aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/vm/unevictable-lru.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/vm/unevictable-lru.rst')
-rw-r--r--Documentation/vm/unevictable-lru.rst605
1 files changed, 0 insertions, 605 deletions
diff --git a/Documentation/vm/unevictable-lru.rst b/Documentation/vm/unevictable-lru.rst
deleted file mode 100644
index eae3af17f2d9..000000000000
--- a/Documentation/vm/unevictable-lru.rst
+++ /dev/null
@@ -1,605 +0,0 @@
-.. _unevictable_lru:
-
-==============================
-Unevictable LRU Infrastructure
-==============================
-
-.. contents:: :local:
-
-
-Introduction
-============
-
-This document describes the Linux memory manager's "Unevictable LRU"
-infrastructure and the use of this to manage several types of "unevictable"
-pages.
-
-The document attempts to provide the overall rationale behind this mechanism
-and the rationale for some of the design decisions that drove the
-implementation. The latter design rationale is discussed in the context of an
-implementation description. Admittedly, one can obtain the implementation
-details - the "what does it do?" - by reading the code. One hopes that the
-descriptions below add value by provide the answer to "why does it do that?".
-
-
-
-The Unevictable LRU
-===================
-
-The Unevictable LRU facility adds an additional LRU list to track unevictable
-pages and to hide these pages from vmscan. This mechanism is based on a patch
-by Larry Woodman of Red Hat to address several scalability problems with page
-reclaim in Linux. The problems have been observed at customer sites on large
-memory x86_64 systems.
-
-To illustrate this with an example, a non-NUMA x86_64 platform with 128GB of
-main memory will have over 32 million 4k pages in a single node. When a large
-fraction of these pages are not evictable for any reason [see below], vmscan
-will spend a lot of time scanning the LRU lists looking for the small fraction
-of pages that are evictable. This can result in a situation where all CPUs are
-spending 100% of their time in vmscan for hours or days on end, with the system
-completely unresponsive.
-
-The unevictable list addresses the following classes of unevictable pages:
-
- * Those owned by ramfs.
-
- * Those mapped into SHM_LOCK'd shared memory regions.
-
- * Those mapped into VM_LOCKED [mlock()ed] VMAs.
-
-The infrastructure may also be able to handle other conditions that make pages
-unevictable, either by definition or by circumstance, in the future.
-
-
-The Unevictable Page List
--------------------------
-
-The Unevictable LRU infrastructure consists of an additional, per-node, LRU list
-called the "unevictable" list and an associated page flag, PG_unevictable, to
-indicate that the page is being managed on the unevictable list.
-
-The PG_unevictable flag is analogous to, and mutually exclusive with, the
-PG_active flag in that it indicates on which LRU list a page resides when
-PG_lru is set.
-
-The Unevictable LRU infrastructure maintains unevictable pages on an additional
-LRU list for a few reasons:
-
- (1) We get to "treat unevictable pages just like we treat other pages in the
- system - which means we get to use the same code to manipulate them, the
- same code to isolate them (for migrate, etc.), the same code to keep track
- of the statistics, etc..." [Rik van Riel]
-
- (2) We want to be able to migrate unevictable pages between nodes for memory
- defragmentation, workload management and memory hotplug. The linux kernel
- can only migrate pages that it can successfully isolate from the LRU
- lists. If we were to maintain pages elsewhere than on an LRU-like list,
- where they can be found by isolate_lru_page(), we would prevent their
- migration, unless we reworked migration code to find the unevictable pages
- itself.
-
-
-The unevictable list does not differentiate between file-backed and anonymous,
-swap-backed pages. This differentiation is only important while the pages are,
-in fact, evictable.
-
-The unevictable list benefits from the "arrayification" of the per-node LRU
-lists and statistics originally proposed and posted by Christoph Lameter.
-
-
-Memory Control Group Interaction
---------------------------------
-
-The unevictable LRU facility interacts with the memory control group [aka
-memory controller; see Documentation/admin-guide/cgroup-v1/memory.rst] by extending the
-lru_list enum.
