aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/blockdev/zram.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/blockdev/zram.txt')
-rw-r--r--Documentation/blockdev/zram.txt355
1 files changed, 0 insertions, 355 deletions
diff --git a/Documentation/blockdev/zram.txt b/Documentation/blockdev/zram.txt
deleted file mode 100644
index 4df0ce271085..000000000000
--- a/Documentation/blockdev/zram.txt
+++ /dev/null
@@ -1,355 +0,0 @@
-zram: Compressed RAM based block devices
-----------------------------------------
-
-* Introduction
-
-The zram module creates RAM based block devices named /dev/zram<id>
-(<id> = 0, 1, ...). Pages written to these disks are compressed and stored
-in memory itself. These disks allow very fast I/O and compression provides
-good amounts of memory savings. Some of the usecases include /tmp storage,
-use as swap disks, various caches under /var and maybe many more :)
-
-Statistics for individual zram devices are exported through sysfs nodes at
-/sys/block/zram<id>/
-
-* Usage
-
-There are several ways to configure and manage zram device(-s):
-a) using zram and zram_control sysfs attributes
-b) using zramctl utility, provided by util-linux (util-linux@vger.kernel.org).
-
-In this document we will describe only 'manual' zram configuration steps,
-IOW, zram and zram_control sysfs attributes.
-
-In order to get a better idea about zramctl please consult util-linux
-documentation, zramctl man-page or `zramctl --help'. Please be informed
-that zram maintainers do not develop/maintain util-linux or zramctl, should
-you have any questions please contact util-linux@vger.kernel.org
-
-Following shows a typical sequence of steps for using zram.
-
-WARNING
-=======
-For the sake of simplicity we skip error checking parts in most of the
-examples below. However, it is your sole responsibility to handle errors.
-
-zram sysfs attributes always return negative values in case of errors.
-The list of possible return codes:
--EBUSY -- an attempt to modify an attribute that cannot be changed once
-the device has been initialised. Please reset device first;
--ENOMEM -- zram was not able to allocate enough memory to fulfil your
-needs;
--EINVAL -- invalid input has been provided.
-
-If you use 'echo', the returned value that is changed by 'echo' utility,
-and, in general case, something like:
-
- echo 3 > /sys/block/zram0/max_comp_streams
- if [ $? -ne 0 ];
- handle_error
- fi
-
-should suffice.
-
-1) Load Module:
- modprobe zram num_devices=4
- This creates 4 devices: /dev/zram{0,1,2,3}
-
-num_devices parameter is optional and tells zram how many devices should be
-pre-created. Default: 1.
-
-2) Set max number of compression streams
-Regardless the value passed to this attribute, ZRAM will always
-allocate multiple compression streams - one per online CPUs - thus
-allowing several concurrent compression operations. The number of
-allocated compression streams goes down when some of the CPUs
-become offline. There is no single-compression-stream mode anymore,
-unless you are running a UP system or has only 1 CPU online.
-
-To find out how many streams are currently available:
- cat /sys/block/zram0/max_comp_streams
-
-3) Select compression algorithm
-Using comp_algorithm device attribute one can see available and
-currently selected (shown in square brackets) compression algorithms,
-change selected compression algorithm (once the device is initialised
-there is no way to change compression algorithm).
-
-Examples:
- #show supported compression algorithms
- cat /sys/block/zram0/comp_algorithm
- lzo [lz4]
-
- #select lzo compression algorithm
- echo lzo > /sys/block/zram0/comp_algorithm
-
-For the time being, the `comp_algorithm' content does not necessarily
-show every compression algorithm supported by the kernel. We keep this
-list primarily to simplify device configuration and one can configure
-a new device with a compression algorithm that is not listed in
-`comp_algorithm'. The thing is that, internally, ZRAM uses Crypto API
-and, if some of the algorithms were built as modules, it's impossible
-to list all of them using, for instance, /proc/crypto or any other
-method. This, however, has an advantage of permitting the usage of
-custom crypto compression modules (implementing S/W or H/W compression).
-
-4) Set Disksize
-Set disk size by writing the value to sysfs node 'disksize'.
-The value can be either in bytes or you can use mem suffixes.
-Examples:
- # Initialize /dev/zram0 with 50MB disksize
- echo $((50*1024*1024)) > /sys/block/zram0/disksize
-
- # Using mem suffixes
- echo 256K > /sys/block/zram0/disksize
- echo 512M > /sys/block/zram0/disksize
- echo 1G > /sys/block/zram0/disksize
-
-Note:
-There is little point creating a zram of greater than twice the size of memory
-since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the
-size of the disk when not in use so a huge zram is wasteful.
