aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/hid/hid-transport.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/hid/hid-transport.txt')
-rw-r--r--Documentation/hid/hid-transport.txt317
1 files changed, 0 insertions, 317 deletions
diff --git a/Documentation/hid/hid-transport.txt b/Documentation/hid/hid-transport.txt
deleted file mode 100644
index 3dcba9fd4a3a..000000000000
--- a/Documentation/hid/hid-transport.txt
+++ /dev/null
@@ -1,317 +0,0 @@
- HID I/O Transport Drivers
- ===========================
-
-The HID subsystem is independent of the underlying transport driver. Initially,
-only USB was supported, but other specifications adopted the HID design and
-provided new transport drivers. The kernel includes at least support for USB,
-Bluetooth, I2C and user-space I/O drivers.
-
-1) HID Bus
-==========
-
-The HID subsystem is designed as a bus. Any I/O subsystem may provide HID
-devices and register them with the HID bus. HID core then loads generic device
-drivers on top of it. The transport drivers are responsible of raw data
-transport and device setup/management. HID core is responsible of
-report-parsing, report interpretation and the user-space API. Device specifics
-and quirks are handled by all layers depending on the quirk.
-
- +-----------+ +-----------+ +-----------+ +-----------+
- | Device #1 | | Device #i | | Device #j | | Device #k |
- +-----------+ +-----------+ +-----------+ +-----------+
- \\ // \\ //
- +------------+ +------------+
- | I/O Driver | | I/O Driver |
- +------------+ +------------+
- || ||
- +------------------+ +------------------+
- | Transport Driver | | Transport Driver |
- +------------------+ +------------------+
- \___ ___/
- \ /
- +----------------+
- | HID Core |
- +----------------+
- / | | \
- / | | \
- ____________/ | | \_________________
- / | | \
- / | | \
- +----------------+ +-----------+ +------------------+ +------------------+
- | Generic Driver | | MT Driver | | Custom Driver #1 | | Custom Driver #2 |
- +----------------+ +-----------+ +------------------+ +------------------+
-
-Example Drivers:
- I/O: USB, I2C, Bluetooth-l2cap
- Transport: USB-HID, I2C-HID, BT-HIDP
-
-Everything below "HID Core" is simplified in this graph as it is only of
-interest to HID device drivers. Transport drivers do not need to know the
-specifics.
-
-1.1) Device Setup
------------------
-
-I/O drivers normally provide hotplug detection or device enumeration APIs to the
-transport drivers. Transport drivers use this to find any suitable HID device.
-They allocate HID device objects and register them with HID core. Transport
-drivers are not required to register themselves with HID core. HID core is never
-aware of which transport drivers are available and is not interested in it. It
-is only interested in devices.
-
-Transport drivers attach a constant "struct hid_ll_driver" object with each
-device. Once a device is registered with HID core, the callbacks provided via
-this struct are used by HID core to communicate with the device.
-
-Transport drivers are responsible of detecting device failures and unplugging.
-HID core will operate a device as long as it is registered regardless of any
-device failures. Once transport drivers detect unplug or failure events, they
-must unregister the device from HID core and HID core will stop using the
-provided callbacks.
-
-1.2) Transport Driver Requirements
-----------------------------------
-
-The terms "asynchronous" and "synchronous" in this document describe the
-transmission behavior regarding acknowledgements. An asynchronous channel must
-not perform any synchronous operations like waiting for acknowledgements or
-verifications. Generally, HID calls operating on asynchronous channels must be
-running in atomic-context just fine.
-On the other hand, synchronous channels can be implemented by the transport
-driver in whatever way they like. They might just be the same as asynchronous
-channels, but they can also provide acknowledgement reports, automatic
-retransmission on failure, etc. in a blocking manner. If such functionality is
-required on asynchronous channels, a transport-driver must implement that via
-its own worker threads.
-
-HID core requires transport drivers to follow a given design. A Transport
-driver must provide two bi-directional I/O channels to each HID device. These
-channels must not necessarily be bi-directional in the hardware itself. A
-transport driver might just provide 4 uni-directional channels. Or it might
-multiplex all four on a single physical channel. However, in this document we
-will describe them as two bi-directional channels as they have several
-properties in common.
-
- - Interrupt Channel (intr): The intr channel is used for asynchronous data
- reports. No management commands or data acknowledgements are sent on this
- channel. Any unrequested incoming or outgoing data report must be sent on
- this channel and is never acknowledged by the remote side. Devices usually
- send their input events on this channel. Outgoing events are normally
- not send via intr, except if high throughput is required.
