aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/livepatch
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/livepatch')
-rw-r--r--Documentation/livepatch/callbacks.txt489
-rw-r--r--Documentation/livepatch/cumulative-patches.txt102
-rw-r--r--Documentation/livepatch/livepatch.txt182
3 files changed, 194 insertions, 579 deletions
diff --git a/Documentation/livepatch/callbacks.txt b/Documentation/livepatch/callbacks.txt
index c9776f48e458..182e31d4abce 100644
--- a/Documentation/livepatch/callbacks.txt
+++ b/Documentation/livepatch/callbacks.txt
@@ -118,488 +118,9 @@ similar change to their hw_features value. (Client functions of the
value may need to be updated accordingly.)
-Test cases
-==========
-
-What follows is not an exhaustive test suite of every possible livepatch
-pre/post-(un)patch combination, but a selection that demonstrates a few
-important concepts. Each test case uses the kernel modules located in
-the samples/livepatch/ and assumes that no livepatches are loaded at the
-beginning of the test.
-
-
-Test 1
-------
-
-Test a combination of loading a kernel module and a livepatch that
-patches a function in the first module. (Un)load the target module
-before the livepatch module:
-
-- load target module
-- load livepatch
-- disable livepatch
-- unload target module
-- unload livepatch
-
-First load a target module:
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 34.475708] livepatch_callbacks_mod: livepatch_callbacks_mod_init
-
-On livepatch enable, before the livepatch transition starts, pre-patch
-callbacks are executed for vmlinux and livepatch_callbacks_mod (those
-klp_objects currently loaded). After klp_objects are patched according
-to the klp_patch, their post-patch callbacks run and the transition
-completes:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 36.503719] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 36.504213] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 36.504238] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 36.504721] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 36.505849] livepatch: 'livepatch_callbacks_demo': starting patching transition
- [ 37.727133] livepatch: 'livepatch_callbacks_demo': completing patching transition
- [ 37.727232] livepatch_callbacks_demo: post_patch_callback: vmlinux
- [ 37.727860] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 37.728792] livepatch: 'livepatch_callbacks_demo': patching complete
-
-Similarly, on livepatch disable, pre-patch callbacks run before the
-unpatching transition starts. klp_objects are reverted, post-patch
-callbacks execute and the transition completes:
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 38.510209] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
- [ 38.510234] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
- [ 38.510982] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 38.512209] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 39.711132] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 39.711210] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 39.711779] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 39.712735] livepatch: 'livepatch_callbacks_demo': unpatching complete
-
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
- % rmmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 42.534183] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
-
-
-Test 2
-------
-
-This test is similar to the previous test, but (un)load the livepatch
-module before the target kernel module. This tests the livepatch core's
-module_coming handler:
-
-- load livepatch
-- load target module
-- disable livepatch
-- unload livepatch
-- unload target module
-
-
-On livepatch enable, only pre/post-patch callbacks are executed for
-currently loaded klp_objects, in this case, vmlinux:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 44.553328] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 44.553997] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 44.554049] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 44.554845] livepatch: 'livepatch_callbacks_demo': starting patching transition
- [ 45.727128] livepatch: 'livepatch_callbacks_demo': completing patching transition
- [ 45.727212] livepatch_callbacks_demo: post_patch_callback: vmlinux
- [ 45.727961] livepatch: 'livepatch_callbacks_demo': patching complete
-
-When a targeted module is subsequently loaded, only its pre/post-patch
-callbacks are executed:
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 46.560845] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
- [ 46.561988] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 46.563452] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 46.565495] livepatch_callbacks_mod: livepatch_callbacks_mod_init
-
-On livepatch disable, all currently loaded klp_objects' (vmlinux and
-livepatch_callbacks_mod) pre/post-unpatch callbacks are executed:
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 48.568885] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
- [ 48.568910] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
- [ 48.569441] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 48.570502] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 49.759091] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 49.759171] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 49.759742] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 49.760690] livepatch: 'livepatch_callbacks_demo': unpatching complete
-
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
- % rmmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 52.592283] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
-
-
-Test 3
-------
-
-Test loading the livepatch after a targeted kernel module, then unload
-the kernel module before disabling the livepatch. This tests the
-livepatch core's module_going handler:
-
-- load target module
-- load livepatch
-- unload target module
-- disable livepatch
-- unload livepatch
-
-First load a target module, then the livepatch:
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 54.607948] livepatch_callbacks_mod: livepatch_callbacks_mod_init
