aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/dev-tools
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/dev-tools')
-rw-r--r--Documentation/dev-tools/kasan.rst63
-rw-r--r--Documentation/dev-tools/kcov.rst129
-rw-r--r--Documentation/dev-tools/kmemleak.rst2
3 files changed, 193 insertions, 1 deletions
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
index 525296121d89..e4d66e7c50de 100644
--- a/Documentation/dev-tools/kasan.rst
+++ b/Documentation/dev-tools/kasan.rst
@@ -218,3 +218,66 @@ brk handler is used to print bug reports.
A potential expansion of this mode is a hardware tag-based mode, which would
use hardware memory tagging support instead of compiler instrumentation and
manual shadow memory manipulation.
+
+What memory accesses are sanitised by KASAN?
+--------------------------------------------
+
+The kernel maps memory in a number of different parts of the address
+space. This poses something of a problem for KASAN, which requires
+that all addresses accessed by instrumented code have a valid shadow
+region.
+
+The range of kernel virtual addresses is large: there is not enough
+real memory to support a real shadow region for every address that
+could be accessed by the kernel.
+
+By default
+~~~~~~~~~~
+
+By default, architectures only map real memory over the shadow region
+for the linear mapping (and potentially other small areas). For all
+other areas - such as vmalloc and vmemmap space - a single read-only
+page is mapped over the shadow area. This read-only shadow page
+declares all memory accesses as permitted.
+
+This presents a problem for modules: they do not live in the linear
+mapping, but in a dedicated module space. By hooking in to the module
+allocator, KASAN can temporarily map real shadow memory to cover
+them. This allows detection of invalid accesses to module globals, for
+example.
+
+This also creates an incompatibility with ``VMAP_STACK``: if the stack
+lives in vmalloc space, it will be shadowed by the read-only page, and
+the kernel will fault when trying to set up the shadow data for stack
+variables.
+
+CONFIG_KASAN_VMALLOC
+~~~~~~~~~~~~~~~~~~~~
+
+With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
+cost of greater memory usage. Currently this is only supported on x86.
+
+This works by hooking into vmalloc and vmap, and dynamically
+allocating real shadow memory to back the mappings.
+
+Most mappings in vmalloc space are small, requiring less than a full
+page of shadow space. Allocating a full shadow page per mapping would
+therefore be wasteful. Furthermore, to ensure that different mappings
+use different shadow pages, mappings would have to be aligned to
+``KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE``.
+
+Instead, we share backing space across multiple mappings. We allocate
+a backing page when a mapping in vmalloc space uses a particular page
+of the shadow region. This page can be shared by other vmalloc
+mappings later on.
+
+We hook in to the vmap infrastructure to lazily clean up unused shadow
+memory.
+
+To avoid the difficulties around swapping mappings around, we expect
+that the part of the shadow region that covers the vmalloc space will
+not be covered by the early shadow page, but will be left
+unmapped. This will require changes in arch-specific code.
+
+This allows ``VMAP_STACK`` support on x86, and can simplify support of
+architectures that do not have a fixed module region.
diff --git a/Documentation/dev-tools/kcov.rst b/Documentation/dev-tools/kcov.rst
index 42b612677799..36890b026e77 100644
--- a/Documentation/dev-tools/kcov.rst
+++ b/Documentation/dev-tools/kcov.rst
@@ -34,6 +34,7 @@ Profiling data will only become accessible once debugfs has been mounted::
Coverage collection
-------------------
+
The following program demonstrates coverage collection from within a test
program using kcov:
@@ -128,6 +129,7 @@ only need to enable coverage (disable happens automatically on thread end).
Comparison operands collection
------------------------------
+
Comparison operands collection is similar to coverage collection:
.. code-block:: c
@@ -202,3 +204,130 @@ Comparison operands collection is similar to coverage collection:
Note that the kcov modes (coverage collection or comparison operands) are
mutually exclusive.
+
+Remote coverage collection
+--------------------------
+
+With KCOV_ENABLE coverage is collected only for syscalls that are issued
+from the current process. With KCOV_REMOTE_ENABLE it's possible to collect
+coverage for arbitrary parts of the kernel code, provided that those parts
+are annotated with kcov_remote_start()/kcov_remote_stop().
+
+This allows to collect coverage from two types of kernel background
+threads: the global ones, that are spawned during kernel boot in a limited
+number of instances (e.g. one USB hub_event() worker thread is spawned per
+USB HCD); and the local ones, that are spawned when a user interacts with
+some kernel interface (e.g. vhost workers).
+
+To enable collecting coverage from a global background thread, a unique
+global handle must be assigned and passed to the corresponding
+kcov_remote_start() call. Then a userspace process can pass a list of such
+handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field of the
+kcov_remote_arg struct. This will attach the used kcov device to the code
+sections, that are referenced by those handles.
