aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/video4linux
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/video4linux')
-rw-r--r--Documentation/video4linux/CARDLIST.cx882
-rw-r--r--Documentation/video4linux/CARDLIST.em28xx1
-rw-r--r--Documentation/video4linux/CARDLIST.saa71349
-rw-r--r--Documentation/video4linux/CARDLIST.tuner6
-rw-r--r--Documentation/video4linux/CQcam.txt182
-rw-r--r--Documentation/video4linux/README.cpia4
-rw-r--r--Documentation/video4linux/README.cpia2130
-rw-r--r--Documentation/video4linux/Zoran108
-rw-r--r--Documentation/video4linux/bttv/ICs4
-rw-r--r--Documentation/video4linux/bttv/PROBLEMS16
-rw-r--r--Documentation/video4linux/bttv/README.quirks4
-rw-r--r--Documentation/video4linux/bttv/THANKS4
-rw-r--r--Documentation/video4linux/cpia2_overview.txt38
-rw-r--r--Documentation/video4linux/radiotrack.txt16
-rw-r--r--Documentation/video4linux/w9966.txt2
-rw-r--r--Documentation/video4linux/zr36120.txt4
16 files changed, 356 insertions, 174 deletions
diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88
index 8bea3fbd0548..3b39a91b24bd 100644
--- a/Documentation/video4linux/CARDLIST.cx88
+++ b/Documentation/video4linux/CARDLIST.cx88
@@ -43,3 +43,5 @@
42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025]
43 -> KWorld/VStream XPert DVB-T with cx22702 [17de:08a1]
44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50,18ac:db54]
+ 45 -> KWorld HardwareMpegTV XPert [17de:0840]
+ 46 -> DViCO FusionHDTV DVB-T Hybrid [18ac:db40,18ac:db44]
diff --git a/Documentation/video4linux/CARDLIST.em28xx b/Documentation/video4linux/CARDLIST.em28xx
index a0c7cad20971..a3026689bbe6 100644
--- a/Documentation/video4linux/CARDLIST.em28xx
+++ b/Documentation/video4linux/CARDLIST.em28xx
@@ -8,3 +8,4 @@
7 -> Leadtek Winfast USB II (em2800)
8 -> Kworld USB2800 (em2800)
9 -> Pinnacle Dazzle DVC 90 (em2820/em2840) [2304:0207]
+ 12 -> Kworld PVR TV 2800 RF (em2820/em2840)
diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134
index da4fb890165f..8c7195455963 100644
--- a/Documentation/video4linux/CARDLIST.saa7134
+++ b/Documentation/video4linux/CARDLIST.saa7134
@@ -83,3 +83,12 @@
82 -> MSI TV@Anywhere plus [1462:6231]
83 -> Terratec Cinergy 250 PCI TV [153b:1160]
84 -> LifeView FlyDVB Trio [5168:0319]
+ 85 -> AverTV DVB-T 777 [1461:2c05]
+ 86 -> LifeView FlyDVB-T [5168:0301]
+ 87 -> ADS Instant TV Duo Cardbus PTV331 [0331:1421]
+ 88 -> Tevion/KWorld DVB-T 220RF [17de:7201]
+ 89 -> ELSA EX-VISION 700TV [1048:226c]
+ 90 -> Kworld ATSC110 [17de:7350]
+ 91 -> AVerMedia A169 B [1461:7360]
+ 92 -> AVerMedia A169 B1 [1461:6360]
+ 93 -> Medion 7134 Bridge #2 [16be:0005]
diff --git a/Documentation/video4linux/CARDLIST.tuner b/Documentation/video4linux/CARDLIST.tuner
index f6d0cf7b7922..1bcdac67dd8c 100644
--- a/Documentation/video4linux/CARDLIST.tuner
+++ b/Documentation/video4linux/CARDLIST.tuner
@@ -64,8 +64,10 @@ tuner=62 - Philips TEA5767HN FM Radio
tuner=63 - Philips FMD1216ME MK3 Hybrid Tuner
tuner=64 - LG TDVS-H062F/TUA6034
tuner=65 - Ymec TVF66T5-B/DFF
-tuner=66 - LG NTSC (TALN mini series)
+tuner=66 - LG TALN series
tuner=67 - Philips TD1316 Hybrid Tuner
tuner=68 - Philips TUV1236D ATSC/NTSC dual in
-tuner=69 - Tena TNF 5335 MF
+tuner=69 - Tena TNF 5335 and similar models
tuner=70 - Samsung TCPN 2121P30A
+tuner=71 - Xceive xc3028
+tuner=72 - Thomson FE6600
diff --git a/Documentation/video4linux/CQcam.txt b/Documentation/video4linux/CQcam.txt
index e415e3604539..464e4cec94cb 100644
--- a/Documentation/video4linux/CQcam.txt
+++ b/Documentation/video4linux/CQcam.txt
@@ -1,7 +1,7 @@
c-qcam - Connectix Color QuickCam video4linux kernel driver
Copyright (C) 1999 Dave Forrest <drf5n@virginia.edu>
- released under GNU GPL.
+ released under GNU GPL.
1999-12-08 Dave Forrest, written with kernel version 2.2.12 in mind
@@ -45,21 +45,21 @@ configuration. The appropriate flags are:
CONFIG_PNP_PARPORT M for autoprobe.o IEEE1284 readback module
CONFIG_PRINTER_READBACK M for parport_probe.o IEEE1284 readback module
CONFIG_VIDEO_DEV M for videodev.o video4linux module
- CONFIG_VIDEO_CQCAM M for c-qcam.o Color Quickcam module
+ CONFIG_VIDEO_CQCAM M for c-qcam.o Color Quickcam module
With these flags, the kernel should compile and install the modules.
