aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/ima_policy6
-rw-r--r--Documentation/ABI/testing/sysfs-bus-css23
-rw-r--r--Documentation/ABI/testing/sysfs-bus-mdio29
-rw-r--r--Documentation/ABI/testing/sysfs-bus-siox22
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-phydev19
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-qmi4
-rw-r--r--Documentation/ABI/testing/sysfs-devices-system-cpu23
-rw-r--r--Documentation/RCU/rcuref.txt21
-rw-r--r--Documentation/RCU/stallwarn.txt2
-rw-r--r--Documentation/RCU/whatisRCU.txt8
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst15
-rw-r--r--Documentation/admin-guide/hw-vuln/l1tf.rst2
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt25
-rw-r--r--Documentation/admin-guide/mm/index.rst1
-rw-r--r--Documentation/admin-guide/mm/numa_memory_policy.rst2
-rw-r--r--Documentation/admin-guide/mm/numaperf.rst2
-rw-r--r--Documentation/arm64/elf_hwcaps.txt8
-rw-r--r--Documentation/arm64/sve.txt16
-rw-r--r--Documentation/atomic_t.txt26
-rw-r--r--Documentation/block/bfq-iosched.txt2
-rw-r--r--Documentation/block/switching-sched.txt18
-rw-r--r--Documentation/cgroup-v1/blkio-controller.rst (renamed from Documentation/cgroup-v1/blkio-controller.txt)175
-rw-r--r--Documentation/cgroup-v1/cgroups.rst (renamed from Documentation/cgroup-v1/cgroups.txt)186
-rw-r--r--Documentation/cgroup-v1/cpuacct.rst (renamed from Documentation/cgroup-v1/cpuacct.txt)15
-rw-r--r--Documentation/cgroup-v1/cpusets.rst (renamed from Documentation/cgroup-v1/cpusets.txt)209
-rw-r--r--Documentation/cgroup-v1/devices.rst (renamed from Documentation/cgroup-v1/devices.txt)40
-rw-r--r--Documentation/cgroup-v1/freezer-subsystem.rst (renamed from Documentation/cgroup-v1/freezer-subsystem.txt)14
-rw-r--r--Documentation/cgroup-v1/hugetlb.rst (renamed from Documentation/cgroup-v1/hugetlb.txt)39
-rw-r--r--Documentation/cgroup-v1/index.rst30
-rw-r--r--Documentation/cgroup-v1/memcg_test.rst (renamed from Documentation/cgroup-v1/memcg_test.txt)265
-rw-r--r--Documentation/cgroup-v1/memory.rst (renamed from Documentation/cgroup-v1/memory.txt)463
-rw-r--r--Documentation/cgroup-v1/net_cls.rst (renamed from Documentation/cgroup-v1/net_cls.txt)37
-rw-r--r--Documentation/cgroup-v1/net_prio.rst (renamed from Documentation/cgroup-v1/net_prio.txt)24
-rw-r--r--Documentation/cgroup-v1/pids.rst (renamed from Documentation/cgroup-v1/pids.txt)82
-rw-r--r--Documentation/cgroup-v1/rdma.rst (renamed from Documentation/cgroup-v1/rdma.txt)66
-rw-r--r--Documentation/conf.py2
-rw-r--r--Documentation/core-api/circular-buffers.rst2
-rw-r--r--Documentation/core-api/timekeeping.rst12
-rw-r--r--Documentation/cputopology.txt48
-rw-r--r--Documentation/crypto/api-samples.rst176
-rw-r--r--Documentation/crypto/api-skcipher.rst2
-rw-r--r--Documentation/crypto/architecture.rst4
-rw-r--r--Documentation/crypto/crypto_engine.rst111
-rw-r--r--Documentation/devicetree/bindings/crypto/atmel-crypto.txt13
-rw-r--r--Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt2
-rw-r--r--Documentation/devicetree/bindings/i3c/i3c.txt4
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt29
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt1
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt20
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt43
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm36274.txt85
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm3697.txt73
-rw-r--r--Documentation/devicetree/bindings/leds/leds-spi-byte.txt44
-rw-r--r--Documentation/devicetree/bindings/mfd/ti-lmu.txt88
-rw-r--r--Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt1
-rw-r--r--Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt21
-rw-r--r--Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt5
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-sifive.txt33
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt9
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-stm32.txt3
-rw-r--r--Documentation/devicetree/bindings/riscv/cpus.yaml170
-rw-r--r--Documentation/devicetree/bindings/riscv/sifive.yaml25
-rw-r--r--Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt1
-rw-r--r--Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt25
-rw-r--r--Documentation/devicetree/bindings/trivial-devices.yaml4
-rw-r--r--Documentation/driver-api/s390-drivers.rst4
-rw-r--r--Documentation/driver-api/uio-howto.rst4
-rw-r--r--Documentation/fb/fbcon.txt2
-rw-r--r--Documentation/filesystems/overlayfs.txt16
-rw-r--r--Documentation/filesystems/proc.txt40
-rw-r--r--Documentation/filesystems/tmpfs.txt2
-rw-r--r--Documentation/firmware-guide/acpi/enumeration.rst2
-rw-r--r--Documentation/laptops/thinkpad-acpi.txt4
-rw-r--r--Documentation/leds/index.rst25
-rw-r--r--Documentation/leds/leds-blinkm.rst (renamed from Documentation/leds/leds-blinkm.txt)64
-rw-r--r--Documentation/leds/leds-class-flash.rst (renamed from Documentation/leds/leds-class-flash.txt)49
-rw-r--r--Documentation/leds/leds-class.rst (renamed from Documentation/leds/leds-class.txt)15
-rw-r--r--Documentation/leds/leds-lm3556.rst (renamed from Documentation/leds/leds-lm3556.txt)100
-rw-r--r--Documentation/leds/leds-lp3944.rst (renamed from Documentation/leds/leds-lp3944.txt)23
-rw-r--r--Documentation/leds/leds-lp5521.rst115
-rw-r--r--Documentation/leds/leds-lp5521.txt101
-rw-r--r--Documentation/leds/leds-lp5523.rst147
-rw-r--r--Documentation/leds/leds-lp5523.txt130
-rw-r--r--Documentation/leds/leds-lp5562.rst137
-rw-r--r--Documentation/leds/leds-lp5562.txt120
-rw-r--r--Documentation/leds/leds-lp55xx.rst224
-rw-r--r--Documentation/leds/leds-lp55xx.txt194
-rw-r--r--Documentation/leds/leds-mlxcpld.rst118
-rw-r--r--Documentation/leds/leds-mlxcpld.txt110
-rw-r--r--Documentation/leds/ledtrig-oneshot.rst (renamed from Documentation/leds/ledtrig-oneshot.txt)11
-rw-r--r--Documentation/leds/ledtrig-transient.rst (renamed from Documentation/leds/ledtrig-transient.txt)65
-rw-r--r--Documentation/leds/ledtrig-usbport.rst (renamed from Documentation/leds/ledtrig-usbport.txt)11
-rw-r--r--Documentation/leds/uleds.rst (renamed from Documentation/leds/uleds.txt)5
-rw-r--r--Documentation/locking/lockdep-design.txt112
-rw-r--r--Documentation/memory-barriers.txt2
-rw-r--r--Documentation/networking/af_xdp.rst8
-rw-r--r--Documentation/networking/device_drivers/index.rst30
-rw-r--r--Documentation/networking/index.rst16
-rw-r--r--Documentation/networking/ip-sysctl.txt16
-rw-r--r--Documentation/networking/rds.txt2
-rw-r--r--Documentation/networking/tls-offload-layers.svg1
-rw-r--r--Documentation/networking/tls-offload-reorder-bad.svg1
-rw-r--r--Documentation/networking/tls-offload-reorder-good.svg1
-rw-r--r--Documentation/networking/tls-offload.rst482
-rw-r--r--Documentation/networking/tls.rst (renamed from Documentation/networking/tls.txt)44
-rw-r--r--Documentation/process/changes.rst6
-rw-r--r--Documentation/pwm.txt7
-rw-r--r--Documentation/s390/3270.rst (renamed from Documentation/s390/3270.txt)85
-rw-r--r--Documentation/s390/Debugging390.txt2142
-rw-r--r--Documentation/s390/cds.rst (renamed from Documentation/s390/cds.txt)368
-rw-r--r--Documentation/s390/common_io.rst (renamed from Documentation/s390/CommonIO)49
-rw-r--r--Documentation/s390/dasd.rst (renamed from Documentation/s390/DASD)33
-rw-r--r--Documentation/s390/debugging390.rst2613
-rw-r--r--Documentation/s390/driver-model.rst (renamed from Documentation/s390/driver-model.txt)179
-rw-r--r--Documentation/s390/index.rst30
-rw-r--r--Documentation/s390/monreader.rst (renamed from Documentation/s390/monreader.txt)85
-rw-r--r--Documentation/s390/qeth.rst (renamed from Documentation/s390/qeth.txt)36
-rw-r--r--Documentation/s390/s390dbf.rst487
-rw-r--r--Documentation/s390/s390dbf.txt667
-rw-r--r--Documentation/s390/text_files.rst11
-rw-r--r--Documentation/s390/vfio-ap.rst (renamed from Documentation/s390/vfio-ap.txt)499
-rw-r--r--Documentation/s390/vfio-ccw.rst (renamed from Documentation/s390/vfio-ccw.txt)92
-rw-r--r--Documentation/s390/zfcpdump.rst (renamed from Documentation/s390/zfcpdump.txt)2
-rw-r--r--Documentation/scheduler/sched-deadline.txt2
-rw-r--r--Documentation/scheduler/sched-design-CFS.txt2
-rw-r--r--Documentation/scheduler/sched-pelt.c3
-rw-r--r--Documentation/scheduler/sched-rt-group.txt2
-rw-r--r--Documentation/security/IMA-templates.rst7
-rw-r--r--Documentation/security/keys/core.rst217
-rw-r--r--Documentation/security/keys/request-key.rst57
-rw-r--r--Documentation/sphinx/kerneldoc.py44
-rw-r--r--Documentation/sphinx/kernellog.py28
-rw-r--r--Documentation/sphinx/kfigure.py40
-rw-r--r--Documentation/sysctl/kernel.txt16
-rw-r--r--Documentation/translations/ko_KR/memory-barriers.txt2
-rw-r--r--Documentation/usb/rio.txt66
-rw-r--r--Documentation/virtual/kvm/api.txt48
-rw-r--r--Documentation/vm/hmm.rst8
-rw-r--r--Documentation/vm/numa.rst4
-rw-r--r--Documentation/vm/page_migration.rst2
-rw-r--r--Documentation/vm/unevictable-lru.rst2
-rw-r--r--Documentation/x86/exception-tables.rst2
-rw-r--r--Documentation/x86/topology.rst4
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets.rst4
144 files changed, 8010 insertions, 5469 deletions
diff --git a/Documentation/ABI/testing/ima_policy b/Documentation/ABI/testing/ima_policy
index 74c6702de74e..fc376a323908 100644
--- a/Documentation/ABI/testing/ima_policy
+++ b/Documentation/ABI/testing/ima_policy
@@ -24,11 +24,11 @@ Description:
[euid=] [fowner=] [fsname=]]
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
- option: [[appraise_type=]] [permit_directio]
-
+ option: [[appraise_type=]] [template=] [permit_directio]
base: func:= [BPRM_CHECK][MMAP_CHECK][CREDS_CHECK][FILE_CHECK][MODULE_CHECK]
[FIRMWARE_CHECK]
[KEXEC_KERNEL_CHECK] [KEXEC_INITRAMFS_CHECK]
+ [KEXEC_CMDLINE]
mask:= [[^]MAY_READ] [[^]MAY_WRITE] [[^]MAY_APPEND]
[[^]MAY_EXEC]
fsmagic:= hex value
@@ -38,6 +38,8 @@ Description:
fowner:= decimal value
lsm: are LSM specific
option: appraise_type:= [imasig]
+ template:= name of a defined IMA template type
+ (eg, ima-ng). Only valid when action is "measure".
pcr:= decimal value
default policy:
diff --git a/Documentation/ABI/testing/sysfs-bus-css b/Documentation/ABI/testing/sysfs-bus-css
index 2979c40c10e9..966f8504bd7b 100644
--- a/Documentation/ABI/testing/sysfs-bus-css
+++ b/Documentation/ABI/testing/sysfs-bus-css
@@ -33,3 +33,26 @@ Description: Contains the PIM/PAM/POM values, as reported by the
in sync with the values current in the channel subsystem).
Note: This is an I/O-subchannel specific attribute.
Users: s390-tools, HAL
+
+What: /sys/bus/css/devices/.../driver_override
+Date: June 2019
+Contact: Cornelia Huck <cohuck@redhat.com>
+ linux-s390@vger.kernel.org
+Description: This file allows the driver for a device to be specified. When
+ specified, only a driver with a name matching the value written
+ to driver_override will have an opportunity to bind to the
+ device. The override is specified by writing a string to the
+ driver_override file (echo vfio-ccw > driver_override) and
+ may be cleared with an empty string (echo > driver_override).
+ This returns the device to standard matching rules binding.
+ Writing to driver_override does not automatically unbind the
+ device from its current driver or make any attempt to
+ automatically load the specified driver. If no driver with a
+ matching name is currently loaded in the kernel, the device
+ will not bind to any driver. This also allows devices to
+ opt-out of driver binding using a driver_override name such as
+ "none". Only a single driver may be specified in the override,
+ there is no support for parsing delimiters.
+ Note that unlike the mechanism of the same name for pci, this
+ file does not allow to override basic matching rules. I.e.,
+ the driver must still match the subchannel type of the device.
diff --git a/Documentation/ABI/testing/sysfs-bus-mdio b/Documentation/ABI/testing/sysfs-bus-mdio
deleted file mode 100644
index 491baaf4285f..000000000000
--- a/Documentation/ABI/testing/sysfs-bus-mdio
+++ /dev/null
@@ -1,29 +0,0 @@
-What: /sys/bus/mdio_bus/devices/.../phy_id
-Date: November 2012
-KernelVersion: 3.8
-Contact: netdev@vger.kernel.org
-Description:
- This attribute contains the 32-bit PHY Identifier as reported
- by the device during bus enumeration, encoded in hexadecimal.
- This ID is used to match the device with the appropriate
- driver.
-
-What: /sys/bus/mdio_bus/devices/.../phy_interface
-Date: February 2014
-KernelVersion: 3.15
-Contact: netdev@vger.kernel.org
-Description:
- This attribute contains the PHY interface as configured by the
- Ethernet driver during bus enumeration, encoded in string.
- This interface mode is used to configure the Ethernet MAC with the
- appropriate mode for its data lines to the PHY hardware.
-
-What: /sys/bus/mdio_bus/devices/.../phy_has_fixups
-Date: February 2014
-KernelVersion: 3.15
-Contact: netdev@vger.kernel.org
-Description:
- This attribute contains the boolean value whether a given PHY
- device has had any "fixup" workaround running on it, encoded as
- a boolean. This information is provided to help troubleshooting
- PHY configurations.
diff --git a/Documentation/ABI/testing/sysfs-bus-siox b/Documentation/ABI/testing/sysfs-bus-siox
index fed7c3765a4e..c2a403f20b90 100644
--- a/Documentation/ABI/testing/sysfs-bus-siox
+++ b/Documentation/ABI/testing/sysfs-bus-siox
@@ -1,6 +1,6 @@
What: /sys/bus/siox/devices/siox-X/active
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
On reading represents the current state of the bus. If it
contains a "0" the bus is stopped and connected devices are
@@ -12,7 +12,7 @@ Description:
What: /sys/bus/siox/devices/siox-X/device_add
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Write-only file. Write
@@ -27,13 +27,13 @@ Description:
What: /sys/bus/siox/devices/siox-X/device_remove
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Write-only file. A single write removes the last device in the siox chain.
What: /sys/bus/siox/devices/siox-X/poll_interval_ns
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Defines the interval between two poll cycles in nano seconds.
Note this is rounded to jiffies on writing. On reading the current value
@@ -41,33 +41,33 @@ Description:
What: /sys/bus/siox/devices/siox-X-Y/connected
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value. "0" means the Yth device on siox bus X isn't "connected" i.e.
communication with it is not ensured. "1" signals a working connection.
What: /sys/bus/siox/devices/siox-X-Y/inbytes
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the inbytes value provided to siox-X/device_add
What: /sys/bus/siox/devices/siox-X-Y/status_errors
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Counts the number of time intervals when the read status byte doesn't yield the
expected value.
What: /sys/bus/siox/devices/siox-X-Y/type
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the type value provided to siox-X/device_add.
What: /sys/bus/siox/devices/siox-X-Y/watchdog
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting if the watchdog of the siox device is
active. "0" means the watchdog is not active and the device is expected to
@@ -75,13 +75,13 @@ Description:
What: /sys/bus/siox/devices/siox-X-Y/watchdog_errors
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the number to time intervals when the
watchdog was active.
What: /sys/bus/siox/devices/siox-X-Y/outbytes
KernelVersion: 4.16
-Contact: Gavin Schenk <g.schenk@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
+Contact: Thorsten Scherer <t.scherer@eckelmann.de>, Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Description:
Read-only value reporting the outbytes value provided to siox-X/device_add.
diff --git a/Documentation/ABI/testing/sysfs-class-net-phydev b/Documentation/ABI/testing/sysfs-class-net-phydev
index 6ebabfb27912..2a5723343aba 100644
--- a/Documentation/ABI/testing/sysfs-class-net-phydev
+++ b/Documentation/ABI/testing/sysfs-class-net-phydev
@@ -11,24 +11,31 @@ Date: February 2014
KernelVersion: 3.15
Contact: netdev@vger.kernel.org
Description:
- Boolean value indicating whether the PHY device has
- any fixups registered against it (phy_register_fixup)
+ This attribute contains the boolean value whether a given PHY
+ device has had any "fixup" workaround running on it, encoded as
+ a boolean. This information is provided to help troubleshooting
+ PHY configurations.
What: /sys/class/mdio_bus/<bus>/<device>/phy_id
Date: November 2012
KernelVersion: 3.8
Contact: netdev@vger.kernel.org
Description:
- 32-bit hexadecimal value corresponding to the PHY device's OUI,
- model and revision number.
+ This attribute contains the 32-bit PHY Identifier as reported
+ by the device during bus enumeration, encoded in hexadecimal.
+ This ID is used to match the device with the appropriate
+ driver.
What: /sys/class/mdio_bus/<bus>/<device>/phy_interface
Date: February 2014
KernelVersion: 3.15
Contact: netdev@vger.kernel.org
Description:
- String value indicating the PHY interface, possible
- values are:.
+ This attribute contains the PHY interface as configured by the
+ Ethernet driver during bus enumeration, encoded in string.
+ This interface mode is used to configure the Ethernet MAC with the
+ appropriate mode for its data lines to the PHY hardware.
+ Possible values are:
<empty> (not available), mii, gmii, sgmii, tbi, rev-mii,
rmii, rgmii, rgmii-id, rgmii-rxid, rgmii-txid, rtbi, smii
xgmii, moca, qsgmii, trgmii, 1000base-x, 2500base-x, rxaui,
diff --git a/Documentation/ABI/testing/sysfs-class-net-qmi b/Documentation/ABI/testing/sysfs-class-net-qmi
index 7122d6264c49..c310db4ccbc2 100644
--- a/Documentation/ABI/testing/sysfs-class-net-qmi
+++ b/Documentation/ABI/testing/sysfs-class-net-qmi
@@ -29,7 +29,7 @@ Contact: Bjørn Mork <bjorn@mork.no>
Description:
Unsigned integer.
- Write a number ranging from 1 to 127 to add a qmap mux
+ Write a number ranging from 1 to 254 to add a qmap mux
based network device, supported by recent Qualcomm based
modems.
@@ -46,5 +46,5 @@ Contact: Bjørn Mork <bjorn@mork.no>
Description:
Unsigned integer.
- Write a number ranging from 1 to 127 to delete a previously
+ Write a number ranging from 1 to 254 to delete a previously
created qmap mux based network device.
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu
index 1528239f69b2..923fe2001472 100644
--- a/Documentation/ABI/testing/sysfs-devices-system-cpu
+++ b/Documentation/ABI/testing/sysfs-devices-system-cpu
@@ -538,3 +538,26 @@ Description: Intel Energy and Performance Bias Hint (EPB)
This attribute is present for all online CPUs supporting the
Intel EPB feature.
+
+What: /sys/devices/system/cpu/umwait_control
+ /sys/devices/system/cpu/umwait_control/enable_c02
+ /sys/devices/system/cpu/umwait_control/max_time
+Date: May 2019
+Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
+Description: Umwait control
+
+ enable_c02: Read/write interface to control umwait C0.2 state
+ Read returns C0.2 state status:
+ 0: C0.2 is disabled
+ 1: C0.2 is enabled
+
+ Write 'y' or '1' or 'on' to enable C0.2 state.
+ Write 'n' or '0' or 'off' to disable C0.2 state.
+
+ The interface is case insensitive.
+
+ max_time: Read/write interface to control umwait maximum time
+ in TSC-quanta that the CPU can reside in either C0.1
+ or C0.2 state. The time is an unsigned 32-bit number.
+ Note that a value of zero means there is no limit.
+ Low order two bits must be zero.
diff --git a/Documentation/RCU/rcuref.txt b/Documentation/RCU/rcuref.txt
index 613033ff2b9b..5e6429d66c24 100644
--- a/Documentation/RCU/rcuref.txt
+++ b/Documentation/RCU/rcuref.txt
@@ -12,6 +12,7 @@ please read on.
Reference counting on elements of lists which are protected by traditional
reader/writer spinlocks or semaphores are straightforward:
+CODE LISTING A:
1. 2.
add() search_and_reference()
{ {
@@ -28,7 +29,8 @@ add() search_and_reference()
release_referenced() delete()
{ {
... write_lock(&list_lock);
- atomic_dec(&el->rc, relfunc) ...
+ if(atomic_dec_and_test(&el->rc)) ...
+ kfree(el);
... remove_element
} write_unlock(&list_lock);
...
@@ -44,6 +46,7 @@ search_and_reference() could potentially hold reference to an element which
has already been deleted from the list/array. Use atomic_inc_not_zero()
in this scenario as follows:
+CODE LISTING B:
1. 2.
add() search_and_reference()
{ {
@@ -79,6 +82,7 @@ search_and_reference() code path. In such cases, the
atomic_dec_and_test() may be moved from delete() to el_free()
as follows:
+CODE LISTING C:
1. 2.
add() search_and_reference()
{ {
@@ -114,6 +118,17 @@ element can therefore safely be freed. This in turn guarantees that if
any reader finds the element, that reader may safely acquire a reference
without checking the value of the reference counter.
+A clear advantage of the RCU-based pattern in listing C over the one
+in listing B is that any call to search_and_reference() that locates
+a given object will succeed in obtaining a reference to that object,
+even given a concurrent invocation of delete() for that same object.
+Similarly, a clear advantage of both listings B and C over listing A is
+that a call to delete() is not delayed even if there are an arbitrarily
+large number of calls to search_and_reference() searching for the same
+object that delete() was invoked on. Instead, all that is delayed is
+the eventual invocation of kfree(), which is usually not a problem on
+modern computer systems, even the small ones.
+
In cases where delete() can sleep, synchronize_rcu() can be called from
delete(), so that el_free() can be subsumed into delete as follows:
@@ -130,3 +145,7 @@ delete()
kfree(el);
...
}
+
+As additional examples in the kernel, the pattern in listing C is used by
+reference counting of struct pid, while the pattern in listing B is used by
+struct posix_acl.
diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt
index 1ab70c37921f..13e88fc00f01 100644
--- a/Documentation/RCU/stallwarn.txt
+++ b/Documentation/RCU/stallwarn.txt
@@ -153,7 +153,7 @@ rcupdate.rcu_task_stall_timeout
This boot/sysfs parameter controls the RCU-tasks stall warning
interval. A value of zero or less suppresses RCU-tasks stall
warnings. A positive value sets the stall-warning interval
- in jiffies. An RCU-tasks stall warning starts with the line:
+ in seconds. An RCU-tasks stall warning starts with the line:
INFO: rcu_tasks detected stalls on tasks:
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index 981651a8b65d..7e1a8721637a 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -212,7 +212,7 @@ synchronize_rcu()
rcu_assign_pointer()
- typeof(p) rcu_assign_pointer(p, typeof(p) v);
+ void rcu_assign_pointer(p, typeof(p) v);
Yes, rcu_assign_pointer() -is- implemented as a macro, though it
would be cool to be able to declare a function in this manner.
@@ -220,9 +220,9 @@ rcu_assign_pointer()
The updater uses this function to assign a new value to an
RCU-protected pointer, in order to safely communicate the change
- in value from the updater to the reader. This function returns
- the new value, and also executes any memory-barrier instructions
- required for a given CPU architecture.
+ in value from the updater to the reader. This macro does not
+ evaluate to an rvalue, but it does execute any memory-barrier
+ instructions required for a given CPU architecture.
Perhaps just as important, it serves to document (1) which
pointers are protected by RCU and (2) the point at which a
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 88e746074252..a5c845338d6d 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -177,6 +177,15 @@ cgroup v2 currently supports the following mount options.
ignored on non-init namespace mounts. Please refer to the
Delegation section for details.
+ memory_localevents
+
+ Only populate memory.events with data for the current cgroup,
+ and not any subtrees. This is legacy behaviour, the default
+ behaviour without this option is to include subtree counts.
+ This option is system wide and can only be set on mount or
+ modified through remount from the init namespace. The mount
+ option is ignored on non-init namespace mounts.
+
Organizing Processes and Threads
--------------------------------
@@ -696,6 +705,12 @@ Conventions
informational files on the root cgroup which end up showing global
information available elsewhere shouldn't exist.
+- The default time unit is microseconds. If a different unit is ever
+ used, an explicit unit suffix must be present.
+
+- A parts-per quantity should use a percentage decimal with at least
+ two digit fractional part - e.g. 13.40.
+
- If a controller implements weight based resource distribution, its
interface file should be named "weight" and have the range [1,
10000] with 100 as the default. The values are chosen to allow
diff --git a/Documentation/admin-guide/hw-vuln/l1tf.rst b/Documentation/admin-guide/hw-vuln/l1tf.rst
index 31653a9f0e1b..656aee262e23 100644
--- a/Documentation/admin-guide/hw-vuln/l1tf.rst
+++ b/Documentation/admin-guide/hw-vuln/l1tf.rst
@@ -241,7 +241,7 @@ Guest mitigation mechanisms
For further information about confining guests to a single or to a group
of cores consult the cpusets documentation:
- https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
+ https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.rst
.. _interrupt_isolation:
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 138f6664b2e2..74d28efa1c40 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -478,7 +478,7 @@
others).
ccw_timeout_log [S390]
- See Documentation/s390/CommonIO for details.
+ See Documentation/s390/common_io.rst for details.
cgroup_disable= [KNL] Disable a particular controller
Format: {name of the controller(s) to disable}
@@ -516,7 +516,7 @@
/selinux/checkreqprot.
cio_ignore= [S390]
- See Documentation/s390/CommonIO for details.
+ See Documentation/s390/common_io.rst for details.
clk_ignore_unused
[CLK]
Prevents the clock framework from automatically gating
@@ -3752,6 +3752,12 @@
the propagation of recent CPU-hotplug changes up
the rcu_node combining tree.
+ rcutree.use_softirq= [KNL]
+ If set to zero, move all RCU_SOFTIRQ processing to
+ per-CPU rcuc kthreads. Defaults to a non-zero
+ value, meaning that RCU_SOFTIRQ is used by default.
+ Specify rcutree.use_softirq=0 to use rcuc kthreads.
+
rcutree.rcu_fanout_exact= [KNL]
Disable autobalancing of the rcu_node combining
tree. This is used by rcutorture, and might
@@ -4078,7 +4084,7 @@
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
- See Documentation/cgroup-v1/cpusets.txt.
+ See Documentation/cgroup-v1/cpusets.rst.
reserve= [KNL,BUGS] Force kernel to ignore I/O ports or memory
Format: <base1>,<size1>[,<base2>,<size2>,...]
@@ -4588,7 +4594,7 @@
swapaccount=[0|1]
[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
- it if 0 is given (See Documentation/cgroup-v1/memory.txt)
+ it if 0 is given (See Documentation/cgroup-v1/memory.rst)
swiotlb= [ARM,IA-64,PPC,MIPS,X86]
Format: { <int> | force | noforce }
@@ -5100,13 +5106,12 @@
targets for exploits that can control RIP.
emulate [default] Vsyscalls turn into traps and are
- emulated reasonably safely.
+ emulated reasonably safely. The vsyscall
+ page is readable.
- native Vsyscalls are native syscall instructions.
- This is a little bit faster than trapping
- and makes a few dynamic recompilers work
- better than they would in emulation mode.
- It also makes exploits much easier to write.
+ xonly Vsyscalls turn into traps and are
+ emulated reasonably safely. The vsyscall
+ page is not readable.
none Vsyscalls don't work at all. This makes
them quite hard to use for exploits but
diff --git a/Documentation/admin-guide/mm/index.rst b/Documentation/admin-guide/mm/index.rst
index 8edb35f11317..ddf8d8d33377 100644
--- a/Documentation/admin-guide/mm/index.rst
+++ b/Documentation/admin-guide/mm/index.rst
@@ -31,6 +31,7 @@ the Linux memory management.
ksm
memory-hotplug
numa_memory_policy
+ numaperf
pagemap
soft-dirty
transhuge
diff --git a/Documentation/admin-guide/mm/numa_memory_policy.rst b/Documentation/admin-guide/mm/numa_memory_policy.rst
index d78c5b315f72..546f174e5d6a 100644
--- a/Documentation/admin-guide/mm/numa_memory_policy.rst
+++ b/Documentation/admin-guide/mm/numa_memory_policy.rst
@@ -15,7 +15,7 @@ document attempts to describe the concepts and APIs of the 2.6 memory policy
support.
Memory policies should not be confused with cpusets
-(``Documentation/cgroup-v1/cpusets.txt``)
+(``Documentation/cgroup-v1/cpusets.rst``)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
diff --git a/Documentation/admin-guide/mm/numaperf.rst b/Documentation/admin-guide/mm/numaperf.rst
index b79f70c04397..c067ed145158 100644
--- a/Documentation/admin-guide/mm/numaperf.rst
+++ b/Documentation/admin-guide/mm/numaperf.rst
@@ -15,7 +15,7 @@ characteristics. Some memory may share the same node as a CPU, and others
are provided as memory only nodes. While memory only nodes do not provide
CPUs, they may still be local to one or more compute nodes relative to
other nodes. The following diagram shows one such example of two compute
-nodes with local memory and a memory only node for each of compute node:
+nodes with local memory and a memory only node for each of compute node::
+------------------+ +------------------+
| Compute Node 0 +-----+ Compute Node 1 |
diff --git a/Documentation/arm64/elf_hwcaps.txt b/Documentation/arm64/elf_hwcaps.txt
index b73a2519ecf2..5ae2ef2c12f3 100644
--- a/Documentation/arm64/elf_hwcaps.txt
+++ b/Documentation/arm64/elf_hwcaps.txt
@@ -207,6 +207,10 @@ HWCAP_FLAGM
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
+HWCAP2_FLAGM2
+
+ Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0010.
+
HWCAP_SSBS
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.
@@ -223,6 +227,10 @@ HWCAP_PACG
ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
Documentation/arm64/pointer-authentication.txt.
+HWCAP2_FRINT
+
+ Functionality implied by ID_AA64ISAR1_EL1.FRINTTS == 0b0001.
+
4. Unused AT_HWCAP bits
-----------------------
diff --git a/Documentation/arm64/sve.txt b/Documentation/arm64/sve.txt
index 9940e924a47e..5689fc9a976a 100644
--- a/Documentation/arm64/sve.txt
+++ b/Documentation/arm64/sve.txt
@@ -56,6 +56,18 @@ model features for SVE is included in Appendix A.
is to connect to a target process first and then attempt a
ptrace(PTRACE_GETREGSET, pid, NT_ARM_SVE, &iov).
+* Whenever SVE scalable register values (Zn, Pn, FFR) are exchanged in memory
+ between userspace and the kernel, the register value is encoded in memory in
+ an endianness-invariant layout, with bits [(8 * i + 7) : (8 * i)] encoded at
+ byte offset i from the start of the memory representation. This affects for
+ example the signal frame (struct sve_context) and ptrace interface
+ (struct user_sve_header) and associated data.
+
+ Beware that on big-endian systems this results in a different byte order than
+ for the FPSIMD V-registers, which are stored as single host-endian 128-bit
+ values, with bits [(127 - 8 * i) : (120 - 8 * i)] of the register encoded at
+ byte offset i. (struct fpsimd_context, struct user_fpsimd_state).
+
2. Vector length terminology
-----------------------------
@@ -124,6 +136,10 @@ the SVE instruction set architecture.
size and layout. Macros SVE_SIG_* are defined [1] to facilitate access to
the members.
+* Each scalable register (Zn, Pn, FFR) is stored in an endianness-invariant
+ layout, with bits [(8 * i + 7) : (8 * i)] stored at byte offset i from the
+ start of the register's representation in memory.
+
* If the SVE context is too big to fit in sigcontext.__reserved[], then extra
space is allocated on the stack, an extra_context record is written in
__reserved[] referencing this space. sve_context is then written in the
diff --git a/Documentation/atomic_t.txt b/Documentation/atomic_t.txt
index dca3fb0554db..0ab747e0d5ac 100644
--- a/Documentation/atomic_t.txt
+++ b/Documentation/atomic_t.txt
@@ -81,9 +81,11 @@ Non-RMW ops:
The non-RMW ops are (typically) regular LOADs and STOREs and are canonically
implemented using READ_ONCE(), WRITE_ONCE(), smp_load_acquire() and
-smp_store_release() respectively.
+smp_store_release() respectively. Therefore, if you find yourself only using
+the Non-RMW operations of atomic_t, you do not in fact need atomic_t at all
+and are doing it wrong.
-The one detail to this is that atomic_set{}() should be observable to the RMW
+A subtle detail of atomic_set{}() is that it should be observable to the RMW
ops. That is:
C atomic-set
@@ -187,13 +189,22 @@ The barriers:
smp_mb__{before,after}_atomic()
-only apply to the RMW ops and can be used to augment/upgrade the ordering
-inherent to the used atomic op. These barriers provide a full smp_mb().
