighbor link monitoring will eventually note that this node is gone. - To ensure the "100% certainty" criteria, and prevent any possible spoofing, received discovery messages must contain a proof that the sender knows a common secret. We use the hash mix of the sending node/namespace for this purpose, since it can be accessed directly by all other namespaces in the kernel. Upon reception of a discovery message, the receiver checks this proof against all the local namespaces'hash_mix:es. If it finds a match, that, along with a matching node id and cluster id, this is deemed sufficient proof that the peer node in question is in a local namespace, and a wormhole can be opened. - We should also consider that TIPC is intended to be a cluster local IPC mechanism (just like e.g. UNIX sockets) rather than a network protocol, and hence we think it can justified to allow it to shortcut the lower protocol layers. Regarding traceability, we should notice that since commit 6c9081a3915d ("tipc: add loopback device tracking") it is possible to follow the node internal packet flow by just activating tcpdump on the loopback interface. This will be true even for this mechanism; by activating tcpdump on the involved nodes' loopback interfaces their inter-name space messaging can easily be tracked. v2: - update 'net' pointer when node left/rejoined v3: - grab read/write lock when using node ref obj v4: - clone traffics between netns to loopback Suggested-by: Jon Maloy <jon.maloy@ericsson.com> Acked-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Hoang Le <hoang.h.le@dektech.com.au> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/tipc/core.c')
-rw-r--r--net/tipc/core.c16
1 files changed, 16 insertions, 0 deletions
diff --git a/net/tipc/core.c b/net/tipc/core.c
index 23cb379a93d6..ab648dd150ee 100644
--- a/net/tipc/core.c
+++ b/net/tipc/core.c
@@ -105,6 +105,15 @@ static void __net_exit tipc_exit_net(struct net *net)
tipc_sk_rht_destroy(net);
}
+static void __net_exit tipc_pernet_pre_exit(struct net *net)
+{
+ tipc_node_pre_cleanup_net(net);
+}
+
+static struct pernet_operations tipc_pernet_pre_exit_ops = {
+ .pre_exit = tipc_pernet_pre_exit,
+};
+
static struct pernet_operations tipc_net_ops = {
.init = tipc_init_net,
.exit = tipc_exit_net,
@@ -151,6 +160,10 @@ static int __init tipc_init(void)
if (err)
goto out_pernet_topsrv;
+ err = register_pernet_subsys(&tipc_pernet_pre_exit_ops);
+ if (err)
+ goto out_register_pernet_subsys;
+
err = tipc_bearer_setup();
if (err)
goto out_bearer;
@@ -158,6 +171,8 @@ static int __init tipc_init(void)
pr_info("Started in single node mode\n");
return 0;
out_bearer:
+ unregister_pernet_subsys(&tipc_pernet_pre_exit_ops);
+out_register_pernet_subsys:
unregister_pernet_device(&tipc_topsrv_net_ops);
out_pernet_topsrv:
tipc_socket_stop();
@@ -177,6 +192,7 @@ out_netlink:
static void __exit tipc_exit(void)
{
tipc_bearer_cleanup();
+ unregister_pernet_subsys(&tipc_pernet_pre_exit_ops);
unregister_pernet_device(&tipc_topsrv_net_ops);
tipc_socket_stop();
unregister_pernet_device(&tipc_net_ops);