To record and monitor the compilation, I use:
(make zlilo ; \
make modules; \
- make modules_install ;
+ make modules_install ;
depmod -a ) &>log &
less log # then a capital 'F' to watch the progress
-
+
But that is my personal preference.
2.2 Configuration
-
+
The configuration requires module configuration and device
configuration. I like kmod or kerneld process with the
/etc/modprobe.conf file so the modules can automatically load/unload as
@@ -68,7 +68,7 @@ using MAKEDEV, or need to be created. The following sections detail
these procedures.
-2.1 Module Configuration
+2.1 Module Configuration
Using modules requires a bit of work to install and pass the
parameters. Understand that entries in /etc/modprobe.conf of:
@@ -128,9 +128,9 @@ system (CONFIG_PROC_FS), the parallel printer support
(CONFIG_PRINTER), the IEEE 1284 system,(CONFIG_PRINTER_READBACK), you
should be able to read some identification from your quickcam with
- modprobe -v parport
- modprobe -v parport_probe
- cat /proc/parport/PORTNUMBER/autoprobe
+ modprobe -v parport
+ modprobe -v parport_probe
+ cat /proc/parport/PORTNUMBER/autoprobe
Returns:
CLASS:MEDIA;
MODEL:Color QuickCam 2.0;
@@ -140,7 +140,7 @@ Returns:
and well. A common problem is that the current driver does not
reliably detect a c-qcam, even though one is attached. In this case,
- modprobe -v c-qcam
+ modprobe -v c-qcam
or
insmod -v c-qcam
@@ -152,16 +152,16 @@ video4linux mailing list and archive for more current information.
3.1 Checklist:
Can you get an image?
- v4lgrab >qcam.ppm ; wc qcam.ppm ; xv qcam.ppm
+ v4lgrab >qcam.ppm ; wc qcam.ppm ; xv qcam.ppm
- Is a working c-qcam connected to the port?
- grep ^ /proc/parport/?/autoprobe
+ Is a working c-qcam connected to the port?
+ grep ^ /proc/parport/?/autoprobe
- Do the /dev/video* files exist?
- ls -lad /dev/video
+ Do the /dev/video* files exist?
+ ls -lad /dev/video
- Is the c-qcam module loaded?
- modprobe -v c-qcam ; lsmod
+ Is the c-qcam module loaded?
+ modprobe -v c-qcam ; lsmod
Does the camera work with alternate programs? cqcam, etc?
@@ -174,7 +174,7 @@ video4linux mailing list and archive for more current information.
isn't, you might try patching the c-qcam module to add a parport=xxx
option as in the bw-qcam module so you can specify the parallel port:
- insmod -v c-qcam parport=0
+ insmod -v c-qcam parport=0
And bypass the detection code, see ../../drivers/char/c-qcam.c and
look for the 'qc_detect' code and call.
@@ -183,12 +183,12 @@ look for the 'qc_detect' code and call.
this work is documented at the video4linux2 site listed below.
-9.0 --- A sample program using v4lgrabber,
+9.0 --- A sample program using v4lgrabber,
This program is a simple image grabber that will copy a frame from the
first video device, /dev/video0 to standard output in portable pixmap
format (.ppm) Using this like: 'v4lgrab | convert - c-qcam.jpg'
-produced this picture of me at
+produced this picture of me at
http://mug.sys.virginia.edu/~drf5n/extras/c-qcam.jpg
-------------------- 8< ---------------- 8< -----------------------------
@@ -202,8 +202,8 @@ produced this picture of me at
* Use as:
* v4lgrab >image.ppm
*
- * Copyright (C) 1998-05-03, Phil Blundell <philb@gnu.org>
- * Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c
+ * Copyright (C) 1998-05-03, Phil Blundell <philb@gnu.org>
+ * Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c
* with minor modifications (Dave Forrest, drf5n@virginia.edu).