+only apply to the RMW atomic ops and can be used to augment/upgrade the
+ordering inherent to the op. These barriers act almost like a full smp_mb():
+smp_mb__before_atomic() orders all earlier accesses against the RMW op
+itself and all accesses following it, and smp_mb__after_atomic() orders all
+later accesses against the RMW op and all accesses preceding it. However,
+accesses between the smp_mb__{before,after}_atomic() and the RMW op are not
+ordered, so it is advisable to place the barrier right next to the RMW atomic
+op whenever possible.
These helper barriers exist because architectures have varying implicit
ordering on their SMP atomic primitives. For example our TSO architectures
provide full ordered atomics and these barriers are no-ops.
+NOTE: when the atomic RmW ops are fully ordered, they should also imply a
+compiler barrier.
+
Thus:
atomic_fetch_add();
@@ -212,7 +223,9 @@ Further, while something like:
atomic_dec(&X);
is a 'typical' RELEASE pattern, the barrier is strictly stronger than
-a RELEASE. Similarly for something like:
+a RELEASE because it orders preceding instructions against both the read
+and write parts of the atomic_dec(), and against all following instructions
+as well. Similarly, something like:
atomic_inc(&X);
smp_mb__after_atomic();
@@ -244,7 +257,8 @@ strictly stronger than ACQUIRE. As illustrated:
This should not happen; but a hypothetical atomic_inc_acquire() --
(void)atomic_fetch_inc_acquire() for instance -- would allow the outcome,
-since then:
+because it would not order the W part of the RMW against the following
+WRITE_ONCE. Thus:
P1 P2
diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
index 1a0f2ac02eb6..b2265cf6c9c3 100644
--- a/Documentation/block/bfq-iosched.txt
+++ b/Documentation/block/bfq-iosched.txt
@@ -539,7 +539,7 @@ As for cgroups-v1 (blkio controller), the exact set of stat files
created, and kept up-to-date by bfq, depends on whether
CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
the stat files documented in
-Documentation/cgroup-v1/blkio-controller.txt. If, instead,
+Documentation/cgroup-v1/blkio-controller.rst. If, instead,
CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
blkio.bfq.io_service_bytes
blkio.bfq.io_service_bytes_recursive
diff --git a/Documentation/block/switching-sched.txt b/Documentation/block/switching-sched.txt
index 3b2612e342f1..7977f6fb8b20 100644
--- a/Documentation/block/switching-sched.txt
+++ b/Documentation/block/switching-sched.txt
@@ -13,11 +13,9 @@ you can do so by typing:
# mount none /sys -t sysfs
-As of the Linux 2.6.10 kernel, it is now possible to change the
-IO scheduler for a given block device on the fly (thus making it possible,
-for instance, to set the CFQ scheduler for the system default, but
-set a specific device to use the deadline or noop schedulers - which
-can improve that device's throughput).
+It is possible to change the IO scheduler for a given block device on
+the fly to select one of mq-deadline, none, bfq, or kyber schedulers -
+which can improve that device's throughput.
To set a specific scheduler, simply do this:
@@ -30,8 +28,8 @@ The list of defined schedulers can be found by simply doing
a "cat /sys/block/DEV/queue/scheduler" - the list of valid names
will be displayed, with the currently selected scheduler in brackets:
-# cat /sys/block/hda/queue/scheduler
-noop deadline [cfq]
-# echo deadline > /sys/block/hda/queue/scheduler
-# cat /sys/block/hda/queue/scheduler
-noop [deadline] cfq
+# cat /sys/block/sda/queue/scheduler
+[mq-deadline] kyber bfq none
+# echo none >/sys/block/sda/queue/scheduler
+# cat /sys/block/sda/queue/scheduler
+[none] mq-deadline kyber bfq
diff --git a/Documentation/cgroup-v1/blkio-controller.txt b/Documentation/cgroup-v1/blkio-controller.rst
index 673dc34d3f78..fd3184537d23 100644
--- a/Documentation/cgroup-v1/blkio-controller.txt
+++ b/Documentation/cgroup-v1/blkio-controller.rst
@@ -1,5 +1,7 @@
- Block IO Controller
- ===================
+===================
+Block IO Controller
+===================
+
Overview
========
cgroup subsys "blkio" implements the block io controller. There seems to be
@@ -8,81 +10,36 @@ both at leaf nodes as well as at intermediate nodes in a storage hierarchy.
Plan is to use the same cgroup based management interface for blkio controller
and based on user options switch IO policies in the background.
-Currently two IO control policies are implemented. First one is proportional
-weight time based division of disk policy. It is implemented in CFQ. Hence
-this policy takes effect only on leaf nodes when CFQ is being used. The second
-one is throttling policy which can be used to specify upper IO rate limits
-on devices. This policy is implemented in generic block layer and can be
-used on leaf nodes as well as higher level logical devices like device mapper.
+One IO control policy is throttling policy which can be used to
+specify upper IO rate limits on devices. This policy is implemented in
+generic block layer and can be used on leaf nodes as well as higher
+level logical devices like device mapper.
HOWTO
=====
-Proportional Weight division of bandwidth
------------------------------------------
-You can do a very simple testing of running two dd threads in two different
-cgroups. Here is what you can do.
-
-- Enable Block IO controller
- CONFIG_BLK_CGROUP=y
-
-- Enable group scheduling in CFQ
- CONFIG_CFQ_GROUP_IOSCHED=y
-
-- Compile and boot into kernel and mount IO controller (blkio); see
- cgroups.txt, Why are cgroups needed?.
-
- mount -t tmpfs cgroup_root /sys/fs/cgroup
- mkdir /sys/fs/cgroup/blkio
- mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
-
-- Create two cgroups
- mkdir -p /sys/fs/cgroup/blkio/test1/ /sys/fs/cgroup/blkio/test2
-
-- Set weights of group test1 and test2
- echo 1000 > /sys/fs/cgroup/blkio/test1/blkio.weight
- echo 500 > /sys/fs/cgroup/blkio/test2/blkio.weight
-
-- Create two same size files (say 512MB each) on same disk (file1, file2) and
- launch two dd threads in different cgroup to read those files.
-
- sync
- echo 3 > /proc/sys/vm/drop_caches
-
- dd if=/mnt/sdb/zerofile1 of=/dev/null &
- echo $! > /sys/fs/cgroup/blkio/test1/tasks
- cat /sys/fs/cgroup/blkio/test1/tasks
-
- dd if=/mnt/sdb/zerofile2 of=/dev/null &
- echo $! > /sys/fs/cgroup/blkio/test2/tasks
- cat /sys/fs/cgroup/blkio/test2/tasks
-
-- At macro level, first dd should finish first. To get more precise data, keep
- on looking at (with the help of script), at blkio.disk_time and
- blkio.disk_sectors files of both test1 and test2 groups. This will tell how
- much disk time (in milliseconds), each group got and how many sectors each
- group dispatched to the disk. We provide fairness in terms of disk time, so
- ideally io.disk_time of cgroups should be in proportion to the weight.
-
Throttling/Upper Limit policy
-----------------------------
-- Enable Block IO controller
+- Enable Block IO controller::
+
CONFIG_BLK_CGROUP=y
-- Enable throttling in block layer
+- Enable throttling in block layer::
+
CONFIG_BLK_DEV_THROTTLING=y
-- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)
+- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)::
+
mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
- Specify a bandwidth rate on particular device for root group. The format
- for policy is "<major>:<minor> <bytes_per_second>".
+ for policy is "<major>:<minor> <bytes_per_second>"::
echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device
Above will put a limit of 1MB/second on reads happening for root group
on device having major/minor number 8:16.
-- Run dd to read a file and see if rate is throttled to 1MB/s or not.
+- Run dd to read a file and see if rate is throttled to 1MB/s or not::
# dd iflag=direct if=/mnt/common/zerofile of=/dev/null bs=4K count=1024
1024+0 records in
@@ -94,12 +51,12 @@ Throttling/Upper Limit policy
Hierarchical Cgroups
====================
-Both CFQ and throttling implement hierarchy support; however,
+Throttling implements hierarchy support; however,
throttling's hierarchy support is enabled iff "sane_behavior" is
enabled from cgroup side, which currently is a development option and
not publicly available.
-If somebody created a hierarchy like as follows.
+If somebody created a hierarchy like as follows::
root
/ \
@@ -107,15 +64,14 @@ If somebody created a hierarchy like as follows.
|
test3
-CFQ by default and throttling with "sane_behavior" will handle the
-hierarchy correctly. For details on CFQ hierarchy support, refer to
-Documentation/block/cfq-iosched.txt. For throttling, all limits apply
+Throttling with "sane_behavior" will handle the
+hierarchy correctly. For throttling, all limits apply
to the whole subtree while all statistics are local to the IOs
directly generated by tasks in that cgroup.
Throttling without "sane_behavior" enabled from cgroup side will
practically treat all groups at same level as if it looks like the
-following.
+following::
pivot
/ / \ \
@@ -130,10 +86,6 @@ CONFIG_DEBUG_BLK_CGROUP
- Debug help. Right now some additional stats file show up in cgroup
if this option is enabled.
-CONFIG_CFQ_GROUP_IOSCHED
- - Enables group scheduling in CFQ. Currently only 1 level of group
- creation is allowed.
-
CONFIG_BLK_DEV_THROTTLING
- Enable block device throttling support in block layer.
@@ -152,27 +104,31 @@ Proportional weight policy files
These rules override the default value of group weight as specified
by blkio.weight.
- Following is the format.
+ Following is the format::
- # echo dev_maj:dev_minor weight > blkio.weight_device
- Configure weight=300 on /dev/sdb (8:16) in this cgroup
- # echo 8:16 300 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
+ # echo dev_maj:dev_minor weight > blkio.weight_device
- Configure weight=500 on /dev/sda (8:0) in this cgroup
- # echo 8:0 500 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:0 500
- 8:16 300
+ Configure weight=300 on /dev/sdb (8:16) in this cgroup::
- Remove specific weight for /dev/sda in this cgroup
- # echo 8:0 0 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
+ # echo 8:16 300 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
+
+ Configure weight=500 on /dev/sda (8:0) in this cgroup::
+
+ # echo 8:0 500 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:0 500
+ 8:16 300
+
+ Remove specific weight for /dev/sda in this cgroup::
+
+ # echo 8:0 0 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
- blkio.leaf_weight[_device]
- Equivalents of blkio.weight[_device] for the purpose of
@@ -297,30 +253,30 @@ Throttling/Upper limit policy files
- blkio.throttle.read_bps_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
- blkio.throttle.write_bps_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
- blkio.throttle.read_iops_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in IO per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
- blkio.throttle.write_iops_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in io per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
Note: If both BW and IOPS rules are specified for a device, then IO is
subjected to both the constraints.
@@ -344,32 +300,3 @@ Common files among various policies
- blkio.reset_stats
- Writing an int to this file will result in resetting all the stats
for that cgroup.
-
-CFQ sysfs tunable
-=================
-/sys/block/<disk>/queue/iosched/slice_idle
-------------------------------------------
-On a faster hardware CFQ can be slow, especially with sequential workload.
-This happens because CFQ idles on a single queue and single queue might not
-drive deeper request queue depths to keep the storage busy. In such scenarios
-one can try setting slice_idle=0 and that would switch CFQ to IOPS
-(IO operations per second) mode on NCQ supporting hardware.
-
-That means CFQ will not idle between cfq queues of a cfq group and hence be
-able to driver higher queue depth and achieve better throughput. That also
-means that cfq provides fairness among groups in terms of IOPS and not in
-terms of disk time.
-
-/sys/block/<disk>/queue/iosched/group_idle
-------------------------------------------
-If one disables idling on individual cfq queues and cfq service trees by
-setting slice_idle=0, group_idle kicks in. That means CFQ will still idle
-on the group in an attempt to provide fairness among groups.
-
-By default group_idle is same as slice_idle and does not do anything if
-slice_idle is enabled.
-
-One can experience an overall throughput drop if you have created multiple
-groups and put applications in that group which are not driving enough
-IO to keep disk busy. In that case set group_idle=0, and CFQ will not idle
-on individual groups and throughput should improve.
diff --git a/Documentation/cgroup-v1/cgroups.txt b/Documentation/cgroup-v1/cgroups.rst
index 059f7063eea6..46bbe7e022d4 100644
--- a/Documentation/cgroup-v1/cgroups.txt
+++ b/Documentation/cgroup-v1/cgroups.rst
@@ -1,35 +1,39 @@
- CGROUPS
- -------
+==============
+Control Groups
+==============
Written by Paul Menage <menage@google.com> based on
-Documentation/cgroup-v1/cpusets.txt
+Documentation/cgroup-v1/cpusets.rst
Original copyright statements from cpusets.txt:
+
Portions Copyright (C) 2004 BULL SA.
+
Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+
Modified by Paul Jackson <pj@sgi.com>
+
Modified by Christoph Lameter <cl@linux.com>
-CONTENTS:
-=========
-
-1. Control Groups
- 1.1 What are cgroups ?
- 1.2 Why are cgroups needed ?
- 1.3 How are cgroups implemented ?
- 1.4 What does notify_on_release do ?
- 1.5 What does clone_children do ?
- 1.6 How do I use cgroups ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Attaching processes
- 2.3 Mounting hierarchies by name
-3. Kernel API
- 3.1 Overview
- 3.2 Synchronization
- 3.3 Subsystem API
-4. Extended attributes usage
-5. Questions
+.. CONTENTS:
+
+ 1. Control Groups
+ 1.1 What are cgroups ?
+ 1.2 Why are cgroups needed ?
+ 1.3 How are cgroups implemented ?
+ 1.4 What does notify_on_release do ?
+ 1.5 What does clone_children do ?
+ 1.6 How do I use cgroups ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Attaching processes
+ 2.3 Mounting hierarchies by name
+ 3. Kernel API
+ 3.1 Overview
+ 3.2 Synchronization
+ 3.3 Subsystem API
+ 4. Extended attributes usage
+ 5. Questions
1. Control Groups
=================
@@ -72,7 +76,7 @@ On their own, the only use for cgroups is for simple job
tracking. The intention is that other subsystems hook into the generic
cgroup support to provide new attributes for cgroups, such as
accounting/limiting the resources which processes in a cgroup can
-access. For example, cpusets (see Documentation/cgroup-v1/cpusets.txt) allow
+access. For example, cpusets (see Documentation/cgroup-v1/cpusets.rst) allow
you to associate a set of CPUs and a set of memory nodes with the
tasks in each cgroup.
@@ -108,7 +112,7 @@ As an example of a scenario (originally proposed by vatsa@in.ibm.com)
that can benefit from multiple hierarchies, consider a large
university server with various users - students, professors, system
tasks etc. The resource planning for this server could be along the
-following lines:
+following lines::
CPU : "Top cpuset"
/ \
@@ -136,7 +140,7 @@ depending on who launched it (prof/student).
With the ability to classify tasks differently for different resources
(by putting those resource subsystems in different hierarchies),
the admin can easily set up a script which receives exec notifications
-and depending on who is launching the browser he can
+and depending on who is launching the browser he can::
# echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
@@ -151,7 +155,7 @@ wants to do online gaming :)) OR give one of the student's simulation
apps enhanced CPU power.
With ability to write PIDs directly to resource classes, it's just a
-matter of:
+matter of::
# echo pid > /sys/fs/cgroup/network/<new_class>/tasks
(after some time)
@@ -306,7 +310,7 @@ configuration from the parent during initialization.
--------------------------
To start a new job that is to be contained within a cgroup, using
-the "cpuset" cgroup subsystem, the steps are something like:
+the "cpuset" cgroup subsystem, the steps are something like::
1) mount -t tmpfs cgroup_root /sys/fs/cgroup
2) mkdir /sys/fs/cgroup/cpuset
@@ -320,7 +324,7 @@ the "cpuset" cgroup subsystem, the steps are something like:
For example, the following sequence of commands will setup a cgroup
named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cgroup:
+and then start a subshell 'sh' in that cgroup::
mount -t tmpfs cgroup_root /sys/fs/cgroup
mkdir /sys/fs/cgroup/cpuset
@@ -345,8 +349,9 @@ and then start a subshell 'sh' in that cgroup:
Creating, modifying, using cgroups can be done through the cgroup
virtual filesystem.
-To mount a cgroup hierarchy with all available subsystems, type:
-# mount -t cgroup xxx /sys/fs/cgroup
+To mount a cgroup hierarchy with all available subsystems, type::
+
+ # mount -t cgroup xxx /sys/fs/cgroup
The "xxx" is not interpreted by the cgroup code, but will appear in
/proc/mounts so may be any useful identifying string that you like.
@@ -355,18 +360,19 @@ Note: Some subsystems do not work without some user input first. For instance,
if cpusets are enabled the user will have to populate the cpus and mems files
for each new cgroup created before that group can be used.
-As explained in section `1.2 Why are cgroups needed?' you should create
+As explained in section `1.2 Why are cgroups needed?` you should create
different hierarchies of cgroups for each single resource or group of
resources you want to control. Therefore, you should mount a tmpfs on
/sys/fs/cgroup and create directories for each cgroup resource or resource
-group.
+group::
-# mount -t tmpfs cgroup_root /sys/fs/cgroup
-# mkdir /sys/fs/cgroup/rg1
+ # mount -t tmpfs cgroup_root /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/rg1
To mount a cgroup hierarchy with just the cpuset and memory
-subsystems, type:
-# mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
+subsystems, type::
+
+ # mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
While remounting cgroups is currently supported, it is not recommend
to use it. Remounting allows changing bound subsystems and
@@ -375,9 +381,10 @@ hierarchy is empty and release_agent itself should be replaced with
conventional fsnotify. The support for remounting will be removed in
the future.
-To Specify a hierarchy's release_agent:
-# mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
- xxx /sys/fs/cgroup/rg1
+To Specify a hierarchy's release_agent::
+
+ # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
+ xxx /sys/fs/cgroup/rg1
Note that specifying 'release_agent' more than once will return failure.
@@ -390,32 +397,39 @@ Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the
tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1
is the cgroup that holds the whole system.
-If you want to change the value of release_agent:
-# echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
+If you want to change the value of release_agent::
+
+ # echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
It can also be changed via remount.
-If you want to create a new cgroup under /sys/fs/cgroup/rg1:
-# cd /sys/fs/cgroup/rg1
-# mkdir my_cgroup
+If you want to create a new cgroup under /sys/fs/cgroup/rg1::
+
+ # cd /sys/fs/cgroup/rg1
+ # mkdir my_cgroup
+
+Now you want to do something with this cgroup:
+
+ # cd my_cgroup
-Now you want to do something with this cgroup.
-# cd my_cgroup
+In this directory you can find several files::
-In this directory you can find several files:
-# ls
-cgroup.procs notify_on_release tasks
-(plus whatever files added by the attached subsystems)
+ # ls
+ cgroup.procs notify_on_release tasks
+ (plus whatever files added by the attached subsystems)
-Now attach your shell to this cgroup:
-# /bin/echo $$ > tasks
+Now attach your shell to this cgroup::
+
+ # /bin/echo $$ > tasks
You can also create cgroups inside your cgroup by using mkdir in this
-directory.
-# mkdir my_sub_cs
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cgroup, just use rmdir::
-To remove a cgroup, just use rmdir:
-# rmdir my_sub_cs
+ # rmdir my_sub_cs
This will fail if the cgroup is in use (has cgroups inside, or
has processes attached, or is held alive by other subsystem-specific
@@ -424,19 +438,21 @@ reference).
2.2 Attaching processes
-----------------------
-# /bin/echo PID > tasks
+::
+
+ # /bin/echo PID > tasks
Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another:
+If you have several tasks to attach, you have to do it one after another::
-# /bin/echo PID1 > tasks
-# /bin/echo PID2 > tasks
- ...
-# /bin/echo PIDn > tasks
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
+ ...
+ # /bin/echo PIDn > tasks
-You can attach the current shell task by echoing 0:
+You can attach the current shell task by echoing 0::
-# echo 0 > tasks
+ # echo 0 > tasks
You can use the cgroup.procs file instead of the tasks file to move all
threads in a threadgroup at once. Echoing the PID of any task in a
@@ -529,7 +545,7 @@ Each subsystem may export the following methods. The only mandatory
methods are css_alloc/free. Any others that are null are presumed to
be successful no-ops.
-struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)
+``struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called to allocate a subsystem state object for a cgroup. The
@@ -544,7 +560,7 @@ identified by the passed cgroup object having a NULL parent (since
it's the root of the hierarchy) and may be an appropriate place for
initialization code.
-int css_online(struct cgroup *cgrp)
+``int css_online(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called after @cgrp successfully completed all allocations and made
@@ -554,7 +570,7 @@ callback can be used to implement reliable state sharing and
propagation along the hierarchy. See the comment on
cgroup_for_each_descendant_pre() for details.
-void css_offline(struct cgroup *cgrp);
+``void css_offline(struct cgroup *cgrp);``
(cgroup_mutex held by caller)
This is the counterpart of css_online() and called iff css_online()
@@ -564,7 +580,7 @@ all references it's holding on @cgrp. When all references are dropped,
cgroup removal will proceed to the next step - css_free(). After this
callback, @cgrp should be considered dead to the subsystem.
-void css_free(struct cgroup *cgrp)
+``void css_free(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
The cgroup system is about to free @cgrp; the subsystem should free
@@ -573,7 +589,7 @@ is completely unused; @cgrp->parent is still valid. (Note - can also
be called for a newly-created cgroup if an error occurs after this
subsystem's create() method has been called for the new cgroup).
-int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called prior to moving one or more tasks into a cgroup; if the
@@ -594,7 +610,7 @@ fork. If this method returns 0 (success) then this should remain valid
while the caller holds cgroup_mutex and it is ensured that either
attach() or cancel_attach() will be called in future.
-void css_reset(struct cgroup_subsys_state *css)
+``void css_reset(struct cgroup_subsys_state *css)``
(cgroup_mutex held by caller)
An optional operation which should restore @css's configuration to the
@@ -608,7 +624,7 @@ This prevents unexpected resource control from a hidden css and
ensures that the configuration is in the initial state when it is made
visible again later.
-void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called when a task attach operation has failed after can_attach() has succeeded.
@@ -617,26 +633,26 @@ function, so that the subsystem can implement a rollback. If not, not necessary.
This will be called only about subsystems whose can_attach() operation have
succeeded. The parameters are identical to can_attach().
-void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called after the task has been attached to the cgroup, to allow any
post-attachment activity that requires memory allocations or blocking.
The parameters are identical to can_attach().
-void fork(struct task_struct *task)
+``void fork(struct task_struct *task)``
Called when a task is forked into a cgroup.
-void exit(struct task_struct *task)
+``void exit(struct task_struct *task)``
Called during task exit.
-void free(struct task_struct *task)
+``void free(struct task_struct *task)``
Called when the task_struct is freed.
-void bind(struct cgroup *root)
+``void bind(struct cgroup *root)``
(cgroup_mutex held by caller)
Called when a cgroup subsystem is rebound to a different hierarchy
@@ -649,6 +665,7 @@ that is being created/destroyed (and hence has no sub-cgroups).
cgroup filesystem supports certain types of extended attributes in its
directories and files. The current supported types are:
+
- Trusted (XATTR_TRUSTED)
- Security (XATTR_SECURITY)
@@ -666,12 +683,13 @@ in containers and systemd for assorted meta data like main PID in a cgroup
5. Questions
============
-Q: what's up with this '/bin/echo' ?
-A: bash's builtin 'echo' command does not check calls to write() against
- errors. If you use it in the cgroup file system, you won't be
- able to tell whether a command succeeded or failed.
+::
-Q: When I attach processes, only the first of the line gets really attached !
-A: We can only return one error code per call to write(). So you should also
- put only ONE PID.
+ Q: what's up with this '/bin/echo' ?
+ A: bash's builtin 'echo' command does not check calls to write() against
+ errors. If you use it in the cgroup file system, you won't be
+ able to tell whether a command succeeded or failed.
+ Q: When I attach processes, only the first of the line gets really attached !
+ A: We can only return one error code per call to write(). So you should also
+ put only ONE PID.
diff --git a/Documentation/cgroup-v1/cpuacct.txt b/Documentation/cgroup-v1/cpuacct.rst
index 9d73cc0cadb9..d30ed81d2ad7 100644
--- a/Documentation/cgroup-v1/cpuacct.txt
+++ b/Documentation/cgroup-v1/cpuacct.rst
@@ -1,5 +1,6 @@
+=========================
CPU Accounting Controller
--------------------------
+=========================
The CPU accounting controller is used to group tasks using cgroups and
account the CPU usage of these groups of tasks.
@@ -8,9 +9,9 @@ The CPU accounting controller supports multi-hierarchy groups. An accounting
group accumulates the CPU usage of all of its child groups and the tasks
directly present in its group.
-Accounting groups can be created by first mounting the cgroup filesystem.
+Accounting groups can be created by first mounting the cgroup filesystem::
-# mount -t cgroup -ocpuacct none /sys/fs/cgroup
+ # mount -t cgroup -ocpuacct none /sys/fs/cgroup
With the above step, the initial or the parent accounting group becomes
visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
@@ -19,11 +20,11 @@ the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
by this group which is essentially the CPU time obtained by all the tasks
in the system.
-New accounting groups can be created under the parent group /sys/fs/cgroup.
+New accounting groups can be created under the parent group /sys/fs/cgroup::
-# cd /sys/fs/cgroup
-# mkdir g1
-# echo $$ > g1/tasks
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it. CPU time consumed by this bash and its children
diff --git a/Documentation/cgroup-v1/cpusets.txt b/Documentation/cgroup-v1/cpusets.rst
index 8402dd6de8df..b6a42cdea72b 100644
--- a/Documentation/cgroup-v1/cpusets.txt
+++ b/Documentation/cgroup-v1/cpusets.rst
@@ -1,35 +1,36 @@
- CPUSETS
- -------
+=======
+CPUSETS
+=======
Copyright (C) 2004 BULL SA.
-Written by Simon.Derr@bull.net
-
-Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
-Modified by Paul Jackson <pj@sgi.com>
-Modified by Christoph Lameter <cl@linux.com>
-Modified by Paul Menage <menage@google.com>
-Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
-CONTENTS:
-=========
+Written by Simon.Derr@bull.net
-1. Cpusets
- 1.1 What are cpusets ?
- 1.2 Why are cpusets needed ?
- 1.3 How are cpusets implemented ?
- 1.4 What are exclusive cpusets ?
- 1.5 What is memory_pressure ?
- 1.6 What is memory spread ?
- 1.7 What is sched_load_balance ?
- 1.8 What is sched_relax_domain_level ?
- 1.9 How do I use cpusets ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Adding/removing cpus
- 2.3 Setting flags
- 2.4 Attaching processes
-3. Questions
-4. Contact
+- Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+- Modified by Paul Jackson <pj@sgi.com>
+- Modified by Christoph Lameter <cl@linux.com>
+- Modified by Paul Menage <menage@google.com>
+- Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
+
+.. CONTENTS:
+
+ 1. Cpusets
+ 1.1 What are cpusets ?
+ 1.2 Why are cpusets needed ?
+ 1.3 How are cpusets implemented ?
+ 1.4 What are exclusive cpusets ?
+ 1.5 What is memory_pressure ?
+ 1.6 What is memory spread ?
+ 1.7 What is sched_load_balance ?
+ 1.8 What is sched_relax_domain_level ?
+ 1.9 How do I use cpusets ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Adding/removing cpus
+ 2.3 Setting flags
+ 2.4 Attaching processes
+ 3. Questions
+ 4. Contact
1. Cpusets
==========
@@ -48,7 +49,7 @@ hooks, beyond what is already present, required to manage dynamic
job placement on large systems.
Cpusets use the generic cgroup subsystem described in
-Documentation/cgroup-v1/cgroups.txt.
+Documentation/cgroup-v1/cgroups.rst.
Requests by a task, using the sched_setaffinity(2) system call to
include CPUs in its CPU affinity mask, and using the mbind(2) and
@@ -157,7 +158,7 @@ modifying cpusets is via this cpuset file system.
The /proc/<pid>/status file for each task has four added lines,
displaying the task's cpus_allowed (on which CPUs it may be scheduled)
and mems_allowed (on which Memory Nodes it may obtain memory),
-in the two formats seen in the following example:
+in the two formats seen in the following example::
Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
Cpus_allowed_list: 0-127
@@ -181,6 +182,7 @@ files describing that cpuset:
- cpuset.sched_relax_domain_level: the searching range when migrating tasks
In addition, only the root cpuset has the following file:
+
- cpuset.memory_pressure_enabled flag: compute memory_pressure?
New cpusets are created using the mkdir system call or shell
@@ -266,7 +268,8 @@ to monitor a cpuset for signs of memory pressure. It's up to the
batch manager or other user code to decide what to do about it and
take action.
-==> Unless this feature is enabled by writing "1" to the special file
+==>
+ Unless this feature is enabled by writing "1" to the special file
/dev/cpuset/memory_pressure_enabled, the hook in the rebalance
code of __alloc_pages() for this metric reduces to simply noticing
that the cpuset_memory_pressure_enabled flag is zero. So only
@@ -399,6 +402,7 @@ have tasks running on them unless explicitly assigned.
This default load balancing across all CPUs is not well suited for
the following two situations:
+
1) On large systems, load balancing across many CPUs is expensive.
If the system is managed using cpusets to place independent jobs
on separate sets of CPUs, full load balancing is unnecessary.
@@ -501,6 +505,7 @@ all the CPUs that must be load balanced.
The cpuset code builds a new such partition and passes it to the
scheduler sched domain setup code, to have the sched domains rebuilt
as necessary, whenever:
+
- the 'cpuset.sched_load_balance' flag of a cpuset with non-empty CPUs changes,
- or CPUs come or go from a cpuset with this flag enabled,
- or 'cpuset.sched_relax_domain_level' value of a cpuset with non-empty CPUs
@@ -553,13 +558,15 @@ this searching range as you like. This file takes int value which
indicates size of searching range in levels ideally as follows,
otherwise initial value -1 that indicates the cpuset has no request.
- -1 : no request. use system default or follow request of others.
- 0 : no search.
- 1 : search siblings (hyperthreads in a core).
- 2 : search cores in a package.
- 3 : search cpus in a node [= system wide on non-NUMA system]
- 4 : search nodes in a chunk of node [on NUMA system]
- 5 : search system wide [on NUMA system]
+====== ===========================================================
+ -1 no request. use system default or follow request of others.
+ 0 no search.
+ 1 search siblings (hyperthreads in a core).
+ 2 search cores in a package.
+ 3 search cpus in a node [= system wide on non-NUMA system]
+ 4 search nodes in a chunk of node [on NUMA system]
+ 5 search system wide [on NUMA system]
+====== ===========================================================
The system default is architecture dependent. The system default
can be changed using the relax_domain_level= boot parameter.
@@ -578,13 +585,14 @@ and whether it is acceptable or not depends on your situation.
Don't modify this file if you are not sure.
If your situation is:
+
- The migration costs between each cpu can be assumed considerably
small(for you) due to your special application's behavior or
special hardware support for CPU cache etc.
- The searching cost doesn't have impact(for you) or you can make
the searching cost enough small by managing cpuset to compact etc.
- The latency is required even it sacrifices cache hit rate etc.
-then increasing 'sched_relax_domain_level' would benefit you.
+ then increasing 'sched_relax_domain_level' would benefit you.
1.9 How do I use cpusets ?
@@ -678,7 +686,7 @@ To start a new job that is to be contained within a cpuset, the steps are:
For example, the following sequence of commands will setup a cpuset
named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cpuset:
+and then start a subshell 'sh' in that cpuset::
mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
cd /sys/fs/cgroup/cpuset
@@ -693,6 +701,7 @@ and then start a subshell 'sh' in that cpuset:
cat /proc/self/cpuset
There are ways to query or modify cpusets:
+
- via the cpuset file system directly, using the various cd, mkdir, echo,
cat, rmdir commands from the shell, or their equivalent from C.
- via the C library libcpuset.
@@ -722,115 +731,133 @@ Then under /sys/fs/cgroup/cpuset you can find a tree that corresponds to the
tree of the cpusets in the system. For instance, /sys/fs/cgroup/cpuset
is the cpuset that holds the whole system.
-If you want to create a new cpuset under /sys/fs/cgroup/cpuset:
-# cd /sys/fs/cgroup/cpuset
-# mkdir my_cpuset
+If you want to create a new cpuset under /sys/fs/cgroup/cpuset::
+
+ # cd /sys/fs/cgroup/cpuset
+ # mkdir my_cpuset
-Now you want to do something with this cpuset.
-# cd my_cpuset
+Now you want to do something with this cpuset::
-In this directory you can find several files:
-# ls
-cgroup.clone_children cpuset.memory_pressure
-cgroup.event_control cpuset.memory_spread_page
-cgroup.procs cpuset.memory_spread_slab
-cpuset.cpu_exclusive cpuset.mems
-cpuset.cpus cpuset.sched_load_balance
-cpuset.mem_exclusive cpuset.sched_relax_domain_level
-cpuset.mem_hardwall notify_on_release
-cpuset.memory_migrate tasks
+ # cd my_cpuset
+
+In this directory you can find several files::
+
+ # ls
+ cgroup.clone_children cpuset.memory_pressure
+ cgroup.event_control cpuset.memory_spread_page
+ cgroup.procs cpuset.memory_spread_slab
+ cpuset.cpu_exclusive cpuset.mems
+ cpuset.cpus cpuset.sched_load_balance
+ cpuset.mem_exclusive cpuset.sched_relax_domain_level
+ cpuset.mem_hardwall notify_on_release
+ cpuset.memory_migrate tasks
Reading them will give you information about the state of this cpuset:
the CPUs and Memory Nodes it can use, the processes that are using
it, its properties. By writing to these files you can manipulate
the cpuset.
-Set some flags:
-# /bin/echo 1 > cpuset.cpu_exclusive
+Set some flags::
+
+ # /bin/echo 1 > cpuset.cpu_exclusive
+
+Add some cpus::
+
+ # /bin/echo 0-7 > cpuset.cpus
+
+Add some mems::
-Add some cpus:
-# /bin/echo 0-7 > cpuset.cpus
+ # /bin/echo 0-7 > cpuset.mems
-Add some mems:
-# /bin/echo 0-7 > cpuset.mems
+Now attach your shell to this cpuset::
-Now attach your shell to this cpuset:
-# /bin/echo $$ > tasks
+ # /bin/echo $$ > tasks
You can also create cpusets inside your cpuset by using mkdir in this
-directory.
-# mkdir my_sub_cs
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cpuset, just use rmdir::
+
+ # rmdir my_sub_cs
-To remove a cpuset, just use rmdir:
-# rmdir my_sub_cs
This will fail if the cpuset is in use (has cpusets inside, or has
processes attached).