+
+Since there might be many local background threads spawned from different
+userspace processes, we can't use a single global handle per annotation.
+Instead, the userspace process passes a non-zero handle through the
+common_handle field of the kcov_remote_arg struct. This common handle gets
+saved to the kcov_handle field in the current task_struct and needs to be
+passed to the newly spawned threads via custom annotations. Those threads
+should in turn be annotated with kcov_remote_start()/kcov_remote_stop().
+
+Internally kcov stores handles as u64 integers. The top byte of a handle
+is used to denote the id of a subsystem that this handle belongs to, and
+the lower 4 bytes are used to denote the id of a thread instance within
+that subsystem. A reserved value 0 is used as a subsystem id for common
+handles as they don't belong to a particular subsystem. The bytes 4-7 are
+currently reserved and must be zero. In the future the number of bytes
+used for the subsystem or handle ids might be increased.
+
+When a particular userspace proccess collects coverage by via a common
+handle, kcov will collect coverage for each code section that is annotated
+to use the common handle obtained as kcov_handle from the current
+task_struct. However non common handles allow to collect coverage
+selectively from different subsystems.
+
+.. code-block:: c
+
+ struct kcov_remote_arg {
+ unsigned trace_mode;
+ unsigned area_size;
+ unsigned num_handles;
+ uint64_t common_handle;
+ uint64_t handles[0];
+ };
+
+ #define KCOV_INIT_TRACE _IOR('c', 1, unsigned long)
+ #define KCOV_DISABLE _IO('c', 101)
+ #define KCOV_REMOTE_ENABLE _IOW('c', 102, struct kcov_remote_arg)
+
+ #define COVER_SIZE (64 << 10)
+
+ #define KCOV_TRACE_PC 0
+
+ #define KCOV_SUBSYSTEM_COMMON (0x00ull << 56)
+ #define KCOV_SUBSYSTEM_USB (0x01ull << 56)
+
+ #define KCOV_SUBSYSTEM_MASK (0xffull << 56)
+ #define KCOV_INSTANCE_MASK (0xffffffffull)
+
+ static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst)
+ {
+ if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK)
+ return 0;
+ return subsys | inst;
+ }
+
+ #define KCOV_COMMON_ID 0x42
+ #define KCOV_USB_BUS_NUM 1
+
+ int main(int argc, char **argv)
+ {
+ int fd;
+ unsigned long *cover, n, i;
+ struct kcov_remote_arg *arg;
+
+ fd = open("/sys/kernel/debug/kcov", O_RDWR);
+ if (fd == -1)
+ perror("open"), exit(1);
+ if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE))
+ perror("ioctl"), exit(1);
+ cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long),
+ PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+ if ((void*)cover == MAP_FAILED)
+ perror("mmap"), exit(1);
+
+ /* Enable coverage collection via common handle and from USB bus #1. */
+ arg = calloc(1, sizeof(*arg) + sizeof(uint64_t));
+ if (!arg)
+ perror("calloc"), exit(1);
+ arg->trace_mode = KCOV_TRACE_PC;
+ arg->area_size = COVER_SIZE;
+ arg->num_handles = 1;
+ arg->common_handle = kcov_remote_handle(KCOV_SUBSYSTEM_COMMON,
+ KCOV_COMMON_ID);
+ arg->handles[0] = kcov_remote_handle(KCOV_SUBSYSTEM_USB,
+ KCOV_USB_BUS_NUM);
+ if (ioctl(fd, KCOV_REMOTE_ENABLE, arg))
+ perror("ioctl"), free(arg), exit(1);
+ free(arg);
+
+ /*
+ * Here the user needs to trigger execution of a kernel code section
+ * that is either annotated with the common handle, or to trigger some
+ * activity on USB bus #1.
+ */
+ sleep(2);
+
+ n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED);
+ for (i = 0; i < n; i++)
+ printf("0x%lx\n", cover[i + 1]);
+ if (ioctl(fd, KCOV_DISABLE, 0))
+ perror("ioctl"), exit(1);
+ if (munmap(cover, COVER_SIZE * sizeof(unsigned long)))
+ perror("munmap"), exit(1);
+ if (close(fd))
+ perror("close"), exit(1);
+ return 0;
+ }
diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst
index 3621cd5e1eef..3a289e8a1d12 100644
--- a/Documentation/dev-tools/kmemleak.rst
+++ b/Documentation/dev-tools/kmemleak.rst
@@ -69,7 +69,7 @@ the kernel command line.
Memory may be allocated or freed before kmemleak is initialised and
these actions are stored in an early log buffer. The size of this buffer
-is configured via the CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option.
+is configured via the CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE option.
If CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF are enabled, the kmemleak is
disabled by default. Passing ``kmemleak=on`` on the kernel command