aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/block/bfq-iosched.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/block/bfq-iosched.txt')
-rw-r--r--Documentation/block/bfq-iosched.txt583
1 files changed, 0 insertions, 583 deletions
diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
deleted file mode 100644
index 1a0f2ac02eb6..000000000000
--- a/Documentation/block/bfq-iosched.txt
+++ /dev/null
@@ -1,583 +0,0 @@
-BFQ (Budget Fair Queueing)
-==========================
-
-BFQ is a proportional-share I/O scheduler, with some extra
-low-latency capabilities. In addition to cgroups support (blkio or io
-controllers), BFQ's main features are:
-- BFQ guarantees a high system and application responsiveness, and a
- low latency for time-sensitive applications, such as audio or video
- players;
-- BFQ distributes bandwidth, and not just time, among processes or
- groups (switching back to time distribution when needed to keep
- throughput high).
-
-In its default configuration, BFQ privileges latency over
-throughput. So, when needed for achieving a lower latency, BFQ builds
-schedules that may lead to a lower throughput. If your main or only
-goal, for a given device, is to achieve the maximum-possible
-throughput at all times, then do switch off all low-latency heuristics
-for that device, by setting low_latency to 0. See Section 3 for
-details on how to configure BFQ for the desired tradeoff between
-latency and throughput, or on how to maximize throughput.
-
-As every I/O scheduler, BFQ adds some overhead to per-I/O-request
-processing. To give an idea of this overhead, the total,
-single-lock-protected, per-request processing time of BFQ---i.e., the
-sum of the execution times of the request insertion, dispatch and
-completion hooks---is, e.g., 1.9 us on an Intel Core i7-2760QM@2.40GHz
-(dated CPU for notebooks; time measured with simple code
-instrumentation, and using the throughput-sync.sh script of the S
-suite [1], in performance-profiling mode). To put this result into
-context, the total, single-lock-protected, per-request execution time
-of the lightest I/O scheduler available in blk-mq, mq-deadline, is 0.7
-us (mq-deadline is ~800 LOC, against ~10500 LOC for BFQ).
-
-Scheduling overhead further limits the maximum IOPS that a CPU can
-process (already limited by the execution of the rest of the I/O
-stack). To give an idea of the limits with BFQ, on slow or average
-CPUs, here are, first, the limits of BFQ for three different CPUs, on,
-respectively, an average laptop, an old desktop, and a cheap embedded
-system, in case full hierarchical support is enabled (i.e.,
-CONFIG_BFQ_GROUP_IOSCHED is set), but CONFIG_DEBUG_BLK_CGROUP is not
-set (Section 4-2):
-- Intel i7-4850HQ: 400 KIOPS
-- AMD A8-3850: 250 KIOPS
-- ARM CortexTM-A53 Octa-core: 80 KIOPS
-
-If CONFIG_DEBUG_BLK_CGROUP is set (and of course full hierarchical
-support is enabled), then the sustainable throughput with BFQ
-decreases, because all blkio.bfq* statistics are created and updated
-(Section 4-2). For BFQ, this leads to the following maximum
-sustainable throughputs, on the same systems as above:
-- Intel i7-4850HQ: 310 KIOPS
-- AMD A8-3850: 200 KIOPS
-- ARM CortexTM-A53 Octa-core: 56 KIOPS
-
-BFQ works for multi-queue devices too.
-
-The table of contents follow. Impatients can just jump to Section 3.
-
-CONTENTS
-
-1. When may BFQ be useful?
- 1-1 Personal systems
- 1-2 Server systems
-2. How does BFQ work?
-3. What are BFQ's tunables and how to properly configure BFQ?
-4. BFQ group scheduling
- 4-1 Service guarantees provided
- 4-2 Interface
-
-1. When may BFQ be useful?
-==========================
-
-BFQ provides the following benefits on personal and server systems.