Note that for legacy reasons, the "cpuset" filesystem exists as a
wrapper around the cgroup filesystem.
-The command
+The command::
-mount -t cpuset X /sys/fs/cgroup/cpuset
+ mount -t cpuset X /sys/fs/cgroup/cpuset
-is equivalent to
+is equivalent to::
-mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
-echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
+ mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
+ echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
2.2 Adding/removing cpus
------------------------
This is the syntax to use when writing in the cpus or mems files
-in cpuset directories:
+in cpuset directories::
-# /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
-# /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+ # /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+ # /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
To add a CPU to a cpuset, write the new list of CPUs including the
-CPU to be added. To add 6 to the above cpuset:
+CPU to be added. To add 6 to the above cpuset::
-# /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
+ # /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
Similarly to remove a CPU from a cpuset, write the new list of CPUs
without the CPU to be removed.
-To remove all the CPUs:
+To remove all the CPUs::
-# /bin/echo "" > cpuset.cpus -> clear cpus list
+ # /bin/echo "" > cpuset.cpus -> clear cpus list
2.3 Setting flags
-----------------
-The syntax is very simple:
+The syntax is very simple::
-# /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
-# /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
+ # /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
+ # /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
2.4 Attaching processes
-----------------------
-# /bin/echo PID > tasks
+::
+
+ # /bin/echo PID > tasks
Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another:
+If you have several tasks to attach, you have to do it one after another::
-# /bin/echo PID1 > tasks
-# /bin/echo PID2 > tasks
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
...
-# /bin/echo PIDn > tasks
+ # /bin/echo PIDn > tasks
3. Questions
============
-Q: what's up with this '/bin/echo' ?
-A: bash's builtin 'echo' command does not check calls to write() against
+Q:
+ what's up with this '/bin/echo' ?
+
+A:
+ bash's builtin 'echo' command does not check calls to write() against
errors. If you use it in the cpuset file system, you won't be
able to tell whether a command succeeded or failed.
-Q: When I attach processes, only the first of the line gets really attached !
-A: We can only return one error code per call to write(). So you should also
+Q:
+ When I attach processes, only the first of the line gets really attached !
+
+A:
+ We can only return one error code per call to write(). So you should also
put only ONE pid.
4. Contact
diff --git a/Documentation/cgroup-v1/devices.txt b/Documentation/cgroup-v1/devices.rst
index 3c1095ca02ea..e1886783961e 100644
--- a/Documentation/cgroup-v1/devices.txt
+++ b/Documentation/cgroup-v1/devices.rst
@@ -1,6 +1,9 @@
+===========================
Device Whitelist Controller
+===========================
-1. Description:
+1. Description
+==============
Implement a cgroup to track and enforce open and mknod restrictions
on device files. A device cgroup associates a device access
@@ -16,24 +19,26 @@ devices from the whitelist or add new entries. A child cgroup can
never receive a device access which is denied by its parent.
2. User Interface
+=================
An entry is added using devices.allow, and removed using
-devices.deny. For instance
+devices.deny. For instance::
echo 'c 1:3 mr' > /sys/fs/cgroup/1/devices.allow
allows cgroup 1 to read and mknod the device usually known as
-/dev/null. Doing
+/dev/null. Doing::
echo a > /sys/fs/cgroup/1/devices.deny
-will remove the default 'a *:* rwm' entry. Doing
+will remove the default 'a *:* rwm' entry. Doing::
echo a > /sys/fs/cgroup/1/devices.allow
will add the 'a *:* rwm' entry to the whitelist.
3. Security
+===========
Any task can move itself between cgroups. This clearly won't
suffice, but we can decide the best way to adequately restrict
@@ -50,6 +55,7 @@ A cgroup may not be granted more permissions than the cgroup's
parent has.
4. Hierarchy
+============
device cgroups maintain hierarchy by making sure a cgroup never has more
access permissions than its parent. Every time an entry is written to
@@ -58,7 +64,8 @@ from their whitelist and all the locally set whitelist entries will be
re-evaluated. In case one of the locally set whitelist entries would provide
more access than the cgroup's parent, it'll be removed from the whitelist.
-Example:
+Example::
+
A
/ \
B
@@ -67,10 +74,12 @@ Example:
A allow "b 8:* rwm", "c 116:1 rw"
B deny "c 1:3 rwm", "c 116:2 rwm", "b 3:* rwm"
-If a device is denied in group A:
+If a device is denied in group A::
+
# echo "c 116:* r" > A/devices.deny
+
it'll propagate down and after revalidating B's entries, the whitelist entry
-"c 116:2 rwm" will be removed:
+"c 116:2 rwm" will be removed::
group whitelist entries denied devices
A all "b 8:* rwm", "c 116:* rw"
@@ -79,7 +88,8 @@ it'll propagate down and after revalidating B's entries, the whitelist entry
In case parent's exceptions change and local exceptions are not allowed
anymore, they'll be deleted.
-Notice that new whitelist entries will not be propagated:
+Notice that new whitelist entries will not be propagated::
+
A
/ \
B
@@ -88,24 +98,30 @@ Notice that new whitelist entries will not be propagated:
A "c 1:3 rwm", "c 1:5 r" all the rest
B "c 1:3 rwm", "c 1:5 r" all the rest
-when adding "c *:3 rwm":
+when adding ``c *:3 rwm``::
+
# echo "c *:3 rwm" >A/devices.allow
-the result:
+the result::
+
group whitelist entries denied devices
A "c *:3 rwm", "c 1:5 r" all the rest
B "c 1:3 rwm", "c 1:5 r" all the rest
-but now it'll be possible to add new entries to B:
+but now it'll be possible to add new entries to B::
+
# echo "c 2:3 rwm" >B/devices.allow
# echo "c 50:3 r" >B/devices.allow
-or even
+
+or even::
+
# echo "c *:3 rwm" >B/devices.allow
Allowing or denying all by writing 'a' to devices.allow or devices.deny will
not be possible once the device cgroups has children.
4.1 Hierarchy (internal implementation)
+---------------------------------------
device cgroups is implemented internally using a behavior (ALLOW, DENY) and a
list of exceptions. The internal state is controlled using the same user
diff --git a/Documentation/cgroup-v1/freezer-subsystem.txt b/Documentation/cgroup-v1/freezer-subsystem.rst
index e831cb2b8394..582d3427de3f 100644
--- a/Documentation/cgroup-v1/freezer-subsystem.txt
+++ b/Documentation/cgroup-v1/freezer-subsystem.rst
@@ -1,3 +1,7 @@
+==============
+Cgroup Freezer
+==============
+
The cgroup freezer is useful to batch job management system which start
and stop sets of tasks in order to schedule the resources of a machine
according to the desires of a system administrator. This sort of program
@@ -23,7 +27,7 @@ blocked, or ignored it can be seen by waiting or ptracing parent tasks.
SIGCONT is especially unsuitable since it can be caught by the task. Any
programs designed to watch for SIGSTOP and SIGCONT could be broken by
attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
-demonstrate this problem using nested bash shells:
+demonstrate this problem using nested bash shells::
$ echo $$
16644
@@ -93,19 +97,19 @@ The following cgroupfs files are created by cgroup freezer.
The root cgroup is non-freezable and the above interface files don't
exist.
-* Examples of usage :
+* Examples of usage::
# mkdir /sys/fs/cgroup/freezer
# mount -t cgroup -ofreezer freezer /sys/fs/cgroup/freezer
# mkdir /sys/fs/cgroup/freezer/0
# echo $some_pid > /sys/fs/cgroup/freezer/0/tasks
-to get status of the freezer subsystem :
+to get status of the freezer subsystem::
# cat /sys/fs/cgroup/freezer/0/freezer.state
THAWED
-to freeze all tasks in the container :
+to freeze all tasks in the container::
# echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state
# cat /sys/fs/cgroup/freezer/0/freezer.state
@@ -113,7 +117,7 @@ to freeze all tasks in the container :
# cat /sys/fs/cgroup/freezer/0/freezer.state
FROZEN
-to unfreeze all tasks in the container :
+to unfreeze all tasks in the container::
# echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state
# cat /sys/fs/cgroup/freezer/0/freezer.state
diff --git a/Documentation/cgroup-v1/hugetlb.txt b/Documentation/cgroup-v1/hugetlb.rst
index 106245c3aecc..a3902aa253a9 100644
--- a/Documentation/cgroup-v1/hugetlb.txt
+++ b/Documentation/cgroup-v1/hugetlb.rst
@@ -1,5 +1,6 @@
+==================
HugeTLB Controller
--------------------
+==================
The HugeTLB controller allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
@@ -16,30 +17,34 @@ With the above step, the initial or the parent HugeTLB group becomes
visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
-New groups can be created under the parent group /sys/fs/cgroup.
+New groups can be created under the parent group /sys/fs/cgroup::
-# cd /sys/fs/cgroup
-# mkdir g1
-# echo $$ > g1/tasks
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it.
-Brief summary of control files
+Brief summary of control files::
hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
-For a system supporting two hugepage size (16M and 16G) the control
-files include:
-
-hugetlb.16GB.limit_in_bytes
-hugetlb.16GB.max_usage_in_bytes
-hugetlb.16GB.usage_in_bytes
-hugetlb.16GB.failcnt
-hugetlb.16MB.limit_in_bytes
-hugetlb.16MB.max_usage_in_bytes
-hugetlb.16MB.usage_in_bytes
-hugetlb.16MB.failcnt
+For a system supporting three hugepage sizes (64k, 32M and 1G), the control
+files include::
+
+ hugetlb.1GB.limit_in_bytes
+ hugetlb.1GB.max_usage_in_bytes
+ hugetlb.1GB.usage_in_bytes
+ hugetlb.1GB.failcnt
+ hugetlb.64KB.limit_in_bytes
+ hugetlb.64KB.max_usage_in_bytes
+ hugetlb.64KB.usage_in_bytes
+ hugetlb.64KB.failcnt
+ hugetlb.32MB.limit_in_bytes
+ hugetlb.32MB.max_usage_in_bytes
+ hugetlb.32MB.usage_in_bytes
+ hugetlb.32MB.failcnt
diff --git a/Documentation/cgroup-v1/index.rst b/Documentation/cgroup-v1/index.rst
new file mode 100644
index 000000000000..fe76d42edc11
--- /dev/null
+++ b/Documentation/cgroup-v1/index.rst
@@ -0,0 +1,30 @@
+:orphan:
+
+========================
+Control Groups version 1
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ cgroups
+
+ blkio-controller
+ cpuacct
+ cpusets
+ devices
+ freezer-subsystem
+ hugetlb
+ memcg_test
+ memory
+ net_cls
+ net_prio
+ pids
+ rdma
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/cgroup-v1/memcg_test.txt b/Documentation/cgroup-v1/memcg_test.rst
index 621e29ffb358..91bd18c6a514 100644
--- a/Documentation/cgroup-v1/memcg_test.txt
+++ b/Documentation/cgroup-v1/memcg_test.rst
@@ -1,32 +1,43 @@
-Memory Resource Controller(Memcg) Implementation Memo.
+=====================================================
+Memory Resource Controller(Memcg) Implementation Memo
+=====================================================
+
Last Updated: 2010/2
+
Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
Because VM is getting complex (one of reasons is memcg...), memcg's behavior
is complex. This is a document for memcg's internal behavior.
Please note that implementation details can be changed.
-(*) Topics on API should be in Documentation/cgroup-v1/memory.txt)
+(*) Topics on API should be in Documentation/cgroup-v1/memory.rst)
0. How to record usage ?
+========================
+
2 objects are used.
page_cgroup ....an object per page.
+
Allocated at boot or memory hotplug. Freed at memory hot removal.
swap_cgroup ... an entry per swp_entry.
+
Allocated at swapon(). Freed at swapoff().
The page_cgroup has USED bit and double count against a page_cgroup never
occurs. swap_cgroup is used only when a charged page is swapped-out.
1. Charge
+=========
a page/swp_entry may be charged (usage += PAGE_SIZE) at
mem_cgroup_try_charge()
2. Uncharge
+===========
+
a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by
mem_cgroup_uncharge()
@@ -37,9 +48,12 @@ Please note that implementation details can be changed.
disappears.
3. charge-commit-cancel
+=======================
+
Memcg pages are charged in two steps:
- mem_cgroup_try_charge()
- mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
+
+ - mem_cgroup_try_charge()
+ - mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
At try_charge(), there are no flags to say "this page is charged".
at this point, usage += PAGE_SIZE.
@@ -51,6 +65,8 @@ Please note that implementation details can be changed.
Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
4. Anonymous
+============
+
Anonymous page is newly allocated at
- page fault into MAP_ANONYMOUS mapping.
- Copy-On-Write.
@@ -78,34 +94,45 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
(e) zap_pte() is called and swp_entry's refcnt -=1 -> 0.
5. Page Cache
- Page Cache is charged at
+=============
+
+ Page Cache is charged at
- add_to_page_cache_locked().
The logic is very clear. (About migration, see below)
- Note: __remove_from_page_cache() is called by remove_from_page_cache()
- and __remove_mapping().
+
+ Note:
+ __remove_from_page_cache() is called by remove_from_page_cache()
+ and __remove_mapping().
6. Shmem(tmpfs) Page Cache
+===========================
+
The best way to understand shmem's page state transition is to read
mm/shmem.c.
+
But brief explanation of the behavior of memcg around shmem will be
helpful to understand the logic.
Shmem's page (just leaf page, not direct/indirect block) can be on
+
- radix-tree of shmem's inode.
- SwapCache.
- Both on radix-tree and SwapCache. This happens at swap-in
and swap-out,
It's charged when...
+
- A new page is added to shmem's radix-tree.
- A swp page is read. (move a charge from swap_cgroup to page_cgroup)
7. Page Migration
+=================
mem_cgroup_migrate()
8. LRU
+======
Each memcg has its own private LRU. Now, its handling is under global
VM's control (means that it's handled under global pgdat->lru_lock).
Almost all routines around memcg's LRU is called by global LRU's
@@ -114,163 +141,211 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
A special function is mem_cgroup_isolate_pages(). This scans
memcg's private LRU and call __isolate_lru_page() to extract a page
from LRU.
+
(By __isolate_lru_page(), the page is removed from both of global and
- private LRU.)
+ private LRU.)
9. Typical Tests.
+=================
Tests for racy cases.
- 9.1 Small limit to memcg.
+9.1 Small limit to memcg.
+-------------------------
+
When you do test to do racy case, it's good test to set memcg's limit
to be very small rather than GB. Many races found in the test under
xKB or xxMB limits.
+
(Memory behavior under GB and Memory behavior under MB shows very
- different situation.)
+ different situation.)
+
+9.2 Shmem
+---------
- 9.2 Shmem
Historically, memcg's shmem handling was poor and we saw some amount
of troubles here. This is because shmem is page-cache but can be
SwapCache. Test with shmem/tmpfs is always good test.
- 9.3 Migration
+9.3 Migration
+-------------
+
For NUMA, migration is an another special case. To do easy test, cpuset
- is useful. Following is a sample script to do migration.
+ is useful. Following is a sample script to do migration::
- mount -t cgroup -o cpuset none /opt/cpuset
+ mount -t cgroup -o cpuset none /opt/cpuset
- mkdir /opt/cpuset/01
- echo 1 > /opt/cpuset/01/cpuset.cpus
- echo 0 > /opt/cpuset/01/cpuset.mems
- echo 1 > /opt/cpuset/01/cpuset.memory_migrate
- mkdir /opt/cpuset/02
- echo 1 > /opt/cpuset/02/cpuset.cpus
- echo 1 > /opt/cpuset/02/cpuset.mems
- echo 1 > /opt/cpuset/02/cpuset.memory_migrate
+ mkdir /opt/cpuset/01
+ echo 1 > /opt/cpuset/01/cpuset.cpus
+ echo 0 > /opt/cpuset/01/cpuset.mems
+ echo 1 > /opt/cpuset/01/cpuset.memory_migrate
+ mkdir /opt/cpuset/02
+ echo 1 > /opt/cpuset/02/cpuset.cpus
+ echo 1 > /opt/cpuset/02/cpuset.mems
+ echo 1 > /opt/cpuset/02/cpuset.memory_migrate
In above set, when you moves a task from 01 to 02, page migration to
node 0 to node 1 will occur. Following is a script to migrate all
- under cpuset.
- --
- move_task()
- {
- for pid in $1
- do
- /bin/echo $pid >$2/tasks 2>/dev/null
- echo -n $pid
- echo -n " "
- done
- echo END
- }
-
- G1_TASK=`cat ${G1}/tasks`
- G2_TASK=`cat ${G2}/tasks`
- move_task "${G1_TASK}" ${G2} &
- --
- 9.4 Memory hotplug.
+ under cpuset.::
+
+ --
+ move_task()
+ {
+ for pid in $1
+ do
+ /bin/echo $pid >$2/tasks 2>/dev/null
+ echo -n $pid
+ echo -n " "
+ done
+ echo END
+ }
+
+ G1_TASK=`cat ${G1}/tasks`
+ G2_TASK=`cat ${G2}/tasks`
+ move_task "${G1_TASK}" ${G2} &
+ --
+
+9.4 Memory hotplug
+------------------
+
memory hotplug test is one of good test.
- to offline memory, do following.
- # echo offline > /sys/devices/system/memory/memoryXXX/state
+
+ to offline memory, do following::
+
+ # echo offline > /sys/devices/system/memory/memoryXXX/state
+
(XXX is the place of memory)
+
This is an easy way to test page migration, too.
- 9.5 mkdir/rmdir
+9.5 mkdir/rmdir
+---------------
+
When using hierarchy, mkdir/rmdir test should be done.
- Use tests like the following.
+ Use tests like the following::
+
+ echo 1 >/opt/cgroup/01/memory/use_hierarchy
+ mkdir /opt/cgroup/01/child_a
+ mkdir /opt/cgroup/01/child_b
- echo 1 >/opt/cgroup/01/memory/use_hierarchy
- mkdir /opt/cgroup/01/child_a
- mkdir /opt/cgroup/01/child_b
+ set limit to 01.
+ add limit to 01/child_b
+ run jobs under child_a and child_b
- set limit to 01.
- add limit to 01/child_b
- run jobs under child_a and child_b
+ create/delete following groups at random while jobs are running::
- create/delete following groups at random while jobs are running.
- /opt/cgroup/01/child_a/child_aa
- /opt/cgroup/01/child_b/child_bb
- /opt/cgroup/01/child_c
+ /opt/cgroup/01/child_a/child_aa
+ /opt/cgroup/01/child_b/child_bb
+ /opt/cgroup/01/child_c
running new jobs in new group is also good.
- 9.6 Mount with other subsystems.
+9.6 Mount with other subsystems
+-------------------------------
+
Mounting with other subsystems is a good test because there is a
race and lock dependency with other cgroup subsystems.
- example)
- # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
+ example::
+
+ # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
and do task move, mkdir, rmdir etc...under this.
- 9.7 swapoff.
+9.7 swapoff
+-----------
+
Besides management of swap is one of complicated parts of memcg,
call path of swap-in at swapoff is not same as usual swap-in path..
It's worth to be tested explicitly.
- For example, test like following is good.
- (Shell-A)
- # mount -t cgroup none /cgroup -o memory
- # mkdir /cgroup/test
- # echo 40M > /cgroup/test/memory.limit_in_bytes
- # echo 0 > /cgroup/test/tasks
+ For example, test like following is good:
+
+ (Shell-A)::
+
+ # mount -t cgroup none /cgroup -o memory
+ # mkdir /cgroup/test
+ # echo 40M > /cgroup/test/memory.limit_in_bytes
+ # echo 0 > /cgroup/test/tasks
+
Run malloc(100M) program under this. You'll see 60M of swaps.
- (Shell-B)
- # move all tasks in /cgroup/test to /cgroup
- # /sbin/swapoff -a
- # rmdir /cgroup/test
- # kill malloc task.
+
+ (Shell-B)::
+
+ # move all tasks in /cgroup/test to /cgroup
+ # /sbin/swapoff -a
+ # rmdir /cgroup/test
+ # kill malloc task.
Of course, tmpfs v.s. swapoff test should be tested, too.
- 9.8 OOM-Killer
+9.8 OOM-Killer
+--------------
+
Out-of-memory caused by memcg's limit will kill tasks under
the memcg. When hierarchy is used, a task under hierarchy
will be killed by the kernel.
+
In this case, panic_on_oom shouldn't be invoked and tasks
in other groups shouldn't be killed.
It's not difficult to cause OOM under memcg as following.
- Case A) when you can swapoff
- #swapoff -a
- #echo 50M > /memory.limit_in_bytes
+
+ Case A) when you can swapoff::
+
+ #swapoff -a
+ #echo 50M > /memory.limit_in_bytes
+
run 51M of malloc
- Case B) when you use mem+swap limitation.
- #echo 50M > memory.limit_in_bytes
- #echo 50M > memory.memsw.limit_in_bytes
+ Case B) when you use mem+swap limitation::
+
+ #echo 50M > memory.limit_in_bytes
+ #echo 50M > memory.memsw.limit_in_bytes
+
run 51M of malloc
- 9.9 Move charges at task migration
+9.9 Move charges at task migration
+----------------------------------
+
Charges associated with a task can be moved along with task migration.
- (Shell-A)
- #mkdir /cgroup/A
- #echo $$ >/cgroup/A/tasks
+ (Shell-A)::
+
+ #mkdir /cgroup/A
+ #echo $$ >/cgroup/A/tasks
+
run some programs which uses some amount of memory in /cgroup/A.
- (Shell-B)
- #mkdir /cgroup/B
- #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
- #echo "pid of the program running in group A" >/cgroup/B/tasks
+ (Shell-B)::
+
+ #mkdir /cgroup/B
+ #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
+ #echo "pid of the program running in group A" >/cgroup/B/tasks
- You can see charges have been moved by reading *.usage_in_bytes or
+ You can see charges have been moved by reading ``*.usage_in_bytes`` or
memory.stat of both A and B.
- See 8.2 of Documentation/cgroup-v1/memory.txt to see what value should be
- written to move_charge_at_immigrate.
- 9.10 Memory thresholds
+ See 8.2 of Documentation/cgroup-v1/memory.rst to see what value should
+ be written to move_charge_at_immigrate.
+
+9.10 Memory thresholds
+----------------------
+
Memory controller implements memory thresholds using cgroups notification
API. You can use tools/cgroup/cgroup_event_listener.c to test it.
- (Shell-A) Create cgroup and run event listener
- # mkdir /cgroup/A
- # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
+ (Shell-A) Create cgroup and run event listener::
+
+ # mkdir /cgroup/A
+ # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
+
+ (Shell-B) Add task to cgroup and try to allocate and free memory::
- (Shell-B) Add task to cgroup and try to allocate and free memory
- # echo $$ >/cgroup/A/tasks
- # a="$(dd if=/dev/zero bs=1M count=10)"
- # a=
+ # echo $$ >/cgroup/A/tasks
+ # a="$(dd if=/dev/zero bs=1M count=10)"
+ # a=
You will see message from cgroup_event_listener every time you cross
the thresholds.
diff --git a/Documentation/cgroup-v1/memory.txt b/Documentation/cgroup-v1/memory.rst
index a33cedf85427..41bdc038dad9 100644
--- a/Documentation/cgroup-v1/memory.txt
+++ b/Documentation/cgroup-v1/memory.rst
@@ -1,22 +1,26 @@
+==========================
Memory Resource Controller
+==========================
-NOTE: This document is hopelessly outdated and it asks for a complete
+NOTE:
+ This document is hopelessly outdated and it asks for a complete
rewrite. It still contains a useful information so we are keeping it
here but make sure to check the current code if you need a deeper
understanding.
-NOTE: The Memory Resource Controller has generically been referred to as the
+NOTE:
+ The Memory Resource Controller has generically been referred to as the
memory controller in this document. Do not confuse memory controller
used here with the memory controller that is used in hardware.
-(For editors)
-In this document:
+(For editors) In this document:
When we mention a cgroup (cgroupfs's directory) with memory controller,
we call it "memory cgroup". When you see git-log and source code, you'll
see patch's title and function names tend to use "memcg".
In this document, we avoid using it.
Benefits and Purpose of the memory controller
+=============================================
The memory controller isolates the memory behaviour of a group of tasks
from the rest of the system. The article on LWN [12] mentions some probable
@@ -38,6 +42,7 @@ e. There are several other use cases; find one or use the controller just
Current Status: linux-2.6.34-mmotm(development version of 2010/April)
Features:
+
- accounting anonymous pages, file caches, swap caches usage and limiting them.
- pages are linked to per-memcg LRU exclusively, and there is no global LRU.
- optionally, memory+swap usage can be accounted and limited.
@@ -54,41 +59,48 @@ Features:
Brief summary of control files.
- tasks # attach a task(thread) and show list of threads
- cgroup.procs # show list of processes
- cgroup.event_control # an interface for event_fd()
- memory.usage_in_bytes # show current usage for memory
- (See 5.5 for details)
- memory.memsw.usage_in_bytes # show current usage for memory+Swap
- (See 5.5 for details)
- memory.limit_in_bytes # set/show limit of memory usage
- memory.memsw.limit_in_bytes # set/show limit of memory+Swap usage
- memory.failcnt # show the number of memory usage hits limits
- memory.memsw.failcnt # show the number of memory+Swap hits limits
- memory.max_usage_in_bytes # show max memory usage recorded
- memory.memsw.max_usage_in_bytes # show max memory+Swap usage recorded
- memory.soft_limit_in_bytes # set/show soft limit of memory usage
- memory.stat # show various statistics
- memory.use_hierarchy # set/show hierarchical account enabled
- memory.force_empty # trigger forced page reclaim
- memory.pressure_level # set memory pressure notifications
- memory.swappiness # set/show swappiness parameter of vmscan
- (See sysctl's vm.swappiness)
- memory.move_charge_at_immigrate # set/show controls of moving charges
- memory.oom_control # set/show oom controls.
- memory.numa_stat # show the number of memory usage per numa node
-
- memory.kmem.limit_in_bytes # set/show hard limit for kernel memory
- memory.kmem.usage_in_bytes # show current kernel memory allocation
- memory.kmem.failcnt # show the number of kernel memory usage hits limits
- memory.kmem.max_usage_in_bytes # show max kernel memory usage recorded
-
- memory.kmem.tcp.limit_in_bytes # set/show hard limit for tcp buf memory
- memory.kmem.tcp.usage_in_bytes # show current tcp buf memory allocation
- memory.kmem.tcp.failcnt # show the number of tcp buf memory usage hits limits
- memory.kmem.tcp.max_usage_in_bytes # show max tcp buf memory usage recorded
+==================================== ==========================================
+ tasks attach a task(thread) and show list of
+ threads
+ cgroup.procs show list of processes
+ cgroup.event_control an interface for event_fd()
+ memory.usage_in_bytes show current usage for memory
+ (See 5.5 for details)
+ memory.memsw.usage_in_bytes show current usage for memory+Swap
+ (See 5.5 for details)
+ memory.limit_in_bytes set/show limit of memory usage
+ memory.memsw.limit_in_bytes set/show limit of memory+Swap usage
+ memory.failcnt show the number of memory usage hits limits
+ memory.memsw.failcnt show the number of memory+Swap hits limits
+ memory.max_usage_in_bytes show max memory usage recorded
+ memory.memsw.max_usage_in_bytes show max memory+Swap usage recorded
+ memory.soft_limit_in_bytes set/show soft limit of memory usage
+ memory.stat show various statistics
+ memory.use_hierarchy set/show hierarchical account enabled
+ memory.force_empty trigger forced page reclaim
+ memory.pressure_level set memory pressure notifications
+ memory.swappiness set/show swappiness parameter of vmscan
+ (See sysctl's vm.swappiness)
+ memory.move_charge_at_immigrate set/show controls of moving charges
+ memory.oom_control set/show oom controls.
+ memory.numa_stat show the number of memory usage per numa
+ node
+
+ memory.kmem.limit_in_bytes set/show hard limit for kernel memory
+ memory.kmem.usage_in_bytes show current kernel memory allocation
+ memory.kmem.failcnt show the number of kernel memory usage
+ hits limits
+ memory.kmem.max_usage_in_bytes show max kernel memory usage recorded
+
+ memory.kmem.tcp.limit_in_bytes set/show hard limit for tcp buf memory
+ memory.kmem.tcp.usage_in_bytes show current tcp buf memory allocation
+ memory.kmem.tcp.failcnt show the number of tcp buf memory usage
+ hits limits
+ memory.kmem.tcp.max_usage_in_bytes show max tcp buf memory usage recorded
+==================================== ==========================================
1. History
+==========
The memory controller has a long history. A request for comments for the memory
controller was posted by Balbir Singh [1]. At the time the RFC was posted
@@ -103,6 +115,7 @@ at version 6; it combines both mapped (RSS) and unmapped Page
Cache Control [11].
2. Memory Control
+=================
Memory is a unique resource in the sense that it is present in a limited
amount. If a task requires a lot of CPU processing, the task can spread
@@ -120,6 +133,7 @@ are:
The memory controller is the first controller developed.
2.1. Design
+-----------
The core of the design is a counter called the page_counter. The
page_counter tracks the current memory usage and limit of the group of
@@ -127,6 +141,9 @@ processes associated with the controller. Each cgroup has a memory controller
specific data structure (mem_cgroup) associated with it.
2.2. Accounting
+---------------
+
+::
+--------------------+
| mem_cgroup |
@@ -165,6 +182,7 @@ updated. page_cgroup has its own LRU on cgroup.
(*) page_cgroup structure is allocated at boot/memory-hotplug time.
2.2.1 Accounting details
+------------------------
All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
Some pages which are never reclaimable and will not be on the LRU
@@ -191,6 +209,7 @@ Note: we just account pages-on-LRU because our purpose is to control amount
of used pages; not-on-LRU pages tend to be out-of-control from VM view.
2.3 Shared Page Accounting
+--------------------------
Shared pages are accounted on the basis of the first touch approach. The
cgroup that first touches a page is accounted for the page. The principle
@@ -207,11 +226,13 @@ be backed into memory in force, charges for pages are accounted against the
caller of swapoff rather than the users of shmem.
2.4 Swap Extension (CONFIG_MEMCG_SWAP)
+--------------------------------------
Swap Extension allows you to record charge for swap. A swapped-in page is
charged back to original page allocator if possible.
When swap is accounted, following files are added.
+
- memory.memsw.usage_in_bytes.
- memory.memsw.limit_in_bytes.
@@ -224,14 +245,16 @@ In this case, setting memsw.limit_in_bytes=3G will prevent bad use of swap.
By using the memsw limit, you can avoid system OOM which can be caused by swap
shortage.
-* why 'memory+swap' rather than swap.
+**why 'memory+swap' rather than swap**
+
The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
to move account from memory to swap...there is no change in usage of
memory+swap. In other words, when we want to limit the usage of swap without
affecting global LRU, memory+swap limit is better than just limiting swap from
an OS point of view.
-* What happens when a cgroup hits memory.memsw.limit_in_bytes
+**What happens when a cgroup hits memory.memsw.limit_in_bytes**
+
When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out
in this cgroup. Then, swap-out will not be done by cgroup routine and file
caches are dropped. But as mentioned above, global LRU can do swapout memory
@@ -239,6 +262,7 @@ from it for sanity of the system's memory management state. You can't forbid
it by cgroup.
2.5 Reclaim
+-----------
Each cgroup maintains a per cgroup LRU which has the same structure as
global VM. When a cgroup goes over its limit, we first try
@@ -251,29 +275,36 @@ The reclaim algorithm has not been modified for cgroups, except that
pages that are selected for reclaiming come from the per-cgroup LRU
list.
-NOTE: Reclaim does not work for the root cgroup, since we cannot set any
-limits on the root cgroup.
+NOTE:
+ Reclaim does not work for the root cgroup, since we cannot set any
+ limits on the root cgroup.
-Note2: When panic_on_oom is set to "2", the whole system will panic.
+Note2:
+ When panic_on_oom is set to "2", the whole system will panic.
When oom event notifier is registered, event will be delivered.
(See oom_control section)
2.6 Locking
+-----------
lock_page_cgroup()/unlock_page_cgroup() should not be called under
the i_pages lock.
Other lock order is following:
+
PG_locked.
- mm->page_table_lock
- pgdat->lru_lock
- lock_page_cgroup.
+ mm->page_table_lock
+ pgdat->lru_lock
+ lock_page_cgroup.
+
In many cases, just lock_page_cgroup() is called.
+
per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
pgdat->lru_lock, it has no lock of its own.
2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
+-----------------------------------------------
With the Kernel memory extension, the Memory Controller is able to limit
the amount of kernel memory used by the system. Kernel memory is fundamentally
@@ -288,6 +319,7 @@ Kernel memory limits are not imposed for the root cgroup. Usage for the root
cgroup may or may not be accounted. The memory used is accumulated into
memory.kmem.usage_in_bytes, or in a separate counter when it makes sense.
(currently only for tcp).
+
The main "kmem" counter is fed into the main counter, so kmem charges will
also be visible from the user counter.
@@ -295,36 +327,42 @@ Currently no soft limit is implemented for kernel memory. It is future work
to trigger slab reclaim when those limits are reached.
2.7.1 Current Kernel Memory resources accounted
+-----------------------------------------------
-* stack pages: every process consumes some stack pages. By accounting into
-kernel memory, we prevent new processes from being created when the kernel
-memory usage is too high.
+stack pages:
+ every process consumes some stack pages. By accounting into
+ kernel memory, we prevent new processes from being created when the kernel
+ memory usage is too high.
-* slab pages: pages allocated by the SLAB or SLUB allocator are tracked. A copy
-of each kmem_cache is created every time the cache is touched by the first time
-from inside the memcg. The creation is done lazily, so some objects can still be
-skipped while the cache is being created. All objects in a slab page should
-belong to the same memcg. This only fails to hold when a task is migrated to a
-different memcg during the page allocation by the cache.
+slab pages:
+ pages allocated by the SLAB or SLUB allocator are tracked. A copy
+ of each kmem_cache is created every time the cache is touched by the first time
+ from inside the memcg. The creation is done lazily, so some objects can still be
+ skipped while the cache is being created. All objects in a slab page should
+ belong to the same memcg. This only fails to hold when a task is migrated to a
+ different memcg during the page allocation by the cache.
-* sockets memory pressure: some sockets protocols have memory pressure
-thresholds. The Memory Controller allows them to be controlled individually
-per cgroup, instead of globally.