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 56.613919] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 56.614411] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 56.614436] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 56.614818] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 56.615656] livepatch: 'livepatch_callbacks_demo': starting patching transition
- [ 57.759070] livepatch: 'livepatch_callbacks_demo': completing patching transition
- [ 57.759147] livepatch_callbacks_demo: post_patch_callback: vmlinux
- [ 57.759621] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
- [ 57.760307] livepatch: 'livepatch_callbacks_demo': patching complete
-
-When a target module is unloaded, the livepatch is only reverted from
-that klp_object (livepatch_callbacks_mod). As such, only its pre and
-post-unpatch callbacks are executed when this occurs:
-
- % rmmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 58.623409] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
- [ 58.623903] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
- [ 58.624658] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
- [ 58.625305] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
-
-When the livepatch is disabled, pre and post-unpatch callbacks are run
-for the remaining klp_object, vmlinux:
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 60.638420] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
- [ 60.638444] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
- [ 60.638996] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 61.727088] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 61.727165] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 61.727985] livepatch: 'livepatch_callbacks_demo': unpatching complete
-
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
-
-
-Test 4
-------
-
-This test is similar to the previous test, however the livepatch is
-loaded first. This tests the livepatch core's module_coming and
-module_going handlers:
-
-- load livepatch
-- load target module
-- unload target module
-- disable livepatch
-- unload livepatch
-
-First load the livepatch:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 64.661552] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 64.662147] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 64.662175] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 64.662850] livepatch: 'livepatch_callbacks_demo': starting patching transition
- [ 65.695056] livepatch: 'livepatch_callbacks_demo': completing patching transition
- [ 65.695147] livepatch_callbacks_demo: post_patch_callback: vmlinux
- [ 65.695561] livepatch: 'livepatch_callbacks_demo': patching complete
-
-When a targeted kernel module is subsequently loaded, only its
-pre/post-patch callbacks are executed:
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 66.669196] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
- [ 66.669882] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 66.670744] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 66.672873] livepatch_callbacks_mod: livepatch_callbacks_mod_init
-
-When the target module is unloaded, the livepatch is only reverted from
-the livepatch_callbacks_mod klp_object. As such, only pre and
-post-unpatch callbacks are executed when this occurs:
-
- % rmmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 68.680065] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
- [ 68.680688] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
- [ 68.681452] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
- [ 68.682094] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 70.689225] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
- [ 70.689256] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
- [ 70.689882] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 71.711080] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 71.711481] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 71.711988] livepatch: 'livepatch_callbacks_demo': unpatching complete
-
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
-
-
-Test 5
-------
-
-A simple test of loading a livepatch without one of its patch target
-klp_objects ever loaded (livepatch_callbacks_mod):
-
-- load livepatch
-- disable livepatch
-- unload livepatch
-
-Load the livepatch:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 74.711081] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 74.711595] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 74.711639] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 74.712272] livepatch: 'livepatch_callbacks_demo': starting patching transition
- [ 75.743137] livepatch: 'livepatch_callbacks_demo': completing patching transition
- [ 75.743219] livepatch_callbacks_demo: post_patch_callback: vmlinux
- [ 75.743867] livepatch: 'livepatch_callbacks_demo': patching complete
-
-As expected, only pre/post-(un)patch handlers are executed for vmlinux:
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 76.716254] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
- [ 76.716278] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
- [ 76.716666] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 77.727089] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 77.727194] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 77.727907] livepatch: 'livepatch_callbacks_demo': unpatching complete
+Other Examples
+==============
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
-
-
-Test 6
-------
-
-Test a scenario where a vmlinux pre-patch callback returns a non-zero
-status (ie, failure):
-
-- load target module
-- load livepatch -ENODEV
-- unload target module
-
-First load a target module:
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 80.740520] livepatch_callbacks_mod: livepatch_callbacks_mod_init
-
-Load the livepatch module, setting its 'pre_patch_ret' value to -19
-(-ENODEV). When its vmlinux pre-patch callback executed, this status
-code will propagate back to the module-loading subsystem. The result is
-that the insmod command refuses to load the livepatch module:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko pre_patch_ret=-19