-
-1-1 Personal systems
---------------------
-
-Low latency for interactive applications
-
-Regardless of the actual background workload, BFQ guarantees that, for
-interactive tasks, the storage device is virtually as responsive as if
-it was idle. For example, even if one or more of the following
-background workloads are being executed:
-- one or more large files are being read, written or copied,
-- a tree of source files is being compiled,
-- one or more virtual machines are performing I/O,
-- a software update is in progress,
-- indexing daemons are scanning filesystems and updating their
- databases,
-starting an application or loading a file from within an application
-takes about the same time as if the storage device was idle. As a
-comparison, with CFQ, NOOP or DEADLINE, and in the same conditions,
-applications experience high latencies, or even become unresponsive
-until the background workload terminates (also on SSDs).
-
-Low latency for soft real-time applications
-
-Also soft real-time applications, such as audio and video
-players/streamers, enjoy a low latency and a low drop rate, regardless
-of the background I/O workload. As a consequence, these applications
-do not suffer from almost any glitch due to the background workload.
-
-Higher speed for code-development tasks
-
-If some additional workload happens to be executed in parallel, then
-BFQ executes the I/O-related components of typical code-development
-tasks (compilation, checkout, merge, ...) much more quickly than CFQ,
-NOOP or DEADLINE.
-
-High throughput
-
-On hard disks, BFQ achieves up to 30% higher throughput than CFQ, and
-up to 150% higher throughput than DEADLINE and NOOP, with all the
-sequential workloads considered in our tests. With random workloads,
-and with all the workloads on flash-based devices, BFQ achieves,
-instead, about the same throughput as the other schedulers.
-
-Strong fairness, bandwidth and delay guarantees
-
-BFQ distributes the device throughput, and not just the device time,
-among I/O-bound applications in proportion their weights, with any
-workload and regardless of the device parameters. From these bandwidth
-guarantees, it is possible to compute tight per-I/O-request delay
-guarantees by a simple formula. If not configured for strict service
-guarantees, BFQ switches to time-based resource sharing (only) for
-applications that would otherwise cause a throughput loss.
-
-1-2 Server systems
-------------------
-
-Most benefits for server systems follow from the same service
-properties as above. In particular, regardless of whether additional,
-possibly heavy workloads are being served, BFQ guarantees:
-
-. audio and video-streaming with zero or very low jitter and drop
- rate;
-
-. fast retrieval of WEB pages and embedded objects;
-
-. real-time recording of data in live-dumping applications (e.g.,
- packet logging);
-
-. responsiveness in local and remote access to a server.
-
-
-2. How does BFQ work?
-=====================
-
-BFQ is a proportional-share I/O scheduler, whose general structure,
-plus a lot of code, are borrowed from CFQ.
-
-- Each process doing I/O on a device is associated with a weight and a
- (bfq_)queue.
-
-- BFQ grants exclusive access to the device, for a while, to one queue
- (process) at a time, and implements this service model by
- associating every queue with a budget, measured in number of
- sectors.
-
- - After a queue is granted access to the device, the budget of the
- queue is decremented, on each request dispatch, by the size of the
- request.
-
- - The in-service queue is expired, i.e., its service is suspended,
- only if one of the following events occurs: 1) the queue finishes
- its budget, 2) the queue empties, 3) a "budget timeout" fires.
-
- - The budget timeout prevents processes doing random I/O from
- holding the device for too long and dramatically reducing
- throughput.
-
- - Actually, as in CFQ, a queue associated with a process issuing
- sync requests may not be expired immediately when it empties. In
- contrast, BFQ may idle the device for a short time interval,
- giving the process the chance to go on being served if it issues
- a new request in time. Device idling typically boosts the
- throughput on rotational devices and on non-queueing flash-based
- devices, if processes do synchronous and sequential I/O. In
- addition, under BFQ, device idling is also instrumental in
- guaranteeing the desired throughput fraction to processes
- issuing sync requests (see the description of the slice_idle
- tunable in this document, or [1, 2], for more details).