+sockets memory pressure:
+ some sockets protocols have memory pressure
+ thresholds. The Memory Controller allows them to be controlled individually
+ per cgroup, instead of globally.
-* tcp memory pressure: sockets memory pressure for the tcp protocol.
+tcp memory pressure:
+ sockets memory pressure for the tcp protocol.
2.7.2 Common use cases
+----------------------
Because the "kmem" counter is fed to the main user counter, kernel memory can
never be limited completely independently of user memory. Say "U" is the user
limit, and "K" the kernel limit. There are three possible ways limits can be
set:
- U != 0, K = unlimited:
+U != 0, K = unlimited:
This is the standard memcg limitation mechanism already present before kmem
accounting. Kernel memory is completely ignored.
- U != 0, K < U:
+U != 0, K < U:
Kernel memory is a subset of the user memory. This setup is useful in
deployments where the total amount of memory per-cgroup is overcommited.
Overcommiting kernel memory limits is definitely not recommended, since the
@@ -332,19 +370,23 @@ set:
In this case, the admin could set up K so that the sum of all groups is
never greater than the total memory, and freely set U at the cost of his
QoS.
- WARNING: In the current implementation, memory reclaim will NOT be
+
+WARNING:
+ In the current implementation, memory reclaim will NOT be
triggered for a cgroup when it hits K while staying below U, which makes
this setup impractical.
- U != 0, K >= U:
+U != 0, K >= U:
Since kmem charges will also be fed to the user counter and reclaim will be
triggered for the cgroup for both kinds of memory. This setup gives the
admin a unified view of memory, and it is also useful for people who just
want to track kernel memory usage.
3. User Interface
+=================
3.0. Configuration
+------------------
a. Enable CONFIG_CGROUPS
b. Enable CONFIG_MEMCG
@@ -352,39 +394,53 @@ c. Enable CONFIG_MEMCG_SWAP (to use swap extension)
d. Enable CONFIG_MEMCG_KMEM (to use kmem extension)
3.1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?)
-# mount -t tmpfs none /sys/fs/cgroup
-# mkdir /sys/fs/cgroup/memory
-# mount -t cgroup none /sys/fs/cgroup/memory -o memory
+-------------------------------------------------------------------
+
+::
+
+ # mount -t tmpfs none /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/memory
+ # mount -t cgroup none /sys/fs/cgroup/memory -o memory
+
+3.2. Make the new group and move bash into it::
+
+ # mkdir /sys/fs/cgroup/memory/0
+ # echo $$ > /sys/fs/cgroup/memory/0/tasks
-3.2. Make the new group and move bash into it
-# mkdir /sys/fs/cgroup/memory/0
-# echo $$ > /sys/fs/cgroup/memory/0/tasks
+Since now we're in the 0 cgroup, we can alter the memory limit::
-Since now we're in the 0 cgroup, we can alter the memory limit:
-# echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+ # echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
-NOTE: We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
-mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes, Gibibytes.)
+NOTE:
+ We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
+ mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes,
+ Gibibytes.)
-NOTE: We can write "-1" to reset the *.limit_in_bytes(unlimited).
-NOTE: We cannot set limits on the root cgroup any more.
+NOTE:
+ We can write "-1" to reset the ``*.limit_in_bytes(unlimited)``.
-# cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
-4194304
+NOTE:
+ We cannot set limits on the root cgroup any more.
-We can check the usage:
-# cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
-1216512
+::
+
+ # cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+ 4194304
+
+We can check the usage::
+
+ # cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
+ 1216512
A successful write to this file does not guarantee a successful setting of
this limit to the value written into the file. This can be due to a
number of factors, such as rounding up to page boundaries or the total
availability of memory on the system. The user is required to re-read
-this file after a write to guarantee the value committed by the kernel.
+this file after a write to guarantee the value committed by the kernel::
-# echo 1 > memory.limit_in_bytes
-# cat memory.limit_in_bytes
-4096
+ # echo 1 > memory.limit_in_bytes
+ # cat memory.limit_in_bytes
+ 4096
The memory.failcnt field gives the number of times that the cgroup limit was
exceeded.
@@ -393,6 +449,7 @@ The memory.stat file gives accounting information. Now, the number of
caches, RSS and Active pages/Inactive pages are shown.
4. Testing
+==========
For testing features and implementation, see memcg_test.txt.
@@ -408,6 +465,7 @@ But the above two are testing extreme situations.
Trying usual test under memory controller is always helpful.
4.1 Troubleshooting
+-------------------
Sometimes a user might find that the application under a cgroup is
terminated by the OOM killer. There are several causes for this:
@@ -422,6 +480,7 @@ To know what happens, disabling OOM_Kill as per "10. OOM Control" (below) and
seeing what happens will be helpful.
4.2 Task migration
+------------------
When a task migrates from one cgroup to another, its charge is not
carried forward by default. The pages allocated from the original cgroup still
@@ -432,6 +491,7 @@ You can move charges of a task along with task migration.
See 8. "Move charges at task migration"
4.3 Removing a cgroup
+---------------------
A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
cgroup might have some charge associated with it, even though all
@@ -448,13 +508,15 @@ will be charged as a new owner of it.
About use_hierarchy, see Section 6.
-5. Misc. interfaces.
+5. Misc. interfaces
+===================
5.1 force_empty
+---------------
memory.force_empty interface is provided to make cgroup's memory usage empty.
- When writing anything to this
+ When writing anything to this::
- # echo 0 > memory.force_empty
+ # echo 0 > memory.force_empty
the cgroup will be reclaimed and as many pages reclaimed as possible.
@@ -471,50 +533,61 @@ About use_hierarchy, see Section 6.
About use_hierarchy, see Section 6.
5.2 stat file
+-------------
memory.stat file includes following statistics
-# per-memory cgroup local status
-cache - # of bytes of page cache memory.
-rss - # of bytes of anonymous and swap cache memory (includes
+per-memory cgroup local status
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+=============== ===============================================================
+cache # of bytes of page cache memory.
+rss # of bytes of anonymous and swap cache memory (includes
transparent hugepages).
-rss_huge - # of bytes of anonymous transparent hugepages.
-mapped_file - # of bytes of mapped file (includes tmpfs/shmem)
-pgpgin - # of charging events to the memory cgroup. The charging
+rss_huge # of bytes of anonymous transparent hugepages.
+mapped_file # of bytes of mapped file (includes tmpfs/shmem)
+pgpgin # of charging events to the memory cgroup. The charging
event happens each time a page is accounted as either mapped
anon page(RSS) or cache page(Page Cache) to the cgroup.
-pgpgout - # of uncharging events to the memory cgroup. The uncharging
+pgpgout # of uncharging events to the memory cgroup. The uncharging
event happens each time a page is unaccounted from the cgroup.
-swap - # of bytes of swap usage
-dirty - # of bytes that are waiting to get written back to the disk.
-writeback - # of bytes of file/anon cache that are queued for syncing to
+swap # of bytes of swap usage
+dirty # of bytes that are waiting to get written back to the disk.
+writeback # of bytes of file/anon cache that are queued for syncing to
disk.
-inactive_anon - # of bytes of anonymous and swap cache memory on inactive
+inactive_anon # of bytes of anonymous and swap cache memory on inactive
LRU list.
-active_anon - # of bytes of anonymous and swap cache memory on active
+active_anon # of bytes of anonymous and swap cache memory on active
LRU list.
-inactive_file - # of bytes of file-backed memory on inactive LRU list.
-active_file - # of bytes of file-backed memory on active LRU list.
-unevictable - # of bytes of memory that cannot be reclaimed (mlocked etc).
-
-# status considering hierarchy (see memory.use_hierarchy settings)
-
-hierarchical_memory_limit - # of bytes of memory limit with regard to hierarchy
- under which the memory cgroup is
-hierarchical_memsw_limit - # of bytes of memory+swap limit with regard to
- hierarchy under which memory cgroup is.
-
-total_<counter> - # hierarchical version of <counter>, which in
- addition to the cgroup's own value includes the
- sum of all hierarchical children's values of
- <counter>, i.e. total_cache
-
-# The following additional stats are dependent on CONFIG_DEBUG_VM.
-
-recent_rotated_anon - VM internal parameter. (see mm/vmscan.c)
-recent_rotated_file - VM internal parameter. (see mm/vmscan.c)
-recent_scanned_anon - VM internal parameter. (see mm/vmscan.c)
-recent_scanned_file - VM internal parameter. (see mm/vmscan.c)
+inactive_file # of bytes of file-backed memory on inactive LRU list.
+active_file # of bytes of file-backed memory on active LRU list.
+unevictable # of bytes of memory that cannot be reclaimed (mlocked etc).
+=============== ===============================================================
+
+status considering hierarchy (see memory.use_hierarchy settings)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ===================================================
+hierarchical_memory_limit # of bytes of memory limit with regard to hierarchy
+ under which the memory cgroup is
+hierarchical_memsw_limit # of bytes of memory+swap limit with regard to
+ hierarchy under which memory cgroup is.
+
+total_<counter> # hierarchical version of <counter>, which in
+ addition to the cgroup's own value includes the
+ sum of all hierarchical children's values of
+ <counter>, i.e. total_cache
+========================= ===================================================
+
+The following additional stats are dependent on CONFIG_DEBUG_VM
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ========================================
+recent_rotated_anon VM internal parameter. (see mm/vmscan.c)
+recent_rotated_file VM internal parameter. (see mm/vmscan.c)
+recent_scanned_anon VM internal parameter. (see mm/vmscan.c)
+recent_scanned_file VM internal parameter. (see mm/vmscan.c)
+========================= ========================================
Memo:
recent_rotated means recent frequency of LRU rotation.
@@ -525,12 +598,15 @@ Note:
Only anonymous and swap cache memory is listed as part of 'rss' stat.
This should not be confused with the true 'resident set size' or the
amount of physical memory used by the cgroup.
+
'rss + mapped_file" will give you resident set size of cgroup.
+
(Note: file and shmem may be shared among other cgroups. In that case,
- mapped_file is accounted only when the memory cgroup is owner of page
- cache.)
+ mapped_file is accounted only when the memory cgroup is owner of page
+ cache.)
5.3 swappiness
+--------------
Overrides /proc/sys/vm/swappiness for the particular group. The tunable
in the root cgroup corresponds to the global swappiness setting.
@@ -541,16 +617,19 @@ there is a swap storage available. This might lead to memcg OOM killer
if there are no file pages to reclaim.
5.4 failcnt
+-----------
A memory cgroup provides memory.failcnt and memory.memsw.failcnt files.
This failcnt(== failure count) shows the number of times that a usage counter
hit its limit. When a memory cgroup hits a limit, failcnt increases and
memory under it will be reclaimed.
-You can reset failcnt by writing 0 to failcnt file.
-# echo 0 > .../memory.failcnt
+You can reset failcnt by writing 0 to failcnt file::
+
+ # echo 0 > .../memory.failcnt
5.5 usage_in_bytes
+------------------
For efficiency, as other kernel components, memory cgroup uses some optimization
to avoid unnecessary cacheline false sharing. usage_in_bytes is affected by the
@@ -560,6 +639,7 @@ If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP)
value in memory.stat(see 5.2).
5.6 numa_stat
+-------------
This is similar to numa_maps but operates on a per-memcg basis. This is
useful for providing visibility into the numa locality information within
@@ -571,22 +651,23 @@ Each memcg's numa_stat file includes "total", "file", "anon" and "unevictable"
per-node page counts including "hierarchical_<counter>" which sums up all
hierarchical children's values in addition to the memcg's own value.
-The output format of memory.numa_stat is:
+The output format of memory.numa_stat is::
-total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
-file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
-anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
-unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
-hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
The "total" count is sum of file + anon + unevictable.
6. Hierarchy support
+====================
The memory controller supports a deep hierarchy and hierarchical accounting.
The hierarchy is created by creating the appropriate cgroups in the
cgroup filesystem. Consider for example, the following cgroup filesystem
-hierarchy
+hierarchy::
root
/ | \
@@ -603,24 +684,28 @@ limit, the reclaim algorithm reclaims from the tasks in the ancestor and the
children of the ancestor.
6.1 Enabling hierarchical accounting and reclaim
+------------------------------------------------
A memory cgroup by default disables the hierarchy feature. Support
-can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup
+can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup::
-# echo 1 > memory.use_hierarchy
+ # echo 1 > memory.use_hierarchy
-The feature can be disabled by
+The feature can be disabled by::
-# echo 0 > memory.use_hierarchy
+ # echo 0 > memory.use_hierarchy
-NOTE1: Enabling/disabling will fail if either the cgroup already has other
+NOTE1:
+ Enabling/disabling will fail if either the cgroup already has other
cgroups created below it, or if the parent cgroup has use_hierarchy
enabled.
-NOTE2: When panic_on_oom is set to "2", the whole system will panic in
+NOTE2:
+ When panic_on_oom is set to "2", the whole system will panic in
case of an OOM event in any cgroup.
7. Soft limits
+==============
Soft limits allow for greater sharing of memory. The idea behind soft limits
is to allow control groups to use as much of the memory as needed, provided
@@ -640,22 +725,26 @@ hints/setup. Currently soft limit based reclaim is set up such that
it gets invoked from balance_pgdat (kswapd).
7.1 Interface
+-------------
Soft limits can be setup by using the following commands (in this example we
-assume a soft limit of 256 MiB)
+assume a soft limit of 256 MiB)::
-# echo 256M > memory.soft_limit_in_bytes
+ # echo 256M > memory.soft_limit_in_bytes
-If we want to change this to 1G, we can at any time use
+If we want to change this to 1G, we can at any time use::
-# echo 1G > memory.soft_limit_in_bytes
+ # echo 1G > memory.soft_limit_in_bytes
-NOTE1: Soft limits take effect over a long period of time, since they involve
+NOTE1:
+ Soft limits take effect over a long period of time, since they involve
reclaiming memory for balancing between memory cgroups
-NOTE2: It is recommended to set the soft limit always below the hard limit,
+NOTE2:
+ It is recommended to set the soft limit always below the hard limit,
otherwise the hard limit will take precedence.
8. Move charges at task migration
+=================================
Users can move charges associated with a task along with task migration, that
is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
@@ -663,60 +752,71 @@ This feature is not supported in !CONFIG_MMU environments because of lack of
page tables.
8.1 Interface
+-------------
This feature is disabled by default. It can be enabled (and disabled again) by
writing to memory.move_charge_at_immigrate of the destination cgroup.
-If you want to enable it:
+If you want to enable it::
-# echo (some positive value) > memory.move_charge_at_immigrate
+ # echo (some positive value) > memory.move_charge_at_immigrate
-Note: Each bits of move_charge_at_immigrate has its own meaning about what type
+Note:
+ Each bits of move_charge_at_immigrate has its own meaning about what type
of charges should be moved. See 8.2 for details.
-Note: Charges are moved only when you move mm->owner, in other words,
+Note:
+ Charges are moved only when you move mm->owner, in other words,
a leader of a thread group.
-Note: If we cannot find enough space for the task in the destination cgroup, we
+Note:
+ If we cannot find enough space for the task in the destination cgroup, we
try to make space by reclaiming memory. Task migration may fail if we
cannot make enough space.
-Note: It can take several seconds if you move charges much.
+Note:
+ It can take several seconds if you move charges much.
-And if you want disable it again:
+And if you want disable it again::
-# echo 0 > memory.move_charge_at_immigrate
+ # echo 0 > memory.move_charge_at_immigrate
8.2 Type of charges which can be moved
+--------------------------------------
Each bit in move_charge_at_immigrate has its own meaning about what type of
charges should be moved. But in any case, it must be noted that an account of
a page or a swap can be moved only when it is charged to the task's current
(old) memory cgroup.
- bit | what type of charges would be moved ?
- -----+------------------------------------------------------------------------
- 0 | A charge of an anonymous page (or swap of it) used by the target task.
- | You must enable Swap Extension (see 2.4) to enable move of swap charges.
- -----+------------------------------------------------------------------------
- 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory)
- | and swaps of tmpfs file) mmapped by the target task. Unlike the case of
- | anonymous pages, file pages (and swaps) in the range mmapped by the task
- | will be moved even if the task hasn't done page fault, i.e. they might
- | not be the task's "RSS", but other task's "RSS" that maps the same file.
- | And mapcount of the page is ignored (the page can be moved even if
- | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to
- | enable move of swap charges.
++---+--------------------------------------------------------------------------+
+|bit| what type of charges would be moved ? |
++===+==========================================================================+
+| 0 | A charge of an anonymous page (or swap of it) used by the target task. |
+| | You must enable Swap Extension (see 2.4) to enable move of swap charges. |
++---+--------------------------------------------------------------------------+
+| 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory) |
+| | and swaps of tmpfs file) mmapped by the target task. Unlike the case of |
+| | anonymous pages, file pages (and swaps) in the range mmapped by the task |
+| | will be moved even if the task hasn't done page fault, i.e. they might |
+| | not be the task's "RSS", but other task's "RSS" that maps the same file. |
+| | And mapcount of the page is ignored (the page can be moved even if |
+| | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to |
+| | enable move of swap charges. |
++---+--------------------------------------------------------------------------+
8.3 TODO
+--------
- All of moving charge operations are done under cgroup_mutex. It's not good
behavior to hold the mutex too long, so we may need some trick.
9. Memory thresholds
+====================
Memory cgroup implements memory thresholds using the cgroups notification
API (see cgroups.txt). It allows to register multiple memory and memsw
thresholds and gets notifications when it crosses.
To register a threshold, an application must:
+
- create an eventfd using eventfd(2);
- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
- write string like "<event_fd> <fd of memory.usage_in_bytes> <threshold>" to
@@ -728,6 +828,7 @@ threshold in any direction.
It's applicable for root and non-root cgroup.
10. OOM Control
+===============
memory.oom_control file is for OOM notification and other controls.
@@ -736,6 +837,7 @@ API (See cgroups.txt). It allows to register multiple OOM notification
delivery and gets notification when OOM happens.
To register a notifier, an application must:
+
- create an eventfd using eventfd(2)
- open memory.oom_control file
- write string like "<event_fd> <fd of memory.oom_control>" to
@@ -752,8 +854,11 @@ If OOM-killer is disabled, tasks under cgroup will hang/sleep
in memory cgroup's OOM-waitqueue when they request accountable memory.
For running them, you have to relax the memory cgroup's OOM status by
+
* enlarge limit or reduce usage.
+
To reduce usage,
+
* kill some tasks.
* move some tasks to other group with account migration.
* remove some files (on tmpfs?)
@@ -761,11 +866,14 @@ To reduce usage,
Then, stopped tasks will work again.
At reading, current status of OOM is shown.
- oom_kill_disable 0 or 1 (if 1, oom-killer is disabled)
- under_oom 0 or 1 (if 1, the memory cgroup is under OOM, tasks may
- be stopped.)
+
+ - oom_kill_disable 0 or 1
+ (if 1, oom-killer is disabled)
+ - under_oom 0 or 1
+ (if 1, the memory cgroup is under OOM, tasks may be stopped.)
11. Memory Pressure
+===================
The pressure level notifications can be used to monitor the memory
allocation cost; based on the pressure, applications can implement
@@ -840,21 +948,22 @@ Test:
Here is a small script example that makes a new cgroup, sets up a
memory limit, sets up a notification in the cgroup and then makes child
- cgroup experience a critical pressure:
+ cgroup experience a critical pressure::
- # cd /sys/fs/cgroup/memory/
- # mkdir foo
- # cd foo
- # cgroup_event_listener memory.pressure_level low,hierarchy &
- # echo 8000000 > memory.limit_in_bytes
- # echo 8000000 > memory.memsw.limit_in_bytes
- # echo $$ > tasks
- # dd if=/dev/zero | read x
+ # cd /sys/fs/cgroup/memory/
+ # mkdir foo
+ # cd foo
+ # cgroup_event_listener memory.pressure_level low,hierarchy &
+ # echo 8000000 > memory.limit_in_bytes
+ # echo 8000000 > memory.memsw.limit_in_bytes
+ # echo $$ > tasks
+ # dd if=/dev/zero | read x
(Expect a bunch of notifications, and eventually, the oom-killer will
trigger.)
12. TODO
+========
1. Make per-cgroup scanner reclaim not-shared pages first
2. Teach controller to account for shared-pages
@@ -862,11 +971,13 @@ Test:
not yet hit but the usage is getting closer
Summary
+=======
Overall, the memory controller has been a stable controller and has been
commented and discussed quite extensively in the community.
References
+==========
1. Singh, Balbir. RFC: Memory Controller, http://lwn.net/Articles/206697/
2. Singh, Balbir. Memory Controller (RSS Control),
diff --git a/Documentation/cgroup-v1/net_cls.txt b/Documentation/cgroup-v1/net_cls.rst
index ec182346dea2..a2cf272af7a0 100644
--- a/Documentation/cgroup-v1/net_cls.txt
+++ b/Documentation/cgroup-v1/net_cls.rst
@@ -1,5 +1,6 @@
+=========================
Network classifier cgroup
--------------------------
+=========================
The Network classifier cgroup provides an interface to
tag network packets with a class identifier (classid).
@@ -17,23 +18,27 @@ values is 0xAAAABBBB; AAAA is the major handle number and BBBB
is the minor handle number.
Reading net_cls.classid yields a decimal result.
-Example:
-mkdir /sys/fs/cgroup/net_cls
-mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
-mkdir /sys/fs/cgroup/net_cls/0
-echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
- - setting a 10:1 handle.
+Example::
-cat /sys/fs/cgroup/net_cls/0/net_cls.classid
-1048577
+ mkdir /sys/fs/cgroup/net_cls
+ mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
+ mkdir /sys/fs/cgroup/net_cls/0
+ echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
-configuring tc:
-tc qdisc add dev eth0 root handle 10: htb
+- setting a 10:1 handle::
-tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
- - creating traffic class 10:1
+ cat /sys/fs/cgroup/net_cls/0/net_cls.classid
+ 1048577
-tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+- configuring tc::
-configuring iptables, basic example:
-iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
+ tc qdisc add dev eth0 root handle 10: htb
+ tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
+
+- creating traffic class 10:1::
+
+ tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+
+configuring iptables, basic example::
+
+ iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
diff --git a/Documentation/cgroup-v1/net_prio.txt b/Documentation/cgroup-v1/net_prio.rst
index a82cbd28ea8a..b40905871c64 100644
--- a/Documentation/cgroup-v1/net_prio.txt
+++ b/Documentation/cgroup-v1/net_prio.rst
@@ -1,5 +1,6 @@
+=======================
Network priority cgroup
--------------------------
+=======================
The Network priority cgroup provides an interface to allow an administrator to
dynamically set the priority of network traffic generated by various
@@ -14,9 +15,9 @@ SO_PRIORITY socket option. This however, is not always possible because:
This cgroup allows an administrator to assign a process to a group which defines
the priority of egress traffic on a given interface. Network priority groups can
-be created by first mounting the cgroup filesystem.
+be created by first mounting the cgroup filesystem::
-# mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
+ # mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
With the above step, the initial group acting as the parent accounting group
becomes visible at '/sys/fs/cgroup/net_prio'. This group includes all tasks in
@@ -25,17 +26,18 @@ the system. '/sys/fs/cgroup/net_prio/tasks' lists the tasks in this cgroup.
Each net_prio cgroup contains two files that are subsystem specific
net_prio.prioidx
-This file is read-only, and is simply informative. It contains a unique integer
-value that the kernel uses as an internal representation of this cgroup.
+ This file is read-only, and is simply informative. It contains a unique
+ integer value that the kernel uses as an internal representation of this
+ cgroup.
net_prio.ifpriomap
-This file contains a map of the priorities assigned to traffic originating from
-processes in this group and egressing the system on various interfaces. It
-contains a list of tuples in the form <ifname priority>. Contents of this file
-can be modified by echoing a string into the file using the same tuple format.
-for example:
+ This file contains a map of the priorities assigned to traffic originating
+ from processes in this group and egressing the system on various interfaces.
+ It contains a list of tuples in the form <ifname priority>. Contents of this
+ file can be modified by echoing a string into the file using the same tuple
+ format. For example::
-echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
+ echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
This command would force any traffic originating from processes belonging to the
iscsi net_prio cgroup and egressing on interface eth0 to have the priority of
diff --git a/Documentation/cgroup-v1/pids.txt b/Documentation/cgroup-v1/pids.rst
index e105d708ccde..6acebd9e72c8 100644
--- a/Documentation/cgroup-v1/pids.txt
+++ b/Documentation/cgroup-v1/pids.rst
@@ -1,5 +1,6 @@
- Process Number Controller
- =========================
+=========================
+Process Number Controller
+=========================
Abstract
--------
@@ -34,55 +35,58 @@ pids.current tracks all child cgroup hierarchies, so parent/pids.current is a
superset of parent/child/pids.current.
The pids.events file contains event counters:
+
- max: Number of times fork failed because limit was hit.
Example
-------
-First, we mount the pids controller:
-# mkdir -p /sys/fs/cgroup/pids
-# mount -t cgroup -o pids none /sys/fs/cgroup/pids
+First, we mount the pids controller::
+
+ # mkdir -p /sys/fs/cgroup/pids
+ # mount -t cgroup -o pids none /sys/fs/cgroup/pids
+
+Then we create a hierarchy, set limits and attach processes to it::
-Then we create a hierarchy, set limits and attach processes to it:
-# mkdir -p /sys/fs/cgroup/pids/parent/child
-# echo 2 > /sys/fs/cgroup/pids/parent/pids.max
-# echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-#
+ # mkdir -p /sys/fs/cgroup/pids/parent/child
+ # echo 2 > /sys/fs/cgroup/pids/parent/pids.max
+ # echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ #
It should be noted that attempts to overcome the set limit (2 in this case) will
-fail:
+fail::
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-# ( /bin/echo "Here's some processes for you." | cat )
-sh: fork: Resource temporary unavailable
-#
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
Even if we migrate to a child cgroup (which doesn't have a set limit), we will
not be able to overcome the most stringent limit in the hierarchy (in this case,
-parent's):
-
-# echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-# cat /sys/fs/cgroup/pids/parent/child/pids.current
-2
-# cat /sys/fs/cgroup/pids/parent/child/pids.max
-max
-# ( /bin/echo "Here's some processes for you." | cat )
-sh: fork: Resource temporary unavailable
-#
+parent's)::
+
+ # echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.max
+ max
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
We can set a limit that is smaller than pids.current, which will stop any new
processes from being forked at all (note that the shell itself counts towards
-pids.current):
-
-# echo 1 > /sys/fs/cgroup/pids/parent/pids.max
-# /bin/echo "We can't even spawn a single process now."
-sh: fork: Resource temporary unavailable
-# echo 0 > /sys/fs/cgroup/pids/parent/pids.max
-# /bin/echo "We can't even spawn a single process now."
-sh: fork: Resource temporary unavailable
-#
+pids.current)::
+
+ # echo 1 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ # echo 0 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ #
diff --git a/Documentation/cgroup-v1/rdma.txt b/Documentation/cgroup-v1/rdma.rst
index 9bdb7fd03f83..2fcb0a9bf790 100644
--- a/Documentation/cgroup-v1/rdma.txt
+++ b/Documentation/cgroup-v1/rdma.rst
@@ -1,16 +1,17 @@
- RDMA Controller
- ----------------
+===============
+RDMA Controller
+===============
-Contents
---------
+.. Contents
-1. Overview
- 1-1. What is RDMA controller?
- 1-2. Why RDMA controller needed?
- 1-3. How is RDMA controller implemented?
-2. Usage Examples
+ 1. Overview
+ 1-1. What is RDMA controller?
+ 1-2. Why RDMA controller needed?
+ 1-3. How is RDMA controller implemented?
+ 2. Usage Examples
1. Overview
+===========
1-1. What is RDMA controller?
-----------------------------
@@ -83,27 +84,34 @@ what is configured by user for a given cgroup and what is supported by
IB device.
Following resources can be accounted by rdma controller.
+
+ ========== =============================
hca_handle Maximum number of HCA Handles
hca_object Maximum number of HCA Objects
+ ========== =============================
2. Usage Examples
------------------
-
-(a) Configure resource limit:
-echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
-echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
-
-(b) Query resource limit:
-cat /sys/fs/cgroup/rdma/2/rdma.max
-#Output:
-mlx4_0 hca_handle=2 hca_object=2000
-ocrdma1 hca_handle=3 hca_object=max
-
-(c) Query current usage:
-cat /sys/fs/cgroup/rdma/2/rdma.current
-#Output:
-mlx4_0 hca_handle=1 hca_object=20
-ocrdma1 hca_handle=1 hca_object=23
-
-(d) Delete resource limit:
-echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
+=================
+
+(a) Configure resource limit::
+
+ echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
+ echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
+
+(b) Query resource limit::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.max
+ #Output:
+ mlx4_0 hca_handle=2 hca_object=2000
+ ocrdma1 hca_handle=3 hca_object=max
+
+(c) Query current usage::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.current
+ #Output:
+ mlx4_0 hca_handle=1 hca_object=20
+ ocrdma1 hca_handle=1 hca_object=23
+
+(d) Delete resource limit::
+
+ echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
diff --git a/Documentation/conf.py b/Documentation/conf.py
index 72647a38b5c2..7ace3f8852bd 100644
--- a/Documentation/conf.py
+++ b/Documentation/conf.py
@@ -37,7 +37,7 @@ needs_sphinx = '1.3'
extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain', 'kfigure', 'sphinx.ext.ifconfig']
# The name of the math extension changed on Sphinx 1.4
-if major == 1 and minor > 3:
+if (major == 1 and minor > 3) or (major > 1):
extensions.append("sphinx.ext.imgmath")
else:
extensions.append("sphinx.ext.pngmath")
diff --git a/Documentation/core-api/circular-buffers.rst b/Documentation/core-api/circular-buffers.rst
index 53e51caa3347..50966f66e398 100644
--- a/Documentation/core-api/circular-buffers.rst
+++ b/Documentation/core-api/circular-buffers.rst
@@ -3,7 +3,7 @@ Circular Buffers
================
:Author: David Howells <dhowells@redhat.com>
-:Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+:Author: Paul E. McKenney <paulmck@linux.ibm.com>
Linux provides a number of features that can be used to implement circular
diff --git a/Documentation/core-api/timekeeping.rst b/Documentation/core-api/timekeeping.rst
index 93cbeb9daec0..20ee447a50f3 100644
--- a/Documentation/core-api/timekeeping.rst
+++ b/Documentation/core-api/timekeeping.rst
@@ -65,7 +65,7 @@ different format depending on what is required by the user:
.. c:function:: u64 ktime_get_ns( void )
u64 ktime_get_boottime_ns( void )
u64 ktime_get_real_ns( void )
- u64 ktime_get_tai_ns( void )
+ u64 ktime_get_clocktai_ns( void )
u64 ktime_get_raw_ns( void )
Same as the plain ktime_get functions, but returning a u64 number
@@ -99,16 +99,20 @@ Coarse and fast_ns access
Some additional variants exist for more specialized cases:
-.. c:function:: ktime_t ktime_get_coarse_boottime( void )
+.. c:function:: ktime_t ktime_get_coarse( void )
+ ktime_t ktime_get_coarse_boottime( void )
ktime_t ktime_get_coarse_real( void )
ktime_t ktime_get_coarse_clocktai( void )
- ktime_t ktime_get_coarse_raw( void )
+
+.. c:function:: u64 ktime_get_coarse_ns( void )
+ u64 ktime_get_coarse_boottime_ns( void )
+ u64 ktime_get_coarse_real_ns( void )
+ u64 ktime_get_coarse_clocktai_ns( void )
.. c:function:: void ktime_get_coarse_ts64( struct timespec64 * )
void ktime_get_coarse_boottime_ts64( struct timespec64 * )
void ktime_get_coarse_real_ts64( struct timespec64 * )
void ktime_get_coarse_clocktai_ts64( struct timespec64 * )
- void ktime_get_coarse_raw_ts64( struct timespec64 * )
These are quicker than the non-coarse versions, but less accurate,
corresponding to CLOCK_MONONOTNIC_COARSE and CLOCK_REALTIME_COARSE
diff --git a/Documentation/cputopology.txt b/Documentation/cputopology.txt
index cb61277e2308..b90dafcc8237 100644
--- a/Documentation/cputopology.txt
+++ b/Documentation/cputopology.txt
@@ -12,6 +12,12 @@ physical_package_id:
socket number, but the actual value is architecture and platform
dependent.
+die_id:
+
+ the CPU die ID of cpuX. Typically it is the hardware platform's
+ identifier (rather than the kernel's). The actual value is
+ architecture and platform dependent.
+
core_id:
the CPU core ID of cpuX. Typically it is the hardware platform's
@@ -30,25 +36,33 @@ drawer_id:
identifier (rather than the kernel's). The actual value is
architecture and platform dependent.
-thread_siblings:
+core_cpus:
- internal kernel map of cpuX's hardware threads within the same
- core as cpuX.
+ internal kernel map of CPUs within the same core.
+ (deprecated name: "thread_siblings")
-thread_siblings_list:
+core_cpus_list:
- human-readable list of cpuX's hardware threads within the same
- core as cpuX.
+ human-readable list of CPUs within the same core.
+ (deprecated name: "thread_siblings_list");
-core_siblings:
+package_cpus:
- internal kernel map of cpuX's hardware threads within the same
- physical_package_id.
+ internal kernel map of the CPUs sharing the same physical_package_id.
+ (deprecated name: "core_siblings")
-core_siblings_list:
+package_cpus_list:
- human-readable list of cpuX's hardware threads within the same
- physical_package_id.
+ human-readable list of CPUs sharing the same physical_package_id.
+ (deprecated name: "core_siblings_list")
+
+die_cpus:
+
+ internal kernel map of CPUs within the same die.