*
*/
@@ -225,55 +225,55 @@ produced this picture of me at
#define READ_VIDEO_PIXEL(buf, format, depth, r, g, b) \
{ \
- switch (format) \
- { \
- case VIDEO_PALETTE_GREY: \
- switch (depth) \
- { \
- case 4: \
- case 6: \
- case 8: \
- (r) = (g) = (b) = (*buf++ << 8);\
- break; \
- \
- case 16: \
- (r) = (g) = (b) = \
- *((unsigned short *) buf); \
- buf += 2; \
- break; \
- } \
- break; \
- \
- \
- case VIDEO_PALETTE_RGB565: \
- { \
- unsigned short tmp = *(unsigned short *)buf; \
- (r) = tmp&0xF800; \
- (g) = (tmp<<5)&0xFC00; \
- (b) = (tmp<<11)&0xF800; \
- buf += 2; \
- } \
- break; \
- \
- case VIDEO_PALETTE_RGB555: \
- (r) = (buf[0]&0xF8)<<8; \
- (g) = ((buf[0] << 5 | buf[1] >> 3)&0xF8)<<8; \
- (b) = ((buf[1] << 2 ) & 0xF8)<<8; \
- buf += 2; \
- break; \
- \
- case VIDEO_PALETTE_RGB24: \
- (r) = buf[0] << 8; (g) = buf[1] << 8; \
- (b) = buf[2] << 8; \
- buf += 3; \
- break; \
- \
- default: \
- fprintf(stderr, \
- "Format %d not yet supported\n", \
- format); \
- } \
-}
+ switch (format) \
+ { \
+ case VIDEO_PALETTE_GREY: \
+ switch (depth) \
+ { \
+ case 4: \
+ case 6: \
+ case 8: \
+ (r) = (g) = (b) = (*buf++ << 8);\
+ break; \
+ \
+ case 16: \
+ (r) = (g) = (b) = \
+ *((unsigned short *) buf); \
+ buf += 2; \
+ break; \
+ } \
+ break; \
+ \
+ \
+ case VIDEO_PALETTE_RGB565: \
+ { \
+ unsigned short tmp = *(unsigned short *)buf; \
+ (r) = tmp&0xF800; \
+ (g) = (tmp<<5)&0xFC00; \
+ (b) = (tmp<<11)&0xF800; \
+ buf += 2; \
+ } \
+ break; \
+ \
+ case VIDEO_PALETTE_RGB555: \
+ (r) = (buf[0]&0xF8)<<8; \
+ (g) = ((buf[0] << 5 | buf[1] >> 3)&0xF8)<<8; \
+ (b) = ((buf[1] << 2 ) & 0xF8)<<8; \
+ buf += 2; \
+ break; \
+ \
+ case VIDEO_PALETTE_RGB24: \
+ (r) = buf[0] << 8; (g) = buf[1] << 8; \
+ (b) = buf[2] << 8; \
+ buf += 3; \
+ break; \
+ \
+ default: \
+ fprintf(stderr, \
+ "Format %d not yet supported\n", \
+ format); \
+ } \
+}
int get_brightness_adj(unsigned char *image, long size, int *brightness) {
long i, tot = 0;
@@ -324,40 +324,40 @@ int main(int argc, char ** argv)
if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) {
vpic.depth=6;
if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) {
- vpic.depth=4;
- if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) {
- fprintf(stderr, "Unable to find a supported capture format.\n");
- close(fd);
- exit(1);
- }
+ vpic.depth=4;
+ if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) {
+ fprintf(stderr, "Unable to find a supported capture format.\n");
+ close(fd);
+ exit(1);
+ }
}
}
} else {
vpic.depth=24;
vpic.palette=VIDEO_PALETTE_RGB24;
-
+
if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) {
vpic.palette=VIDEO_PALETTE_RGB565;
vpic.depth=16;
-
+
if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) {
- vpic.palette=VIDEO_PALETTE_RGB555;
- vpic.depth=15;
-
- if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) {
- fprintf(stderr, "Unable to find a supported capture format.\n");
- return -1;
- }
+ vpic.palette=VIDEO_PALETTE_RGB555;
+ vpic.depth=15;
+
+ if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) {
+ fprintf(stderr, "Unable to find a supported capture format.\n");
+ return -1;
+ }
}
}
}
-
+
buffer = malloc(win.width * win.height * bpp);
if (!buffer) {
fprintf(stderr, "Out of memory.\n");
exit(1);
}
-
+
do {
int newbright;
read(fd, buffer, win.width * win.height * bpp);
@@ -365,8 +365,8 @@ int main(int argc, char ** argv)
if (f) {
vpic.brightness += (newbright << 8);
if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) {
- perror("VIDIOSPICT");
- break;
+ perror("VIDIOSPICT");
+ break;
}
}
} while (f);
@@ -381,7 +381,7 @@ int main(int argc, char ** argv)
fputc(g>>8, stdout);
fputc(b>>8, stdout);
}
-
+
close(fd);
return 0;
}
diff --git a/Documentation/video4linux/README.cpia b/Documentation/video4linux/README.cpia
index c95e7bbc0fdf..19cd3bf24981 100644
--- a/Documentation/video4linux/README.cpia
+++ b/Documentation/video4linux/README.cpia
@@ -87,7 +87,7 @@ hardware configuration of the parport. You can give the boot-parameter
at the LILO-prompt or specify it in lilo.conf. I use the following
append-line in lilo.conf:
- append="parport=0x378,7,3"
+ append="parport=0x378,7,3"
See Documentation/parport.txt for more information about the
configuration of the parport and the values given above. Do not simply
@@ -175,7 +175,7 @@ THANKS (in no particular order):
- Manuel J. Petit de Gabriel <mpetit@dit.upm.es> for providing help
with Isabel (http://isabel.dit.upm.es/)
- Bas Huisman <bhuism@cs.utwente.nl> for writing the initial parport code
-- Jarl Totland <Jarl.Totland@bdc.no> for setting up the mailing list
+- Jarl Totland <Jarl.Totland@bdc.no> for setting up the mailing list
and maintaining the web-server[3]
- Chris Whiteford <Chris@informinteractive.com> for fixes related to the
1.02 firmware
diff --git a/Documentation/video4linux/README.cpia2 b/Documentation/video4linux/README.cpia2
new file mode 100644
index 000000000000..ce8213d28b67
--- /dev/null
+++ b/Documentation/video4linux/README.cpia2
@@ -0,0 +1,130 @@
+$Id: README,v 1.7 2005/08/29 23:39:57 sbertin Exp $
+
+1. Introduction
+
+ This is a driver for STMicroelectronics's CPiA2 (second generation
+Colour Processor Interface ASIC) based cameras. This camera outputs an MJPEG
+stream at up to vga size. It implements the Video4Linux interface as much as
+possible. Since the V4L interface does not support compressed formats, only
+an mjpeg enabled application can be used with the camera. We have modified the
+gqcam application to view this stream.
