aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/mm/damon/usage.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide/mm/damon/usage.rst')
-rw-r--r--Documentation/admin-guide/mm/damon/usage.rst225
1 files changed, 176 insertions, 49 deletions
diff --git a/Documentation/admin-guide/mm/damon/usage.rst b/Documentation/admin-guide/mm/damon/usage.rst
index ed96bbf0daff..59b84904a854 100644
--- a/Documentation/admin-guide/mm/damon/usage.rst
+++ b/Documentation/admin-guide/mm/damon/usage.rst
@@ -7,37 +7,40 @@ Detailed Usages
DAMON provides below three interfaces for different users.
- *DAMON user space tool.*
- This is for privileged people such as system administrators who want a
- just-working human-friendly interface. Using this, users can use the DAMON’s
- major features in a human-friendly way. It may not be highly tuned for
- special cases, though. It supports both virtual and physical address spaces
- monitoring.
+ `This <https://github.com/awslabs/damo>`_ is for privileged people such as
+ system administrators who want a just-working human-friendly interface.
+ Using this, users can use the DAMON’s major features in a human-friendly way.
+ It may not be highly tuned for special cases, though. It supports both
+ virtual and physical address spaces monitoring. For more detail, please
+ refer to its `usage document
+ <https://github.com/awslabs/damo/blob/next/USAGE.md>`_.
- *debugfs interface.*
- This is for privileged user space programmers who want more optimized use of
- DAMON. Using this, users can use DAMON’s major features by reading
- from and writing to special debugfs files. Therefore, you can write and use
- your personalized DAMON debugfs wrapper programs that reads/writes the
- debugfs files instead of you. The DAMON user space tool is also a reference
- implementation of such programs. It supports both virtual and physical
- address spaces monitoring.
+ :ref:`This <debugfs_interface>` is for privileged user space programmers who
+ want more optimized use of DAMON. Using this, users can use DAMON’s major
+ features by reading from and writing to special debugfs files. Therefore,
+ you can write and use your personalized DAMON debugfs wrapper programs that
+ reads/writes the debugfs files instead of you. The `DAMON user space tool
+ <https://github.com/awslabs/damo>`_ is one example of such programs. It
+ supports both virtual and physical address spaces monitoring. Note that this
+ interface provides only simple :ref:`statistics <damos_stats>` for the
+ monitoring results. For detailed monitoring results, DAMON provides a
+ :ref:`tracepoint <tracepoint>`.
- *Kernel Space Programming Interface.*
- This is for kernel space programmers. Using this, users can utilize every
- feature of DAMON most flexibly and efficiently by writing kernel space
- DAMON application programs for you. You can even extend DAMON for various
- address spaces.
+ :doc:`This </vm/damon/api>` is for kernel space programmers. Using this,
+ users can utilize every feature of DAMON most flexibly and efficiently by
+ writing kernel space DAMON application programs for you. You can even extend
+ DAMON for various address spaces. For detail, please refer to the interface
+ :doc:`document </vm/damon/api>`.
-Nevertheless, you could write your own user space tool using the debugfs
-interface. A reference implementation is available at
-https://github.com/awslabs/damo. If you are a kernel programmer, you could
-refer to :doc:`/vm/damon/api` for the kernel space programming interface. For
-the reason, this document describes only the debugfs interface
+
+.. _debugfs_interface:
debugfs Interface
=================
-DAMON exports five files, ``attrs``, ``target_ids``, ``init_regions``,
-``schemes`` and ``monitor_on`` under its debugfs directory,
-``<debugfs>/damon/``.
+DAMON exports eight files, ``attrs``, ``target_ids``, ``init_regions``,
+``schemes``, ``monitor_on``, ``kdamond_pid``, ``mk_contexts`` and
+``rm_contexts`` under its debugfs directory, ``<debugfs>/damon/``.
