aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/ceph.txt14
-rw-r--r--Documentation/filesystems/cifs/AUTHORS63
-rw-r--r--Documentation/filesystems/cifs/CHANGES4
-rw-r--r--Documentation/filesystems/cifs/README743
-rw-r--r--Documentation/filesystems/cifs/TODO125
-rw-r--r--Documentation/filesystems/cifs/cifs.txt45
-rw-r--r--Documentation/filesystems/cifs/cifsroot.txt97
-rwxr-xr-xDocumentation/filesystems/cifs/winucase_convert.pl62
-rw-r--r--Documentation/filesystems/coda.txt4
-rw-r--r--Documentation/filesystems/directory-locking.rst (renamed from Documentation/filesystems/directory-locking)40
-rw-r--r--Documentation/filesystems/erofs.txt210
-rw-r--r--Documentation/filesystems/ext4/bigalloc.rst32
-rw-r--r--Documentation/filesystems/ext4/blockgroup.rst10
-rw-r--r--Documentation/filesystems/ext4/blocks.rst4
-rw-r--r--Documentation/filesystems/ext4/directory.rst2
-rw-r--r--Documentation/filesystems/ext4/group_descr.rst9
-rw-r--r--Documentation/filesystems/ext4/inodes.rst10
-rw-r--r--Documentation/filesystems/ext4/overview.rst1
-rw-r--r--Documentation/filesystems/ext4/super.rst22
-rw-r--r--Documentation/filesystems/ext4/verity.rst41
-rw-r--r--Documentation/filesystems/f2fs.txt8
-rw-r--r--Documentation/filesystems/fscrypt.rst758
-rw-r--r--Documentation/filesystems/fsverity.rst726
-rw-r--r--Documentation/filesystems/index.rst15
-rw-r--r--Documentation/filesystems/jfs.txt52
-rw-r--r--Documentation/filesystems/locking.rst (renamed from Documentation/filesystems/Locking)259
-rw-r--r--Documentation/filesystems/mandatory-locking.txt10
-rw-r--r--Documentation/filesystems/nfs/exporting.rst (renamed from Documentation/filesystems/nfs/Exporting)31
-rw-r--r--Documentation/filesystems/overlayfs.txt2
-rw-r--r--Documentation/filesystems/porting686
-rw-r--r--Documentation/filesystems/porting.rst852
-rw-r--r--Documentation/filesystems/ubifs-authentication.rst (renamed from Documentation/filesystems/ubifs-authentication.md)70
-rw-r--r--Documentation/filesystems/ufs.txt60
-rw-r--r--Documentation/filesystems/vfs.rst2
-rw-r--r--Documentation/filesystems/virtiofs.rst60
35 files changed, 2986 insertions, 2143 deletions
diff --git a/Documentation/filesystems/ceph.txt b/Documentation/filesystems/ceph.txt
index d2c6a5ccf0f5..b19b6a03f91c 100644
--- a/Documentation/filesystems/ceph.txt
+++ b/Documentation/filesystems/ceph.txt
@@ -158,6 +158,20 @@ Mount Options
copies. Currently, it's only used in copy_file_range, which will revert
to the default VFS implementation if this option is used.
+ recover_session=<no|clean>
+ Set auto reconnect mode in the case where the client is blacklisted. The
+ available modes are "no" and "clean". The default is "no".
+
+ * no: never attempt to reconnect when client detects that it has been
+ blacklisted. Operations will generally fail after being blacklisted.
+
+ * clean: client reconnects to the ceph cluster automatically when it
+ detects that it has been blacklisted. During reconnect, client drops
+ dirty data/metadata, invalidates page caches and writable file handles.
+ After reconnect, file locks become stale because the MDS loses track
+ of them. If an inode contains any stale file locks, read/write on the
+ inode is not allowed until applications release all stale file locks.
+
More Information
================
diff --git a/Documentation/filesystems/cifs/AUTHORS b/Documentation/filesystems/cifs/AUTHORS
deleted file mode 100644
index 75865da2ce14..000000000000
--- a/Documentation/filesystems/cifs/AUTHORS
+++ /dev/null
@@ -1,63 +0,0 @@
-Original Author
-===============
-Steve French (sfrench@samba.org)
-
-The author wishes to express his appreciation and thanks to:
-Andrew Tridgell (Samba team) for his early suggestions about smb/cifs VFS
-improvements. Thanks to IBM for allowing me time and test resources to pursue
-this project, to Jim McDonough from IBM (and the Samba Team) for his help, to
-the IBM Linux JFS team for explaining many esoteric Linux filesystem features.
-Jeremy Allison of the Samba team has done invaluable work in adding the server
-side of the original CIFS Unix extensions and reviewing and implementing
-portions of the newer CIFS POSIX extensions into the Samba 3 file server. Thank
-Dave Boutcher of IBM Rochester (author of the OS/400 smb/cifs filesystem client)
-for proving years ago that very good smb/cifs clients could be done on Unix-like
-operating systems. Volker Lendecke, Andrew Tridgell, Urban Widmark, John
-Newbigin and others for their work on the Linux smbfs module. Thanks to
-the other members of the Storage Network Industry Association CIFS Technical
-Workgroup for their work specifying this highly complex protocol and finally
-thanks to the Samba team for their technical advice and encouragement.
-
-Patch Contributors
-------------------
-Zwane Mwaikambo
-Andi Kleen
-Amrut Joshi
-Shobhit Dayal
-Sergey Vlasov
-Richard Hughes
-Yury Umanets
-Mark Hamzy (for some of the early cifs IPv6 work)
-Domen Puncer
-Jesper Juhl (in particular for lots of whitespace/formatting cleanup)
-Vince Negri and Dave Stahl (for finding an important caching bug)
-Adrian Bunk (kcalloc cleanups)
-Miklos Szeredi
-Kazeon team for various fixes especially for 2.4 version.
-Asser Ferno (Change Notify support)
-Shaggy (Dave Kleikamp) for innumerable small fs suggestions and some good cleanup
-Gunter Kukkukk (testing and suggestions for support of old servers)
-Igor Mammedov (DFS support)
-Jeff Layton (many, many fixes, as well as great work on the cifs Kerberos code)
-Scott Lovenberg
-Pavel Shilovsky (for great work adding SMB2 support, and various SMB3 features)
-Aurelien Aptel (for DFS SMB3 work and some key bug fixes)
-Ronnie Sahlberg (for SMB3 xattr work, bug fixes, and lots of great work on compounding)
-Shirish Pargaonkar (for many ACL patches over the years)
-Sachin Prabhu (many bug fixes, including for reconnect, copy offload and security)
-Paulo Alcantara
-Long Li (some great work on RDMA, SMB Direct)
-
-
-Test case and Bug Report contributors
--------------------------------------
-Thanks to those in the community who have submitted detailed bug reports
-and debug of problems they have found: Jochen Dolze, David Blaine,
-Rene Scharfe, Martin Josefsson, Alexander Wild, Anthony Liguori,
-Lars Muller, Urban Widmark, Massimiliano Ferrero, Howard Owen,
-Olaf Kirch, Kieron Briggs, Nick Millington and others. Also special
-mention to the Stanford Checker (SWAT) which pointed out many minor
-bugs in error paths. Valuable suggestions also have come from Al Viro
-and Dave Miller.
-
-And thanks to the IBM LTC and Power test teams and SuSE and Citrix and RedHat testers for finding multiple bugs during excellent stress test runs.
diff --git a/Documentation/filesystems/cifs/CHANGES b/Documentation/filesystems/cifs/CHANGES
deleted file mode 100644
index 1df7f4910eb2..000000000000
--- a/Documentation/filesystems/cifs/CHANGES
+++ /dev/null
@@ -1,4 +0,0 @@
-See https://wiki.samba.org/index.php/LinuxCIFSKernel for summary
-information (that may be easier to read than parsing the output of
-"git log fs/cifs") about fixes/improvements to CIFS/SMB2/SMB3 support (changes
-to cifs.ko module) by kernel version (and cifs internal module version).
diff --git a/Documentation/filesystems/cifs/README b/Documentation/filesystems/cifs/README
deleted file mode 100644
index 4a804619cff2..000000000000
--- a/Documentation/filesystems/cifs/README
+++ /dev/null
@@ -1,743 +0,0 @@
-This module supports the SMB3 family of advanced network protocols (as well
-as older dialects, originally called "CIFS" or SMB1).
-
-The CIFS VFS module for Linux supports many advanced network filesystem
-features such as hierarchical DFS like namespace, hardlinks, locking and more.
-It was designed to comply with the SNIA CIFS Technical Reference (which
-supersedes the 1992 X/Open SMB Standard) as well as to perform best practice
-practical interoperability with Windows 2000, Windows XP, Samba and equivalent
-servers. This code was developed in participation with the Protocol Freedom
-Information Foundation. CIFS and now SMB3 has now become a defacto
-standard for interoperating between Macs and Windows and major NAS appliances.
-
-Please see
- MS-SMB2 (for detailed SMB2/SMB3/SMB3.1.1 protocol specification)
- http://protocolfreedom.org/ and
- http://samba.org/samba/PFIF/
-for more details.
-
-
-For questions or bug reports please contact:
- smfrench@gmail.com
-
-See the project page at: https://wiki.samba.org/index.php/LinuxCIFS_utils
-
-Build instructions:
-==================
-For Linux:
-1) Download the kernel (e.g. from http://www.kernel.org)
-and change directory into the top of the kernel directory tree
-(e.g. /usr/src/linux-2.5.73)
-2) make menuconfig (or make xconfig)
-3) select cifs from within the network filesystem choices
-4) save and exit
-5) make
-
-
-Installation instructions:
-=========================
-If you have built the CIFS vfs as module (successfully) simply
-type "make modules_install" (or if you prefer, manually copy the file to
-the modules directory e.g. /lib/modules/2.4.10-4GB/kernel/fs/cifs/cifs.ko).
-
-If you have built the CIFS vfs into the kernel itself, follow the instructions
-for your distribution on how to install a new kernel (usually you
-would simply type "make install").
-
-If you do not have the utility mount.cifs (in the Samba 4.x source tree and on
-the CIFS VFS web site) copy it to the same directory in which mount helpers
-reside (usually /sbin). Although the helper software is not
-required, mount.cifs is recommended. Most distros include a "cifs-utils"
-package that includes this utility so it is recommended to install this.
-
-Note that running the Winbind pam/nss module (logon service) on all of your
-Linux clients is useful in mapping Uids and Gids consistently across the
-domain to the proper network user. The mount.cifs mount helper can be
-found at cifs-utils.git on git.samba.org
-
-If cifs is built as a module, then the size and number of network buffers
-and maximum number of simultaneous requests to one server can be configured.
-Changing these from their defaults is not recommended. By executing modinfo
- modinfo kernel/fs/cifs/cifs.ko
-on kernel/fs/cifs/cifs.ko the list of configuration changes that can be made
-at module initialization time (by running insmod cifs.ko) can be seen.
-
-Recommendations
-===============
-To improve security the SMB2.1 dialect or later (usually will get SMB3) is now
-the new default. To use old dialects (e.g. to mount Windows XP) use "vers=1.0"
-on mount (or vers=2.0 for Windows Vista). Note that the CIFS (vers=1.0) is
-much older and less secure than the default dialect SMB3 which includes
-many advanced security features such as downgrade attack detection
-and encrypted shares and stronger signing and authentication algorithms.
-There are additional mount options that may be helpful for SMB3 to get
-improved POSIX behavior (NB: can use vers=3.0 to force only SMB3, never 2.1):
- "mfsymlinks" and "cifsacl" and "idsfromsid"
-
-Allowing User Mounts
-====================
-To permit users to mount and unmount over directories they own is possible
-with the cifs vfs. A way to enable such mounting is to mark the mount.cifs
-utility as suid (e.g. "chmod +s /sbin/mount.cifs). To enable users to
-umount shares they mount requires
-1) mount.cifs version 1.4 or later
-2) an entry for the share in /etc/fstab indicating that a user may
-unmount it e.g.
-//server/usersharename /mnt/username cifs user 0 0
-
-Note that when the mount.cifs utility is run suid (allowing user mounts),
-in order to reduce risks, the "nosuid" mount flag is passed in on mount to
-disallow execution of an suid program mounted on the remote target.
-When mount is executed as root, nosuid is not passed in by default,
-and execution of suid programs on the remote target would be enabled
-by default. This can be changed, as with nfs and other filesystems,
-by simply specifying "nosuid" among the mount options. For user mounts
-though to be able to pass the suid flag to mount requires rebuilding
-mount.cifs with the following flag: CIFS_ALLOW_USR_SUID
-
-There is a corresponding manual page for cifs mounting in the Samba 3.0 and
-later source tree in docs/manpages/mount.cifs.8
-
-Allowing User Unmounts
-======================
-To permit users to ummount directories that they have user mounted (see above),
-the utility umount.cifs may be used. It may be invoked directly, or if
-umount.cifs is placed in /sbin, umount can invoke the cifs umount helper
-(at least for most versions of the umount utility) for umount of cifs
-mounts, unless umount is invoked with -i (which will avoid invoking a umount
-helper). As with mount.cifs, to enable user unmounts umount.cifs must be marked
-as suid (e.g. "chmod +s /sbin/umount.cifs") or equivalent (some distributions
-allow adding entries to a file to the /etc/permissions file to achieve the
-equivalent suid effect). For this utility to succeed the target path
-must be a cifs mount, and the uid of the current user must match the uid
-of the user who mounted the resource.
-
-Also note that the customary way of allowing user mounts and unmounts is
-(instead of using mount.cifs and unmount.cifs as suid) to add a line
-to the file /etc/fstab for each //server/share you wish to mount, but
-this can become unwieldy when potential mount targets include many
-or unpredictable UNC names.
-
-Samba Considerations
-====================
-Most current servers support SMB2.1 and SMB3 which are more secure,
-but there are useful protocol extensions for the older less secure CIFS
-dialect, so to get the maximum benefit if mounting using the older dialect
-(CIFS/SMB1), we recommend using a server that supports the SNIA CIFS
-Unix Extensions standard (e.g. almost any version of Samba ie version
-2.2.5 or later) but the CIFS vfs works fine with a wide variety of CIFS servers.
-Note that uid, gid and file permissions will display default values if you do
-not have a server that supports the Unix extensions for CIFS (such as Samba
-2.2.5 or later). To enable the Unix CIFS Extensions in the Samba server, add
-the line:
-
- unix extensions = yes
-
-to your smb.conf file on the server. Note that the following smb.conf settings
-are also useful (on the Samba server) when the majority of clients are Unix or
-Linux:
-
- case sensitive = yes
- delete readonly = yes
- ea support = yes
-
-Note that server ea support is required for supporting xattrs from the Linux
-cifs client, and that EA support is present in later versions of Samba (e.g.
-3.0.6 and later (also EA support works in all versions of Windows, at least to
-shares on NTFS filesystems). Extended Attribute (xattr) support is an optional
-feature of most Linux filesystems which may require enabling via
-make menuconfig. Client support for extended attributes (user xattr) can be
-disabled on a per-mount basis by specifying "nouser_xattr" on mount.
-
-The CIFS client can get and set POSIX ACLs (getfacl, setfacl) to Samba servers
-version 3.10 and later. Setting POSIX ACLs requires enabling both XATTR and
-then POSIX support in the CIFS configuration options when building the cifs
-module. POSIX ACL support can be disabled on a per mount basic by specifying
-"noacl" on mount.
-
-Some administrators may want to change Samba's smb.conf "map archive" and
-"create mask" parameters from the default. Unless the create mask is changed
-newly created files can end up with an unnecessarily restrictive default mode,
-which may not be what you want, although if the CIFS Unix extensions are
-enabled on the server and client, subsequent setattr calls (e.g. chmod) can
-fix the mode. Note that creating special devices (mknod) remotely
-may require specifying a mkdev function to Samba if you are not using
-Samba 3.0.6 or later. For more information on these see the manual pages
-("man smb.conf") on the Samba server system. Note that the cifs vfs,
-unlike the smbfs vfs, does not read the smb.conf on the client system
-(the few optional settings are passed in on mount via -o parameters instead).
-Note that Samba 2.2.7 or later includes a fix that allows the CIFS VFS to delete
-open files (required for strict POSIX compliance). Windows Servers already
-supported this feature. Samba server does not allow symlinks that refer to files
-outside of the share, so in Samba versions prior to 3.0.6, most symlinks to
-files with absolute paths (ie beginning with slash) such as:
- ln -s /mnt/foo bar
-would be forbidden. Samba 3.0.6 server or later includes the ability to create
-such symlinks safely by converting unsafe symlinks (ie symlinks to server
-files that are outside of the share) to a samba specific format on the server
-that is ignored by local server applications and non-cifs clients and that will
-not be traversed by the Samba server). This is opaque to the Linux client
-application using the cifs vfs. Absolute symlinks will work to Samba 3.0.5 or
-later, but only for remote clients using the CIFS Unix extensions, and will
-be invisbile to Windows clients and typically will not affect local
-applications running on the same server as Samba.
-
-Use instructions:
-================
-Once the CIFS VFS support is built into the kernel or installed as a module
-(cifs.ko), you can use mount syntax like the following to access Samba or
-Mac or Windows servers:
-
- mount -t cifs //9.53.216.11/e$ /mnt -o username=myname,password=mypassword
-
-Before -o the option -v may be specified to make the mount.cifs
-mount helper display the mount steps more verbosely.
-After -o the following commonly used cifs vfs specific options
-are supported:
-
- username=<username>
- password=<password>
- domain=<domain name>
-
-Other cifs mount options are described below. Use of TCP names (in addition to
-ip addresses) is available if the mount helper (mount.cifs) is installed. If
-you do not trust the server to which are mounted, or if you do not have
-cifs signing enabled (and the physical network is insecure), consider use
-of the standard mount options "noexec" and "nosuid" to reduce the risk of
-running an altered binary on your local system (downloaded from a hostile server
-or altered by a hostile router).
-
-Although mounting using format corresponding to the CIFS URL specification is
-not possible in mount.cifs yet, it is possible to use an alternate format
-for the server and sharename (which is somewhat similar to NFS style mount
-syntax) instead of the more widely used UNC format (i.e. \\server\share):
- mount -t cifs tcp_name_of_server:share_name /mnt -o user=myname,pass=mypasswd
-
-When using the mount helper mount.cifs, passwords may be specified via alternate
-mechanisms, instead of specifying it after -o using the normal "pass=" syntax
-on the command line:
-1) By including it in a credential file. Specify credentials=filename as one
-of the mount options. Credential files contain two lines
- username=someuser
- password=your_password
-2) By specifying the password in the PASSWD environment variable (similarly
-the user name can be taken from the USER environment variable).
-3) By specifying the password in a file by name via PASSWD_FILE
-4) By specifying the password in a file by file descriptor via PASSWD_FD
-
-If no password is provided, mount.cifs will prompt for password entry
-
-Restrictions
-============
-Servers must support either "pure-TCP" (port 445 TCP/IP CIFS connections) or RFC
-1001/1002 support for "Netbios-Over-TCP/IP." This is not likely to be a
-problem as most servers support this.
-
-Valid filenames differ between Windows and Linux. Windows typically restricts
-filenames which contain certain reserved characters (e.g.the character :
-which is used to delimit the beginning of a stream name by Windows), while
-Linux allows a slightly wider set of valid characters in filenames. Windows
-servers can remap such characters when an explicit mapping is specified in
-the Server's registry. Samba starting with version 3.10 will allow such
-filenames (ie those which contain valid Linux characters, which normally
-would be forbidden for Windows/CIFS semantics) as long as the server is
-configured for Unix Extensions (and the client has not disabled
-/proc/fs/cifs/LinuxExtensionsEnabled). In addition the mount option
-"mapposix" can be used on CIFS (vers=1.0) to force the mapping of
-illegal Windows/NTFS/SMB characters to a remap range (this mount parm
-is the default for SMB3). This remap ("mapposix") range is also
-compatible with Mac (and "Services for Mac" on some older Windows).
-
-CIFS VFS Mount Options
-======================
-A partial list of the supported mount options follows:
- username The user name to use when trying to establish
- the CIFS session.
- password The user password. If the mount helper is
- installed, the user will be prompted for password
- if not supplied.
- ip The ip address of the target server
- unc The target server Universal Network Name (export) to
- mount.
- domain Set the SMB/CIFS workgroup name prepended to the
- username during CIFS session establishment
- forceuid Set the default uid for inodes to the uid
- passed in on mount. For mounts to servers
- which do support the CIFS Unix extensions, such as a
- properly configured Samba server, the server provides
- the uid, gid and mode so this parameter should not be
- specified unless the server and clients uid and gid
- numbering differ. If the server and client are in the
- same domain (e.g. running winbind or nss_ldap) and
- the server supports the Unix Extensions then the uid
- and gid can be retrieved from the server (and uid
- and gid would not have to be specified on the mount.
- For servers which do not support the CIFS Unix
- extensions, the default uid (and gid) returned on lookup
- of existing files will be the uid (gid) of the person
- who executed the mount (root, except when mount.cifs
- is configured setuid for user mounts) unless the "uid="
- (gid) mount option is specified. Also note that permission
- checks (authorization checks) on accesses to a file occur
- at the server, but there are cases in which an administrator
- may want to restrict at the client as well. For those
- servers which do not report a uid/gid owner
- (such as Windows), permissions can also be checked at the
- client, and a crude form of client side permission checking
- can be enabled by specifying file_mode and dir_mode on
- the client. (default)
- forcegid (similar to above but for the groupid instead of uid) (default)
- noforceuid Fill in file owner information (uid) by requesting it from
- the server if possible. With this option, the value given in
- the uid= option (on mount) will only be used if the server
- can not support returning uids on inodes.
- noforcegid (similar to above but for the group owner, gid, instead of uid)
- uid Set the default uid for inodes, and indicate to the
- cifs kernel driver which local user mounted. If the server
- supports the unix extensions the default uid is
- not used to fill in the owner fields of inodes (files)
- unless the "forceuid" parameter is specified.
- gid Set the default gid for inodes (similar to above).
- file_mode If CIFS Unix extensions are not supported by the server
- this overrides the default mode for file inodes.
- fsc Enable local disk caching using FS-Cache (off by default). This
- option could be useful to improve performance on a slow link,
- heavily loaded server and/or network where reading from the
- disk is faster than reading from the server (over the network).
- This could also impact scalability positively as the
- number of calls to the server are reduced. However, local
- caching is not suitable for all workloads for e.g. read-once
- type workloads. So, you need to consider carefully your
- workload/scenario before using this option. Currently, local
- disk caching is functional for CIFS files opened as read-only.
- dir_mode If CIFS Unix extensions are not supported by the server
- this overrides the default mode for directory inodes.
- port attempt to contact the server on this tcp port, before
- trying the usual ports (port 445, then 139).
- iocharset Codepage used to convert local path names to and from
- Unicode. Unicode is used by default for network path
- names if the server supports it. If iocharset is
- not specified then the nls_default specified
- during the local client kernel build will be used.
- If server does not support Unicode, this parameter is
- unused.
- rsize default read size (usually 16K). The client currently
- can not use rsize larger than CIFSMaxBufSize. CIFSMaxBufSize
- defaults to 16K and may be changed (from 8K to the maximum
- kmalloc size allowed by your kernel) at module install time
- for cifs.ko. Setting CIFSMaxBufSize to a very large value
- will cause cifs to use more memory and may reduce performance
- in some cases. To use rsize greater than 127K (the original
- cifs protocol maximum) also requires that the server support
- a new Unix Capability flag (for very large read) which some
- newer servers (e.g. Samba 3.0.26 or later) do. rsize can be
- set from a minimum of 2048 to a maximum of 130048 (127K or
- CIFSMaxBufSize, whichever is smaller)
- wsize default write size (default 57344)
- maximum wsize currently allowed by CIFS is 57344 (fourteen
- 4096 byte pages)
- actimeo=n attribute cache timeout in seconds (default 1 second).
- After this timeout, the cifs client requests fresh attribute
- information from the server. This option allows to tune the
- attribute cache timeout to suit the workload needs. Shorter
- timeouts mean better the cache coherency, but increased number
- of calls to the server. Longer timeouts mean reduced number
- of calls to the server at the expense of less stricter cache
- coherency checks (i.e. incorrect attribute cache for a short
- period of time).
- rw mount the network share read-write (note that the
- server may still consider the share read-only)
- ro mount network share read-only
- version used to distinguish different versions of the
- mount helper utility (not typically needed)
- sep if first mount option (after the -o), overrides
- the comma as the separator between the mount
- parms. e.g.
- -o user=myname,password=mypassword,domain=mydom
- could be passed instead with period as the separator by
- -o sep=.user=myname.password=mypassword.domain=mydom
- this might be useful when comma is contained within username
- or password or domain. This option is less important
- when the cifs mount helper cifs.mount (version 1.1 or later)
- is used.
- nosuid Do not allow remote executables with the suid bit
- program to be executed. This is only meaningful for mounts
- to servers such as Samba which support the CIFS Unix Extensions.
- If you do not trust the servers in your network (your mount
- targets) it is recommended that you specify this option for
- greater security.
- exec Permit execution of binaries on the mount.
- noexec Do not permit execution of binaries on the mount.
- dev Recognize block devices on the remote mount.
- nodev Do not recognize devices on the remote mount.
- suid Allow remote files on this mountpoint with suid enabled to
- be executed (default for mounts when executed as root,
- nosuid is default for user mounts).
- credentials Although ignored by the cifs kernel component, it is used by
- the mount helper, mount.cifs. When mount.cifs is installed it
- opens and reads the credential file specified in order
- to obtain the userid and password arguments which are passed to
- the cifs vfs.
- guest Although ignored by the kernel component, the mount.cifs
- mount helper will not prompt the user for a password
- if guest is specified on the mount options. If no
- password is specified a null password will be used.
- perm Client does permission checks (vfs_permission check of uid
- and gid of the file against the mode and desired operation),
- Note that this is in addition to the normal ACL check on the
- target machine done by the server software.
- Client permission checking is enabled by default.
- noperm Client does not do permission checks. This can expose
- files on this mount to access by other users on the local
- client system. It is typically only needed when the server
- supports the CIFS Unix Extensions but the UIDs/GIDs on the
- client and server system do not match closely enough to allow
- access by the user doing the mount, but it may be useful with
- non CIFS Unix Extension mounts for cases in which the default
- mode is specified on the mount but is not to be enforced on the
- client (e.g. perhaps when MultiUserMount is enabled)
- Note that this does not affect the normal ACL check on the
- target machine done by the server software (of the server
- ACL against the user name provided at mount time).
- serverino Use server's inode numbers instead of generating automatically
- incrementing inode numbers on the client. Although this will
- make it easier to spot hardlinked files (as they will have
- the same inode numbers) and inode numbers may be persistent,
- note that the server does not guarantee that the inode numbers
- are unique if multiple server side mounts are exported under a
- single share (since inode numbers on the servers might not
- be unique if multiple filesystems are mounted under the same
- shared higher level directory). Note that some older
- (e.g. pre-Windows 2000) do not support returning UniqueIDs
- or the CIFS Unix Extensions equivalent and for those
- this mount option will have no effect. Exporting cifs mounts
- under nfsd requires this mount option on the cifs mount.
- This is now the default if server supports the
- required network operation.
- noserverino Client generates inode numbers (rather than using the actual one
- from the server). These inode numbers will vary after
- unmount or reboot which can confuse some applications,
- but not all server filesystems support unique inode
- numbers.
- setuids If the CIFS Unix extensions are negotiated with the server
- the client will attempt to set the effective uid and gid of
- the local process on newly created files, directories, and
- devices (create, mkdir, mknod). If the CIFS Unix Extensions
- are not negotiated, for newly created files and directories
- instead of using the default uid and gid specified on
- the mount, cache the new file's uid and gid locally which means
- that the uid for the file can change when the inode is
- reloaded (or the user remounts the share).
- nosetuids The client will not attempt to set the uid and gid on
- on newly created files, directories, and devices (create,
- mkdir, mknod) which will result in the server setting the
- uid and gid to the default (usually the server uid of the
- user who mounted the share). Letting the server (rather than
- the client) set the uid and gid is the default. If the CIFS
- Unix Extensions are not negotiated then the uid and gid for
- new files will appear to be the uid (gid) of the mounter or the
- uid (gid) parameter specified on the mount.
- netbiosname When mounting to servers via port 139, specifies the RFC1001
- source name to use to represent the client netbios machine
- name when doing the RFC1001 netbios session initialize.
- direct Do not do inode data caching on files opened on this mount.
- This precludes mmapping files on this mount. In some cases
- with fast networks and little or no caching benefits on the
- client (e.g. when the application is doing large sequential
- reads bigger than page size without rereading the same data)
- this can provide better performance than the default
- behavior which caches reads (readahead) and writes
- (writebehind) through the local Linux client pagecache
- if oplock (caching token) is granted and held. Note that
- direct allows write operations larger than page size
- to be sent to the server.
- strictcache Use for switching on strict cache mode. In this mode the
- client read from the cache all the time it has Oplock Level II,
- otherwise - read from the server. All written data are stored
- in the cache, but if the client doesn't have Exclusive Oplock,
- it writes the data to the server.
- rwpidforward Forward pid of a process who opened a file to any read or write
- operation on that file. This prevent applications like WINE
- from failing on read and write if we use mandatory brlock style.
- acl Allow setfacl and getfacl to manage posix ACLs if server
- supports them. (default)
- noacl Do not allow setfacl and getfacl calls on this mount
- user_xattr Allow getting and setting user xattrs (those attributes whose
- name begins with "user." or "os2.") as OS/2 EAs (extended
- attributes) to the server. This allows support of the
- setfattr and getfattr utilities. (default)
- nouser_xattr Do not allow getfattr/setfattr to get/set/list xattrs
- mapchars Translate six of the seven reserved characters (not backslash)
- *?<>|:
- to the remap range (above 0xF000), which also
- allows the CIFS client to recognize files created with
- such characters by Windows's POSIX emulation. This can
- also be useful when mounting to most versions of Samba
- (which also forbids creating and opening files
- whose names contain any of these seven characters).