+
+ The driver is implemented as two kernel modules. The cpia2 module
+contains the camera functions and the V4L interface. The cpia2_usb module
+contains usb specific functions. The main reason for this was the size of the
+module was getting out of hand, so I separted them. It is not likely that
+there will be a parallel port version.
+
+FEATURES:
+ - Supports cameras with the Vision stv6410 (CIF) and stv6500 (VGA) cmos
+ sensors. I only have the vga sensor, so can't test the other.
+ - Image formats: VGA, QVGA, CIF, QCIF, and a number of sizes in between.
+ VGA and QVGA are the native image sizes for the VGA camera. CIF is done
+ in the coprocessor by scaling QVGA. All other sizes are done by clipping.
+ - Palette: YCrCb, compressed with MJPEG.
+ - Some compression parameters are settable.
+ - Sensor framerate is adjustable (up to 30 fps CIF, 15 fps VGA).
+ - Adjust brightness, color, contrast while streaming.
+ - Flicker control settable for 50 or 60 Hz mains frequency.
+
+2. Making and installing the stv672 driver modules:
+
+ Requirements:
+ -------------
+ This should work with 2.4 (2.4.23 and later) and 2.6 kernels, but has
+only been tested on 2.6. Video4Linux must be either compiled into the kernel or
+available as a module. Video4Linux2 is automatically detected and made
+available at compile time.
+
+ Compiling:
+ ----------
+ As root, do a make install. This will compile and install the modules
+into the media/video directory in the module tree. For 2.4 kernels, use
+Makefile_2.4 (aka do make -f Makefile_2.4 install).
+
+ Setup:
+ ------
+ Use 'modprobe cpia2' to load and 'modprobe -r cpia2' to unload. This
+may be done automatically by your distribution.
+
+3. Driver options
+
+ Option Description
+ ------ -----------
+ video_nr video device to register (0=/dev/video0, etc)
+ range -1 to 64. default is -1 (first available)
+ If you have more than 1 camera, this MUST be -1.
+ buffer_size Size for each frame buffer in bytes (default 68k)
+ num_buffers Number of frame buffers (1-32, default 3)
+ alternate USB Alternate (2-7, default 7)
+ flicker_freq Frequency for flicker reduction(50 or 60, default 60)
+ flicker_mode 0 to disable, or 1 to enable flicker reduction.
+ (default 0). This is only effective if the camera
+ uses a stv0672 coprocessor.
+
+ Setting the options:
+ --------------------
+ If you are using modules, edit /etc/modules.conf and add an options
+line like this:
+ options cpia2 num_buffers=3 buffer_size=65535
+
+ If the driver is compiled into the kernel, at boot time specify them
+like this:
+ cpia2.num_buffers=3 cpia2.buffer_size=65535
+
+ What buffer size should I use?
+ ------------------------------
+ The maximum image size depends on the alternate you choose, and the
+frame rate achieved by the camera. If the compression engine is able to
+keep up with the frame rate, the maximum image size is given by the table
+below.
+ The compression engine starts out at maximum compression, and will
+increase image quality until it is close to the size in the table. As long
+as the compression engine can keep up with the frame rate, after a short time
+the images will all be about the size in the table, regardless of resolution.
+ At low alternate settings, the compression engine may not be able to
+compress the image enough and will reduce the frame rate by producing larger
+images.
+ The default of 68k should be good for most users. This will handle
+any alternate at frame rates down to 15fps. For lower frame rates, it may
+be necessary to increase the buffer size to avoid having frames dropped due
+to insufficient space.
+
+ Image size(bytes)
+ Alternate bytes/ms 15fps 30fps
+ 2 128 8533 4267
+ 3 384 25600 12800
+ 4 640 42667 21333
+ 5 768 51200 25600
+ 6 896 59733 29867
+ 7 1023 68200 34100
+
+ How many buffers should I use?
+ ------------------------------
+ For normal streaming, 3 should give the best results. With only 2,
+it is possible for the camera to finish sending one image just after a
+program has started reading the other. If this happens, the driver must drop
+a frame. The exception to this is if you have a heavily loaded machine. In
+this case use 2 buffers. You are probably not reading at the full frame rate.
+If the camera can send multiple images before a read finishes, it could
+overwrite the third buffer before the read finishes, leading to a corrupt
+image. Single and double buffering have extra checks to avoid overwriting.
+
+4. Using the camera
+
+ We are providing a modified gqcam application to view the output. In
+order to avoid confusion, here it is called mview. There is also the qx5view
+program which can also control the lights on the qx5 microscope. MJPEG Tools
+(http://mjpeg.sourceforge.net) can also be used to record from the camera.
+
+5. Notes to developers:
+
+ - This is a driver version stripped of the 2.4 back compatibility
+ and old MJPEG ioctl API. See cpia2.sf.net for 2.4 support.
