aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/sysctl/kernel.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/sysctl/kernel.txt')
-rw-r--r--Documentation/sysctl/kernel.txt1145
1 files changed, 0 insertions, 1145 deletions
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
deleted file mode 100644
index f0c86fbb3b48..000000000000
--- a/Documentation/sysctl/kernel.txt
+++ /dev/null
@@ -1,1145 +0,0 @@
-Documentation for /proc/sys/kernel/* kernel version 2.2.10
- (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
- (c) 2009, Shen Feng<shen@cn.fujitsu.com>
-
-For general info and legal blurb, please look in README.
-
-==============================================================
-
-This file contains documentation for the sysctl files in
-/proc/sys/kernel/ and is valid for Linux kernel version 2.2.
-
-The files in this directory can be used to tune and monitor
-miscellaneous and general things in the operation of the Linux
-kernel. Since some of the files _can_ be used to screw up your
-system, it is advisable to read both documentation and source
-before actually making adjustments.
-
-Currently, these files might (depending on your configuration)
-show up in /proc/sys/kernel:
-
-- acct
-- acpi_video_flags
-- auto_msgmni
-- bootloader_type [ X86 only ]
-- bootloader_version [ X86 only ]
-- callhome [ S390 only ]
-- cap_last_cap
-- core_pattern
-- core_pipe_limit
-- core_uses_pid
-- ctrl-alt-del
-- dmesg_restrict
-- domainname
-- hostname
-- hotplug
-- hardlockup_all_cpu_backtrace
-- hardlockup_panic
-- hung_task_panic
-- hung_task_check_count
-- hung_task_timeout_secs
-- hung_task_check_interval_secs
-- hung_task_warnings
-- hyperv_record_panic_msg
-- kexec_load_disabled
-- kptr_restrict
-- l2cr [ PPC only ]
-- modprobe ==> Documentation/debugging-modules.txt
-- modules_disabled
-- msg_next_id [ sysv ipc ]
-- msgmax
-- msgmnb
-- msgmni
-- nmi_watchdog
-- osrelease
-- ostype
-- overflowgid
-- overflowuid
-- panic
-- panic_on_oops
-- panic_on_stackoverflow
-- panic_on_unrecovered_nmi
-- panic_on_warn
-- panic_print
-- panic_on_rcu_stall
-- perf_cpu_time_max_percent
-- perf_event_paranoid
-- perf_event_max_stack
-- perf_event_mlock_kb
-- perf_event_max_contexts_per_stack
-- pid_max
-- powersave-nap [ PPC only ]
-- printk
-- printk_delay
-- printk_ratelimit
-- printk_ratelimit_burst
-- pty ==> Documentation/filesystems/devpts.txt
-- randomize_va_space
-- real-root-dev ==> Documentation/admin-guide/initrd.rst
-- reboot-cmd [ SPARC only ]
-- rtsig-max
-- rtsig-nr
-- sched_energy_aware
-- seccomp/ ==> Documentation/userspace-api/seccomp_filter.rst
-- sem
-- sem_next_id [ sysv ipc ]
-- sg-big-buff [ generic SCSI device (sg) ]
-- shm_next_id [ sysv ipc ]
-- shm_rmid_forced
-- shmall
-- shmmax [ sysv ipc ]
-- shmmni
-- softlockup_all_cpu_backtrace
-- soft_watchdog
-- stack_erasing
-- stop-a [ SPARC only ]
-- sysrq ==> Documentation/admin-guide/sysrq.rst
-- sysctl_writes_strict
-- tainted ==> Documentation/admin-guide/tainted-kernels.rst
-- threads-max
-- unknown_nmi_panic
-- watchdog
-- watchdog_thresh
-- version
-
-==============================================================
-
-acct:
-
-highwater lowwater frequency
-
-If BSD-style process accounting is enabled these values control
-its behaviour. If free space on filesystem where the log lives
-goes below <lowwater>% accounting suspends. If free space gets
-above <highwater>% accounting resumes. <Frequency> determines
-how often do we check the amount of free space (value is in
-seconds). Default:
-4 2 30
-That is, suspend accounting if there left <= 2% free; resume it
-if we got >=4%; consider information about amount of free space
-valid for 30 seconds.
-
-==============================================================
-
-acpi_video_flags:
-
-flags
-
-See Doc*/kernel/power/video.txt, it allows mode of video boot to be
-set during run time.
-
-==============================================================
-
-auto_msgmni:
-
-This variable has no effect and may be removed in future kernel
-releases. Reading it always returns 0.
-Up to Linux 3.17, it enabled/disabled automatic recomputing of msgmni
-upon memory add/remove or upon ipc namespace creation/removal.
-Echoing "1" into this file enabled msgmni automatic recomputing.
