aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings/arm/idle-states.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings/arm/idle-states.txt')
-rw-r--r--Documentation/devicetree/bindings/arm/idle-states.txt679
1 files changed, 679 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/arm/idle-states.txt b/Documentation/devicetree/bindings/arm/idle-states.txt
new file mode 100644
index 000000000000..37375c7f3ccc
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/idle-states.txt
@@ -0,0 +1,679 @@
+==========================================
+ARM idle states binding description
+==========================================
+
+==========================================
+1 - Introduction
+==========================================
+
+ARM systems contain HW capable of managing power consumption dynamically,
+where cores can be put in different low-power states (ranging from simple
+wfi to power gating) according to OS PM policies. The CPU states representing
+the range of dynamic idle states that a processor can enter at run-time, can be
+specified through device tree bindings representing the parameters required
+to enter/exit specific idle states on a given processor.
+
+According to the Server Base System Architecture document (SBSA, [3]), the
+power states an ARM CPU can be put into are identified by the following list:
+
+- Running
+- Idle_standby
+- Idle_retention
+- Sleep
+- Off
+
+The power states described in the SBSA document define the basic CPU states on
+top of which ARM platforms implement power management schemes that allow an OS
+PM implementation to put the processor in different idle states (which include
+states listed above; "off" state is not an idle state since it does not have
+wake-up capabilities, hence it is not considered in this document).
+
+Idle state parameters (eg entry latency) are platform specific and need to be
+characterized with bindings that provide the required information to OS PM
+code so that it can build the required tables and use them at runtime.
+
+The device tree binding definition for ARM idle states is the subject of this
+document.
+
+===========================================
+2 - idle-states definitions
+===========================================
+
+Idle states are characterized for a specific system through a set of
+timing and energy related properties, that underline the HW behaviour
+triggered upon idle states entry and exit.
+
+The following diagram depicts the CPU execution phases and related timing
+properties required to enter and exit an idle state:
+
+..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__..
+ | | | | |
+
+ |<------ entry ------->|
+ | latency |
+ |<- exit ->|
+ | latency |
+ |<-------- min-residency -------->|
+ |<------- wakeup-latency ------->|
+
+ Diagram 1: CPU idle state execution phases
+
+EXEC: Normal CPU execution.
+
+PREP: Preparation phase before committing the hardware to idle mode
+ like cache flushing. This is abortable on pending wake-up
+ event conditions. The abort latency is assumed to be negligible
+ (i.e. less than the ENTRY + EXIT duration). If aborted, CPU
+ goes back to EXEC. This phase is optional. If not abortable,
+ this should be included in the ENTRY phase instead.
+
+ENTRY: The hardware is committed to idle mode. This period must run
+ to completion up to IDLE before anything else can happen.
+
+IDLE: This is the actual energy-saving idle period. This may last
+ between 0 and infinite time, until a wake-up event occurs.
+
+EXIT: Period during which the CPU is brought back to operational
+ mode (EXEC).
+
+entry-latency: Worst case latency required to enter the idle state. The
+exit-latency may be guaranteed only after entry-latency has passed.
+
+min-residency: Minimum period, including preparation and entry, for a given
+idle state to be worthwhile energywise.
+
+wakeup-latency: Maximum delay between the signaling of a wake-up event and the
+CPU being able to execute normal code again. If not specified, this is assumed
+to be entry-latency + exit-latency.
+
+These timing parameters can be used by an OS in different circumstances.
+
+An idle CPU requires the expected min-residency time to select the most
+appropriate idle state based on the expected expiry time of the next IRQ
+(ie wake-up) that causes the CPU to return to the EXEC phase.
+
+An operating system scheduler may need to compute the shortest wake-up delay
+for CPUs in the system by detecting how long will it take to get a CPU out
+of an idle state, eg:
+
+wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0)
+
+In other words, the scheduler can make its scheduling decision by selecting
+(eg waking-up) the CPU with the shortest wake-up latency.
+The wake-up latency must take into account the entry latency if that period
+has not expired. The abortable nature of the PREP period can be ignored
+if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than
+the worst case since it depends on the CPU operating conditions, ie caches
+state).