- This has no effect if the server does not support
- Unicode on the wire.
- nomapchars Do not translate any of these seven characters (default).
- nocase Request case insensitive path name matching (case
- sensitive is the default if the server supports it).
- (mount option "ignorecase" is identical to "nocase")
- posixpaths If CIFS Unix extensions are supported, attempt to
- negotiate posix path name support which allows certain
- characters forbidden in typical CIFS filenames, without
- requiring remapping. (default)
- noposixpaths If CIFS Unix extensions are supported, do not request
- posix path name support (this may cause servers to
- reject creatingfile with certain reserved characters).
- nounix Disable the CIFS Unix Extensions for this mount (tree
- connection). This is rarely needed, but it may be useful
- in order to turn off multiple settings all at once (ie
- posix acls, posix locks, posix paths, symlink support
- and retrieving uids/gids/mode from the server) or to
- work around a bug in server which implement the Unix
- Extensions.
- nobrl Do not send byte range lock requests to the server.
- This is necessary for certain applications that break
- with cifs style mandatory byte range locks (and most
- cifs servers do not yet support requesting advisory
- byte range locks).
- forcemandatorylock Even if the server supports posix (advisory) byte range
- locking, send only mandatory lock requests. For some
- (presumably rare) applications, originally coded for
- DOS/Windows, which require Windows style mandatory byte range
- locking, they may be able to take advantage of this option,
- forcing the cifs client to only send mandatory locks
- even if the cifs server would support posix advisory locks.
- "forcemand" is accepted as a shorter form of this mount
- option.
- nostrictsync If this mount option is set, when an application does an
- fsync call then the cifs client does not send an SMB Flush
- to the server (to force the server to write all dirty data
- for this file immediately to disk), although cifs still sends
- all dirty (cached) file data to the server and waits for the
- server to respond to the write. Since SMB Flush can be
- very slow, and some servers may be reliable enough (to risk
- delaying slightly flushing the data to disk on the server),
- turning on this option may be useful to improve performance for
- applications that fsync too much, at a small risk of server
- crash. If this mount option is not set, by default cifs will
- send an SMB flush request (and wait for a response) on every
- fsync call.
- nodfs Disable DFS (global name space support) even if the
- server claims to support it. This can help work around
- a problem with parsing of DFS paths with Samba server
- versions 3.0.24 and 3.0.25.
- remount remount the share (often used to change from ro to rw mounts
- or vice versa)
- cifsacl Report mode bits (e.g. on stat) based on the Windows ACL for
- the file. (EXPERIMENTAL)
- servern Specify the server 's netbios name (RFC1001 name) to use
- when attempting to setup a session to the server.
- This is needed for mounting to some older servers (such
- as OS/2 or Windows 98 and Windows ME) since they do not
- support a default server name. A server name can be up
- to 15 characters long and is usually uppercased.
- sfu When the CIFS Unix Extensions are not negotiated, attempt to
- create device files and fifos in a format compatible with
- Services for Unix (SFU). In addition retrieve bits 10-12
- of the mode via the SETFILEBITS extended attribute (as
- SFU does). In the future the bottom 9 bits of the
- mode also will be emulated using queries of the security
- descriptor (ACL).
- mfsymlinks Enable support for Minshall+French symlinks
- (see http://wiki.samba.org/index.php/UNIX_Extensions#Minshall.2BFrench_symlinks)
- This option is ignored when specified together with the
- 'sfu' option. Minshall+French symlinks are used even if
- the server supports the CIFS Unix Extensions.
- sign Must use packet signing (helps avoid unwanted data modification
- by intermediate systems in the route). Note that signing
- does not work with lanman or plaintext authentication.
- seal Must seal (encrypt) all data on this mounted share before
- sending on the network. Requires support for Unix Extensions.
- Note that this differs from the sign mount option in that it
- causes encryption of data sent over this mounted share but other
- shares mounted to the same server are unaffected.
- locallease This option is rarely needed. Fcntl F_SETLEASE is
- used by some applications such as Samba and NFSv4 server to
- check to see whether a file is cacheable. CIFS has no way
- to explicitly request a lease, but can check whether a file
- is cacheable (oplocked). Unfortunately, even if a file
- is not oplocked, it could still be cacheable (ie cifs client
- could grant fcntl leases if no other local processes are using
- the file) for cases for example such as when the server does not
- support oplocks and the user is sure that the only updates to
- the file will be from this client. Specifying this mount option
- will allow the cifs client to check for leases (only) locally
- for files which are not oplocked instead of denying leases
- in that case. (EXPERIMENTAL)
- sec Security mode. Allowed values are:
- none attempt to connection as a null user (no name)
- krb5 Use Kerberos version 5 authentication
- krb5i Use Kerberos authentication and packet signing
- ntlm Use NTLM password hashing (default)
- ntlmi Use NTLM password hashing with signing (if
- /proc/fs/cifs/PacketSigningEnabled on or if
- server requires signing also can be the default)
- ntlmv2 Use NTLMv2 password hashing
- ntlmv2i Use NTLMv2 password hashing with packet signing
- lanman (if configured in kernel config) use older
- lanman hash
-hard Retry file operations if server is not responding
-soft Limit retries to unresponsive servers (usually only
- one retry) before returning an error. (default)
-
-The mount.cifs mount helper also accepts a few mount options before -o
-including:
-
- -S take password from stdin (equivalent to setting the environment
- variable "PASSWD_FD=0"
- -V print mount.cifs version
- -? display simple usage information
-
-With most 2.6 kernel versions of modutils, the version of the cifs kernel
-module can be displayed via modinfo.
-
-Misc /proc/fs/cifs Flags and Debug Info
-=======================================
-Informational pseudo-files:
-DebugData Displays information about active CIFS sessions and
- shares, features enabled as well as the cifs.ko
- version.
-Stats Lists summary resource usage information as well as per
- share statistics.
-
-Configuration pseudo-files:
-SecurityFlags Flags which control security negotiation and
- also packet signing. Authentication (may/must)
- flags (e.g. for NTLM and/or NTLMv2) may be combined with
- the signing flags. Specifying two different password
- hashing mechanisms (as "must use") on the other hand
- does not make much sense. Default flags are
- 0x07007
- (NTLM, NTLMv2 and packet signing allowed). The maximum
- allowable flags if you want to allow mounts to servers
- using weaker password hashes is 0x37037 (lanman,
- plaintext, ntlm, ntlmv2, signing allowed). Some
- SecurityFlags require the corresponding menuconfig
- options to be enabled (lanman and plaintext require
- CONFIG_CIFS_WEAK_PW_HASH for example). Enabling
- plaintext authentication currently requires also
- enabling lanman authentication in the security flags
- because the cifs module only supports sending
- laintext passwords using the older lanman dialect
- form of the session setup SMB. (e.g. for authentication
- using plain text passwords, set the SecurityFlags
- to 0x30030):
-
- may use packet signing 0x00001
- must use packet signing 0x01001
- may use NTLM (most common password hash) 0x00002
- must use NTLM 0x02002
- may use NTLMv2 0x00004
- must use NTLMv2 0x04004
- may use Kerberos security 0x00008
- must use Kerberos 0x08008
- may use lanman (weak) password hash 0x00010
- must use lanman password hash 0x10010
- may use plaintext passwords 0x00020
- must use plaintext passwords 0x20020
- (reserved for future packet encryption) 0x00040
-
-cifsFYI If set to non-zero value, additional debug information
- will be logged to the system error log. This field
- contains three flags controlling different classes of
- debugging entries. The maximum value it can be set
- to is 7 which enables all debugging points (default 0).
- Some debugging statements are not compiled into the
- cifs kernel unless CONFIG_CIFS_DEBUG2 is enabled in the
- kernel configuration. cifsFYI may be set to one or
- nore of the following flags (7 sets them all):
-
- log cifs informational messages 0x01
- log return codes from cifs entry points 0x02
- log slow responses (ie which take longer than 1 second)
- CONFIG_CIFS_STATS2 must be enabled in .config 0x04
-
-
-traceSMB If set to one, debug information is logged to the
- system error log with the start of smb requests
- and responses (default 0)
-LookupCacheEnable If set to one, inode information is kept cached
- for one second improving performance of lookups
- (default 1)
-LinuxExtensionsEnabled If set to one then the client will attempt to
- use the CIFS "UNIX" extensions which are optional
- protocol enhancements that allow CIFS servers
- to return accurate UID/GID information as well
- as support symbolic links. If you use servers
- such as Samba that support the CIFS Unix
- extensions but do not want to use symbolic link
- support and want to map the uid and gid fields
- to values supplied at mount (rather than the
- actual values, then set this to zero. (default 1)
-
-These experimental features and tracing can be enabled by changing flags in
-/proc/fs/cifs (after the cifs module has been installed or built into the
-kernel, e.g. insmod cifs). To enable a feature set it to 1 e.g. to enable
-tracing to the kernel message log type:
-
- echo 7 > /proc/fs/cifs/cifsFYI
-
-cifsFYI functions as a bit mask. Setting it to 1 enables additional kernel
-logging of various informational messages. 2 enables logging of non-zero
-SMB return codes while 4 enables logging of requests that take longer
-than one second to complete (except for byte range lock requests).
-Setting it to 4 requires CONFIG_CIFS_STATS2 to be set in kernel configuration
-(.config). Setting it to seven enables all three. Finally, tracing
-the start of smb requests and responses can be enabled via:
-
- echo 1 > /proc/fs/cifs/traceSMB
-
-Per share (per client mount) statistics are available in /proc/fs/cifs/Stats.
-Additional information is available if CONFIG_CIFS_STATS2 is enabled in the
-kernel configuration (.config). The statistics returned include counters which
-represent the number of attempted and failed (ie non-zero return code from the
-server) SMB3 (or cifs) requests grouped by request type (read, write, close etc.).
-Also recorded is the total bytes read and bytes written to the server for
-that share. Note that due to client caching effects this can be less than the
-number of bytes read and written by the application running on the client.
-Statistics can be reset to zero by "echo 0 > /proc/fs/cifs/Stats" which may be
-useful if comparing performance of two different scenarios.
-
-Also note that "cat /proc/fs/cifs/DebugData" will display information about
-the active sessions and the shares that are mounted.
-
-Enabling Kerberos (extended security) works but requires version 1.2 or later
-of the helper program cifs.upcall to be present and to be configured in the
-/etc/request-key.conf file. The cifs.upcall helper program is from the Samba
-project(http://www.samba.org). NTLM and NTLMv2 and LANMAN support do not
-require this helper. Note that NTLMv2 security (which does not require the
-cifs.upcall helper program), instead of using Kerberos, is sufficient for
-some use cases.
-
-DFS support allows transparent redirection to shares in an MS-DFS name space.
-In addition, DFS support for target shares which are specified as UNC
-names which begin with host names (rather than IP addresses) requires
-a user space helper (such as cifs.upcall) to be present in order to
-translate host names to ip address, and the user space helper must also
-be configured in the file /etc/request-key.conf. Samba, Windows servers and
-many NAS appliances support DFS as a way of constructing a global name
-space to ease network configuration and improve reliability.
-
-To use cifs Kerberos and DFS support, the Linux keyutils package should be
-installed and something like the following lines should be added to the
-/etc/request-key.conf file:
-
-create cifs.spnego * * /usr/local/sbin/cifs.upcall %k
-create dns_resolver * * /usr/local/sbin/cifs.upcall %k
-
-CIFS kernel module parameters
-=============================
-These module parameters can be specified or modified either during the time of
-module loading or during the runtime by using the interface
- /proc/module/cifs/parameters/<param>
-
-i.e. echo "value" > /sys/module/cifs/parameters/<param>
-
-1. enable_oplocks - Enable or disable oplocks. Oplocks are enabled by default.
- [Y/y/1]. To disable use any of [N/n/0].
-
diff --git a/Documentation/filesystems/cifs/TODO b/Documentation/filesystems/cifs/TODO
deleted file mode 100644
index edbbccda1942..000000000000
--- a/Documentation/filesystems/cifs/TODO
+++ /dev/null
@@ -1,125 +0,0 @@
-Version 2.14 December 21, 2018
-
-A Partial List of Missing Features
-==================================
-
-Contributions are welcome. There are plenty of opportunities
-for visible, important contributions to this module. Here
-is a partial list of the known problems and missing features:
-
-a) SMB3 (and SMB3.1.1) missing optional features:
- - multichannel (started), integration with RDMA
- - directory leases (improved metadata caching), started (root dir only)
- - T10 copy offload ie "ODX" (copy chunk, and "Duplicate Extents" ioctl
- currently the only two server side copy mechanisms supported)
-
-b) improved sparse file support (fiemap and SEEK_HOLE are implemented
-but additional features would be supportable by the protocol).
-
-c) Directory entry caching relies on a 1 second timer, rather than
-using Directory Leases, currently only the root file handle is cached longer
-
-d) quota support (needs minor kernel change since quota calls
-to make it to network filesystems or deviceless filesystems)
-
-e) Additional use cases can be optimized to use "compounding"
-(e.g. open/query/close and open/setinfo/close) to reduce the number
-of roundtrips to the server and improve performance. Various cases
-(stat, statfs, create, unlink, mkdir) already have been improved by
-using compounding but more can be done. In addition we could significantly
-reduce redundant opens by using deferred close (with handle caching leases)
-and better using reference counters on file handles.
-
-f) Finish inotify support so kde and gnome file list windows
-will autorefresh (partially complete by Asser). Needs minor kernel
-vfs change to support removing D_NOTIFY on a file.
-
-g) Add GUI tool to configure /proc/fs/cifs settings and for display of
-the CIFS statistics (started)
-
-h) implement support for security and trusted categories of xattrs
-(requires minor protocol extension) to enable better support for SELINUX
-
-i) Add support for tree connect contexts (see MS-SMB2) a new SMB3.1.1 protocol
- feature (may be especially useful for virtualization).
-
-j) Create UID mapping facility so server UIDs can be mapped on a per
-mount or a per server basis to client UIDs or nobody if no mapping
-exists. Also better integration with winbind for resolving SID owners
-
-k) Add tools to take advantage of more smb3 specific ioctls and features
-(passthrough ioctl/fsctl is now implemented in cifs.ko to allow sending
-various SMB3 fsctls and query info and set info calls directly from user space)
-Add tools to make setting various non-POSIX metadata attributes easier
-from tools (e.g. extending what was done in smb-info tool).
-
-l) encrypted file support
-
-m) improved stats gathering tools (perhaps integration with nfsometer?)
-to extend and make easier to use what is currently in /proc/fs/cifs/Stats
-
-n) Add support for claims based ACLs ("DAC")
-
-o) mount helper GUI (to simplify the various configuration options on mount)
-
-p) Add support for witness protocol (perhaps ioctl to cifs.ko from user space
- tool listening on witness protocol RPC) to allow for notification of share
- move, server failover, and server adapter changes. And also improve other
- failover scenarios, e.g. when client knows multiple DFS entries point to
- different servers, and the server we are connected to has gone down.
-
-q) Allow mount.cifs to be more verbose in reporting errors with dialect
-or unsupported feature errors.
-
-r) updating cifs documentation, and user guide.
-
-s) Addressing bugs found by running a broader set of xfstests in standard
-file system xfstest suite.
-
-t) split cifs and smb3 support into separate modules so legacy (and less
-secure) CIFS dialect can be disabled in environments that don't need it
-and simplify the code.
-
-v) POSIX Extensions for SMB3.1.1 (started, create and mkdir support added
-so far).
-
-w) Add support for additional strong encryption types, and additional spnego
-authentication mechanisms (see MS-SMB2)
-
-x) Finish support for SMB3.1.1 compression
-
-KNOWN BUGS
-====================================
-See http://bugzilla.samba.org - search on product "CifsVFS" for
-current bug list. Also check http://bugzilla.kernel.org (Product = File System, Component = CIFS)
-
-1) existing symbolic links (Windows reparse points) are recognized but
-can not be created remotely. They are implemented for Samba and those that
-support the CIFS Unix extensions, although earlier versions of Samba
-overly restrict the pathnames.
-2) follow_link and readdir code does not follow dfs junctions
-but recognizes them
-
-Misc testing to do
-==================
-1) check out max path names and max path name components against various server
-types. Try nested symlinks (8 deep). Return max path name in stat -f information
-
-2) Improve xfstest's cifs/smb3 enablement and adapt xfstests where needed to test
-cifs/smb3 better
-
-3) Additional performance testing and optimization using iozone and similar -
-there are some easy changes that can be done to parallelize sequential writes,
-and when signing is disabled to request larger read sizes (larger than
-negotiated size) and send larger write sizes to modern servers.
-
-4) More exhaustively test against less common servers
-
-5) Continue to extend the smb3 "buildbot" which does automated xfstesting
-against Windows, Samba and Azure currently - to add additional tests and
-to allow the buildbot to execute the tests faster. The URL for the
-buildbot is: http://smb3-test-rhel-75.southcentralus.cloudapp.azure.com
-
-6) Address various coverity warnings (most are not bugs per-se, but
-the more warnings are addressed, the easier it is to spot real
-problems that static analyzers will point out in the future).
diff --git a/Documentation/filesystems/cifs/cifs.txt b/Documentation/filesystems/cifs/cifs.txt
deleted file mode 100644
index 1be3d21c286e..000000000000
--- a/Documentation/filesystems/cifs/cifs.txt
+++ /dev/null
@@ -1,45 +0,0 @@
- This is the client VFS module for the SMB3 NAS protocol as well
- as for older dialects such as the Common Internet File System (CIFS)
- protocol which was the successor to the Server Message Block
- (SMB) protocol, the native file sharing mechanism for most early
- PC operating systems. New and improved versions of CIFS are now
- called SMB2 and SMB3. Use of SMB3 (and later, including SMB3.1.1)
- is strongly preferred over using older dialects like CIFS due to
- security reaasons. All modern dialects, including the most recent,
- SMB3.1.1 are supported by the CIFS VFS module. The SMB3 protocol
- is implemented and supported by all major file servers
- such as all modern versions of Windows (including Windows 2016
- Server), as well as by Samba (which provides excellent
- CIFS/SMB2/SMB3 server support and tools for Linux and many other
- operating systems). Apple systems also support SMB3 well, as
- do most Network Attached Storage vendors, so this network
- filesystem client can mount to a wide variety of systems.
- It also supports mounting to the cloud (for example
- Microsoft Azure), including the necessary security features.
-
- The intent of this module is to provide the most advanced network
- file system function for SMB3 compliant servers, including advanced
- security features, excellent parallelized high performance i/o, better
- POSIX compliance, secure per-user session establishment, encryption,
- high performance safe distributed caching (leases/oplocks), optional packet
- signing, large files, Unicode support and other internationalization
- improvements. Since both Samba server and this filesystem client support
- the CIFS Unix extensions (and in the future SMB3 POSIX extensions),
- the combination can provide a reasonable alternative to other network and
- cluster file systems for fileserving in some Linux to Linux environments,
- not just in Linux to Windows (or Linux to Mac) environments.
-
- This filesystem has a mount utility (mount.cifs) and various user space
- tools (including smbinfo and setcifsacl) that can be obtained from
-
- https://git.samba.org/?p=cifs-utils.git
- or
- git://git.samba.org/cifs-utils.git
-
- mount.cifs should be installed in the directory with the other mount helpers.
-
- For more information on the module see the project wiki page at
-
- https://wiki.samba.org/index.php/LinuxCIFS
- and
- https://wiki.samba.org/index.php/LinuxCIFS_utils
diff --git a/Documentation/filesystems/cifs/cifsroot.txt b/Documentation/filesystems/cifs/cifsroot.txt
new file mode 100644
index 000000000000..0fa1a2c36a40
--- /dev/null
+++ b/Documentation/filesystems/cifs/cifsroot.txt
@@ -0,0 +1,97 @@
+Mounting root file system via SMB (cifs.ko)
+===========================================
+
+Written 2019 by Paulo Alcantara <palcantara@suse.de>
+Written 2019 by Aurelien Aptel <aaptel@suse.com>
+
+The CONFIG_CIFS_ROOT option enables experimental root file system
+support over the SMB protocol via cifs.ko.
+
+It introduces a new kernel command-line option called 'cifsroot='
+which will tell the kernel to mount the root file system over the
+network by utilizing SMB or CIFS protocol.
+
+In order to mount, the network stack will also need to be set up by
+using 'ip=' config option. For more details, see
+Documentation/filesystems/nfs/nfsroot.txt.
+
+A CIFS root mount currently requires the use of SMB1+UNIX Extensions
+which is only supported by the Samba server. SMB1 is the older
+deprecated version of the protocol but it has been extended to support
+POSIX features (See [1]). The equivalent extensions for the newer
+recommended version of the protocol (SMB3) have not been fully
+implemented yet which means SMB3 doesn't support some required POSIX
+file system objects (e.g. block devices, pipes, sockets).
+
+As a result, a CIFS root will default to SMB1 for now but the version
+to use can nonetheless be changed via the 'vers=' mount option. This
+default will change once the SMB3 POSIX extensions are fully
+implemented.
+
+Server configuration
+====================
+
+To enable SMB1+UNIX extensions you will need to set these global
+settings in Samba smb.conf:
+
+ [global]
+ server min protocol = NT1
+ unix extension = yes # default
+
+Kernel command line
+===================
+
+root=/dev/cifs
+
+This is just a virtual device that basically tells the kernel to mount
+the root file system via SMB protocol.
+
+cifsroot=//<server-ip>/<share>[,options]
+
+Enables the kernel to mount the root file system via SMB that are
+located in the <server-ip> and <share> specified in this option.
+
+The default mount options are set in fs/cifs/cifsroot.c.
+
+server-ip
+ IPv4 address of the server.
+
+share
+ Path to SMB share (rootfs).
+
+options
+ Optional mount options. For more information, see mount.cifs(8).
+
+Examples
+========
+
+Export root file system as a Samba share in smb.conf file.
+
+...
+[linux]
+ path = /path/to/rootfs
+ read only = no
+ guest ok = yes
+ force user = root
+ force group = root
+ browseable = yes
+ writeable = yes
+ admin users = root
+ public = yes
+ create mask = 0777
+ directory mask = 0777
+...
+
+Restart smb service.
+
+# systemctl restart smb
+
+Test it under QEMU on a kernel built with CONFIG_CIFS_ROOT and
+CONFIG_IP_PNP options enabled.
+
+# qemu-system-x86_64 -enable-kvm -cpu host -m 1024 \
+ -kernel /path/to/linux/arch/x86/boot/bzImage -nographic \
+ -append "root=/dev/cifs rw ip=dhcp cifsroot=//10.0.2.2/linux,username=foo,password=bar console=ttyS0 3"
+
+
+1: https://wiki.samba.org/index.php/UNIX_Extensions
diff --git a/Documentation/filesystems/cifs/winucase_convert.pl b/Documentation/filesystems/cifs/winucase_convert.pl
deleted file mode 100755
index 322a9c833f23..000000000000
--- a/Documentation/filesystems/cifs/winucase_convert.pl
+++ /dev/null
@@ -1,62 +0,0 @@
-#!/usr/bin/perl -w
-#
-# winucase_convert.pl -- convert "Windows 8 Upper Case Mapping Table.txt" to
-# a two-level set of C arrays.
-#
-# Copyright 2013: Jeff Layton <jlayton@redhat.com>
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see <http://www.gnu.org/licenses/>.
-#
-
-while(<>) {
- next if (!/^0x(..)(..)\t0x(....)\t/);
- $firstchar = hex($1);
- $secondchar = hex($2);
- $uppercase = hex($3);
-
- $top[$firstchar][$secondchar] = $uppercase;
-}
-
-for ($i = 0; $i < 256; $i++) {
- next if (!$top[$i]);
-
- printf("static const wchar_t t2_%2.2x[256] = {", $i);
- for ($j = 0; $j < 256; $j++) {
- if (($j % 8) == 0) {
- print "\n\t";
- } else {
- print " ";
- }
- printf("0x%4.4x,", $top[$i][$j] ? $top[$i][$j] : 0);
- }
- print "\n};\n\n";
-}
-
-printf("static const wchar_t *const toplevel[256] = {", $i);
-for ($i = 0; $i < 256; $i++) {
- if (($i % 8) == 0) {
- print "\n\t";
- } elsif ($top[$i]) {
- print " ";
- } else {
- print " ";
- }
-
- if ($top[$i]) {
- printf("t2_%2.2x,", $i);
- } else {
- print "NULL,";
- }
-}
-print "\n};\n\n";
diff --git a/Documentation/filesystems/coda.txt b/Documentation/filesystems/coda.txt
index 545262c167c3..1711ad48e38a 100644
--- a/Documentation/filesystems/coda.txt
+++ b/Documentation/filesystems/coda.txt
@@ -421,14 +421,14 @@ kernel support.
The CodaCred structure defines a variety of user and group ids as
- they are set for the calling process. The vuid_t and guid_t are 32 bit
+ they are set for the calling process. The vuid_t and vgid_t are 32 bit
unsigned integers. It also defines group membership in an array. On
Unix the CodaCred has proven sufficient to implement good security
semantics for Coda but the structure may have to undergo modification
for the Windows environment when these mature.
struct CodaCred {
- vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, effective, set, fs uid*/
+ vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, effective, set, fs uid */
vgid_t cr_gid, cr_egid, cr_sgid, cr_fsgid; /* same for groups */
vgid_t cr_groups[NGROUPS]; /* Group membership for caller */
};
diff --git a/Documentation/filesystems/directory-locking b/Documentation/filesystems/directory-locking.rst
index 4e32cb961e5b..de12016ee419 100644
--- a/Documentation/filesystems/directory-locking
+++ b/Documentation/filesystems/directory-locking.rst
@@ -1,12 +1,17 @@
- Locking scheme used for directory operations is based on two
+=================
+Directory Locking
+=================
+
+
+Locking scheme used for directory operations is based on two
kinds of locks - per-inode (->i_rwsem) and per-filesystem
(->s_vfs_rename_mutex).
- When taking the i_rwsem on multiple non-directory objects, we
+When taking the i_rwsem on multiple non-directory objects, we
always acquire the locks in order by increasing address. We'll call
that "inode pointer" order in the following.
- For our purposes all operations fall in 5 classes:
+For our purposes all operations fall in 5 classes:
1) read access. Locking rules: caller locks directory we are accessing.
The lock is taken shared.
@@ -27,25 +32,29 @@ NB: we might get away with locking the the source (and target in exchange
case) shared.
5) link creation. Locking rules:
+
* lock parent
* check that source is not a directory
* lock source
* call the method.
+
All locks are exclusive.
6) cross-directory rename. The trickiest in the whole bunch. Locking
rules:
+
* lock the filesystem
* lock parents in "ancestors first" order.
* find source and target.
* if old parent is equal to or is a descendent of target
- fail with -ENOTEMPTY
+ fail with -ENOTEMPTY
* if new parent is equal to or is a descendent of source
- fail with -ELOOP
+ fail with -ELOOP
* If it's an exchange, lock both the source and the target.
* If the target exists, lock it. If the source is a non-directory,
lock it. If we need to lock both, do so in inode pointer order.
* call the method.
+
All ->i_rwsem are taken exclusive. Again, we might get away with locking
the the source (and target in exchange case) shared.
@@ -54,10 +63,11 @@ read, modified or removed by method will be locked by caller.
If no directory is its own ancestor, the scheme above is deadlock-free.
+
Proof:
First of all, at any moment we have a partial ordering of the
-objects - A < B iff A is an ancestor of B.
+ objects - A < B iff A is an ancestor of B.
That ordering can change. However, the following is true:
@@ -77,32 +87,32 @@ objects - A < B iff A is an ancestor of B.
non-directory object, except renames, which take locks on source and
target in inode pointer order in the case they are not directories.)
- Now consider the minimal deadlock. Each process is blocked on
+Now consider the minimal deadlock. Each process is blocked on
attempt to acquire some lock and already holds at least one lock. Let's
consider the set of contended locks. First of all, filesystem lock is
not contended, since any process blocked on it is not holding any locks.
Thus all processes are blocked on ->i_rwsem.
- By (3), any process holding a non-directory lock can only be
+By (3), any process holding a non-directory lock can only be
waiting on another non-directory lock with a larger address. Therefore
the process holding the "largest" such lock can always make progress, and
non-directory objects are not included in the set of contended locks.
- Thus link creation can't be a part of deadlock - it can't be
+Thus link creation can't be a part of deadlock - it can't be
blocked on source and it means that it doesn't hold any locks.
- Any contended object is either held by cross-directory rename or
+Any contended object is either held by cross-directory rename or
has a child that is also contended. Indeed, suppose that it is held by
operation other than cross-directory rename. Then the lock this operation
is blocked on belongs to child of that object due to (1).
- It means that one of the operations is cross-directory rename.
+It means that one of the operations is cross-directory rename.
Otherwise the set of contended objects would be infinite - each of them
would have a contended child and we had assumed that no object is its
own descendent. Moreover, there is exactly one cross-directory rename
(see above).
- Consider the object blocking the cross-directory rename. One
+Consider the object blocking the cross-directory rename. One
of its descendents is locked by cross-directory rename (otherwise we
would again have an infinite set of contended objects). But that
means that cross-directory rename is taking locks out of order. Due
@@ -112,7 +122,7 @@ try to acquire lock on descendent before the lock on ancestor.
Contradiction. I.e. deadlock is impossible. Q.E.D.
- These operations are guaranteed to avoid loop creation. Indeed,
+These operations are guaranteed to avoid loop creation. Indeed,
the only operation that could introduce loops is cross-directory rename.
Since the only new (parent, child) pair added by rename() is (new parent,
source), such loop would have to contain these objects and the rest of it
@@ -123,13 +133,13 @@ new parent had been equal to or a descendent of source since the moment when
we had acquired filesystem lock and rename() would fail with -ELOOP in that
case.
- While this locking scheme works for arbitrary DAGs, it relies on
+While this locking scheme works for arbitrary DAGs, it relies on
ability to check that directory is a descendent of another object. Current
implementation assumes that directory graph is a tree. This assumption is
also preserved by all operations (cross-directory rename on a tree that would
not introduce a cycle will leave it a tree and link() fails for directories).
