aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/livepatch/livepatch.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/livepatch/livepatch.txt')
-rw-r--r--Documentation/livepatch/livepatch.txt182
1 files changed, 87 insertions, 95 deletions
diff --git a/Documentation/livepatch/livepatch.txt b/Documentation/livepatch/livepatch.txt
index 2d7ed09dbd59..4627b41ff02e 100644
--- a/Documentation/livepatch/livepatch.txt
+++ b/Documentation/livepatch/livepatch.txt
@@ -12,12 +12,12 @@ Table of Contents:
4. Livepatch module
4.1. New functions
4.2. Metadata
- 4.3. Livepatch module handling
5. Livepatch life-cycle
- 5.1. Registration
+ 5.1. Loading
5.2. Enabling
- 5.3. Disabling
- 5.4. Unregistration
+ 5.3. Replacing
+ 5.4. Disabling
+ 5.5. Removing
6. Sysfs
7. Limitations
@@ -143,9 +143,9 @@ without HAVE_RELIABLE_STACKTRACE are not considered fully supported by
the kernel livepatching.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
-is in transition. Only a single patch (the topmost patch on the stack)
-can be in transition at a given time. A patch can remain in transition
-indefinitely, if any of the tasks are stuck in the initial patch state.
+is in transition. Only a single patch can be in transition at a given
+time. A patch can remain in transition indefinitely, if any of the tasks
+are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
@@ -158,12 +158,11 @@ If a patch is in transition, this file shows 0 to indicate the task is
unpatched and 1 to indicate it's patched. Otherwise, if no patch is in
transition, it shows -1. Any tasks which are blocking the transition
can be signaled with SIGSTOP and SIGCONT to force them to change their
-patched state. This may be harmful to the system though.
-/sys/kernel/livepatch/<patch>/signal attribute provides a better alternative.
-Writing 1 to the attribute sends a fake signal to all remaining blocking
-tasks. No proper signal is actually delivered (there is no data in signal
-pending structures). Tasks are interrupted or woken up, and forced to change
-their patched state.
+patched state. This may be harmful to the system though. Sending a fake signal
+to all remaining blocking tasks is a better alternative. No proper signal is
+actually delivered (there is no data in signal pending structures). Tasks are
+interrupted or woken up, and forced to change their patched state. The fake
+signal is automatically sent every 15 seconds.
Administrator can also affect a transition through
/sys/kernel/livepatch/<patch>/force attribute. Writing 1 there clears
@@ -298,117 +297,110 @@ into three levels:
see the "Consistency model" section.
-4.3. Livepatch module handling
-------------------------------
-
-The usual behavior is that the new functions will get used when
-the livepatch module is loaded. For this, the module init() function
-has to register the patch (struct klp_patch) and enable it. See the
-section "Livepatch life-cycle" below for more details about these
-two operations.
-
-Module removal is only safe when there are no users of the underlying
-functions. This is the reason why the force feature permanently disables
-the removal. The forced tasks entered the functions but we cannot say
-that they returned back. Therefore it cannot be decided when the
-livepatch module can be safely removed. When the system is successfully
-transitioned to a new patch state (patched/unpatched) without being
-forced it is guaranteed that no task sleeps or runs in the old code.
-
-
5. Livepatch life-cycle
=======================
-Livepatching defines four basic operations that define the life cycle of each
-live patch: registration, enabling, disabling and unregistration. There are
-several reasons why it is done this way.
+Livepatching can be described by five basic operations:
+loading, enabling, replacing, disabling, removing.
-First, the patch is applied only when all patched symbols for already
-loaded objects are found. The error handling is much easier if this
-check is done before particular functions get redirected.
+Where the replacing and the disabling operations are mutually
+exclusive. They have the same result for the given patch but
+not for the system.
-Second, it might take some time until the entire system is migrated with
-the hybrid consistency model being used. The patch revert might block
-the livepatch module removal for too long. Therefore it is useful to
-revert the patch using a separate operation that might be called
-explicitly. But it does not make sense to remove all information until
-the livepatch module is really removed.
+5.1. Loading
+------------
-5.1. Registration
------------------
+The only reasonable way is to enable the patch when the livepatch kernel
+module is being loaded. For this, klp_enable_patch() has to be called
+in the module_init() callback. There are two main reasons:
-Each patch first has to be registered using klp_register_patch(). This makes
-the patch known to the livepatch framework. Also it does some preliminary
-computing and checks.
+First, only the module has an easy access to the related struct klp_patch.
-In particular, the patch is added into the list of known patches. The
-addresses of the patched functions are found according to their names.
-The special relocations, mentioned in the section "New functions", are
-applied. The relevant entries are created under
-/sys/kernel/livepatch/<name>. The patch is rejected when any operation
-fails.
+Second, the error code might be used to refuse loading the module when
+the patch cannot get enabled.
5.2. Enabling
-------------
-Registered patches might be enabled either by calling klp_enable_patch() or
-by writing '1' to /sys/kernel/livepatch/<name>/enabled. The system will
-start using the new implementation of the patched functions at this stage.
