aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/power
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/power')
-rw-r--r--Documentation/power/charger-manager.txt2
-rw-r--r--Documentation/power/pm_qos_interface.txt4
-rw-r--r--Documentation/power/power_supply_class.txt6
-rw-r--r--Documentation/power/suspend-and-interrupts.txt123
4 files changed, 133 insertions, 2 deletions
diff --git a/Documentation/power/charger-manager.txt b/Documentation/power/charger-manager.txt
index b4f7f4b23f64..9ff1105e58d6 100644
--- a/Documentation/power/charger-manager.txt
+++ b/Documentation/power/charger-manager.txt
@@ -29,7 +29,7 @@ Charger Manager supports the following:
While the battery is being charged and the system is in suspend-to-RAM,
we may need to monitor the battery health by looking at the ambient or
battery temperature. We can accomplish this by waking up the system
- periodically. However, such a method wakes up devices unncessary for
+ periodically. However, such a method wakes up devices unnecessarily for
monitoring the battery health and tasks, and user processes that are
supposed to be kept suspended. That, in turn, incurs unnecessary power
consumption and slow down charging process. Or even, such peak power
diff --git a/Documentation/power/pm_qos_interface.txt b/Documentation/power/pm_qos_interface.txt
index a5da5c7e7128..129f7c0e1483 100644
--- a/Documentation/power/pm_qos_interface.txt
+++ b/Documentation/power/pm_qos_interface.txt
@@ -5,7 +5,8 @@ performance expectations by drivers, subsystems and user space applications on
one of the parameters.
Two different PM QoS frameworks are available:
-1. PM QoS classes for cpu_dma_latency, network_latency, network_throughput.
+1. PM QoS classes for cpu_dma_latency, network_latency, network_throughput,
+memory_bandwidth.
2. the per-device PM QoS framework provides the API to manage the per-device latency
constraints and PM QoS flags.
@@ -13,6 +14,7 @@ Each parameters have defined units:
* latency: usec
* timeout: usec
* throughput: kbs (kilo bit / sec)
+ * memory bandwidth: mbs (mega bit / sec)
1. PM QoS framework
diff --git a/Documentation/power/power_supply_class.txt b/Documentation/power/power_supply_class.txt
index 48cff881cb8a..82dacc06e355 100644
--- a/Documentation/power/power_supply_class.txt
+++ b/Documentation/power/power_supply_class.txt
@@ -101,6 +101,10 @@ VOLTAGE_MAX, VOLTAGE_MIN - same as _DESIGN voltage values except that
these ones should be used if hardware could only guess (measure and
retain) the thresholds of a given power supply.
+VOLTAGE_BOOT - Reports the voltage measured during boot
+
+CURRENT_BOOT - Reports the current measured during boot
+
CHARGE_FULL_DESIGN, CHARGE_EMPTY_DESIGN - design charge values, when
battery considered full/empty.
@@ -123,6 +127,8 @@ the current drawn from a charging source.
CHARGE_TERM_CURRENT - Charge termination current used to detect the end of charge
condition.
+CALIBRATE - battery or coulomb counter calibration status
+
CONSTANT_CHARGE_VOLTAGE - constant charge voltage programmed by charger.
CONSTANT_CHARGE_VOLTAGE_MAX - maximum charge voltage supported by the
power supply object.
diff --git a/Documentation/power/suspend-and-interrupts.txt b/Documentation/power/suspend-and-interrupts.txt
new file mode 100644
index 000000000000..69663640dea5
--- /dev/null
+++ b/Documentation/power/suspend-and-interrupts.txt
@@ -0,0 +1,123 @@
+System Suspend and Device Interrupts
+
+Copyright (C) 2014 Intel Corp.
+Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+
+Suspending and Resuming Device IRQs
+-----------------------------------
+
+Device interrupt request lines (IRQs) are generally disabled during system
+suspend after the "late" phase of suspending devices (that is, after all of the
+->prepare, ->suspend and ->suspend_late callbacks have been executed for all
+devices). That is done by suspend_device_irqs().
+
+The rationale for doing so is that after the "late" phase of device suspend
+there is no legitimate reason why any interrupts from suspended devices should
+trigger and if any devices have not been suspended properly yet, it is better to
+block interrupts from them anyway. Also, in the past we had problems with
+interrupt handlers for shared IRQs that device drivers implementing them were
+not prepared for interrupts triggering after their devices had been suspended.
+In some cases they would attempt to access, for example, memory address spaces
+of suspended devices and cause unpredictable behavior to ensue as a result.
+Unfortunately, such problems are very difficult to debug and the introduction
+of suspend_device_irqs(), along with the "noirq" phase of device suspend and
+resume, was the only practical way to mitigate them.