- [ 82.747326] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 82.747743] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 82.747767] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 82.748237] livepatch: pre-patch callback failed for object 'vmlinux'
- [ 82.748637] livepatch: failed to enable patch 'livepatch_callbacks_demo'
- [ 82.749059] livepatch: 'livepatch_callbacks_demo': canceling transition, going to unpatch
- [ 82.749060] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 82.749868] livepatch: 'livepatch_callbacks_demo': unpatching complete
- [ 82.765809] insmod: ERROR: could not insert module samples/livepatch/livepatch-callbacks-demo.ko: No such device
-
- % rmmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 84.774238] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
-
-
-Test 7
-------
-
-Similar to the previous test, setup a livepatch such that its vmlinux
-pre-patch callback returns success. However, when a targeted kernel
-module is later loaded, have the livepatch return a failing status code:
-
-- load livepatch
-- setup -ENODEV
-- load target module
-- disable livepatch
-- unload livepatch
-
-Load the livepatch, notice vmlinux pre-patch callback succeeds:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 86.787845] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 86.788325] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 86.788427] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 86.788821] livepatch: 'livepatch_callbacks_demo': starting patching transition
- [ 87.711069] livepatch: 'livepatch_callbacks_demo': completing patching transition
- [ 87.711143] livepatch_callbacks_demo: post_patch_callback: vmlinux
- [ 87.711886] livepatch: 'livepatch_callbacks_demo': patching complete
-
-Set a trap so subsequent pre-patch callbacks to this livepatch will
-return -ENODEV:
-
- % echo -19 > /sys/module/livepatch_callbacks_demo/parameters/pre_patch_ret
-
-The livepatch pre-patch callback for subsequently loaded target modules
-will return failure, so the module loader refuses to load the kernel
-module. Notice that no post-patch or pre/post-unpatch callbacks are
-executed for this klp_object:
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 90.796976] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
- [ 90.797834] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 90.798900] livepatch: pre-patch callback failed for object 'livepatch_callbacks_mod'
- [ 90.799652] livepatch: patch 'livepatch_callbacks_demo' failed for module 'livepatch_callbacks_mod', refusing to load module 'livepatch_callbacks_mod'
- [ 90.819737] insmod: ERROR: could not insert module samples/livepatch/livepatch-callbacks-mod.ko: No such device
-
-However, pre/post-unpatch callbacks run for the vmlinux klp_object:
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 92.823547] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
- [ 92.823573] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
- [ 92.824331] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 93.727128] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 93.727327] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 93.727861] livepatch: 'livepatch_callbacks_demo': unpatching complete
-
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
-
-
-Test 8
-------
-
-Test loading multiple targeted kernel modules. This test-case is
-mainly for comparing with the next test-case.
-
-- load busy target module (0s sleep),
-- load livepatch
-- load target module
-- unload target module
-- disable livepatch
-- unload livepatch
-- unload busy target module
-
-
-Load a target "busy" kernel module which kicks off a worker function
-that immediately exits:
-
- % insmod samples/livepatch/livepatch-callbacks-busymod.ko sleep_secs=0
- [ 96.910107] livepatch_callbacks_busymod: livepatch_callbacks_mod_init
- [ 96.910600] livepatch_callbacks_busymod: busymod_work_func, sleeping 0 seconds ...
- [ 96.913024] livepatch_callbacks_busymod: busymod_work_func exit
-
-Proceed with loading the livepatch and another ordinary target module,
-notice that the post-patch callbacks are executed and the transition
-completes quickly:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 98.917892] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 98.918426] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 98.918453] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 98.918955] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
- [ 98.923835] livepatch: 'livepatch_callbacks_demo': starting patching transition
- [ 99.743104] livepatch: 'livepatch_callbacks_demo': completing patching transition
- [ 99.743156] livepatch_callbacks_demo: post_patch_callback: vmlinux
- [ 99.743679] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
- [ 99.744616] livepatch: 'livepatch_callbacks_demo': patching complete
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 100.930955] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
- [ 100.931668] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 100.932645] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 100.934125] livepatch_callbacks_mod: livepatch_callbacks_mod_init
-
- % rmmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 102.942805] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
- [ 102.943640] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
- [ 102.944585] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
- [ 102.945455] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 104.953815] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
- [ 104.953838] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
- [ 104.954431] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
- [ 104.955426] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 106.719073] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 106.722633] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 106.723282] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
- [ 106.724279] livepatch: 'livepatch_callbacks_demo': unpatching complete
-
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
- % rmmod samples/livepatch/livepatch-callbacks-busymod.ko
- [ 108.975660] livepatch_callbacks_busymod: livepatch_callbacks_mod_exit
-
-
-Test 9
-------
-
-A similar test as the previous one, but force the "busy" kernel module
-to do longer work.