- - Control Channel (ctrl): The ctrl channel is used for synchronous requests and
- device management. Unrequested data input events must not be sent on this
- channel and are normally ignored. Instead, devices only send management
- events or answers to host requests on this channel.
- The control-channel is used for direct blocking queries to the device
- independent of any events on the intr-channel.
- Outgoing reports are usually sent on the ctrl channel via synchronous
- SET_REPORT requests.
-
-Communication between devices and HID core is mostly done via HID reports. A
-report can be of one of three types:
-
- - INPUT Report: Input reports provide data from device to host. This
- data may include button events, axis events, battery status or more. This
- data is generated by the device and sent to the host with or without
- requiring explicit requests. Devices can choose to send data continuously or
- only on change.
- - OUTPUT Report: Output reports change device states. They are sent from host
- to device and may include LED requests, rumble requests or more. Output
- reports are never sent from device to host, but a host can retrieve their
- current state.
- Hosts may choose to send output reports either continuously or only on
- change.
- - FEATURE Report: Feature reports are used for specific static device features
- and never reported spontaneously. A host can read and/or write them to access
- data like battery-state or device-settings.
- Feature reports are never sent without requests. A host must explicitly set
- or retrieve a feature report. This also means, feature reports are never sent
- on the intr channel as this channel is asynchronous.
-
-INPUT and OUTPUT reports can be sent as pure data reports on the intr channel.
-For INPUT reports this is the usual operational mode. But for OUTPUT reports,
-this is rarely done as OUTPUT reports are normally quite scarce. But devices are
-free to make excessive use of asynchronous OUTPUT reports (for instance, custom
-HID audio speakers make great use of it).
-
-Plain reports must not be sent on the ctrl channel, though. Instead, the ctrl
-channel provides synchronous GET/SET_REPORT requests. Plain reports are only
-allowed on the intr channel and are the only means of data there.
-
- - GET_REPORT: A GET_REPORT request has a report ID as payload and is sent
- from host to device. The device must answer with a data report for the
- requested report ID on the ctrl channel as a synchronous acknowledgement.
- Only one GET_REPORT request can be pending for each device. This restriction
- is enforced by HID core as several transport drivers don't allow multiple
- simultaneous GET_REPORT requests.
- Note that data reports which are sent as answer to a GET_REPORT request are
- not handled as generic device events. That is, if a device does not operate
- in continuous data reporting mode, an answer to GET_REPORT does not replace
- the raw data report on the intr channel on state change.
- GET_REPORT is only used by custom HID device drivers to query device state.
- Normally, HID core caches any device state so this request is not necessary
- on devices that follow the HID specs except during device initialization to
- retrieve the current state.
- GET_REPORT requests can be sent for any of the 3 report types and shall
- return the current report state of the device. However, OUTPUT reports as
- payload may be blocked by the underlying transport driver if the
- specification does not allow them.
- - SET_REPORT: A SET_REPORT request has a report ID plus data as payload. It is
- sent from host to device and a device must update it's current report state
- according to the given data. Any of the 3 report types can be used. However,
- INPUT reports as payload might be blocked by the underlying transport driver
- if the specification does not allow them.
- A device must answer with a synchronous acknowledgement. However, HID core
- does not require transport drivers to forward this acknowledgement to HID
- core.
- Same as for GET_REPORT, only one SET_REPORT can be pending at a time. This
- restriction is enforced by HID core as some transport drivers do not support
- multiple synchronous SET_REPORT requests.
-
-Other ctrl-channel requests are supported by USB-HID but are not available
-(or deprecated) in most other transport level specifications:
-
- - GET/SET_IDLE: Only used by USB-HID and I2C-HID.
- - GET/SET_PROTOCOL: Not used by HID core.
- - RESET: Used by I2C-HID, not hooked up in HID core.
- - SET_POWER: Used by I2C-HID, not hooked up in HID core.
-
-2) HID API
-==========
-
-2.1) Initialization
--------------------
-
-Transport drivers normally use the following procedure to register a new device
-with HID core:
-
- struct hid_device *hid;
- int ret;
-
- hid = hid_allocate_device();
- if (IS_ERR(hid)) {
- ret = PTR_ERR(hid);
- goto err_<...>;
- }
-
- strlcpy(hid->name, <device-name-src>, 127);
- strlcpy(hid->phys, <device-phys-src>, 63);
- strlcpy(hid->uniq, <device-uniq-src>, 63);
-
- hid->ll_driver = &custom_ll_driver;
- hid->bus = <device-bus>;
- hid->vendor = <device-vendor>;
- hid->product = <device-product>;
- hid->version = <device-version>;
- hid->country = <device-country>;
- hid->dev.parent = <pointer-to-parent-device>;
- hid->driver_data = <transport-driver-data-field>;
-
- ret = hid_add_device(hid);
- if (ret)
- goto err_<...>;
-
-Once hid_add_device() is entered, HID core might use the callbacks provided in
-"custom_ll_driver". Note that fields like "country" can be ignored by underlying
-transport-drivers if not supported.