- Notice that "directory" in the above == "anything that might have
+Notice that "directory" in the above == "anything that might have
children", so if we are going to introduce hybrid objects we will need
either to make sure that link(2) doesn't work for them or to make changes
in is_subdir() that would make it work even in presence of such beasts.
diff --git a/Documentation/filesystems/erofs.txt b/Documentation/filesystems/erofs.txt
new file mode 100644
index 000000000000..b0c085326e2e
--- /dev/null
+++ b/Documentation/filesystems/erofs.txt
@@ -0,0 +1,210 @@
+Overview
+========
+
+EROFS file-system stands for Enhanced Read-Only File System. Different
+from other read-only file systems, it aims to be designed for flexibility,
+scalability, but be kept simple and high performance.
+
+It is designed as a better filesystem solution for the following scenarios:
+ - read-only storage media or
+
+ - part of a fully trusted read-only solution, which means it needs to be
+ immutable and bit-for-bit identical to the official golden image for
+ their releases due to security and other considerations and
+
+ - hope to save some extra storage space with guaranteed end-to-end performance
+ by using reduced metadata and transparent file compression, especially
+ for those embedded devices with limited memory (ex, smartphone);
+
+Here is the main features of EROFS:
+ - Little endian on-disk design;
+
+ - Currently 4KB block size (nobh) and therefore maximum 16TB address space;
+
+ - Metadata & data could be mixed by design;
+
+ - 2 inode versions for different requirements:
+ v1 v2
+ Inode metadata size: 32 bytes 64 bytes
+ Max file size: 4 GB 16 EB (also limited by max. vol size)
+ Max uids/gids: 65536 4294967296
+ File creation time: no yes (64 + 32-bit timestamp)
+ Max hardlinks: 65536 4294967296
+ Metadata reserved: 4 bytes 14 bytes
+
+ - Support extended attributes (xattrs) as an option;
+
+ - Support xattr inline and tail-end data inline for all files;
+
+ - Support POSIX.1e ACLs by using xattrs;
+
+ - Support transparent file compression as an option:
+ LZ4 algorithm with 4 KB fixed-output compression for high performance;
+
+The following git tree provides the file system user-space tools under
+development (ex, formatting tool mkfs.erofs):
+>> git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git
+
+Bugs and patches are welcome, please kindly help us and send to the following
+linux-erofs mailing list:
+>> linux-erofs mailing list <linux-erofs@lists.ozlabs.org>
+
+Mount options
+=============
+
+(no)user_xattr Setup Extended User Attributes. Note: xattr is enabled
+ by default if CONFIG_EROFS_FS_XATTR is selected.
+(no)acl Setup POSIX Access Control List. Note: acl is enabled
+ by default if CONFIG_EROFS_FS_POSIX_ACL is selected.
+cache_strategy=%s Select a strategy for cached decompression from now on:
+ disabled: In-place I/O decompression only;
+ readahead: Cache the last incomplete compressed physical
+ cluster for further reading. It still does
+ in-place I/O decompression for the rest
+ compressed physical clusters;
+ readaround: Cache the both ends of incomplete compressed
+ physical clusters for further reading.
+ It still does in-place I/O decompression
+ for the rest compressed physical clusters.
+
+On-disk details
+===============
+
+Summary
+-------
+Different from other read-only file systems, an EROFS volume is designed
+to be as simple as possible:
+
+ |-> aligned with the block size
+ ____________________________________________________________
+ | |SB| | ... | Metadata | ... | Data | Metadata | ... | Data |
+ |_|__|_|_____|__________|_____|______|__________|_____|______|
+ 0 +1K
+
+All data areas should be aligned with the block size, but metadata areas
+may not. All metadatas can be now observed in two different spaces (views):
+ 1. Inode metadata space
+ Each valid inode should be aligned with an inode slot, which is a fixed
+ value (32 bytes) and designed to be kept in line with v1 inode size.
+
+ Each inode can be directly found with the following formula:
+ inode offset = meta_blkaddr * block_size + 32 * nid
+
+ |-> aligned with 8B
+ |-> followed closely
+ + meta_blkaddr blocks |-> another slot
+ _____________________________________________________________________
+ | ... | inode | xattrs | extents | data inline | ... | inode ...
+ |________|_______|(optional)|(optional)|__(optional)_|_____|__________
+ |-> aligned with the inode slot size
+ . .
+ . .
+ . .
+ . .
+ . .
+ . .
+ .____________________________________________________|-> aligned with 4B
+ | xattr_ibody_header | shared xattrs | inline xattrs |
+ |____________________|_______________|_______________|
+ |-> 12 bytes <-|->x * 4 bytes<-| .
+ . . .
+ . . .
+ . . .
+ ._______________________________.______________________.
+ | id | id | id | id | ... | id | ent | ... | ent| ... |
+ |____|____|____|____|______|____|_____|_____|____|_____|
+ |-> aligned with 4B
+ |-> aligned with 4B
+
+ Inode could be 32 or 64 bytes, which can be distinguished from a common
+ field which all inode versions have -- i_advise:
+
+ __________________ __________________
+ | i_advise | | i_advise |
+ |__________________| |__________________|
+ | ... | | ... |
+ | | | |
+ |__________________| 32 bytes | |
+ | |
+ |__________________| 64 bytes
+
+ Xattrs, extents, data inline are followed by the corresponding inode with
+ proper alignes, and they could be optional for different data mappings,
+ _currently_ there are totally 3 valid data mappings supported:
+
+ 1) flat file data without data inline (no extent);
+ 2) fixed-output size data compression (must have extents);
+ 3) flat file data with tail-end data inline (no extent);
+
+ The size of the optional xattrs is indicated by i_xattr_count in inode
+ header. Large xattrs or xattrs shared by many different files can be
+ stored in shared xattrs metadata rather than inlined right after inode.
+
+ 2. Shared xattrs metadata space
+ Shared xattrs space is similar to the above inode space, started with
+ a specific block indicated by xattr_blkaddr, organized one by one with
+ proper align.
+
+ Each share xattr can also be directly found by the following formula:
+ xattr offset = xattr_blkaddr * block_size + 4 * xattr_id
+
+ |-> aligned by 4 bytes
+ + xattr_blkaddr blocks |-> aligned with 4 bytes
+ _________________________________________________________________________
+ | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ...
+ |________|_____________|_____________|_____|______________|_______________
+
+Directories
+-----------
+All directories are now organized in a compact on-disk format. Note that
+each directory block is divided into index and name areas in order to support
+random file lookup, and all directory entries are _strictly_ recorded in
+alphabetical order in order to support improved prefix binary search
+algorithm (could refer to the related source code).
+
+ ___________________________
+ / |
+ / ______________|________________
+ / / | nameoff1 | nameoffN-1
+ ____________.______________._______________v________________v__________
+| dirent | dirent | ... | dirent | filename | filename | ... | filename |
+|___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____|
+ \ ^
+ \ | * could have
+ \ | trailing '\0'
+ \________________________| nameoff0
+
+ Directory block
+
+Note that apart from the offset of the first filename, nameoff0 also indicates
+the total number of directory entries in this block since it is no need to
+introduce another on-disk field at all.
+
+Compression
+-----------
+Currently, EROFS supports 4KB fixed-output clustersize transparent file
+compression, as illustrated below:
+
+ |---- Variant-Length Extent ----|-------- VLE --------|----- VLE -----
+ clusterofs clusterofs clusterofs
+ | | | logical data
+_________v_______________________________v_____________________v_______________
+... | . | | . | | . | ...
+____|____.________|_____________|________.____|_____________|__.__________|____
+ |-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size size size
+ . . . .
+ . . . .
+ . . . .
+ _______._____________._____________._____________._____________________
+ ... | | | | ... physical data
+ _______|_____________|_____________|_____________|_____________________
+ |-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size
+
+Currently each on-disk physical cluster can contain 4KB (un)compressed data
+at most. For each logical cluster, there is a corresponding on-disk index to
+describe its cluster type, physical cluster address, etc.
+
+See "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details.
+
diff --git a/Documentation/filesystems/ext4/bigalloc.rst b/Documentation/filesystems/ext4/bigalloc.rst
index c6d88557553c..72075aa608e4 100644
--- a/Documentation/filesystems/ext4/bigalloc.rst
+++ b/Documentation/filesystems/ext4/bigalloc.rst
@@ -9,14 +9,26 @@ ext4 code is not prepared to handle the case where the block size
exceeds the page size. However, for a filesystem of mostly huge files,
it is desirable to be able to allocate disk blocks in units of multiple
blocks to reduce both fragmentation and metadata overhead. The
-`bigalloc <Bigalloc>`__ feature provides exactly this ability. The
-administrator can set a block cluster size at mkfs time (which is stored
-in the s\_log\_cluster\_size field in the superblock); from then on, the
-block bitmaps track clusters, not individual blocks. This means that
-block groups can be several gigabytes in size (instead of just 128MiB);
-however, the minimum allocation unit becomes a cluster, not a block,
-even for directories. TaoBao had a patchset to extend the “use units of
-clusters instead of blocks” to the extent tree, though it is not clear
-where those patches went-- they eventually morphed into “extent tree v2”
-but that code has not landed as of May 2015.
+bigalloc feature provides exactly this ability.
+
+The bigalloc feature (EXT4_FEATURE_RO_COMPAT_BIGALLOC) changes ext4 to
+use clustered allocation, so that each bit in the ext4 block allocation
+bitmap addresses a power of two number of blocks. For example, if the
+file system is mainly going to be storing large files in the 4-32
+megabyte range, it might make sense to set a cluster size of 1 megabyte.
+This means that each bit in the block allocation bitmap now addresses
+256 4k blocks. This shrinks the total size of the block allocation
+bitmaps for a 2T file system from 64 megabytes to 256 kilobytes. It also
+means that a block group addresses 32 gigabytes instead of 128 megabytes,
+also shrinking the amount of file system overhead for metadata.
+
+The administrator can set a block cluster size at mkfs time (which is
+stored in the s\_log\_cluster\_size field in the superblock); from then
+on, the block bitmaps track clusters, not individual blocks. This means
+that block groups can be several gigabytes in size (instead of just
+128MiB); however, the minimum allocation unit becomes a cluster, not a
+block, even for directories. TaoBao had a patchset to extend the “use
+units of clusters instead of blocks” to the extent tree, though it is
+not clear where those patches went-- they eventually morphed into
+“extent tree v2” but that code has not landed as of May 2015.
diff --git a/Documentation/filesystems/ext4/blockgroup.rst b/Documentation/filesystems/ext4/blockgroup.rst
index baf888e4c06a..3da156633339 100644
--- a/Documentation/filesystems/ext4/blockgroup.rst
+++ b/Documentation/filesystems/ext4/blockgroup.rst
@@ -71,11 +71,11 @@ if the flex\_bg size is 4, then group 0 will contain (in order) the
superblock, group descriptors, data block bitmaps for groups 0-3, inode
bitmaps for groups 0-3, inode tables for groups 0-3, and the remaining
space in group 0 is for file data. The effect of this is to group the
-block metadata close together for faster loading, and to enable large
-files to be continuous on disk. Backup copies of the superblock and
-group descriptors are always at the beginning of block groups, even if
-flex\_bg is enabled. The number of block groups that make up a flex\_bg
-is given by 2 ^ ``sb.s_log_groups_per_flex``.
+block group metadata close together for faster loading, and to enable
+large files to be continuous on disk. Backup copies of the superblock
+and group descriptors are always at the beginning of block groups, even
+if flex\_bg is enabled. The number of block groups that make up a
+flex\_bg is given by 2 ^ ``sb.s_log_groups_per_flex``.
Meta Block Groups
-----------------
diff --git a/Documentation/filesystems/ext4/blocks.rst b/Documentation/filesystems/ext4/blocks.rst
index 73d4dc0f7bda..bd722ecd92d6 100644
--- a/Documentation/filesystems/ext4/blocks.rst
+++ b/Documentation/filesystems/ext4/blocks.rst
@@ -10,7 +10,9 @@ block groups. Block size is specified at mkfs time and typically is
4KiB. You may experience mounting problems if block size is greater than
page size (i.e. 64KiB blocks on a i386 which only has 4KiB memory
pages). By default a filesystem can contain 2^32 blocks; if the '64bit'
-feature is enabled, then a filesystem can have 2^64 blocks.
+feature is enabled, then a filesystem can have 2^64 blocks. The location
+of structures is stored in terms of the block number the structure lives
+in and not the absolute offset on disk.
For 32-bit filesystems, limits are as follows:
diff --git a/Documentation/filesystems/ext4/directory.rst b/Documentation/filesystems/ext4/directory.rst
index 614034e24669..073940cc64ed 100644
--- a/Documentation/filesystems/ext4/directory.rst
+++ b/Documentation/filesystems/ext4/directory.rst
@@ -59,7 +59,7 @@ is at most 263 bytes long, though on disk you'll need to reference
- File name.
Since file names cannot be longer than 255 bytes, the new directory
-entry format shortens the rec\_len field and uses the space for a file
+entry format shortens the name\_len field and uses the space for a file
type flag, probably to avoid having to load every inode during directory
tree traversal. This format is ``ext4_dir_entry_2``, which is at most
263 bytes long, though on disk you'll need to reference
diff --git a/Documentation/filesystems/ext4/group_descr.rst b/Documentation/filesystems/ext4/group_descr.rst
index 0f783ed88592..7ba6114e7f5c 100644
--- a/Documentation/filesystems/ext4/group_descr.rst
+++ b/Documentation/filesystems/ext4/group_descr.rst
@@ -99,9 +99,12 @@ The block group descriptor is laid out in ``struct ext4_group_desc``.
* - 0x1E
- \_\_le16
- bg\_checksum
- - Group descriptor checksum; crc16(sb\_uuid+group+desc) if the
- RO\_COMPAT\_GDT\_CSUM feature is set, or crc32c(sb\_uuid+group\_desc) &
- 0xFFFF if the RO\_COMPAT\_METADATA\_CSUM feature is set.
+ - Group descriptor checksum; crc16(sb\_uuid+group\_num+bg\_desc) if the
+ RO\_COMPAT\_GDT\_CSUM feature is set, or
+ crc32c(sb\_uuid+group\_num+bg\_desc) & 0xFFFF if the
+ RO\_COMPAT\_METADATA\_CSUM feature is set. The bg\_checksum
+ field in bg\_desc is skipped when calculating crc16 checksum,
+ and set to zero if crc32c checksum is used.
* -
-
-
diff --git a/Documentation/filesystems/ext4/inodes.rst b/Documentation/filesystems/ext4/inodes.rst
index 6bd35e506b6f..a65baffb4ebf 100644
--- a/Documentation/filesystems/ext4/inodes.rst
+++ b/Documentation/filesystems/ext4/inodes.rst
@@ -277,6 +277,8 @@ The ``i_flags`` field is a combination of these values:
- This is a huge file (EXT4\_HUGE\_FILE\_FL).
* - 0x80000
- Inode uses extents (EXT4\_EXTENTS\_FL).
+ * - 0x100000
+ - Verity protected file (EXT4\_VERITY\_FL).
* - 0x200000
- Inode stores a large extended attribute value in its data blocks
(EXT4\_EA\_INODE\_FL).
@@ -299,9 +301,9 @@ The ``i_flags`` field is a combination of these values:
- Reserved for ext4 library (EXT4\_RESERVED\_FL).
* -
- Aggregate flags:
- * - 0x4BDFFF
+ * - 0x705BDFFF
- User-visible flags.
- * - 0x4B80FF
+ * - 0x604BC0FF
- User-modifiable flags. Note that while EXT4\_JOURNAL\_DATA\_FL and
EXT4\_EXTENTS\_FL can be set with setattr, they are not in the kernel's
EXT4\_FL\_USER\_MODIFIABLE mask, since it needs to handle the setting of
@@ -470,8 +472,8 @@ inode, which allows struct ext4\_inode to grow for a new kernel without
having to upgrade all of the on-disk inodes. Access to fields beyond
EXT2\_GOOD\_OLD\_INODE\_SIZE should be verified to be within
``i_extra_isize``. By default, ext4 inode records are 256 bytes, and (as
-of October 2013) the inode structure is 156 bytes
-(``i_extra_isize = 28``). The extra space between the end of the inode
+of August 2019) the inode structure is 160 bytes
+(``i_extra_isize = 32``). The extra space between the end of the inode
structure and the end of the inode record can be used to store extended
attributes. Each inode record can be as large as the filesystem block
size, though this is not terribly efficient.
diff --git a/Documentation/filesystems/ext4/overview.rst b/Documentation/filesystems/ext4/overview.rst
index cbab18baba12..123ebfde47ee 100644
--- a/Documentation/filesystems/ext4/overview.rst
+++ b/Documentation/filesystems/ext4/overview.rst
@@ -24,3 +24,4 @@ order.
.. include:: bigalloc.rst
.. include:: inlinedata.rst
.. include:: eainode.rst
+.. include:: verity.rst
diff --git a/Documentation/filesystems/ext4/super.rst b/Documentation/filesystems/ext4/super.rst
index 04ff079a2acf..93e55d7c1d40 100644
--- a/Documentation/filesystems/ext4/super.rst
+++ b/Documentation/filesystems/ext4/super.rst
@@ -58,7 +58,7 @@ The ext4 superblock is laid out as follows in
* - 0x1C
- \_\_le32
- s\_log\_cluster\_size
- - Cluster size is (2 ^ s\_log\_cluster\_size) blocks if bigalloc is
+ - Cluster size is 2 ^ (10 + s\_log\_cluster\_size) blocks if bigalloc is
enabled. Otherwise s\_log\_cluster\_size must equal s\_log\_block\_size.
* - 0x20
- \_\_le32
@@ -447,7 +447,7 @@ The ext4 superblock is laid out as follows in
- Upper 8 bits of the s_wtime field.
* - 0x275
- \_\_u8
- - s\_wtime_hi
+ - s\_mtime_hi
- Upper 8 bits of the s_mtime field.
* - 0x276
- \_\_u8
@@ -466,12 +466,20 @@ The ext4 superblock is laid out as follows in
- s\_last_error_time_hi
- Upper 8 bits of the s_last_error_time_hi field.
* - 0x27A
- - \_\_u8[2]
- - s\_pad
+ - \_\_u8
+ - s\_pad[2]
- Zero padding.
* - 0x27C
+ - \_\_le16
+ - s\_encoding
+ - Filename charset encoding.
+ * - 0x27E
+ - \_\_le16
+ - s\_encoding_flags
+ - Filename charset encoding flags.
+ * - 0x280
- \_\_le32
- - s\_reserved[96]
+ - s\_reserved[95]
- Padding to the end of the block.
* - 0x3FC
- \_\_le32
@@ -617,7 +625,7 @@ following:
* - 0x80
- Enable a filesystem size of 2^64 blocks (INCOMPAT\_64BIT).
* - 0x100
- - Multiple mount protection. Not implemented (INCOMPAT\_MMP).
+ - Multiple mount protection (INCOMPAT\_MMP).
* - 0x200
- Flexible block groups. See the earlier discussion of this feature
(INCOMPAT\_FLEX\_BG).
@@ -696,6 +704,8 @@ the following:
(RO\_COMPAT\_READONLY)
* - 0x2000
- Filesystem tracks project quotas. (RO\_COMPAT\_PROJECT)
+ * - 0x8000
+ - Verity inodes may be present on the filesystem. (RO\_COMPAT\_VERITY)
.. _super_def_hash:
diff --git a/Documentation/filesystems/ext4/verity.rst b/Documentation/filesystems/ext4/verity.rst
new file mode 100644
index 000000000000..3e4c0ee0e068
--- /dev/null
+++ b/Documentation/filesystems/ext4/verity.rst
@@ -0,0 +1,41 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Verity files
+------------
+
+ext4 supports fs-verity, which is a filesystem feature that provides
+Merkle tree based hashing for individual readonly files. Most of
+fs-verity is common to all filesystems that support it; see
+:ref:`Documentation/filesystems/fsverity.rst <fsverity>` for the
+fs-verity documentation. However, the on-disk layout of the verity
+metadata is filesystem-specific. On ext4, the verity metadata is
+stored after the end of the file data itself, in the following format:
+
+- Zero-padding to the next 65536-byte boundary. This padding need not
+ actually be allocated on-disk, i.e. it may be a hole.
+
+- The Merkle tree, as documented in
+ :ref:`Documentation/filesystems/fsverity.rst
+ <fsverity_merkle_tree>`, with the tree levels stored in order from
+ root to leaf, and the tree blocks within each level stored in their
+ natural order.
+
+- Zero-padding to the next filesystem block boundary.
+
+- The verity descriptor, as documented in
+ :ref:`Documentation/filesystems/fsverity.rst <fsverity_descriptor>`,
+ with optionally appended signature blob.
+
+- Zero-padding to the next offset that is 4 bytes before a filesystem
+ block boundary.
+
+- The size of the verity descriptor in bytes, as a 4-byte little
+ endian integer.
+
+Verity inodes have EXT4_VERITY_FL set, and they must use extents, i.e.
+EXT4_EXTENTS_FL must be set and EXT4_INLINE_DATA_FL must be clear.
+They can have EXT4_ENCRYPT_FL set, in which case the verity metadata
+is encrypted as well as the data itself.
+
+Verity files cannot have blocks allocated past the end of the verity
+metadata.
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
index 496fa28b2492..7e1991328473 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.txt
@@ -157,6 +157,11 @@ noinline_data Disable the inline data feature, inline data feature is
enabled by default.
data_flush Enable data flushing before checkpoint in order to
persist data of regular and symlink.
+reserve_root=%d Support configuring reserved space which is used for
+ allocation from a privileged user with specified uid or
+ gid, unit: 4KB, the default limit is 0.2% of user blocks.
+resuid=%d The user ID which may use the reserved blocks.
+resgid=%d The group ID which may use the reserved blocks.
fault_injection=%d Enable fault injection in all supported types with
specified injection rate.
fault_type=%d Support configuring fault injection type, should be
@@ -413,6 +418,9 @@ Files in /sys/fs/f2fs/<devname>
that would be unusable if checkpoint=disable were
to be set.
+encoding This shows the encoding used for casefolding.
+ If casefolding is not enabled, returns (none)
+
================================================================================
USAGE
================================================================================
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index 82efa41b0e6c..8a0700af9596 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -72,6 +72,9 @@ Online attacks
fscrypt (and storage encryption in general) can only provide limited
protection, if any at all, against online attacks. In detail:
+Side-channel attacks
+~~~~~~~~~~~~~~~~~~~~
+
fscrypt is only resistant to side-channel attacks, such as timing or
electromagnetic attacks, to the extent that the underlying Linux
Cryptographic API algorithms are. If a vulnerable algorithm is used,
@@ -80,29 +83,90 @@ attacker to mount a side channel attack against the online system.
Side channel attacks may also be mounted against applications
consuming decrypted data.
-After an encryption key has been provided, fscrypt is not designed to
-hide the plaintext file contents or filenames from other users on the
-same system, regardless of the visibility of the keyring key.
-Instead, existing access control mechanisms such as file mode bits,
-POSIX ACLs, LSMs, or mount namespaces should be used for this purpose.
-Also note that as long as the encryption keys are *anywhere* in
-memory, an online attacker can necessarily compromise them by mounting
-a physical attack or by exploiting any kernel security vulnerability
-which provides an arbitrary memory read primitive.
-
-While it is ostensibly possible to "evict" keys from the system,
-recently accessed encrypted files will remain accessible at least
-until the filesystem is unmounted or the VFS caches are dropped, e.g.
-using ``echo 2 > /proc/sys/vm/drop_caches``. Even after that, if the
-RAM is compromised before being powered off, it will likely still be
-possible to recover portions of the plaintext file contents, if not
-some of the encryption keys as well. (Since Linux v4.12, all
-in-kernel keys related to fscrypt are sanitized before being freed.
-However, userspace would need to do its part as well.)
-
-Currently, fscrypt does not prevent a user from maliciously providing
-an incorrect key for another user's existing encrypted files. A
-protection against this is planned.
+Unauthorized file access
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+After an encryption key has been added, fscrypt does not hide the
+plaintext file contents or filenames from other users on the same
+system. Instead, existing access control mechanisms such as file mode
+bits, POSIX ACLs, LSMs, or namespaces should be used for this purpose.
+
+(For the reasoning behind this, understand that while the key is
+added, the confidentiality of the data, from the perspective of the
+system itself, is *not* protected by the mathematical properties of
+encryption but rather only by the correctness of the kernel.
+Therefore, any encryption-specific access control checks would merely
+be enforced by kernel *code* and therefore would be largely redundant
+with the wide variety of access control mechanisms already available.)
+
+Kernel memory compromise
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+An attacker who compromises the system enough to read from arbitrary
+memory, e.g. by mounting a physical attack or by exploiting a kernel
+security vulnerability, can compromise all encryption keys that are
+currently in use.
+
+However, fscrypt allows encryption keys to be removed from the kernel,
+which may protect them from later compromise.
+
+In more detail, the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl (or the
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS ioctl) can wipe a master
+encryption key from kernel memory. If it does so, it will also try to
+evict all cached inodes which had been "unlocked" using the key,
+thereby wiping their per-file keys and making them once again appear
+"locked", i.e. in ciphertext or encrypted form.
+
+However, these ioctls have some limitations:
+
+- Per-file keys for in-use files will *not* be removed or wiped.
+ Therefore, for maximum effect, userspace should close the relevant
+ encrypted files and directories before removing a master key, as
+ well as kill any processes whose working directory is in an affected
+ encrypted directory.
+
+- The kernel cannot magically wipe copies of the master key(s) that
+ userspace might have as well. Therefore, userspace must wipe all
+ copies of the master key(s) it makes as well; normally this should
+ be done immediately after FS_IOC_ADD_ENCRYPTION_KEY, without waiting
+ for FS_IOC_REMOVE_ENCRYPTION_KEY. Naturally, the same also applies
+ to all higher levels in the key hierarchy. Userspace should also
+ follow other security precautions such as mlock()ing memory
+ containing keys to prevent it from being swapped out.
+
+- In general, decrypted contents and filenames in the kernel VFS
+ caches are freed but not wiped. Therefore, portions thereof may be
+ recoverable from freed memory, even after the corresponding key(s)
+ were wiped. To partially solve this, you can set
+ CONFIG_PAGE_POISONING=y in your kernel config and add page_poison=1
+ to your kernel command line. However, this has a performance cost.
+
+- Secret keys might still exist in CPU registers, in crypto
+ accelerator hardware (if used by the crypto API to implement any of
+ the algorithms), or in other places not explicitly considered here.
+
+Limitations of v1 policies
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+v1 encryption policies have some weaknesses with respect to online
+attacks:
+
+- There is no verification that the provided master key is correct.
+ Therefore, a malicious user can temporarily associate the wrong key
+ with another user's encrypted files to which they have read-only
+ access. Because of filesystem caching, the wrong key will then be
+ used by the other user's accesses to those files, even if the other
+ user has the correct key in their own keyring. This violates the
+ meaning of "read-only access".
+
+- A compromise of a per-file key also compromises the master key from
+ which it was derived.
+
+- Non-root users cannot securely remove encryption keys.
+
+All the above problems are fixed with v2 encryption policies. For
+this reason among others, it is recommended to use v2 encryption
+policies on all new encrypted directories.
Key hierarchy
=============
@@ -123,11 +187,52 @@ appropriate master key. There can be any number of master keys, each
of which protects any number of directory trees on any number of
filesystems.
-Userspace should generate master keys either using a cryptographically
-secure random number generator, or by using a KDF (Key Derivation
-Function). Note that whenever a KDF is used to "stretch" a
-lower-entropy secret such as a passphrase, it is critical that a KDF
-designed for this purpose be used, such as scrypt, PBKDF2, or Argon2.
+Master keys must be real cryptographic keys, i.e. indistinguishable
+from random bytestrings of the same length. This implies that users
+**must not** directly use a password as a master key, zero-pad a
+shorter key, or repeat a shorter key. Security cannot be guaranteed
+if userspace makes any such error, as the cryptographic proofs and
+analysis would no longer apply.
+
+Instead, users should generate master keys either using a
+cryptographically secure random number generator, or by using a KDF
+(Key Derivation Function). The kernel does not do any key stretching;
+therefore, if userspace derives the key from a low-entropy secret such
+as a passphrase, it is critical that a KDF designed for this purpose
+be used, such as scrypt, PBKDF2, or Argon2.
+
+Key derivation function
+-----------------------
+
+With one exception, fscrypt never uses the master key(s) for
+encryption directly. Instead, they are only used as input to a KDF
+(Key Derivation Function) to derive the actual keys.
+
+The KDF used for a particular master key differs depending on whether
+the key is used for v1 encryption policies or for v2 encryption
+policies. Users **must not** use the same key for both v1 and v2
+encryption policies. (No real-world attack is currently known on this
+specific case of key reuse, but its security cannot be guaranteed
+since the cryptographic proofs and analysis would no longer apply.)
+
+For v1 encryption policies, the KDF only supports deriving per-file
+encryption keys. It works by encrypting the master key with
+AES-128-ECB, using the file's 16-byte nonce as the AES key. The
+resulting ciphertext is used as the derived key. If the ciphertext is
+longer than needed, then it is truncated to the needed length.
+
+For v2 encryption policies, the KDF is HKDF-SHA512. The master key is
+passed as the "input keying material", no salt is used, and a distinct
+"application-specific information string" is used for each distinct
+key to be derived. For example, when a per-file encryption key is
+derived, the application-specific information string is the file's
+nonce prefixed with "fscrypt\\0" and a context byte. Different
+context bytes are used for other types of derived keys.
+
+HKDF-SHA512 is preferred to the original AES-128-ECB based KDF because
+HKDF is more flexible, is nonreversible, and evenly distributes
+entropy from the master key. HKDF is also standardized and widely
+used by other software, whereas the AES-128-ECB based KDF is ad-hoc.