-Echoing "0" turned it off. auto_msgmni default value was 1.
-
-
-==============================================================
-
-bootloader_type:
-
-x86 bootloader identification
-
-This gives the bootloader type number as indicated by the bootloader,
-shifted left by 4, and OR'd with the low four bits of the bootloader
-version. The reason for this encoding is that this used to match the
-type_of_loader field in the kernel header; the encoding is kept for
-backwards compatibility. That is, if the full bootloader type number
-is 0x15 and the full version number is 0x234, this file will contain
-the value 340 = 0x154.
-
-See the type_of_loader and ext_loader_type fields in
-Documentation/x86/boot.txt for additional information.
-
-==============================================================
-
-bootloader_version:
-
-x86 bootloader version
-
-The complete bootloader version number. In the example above, this
-file will contain the value 564 = 0x234.
-
-See the type_of_loader and ext_loader_ver fields in
-Documentation/x86/boot.txt for additional information.
-
-==============================================================
-
-callhome:
-
-Controls the kernel's callhome behavior in case of a kernel panic.
-
-The s390 hardware allows an operating system to send a notification
-to a service organization (callhome) in case of an operating system panic.
-
-When the value in this file is 0 (which is the default behavior)
-nothing happens in case of a kernel panic. If this value is set to "1"
-the complete kernel oops message is send to the IBM customer service
-organization in case the mainframe the Linux operating system is running
-on has a service contract with IBM.
-
-==============================================================
-
-cap_last_cap
-
-Highest valid capability of the running kernel. Exports
-CAP_LAST_CAP from the kernel.
-
-==============================================================
-
-core_pattern:
-
-core_pattern is used to specify a core dumpfile pattern name.
-. max length 127 characters; default value is "core"
-. core_pattern is used as a pattern template for the output filename;
- certain string patterns (beginning with '%') are substituted with
- their actual values.
-. backward compatibility with core_uses_pid:
- If core_pattern does not include "%p" (default does not)
- and core_uses_pid is set, then .PID will be appended to
- the filename.
-. corename format specifiers:
- %<NUL> '%' is dropped
- %% output one '%'
- %p pid
- %P global pid (init PID namespace)
- %i tid
- %I global tid (init PID namespace)
- %u uid (in initial user namespace)
- %g gid (in initial user namespace)
- %d dump mode, matches PR_SET_DUMPABLE and
- /proc/sys/fs/suid_dumpable
- %s signal number
- %t UNIX time of dump
- %h hostname
- %e executable filename (may be shortened)
- %E executable path
- %<OTHER> both are dropped
-. If the first character of the pattern is a '|', the kernel will treat
- the rest of the pattern as a command to run. The core dump will be
- written to the standard input of that program instead of to a file.
-
-==============================================================
-
-core_pipe_limit:
-
-This sysctl is only applicable when core_pattern is configured to pipe
-core files to a user space helper (when the first character of
-core_pattern is a '|', see above). When collecting cores via a pipe
-to an application, it is occasionally useful for the collecting
-application to gather data about the crashing process from its
-/proc/pid directory. In order to do this safely, the kernel must wait
-for the collecting process to exit, so as not to remove the crashing
-processes proc files prematurely. This in turn creates the
-possibility that a misbehaving userspace collecting process can block
-the reaping of a crashed process simply by never exiting. This sysctl
-defends against that. It defines how many concurrent crashing
-processes may be piped to user space applications in parallel. If
-this value is exceeded, then those crashing processes above that value
-are noted via the kernel log and their cores are skipped. 0 is a
-special value, indicating that unlimited processes may be captured in
-parallel, but that no waiting will take place (i.e. the collecting
-process is not guaranteed access to /proc/<crashing pid>/). This
-value defaults to 0.
-
-==============================================================
-
-core_uses_pid:
-
-The default coredump filename is "core". By setting
-core_uses_pid to 1, the coredump filename becomes core.PID.
-If core_pattern does not include "%p" (default does not)
-and core_uses_pid is set, then .PID will be appended to
-the filename.
-
-==============================================================
-
-ctrl-alt-del:
-
-When the value in this file is 0, ctrl-alt-del is trapped and
-sent to the init(1) program to handle a graceful restart.
-When, however, the value is > 0, Linux's reaction to a Vulcan
-Nerve Pinch (tm) will be an immediate reboot, without even
-syncing its dirty buffers.
-
-Note: when a program (like dosemu) has the keyboard in 'raw'
-mode, the ctrl-alt-del is intercepted by the program before it
-ever reaches the kernel tty layer, and it's up to the program
-to decide what to do with it.
-
-==============================================================
-
-dmesg_restrict:
-
-This toggle indicates whether unprivileged users are prevented
-from using dmesg(8) to view messages from the kernel's log buffer.