-
-To unregister a device, use:
-
- hid_destroy_device(hid);
-
-Once hid_destroy_device() returns, HID core will no longer make use of any
-driver callbacks.
-
-2.2) hid_ll_driver operations
------------------------------
-
-The available HID callbacks are:
- - int (*start) (struct hid_device *hdev)
- Called from HID device drivers once they want to use the device. Transport
- drivers can choose to setup their device in this callback. However, normally
- devices are already set up before transport drivers register them to HID core
- so this is mostly only used by USB-HID.
-
- - void (*stop) (struct hid_device *hdev)
- Called from HID device drivers once they are done with a device. Transport
- drivers can free any buffers and deinitialize the device. But note that
- ->start() might be called again if another HID device driver is loaded on the
- device.
- Transport drivers are free to ignore it and deinitialize devices after they
- destroyed them via hid_destroy_device().
-
- - int (*open) (struct hid_device *hdev)
- Called from HID device drivers once they are interested in data reports.
- Usually, while user-space didn't open any input API/etc., device drivers are
- not interested in device data and transport drivers can put devices asleep.
- However, once ->open() is called, transport drivers must be ready for I/O.
- ->open() calls are nested for each client that opens the HID device.
-
- - void (*close) (struct hid_device *hdev)
- Called from HID device drivers after ->open() was called but they are no
- longer interested in device reports. (Usually if user-space closed any input
- devices of the driver).
- Transport drivers can put devices asleep and terminate any I/O of all
- ->open() calls have been followed by a ->close() call. However, ->start() may
- be called again if the device driver is interested in input reports again.
-
- - int (*parse) (struct hid_device *hdev)
- Called once during device setup after ->start() has been called. Transport
- drivers must read the HID report-descriptor from the device and tell HID core
- about it via hid_parse_report().
-
- - int (*power) (struct hid_device *hdev, int level)
- Called by HID core to give PM hints to transport drivers. Usually this is
- analogical to the ->open() and ->close() hints and redundant.
-
- - void (*request) (struct hid_device *hdev, struct hid_report *report,
- int reqtype)
- Send an HID request on the ctrl channel. "report" contains the report that
- should be sent and "reqtype" the request type. Request-type can be
- HID_REQ_SET_REPORT or HID_REQ_GET_REPORT.
- This callback is optional. If not provided, HID core will assemble a raw
- report following the HID specs and send it via the ->raw_request() callback.
- The transport driver is free to implement this asynchronously.
-
- - int (*wait) (struct hid_device *hdev)
- Used by HID core before calling ->request() again. A transport driver can use
- it to wait for any pending requests to complete if only one request is
- allowed at a time.
-
- - int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
- __u8 *buf, size_t count, unsigned char rtype,
- int reqtype)
- Same as ->request() but provides the report as raw buffer. This request shall
- be synchronous. A transport driver must not use ->wait() to complete such
- requests. This request is mandatory and hid core will reject the device if
- it is missing.
-
- - int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
- Send raw output report via intr channel. Used by some HID device drivers
- which require high throughput for outgoing requests on the intr channel. This
- must not cause SET_REPORT calls! This must be implemented as asynchronous
- output report on the intr channel!
-
- - int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
- Perform SET/GET_IDLE request. Only used by USB-HID, do not implement!
-
-2.3) Data Path
---------------
-
-Transport drivers are responsible of reading data from I/O devices. They must
-handle any I/O-related state-tracking themselves. HID core does not implement
-protocol handshakes or other management commands which can be required by the
-given HID transport specification.
-
-Every raw data packet read from a device must be fed into HID core via
-hid_input_report(). You must specify the channel-type (intr or ctrl) and report
-type (input/output/feature). Under normal conditions, only input reports are
-provided via this API.
-
-Responses to GET_REPORT requests via ->request() must also be provided via this
-API. Responses to ->raw_request() are synchronous and must be intercepted by the
-transport driver and not passed to hid_input_report().
-Acknowledgements to SET_REPORT requests are not of interest to HID core.
-
-----------------------------------------------------
-Written 2013, David Herrmann <dh.herrmann@gmail.com>