-
- - With respect to idling for service guarantees, if several
- processes are competing for the device at the same time, but
- all processes and groups have the same weight, then BFQ
- guarantees the expected throughput distribution without ever
- idling the device. Throughput is thus as high as possible in
- this common scenario.
-
- - On flash-based storage with internal queueing of commands
- (typically NCQ), device idling happens to be always detrimental
- for throughput. So, with these devices, BFQ performs idling
- only when strictly needed for service guarantees, i.e., for
- guaranteeing low latency or fairness. In these cases, overall
- throughput may be sub-optimal. No solution currently exists to
- provide both strong service guarantees and optimal throughput
- on devices with internal queueing.
-
- - If low-latency mode is enabled (default configuration), BFQ
- executes some special heuristics to detect interactive and soft
- real-time applications (e.g., video or audio players/streamers),
- and to reduce their latency. The most important action taken to
- achieve this goal is to give to the queues associated with these
- applications more than their fair share of the device
- throughput. For brevity, we call just "weight-raising" the whole
- sets of actions taken by BFQ to privilege these queues. In
- particular, BFQ provides a milder form of weight-raising for
- interactive applications, and a stronger form for soft real-time
- applications.
-
- - BFQ automatically deactivates idling for queues born in a burst of
- queue creations. In fact, these queues are usually associated with
- the processes of applications and services that benefit mostly
- from a high throughput. Examples are systemd during boot, or git
- grep.
-
- - As CFQ, BFQ merges queues performing interleaved I/O, i.e.,
- performing random I/O that becomes mostly sequential if
- merged. Differently from CFQ, BFQ achieves this goal with a more
- reactive mechanism, called Early Queue Merge (EQM). EQM is so
- responsive in detecting interleaved I/O (cooperating processes),
- that it enables BFQ to achieve a high throughput, by queue
- merging, even for queues for which CFQ needs a different
- mechanism, preemption, to get a high throughput. As such EQM is a
- unified mechanism to achieve a high throughput with interleaved
- I/O.
-
- - Queues are scheduled according to a variant of WF2Q+, named
- B-WF2Q+, and implemented using an augmented rb-tree to preserve an
- O(log N) overall complexity. See [2] for more details. B-WF2Q+ is
- also ready for hierarchical scheduling, details in Section 4.
-
- - B-WF2Q+ guarantees a tight deviation with respect to an ideal,
- perfectly fair, and smooth service. In particular, B-WF2Q+
- guarantees that each queue receives a fraction of the device
- throughput proportional to its weight, even if the throughput
- fluctuates, and regardless of: the device parameters, the current
- workload and the budgets assigned to the queue.
-
- - The last, budget-independence, property (although probably
- counterintuitive in the first place) is definitely beneficial, for
- the following reasons:
-
- - First, with any proportional-share scheduler, the maximum
- deviation with respect to an ideal service is proportional to
- the maximum budget (slice) assigned to queues. As a consequence,
- BFQ can keep this deviation tight not only because of the
- accurate service of B-WF2Q+, but also because BFQ *does not*
- need to assign a larger budget to a queue to let the queue
- receive a higher fraction of the device throughput.
-
- - Second, BFQ is free to choose, for every process (queue), the
- budget that best fits the needs of the process, or best
- leverages the I/O pattern of the process. In particular, BFQ
- updates queue budgets with a simple feedback-loop algorithm that
- allows a high throughput to be achieved, while still providing
- tight latency guarantees to time-sensitive applications. When
- the in-service queue expires, this algorithm computes the next
- budget of the queue so as to:
-
- - Let large budgets be eventually assigned to the queues
- associated with I/O-bound applications performing sequential
- I/O: in fact, the longer these applications are served once
- got access to the device, the higher the throughput is.
-
- - Let small budgets be eventually assigned to the queues
- associated with time-sensitive applications (which typically
- perform sporadic and short I/O), because, the smaller the
- budget assigned to a queue waiting for service is, the sooner
- B-WF2Q+ will serve that queue (Subsec 3.3 in [2]).