-When dmesg_restrict is set to (0) there are no restrictions. When
-dmesg_restrict is set set to (1), users must have CAP_SYSLOG to use
-dmesg(8).
-
-The kernel config option CONFIG_SECURITY_DMESG_RESTRICT sets the
-default value of dmesg_restrict.
-
-==============================================================
-
-domainname & hostname:
-
-These files can be used to set the NIS/YP domainname and the
-hostname of your box in exactly the same way as the commands
-domainname and hostname, i.e.:
-# echo "darkstar" > /proc/sys/kernel/hostname
-# echo "mydomain" > /proc/sys/kernel/domainname
-has the same effect as
-# hostname "darkstar"
-# domainname "mydomain"
-
-Note, however, that the classic darkstar.frop.org has the
-hostname "darkstar" and DNS (Internet Domain Name Server)
-domainname "frop.org", not to be confused with the NIS (Network
-Information Service) or YP (Yellow Pages) domainname. These two
-domain names are in general different. For a detailed discussion
-see the hostname(1) man page.
-
-==============================================================
-hardlockup_all_cpu_backtrace:
-
-This value controls the hard lockup detector behavior when a hard
-lockup condition is detected as to whether or not to gather further
-debug information. If enabled, arch-specific all-CPU stack dumping
-will be initiated.
-
-0: do nothing. This is the default behavior.
-
-1: on detection capture more debug information.
-==============================================================
-
-hardlockup_panic:
-
-This parameter can be used to control whether the kernel panics
-when a hard lockup is detected.
-
- 0 - don't panic on hard lockup
- 1 - panic on hard lockup
-
-See Documentation/lockup-watchdogs.txt for more information. This can
-also be set using the nmi_watchdog kernel parameter.
-
-==============================================================
-
-hotplug:
-
-Path for the hotplug policy agent.
-Default value is "/sbin/hotplug".
-
-==============================================================
-
-hung_task_panic:
-
-Controls the kernel's behavior when a hung task is detected.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-
-0: continue operation. This is the default behavior.
-
-1: panic immediately.
-
-==============================================================
-
-hung_task_check_count:
-
-The upper bound on the number of tasks that are checked.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-
-==============================================================
-
-hung_task_timeout_secs:
-
-When a task in D state did not get scheduled
-for more than this value report a warning.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-
-0: means infinite timeout - no checking done.
-Possible values to set are in range {0..LONG_MAX/HZ}.
-
-==============================================================
-
-hung_task_check_interval_secs:
-
-Hung task check interval. If hung task checking is enabled
-(see hung_task_timeout_secs), the check is done every
-hung_task_check_interval_secs seconds.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-
-0 (default): means use hung_task_timeout_secs as checking interval.
-Possible values to set are in range {0..LONG_MAX/HZ}.
-
-==============================================================
-
-hung_task_warnings:
-
-The maximum number of warnings to report. During a check interval
-if a hung task is detected, this value is decreased by 1.
-When this value reaches 0, no more warnings will be reported.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-
--1: report an infinite number of warnings.
-
-==============================================================
-
-hyperv_record_panic_msg:
-
-Controls whether the panic kmsg data should be reported to Hyper-V.
-
-0: do not report panic kmsg data.
-
-1: report the panic kmsg data. This is the default behavior.
-
-==============================================================
-
-kexec_load_disabled:
-
-A toggle indicating if the kexec_load syscall has been disabled. This
-value defaults to 0 (false: kexec_load enabled), but can be set to 1
-(true: kexec_load disabled). Once true, kexec can no longer be used, and
-the toggle cannot be set back to false. This allows a kexec image to be
-loaded before disabling the syscall, allowing a system to set up (and
-later use) an image without it being altered. Generally used together
-with the "modules_disabled" sysctl.
-
-==============================================================
-
-kptr_restrict:
-
-This toggle indicates whether restrictions are placed on
-exposing kernel addresses via /proc and other interfaces.
-
-When kptr_restrict is set to 0 (the default) the address is hashed before
-printing. (This is the equivalent to %p.)
-
-When kptr_restrict is set to (1), kernel pointers printed using the %pK
-format specifier will be replaced with 0's unless the user has CAP_SYSLOG
-and effective user and group ids are equal to the real ids. This is
-because %pK checks are done at read() time rather than open() time, so
-if permissions are elevated between the open() and the read() (e.g via
-a setuid binary) then %pK will not leak kernel pointers to unprivileged
-users. Note, this is a temporary solution only. The correct long-term
-solution is to do the permission checks at open() time. Consider removing
-world read permissions from files that use %pK, and using dmesg_restrict
-to protect against uses of %pK in dmesg(8) if leaking kernel pointer
-values to unprivileged users is a concern.