-
-5) Set memory limit: Optional
-Set memory limit by writing the value to sysfs node 'mem_limit'.
-The value can be either in bytes or you can use mem suffixes.
-In addition, you could change the value in runtime.
-Examples:
- # limit /dev/zram0 with 50MB memory
- echo $((50*1024*1024)) > /sys/block/zram0/mem_limit
-
- # Using mem suffixes
- echo 256K > /sys/block/zram0/mem_limit
- echo 512M > /sys/block/zram0/mem_limit
- echo 1G > /sys/block/zram0/mem_limit
-
- # To disable memory limit
- echo 0 > /sys/block/zram0/mem_limit
-
-6) Activate:
- mkswap /dev/zram0
- swapon /dev/zram0
-
- mkfs.ext4 /dev/zram1
- mount /dev/zram1 /tmp
-
-7) Add/remove zram devices
-
-zram provides a control interface, which enables dynamic (on-demand) device
-addition and removal.
-
-In order to add a new /dev/zramX device, perform read operation on hot_add
-attribute. This will return either new device's device id (meaning that you
-can use /dev/zram<id>) or error code.
-
-Example:
- cat /sys/class/zram-control/hot_add
- 1
-
-To remove the existing /dev/zramX device (where X is a device id)
-execute
- echo X > /sys/class/zram-control/hot_remove
-
-8) Stats:
-Per-device statistics are exported as various nodes under /sys/block/zram<id>/
-
-A brief description of exported device attributes. For more details please
-read Documentation/ABI/testing/sysfs-block-zram.
-
-Name access description
----- ------ -----------
-disksize RW show and set the device's disk size
-initstate RO shows the initialization state of the device
-reset WO trigger device reset
-mem_used_max WO reset the `mem_used_max' counter (see later)
-mem_limit WO specifies the maximum amount of memory ZRAM can use
- to store the compressed data
-writeback_limit WO specifies the maximum amount of write IO zram can
- write out to backing device as 4KB unit
-writeback_limit_enable RW show and set writeback_limit feature
-max_comp_streams RW the number of possible concurrent compress operations
-comp_algorithm RW show and change the compression algorithm
-compact WO trigger memory compaction
-debug_stat RO this file is used for zram debugging purposes
-backing_dev RW set up backend storage for zram to write out
-idle WO mark allocated slot as idle
-
-
-User space is advised to use the following files to read the device statistics.
-
-File /sys/block/zram<id>/stat
-
-Represents block layer statistics. Read Documentation/block/stat.txt for
-details.
-
-File /sys/block/zram<id>/io_stat
-
-The stat file represents device's I/O statistics not accounted by block
-layer and, thus, not available in zram<id>/stat file. It consists of a
-single line of text and contains the following stats separated by
-whitespace:
- failed_reads the number of failed reads
- failed_writes the number of failed writes
- invalid_io the number of non-page-size-aligned I/O requests
- notify_free Depending on device usage scenario it may account
- a) the number of pages freed because of swap slot free
- notifications or b) the number of pages freed because of
- REQ_OP_DISCARD requests sent by bio. The former ones are
- sent to a swap block device when a swap slot is freed,
- which implies that this disk is being used as a swap disk.
- The latter ones are sent by filesystem mounted with
- discard option, whenever some data blocks are getting
- discarded.
-
-File /sys/block/zram<id>/mm_stat
-
-The stat file represents device's mm statistics. It consists of a single
-line of text and contains the following stats separated by whitespace:
- orig_data_size uncompressed size of data stored in this disk.
- This excludes same-element-filled pages (same_pages) since
- no memory is allocated for them.
- Unit: bytes
- compr_data_size compressed size of data stored in this disk
- mem_used_total the amount of memory allocated for this disk. This
- includes allocator fragmentation and metadata overhead,
- allocated for this disk. So, allocator space efficiency
- can be calculated using compr_data_size and this statistic.
- Unit: bytes
- mem_limit the maximum amount of memory ZRAM can use to store
- the compressed data
- mem_used_max the maximum amount of memory zram have consumed to
- store the data
- same_pages the number of same element filled pages written to this disk.
- No memory is allocated for such pages.