Attributes
@@ -131,24 +134,38 @@ Schemes
For usual DAMON-based data access aware memory management optimizations, users
would simply want the system to apply a memory management action to a memory
-region of a specific size having a specific access frequency for a specific
-time. DAMON receives such formalized operation schemes from the user and
-applies those to the target processes. It also counts the total number and
-size of regions that each scheme is applied. This statistics can be used for
-online analysis or tuning of the schemes.
+region of a specific access pattern. DAMON receives such formalized operation
+schemes from the user and applies those to the target processes.
Users can get and set the schemes by reading from and writing to ``schemes``
debugfs file. Reading the file also shows the statistics of each scheme. To
-the file, each of the schemes should be represented in each line in below form:
+the file, each of the schemes should be represented in each line in below
+form::
+
+ <target access pattern> <action> <quota> <watermarks>
+
+You can disable schemes by simply writing an empty string to the file.
+
+Target Access Pattern
+~~~~~~~~~~~~~~~~~~~~~
+
+The ``<target access pattern>`` is constructed with three ranges in below
+form::
+
+ min-size max-size min-acc max-acc min-age max-age
- min-size max-size min-acc max-acc min-age max-age action
+Specifically, bytes for the size of regions (``min-size`` and ``max-size``),
+number of monitored accesses per aggregate interval for access frequency
+(``min-acc`` and ``max-acc``), number of aggregate intervals for the age of
+regions (``min-age`` and ``max-age``) are specified. Note that the ranges are
+closed interval.
-Note that the ranges are closed interval. Bytes for the size of regions
-(``min-size`` and ``max-size``), number of monitored accesses per aggregate
-interval for access frequency (``min-acc`` and ``max-acc``), number of
-aggregate intervals for the age of regions (``min-age`` and ``max-age``), and a
-predefined integer for memory management actions should be used. The supported
-numbers and their meanings are as below.
+Action
+~~~~~~
+
+The ``<action>`` is a predefined integer for memory management actions, which
+DAMON will apply to the regions having the target access pattern. The
+supported numbers and their meanings are as below.
- 0: Call ``madvise()`` for the region with ``MADV_WILLNEED``
- 1: Call ``madvise()`` for the region with ``MADV_COLD``
@@ -157,20 +174,82 @@ numbers and their meanings are as below.
- 4: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE``
- 5: Do nothing but count the statistics
-You can disable schemes by simply writing an empty string to the file. For
-example, below commands applies a scheme saying "If a memory region of size in
-[4KiB, 8KiB] is showing accesses per aggregate interval in [0, 5] for aggregate
-interval in [10, 20], page out the region", check the entered scheme again, and
-finally remove the scheme. ::
+Quota
+~~~~~
- # cd <debugfs>/damon
- # echo "4096 8192 0 5 10 20 2" > schemes
- # cat schemes
- 4096 8192 0 5 10 20 2 0 0
- # echo > schemes
+Optimal ``target access pattern`` for each ``action`` is workload dependent, so
+not easy to find. Worse yet, setting a scheme of some action too aggressive
+can cause severe overhead. To avoid such overhead, users can limit time and
+size quota for the scheme via the ``<quota>`` in below form::
+
+ <ms> <sz> <reset interval> <priority weights>
+
+This makes DAMON to try to use only up to ``<ms>`` milliseconds for applying
+the action to memory regions of the ``target access pattern`` within the
+``<reset interval>`` milliseconds, and to apply the action to only up to
+``<sz>`` bytes of memory regions within the ``<reset interval>``. Setting both
+``<ms>`` and ``<sz>`` zero disables the quota limits.
+
+When the quota limit is expected to be exceeded, DAMON prioritizes found memory
+regions of the ``target access pattern`` based on their size, access frequency,
+and age. For personalized prioritization, users can set the weights for the
+three properties in ``<priority weights>`` in below form::
+
+ <size weight> <access frequency weight> <age weight>
+
+Watermarks
+~~~~~~~~~~
+
+Some schemes would need to run based on current value of the system's specific
+metrics like free memory ratio. For such cases, users can specify watermarks
+for the condition.::
+
+ <metric> <check interval> <high mark> <middle mark> <low mark>
+
+``<metric>`` is a predefined integer for the metric to be checked. The
+supported numbers and their meanings are as below.