Per-file keys
-------------
@@ -138,29 +243,9 @@ files doesn't map to the same ciphertext, or vice versa. In most
cases, fscrypt does this by deriving per-file keys. When a new
encrypted inode (regular file, directory, or symlink) is created,
fscrypt randomly generates a 16-byte nonce and stores it in the
-inode's encryption xattr. Then, it uses a KDF (Key Derivation
-Function) to derive the file's key from the master key and nonce.
-
-The Adiantum encryption mode (see `Encryption modes and usage`_) is
-special, since it accepts longer IVs and is suitable for both contents
-and filenames encryption. For it, a "direct key" option is offered
-where the file's nonce is included in the IVs and the master key is
-used for encryption directly. This improves performance; however,
-users must not use the same master key for any other encryption mode.
-
-Below, the KDF and design considerations are described in more detail.
-
-The current KDF works by encrypting the master key with AES-128-ECB,
-using the file's nonce as the AES key. The output is used as the
-derived key. If the output is longer than needed, then it is
-truncated to the needed length.
-
-Note: this KDF meets the primary security requirement, which is to
-produce unique derived keys that preserve the entropy of the master
-key, assuming that the master key is already a good pseudorandom key.
-However, it is nonstandard and has some problems such as being
-reversible, so it is generally considered to be a mistake! It may be
-replaced with HKDF or another more standard KDF in the future.
+inode's encryption xattr. Then, it uses a KDF (as described in `Key
+derivation function`_) to derive the file's key from the master key
+and nonce.
Key derivation was chosen over key wrapping because wrapped keys would
require larger xattrs which would be less likely to fit in-line in the
@@ -176,6 +261,37 @@ rejected as it would have prevented ext4 filesystems from being
resized, and by itself still wouldn't have been sufficient to prevent
the same key from being directly reused for both XTS and CTS-CBC.
+DIRECT_KEY and per-mode keys
+----------------------------
+
+The Adiantum encryption mode (see `Encryption modes and usage`_) is
+suitable for both contents and filenames encryption, and it accepts
+long IVs --- long enough to hold both an 8-byte logical block number
+and a 16-byte per-file nonce. Also, the overhead of each Adiantum key
+is greater than that of an AES-256-XTS key.
+
+Therefore, to improve performance and save memory, for Adiantum a
+"direct key" configuration is supported. When the user has enabled
+this by setting FSCRYPT_POLICY_FLAG_DIRECT_KEY in the fscrypt policy,
+per-file keys are not used. Instead, whenever any data (contents or
+filenames) is encrypted, the file's 16-byte nonce is included in the
+IV. Moreover:
+
+- For v1 encryption policies, the encryption is done directly with the
+ master key. Because of this, users **must not** use the same master
+ key for any other purpose, even for other v1 policies.
+
+- For v2 encryption policies, the encryption is done with a per-mode
+ key derived using the KDF. Users may use the same master key for
+ other v2 encryption policies.
+
+Key identifiers
+---------------
+
+For master keys used for v2 encryption policies, a unique 16-byte "key
+identifier" is also derived using the KDF. This value is stored in
+the clear, since it is needed to reliably identify the key itself.
+
Encryption modes and usage
==========================
@@ -225,9 +341,10 @@ a little endian number, except that:
is encrypted with AES-256 where the AES-256 key is the SHA-256 hash
of the file's data encryption key.
-- In the "direct key" configuration (FS_POLICY_FLAG_DIRECT_KEY set in
- the fscrypt_policy), the file's nonce is also appended to the IV.
- Currently this is only allowed with the Adiantum encryption mode.
+- In the "direct key" configuration (FSCRYPT_POLICY_FLAG_DIRECT_KEY
+ set in the fscrypt_policy), the file's nonce is also appended to the
+ IV. Currently this is only allowed with the Adiantum encryption
+ mode.
Filenames encryption
--------------------
@@ -269,49 +386,77 @@ User API
Setting an encryption policy
----------------------------
+FS_IOC_SET_ENCRYPTION_POLICY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
The FS_IOC_SET_ENCRYPTION_POLICY ioctl sets an encryption policy on an
empty directory or verifies that a directory or regular file already
has the specified encryption policy. It takes in a pointer to a
-:c:type:`struct fscrypt_policy`, defined as follows::
+:c:type:`struct fscrypt_policy_v1` or a :c:type:`struct
+fscrypt_policy_v2`, defined as follows::
- #define FS_KEY_DESCRIPTOR_SIZE 8
+ #define FSCRYPT_POLICY_V1 0
+ #define FSCRYPT_KEY_DESCRIPTOR_SIZE 8
+ struct fscrypt_policy_v1 {
+ __u8 version;
+ __u8 contents_encryption_mode;
+ __u8 filenames_encryption_mode;
+ __u8 flags;
+ __u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ };
+ #define fscrypt_policy fscrypt_policy_v1
- struct fscrypt_policy {
+ #define FSCRYPT_POLICY_V2 2
+ #define FSCRYPT_KEY_IDENTIFIER_SIZE 16
+ struct fscrypt_policy_v2 {
__u8 version;
__u8 contents_encryption_mode;
__u8 filenames_encryption_mode;
__u8 flags;
- __u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
+ __u8 __reserved[4];
+ __u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
};
This structure must be initialized as follows:
-- ``version`` must be 0.
+- ``version`` must be FSCRYPT_POLICY_V1 (0) if the struct is
+ :c:type:`fscrypt_policy_v1` or FSCRYPT_POLICY_V2 (2) if the struct
+ is :c:type:`fscrypt_policy_v2`. (Note: we refer to the original
+ policy version as "v1", though its version code is really 0.) For
+ new encrypted directories, use v2 policies.
- ``contents_encryption_mode`` and ``filenames_encryption_mode`` must
- be set to constants from ``<linux/fs.h>`` which identify the
- encryption modes to use. If unsure, use
- FS_ENCRYPTION_MODE_AES_256_XTS (1) for ``contents_encryption_mode``
- and FS_ENCRYPTION_MODE_AES_256_CTS (4) for
- ``filenames_encryption_mode``.
+ be set to constants from ``<linux/fscrypt.h>`` which identify the
+ encryption modes to use. If unsure, use FSCRYPT_MODE_AES_256_XTS
+ (1) for ``contents_encryption_mode`` and FSCRYPT_MODE_AES_256_CTS
+ (4) for ``filenames_encryption_mode``.
-- ``flags`` must contain a value from ``<linux/fs.h>`` which
+- ``flags`` must contain a value from ``<linux/fscrypt.h>`` which
identifies the amount of NUL-padding to use when encrypting
- filenames. If unsure, use FS_POLICY_FLAGS_PAD_32 (0x3).
- In addition, if the chosen encryption modes are both
- FS_ENCRYPTION_MODE_ADIANTUM, this can contain
- FS_POLICY_FLAG_DIRECT_KEY to specify that the master key should be
- used directly, without key derivation.
-
-- ``master_key_descriptor`` specifies how to find the master key in
- the keyring; see `Adding keys`_. It is up to userspace to choose a
- unique ``master_key_descriptor`` for each master key. The e4crypt
- and fscrypt tools use the first 8 bytes of
+ filenames. If unsure, use FSCRYPT_POLICY_FLAGS_PAD_32 (0x3).
+ Additionally, if the encryption modes are both
+ FSCRYPT_MODE_ADIANTUM, this can contain
+ FSCRYPT_POLICY_FLAG_DIRECT_KEY; see `DIRECT_KEY and per-mode keys`_.
+
+- For v2 encryption policies, ``__reserved`` must be zeroed.
+
+- For v1 encryption policies, ``master_key_descriptor`` specifies how
+ to find the master key in a keyring; see `Adding keys`_. It is up
+ to userspace to choose a unique ``master_key_descriptor`` for each
+ master key. The e4crypt and fscrypt tools use the first 8 bytes of
``SHA-512(SHA-512(master_key))``, but this particular scheme is not
required. Also, the master key need not be in the keyring yet when
FS_IOC_SET_ENCRYPTION_POLICY is executed. However, it must be added
before any files can be created in the encrypted directory.
+ For v2 encryption policies, ``master_key_descriptor`` has been
+ replaced with ``master_key_identifier``, which is longer and cannot
+ be arbitrarily chosen. Instead, the key must first be added using
+ `FS_IOC_ADD_ENCRYPTION_KEY`_. Then, the ``key_spec.u.identifier``
+ the kernel returned in the :c:type:`struct fscrypt_add_key_arg` must
+ be used as the ``master_key_identifier`` in the :c:type:`struct
+ fscrypt_policy_v2`.
+
If the file is not yet encrypted, then FS_IOC_SET_ENCRYPTION_POLICY
verifies that the file is an empty directory. If so, the specified
encryption policy is assigned to the directory, turning it into an
@@ -327,6 +472,15 @@ policy exactly matches the actual one. If they match, then the ioctl
returns 0. Otherwise, it fails with EEXIST. This works on both
regular files and directories, including nonempty directories.
+When a v2 encryption policy is assigned to a directory, it is also
+required that either the specified key has been added by the current
+user or that the caller has CAP_FOWNER in the initial user namespace.
+(This is needed to prevent a user from encrypting their data with
+another user's key.) The key must remain added while
+FS_IOC_SET_ENCRYPTION_POLICY is executing. However, if the new
+encrypted directory does not need to be accessed immediately, then the
+key can be removed right away afterwards.
+
Note that the ext4 filesystem does not allow the root directory to be
encrypted, even if it is empty. Users who want to encrypt an entire
filesystem with one key should consider using dm-crypt instead.
@@ -339,7 +493,11 @@ FS_IOC_SET_ENCRYPTION_POLICY can fail with the following errors:
- ``EEXIST``: the file is already encrypted with an encryption policy
different from the one specified
- ``EINVAL``: an invalid encryption policy was specified (invalid
- version, mode(s), or flags)
+ version, mode(s), or flags; or reserved bits were set)
+- ``ENOKEY``: a v2 encryption policy was specified, but the key with
+ the specified ``master_key_identifier`` has not been added, nor does
+ the process have the CAP_FOWNER capability in the initial user
+ namespace
- ``ENOTDIR``: the file is unencrypted and is a regular file, not a
directory
- ``ENOTEMPTY``: the file is unencrypted and is a nonempty directory
@@ -358,25 +516,79 @@ FS_IOC_SET_ENCRYPTION_POLICY can fail with the following errors:
Getting an encryption policy
----------------------------
-The FS_IOC_GET_ENCRYPTION_POLICY ioctl retrieves the :c:type:`struct
-fscrypt_policy`, if any, for a directory or regular file. See above
-for the struct definition. No additional permissions are required
-beyond the ability to open the file.
+Two ioctls are available to get a file's encryption policy:
+
+- `FS_IOC_GET_ENCRYPTION_POLICY_EX`_
+- `FS_IOC_GET_ENCRYPTION_POLICY`_
+
+The extended (_EX) version of the ioctl is more general and is
+recommended to use when possible. However, on older kernels only the
+original ioctl is available. Applications should try the extended
+version, and if it fails with ENOTTY fall back to the original
+version.
+
+FS_IOC_GET_ENCRYPTION_POLICY_EX
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_POLICY_EX ioctl retrieves the encryption
+policy, if any, for a directory or regular file. No additional
+permissions are required beyond the ability to open the file. It
+takes in a pointer to a :c:type:`struct fscrypt_get_policy_ex_arg`,
+defined as follows::
+
+ struct fscrypt_get_policy_ex_arg {
+ __u64 policy_size; /* input/output */
+ union {
+ __u8 version;
+ struct fscrypt_policy_v1 v1;
+ struct fscrypt_policy_v2 v2;
+ } policy; /* output */
+ };
+
+The caller must initialize ``policy_size`` to the size available for
+the policy struct, i.e. ``sizeof(arg.policy)``.
+
+On success, the policy struct is returned in ``policy``, and its
+actual size is returned in ``policy_size``. ``policy.version`` should
+be checked to determine the version of policy returned. Note that the
+version code for the "v1" policy is actually 0 (FSCRYPT_POLICY_V1).
-FS_IOC_GET_ENCRYPTION_POLICY can fail with the following errors:
+FS_IOC_GET_ENCRYPTION_POLICY_EX can fail with the following errors:
- ``EINVAL``: the file is encrypted, but it uses an unrecognized
- encryption context format
+ encryption policy version
- ``ENODATA``: the file is not encrypted
-- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``ENOTTY``: this type of filesystem does not implement encryption,
+ or this kernel is too old to support FS_IOC_GET_ENCRYPTION_POLICY_EX
+ (try FS_IOC_GET_ENCRYPTION_POLICY instead)
- ``EOPNOTSUPP``: the kernel was not configured with encryption
- support for this filesystem
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+- ``EOVERFLOW``: the file is encrypted and uses a recognized
+ encryption policy version, but the policy struct does not fit into
+ the provided buffer
Note: if you only need to know whether a file is encrypted or not, on
most filesystems it is also possible to use the FS_IOC_GETFLAGS ioctl
and check for FS_ENCRYPT_FL, or to use the statx() system call and
check for STATX_ATTR_ENCRYPTED in stx_attributes.
+FS_IOC_GET_ENCRYPTION_POLICY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_POLICY ioctl can also retrieve the
+encryption policy, if any, for a directory or regular file. However,
+unlike `FS_IOC_GET_ENCRYPTION_POLICY_EX`_,
+FS_IOC_GET_ENCRYPTION_POLICY only supports the original policy
+version. It takes in a pointer directly to a :c:type:`struct
+fscrypt_policy_v1` rather than a :c:type:`struct
+fscrypt_get_policy_ex_arg`.
+
+The error codes for FS_IOC_GET_ENCRYPTION_POLICY are the same as those
+for FS_IOC_GET_ENCRYPTION_POLICY_EX, except that
+FS_IOC_GET_ENCRYPTION_POLICY also returns ``EINVAL`` if the file is
+encrypted using a newer encryption policy version.
+
Getting the per-filesystem salt
-------------------------------
@@ -392,8 +604,115 @@ generate and manage any needed salt(s) in userspace.
Adding keys
-----------
-To provide a master key, userspace must add it to an appropriate
-keyring using the add_key() system call (see:
+FS_IOC_ADD_ENCRYPTION_KEY
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_ADD_ENCRYPTION_KEY ioctl adds a master encryption key to
+the filesystem, making all files on the filesystem which were
+encrypted using that key appear "unlocked", i.e. in plaintext form.
+It can be executed on any file or directory on the target filesystem,
+but using the filesystem's root directory is recommended. It takes in
+a pointer to a :c:type:`struct fscrypt_add_key_arg`, defined as
+follows::
+
+ struct fscrypt_add_key_arg {
+ struct fscrypt_key_specifier key_spec;
+ __u32 raw_size;
+ __u32 __reserved[9];
+ __u8 raw[];
+ };
+
+ #define FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR 1
+ #define FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER 2
+
+ struct fscrypt_key_specifier {
+ __u32 type; /* one of FSCRYPT_KEY_SPEC_TYPE_* */
+ __u32 __reserved;
+ union {
+ __u8 __reserved[32]; /* reserve some extra space */
+ __u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ __u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
+ } u;
+ };
+
+:c:type:`struct fscrypt_add_key_arg` must be zeroed, then initialized
+as follows:
+
+- If the key is being added for use by v1 encryption policies, then
+ ``key_spec.type`` must contain FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR, and
+ ``key_spec.u.descriptor`` must contain the descriptor of the key
+ being added, corresponding to the value in the
+ ``master_key_descriptor`` field of :c:type:`struct
+ fscrypt_policy_v1`. To add this type of key, the calling process
+ must have the CAP_SYS_ADMIN capability in the initial user
+ namespace.
+
+ Alternatively, if the key is being added for use by v2 encryption
+ policies, then ``key_spec.type`` must contain
+ FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER, and ``key_spec.u.identifier`` is
+ an *output* field which the kernel fills in with a cryptographic
+ hash of the key. To add this type of key, the calling process does
+ not need any privileges. However, the number of keys that can be
+ added is limited by the user's quota for the keyrings service (see
+ ``Documentation/security/keys/core.rst``).
+
+- ``raw_size`` must be the size of the ``raw`` key provided, in bytes.
+
+- ``raw`` is a variable-length field which must contain the actual
+ key, ``raw_size`` bytes long.
+
+For v2 policy keys, the kernel keeps track of which user (identified
+by effective user ID) added the key, and only allows the key to be
+removed by that user --- or by "root", if they use
+`FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS`_.
+
+However, if another user has added the key, it may be desirable to
+prevent that other user from unexpectedly removing it. Therefore,
+FS_IOC_ADD_ENCRYPTION_KEY may also be used to add a v2 policy key
+*again*, even if it's already added by other user(s). In this case,
+FS_IOC_ADD_ENCRYPTION_KEY will just install a claim to the key for the
+current user, rather than actually add the key again (but the raw key
+must still be provided, as a proof of knowledge).
+
+FS_IOC_ADD_ENCRYPTION_KEY returns 0 if either the key or a claim to
+the key was either added or already exists.
+
+FS_IOC_ADD_ENCRYPTION_KEY can fail with the following errors:
+
+- ``EACCES``: FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR was specified, but the
+ caller does not have the CAP_SYS_ADMIN capability in the initial
+ user namespace
+- ``EDQUOT``: the key quota for this user would be exceeded by adding
+ the key
+- ``EINVAL``: invalid key size or key specifier type, or reserved bits
+ were set
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+Legacy method
+~~~~~~~~~~~~~
+
+For v1 encryption policies, a master encryption key can also be
+provided by adding it to a process-subscribed keyring, e.g. to a
+session keyring, or to a user keyring if the user keyring is linked
+into the session keyring.
+
+This method is deprecated (and not supported for v2 encryption
+policies) for several reasons. First, it cannot be used in
+combination with FS_IOC_REMOVE_ENCRYPTION_KEY (see `Removing keys`_),
+so for removing a key a workaround such as keyctl_unlink() in
+combination with ``sync; echo 2 > /proc/sys/vm/drop_caches`` would
+have to be used. Second, it doesn't match the fact that the
+locked/unlocked status of encrypted files (i.e. whether they appear to
+be in plaintext form or in ciphertext form) is global. This mismatch
+has caused much confusion as well as real problems when processes
+running under different UIDs, such as a ``sudo`` command, need to
+access encrypted files.
+
+Nevertheless, to add a key to one of the process-subscribed keyrings,
+the add_key() system call can be used (see:
``Documentation/security/keys/core.rst``). The key type must be
"logon"; keys of this type are kept in kernel memory and cannot be
read back by userspace. The key description must be "fscrypt:"
@@ -401,12 +720,12 @@ followed by the 16-character lower case hex representation of the
``master_key_descriptor`` that was set in the encryption policy. The
key payload must conform to the following structure::
- #define FS_MAX_KEY_SIZE 64
+ #define FSCRYPT_MAX_KEY_SIZE 64
struct fscrypt_key {
- u32 mode;
- u8 raw[FS_MAX_KEY_SIZE];
- u32 size;
+ __u32 mode;
+ __u8 raw[FSCRYPT_MAX_KEY_SIZE];
+ __u32 size;
};
``mode`` is ignored; just set it to 0. The actual key is provided in
@@ -418,26 +737,194 @@ with a filesystem-specific prefix such as "ext4:". However, the
filesystem-specific prefixes are deprecated and should not be used in
new programs.
-There are several different types of keyrings in which encryption keys
-may be placed, such as a session keyring, a user session keyring, or a
-user keyring. Each key must be placed in a keyring that is "attached"
-to all processes that might need to access files encrypted with it, in
-the sense that request_key() will find the key. Generally, if only
-processes belonging to a specific user need to access a given
-encrypted directory and no session keyring has been installed, then
-that directory's key should be placed in that user's user session
-keyring or user keyring. Otherwise, a session keyring should be
-installed if needed, and the key should be linked into that session
-keyring, or in a keyring linked into that session keyring.
-
-Note: introducing the complex visibility semantics of keyrings here
-was arguably a mistake --- especially given that by design, after any
-process successfully opens an encrypted file (thereby setting up the
-per-file key), possessing the keyring key is not actually required for
-any process to read/write the file until its in-memory inode is
-evicted. In the future there probably should be a way to provide keys
-directly to the filesystem instead, which would make the intended
-semantics clearer.
+Removing keys
+-------------
+
+Two ioctls are available for removing a key that was added by
+`FS_IOC_ADD_ENCRYPTION_KEY`_:
+
+- `FS_IOC_REMOVE_ENCRYPTION_KEY`_
+- `FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS`_
+
+These two ioctls differ only in cases where v2 policy keys are added
+or removed by non-root users.
+
+These ioctls don't work on keys that were added via the legacy
+process-subscribed keyrings mechanism.
+
+Before using these ioctls, read the `Kernel memory compromise`_
+section for a discussion of the security goals and limitations of
+these ioctls.
+
+FS_IOC_REMOVE_ENCRYPTION_KEY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_REMOVE_ENCRYPTION_KEY ioctl removes a claim to a master
+encryption key from the filesystem, and possibly removes the key
+itself. It can be executed on any file or directory on the target
+filesystem, but using the filesystem's root directory is recommended.
+It takes in a pointer to a :c:type:`struct fscrypt_remove_key_arg`,
+defined as follows::
+
+ struct fscrypt_remove_key_arg {
+ struct fscrypt_key_specifier key_spec;
+ #define FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY 0x00000001
+ #define FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS 0x00000002
+ __u32 removal_status_flags; /* output */
+ __u32 __reserved[5];
+ };
+
+This structure must be zeroed, then initialized as follows:
+
+- The key to remove is specified by ``key_spec``:
+
+ - To remove a key used by v1 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR and fill
+ in ``key_spec.u.descriptor``. To remove this type of key, the
+ calling process must have the CAP_SYS_ADMIN capability in the
+ initial user namespace.
+
+ - To remove a key used by v2 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER and fill
+ in ``key_spec.u.identifier``.
+
+For v2 policy keys, this ioctl is usable by non-root users. However,
+to make this possible, it actually just removes the current user's
+claim to the key, undoing a single call to FS_IOC_ADD_ENCRYPTION_KEY.
+Only after all claims are removed is the key really removed.
+
+For example, if FS_IOC_ADD_ENCRYPTION_KEY was called with uid 1000,
+then the key will be "claimed" by uid 1000, and
+FS_IOC_REMOVE_ENCRYPTION_KEY will only succeed as uid 1000. Or, if
+both uids 1000 and 2000 added the key, then for each uid
+FS_IOC_REMOVE_ENCRYPTION_KEY will only remove their own claim. Only
+once *both* are removed is the key really removed. (Think of it like
+unlinking a file that may have hard links.)
+
+If FS_IOC_REMOVE_ENCRYPTION_KEY really removes the key, it will also
+try to "lock" all files that had been unlocked with the key. It won't
+lock files that are still in-use, so this ioctl is expected to be used
+in cooperation with userspace ensuring that none of the files are
+still open. However, if necessary, this ioctl can be executed again
+later to retry locking any remaining files.
+
+FS_IOC_REMOVE_ENCRYPTION_KEY returns 0 if either the key was removed
+(but may still have files remaining to be locked), the user's claim to
+the key was removed, or the key was already removed but had files
+remaining to be the locked so the ioctl retried locking them. In any
+of these cases, ``removal_status_flags`` is filled in with the
+following informational status flags:
+
+- ``FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY``: set if some file(s)
+ are still in-use. Not guaranteed to be set in the case where only
+ the user's claim to the key was removed.
+- ``FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS``: set if only the
+ user's claim to the key was removed, not the key itself
+
+FS_IOC_REMOVE_ENCRYPTION_KEY can fail with the following errors:
+
+- ``EACCES``: The FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR key specifier type
+ was specified, but the caller does not have the CAP_SYS_ADMIN
+ capability in the initial user namespace
+- ``EINVAL``: invalid key specifier type, or reserved bits were set
+- ``ENOKEY``: the key object was not found at all, i.e. it was never
+ added in the first place or was already fully removed including all
+ files locked; or, the user does not have a claim to the key (but
+ someone else does).
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS is exactly the same as
+`FS_IOC_REMOVE_ENCRYPTION_KEY`_, except that for v2 policy keys, the
+ALL_USERS version of the ioctl will remove all users' claims to the
+key, not just the current user's. I.e., the key itself will always be
+removed, no matter how many users have added it. This difference is
+only meaningful if non-root users are adding and removing keys.
+
+Because of this, FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS also requires
+"root", namely the CAP_SYS_ADMIN capability in the initial user
+namespace. Otherwise it will fail with EACCES.
+
+Getting key status
+------------------
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_KEY_STATUS ioctl retrieves the status of a
+master encryption key. It can be executed on any file or directory on
+the target filesystem, but using the filesystem's root directory is
+recommended. It takes in a pointer to a :c:type:`struct
+fscrypt_get_key_status_arg`, defined as follows::
+
+ struct fscrypt_get_key_status_arg {
+ /* input */
+ struct fscrypt_key_specifier key_spec;
+ __u32 __reserved[6];
+
+ /* output */
+ #define FSCRYPT_KEY_STATUS_ABSENT 1
+ #define FSCRYPT_KEY_STATUS_PRESENT 2
+ #define FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED 3
+ __u32 status;
+ #define FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF 0x00000001
+ __u32 status_flags;
+ __u32 user_count;
+ __u32 __out_reserved[13];
+ };
+
+The caller must zero all input fields, then fill in ``key_spec``:
+
+ - To get the status of a key for v1 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR and fill
+ in ``key_spec.u.descriptor``.
+
+ - To get the status of a key for v2 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER and fill
+ in ``key_spec.u.identifier``.
+
+On success, 0 is returned and the kernel fills in the output fields:
+
+- ``status`` indicates whether the key is absent, present, or
+ incompletely removed. Incompletely removed means that the master
+ secret has been removed, but some files are still in use; i.e.,
+ `FS_IOC_REMOVE_ENCRYPTION_KEY`_ returned 0 but set the informational
+ status flag FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY.
+
+- ``status_flags`` can contain the following flags:
+
+ - ``FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF`` indicates that the key
+ has added by the current user. This is only set for keys
+ identified by ``identifier`` rather than by ``descriptor``.
+
+- ``user_count`` specifies the number of users who have added the key.
+ This is only set for keys identified by ``identifier`` rather than
+ by ``descriptor``.
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS can fail with the following errors:
+
+- ``EINVAL``: invalid key specifier type, or reserved bits were set
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+Among other use cases, FS_IOC_GET_ENCRYPTION_KEY_STATUS can be useful
+for determining whether the key for a given encrypted directory needs
+to be added before prompting the user for the passphrase needed to
+derive the key.
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS can only get the status of keys in
+the filesystem-level keyring, i.e. the keyring managed by
+`FS_IOC_ADD_ENCRYPTION_KEY`_ and `FS_IOC_REMOVE_ENCRYPTION_KEY`_. It
+cannot get the status of a key that has only been added for use by v1
+encryption policies using the legacy mechanism involving
+process-subscribed keyrings.
Access semantics
================
@@ -500,7 +987,7 @@ Without the key
Some filesystem operations may be performed on encrypted regular
files, directories, and symlinks even before their encryption key has
-been provided:
+been added, or after their encryption key has been removed:
- File metadata may be read, e.g. using stat().
@@ -565,33 +1052,44 @@ Encryption context
------------------
An encryption policy is represented on-disk by a :c:type:`struct
-fscrypt_context`. It is up to individual filesystems to decide where
-to store it, but normally it would be stored in a hidden extended
-attribute. It should *not* be exposed by the xattr-related system
-calls such as getxattr() and setxattr() because of the special
-semantics of the encryption xattr. (In particular, there would be
-much confusion if an encryption policy were to be added to or removed
-from anything other than an empty directory.) The struct is defined
-as follows::
-
- #define FS_KEY_DESCRIPTOR_SIZE 8
+fscrypt_context_v1` or a :c:type:`struct fscrypt_context_v2`. It is
+up to individual filesystems to decide where to store it, but normally
+it would be stored in a hidden extended attribute. It should *not* be
+exposed by the xattr-related system calls such as getxattr() and
+setxattr() because of the special semantics of the encryption xattr.
+(In particular, there would be much confusion if an encryption policy
+were to be added to or removed from anything other than an empty
+directory.) These structs are defined as follows::
+
#define FS_KEY_DERIVATION_NONCE_SIZE 16
- struct fscrypt_context {
- u8 format;
+ #define FSCRYPT_KEY_DESCRIPTOR_SIZE 8
+ struct fscrypt_context_v1 {
+ u8 version;
+ u8 contents_encryption_mode;
+ u8 filenames_encryption_mode;
+ u8 flags;
+ u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
+ };
+
+ #define FSCRYPT_KEY_IDENTIFIER_SIZE 16
+ struct fscrypt_context_v2 {
+ u8 version;
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
- u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
+ u8 __reserved[4];
+ u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
-Note that :c:type:`struct fscrypt_context` contains the same
-information as :c:type:`struct fscrypt_policy` (see `Setting an
-encryption policy`_), except that :c:type:`struct fscrypt_context`
-also contains a nonce. The nonce is randomly generated by the kernel
-and is used to derive the inode's encryption key as described in
-`Per-file keys`_.
+The context structs contain the same information as the corresponding
+policy structs (see `Setting an encryption policy`_), except that the
+context structs also contain a nonce. The nonce is randomly generated
+by the kernel and is used as KDF input or as a tweak to cause
+different files to be encrypted differently; see `Per-file keys`_ and
+`DIRECT_KEY and per-mode keys`_.
Data path changes
-----------------
diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst
new file mode 100644
index 000000000000..42a0b6dd9e0b
--- /dev/null
+++ b/Documentation/filesystems/fsverity.rst
@@ -0,0 +1,726 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. _fsverity:
+
+=======================================================
+fs-verity: read-only file-based authenticity protection
+=======================================================
+
+Introduction
+============
+
+fs-verity (``fs/verity/``) is a support layer that filesystems can
+hook into to support transparent integrity and authenticity protection
+of read-only files. Currently, it is supported by the ext4 and f2fs
+filesystems. Like fscrypt, not too much filesystem-specific code is
+needed to support fs-verity.