+
+An OS has to reliably probe the wakeup-latency since some devices can enforce
+latency constraints guarantees to work properly, so the OS has to detect the
+worst case wake-up latency it can incur if a CPU is allowed to enter an
+idle state, and possibly to prevent that to guarantee reliable device
+functioning.
+
+The min-residency time parameter deserves further explanation since it is
+expressed in time units but must factor in energy consumption coefficients.
+
+The energy consumption of a cpu when it enters a power state can be roughly
+characterised by the following graph:
+
+ |
+ |
+ |
+ e |
+ n | /---
+ e | /------
+ r | /------
+ g | /-----
+ y | /------
+ | ----
+ | /|
+ | / |
+ | / |
+ | / |
+ | / |
+ | / |
+ |/ |
+ -----|-------+----------------------------------
+ 0| 1 time(ms)
+
+ Graph 1: Energy vs time example
+
+The graph is split in two parts delimited by time 1ms on the X-axis.
+The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope
+and denotes the energy costs incurred whilst entering and leaving the idle
+state.
+The graph curve in the area delimited by X-axis values = {x | x > 1ms } has
+shallower slope and essentially represents the energy consumption of the idle
+state.
+
+min-residency is defined for a given idle state as the minimum expected
+residency time for a state (inclusive of preparation and entry) after
+which choosing that state become the most energy efficient option. A good
+way to visualise this, is by taking the same graph above and comparing some
+states energy consumptions plots.
+
+For sake of simplicity, let's consider a system with two idle states IDLE1,
+and IDLE2:
+
+ |
+ |
+ |
+ | /-- IDLE1
+ e | /---
+ n | /----
+ e | /---
+ r | /-----/--------- IDLE2
+ g | /-------/---------
+ y | ------------ /---|
+ | / /---- |
+ | / /--- |
+ | / /---- |
+ | / /--- |
+ | --- |
+ | / |
+ | / |
+ |/ | time
+ ---/----------------------------+------------------------
+ |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy
+ |
+ IDLE2-min-residency
+
+ Graph 2: idle states min-residency example
+
+In graph 2 above, that takes into account idle states entry/exit energy
+costs, it is clear that if the idle state residency time (ie time till next
+wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state
+choice energywise.
+
+This is mainly down to the fact that IDLE1 entry/exit energy costs are lower
+than IDLE2.
+
+However, the lower power consumption (ie shallower energy curve slope) of idle
+state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
+efficient.
+
+The time at which IDLE2 becomes more energy efficient than IDLE1 (and other
+shallower states in a system with multiple idle states) is defined
+IDLE2-min-residency and corresponds to the time when energy consumption of
+IDLE1 and IDLE2 states breaks even.
+
+The definitions provided in this section underpin the idle states
+properties specification that is the subject of the following sections.
+
+===========================================
+3 - idle-states node
+===========================================
+
+ARM processor idle states are defined within the idle-states node, which is
+a direct child of the cpus node [1] and provides a container where the
+processor idle states, defined as device tree nodes, are listed.
+
+- idle-states node
+
+ Usage: Optional - On ARM systems, it is a container of processor idle
+ states nodes. If the system does not provide CPU
+ power management capabilities or the processor just
+ supports idle_standby an idle-states node is not
+ required.
+
+ Description: idle-states node is a container node, where its
+ subnodes describe the CPU idle states.
+
+ Node name must be "idle-states".
+
+ The idle-states node's parent node must be the cpus node.
+
+ The idle-states node's child nodes can be:
+
+ - one or more state nodes
+
+ Any other configuration is considered invalid.
+
+ An idle-states node defines the following properties:
+
+ - entry-method
+ Value type: <stringlist>
+ Usage and definition depend on ARM architecture version.
+ # On ARM v8 64-bit this property is required and must
+ be one of:
+ - "psci" (see bindings in [2])
+ # On ARM 32-bit systems this property is optional
+
+The nodes describing the idle states (state) can only be defined within the
+idle-states node, any other configuration is considered invalid and therefore
+must be ignored.