+
+6. Thanks:
+
+ - Peter Pregler <Peter_Pregler@email.com>,
+ Scott J. Bertin <scottbertin@yahoo.com>, and
+ Jarl Totland <Jarl.Totland@bdc.no> for the original cpia driver, which
+ this one was modelled from.
diff --git a/Documentation/video4linux/Zoran b/Documentation/video4linux/Zoran
index 52c94bd7dca1..be9f21b84555 100644
--- a/Documentation/video4linux/Zoran
+++ b/Documentation/video4linux/Zoran
@@ -28,7 +28,7 @@ Iomega Buz:
* Philips saa7111 TV decoder
* Philips saa7185 TV encoder
Drivers to use: videodev, i2c-core, i2c-algo-bit,
- videocodec, saa7111, saa7185, zr36060, zr36067
+ videocodec, saa7111, saa7185, zr36060, zr36067
Inputs/outputs: Composite and S-video
Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
Card number: 7
@@ -39,7 +39,7 @@ Linux Media Labs LML33:
* Brooktree bt819 TV decoder
* Brooktree bt856 TV encoder
Drivers to use: videodev, i2c-core, i2c-algo-bit,
- videocodec, bt819, bt856, zr36060, zr36067
+ videocodec, bt819, bt856, zr36060, zr36067
Inputs/outputs: Composite and S-video
Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
Card number: 5
@@ -50,7 +50,7 @@ Linux Media Labs LML33R10:
* Philips saa7114 TV decoder
* Analog Devices adv7170 TV encoder
Drivers to use: videodev, i2c-core, i2c-algo-bit,
- videocodec, saa7114, adv7170, zr36060, zr36067
+ videocodec, saa7114, adv7170, zr36060, zr36067
Inputs/outputs: Composite and S-video
Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
Card number: 6
@@ -61,7 +61,7 @@ Pinnacle/Miro DC10(new):
* Philips saa7110a TV decoder
* Analog Devices adv7176 TV encoder
Drivers to use: videodev, i2c-core, i2c-algo-bit,
- videocodec, saa7110, adv7175, zr36060, zr36067
+ videocodec, saa7110, adv7175, zr36060, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
Card number: 1
@@ -84,7 +84,7 @@ Pinnacle/Miro DC10(old): *
* Micronas vpx3220a TV decoder
* mse3000 TV encoder or Analog Devices adv7176 TV encoder *
Drivers to use: videodev, i2c-core, i2c-algo-bit,
- videocodec, vpx3220, mse3000/adv7175, zr36050, zr36016, zr36067
+ videocodec, vpx3220, mse3000/adv7175, zr36050, zr36016, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
Card number: 0
@@ -96,7 +96,7 @@ Pinnacle/Miro DC30: *
* Micronas vpx3225d/vpx3220a/vpx3216b TV decoder
* Analog Devices adv7176 TV encoder
Drivers to use: videodev, i2c-core, i2c-algo-bit,
- videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36016, zr36067
+ videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36016, zr36067
Inputs/outputs: Composite, S-video and Internal
Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
Card number: 3
@@ -123,11 +123,11 @@ Note: use encoder=X or decoder=X for non-default i2c chips (see i2c-id.h)
The best know TV standards are NTSC/PAL/SECAM. but for decoding a frame that
information is not enough. There are several formats of the TV standards.
-And not every TV decoder is able to handle every format. Also the every
-combination is supported by the driver. There are currently 11 different
-tv broadcast formats all aver the world.
+And not every TV decoder is able to handle every format. Also the every
+combination is supported by the driver. There are currently 11 different
+tv broadcast formats all aver the world.
-The CCIR defines parameters needed for broadcasting the signal.
+The CCIR defines parameters needed for broadcasting the signal.
The CCIR has defined different standards: A,B,D,E,F,G,D,H,I,K,K1,L,M,N,...
The CCIR says not much about about the colorsystem used !!!
And talking about a colorsystem says not to much about how it is broadcast.
@@ -136,18 +136,18 @@ The CCIR standards A,E,F are not used any more.
When you speak about NTSC, you usually mean the standard: CCIR - M using
the NTSC colorsystem which is used in the USA, Japan, Mexico, Canada
-and a few others.
+and a few others.
When you talk about PAL, you usually mean: CCIR - B/G using the PAL
-colorsystem which is used in many Countries.
+colorsystem which is used in many Countries.
-When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem
+When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem
which is used in France, and a few others.
There the other version of SECAM, CCIR - D/K is used in Bulgaria, China,
-Slovakai, Hungary, Korea (Rep.), Poland, Rumania and a others.
+Slovakai, Hungary, Korea (Rep.), Poland, Rumania and a others.
-The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in
+The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in
Egypt, Libya, Sri Lanka, Syrain Arab. Rep.
The CCIR - I uses the PAL colorsystem, and is used in Great Britain, Hong Kong,
@@ -158,30 +158,30 @@ and is used in Argentinia, Uruguay, an a few others
We do not talk about how the audio is broadcast !
-A rather good sites about the TV standards are:
+A rather good sites about the TV standards are:
http://www.sony.jp/ServiceArea/Voltage_map/
http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
and http://www.cabl.com/restaurant/channel.html
Other weird things around: NTSC 4.43 is a modificated NTSC, which is mainly
used in PAL VCR's that are able to play back NTSC. PAL 60 seems to be the same
-as NTSC 4.43 . The Datasheets also talk about NTSC 44, It seems as if it would
-be the same as NTSC 4.43.
+as NTSC 4.43 . The Datasheets also talk about NTSC 44, It seems as if it would
+be the same as NTSC 4.43.
NTSC Combs seems to be a decoder mode where the decoder uses a comb filter
to split coma and luma instead of a Delay line.
But I did not defiantly find out what NTSC Comb is.
