diff options
Diffstat (limited to '')
-rw-r--r-- | Documentation/admin-guide/mm/damon/usage.rst | 702 |
1 files changed, 702 insertions, 0 deletions
diff --git a/Documentation/admin-guide/mm/damon/usage.rst b/Documentation/admin-guide/mm/damon/usage.rst new file mode 100644 index 000000000000..b47b0cbbd491 --- /dev/null +++ b/Documentation/admin-guide/mm/damon/usage.rst @@ -0,0 +1,702 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=============== +Detailed Usages +=============== + +DAMON provides below interfaces for different users. + +- *DAMON user space tool.* + `This <https://github.com/awslabs/damo>`_ is for privileged people such as + system administrators who want a just-working human-friendly interface. + Using this, users can use the DAMON’s major features in a human-friendly way. + It may not be highly tuned for special cases, though. It supports both + virtual and physical address spaces monitoring. For more detail, please + refer to its `usage document + <https://github.com/awslabs/damo/blob/next/USAGE.md>`_. +- *sysfs interface.* + :ref:`This <sysfs_interface>` is for privileged user space programmers who + want more optimized use of DAMON. Using this, users can use DAMON’s major + features by reading from and writing to special sysfs files. Therefore, + you can write and use your personalized DAMON sysfs wrapper programs that + reads/writes the sysfs files instead of you. The `DAMON user space tool + <https://github.com/awslabs/damo>`_ is one example of such programs. It + supports both virtual and physical address spaces monitoring. Note that this + interface provides only simple :ref:`statistics <damos_stats>` for the + monitoring results. For detailed monitoring results, DAMON provides a + :ref:`tracepoint <tracepoint>`. +- *debugfs interface.* + :ref:`This <debugfs_interface>` is almost identical to :ref:`sysfs interface + <sysfs_interface>`. This will be removed after next LTS kernel is released, + so users should move to the :ref:`sysfs interface <sysfs_interface>`. +- *Kernel Space Programming Interface.* + :doc:`This </mm/damon/api>` is for kernel space programmers. Using this, + users can utilize every feature of DAMON most flexibly and efficiently by + writing kernel space DAMON application programs for you. You can even extend + DAMON for various address spaces. For detail, please refer to the interface + :doc:`document </mm/damon/api>`. + +.. _sysfs_interface: + +sysfs Interface +=============== + +DAMON sysfs interface is built when ``CONFIG_DAMON_SYSFS`` is defined. It +creates multiple directories and files under its sysfs directory, +``<sysfs>/kernel/mm/damon/``. You can control DAMON by writing to and reading +from the files under the directory. + +For a short example, users can monitor the virtual address space of a given +workload as below. :: + + # cd /sys/kernel/mm/damon/admin/ + # echo 1 > kdamonds/nr_kdamonds && echo 1 > kdamonds/0/contexts/nr_contexts + # echo vaddr > kdamonds/0/contexts/0/operations + # echo 1 > kdamonds/0/contexts/0/targets/nr_targets + # echo $(pidof <workload>) > kdamonds/0/contexts/0/targets/0/pid_target + # echo on > kdamonds/0/state + +Files Hierarchy +--------------- + +The files hierarchy of DAMON sysfs interface is shown below. In the below +figure, parents-children relations are represented with indentations, each +directory is having ``/`` suffix, and files in each directory are separated by +comma (","). :: + + /sys/kernel/mm/damon/admin + │ kdamonds/nr_kdamonds + │ │ 0/state,pid + │ │ │ contexts/nr_contexts + │ │ │ │ 0/avail_operations,operations + │ │ │ │ │ monitoring_attrs/ + │ │ │ │ │ │ intervals/sample_us,aggr_us,update_us + │ │ │ │ │ │ nr_regions/min,max + │ │ │ │ │ targets/nr_targets + │ │ │ │ │ │ 0/pid_target + │ │ │ │ │ │ │ regions/nr_regions + │ │ │ │ │ │ │ │ 0/start,end + │ │ │ │ │ │ │ │ ... + │ │ │ │ │ │ ... + │ │ │ │ │ schemes/nr_schemes + │ │ │ │ │ │ 0/action + │ │ │ │ │ │ │ access_pattern/ + │ │ │ │ │ │ │ │ sz/min,max + │ │ │ │ │ │ │ │ nr_accesses/min,max + │ │ │ │ │ │ │ │ age/min,max + │ │ │ │ │ │ │ quotas/ms,bytes,reset_interval_ms + │ │ │ │ │ │ │ │ weights/sz_permil,nr_accesses_permil,age_permil + │ │ │ │ │ │ │ watermarks/metric,interval_us,high,mid,low + │ │ │ │ │ │ │ stats/nr_tried,sz_tried,nr_applied,sz_applied,qt_exceeds + │ │ │ │ │ │ ... + │ │ │ │ ... + │ │ ... + +Root +---- + +The root of the DAMON sysfs interface is ``<sysfs>/kernel/mm/damon/``, and it +has one directory named ``admin``. The directory contains the files for +privileged user space programs' control of DAMON. User space tools or deamons +having the root permission could use this directory. + +kdamonds/ +--------- + +The monitoring-related information including request specifications and results +are called DAMON context. DAMON executes each context with a kernel thread +called kdamond, and multiple kdamonds could run in parallel. + +Under the ``admin`` directory, one directory, ``kdamonds``, which has files for +controlling the kdamonds exist. In the beginning, this directory has only one +file, ``nr_kdamonds``. Writing a number (``N``) to the file creates the number +of child directories named ``0`` to ``N-1``. Each directory represents each +kdamond. + +kdamonds/<N>/ +------------- + +In each kdamond directory, two files (``state`` and ``pid``) and one directory +(``contexts``) exist. + +Reading ``state`` returns ``on`` if the kdamond is currently running, or +``off`` if it is not running. Writing ``on`` or ``off`` makes the kdamond be +in the state. Writing ``commit`` to the ``state`` file makes kdamond reads the +user inputs in the sysfs files except ``state`` file again. Writing +``update_schemes_stats`` to ``state`` file updates the contents of stats files +for each DAMON-based operation scheme of the kdamond. For details of the +stats, please refer to :ref:`stats section <sysfs_schemes_stats>`. + +If the state is ``on``, reading ``pid`` shows the pid of the kdamond thread. + +``contexts`` directory contains files for controlling the monitoring contexts +that this kdamond will execute. + +kdamonds/<N>/contexts/ +---------------------- + +In the beginning, this directory has only one file, ``nr_contexts``. Writing a +number (``N``) to the file creates the number of child directories named as +``0`` to ``N-1``. Each directory represents each monitoring context. At the +moment, only one context per kdamond is supported, so only ``0`` or ``1`` can +be written to the file. + +contexts/<N>/ +------------- + +In each context directory, two files (``avail_operations`` and ``operations``) +and three directories (``monitoring_attrs``, ``targets``, and ``schemes``) +exist. + +DAMON supports multiple types of monitoring operations, including those for +virtual address space and the physical address space. You can get the list of +available monitoring operations set on the currently running kernel by reading +``avail_operations`` file. Based on the kernel configuration, the file will +list some or all of below keywords. + + - vaddr: Monitor virtual address spaces of specific processes + - fvaddr: Monitor fixed virtual address ranges + - paddr: Monitor the physical address space of the system + +Please refer to :ref:`regions sysfs directory <sysfs_regions>` for detailed +differences between the operations sets in terms of the monitoring target +regions. + +You can set and get what type of monitoring operations DAMON will use for the +context by writing one of the keywords listed in ``avail_operations`` file and +reading from the ``operations`` file. + +contexts/<N>/monitoring_attrs/ +------------------------------ + +Files for specifying attributes of the monitoring including required quality +and efficiency of the monitoring are in ``monitoring_attrs`` directory. +Specifically, two directories, ``intervals`` and ``nr_regions`` exist in this +directory. + +Under ``intervals`` directory, three files for DAMON's sampling interval +(``sample_us``), aggregation interval (``aggr_us``), and update interval +(``update_us``) exist. You can set and get the values in micro-seconds by +writing to and reading from the files. + +Under ``nr_regions`` directory, two files for the lower-bound and upper-bound +of DAMON's monitoring regions (``min`` and ``max``, respectively), which +controls the monitoring overhead, exist. You can set and get the values by +writing to and rading from the files. + +For more details about the intervals and monitoring regions