-
-The memory controller data structure automatically gets a per-node unevictable
-list as a result of the "arrayification" of the per-node LRU lists (one per
-lru_list enum element). The memory controller tracks the movement of pages to
-and from the unevictable list.
-
-When a memory control group comes under memory pressure, the controller will
-not attempt to reclaim pages on the unevictable list. This has a couple of
-effects:
-
- (1) Because the pages are "hidden" from reclaim on the unevictable list, the
- reclaim process can be more efficient, dealing only with pages that have a
- chance of being reclaimed.
-
- (2) On the other hand, if too many of the pages charged to the control group
- are unevictable, the evictable portion of the working set of the tasks in
- the control group may not fit into the available memory. This can cause
- the control group to thrash or to OOM-kill tasks.
-
-
-.. _mark_addr_space_unevict:
-
-Marking Address Spaces Unevictable
-----------------------------------
-
-For facilities such as ramfs none of the pages attached to the address space
-may be evicted. To prevent eviction of any such pages, the AS_UNEVICTABLE
-address space flag is provided, and this can be manipulated by a filesystem
-using a number of wrapper functions:
-
- * ``void mapping_set_unevictable(struct address_space *mapping);``
-
- Mark the address space as being completely unevictable.
-
- * ``void mapping_clear_unevictable(struct address_space *mapping);``
-
- Mark the address space as being evictable.
-
- * ``int mapping_unevictable(struct address_space *mapping);``
-
- Query the address space, and return true if it is completely
- unevictable.
-
-These are currently used in three places in the kernel:
-
- (1) By ramfs to mark the address spaces of its inodes when they are created,
- and this mark remains for the life of the inode.
-
- (2) By SYSV SHM to mark SHM_LOCK'd address spaces until SHM_UNLOCK is called.
-
- Note that SHM_LOCK is not required to page in the locked pages if they're
- swapped out; the application must touch the pages manually if it wants to
- ensure they're in memory.
-
- (3) By the i915 driver to mark pinned address space until it's unpinned. The
- amount of unevictable memory marked by i915 driver is roughly the bounded
- object size in debugfs/dri/0/i915_gem_objects.
-
-
-Detecting Unevictable Pages
----------------------------
-
-The function page_evictable() in vmscan.c determines whether a page is
-evictable or not using the query function outlined above [see section
-:ref:`Marking address spaces unevictable <mark_addr_space_unevict>`]
-to check the AS_UNEVICTABLE flag.
-
-For address spaces that are so marked after being populated (as SHM regions
-might be), the lock action (eg: SHM_LOCK) can be lazy, and need not populate
-the page tables for the region as does, for example, mlock(), nor need it make
-any special effort to push any pages in the SHM_LOCK'd area to the unevictable
-list. Instead, vmscan will do this if and when it encounters the pages during
-a reclamation scan.
-
-On an unlock action (such as SHM_UNLOCK), the unlocker (eg: shmctl()) must scan
-the pages in the region and "rescue" them from the unevictable list if no other
-condition is keeping them unevictable. If an unevictable region is destroyed,
-the pages are also "rescued" from the unevictable list in the process of
-freeing them.
-
-page_evictable() also checks for mlocked pages by testing an additional page
-flag, PG_mlocked (as wrapped by PageMlocked()), which is set when a page is
-faulted into a VM_LOCKED vma, or found in a vma being VM_LOCKED.
-
-
-Vmscan's Handling of Unevictable Pages
---------------------------------------
-
-If unevictable pages are culled in the fault path, or moved to the unevictable
-list at mlock() or mmap() time, vmscan will not encounter the pages until they
-have become evictable again (via munlock() for example) and have been "rescued"
-from the unevictable list. However, there may be situations where we decide,
-for the sake of expediency, to leave a unevictable page on one of the regular
-active/inactive LRU lists for vmscan to deal with. vmscan checks for such
-pages in all of the shrink_{active|inactive|page}_list() functions and will
-"cull" such pages that it encounters: that is, it diverts those pages to the
-unevictable list for the node being scanned.