+
+fs-verity is similar to `dm-verity
+<https://www.kernel.org/doc/Documentation/device-mapper/verity.txt>`_
+but works on files rather than block devices. On regular files on
+filesystems supporting fs-verity, userspace can execute an ioctl that
+causes the filesystem to build a Merkle tree for the file and persist
+it to a filesystem-specific location associated with the file.
+
+After this, the file is made readonly, and all reads from the file are
+automatically verified against the file's Merkle tree. Reads of any
+corrupted data, including mmap reads, will fail.
+
+Userspace can use another ioctl to retrieve the root hash (actually
+the "file measurement", which is a hash that includes the root hash)
+that fs-verity is enforcing for the file. This ioctl executes in
+constant time, regardless of the file size.
+
+fs-verity is essentially a way to hash a file in constant time,
+subject to the caveat that reads which would violate the hash will
+fail at runtime.
+
+Use cases
+=========
+
+By itself, the base fs-verity feature only provides integrity
+protection, i.e. detection of accidental (non-malicious) corruption.
+
+However, because fs-verity makes retrieving the file hash extremely
+efficient, it's primarily meant to be used as a tool to support
+authentication (detection of malicious modifications) or auditing
+(logging file hashes before use).
+
+Trusted userspace code (e.g. operating system code running on a
+read-only partition that is itself authenticated by dm-verity) can
+authenticate the contents of an fs-verity file by using the
+`FS_IOC_MEASURE_VERITY`_ ioctl to retrieve its hash, then verifying a
+digital signature of it.
+
+A standard file hash could be used instead of fs-verity. However,
+this is inefficient if the file is large and only a small portion may
+be accessed. This is often the case for Android application package
+(APK) files, for example. These typically contain many translations,
+classes, and other resources that are infrequently or even never
+accessed on a particular device. It would be slow and wasteful to
+read and hash the entire file before starting the application.
+
+Unlike an ahead-of-time hash, fs-verity also re-verifies data each
+time it's paged in. This ensures that malicious disk firmware can't
+undetectably change the contents of the file at runtime.
+
+fs-verity does not replace or obsolete dm-verity. dm-verity should
+still be used on read-only filesystems. fs-verity is for files that
+must live on a read-write filesystem because they are independently
+updated and potentially user-installed, so dm-verity cannot be used.
+
+The base fs-verity feature is a hashing mechanism only; actually
+authenticating the files is up to userspace. However, to meet some
+users' needs, fs-verity optionally supports a simple signature
+verification mechanism where users can configure the kernel to require
+that all fs-verity files be signed by a key loaded into a keyring; see
+`Built-in signature verification`_. Support for fs-verity file hashes
+in IMA (Integrity Measurement Architecture) policies is also planned.
+
+User API
+========
+
+FS_IOC_ENABLE_VERITY
+--------------------
+
+The FS_IOC_ENABLE_VERITY ioctl enables fs-verity on a file. It takes
+in a pointer to a :c:type:`struct fsverity_enable_arg`, defined as
+follows::
+
+ struct fsverity_enable_arg {
+ __u32 version;
+ __u32 hash_algorithm;
+ __u32 block_size;
+ __u32 salt_size;
+ __u64 salt_ptr;
+ __u32 sig_size;
+ __u32 __reserved1;
+ __u64 sig_ptr;
+ __u64 __reserved2[11];
+ };
+
+This structure contains the parameters of the Merkle tree to build for
+the file, and optionally contains a signature. It must be initialized
+as follows:
+
+- ``version`` must be 1.
+- ``hash_algorithm`` must be the identifier for the hash algorithm to
+ use for the Merkle tree, such as FS_VERITY_HASH_ALG_SHA256. See
+ ``include/uapi/linux/fsverity.h`` for the list of possible values.
+- ``block_size`` must be the Merkle tree block size. Currently, this
+ must be equal to the system page size, which is usually 4096 bytes.
+ Other sizes may be supported in the future. This value is not
+ necessarily the same as the filesystem block size.
+- ``salt_size`` is the size of the salt in bytes, or 0 if no salt is
+ provided. The salt is a value that is prepended to every hashed
+ block; it can be used to personalize the hashing for a particular
+ file or device. Currently the maximum salt size is 32 bytes.
+- ``salt_ptr`` is the pointer to the salt, or NULL if no salt is
+ provided.
+- ``sig_size`` is the size of the signature in bytes, or 0 if no
+ signature is provided. Currently the signature is (somewhat
+ arbitrarily) limited to 16128 bytes. See `Built-in signature
+ verification`_ for more information.
+- ``sig_ptr`` is the pointer to the signature, or NULL if no
+ signature is provided.
+- All reserved fields must be zeroed.
+
+FS_IOC_ENABLE_VERITY causes the filesystem to build a Merkle tree for
+the file and persist it to a filesystem-specific location associated
+with the file, then mark the file as a verity file. This ioctl may
+take a long time to execute on large files, and it is interruptible by
+fatal signals.
+
+FS_IOC_ENABLE_VERITY checks for write access to the inode. However,
+it must be executed on an O_RDONLY file descriptor and no processes
+can have the file open for writing. Attempts to open the file for
+writing while this ioctl is executing will fail with ETXTBSY. (This
+is necessary to guarantee that no writable file descriptors will exist
+after verity is enabled, and to guarantee that the file's contents are
+stable while the Merkle tree is being built over it.)
+
+On success, FS_IOC_ENABLE_VERITY returns 0, and the file becomes a
+verity file. On failure (including the case of interruption by a
+fatal signal), no changes are made to the file.
+
+FS_IOC_ENABLE_VERITY can fail with the following errors:
+
+- ``EACCES``: the process does not have write access to the file
+- ``EBADMSG``: the signature is malformed
+- ``EBUSY``: this ioctl is already running on the file
+- ``EEXIST``: the file already has verity enabled
+- ``EFAULT``: the caller provided inaccessible memory
+- ``EINTR``: the operation was interrupted by a fatal signal
+- ``EINVAL``: unsupported version, hash algorithm, or block size; or
+ reserved bits are set; or the file descriptor refers to neither a
+ regular file nor a directory.
+- ``EISDIR``: the file descriptor refers to a directory
+- ``EKEYREJECTED``: the signature doesn't match the file
+- ``EMSGSIZE``: the salt or signature is too long
+- ``ENOKEY``: the fs-verity keyring doesn't contain the certificate
+ needed to verify the signature
+- ``ENOPKG``: fs-verity recognizes the hash algorithm, but it's not
+ available in the kernel's crypto API as currently configured (e.g.
+ for SHA-512, missing CONFIG_CRYPTO_SHA512).
+- ``ENOTTY``: this type of filesystem does not implement fs-verity
+- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
+ support; or the filesystem superblock has not had the 'verity'
+ feature enabled on it; or the filesystem does not support fs-verity
+ on this file. (See `Filesystem support`_.)
+- ``EPERM``: the file is append-only; or, a signature is required and
+ one was not provided.
+- ``EROFS``: the filesystem is read-only
+- ``ETXTBSY``: someone has the file open for writing. This can be the
+ caller's file descriptor, another open file descriptor, or the file
+ reference held by a writable memory map.
+
+FS_IOC_MEASURE_VERITY
+---------------------
+
+The FS_IOC_MEASURE_VERITY ioctl retrieves the measurement of a verity
+file. The file measurement is a digest that cryptographically
+identifies the file contents that are being enforced on reads.
+
+This ioctl takes in a pointer to a variable-length structure::
+
+ struct fsverity_digest {
+ __u16 digest_algorithm;
+ __u16 digest_size; /* input/output */
+ __u8 digest[];
+ };
+
+``digest_size`` is an input/output field. On input, it must be
+initialized to the number of bytes allocated for the variable-length
+``digest`` field.
+
+On success, 0 is returned and the kernel fills in the structure as
+follows:
+
+- ``digest_algorithm`` will be the hash algorithm used for the file
+ measurement. It will match ``fsverity_enable_arg::hash_algorithm``.
+- ``digest_size`` will be the size of the digest in bytes, e.g. 32
+ for SHA-256. (This can be redundant with ``digest_algorithm``.)
+- ``digest`` will be the actual bytes of the digest.
+
+FS_IOC_MEASURE_VERITY is guaranteed to execute in constant time,
+regardless of the size of the file.
+
+FS_IOC_MEASURE_VERITY can fail with the following errors:
+
+- ``EFAULT``: the caller provided inaccessible memory
+- ``ENODATA``: the file is not a verity file
+- ``ENOTTY``: this type of filesystem does not implement fs-verity
+- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
+ support, or the filesystem superblock has not had the 'verity'
+ feature enabled on it. (See `Filesystem support`_.)
+- ``EOVERFLOW``: the digest is longer than the specified
+ ``digest_size`` bytes. Try providing a larger buffer.
+
+FS_IOC_GETFLAGS
+---------------
+
+The existing ioctl FS_IOC_GETFLAGS (which isn't specific to fs-verity)
+can also be used to check whether a file has fs-verity enabled or not.
+To do so, check for FS_VERITY_FL (0x00100000) in the returned flags.
+
+The verity flag is not settable via FS_IOC_SETFLAGS. You must use
+FS_IOC_ENABLE_VERITY instead, since parameters must be provided.
+
+Accessing verity files
+======================
+
+Applications can transparently access a verity file just like a
+non-verity one, with the following exceptions:
+
+- Verity files are readonly. They cannot be opened for writing or
+ truncate()d, even if the file mode bits allow it. Attempts to do
+ one of these things will fail with EPERM. However, changes to
+ metadata such as owner, mode, timestamps, and xattrs are still
+ allowed, since these are not measured by fs-verity. Verity files
+ can also still be renamed, deleted, and linked to.
+
+- Direct I/O is not supported on verity files. Attempts to use direct
+ I/O on such files will fall back to buffered I/O.
+
+- DAX (Direct Access) is not supported on verity files, because this
+ would circumvent the data verification.
+
+- Reads of data that doesn't match the verity Merkle tree will fail
+ with EIO (for read()) or SIGBUS (for mmap() reads).
+
+- If the sysctl "fs.verity.require_signatures" is set to 1 and the
+ file's verity measurement is not signed by a key in the fs-verity
+ keyring, then opening the file will fail. See `Built-in signature
+ verification`_.
+
+Direct access to the Merkle tree is not supported. Therefore, if a
+verity file is copied, or is backed up and restored, then it will lose
+its "verity"-ness. fs-verity is primarily meant for files like
+executables that are managed by a package manager.
+
+File measurement computation
+============================
+
+This section describes how fs-verity hashes the file contents using a
+Merkle tree to produce the "file measurement" which cryptographically
+identifies the file contents. This algorithm is the same for all
+filesystems that support fs-verity.
+
+Userspace only needs to be aware of this algorithm if it needs to
+compute the file measurement itself, e.g. in order to sign the file.
+
+.. _fsverity_merkle_tree:
+
+Merkle tree
+-----------
+
+The file contents is divided into blocks, where the block size is
+configurable but is usually 4096 bytes. The end of the last block is
+zero-padded if needed. Each block is then hashed, producing the first
+level of hashes. Then, the hashes in this first level are grouped
+into 'blocksize'-byte blocks (zero-padding the ends as needed) and
+these blocks are hashed, producing the second level of hashes. This
+proceeds up the tree until only a single block remains. The hash of
+this block is the "Merkle tree root hash".
+
+If the file fits in one block and is nonempty, then the "Merkle tree
+root hash" is simply the hash of the single data block. If the file
+is empty, then the "Merkle tree root hash" is all zeroes.
+
+The "blocks" here are not necessarily the same as "filesystem blocks".
+
+If a salt was specified, then it's zero-padded to the closest multiple
+of the input size of the hash algorithm's compression function, e.g.
+64 bytes for SHA-256 or 128 bytes for SHA-512. The padded salt is
+prepended to every data or Merkle tree block that is hashed.
+
+The purpose of the block padding is to cause every hash to be taken
+over the same amount of data, which simplifies the implementation and
+keeps open more possibilities for hardware acceleration. The purpose
+of the salt padding is to make the salting "free" when the salted hash
+state is precomputed, then imported for each hash.
+
+Example: in the recommended configuration of SHA-256 and 4K blocks,
+128 hash values fit in each block. Thus, each level of the Merkle
+tree is approximately 128 times smaller than the previous, and for
+large files the Merkle tree's size converges to approximately 1/127 of
+the original file size. However, for small files, the padding is
+significant, making the space overhead proportionally more.
+
+.. _fsverity_descriptor:
+
+fs-verity descriptor
+--------------------
+
+By itself, the Merkle tree root hash is ambiguous. For example, it
+can't a distinguish a large file from a small second file whose data
+is exactly the top-level hash block of the first file. Ambiguities
+also arise from the convention of padding to the next block boundary.
+
+To solve this problem, the verity file measurement is actually
+computed as a hash of the following structure, which contains the
+Merkle tree root hash as well as other fields such as the file size::
+
+ struct fsverity_descriptor {
+ __u8 version; /* must be 1 */
+ __u8 hash_algorithm; /* Merkle tree hash algorithm */
+ __u8 log_blocksize; /* log2 of size of data and tree blocks */
+ __u8 salt_size; /* size of salt in bytes; 0 if none */
+ __le32 sig_size; /* must be 0 */
+ __le64 data_size; /* size of file the Merkle tree is built over */
+ __u8 root_hash[64]; /* Merkle tree root hash */
+ __u8 salt[32]; /* salt prepended to each hashed block */
+ __u8 __reserved[144]; /* must be 0's */
+ };
+
+Note that the ``sig_size`` field must be set to 0 for the purpose of
+computing the file measurement, even if a signature was provided (or
+will be provided) to `FS_IOC_ENABLE_VERITY`_.
+
+Built-in signature verification
+===============================
+
+With CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y, fs-verity supports putting
+a portion of an authentication policy (see `Use cases`_) in the
+kernel. Specifically, it adds support for:
+
+1. At fs-verity module initialization time, a keyring ".fs-verity" is
+ created. The root user can add trusted X.509 certificates to this
+ keyring using the add_key() system call, then (when done)
+ optionally use keyctl_restrict_keyring() to prevent additional
+ certificates from being added.
+
+2. `FS_IOC_ENABLE_VERITY`_ accepts a pointer to a PKCS#7 formatted
+ detached signature in DER format of the file measurement. On
+ success, this signature is persisted alongside the Merkle tree.
+ Then, any time the file is opened, the kernel will verify the
+ file's actual measurement against this signature, using the
+ certificates in the ".fs-verity" keyring.
+
+3. A new sysctl "fs.verity.require_signatures" is made available.
+ When set to 1, the kernel requires that all verity files have a
+ correctly signed file measurement as described in (2).
+
+File measurements must be signed in the following format, which is
+similar to the structure used by `FS_IOC_MEASURE_VERITY`_::
+
+ struct fsverity_signed_digest {
+ char magic[8]; /* must be "FSVerity" */
+ __le16 digest_algorithm;
+ __le16 digest_size;
+ __u8 digest[];
+ };
+
+fs-verity's built-in signature verification support is meant as a
+relatively simple mechanism that can be used to provide some level of
+authenticity protection for verity files, as an alternative to doing
+the signature verification in userspace or using IMA-appraisal.
+However, with this mechanism, userspace programs still need to check
+that the verity bit is set, and there is no protection against verity
+files being swapped around.
+
+Filesystem support
+==================
+
+fs-verity is currently supported by the ext4 and f2fs filesystems.
+The CONFIG_FS_VERITY kconfig option must be enabled to use fs-verity
+on either filesystem.
+
+``include/linux/fsverity.h`` declares the interface between the
+``fs/verity/`` support layer and filesystems. Briefly, filesystems
+must provide an ``fsverity_operations`` structure that provides
+methods to read and write the verity metadata to a filesystem-specific
+location, including the Merkle tree blocks and
+``fsverity_descriptor``. Filesystems must also call functions in
+``fs/verity/`` at certain times, such as when a file is opened or when
+pages have been read into the pagecache. (See `Verifying data`_.)
+
+ext4
+----
+
+ext4 supports fs-verity since Linux TODO and e2fsprogs v1.45.2.
+
+To create verity files on an ext4 filesystem, the filesystem must have
+been formatted with ``-O verity`` or had ``tune2fs -O verity`` run on
+it. "verity" is an RO_COMPAT filesystem feature, so once set, old
+kernels will only be able to mount the filesystem readonly, and old
+versions of e2fsck will be unable to check the filesystem. Moreover,
+currently ext4 only supports mounting a filesystem with the "verity"
+feature when its block size is equal to PAGE_SIZE (often 4096 bytes).
+
+ext4 sets the EXT4_VERITY_FL on-disk inode flag on verity files. It
+can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be cleared.
+
+ext4 also supports encryption, which can be used simultaneously with
+fs-verity. In this case, the plaintext data is verified rather than
+the ciphertext. This is necessary in order to make the file
+measurement meaningful, since every file is encrypted differently.
+
+ext4 stores the verity metadata (Merkle tree and fsverity_descriptor)
+past the end of the file, starting at the first 64K boundary beyond
+i_size. This approach works because (a) verity files are readonly,
+and (b) pages fully beyond i_size aren't visible to userspace but can
+be read/written internally by ext4 with only some relatively small
+changes to ext4. This approach avoids having to depend on the
+EA_INODE feature and on rearchitecturing ext4's xattr support to
+support paging multi-gigabyte xattrs into memory, and to support
+encrypting xattrs. Note that the verity metadata *must* be encrypted
+when the file is, since it contains hashes of the plaintext data.
+
+Currently, ext4 verity only supports the case where the Merkle tree
+block size, filesystem block size, and page size are all the same. It
+also only supports extent-based files.
+
+f2fs
+----
+
+f2fs supports fs-verity since Linux TODO and f2fs-tools v1.11.0.
+
+To create verity files on an f2fs filesystem, the filesystem must have
+been formatted with ``-O verity``.
+
+f2fs sets the FADVISE_VERITY_BIT on-disk inode flag on verity files.
+It can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be
+cleared.
+
+Like ext4, f2fs stores the verity metadata (Merkle tree and
+fsverity_descriptor) past the end of the file, starting at the first
+64K boundary beyond i_size. See explanation for ext4 above.
+Moreover, f2fs supports at most 4096 bytes of xattr entries per inode
+which wouldn't be enough for even a single Merkle tree block.
+
+Currently, f2fs verity only supports a Merkle tree block size of 4096.
+Also, f2fs doesn't support enabling verity on files that currently
+have atomic or volatile writes pending.
+
+Implementation details
+======================
+
+Verifying data
+--------------
+
+fs-verity ensures that all reads of a verity file's data are verified,
+regardless of which syscall is used to do the read (e.g. mmap(),
+read(), pread()) and regardless of whether it's the first read or a
+later read (unless the later read can return cached data that was
+already verified). Below, we describe how filesystems implement this.
+
+Pagecache
+~~~~~~~~~
+
+For filesystems using Linux's pagecache, the ``->readpage()`` and
+``->readpages()`` methods must be modified to verify pages before they
+are marked Uptodate. Merely hooking ``->read_iter()`` would be
+insufficient, since ``->read_iter()`` is not used for memory maps.
+
+Therefore, fs/verity/ provides a function fsverity_verify_page() which
+verifies a page that has been read into the pagecache of a verity
+inode, but is still locked and not Uptodate, so it's not yet readable
+by userspace. As needed to do the verification,
+fsverity_verify_page() will call back into the filesystem to read
+Merkle tree pages via fsverity_operations::read_merkle_tree_page().
+
+fsverity_verify_page() returns false if verification failed; in this
+case, the filesystem must not set the page Uptodate. Following this,
+as per the usual Linux pagecache behavior, attempts by userspace to
+read() from the part of the file containing the page will fail with
+EIO, and accesses to the page within a memory map will raise SIGBUS.
+
+fsverity_verify_page() currently only supports the case where the
+Merkle tree block size is equal to PAGE_SIZE (often 4096 bytes).
+
+In principle, fsverity_verify_page() verifies the entire path in the
+Merkle tree from the data page to the root hash. However, for
+efficiency the filesystem may cache the hash pages. Therefore,
+fsverity_verify_page() only ascends the tree reading hash pages until
+an already-verified hash page is seen, as indicated by the PageChecked
+bit being set. It then verifies the path to that page.
+
+This optimization, which is also used by dm-verity, results in
+excellent sequential read performance. This is because usually (e.g.
+127 in 128 times for 4K blocks and SHA-256) the hash page from the
+bottom level of the tree will already be cached and checked from
+reading a previous data page. However, random reads perform worse.
+
+Block device based filesystems
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Block device based filesystems (e.g. ext4 and f2fs) in Linux also use
+the pagecache, so the above subsection applies too. However, they
+also usually read many pages from a file at once, grouped into a
+structure called a "bio". To make it easier for these types of
+filesystems to support fs-verity, fs/verity/ also provides a function
+fsverity_verify_bio() which verifies all pages in a bio.
+
+ext4 and f2fs also support encryption. If a verity file is also
+encrypted, the pages must be decrypted before being verified. To
+support this, these filesystems allocate a "post-read context" for
+each bio and store it in ``->bi_private``::
+
+ struct bio_post_read_ctx {
+ struct bio *bio;
+ struct work_struct work;
+ unsigned int cur_step;
+ unsigned int enabled_steps;
+ };
+
+``enabled_steps`` is a bitmask that specifies whether decryption,
+verity, or both is enabled. After the bio completes, for each needed
+postprocessing step the filesystem enqueues the bio_post_read_ctx on a
+workqueue, and then the workqueue work does the decryption or
+verification. Finally, pages where no decryption or verity error
+occurred are marked Uptodate, and the pages are unlocked.
+
+Files on ext4 and f2fs may contain holes. Normally, ``->readpages()``
+simply zeroes holes and sets the corresponding pages Uptodate; no bios
+are issued. To prevent this case from bypassing fs-verity, these
+filesystems use fsverity_verify_page() to verify hole pages.
+
+ext4 and f2fs disable direct I/O on verity files, since otherwise
+direct I/O would bypass fs-verity. (They also do the same for
+encrypted files.)
+
+Userspace utility
+=================
+
+This document focuses on the kernel, but a userspace utility for
+fs-verity can be found at:
+
+ https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/fsverity-utils.git
+
+See the README.md file in the fsverity-utils source tree for details,
+including examples of setting up fs-verity protected files.
+
+Tests
+=====
+
+To test fs-verity, use xfstests. For example, using `kvm-xfstests
+<https://github.com/tytso/xfstests-bld/blob/master/Documentation/kvm-quickstart.md>`_::
+
+ kvm-xfstests -c ext4,f2fs -g verity
+
+FAQ
+===
+
+This section answers frequently asked questions about fs-verity that
+weren't already directly answered in other parts of this document.
+
+:Q: Why isn't fs-verity part of IMA?
+:A: fs-verity and IMA (Integrity Measurement Architecture) have
+ different focuses. fs-verity is a filesystem-level mechanism for
+ hashing individual files using a Merkle tree. In contrast, IMA
+ specifies a system-wide policy that specifies which files are
+ hashed and what to do with those hashes, such as log them,
+ authenticate them, or add them to a measurement list.
+
+ IMA is planned to support the fs-verity hashing mechanism as an
+ alternative to doing full file hashes, for people who want the
+ performance and security benefits of the Merkle tree based hash.
+ But it doesn't make sense to force all uses of fs-verity to be
+ through IMA. As a standalone filesystem feature, fs-verity
+ already meets many users' needs, and it's testable like other
+ filesystem features e.g. with xfstests.
+
+:Q: Isn't fs-verity useless because the attacker can just modify the
+ hashes in the Merkle tree, which is stored on-disk?
+:A: To verify the authenticity of an fs-verity file you must verify
+ the authenticity of the "file measurement", which is basically the
+ root hash of the Merkle tree. See `Use cases`_.
+
+:Q: Isn't fs-verity useless because the attacker can just replace a
+ verity file with a non-verity one?
+:A: See `Use cases`_. In the initial use case, it's really trusted
+ userspace code that authenticates the files; fs-verity is just a
+ tool to do this job efficiently and securely. The trusted
+ userspace code will consider non-verity files to be inauthentic.
+
+:Q: Why does the Merkle tree need to be stored on-disk? Couldn't you
+ store just the root hash?
+:A: If the Merkle tree wasn't stored on-disk, then you'd have to
+ compute the entire tree when the file is first accessed, even if
+ just one byte is being read. This is a fundamental consequence of
+ how Merkle tree hashing works. To verify a leaf node, you need to
+ verify the whole path to the root hash, including the root node
+ (the thing which the root hash is a hash of). But if the root
+ node isn't stored on-disk, you have to compute it by hashing its
+ children, and so on until you've actually hashed the entire file.
+
+ That defeats most of the point of doing a Merkle tree-based hash,
+ since if you have to hash the whole file ahead of time anyway,
+ then you could simply do sha256(file) instead. That would be much
+ simpler, and a bit faster too.
+
+ It's true that an in-memory Merkle tree could still provide the
+ advantage of verification on every read rather than just on the
+ first read. However, it would be inefficient because every time a
+ hash page gets evicted (you can't pin the entire Merkle tree into
+ memory, since it may be very large), in order to restore it you
+ again need to hash everything below it in the tree. This again
+ defeats most of the point of doing a Merkle tree-based hash, since
+ a single block read could trigger re-hashing gigabytes of data.
+
+:Q: But couldn't you store just the leaf nodes and compute the rest?
+:A: See previous answer; this really just moves up one level, since
+ one could alternatively interpret the data blocks as being the
+ leaf nodes of the Merkle tree. It's true that the tree can be
+ computed much faster if the leaf level is stored rather than just
+ the data, but that's only because each level is less than 1% the
+ size of the level below (assuming the recommended settings of
+ SHA-256 and 4K blocks). For the exact same reason, by storing
+ "just the leaf nodes" you'd already be storing over 99% of the
+ tree, so you might as well simply store the whole tree.
+
+:Q: Can the Merkle tree be built ahead of time, e.g. distributed as
+ part of a package that is installed to many computers?
+:A: This isn't currently supported. It was part of the original
+ design, but was removed to simplify the kernel UAPI and because it
+ wasn't a critical use case. Files are usually installed once and
+ used many times, and cryptographic hashing is somewhat fast on
+ most modern processors.
+
+:Q: Why doesn't fs-verity support writes?
+:A: Write support would be very difficult and would require a
+ completely different design, so it's well outside the scope of
+ fs-verity. Write support would require:
+
+ - A way to maintain consistency between the data and hashes,
+ including all levels of hashes, since corruption after a crash
+ (especially of potentially the entire file!) is unacceptable.
+ The main options for solving this are data journalling,
+ copy-on-write, and log-structured volume. But it's very hard to
+ retrofit existing filesystems with new consistency mechanisms.
+ Data journalling is available on ext4, but is very slow.
+
+ - Rebuilding the the Merkle tree after every write, which would be
+ extremely inefficient. Alternatively, a different authenticated
+ dictionary structure such as an "authenticated skiplist" could
+ be used. However, this would be far more complex.
+
+ Compare it to dm-verity vs. dm-integrity. dm-verity is very
+ simple: the kernel just verifies read-only data against a
+ read-only Merkle tree. In contrast, dm-integrity supports writes
+ but is slow, is much more complex, and doesn't actually support
+ full-device authentication since it authenticates each sector
+ independently, i.e. there is no "root hash". It doesn't really
+ make sense for the same device-mapper target to support these two
+ very different cases; the same applies to fs-verity.
+
+:Q: Since verity files are immutable, why isn't the immutable bit set?
+:A: The existing "immutable" bit (FS_IMMUTABLE_FL) already has a
+ specific set of semantics which not only make the file contents
+ read-only, but also prevent the file from being deleted, renamed,
+ linked to, or having its owner or mode changed. These extra
+ properties are unwanted for fs-verity, so reusing the immutable
+ bit isn't appropriate.
+
+:Q: Why does the API use ioctls instead of setxattr() and getxattr()?
+:A: Abusing the xattr interface for basically arbitrary syscalls is
+ heavily frowned upon by most of the Linux filesystem developers.
+ An xattr should really just be an xattr on-disk, not an API to
+ e.g. magically trigger construction of a Merkle tree.
+
+:Q: Does fs-verity support remote filesystems?
+:A: Only ext4 and f2fs support is implemented currently, but in
+ principle any filesystem that can store per-file verity metadata
+ can support fs-verity, regardless of whether it's local or remote.
+ Some filesystems may have fewer options of where to store the
+ verity metadata; one possibility is to store it past the end of
+ the file and "hide" it from userspace by manipulating i_size. The
+ data verification functions provided by ``fs/verity/`` also assume
+ that the filesystem uses the Linux pagecache, but both local and
+ remote filesystems normally do so.
+
+:Q: Why is anything filesystem-specific at all? Shouldn't fs-verity
+ be implemented entirely at the VFS level?
+:A: There are many reasons why this is not possible or would be very
+ difficult, including the following:
+
+ - To prevent bypassing verification, pages must not be marked
+ Uptodate until they've been verified. Currently, each
+ filesystem is responsible for marking pages Uptodate via
+ ``->readpages()``. Therefore, currently it's not possible for
+ the VFS to do the verification on its own. Changing this would
+ require significant changes to the VFS and all filesystems.
+
+ - It would require defining a filesystem-independent way to store
+ the verity metadata. Extended attributes don't work for this
+ because (a) the Merkle tree may be gigabytes, but many
+ filesystems assume that all xattrs fit into a single 4K
+ filesystem block, and (b) ext4 and f2fs encryption doesn't
+ encrypt xattrs, yet the Merkle tree *must* be encrypted when the
+ file contents are, because it stores hashes of the plaintext
+ file contents.
+
+ So the verity metadata would have to be stored in an actual
+ file. Using a separate file would be very ugly, since the
+ metadata is fundamentally part of the file to be protected, and
+ it could cause problems where users could delete the real file
+ but not the metadata file or vice versa. On the other hand,
+ having it be in the same file would break applications unless
+ filesystems' notion of i_size were divorced from the VFS's,
+ which would be complex and require changes to all filesystems.