Philips saa7111 TV decoder
-was introduced in 1997, is used in the BUZ and
-can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM
+was introduced in 1997, is used in the BUZ and
+can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM
Philips saa7110a TV decoder
was introduced in 1995, is used in the Pinnacle/Miro DC10(new), DC10+ and
-can handle: PAL B/G, NTSC M and SECAM
+can handle: PAL B/G, NTSC M and SECAM
Philips saa7114 TV decoder
-was introduced in 2000, is used in the LML33R10 and
+was introduced in 2000, is used in the LML33R10 and
can handle: PAL B/G/D/H/I/N, PAL N, PAL M, NTSC M, NTSC 4.43 and SECAM
Brooktree bt819 TV decoder
@@ -206,7 +206,7 @@ was introduced in 1996, is used in the BUZ
can generate: PAL B/G, NTSC M
Brooktree bt856 TV Encoder
-was introduced in 1994, is used in the LML33
+was introduced in 1994, is used in the LML33
can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL-N (Argentina)
Analog Devices adv7170 TV Encoder
@@ -221,9 +221,9 @@ ITT mse3000 TV encoder
was introduced in 1991, is used in the DC10 old
can generate: PAL , NTSC , SECAM
-The adv717x, should be able to produce PAL N. But you find nothing PAL N
+The adv717x, should be able to produce PAL N. But you find nothing PAL N
specific in the registers. Seem that you have to reuse a other standard
-to generate PAL N, maybe it would work if you use the PAL M settings.
+to generate PAL N, maybe it would work if you use the PAL M settings.
==========================
@@ -261,7 +261,7 @@ Here's my experience of using LML33 and Buz on various motherboards:
VIA MVP3
Forget it. Pointless. Doesn't work.
-Intel 430FX (Pentium 200)
+Intel 430FX (Pentium 200)
LML33 perfect, Buz tolerable (3 or 4 frames dropped per movie)
Intel 440BX (early stepping)
LML33 tolerable. Buz starting to get annoying (6-10 frames/hour)
@@ -438,52 +438,52 @@ importance of buffer sizes:
> -q 25 -b 128 : 24.655.992
> -q 25 -b 256 : 25.859.820
-I woke up, and can't go to sleep again. I'll kill some time explaining why
+I woke up, and can't go to sleep again. I'll kill some time explaining why
this doesn't look strange to me.
-Let's do some math using a width of 704 pixels. I'm not sure whether the Buz
+Let's do some math using a width of 704 pixels. I'm not sure whether the Buz
actually use that number or not, but that's not too important right now.
-704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block;
-3168 blocks per field. Each pixel consist of two bytes; 128 bytes per block;
-1024 bits per block. 100% in the new driver mean 1:2 compression; the maximum
-output becomes 512 bits per block. Actually 510, but 512 is simpler to use
+704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block;
+3168 blocks per field. Each pixel consist of two bytes; 128 bytes per block;
+1024 bits per block. 100% in the new driver mean 1:2 compression; the maximum
+output becomes 512 bits per block. Actually 510, but 512 is simpler to use
for calculations.
-Let's say that we specify d1q50. We thus want 256 bits per block; times 3168
-becomes 811008 bits; 101376 bytes per field. We're talking raw bits and bytes
-here, so we don't need to do any fancy corrections for bits-per-pixel or such
+Let's say that we specify d1q50. We thus want 256 bits per block; times 3168
+becomes 811008 bits; 101376 bytes per field. We're talking raw bits and bytes
+here, so we don't need to do any fancy corrections for bits-per-pixel or such
things. 101376 bytes per field.
-d1 video contains two fields per frame. Those sum up to 202752 bytes per
+d1 video contains two fields per frame. Those sum up to 202752 bytes per
frame, and one of those frames goes into each buffer.
-But wait a second! -b128 gives 128kB buffers! It's not possible to cram
+But wait a second! -b128 gives 128kB buffers! It's not possible to cram
202752 bytes of JPEG data into 128kB!
-This is what the driver notice and automatically compensate for in your
+This is what the driver notice and automatically compensate for in your
examples. Let's do some math using this information:
-128kB is 131072 bytes. In this buffer, we want to store two fields, which
-leaves 65536 bytes for each field. Using 3168 blocks per field, we get
-20.68686868... available bytes per block; 165 bits. We can't allow the
-request for 256 bits per block when there's only 165 bits available! The -q50
-option is silently overridden, and the -b128 option takes precedence, leaving
+128kB is 131072 bytes. In this buffer, we want to store two fields, which
+leaves 65536 bytes for each field. Using 3168 blocks per field, we get
+20.68686868... available bytes per block; 165 bits. We can't allow the
+request for 256 bits per block when there's only 165 bits available! The -q50
+option is silently overridden, and the -b128 option takes precedence, leaving
us with the equivalence of -q32.
-This gives us a data rate of 165 bits per block, which, times 3168, sums up
-to 65340 bytes per field, out of the allowed 65536. The current driver has
-another level of rate limiting; it won't accept -q values that fill more than
-6/8 of the specified buffers. (I'm not sure why. "Playing it safe" seem to be
-a safe bet. Personally, I think I would have lowered requested-bits-per-block
-by one, or something like that.) We can't use 165 bits per block, but have to
-lower it again, to 6/8 of the available buffer space: We end up with 124 bits
-per block, the equivalence of -q24. With 128kB buffers, you can't use greater
+This gives us a data rate of 165 bits per block, which, times 3168, sums up
+to 65340 bytes per field, out of the allowed 65536. The current driver has
+another level of rate limiting; it won't accept -q values that fill more than
+6/8 of the specified buffers. (I'm not sure why. "Playing it safe" seem to be
+a safe bet. Personally, I think I would have lowered requested-bits-per-block
+by one, or something like that.) We can't use 165 bits per block, but have to
+lower it again, to 6/8 of the available buffer space: We end up with 124 bits
+per block, the equivalence of -q24. With 128kB buffers, you can't use greater
than -q24 at -d1. (And PAL, and 704 pixels width...)