+
+die_cpus_list:
+
+ human-readable list of CPUs within the same die.
book_siblings:
@@ -81,11 +95,13 @@ For an architecture to support this feature, it must define some of
these macros in include/asm-XXX/topology.h::
#define topology_physical_package_id(cpu)
+ #define topology_die_id(cpu)
#define topology_core_id(cpu)
#define topology_book_id(cpu)
#define topology_drawer_id(cpu)
#define topology_sibling_cpumask(cpu)
#define topology_core_cpumask(cpu)
+ #define topology_die_cpumask(cpu)
#define topology_book_cpumask(cpu)
#define topology_drawer_cpumask(cpu)
@@ -99,9 +115,11 @@ provides default definitions for any of the above macros that are
not defined by include/asm-XXX/topology.h:
1) topology_physical_package_id: -1
-2) topology_core_id: 0
-3) topology_sibling_cpumask: just the given CPU
-4) topology_core_cpumask: just the given CPU
+2) topology_die_id: -1
+3) topology_core_id: 0
+4) topology_sibling_cpumask: just the given CPU
+5) topology_core_cpumask: just the given CPU
+6) topology_die_cpumask: just the given CPU
For architectures that don't support books (CONFIG_SCHED_BOOK) there are no
default definitions for topology_book_id() and topology_book_cpumask().
diff --git a/Documentation/crypto/api-samples.rst b/Documentation/crypto/api-samples.rst
index f14afaaf2f32..e923f17bc2bd 100644
--- a/Documentation/crypto/api-samples.rst
+++ b/Documentation/crypto/api-samples.rst
@@ -4,111 +4,89 @@ Code Examples
Code Example For Symmetric Key Cipher Operation
-----------------------------------------------
-::
-
-
- /* tie all data structures together */
- struct skcipher_def {
- struct scatterlist sg;
- struct crypto_skcipher *tfm;
- struct skcipher_request *req;
- struct crypto_wait wait;
- };
-
- /* Perform cipher operation */
- static unsigned int test_skcipher_encdec(struct skcipher_def *sk,
- int enc)
- {
- int rc;
-
- if (enc)
- rc = crypto_wait_req(crypto_skcipher_encrypt(sk->req), &sk->wait);
- else
- rc = crypto_wait_req(crypto_skcipher_decrypt(sk->req), &sk->wait);
-
- if (rc)
- pr_info("skcipher encrypt returned with result %d\n", rc);
+This code encrypts some data with AES-256-XTS. For sake of example,
+all inputs are random bytes, the encryption is done in-place, and it's
+assumed the code is running in a context where it can sleep.
- return rc;
- }
+::
- /* Initialize and trigger cipher operation */
static int test_skcipher(void)
{
- struct skcipher_def sk;
- struct crypto_skcipher *skcipher = NULL;
- struct skcipher_request *req = NULL;
- char *scratchpad = NULL;
- char *ivdata = NULL;
- unsigned char key[32];
- int ret = -EFAULT;
-
- skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0);
- if (IS_ERR(skcipher)) {
- pr_info("could not allocate skcipher handle\n");
- return PTR_ERR(skcipher);
- }
-
- req = skcipher_request_alloc(skcipher, GFP_KERNEL);
- if (!req) {
- pr_info("could not allocate skcipher request\n");
- ret = -ENOMEM;
- goto out;
- }
-
- skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done,
- &sk.wait);
-
- /* AES 256 with random key */
- get_random_bytes(&key, 32);
- if (crypto_skcipher_setkey(skcipher, key, 32)) {
- pr_info("key could not be set\n");
- ret = -EAGAIN;
- goto out;
- }
-
- /* IV will be random */
- ivdata = kmalloc(16, GFP_KERNEL);
- if (!ivdata) {
- pr_info("could not allocate ivdata\n");
- goto out;
- }
- get_random_bytes(ivdata, 16);
-
- /* Input data will be random */
- scratchpad = kmalloc(16, GFP_KERNEL);
- if (!scratchpad) {
- pr_info("could not allocate scratchpad\n");
- goto out;
- }
- get_random_bytes(scratchpad, 16);
-
- sk.tfm = skcipher;
- sk.req = req;
-
- /* We encrypt one block */
- sg_init_one(&sk.sg, scratchpad, 16);
- skcipher_request_set_crypt(req, &sk.sg, &sk.sg, 16, ivdata);
- crypto_init_wait(&sk.wait);
-
- /* encrypt data */
- ret = test_skcipher_encdec(&sk, 1);
- if (ret)
- goto out;
-
- pr_info("Encryption triggered successfully\n");
-
+ struct crypto_skcipher *tfm = NULL;
+ struct skcipher_request *req = NULL;
+ u8 *data = NULL;
+ const size_t datasize = 512; /* data size in bytes */
+ struct scatterlist sg;
+ DECLARE_CRYPTO_WAIT(wait);
+ u8 iv[16]; /* AES-256-XTS takes a 16-byte IV */
+ u8 key[64]; /* AES-256-XTS takes a 64-byte key */
+ int err;
+
+ /*
+ * Allocate a tfm (a transformation object) and set the key.
+ *
+ * In real-world use, a tfm and key are typically used for many
+ * encryption/decryption operations. But in this example, we'll just do a
+ * single encryption operation with it (which is not very efficient).
+ */
+
+ tfm = crypto_alloc_skcipher("xts(aes)", 0, 0);
+ if (IS_ERR(tfm)) {
+ pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm));
+ return PTR_ERR(tfm);
+ }
+
+ get_random_bytes(key, sizeof(key));
+ err = crypto_skcipher_setkey(tfm, key, sizeof(key));
+ if (err) {
+ pr_err("Error setting key: %d\n", err);
+ goto out;
+ }
+
+ /* Allocate a request object */
+ req = skcipher_request_alloc(tfm, GFP_KERNEL);
+ if (!req) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* Prepare the input data */
+ data = kmalloc(datasize, GFP_KERNEL);
+ if (!data) {
+ err = -ENOMEM;
+ goto out;
+ }
+ get_random_bytes(data, datasize);
+
+ /* Initialize the IV */
+ get_random_bytes(iv, sizeof(iv));
+
+ /*
+ * Encrypt the data in-place.
+ *
+ * For simplicity, in this example we wait for the request to complete
+ * before proceeding, even if the underlying implementation is asynchronous.
+ *
+ * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to
+ * crypto_skcipher_decrypt().
+ */
+ sg_init_one(&sg, data, datasize);
+ skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
+ CRYPTO_TFM_REQ_MAY_SLEEP,
+ crypto_req_done, &wait);
+ skcipher_request_set_crypt(req, &sg, &sg, datasize, iv);
+ err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ if (err) {
+ pr_err("Error encrypting data: %d\n", err);
+ goto out;
+ }
+
+ pr_debug("Encryption was successful\n");
out:
- if (skcipher)
- crypto_free_skcipher(skcipher);
- if (req)
+ crypto_free_skcipher(tfm);
skcipher_request_free(req);
- if (ivdata)
- kfree(ivdata);
- if (scratchpad)
- kfree(scratchpad);
- return ret;
+ kfree(data);
+ return err;
}
diff --git a/Documentation/crypto/api-skcipher.rst b/Documentation/crypto/api-skcipher.rst
index 4eec4a93f7e3..20ba08dddf2e 100644
--- a/Documentation/crypto/api-skcipher.rst
+++ b/Documentation/crypto/api-skcipher.rst
@@ -5,7 +5,7 @@ Block Cipher Algorithm Definitions
:doc: Block Cipher Algorithm Definitions
.. kernel-doc:: include/linux/crypto.h
- :functions: crypto_alg ablkcipher_alg blkcipher_alg cipher_alg
+ :functions: crypto_alg ablkcipher_alg blkcipher_alg cipher_alg compress_alg
Symmetric Key Cipher API
------------------------
diff --git a/Documentation/crypto/architecture.rst b/Documentation/crypto/architecture.rst
index ee8ff0762d7f..3eae1ae7f798 100644
--- a/Documentation/crypto/architecture.rst
+++ b/Documentation/crypto/architecture.rst
@@ -208,9 +208,7 @@ the aforementioned cipher types:
- CRYPTO_ALG_TYPE_KPP Key-agreement Protocol Primitive (KPP) such as
an ECDH or DH implementation
-- CRYPTO_ALG_TYPE_DIGEST Raw message digest
-
-- CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST
+- CRYPTO_ALG_TYPE_HASH Raw message digest
- CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash
diff --git a/Documentation/crypto/crypto_engine.rst b/Documentation/crypto/crypto_engine.rst
index 1d56221dfe35..236c674d6897 100644
--- a/Documentation/crypto/crypto_engine.rst
+++ b/Documentation/crypto/crypto_engine.rst
@@ -1,50 +1,85 @@
-=============
-CRYPTO ENGINE
+.. SPDX-License-Identifier: GPL-2.0
+Crypto Engine
=============
Overview
--------
-The crypto engine API (CE), is a crypto queue manager.
+The crypto engine (CE) API is a crypto queue manager.
Requirement
-----------
-You have to put at start of your tfm_ctx the struct crypto_engine_ctx::
+You must put, at the start of your transform context your_tfm_ctx, the structure
+crypto_engine:
+
+::
- struct your_tfm_ctx {
- struct crypto_engine_ctx enginectx;
- ...
- };
+ struct your_tfm_ctx {
+ struct crypto_engine engine;
+ ...
+ };
-Why: Since CE manage only crypto_async_request, it cannot know the underlying
-request_type and so have access only on the TFM.
-So using container_of for accessing __ctx is impossible.
-Furthermore, the crypto engine cannot know the "struct your_tfm_ctx",
-so it must assume that crypto_engine_ctx is at start of it.
+The crypto engine only manages asynchronous requests in the form of
+crypto_async_request. It cannot know the underlying request type and thus only
+has access to the transform structure. It is not possible to access the context
+using container_of. In addition, the engine knows nothing about your
+structure "``struct your_tfm_ctx``". The engine assumes (requires) the placement
+of the known member ``struct crypto_engine`` at the beginning.
Order of operations
-------------------
-You have to obtain a struct crypto_engine via crypto_engine_alloc_init().
-And start it via crypto_engine_start().
-
-Before transferring any request, you have to fill the enginectx.
-- prepare_request: (taking a function pointer) If you need to do some processing before doing the request
-- unprepare_request: (taking a function pointer) Undoing what's done in prepare_request
-- do_one_request: (taking a function pointer) Do encryption for current request
-
-Note: that those three functions get the crypto_async_request associated with the received request.
-So your need to get the original request via container_of(areq, struct yourrequesttype_request, base);
-
-When your driver receive a crypto_request, you have to transfer it to
-the cryptoengine via one of:
-- crypto_transfer_ablkcipher_request_to_engine()
-- crypto_transfer_aead_request_to_engine()
-- crypto_transfer_akcipher_request_to_engine()
-- crypto_transfer_hash_request_to_engine()
-- crypto_transfer_skcipher_request_to_engine()
-
-At the end of the request process, a call to one of the following function is needed:
-- crypto_finalize_ablkcipher_request
-- crypto_finalize_aead_request
-- crypto_finalize_akcipher_request
-- crypto_finalize_hash_request
-- crypto_finalize_skcipher_request
+You are required to obtain a struct crypto_engine via ``crypto_engine_alloc_init()``.
+Start it via ``crypto_engine_start()``. When finished with your work, shut down the
+engine using ``crypto_engine_stop()`` and destroy the engine with
+``crypto_engine_exit()``.
+
+Before transferring any request, you have to fill the context enginectx by
+providing functions for the following:
+
+* ``prepare_crypt_hardware``: Called once before any prepare functions are
+ called.
+
+* ``unprepare_crypt_hardware``: Called once after all unprepare functions have
+ been called.
+
+* ``prepare_cipher_request``/``prepare_hash_request``: Called before each
+ corresponding request is performed. If some processing or other preparatory
+ work is required, do it here.
+
+* ``unprepare_cipher_request``/``unprepare_hash_request``: Called after each
+ request is handled. Clean up / undo what was done in the prepare function.
+
+* ``cipher_one_request``/``hash_one_request``: Handle the current request by
+ performing the operation.
+
+Note that these functions access the crypto_async_request structure
+associated with the received request. You are able to retrieve the original
+request by using:
+
+::
+
+ container_of(areq, struct yourrequesttype_request, base);
+
+When your driver receives a crypto_request, you must to transfer it to
+the crypto engine via one of:
+
+* crypto_transfer_ablkcipher_request_to_engine()
+
+* crypto_transfer_aead_request_to_engine()
+
+* crypto_transfer_akcipher_request_to_engine()
+
+* crypto_transfer_hash_request_to_engine()
+
+* crypto_transfer_skcipher_request_to_engine()
+
+At the end of the request process, a call to one of the following functions is needed:
+
+* crypto_finalize_ablkcipher_request()
+
+* crypto_finalize_aead_request()
+
+* crypto_finalize_akcipher_request()
+
+* crypto_finalize_hash_request()
+
+* crypto_finalize_skcipher_request()
diff --git a/Documentation/devicetree/bindings/crypto/atmel-crypto.txt b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
index 6b458bb2440d..f2aab3dc2b52 100644
--- a/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
+++ b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
@@ -66,16 +66,3 @@ sha@f8034000 {
dmas = <&dma1 2 17>;
dma-names = "tx";
};
-
-* Eliptic Curve Cryptography (I2C)
-
-Required properties:
-- compatible : must be "atmel,atecc508a".
-- reg: I2C bus address of the device.
-- clock-frequency: must be present in the i2c controller node.
-
-Example:
-atecc508a@c0 {
- compatible = "atmel,atecc508a";
- reg = <0xC0>;
-};
diff --git a/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
index 69da2115abdc..1cf6182f888c 100644
--- a/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
+++ b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
@@ -38,6 +38,6 @@ Example:
nunchuk: nunchuk@52 {
compatible = "nintendo,nunchuk";
- reg = <0x52 0x80000010 0>;
+ reg = <0x52 0x0 0x10>;
};
};
diff --git a/Documentation/devicetree/bindings/i3c/i3c.txt b/Documentation/devicetree/bindings/i3c/i3c.txt
index ab729a0a86ae..4ffe059f0fec 100644
--- a/Documentation/devicetree/bindings/i3c/i3c.txt
+++ b/Documentation/devicetree/bindings/i3c/i3c.txt
@@ -39,7 +39,9 @@ valid here, but several new properties have been added.
New constraint on existing properties:
--------------------------------------
- reg: contains 3 cells
- + first cell : still encoding the I2C address
+ + first cell : still encoding the I2C address. 10 bit addressing is not
+ supported. Devices with 10 bit address can't be properly passed through
+ DEFSLVS command.
+ second cell: shall be 0
diff --git a/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt b/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt
new file mode 100644
index 000000000000..4e82fd575cec
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt
@@ -0,0 +1,29 @@
+Amazon's Annapurna Labs Fabric Interrupt Controller
+
+Required properties:
+
+- compatible: should be "amazon,al-fic"
+- reg: physical base address and size of the registers
+- interrupt-controller: identifies the node as an interrupt controller
+- #interrupt-cells: must be 2.
+ First cell defines the index of the interrupt within the controller.
+ Second cell is used to specify the trigger type and must be one of the
+ following:
+ - bits[3:0] trigger type and level flags
+ 1 = low-to-high edge triggered
+ 4 = active high level-sensitive
+- interrupt-parent: specifies the parent interrupt controller.
+- interrupts: describes which input line in the interrupt parent, this
+ fic's output is connected to. This field property depends on the parent's
+ binding
+
+Example:
+
+amazon_fic: interrupt-controller@0xfd8a8500 {
+ compatible = "amazon,al-fic";
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ reg = <0x0 0xfd8a8500 0x0 0x1000>;
+ interrupt-parent = <&gic>;
+ interrupts = <GIC_SPI 0x0 IRQ_TYPE_LEVEL_HIGH>;
+};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
index 1502a51548bb..7d531d5fff29 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
@@ -15,6 +15,7 @@ Required properties:
"amlogic,meson-gxbb-gpio-intc" for GXBB SoCs (S905) or
"amlogic,meson-gxl-gpio-intc" for GXL SoCs (S905X, S912)
"amlogic,meson-axg-gpio-intc" for AXG SoCs (A113D, A113X)
+ "amlogic,meson-g12a-gpio-intc" for G12A SoCs (S905D2, S905X2, S905Y2)
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller.
- #interrupt-cells : Specifies the number of cells needed to encode an
diff --git a/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt b/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
index ab921f1698fb..e13405355166 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
@@ -6,11 +6,16 @@ C-SKY Multi-processors Interrupt Controller is designed for ck807/ck810/ck860
SMP soc, and it also could be used in non-SMP system.
Interrupt number definition:
-
0-15 : software irq, and we use 15 as our IPI_IRQ.
16-31 : private irq, and we use 16 as the co-processor timer.
31-1024: common irq for soc ip.
+Interrupt triger mode: (Defined in dt-bindings/interrupt-controller/irq.h)
+ IRQ_TYPE_LEVEL_HIGH (default)
+ IRQ_TYPE_LEVEL_LOW
+ IRQ_TYPE_EDGE_RISING
+ IRQ_TYPE_EDGE_FALLING
+
=============================
intc node bindings definition
=============================
@@ -26,15 +31,22 @@ intc node bindings definition
- #interrupt-cells
Usage: required
Value type: <u32>
- Definition: must be <1>
+ Definition: <2>
- interrupt-controller:
Usage: required
-Examples:
+Examples: ("interrupts = <irq_num IRQ_TYPE_XXX>")
---------
+#include <dt-bindings/interrupt-controller/irq.h>
intc: interrupt-controller {
compatible = "csky,mpintc";
- #interrupt-cells = <1>;
+ #interrupt-cells = <2>;
interrupt-controller;
};
+
+ device: device-example {
+ ...
+ interrupts = <34 IRQ_TYPE_EDGE_RISING>;
+ interrupt-parent = <&intc>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt b/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt
new file mode 100644
index 000000000000..727b7e4cd6e0
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt
@@ -0,0 +1,43 @@
+DT bindings for the Renesas RZ/A1 Interrupt Controller
+
+The RZ/A1 Interrupt Controller is a front-end for the GIC found on Renesas
+RZ/A1 and RZ/A2 SoCs:
+ - IRQ sense select for 8 external interrupts, 1:1-mapped to 8 GIC SPI
+ interrupts,
+ - NMI edge select.
+
+Required properties:
+ - compatible: Must be "renesas,<soctype>-irqc", and "renesas,rza1-irqc" as
+ fallback.
+ Examples with soctypes are:
+ - "renesas,r7s72100-irqc" (RZ/A1H)
+ - "renesas,r7s9210-irqc" (RZ/A2M)
+ - #interrupt-cells: Must be 2 (an interrupt index and flags, as defined
+ in interrupts.txt in this directory)
+ - #address-cells: Must be zero
+ - interrupt-controller: Marks the device as an interrupt controller
+ - reg: Base address and length of the memory resource used by the interrupt
+ controller
+ - interrupt-map: Specifies the mapping from external interrupts to GIC
+ interrupts
+ - interrupt-map-mask: Must be <7 0>
+
+Example:
+
+ irqc: interrupt-controller@fcfef800 {
+ compatible = "renesas,r7s72100-irqc", "renesas,rza1-irqc";
+ #interrupt-cells = <2>;
+ #address-cells = <0>;
+ interrupt-controller;
+ reg = <0xfcfef800 0x6>;
+ interrupt-map =
+ <0 0 &gic GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>,
+ <1 0 &gic GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>,
+ <2 0 &gic GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>,
+ <3 0 &gic GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>,
+ <4 0 &gic GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>,
+ <5 0 &gic GIC_SPI 5 IRQ_TYPE_LEVEL_HIGH>,
+ <6 0 &gic GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>,
+ <7 0 &gic GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-map-mask = <7 0>;
+ };
diff --git a/Documentation/devicetree/bindings/leds/leds-lm36274.txt b/Documentation/devicetree/bindings/leds/leds-lm36274.txt
new file mode 100644
index 000000000000..39c230d59a4d
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-lm36274.txt
@@ -0,0 +1,85 @@
+* Texas Instruments LM36274 4-Channel LCD Backlight Driver w/Integrated Bias
+
+The LM36274 is an integrated four-channel WLED driver and LCD bias supply.
+The backlight boost provides the power to bias four parallel LED strings with
+up to 29V total output voltage. The 11-bit LED current is programmable via
+the I2C bus and/or controlled via a logic level PWM input from 60 uA to 30 mA.
+
+Parent device properties are documented in
+Documentation/devicetree/bindings/mfd/ti-lmu.txt
+
+Regulator properties are documented in
+Documentation/devicetree/bindings/regulator/lm363x-regulator.txt
+
+Required backlight properties:
+ - compatible:
+ "ti,lm36274-backlight"
+ - reg : 0
+ - #address-cells : 1
+ - #size-cells : 0
+ - led-sources : Indicates which LED strings will be enabled.
+ Values from 0-3, sources is 0 based so strings will be
+ source value + 1.
+
+Optional backlight properties:
+ - label : see Documentation/devicetree/bindings/leds/common.txt
+ - linux,default-trigger :
+ see Documentation/devicetree/bindings/leds/common.txt
+
+Example:
+
+HVLED string 1 and 3 are controlled by control bank A and HVLED 2 string is
+controlled by control bank B.
+
+lm36274@11 {
+ compatible = "ti,lm36274";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x11>;
+
+ enable-gpios = <&gpio1 28 GPIO_ACTIVE_HIGH>;
+
+ regulators {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm363x-regulator";
+
+ enable-gpios = <&pioC 0 GPIO_ACTIVE_HIGH>,
+ <&pioC 1 GPIO_ACTIVE_HIGH>;
+
+ vboost {
+ regulator-name = "lcd_boost";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <7150000>;
+ regulator-always-on;
+ };
+
+ vpos {
+ regulator-name = "lcd_vpos";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+
+ vneg {
+ regulator-name = "lcd_vneg";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+ };
+
+ backlight {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm36274-backlight";
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ label = "white:backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+ };
+};
+
+For more product information please see the link below:
+http://www.ti.com/lit/ds/symlink/lm36274.pdf
diff --git a/Documentation/devicetree/bindings/leds/leds-lm3697.txt b/Documentation/devicetree/bindings/leds/leds-lm3697.txt
new file mode 100644
index 000000000000..63992d732959
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-lm3697.txt
@@ -0,0 +1,73 @@
+* Texas Instruments - LM3697 Highly Efficient White LED Driver
+
+The LM3697 11-bit LED driver provides high-
+performance backlight dimming for 1, 2, or 3 series
+LED strings while delivering up to 90% efficiency.
+
+This device is suitable for display and keypad lighting
+
+Required properties:
+ - compatible:
+ "ti,lm3697"
+ - reg : I2C slave address
+ - #address-cells : 1
+ - #size-cells : 0
+
+Optional properties:
+ - enable-gpios : GPIO pin to enable/disable the device
+ - vled-supply : LED supply
+
+Required child properties:
+ - reg : 0 - LED is Controlled by bank A
+ 1 - LED is Controlled by bank B
+ - led-sources : Indicates which HVLED string is associated to which
+ control bank. This is a zero based property so
+ HVLED1 = 0, HVLED2 = 1, HVLED3 = 2.
+ Additional information is contained
+ in Documentation/devicetree/bindings/leds/common.txt
+
+Optional child properties:
+ - ti,brightness-resolution - see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - ramp-up-us: see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - ramp-down-us: see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - label : see Documentation/devicetree/bindings/leds/common.txt
+ - linux,default-trigger :
+ see Documentation/devicetree/bindings/leds/common.txt
+
+Example:
+
+HVLED string 1 and 3 are controlled by control bank A and HVLED 2 string is
+controlled by control bank B.
+
+led-controller@36 {
+ compatible = "ti,lm3697";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x36>;
+
+ enable-gpios = <&gpio1 28 GPIO_ACTIVE_HIGH>;
+ vled-supply = <&vbatt>;
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ ti,brightness-resolution = <2047>;
+ ramp-up-us = <5000>;
+ ramp-down-us = <1000>;
+ label = "white:first_backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+
+ led@1 {
+ reg = <1>;
+ led-sources = <1>;
+ ti,brightness-resolution = <255>;
+ ramp-up-us = <500>;
+ ramp-down-us = <1000>;
+ label = "white:second_backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+}
+
+For more product information please see the link below:
+http://www.ti.com/lit/ds/symlink/lm3697.pdf
diff --git a/Documentation/devicetree/bindings/leds/leds-spi-byte.txt b/Documentation/devicetree/bindings/leds/leds-spi-byte.txt
new file mode 100644
index 000000000000..28b6b2d9091e
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-spi-byte.txt
@@ -0,0 +1,44 @@
+* Single Byte SPI LED Device Driver.
+
+The driver can be used for controllers with a very simple SPI protocol:
+- one LED is controlled by a single byte on MOSI
+- the value of the byte gives the brightness between two values (lowest to
+ highest)
+- no return value is necessary (no MISO signal)
+
+The value for lowest and highest brightness is dependent on the device and
+therefore on the compatible string.
+
+Depending on the compatible string some special functions (like hardware
+accelerated blinking) might can be supported too.
+
+The driver currently only supports one LED. The properties of the LED are
+configured in a sub-node in the device node.
+
+Required properties:
+- compatible: should be one of
+ * "ubnt,acb-spi-led" microcontroller (SONiX 8F26E611LA) based device
+ used for example in Ubiquiti airCube ISP
+
+Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
+apply.
+
+LED sub-node properties:
+- label:
+ see Documentation/devicetree/bindings/leds/common.txt
+- default-state:
+ see Documentation/devicetree/bindings/leds/common.txt
+ Only "on" and "off" are supported.
+
+Example:
+
+led-controller@0 {
+ compatible = "ubnt,acb-spi-led";
+ reg = <0>;
+ spi-max-frequency = <100000>;
+
+ led {
+ label = "white:status";
+ default-state = "on";
+ };
+};
diff --git a/Documentation/devicetree/bindings/mfd/ti-lmu.txt b/Documentation/devicetree/bindings/mfd/ti-lmu.txt
index 86ca786d54fc..2296b8f24de4 100644
--- a/Documentation/devicetree/bindings/mfd/ti-lmu.txt
+++ b/Documentation/devicetree/bindings/mfd/ti-lmu.txt
@@ -8,7 +8,7 @@ TI LMU driver supports lighting devices below.
LM3632 Backlight and regulator
LM3633 Backlight, LED and fault monitor
LM3695 Backlight
- LM3697 Backlight and fault monitor
+ LM36274 Backlight and regulator
Required properties:
- compatible: Should be one of:
@@ -16,15 +16,32 @@ Required properties:
"ti,lm3632"
"ti,lm3633"
"ti,lm3695"
- "ti,lm3697"
+ "ti,lm36274"
- reg: I2C slave address.
0x11 for LM3632
0x29 for LM3631
- 0x36 for LM3633, LM3697
+ 0x36 for LM3633
0x63 for LM3695
+ 0x11 for LM36274
-Optional property:
+Optional properties:
- enable-gpios: A GPIO specifier for hardware enable pin.
+ - ramp-up-us: Current ramping from one brightness level to
+ the a higher brightness level.
+ Range from 2048 us - 117.44 s
+ - ramp-down-us: Current ramping from one brightness level to
+ the a lower brightness level.
+ Range from 2048 us - 117.44 s
+ - ti,brightness-resolution - This determines whether to use 8 bit brightness
+ mode or 11 bit brightness mode. If this value is
+ not set the device is defaulted to the preferred
+ 8bit brightness mode per 7.3.4.1 of the data
+ sheet. This setting can either be in the parent
+ node or as part of the LED child nodes. This
+ is determined by the part itself if the strings
+ have a common brightness register or individual
+ brightness registers.
+ The values are 255 (8bit) or 2047 (11bit).
Required node:
- backlight: All LMU devices have backlight child nodes.
@@ -35,14 +52,15 @@ Optional nodes:
Required properties:
- compatible: Should be one of:
"ti,lm3633-fault-monitor"
- "ti,lm3697-fault-monitor"
- leds: LED properties for LM3633. Please refer to [2].
+ LED properties for LM36274. Please refer to [4].
- regulators: Regulator properties for LM3631 and LM3632.
Please refer to [3].
[1] ../leds/backlight/ti-lmu-backlight.txt
[2] ../leds/leds-lm3633.txt
[3] ../regulator/lm363x-regulator.txt
+[4] ../leds/leds-lm36274.txt
lm3631@29 {
compatible = "ti,lm3631";
@@ -90,7 +108,7 @@ lm3631@29 {
lcd_bl {
led-sources = <0 1>;
- ramp-up-msec = <300>;
+ ramp-up-us = <300000>;
};
};
};
@@ -152,15 +170,15 @@ lm3633@36 {
main {
label = "main_lcd";
led-sources = <1 2>;
- ramp-up-msec = <500>;
- ramp-down-msec = <500>;
+ ramp-up-us = <500000>;
+ ramp-down-us = <500000>;
};
front {
label = "front_lcd";
led-sources = <0>;
- ramp-up-msec = <1000>;
- ramp-down-msec = <0>;
+ ramp-up-us = <1000000>;
+ ramp-down-us = <0>;
};
};
@@ -201,23 +219,51 @@ lm3695@63 {
};
};
-lm3697@36 {
- compatible = "ti,lm3697";
- reg = <0x36>;
+lm36274@11 {
+ compatible = "ti,lm36274";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x11>;
enable-gpios = <&pioC 2 GPIO_ACTIVE_HIGH>;
+ regulators {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm363x-regulator";
- backlight {
- compatible = "ti,lm3697-backlight";
+ enable-gpios = <&pioC 0 GPIO_ACTIVE_HIGH>,
+ <&pioC 1 GPIO_ACTIVE_HIGH>;
- lcd {
- led-sources = <0 1 2>;
- ramp-up-msec = <200>;
- ramp-down-msec = <200>;
+ vboost {
+ regulator-name = "lcd_boost";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <7150000>;
+ regulator-always-on;
+ };
+
+ vpos {
+ regulator-name = "lcd_vpos";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+
+ vneg {
+ regulator-name = "lcd_vneg";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
};
};
- fault-monitor {
- compatible = "ti,lm3697-fault-monitor";
+ backlight {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm36274-backlight";
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ label = "white:backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
};
};
diff --git a/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt b/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
index 188c8bd4eb67..5a0111d4de58 100644
--- a/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
+++ b/Documentation/devicetree/bindings/net/can/microchip,mcp251x.txt
@@ -4,6 +4,7 @@ Required properties:
- compatible: Should be one of the following:
- "microchip,mcp2510" for MCP2510.
- "microchip,mcp2515" for MCP2515.
+ - "microchip,mcp25625" for MCP25625.
- reg: SPI chip select.
- clocks: The clock feeding the CAN controller.
- interrupts: Should contain IRQ line for the CAN controller.
diff --git a/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt
new file mode 100644
index 000000000000..d77e3f26f9e6
--- /dev/null
+++ b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt
@@ -0,0 +1,21 @@
+* Freescale(NXP) IMX8 DDR performance monitor
+
+Required properties:
+
+- compatible: should be one of:
+ "fsl,imx8-ddr-pmu"
+ "fsl,imx8m-ddr-pmu"
+
+- reg: physical address and size
+
+- interrupts: single interrupt
+ generated by the control block
+
+Example:
+
+ ddr-pmu@5c020000 {
+ compatible = "fsl,imx8-ddr-pmu";
+ reg = <0x5c020000 0x10000>;
+ interrupt-parent = <&gic>;
+ interrupts = <GIC_SPI 131 IRQ_TYPE_LEVEL_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt b/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
index 7d9d3f90641b..493bec80d59b 100644
--- a/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
+++ b/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
@@ -2,10 +2,7 @@ Ingenic JZ47xx PWM Controller
=============================
Required properties:
-- compatible: One of:
- * "ingenic,jz4740-pwm"
- * "ingenic,jz4770-pwm"
- * "ingenic,jz4780-pwm"
+- compatible: Should be "ingenic,jz4740-pwm"
- #pwm-cells: Should be 3. See pwm.txt in this directory for a description
of the cells format.
- clocks : phandle to the external clock.
diff --git a/Documentation/devicetree/bindings/pwm/pwm-sifive.txt b/Documentation/devicetree/bindings/pwm/pwm-sifive.txt
new file mode 100644
index 000000000000..36447e3c9378
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-sifive.txt
@@ -0,0 +1,33 @@
+SiFive PWM controller
+
+Unlike most other PWM controllers, the SiFive PWM controller currently only
+supports one period for all channels in the PWM. All PWMs need to run at
+the same period. The period also has significant restrictions on the values
+it can achieve, which the driver rounds to the nearest achievable period.
+PWM RTL that corresponds to the IP block version numbers can be found
+here:
+
+https://github.com/sifive/sifive-blocks/tree/master/src/main/scala/devices/pwm
+
+Required properties:
+- compatible: Should be "sifive,<chip>-pwm" and "sifive,pwm<version>".
+ Supported compatible strings are: "sifive,fu540-c000-pwm" for the SiFive
+ PWM v0 as integrated onto the SiFive FU540 chip, and "sifive,pwm0" for the
+ SiFive PWM v0 IP block with no chip integration tweaks.
+ Please refer to sifive-blocks-ip-versioning.txt for details.
+- reg: physical base address and length of the controller's registers
+- clocks: Should contain a clock identifier for the PWM's parent clock.
+- #pwm-cells: Should be 3. See pwm.txt in this directory
+ for a description of the cell format.
+- interrupts: one interrupt per PWM channel
+
+Examples:
+
+pwm: pwm@10020000 {
+ compatible = "sifive,fu540-c000-pwm", "sifive,pwm0";
+ reg = <0x0 0x10020000 0x0 0x1000>;
+ clocks = <&tlclk>;
+ interrupt-parent = <&plic>;
+ interrupts = <42 43 44 45>;
+ #pwm-cells = <3>;
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt b/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
index bd23302e84be..6521bc44a74e 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
@@ -11,8 +11,10 @@ Required parameters:
bindings defined in pwm.txt.
Optional properties:
-- pinctrl-names: Set to "default".
-- pinctrl-0: Phandle pointing to pin configuration node for PWM.
+- pinctrl-names: Set to "default". An additional "sleep" state can be
+ defined to set pins in sleep state when in low power.
+- pinctrl-n: Phandle(s) pointing to pin configuration node for PWM,
+ respectively for "default" and "sleep" states.
Example:
timer@40002400 {
@@ -21,7 +23,8 @@ Example:
pwm {
compatible = "st,stm32-pwm-lp";
#pwm-cells = <3>;
- pinctrl-names = "default";
+ pinctrl-names = "default", "sleep";
pinctrl-0 = <&lppwm1_pins>;
+ pinctrl-1 = <&lppwm1_sleep_pins>;
};
};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-stm32.txt b/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
index 3e6d55018d7a..a8690bfa5e1f 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
@@ -8,6 +8,8 @@ Required parameters:
- pinctrl-names: Set to "default".
- pinctrl-0: List of phandles pointing to pin configuration nodes for PWM module.
For Pinctrl properties see ../pinctrl/pinctrl-bindings.txt
+- #pwm-cells: Should be set to 3. This PWM chip uses the default 3 cells
+ bindings defined in pwm.txt.