-
-When kptr_restrict is set to (2), kernel pointers printed using
-%pK will be replaced with 0's regardless of privileges.
-
-==============================================================
-
-l2cr: (PPC only)
-
-This flag controls the L2 cache of G3 processor boards. If
-0, the cache is disabled. Enabled if nonzero.
-
-==============================================================
-
-modules_disabled:
-
-A toggle value indicating if modules are allowed to be loaded
-in an otherwise modular kernel. This toggle defaults to off
-(0), but can be set true (1). Once true, modules can be
-neither loaded nor unloaded, and the toggle cannot be set back
-to false. Generally used with the "kexec_load_disabled" toggle.
-
-==============================================================
-
-msg_next_id, sem_next_id, and shm_next_id:
-
-These three toggles allows to specify desired id for next allocated IPC
-object: message, semaphore or shared memory respectively.
-
-By default they are equal to -1, which means generic allocation logic.
-Possible values to set are in range {0..INT_MAX}.
-
-Notes:
-1) kernel doesn't guarantee, that new object will have desired id. So,
-it's up to userspace, how to handle an object with "wrong" id.
-2) Toggle with non-default value will be set back to -1 by kernel after
-successful IPC object allocation. If an IPC object allocation syscall
-fails, it is undefined if the value remains unmodified or is reset to -1.
-
-==============================================================
-
-nmi_watchdog:
-
-This parameter can be used to control the NMI watchdog
-(i.e. the hard lockup detector) on x86 systems.
-
- 0 - disable the hard lockup detector
- 1 - enable the hard lockup detector
-
-The hard lockup detector monitors each CPU for its ability to respond to
-timer interrupts. The mechanism utilizes CPU performance counter registers
-that are programmed to generate Non-Maskable Interrupts (NMIs) periodically
-while a CPU is busy. Hence, the alternative name 'NMI watchdog'.
-
-The NMI watchdog is disabled by default if the kernel is running as a guest
-in a KVM virtual machine. This default can be overridden by adding
-
- nmi_watchdog=1
-
-to the guest kernel command line (see Documentation/admin-guide/kernel-parameters.rst).
-
-==============================================================
-
-numa_balancing
-
-Enables/disables automatic page fault based NUMA memory
-balancing. Memory is moved automatically to nodes
-that access it often.
-
-Enables/disables automatic NUMA memory balancing. On NUMA machines, there
-is a performance penalty if remote memory is accessed by a CPU. When this
-feature is enabled the kernel samples what task thread is accessing memory
-by periodically unmapping pages and later trapping a page fault. At the
-time of the page fault, it is determined if the data being accessed should
-be migrated to a local memory node.
-
-The unmapping of pages and trapping faults incur additional overhead that
-ideally is offset by improved memory locality but there is no universal
-guarantee. If the target workload is already bound to NUMA nodes then this
-feature should be disabled. Otherwise, if the system overhead from the
-feature is too high then the rate the kernel samples for NUMA hinting
-faults may be controlled by the numa_balancing_scan_period_min_ms,
-numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
-numa_balancing_scan_size_mb, and numa_balancing_settle_count sysctls.
-
-==============================================================
-
-numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms,
-numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
-
-Automatic NUMA balancing scans tasks address space and unmaps pages to
-detect if pages are properly placed or if the data should be migrated to a
-memory node local to where the task is running. Every "scan delay" the task
-scans the next "scan size" number of pages in its address space. When the
-end of the address space is reached the scanner restarts from the beginning.
-
-In combination, the "scan delay" and "scan size" determine the scan rate.
-When "scan delay" decreases, the scan rate increases. The scan delay and
-hence the scan rate of every task is adaptive and depends on historical
-behaviour. If pages are properly placed then the scan delay increases,
-otherwise the scan delay decreases. The "scan size" is not adaptive but
-the higher the "scan size", the higher the scan rate.
-
-Higher scan rates incur higher system overhead as page faults must be
-trapped and potentially data must be migrated. However, the higher the scan
-rate, the more quickly a tasks memory is migrated to a local node if the
-workload pattern changes and minimises performance impact due to remote
-memory accesses. These sysctls control the thresholds for scan delays and
-the number of pages scanned.
-
-numa_balancing_scan_period_min_ms is the minimum time in milliseconds to
-scan a tasks virtual memory. It effectively controls the maximum scanning
-rate for each task.
-
-numa_balancing_scan_delay_ms is the starting "scan delay" used for a task
-when it initially forks.
-
-numa_balancing_scan_period_max_ms is the maximum time in milliseconds to
-scan a tasks virtual memory. It effectively controls the minimum scanning
-rate for each task.
-
-numa_balancing_scan_size_mb is how many megabytes worth of pages are
-scanned for a given scan.