+
+===========================================
+4 - state node
+===========================================
+
+A state node represents an idle state description and must be defined as
+follows:
+
+- state node
+
+ Description: must be child of the idle-states node
+
+ The state node name shall follow standard device tree naming
+ rules ([5], 2.2.1 "Node names"), in particular state nodes which
+ are siblings within a single common parent must be given a unique name.
+
+ The idle state entered by executing the wfi instruction (idle_standby
+ SBSA,[3][4]) is considered standard on all ARM platforms and therefore
+ must not be listed.
+
+ With the definitions provided above, the following list represents
+ the valid properties for a state node:
+
+ - compatible
+ Usage: Required
+ Value type: <stringlist>
+ Definition: Must be "arm,idle-state".
+
+ - local-timer-stop
+ Usage: See definition
+ Value type: <none>
+ Definition: if present the CPU local timer control logic is
+ lost on state entry, otherwise it is retained.
+
+ - entry-latency-us
+ Usage: Required
+ Value type: <prop-encoded-array>
+ Definition: u32 value representing worst case latency in
+ microseconds required to enter the idle state.
+ The exit-latency-us duration may be guaranteed
+ only after entry-latency-us has passed.
+
+ - exit-latency-us
+ Usage: Required
+ Value type: <prop-encoded-array>
+ Definition: u32 value representing worst case latency
+ in microseconds required to exit the idle state.
+
+ - min-residency-us
+ Usage: Required
+ Value type: <prop-encoded-array>
+ Definition: u32 value representing minimum residency duration
+ in microseconds, inclusive of preparation and
+ entry, for this idle state to be considered
+ worthwhile energy wise (refer to section 2 of
+ this document for a complete description).
+
+ - wakeup-latency-us:
+ Usage: Optional
+ Value type: <prop-encoded-array>
+ Definition: u32 value representing maximum delay between the
+ signaling of a wake-up event and the CPU being
+ able to execute normal code again. If omitted,
+ this is assumed to be equal to:
+
+ entry-latency-us + exit-latency-us
+
+ It is important to supply this value on systems
+ where the duration of PREP phase (see diagram 1,
+ section 2) is non-neglibigle.
+ In such systems entry-latency-us + exit-latency-us
+ will exceed wakeup-latency-us by this duration.
+
+ In addition to the properties listed above, a state node may require
+ additional properties specifics to the entry-method defined in the
+ idle-states node, please refer to the entry-method bindings
+ documentation for properties definitions.
+
+===========================================
+4 - Examples
+===========================================
+
+Example 1 (ARM 64-bit, 16-cpu system, PSCI enable-method):
+
+cpus {
+ #size-cells = <0>;
+ #address-cells = <2>;
+
+ CPU0: cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x0>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU1: cpu@1 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x1>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU2: cpu@100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x100>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU3: cpu@101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x101>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU4: cpu@10000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10000>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU5: cpu@10001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10001>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU6: cpu@10100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10100>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU7: cpu@10101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a57";
+ reg = <0x0 0x10101>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0
+ &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU8: cpu@100000000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x0>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU9: cpu@100000001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x1>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU10: cpu@100000100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x100>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU11: cpu@100000101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x101>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU12: cpu@100010000 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x10000>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU13: cpu@100010001 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x10001>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU14: cpu@100010100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x10100>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU15: cpu@100010101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x1 0x10101>;