+
+Device IRQs are re-enabled during system resume, right before the "early" phase
+of resuming devices (that is, before starting to execute ->resume_early
+callbacks for devices). The function doing that is resume_device_irqs().
+
+
+The IRQF_NO_SUSPEND Flag
+------------------------
+
+There are interrupts that can legitimately trigger during the entire system
+suspend-resume cycle, including the "noirq" phases of suspending and resuming
+devices as well as during the time when nonboot CPUs are taken offline and
+brought back online. That applies to timer interrupts in the first place,
+but also to IPIs and to some other special-purpose interrupts.
+
+The IRQF_NO_SUSPEND flag is used to indicate that to the IRQ subsystem when
+requesting a special-purpose interrupt. It causes suspend_device_irqs() to
+leave the corresponding IRQ enabled so as to allow the interrupt to work all
+the time as expected.
+
+Note that the IRQF_NO_SUSPEND flag affects the entire IRQ and not just one
+user of it. Thus, if the IRQ is shared, all of the interrupt handlers installed
+for it will be executed as usual after suspend_device_irqs(), even if the
+IRQF_NO_SUSPEND flag was not passed to request_irq() (or equivalent) by some of
+the IRQ's users. For this reason, using IRQF_NO_SUSPEND and IRQF_SHARED at the
+same time should be avoided.
+
+
+System Wakeup Interrupts, enable_irq_wake() and disable_irq_wake()
+------------------------------------------------------------------
+
+System wakeup interrupts generally need to be configured to wake up the system
+from sleep states, especially if they are used for different purposes (e.g. as
+I/O interrupts) in the working state.
+
+That may involve turning on a special signal handling logic within the platform
+(such as an SoC) so that signals from a given line are routed in a different way
+during system sleep so as to trigger a system wakeup when needed. For example,
+the platform may include a dedicated interrupt controller used specifically for
+handling system wakeup events. Then, if a given interrupt line is supposed to
+wake up the system from sleep sates, the corresponding input of that interrupt
+controller needs to be enabled to receive signals from the line in question.
+After wakeup, it generally is better to disable that input to prevent the
+dedicated controller from triggering interrupts unnecessarily.
+
+The IRQ subsystem provides two helper functions to be used by device drivers for
+those purposes. Namely, enable_irq_wake() turns on the platform's logic for
+handling the given IRQ as a system wakeup interrupt line and disable_irq_wake()
+turns that logic off.
+
+Calling enable_irq_wake() causes suspend_device_irqs() to treat the given IRQ
+in a special way. Namely, the IRQ remains enabled, by on the first interrupt
+it will be disabled, marked as pending and "suspended" so that it will be
+re-enabled by resume_device_irqs() during the subsequent system resume. Also
+the PM core is notified about the event which casues the system suspend in
+progress to be aborted (that doesn't have to happen immediately, but at one
+of the points where the suspend thread looks for pending wakeup events).
+
+This way every interrupt from a wakeup interrupt source will either cause the
+system suspend currently in progress to be aborted or wake up the system if
+already suspended. However, after suspend_device_irqs() interrupt handlers are
+not executed for system wakeup IRQs. They are only executed for IRQF_NO_SUSPEND
+IRQs at that time, but those IRQs should not be configured for system wakeup
+using enable_irq_wake().
+
+
+Interrupts and Suspend-to-Idle
+------------------------------
+
+Suspend-to-idle (also known as the "freeze" sleep state) is a relatively new
+system sleep state that works by idling all of the processors and waiting for
+interrupts right after the "noirq" phase of suspending devices.
+
+Of course, this means that all of the interrupts with the IRQF_NO_SUSPEND flag
+set will bring CPUs out of idle while in that state, but they will not cause the
+IRQ subsystem to trigger a system wakeup.
+
+System wakeup interrupts, in turn, will trigger wakeup from suspend-to-idle in
+analogy with what they do in the full system suspend case. The only difference
+is that the wakeup from suspend-to-idle is signaled using the usual working
+state interrupt delivery mechanisms and doesn't require the platform to use
+any special interrupt handling logic for it to work.
+
+
+IRQF_NO_SUSPEND and enable_irq_wake()
+-------------------------------------
+
+There are no valid reasons to use both enable_irq_wake() and the IRQF_NO_SUSPEND
+flag on the same IRQ.
+
+First of all, if the IRQ is not shared, the rules for handling IRQF_NO_SUSPEND
+interrupts (interrupt handlers are invoked after suspend_device_irqs()) are
+directly at odds with the rules for handling system wakeup interrupts (interrupt
+handlers are not invoked after suspend_device_irqs()).
+
+Second, both enable_irq_wake() and IRQF_NO_SUSPEND apply to entire IRQs and not
+to individual interrupt handlers, so sharing an IRQ between a system wakeup
+interrupt source and an IRQF_NO_SUSPEND interrupt source does not make sense.