range, please refer +to the Design document (:doc:`/mm/damon/design`). + +contexts/<N>/targets/ +--------------------- + +In the beginning, this directory has only one file, ``nr_targets``. Writing a +number (``N``) to the file creates the number of child directories named ``0`` +to ``N-1``. Each directory represents each monitoring target. + +targets/<N>/ +------------ + +In each target directory, one file (``pid_target``) and one directory +(``regions``) exist. + +If you wrote ``vaddr`` to the ``contexts/<N>/operations``, each target should +be a process. You can specify the process to DAMON by writing the pid of the +process to the ``pid_target`` file. + +.. _sysfs_regions: + +targets/<N>/regions +------------------- + +When ``vaddr`` monitoring operations set is being used (``vaddr`` is written to +the ``contexts/<N>/operations`` file), DAMON automatically sets and updates the +monitoring target regions so that entire memory mappings of target processes +can be covered. However, users could want to set the initial monitoring region +to specific address ranges. + +In contrast, DAMON do not automatically sets and updates the monitoring target +regions when ``fvaddr`` or ``paddr`` monitoring operations sets are being used +(``fvaddr`` or ``paddr`` have written to the ``contexts/<N>/operations``). +Therefore, users should set the monitoring target regions by themselves in the +cases. + +For such cases, users can explicitly set the initial monitoring target regions +as they want, by writing proper values to the files under this directory. + +In the beginning, this directory has only one file, ``nr_regions``. Writing a +number (``N``) to the file creates the number of child directories named ``0`` +to ``N-1``. Each directory represents each initial monitoring target region. + +regions/<N>/ +------------ + +In each region directory, you will find two files (``start`` and ``end``). You +can set and get the start and end addresses of the initial monitoring target +region by writing to and reading from the files, respectively. + +contexts/<N>/schemes/ +--------------------- + +For usual DAMON-based data access aware memory management optimizations, users +would normally want the system to apply a memory management action to a memory +region of a specific access pattern. DAMON receives such formalized operation +schemes from the user and applies those to the target memory regions. Users +can get and set the schemes by reading from and writing to files under this +directory. + +In the beginning, this directory has only one file, ``nr_schemes``. Writing a +number (``N``) to the file creates the number of child directories named ``0`` +to ``N-1``. Each directory represents each DAMON-based operation scheme. + +schemes/<N>/ +------------ + +In each scheme directory, four directories (``access_pattern``, ``quotas``, +``watermarks``, and ``stats``) and one file (``action``) exist. + +The ``action`` file is for setting and getting what action you want to apply to +memory regions having specific access pattern of the interest. The keywords +that can be written to and read from the file and their meaning are as below. + + - ``willneed``: Call ``madvise()`` for the region with ``MADV_WILLNEED`` + - ``cold``: Call ``madvise()`` for the region with ``MADV_COLD`` + - ``pageout``: Call ``madvise()`` for the region with ``MADV_PAGEOUT`` + - ``hugepage``: Call ``madvise()`` for the region with ``MADV_HUGEPAGE`` + - ``nohugepage``: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE`` + - ``lru_prio``: Prioritize the region on its LRU lists. + - ``lru_deprio``: Deprioritize the region on its LRU lists. + - ``stat``: Do nothing but count the statistics + +schemes/<N>/access_pattern/ +--------------------------- + +The target access pattern of each DAMON-based operation scheme is constructed +with three ranges including the size of the region in bytes, number of +monitored accesses per aggregate interval, and number of aggregated intervals +for the age of the region. + +Under the ``access_pattern`` directory, three directories (``sz``, +``nr_accesses``, and ``age``) each having two files (``min`` and ``max``) +exist. You can set and get the access pattern for the given scheme by