Optional parameters:
- st,breakinput: One or two <index level filter> to describe break input configurations.
@@ -28,6 +30,7 @@ Example:
pwm {
compatible = "st,stm32-pwm";
+ #pwm-cells = <3>;
pinctrl-0 = <&pwm1_pins>;
pinctrl-names = "default";
st,breakinput = <0 1 5>;
diff --git a/Documentation/devicetree/bindings/riscv/cpus.yaml b/Documentation/devicetree/bindings/riscv/cpus.yaml
new file mode 100644
index 000000000000..f97a4ecd7b91
--- /dev/null
+++ b/Documentation/devicetree/bindings/riscv/cpus.yaml
@@ -0,0 +1,170 @@
+# SPDX-License-Identifier: (GPL-2.0 OR MIT)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/riscv/cpus.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: RISC-V bindings for 'cpus' DT nodes
+
+maintainers:
+ - Paul Walmsley <paul.walmsley@sifive.com>
+ - Palmer Dabbelt <palmer@sifive.com>
+
+allOf:
+ - $ref: /schemas/cpus.yaml#
+
+properties:
+ $nodename:
+ const: cpus
+ description: Container of cpu nodes
+
+ '#address-cells':
+ const: 1
+ description: |
+ A single unsigned 32-bit integer uniquely identifies each RISC-V
+ hart in a system. (See the "reg" node under the "cpu" node,
+ below).
+
+ '#size-cells':
+ const: 0
+
+patternProperties:
+ '^cpu@[0-9a-f]+$':
+ properties:
+ compatible:
+ type: array
+ items:
+ - enum:
+ - sifive,rocket0
+ - sifive,e5
+ - sifive,e51
+ - sifive,u54-mc
+ - sifive,u54
+ - sifive,u5
+ - const: riscv
+ description:
+ Identifies that the hart uses the RISC-V instruction set
+ and identifies the type of the hart.
+
+ mmu-type:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum:
+ - riscv,sv32
+ - riscv,sv39
+ - riscv,sv48
+ description:
+ Identifies the MMU address translation mode used on this
+ hart. These values originate from the RISC-V Privileged
+ Specification document, available from
+ https://riscv.org/specifications/
+
+ riscv,isa:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum:
+ - rv64imac
+ - rv64imafdc
+ description:
+ Identifies the specific RISC-V instruction set architecture
+ supported by the hart. These are documented in the RISC-V
+ User-Level ISA document, available from
+ https://riscv.org/specifications/
+
+ timebase-frequency:
+ type: integer
+ minimum: 1
+ description:
+ Specifies the clock frequency of the system timer in Hz.
+ This value is common to all harts on a single system image.
+
+ interrupt-controller:
+ type: object
+ description: Describes the CPU's local interrupt controller
+
+ properties:
+ '#interrupt-cells':
+ const: 1
+
+ compatible:
+ const: riscv,cpu-intc
+
+ interrupt-controller: true
+
+ required:
+ - '#interrupt-cells'
+ - compatible
+ - interrupt-controller
+
+ required:
+ - riscv,isa
+ - timebase-frequency
+ - interrupt-controller
+
+examples:
+ - |
+ // Example 1: SiFive Freedom U540G Development Kit
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ timebase-frequency = <1000000>;
+ cpu@0 {
+ clock-frequency = <0>;
+ compatible = "sifive,rocket0", "riscv";
+ device_type = "cpu";
+ i-cache-block-size = <64>;
+ i-cache-sets = <128>;
+ i-cache-size = <16384>;
+ reg = <0>;
+ riscv,isa = "rv64imac";
+ cpu_intc0: interrupt-controller {
+ #interrupt-cells = <1>;
+ compatible = "riscv,cpu-intc";
+ interrupt-controller;
+ };
+ };
+ cpu@1 {
+ clock-frequency = <0>;
+ compatible = "sifive,rocket0", "riscv";
+ d-cache-block-size = <64>;
+ d-cache-sets = <64>;
+ d-cache-size = <32768>;
+ d-tlb-sets = <1>;
+ d-tlb-size = <32>;
+ device_type = "cpu";
+ i-cache-block-size = <64>;
+ i-cache-sets = <64>;
+ i-cache-size = <32768>;
+ i-tlb-sets = <1>;
+ i-tlb-size = <32>;
+ mmu-type = "riscv,sv39";
+ reg = <1>;
+ riscv,isa = "rv64imafdc";
+ tlb-split;
+ cpu_intc1: interrupt-controller {
+ #interrupt-cells = <1>;
+ compatible = "riscv,cpu-intc";
+ interrupt-controller;
+ };
+ };
+ };
+
+ - |
+ // Example 2: Spike ISA Simulator with 1 Hart
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ cpu@0 {
+ device_type = "cpu";
+ reg = <0>;
+ compatible = "riscv";
+ riscv,isa = "rv64imafdc";
+ mmu-type = "riscv,sv48";
+ interrupt-controller {
+ #interrupt-cells = <1>;
+ interrupt-controller;
+ compatible = "riscv,cpu-intc";
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/riscv/sifive.yaml b/Documentation/devicetree/bindings/riscv/sifive.yaml
new file mode 100644
index 000000000000..9d17dc2f3f84
--- /dev/null
+++ b/Documentation/devicetree/bindings/riscv/sifive.yaml
@@ -0,0 +1,25 @@
+# SPDX-License-Identifier: (GPL-2.0 OR MIT)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/riscv/sifive.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SiFive SoC-based boards
+
+maintainers:
+ - Paul Walmsley <paul.walmsley@sifive.com>
+ - Palmer Dabbelt <palmer@sifive.com>
+
+description:
+ SiFive SoC-based boards
+
+properties:
+ $nodename:
+ const: '/'
+ compatible:
+ items:
+ - enum:
+ - sifive,freedom-unleashed-a00
+ - const: sifive,fu540-c000
+ - const: sifive,fu540
+...
diff --git a/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt b/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
index 0014da9145af..c223e54452da 100644
--- a/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
+++ b/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
@@ -2,6 +2,7 @@ HWRNG support for the iproc-rng200 driver
Required properties:
- compatible : Must be one of:
+ "brcm,bcm7211-rng200"
"brcm,bcm7278-rng200"
"brcm,iproc-rng200"
- reg : base address and size of control register block
diff --git a/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt b/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt
new file mode 100644
index 000000000000..d57659996d62
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt
@@ -0,0 +1,25 @@
+NXP System Counter Module(sys_ctr)
+
+The system counter(sys_ctr) is a programmable system counter which provides
+a shared time base to Cortex A15, A7, A53, A73, etc. it is intended for use in
+applications where the counter is always powered and support multiple,
+unrelated clocks. The compare frame inside can be used for timer purpose.
+
+Required properties:
+
+- compatible : should be "nxp,sysctr-timer"
+- reg : Specifies the base physical address and size of the comapre
+ frame and the counter control, read & compare.
+- interrupts : should be the first compare frames' interrupt
+- clocks : Specifies the counter clock.
+- clock-names: Specifies the clock's name of this module
+
+Example:
+
+ system_counter: timer@306a0000 {
+ compatible = "nxp,sysctr-timer";
+ reg = <0x306a0000 0x20000>;/* system-counter-rd & compare */
+ clocks = <&clk_8m>;
+ clock-names = "per";
+ interrupts = <GIC_SPI 47 IRQ_TYPE_LEVEL_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/trivial-devices.yaml b/Documentation/devicetree/bindings/trivial-devices.yaml
index 747fd3f689dc..2e742d399e87 100644
--- a/Documentation/devicetree/bindings/trivial-devices.yaml
+++ b/Documentation/devicetree/bindings/trivial-devices.yaml
@@ -52,6 +52,10 @@ properties:
- at,24c08
# i2c trusted platform module (TPM)
- atmel,at97sc3204t
+ # i2c h/w symmetric crypto module
+ - atmel,atsha204a
+ # i2c h/w elliptic curve crypto module
+ - atmel,atecc508a
# CM32181: Ambient Light Sensor
- capella,cm32181
# CM3232: Ambient Light Sensor
diff --git a/Documentation/driver-api/s390-drivers.rst b/Documentation/driver-api/s390-drivers.rst
index 30e6aa7e160b..5158577bc29b 100644
--- a/Documentation/driver-api/s390-drivers.rst
+++ b/Documentation/driver-api/s390-drivers.rst
@@ -27,7 +27,7 @@ not strictly considered I/O devices. They are considered here as well,
although they are not the focus of this document.
Some additional information can also be found in the kernel source under
-Documentation/s390/driver-model.txt.
+Documentation/s390/driver-model.rst.
The css bus
===========
@@ -38,7 +38,7 @@ into several categories:
* Standard I/O subchannels, for use by the system. They have a child
device on the ccw bus and are described below.
* I/O subchannels bound to the vfio-ccw driver. See
- Documentation/s390/vfio-ccw.txt.
+ Documentation/s390/vfio-ccw.rst.
* Message subchannels. No Linux driver currently exists.
* CHSC subchannels (at most one). The chsc subchannel driver can be used
to send asynchronous chsc commands.
diff --git a/Documentation/driver-api/uio-howto.rst b/Documentation/driver-api/uio-howto.rst
index 25f50eace28b..8fecfa11d4ff 100644
--- a/Documentation/driver-api/uio-howto.rst
+++ b/Documentation/driver-api/uio-howto.rst
@@ -276,8 +276,8 @@ fields of ``struct uio_mem``:
- ``int memtype``: Required if the mapping is used. Set this to
``UIO_MEM_PHYS`` if you you have physical memory on your card to be
mapped. Use ``UIO_MEM_LOGICAL`` for logical memory (e.g. allocated
- with :c:func:`kmalloc()`). There's also ``UIO_MEM_VIRTUAL`` for
- virtual memory.
+ with :c:func:`__get_free_pages()` but not kmalloc()). There's also
+ ``UIO_MEM_VIRTUAL`` for virtual memory.
- ``phys_addr_t addr``: Required if the mapping is used. Fill in the
address of your memory block. This address is the one that appears in
diff --git a/Documentation/fb/fbcon.txt b/Documentation/fb/fbcon.txt
index 60a5ec04e8f0..5a865437b33f 100644
--- a/Documentation/fb/fbcon.txt
+++ b/Documentation/fb/fbcon.txt
@@ -79,7 +79,7 @@ C. Boot options
Select the initial font to use. The value 'name' can be any of the
compiled-in fonts: 10x18, 6x10, 7x14, Acorn8x8, MINI4x6,
- PEARL8x8, ProFont6x11, SUN12x22, SUN8x16, VGA8x16, VGA8x8.
+ PEARL8x8, ProFont6x11, SUN12x22, SUN8x16, TER16x32, VGA8x16, VGA8x8.
Note, not all drivers can handle font with widths not divisible by 8,
such as vga16fb.
diff --git a/Documentation/filesystems/overlayfs.txt b/Documentation/filesystems/overlayfs.txt
index eef7d9d259e8..1da2f1668f08 100644
--- a/Documentation/filesystems/overlayfs.txt
+++ b/Documentation/filesystems/overlayfs.txt
@@ -336,8 +336,20 @@ the copied layers will fail the verification of the lower root file handle.
Non-standard behavior
---------------------
-Overlayfs can now act as a POSIX compliant filesystem with the following
-features turned on:
+Current version of overlayfs can act as a mostly POSIX compliant
+filesystem.
+
+This is the list of cases that overlayfs doesn't currently handle:
+
+a) POSIX mandates updating st_atime for reads. This is currently not
+done in the case when the file resides on a lower layer.
+
+b) If a file residing on a lower layer is opened for read-only and then
+memory mapped with MAP_SHARED, then subsequent changes to the file are not
+reflected in the memory mapping.
+
+The following options allow overlayfs to act more like a standards
+compliant filesystem:
1) "redirect_dir"
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 66cad5c86171..a226061fa109 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -45,6 +45,7 @@ Table of Contents
3.9 /proc/<pid>/map_files - Information about memory mapped files
3.10 /proc/<pid>/timerslack_ns - Task timerslack value
3.11 /proc/<pid>/patch_state - Livepatch patch operation state
+ 3.12 /proc/<pid>/arch_status - Task architecture specific information
4 Configuring procfs
4.1 Mount options
@@ -1948,6 +1949,45 @@ patched. If the patch is being enabled, then the task has already been
patched. If the patch is being disabled, then the task hasn't been
unpatched yet.
+3.12 /proc/<pid>/arch_status - task architecture specific status
+-------------------------------------------------------------------
+When CONFIG_PROC_PID_ARCH_STATUS is enabled, this file displays the
+architecture specific status of the task.
+
+Example
+-------
+ $ cat /proc/6753/arch_status
+ AVX512_elapsed_ms: 8
+
+Description
+-----------
+
+x86 specific entries:
+---------------------
+ AVX512_elapsed_ms:
+ ------------------
+ If AVX512 is supported on the machine, this entry shows the milliseconds
+ elapsed since the last time AVX512 usage was recorded. The recording
+ happens on a best effort basis when a task is scheduled out. This means
+ that the value depends on two factors:
+
+ 1) The time which the task spent on the CPU without being scheduled
+ out. With CPU isolation and a single runnable task this can take
+ several seconds.
+
+ 2) The time since the task was scheduled out last. Depending on the
+ reason for being scheduled out (time slice exhausted, syscall ...)
+ this can be arbitrary long time.
+
+ As a consequence the value cannot be considered precise and authoritative
+ information. The application which uses this information has to be aware
+ of the overall scenario on the system in order to determine whether a
+ task is a real AVX512 user or not. Precise information can be obtained
+ with performance counters.
+
+ A special value of '-1' indicates that no AVX512 usage was recorded, thus
+ the task is unlikely an AVX512 user, but depends on the workload and the
+ scheduling scenario, it also could be a false negative mentioned above.
------------------------------------------------------------------------------
Configuring procfs
diff --git a/Documentation/filesystems/tmpfs.txt b/Documentation/filesystems/tmpfs.txt
index d06e9a59a9f4..cad797a8a39e 100644
--- a/Documentation/filesystems/tmpfs.txt
+++ b/Documentation/filesystems/tmpfs.txt
@@ -98,7 +98,7 @@ A memory policy with a valid NodeList will be saved, as specified, for
use at file creation time. When a task allocates a file in the file
system, the mount option memory policy will be applied with a NodeList,
if any, modified by the calling task's cpuset constraints
-[See Documentation/cgroup-v1/cpusets.txt] and any optional flags, listed
+[See Documentation/cgroup-v1/cpusets.rst] and any optional flags, listed
below. If the resulting NodeLists is the empty set, the effective memory
policy for the file will revert to "default" policy.
diff --git a/Documentation/firmware-guide/acpi/enumeration.rst b/Documentation/firmware-guide/acpi/enumeration.rst
index 6b32b7be8c85..850be9696931 100644
--- a/Documentation/firmware-guide/acpi/enumeration.rst
+++ b/Documentation/firmware-guide/acpi/enumeration.rst
@@ -423,7 +423,7 @@ will be enumerated to depends on the device ID returned by _HID.
For example, the following ACPI sample might be used to enumerate an lm75-type
I2C temperature sensor and match it to the driver using the Device Tree
-namespace link:
+namespace link::
Device (TMP0)
{
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt
index 6cced88de6da..75ef063622d2 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/laptops/thinkpad-acpi.txt
@@ -679,7 +679,7 @@ status as "unknown". The available commands are:
sysfs notes:
The ThinkLight sysfs interface is documented by the LED class
-documentation, in Documentation/leds/leds-class.txt. The ThinkLight LED name
+documentation, in Documentation/leds/leds-class.rst. The ThinkLight LED name
is "tpacpi::thinklight".
Due to limitations in the sysfs LED class, if the status of the ThinkLight
@@ -779,7 +779,7 @@ All of the above can be turned on and off and can be made to blink.
sysfs notes:
The ThinkPad LED sysfs interface is described in detail by the LED class
-documentation, in Documentation/leds/leds-class.txt.
+documentation, in Documentation/leds/leds-class.rst.
The LEDs are named (in LED ID order, from 0 to 12):
"tpacpi::power", "tpacpi:orange:batt", "tpacpi:green:batt",
diff --git a/Documentation/leds/index.rst b/Documentation/leds/index.rst
new file mode 100644
index 000000000000..9885f7c1b75d
--- /dev/null
+++ b/Documentation/leds/index.rst
@@ -0,0 +1,25 @@
+:orphan:
+
+====
+LEDs
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ leds-class
+ leds-class-flash
+ ledtrig-oneshot
+ ledtrig-transient
+ ledtrig-usbport
+
+ uleds
+
+ leds-blinkm
+ leds-lm3556
+ leds-lp3944
+ leds-lp5521
+ leds-lp5523
+ leds-lp5562
+ leds-lp55xx
+ leds-mlxcpld
diff --git a/Documentation/leds/leds-blinkm.txt b/Documentation/leds/leds-blinkm.rst
index 9dd92f4cf4e1..c74b5bc877b1 100644
--- a/Documentation/leds/leds-blinkm.txt
+++ b/Documentation/leds/leds-blinkm.rst
@@ -1,3 +1,7 @@
+==================
+Leds BlinkM driver
+==================
+
The leds-blinkm driver supports the devices of the BlinkM family.
They are RGB-LED modules driven by a (AT)tiny microcontroller and
@@ -14,35 +18,36 @@ The interface this driver provides is 2-fold:
a) LED class interface for use with triggers
############################################
-The registration follows the scheme:
-blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
+The registration follows the scheme::
+
+ blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
-$ ls -h /sys/class/leds/blinkm-6-*
-/sys/class/leds/blinkm-6-9-blue:
-brightness device max_brightness power subsystem trigger uevent
+ $ ls -h /sys/class/leds/blinkm-6-*
+ /sys/class/leds/blinkm-6-9-blue:
+ brightness device max_brightness power subsystem trigger uevent
-/sys/class/leds/blinkm-6-9-green:
-brightness device max_brightness power subsystem trigger uevent
+ /sys/class/leds/blinkm-6-9-green:
+ brightness device max_brightness power subsystem trigger uevent
-/sys/class/leds/blinkm-6-9-red:
-brightness device max_brightness power subsystem trigger uevent
+ /sys/class/leds/blinkm-6-9-red:
+ brightness device max_brightness power subsystem trigger uevent
(same is /sys/bus/i2c/devices/6-0009/leds)
We can control the colors separated into red, green and blue and
assign triggers on each color.
-E.g.:
+E.g.::
-$ cat blinkm-6-9-blue/brightness
-05
+ $ cat blinkm-6-9-blue/brightness
+ 05
-$ echo 200 > blinkm-6-9-blue/brightness
-$
+ $ echo 200 > blinkm-6-9-blue/brightness
+ $
-$ modprobe ledtrig-heartbeat
-$ echo heartbeat > blinkm-6-9-green/trigger
-$
+ $ modprobe ledtrig-heartbeat
+ $ echo heartbeat > blinkm-6-9-green/trigger
+ $
b) Sysfs group to control rgb, fade, hsb, scripts ...
@@ -52,29 +57,28 @@ This extended interface is available as folder blinkm
in the sysfs folder of the I2C device.
E.g. below /sys/bus/i2c/devices/6-0009/blinkm
-$ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
-blue green red test
+ $ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
+ blue green red test
Currently supported is just setting red, green, blue
and a test sequence.
-E.g.:
+E.g.::
-$ cat *
-00
-00
-00
-#Write into test to start test sequence!#
+ $ cat *
+ 00
+ 00
+ 00
+ #Write into test to start test sequence!#
-$ echo 1 > test
-$
+ $ echo 1 > test
+ $
-$ echo 255 > red
-$
+ $ echo 255 > red
+ $
as of 6/2012
dl9pf <at> gmx <dot> de
-
diff --git a/Documentation/leds/leds-class-flash.txt b/Documentation/leds/leds-class-flash.rst
index 8da3c6f4b60b..6ec12c5a1a0e 100644
--- a/Documentation/leds/leds-class-flash.txt
+++ b/Documentation/leds/leds-class-flash.rst
@@ -1,9 +1,9 @@
-
+==============================
Flash LED handling under Linux
==============================
Some LED devices provide two modes - torch and flash. In the LED subsystem
-those modes are supported by LED class (see Documentation/leds/leds-class.txt)
+those modes are supported by LED class (see Documentation/leds/leds-class.rst)
and LED Flash class respectively. The torch mode related features are enabled
by default and the flash ones only if a driver declares it by setting
LED_DEV_CAP_FLASH flag.
@@ -14,6 +14,7 @@ registered in the LED subsystem with led_classdev_flash_register function.
Following sysfs attributes are exposed for controlling flash LED devices:
(see Documentation/ABI/testing/sysfs-class-led-flash)
+
- flash_brightness
- max_flash_brightness
- flash_timeout
@@ -31,30 +32,46 @@ be defined in the kernel config.
The driver must call the v4l2_flash_init function to get registered in the
V4L2 subsystem. The function takes six arguments:
-- dev : flash device, e.g. an I2C device
-- of_node : of_node of the LED, may be NULL if the same as device's
-- fled_cdev : LED flash class device to wrap
-- iled_cdev : LED flash class device representing indicator LED associated with
- fled_cdev, may be NULL
-- ops : V4L2 specific ops
- * external_strobe_set - defines the source of the flash LED strobe -
+
+- dev:
+ flash device, e.g. an I2C device
+- of_node:
+ of_node of the LED, may be NULL if the same as device's
+- fled_cdev:
+ LED flash class device to wrap
+- iled_cdev:
+ LED flash class device representing indicator LED associated with
+ fled_cdev, may be NULL
+- ops:
+ V4L2 specific ops
+
+ * external_strobe_set
+ defines the source of the flash LED strobe -
V4L2_CID_FLASH_STROBE control or external source, typically
a sensor, which makes it possible to synchronise the flash
strobe start with exposure start,
- * intensity_to_led_brightness and led_brightness_to_intensity - perform
+ * intensity_to_led_brightness and led_brightness_to_intensity
+ perform
enum led_brightness <-> V4L2 intensity conversion in a device
specific manner - they can be used for devices with non-linear
LED current scale.
-- config : configuration for V4L2 Flash sub-device
- * dev_name - the name of the media entity, unique in the system,
- * flash_faults - bitmask of flash faults that the LED flash class
+- config:
+ configuration for V4L2 Flash sub-device
+
+ * dev_name
+ the name of the media entity, unique in the system,
+ * flash_faults
+ bitmask of flash faults that the LED flash class
device can report; corresponding LED_FAULT* bit definitions are
available in <linux/led-class-flash.h>,
- * torch_intensity - constraints for the LED in TORCH mode
+ * torch_intensity
+ constraints for the LED in TORCH mode
in microamperes,
- * indicator_intensity - constraints for the indicator LED
+ * indicator_intensity
+ constraints for the indicator LED
in microamperes,
- * has_external_strobe - determines whether the flash strobe source
+ * has_external_strobe
+ determines whether the flash strobe source
can be switched to external,
On remove the v4l2_flash_release function has to be called, which takes one
diff --git a/Documentation/leds/leds-class.txt b/Documentation/leds/leds-class.rst
index 8b39cc6b03ee..df0120a1ee3c 100644
--- a/Documentation/leds/leds-class.txt
+++ b/Documentation/leds/leds-class.rst
@@ -1,4 +1,4 @@
-
+========================
LED handling under Linux
========================
@@ -43,7 +43,7 @@ LED Device Naming
Is currently of the form:
-"devicename:colour:function"
+ "devicename:colour:function"
There have been calls for LED properties such as colour to be exported as
individual led class attributes. As a solution which doesn't incur as much
@@ -57,9 +57,12 @@ Brightness setting API
LED subsystem core exposes following API for setting brightness:
- - led_set_brightness : it is guaranteed not to sleep, passing LED_OFF stops
+ - led_set_brightness:
+ it is guaranteed not to sleep, passing LED_OFF stops
blinking,
- - led_set_brightness_sync : for use cases when immediate effect is desired -
+
+ - led_set_brightness_sync:
+ for use cases when immediate effect is desired -
it can block the caller for the time required for accessing
device registers and can sleep, passing LED_OFF stops hardware
blinking, returns -EBUSY if software blink fallback is enabled.
@@ -70,7 +73,7 @@ LED registration API
A driver wanting to register a LED classdev for use by other drivers /
userspace needs to allocate and fill a led_classdev struct and then call
-[devm_]led_classdev_register. If the non devm version is used the driver
+`[devm_]led_classdev_register`. If the non devm version is used the driver
must call led_classdev_unregister from its remove function before
free-ing the led_classdev struct.
@@ -94,7 +97,7 @@ with brightness value LED_OFF, which should stop any software
timers that may have been required for blinking.
The blink_set() function should choose a user friendly blinking value
-if it is called with *delay_on==0 && *delay_off==0 parameters. In this
+if it is called with `*delay_on==0` && `*delay_off==0` parameters. In this
case the driver should give back the chosen value through delay_on and
delay_off parameters to the leds subsystem.
diff --git a/Documentation/leds/leds-lm3556.txt b/Documentation/leds/leds-lm3556.rst
index 62278e871b50..1ef17d7d800e 100644
--- a/Documentation/leds/leds-lm3556.txt
+++ b/Documentation/leds/leds-lm3556.rst
@@ -1,68 +1,118 @@
+========================
Kernel driver for lm3556
========================
-*Texas Instrument:
- 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
+* Texas Instrument:
+ 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
* Datasheet: http://www.national.com/ds/LM/LM3556.pdf
Authors:
- Daniel Jeong
+ - Daniel Jeong
+
Contact:Daniel Jeong(daniel.jeong-at-ti.com, gshark.jeong-at-gmail.com)
Description
-----------
There are 3 functions in LM3556, Flash, Torch and Indicator.
-FLASH MODE
+Flash Mode
+^^^^^^^^^^
+
In Flash Mode, the LED current source(LED) provides 16 target current levels
from 93.75 mA to 1500 mA.The Flash currents are adjusted via the CURRENT
CONTROL REGISTER(0x09).Flash mode is activated by the ENABLE REGISTER(0x0A),
or by pulling the STROBE pin HIGH.
+
LM3556 Flash can be controlled through sys/class/leds/flash/brightness file
+
* if STROBE pin is enabled, below example control brightness only, and
-ON / OFF will be controlled by STROBE pin.
+ ON / OFF will be controlled by STROBE pin.
Flash Example:
-OFF : #echo 0 > sys/class/leds/flash/brightness
-93.75 mA: #echo 1 > sys/class/leds/flash/brightness
-... .....
-1500 mA: #echo 16 > sys/class/leds/flash/brightness
-TORCH MODE
+OFF::
+
+ #echo 0 > sys/class/leds/flash/brightness
+
+93.75 mA::
+
+ #echo 1 > sys/class/leds/flash/brightness
+
+...
+
+1500 mA::
+
+ #echo 16 > sys/class/leds/flash/brightness
+
+Torch Mode
+^^^^^^^^^^
+
In Torch Mode, the current source(LED) is programmed via the CURRENT CONTROL
REGISTER(0x09).Torch Mode is activated by the ENABLE REGISTER(0x0A) or by the
hardware TORCH input.
+
LM3556 torch can be controlled through sys/class/leds/torch/brightness file.
* if TORCH pin is enabled, below example control brightness only,
and ON / OFF will be controlled by TORCH pin.
Torch Example:
-OFF : #echo 0 > sys/class/leds/torch/brightness
-46.88 mA: #echo 1 > sys/class/leds/torch/brightness
-... .....
-375 mA : #echo 8 > sys/class/leds/torch/brightness
-INDICATOR MODE
+OFF::
+
+ #echo 0 > sys/class/leds/torch/brightness
+
+46.88 mA::
+
+ #echo 1 > sys/class/leds/torch/brightness
+
+...
+
+375 mA::
+
+ #echo 8 > sys/class/leds/torch/brightness
+
+Indicator Mode
+^^^^^^^^^^^^^^
+
Indicator pattern can be set through sys/class/leds/indicator/pattern file,
and 4 patterns are pre-defined in indicator_pattern array.
+
According to N-lank, Pulse time and N Period values, different pattern wiill
be generated.If you want new patterns for your own device, change
indicator_pattern array with your own values and INDIC_PATTERN_SIZE.
+
Please refer datasheet for more detail about N-Blank, Pulse time and N Period.
Indicator pattern example:
-pattern 0: #echo 0 > sys/class/leds/indicator/pattern
-....
-pattern 3: #echo 3 > sys/class/leds/indicator/pattern
+
+pattern 0::
+
+ #echo 0 > sys/class/leds/indicator/pattern
+
+...
+
+pattern 3::
+
+ #echo 3 > sys/class/leds/indicator/pattern
Indicator brightness can be controlled through
sys/class/leds/indicator/brightness file.
Example:
-OFF : #echo 0 > sys/class/leds/indicator/brightness
-5.86 mA : #echo 1 > sys/class/leds/indicator/brightness
-........
-46.875mA : #echo 8 > sys/class/leds/indicator/brightness
+
+OFF::
+
+ #echo 0 > sys/class/leds/indicator/brightness
+
+5.86 mA::
+
+ #echo 1 > sys/class/leds/indicator/brightness
+
+...
+
+46.875mA::
+
+ #echo 8 > sys/class/leds/indicator/brightness
Notes
-----
@@ -70,7 +120,8 @@ Driver expects it is registered using the i2c_board_info mechanism.
To register the chip at address 0x63 on specific adapter, set the platform data
according to include/linux/platform_data/leds-lm3556.h, set the i2c board info
-Example:
+Example::
+
static struct i2c_board_info board_i2c_ch4[] __initdata = {
{
I2C_BOARD_INFO(LM3556_NAME, 0x63),
@@ -80,6 +131,7 @@ Example:
and register it in the platform init function
-Example:
+Example::
+
board_register_i2c_bus(4, 400,
board_i2c_ch4, ARRAY_SIZE(board_i2c_ch4));
diff --git a/Documentation/leds/leds-lp3944.txt b/Documentation/leds/leds-lp3944.rst
index e88ac3b60c08..c2f87dc1a3a9 100644
--- a/Documentation/leds/leds-lp3944.txt
+++ b/Documentation/leds/leds-lp3944.rst
@@ -1,14 +1,20 @@
+====================
Kernel driver lp3944
====================
* National Semiconductor LP3944 Fun-light Chip
+
Prefix: 'lp3944'
+
Addresses scanned: None (see the Notes section below)
- Datasheet: Publicly available at the National Semiconductor website
- http://www.national.com/pf/LP/LP3944.html
+
+ Datasheet:
+
+ Publicly available at the National Semiconductor website
+ http://www.national.com/pf/LP/LP3944.html
Authors:
- Antonio Ospite <ospite@studenti.unina.it>
+ Antonio Ospite <ospite@studenti.unina.it>
Description
@@ -19,8 +25,11 @@ is used as a led controller.
The DIM modes are used to set _blink_ patterns for leds, the pattern is
specified supplying two parameters:
- - period: from 0s to 1.6s
- - duty cycle: percentage of the period the led is on, from 0 to 100
+
+ - period:
+ from 0s to 1.6s
+ - duty cycle:
+ percentage of the period the led is on, from 0 to 100
Setting a led in DIM0 or DIM1 mode makes it blink according to the pattern.
See the datasheet for details.
@@ -35,7 +44,7 @@ The chip is used mainly in embedded contexts, so this driver expects it is
registered using the i2c_board_info mechanism.
To register the chip at address 0x60 on adapter 0, set the platform data
-according to include/linux/leds-lp3944.h, set the i2c board info:
+according to include/linux/leds-lp3944.h, set the i2c board info::
static struct i2c_board_info a910_i2c_board_info[] __initdata = {
{
@@ -44,7 +53,7 @@ according to include/linux/leds-lp3944.h, set the i2c board info:
},
};
-and register it in the platform init function
+and register it in the platform init function::
i2c_register_board_info(0, a910_i2c_board_info,
ARRAY_SIZE(a910_i2c_board_info));
diff --git a/Documentation/leds/leds-lp5521.rst b/Documentation/leds/leds-lp5521.rst
new file mode 100644
index 000000000000..0432615b083d
--- /dev/null
+++ b/Documentation/leds/leds-lp5521.rst
@@ -0,0 +1,115 @@
+========================
+Kernel driver for lp5521
+========================
+
+* National Semiconductor LP5521 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5521.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+
+LP5521 can drive up to 3 channels. Leds can be controlled directly via
+the led class control interface. Channels have generic names:
+lp5521:channelx, where x is 0 .. 2
+
+All three channels can be also controlled using the engine micro programs.
+More details of the instructions can be found from the public data sheet.
+
+LP5521 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode and enginex_load
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ store program (visible only in engine load mode)
+
+ Example (start to blink the channel 2 led)::
+
+ cd /sys/class/leds/lp5521:channel2/device
+ echo "load" > engine3_mode
+ echo "037f4d0003ff6000" > engine3_load
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+sysfs contains a selftest entry.
+
+The test communicates with the chip and checks that
+the clock mode is automatically set to the requested one.
+
+Each channel has its own led current settings.
+
+- /sys/class/leds/lp5521:channel0/led_current - RW
+- /sys/class/leds/lp5521:channel0/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+example platform data::
+
+ static struct lp55xx_led_config lp5521_led_config[] = {
+ {
+ .name = "red",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ }, {
+ .name = "green",
+ .chan_nr = 1,
+ .led_current = 0,
+ .max_current = 130,
+ }, {
+ .name = "blue",
+ .chan_nr = 2,
+ .led_current = 0,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5521_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5521_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5521_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5521_platform_data = {
+ .led_config = lp5521_led_config,
+ .num_channels = ARRAY_SIZE(lp5521_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5521_setup,
+ .release_resources = lp5521_release,
+ .enable = lp5521_enable,
+ };
+
+Note:
+ chan_nr can have values between 0 and 2.
+ The name of each channel can be configurable.
+ If the name field is not defined, the default name will be set to 'xxxx:channelN'
+ (XXXX : pdata->label or i2c client name, N : channel number)
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5521.txt b/Documentation/leds/leds-lp5521.txt
deleted file mode 100644
index d08d8c179f85..000000000000
--- a/Documentation/leds/leds-lp5521.txt
+++ /dev/null
@@ -1,101 +0,0 @@
-Kernel driver for lp5521
-========================
-
-* National Semiconductor LP5521 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5521.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-
-LP5521 can drive up to 3 channels. Leds can be controlled directly via
-the led class control interface. Channels have generic names:
-lp5521:channelx, where x is 0 .. 2
-
-All three channels can be also controlled using the engine micro programs.
-More details of the instructions can be found from the public data sheet.