-
-There may be situations where a page is mapped into a VM_LOCKED VMA, but the
-page is not marked as PG_mlocked. Such pages will make it all the way to
-shrink_page_list() where they will be detected when vmscan walks the reverse
-map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK,
-shrink_page_list() will cull the page at that point.
-
-To "cull" an unevictable page, vmscan simply puts the page back on the LRU list
-using putback_lru_page() - the inverse operation to isolate_lru_page() - after
-dropping the page lock. Because the condition which makes the page unevictable
-may change once the page is unlocked, putback_lru_page() will recheck the
-unevictable state of a page that it places on the unevictable list. If the
-page has become unevictable, putback_lru_page() removes it from the list and
-retries, including the page_unevictable() test. Because such a race is a rare
-event and movement of pages onto the unevictable list should be rare, these
-extra evictabilty checks should not occur in the majority of calls to
-putback_lru_page().
-
-
-MLOCKED Pages
-=============
-
-The unevictable page list is also useful for mlock(), in addition to ramfs and
-SYSV SHM. Note that mlock() is only available in CONFIG_MMU=y situations; in
-NOMMU situations, all mappings are effectively mlocked.
-
-
-History
--------
-
-The "Unevictable mlocked Pages" infrastructure is based on work originally
-posted by Nick Piggin in an RFC patch entitled "mm: mlocked pages off LRU".
-Nick posted his patch as an alternative to a patch posted by Christoph Lameter
-to achieve the same objective: hiding mlocked pages from vmscan.
-
-In Nick's patch, he used one of the struct page LRU list link fields as a count
-of VM_LOCKED VMAs that map the page. This use of the link field for a count
-prevented the management of the pages on an LRU list, and thus mlocked pages
-were not migratable as isolate_lru_page() could not find them, and the LRU list
-link field was not available to the migration subsystem.
-
-Nick resolved this by putting mlocked pages back on the lru list before
-attempting to isolate them, thus abandoning the count of VM_LOCKED VMAs. When
-Nick's patch was integrated with the Unevictable LRU work, the count was
-replaced by walking the reverse map to determine whether any VM_LOCKED VMAs
-mapped the page. More on this below.
-
-
-Basic Management
-----------------
-
-mlocked pages - pages mapped into a VM_LOCKED VMA - are a class of unevictable
-pages. When such a page has been "noticed" by the memory management subsystem,
-the page is marked with the PG_mlocked flag. This can be manipulated using the
-PageMlocked() functions.
-
-A PG_mlocked page will be placed on the unevictable list when it is added to
-the LRU. Such pages can be "noticed" by memory management in several places:
-
- (1) in the mlock()/mlockall() system call handlers;
-
- (2) in the mmap() system call handler when mmapping a region with the
- MAP_LOCKED flag;
-
- (3) mmapping a region in a task that has called mlockall() with the MCL_FUTURE
- flag
-
- (4) in the fault path, if mlocked pages are "culled" in the fault path,
- and when a VM_LOCKED stack segment is expanded; or
-
- (5) as mentioned above, in vmscan:shrink_page_list() when attempting to
- reclaim a page in a VM_LOCKED VMA via try_to_unmap()
-
-all of which result in the VM_LOCKED flag being set for the VMA if it doesn't
-already have it set.
-
-mlocked pages become unlocked and rescued from the unevictable list when:
-
- (1) mapped in a range unlocked via the munlock()/munlockall() system calls;
-
- (2) munmap()'d out of the last VM_LOCKED VMA that maps the page, including
- unmapping at task exit;
-
- (3) when the page is truncated from the last VM_LOCKED VMA of an mmapped file;
- or
-
- (4) before a page is COW'd in a VM_LOCKED VMA.