- pages_compacted the number of pages freed during compaction
- huge_pages the number of incompressible pages
-
-File /sys/block/zram<id>/bd_stat
-
-The stat file represents device's backing device statistics. It consists of
-a single line of text and contains the following stats separated by whitespace:
- bd_count size of data written in backing device.
- Unit: 4K bytes
- bd_reads the number of reads from backing device
- Unit: 4K bytes
- bd_writes the number of writes to backing device
- Unit: 4K bytes
-
-9) Deactivate:
- swapoff /dev/zram0
- umount /dev/zram1
-
-10) Reset:
- Write any positive value to 'reset' sysfs node
- echo 1 > /sys/block/zram0/reset
- echo 1 > /sys/block/zram1/reset
-
- This frees all the memory allocated for the given device and
- resets the disksize to zero. You must set the disksize again
- before reusing the device.
-
-* Optional Feature
-
-= writeback
-
-With CONFIG_ZRAM_WRITEBACK, zram can write idle/incompressible page
-to backing storage rather than keeping it in memory.
-To use the feature, admin should set up backing device via
-
- "echo /dev/sda5 > /sys/block/zramX/backing_dev"
-
-before disksize setting. It supports only partition at this moment.
-If admin want to use incompressible page writeback, they could do via
-
- "echo huge > /sys/block/zramX/write"
-
-To use idle page writeback, first, user need to declare zram pages
-as idle.
-
- "echo all > /sys/block/zramX/idle"
-
-From now on, any pages on zram are idle pages. The idle mark
-will be removed until someone request access of the block.
-IOW, unless there is access request, those pages are still idle pages.
-
-Admin can request writeback of those idle pages at right timing via
-
- "echo idle > /sys/block/zramX/writeback"
-
-With the command, zram writeback idle pages from memory to the storage.
-
-If there are lots of write IO with flash device, potentially, it has
-flash wearout problem so that admin needs to design write limitation
-to guarantee storage health for entire product life.
-
-To overcome the concern, zram supports "writeback_limit" feature.
-The "writeback_limit_enable"'s default value is 0 so that it doesn't limit
-any writeback. IOW, if admin want to apply writeback budget, he should
-enable writeback_limit_enable via
-
- $ echo 1 > /sys/block/zramX/writeback_limit_enable
-
-Once writeback_limit_enable is set, zram doesn't allow any writeback
-until admin set the budget via /sys/block/zramX/writeback_limit.
-
-(If admin doesn't enable writeback_limit_enable, writeback_limit's value
-assigned via /sys/block/zramX/writeback_limit is meaninless.)
-
-If admin want to limit writeback as per-day 400M, he could do it
-like below.
-
- $ MB_SHIFT=20
- $ 4K_SHIFT=12
- $ echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
- /sys/block/zram0/writeback_limit.
- $ echo 1 > /sys/block/zram0/writeback_limit_enable
-
-If admin want to allow further write again once the bugdet is exausted,
-he could do it like below
-
- $ echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
- /sys/block/zram0/writeback_limit
-
-If admin want to see remaining writeback budget since he set,
-
- $ cat /sys/block/zramX/writeback_limit
-
-If admin want to disable writeback limit, he could do
-
- $ echo 0 > /sys/block/zramX/writeback_limit_enable
-
-The writeback_limit count will reset whenever you reset zram(e.g.,
-system reboot, echo 1 > /sys/block/zramX/reset) so keeping how many of
-writeback happened until you reset the zram to allocate extra writeback
-budget in next setting is user's job.
-
-If admin want to measure writeback count in a certain period, he could
-know it via /sys/block/zram0/bd_stat's 3rd column.
-
-= memory tracking
-
-With CONFIG_ZRAM_MEMORY_TRACKING, user can know information of the
-zram block. It could be useful to catch cold or incompressible
-pages of the process with*pagemap.
-If you enable the feature, you could see block state via
-/sys/kernel/debug/zram/zram0/block_state". The output is as follows,
-
- 300 75.033841 .wh.
- 301 63.806904 s...
- 302 63.806919 ..hi
-
-First column is zram's block index.
-Second column is access time since the system was booted
-Third column is state of the block.
-(s: same page
-w: written page to backing store
-h: huge page
-i: idle page)
-
-First line of above example says 300th block is accessed at 75.033841sec
-and the block's state is huge so it is written back to the backing
-storage. It's a debugging feature so anyone shouldn't rely on it to work
-properly.
-
-Nitin Gupta
-ngupta@vflare.org