-
-LP5521 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode and enginex_load
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : store program (visible only in engine load mode)
-
- Example (start to blink the channel 2 led):
- cd /sys/class/leds/lp5521:channel2/device
- echo "load" > engine3_mode
- echo "037f4d0003ff6000" > engine3_load
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-sysfs contains a selftest entry.
-The test communicates with the chip and checks that
-the clock mode is automatically set to the requested one.
-
-Each channel has its own led current settings.
-/sys/class/leds/lp5521:channel0/led_current - RW
-/sys/class/leds/lp5521:channel0/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-example platform data:
-
-Note: chan_nr can have values between 0 and 2.
-The name of each channel can be configurable.
-If the name field is not defined, the default name will be set to 'xxxx:channelN'
-(XXXX : pdata->label or i2c client name, N : channel number)
-
-static struct lp55xx_led_config lp5521_led_config[] = {
- {
- .name = "red",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- }, {
- .name = "green",
- .chan_nr = 1,
- .led_current = 0,
- .max_current = 130,
- }, {
- .name = "blue",
- .chan_nr = 2,
- .led_current = 0,
- .max_current = 130,
- }
-};
-
-static int lp5521_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5521_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5521_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5521_platform_data = {
- .led_config = lp5521_led_config,
- .num_channels = ARRAY_SIZE(lp5521_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5521_setup,
- .release_resources = lp5521_release,
- .enable = lp5521_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5523.rst b/Documentation/leds/leds-lp5523.rst
new file mode 100644
index 000000000000..7d7362a1dd57
--- /dev/null
+++ b/Documentation/leds/leds-lp5523.rst
@@ -0,0 +1,147 @@
+========================
+Kernel driver for lp5523
+========================
+
+* National Semiconductor LP5523 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5523.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+LP5523 can drive up to 9 channels. Leds can be controlled directly via
+the led class control interface.
+The name of each channel is configurable in the platform data - name and label.
+There are three options to make the channel name.
+
+a) Define the 'name' in the platform data
+
+To make specific channel name, then use 'name' platform data.
+
+- /sys/class/leds/R1 (name: 'R1')
+- /sys/class/leds/B1 (name: 'B1')
+
+b) Use the 'label' with no 'name' field
+
+For one device name with channel number, then use 'label'.
+- /sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
+
+c) Default
+
+If both fields are NULL, 'lp5523' is used by default.
+- /sys/class/leds/lp5523:channelN (N: 0 ~ 8)
+
+LP5523 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode, enginex_load and enginex_leds
+
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ microcode load
+ enginex_leds:
+ led mux control
+
+ ::
+
+ cd /sys/class/leds/lp5523:channel2/device
+ echo "load" > engine3_mode
+ echo "9d80400004ff05ff437f0000" > engine3_load
+ echo "111111111" > engine3_leds
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+LP5523 has three master faders. If a channel is mapped to one of
+the master faders, its output is dimmed based on the value of the master
+fader.
+
+For example::
+
+ echo "123000123" > master_fader_leds
+
+creates the following channel-fader mappings::
+
+ channel 0,6 to master_fader1
+ channel 1,7 to master_fader2
+ channel 2,8 to master_fader3
+
+Then, to have 25% of the original output on channel 0,6::
+
+ echo 64 > master_fader1
+
+To have 0% of the original output (i.e. no output) channel 1,7::
+
+ echo 0 > master_fader2
+
+To have 100% of the original output (i.e. no dimming) on channel 2,8::
+
+ echo 255 > master_fader3
+
+To clear all master fader controls::
+
+ echo "000000000" > master_fader_leds
+
+Selftest uses always the current from the platform data.
+
+Each channel contains led current settings.
+- /sys/class/leds/lp5523:channel2/led_current - RW
+- /sys/class/leds/lp5523:channel2/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+Example platform data::
+
+ static struct lp55xx_led_config lp5523_led_config[] = {
+ {
+ .name = "D1",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ },
+ ...
+ {
+ .chan_nr = 8,
+ .led_current = 50,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5523_setup(void)
+ {
+ /* Setup HW resources */
+ }
+
+ static void lp5523_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5523_enable(bool state)
+ {
+ /* Control chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5523_platform_data = {
+ .led_config = lp5523_led_config,
+ .num_channels = ARRAY_SIZE(lp5523_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5523_setup,
+ .release_resources = lp5523_release,
+ .enable = lp5523_enable,
+ };
+
+Note
+ chan_nr can have values between 0 and 8.
diff --git a/Documentation/leds/leds-lp5523.txt b/Documentation/leds/leds-lp5523.txt
deleted file mode 100644
index 0961a060fc4d..000000000000
--- a/Documentation/leds/leds-lp5523.txt
+++ /dev/null
@@ -1,130 +0,0 @@
-Kernel driver for lp5523
-========================
-
-* National Semiconductor LP5523 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5523.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-LP5523 can drive up to 9 channels. Leds can be controlled directly via
-the led class control interface.
-The name of each channel is configurable in the platform data - name and label.
-There are three options to make the channel name.
-
-a) Define the 'name' in the platform data
-To make specific channel name, then use 'name' platform data.
-/sys/class/leds/R1 (name: 'R1')
-/sys/class/leds/B1 (name: 'B1')
-
-b) Use the 'label' with no 'name' field
-For one device name with channel number, then use 'label'.
-/sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
-
-c) Default
-If both fields are NULL, 'lp5523' is used by default.
-/sys/class/leds/lp5523:channelN (N: 0 ~ 8)
-
-LP5523 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode, enginex_load and enginex_leds
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : microcode load
- enginex_leds : led mux control
-
- cd /sys/class/leds/lp5523:channel2/device
- echo "load" > engine3_mode
- echo "9d80400004ff05ff437f0000" > engine3_load
- echo "111111111" > engine3_leds
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-LP5523 has three master faders. If a channel is mapped to one of
-the master faders, its output is dimmed based on the value of the master
-fader.
-
-For example,
-
- echo "123000123" > master_fader_leds
-
-creates the following channel-fader mappings:
-
- channel 0,6 to master_fader1
- channel 1,7 to master_fader2
- channel 2,8 to master_fader3
-
-Then, to have 25% of the original output on channel 0,6:
-
- echo 64 > master_fader1
-
-To have 0% of the original output (i.e. no output) channel 1,7:
-
- echo 0 > master_fader2
-
-To have 100% of the original output (i.e. no dimming) on channel 2,8:
-
- echo 255 > master_fader3
-
-To clear all master fader controls:
-
- echo "000000000" > master_fader_leds
-
-Selftest uses always the current from the platform data.
-
-Each channel contains led current settings.
-/sys/class/leds/lp5523:channel2/led_current - RW
-/sys/class/leds/lp5523:channel2/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-Example platform data:
-
-Note - chan_nr can have values between 0 and 8.
-
-static struct lp55xx_led_config lp5523_led_config[] = {
- {
- .name = "D1",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- },
-...
- {
- .chan_nr = 8,
- .led_current = 50,
- .max_current = 130,
- }
-};
-
-static int lp5523_setup(void)
-{
- /* Setup HW resources */
-}
-
-static void lp5523_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5523_enable(bool state)
-{
- /* Control chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5523_platform_data = {
- .led_config = lp5523_led_config,
- .num_channels = ARRAY_SIZE(lp5523_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5523_setup,
- .release_resources = lp5523_release,
- .enable = lp5523_enable,
-};
diff --git a/Documentation/leds/leds-lp5562.rst b/Documentation/leds/leds-lp5562.rst
new file mode 100644
index 000000000000..79bbb2487ff6
--- /dev/null
+++ b/Documentation/leds/leds-lp5562.rst
@@ -0,0 +1,137 @@
+========================
+Kernel driver for lp5562
+========================
+
+* TI LP5562 LED Driver
+
+Author: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+===========
+
+ LP5562 can drive up to 4 channels. R/G/B and White.
+ LEDs can be controlled directly via the led class control interface.
+
+ All four channels can be also controlled using the engine micro programs.
+ LP5562 has the internal program memory for running various LED patterns.
+ For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+Device attribute
+================
+
+engine_mux
+ 3 Engines are allocated in LP5562, but the number of channel is 4.
+ Therefore each channel should be mapped to the engine number.
+
+ Value: RGB or W
+
+ This attribute is used for programming LED data with the firmware interface.
+ Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
+ so additional sysfs is required
+
+ LED Map
+
+ ===== === ===============================
+ Red ... Engine 1 (fixed)
+ Green ... Engine 2 (fixed)
+ Blue ... Engine 3 (fixed)
+ White ... Engine 1 or 2 or 3 (selective)
+ ===== === ===============================
+
+How to load the program data using engine_mux
+=============================================
+
+ Before loading the LP5562 program data, engine_mux should be written between
+ the engine selection and loading the firmware.
+ Engine mux has two different mode, RGB and W.
+ RGB is used for loading RGB program data, W is used for W program data.
+
+ For example, run blinking green channel pattern::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
+ echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+ To run a blinking white pattern::
+
+ echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+How to load the predefined patterns
+===================================
+
+ Please refer to 'leds-lp55xx.txt"
+
+Setting Current of Each Channel
+===============================
+
+ Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
+ The 'led_current' and 'max_current' are used.
+
+Example of Platform data
+========================
+
+::
+
+ static struct lp55xx_led_config lp5562_led_config[] = {
+ {
+ .name = "R",
+ .chan_nr = 0,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "G",
+ .chan_nr = 1,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "B",
+ .chan_nr = 2,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "W",
+ .chan_nr = 3,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ };
+
+ static int lp5562_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5562_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5562_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5562_platform_data = {
+ .led_config = lp5562_led_config,
+ .num_channels = ARRAY_SIZE(lp5562_led_config),
+ .setup_resources = lp5562_setup,
+ .release_resources = lp5562_release,
+ .enable = lp5562_enable,
+ };
+
+To configure the platform specific data, lp55xx_platform_data structure is used
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5562.txt b/Documentation/leds/leds-lp5562.txt
deleted file mode 100644
index 5a823ff6b393..000000000000
--- a/Documentation/leds/leds-lp5562.txt
+++ /dev/null
@@ -1,120 +0,0 @@
-Kernel driver for LP5562
-========================
-
-* TI LP5562 LED Driver
-
-Author: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
-
- LP5562 can drive up to 4 channels. R/G/B and White.
- LEDs can be controlled directly via the led class control interface.
-
- All four channels can be also controlled using the engine micro programs.
- LP5562 has the internal program memory for running various LED patterns.
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-Device attribute: engine_mux
-
- 3 Engines are allocated in LP5562, but the number of channel is 4.
- Therefore each channel should be mapped to the engine number.
- Value : RGB or W
-
- This attribute is used for programming LED data with the firmware interface.
- Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
- so additional sysfs is required.
-
- LED Map
- Red ... Engine 1 (fixed)
- Green ... Engine 2 (fixed)
- Blue ... Engine 3 (fixed)
- White ... Engine 1 or 2 or 3 (selective)
-
-How to load the program data using engine_mux
-
- Before loading the LP5562 program data, engine_mux should be written between
- the engine selection and loading the firmware.
- Engine mux has two different mode, RGB and W.
- RGB is used for loading RGB program data, W is used for W program data.
-
- For example, run blinking green channel pattern,
- echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
- echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
- To run a blinking white pattern,
- echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
- echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-How to load the predefined patterns
-
- Please refer to 'leds-lp55xx.txt"
-
-Setting Current of Each Channel
-
- Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
- The 'led_current' and 'max_current' are used.
-
-(Example of Platform data)
-
-To configure the platform specific data, lp55xx_platform_data structure is used.
-
-static struct lp55xx_led_config lp5562_led_config[] = {
- {
- .name = "R",
- .chan_nr = 0,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "G",
- .chan_nr = 1,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "B",
- .chan_nr = 2,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "W",
- .chan_nr = 3,
- .led_current = 20,
- .max_current = 40,
- },
-};
-
-static int lp5562_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5562_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5562_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5562_platform_data = {
- .led_config = lp5562_led_config,
- .num_channels = ARRAY_SIZE(lp5562_led_config),
- .setup_resources = lp5562_setup,
- .release_resources = lp5562_release,
- .enable = lp5562_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp55xx.rst b/Documentation/leds/leds-lp55xx.rst
new file mode 100644
index 000000000000..632e41cec0b5
--- /dev/null
+++ b/Documentation/leds/leds-lp55xx.rst
@@ -0,0 +1,224 @@
+=================================================
+LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
+=================================================
+
+Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+-----------
+LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
+
+ Register access via the I2C
+ Device initialization/deinitialization
+ Create LED class devices for multiple output channels
+ Device attributes for user-space interface
+ Program memory for running LED patterns
+
+The LP55xx common driver provides these features using exported functions.
+
+ lp55xx_init_device() / lp55xx_deinit_device()
+ lp55xx_register_leds() / lp55xx_unregister_leds()
+ lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
+
+( Driver Structure Data )
+
+In lp55xx common driver, two different data structure is used.
+
+* lp55xx_led
+ control multi output LED channels such as led current, channel index.
+* lp55xx_chip
+ general chip control such like the I2C and platform data.
+
+For example, LP5521 has maximum 3 LED channels.
+LP5523/55231 has 9 output channels::
+
+ lp55xx_chip for LP5521 ... lp55xx_led #1
+ lp55xx_led #2
+ lp55xx_led #3
+
+ lp55xx_chip for LP5523 ... lp55xx_led #1
+ lp55xx_led #2
+ .
+ .
+ lp55xx_led #9
+
+( Chip Dependent Code )
+
+To support device specific configurations, special structure
+'lpxx_device_config' is used.
+
+ - Maximum number of channels
+ - Reset command, chip enable command
+ - Chip specific initialization
+ - Brightness control register access
+ - Setting LED output current
+ - Program memory address access for running patterns
+ - Additional device specific attributes
+
+( Firmware Interface )
+
+LP55xx family devices have the internal program memory for running
+various LED patterns.
+
+This pattern data is saved as a file in the user-land or
+hex byte string is written into the memory through the I2C.
+
+LP55xx common driver supports the firmware interface.
+
+LP55xx chips have three program engines.
+
+To load and run the pattern, the programming sequence is following.
+
+ (1) Select an engine number (1/2/3)
+ (2) Mode change to load
+ (3) Write pattern data into selected area
+ (4) Mode change to run
+
+The LP55xx common driver provides simple interfaces as below.
+
+select_engine:
+ Select which engine is used for running program
+run_engine:
+ Start program which is loaded via the firmware interface
+firmware:
+ Load program data
+
+In case of LP5523, one more command is required, 'enginex_leds'.
+It is used for selecting LED output(s) at each engine number.
+In more details, please refer to 'leds-lp5523.txt'.
+
+For example, run blinking pattern in engine #1 of LP5521::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+For example, run blinking pattern in engine #3 of LP55231
+
+Two LEDs are configured as pattern output channels::
+
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp55231/loading
+ echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
+ echo 0 > /sys/class/firmware/lp55231/loading
+ echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+To start blinking patterns in engine #2 and #3 simultaneously::
+
+ for idx in 2 3
+ do
+ echo $idx > /sys/class/leds/red/device/select_engine
+ sleep 0.1
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ done
+ echo 1 > /sys/class/leds/red/device/run_engine
+
+Here is another example for LP5523.
+
+Full LED strings are selected by 'engine2_leds'::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5523/loading
+ echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
+ echo 0 > /sys/class/firmware/lp5523/loading
+ echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+As soon as 'loading' is set to 0, registered callback is called.
+Inside the callback, the selected engine is loaded and memory is updated.
+To run programmed pattern, 'run_engine' attribute should be enabled.
+
+The pattern sequence of LP8501 is similar to LP5523.
+
+However pattern data is specific.
+
+Ex 1) Engine 1 is used::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+Ex 2) Engine 2 and 3 are used at the same time::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 1 > /sys/class/leds/d1/device/run_engine
+
+( 'run_engine' and 'firmware_cb' )
+
+The sequence of running the program data is common.
+
+But each device has own specific register addresses for commands.
+
+To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
+
+run_engine:
+ Control the selected engine
+firmware_cb:
+ The callback function after loading the firmware is done.
+
+ Chip specific commands for loading and updating program memory.
+
+( Predefined pattern data )
+
+Without the firmware interface, LP55xx driver provides another method for
+loading a LED pattern. That is 'predefined' pattern.
+
+A predefined pattern is defined in the platform data and load it(or them)
+via the sysfs if needed.
+
+To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
+configured.
+
+Example of predefined pattern data::
+
+ /* mode_1: blinking data */
+ static const u8 mode_1[] = {
+ 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
+ };
+
+ /* mode_2: always on */
+ static const u8 mode_2[] = { 0x40, 0xFF, };
+
+ struct lp55xx_predef_pattern board_led_patterns[] = {
+ {
+ .r = mode_1,
+ .size_r = ARRAY_SIZE(mode_1),
+ },
+ {
+ .b = mode_2,
+ .size_b = ARRAY_SIZE(mode_2),
+ },
+ }
+
+ struct lp55xx_platform_data lp5562_pdata = {
+ ...
+ .patterns = board_led_patterns,
+ .num_patterns = ARRAY_SIZE(board_led_patterns),
+ };
+
+Then, mode_1 and mode_2 can be run via through the sysfs::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
+ echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
+
+To stop running pattern::
+
+ echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-lp55xx.txt b/Documentation/leds/leds-lp55xx.txt
deleted file mode 100644
index e23fa91ea722..000000000000
--- a/Documentation/leds/leds-lp55xx.txt
+++ /dev/null
@@ -1,194 +0,0 @@
-LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
-=================================================
-
-Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
------------
-LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
-
- Register access via the I2C
- Device initialization/deinitialization
- Create LED class devices for multiple output channels
- Device attributes for user-space interface
- Program memory for running LED patterns
-
-The LP55xx common driver provides these features using exported functions.
- lp55xx_init_device() / lp55xx_deinit_device()
- lp55xx_register_leds() / lp55xx_unregister_leds()
- lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
-
-( Driver Structure Data )
-
-In lp55xx common driver, two different data structure is used.
-
-o lp55xx_led
- control multi output LED channels such as led current, channel index.
-o lp55xx_chip
- general chip control such like the I2C and platform data.
-
-For example, LP5521 has maximum 3 LED channels.
-LP5523/55231 has 9 output channels.
-
-lp55xx_chip for LP5521 ... lp55xx_led #1
- lp55xx_led #2
- lp55xx_led #3
-
-lp55xx_chip for LP5523 ... lp55xx_led #1
- lp55xx_led #2
- .
- .
- lp55xx_led #9
-
-( Chip Dependent Code )
-
-To support device specific configurations, special structure
-'lpxx_device_config' is used.
-
- Maximum number of channels
- Reset command, chip enable command
- Chip specific initialization
- Brightness control register access
- Setting LED output current
- Program memory address access for running patterns
- Additional device specific attributes
-
-( Firmware Interface )
-
-LP55xx family devices have the internal program memory for running
-various LED patterns.
-This pattern data is saved as a file in the user-land or
-hex byte string is written into the memory through the I2C.
-LP55xx common driver supports the firmware interface.
-
-LP55xx chips have three program engines.
-To load and run the pattern, the programming sequence is following.
- (1) Select an engine number (1/2/3)
- (2) Mode change to load
- (3) Write pattern data into selected area
- (4) Mode change to run
-
-The LP55xx common driver provides simple interfaces as below.
-select_engine : Select which engine is used for running program
-run_engine : Start program which is loaded via the firmware interface
-firmware : Load program data
-
-In case of LP5523, one more command is required, 'enginex_leds'.
-It is used for selecting LED output(s) at each engine number.
-In more details, please refer to 'leds-lp5523.txt'.
-
-For example, run blinking pattern in engine #1 of LP5521
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5521/loading
-echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
-echo 0 > /sys/class/firmware/lp5521/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-For example, run blinking pattern in engine #3 of LP55231
-Two LEDs are configured as pattern output channels.
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp55231/loading
-echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
-echo 0 > /sys/class/firmware/lp55231/loading
-echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-To start blinking patterns in engine #2 and #3 simultaneously,
-for idx in 2 3
-do
- echo $idx > /sys/class/leds/red/device/select_engine
- sleep 0.1
- echo 1 > /sys/class/firmware/lp5521/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
- echo 0 > /sys/class/firmware/lp5521/loading
-done
-echo 1 > /sys/class/leds/red/device/run_engine
-
-Here is another example for LP5523.
-Full LED strings are selected by 'engine2_leds'.
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5523/loading
-echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
-echo 0 > /sys/class/firmware/lp5523/loading
-echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-As soon as 'loading' is set to 0, registered callback is called.
-Inside the callback, the selected engine is loaded and memory is updated.
-To run programmed pattern, 'run_engine' attribute should be enabled.
-
-The pattern sequence of LP8501 is similar to LP5523.
-However pattern data is specific.
-Ex 1) Engine 1 is used
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-Ex 2) Engine 2 and 3 are used at the same time
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 1 > /sys/class/leds/d1/device/run_engine
-
-( 'run_engine' and 'firmware_cb' )
-The sequence of running the program data is common.
-But each device has own specific register addresses for commands.
-To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
-run_engine : Control the selected engine
-firmware_cb : The callback function after loading the firmware is done.
- Chip specific commands for loading and updating program memory.
-
-( Predefined pattern data )
-
-Without the firmware interface, LP55xx driver provides another method for
-loading a LED pattern. That is 'predefined' pattern.
-A predefined pattern is defined in the platform data and load it(or them)
-via the sysfs if needed.
-To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
-configured.
-
- Example of predefined pattern data:
-
- /* mode_1: blinking data */
- static const u8 mode_1[] = {
- 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
- };
-
- /* mode_2: always on */
- static const u8 mode_2[] = { 0x40, 0xFF, };
-
- struct lp55xx_predef_pattern board_led_patterns[] = {
- {
- .r = mode_1,
- .size_r = ARRAY_SIZE(mode_1),
- },
- {
- .b = mode_2,
- .size_b = ARRAY_SIZE(mode_2),
- },
- }
-
- struct lp55xx_platform_data lp5562_pdata = {
- ...
- .patterns = board_led_patterns,
- .num_patterns = ARRAY_SIZE(board_led_patterns),
- };
-
-Then, mode_1 and mode_2 can be run via through the sysfs.
-
- echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
- echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
-
-To stop running pattern,
- echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-mlxcpld.rst b/Documentation/leds/leds-mlxcpld.rst
new file mode 100644
index 000000000000..528582429e0b
--- /dev/null
+++ b/Documentation/leds/leds-mlxcpld.rst
@@ -0,0 +1,118 @@
+=======================================
+Kernel driver for Mellanox systems LEDs
+=======================================
+
+Provide system LED support for the nex Mellanox systems:
+"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
+"msn2410", "msb7800", "msn2740", "msn2100".
+
+Description
+-----------
+Driver provides the following LEDs for the systems "msx6710", "msx6720",
+"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
+
+ - mlxcpld:fan1:green
+ - mlxcpld:fan1:red
+ - mlxcpld:fan2:green
+ - mlxcpld:fan2:red
+ - mlxcpld:fan3:green
+ - mlxcpld:fan3:red
+ - mlxcpld:fan4:green
+ - mlxcpld:fan4:red
+ - mlxcpld:psu:green
+ - mlxcpld:psu:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "psu"
+ - CPLD reg offset: 0x20
+ - Bits [7:4]
+
+ "fan1"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "fan2"
+ - CPLD reg offset: 0x21
+ - Bits [7:4]
+
+ "fan3"
+ - CPLD reg offset: 0x22
+ - Bits [3:0]
+
+ "fan4"
+ - CPLD reg offset: 0x22
+ - Bits [7:4]
+
+ Color mask for all the above LEDs:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+Driver provides the following LEDs for the system "msn2100":
+
+ - mlxcpld:fan:green
+ - mlxcpld:fan:red
+ - mlxcpld:psu1:green
+ - mlxcpld:psu1:red
+ - mlxcpld:psu2:green
+ - mlxcpld:psu2:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+ - mlxcpld:uid:blue
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "fan"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "psu1"
+ - CPLD reg offset: 0x23
+ - Bits [3:0]
+
+ "psu2"
+ - CPLD reg offset: 0x23
+ - Bits [7:4]
+
+ "uid"
+ - CPLD reg offset: 0x24
+ - Bits [3:0]
+
+ Color mask for all the above LEDs, excepted uid:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+ Color mask for uid LED:
+ [bit3,bit2,bit1,bit0]:
+
+ - [0,0,0,0] = LED OFF
+ - [1,1,0,1] = Blue static ON
+ - [1,1,1,0] = Blue blink 3Hz
+ - [1,1,1,1] = Blue blink 6Hz
+
+Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
+For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/leds-mlxcpld.txt b/Documentation/leds/leds-mlxcpld.txt
deleted file mode 100644
index a0e8fd457117..000000000000
--- a/Documentation/leds/leds-mlxcpld.txt
+++ /dev/null
@@ -1,110 +0,0 @@
-Kernel driver for Mellanox systems LEDs
-=======================================
-
-Provide system LED support for the nex Mellanox systems:
-"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
-"msn2410", "msb7800", "msn2740", "msn2100".
-
-Description
------------
-Driver provides the following LEDs for the systems "msx6710", "msx6720",
-"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
- mlxcpld:fan1:green
- mlxcpld:fan1:red
- mlxcpld:fan2:green
- mlxcpld:fan2:red
- mlxcpld:fan3:green
- mlxcpld:fan3:red
- mlxcpld:fan4:green
- mlxcpld:fan4:red
- mlxcpld:psu:green
- mlxcpld:psu:red
- mlxcpld:status:green
- mlxcpld:status:red
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "psu"
- CPLD reg offset: 0x20
- Bits [7:4]
-
- "fan1"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "fan2"
- CPLD reg offset: 0x21
- Bits [7:4]
-
- "fan3"
- CPLD reg offset: 0x22
- Bits [3:0]
-
- "fan4"
- CPLD reg offset: 0x22
- Bits [7:4]
-
- Color mask for all the above LEDs:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
-Driver provides the following LEDs for the system "msn2100":
- mlxcpld:fan:green
- mlxcpld:fan:red
- mlxcpld:psu1:green
- mlxcpld:psu1:red
- mlxcpld:psu2:green
- mlxcpld:psu2:red
- mlxcpld:status:green
- mlxcpld:status:red
- mlxcpld:uid:blue
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "fan"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "psu1"
- CPLD reg offset: 0x23
- Bits [3:0]
-
- "psu2"
- CPLD reg offset: 0x23
- Bits [7:4]
-
- "uid"
- CPLD reg offset: 0x24
- Bits [3:0]
-
- Color mask for all the above LEDs, excepted uid:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
- Color mask for uid LED:
- [bit3,bit2,bit1,bit0]:
- [0,0,0,0] = LED OFF
- [1,1,0,1] = Blue static ON
- [1,1,1,0] = Blue blink 3Hz
- [1,1,1,1] = Blue blink 6Hz
-
-Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
-For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/ledtrig-oneshot.txt b/Documentation/leds/ledtrig-oneshot.rst
index fe57474a12e2..69fa3ea1d554 100644
--- a/Documentation/leds/ledtrig-oneshot.txt
+++ b/Documentation/leds/ledtrig-oneshot.rst
@@ -1,3 +1,4 @@
+====================
One-shot LED Trigger
====================
@@ -17,27 +18,27 @@ additional "invert" property specifies if the LED has to stay off (normal) or
on (inverted) when not rearmed.
The trigger can be activated from user space on led class devices as shown
-below:
+below::
echo oneshot > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-oneshot
-Example use-case: network devices, initialization:
+Example use-case: network devices, initialization::
echo oneshot > trigger # set trigger for this led
echo 33 > delay_on # blink at 1 / (33 + 33) Hz on continuous traffic
echo 33 > delay_off
-interface goes up:
+interface goes up::
echo 1 > invert # set led as normally-on, turn the led on
-packet received/transmitted:
+packet received/transmitted::
echo 1 > shot # led starts blinking, ignored if already blinking
-interface goes down
+interface goes down::
echo 0 > invert # set led as normally-off, turn the led off
diff --git a/Documentation/leds/ledtrig-transient.txt b/Documentation/leds/ledtrig-transient.rst
index 3bd38b487df1..d921dc830cd0 100644
--- a/Documentation/leds/ledtrig-transient.txt
+++ b/Documentation/leds/ledtrig-transient.rst
@@ -1,3 +1,4 @@
+=====================
LED Transient Trigger
=====================
@@ -62,12 +63,13 @@ non-transient state. When driver gets suspended, irrespective of the transient
state, the LED state changes to LED_OFF.
Transient trigger can be enabled and disabled from user space on led class
-devices, that support this trigger as shown below:
+devices, that support this trigger as shown below::
-echo transient > trigger
-echo none > trigger
+ echo transient > trigger
+ echo none > trigger
-NOTE: Add a new property trigger state to control the state.
+NOTE:
+ Add a new property trigger state to control the state.
This trigger exports three properties, activate, state, and duration. When
transient trigger is activated these properties are set to default values.
@@ -79,7 +81,8 @@ transient trigger is activated these properties are set to default values.
- state allows user to specify a transient state to be held for the specified
duration.
- activate - one shot timer activate mechanism.
+ activate
+ - one shot timer activate mechanism.
1 when activated, 0 when deactivated.
default value is zero when transient trigger is enabled,
to allow duration to be set.
@@ -89,12 +92,14 @@ transient trigger is activated these properties are set to default values.
deactivated state indicates that there is no active timer
running.
- duration - one shot timer value. When activate is set, duration value
+ duration
+ - one shot timer value. When activate is set, duration value
is used to start a timer that runs once. This value doesn't
get changed by the trigger unless user does a set via
echo new_value > duration
- state - transient state to be held. It has two values 0 or 1. 0 maps
+ state
+ - transient state to be held. It has two values 0 or 1. 0 maps
to LED_OFF and 1 maps to LED_FULL. The specified state is
held for the duration of the one shot timer and then the
state gets changed to the non-transient state which is the
@@ -114,39 +119,49 @@ When timer expires activate goes back to deactivated state, duration is left
at the set value to be used when activate is set at a future time. This will
allow user app to set the time once and activate it to run it once for the
specified value as needed. When timer expires, state is restored to the
-non-transient state which is the inverse of the transient state.
-
- echo 1 > activate - starts timer = duration when duration is not 0.
- echo 0 > activate - cancels currently running timer.
- echo n > duration - stores timer value to be used upon next
- activate. Currently active timer if
- any, continues to run for the specified time.
- echo 0 > duration - stores timer value to be used upon next
- activate. Currently active timer if any,
- continues to run for the specified time.
- echo 1 > state - stores desired transient state LED_FULL to be
+non-transient state which is the inverse of the transient state:
+
+ ================= ===============================================
+ echo 1 > activate starts timer = duration when duration is not 0.
+ echo 0 > activate cancels currently running timer.
+ echo n > duration stores timer value to be used upon next
+ activate. Currently active timer if
+ any, continues to run for the specified time.
+ echo 0 > duration stores timer value to be used upon next
+ activate. Currently active timer if any,
+ continues to run for the specified time.
+ echo 1 > state stores desired transient state LED_FULL to be
held for the specified duration.
- echo 0 > state - stores desired transient state LED_OFF to be
+ echo 0 > state stores desired transient state LED_OFF to be
held for the specified duration.
+ ================= ===============================================
+
+What is not supported
+=====================
-What is not supported:
-======================
- Timer activation is one shot and extending and/or shortening the timer
is not supported.
-Example use-case 1:
+Examples
+========
+
+use-case 1::
+
echo transient > trigger
echo n > duration
echo 1 > state
-repeat the following step as needed:
+
+repeat the following step as needed::
+
echo 1 > activate - start timer = duration to run once
echo 1 > activate - start timer = duration to run once
echo none > trigger
This trigger is intended to be used for for the following example use cases:
+
- Control of vibrate (phones, tablets etc.) hardware by user space app.
- Use of LED by user space app as activity indicator.
- Use of LED by user space app as a kind of watchdog indicator -- as
- long as the app is alive, it can keep the LED illuminated, if it dies
- the LED will be extinguished automatically.
+ long as the app is alive, it can keep the LED illuminated, if it dies
+ the LED will be extinguished automatically.
- Use by any user space app that needs a transient GPIO output.
diff --git a/Documentation/leds/ledtrig-usbport.txt b/Documentation/leds/ledtrig-usbport.rst
index 69f54bfb4789..37c2505bfd57 100644
--- a/Documentation/leds/ledtrig-usbport.txt
+++ b/Documentation/leds/ledtrig-usbport.rst
@@ -1,3 +1,4 @@
+====================
USB port LED trigger
====================
@@ -10,14 +11,18 @@ listed as separated entries in a "ports" subdirectory. Selecting is handled by
echoing "1" to a chosen port.
Please note that this trigger allows selecting multiple USB ports for a single
-LED. This can be useful in two cases:
+LED.
+
+This can be useful in two cases:
1) Device with single USB LED and few physical ports
+====================================================
In such a case LED will be turned on as long as there is at least one connected
USB device.
2) Device with a physical port handled by few controllers
+=========================================================
Some devices may have one controller per PHY standard. E.g. USB 3.0 physical
port may be handled by ohci-platform, ehci-platform and xhci-hcd. If there is
@@ -25,14 +30,14 @@ only one LED user will most likely want to assign ports from all 3 hubs.
This trigger can be activated from user space on led class devices as shown
-below:
+below::
echo usbport > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-usbport
-Example use-case:
+Example use-case::
echo usbport > trigger
echo 1 > ports/usb1-port1
diff --git a/Documentation/leds/uleds.txt b/Documentation/leds/uleds.rst
index 13e375a580f9..83221098009c 100644
--- a/Documentation/leds/uleds.txt
+++ b/Documentation/leds/uleds.rst
@@ -1,3 +1,4 @@
+==============
Userspace LEDs
==============
@@ -10,12 +11,12 @@ Usage
When the driver is loaded, a character device is created at /dev/uleds. To
create a new LED class device, open /dev/uleds and write a uleds_user_dev
-structure to it (found in kernel public header file linux/uleds.h).
+structure to it (found in kernel public header file linux/uleds.h)::
#define LED_MAX_NAME_SIZE 64
struct uleds_user_dev {
- char name[LED_MAX_NAME_SIZE];
+ char name[LED_MAX_NAME_SIZE];
};
A new LED class device will be created with the name given. The name can be
diff --git a/Documentation/locking/lockdep-design.txt b/Documentation/locking/lockdep-design.txt
index 39fae143c9cb..f189d130e543 100644
--- a/Documentation/locking/lockdep-design.txt
+++ b/Documentation/locking/lockdep-design.txt
@@ -15,34 +15,48 @@ tens of thousands of) instantiations. For example a lock in the inode
struct is one class, while each inode has its own instantiation of that
lock class.
