aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/power/freezing-of-tasks.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/power/freezing-of-tasks.txt')
-rw-r--r--Documentation/power/freezing-of-tasks.txt231
1 files changed, 0 insertions, 231 deletions
diff --git a/Documentation/power/freezing-of-tasks.txt b/Documentation/power/freezing-of-tasks.txt
deleted file mode 100644
index cd283190855a..000000000000
--- a/Documentation/power/freezing-of-tasks.txt
+++ /dev/null
@@ -1,231 +0,0 @@
-Freezing of tasks
- (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
-
-I. What is the freezing of tasks?
-
-The freezing of tasks is a mechanism by which user space processes and some
-kernel threads are controlled during hibernation or system-wide suspend (on some
-architectures).
-
-II. How does it work?
-
-There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN
-and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have
-PF_NOFREEZE unset (all user space processes and some kernel threads) are
-regarded as 'freezable' and treated in a special way before the system enters a
-suspend state as well as before a hibernation image is created (in what follows
-we only consider hibernation, but the description also applies to suspend).
-
-Namely, as the first step of the hibernation procedure the function
-freeze_processes() (defined in kernel/power/process.c) is called. A system-wide
-variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate
-whether the system is to undergo a freezing operation. And freeze_processes()
-sets this variable. After this, it executes try_to_freeze_tasks() that sends a
-fake signal to all user space processes, and wakes up all the kernel threads.
-All freezable tasks must react to that by calling try_to_freeze(), which
-results in a call to __refrigerator() (defined in kernel/freezer.c), which sets
-the task's PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes
-it loop until PF_FROZEN is cleared for it. Then, we say that the task is
-'frozen' and therefore the set of functions handling this mechanism is referred
-to as 'the freezer' (these functions are defined in kernel/power/process.c,
-kernel/freezer.c & include/linux/freezer.h). User space processes are generally
-frozen before kernel threads.
-
-__refrigerator() must not be called directly. Instead, use the
-try_to_freeze() function (defined in include/linux/freezer.h), that checks
-if the task is to be frozen and makes the task enter __refrigerator().
-
-For user space processes try_to_freeze() is called automatically from the
-signal-handling code, but the freezable kernel threads need to call it
-explicitly in suitable places or use the wait_event_freezable() or
-wait_event_freezable_timeout() macros (defined in include/linux/freezer.h)
-that combine interruptible sleep with checking if the task is to be frozen and
-calling try_to_freeze(). The main loop of a freezable kernel thread may look
-like the following one:
-
- set_freezable();
- do {
- hub_events();
- wait_event_freezable(khubd_wait,
- !list_empty(&hub_event_list) ||
- kthread_should_stop());
- } while (!kthread_should_stop() || !list_empty(&hub_event_list));
-
-(from drivers/usb/core/hub.c::hub_thread()).
-
-If a freezable kernel thread fails to call try_to_freeze() after the freezer has
-initiated a freezing operation, the freezing of tasks will fail and the entire
-hibernation operation will be cancelled. For this reason, freezable kernel
-threads must call try_to_freeze() somewhere or use one of the
-wait_event_freezable() and wait_event_freezable_timeout() macros.
-
-After the system memory state has been restored from a hibernation image and
-devices have been reinitialized, the function thaw_processes() is called in
-order to clear the PF_FROZEN flag for each frozen task. Then, the tasks that
-have been frozen leave __refrigerator() and continue running.
-
-
-Rationale behind the functions dealing with freezing and thawing of tasks:
--------------------------------------------------------------------------
-
-freeze_processes():
- - freezes only userspace tasks
-
-freeze_kernel_threads():
- - freezes all tasks (including kernel threads) because we can't freeze
- kernel threads without freezing userspace tasks
-
-thaw_kernel_threads():
- - thaws only kernel threads; this is particularly useful if we need to do
- anything special in between thawing of kernel threads and thawing of
- userspace tasks, or if we want to postpone the thawing of userspace tasks
-
-thaw_processes():
- - thaws all tasks (including kernel threads) because we can't thaw userspace
- tasks without thawing kernel threads
-
-
-III. Which kernel threads are freezable?
-
-Kernel threads are not freezable by default. However, a kernel thread may clear
-PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE
-directly is not allowed). From this point it is regarded as freezable
-and must call try_to_freeze() in a suitable place.
-
-IV. Why do we do that?
-
-Generally speaking, there is a couple of reasons to use the freezing of tasks:
-
-1. The principal reason is to prevent filesystems from being damaged after
-hibernation. At the moment we have no simple means of checkpointing
-filesystems, so if there are any modifications made to filesystem data and/or
-metadata on disks, we cannot bring them back to the state from before the
-modifications. At the same time each hibernation image contains some
-filesystem-related information that must be consistent with the state of the
-on-disk data and metadata after the system memory state has been restored from
-the image (otherwise the filesystems will be damaged in a nasty way, usually
-making them almost impossible to repair). We therefore freeze tasks that might
-cause the on-disk filesystems' data and metadata to be modified after the
-hibernation image has been created and before the system is finally powered off.
-The majority of these are user space processes, but if any of the kernel threads
-may cause something like this to happen, they have to be freezable.
-
-2. Next, to create the hibernation image we need to free a sufficient amount of
-memory (approximately 50% of available RAM) and we need to do that before
-devices are deactivated, because we generally need them for swapping out. Then,
-after the memory for the image has been freed, we don't want tasks to allocate
-additional memory and we prevent them from doing that by freezing them earlier.