+ enable-method = "psci";
+ cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0
+ &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>;
+ };
+
+ idle-states {
+ entry-method = "arm,psci";
+
+ CPU_RETENTION_0_0: cpu-retention-0-0 {
+ compatible = "arm,idle-state";
+ arm,psci-suspend-param = <0x0010000>;
+ entry-latency-us = <20>;
+ exit-latency-us = <40>;
+ min-residency-us = <80>;
+ };
+
+ CLUSTER_RETENTION_0: cluster-retention-0 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ arm,psci-suspend-param = <0x1010000>;
+ entry-latency-us = <50>;
+ exit-latency-us = <100>;
+ min-residency-us = <250>;
+ wakeup-latency-us = <130>;
+ };
+
+ CPU_SLEEP_0_0: cpu-sleep-0-0 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ arm,psci-suspend-param = <0x0010000>;
+ entry-latency-us = <250>;
+ exit-latency-us = <500>;
+ min-residency-us = <950>;
+ };
+
+ CLUSTER_SLEEP_0: cluster-sleep-0 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ arm,psci-suspend-param = <0x1010000>;
+ entry-latency-us = <600>;
+ exit-latency-us = <1100>;
+ min-residency-us = <2700>;
+ wakeup-latency-us = <1500>;
+ };
+
+ CPU_RETENTION_1_0: cpu-retention-1-0 {
+ compatible = "arm,idle-state";
+ arm,psci-suspend-param = <0x0010000>;
+ entry-latency-us = <20>;
+ exit-latency-us = <40>;
+ min-residency-us = <90>;
+ };
+
+ CLUSTER_RETENTION_1: cluster-retention-1 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ arm,psci-suspend-param = <0x1010000>;
+ entry-latency-us = <50>;
+ exit-latency-us = <100>;
+ min-residency-us = <270>;
+ wakeup-latency-us = <100>;
+ };
+
+ CPU_SLEEP_1_0: cpu-sleep-1-0 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ arm,psci-suspend-param = <0x0010000>;
+ entry-latency-us = <70>;
+ exit-latency-us = <100>;
+ min-residency-us = <300>;
+ wakeup-latency-us = <150>;
+ };
+
+ CLUSTER_SLEEP_1: cluster-sleep-1 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ arm,psci-suspend-param = <0x1010000>;
+ entry-latency-us = <500>;
+ exit-latency-us = <1200>;
+ min-residency-us = <3500>;
+ wakeup-latency-us = <1300>;
+ };
+ };
+
+};
+
+Example 2 (ARM 32-bit, 8-cpu system, two clusters):
+
+cpus {
+ #size-cells = <0>;
+ #address-cells = <1>;
+
+ CPU0: cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x0>;
+ cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU1: cpu@1 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x1>;
+ cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU2: cpu@2 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x2>;
+ cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU3: cpu@3 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a15";
+ reg = <0x3>;
+ cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>;
+ };
+
+ CPU4: cpu@100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x100>;
+ cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU5: cpu@101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x101>;
+ cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU6: cpu@102 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x102>;
+ cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
+ };
+
+ CPU7: cpu@103 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a7";
+ reg = <0x103>;
+ cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>;
+ };
+
+ idle-states {
+ CPU_SLEEP_0_0: cpu-sleep-0-0 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ entry-latency-us = <200>;
+ exit-latency-us = <100>;
+ min-residency-us = <400>;
+ wakeup-latency-us = <250>;
+ };
+
+ CLUSTER_SLEEP_0: cluster-sleep-0 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ entry-latency-us = <500>;
+ exit-latency-us = <1500>;
+ min-residency-us = <2500>;
+ wakeup-latency-us = <1700>;
+ };
+
+ CPU_SLEEP_1_0: cpu-sleep-1-0 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ entry-latency-us = <300>;
+ exit-latency-us = <500>;
+ min-residency-us = <900>;
+ wakeup-latency-us = <600>;
+ };
+
+ CLUSTER_SLEEP_1: cluster-sleep-1 {
+ compatible = "arm,idle-state";
+ local-timer-stop;
+ entry-latency-us = <800>;
+ exit-latency-us = <2000>;
+ min-residency-us = <6500>;
+ wakeup-latency-us = <2300>;
+ };
+ };
+
+};
+
+===========================================
+5 - References
+===========================================
+
+[1] ARM Linux Kernel documentation - CPUs bindings
+ Documentation/devicetree/bindings/arm/cpus.txt
+
+[2] ARM Linux Kernel documentation - PSCI bindings
+ Documentation/devicetree/bindings/arm/psci.txt
+
+[3] ARM Server Base System Architecture (SBSA)
+ http://infocenter.arm.com/help/index.jsp
+
+[4] ARM Architecture Reference Manuals
+ http://infocenter.arm.com/help/index.jsp
+
+[5] ePAPR standard
+ https://www.power.org/documentation/epapr-version-1-1/