-
-- If several processes are competing for the device at the same time,
- but all processes and groups have the same weight, then BFQ
- guarantees the expected throughput distribution without ever idling
- the device. It uses preemption instead. Throughput is then much
- higher in this common scenario.
-
-- ioprio classes are served in strict priority order, i.e.,
- lower-priority queues are not served as long as there are
- higher-priority queues. Among queues in the same class, the
- bandwidth is distributed in proportion to the weight of each
- queue. A very thin extra bandwidth is however guaranteed to
- the Idle class, to prevent it from starving.
-
-
-3. What are BFQ's tunables and how to properly configure BFQ?
-=============================================================
-
-Most BFQ tunables affect service guarantees (basically latency and
-fairness) and throughput. For full details on how to choose the
-desired tradeoff between service guarantees and throughput, see the
-parameters slice_idle, strict_guarantees and low_latency. For details
-on how to maximise throughput, see slice_idle, timeout_sync and
-max_budget. The other performance-related parameters have been
-inherited from, and have been preserved mostly for compatibility with
-CFQ. So far, no performance improvement has been reported after
-changing the latter parameters in BFQ.
-
-In particular, the tunables back_seek-max, back_seek_penalty,
-fifo_expire_async and fifo_expire_sync below are the same as in
-CFQ. Their description is just copied from that for CFQ. Some
-considerations in the description of slice_idle are copied from CFQ
-too.
-
-per-process ioprio and weight
------------------------------
-
-Unless the cgroups interface is used (see "4. BFQ group scheduling"),
-weights can be assigned to processes only indirectly, through I/O
-priorities, and according to the relation:
-weight = (IOPRIO_BE_NR - ioprio) * 10.
-
-Beware that, if low-latency is set, then BFQ automatically raises the
-weight of the queues associated with interactive and soft real-time
-applications. Unset this tunable if you need/want to control weights.
-
-slice_idle
-----------
-
-This parameter specifies how long BFQ should idle for next I/O
-request, when certain sync BFQ queues become empty. By default
-slice_idle is a non-zero value. Idling has a double purpose: boosting
-throughput and making sure that the desired throughput distribution is
-respected (see the description of how BFQ works, and, if needed, the
-papers referred there).
-
-As for throughput, idling can be very helpful on highly seeky media
-like single spindle SATA/SAS disks where we can cut down on overall
-number of seeks and see improved throughput.
-
-Setting slice_idle to 0 will remove all the idling on queues and one
-should see an overall improved throughput on faster storage devices
-like multiple SATA/SAS disks in hardware RAID configuration, as well
-as flash-based storage with internal command queueing (and
-parallelism).
-
-So depending on storage and workload, it might be useful to set
-slice_idle=0. In general for SATA/SAS disks and software RAID of
-SATA/SAS disks keeping slice_idle enabled should be useful. For any
-configurations where there are multiple spindles behind single LUN
-(Host based hardware RAID controller or for storage arrays), or with
-flash-based fast storage, setting slice_idle=0 might end up in better
-throughput and acceptable latencies.
-
-Idling is however necessary to have service guarantees enforced in
-case of differentiated weights or differentiated I/O-request lengths.
-To see why, suppose that a given BFQ queue A must get several I/O
-requests served for each request served for another queue B. Idling
-ensures that, if A makes a new I/O request slightly after becoming
-empty, then no request of B is dispatched in the middle, and thus A
-does not lose the possibility to get more than one request dispatched
-before the next request of B is dispatched. Note that idling
-guarantees the desired differentiated treatment of queues only in
-terms of I/O-request dispatches. To guarantee that the actual service
-order then corresponds to the dispatch order, the strict_guarantees
-tunable must be set too.
-
-There is an important flipside for idling: apart from the above cases
-where it is beneficial also for throughput, idling can severely impact
-throughput. One important case is random workload. Because of this
-issue, BFQ tends to avoid idling as much as possible, when it is not
-beneficial also for throughput (as detailed in Section 2). As a
-consequence of this behavior, and of further issues described for the
-strict_guarantees tunable, short-term service guarantees may be
-occasionally violated. And, in some cases, these guarantees may be
-more important than guaranteeing maximum throughput. For example, in
-video playing/streaming, a very low drop rate may be more important
-than maximum throughput. In these cases, consider setting the
-strict_guarantees parameter.