+
+ - It's desirable that FS_IOC_ENABLE_VERITY uses the filesystem's
+ transaction mechanism so that either the file ends up with
+ verity enabled, or no changes were made. Allowing intermediate
+ states to occur after a crash may cause problems.
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 2de2fe2ab078..2c3a9f761205 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -20,6 +20,10 @@ algorithms work.
path-lookup
api-summary
splice
+ locking
+ directory-locking
+
+ porting
Filesystem support layers
=========================
@@ -32,3 +36,14 @@ filesystem implementations.
journalling
fscrypt
+ fsverity
+
+Filesystems
+===========
+
+Documentation for filesystem implementations.
+
+.. toctree::
+ :maxdepth: 2
+
+ virtiofs
diff --git a/Documentation/filesystems/jfs.txt b/Documentation/filesystems/jfs.txt
deleted file mode 100644
index 41fd757997b3..000000000000
--- a/Documentation/filesystems/jfs.txt
+++ /dev/null
@@ -1,52 +0,0 @@
-IBM's Journaled File System (JFS) for Linux
-
-JFS Homepage: http://jfs.sourceforge.net/
-
-The following mount options are supported:
-(*) == default
-
-iocharset=name Character set to use for converting from Unicode to
- ASCII. The default is to do no conversion. Use
- iocharset=utf8 for UTF-8 translations. This requires
- CONFIG_NLS_UTF8 to be set in the kernel .config file.
- iocharset=none specifies the default behavior explicitly.
-
-resize=value Resize the volume to <value> blocks. JFS only supports
- growing a volume, not shrinking it. This option is only
- valid during a remount, when the volume is mounted
- read-write. The resize keyword with no value will grow
- the volume to the full size of the partition.
-
-nointegrity Do not write to the journal. The primary use of this option
- is to allow for higher performance when restoring a volume
- from backup media. The integrity of the volume is not
- guaranteed if the system abnormally abends.
-
-integrity(*) Commit metadata changes to the journal. Use this option to
- remount a volume where the nointegrity option was
- previously specified in order to restore normal behavior.
-
-errors=continue Keep going on a filesystem error.
-errors=remount-ro(*) Remount the filesystem read-only on an error.
-errors=panic Panic and halt the machine if an error occurs.
-
-uid=value Override on-disk uid with specified value
-gid=value Override on-disk gid with specified value
-umask=value Override on-disk umask with specified octal value. For
- directories, the execute bit will be set if the corresponding
- read bit is set.
-
-discard=minlen This enables/disables the use of discard/TRIM commands.
-discard The discard/TRIM commands are sent to the underlying
-nodiscard(*) block device when blocks are freed. This is useful for SSD
- devices and sparse/thinly-provisioned LUNs. The FITRIM ioctl
- command is also available together with the nodiscard option.
- The value of minlen specifies the minimum blockcount, when
- a TRIM command to the block device is considered useful.
- When no value is given to the discard option, it defaults to
- 64 blocks, which means 256KiB in JFS.
- The minlen value of discard overrides the minlen value given
- on an FITRIM ioctl().
-
-The JFS mailing list can be subscribed to by using the link labeled
-"Mail list Subscribe" at our web page http://jfs.sourceforge.net/
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/locking.rst
index 204dd3ea36bb..fc3a0704553c 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/locking.rst
@@ -1,14 +1,22 @@
- The text below describes the locking rules for VFS-related methods.
+=======
+Locking
+=======
+
+The text below describes the locking rules for VFS-related methods.
It is (believed to be) up-to-date. *Please*, if you change anything in
prototypes or locking protocols - update this file. And update the relevant
instances in the tree, don't leave that to maintainers of filesystems/devices/
etc. At the very least, put the list of dubious cases in the end of this file.
Don't turn it into log - maintainers of out-of-the-tree code are supposed to
be able to use diff(1).
- Thing currently missing here: socket operations. Alexey?
---------------------------- dentry_operations --------------------------
-prototypes:
+Thing currently missing here: socket operations. Alexey?
+
+dentry_operations
+=================
+
+prototypes::
+
int (*d_revalidate)(struct dentry *, unsigned int);
int (*d_weak_revalidate)(struct dentry *, unsigned int);
int (*d_hash)(const struct dentry *, struct qstr *);
@@ -24,23 +32,30 @@ prototypes:
struct dentry *(*d_real)(struct dentry *, const struct inode *);
locking rules:
- rename_lock ->d_lock may block rcu-walk
-d_revalidate: no no yes (ref-walk) maybe
-d_weak_revalidate:no no yes no
-d_hash no no no maybe
-d_compare: yes no no maybe
-d_delete: no yes no no
-d_init: no no yes no
-d_release: no no yes no
-d_prune: no yes no no
-d_iput: no no yes no
-d_dname: no no no no
-d_automount: no no yes no
-d_manage: no no yes (ref-walk) maybe
-d_real no no yes no
-
---------------------------- inode_operations ---------------------------
-prototypes:
+
+================== =========== ======== ============== ========
+ops rename_lock ->d_lock may block rcu-walk
+================== =========== ======== ============== ========
+d_revalidate: no no yes (ref-walk) maybe
+d_weak_revalidate: no no yes no
+d_hash no no no maybe
+d_compare: yes no no maybe
+d_delete: no yes no no
+d_init: no no yes no
+d_release: no no yes no
+d_prune: no yes no no
+d_iput: no no yes no
+d_dname: no no no no
+d_automount: no no yes no
+d_manage: no no yes (ref-walk) maybe
+d_real no no yes no
+================== =========== ======== ============== ========
+
+inode_operations
+================
+
+prototypes::
+
int (*create) (struct inode *,struct dentry *,umode_t, bool);
struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
int (*link) (struct dentry *,struct inode *,struct dentry *);
@@ -68,7 +83,10 @@ prototypes:
locking rules:
all may block
- i_rwsem(inode)
+
+============ =============================================
+ops i_rwsem(inode)
+============ =============================================
lookup: shared
create: exclusive
link: exclusive (both)
@@ -89,17 +107,21 @@ fiemap: no
update_time: no
atomic_open: exclusive
tmpfile: no
+============ =============================================
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_rwsem
exclusive on victim.
cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
-See Documentation/filesystems/directory-locking for more detailed discussion
+See Documentation/filesystems/directory-locking.rst for more detailed discussion
of the locking scheme for directory operations.
------------------------ xattr_handler operations -----------------------
-prototypes:
+xattr_handler operations
+========================
+
+prototypes::
+
bool (*list)(struct dentry *dentry);
int (*get)(const struct xattr_handler *handler, struct dentry *dentry,
struct inode *inode, const char *name, void *buffer,
@@ -110,13 +132,20 @@ prototypes:
locking rules:
all may block
- i_rwsem(inode)
+
+===== ==============
+ops i_rwsem(inode)
+===== ==============
list: no
get: no
set: exclusive
+===== ==============
+
+super_operations
+================
+
+prototypes::
---------------------------- super_operations ---------------------------
-prototypes:
struct inode *(*alloc_inode)(struct super_block *sb);
void (*free_inode)(struct inode *);
void (*destroy_inode)(struct inode *);
@@ -138,7 +167,10 @@ prototypes:
locking rules:
All may block [not true, see below]
- s_umount
+
+====================== ============ ========================
+ops s_umount note
+====================== ============ ========================
alloc_inode:
free_inode: called from RCU callback
destroy_inode:
@@ -157,6 +189,7 @@ show_options: no (namespace_sem)
quota_read: no (see below)
quota_write: no (see below)
bdev_try_to_free_page: no (see below)
+====================== ============ ========================
->statfs() has s_umount (shared) when called by ustat(2) (native or
compat), but that's an accident of bad API; s_umount is used to pin
@@ -164,31 +197,44 @@ the superblock down when we only have dev_t given us by userland to
identify the superblock. Everything else (statfs(), fstatfs(), etc.)
doesn't hold it when calling ->statfs() - superblock is pinned down
by resolving the pathname passed to syscall.
+
->quota_read() and ->quota_write() functions are both guaranteed to
be the only ones operating on the quota file by the quota code (via
dqio_sem) (unless an admin really wants to screw up something and
writes to quota files with quotas on). For other details about locking
see also dquot_operations section.
+
->bdev_try_to_free_page is called from the ->releasepage handler of
the block device inode. See there for more details.
---------------------------- file_system_type ---------------------------
-prototypes:
+file_system_type
+================
+
+prototypes::
+
struct dentry *(*mount) (struct file_system_type *, int,
const char *, void *);
void (*kill_sb) (struct super_block *);
+
locking rules:
- may block
+
+======= =========
+ops may block
+======= =========
mount yes
kill_sb yes
+======= =========
->mount() returns ERR_PTR or the root dentry; its superblock should be locked
on return.
+
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
unlocks and drops the reference.
---------------------------- address_space_operations --------------------------
-prototypes:
+address_space_operations
+========================
+prototypes::
+
int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage)(struct file *, struct page *);
int (*writepages)(struct address_space *, struct writeback_control *);
@@ -218,14 +264,16 @@ prototypes:
locking rules:
All except set_page_dirty and freepage may block
- PageLocked(page) i_rwsem
+====================== ======================== =========
+ops PageLocked(page) i_rwsem
+====================== ======================== =========
writepage: yes, unlocks (see below)
readpage: yes, unlocks
writepages:
set_page_dirty no
readpages:
-write_begin: locks the page exclusive
-write_end: yes, unlocks exclusive
+write_begin: locks the page exclusive
+write_end: yes, unlocks exclusive
bmap:
invalidatepage: yes
releasepage: yes
@@ -239,17 +287,18 @@ is_partially_uptodate: yes
error_remove_page: yes
swap_activate: no
swap_deactivate: no
+====================== ======================== =========
- ->write_begin(), ->write_end() and ->readpage() may be called from
+->write_begin(), ->write_end() and ->readpage() may be called from
the request handler (/dev/loop).
- ->readpage() unlocks the page, either synchronously or via I/O
+->readpage() unlocks the page, either synchronously or via I/O
completion.
- ->readpages() populates the pagecache with the passed pages and starts
+->readpages() populates the pagecache with the passed pages and starts
I/O against them. They come unlocked upon I/O completion.
- ->writepage() is used for two purposes: for "memory cleansing" and for
+->writepage() is used for two purposes: for "memory cleansing" and for
"sync". These are quite different operations and the behaviour may differ
depending upon the mode.
@@ -297,70 +346,81 @@ will leave the page itself marked clean but it will be tagged as dirty in the
radix tree. This incoherency can lead to all sorts of hard-to-debug problems
in the filesystem like having dirty inodes at umount and losing written data.
- ->writepages() is used for periodic writeback and for syscall-initiated
+->writepages() is used for periodic writeback and for syscall-initiated
sync operations. The address_space should start I/O against at least
-*nr_to_write pages. *nr_to_write must be decremented for each page which is
-written. The address_space implementation may write more (or less) pages
-than *nr_to_write asks for, but it should try to be reasonably close. If
-nr_to_write is NULL, all dirty pages must be written.
+``*nr_to_write`` pages. ``*nr_to_write`` must be decremented for each page
+which is written. The address_space implementation may write more (or less)
+pages than ``*nr_to_write`` asks for, but it should try to be reasonably close.
+If nr_to_write is NULL, all dirty pages must be written.
writepages should _only_ write pages which are present on
mapping->io_pages.
- ->set_page_dirty() is called from various places in the kernel
+->set_page_dirty() is called from various places in the kernel
when the target page is marked as needing writeback. It may be called
under spinlock (it cannot block) and is sometimes called with the page
not locked.
- ->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
+->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
filesystems and by the swapper. The latter will eventually go away. Please,
keep it that way and don't breed new callers.
- ->invalidatepage() is called when the filesystem must attempt to drop
+->invalidatepage() is called when the filesystem must attempt to drop
some or all of the buffers from the page when it is being truncated. It
returns zero on success. If ->invalidatepage is zero, the kernel uses
block_invalidatepage() instead.
- ->releasepage() is called when the kernel is about to try to drop the
+->releasepage() is called when the kernel is about to try to drop the
buffers from the page in preparation for freeing it. It returns zero to
indicate that the buffers are (or may be) freeable. If ->releasepage is zero,
the kernel assumes that the fs has no private interest in the buffers.
- ->freepage() is called when the kernel is done dropping the page
+->freepage() is called when the kernel is done dropping the page
from the page cache.
- ->launder_page() may be called prior to releasing a page if
+->launder_page() may be called prior to releasing a page if
it is still found to be dirty. It returns zero if the page was successfully
cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.
- ->swap_activate will be called with a non-zero argument on
+->swap_activate will be called with a non-zero argument on
files backing (non block device backed) swapfiles. A return value
of zero indicates success, in which case this file can be used for
backing swapspace. The swapspace operations will be proxied to the
address space operations.
- ->swap_deactivate() will be called in the sys_swapoff()
+->swap_deactivate() will be called in the sys_swapoff()
path after ->swap_activate() returned success.
------------------------ file_lock_operations ------------------------------
-prototypes:
+file_lock_operations
+====================
+
+prototypes::
+
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
void (*fl_release_private)(struct file_lock *);
locking rules:
- inode->i_lock may block
+
+=================== ============= =========
+ops inode->i_lock may block
+=================== ============= =========
fl_copy_lock: yes no
-fl_release_private: maybe maybe[1]
+fl_release_private: maybe maybe[1]_
+=================== ============= =========
+
+.. [1]:
+ ->fl_release_private for flock or POSIX locks is currently allowed
+ to block. Leases however can still be freed while the i_lock is held and
+ so fl_release_private called on a lease should not block.
-[1]: ->fl_release_private for flock or POSIX locks is currently allowed
-to block. Leases however can still be freed while the i_lock is held and
-so fl_release_private called on a lease should not block.
+lock_manager_operations
+=======================
+
+prototypes::
------------------------ lock_manager_operations ---------------------------
-prototypes:
void (*lm_notify)(struct file_lock *); /* unblock callback */
int (*lm_grant)(struct file_lock *, struct file_lock *, int);
void (*lm_break)(struct file_lock *); /* break_lease callback */
@@ -368,24 +428,33 @@ prototypes:
locking rules:
- inode->i_lock blocked_lock_lock may block
+========== ============= ================= =========
+ops inode->i_lock blocked_lock_lock may block
+========== ============= ================= =========
lm_notify: yes yes no
lm_grant: no no no
lm_break: yes no no
lm_change yes no no
+========== ============= ================= =========
+
+buffer_head
+===========
+
+prototypes::
---------------------------- buffer_head -----------------------------------
-prototypes:
void (*b_end_io)(struct buffer_head *bh, int uptodate);
locking rules:
- called from interrupts. In other words, extreme care is needed here.
+
+called from interrupts. In other words, extreme care is needed here.
bh is locked, but that's all warranties we have here. Currently only RAID1,
highmem, fs/buffer.c, and fs/ntfs/aops.c are providing these. Block devices
call this method upon the IO completion.
---------------------------- block_device_operations -----------------------
-prototypes:
+block_device_operations
+=======================
+prototypes::
+
int (*open) (struct block_device *, fmode_t);
int (*release) (struct gendisk *, fmode_t);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
@@ -399,7 +468,10 @@ prototypes:
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
locking rules:
- bd_mutex
+
+======================= ===================
+ops bd_mutex
+======================= ===================
open: yes
release: yes
ioctl: no
@@ -410,6 +482,7 @@ unlock_native_capacity: no
revalidate_disk: no
getgeo: no
swap_slot_free_notify: no (see below)
+======================= ===================
media_changed, unlock_native_capacity and revalidate_disk are called only from
check_disk_change().
@@ -418,8 +491,11 @@ swap_slot_free_notify is called with swap_lock and sometimes the page lock
held.
---------------------------- file_operations -------------------------------
-prototypes:
+file_operations
+===============
+
+prototypes::
+
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
@@ -455,7 +531,6 @@ prototypes:
size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **, void **);
long (*fallocate)(struct file *, int, loff_t, loff_t);
-};
locking rules:
All may block.
@@ -490,8 +565,11 @@ in sys_read() and friends.
the lease within the individual filesystem to record the result of the
operation
---------------------------- dquot_operations -------------------------------
-prototypes:
+dquot_operations
+================
+
+prototypes::
+
int (*write_dquot) (struct dquot *);
int (*acquire_dquot) (struct dquot *);
int (*release_dquot) (struct dquot *);
@@ -503,20 +581,26 @@ a proper locking wrt the filesystem and call the generic quota operations.
What filesystem should expect from the generic quota functions:
- FS recursion Held locks when called
+============== ============ =========================
+ops FS recursion Held locks when called
+============== ============ =========================
write_dquot: yes dqonoff_sem or dqptr_sem
acquire_dquot: yes dqonoff_sem or dqptr_sem
release_dquot: yes dqonoff_sem or dqptr_sem
mark_dirty: no -
write_info: yes dqonoff_sem
+============== ============ =========================
FS recursion means calling ->quota_read() and ->quota_write() from superblock
operations.
More details about quota locking can be found in fs/dquot.c.
---------------------------- vm_operations_struct -----------------------------
-prototypes:
+vm_operations_struct
+====================
+
+prototypes::
+
void (*open)(struct vm_area_struct*);
void (*close)(struct vm_area_struct*);
vm_fault_t (*fault)(struct vm_area_struct*, struct vm_fault *);
@@ -525,7 +609,10 @@ prototypes:
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
locking rules:
- mmap_sem PageLocked(page)
+
+============= ======== ===========================
+ops mmap_sem PageLocked(page)
+============= ======== ===========================
open: yes
close: yes
fault: yes can return with page locked
@@ -533,8 +620,9 @@ map_pages: yes
page_mkwrite: yes can return with page locked
pfn_mkwrite: yes
access: yes
+============= ======== ===========================
- ->fault() is called when a previously not present pte is about
+->fault() is called when a previously not present pte is about
to be faulted in. The filesystem must find and return the page associated
with the passed in "pgoff" in the vm_fault structure. If it is possible that
the page may be truncated and/or invalidated, then the filesystem must lock
@@ -542,7 +630,7 @@ the page, then ensure it is not already truncated (the page lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.
- ->map_pages() is called when VM asks to map easy accessible pages.
+->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from "start_pgoff"
till "end_pgoff". ->map_pages() is called with page table locked and must
not block. If it's not possible to reach a page without blocking,
@@ -551,25 +639,26 @@ page table entry. Pointer to entry associated with the page is passed in
"pte" field in vm_fault structure. Pointers to entries for other offsets
should be calculated relative to "pte".
- ->page_mkwrite() is called when a previously read-only pte is
+->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
no truncate/invalidate races, and then return with the page locked. If
the page has been truncated, the filesystem should not look up a new page
like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
will cause the VM to retry the fault.
- ->pfn_mkwrite() is the same as page_mkwrite but when the pte is
+->pfn_mkwrite() is the same as page_mkwrite but when the pte is
VM_PFNMAP or VM_MIXEDMAP with a page-less entry. Expected return is
VM_FAULT_NOPAGE. Or one of the VM_FAULT_ERROR types. The default behavior
after this call is to make the pte read-write, unless pfn_mkwrite returns
an error.
- ->access() is called when get_user_pages() fails in
+->access() is called when get_user_pages() fails in
access_process_vm(), typically used to debug a process through
/proc/pid/mem or ptrace. This function is needed only for
VM_IO | VM_PFNMAP VMAs.
-================================================================================
+--------------------------------------------------------------------------------
+
Dubious stuff
(if you break something or notice that it is broken and do not fix it yourself
diff --git a/Documentation/filesystems/mandatory-locking.txt b/Documentation/filesystems/mandatory-locking.txt
index 0979d1d2ca8b..a251ca33164a 100644
--- a/Documentation/filesystems/mandatory-locking.txt
+++ b/Documentation/filesystems/mandatory-locking.txt
@@ -169,3 +169,13 @@ havoc if they lock crucial files. The way around it is to change the file
permissions (remove the setgid bit) before trying to read or write to it.
Of course, that might be a bit tricky if the system is hung :-(
+7. The "mand" mount option
+--------------------------
+Mandatory locking is disabled on all filesystems by default, and must be
+administratively enabled by mounting with "-o mand". That mount option
+is only allowed if the mounting task has the CAP_SYS_ADMIN capability.
+
+Since kernel v4.5, it is possible to disable mandatory locking
+altogether by setting CONFIG_MANDATORY_FILE_LOCKING to "n". A kernel
+with this disabled will reject attempts to mount filesystems with the
+"mand" mount option with the error status EPERM.
diff --git a/Documentation/filesystems/nfs/Exporting b/Documentation/filesystems/nfs/exporting.rst
index 63889149f532..33d588a01ace 100644
--- a/Documentation/filesystems/nfs/Exporting
+++ b/Documentation/filesystems/nfs/exporting.rst
@@ -1,3 +1,4 @@
+:orphan:
Making Filesystems Exportable
=============================
@@ -42,9 +43,9 @@ filehandle fragment, there is no automatic creation of a path prefix
for the object. This leads to two related but distinct features of
the dcache that are not needed for normal filesystem access.
-1/ The dcache must sometimes contain objects that are not part of the
+1. The dcache must sometimes contain objects that are not part of the
proper prefix. i.e that are not connected to the root.
-2/ The dcache must be prepared for a newly found (via ->lookup) directory
+2. The dcache must be prepared for a newly found (via ->lookup) directory
to already have a (non-connected) dentry, and must be able to move
that dentry into place (based on the parent and name in the
->lookup). This is particularly needed for directories as
@@ -52,7 +53,7 @@ the dcache that are not needed for normal filesystem access.
To implement these features, the dcache has:
-a/ A dentry flag DCACHE_DISCONNECTED which is set on
+a. A dentry flag DCACHE_DISCONNECTED which is set on
any dentry that might not be part of the proper prefix.
This is set when anonymous dentries are created, and cleared when a
dentry is noticed to be a child of a dentry which is in the proper
@@ -71,48 +72,52 @@ a/ A dentry flag DCACHE_DISCONNECTED which is set on
dentries. That guarantees that we won't need to hunt them down upon
umount.
-b/ A primitive for creation of secondary roots - d_obtain_root(inode).
+b. A primitive for creation of secondary roots - d_obtain_root(inode).
Those do _not_ bear DCACHE_DISCONNECTED. They are placed on the
per-superblock list (->s_roots), so they can be located at umount
time for eviction purposes.
-c/ Helper routines to allocate anonymous dentries, and to help attach
+c. Helper routines to allocate anonymous dentries, and to help attach
loose directory dentries at lookup time. They are:
+
d_obtain_alias(inode) will return a dentry for the given inode.
If the inode already has a dentry, one of those is returned.
+
If it doesn't, a new anonymous (IS_ROOT and
- DCACHE_DISCONNECTED) dentry is allocated and attached.
+ DCACHE_DISCONNECTED) dentry is allocated and attached.
+
In the case of a directory, care is taken that only one dentry
can ever be attached.
+
d_splice_alias(inode, dentry) will introduce a new dentry into the tree;
either the passed-in dentry or a preexisting alias for the given inode
(such as an anonymous one created by d_obtain_alias), if appropriate.
It returns NULL when the passed-in dentry is used, following the calling
convention of ->lookup.
-
+
Filesystem Issues
-----------------
For a filesystem to be exportable it must:
-
- 1/ provide the filehandle fragment routines described below.
- 2/ make sure that d_splice_alias is used rather than d_add
+
+ 1. provide the filehandle fragment routines described below.
+ 2. make sure that d_splice_alias is used rather than d_add
when ->lookup finds an inode for a given parent and name.
- If inode is NULL, d_splice_alias(inode, dentry) is equivalent to
+ If inode is NULL, d_splice_alias(inode, dentry) is equivalent to::
d_add(dentry, inode), NULL
Similarly, d_splice_alias(ERR_PTR(err), dentry) = ERR_PTR(err)
- Typically the ->lookup routine will simply end with a:
+ Typically the ->lookup routine will simply end with a::
return d_splice_alias(inode, dentry);
}
- A file system implementation declares that instances of the filesystem
+A file system implementation declares that instances of the filesystem
are exportable by setting the s_export_op field in the struct
super_block. This field must point to a "struct export_operations"
struct which has the following members:
diff --git a/Documentation/filesystems/overlayfs.txt b/Documentation/filesystems/overlayfs.txt
index 1da2f1668f08..845d689e0fd7 100644
--- a/Documentation/filesystems/overlayfs.txt
+++ b/Documentation/filesystems/overlayfs.txt
@@ -302,7 +302,7 @@ beneath or above the path of another overlay lower layer path.
Using an upper layer path and/or a workdir path that are already used by
another overlay mount is not allowed and may fail with EBUSY. Using
-partially overlapping paths is not allowed but will not fail with EBUSY.
+partially overlapping paths is not allowed and may fail with EBUSY.
If files are accessed from two overlayfs mounts which share or overlap the
upper layer and/or workdir path the behavior of the overlay is undefined,
though it will not result in a crash or deadlock.
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
deleted file mode 100644
index 6b7a41cfcaed..000000000000
--- a/Documentation/filesystems/porting
+++ /dev/null
@@ -1,686 +0,0 @@
-Changes since 2.5.0:
-
----
-[recommended]
-
-New helpers: sb_bread(), sb_getblk(), sb_find_get_block(), set_bh(),
- sb_set_blocksize() and sb_min_blocksize().
-
-Use them.
-
-(sb_find_get_block() replaces 2.4's get_hash_table())
-
----
-[recommended]
-
-New methods: ->alloc_inode() and ->destroy_inode().
-
-Remove inode->u.foo_inode_i
-Declare
- struct foo_inode_info {
- /* fs-private stuff */
- struct inode vfs_inode;
- };
- static inline struct foo_inode_info *FOO_I(struct inode *inode)
- {
- return list_entry(inode, struct foo_inode_info, vfs_inode);
- }
-
-Use FOO_I(inode) instead of &inode->u.foo_inode_i;
-
-Add foo_alloc_inode() and foo_destroy_inode() - the former should allocate
-foo_inode_info and return the address of ->vfs_inode, the latter should free
-FOO_I(inode) (see in-tree filesystems for examples).
-
-Make them ->alloc_inode and ->destroy_inode in your super_operations.
-
-Keep in mind that now you need explicit initialization of private data
-typically between calling iget_locked() and unlocking the inode.
-
-At some point that will become mandatory.
-
----
-[mandatory]
-
-Change of file_system_type method (->read_super to ->get_sb)
-
-->read_super() is no more. Ditto for DECLARE_FSTYPE and DECLARE_FSTYPE_DEV.
-
-Turn your foo_read_super() into a function that would return 0 in case of
-success and negative number in case of error (-EINVAL unless you have more
-informative error value to report). Call it foo_fill_super(). Now declare
-
-int foo_get_sb(struct file_system_type *fs_type,
- int flags, const char *dev_name, void *data, struct vfsmount *mnt)
-{
- return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super,
- mnt);
-}
-
-(or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of
-filesystem).
-
-Replace DECLARE_FSTYPE... with explicit initializer and have ->get_sb set as
-foo_get_sb.
-
----
-[mandatory]
-
-Locking change: ->s_vfs_rename_sem is taken only by cross-directory renames.
-Most likely there is no need to change anything, but if you relied on
-global exclusion between renames for some internal purpose - you need to
-change your internal locking. Otherwise exclusion warranties remain the
-same (i.e. parents and victim are locked, etc.).
-
----
-[informational]
-
-Now we have the exclusion between ->lookup() and directory removal (by
-->rmdir() and ->rename()). If you used to need that exclusion and do
-it by internal locking (most of filesystems couldn't care less) - you
-can relax your locking.
-
----
-[mandatory]
-
-->lookup(), ->truncate(), ->create(), ->unlink(), ->mknod(), ->mkdir(),
-->rmdir(), ->link(), ->lseek(), ->symlink(), ->rename()
-and ->readdir() are called without BKL now. Grab it on entry, drop upon return
-- that will guarantee the same locking you used to have. If your method or its
-parts do not need BKL - better yet, now you can shift lock_kernel() and
-unlock_kernel() so that they would protect exactly what needs to be
-protected.
-
----
-[mandatory]
-
-BKL is also moved from around sb operations. BKL should have been shifted into
-individual fs sb_op functions. If you don't need it, remove it.
-
----
-[informational]
-
-check for ->link() target not being a directory is done by callers. Feel
-free to drop it...
-
----
-[informational]
-
-->link() callers hold ->i_mutex on the object we are linking to. Some of your
-problems might be over...
-
----
-[mandatory]
-
-new file_system_type method - kill_sb(superblock). If you are converting
-an existing filesystem, set it according to ->fs_flags:
- FS_REQUIRES_DEV - kill_block_super
- FS_LITTER - kill_litter_super
- neither - kill_anon_super
-FS_LITTER is gone - just remove it from fs_flags.
-
----
-[mandatory]
-
- FS_SINGLE is gone (actually, that had happened back when ->get_sb()
-went in - and hadn't been documented ;-/). Just remove it from fs_flags
-(and see ->get_sb() entry for other actions).
-
----
-[mandatory]
-
-->setattr() is called without BKL now. Caller _always_ holds ->i_mutex, so
-watch for ->i_mutex-grabbing code that might be used by your ->setattr().
-Callers of notify_change() need ->i_mutex now.
-
----
-[recommended]
-
-New super_block field "struct export_operations *s_export_op" for
-explicit support for exporting, e.g. via NFS. The structure is fully
-documented at its declaration in include/linux/fs.h, and in
-Documentation/filesystems/nfs/Exporting.
-
-Briefly it allows for the definition of decode_fh and encode_fh operations
-to encode and decode filehandles, and allows the filesystem to use
-a standard helper function for decode_fh, and provide file-system specific
-support for this helper, particularly get_parent.
-
-It is planned that this will be required for exporting once the code
-settles down a bit.
-
-[mandatory]
-
-s_export_op is now required for exporting a filesystem.
-isofs, ext2, ext3, resierfs, fat
-can be used as examples of very different filesystems.