-
-
-mlock()/mlockall() System Call Handling
----------------------------------------
-
-Both [do\_]mlock() and [do\_]mlockall() system call handlers call mlock_fixup()
-for each VMA in the range specified by the call. In the case of mlockall(),
-this is the entire active address space of the task. Note that mlock_fixup()
-is used for both mlocking and munlocking a range of memory. A call to mlock()
-an already VM_LOCKED VMA, or to munlock() a VMA that is not VM_LOCKED is
-treated as a no-op, and mlock_fixup() simply returns.
-
-If the VMA passes some filtering as described in "Filtering Special Vmas"
-below, mlock_fixup() will attempt to merge the VMA with its neighbors or split
-off a subset of the VMA if the range does not cover the entire VMA. Once the
-VMA has been merged or split or neither, mlock_fixup() will call
-populate_vma_page_range() to fault in the pages via get_user_pages() and to
-mark the pages as mlocked via mlock_vma_page().
-
-Note that the VMA being mlocked might be mapped with PROT_NONE. In this case,
-get_user_pages() will be unable to fault in the pages. That's okay. If pages
-do end up getting faulted into this VM_LOCKED VMA, we'll handle them in the
-fault path or in vmscan.
-
-Also note that a page returned by get_user_pages() could be truncated or
-migrated out from under us, while we're trying to mlock it. To detect this,
-populate_vma_page_range() checks page_mapping() after acquiring the page lock.
-If the page is still associated with its mapping, we'll go ahead and call
-mlock_vma_page(). If the mapping is gone, we just unlock the page and move on.
-In the worst case, this will result in a page mapped in a VM_LOCKED VMA
-remaining on a normal LRU list without being PageMlocked(). Again, vmscan will
-detect and cull such pages.
-
-mlock_vma_page() will call TestSetPageMlocked() for each page returned by
-get_user_pages(). We use TestSetPageMlocked() because the page might already
-be mlocked by another task/VMA and we don't want to do extra work. We
-especially do not want to count an mlocked page more than once in the
-statistics. If the page was already mlocked, mlock_vma_page() need do nothing
-more.
-
-If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the
-page from the LRU, as it is likely on the appropriate active or inactive list
-at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will put
-back the page - by calling putback_lru_page() - which will notice that the page
-is now mlocked and divert the page to the node's unevictable list. If
-mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle
-it later if and when it attempts to reclaim the page.
-
-
-Filtering Special VMAs
-----------------------
-
-mlock_fixup() filters several classes of "special" VMAs:
-
-1) VMAs with VM_IO or VM_PFNMAP set are skipped entirely. The pages behind
- these mappings are inherently pinned, so we don't need to mark them as
- mlocked. In any case, most of the pages have no struct page in which to so
- mark the page. Because of this, get_user_pages() will fail for these VMAs,
- so there is no sense in attempting to visit them.
-
-2) VMAs mapping hugetlbfs page are already effectively pinned into memory. We
- neither need nor want to mlock() these pages. However, to preserve the
- prior behavior of mlock() - before the unevictable/mlock changes -
- mlock_fixup() will call make_pages_present() in the hugetlbfs VMA range to
- allocate the huge pages and populate the ptes.
-
-3) VMAs with VM_DONTEXPAND are generally userspace mappings of kernel pages,
- such as the VDSO page, relay channel pages, etc. These pages
- are inherently unevictable and are not managed on the LRU lists.
- mlock_fixup() treats these VMAs the same as hugetlbfs VMAs. It calls
- make_pages_present() to populate the ptes.
-
-Note that for all of these special VMAs, mlock_fixup() does not set the
-VM_LOCKED flag. Therefore, we won't have to deal with them later during
-munlock(), munmap() or task exit. Neither does mlock_fixup() account these
-VMAs against the task's "locked_vm".
-
-.. _munlock_munlockall_handling:
-
-munlock()/munlockall() System Call Handling
--------------------------------------------
-
-The munlock() and munlockall() system calls are handled by the same functions -
-do_mlock[all]() - as the mlock() and mlockall() system calls with the unlock vs
-lock operation indicated by an argument. So, these system calls are also
-handled by mlock_fixup(). Again, if called for an already munlocked VMA,
-mlock_fixup() simply returns. Because of the VMA filtering discussed above,
-VM_LOCKED will not be set in any "special" VMAs. So, these VMAs will be
-ignored for munlock.