-
-slice_idle_us
--------------
-
-Controls the same tuning parameter as slice_idle, but in microseconds.
-Either tunable can be used to set idling behavior. Afterwards, the
-other tunable will reflect the newly set value in sysfs.
-
-strict_guarantees
------------------
-
-If this parameter is set (default: unset), then BFQ
-
-- always performs idling when the in-service queue becomes empty;
-
-- forces the device to serve one I/O request at a time, by dispatching a
- new request only if there is no outstanding request.
-
-In the presence of differentiated weights or I/O-request sizes, both
-the above conditions are needed to guarantee that every BFQ queue
-receives its allotted share of the bandwidth. The first condition is
-needed for the reasons explained in the description of the slice_idle
-tunable. The second condition is needed because all modern storage
-devices reorder internally-queued requests, which may trivially break
-the service guarantees enforced by the I/O scheduler.
-
-Setting strict_guarantees may evidently affect throughput.
-
-back_seek_max
--------------
-
-This specifies, given in Kbytes, the maximum "distance" for backward seeking.
-The distance is the amount of space from the current head location to the
-sectors that are backward in terms of distance.
-
-This parameter allows the scheduler to anticipate requests in the "backward"
-direction and consider them as being the "next" if they are within this
-distance from the current head location.
-
-back_seek_penalty
------------------
-
-This parameter is used to compute the cost of backward seeking. If the
-backward distance of request is just 1/back_seek_penalty from a "front"
-request, then the seeking cost of two requests is considered equivalent.
-
-So scheduler will not bias toward one or the other request (otherwise scheduler
-will bias toward front request). Default value of back_seek_penalty is 2.
-
-fifo_expire_async
------------------
-
-This parameter is used to set the timeout of asynchronous requests. Default
-value of this is 248ms.
-
-fifo_expire_sync
-----------------
-
-This parameter is used to set the timeout of synchronous requests. Default
-value of this is 124ms. In case to favor synchronous requests over asynchronous
-one, this value should be decreased relative to fifo_expire_async.
-
-low_latency
------------
-
-This parameter is used to enable/disable BFQ's low latency mode. By
-default, low latency mode is enabled. If enabled, interactive and soft
-real-time applications are privileged and experience a lower latency,
-as explained in more detail in the description of how BFQ works.
-
-DISABLE this mode if you need full control on bandwidth
-distribution. In fact, if it is enabled, then BFQ automatically
-increases the bandwidth share of privileged applications, as the main
-means to guarantee a lower latency to them.
-
-In addition, as already highlighted at the beginning of this document,
-DISABLE this mode if your only goal is to achieve a high throughput.
-In fact, privileging the I/O of some application over the rest may
-entail a lower throughput. To achieve the highest-possible throughput
-on a non-rotational device, setting slice_idle to 0 may be needed too
-(at the cost of giving up any strong guarantee on fairness and low
-latency).
-
-timeout_sync
-------------
-
-Maximum amount of device time that can be given to a task (queue) once
-it has been selected for service. On devices with costly seeks,
-increasing this time usually increases maximum throughput. On the
-opposite end, increasing this time coarsens the granularity of the
-short-term bandwidth and latency guarantees, especially if the
-following parameter is set to zero.
-
-max_budget
-----------
-
-Maximum amount of service, measured in sectors, that can be provided
-to a BFQ queue once it is set in service (of course within the limits
-of the above timeout). According to what said in the description of
-the algorithm, larger values increase the throughput in proportion to
-the percentage of sequential I/O requests issued. The price of larger
-values is that they coarsen the granularity of short-term bandwidth
-and latency guarantees.
-
-The default value is 0, which enables auto-tuning: BFQ sets max_budget
-to the maximum number of sectors that can be served during
-timeout_sync, according to the estimated peak rate.