-
-The livepatching core will refuse to patch a task that is currently
-executing a to-be-patched function -- the consistency model stalls the
-current patch transition until this safety-check is met. Test a
-scenario where one of a livepatch's target klp_objects sits on such a
-function for a long time. Meanwhile, load and unload other target
-kernel modules while the livepatch transition is in progress.
-
-- load busy target module (30s sleep)
-- load livepatch
-- load target module
-- unload target module
-- disable livepatch
-- unload livepatch
-- unload busy target module
-
-
-Load the "busy" kernel module, this time make it do 30 seconds worth of
-work:
-
- % insmod samples/livepatch/livepatch-callbacks-busymod.ko sleep_secs=30
- [ 110.993362] livepatch_callbacks_busymod: livepatch_callbacks_mod_init
- [ 110.994059] livepatch_callbacks_busymod: busymod_work_func, sleeping 30 seconds ...
-
-Meanwhile, the livepatch is loaded. Notice that the patch transition
-does not complete as the targeted "busy" module is sitting on a
-to-be-patched function:
-
- % insmod samples/livepatch/livepatch-callbacks-demo.ko
- [ 113.000309] livepatch: enabling patch 'livepatch_callbacks_demo'
- [ 113.000764] livepatch: 'livepatch_callbacks_demo': initializing patching transition
- [ 113.000791] livepatch_callbacks_demo: pre_patch_callback: vmlinux
- [ 113.001289] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
- [ 113.005208] livepatch: 'livepatch_callbacks_demo': starting patching transition
-
-Load a second target module (this one is an ordinary idle kernel
-module). Note that *no* post-patch callbacks will be executed while the
-livepatch is still in transition:
-
- % insmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 115.012740] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
- [ 115.013406] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
- [ 115.015315] livepatch_callbacks_mod: livepatch_callbacks_mod_init
-
-Request an unload of the simple kernel module. The patch is still
-transitioning, so its pre-unpatch callbacks are skipped:
-
- % rmmod samples/livepatch/livepatch-callbacks-mod.ko
- [ 117.022626] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
- [ 117.023376] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
- [ 117.024533] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
-
-Finally the livepatch is disabled. Since none of the patch's
-klp_object's post-patch callbacks executed, the remaining klp_object's
-pre-unpatch callbacks are skipped:
-
- % echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
- [ 119.035408] livepatch: 'livepatch_callbacks_demo': reversing transition from patching to unpatching
- [ 119.035485] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
- [ 119.711166] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
- [ 119.714179] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
- [ 119.714653] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
- [ 119.715437] livepatch: 'livepatch_callbacks_demo': unpatching complete
-
- % rmmod samples/livepatch/livepatch-callbacks-demo.ko
- % rmmod samples/livepatch/livepatch-callbacks-busymod.ko
- [ 141.279111] livepatch_callbacks_busymod: busymod_work_func exit
- [ 141.279760] livepatch_callbacks_busymod: livepatch_callbacks_mod_exit
+Sample livepatch modules demonstrating the callback API can be found in
+samples/livepatch/ directory. These samples were modified for use in
+kselftests and can be found in the lib/livepatch directory.
diff --git a/Documentation/livepatch/cumulative-patches.txt b/Documentation/livepatch/cumulative-patches.txt
new file mode 100644
index 000000000000..0012808e8d44
--- /dev/null
+++ b/Documentation/livepatch/cumulative-patches.txt
@@ -0,0 +1,102 @@
+===================================
+Atomic Replace & Cumulative Patches
+===================================
+
+There might be dependencies between livepatches. If multiple patches need
+to do different changes to the same function(s) then we need to define
+an order in which the patches will be installed. And function implementations
+from any newer livepatch must be done on top of the older ones.