-
-If the VMA is VM_LOCKED, mlock_fixup() again attempts to merge or split off the
-specified range. The range is then munlocked via the function
-populate_vma_page_range() - the same function used to mlock a VMA range -
-passing a flag to indicate that munlock() is being performed.
-
-Because the VMA access protections could have been changed to PROT_NONE after
-faulting in and mlocking pages, get_user_pages() was unreliable for visiting
-these pages for munlocking. Because we don't want to leave pages mlocked,
-get_user_pages() was enhanced to accept a flag to ignore the permissions when
-fetching the pages - all of which should be resident as a result of previous
-mlocking.
-
-For munlock(), populate_vma_page_range() unlocks individual pages by calling
-munlock_vma_page(). munlock_vma_page() unconditionally clears the PG_mlocked
-flag using TestClearPageMlocked(). As with mlock_vma_page(),
-munlock_vma_page() use the Test*PageMlocked() function to handle the case where
-the page might have already been unlocked by another task. If the page was
-mlocked, munlock_vma_page() updates that zone statistics for the number of
-mlocked pages. Note, however, that at this point we haven't checked whether
-the page is mapped by other VM_LOCKED VMAs.
-
-We can't call page_mlock(), the function that walks the reverse map to
-check for other VM_LOCKED VMAs, without first isolating the page from the LRU.
-page_mlock() is a variant of try_to_unmap() and thus requires that the page
-not be on an LRU list [more on these below]. However, the call to
-isolate_lru_page() could fail, in which case we can't call page_mlock(). So,
-we go ahead and clear PG_mlocked up front, as this might be the only chance we
-have. If we can successfully isolate the page, we go ahead and call
-page_mlock(), which will restore the PG_mlocked flag and update the zone
-page statistics if it finds another VMA holding the page mlocked. If we fail
-to isolate the page, we'll have left a potentially mlocked page on the LRU.
-This is fine, because we'll catch it later if and if vmscan tries to reclaim
-the page. This should be relatively rare.
-
-
-Migrating MLOCKED Pages
------------------------
-
-A page that is being migrated has been isolated from the LRU lists and is held
-locked across unmapping of the page, updating the page's address space entry
-and copying the contents and state, until the page table entry has been
-replaced with an entry that refers to the new page. Linux supports migration
-of mlocked pages and other unevictable pages. This involves simply moving the
-PG_mlocked and PG_unevictable states from the old page to the new page.
-
-Note that page migration can race with mlocking or munlocking of the same page.
-This has been discussed from the mlock/munlock perspective in the respective
-sections above. Both processes (migration and m[un]locking) hold the page
-locked. This provides the first level of synchronization. Page migration
-zeros out the page_mapping of the old page before unlocking it, so m[un]lock
-can skip these pages by testing the page mapping under page lock.
-
-To complete page migration, we place the new and old pages back onto the LRU
-after dropping the page lock. The "unneeded" page - old page on success, new
-page on failure - will be freed when the reference count held by the migration
-process is released. To ensure that we don't strand pages on the unevictable
-list because of a race between munlock and migration, page migration uses the
-putback_lru_page() function to add migrated pages back to the LRU.
-
-
-Compacting MLOCKED Pages
-------------------------
-
-The unevictable LRU can be scanned for compactable regions and the default
-behavior is to do so. /proc/sys/vm/compact_unevictable_allowed controls
-this behavior (see Documentation/admin-guide/sysctl/vm.rst). Once scanning of the
-unevictable LRU is enabled, the work of compaction is mostly handled by
-the page migration code and the same work flow as described in MIGRATING
-MLOCKED PAGES will apply.
-
-MLOCKING Transparent Huge Pages
--------------------------------
-
-A transparent huge page is represented by a single entry on an LRU list.
-Therefore, we can only make unevictable an entire compound page, not
-individual subpages.