writing +to and reading from the ``min`` and ``max`` files under ``sz``, +``nr_accesses``, and ``age`` directories, respectively. + +schemes/<N>/quotas/ +------------------- + +Optimal ``target access pattern`` for each ``action`` is workload dependent, so +not easy to find. Worse yet, setting a scheme of some action too aggressive +can cause severe overhead. To avoid such overhead, users can limit time and +size quota for each scheme. In detail, users can ask DAMON to try to use only +up to specific time (``time quota``) for applying the action, and to apply the +action to only up to specific amount (``size quota``) of memory regions having +the target access pattern within a given time interval (``reset interval``). + +When the quota limit is expected to be exceeded, DAMON prioritizes found memory +regions of the ``target access pattern`` based on their size, access frequency, +and age. For personalized prioritization, users can set the weights for the +three properties. + +Under ``quotas`` directory, three files (``ms``, ``bytes``, +``reset_interval_ms``) and one directory (``weights``) having three files +(``sz_permil``, ``nr_accesses_permil``, and ``age_permil``) in it exist. + +You can set the ``time quota`` in milliseconds, ``size quota`` in bytes, and +``reset interval`` in milliseconds by writing the values to the three files, +respectively. You can also set the prioritization weights for size, access +frequency, and age in per-thousand unit by writing the values to the three +files under the ``weights`` directory. + +schemes/<N>/watermarks/ +----------------------- + +To allow easy activation and deactivation of each scheme based on system +status, DAMON provides a feature called watermarks. The feature receives five +values called ``metric``, ``interval``, ``high``, ``mid``, and ``low``. The +``metric`` is the system metric such as free memory ratio that can be measured. +If the metric value of the system is higher than the value in ``high`` or lower +than ``low`` at the memoent, the scheme is deactivated. If the value is lower +than ``mid``, the scheme is activated. + +Under the watermarks directory, five files (``metric``, ``interval_us``, +``high``, ``mid``, and ``low``) for setting each value exist. You can set and +get the five values by writing to the files, respectively. + +Keywords and meanings of those that can be written to the ``metric`` file are +as below. + + - none: Ignore the watermarks + - free_mem_rate: System's free memory rate (per thousand) + +The ``interval`` should written in microseconds unit. + +.. _sysfs_schemes_stats: + +schemes/<N>/stats/ +------------------ + +DAMON counts the total number and bytes of regions that each scheme is tried to +be applied, the two numbers for the regions that each scheme is successfully +applied, and the total number of the quota limit exceeds. This statistics can +be used for online analysis or tuning of the schemes. + +The statistics can be retrieved by reading the files under ``stats`` directory +(``nr_tried``, ``sz_tried``, ``nr_applied``, ``sz_applied``, and +``qt_exceeds``), respectively. The files are not updated in real time, so you +should ask DAMON sysfs interface to updte the content of the files for the +stats by writing a special keyword, ``update_schemes_stats`` to the relevant +``kdamonds/<N>/state`` file. + +Example +~~~~~~~ + +Below commands applies a scheme saying "If a memory region of size in [4KiB, +8KiB] is showing accesses per aggregate interval in [0, 5] for aggregate +interval in [10, 20], page out the region. For the paging out, use only up to +10ms per second, and also don't page out more than 1GiB per second. Under the +limitation, page out memory regions having longer age first. Also, check the +free memory rate of the system every 5 seconds, start the monitoring and paging +out when the free memory rate becomes lower than 50%, but stop it if the free +memory rate becomes larger than 60%, or lower than 30%". :: + + # cd <sysfs>/kernel/mm/damon/admin + # # populate directories + # echo 1 > kdamonds/nr_kdamonds; echo 1 > kdamonds/0/contexts/nr_contexts; + # echo 1 > kdamonds/0/contexts/0/schemes/nr_schemes + # cd kdamonds/0/contexts/0/schemes/0 + # # set the basic