+
+This might become a maintenance nightmare. Especially when more patches
+modified the same function in different ways.
+
+An elegant solution comes with the feature called "Atomic Replace". It allows
+creation of so called "Cumulative Patches". They include all wanted changes
+from all older livepatches and completely replace them in one transition.
+
+Usage
+-----
+
+The atomic replace can be enabled by setting "replace" flag in struct klp_patch,
+for example:
+
+ static struct klp_patch patch = {
+ .mod = THIS_MODULE,
+ .objs = objs,
+ .replace = true,
+ };
+
+All processes are then migrated to use the code only from the new patch.
+Once the transition is finished, all older patches are automatically
+disabled.
+
+Ftrace handlers are transparently removed from functions that are no
+longer modified by the new cumulative patch.
+
+As a result, the livepatch authors might maintain sources only for one
+cumulative patch. It helps to keep the patch consistent while adding or
+removing various fixes or features.
+
+Users could keep only the last patch installed on the system after
+the transition to has finished. It helps to clearly see what code is
+actually in use. Also the livepatch might then be seen as a "normal"
+module that modifies the kernel behavior. The only difference is that
+it can be updated at runtime without breaking its functionality.
+
+
+Features
+--------
+
+The atomic replace allows:
+
+ + Atomically revert some functions in a previous patch while
+ upgrading other functions.
+
+ + Remove eventual performance impact caused by core redirection
+ for functions that are no longer patched.
+
+ + Decrease user confusion about dependencies between livepatches.
+
+
+Limitations:
+------------
+
+ + Once the operation finishes, there is no straightforward way
+ to reverse it and restore the replaced patches atomically.
+
+ A good practice is to set .replace flag in any released livepatch.
+ Then re-adding an older livepatch is equivalent to downgrading
+ to that patch. This is safe as long as the livepatches do _not_ do
+ extra modifications in (un)patching callbacks or in the module_init()
+ or module_exit() functions, see below.
+
+ Also note that the replaced patch can be removed and loaded again
+ only when the transition was not forced.
+
+
+ + Only the (un)patching callbacks from the _new_ cumulative livepatch are
+ executed. Any callbacks from the replaced patches are ignored.
+
+ In other words, the cumulative patch is responsible for doing any actions
+ that are necessary to properly replace any older patch.
+
+ As a result, it might be dangerous to replace newer cumulative patches by
+ older ones. The old livepatches might not provide the necessary callbacks.
+
+ This might be seen as a limitation in some scenarios. But it makes life
+ easier in many others. Only the new cumulative livepatch knows what
+ fixes/features are added/removed and what special actions are necessary
+ for a smooth transition.
+
+ In any case, it would be a nightmare to think about the order of
+ the various callbacks and their interactions if the callbacks from all
+ enabled patches were called.
+
+
+ + There is no special handling of shadow variables. Livepatch authors
+ must create their own rules how to pass them from one cumulative
+ patch to the other. Especially that they should not blindly remove
+ them in module_exit() functions.
+
+ A good practice might be to remove shadow variables in the post-unpatch
+ callback. It is called only when the livepatch is properly disabled.
diff --git a/Documentation/livepatch/livepatch.txt b/Documentation/livepatch/livepatch.txt
index 2d7ed09dbd59..4627b41ff02e 100644
--- a/Documentation/livepatch/livepatch.txt
+++ b/Documentation/livepatch/livepatch.txt
@@ -12,12 +12,12 @@ Table of Contents:
4. Livepatch module
4.1. New functions
4.2. Metadata
- 4.3. Livepatch module handling
5. Livepatch life-cycle
- 5.1. Registration
+ 5.1. Loading
5.2. Enabling
- 5.3. Disabling
- 5.4. Unregistration
+ 5.3. Replacing
+ 5.4. Disabling
+ 5.5. Removing
6. Sysfs
7. Limitations
@@ -143,9 +143,9 @@ without HAVE_RELIABLE_STACKTRACE are not considered fully supported by
the kernel livepatching.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
-is in transition. Only a single patch (the topmost patch on the stack)
-can be in transition at a given time. A patch can remain in transition
-indefinitely, if any of the tasks are stuck in the initial patch state.