-
-If a user tries to mlock() part of a huge page, we want the rest of the
-page to be reclaimable.
-
-We cannot just split the page on partial mlock() as split_huge_page() can
-fail and new intermittent failure mode for the syscall is undesirable.
-
-We handle this by keeping PTE-mapped huge pages on normal LRU lists: the
-PMD on border of VM_LOCKED VMA will be split into PTE table.
-
-This way the huge page is accessible for vmscan. Under memory pressure the
-page will be split, subpages which belong to VM_LOCKED VMAs will be moved
-to unevictable LRU and the rest can be reclaimed.
-
-See also comment in follow_trans_huge_pmd().
-
-mmap(MAP_LOCKED) System Call Handling
--------------------------------------
-
-In addition the mlock()/mlockall() system calls, an application can request
-that a region of memory be mlocked supplying the MAP_LOCKED flag to the mmap()
-call. There is one important and subtle difference here, though. mmap() + mlock()
-will fail if the range cannot be faulted in (e.g. because mm_populate fails)
-and returns with ENOMEM while mmap(MAP_LOCKED) will not fail. The mmaped
-area will still have properties of the locked area - aka. pages will not get
-swapped out - but major page faults to fault memory in might still happen.
-
-Furthermore, any mmap() call or brk() call that expands the heap by a
-task that has previously called mlockall() with the MCL_FUTURE flag will result
-in the newly mapped memory being mlocked. Before the unevictable/mlock
-changes, the kernel simply called make_pages_present() to allocate pages and
-populate the page table.
-
-To mlock a range of memory under the unevictable/mlock infrastructure, the
-mmap() handler and task address space expansion functions call
-populate_vma_page_range() specifying the vma and the address range to mlock.
-
-The callers of populate_vma_page_range() will have already added the memory range
-to be mlocked to the task's "locked_vm". To account for filtered VMAs,
-populate_vma_page_range() returns the number of pages NOT mlocked. All of the
-callers then subtract a non-negative return value from the task's locked_vm. A
-negative return value represent an error - for example, from get_user_pages()
-attempting to fault in a VMA with PROT_NONE access. In this case, we leave the
-memory range accounted as locked_vm, as the protections could be changed later
-and pages allocated into that region.
-
-
-munmap()/exit()/exec() System Call Handling
--------------------------------------------
-
-When unmapping an mlocked region of memory, whether by an explicit call to
-munmap() or via an internal unmap from exit() or exec() processing, we must
-munlock the pages if we're removing the last VM_LOCKED VMA that maps the pages.
-Before the unevictable/mlock changes, mlocking did not mark the pages in any
-way, so unmapping them required no processing.
-
-To munlock a range of memory under the unevictable/mlock infrastructure, the
-munmap() handler and task address space call tear down function
-munlock_vma_pages_all(). The name reflects the observation that one always
-specifies the entire VMA range when munlock()ing during unmap of a region.
-Because of the VMA filtering when mlocking() regions, only "normal" VMAs that
-actually contain mlocked pages will be passed to munlock_vma_pages_all().
-
-munlock_vma_pages_all() clears the VM_LOCKED VMA flag and, like mlock_fixup()
-for the munlock case, calls __munlock_vma_pages_range() to walk the page table
-for the VMA's memory range and munlock_vma_page() each resident page mapped by
-the VMA. This effectively munlocks the page, only if this is the last
-VM_LOCKED VMA that maps the page.
-
-
-try_to_unmap()
---------------
-
-Pages can, of course, be mapped into multiple VMAs. Some of these VMAs may
-have VM_LOCKED flag set. It is possible for a page mapped into one or more
-VM_LOCKED VMAs not to have the PG_mlocked flag set and therefore reside on one
-of the active or inactive LRU lists. This could happen if, for example, a task
-in the process of munlocking the page could not isolate the page from the LRU.
-As a result, vmscan/shrink_page_list() might encounter such a page as described
-in section "vmscan's handling of unevictable pages". To handle this situation,
-try_to_unmap() checks for VM_LOCKED VMAs while it is walking a page's reverse
-map.