-
-==============================================================
-
-osrelease, ostype & version:
-
-# cat osrelease
-2.1.88
-# cat ostype
-Linux
-# cat version
-#5 Wed Feb 25 21:49:24 MET 1998
-
-The files osrelease and ostype should be clear enough. Version
-needs a little more clarification however. The '#5' means that
-this is the fifth kernel built from this source base and the
-date behind it indicates the time the kernel was built.
-The only way to tune these values is to rebuild the kernel :-)
-
-==============================================================
-
-overflowgid & overflowuid:
-
-if your architecture did not always support 32-bit UIDs (i.e. arm,
-i386, m68k, sh, and sparc32), a fixed UID and GID will be returned to
-applications that use the old 16-bit UID/GID system calls, if the
-actual UID or GID would exceed 65535.
-
-These sysctls allow you to change the value of the fixed UID and GID.
-The default is 65534.
-
-==============================================================
-
-panic:
-
-The value in this file represents the number of seconds the kernel
-waits before rebooting on a panic. When you use the software watchdog,
-the recommended setting is 60.
-
-==============================================================
-
-panic_on_io_nmi:
-
-Controls the kernel's behavior when a CPU receives an NMI caused by
-an IO error.
-
-0: try to continue operation (default)
-
-1: panic immediately. The IO error triggered an NMI. This indicates a
- serious system condition which could result in IO data corruption.
- Rather than continuing, panicking might be a better choice. Some
- servers issue this sort of NMI when the dump button is pushed,
- and you can use this option to take a crash dump.
-
-==============================================================
-
-panic_on_oops:
-
-Controls the kernel's behaviour when an oops or BUG is encountered.
-
-0: try to continue operation
-
-1: panic immediately. If the `panic' sysctl is also non-zero then the
- machine will be rebooted.
-
-==============================================================
-
-panic_on_stackoverflow:
-
-Controls the kernel's behavior when detecting the overflows of
-kernel, IRQ and exception stacks except a user stack.
-This file shows up if CONFIG_DEBUG_STACKOVERFLOW is enabled.
-
-0: try to continue operation.
-
-1: panic immediately.
-
-==============================================================
-
-panic_on_unrecovered_nmi:
-
-The default Linux behaviour on an NMI of either memory or unknown is
-to continue operation. For many environments such as scientific
-computing it is preferable that the box is taken out and the error
-dealt with than an uncorrected parity/ECC error get propagated.
-
-A small number of systems do generate NMI's for bizarre random reasons
-such as power management so the default is off. That sysctl works like
-the existing panic controls already in that directory.
-
-==============================================================
-
-panic_on_warn:
-
-Calls panic() in the WARN() path when set to 1. This is useful to avoid
-a kernel rebuild when attempting to kdump at the location of a WARN().
-
-0: only WARN(), default behaviour.
-
-1: call panic() after printing out WARN() location.
-
-==============================================================
-
-panic_print:
-
-Bitmask for printing system info when panic happens. User can chose
-combination of the following bits:
-
-bit 0: print all tasks info
-bit 1: print system memory info
-bit 2: print timer info
-bit 3: print locks info if CONFIG_LOCKDEP is on
-bit 4: print ftrace buffer
-
-So for example to print tasks and memory info on panic, user can:
- echo 3 > /proc/sys/kernel/panic_print
-
-==============================================================
-
-panic_on_rcu_stall:
-
-When set to 1, calls panic() after RCU stall detection messages. This
-is useful to define the root cause of RCU stalls using a vmcore.
-
-0: do not panic() when RCU stall takes place, default behavior.
-
-1: panic() after printing RCU stall messages.
-
-==============================================================
-
-perf_cpu_time_max_percent:
-
-Hints to the kernel how much CPU time it should be allowed to
-use to handle perf sampling events. If the perf subsystem
-is informed that its samples are exceeding this limit, it
-will drop its sampling frequency to attempt to reduce its CPU
-usage.
-
-Some perf sampling happens in NMIs. If these samples
-unexpectedly take too long to execute, the NMIs can become
-stacked up next to each other so much that nothing else is
-allowed to execute.
-
-0: disable the mechanism. Do not monitor or correct perf's
- sampling rate no matter how CPU time it takes.
-
-1-100: attempt to throttle perf's sample rate to this
- percentage of CPU. Note: the kernel calculates an
- "expected" length of each sample event. 100 here means
- 100% of that expected length. Even if this is set to
- 100, you may still see sample throttling if this
- length is exceeded. Set to 0 if you truly do not care
- how much CPU is consumed.
-
-==============================================================
-
-perf_event_paranoid:
-
-Controls use of the performance events system by unprivileged
-users (without CAP_SYS_ADMIN). The default value is 2.