access pattern and the action + # echo 4096 > access_pattern/sz/min + # echo 8192 > access_pattern/sz/max + # echo 0 > access_pattern/nr_accesses/min + # echo 5 > access_pattern/nr_accesses/max + # echo 10 > access_pattern/age/min + # echo 20 > access_pattern/age/max + # echo pageout > action + # # set quotas + # echo 10 > quotas/ms + # echo $((1024*1024*1024)) > quotas/bytes + # echo 1000 > quotas/reset_interval_ms + # # set watermark + # echo free_mem_rate > watermarks/metric + # echo 5000000 > watermarks/interval_us + # echo 600 > watermarks/high + # echo 500 > watermarks/mid + # echo 300 > watermarks/low + +Please note that it's highly recommended to use user space tools like `damo +<https://github.com/awslabs/damo>`_ rather than manually reading and writing +the files as above. Above is only for an example. + +.. _debugfs_interface: + +debugfs Interface +================= + +.. note:: + + DAMON debugfs interface will be removed after next LTS kernel is released, so + users should move to the :ref:`sysfs interface <sysfs_interface>`. + +DAMON exports eight files, ``attrs``, ``target_ids``, ``init_regions``, +``schemes``, ``monitor_on``, ``kdamond_pid``, ``mk_contexts`` and +``rm_contexts`` under its debugfs directory, ``<debugfs>/damon/``. + + +Attributes +---------- + +Users can get and set the ``sampling interval``, ``aggregation interval``, +``update interval``, and min/max number of monitoring target regions by +reading from and writing to the ``attrs`` file. To know about the monitoring +attributes in detail, please refer to the :doc:`/mm/damon/design`. For +example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10 and +1000, and then check it again:: + + # cd <debugfs>/damon + # echo 5000 100000 1000000 10 1000 > attrs + # cat attrs + 5000 100000 1000000 10 1000 + + +Target IDs +---------- + +Some types of address spaces supports multiple monitoring target. For example, +the virtual memory address spaces monitoring can have multiple processes as the +monitoring targets. Users can set the targets by writing relevant id values of +the targets to, and get the ids of the current targets by reading from the +``target_ids`` file. In case of the virtual address spaces monitoring, the +values should be pids of the monitoring target processes. For example, below +commands set processes having pids 42 and 4242 as the monitoring targets and +check it again:: + + # cd <debugfs>/damon + # echo 42 4242 > target_ids + # cat target_ids + 42 4242 + +Users can also monitor the physical memory address space of the system by +writing a special keyword, "``paddr\n``" to the file. Because physical address +space monitoring doesn't support multiple targets, reading the file will show a +fake value, ``42``, as below:: + + # cd <debugfs>/damon + # echo paddr > target_ids + # cat target_ids + 42 + +Note that setting the target ids doesn't start the monitoring. + + +Initial Monitoring Target Regions +--------------------------------- + +In case of the virtual address space monitoring, DAMON automatically sets and +updates the monitoring target regions so that entire memory mappings of target +processes can be covered. However, users can want to limit the monitoring +region to specific address ranges, such as the heap, the stack, or specific +file-mapped area. Or, some users can know the initial access pattern of their +workloads and therefore want to set optimal initial regions for the 'adaptive +regions adjustment'. + +In contrast, DAMON do not automatically sets and updates the monitoring target +regions in case of physical memory monitoring. Therefore, users should set the +monitoring target regions by themselves. + +In such cases, users can explicitly set the initial monitoring target regions +as they want, by writing proper values to the ``init_regions`` file. Each line +of the input should represent one region in below form.:: + + <target idx> <start address> <end address> + +The ``target idx`` should be the index of the target in ``target_ids`` file, +starting from ``0``, and the regions should be passed in address order. For +example, below commands will set a couple of address ranges, ``1-100`` and +``100-200`` as the initial monitoring target region of