-
----
-[mandatory]
-
-iget4() and the read_inode2 callback have been superseded by iget5_locked()
-which has the following prototype,
-
- struct inode *iget5_locked(struct super_block *sb, unsigned long ino,
- int (*test)(struct inode *, void *),
- int (*set)(struct inode *, void *),
- void *data);
-
-'test' is an additional function that can be used when the inode
-number is not sufficient to identify the actual file object. 'set'
-should be a non-blocking function that initializes those parts of a
-newly created inode to allow the test function to succeed. 'data' is
-passed as an opaque value to both test and set functions.
-
-When the inode has been created by iget5_locked(), it will be returned with the
-I_NEW flag set and will still be locked. The filesystem then needs to finalize
-the initialization. Once the inode is initialized it must be unlocked by
-calling unlock_new_inode().
-
-The filesystem is responsible for setting (and possibly testing) i_ino
-when appropriate. There is also a simpler iget_locked function that
-just takes the superblock and inode number as arguments and does the
-test and set for you.
-
-e.g.
- inode = iget_locked(sb, ino);
- if (inode->i_state & I_NEW) {
- err = read_inode_from_disk(inode);
- if (err < 0) {
- iget_failed(inode);
- return err;
- }
- unlock_new_inode(inode);
- }
-
-Note that if the process of setting up a new inode fails, then iget_failed()
-should be called on the inode to render it dead, and an appropriate error
-should be passed back to the caller.
-
----
-[recommended]
-
-->getattr() finally getting used. See instances in nfs, minix, etc.
-
----
-[mandatory]
-
-->revalidate() is gone. If your filesystem had it - provide ->getattr()
-and let it call whatever you had as ->revlidate() + (for symlinks that
-had ->revalidate()) add calls in ->follow_link()/->readlink().
-
----
-[mandatory]
-
-->d_parent changes are not protected by BKL anymore. Read access is safe
-if at least one of the following is true:
- * filesystem has no cross-directory rename()
- * we know that parent had been locked (e.g. we are looking at
-->d_parent of ->lookup() argument).
- * we are called from ->rename().
- * the child's ->d_lock is held
-Audit your code and add locking if needed. Notice that any place that is
-not protected by the conditions above is risky even in the old tree - you
-had been relying on BKL and that's prone to screwups. Old tree had quite
-a few holes of that kind - unprotected access to ->d_parent leading to
-anything from oops to silent memory corruption.
-
----
-[mandatory]
-
- FS_NOMOUNT is gone. If you use it - just set SB_NOUSER in flags
-(see rootfs for one kind of solution and bdev/socket/pipe for another).
-
----
-[recommended]
-
- Use bdev_read_only(bdev) instead of is_read_only(kdev). The latter
-is still alive, but only because of the mess in drivers/s390/block/dasd.c.
-As soon as it gets fixed is_read_only() will die.
-
----
-[mandatory]
-
-->permission() is called without BKL now. Grab it on entry, drop upon
-return - that will guarantee the same locking you used to have. If
-your method or its parts do not need BKL - better yet, now you can
-shift lock_kernel() and unlock_kernel() so that they would protect
-exactly what needs to be protected.
-
----
-[mandatory]
-
-->statfs() is now called without BKL held. BKL should have been
-shifted into individual fs sb_op functions where it's not clear that
-it's safe to remove it. If you don't need it, remove it.
-
----
-[mandatory]
-
- is_read_only() is gone; use bdev_read_only() instead.
-
----
-[mandatory]
-
- destroy_buffers() is gone; use invalidate_bdev().
-
----
-[mandatory]
-
- fsync_dev() is gone; use fsync_bdev(). NOTE: lvm breakage is
-deliberate; as soon as struct block_device * is propagated in a reasonable
-way by that code fixing will become trivial; until then nothing can be
-done.
-
-[mandatory]
-
- block truncatation on error exit from ->write_begin, and ->direct_IO
-moved from generic methods (block_write_begin, cont_write_begin,
-nobh_write_begin, blockdev_direct_IO*) to callers. Take a look at
-ext2_write_failed and callers for an example.
-
-[mandatory]
-
- ->truncate is gone. The whole truncate sequence needs to be
-implemented in ->setattr, which is now mandatory for filesystems
-implementing on-disk size changes. Start with a copy of the old inode_setattr
-and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
-be in order of zeroing blocks using block_truncate_page or similar helpers,
-size update and on finally on-disk truncation which should not fail.
-setattr_prepare (which used to be inode_change_ok) now includes the size checks
-for ATTR_SIZE and must be called in the beginning of ->setattr unconditionally.
-
-[mandatory]
-
- ->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
-be used instead. It gets called whenever the inode is evicted, whether it has
-remaining links or not. Caller does *not* evict the pagecache or inode-associated
-metadata buffers; the method has to use truncate_inode_pages_final() to get rid
-of those. Caller makes sure async writeback cannot be running for the inode while
-(or after) ->evict_inode() is called.
-
- ->drop_inode() returns int now; it's called on final iput() with
-inode->i_lock held and it returns true if filesystems wants the inode to be
-dropped. As before, generic_drop_inode() is still the default and it's been
-updated appropriately. generic_delete_inode() is also alive and it consists
-simply of return 1. Note that all actual eviction work is done by caller after
-->drop_inode() returns.
-
- As before, clear_inode() must be called exactly once on each call of
-->evict_inode() (as it used to be for each call of ->delete_inode()). Unlike
-before, if you are using inode-associated metadata buffers (i.e.
-mark_buffer_dirty_inode()), it's your responsibility to call
-invalidate_inode_buffers() before clear_inode().
-
- NOTE: checking i_nlink in the beginning of ->write_inode() and bailing out
-if it's zero is not *and* *never* *had* *been* enough. Final unlink() and iput()
-may happen while the inode is in the middle of ->write_inode(); e.g. if you blindly
-free the on-disk inode, you may end up doing that while ->write_inode() is writing
-to it.
-
----
-[mandatory]
-
- .d_delete() now only advises the dcache as to whether or not to cache
-unreferenced dentries, and is now only called when the dentry refcount goes to
-0. Even on 0 refcount transition, it must be able to tolerate being called 0,
-1, or more times (eg. constant, idempotent).
-
----
-[mandatory]
-
- .d_compare() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
-look at examples of other filesystems) for guidance.
-
----
-[mandatory]
-
- .d_hash() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
-look at examples of other filesystems) for guidance.
-
----
-[mandatory]
- dcache_lock is gone, replaced by fine grained locks. See fs/dcache.c
-for details of what locks to replace dcache_lock with in order to protect
-particular things. Most of the time, a filesystem only needs ->d_lock, which
-protects *all* the dcache state of a given dentry.
-
---
-[mandatory]
-
- Filesystems must RCU-free their inodes, if they can have been accessed
-via rcu-walk path walk (basically, if the file can have had a path name in the
-vfs namespace).
-
- Even though i_dentry and i_rcu share storage in a union, we will
-initialize the former in inode_init_always(), so just leave it alone in
-the callback. It used to be necessary to clean it there, but not anymore
-(starting at 3.2).
-
---
-[recommended]
- vfs now tries to do path walking in "rcu-walk mode", which avoids
-atomic operations and scalability hazards on dentries and inodes (see
-Documentation/filesystems/path-lookup.txt). d_hash and d_compare changes
-(above) are examples of the changes required to support this. For more complex
-filesystem callbacks, the vfs drops out of rcu-walk mode before the fs call, so
-no changes are required to the filesystem. However, this is costly and loses
-the benefits of rcu-walk mode. We will begin to add filesystem callbacks that
-are rcu-walk aware, shown below. Filesystems should take advantage of this
-where possible.
-
---
-[mandatory]
- d_revalidate is a callback that is made on every path element (if
-the filesystem provides it), which requires dropping out of rcu-walk mode. This
-may now be called in rcu-walk mode (nd->flags & LOOKUP_RCU). -ECHILD should be
-returned if the filesystem cannot handle rcu-walk. See
-Documentation/filesystems/vfs.rst for more details.
-
- permission is an inode permission check that is called on many or all
-directory inodes on the way down a path walk (to check for exec permission). It
-must now be rcu-walk aware (mask & MAY_NOT_BLOCK). See
-Documentation/filesystems/vfs.rst for more details.
-
---
-[mandatory]
- In ->fallocate() you must check the mode option passed in. If your
-filesystem does not support hole punching (deallocating space in the middle of a
-file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode.
-Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set,
-so the i_size should not change when hole punching, even when puching the end of
-a file off.
-
---
-[mandatory]
- ->get_sb() is gone. Switch to use of ->mount(). Typically it's just
-a matter of switching from calling get_sb_... to mount_... and changing the
-function type. If you were doing it manually, just switch from setting ->mnt_root
-to some pointer to returning that pointer. On errors return ERR_PTR(...).
-
---
-[mandatory]
- ->permission() and generic_permission()have lost flags
-argument; instead of passing IPERM_FLAG_RCU we add MAY_NOT_BLOCK into mask.
- generic_permission() has also lost the check_acl argument; ACL checking
-has been taken to VFS and filesystems need to provide a non-NULL ->i_op->get_acl
-to read an ACL from disk.
-
---
-[mandatory]
- If you implement your own ->llseek() you must handle SEEK_HOLE and
-SEEK_DATA. You can hanle this by returning -EINVAL, but it would be nicer to
-support it in some way. The generic handler assumes that the entire file is
-data and there is a virtual hole at the end of the file. So if the provided
-offset is less than i_size and SEEK_DATA is specified, return the same offset.
-If the above is true for the offset and you are given SEEK_HOLE, return the end
-of the file. If the offset is i_size or greater return -ENXIO in either case.
-
-[mandatory]
- If you have your own ->fsync() you must make sure to call
-filemap_write_and_wait_range() so that all dirty pages are synced out properly.
-You must also keep in mind that ->fsync() is not called with i_mutex held
-anymore, so if you require i_mutex locking you must make sure to take it and
-release it yourself.
-
---
-[mandatory]
- d_alloc_root() is gone, along with a lot of bugs caused by code
-misusing it. Replacement: d_make_root(inode). On success d_make_root(inode)
-allocates and returns a new dentry instantiated with the passed in inode.
-On failure NULL is returned and the passed in inode is dropped so the reference
-to inode is consumed in all cases and failure handling need not do any cleanup
-for the inode. If d_make_root(inode) is passed a NULL inode it returns NULL
-and also requires no further error handling. Typical usage is:
-
- inode = foofs_new_inode(....);
- s->s_root = d_make_root(inode);
- if (!s->s_root)
- /* Nothing needed for the inode cleanup */
- return -ENOMEM;
- ...
-
---
-[mandatory]
- The witch is dead! Well, 2/3 of it, anyway. ->d_revalidate() and
-->lookup() do *not* take struct nameidata anymore; just the flags.
---
-[mandatory]
- ->create() doesn't take struct nameidata *; unlike the previous
-two, it gets "is it an O_EXCL or equivalent?" boolean argument. Note that
-local filesystems can ignore tha argument - they are guaranteed that the
-object doesn't exist. It's remote/distributed ones that might care...
---
-[mandatory]
- FS_REVAL_DOT is gone; if you used to have it, add ->d_weak_revalidate()
-in your dentry operations instead.
---
-[mandatory]
- vfs_readdir() is gone; switch to iterate_dir() instead
---
-[mandatory]
- ->readdir() is gone now; switch to ->iterate()
-[mandatory]
- vfs_follow_link has been removed. Filesystems must use nd_set_link
- from ->follow_link for normal symlinks, or nd_jump_link for magic
- /proc/<pid> style links.
---
-[mandatory]
- iget5_locked()/ilookup5()/ilookup5_nowait() test() callback used to be
- called with both ->i_lock and inode_hash_lock held; the former is *not*
- taken anymore, so verify that your callbacks do not rely on it (none
- of the in-tree instances did). inode_hash_lock is still held,
- of course, so they are still serialized wrt removal from inode hash,
- as well as wrt set() callback of iget5_locked().
---
-[mandatory]
- d_materialise_unique() is gone; d_splice_alias() does everything you
- need now. Remember that they have opposite orders of arguments ;-/
---
-[mandatory]
- f_dentry is gone; use f_path.dentry, or, better yet, see if you can avoid
- it entirely.
---
-[mandatory]
- never call ->read() and ->write() directly; use __vfs_{read,write} or
- wrappers; instead of checking for ->write or ->read being NULL, look for
- FMODE_CAN_{WRITE,READ} in file->f_mode.
---
-[mandatory]
- do _not_ use new_sync_{read,write} for ->read/->write; leave it NULL
- instead.
---
-[mandatory]
- ->aio_read/->aio_write are gone. Use ->read_iter/->write_iter.
----
-[recommended]
- for embedded ("fast") symlinks just set inode->i_link to wherever the
- symlink body is and use simple_follow_link() as ->follow_link().
---
-[mandatory]
- calling conventions for ->follow_link() have changed. Instead of returning
- cookie and using nd_set_link() to store the body to traverse, we return
- the body to traverse and store the cookie using explicit void ** argument.
- nameidata isn't passed at all - nd_jump_link() doesn't need it and
- nd_[gs]et_link() is gone.
---
-[mandatory]
- calling conventions for ->put_link() have changed. It gets inode instead of
- dentry, it does not get nameidata at all and it gets called only when cookie
- is non-NULL. Note that link body isn't available anymore, so if you need it,
- store it as cookie.
---
-[mandatory]
- any symlink that might use page_follow_link_light/page_put_link() must
- have inode_nohighmem(inode) called before anything might start playing with
- its pagecache. No highmem pages should end up in the pagecache of such
- symlinks. That includes any preseeding that might be done during symlink
- creation. __page_symlink() will honour the mapping gfp flags, so once
- you've done inode_nohighmem() it's safe to use, but if you allocate and
- insert the page manually, make sure to use the right gfp flags.
---
-[mandatory]
- ->follow_link() is replaced with ->get_link(); same API, except that
- * ->get_link() gets inode as a separate argument
- * ->get_link() may be called in RCU mode - in that case NULL
- dentry is passed
---
-[mandatory]
- ->get_link() gets struct delayed_call *done now, and should do
- set_delayed_call() where it used to set *cookie.
- ->put_link() is gone - just give the destructor to set_delayed_call()
- in ->get_link().
---
-[mandatory]
- ->getxattr() and xattr_handler.get() get dentry and inode passed separately.
- dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
- in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
- called before we attach dentry to inode.
---
-[mandatory]
- symlinks are no longer the only inodes that do *not* have i_bdev/i_cdev/
- i_pipe/i_link union zeroed out at inode eviction. As the result, you can't
- assume that non-NULL value in ->i_nlink at ->destroy_inode() implies that
- it's a symlink. Checking ->i_mode is really needed now. In-tree we had
- to fix shmem_destroy_callback() that used to take that kind of shortcut;
- watch out, since that shortcut is no longer valid.
---
-[mandatory]
- ->i_mutex is replaced with ->i_rwsem now. inode_lock() et.al. work as
- they used to - they just take it exclusive. However, ->lookup() may be
- called with parent locked shared. Its instances must not
- * use d_instantiate) and d_rehash() separately - use d_add() or
- d_splice_alias() instead.
- * use d_rehash() alone - call d_add(new_dentry, NULL) instead.
- * in the unlikely case when (read-only) access to filesystem
- data structures needs exclusion for some reason, arrange it
- yourself. None of the in-tree filesystems needed that.
- * rely on ->d_parent and ->d_name not changing after dentry has
- been fed to d_add() or d_splice_alias(). Again, none of the
- in-tree instances relied upon that.
- We are guaranteed that lookups of the same name in the same directory
- will not happen in parallel ("same" in the sense of your ->d_compare()).
- Lookups on different names in the same directory can and do happen in
- parallel now.
---
-[recommended]
- ->iterate_shared() is added; it's a parallel variant of ->iterate().
- Exclusion on struct file level is still provided (as well as that
- between it and lseek on the same struct file), but if your directory
- has been opened several times, you can get these called in parallel.
- Exclusion between that method and all directory-modifying ones is
- still provided, of course.
-
- Often enough ->iterate() can serve as ->iterate_shared() without any
- changes - it is a read-only operation, after all. If you have any
- per-inode or per-dentry in-core data structures modified by ->iterate(),
- you might need something to serialize the access to them. If you
- do dcache pre-seeding, you'll need to switch to d_alloc_parallel() for
- that; look for in-tree examples.
-
- Old method is only used if the new one is absent; eventually it will
- be removed. Switch while you still can; the old one won't stay.
---
-[mandatory]
- ->atomic_open() calls without O_CREAT may happen in parallel.
---
-[mandatory]
- ->setxattr() and xattr_handler.set() get dentry and inode passed separately.
- dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
- in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
- called before we attach dentry to inode and !@#!@##!@$!$#!@#$!@$!@$ smack
- ->d_instantiate() uses not just ->getxattr() but ->setxattr() as well.
---
-[mandatory]
- ->d_compare() doesn't get parent as a separate argument anymore. If you
- used it for finding the struct super_block involved, dentry->d_sb will
- work just as well; if it's something more complicated, use dentry->d_parent.
- Just be careful not to assume that fetching it more than once will yield
- the same value - in RCU mode it could change under you.
---
-[mandatory]
- ->rename() has an added flags argument. Any flags not handled by the
- filesystem should result in EINVAL being returned.
---
-[recommended]
- ->readlink is optional for symlinks. Don't set, unless filesystem needs
- to fake something for readlink(2).
---
-[mandatory]
- ->getattr() is now passed a struct path rather than a vfsmount and
- dentry separately, and it now has request_mask and query_flags arguments
- to specify the fields and sync type requested by statx. Filesystems not
- supporting any statx-specific features may ignore the new arguments.
---
-[mandatory]
- ->atomic_open() calling conventions have changed. Gone is int *opened,
- along with FILE_OPENED/FILE_CREATED. In place of those we have
- FMODE_OPENED/FMODE_CREATED, set in file->f_mode. Additionally, return
- value for 'called finish_no_open(), open it yourself' case has become
- 0, not 1. Since finish_no_open() itself is returning 0 now, that part
- does not need any changes in ->atomic_open() instances.
---
-[mandatory]
- alloc_file() has become static now; two wrappers are to be used instead.
- alloc_file_pseudo(inode, vfsmount, name, flags, ops) is for the cases
- when dentry needs to be created; that's the majority of old alloc_file()
- users. Calling conventions: on success a reference to new struct file
- is returned and callers reference to inode is subsumed by that. On
- failure, ERR_PTR() is returned and no caller's references are affected,
- so the caller needs to drop the inode reference it held.
- alloc_file_clone(file, flags, ops) does not affect any caller's references.
- On success you get a new struct file sharing the mount/dentry with the
- original, on failure - ERR_PTR().
---
-[mandatory]
- ->clone_file_range() and ->dedupe_file_range have been replaced with
- ->remap_file_range(). See Documentation/filesystems/vfs.rst for more
- information.
---
-[recommended]
- ->lookup() instances doing an equivalent of
- if (IS_ERR(inode))
- return ERR_CAST(inode);
- return d_splice_alias(inode, dentry);
- don't need to bother with the check - d_splice_alias() will do the
- right thing when given ERR_PTR(...) as inode. Moreover, passing NULL
- inode to d_splice_alias() will also do the right thing (equivalent of
- d_add(dentry, NULL); return NULL;), so that kind of special cases
- also doesn't need a separate treatment.
---
-[strongly recommended]
- take the RCU-delayed parts of ->destroy_inode() into a new method -
- ->free_inode(). If ->destroy_inode() becomes empty - all the better,
- just get rid of it. Synchronous work (e.g. the stuff that can't
- be done from an RCU callback, or any WARN_ON() where we want the
- stack trace) *might* be movable to ->evict_inode(); however,
- that goes only for the things that are not needed to balance something
- done by ->alloc_inode(). IOW, if it's cleaning up the stuff that
- might have accumulated over the life of in-core inode, ->evict_inode()
- might be a fit.
-
- Rules for inode destruction:
- * if ->destroy_inode() is non-NULL, it gets called
- * if ->free_inode() is non-NULL, it gets scheduled by call_rcu()
- * combination of NULL ->destroy_inode and NULL ->free_inode is
- treated as NULL/free_inode_nonrcu, to preserve the compatibility.
-
- Note that the callback (be it via ->free_inode() or explicit call_rcu()
- in ->destroy_inode()) is *NOT* ordered wrt superblock destruction;
- as the matter of fact, the superblock and all associated structures
- might be already gone. The filesystem driver is guaranteed to be still
- there, but that's it. Freeing memory in the callback is fine; doing
- more than that is possible, but requires a lot of care and is best
- avoided.
---
-[mandatory]
- DCACHE_RCUACCESS is gone; having an RCU delay on dentry freeing is the
- default. DCACHE_NORCU opts out, and only d_alloc_pseudo() has any
- business doing so.
---
-[mandatory]
- d_alloc_pseudo() is internal-only; uses outside of alloc_file_pseudo() are
- very suspect (and won't work in modules). Such uses are very likely to
- be misspelled d_alloc_anon().
diff --git a/Documentation/filesystems/porting.rst b/Documentation/filesystems/porting.rst
new file mode 100644
index 000000000000..f18506083ced
--- /dev/null
+++ b/Documentation/filesystems/porting.rst
@@ -0,0 +1,852 @@
+====================
+Changes since 2.5.0:
+====================
+
+---
+
+**recommended**
+
+New helpers: sb_bread(), sb_getblk(), sb_find_get_block(), set_bh(),
+sb_set_blocksize() and sb_min_blocksize().
+
+Use them.
+
+(sb_find_get_block() replaces 2.4's get_hash_table())
+
+---
+
+**recommended**
+
+New methods: ->alloc_inode() and ->destroy_inode().
+
+Remove inode->u.foo_inode_i
+
+Declare::
+
+ struct foo_inode_info {
+ /* fs-private stuff */
+ struct inode vfs_inode;
+ };
+ static inline struct foo_inode_info *FOO_I(struct inode *inode)
+ {
+ return list_entry(inode, struct foo_inode_info, vfs_inode);
+ }
+
+Use FOO_I(inode) instead of &inode->u.foo_inode_i;
+
+Add foo_alloc_inode() and foo_destroy_inode() - the former should allocate
+foo_inode_info and return the address of ->vfs_inode, the latter should free
+FOO_I(inode) (see in-tree filesystems for examples).
+
+Make them ->alloc_inode and ->destroy_inode in your super_operations.
+
+Keep in mind that now you need explicit initialization of private data
+typically between calling iget_locked() and unlocking the inode.
+
+At some point that will become mandatory.
+
+---
+
+**mandatory**
+
+Change of file_system_type method (->read_super to ->get_sb)
+
+->read_super() is no more. Ditto for DECLARE_FSTYPE and DECLARE_FSTYPE_DEV.
+
+Turn your foo_read_super() into a function that would return 0 in case of
+success and negative number in case of error (-EINVAL unless you have more
+informative error value to report). Call it foo_fill_super(). Now declare::
+
+ int foo_get_sb(struct file_system_type *fs_type,
+ int flags, const char *dev_name, void *data, struct vfsmount *mnt)
+ {
+ return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super,
+ mnt);
+ }
+
+(or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of
+filesystem).
+
+Replace DECLARE_FSTYPE... with explicit initializer and have ->get_sb set as
+foo_get_sb.
+
+---
+
+**mandatory**
+
+Locking change: ->s_vfs_rename_sem is taken only by cross-directory renames.
+Most likely there is no need to change anything, but if you relied on
+global exclusion between renames for some internal purpose - you need to
+change your internal locking. Otherwise exclusion warranties remain the
+same (i.e. parents and victim are locked, etc.).
+
+---
+
+**informational**
+
+Now we have the exclusion between ->lookup() and directory removal (by
+->rmdir() and ->rename()). If you used to need that exclusion and do
+it by internal locking (most of filesystems couldn't care less) - you
+can relax your locking.
+
+---
+
+**mandatory**
+
+->lookup(), ->truncate(), ->create(), ->unlink(), ->mknod(), ->mkdir(),
+->rmdir(), ->link(), ->lseek(), ->symlink(), ->rename()
+and ->readdir() are called without BKL now. Grab it on entry, drop upon return
+- that will guarantee the same locking you used to have. If your method or its
+parts do not need BKL - better yet, now you can shift lock_kernel() and
+unlock_kernel() so that they would protect exactly what needs to be
+protected.
+
+---
+
+**mandatory**
+
+BKL is also moved from around sb operations. BKL should have been shifted into
+individual fs sb_op functions. If you don't need it, remove it.
+
+---
+
+**informational**
+
+check for ->link() target not being a directory is done by callers. Feel
+free to drop it...
+
+---
+
+**informational**
+
+->link() callers hold ->i_mutex on the object we are linking to. Some of your
+problems might be over...
+
+---
+
+**mandatory**
+
+new file_system_type method - kill_sb(superblock). If you are converting
+an existing filesystem, set it according to ->fs_flags::
+
+ FS_REQUIRES_DEV - kill_block_super
+ FS_LITTER - kill_litter_super
+ neither - kill_anon_super
+
+FS_LITTER is gone - just remove it from fs_flags.
+
+---
+
+**mandatory**
+
+FS_SINGLE is gone (actually, that had happened back when ->get_sb()
+went in - and hadn't been documented ;-/). Just remove it from fs_flags
+(and see ->get_sb() entry for other actions).
+
+---
+
+**mandatory**
+
+->setattr() is called without BKL now. Caller _always_ holds ->i_mutex, so
+watch for ->i_mutex-grabbing code that might be used by your ->setattr().
+Callers of notify_change() need ->i_mutex now.
+
+---
+
+**recommended**
+
+New super_block field ``struct export_operations *s_export_op`` for
+explicit support for exporting, e.g. via NFS. The structure is fully
+documented at its declaration in include/linux/fs.h, and in
+Documentation/filesystems/nfs/exporting.rst.
+
+Briefly it allows for the definition of decode_fh and encode_fh operations
+to encode and decode filehandles, and allows the filesystem to use
+a standard helper function for decode_fh, and provide file-system specific
+support for this helper, particularly get_parent.
+
+It is planned that this will be required for exporting once the code
+settles down a bit.
+
+**mandatory**
+
+s_export_op is now required for exporting a filesystem.
+isofs, ext2, ext3, resierfs, fat
+can be used as examples of very different filesystems.
+
+---
+
+**mandatory**
+
+iget4() and the read_inode2 callback have been superseded by iget5_locked()
+which has the following prototype::
+
+ struct inode *iget5_locked(struct super_block *sb, unsigned long ino,
+ int (*test)(struct inode *, void *),
+ int (*set)(struct inode *, void *),
+ void *data);
+
+'test' is an additional function that can be used when the inode
+number is not sufficient to identify the actual file object. 'set'
+should be a non-blocking function that initializes those parts of a
+newly created inode to allow the test function to succeed. 'data' is
+passed as an opaque value to both test and set functions.
+
+When the inode has been created by iget5_locked(), it will be returned with the
+I_NEW flag set and will still be locked. The filesystem then needs to finalize
+the initialization. Once the inode is initialized it must be unlocked by
+calling unlock_new_inode().
+
+The filesystem is responsible for setting (and possibly testing) i_ino
+when appropriate. There is also a simpler iget_locked function that
+just takes the superblock and inode number as arguments and does the
+test and set for you.
+
+e.g.::
+
+ inode = iget_locked(sb, ino);
+ if (inode->i_state & I_NEW) {
+ err = read_inode_from_disk(inode);
+ if (err < 0) {
+ iget_failed(inode);
+ return err;
+ }
+ unlock_new_inode(inode);
+ }
+
+Note that if the process of setting up a new inode fails, then iget_failed()
+should be called on the inode to render it dead, and an appropriate error
+should be passed back to the caller.
+
+---
+
+**recommended**
+
+->getattr() finally getting used. See instances in nfs, minix, etc.
+
+---
+
+**mandatory**
+
+->revalidate() is gone. If your filesystem had it - provide ->getattr()
+and let it call whatever you had as ->revlidate() + (for symlinks that
+had ->revalidate()) add calls in ->follow_link()/->readlink().
+
+---
+
+**mandatory**
+
+->d_parent changes are not protected by BKL anymore. Read access is safe
+if at least one of the following is true:
+
+ * filesystem has no cross-directory rename()
+ * we know that parent had been locked (e.g. we are looking at
+ ->d_parent of ->lookup() argument).
+ * we are called from ->rename().
+ * the child's ->d_lock is held
+
+Audit your code and add locking if needed. Notice that any place that is
+not protected by the conditions above is risky even in the old tree - you
+had been relying on BKL and that's prone to screwups. Old tree had quite
+a few holes of that kind - unprotected access to ->d_parent leading to
+anything from oops to silent memory corruption.
+
+---
+
+**mandatory**
+
+FS_NOMOUNT is gone. If you use it - just set SB_NOUSER in flags
+(see rootfs for one kind of solution and bdev/socket/pipe for another).
+
+---
+
+**recommended**
+
+Use bdev_read_only(bdev) instead of is_read_only(kdev). The latter
+is still alive, but only because of the mess in drivers/s390/block/dasd.c.
+As soon as it gets fixed is_read_only() will die.
+
+---
+
+**mandatory**
+
+->permission() is called without BKL now. Grab it on entry, drop upon
+return - that will guarantee the same locking you used to have. If
+your method or its parts do not need BKL - better yet, now you can
+shift lock_kernel() and unlock_kernel() so that they would protect
+exactly what needs to be protected.
+
+---
+
+**mandatory**
+
+->statfs() is now called without BKL held. BKL should have been
+shifted into individual fs sb_op functions where it's not clear that
+it's safe to remove it. If you don't need it, remove it.
+
+---
+
+**mandatory**
+
+is_read_only() is gone; use bdev_read_only() instead.
+
+---
+
+**mandatory**
+
+destroy_buffers() is gone; use invalidate_bdev().
+
+---
+
+**mandatory**
+
+fsync_dev() is gone; use fsync_bdev(). NOTE: lvm breakage is
+deliberate; as soon as struct block_device * is propagated in a reasonable
+way by that code fixing will become trivial; until then nothing can be
+done.
+
+**mandatory**
+
+block truncatation on error exit from ->write_begin, and ->direct_IO
+moved from generic methods (block_write_begin, cont_write_begin,
+nobh_write_begin, blockdev_direct_IO*) to callers. Take a look at
+ext2_write_failed and callers for an example.