-
- -1: Allow use of (almost) all events by all users
- Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK
->=0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN
- Disallow raw tracepoint access by users without CAP_SYS_ADMIN
->=1: Disallow CPU event access by users without CAP_SYS_ADMIN
->=2: Disallow kernel profiling by users without CAP_SYS_ADMIN
-
-==============================================================
-
-perf_event_max_stack:
-
-Controls maximum number of stack frames to copy for (attr.sample_type &
-PERF_SAMPLE_CALLCHAIN) configured events, for instance, when using
-'perf record -g' or 'perf trace --call-graph fp'.
-
-This can only be done when no events are in use that have callchains
-enabled, otherwise writing to this file will return -EBUSY.
-
-The default value is 127.
-
-==============================================================
-
-perf_event_mlock_kb:
-
-Control size of per-cpu ring buffer not counted agains mlock limit.
-
-The default value is 512 + 1 page
-
-==============================================================
-
-perf_event_max_contexts_per_stack:
-
-Controls maximum number of stack frame context entries for
-(attr.sample_type & PERF_SAMPLE_CALLCHAIN) configured events, for
-instance, when using 'perf record -g' or 'perf trace --call-graph fp'.
-
-This can only be done when no events are in use that have callchains
-enabled, otherwise writing to this file will return -EBUSY.
-
-The default value is 8.
-
-==============================================================
-
-pid_max:
-
-PID allocation wrap value. When the kernel's next PID value
-reaches this value, it wraps back to a minimum PID value.
-PIDs of value pid_max or larger are not allocated.
-
-==============================================================
-
-ns_last_pid:
-
-The last pid allocated in the current (the one task using this sysctl
-lives in) pid namespace. When selecting a pid for a next task on fork
-kernel tries to allocate a number starting from this one.
-
-==============================================================
-
-powersave-nap: (PPC only)
-
-If set, Linux-PPC will use the 'nap' mode of powersaving,
-otherwise the 'doze' mode will be used.
-
-==============================================================
-
-printk:
-
-The four values in printk denote: console_loglevel,
-default_message_loglevel, minimum_console_loglevel and
-default_console_loglevel respectively.
-
-These values influence printk() behavior when printing or
-logging error messages. See 'man 2 syslog' for more info on
-the different loglevels.
-
-- console_loglevel: messages with a higher priority than
- this will be printed to the console
-- default_message_loglevel: messages without an explicit priority
- will be printed with this priority
-- minimum_console_loglevel: minimum (highest) value to which
- console_loglevel can be set
-- default_console_loglevel: default value for console_loglevel
-
-==============================================================
-
-printk_delay:
-
-Delay each printk message in printk_delay milliseconds
-
-Value from 0 - 10000 is allowed.
-
-==============================================================
-
-printk_ratelimit:
-
-Some warning messages are rate limited. printk_ratelimit specifies
-the minimum length of time between these messages (in jiffies), by
-default we allow one every 5 seconds.
-
-A value of 0 will disable rate limiting.
-
-==============================================================
-
-printk_ratelimit_burst:
-
-While long term we enforce one message per printk_ratelimit
-seconds, we do allow a burst of messages to pass through.
-printk_ratelimit_burst specifies the number of messages we can
-send before ratelimiting kicks in.
-
-==============================================================
-
-printk_devkmsg:
-
-Control the logging to /dev/kmsg from userspace:
-
-ratelimit: default, ratelimited
-on: unlimited logging to /dev/kmsg from userspace
-off: logging to /dev/kmsg disabled
-
-The kernel command line parameter printk.devkmsg= overrides this and is
-a one-time setting until next reboot: once set, it cannot be changed by
-this sysctl interface anymore.
-
-==============================================================
-
-randomize_va_space:
-
-This option can be used to select the type of process address
-space randomization that is used in the system, for architectures
-that support this feature.
-
-0 - Turn the process address space randomization off. This is the
- default for architectures that do not support this feature anyways,
- and kernels that are booted with the "norandmaps" parameter.
-
-1 - Make the addresses of mmap base, stack and VDSO page randomized.
- This, among other things, implies that shared libraries will be
- loaded to random addresses. Also for PIE-linked binaries, the
- location of code start is randomized. This is the default if the
- CONFIG_COMPAT_BRK option is enabled.
-
-2 - Additionally enable heap randomization. This is the default if
- CONFIG_COMPAT_BRK is disabled.
-
- There are a few legacy applications out there (such as some ancient
- versions of libc.so.5 from 1996) that assume that brk area starts
- just after the end of the code+bss. These applications break when
- start of the brk area is randomized. There are however no known
- non-legacy applications that would be broken this way, so for most
- systems it is safe to choose full randomization.