pid 42, which is the +first one (index ``0``) in ``target_ids``, and another couple of address +ranges, ``20-40`` and ``50-100`` as that of pid 4242, which is the second one +(index ``1``) in ``target_ids``.:: + + # cd <debugfs>/damon + # cat target_ids + 42 4242 + # echo "0 1 100 + 0 100 200 + 1 20 40 + 1 50 100" > init_regions + +Note that this sets the initial monitoring target regions only. In case of +virtual memory monitoring, DAMON will automatically updates the boundary of the +regions after one ``update interval``. Therefore, users should set the +``update interval`` large enough in this case, if they don't want the +update. + + +Schemes +------- + +For usual DAMON-based data access aware memory management optimizations, users +would simply want the system to apply a memory management action to a memory +region of a specific access pattern. DAMON receives such formalized operation +schemes from the user and applies those to the target processes. + +Users can get and set the schemes by reading from and writing to ``schemes`` +debugfs file. Reading the file also shows the statistics of each scheme. To +the file, each of the schemes should be represented in each line in below +form:: + + <target access pattern> <action> <quota> <watermarks> + +You can disable schemes by simply writing an empty string to the file. + +Target Access Pattern +~~~~~~~~~~~~~~~~~~~~~ + +The ``<target access pattern>`` is constructed with three ranges in below +form:: + + min-size max-size min-acc max-acc min-age max-age + +Specifically, bytes for the size of regions (``min-size`` and ``max-size``), +number of monitored accesses per aggregate interval for access frequency +(``min-acc`` and ``max-acc``), number of aggregate intervals for the age of +regions (``min-age`` and ``max-age``) are specified. Note that the ranges are +closed interval. + +Action +~~~~~~ + +The ``<action>`` is a predefined integer for memory management actions, which +DAMON will apply to the regions having the target access pattern. The +supported numbers and their meanings are as below. + + - 0: Call ``madvise()`` for the region with ``MADV_WILLNEED`` + - 1: Call ``madvise()`` for the region with ``MADV_COLD`` + - 2: Call ``madvise()`` for the region with ``MADV_PAGEOUT`` + - 3: Call ``madvise()`` for the region with ``MADV_HUGEPAGE`` + - 4: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE`` + - 5: Do nothing but count the statistics + +Quota +~~~~~ + +Optimal ``target access pattern`` for each ``action`` is workload dependent, so +not easy to find. Worse yet, setting a scheme of some action too aggressive +can cause severe overhead. To avoid such overhead, users can limit time and +size quota for the scheme via the ``<quota>`` in below form:: + + <ms> <sz> <reset interval> <priority weights> + +This makes DAMON to try to use only up to ``<ms>`` milliseconds for applying +the action to memory regions of the ``target access pattern`` within the +``<reset interval>`` milliseconds, and to apply the action to only up to +``<sz>`` bytes of memory regions within the ``<reset interval>``. Setting both +``<ms>`` and ``<sz>`` zero disables the quota limits. + +When the quota limit is expected to be exceeded, DAMON prioritizes found memory +regions of the ``target access pattern`` based on their size, access frequency, +and age. For personalized prioritization, users can set the weights for the +three properties in ``<priority weights>`` in below form:: + + <size weight> <access frequency weight> <age weight> + +Watermarks +~~~~~~~~~~ + +Some schemes would need to run based on current value of the system's specific +metrics like free memory ratio. For such cases, users can specify watermarks +for the condition.:: + + <metric> <check interval> <high mark> <middle mark> <low mark> + +``<metric>`` is a predefined integer for the metric to be checked. The +supported numbers and their meanings are as below. + + - 0: Ignore the watermarks + - 1: System's free memory rate (per thousand) + +The value of the metric is checked every ``<check interval>`` microseconds. + +If the value is higher than ``<high mark>`` or lower than ``<low mark>``, the +scheme is deactivated. If the value is lower than ``<mid mark>``, the