-The third example is limited to -q24 through the same process. The second
-example, using very similar calculations, is limited to -q48. The only
-example that actually grab at the specified -q value is the last one, which
+The third example is limited to -q24 through the same process. The second
+example, using very similar calculations, is limited to -q48. The only
+example that actually grab at the specified -q value is the last one, which
is clearly visible, looking at the file size.
--
diff --git a/Documentation/video4linux/bttv/ICs b/Documentation/video4linux/bttv/ICs
index 6b7491336967..611315f87c3e 100644
--- a/Documentation/video4linux/bttv/ICs
+++ b/Documentation/video4linux/bttv/ICs
@@ -14,13 +14,13 @@ Hauppauge Win/TV pci (version 405):
Microchip 24LC02B or
Philips 8582E2Y: 256 Byte EEPROM with configuration information
- I2C 0xa0-0xa1, (24LC02B also responds to 0xa2-0xaf)
+ I2C 0xa0-0xa1, (24LC02B also responds to 0xa2-0xaf)
Philips SAA5246AGP/E: Videotext decoder chip, I2C 0x22-0x23
TDA9800: sound decoder
Winbond W24257AS-35: 32Kx8 CMOS static RAM (Videotext buffer mem)
14052B: analog switch for selection of sound source
-PAL:
+PAL:
TDA5737: VHF, hyperband and UHF mixer/oscillator for TV and VCR 3-band tuners
TSA5522: 1.4 GHz I2C-bus controlled synthesizer, I2C 0xc2-0xc3
diff --git a/Documentation/video4linux/bttv/PROBLEMS b/Documentation/video4linux/bttv/PROBLEMS
index 8e31e9e36bf7..2b8b0079f7c7 100644
--- a/Documentation/video4linux/bttv/PROBLEMS
+++ b/Documentation/video4linux/bttv/PROBLEMS
@@ -3,7 +3,7 @@
- Start capturing by pressing "c" or by selecting it via a menu!!!
- The memory of some S3 cards is not recognized right:
-
+
First of all, if you are not using XFree-3.2 or newer, upgrade AT LEAST to
XFree-3.2A! This solved the problem for most people.
@@ -31,23 +31,23 @@
(mostly with Trio 64 but also with some others)
Get the free demo version of Accelerated X from www.xinside.com and try
bttv with it. bttv seems to work with most S3 cards with Accelerated X.
-
+
Since I do not know much (better make that almost nothing) about VGA card
programming I do not know the reason for this.
Looks like XFree does something different when setting up the video memory?
- Maybe somebody can enlighten me?
- Would be nice if somebody could get this to work with XFree since
- Accelerated X costs more than some of the grabber cards ...
-
+ Maybe somebody can enlighten me?
+ Would be nice if somebody could get this to work with XFree since
+ Accelerated X costs more than some of the grabber cards ...
+
Better linear frame buffer support for S3 cards will probably be in
XFree 4.0.
-
+
- Grabbing is not switched off when changing consoles with XFree.
That's because XFree and some AcceleratedX versions do not send unmap
events.
- Some popup windows (e.g. of the window manager) are not refreshed.
-
+
Disable backing store by starting X with the option "-bs"
- When using 32 bpp in XFree or 24+8bpp mode in AccelX 3.1 the system
diff --git a/Documentation/video4linux/bttv/README.quirks b/Documentation/video4linux/bttv/README.quirks
index e8edb87df711..92e03929a6b2 100644
--- a/Documentation/video4linux/bttv/README.quirks
+++ b/Documentation/video4linux/bttv/README.quirks
@@ -38,9 +38,9 @@ tolerate.
------------------------
When using the 430FX PCI, the following rules will ensure
-compatibility:
+compatibility:
- (1) Deassert REQ at the same time as asserting FRAME.
+ (1) Deassert REQ at the same time as asserting FRAME.
(2) Do not reassert REQ to request another bus transaction until after
finish-ing the previous transaction.
diff --git a/Documentation/video4linux/bttv/THANKS b/Documentation/video4linux/bttv/THANKS
index 2085399da7d4..950aa781c2e9 100644
--- a/Documentation/video4linux/bttv/THANKS
+++ b/Documentation/video4linux/bttv/THANKS
@@ -1,6 +1,6 @@
Many thanks to:
-- Markus Schroeder <schroedm@uni-duesseldorf.de> for information on the Bt848
+- Markus Schroeder <schroedm@uni-duesseldorf.de> for information on the Bt848
and tuner programming and his control program xtvc.
- Martin Buck <martin-2.buck@student.uni-ulm.de> for his great Videotext
@@ -16,7 +16,7 @@ Many thanks to:
- MIRO for providing a free PCTV card and detailed information about the
components on their cards. (E.g. how the tuner type is detected)
Without their card I could not have debugged the NTSC mode.
-
+
- Hauppauge for telling how the sound input is selected and what components
they do and will use on their radio cards.