+
+**mandatory**
+
+->truncate is gone. The whole truncate sequence needs to be
+implemented in ->setattr, which is now mandatory for filesystems
+implementing on-disk size changes. Start with a copy of the old inode_setattr
+and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
+be in order of zeroing blocks using block_truncate_page or similar helpers,
+size update and on finally on-disk truncation which should not fail.
+setattr_prepare (which used to be inode_change_ok) now includes the size checks
+for ATTR_SIZE and must be called in the beginning of ->setattr unconditionally.
+
+**mandatory**
+
+->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
+be used instead. It gets called whenever the inode is evicted, whether it has
+remaining links or not. Caller does *not* evict the pagecache or inode-associated
+metadata buffers; the method has to use truncate_inode_pages_final() to get rid
+of those. Caller makes sure async writeback cannot be running for the inode while
+(or after) ->evict_inode() is called.
+
+->drop_inode() returns int now; it's called on final iput() with
+inode->i_lock held and it returns true if filesystems wants the inode to be
+dropped. As before, generic_drop_inode() is still the default and it's been
+updated appropriately. generic_delete_inode() is also alive and it consists
+simply of return 1. Note that all actual eviction work is done by caller after
+->drop_inode() returns.
+
+As before, clear_inode() must be called exactly once on each call of
+->evict_inode() (as it used to be for each call of ->delete_inode()). Unlike
+before, if you are using inode-associated metadata buffers (i.e.
+mark_buffer_dirty_inode()), it's your responsibility to call
+invalidate_inode_buffers() before clear_inode().
+
+NOTE: checking i_nlink in the beginning of ->write_inode() and bailing out
+if it's zero is not *and* *never* *had* *been* enough. Final unlink() and iput()
+may happen while the inode is in the middle of ->write_inode(); e.g. if you blindly
+free the on-disk inode, you may end up doing that while ->write_inode() is writing
+to it.
+
+---
+
+**mandatory**
+
+.d_delete() now only advises the dcache as to whether or not to cache
+unreferenced dentries, and is now only called when the dentry refcount goes to
+0. Even on 0 refcount transition, it must be able to tolerate being called 0,
+1, or more times (eg. constant, idempotent).
+
+---
+
+**mandatory**
+
+.d_compare() calling convention and locking rules are significantly
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
+look at examples of other filesystems) for guidance.
+
+---
+
+**mandatory**
+
+.d_hash() calling convention and locking rules are significantly
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
+look at examples of other filesystems) for guidance.
+
+---
+
+**mandatory**
+
+dcache_lock is gone, replaced by fine grained locks. See fs/dcache.c
+for details of what locks to replace dcache_lock with in order to protect
+particular things. Most of the time, a filesystem only needs ->d_lock, which
+protects *all* the dcache state of a given dentry.
+
+---
+
+**mandatory**
+
+Filesystems must RCU-free their inodes, if they can have been accessed
+via rcu-walk path walk (basically, if the file can have had a path name in the
+vfs namespace).
+
+Even though i_dentry and i_rcu share storage in a union, we will
+initialize the former in inode_init_always(), so just leave it alone in
+the callback. It used to be necessary to clean it there, but not anymore
+(starting at 3.2).
+
+---
+
+**recommended**
+
+vfs now tries to do path walking in "rcu-walk mode", which avoids
+atomic operations and scalability hazards on dentries and inodes (see
+Documentation/filesystems/path-lookup.txt). d_hash and d_compare changes
+(above) are examples of the changes required to support this. For more complex
+filesystem callbacks, the vfs drops out of rcu-walk mode before the fs call, so
+no changes are required to the filesystem. However, this is costly and loses
+the benefits of rcu-walk mode. We will begin to add filesystem callbacks that
+are rcu-walk aware, shown below. Filesystems should take advantage of this
+where possible.
+
+---
+
+**mandatory**
+
+d_revalidate is a callback that is made on every path element (if
+the filesystem provides it), which requires dropping out of rcu-walk mode. This
+may now be called in rcu-walk mode (nd->flags & LOOKUP_RCU). -ECHILD should be
+returned if the filesystem cannot handle rcu-walk. See
+Documentation/filesystems/vfs.rst for more details.
+
+permission is an inode permission check that is called on many or all
+directory inodes on the way down a path walk (to check for exec permission). It
+must now be rcu-walk aware (mask & MAY_NOT_BLOCK). See
+Documentation/filesystems/vfs.rst for more details.
+
+---
+
+**mandatory**
+
+In ->fallocate() you must check the mode option passed in. If your
+filesystem does not support hole punching (deallocating space in the middle of a
+file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode.
+Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set,
+so the i_size should not change when hole punching, even when puching the end of
+a file off.
+
+---
+
+**mandatory**
+
+->get_sb() is gone. Switch to use of ->mount(). Typically it's just
+a matter of switching from calling ``get_sb_``... to ``mount_``... and changing
+the function type. If you were doing it manually, just switch from setting
+->mnt_root to some pointer to returning that pointer. On errors return
+ERR_PTR(...).
+
+---
+
+**mandatory**
+
+->permission() and generic_permission()have lost flags
+argument; instead of passing IPERM_FLAG_RCU we add MAY_NOT_BLOCK into mask.
+
+generic_permission() has also lost the check_acl argument; ACL checking
+has been taken to VFS and filesystems need to provide a non-NULL ->i_op->get_acl
+to read an ACL from disk.
+
+---
+
+**mandatory**
+
+If you implement your own ->llseek() you must handle SEEK_HOLE and
+SEEK_DATA. You can hanle this by returning -EINVAL, but it would be nicer to
+support it in some way. The generic handler assumes that the entire file is
+data and there is a virtual hole at the end of the file. So if the provided
+offset is less than i_size and SEEK_DATA is specified, return the same offset.
+If the above is true for the offset and you are given SEEK_HOLE, return the end
+of the file. If the offset is i_size or greater return -ENXIO in either case.
+
+**mandatory**
+
+If you have your own ->fsync() you must make sure to call
+filemap_write_and_wait_range() so that all dirty pages are synced out properly.
+You must also keep in mind that ->fsync() is not called with i_mutex held
+anymore, so if you require i_mutex locking you must make sure to take it and
+release it yourself.
+
+---
+
+**mandatory**
+
+d_alloc_root() is gone, along with a lot of bugs caused by code
+misusing it. Replacement: d_make_root(inode). On success d_make_root(inode)
+allocates and returns a new dentry instantiated with the passed in inode.
+On failure NULL is returned and the passed in inode is dropped so the reference
+to inode is consumed in all cases and failure handling need not do any cleanup
+for the inode. If d_make_root(inode) is passed a NULL inode it returns NULL
+and also requires no further error handling. Typical usage is::
+
+ inode = foofs_new_inode(....);
+ s->s_root = d_make_root(inode);
+ if (!s->s_root)
+ /* Nothing needed for the inode cleanup */
+ return -ENOMEM;
+ ...
+
+---
+
+**mandatory**
+
+The witch is dead! Well, 2/3 of it, anyway. ->d_revalidate() and
+->lookup() do *not* take struct nameidata anymore; just the flags.
+
+---
+
+**mandatory**
+
+->create() doesn't take ``struct nameidata *``; unlike the previous
+two, it gets "is it an O_EXCL or equivalent?" boolean argument. Note that
+local filesystems can ignore tha argument - they are guaranteed that the
+object doesn't exist. It's remote/distributed ones that might care...
+
+---
+
+**mandatory**
+
+FS_REVAL_DOT is gone; if you used to have it, add ->d_weak_revalidate()
+in your dentry operations instead.
+
+---
+
+**mandatory**
+
+vfs_readdir() is gone; switch to iterate_dir() instead
+
+---
+
+**mandatory**
+
+->readdir() is gone now; switch to ->iterate()
+
+**mandatory**
+
+vfs_follow_link has been removed. Filesystems must use nd_set_link
+from ->follow_link for normal symlinks, or nd_jump_link for magic
+/proc/<pid> style links.
+
+---
+
+**mandatory**
+
+iget5_locked()/ilookup5()/ilookup5_nowait() test() callback used to be
+called with both ->i_lock and inode_hash_lock held; the former is *not*
+taken anymore, so verify that your callbacks do not rely on it (none
+of the in-tree instances did). inode_hash_lock is still held,
+of course, so they are still serialized wrt removal from inode hash,
+as well as wrt set() callback of iget5_locked().
+
+---
+
+**mandatory**
+
+d_materialise_unique() is gone; d_splice_alias() does everything you
+need now. Remember that they have opposite orders of arguments ;-/
+
+---
+
+**mandatory**
+
+f_dentry is gone; use f_path.dentry, or, better yet, see if you can avoid
+it entirely.
+
+---
+
+**mandatory**
+
+never call ->read() and ->write() directly; use __vfs_{read,write} or
+wrappers; instead of checking for ->write or ->read being NULL, look for
+FMODE_CAN_{WRITE,READ} in file->f_mode.
+
+---
+
+**mandatory**
+
+do _not_ use new_sync_{read,write} for ->read/->write; leave it NULL
+instead.
+
+---
+
+**mandatory**
+ ->aio_read/->aio_write are gone. Use ->read_iter/->write_iter.
+
+---
+
+**recommended**
+
+for embedded ("fast") symlinks just set inode->i_link to wherever the
+symlink body is and use simple_follow_link() as ->follow_link().
+
+---
+
+**mandatory**
+
+calling conventions for ->follow_link() have changed. Instead of returning
+cookie and using nd_set_link() to store the body to traverse, we return
+the body to traverse and store the cookie using explicit void ** argument.
+nameidata isn't passed at all - nd_jump_link() doesn't need it and
+nd_[gs]et_link() is gone.
+
+---
+
+**mandatory**
+
+calling conventions for ->put_link() have changed. It gets inode instead of
+dentry, it does not get nameidata at all and it gets called only when cookie
+is non-NULL. Note that link body isn't available anymore, so if you need it,
+store it as cookie.
+
+---
+
+**mandatory**
+
+any symlink that might use page_follow_link_light/page_put_link() must
+have inode_nohighmem(inode) called before anything might start playing with
+its pagecache. No highmem pages should end up in the pagecache of such
+symlinks. That includes any preseeding that might be done during symlink
+creation. __page_symlink() will honour the mapping gfp flags, so once
+you've done inode_nohighmem() it's safe to use, but if you allocate and
+insert the page manually, make sure to use the right gfp flags.
+
+---
+
+**mandatory**
+
+->follow_link() is replaced with ->get_link(); same API, except that
+
+ * ->get_link() gets inode as a separate argument
+ * ->get_link() may be called in RCU mode - in that case NULL
+ dentry is passed
+
+---
+
+**mandatory**
+
+->get_link() gets struct delayed_call ``*done`` now, and should do
+set_delayed_call() where it used to set ``*cookie``.
+
+->put_link() is gone - just give the destructor to set_delayed_call()
+in ->get_link().
+
+---
+
+**mandatory**
+
+->getxattr() and xattr_handler.get() get dentry and inode passed separately.
+dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
+in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
+called before we attach dentry to inode.
+
+---
+
+**mandatory**
+
+symlinks are no longer the only inodes that do *not* have i_bdev/i_cdev/
+i_pipe/i_link union zeroed out at inode eviction. As the result, you can't
+assume that non-NULL value in ->i_nlink at ->destroy_inode() implies that
+it's a symlink. Checking ->i_mode is really needed now. In-tree we had
+to fix shmem_destroy_callback() that used to take that kind of shortcut;
+watch out, since that shortcut is no longer valid.
+
+---
+
+**mandatory**
+
+->i_mutex is replaced with ->i_rwsem now. inode_lock() et.al. work as
+they used to - they just take it exclusive. However, ->lookup() may be
+called with parent locked shared. Its instances must not
+
+ * use d_instantiate) and d_rehash() separately - use d_add() or
+ d_splice_alias() instead.
+ * use d_rehash() alone - call d_add(new_dentry, NULL) instead.
+ * in the unlikely case when (read-only) access to filesystem
+ data structures needs exclusion for some reason, arrange it
+ yourself. None of the in-tree filesystems needed that.
+ * rely on ->d_parent and ->d_name not changing after dentry has
+ been fed to d_add() or d_splice_alias(). Again, none of the
+ in-tree instances relied upon that.
+
+We are guaranteed that lookups of the same name in the same directory
+will not happen in parallel ("same" in the sense of your ->d_compare()).
+Lookups on different names in the same directory can and do happen in
+parallel now.
+
+---
+
+**recommended**
+
+->iterate_shared() is added; it's a parallel variant of ->iterate().
+Exclusion on struct file level is still provided (as well as that
+between it and lseek on the same struct file), but if your directory
+has been opened several times, you can get these called in parallel.
+Exclusion between that method and all directory-modifying ones is
+still provided, of course.
+
+Often enough ->iterate() can serve as ->iterate_shared() without any
+changes - it is a read-only operation, after all. If you have any
+per-inode or per-dentry in-core data structures modified by ->iterate(),
+you might need something to serialize the access to them. If you
+do dcache pre-seeding, you'll need to switch to d_alloc_parallel() for
+that; look for in-tree examples.
+
+Old method is only used if the new one is absent; eventually it will
+be removed. Switch while you still can; the old one won't stay.
+
+---
+
+**mandatory**
+
+->atomic_open() calls without O_CREAT may happen in parallel.
+
+---
+
+**mandatory**
+
+->setxattr() and xattr_handler.set() get dentry and inode passed separately.
+dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
+in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
+called before we attach dentry to inode and !@#!@##!@$!$#!@#$!@$!@$ smack
+->d_instantiate() uses not just ->getxattr() but ->setxattr() as well.
+
+---
+
+**mandatory**
+
+->d_compare() doesn't get parent as a separate argument anymore. If you
+used it for finding the struct super_block involved, dentry->d_sb will
+work just as well; if it's something more complicated, use dentry->d_parent.
+Just be careful not to assume that fetching it more than once will yield
+the same value - in RCU mode it could change under you.
+
+---
+
+**mandatory**
+
+->rename() has an added flags argument. Any flags not handled by the
+filesystem should result in EINVAL being returned.
+
+---
+
+
+**recommended**
+
+->readlink is optional for symlinks. Don't set, unless filesystem needs
+to fake something for readlink(2).
+
+---
+
+**mandatory**
+
+->getattr() is now passed a struct path rather than a vfsmount and
+dentry separately, and it now has request_mask and query_flags arguments
+to specify the fields and sync type requested by statx. Filesystems not
+supporting any statx-specific features may ignore the new arguments.
+
+---
+
+**mandatory**
+
+->atomic_open() calling conventions have changed. Gone is ``int *opened``,
+along with FILE_OPENED/FILE_CREATED. In place of those we have
+FMODE_OPENED/FMODE_CREATED, set in file->f_mode. Additionally, return
+value for 'called finish_no_open(), open it yourself' case has become
+0, not 1. Since finish_no_open() itself is returning 0 now, that part
+does not need any changes in ->atomic_open() instances.
+
+---
+
+**mandatory**
+
+alloc_file() has become static now; two wrappers are to be used instead.
+alloc_file_pseudo(inode, vfsmount, name, flags, ops) is for the cases
+when dentry needs to be created; that's the majority of old alloc_file()
+users. Calling conventions: on success a reference to new struct file
+is returned and callers reference to inode is subsumed by that. On
+failure, ERR_PTR() is returned and no caller's references are affected,
+so the caller needs to drop the inode reference it held.
+alloc_file_clone(file, flags, ops) does not affect any caller's references.
+On success you get a new struct file sharing the mount/dentry with the
+original, on failure - ERR_PTR().
+
+---
+
+**mandatory**
+
+->clone_file_range() and ->dedupe_file_range have been replaced with
+->remap_file_range(). See Documentation/filesystems/vfs.rst for more
+information.
+
+---
+
+**recommended**
+
+->lookup() instances doing an equivalent of::
+
+ if (IS_ERR(inode))
+ return ERR_CAST(inode);
+ return d_splice_alias(inode, dentry);
+
+don't need to bother with the check - d_splice_alias() will do the
+right thing when given ERR_PTR(...) as inode. Moreover, passing NULL
+inode to d_splice_alias() will also do the right thing (equivalent of
+d_add(dentry, NULL); return NULL;), so that kind of special cases
+also doesn't need a separate treatment.
+
+---
+
+**strongly recommended**
+
+take the RCU-delayed parts of ->destroy_inode() into a new method -
+->free_inode(). If ->destroy_inode() becomes empty - all the better,
+just get rid of it. Synchronous work (e.g. the stuff that can't
+be done from an RCU callback, or any WARN_ON() where we want the
+stack trace) *might* be movable to ->evict_inode(); however,
+that goes only for the things that are not needed to balance something
+done by ->alloc_inode(). IOW, if it's cleaning up the stuff that
+might have accumulated over the life of in-core inode, ->evict_inode()
+might be a fit.
+
+Rules for inode destruction:
+
+ * if ->destroy_inode() is non-NULL, it gets called
+ * if ->free_inode() is non-NULL, it gets scheduled by call_rcu()
+ * combination of NULL ->destroy_inode and NULL ->free_inode is
+ treated as NULL/free_inode_nonrcu, to preserve the compatibility.
+
+Note that the callback (be it via ->free_inode() or explicit call_rcu()
+in ->destroy_inode()) is *NOT* ordered wrt superblock destruction;
+as the matter of fact, the superblock and all associated structures
+might be already gone. The filesystem driver is guaranteed to be still
+there, but that's it. Freeing memory in the callback is fine; doing
+more than that is possible, but requires a lot of care and is best
+avoided.
+
+---
+
+**mandatory**
+
+DCACHE_RCUACCESS is gone; having an RCU delay on dentry freeing is the
+default. DCACHE_NORCU opts out, and only d_alloc_pseudo() has any
+business doing so.
+
+---
+
+**mandatory**
+
+d_alloc_pseudo() is internal-only; uses outside of alloc_file_pseudo() are
+very suspect (and won't work in modules). Such uses are very likely to
+be misspelled d_alloc_anon().
diff --git a/Documentation/filesystems/ubifs-authentication.md b/Documentation/filesystems/ubifs-authentication.rst
index 23e698167141..6a9584f6ff46 100644
--- a/Documentation/filesystems/ubifs-authentication.md
+++ b/Documentation/filesystems/ubifs-authentication.rst
@@ -1,8 +1,11 @@
-% UBIFS Authentication
-% sigma star gmbh
-% 2018
+:orphan:
-# Introduction
+.. UBIFS Authentication
+.. sigma star gmbh
+.. 2018
+
+Introduction
+============
UBIFS utilizes the fscrypt framework to provide confidentiality for file
contents and file names. This prevents attacks where an attacker is able to
@@ -33,7 +36,8 @@ existing features like key derivation can be utilized. It should however also
be possible to use UBIFS authentication without using encryption.
-## MTD, UBI & UBIFS
+MTD, UBI & UBIFS
+----------------
On Linux, the MTD (Memory Technology Devices) subsystem provides a uniform
interface to access raw flash devices. One of the more prominent subsystems that
@@ -47,7 +51,7 @@ UBIFS is a filesystem for raw flash which operates on top of UBI. Thus, wear
leveling and some flash specifics are left to UBI, while UBIFS focuses on
scalability, performance and recoverability.
-
+::
+------------+ +*******+ +-----------+ +-----+
| | * UBIFS * | UBI-BLOCK | | ... |
@@ -84,7 +88,8 @@ persisted onto the flash directly. More details on UBIFS can also be found in
[UBIFS-WP].
-### UBIFS Index & Tree Node Cache
+UBIFS Index & Tree Node Cache
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Basic on-flash UBIFS entities are called *nodes*. UBIFS knows different types
of nodes. Eg. data nodes (`struct ubifs_data_node`) which store chunks of file
@@ -118,17 +123,18 @@ on-flash filesystem structures like the index. On every commit, the TNC nodes
marked as dirty are written to the flash to update the persisted index.
-### Journal
+Journal
+~~~~~~~
To avoid wearing out the flash, the index is only persisted (*commited*) when
-certain conditions are met (eg. `fsync(2)`). The journal is used to record
+certain conditions are met (eg. ``fsync(2)``). The journal is used to record
any changes (in form of inode nodes, data nodes etc.) between commits
of the index. During mount, the journal is read from the flash and replayed
onto the TNC (which will be created on-demand from the on-flash index).
UBIFS reserves a bunch of LEBs just for the journal called *log area*. The
amount of log area LEBs is configured on filesystem creation (using
-`mkfs.ubifs`) and stored in the superblock node. The log area contains only
+``mkfs.ubifs``) and stored in the superblock node. The log area contains only
two types of nodes: *reference nodes* and *commit start nodes*. A commit start
node is written whenever an index commit is performed. Reference nodes are
written on every journal update. Each reference node points to the position of
@@ -152,6 +158,7 @@ done for the last referenced LEB of the journal. Only this can become corrupt
because of a power cut. If the recovery fails, UBIFS will not mount. An error
for every other LEB will directly cause UBIFS to fail the mount operation.
+::
| ---- LOG AREA ---- | ---------- MAIN AREA ------------ |
@@ -172,10 +179,11 @@ for every other LEB will directly cause UBIFS to fail the mount operation.
containing their buds
-### LEB Property Tree/Table
+LEB Property Tree/Table
+~~~~~~~~~~~~~~~~~~~~~~~
The LEB property tree is used to store per-LEB information. This includes the
-LEB type and amount of free and *dirty* (old, obsolete content) space [1] on
+LEB type and amount of free and *dirty* (old, obsolete content) space [1]_ on
the LEB. The type is important, because UBIFS never mixes index nodes with data
nodes on a single LEB and thus each LEB has a specific purpose. This again is
useful for free space calculations. See [UBIFS-WP] for more details.
@@ -185,19 +193,21 @@ index. Due to its smaller size it is always written as one chunk on every
commit. Thus, saving the LPT is an atomic operation.
-[1] Since LEBs can only be appended and never overwritten, there is a
-difference between free space ie. the remaining space left on the LEB to be
-written to without erasing it and previously written content that is obsolete
-but can't be overwritten without erasing the full LEB.
+.. [1] Since LEBs can only be appended and never overwritten, there is a
+ difference between free space ie. the remaining space left on the LEB to be
+ written to without erasing it and previously written content that is obsolete
+ but can't be overwritten without erasing the full LEB.
-# UBIFS Authentication
+UBIFS Authentication
+====================
This chapter introduces UBIFS authentication which enables UBIFS to verify
the authenticity and integrity of metadata and file contents stored on flash.
-## Threat Model
+Threat Model
+------------
UBIFS authentication enables detection of offline data modification. While it
does not prevent it, it enables (trusted) code to check the integrity and
@@ -224,7 +234,8 @@ Additional measures like secure boot and trusted boot have to be taken to
ensure that only trusted code is executed on a device.
-## Authentication
+Authentication
+--------------
To be able to fully trust data read from flash, all UBIFS data structures
stored on flash are authenticated. That is:
@@ -236,7 +247,8 @@ stored on flash are authenticated. That is:
- The LPT which stores UBI LEB metadata which UBIFS uses for free space accounting
-### Index Authentication
+Index Authentication
+~~~~~~~~~~~~~~~~~~~~
Through UBIFS' concept of a wandering tree, it already takes care of only
updating and persisting changed parts from leaf node up to the root node
@@ -260,6 +272,7 @@ include a hash. All other types of nodes will remain unchanged. This reduces
the storage overhead which is precious for users of UBIFS (ie. embedded
devices).
+::
+---------------+
| Master Node |
@@ -303,7 +316,8 @@ hashes to index nodes does not change this since each hash will be persisted
atomically together with its respective node.
-### Journal Authentication
+Journal Authentication
+~~~~~~~~~~~~~~~~~~~~~~
The journal is authenticated too. Since the journal is continuously written
it is necessary to also add authentication information frequently to the
@@ -316,7 +330,7 @@ of the hash chain. That way a journal can be authenticated up to the last
authentication node. The tail of the journal which may not have a authentication
node cannot be authenticated and is skipped during journal replay.
-We get this picture for journal authentication:
+We get this picture for journal authentication::
,,,,,,,,
,......,...........................................
@@ -352,7 +366,8 @@ the superblock struct. The superblock node is stored in LEB 0 and is only
modified on feature flag or similar changes, but never on file changes.
-### LPT Authentication
+LPT Authentication
+~~~~~~~~~~~~~~~~~~
The location of the LPT root node on the flash is stored in the UBIFS master
node. Since the LPT is written and read atomically on every commit, there is
@@ -363,7 +378,8 @@ be verified by verifying the authenticity of the master node and comparing the
LTP hash stored there with the hash computed from the read on-flash LPT.
-## Key Management
+Key Management
+--------------
For simplicity, UBIFS authentication uses a single key to compute the HMACs
of superblock, master, commit start and reference nodes. This key has to be
@@ -399,7 +415,8 @@ approach is similar to the approach proposed for fscrypt encryption policy v2
[FSCRYPT-POLICY2].
-# Future Extensions
+Future Extensions
+=================
In certain cases where a vendor wants to provide an authenticated filesystem
image to customers, it should be possible to do so without sharing the secret
@@ -411,7 +428,8 @@ to the way the IMA/EVM subsystem deals with such situations. The HMAC key
will then have to be provided beforehand in the normal way.
-# References
+References
+==========
[CRYPTSETUP2] http://www.saout.de/pipermail/dm-crypt/2017-November/005745.html
diff --git a/Documentation/filesystems/ufs.txt b/Documentation/filesystems/ufs.txt
deleted file mode 100644
index 7a602adeca2b..000000000000
--- a/Documentation/filesystems/ufs.txt
+++ /dev/null
@@ -1,60 +0,0 @@
-USING UFS
-=========
-
-mount -t ufs -o ufstype=type_of_ufs device dir
-
-
-UFS OPTIONS
-===========
-
-ufstype=type_of_ufs
- UFS is a file system widely used in different operating systems.
- The problem are differences among implementations. Features of
- some implementations are undocumented, so its hard to recognize
- type of ufs automatically. That's why user must specify type of
- ufs manually by mount option ufstype. Possible values are:
-
- old old format of ufs
- default value, supported as read-only
-
- 44bsd used in FreeBSD, NetBSD, OpenBSD
- supported as read-write
-
- ufs2 used in FreeBSD 5.x
- supported as read-write
-
- 5xbsd synonym for ufs2
-
- sun used in SunOS (Solaris)
- supported as read-write
-
- sunx86 used in SunOS for Intel (Solarisx86)
- supported as read-write
-
- hp used in HP-UX
- supported as read-only
-
- nextstep
- used in NextStep
- supported as read-only
-
- nextstep-cd
- used for NextStep CDROMs (block_size == 2048)
- supported as read-only
-
- openstep
- used in OpenStep
- supported as read-only
-
-
-POSSIBLE PROBLEMS
-=================
-
-See next section, if you have any.
-
-
-BUG REPORTS
-===========
-
-Any ufs bug report you can send to daniel.pirkl@email.cz or
-to dushistov@mail.ru (do not send partition tables bug reports).
diff --git a/Documentation/filesystems/vfs.rst b/Documentation/filesystems/vfs.rst
index 0f85ab21c2ca..7d4d09dd5e6d 100644
--- a/Documentation/filesystems/vfs.rst
+++ b/Documentation/filesystems/vfs.rst
@@ -20,7 +20,7 @@ kernel which allows different filesystem implementations to coexist.
VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so on
are called from a process context. Filesystem locking is described in
-the document Documentation/filesystems/Locking.
+the document Documentation/filesystems/locking.rst.
Directory Entry Cache (dcache)
diff --git a/Documentation/filesystems/virtiofs.rst b/Documentation/filesystems/virtiofs.rst
new file mode 100644
index 000000000000..4f338e3cb3f7
--- /dev/null
+++ b/Documentation/filesystems/virtiofs.rst
@@ -0,0 +1,60 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================================================
+virtiofs: virtio-fs host<->guest shared file system
+===================================================
+
+- Copyright (C) 2019 Red Hat, Inc.
+
+Introduction
+============
+The virtiofs file system for Linux implements a driver for the paravirtualized
+VIRTIO "virtio-fs" device for guest<->host file system sharing. It allows a
+guest to mount a directory that has been exported on the host.
+
+Guests often require access to files residing on the host or remote systems.
+Use cases include making files available to new guests during installation,
+booting from a root file system located on the host, persistent storage for
+stateless or ephemeral guests, and sharing a directory between guests.
+
+Although it is possible to use existing network file systems for some of these
+tasks, they require configuration steps that are hard to automate and they
+expose the storage network to the guest. The virtio-fs device was designed to
+solve these problems by providing file system access without networking.
+
+Furthermore the virtio-fs device takes advantage of the co-location of the
+guest and host to increase performance and provide semantics that are not
+possible with network file systems.
+
+Usage
+=====
+Mount file system with tag ``myfs`` on ``/mnt``:
+
+.. code-block:: sh
+
+ guest# mount -t virtiofs myfs /mnt
+
+Please see https://virtio-fs.gitlab.io/ for details on how to configure QEMU
+and the virtiofsd daemon.
+
+Internals
+=========
+Since the virtio-fs device uses the FUSE protocol for file system requests, the
+virtiofs file system for Linux is integrated closely with the FUSE file system
+client. The guest acts as the FUSE client while the host acts as the FUSE
+server. The /dev/fuse interface between the kernel and userspace is replaced
+with the virtio-fs device interface.
+
+FUSE requests are placed into a virtqueue and processed by the host. The
+response portion of the buffer is filled in by the host and the guest handles
+the request completion.
+
+Mapping /dev/fuse to virtqueues requires solving differences in semantics
+between /dev/fuse and virtqueues. Each time the /dev/fuse device is read, the
+FUSE client may choose which request to transfer, making it possible to
+prioritize certain requests over others. Virtqueues have queue semantics and
+it is not possible to change the order of requests that have been enqueued.
+This is especially important if the virtqueue becomes full since it is then
+impossible to add high priority requests. In order to address this difference,
+the virtio-fs device uses a "hiprio" virtqueue specifically for requests that
+have priority over normal requests.