+is in transition. Only a single patch can be in transition at a given
+time. A patch can remain in transition indefinitely, if any of the tasks
+are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
@@ -158,12 +158,11 @@ If a patch is in transition, this file shows 0 to indicate the task is
unpatched and 1 to indicate it's patched. Otherwise, if no patch is in
transition, it shows -1. Any tasks which are blocking the transition
can be signaled with SIGSTOP and SIGCONT to force them to change their
-patched state. This may be harmful to the system though.
-/sys/kernel/livepatch/<patch>/signal attribute provides a better alternative.
-Writing 1 to the attribute sends a fake signal to all remaining blocking
-tasks. No proper signal is actually delivered (there is no data in signal
-pending structures). Tasks are interrupted or woken up, and forced to change
-their patched state.
+patched state. This may be harmful to the system though. Sending a fake signal
+to all remaining blocking tasks is a better alternative. No proper signal is
+actually delivered (there is no data in signal pending structures). Tasks are
+interrupted or woken up, and forced to change their patched state. The fake
+signal is automatically sent every 15 seconds.
Administrator can also affect a transition through
/sys/kernel/livepatch/<patch>/force attribute. Writing 1 there clears
@@ -298,117 +297,110 @@ into three levels:
see the "Consistency model" section.
-4.3. Livepatch module handling
-------------------------------
-
-The usual behavior is that the new functions will get used when
-the livepatch module is loaded. For this, the module init() function
-has to register the patch (struct klp_patch) and enable it. See the
-section "Livepatch life-cycle" below for more details about these
-two operations.
-
-Module removal is only safe when there are no users of the underlying
-functions. This is the reason why the force feature permanently disables
-the removal. The forced tasks entered the functions but we cannot say
-that they returned back. Therefore it cannot be decided when the
-livepatch module can be safely removed. When the system is successfully
-transitioned to a new patch state (patched/unpatched) without being
-forced it is guaranteed that no task sleeps or runs in the old code.
-
-
5. Livepatch life-cycle
=======================
-Livepatching defines four basic operations that define the life cycle of each
-live patch: registration, enabling, disabling and unregistration. There are
-several reasons why it is done this way.
+Livepatching can be described by five basic operations:
+loading, enabling, replacing, disabling, removing.
-First, the patch is applied only when all patched symbols for already
-loaded objects are found. The error handling is much easier if this
-check is done before particular functions get redirected.
+Where the replacing and the disabling operations are mutually
+exclusive. They have the same result for the given patch but
+not for the system.
-Second, it might take some time until the entire system is migrated with
-the hybrid consistency model being used. The patch revert might block
-the livepatch module removal for too long. Therefore it is useful to
-revert the patch using a separate operation that might be called
-explicitly. But it does not make sense to remove all information until
-the livepatch module is really removed.
+5.1. Loading
+------------
-5.1. Registration
------------------
+The only reasonable way is to enable the patch when the livepatch kernel
+module is being loaded. For this, klp_enable_patch() has to be called
+in the module_init() callback. There are two main reasons:
-Each patch first has to be registered using klp_register_patch(). This makes
-the patch known to the livepatch framework. Also it does some preliminary
-computing and checks.
+First, only the module has an easy access to the related struct klp_patch.
-In particular, the patch is added into the list of known patches. The
-addresses of the patched functions are found according to their names.
-The special relocations, mentioned in the section "New functions", are
-applied. The relevant entries are created under
-/sys/kernel/livepatch/<name>. The patch is rejected when any operation
-fails.
+Second, the error code might be used to refuse loading the module when
+the patch cannot get enabled.
5.2. Enabling
-------------
-Registered patches might be enabled either by calling klp_enable_patch() or
-by writing '1' to /sys/kernel/livepatch/<name>/enabled. The system will
-start using the new implementation of the patched functions at this stage.
+The livepatch gets enabled by calling klp_enable_patch() from
+the module_init() callback. The system will start using the new
+implementation of the patched functions at this stage.
-When a patch is enabled, livepatch enters into a transition state where
-tasks are converging to the patched state. This is indicated by a value
-of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks have
-been patched, the 'transition' value changes to '0'. For more
-information about this process, see the "Consistency model" section.
+First, the addresses of the patched functions are found according to their
+names. The special relocations, mentioned in the section "New functions",
+are applied. The relevant entries are created under
+/sys/kernel/livepatch/<name>. The patch is rejected when any above
+operation fails.