-
-For specific devices, some users have occasionally reported to have
-reached a higher throughput by setting max_budget explicitly, i.e., by
-setting max_budget to a higher value than 0. In particular, they have
-set max_budget to higher values than those to which BFQ would have set
-it with auto-tuning. An alternative way to achieve this goal is to
-just increase the value of timeout_sync, leaving max_budget equal to 0.
-
-weights
--------
-
-Read-only parameter, used to show the weights of the currently active
-BFQ queues.
-
-
-4. Group scheduling with BFQ
-============================
-
-BFQ supports both cgroups-v1 and cgroups-v2 io controllers, namely
-blkio and io. In particular, BFQ supports weight-based proportional
-share. To activate cgroups support, set BFQ_GROUP_IOSCHED.
-
-4-1 Service guarantees provided
--------------------------------
-
-With BFQ, proportional share means true proportional share of the
-device bandwidth, according to group weights. For example, a group
-with weight 200 gets twice the bandwidth, and not just twice the time,
-of a group with weight 100.
-
-BFQ supports hierarchies (group trees) of any depth. Bandwidth is
-distributed among groups and processes in the expected way: for each
-group, the children of the group share the whole bandwidth of the
-group in proportion to their weights. In particular, this implies
-that, for each leaf group, every process of the group receives the
-same share of the whole group bandwidth, unless the ioprio of the
-process is modified.
-
-The resource-sharing guarantee for a group may partially or totally
-switch from bandwidth to time, if providing bandwidth guarantees to
-the group lowers the throughput too much. This switch occurs on a
-per-process basis: if a process of a leaf group causes throughput loss
-if served in such a way to receive its share of the bandwidth, then
-BFQ switches back to just time-based proportional share for that
-process.
-
-4-2 Interface
--------------
-
-To get proportional sharing of bandwidth with BFQ for a given device,
-BFQ must of course be the active scheduler for that device.
-
-Within each group directory, the names of the files associated with
-BFQ-specific cgroup parameters and stats begin with the "bfq."
-prefix. So, with cgroups-v1 or cgroups-v2, the full prefix for
-BFQ-specific files is "blkio.bfq." or "io.bfq." For example, the group
-parameter to set the weight of a group with BFQ is blkio.bfq.weight
-or io.bfq.weight.
-
-As for cgroups-v1 (blkio controller), the exact set of stat files
-created, and kept up-to-date by bfq, depends on whether
-CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
-the stat files documented in
-Documentation/cgroup-v1/blkio-controller.txt. If, instead,
-CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
-blkio.bfq.io_service_bytes
-blkio.bfq.io_service_bytes_recursive
-blkio.bfq.io_serviced
-blkio.bfq.io_serviced_recursive
-
-The value of CONFIG_DEBUG_BLK_CGROUP greatly influences the maximum
-throughput sustainable with bfq, because updating the blkio.bfq.*
-stats is rather costly, especially for some of the stats enabled by
-CONFIG_DEBUG_BLK_CGROUP.
-
-Parameters to set
------------------
-
-For each group, there is only the following parameter to set.
-
-weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the
-group inside its parent. Available values: 1..10000 (default 100). The
-linear mapping between ioprio and weights, described at the beginning
-of the tunable section, is still valid, but all weights higher than
-IOPRIO_BE_NR*10 are mapped to ioprio 0.
-
-Recall that, if low-latency is set, then BFQ automatically raises the
-weight of the queues associated with interactive and soft real-time
-applications. Unset this tunable if you need/want to control weights.
-
-
-[1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
- Scheduler", Proceedings of the First Workshop on Mobile System
- Technologies (MST-2015), May 2015.
- http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
-
-[2] P. Valente and M. Andreolini, "Improving Application
- Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
- the 5th Annual International Systems and Storage Conference
- (SYSTOR '12), June 2012.
- Slightly extended version:
- http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
- results.pdf
-
-[3] https://github.com/Algodev-github/S