-
- Systems with ancient and/or broken binaries should be configured
- with CONFIG_COMPAT_BRK enabled, which excludes the heap from process
- address space randomization.
-
-==============================================================
-
-reboot-cmd: (Sparc only)
-
-??? This seems to be a way to give an argument to the Sparc
-ROM/Flash boot loader. Maybe to tell it what to do after
-rebooting. ???
-
-==============================================================
-
-rtsig-max & rtsig-nr:
-
-The file rtsig-max can be used to tune the maximum number
-of POSIX realtime (queued) signals that can be outstanding
-in the system.
-
-rtsig-nr shows the number of RT signals currently queued.
-
-==============================================================
-
-sched_energy_aware:
-
-Enables/disables Energy Aware Scheduling (EAS). EAS starts
-automatically on platforms where it can run (that is,
-platforms with asymmetric CPU topologies and having an Energy
-Model available). If your platform happens to meet the
-requirements for EAS but you do not want to use it, change
-this value to 0.
-
-==============================================================
-
-sched_schedstats:
-
-Enables/disables scheduler statistics. Enabling this feature
-incurs a small amount of overhead in the scheduler but is
-useful for debugging and performance tuning.
-
-==============================================================
-
-sg-big-buff:
-
-This file shows the size of the generic SCSI (sg) buffer.
-You can't tune it just yet, but you could change it on
-compile time by editing include/scsi/sg.h and changing
-the value of SG_BIG_BUFF.
-
-There shouldn't be any reason to change this value. If
-you can come up with one, you probably know what you
-are doing anyway :)
-
-==============================================================
-
-shmall:
-
-This parameter sets the total amount of shared memory pages that
-can be used system wide. Hence, SHMALL should always be at least
-ceil(shmmax/PAGE_SIZE).
-
-If you are not sure what the default PAGE_SIZE is on your Linux
-system, you can run the following command:
-
-# getconf PAGE_SIZE
-
-==============================================================
-
-shmmax:
-
-This value can be used to query and set the run time limit
-on the maximum shared memory segment size that can be created.
-Shared memory segments up to 1Gb are now supported in the
-kernel. This value defaults to SHMMAX.
-
-==============================================================
-
-shm_rmid_forced:
-
-Linux lets you set resource limits, including how much memory one
-process can consume, via setrlimit(2). Unfortunately, shared memory
-segments are allowed to exist without association with any process, and
-thus might not be counted against any resource limits. If enabled,
-shared memory segments are automatically destroyed when their attach
-count becomes zero after a detach or a process termination. It will
-also destroy segments that were created, but never attached to, on exit
-from the process. The only use left for IPC_RMID is to immediately
-destroy an unattached segment. Of course, this breaks the way things are
-defined, so some applications might stop working. Note that this
-feature will do you no good unless you also configure your resource
-limits (in particular, RLIMIT_AS and RLIMIT_NPROC). Most systems don't
-need this.
-
-Note that if you change this from 0 to 1, already created segments
-without users and with a dead originative process will be destroyed.
-
-==============================================================
-
-sysctl_writes_strict:
-
-Control how file position affects the behavior of updating sysctl values
-via the /proc/sys interface:
-
- -1 - Legacy per-write sysctl value handling, with no printk warnings.
- Each write syscall must fully contain the sysctl value to be
- written, and multiple writes on the same sysctl file descriptor
- will rewrite the sysctl value, regardless of file position.
- 0 - Same behavior as above, but warn about processes that perform writes
- to a sysctl file descriptor when the file position is not 0.
- 1 - (default) Respect file position when writing sysctl strings. Multiple
- writes will append to the sysctl value buffer. Anything past the max
- length of the sysctl value buffer will be ignored. Writes to numeric
- sysctl entries must always be at file position 0 and the value must
- be fully contained in the buffer sent in the write syscall.
-
-==============================================================
-
-softlockup_all_cpu_backtrace:
-
-This value controls the soft lockup detector thread's behavior
-when a soft lockup condition is detected as to whether or not
-to gather further debug information. If enabled, each cpu will
-be issued an NMI and instructed to capture stack trace.
-
-This feature is only applicable for architectures which support
-NMI.
-
-0: do nothing. This is the default behavior.
-
-1: on detection capture more debug information.
-
-==============================================================
-
-soft_watchdog
-
-This parameter can be used to control the soft lockup detector.
-
- 0 - disable the soft lockup detector
- 1 - enable the soft lockup detector
-
-The soft lockup detector monitors CPUs for threads that are hogging the CPUs
-without rescheduling voluntarily, and thus prevent the 'watchdog/N' threads
-from running. The mechanism depends on the CPUs ability to respond to timer
-interrupts which are needed for the 'watchdog/N' threads to be woken up by
-the watchdog timer function, otherwise the NMI watchdog - if enabled - can
-detect a hard lockup condition.