+The livepatch gets enabled by calling klp_enable_patch() from
+the module_init() callback. The system will start using the new
+implementation of the patched functions at this stage.
-When a patch is enabled, livepatch enters into a transition state where
-tasks are converging to the patched state. This is indicated by a value
-of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks have
-been patched, the 'transition' value changes to '0'. For more
-information about this process, see the "Consistency model" section.
+First, the addresses of the patched functions are found according to their
+names. The special relocations, mentioned in the section "New functions",
+are applied. The relevant entries are created under
+/sys/kernel/livepatch/<name>. The patch is rejected when any above
+operation fails.
-If an original function is patched for the first time, a function
-specific struct klp_ops is created and an universal ftrace handler is
-registered.
+Second, livepatch enters into a transition state where tasks are converging
+to the patched state. If an original function is patched for the first
+time, a function specific struct klp_ops is created and an universal
+ftrace handler is registered[*]. This stage is indicated by a value of '1'
+in /sys/kernel/livepatch/<name>/transition. For more information about
+this process, see the "Consistency model" section.
-Functions might be patched multiple times. The ftrace handler is registered
-only once for the given function. Further patches just add an entry to the
-list (see field `func_stack`) of the struct klp_ops. The last added
-entry is chosen by the ftrace handler and becomes the active function
-replacement.
+Finally, once all tasks have been patched, the 'transition' value changes
+to '0'.
-Note that the patches might be enabled in a different order than they were
-registered.
+[*] Note that functions might be patched multiple times. The ftrace handler
+ is registered only once for a given function. Further patches just add
+ an entry to the list (see field `func_stack`) of the struct klp_ops.
+ The right implementation is selected by the ftrace handler, see
+ the "Consistency model" section.
+ That said, it is highly recommended to use cumulative livepatches
+ because they help keeping the consistency of all changes. In this case,
+ functions might be patched two times only during the transition period.
-5.3. Disabling
+
+5.3. Replacing
--------------
-Enabled patches might get disabled either by calling klp_disable_patch() or
-by writing '0' to /sys/kernel/livepatch/<name>/enabled. At this stage
-either the code from the previously enabled patch or even the original
-code gets used.
+All enabled patches might get replaced by a cumulative patch that
+has the .replace flag set.
+
+Once the new patch is enabled and the 'transition' finishes then
+all the functions (struct klp_func) associated with the replaced
+patches are removed from the corresponding struct klp_ops. Also
+the ftrace handler is unregistered and the struct klp_ops is
+freed when the related function is not modified by the new patch
+and func_stack list becomes empty.
+
+See Documentation/livepatch/cumulative-patches.txt for more details.
-When a patch is disabled, livepatch enters into a transition state where
-tasks are converging to the unpatched state. This is indicated by a
-value of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks
-have been unpatched, the 'transition' value changes to '0'. For more
-information about this process, see the "Consistency model" section.
-Here all the functions (struct klp_func) associated with the to-be-disabled
+5.4. Disabling
+--------------
+
+Enabled patches might get disabled by writing '0' to
+/sys/kernel/livepatch/<name>/enabled.
+
+First, livepatch enters into a transition state where tasks are converging
+to the unpatched state. The system starts using either the code from
+the previously enabled patch or even the original one. This stage is
+indicated by a value of '1' in /sys/kernel/livepatch/<name>/transition.
+For more information about this process, see the "Consistency model"
+section.
+
+Second, once all tasks have been unpatched, the 'transition' value changes
+to '0'. All the functions (struct klp_func) associated with the to-be-disabled
patch are removed from the corresponding struct klp_ops. The ftrace handler
is unregistered and the struct klp_ops is freed when the func_stack list
becomes empty.
-Patches must be disabled in exactly the reverse order in which they were
-enabled. It makes the problem and the implementation much easier.
-
+Third, the sysfs interface is destroyed.
-5.4. Unregistration
--------------------
-Disabled patches might be unregistered by calling klp_unregister_patch().
-This can be done only when the patch is disabled and the code is no longer
-used. It must be called before the livepatch module gets unloaded.
+5.5. Removing
+-------------
-At this stage, all the relevant sys-fs entries are removed and the patch
-is removed from the list of known patches.
+Module removal is only safe when there are no users of functions provided
+by the module. This is the reason why the force feature permanently
+disables the removal. Only when the system is successfully transitioned
+to a new patch state (patched/unpatched) without being forced it is
+guaranteed that no task sleeps or runs in the old code.
6. Sysfs
@@ -418,8 +410,8 @@ Information about the registered patches can be found under
/sys/kernel/livepatch. The patches could be enabled and disabled
by writing there.
-/sys/kernel/livepatch/<patch>/signal and /sys/kernel/livepatch/<patch>/force
-attributes allow administrator to affect a patching operation.
+/sys/kernel/livepatch/<patch>/force attributes allow administrator to affect a
+patching operation.
See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.