-If an original function is patched for the first time, a function
-specific struct klp_ops is created and an universal ftrace handler is
-registered.
+Second, livepatch enters into a transition state where tasks are converging
+to the patched state. If an original function is patched for the first
+time, a function specific struct klp_ops is created and an universal
+ftrace handler is registered[*]. This stage is indicated by a value of '1'
+in /sys/kernel/livepatch/<name>/transition. For more information about
+this process, see the "Consistency model" section.
-Functions might be patched multiple times. The ftrace handler is registered
-only once for the given function. Further patches just add an entry to the
-list (see field `func_stack`) of the struct klp_ops. The last added
-entry is chosen by the ftrace handler and becomes the active function
-replacement.
+Finally, once all tasks have been patched, the 'transition' value changes
+to '0'.
-Note that the patches might be enabled in a different order than they were
-registered.
+[*] Note that functions might be patched multiple times. The ftrace handler
+ is registered only once for a given function. Further patches just add
+ an entry to the list (see field `func_stack`) of the struct klp_ops.
+ The right implementation is selected by the ftrace handler, see
+ the "Consistency model" section.
+ That said, it is highly recommended to use cumulative livepatches
+ because they help keeping the consistency of all changes. In this case,
+ functions might be patched two times only during the transition period.
-5.3. Disabling
+
+5.3. Replacing
--------------
-Enabled patches might get disabled either by calling klp_disable_patch() or
-by writing '0' to /sys/kernel/livepatch/<name>/enabled. At this stage
-either the code from the previously enabled patch or even the original
-code gets used.
+All enabled patches might get replaced by a cumulative patch that
+has the .replace flag set.
+
+Once the new patch is enabled and the 'transition' finishes then
+all the functions (struct klp_func) associated with the replaced
+patches are removed from the corresponding struct klp_ops. Also
+the ftrace handler is unregistered and the struct klp_ops is
+freed when the related function is not modified by the new patch
+and func_stack list becomes empty.
+
+See Documentation/livepatch/cumulative-patches.txt for more details.
-When a patch is disabled, livepatch enters into a transition state where
-tasks are converging to the unpatched state. This is indicated by a
-value of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks
-have been unpatched, the 'transition' value changes to '0'. For more
-information about this process, see the "Consistency model" section.
-Here all the functions (struct klp_func) associated with the to-be-disabled
+5.4. Disabling
+--------------
+
+Enabled patches might get disabled by writing '0' to
+/sys/kernel/livepatch/<name>/enabled.
+
+First, livepatch enters into a transition state where tasks are converging
+to the unpatched state. The system starts using either the code from
+the previously enabled patch or even the original one. This stage is
+indicated by a value of '1' in /sys/kernel/livepatch/<name>/transition.
+For more information about this process, see the "Consistency model"
+section.
+
+Second, once all tasks have been unpatched, the 'transition' value changes
+to '0'. All the functions (struct klp_func) associated with the to-be-disabled
patch are removed from the corresponding struct klp_ops. The ftrace handler
is unregistered and the struct klp_ops is freed when the func_stack list
becomes empty.
-Patches must be disabled in exactly the reverse order in which they were
-enabled. It makes the problem and the implementation much easier.
-
+Third, the sysfs interface is destroyed.
-5.4. Unregistration
--------------------
-Disabled patches might be unregistered by calling klp_unregister_patch().
-This can be done only when the patch is disabled and the code is no longer
-used. It must be called before the livepatch module gets unloaded.
+5.5. Removing
+-------------
-At this stage, all the relevant sys-fs entries are removed and the patch
-is removed from the list of known patches.
+Module removal is only safe when there are no users of functions provided
+by the module. This is the reason why the force feature permanently
+disables the removal. Only when the system is successfully transitioned
+to a new patch state (patched/unpatched) without being forced it is
+guaranteed that no task sleeps or runs in the old code.
6. Sysfs
@@ -418,8 +410,8 @@ Information about the registered patches can be found under
/sys/kernel/livepatch. The patches could be enabled and disabled
by writing there.
-/sys/kernel/livepatch/<patch>/signal and /sys/kernel/livepatch/<patch>/force
-attributes allow administrator to affect a patching operation.
+/sys/kernel/livepatch/<patch>/force attributes allow administrator to affect a
+patching operation.
See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.