+
+ - 0: Ignore the watermarks
+ - 1: System's free memory rate (per thousand)
+
+The value of the metric is checked every ``<check interval>`` microseconds.
+
+If the value is higher than ``<high mark>`` or lower than ``<low mark>``, the
+scheme is deactivated. If the value is lower than ``<mid mark>``, the scheme
+is activated.
+
+.. _damos_stats:
+
+Statistics
+~~~~~~~~~~
+
+It also counts the total number and bytes of regions that each scheme is tried
+to be applied, the two numbers for the regions that each scheme is successfully
+applied, and the total number of the quota limit exceeds. This statistics can
+be used for online analysis or tuning of the schemes.
+
+The statistics can be shown by reading the ``schemes`` file. Reading the file
+will show each scheme you entered in each line, and the five numbers for the
+statistics will be added at the end of each line.
-The last two integers in the 4th line of above example is the total number and
-the total size of the regions that the scheme is applied.
+Example
+~~~~~~~
+
+Below commands applies a scheme saying "If a memory region of size in [4KiB,
+8KiB] is showing accesses per aggregate interval in [0, 5] for aggregate
+interval in [10, 20], page out the region. For the paging out, use only up to
+10ms per second, and also don't page out more than 1GiB per second. Under the
+limitation, page out memory regions having longer age first. Also, check the
+free memory rate of the system every 5 seconds, start the monitoring and paging
+out when the free memory rate becomes lower than 50%, but stop it if the free
+memory rate becomes larger than 60%, or lower than 30%".::
+
+ # cd <debugfs>/damon
+ # scheme="4096 8192 0 5 10 20 2" # target access pattern and action
+ # scheme+=" 10 $((1024*1024*1024)) 1000" # quotas
+ # scheme+=" 0 0 100" # prioritization weights
+ # scheme+=" 1 5000000 600 500 300" # watermarks
+ # echo "$scheme" > schemes
Turning On/Off
@@ -195,6 +274,54 @@ the monitoring is turned on. If you write to the files while DAMON is running,
an error code such as ``-EBUSY`` will be returned.
+Monitoring Thread PID
+---------------------
+
+DAMON does requested monitoring with a kernel thread called ``kdamond``. You
+can get the pid of the thread by reading the ``kdamond_pid`` file. When the
+monitoring is turned off, reading the file returns ``none``. ::
+
+ # cd <debugfs>/damon
+ # cat monitor_on
+ off
+ # cat kdamond_pid
+ none
+ # echo on > monitor_on
+ # cat kdamond_pid
+ 18594
+
+
+Using Multiple Monitoring Threads
+---------------------------------
+
+One ``kdamond`` thread is created for each monitoring context. You can create
+and remove monitoring contexts for multiple ``kdamond`` required use case using
+the ``mk_contexts`` and ``rm_contexts`` files.
+
+Writing the name of the new context to the ``mk_contexts`` file creates a
+directory of the name on the DAMON debugfs directory. The directory will have
+DAMON debugfs files for the context. ::
+
+ # cd <debugfs>/damon
+ # ls foo
+ # ls: cannot access 'foo': No such file or directory
+ # echo foo > mk_contexts
+ # ls foo
+ # attrs init_regions kdamond_pid schemes target_ids
+
+If the context is not needed anymore, you can remove it and the corresponding
+directory by putting the name of the context to the ``rm_contexts`` file. ::
+
+ # echo foo > rm_contexts
+ # ls foo
+ # ls: cannot access 'foo': No such file or directory
+
+Note that ``mk_contexts``, ``rm_contexts``, and ``monitor_on`` files are in the
+root directory only.
+
+
+.. _tracepoint:
+
Tracepoint for Monitoring Results
=================================