-
-try_to_unmap() is always called, by either vmscan for reclaim or for page
-migration, with the argument page locked and isolated from the LRU. Separate
-functions handle anonymous and mapped file and KSM pages, as these types of
-pages have different reverse map lookup mechanisms, with different locking.
-In each case, whether rmap_walk_anon() or rmap_walk_file() or rmap_walk_ksm(),
-it will call try_to_unmap_one() for every VMA which might contain the page.
-
-When trying to reclaim, if try_to_unmap_one() finds the page in a VM_LOCKED
-VMA, it will then mlock the page via mlock_vma_page() instead of unmapping it,
-and return SWAP_MLOCK to indicate that the page is unevictable: and the scan
-stops there.
-
-mlock_vma_page() is called while holding the page table's lock (in addition
-to the page lock, and the rmap lock): to serialize against concurrent mlock or
-munlock or munmap system calls, mm teardown (munlock_vma_pages_all), reclaim,
-holepunching, and truncation of file pages and their anonymous COWed pages.
-
-
-page_mlock() Reverse Map Scan
----------------------------------
-
-When munlock_vma_page() [see section :ref:`munlock()/munlockall() System Call
-Handling <munlock_munlockall_handling>` above] tries to munlock a
-page, it needs to determine whether or not the page is mapped by any
-VM_LOCKED VMA without actually attempting to unmap all PTEs from the
-page. For this purpose, the unevictable/mlock infrastructure
-introduced a variant of try_to_unmap() called page_mlock().
-
-page_mlock() walks the respective reverse maps looking for VM_LOCKED VMAs. When
-such a VMA is found the page is mlocked via mlock_vma_page(). This undoes the
-pre-clearing of the page's PG_mlocked done by munlock_vma_page.
-
-Note that page_mlock()'s reverse map walk must visit every VMA in a page's
-reverse map to determine that a page is NOT mapped into any VM_LOCKED VMA.
-However, the scan can terminate when it encounters a VM_LOCKED VMA.
-Although page_mlock() might be called a great many times when munlocking a
-large region or tearing down a large address space that has been mlocked via
-mlockall(), overall this is a fairly rare event.
-
-
-Page Reclaim in shrink_*_list()
--------------------------------
-
-shrink_active_list() culls any obviously unevictable pages - i.e.
-!page_evictable(page) - diverting these to the unevictable list.
-However, shrink_active_list() only sees unevictable pages that made it onto the
-active/inactive lru lists. Note that these pages do not have PageUnevictable
-set - otherwise they would be on the unevictable list and shrink_active_list
-would never see them.
-
-Some examples of these unevictable pages on the LRU lists are:
-
- (1) ramfs pages that have been placed on the LRU lists when first allocated.
-
- (2) SHM_LOCK'd shared memory pages. shmctl(SHM_LOCK) does not attempt to
- allocate or fault in the pages in the shared memory region. This happens
- when an application accesses the page the first time after SHM_LOCK'ing
- the segment.
-
- (3) mlocked pages that could not be isolated from the LRU and moved to the
- unevictable list in mlock_vma_page().
-
-shrink_inactive_list() also diverts any unevictable pages that it finds on the
-inactive lists to the appropriate node's unevictable list.
-
-shrink_inactive_list() should only see SHM_LOCK'd pages that became SHM_LOCK'd
-after shrink_active_list() had moved them to the inactive list, or pages mapped
-into VM_LOCKED VMAs that munlock_vma_page() couldn't isolate from the LRU to
-recheck via page_mlock(). shrink_inactive_list() won't notice the latter,
-but will pass on to shrink_page_list().
-
-shrink_page_list() again culls obviously unevictable pages that it could
-encounter for similar reason to shrink_inactive_list(). Pages mapped into
-VM_LOCKED VMAs but without PG_mlocked set will make it all the way to
-try_to_unmap(). shrink_page_list() will divert them to the unevictable list
-when try_to_unmap() returns SWAP_MLOCK, as discussed above.