scheme +is activated. + +.. _damos_stats: + +Statistics +~~~~~~~~~~ + +It also counts the total number and bytes of regions that each scheme is tried +to be applied, the two numbers for the regions that each scheme is successfully +applied, and the total number of the quota limit exceeds. This statistics can +be used for online analysis or tuning of the schemes. + +The statistics can be shown by reading the ``schemes`` file. Reading the file +will show each scheme you entered in each line, and the five numbers for the +statistics will be added at the end of each line. + +Example +~~~~~~~ + +Below commands applies a scheme saying "If a memory region of size in [4KiB, +8KiB] is showing accesses per aggregate interval in [0, 5] for aggregate +interval in [10, 20], page out the region. For the paging out, use only up to +10ms per second, and also don't page out more than 1GiB per second. Under the +limitation, page out memory regions having longer age first. Also, check the +free memory rate of the system every 5 seconds, start the monitoring and paging +out when the free memory rate becomes lower than 50%, but stop it if the free +memory rate becomes larger than 60%, or lower than 30%".:: + + # cd <debugfs>/damon + # scheme="4096 8192 0 5 10 20 2" # target access pattern and action + # scheme+=" 10 $((1024*1024*1024)) 1000" # quotas + # scheme+=" 0 0 100" # prioritization weights + # scheme+=" 1 5000000 600 500 300" # watermarks + # echo "$scheme" > schemes + + +Turning On/Off +-------------- + +Setting the files as described above doesn't incur effect unless you explicitly +start the monitoring. You can start, stop, and check the current status of the +monitoring by writing to and reading from the ``monitor_on`` file. Writing +``on`` to the file starts the monitoring of the targets with the attributes. +Writing ``off`` to the file stops those. DAMON also stops if every target +process is terminated. Below example commands turn on, off, and check the +status of DAMON:: + + # cd <debugfs>/damon + # echo on > monitor_on + # echo off > monitor_on + # cat monitor_on + off + +Please note that you cannot write to the above-mentioned debugfs files while +the monitoring is turned on. If you write to the files while DAMON is running, +an error code such as ``-EBUSY`` will be returned. + + +Monitoring Thread PID +--------------------- + +DAMON does requested monitoring with a kernel thread called ``kdamond``. You +can get the pid of the thread by reading the ``kdamond_pid`` file. When the +monitoring is turned off, reading the file returns ``none``. :: + + # cd <debugfs>/damon + # cat monitor_on + off + # cat kdamond_pid + none + # echo on > monitor_on + # cat kdamond_pid + 18594 + + +Using Multiple Monitoring Threads +--------------------------------- + +One ``kdamond`` thread is created for each monitoring context. You can create +and remove monitoring contexts for multiple ``kdamond`` required use case using +the ``mk_contexts`` and ``rm_contexts`` files. + +Writing the name of the new context to the ``mk_contexts`` file creates a +directory of the name on the DAMON debugfs directory. The directory will have +DAMON debugfs files for the context. :: + + # cd <debugfs>/damon + # ls foo + # ls: cannot access 'foo': No such file or directory + # echo foo > mk_contexts + # ls foo + # attrs init_regions kdamond_pid schemes target_ids + +If the context is not needed anymore, you can remove it and the corresponding +directory by putting the name of the context to the ``rm_contexts`` file. :: + + # echo foo > rm_contexts + # ls foo + # ls: cannot access 'foo': No such file or directory + +Note that ``mk_contexts``, ``rm_contexts``, and ``monitor_on`` files are in the +root directory only. + + +.. _tracepoint: + +Tracepoint for Monitoring Results +================================= + +DAMON provides the monitoring results via a tracepoint, +``damon:damon_aggregated``. While the monitoring is turned on, you could +record the tracepoint events and show results using tracepoint supporting tools +like ``perf``. For example:: + + # echo on > monitor_on + # perf record -e damon:damon_aggregated & + # sleep 5 + # kill 9 $(pidof perf) + # echo off > monitor_on + # perf script |