-
-==============================================================
-
-stack_erasing
-
-This parameter can be used to control kernel stack erasing at the end
-of syscalls for kernels built with CONFIG_GCC_PLUGIN_STACKLEAK.
-
-That erasing reduces the information which kernel stack leak bugs
-can reveal and blocks some uninitialized stack variable attacks.
-The tradeoff is the performance impact: on a single CPU system kernel
-compilation sees a 1% slowdown, other systems and workloads may vary.
-
- 0: kernel stack erasing is disabled, STACKLEAK_METRICS are not updated.
-
- 1: kernel stack erasing is enabled (default), it is performed before
- returning to the userspace at the end of syscalls.
-==============================================================
-
-tainted
-
-Non-zero if the kernel has been tainted. Numeric values, which can be
-ORed together. The letters are seen in "Tainted" line of Oops reports.
-
- 1 (P): proprietary module was loaded
- 2 (F): module was force loaded
- 4 (S): SMP kernel oops on an officially SMP incapable processor
- 8 (R): module was force unloaded
- 16 (M): processor reported a Machine Check Exception (MCE)
- 32 (B): bad page referenced or some unexpected page flags
- 64 (U): taint requested by userspace application
- 128 (D): kernel died recently, i.e. there was an OOPS or BUG
- 256 (A): an ACPI table was overridden by user
- 512 (W): kernel issued warning
- 1024 (C): staging driver was loaded
- 2048 (I): workaround for bug in platform firmware applied
- 4096 (O): externally-built ("out-of-tree") module was loaded
- 8192 (E): unsigned module was loaded
- 16384 (L): soft lockup occurred
- 32768 (K): kernel has been live patched
- 65536 (X): Auxiliary taint, defined and used by for distros
-131072 (T): The kernel was built with the struct randomization plugin
-
-See Documentation/admin-guide/tainted-kernels.rst for more information.
-
-==============================================================
-
-threads-max
-
-This value controls the maximum number of threads that can be created
-using fork().
-
-During initialization the kernel sets this value such that even if the
-maximum number of threads is created, the thread structures occupy only
-a part (1/8th) of the available RAM pages.
-
-The minimum value that can be written to threads-max is 20.
-The maximum value that can be written to threads-max is given by the
-constant FUTEX_TID_MASK (0x3fffffff).
-If a value outside of this range is written to threads-max an error
-EINVAL occurs.
-
-The value written is checked against the available RAM pages. If the
-thread structures would occupy too much (more than 1/8th) of the
-available RAM pages threads-max is reduced accordingly.
-
-==============================================================
-
-unknown_nmi_panic:
-
-The value in this file affects behavior of handling NMI. When the
-value is non-zero, unknown NMI is trapped and then panic occurs. At
-that time, kernel debugging information is displayed on console.
-
-NMI switch that most IA32 servers have fires unknown NMI up, for
-example. If a system hangs up, try pressing the NMI switch.
-
-==============================================================
-
-watchdog:
-
-This parameter can be used to disable or enable the soft lockup detector
-_and_ the NMI watchdog (i.e. the hard lockup detector) at the same time.
-
- 0 - disable both lockup detectors
- 1 - enable both lockup detectors
-
-The soft lockup detector and the NMI watchdog can also be disabled or
-enabled individually, using the soft_watchdog and nmi_watchdog parameters.
-If the watchdog parameter is read, for example by executing
-
- cat /proc/sys/kernel/watchdog
-
-the output of this command (0 or 1) shows the logical OR of soft_watchdog
-and nmi_watchdog.
-
-==============================================================
-
-watchdog_cpumask:
-
-This value can be used to control on which cpus the watchdog may run.
-The default cpumask is all possible cores, but if NO_HZ_FULL is
-enabled in the kernel config, and cores are specified with the
-nohz_full= boot argument, those cores are excluded by default.
-Offline cores can be included in this mask, and if the core is later
-brought online, the watchdog will be started based on the mask value.
-
-Typically this value would only be touched in the nohz_full case
-to re-enable cores that by default were not running the watchdog,
-if a kernel lockup was suspected on those cores.
-
-The argument value is the standard cpulist format for cpumasks,
-so for example to enable the watchdog on cores 0, 2, 3, and 4 you
-might say:
-
- echo 0,2-4 > /proc/sys/kernel/watchdog_cpumask
-
-==============================================================
-
-watchdog_thresh:
-
-This value can be used to control the frequency of hrtimer and NMI
-events and the soft and hard lockup thresholds. The default threshold
-is 10 seconds.
-
-The softlockup threshold is (2 * watchdog_thresh). Setting this
-tunable to zero will disable lockup detection altogether.
-
-==============================================================