-[Of course, this also means that device drivers should not allocate substantial
-amounts of memory from their .suspend() callbacks before hibernation, but this
-is a separate issue.]
-
-3. The third reason is to prevent user space processes and some kernel threads
-from interfering with the suspending and resuming of devices. A user space
-process running on a second CPU while we are suspending devices may, for
-example, be troublesome and without the freezing of tasks we would need some
-safeguards against race conditions that might occur in such a case.
-
-Although Linus Torvalds doesn't like the freezing of tasks, he said this in one
-of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608):
-
-"RJW:> Why we freeze tasks at all or why we freeze kernel threads?
-
-Linus: In many ways, 'at all'.
-
-I _do_ realize the IO request queue issues, and that we cannot actually do
-s2ram with some devices in the middle of a DMA. So we want to be able to
-avoid *that*, there's no question about that. And I suspect that stopping
-user threads and then waiting for a sync is practically one of the easier
-ways to do so.
-
-So in practice, the 'at all' may become a 'why freeze kernel threads?' and
-freezing user threads I don't find really objectionable."
-
-Still, there are kernel threads that may want to be freezable. For example, if
-a kernel thread that belongs to a device driver accesses the device directly, it
-in principle needs to know when the device is suspended, so that it doesn't try
-to access it at that time. However, if the kernel thread is freezable, it will
-be frozen before the driver's .suspend() callback is executed and it will be
-thawed after the driver's .resume() callback has run, so it won't be accessing
-the device while it's suspended.
-
-4. Another reason for freezing tasks is to prevent user space processes from
-realizing that hibernation (or suspend) operation takes place. Ideally, user
-space processes should not notice that such a system-wide operation has occurred
-and should continue running without any problems after the restore (or resume
-from suspend). Unfortunately, in the most general case this is quite difficult
-to achieve without the freezing of tasks. Consider, for example, a process
-that depends on all CPUs being online while it's running. Since we need to
-disable nonboot CPUs during the hibernation, if this process is not frozen, it
-may notice that the number of CPUs has changed and may start to work incorrectly
-because of that.
-
-V. Are there any problems related to the freezing of tasks?
-
-Yes, there are.
-
-First of all, the freezing of kernel threads may be tricky if they depend one
-on another. For example, if kernel thread A waits for a completion (in the
-TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B
-and B is frozen in the meantime, then A will be blocked until B is thawed, which
-may be undesirable. That's why kernel threads are not freezable by default.
-
-Second, there are the following two problems related to the freezing of user
-space processes:
-1. Putting processes into an uninterruptible sleep distorts the load average.
-2. Now that we have FUSE, plus the framework for doing device drivers in
-userspace, it gets even more complicated because some userspace processes are
-now doing the sorts of things that kernel threads do
-(https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html).
-
-The problem 1. seems to be fixable, although it hasn't been fixed so far. The
-other one is more serious, but it seems that we can work around it by using
-hibernation (and suspend) notifiers (in that case, though, we won't be able to
-avoid the realization by the user space processes that the hibernation is taking
-place).
-
-There are also problems that the freezing of tasks tends to expose, although
-they are not directly related to it. For example, if request_firmware() is
-called from a device driver's .resume() routine, it will timeout and eventually
-fail, because the user land process that should respond to the request is frozen
-at this point. So, seemingly, the failure is due to the freezing of tasks.
-Suppose, however, that the firmware file is located on a filesystem accessible
-only through another device that hasn't been resumed yet. In that case,
-request_firmware() will fail regardless of whether or not the freezing of tasks
-is used. Consequently, the problem is not really related to the freezing of
-tasks, since it generally exists anyway.
-
-A driver must have all firmwares it may need in RAM before suspend() is called.
-If keeping them is not practical, for example due to their size, they must be
-requested early enough using the suspend notifier API described in
-Documentation/driver-api/pm/notifiers.rst.
-
-VI. Are there any precautions to be taken to prevent freezing failures?
-
-Yes, there are.
-
-First of all, grabbing the 'system_transition_mutex' lock to mutually exclude a piece of code
-from system-wide sleep such as suspend/hibernation is not encouraged.
-If possible, that piece of code must instead hook onto the suspend/hibernation
-notifiers to achieve mutual exclusion. Look at the CPU-Hotplug code
-(kernel/cpu.c) for an example.
-
-However, if that is not feasible, and grabbing 'system_transition_mutex' is deemed necessary,
-it is strongly discouraged to directly call mutex_[un]lock(&system_transition_mutex) since
-that could lead to freezing failures, because if the suspend/hibernate code
-successfully acquired the 'system_transition_mutex' lock, and hence that other entity failed
-to acquire the lock, then that task would get blocked in TASK_UNINTERRUPTIBLE
-state. As a consequence, the freezer would not be able to freeze that task,
-leading to freezing failure.
-
-However, the [un]lock_system_sleep() APIs are safe to use in this scenario,
-since they ask the freezer to skip freezing this task, since it is anyway
-"frozen enough" as it is blocked on 'system_transition_mutex', which will be released
-only after the entire suspend/hibernation sequence is complete.
-So, to summarize, use [un]lock_system_sleep() instead of directly using
-mutex_[un]lock(&system_transition_mutex). That would prevent freezing failures.
-
-V. Miscellaneous
-/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze
-all user space processes or all freezable kernel threads, in unit of millisecond.
-The default value is 20000, with range of unsigned integer.