Also many thanks for faxing me the FM1216 data sheet.
diff --git a/Documentation/video4linux/cpia2_overview.txt b/Documentation/video4linux/cpia2_overview.txt
new file mode 100644
index 000000000000..a6e53665216b
--- /dev/null
+++ b/Documentation/video4linux/cpia2_overview.txt
@@ -0,0 +1,38 @@
+ Programmer's View of Cpia2
+
+Cpia2 is the second generation video coprocessor from VLSI Vision Ltd (now a
+division of ST Microelectronics). There are two versions. The first is the
+STV0672, which is capable of up to 30 frames per second (fps) in frame sizes
+up to CIF, and 15 fps for VGA frames. The STV0676 is an improved version,
+which can handle up to 30 fps VGA. Both coprocessors can be attached to two
+CMOS sensors - the vvl6410 CIF sensor and the vvl6500 VGA sensor. These will
+be referred to as the 410 and the 500 sensors, or the CIF and VGA sensors.
+
+The two chipsets operate almost identically. The core is an 8051 processor,
+running two different versions of firmware. The 672 runs the VP4 video
+processor code, the 676 runs VP5. There are a few differences in register
+mappings for the two chips. In these cases, the symbols defined in the
+header files are marked with VP4 or VP5 as part of the symbol name.
+
+The cameras appear externally as three sets of registers. Setting register
+values is the only way to control the camera. Some settings are
+interdependant, such as the sequence required to power up the camera. I will
+try to make note of all of these cases.
+
+The register sets are called blocks. Block 0 is the system block. This
+section is always powered on when the camera is plugged in. It contains
+registers that control housekeeping functions such as powering up the video
+processor. The video processor is the VP block. These registers control
+how the video from the sensor is processed. Examples are timing registers,
+user mode (vga, qvga), scaling, cropping, framerates, and so on. The last
+block is the video compressor (VC). The video stream sent from the camera is
+compressed as Motion JPEG (JPEGA). The VC controls all of the compression
+parameters. Looking at the file cpia2_registers.h, you can get a full view
+of these registers and the possible values for most of them.
+
+One or more registers can be set or read by sending a usb control message to
+the camera. There are three modes for this. Block mode requests a number
+of contiguous registers. Random mode reads or writes random registers with
+a tuple structure containing address/value pairs. The repeat mode is only
+used by VP4 to load a firmware patch. It contains a starting address and
+a sequence of bytes to be written into a gpio port. \ No newline at end of file
diff --git a/Documentation/video4linux/radiotrack.txt b/Documentation/video4linux/radiotrack.txt
index 2b75345f13e3..d1f3ed199186 100644
--- a/Documentation/video4linux/radiotrack.txt
+++ b/Documentation/video4linux/radiotrack.txt
@@ -131,17 +131,17 @@ Check Stereo: BASE <-- 0xd8 (current volume, stereo detect,
x=0xff ==> "not stereo", x=0xfd ==> "stereo detected"
Set Frequency: code = (freq*40) + 10486188
- foreach of the 24 bits in code,
- (from Least to Most Significant):
- to write a "zero" bit,
- BASE <-- 0x01 (audio mute, no stereo detect, radio
+ foreach of the 24 bits in code,
+ (from Least to Most Significant):
+ to write a "zero" bit,
+ BASE <-- 0x01 (audio mute, no stereo detect, radio
disable, "zero" bit phase 1, tuner adjust)
- BASE <-- 0x03 (audio mute, no stereo detect, radio
+ BASE <-- 0x03 (audio mute, no stereo detect, radio
disable, "zero" bit phase 2, tuner adjust)
- to write a "one" bit,
- BASE <-- 0x05 (audio mute, no stereo detect, radio
+ to write a "one" bit,
+ BASE <-- 0x05 (audio mute, no stereo detect, radio
disable, "one" bit phase 1, tuner adjust)
- BASE <-- 0x07 (audio mute, no stereo detect, radio
+ BASE <-- 0x07 (audio mute, no stereo detect, radio
disable, "one" bit phase 2, tuner adjust)
----------------------------------------------------------------------------
diff --git a/Documentation/video4linux/w9966.txt b/Documentation/video4linux/w9966.txt
index e7ac33a7eb06..78a651254b84 100644
--- a/Documentation/video4linux/w9966.txt
+++ b/Documentation/video4linux/w9966.txt
@@ -26,7 +26,7 @@ is called VIDEO_PALETTE_YUV422 (16 bpp).
A minimal test application (with source) is available from:
http://hem.fyristorg.com/mogul/w9966.html
-The slow framerate is due to missing DMA ECP read support in the
+The slow framerate is due to missing DMA ECP read support in the
parport drivers. I might add working EPP support later.
Good luck!
diff --git a/Documentation/video4linux/zr36120.txt b/Documentation/video4linux/zr36120.txt
index 5d6357eefde4..ac6d92d01944 100644
--- a/Documentation/video4linux/zr36120.txt
+++ b/Documentation/video4linux/zr36120.txt
@@ -2,7 +2,7 @@ Driver for Trust Computer Products Framegrabber, version 0.6.1
------ --- ----- -------- -------- ------------ ------- - - -
- ZORAN ------------------------------------------------------
- Author: Pauline Middelink <middelin@polyware.nl>
+ Author: Pauline Middelink <middelin@polyware.nl>
Date: 18 September 1999
Version: 0.6.1
@@ -115,7 +115,7 @@ After making/checking the devices do:
<n> is the cardtype of the card you have. The cardnumber can
be found in the source of zr36120. Look for tvcards. If your
card is not there, please try if any other card gives some
-response, and mail me if you got a working tvcard addition.
+response, and mail me if you got a working tvcard addition.
PS. <TVCard editors behold!)
Dont forget to set video_input to the number of inputs