-The validator tracks the 'state' of lock-classes, and it tracks
-dependencies between different lock-classes. The validator maintains a
-rolling proof that the state and the dependencies are correct.
-
-Unlike an lock instantiation, the lock-class itself never goes away: when
-a lock-class is used for the first time after bootup it gets registered,
-and all subsequent uses of that lock-class will be attached to this
-lock-class.
+The validator tracks the 'usage state' of lock-classes, and it tracks
+the dependencies between different lock-classes. Lock usage indicates
+how a lock is used with regard to its IRQ contexts, while lock
+dependency can be understood as lock order, where L1 -> L2 suggests that
+a task is attempting to acquire L2 while holding L1. From lockdep's
+perspective, the two locks (L1 and L2) are not necessarily related; that
+dependency just means the order ever happened. The validator maintains a
+continuing effort to prove lock usages and dependencies are correct or
+the validator will shoot a splat if incorrect.
+
+A lock-class's behavior is constructed by its instances collectively:
+when the first instance of a lock-class is used after bootup the class
+gets registered, then all (subsequent) instances will be mapped to the
+class and hence their usages and dependecies will contribute to those of
+the class. A lock-class does not go away when a lock instance does, but
+it can be removed if the memory space of the lock class (static or
+dynamic) is reclaimed, this happens for example when a module is
+unloaded or a workqueue is destroyed.
State
-----
-The validator tracks lock-class usage history into 4 * nSTATEs + 1 separate
-state bits:
+The validator tracks lock-class usage history and divides the usage into
+(4 usages * n STATEs + 1) categories:
+where the 4 usages can be:
- 'ever held in STATE context'
- 'ever held as readlock in STATE context'
- 'ever held with STATE enabled'
- 'ever held as readlock with STATE enabled'
-Where STATE can be either one of (kernel/locking/lockdep_states.h)
- - hardirq
- - softirq
+where the n STATEs are coded in kernel/locking/lockdep_states.h and as of
+now they include:
+- hardirq
+- softirq
+where the last 1 category is:
- 'ever used' [ == !unused ]
-When locking rules are violated, these state bits are presented in the
-locking error messages, inside curlies. A contrived example:
+When locking rules are violated, these usage bits are presented in the
+locking error messages, inside curlies, with a total of 2 * n STATEs bits.
+A contrived example:
modprobe/2287 is trying to acquire lock:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
@@ -51,28 +65,67 @@ locking error messages, inside curlies. A contrived example:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
-The bit position indicates STATE, STATE-read, for each of the states listed
-above, and the character displayed in each indicates:
+For a given lock, the bit positions from left to right indicate the usage
+of the lock and readlock (if exists), for each of the n STATEs listed
+above respectively, and the character displayed at each bit position
+indicates:
'.' acquired while irqs disabled and not in irq context
'-' acquired in irq context
'+' acquired with irqs enabled
'?' acquired in irq context with irqs enabled.
-Unused mutexes cannot be part of the cause of an error.
+The bits are illustrated with an example:
+
+ (&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
+ ||||
+ ||| \-> softirq disabled and not in softirq context
+ || \--> acquired in softirq context
+ | \---> hardirq disabled and not in hardirq context
+ \----> acquired in hardirq context
+
+
+For a given STATE, whether the lock is ever acquired in that STATE
+context and whether that STATE is enabled yields four possible cases as
+shown in the table below. The bit character is able to indicate which
+exact case is for the lock as of the reporting time.
+
+ -------------------------------------------
+ | | irq enabled | irq disabled |
+ |-------------------------------------------|
+ | ever in irq | ? | - |
+ |-------------------------------------------|
+ | never in irq | + | . |
+ -------------------------------------------
+
+The character '-' suggests irq is disabled because if otherwise the
+charactor '?' would have been shown instead. Similar deduction can be
+applied for '+' too.
+
+Unused locks (e.g., mutexes) cannot be part of the cause of an error.
Single-lock state rules:
------------------------
+A lock is irq-safe means it was ever used in an irq context, while a lock
+is irq-unsafe means it was ever acquired with irq enabled.
+
A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
-following states are exclusive, and only one of them is allowed to be
-set for any lock-class:
+following states must be exclusive: only one of them is allowed to be set
+for any lock-class based on its usage:
+
+ <hardirq-safe> or <hardirq-unsafe>
+ <softirq-safe> or <softirq-unsafe>
- <hardirq-safe> and <hardirq-unsafe>
- <softirq-safe> and <softirq-unsafe>
+This is because if a lock can be used in irq context (irq-safe) then it
+cannot be ever acquired with irq enabled (irq-unsafe). Otherwise, a
+deadlock may happen. For example, in the scenario that after this lock
+was acquired but before released, if the context is interrupted this
+lock will be attempted to acquire twice, which creates a deadlock,
+referred to as lock recursion deadlock.
-The validator detects and reports lock usage that violate these
+The validator detects and reports lock usage that violates these
single-lock state rules.
Multi-lock dependency rules:
@@ -81,15 +134,18 @@ Multi-lock dependency rules:
The same lock-class must not be acquired twice, because this could lead
to lock recursion deadlocks.
-Furthermore, two locks may not be taken in different order:
+Furthermore, two locks can not be taken in inverse order:
<L1> -> <L2>
<L2> -> <L1>
-because this could lead to lock inversion deadlocks. (The validator
-finds such dependencies in arbitrary complexity, i.e. there can be any
-other locking sequence between the acquire-lock operations, the
-validator will still track all dependencies between locks.)
+because this could lead to a deadlock - referred to as lock inversion
+deadlock - as attempts to acquire the two locks form a circle which
+could lead to the two contexts waiting for each other permanently. The
+validator will find such dependency circle in arbitrary complexity,
+i.e., there can be any other locking sequence between the acquire-lock
+operations; the validator will still find whether these locks can be
+acquired in a circular fashion.
Furthermore, the following usage based lock dependencies are not allowed
between any two lock-classes:
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index f70ebcdfe592..e4e07c8ab89e 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -3,7 +3,7 @@
============================
By: David Howells <dhowells@redhat.com>
- Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ Paul E. McKenney <paulmck@linux.ibm.com>
Will Deacon <will.deacon@arm.com>
Peter Zijlstra <peterz@infradead.org>
diff --git a/Documentation/networking/af_xdp.rst b/Documentation/networking/af_xdp.rst
index e14d7d40fc75..50bccbf68308 100644
--- a/Documentation/networking/af_xdp.rst
+++ b/Documentation/networking/af_xdp.rst
@@ -316,16 +316,16 @@ A: When a netdev of a physical NIC is initialized, Linux usually
all the traffic, you can force the netdev to only have 1 queue, queue
id 0, and then bind to queue 0. You can use ethtool to do this::
- sudo ethtool -L <interface> combined 1
+ sudo ethtool -L <interface> combined 1
If you want to only see part of the traffic, you can program the
NIC through ethtool to filter out your traffic to a single queue id
that you can bind your XDP socket to. Here is one example in which
UDP traffic to and from port 4242 are sent to queue 2::
- sudo ethtool -N <interface> rx-flow-hash udp4 fn
- sudo ethtool -N <interface> flow-type udp4 src-port 4242 dst-port \
- 4242 action 2
+ sudo ethtool -N <interface> rx-flow-hash udp4 fn
+ sudo ethtool -N <interface> flow-type udp4 src-port 4242 dst-port \
+ 4242 action 2
A number of other ways are possible all up to the capabilitites of
the NIC you have.
diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst
new file mode 100644
index 000000000000..75fa537763a4
--- /dev/null
+++ b/Documentation/networking/device_drivers/index.rst
@@ -0,0 +1,30 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+
+Vendor Device Drivers
+=====================
+
+Contents:
+
+.. toctree::
+ :maxdepth: 2
+
+ freescale/dpaa2/index
+ intel/e100
+ intel/e1000
+ intel/e1000e
+ intel/fm10k
+ intel/igb
+ intel/igbvf
+ intel/ixgb
+ intel/ixgbe
+ intel/ixgbevf
+ intel/i40e
+ intel/iavf
+ intel/ice
+
+.. only:: subproject
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/networking/index.rst b/Documentation/networking/index.rst
index f390fe3cfdfb..a46fca264bee 100644
--- a/Documentation/networking/index.rst
+++ b/Documentation/networking/index.rst
@@ -11,19 +11,7 @@ Contents:
batman-adv
can
can_ucan_protocol
- device_drivers/freescale/dpaa2/index
- device_drivers/intel/e100
- device_drivers/intel/e1000
- device_drivers/intel/e1000e
- device_drivers/intel/fm10k
- device_drivers/intel/igb
- device_drivers/intel/igbvf
- device_drivers/intel/ixgb
- device_drivers/intel/ixgbe
- device_drivers/intel/ixgbevf
- device_drivers/intel/i40e
- device_drivers/intel/iavf
- device_drivers/intel/ice
+ device_drivers/index
dsa/index
devlink-info-versions
ieee802154
@@ -40,6 +28,8 @@ Contents:
checksum-offloads
segmentation-offloads
scaling
+ tls
+ tls-offload
.. only:: subproject
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index 14fe93049d28..22f6b8b1110a 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -255,6 +255,14 @@ tcp_base_mss - INTEGER
Path MTU discovery (MTU probing). If MTU probing is enabled,
this is the initial MSS used by the connection.
+tcp_min_snd_mss - INTEGER
+ TCP SYN and SYNACK messages usually advertise an ADVMSS option,
+ as described in RFC 1122 and RFC 6691.
+ If this ADVMSS option is smaller than tcp_min_snd_mss,
+ it is silently capped to tcp_min_snd_mss.
+
+ Default : 48 (at least 8 bytes of payload per segment)
+
tcp_congestion_control - STRING
Set the congestion control algorithm to be used for new
connections. The algorithm "reno" is always available, but
@@ -772,6 +780,14 @@ tcp_challenge_ack_limit - INTEGER
in RFC 5961 (Improving TCP's Robustness to Blind In-Window Attacks)
Default: 100
+tcp_rx_skb_cache - BOOLEAN
+ Controls a per TCP socket cache of one skb, that might help
+ performance of some workloads. This might be dangerous
+ on systems with a lot of TCP sockets, since it increases
+ memory usage.
+
+ Default: 0 (disabled)
+
UDP variables:
udp_l3mdev_accept - BOOLEAN
diff --git a/Documentation/networking/rds.txt b/Documentation/networking/rds.txt
index 0235ae69af2a..f2a0147c933d 100644
--- a/Documentation/networking/rds.txt
+++ b/Documentation/networking/rds.txt
@@ -389,7 +389,7 @@ Multipath RDS (mprds)
a common (to all paths) part, and a per-path struct rds_conn_path. All
I/O workqs and reconnect threads are driven from the rds_conn_path.
Transports such as TCP that are multipath capable may then set up a
- TPC socket per rds_conn_path, and this is managed by the transport via
+ TCP socket per rds_conn_path, and this is managed by the transport via
the transport privatee cp_transport_data pointer.
Transports announce themselves as multipath capable by setting the
diff --git a/Documentation/networking/tls-offload-layers.svg b/Documentation/networking/tls-offload-layers.svg
new file mode 100644
index 000000000000..cf72f05dbb21
--- /dev/null
+++ b/Documentation/networking/tls-offload-layers.svg
@@ -0,0 +1 @@
+<svg version="1.1" viewBox="0.0 0.0 460.0 500.0" fill="none" stroke="none" stroke-linecap="square" stroke-miterlimit="10" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><clipPath id="p.0"><path d="m0 0l960.0 0l0 720.0l-960.0 0l0 -720.0z" clip-rule="nonzero"/></clipPath><g clip-path="url(#p.0)"><path fill="#000000" fill-opacity="0.0" d="m0 0l960.0 0l0 720.0l-960.0 0z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m117.02887 0l72.28346 0l0 40.25197l-72.28346 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m117.02887 0l72.28346 0l0 40.25197l-72.28346 0z" fill-rule="evenodd"/><path fill="#000000" d="m135.71944 27.045982l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0zm12.853302 -3.109375l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm15.453842 4.578125q-0.921875 0.765625 -1.765625 1.09375q-0.828125 0.3125 -1.796875 0.3125q-1.59375 0 -2.453125 -0.78125q-0.859375 -0.78125 -0.859375 -1.984375q0 -0.71875 0.328125 -1.296875q0.328125 -0.59375 0.84375 -0.9375q0.53125 -0.359375 1.1875 -0.546875q0.46875 -0.125 1.453125 -0.25q1.984375 -0.234375 2.921875 -0.5625q0.015625 -0.34375 0.015625 -0.421875q0 -1.0 -0.46875 -1.421875q-0.625 -0.546875 -1.875 -0.546875q-1.15625 0 -1.703125 0.40625q-0.546875 0.40625 -0.8125 1.421875l-1.609375 -0.21875q0.21875 -1.015625 0.71875 -1.640625q0.5 -0.640625 1.453125 -0.984375q0.953125 -0.34375 2.1875 -0.34375q1.25 0 2.015625 0.296875q0.78125 0.28125 1.140625 0.734375q0.375 0.4375 0.515625 1.109375q0.078125 0.421875 0.078125 1.515625l0 2.1875q0 2.28125 0.109375 2.890625q0.109375 0.59375 0.40625 1.15625l-1.703125 0q-0.265625 -0.515625 -0.328125 -1.1875zm-0.140625 -3.671875q-0.890625 0.375 -2.671875 0.625q-1.015625 0.140625 -1.4375 0.328125q-0.421875 0.1875 -0.65625 0.53125q-0.21875 0.34375 -0.21875 0.78125q0 0.65625 0.5 1.09375q0.5 0.4375 1.453125 0.4375q0.9375 0 1.671875 -0.40625q0.75 -0.421875 1.09375 -1.140625q0.265625 -0.5625 0.265625 -1.640625l0 -0.609375zm10.469467 4.859375l0 -1.21875q-0.90625 1.4375 -2.703125 1.4375q-1.15625 0 -2.125 -0.640625q-0.96875 -0.640625 -1.5 -1.78125q-0.53125 -1.140625 -0.53125 -2.625q0 -1.453125 0.484375 -2.625q0.484375 -1.1875 1.4375 -1.8125q0.96875 -0.625 2.171875 -0.625q0.875 0 1.546875 0.375q0.6875 0.359375 1.109375 0.953125l0 -4.796875l1.640625 0l0 13.359375l-1.53125 0zm-5.171875 -4.828125q0 1.859375 0.78125 2.78125q0.78125 0.921875 1.84375 0.921875q1.078125 0 1.828125 -0.875q0.75 -0.890625 0.75 -2.6875q0 -1.984375 -0.765625 -2.90625q-0.765625 -0.9375 -1.890625 -0.9375q-1.078125 0 -1.8125 0.890625q-0.734375 0.890625 -0.734375 2.8125z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m309.02887 0l72.28348 0l0 40.25197l-72.28348 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m309.02887 0l72.28348 0l0 40.25197l-72.28348 0z" fill-rule="evenodd"/><path fill="#000000" d="m328.4915 27.045982l-2.96875 -9.671875l1.703125 0l1.53125 5.578125l0.578125 2.078125q0.046875 -0.15625 0.5 -2.0l1.546875 -5.65625l1.6875 0l1.4375 5.609375l0.484375 1.84375l0.5625 -1.859375l1.65625 -5.59375l1.59375 0l-3.03125 9.671875l-1.703125 0l-1.53125 -5.796875l-0.375 -1.640625l-1.953125 7.4375l-1.71875 0zm11.676086 0l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0zm6.228302 -11.46875l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm7.722931 -1.46875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm8.230194 -1.640625l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m73.64304 101.46588l351.0551 0l0 53.70079l-351.0551 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m73.64304 101.46588l351.0551 0l0 53.70079l-351.0551 0z" fill-rule="evenodd"/><path fill="#000000" d="m215.67503 135.23627l0 -13.359367l1.640625 0l0 7.6249924l3.890625 -3.9374924l2.109375 0l-3.6875 3.5937424l4.0625 6.078125l-2.015625 0l-3.203125 -4.953125l-1.15625 1.125l0 3.828125l-1.640625 0zm12.90625 -1.46875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.5781174l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.6718674q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm1.5583038 1.46875l0 -13.359367l1.640625 0l0 13.359367l-1.640625 0zm3.5354462 -2.890625l1.625 -0.25q0.125 0.96875 0.75 1.5q0.625 0.515625 1.75 0.515625q1.125 0 1.671875 -0.453125q0.546875 -0.46875 0.546875 -1.09375q0 -0.546875 -0.484375 -0.875q-0.328125 -0.21875 -1.671875 -0.546875q-1.8125 -0.46875 -2.515625 -0.796875q-0.6875 -0.328125 -1.046875 -0.90625q-0.359375 -0.59375 -0.359375 -1.3125q0 -0.6406174 0.296875 -1.1874924q0.296875 -0.5625 0.8125 -0.921875q0.375 -0.28125 1.03125 -0.46875q0.671875 -0.203125 1.421875 -0.203125q1.140625 0 2.0 0.328125q0.859375 0.328125 1.265625 0.890625q0.421875 0.5625 0.578125 1.4999924l-1.609375 0.21875q-0.109375 -0.7499924 -0.640625 -1.1718674q-0.515625 -0.421875 -1.46875 -0.421875q-1.140625 0 -1.625 0.375q-0.46875 0.375 -0.46875 0.875q0 0.31249237 0.1875 0.5781174q0.203125 0.265625 0.640625 0.4375q0.234375 0.09375 1.4375 0.421875q1.75 0.453125 2.4375 0.75q0.6875 0.296875 1.078125 0.859375q0.390625 0.5625 0.390625 1.40625q0 0.828125 -0.484375 1.546875q-0.46875 0.71875 -1.375 1.125q-0.90625 0.390625 -2.046875 0.390625q-1.875 0 -2.875 -0.78125q-0.984375 -0.78125 -1.25 -2.328125zm24.136429 -10.468742l1.765625 0l0 7.7187424q0 2.015625 -0.453125 3.203125q-0.453125 1.1875 -1.640625 1.9375q-1.1875 0.734375 -3.125 0.734375q-1.875 0 -3.078125 -0.640625q-1.1875 -0.65625 -1.703125 -1.875q-0.5 -1.234375 -0.5 -3.359375l0 -7.7187424l1.765625 0l0 7.7187424q0 1.734375 0.3125 2.5625q0.328125 0.8125 1.109375 1.265625q0.796875 0.453125 1.9375 0.453125q1.953125 0 2.78125 -0.890625q0.828125 -0.890625 0.828125 -3.390625l0 -7.7187424zm4.629181 13.359367l0 -13.359367l1.78125 0l0 11.781242l6.5625 0l0 1.578125l-8.34375 0zm10.453857 0l0 -13.359367l5.046875 0q1.328125 0 2.03125 0.125q0.96875 0.171875 1.640625 0.640625q0.671875 0.453125 1.078125 1.28125q0.40625 0.828125 0.40625 1.828125q0 1.703125 -1.09375 2.8906174q-1.078125 1.171875 -3.921875 1.171875l-3.421875 0l0 5.421875l-1.765625 0zm1.765625 -7.0l3.453125 0q1.71875 0 2.4375 -0.6406174q0.71875 -0.640625 0.71875 -1.796875q0 -0.84375 -0.421875 -1.4375q-0.421875 -0.59375 -1.125 -0.78125q-0.4375 -0.125 -1.640625 -0.125l-3.421875 0l0 4.7812424z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m73.64304 216.38058l351.0551 0l0 53.700775l-351.0551 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m73.64304 216.38058l351.0551 0l0 53.700775l-351.0551 0z" fill-rule="evenodd"/><path fill="#000000" d="m211.16338 250.15097l0 -11.78125l-4.40625 0l0 -1.578125l10.578125 0l0 1.578125l-4.40625 0l0 11.78125l-1.765625 0zm17.52098 -4.6875l1.765625 0.453125q-0.5625 2.171875 -2.0 3.328125q-1.4375 1.140625 -3.53125 1.140625q-2.15625 0 -3.515625 -0.875q-1.34375 -0.890625 -2.0625 -2.546875q-0.703125 -1.671875 -0.703125 -3.59375q0 -2.078125 0.796875 -3.625q0.796875 -1.5625 2.265625 -2.359375q1.484375 -0.8125 3.25 -0.8125q2.0 0 3.359375 1.015625q1.375 1.015625 1.90625 2.875l-1.734375 0.40625q-0.46875 -1.453125 -1.359375 -2.109375q-0.875 -0.671875 -2.203125 -0.671875q-1.546875 0 -2.578125 0.734375q-1.03125 0.734375 -1.453125 1.984375q-0.421875 1.234375 -0.421875 2.5625q0 1.703125 0.5 2.96875q0.5 1.265625 1.546875 1.90625q1.046875 0.625 2.265625 0.625q1.484375 0 2.515625 -0.859375q1.03125 -0.859375 1.390625 -2.546875zm3.9416962 4.6875l0 -13.359375l5.046875 0q1.328125 0 2.03125 0.125q0.96875 0.171875 1.640625 0.640625q0.671875 0.453125 1.078125 1.28125q0.40625 0.828125 0.40625 1.828125q0 1.703125 -1.09375 2.890625q-1.078125 1.171875 -3.921875 1.171875l-3.421875 0l0 5.421875l-1.765625 0zm1.765625 -7.0l3.453125 0q1.71875 0 2.4375 -0.640625q0.71875 -0.640625 0.71875 -1.796875q0 -0.84375 -0.421875 -1.4375q-0.421875 -0.59375 -1.125 -0.78125q-0.4375 -0.125 -1.640625 -0.125l-3.421875 0l0 4.78125zm14.664642 4.109375l1.625 -0.25q0.125 0.96875 0.75 1.5q0.625 0.515625 1.75 0.515625q1.125 0 1.671875 -0.453125q0.546875 -0.46875 0.546875 -1.09375q0 -0.546875 -0.484375 -0.875q-0.328125 -0.21875 -1.671875 -0.546875q-1.8125 -0.46875 -2.515625 -0.796875q-0.6875 -0.328125 -1.046875 -0.90625q-0.359375 -0.59375 -0.359375 -1.3125q0 -0.640625 0.296875 -1.1875q0.296875 -0.5625 0.8125 -0.921875q0.375 -0.28125 1.03125 -0.46875q0.671875 -0.203125 1.421875 -0.203125q1.140625 0 2.0 0.328125q0.859375 0.328125 1.2656097 0.890625q0.421875 0.5625 0.578125 1.5l-1.6093597 0.21875q-0.109375 -0.75 -0.640625 -1.171875q-0.515625 -0.421875 -1.46875 -0.421875q-1.140625 0 -1.625 0.375q-0.46875 0.375 -0.46875 0.875q0 0.3125 0.1875 0.578125q0.203125 0.265625 0.640625 0.4375q0.234375 0.09375 1.4375 0.421875q1.75 0.453125 2.4375 0.75q0.68748474 0.296875 1.0781097 0.859375q0.390625 0.5625 0.390625 1.40625q0 0.828125 -0.484375 1.546875q-0.46875 0.71875 -1.3749847 1.125q-0.90625 0.390625 -2.046875 0.390625q-1.875 0 -2.875 -0.78125q-0.984375 -0.78125 -1.25 -2.328125zm13.562485 1.421875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm7.917694 0.28125q-0.921875 0.765625 -1.765625 1.09375q-0.828125 0.3125 -1.796875 0.3125q-1.59375 0 -2.453125 -0.78125q-0.859375 -0.78125 -0.859375 -1.984375q0 -0.71875 0.328125 -1.296875q0.328125 -0.59375 0.84375 -0.9375q0.53125 -0.359375 1.1875 -0.546875q0.46875 -0.125 1.453125 -0.25q1.984375 -0.234375 2.921875 -0.5625q0.015625 -0.34375 0.015625 -0.421875q0 -1.0 -0.46875 -1.421875q-0.625 -0.546875 -1.875 -0.546875q-1.15625 0 -1.703125 0.40625q-0.546875 0.40625 -0.8125 1.421875l-1.609375 -0.21875q0.21875 -1.015625 0.71875 -1.640625q0.5 -0.640625 1.453125 -0.984375q0.953125 -0.34375 2.1875 -0.34375q1.25 0 2.015625 0.296875q0.78125 0.28125 1.140625 0.734375q0.375 0.4375 0.515625 1.109375q0.078125 0.421875 0.078125 1.515625l0 2.1875q0 2.28125 0.109375 2.890625q0.109375 0.59375 0.40625 1.15625l-1.703125 0q-0.265625 -0.515625 -0.328125 -1.1875zm-0.140625 -3.671875q-0.890625 0.375 -2.671875 0.625q-1.015625 0.140625 -1.4375 0.328125q-0.421875 0.1875 -0.65625 0.53125q-0.21875 0.34375 -0.21875 0.78125q0 0.65625 0.5 1.09375q0.5 0.4375 1.453125 0.4375q0.9375 0 1.671875 -0.40625q0.75 -0.421875 1.09375 -1.140625q0.265625 -0.5625 0.265625 -1.640625l0 -0.609375zm10.516327 1.3125l1.609375 0.21875q-0.265625 1.65625 -1.359375 2.609375q-1.078125 0.9375 -2.671875 0.9375q-1.984375 0 -3.1875 -1.296875q-1.203125 -1.296875 -1.203125 -3.71875q0 -1.578125 0.515625 -2.75q0.515625 -1.171875 1.578125 -1.75q1.0625 -0.59375 2.3125 -0.59375q1.578125 0 2.578125 0.796875q1.0 0.796875 1.28125 2.265625l-1.59375 0.234375q-0.234375 -0.96875 -0.8125 -1.453125q-0.578125 -0.5 -1.390625 -0.5q-1.234375 0 -2.015625 0.890625q-0.78125 0.890625 -0.78125 2.8125q0 1.953125 0.75 2.84375q0.75 0.875 1.953125 0.875q0.96875 0 1.609375 -0.59375q0.65625 -0.59375 0.828125 -1.828125zm3.015625 3.546875l0 -13.359375l1.640625 0l0 7.625l3.890625 -3.9375l2.109375 0l-3.6875 3.59375l4.0625 6.078125l-2.015625 0l-3.203125 -4.953125l-1.15625 1.125l0 3.828125l-1.640625 0z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m73.64304 331.2953l351.0551 0l0 53.700775l-351.0551 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m73.64304 331.2953l351.0551 0l0 53.700775l-351.0551 0z" fill-rule="evenodd"/><path fill="#000000" d="m225.73463 365.06567l0 -13.359375l4.609375 0q1.546875 0 2.375 0.203125q1.140625 0.25 1.953125 0.953125q1.0625 0.890625 1.578125 2.28125q0.53125 1.390625 0.53125 3.171875q0 1.515625 -0.359375 2.703125q-0.359375 1.171875 -0.921875 1.9375q-0.546875 0.765625 -1.203125 1.21875q-0.65625 0.4375 -1.59375 0.671875q-0.9375 0.21875 -2.140625 0.21875l-4.828125 0zm1.765625 -1.578125l2.859375 0q1.3125 0 2.0625 -0.234375q0.75 -0.25 1.203125 -0.703125q0.625 -0.625 0.96875 -1.6875q0.359375 -1.0625 0.359375 -2.578125q0 -2.09375 -0.6875 -3.21875q-0.6875 -1.125 -1.671875 -1.5q-0.703125 -0.28125 -2.28125 -0.28125l-2.8125 0l0 10.203125zm11.488571 1.578125l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0zm6.228302 -11.46875l0 -1.890625l1.640625 0l0 1.890625l-1.640625 0zm0 11.46875l0 -9.671875l1.640625 0l0 9.671875l-1.640625 0zm6.832321 0l-3.6875 -9.671875l1.734375 0l2.078125 5.796875q0.328125 0.9375 0.625 1.9375q0.203125 -0.765625 0.609375 -1.828125l2.140625 -5.90625l1.6874847 0l-3.6562347 9.671875l-1.53125 0zm13.26561 -3.109375l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm9.125732 5.765625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m73.64304 446.20996l351.0551 0l0 53.700806l-351.0551 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m73.64304 446.20996l351.0551 0l0 53.700806l-351.0551 0z" fill-rule="evenodd"/><path fill="#000000" d="m222.09538 479.98038l0 -13.359375l4.609375 0q1.546875 0 2.375 0.203125q1.140625 0.25 1.953125 0.953125q1.0625 0.890625 1.578125 2.28125q0.53125 1.390625 0.53125 3.171875q0 1.515625 -0.359375 2.703125q-0.359375 1.171875 -0.921875 1.9375q-0.546875 0.765625 -1.203125 1.21875q-0.65625 0.4375 -1.59375 0.671875q-0.9375 0.21875 -2.140625 0.21875l-4.828125 0zm1.765625 -1.578125l2.859375 0q1.3125 0 2.0625 -0.234375q0.75 -0.25 1.203125 -0.703125q0.625 -0.625 0.96875 -1.6875q0.359375 -1.0625 0.359375 -2.578125q0 -2.09375 -0.6875 -3.21875q-0.6875 -1.125 -1.671875 -1.5q-0.703125 -0.28125 -2.28125 -0.28125l-2.8125 0l0 10.203125zm18.129196 -1.53125l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm11.828842 5.765625l-3.6875 -9.671875l1.734375 0l2.078125 5.796875q0.328125 0.9375 0.625 1.9375q0.203125 -0.765625 0.609375 -1.828125l2.140625 -5.90625l1.6875 0l-3.65625 9.671875l-1.53125 0zm6.640625 -11.46875l0 -1.890625l1.6406097 0l0 1.890625l-1.6406097 0zm0 11.46875l0 -9.671875l1.6406097 0l0 9.671875l-1.6406097 0zm10.457321 -3.546875l1.609375 0.21875q-0.265625 1.65625 -1.359375 2.609375q-1.078125 0.9375 -2.671875 0.9375q-1.984375 0 -3.1875 -1.296875q-1.203125 -1.296875 -1.203125 -3.71875q0 -1.578125 0.515625 -2.75q0.515625 -1.171875 1.578125 -1.75q1.0625 -0.59375 2.3125 -0.59375q1.578125 0 2.578125 0.796875q1.0 0.796875 1.28125 2.265625l-1.59375 0.234375q-0.234375 -0.96875 -0.8125 -1.453125q-0.578125 -0.5 -1.390625 -0.5q-1.234375 0 -2.015625 0.890625q-0.78125 0.890625 -0.78125 2.8125q0 1.953125 0.75 2.84375q0.75 0.875 1.953125 0.875q0.96875 0 1.609375 -0.59375q0.65625 -0.59375 0.828125 -1.828125zm9.640625 0.4375l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m153.17061 40.25197l0 0" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m153.17061 40.25197l0 0" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m48.435696 73.03937l402.67715 0" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" stroke-dasharray="4.0,3.0" d="m48.435696 73.03937l402.67715 0" fill-rule="evenodd"/><path fill="#cfe2f3" d="m177.95801 71.49061l-12.393707 0l0 12.897636l-24.7874 0l0 -12.897636l-12.393692 0l24.7874 -12.89764z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m177.95801 71.49061l-12.393707 0l0 12.897636l-24.7874 0l0 -12.897636l-12.393692 0l24.7874 -12.89764z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m320.3832 71.49061l12.393707 0l0 -12.89764l24.787384 0l0 12.89764l12.393707 0l-24.787415 12.897636z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m320.3832 71.49061l12.393707 0l0 -12.89764l24.787384 0l0 12.89764l12.393707 0l-24.787415 12.897636z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m177.95801 188.3931l-12.393707 0l0 12.897629l-24.7874 0l0 -12.897629l-12.393692 0l24.7874 -12.897644z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m177.95801 188.3931l-12.393707 0l0 12.897629l-24.7874 0l0 -12.897629l-12.393692 0l24.7874 -12.897644z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m320.3832 188.3931l12.393707 0l0 -12.897644l24.787384 0l0 12.897644l12.393707 0l-24.787415 12.897629z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m320.3832 188.3931l12.393707 0l0 -12.897644l24.787384 0l0 12.897644l12.393707 0l-24.787415 12.897629z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m177.95801 301.4256l-12.393707 0l0 12.897644l-24.7874 0l0 -12.897644l-12.393692 0l24.7874 -12.897644z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m177.95801 301.4256l-12.393707 0l0 12.897644l-24.7874 0l0 -12.897644l-12.393692 0l24.7874 -12.897644z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m320.3832 301.4256l12.393707 0l0 -12.897644l24.787384 0l0 12.897644l12.393707 0l-24.787415 12.897644z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m320.3832 301.4256l12.393707 0l0 -12.897644l24.787384 0l0 12.897644l12.393707 0l-24.787415 12.897644z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m177.95801 415.4906l-12.393707 0l0 12.897644l-24.7874 0l0 -12.897644l-12.393692 0l24.7874 -12.897644z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m177.95801 415.4906l-12.393707 0l0 12.897644l-24.7874 0l0 -12.897644l-12.393692 0l24.7874 -12.897644z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m320.3832 415.4906l12.393707 0l0 -12.897644l24.787384 0l0 12.897644l12.393707 0l-24.787415 12.897644z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m320.3832 415.4906l12.393707 0l0 -12.897644l24.787384 0l0 12.897644l12.393707 0l-24.787415 12.897644z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m198.14961 44.009186l109.44881 0l0 53.70079l-109.44881 0z" fill-rule="evenodd"/><path fill="#000000" d="m224.98174 70.929184l2.78125 -13.359375l1.65625 0l-1.0 4.78125q0.78125 -0.71875 1.421875 -1.015625q0.640625 -0.296875 1.328125 -0.296875q1.359375 0 2.265625 1.015625q0.90625 1.0 0.90625 2.9375q0 1.28125 -0.375 2.359375q-0.359375 1.0625 -0.890625 1.78125q-0.53125 0.71875 -1.109375 1.15625q-0.578125 0.4375 -1.1875 0.640625q-0.59375 0.21875 -1.140625 0.21875q-0.96875 0 -1.703125 -0.5q-0.71875 -0.515625 -1.125 -1.546875l-0.390625 1.828125l-1.4375 0zm2.4375 -3.96875l-0.015625 0.3125q0 1.234375 0.59375 1.890625q0.59375 0.640625 1.484375 0.640625q0.859375 0 1.578125 -0.609375q0.734375 -0.609375 1.1875 -1.890625q0.46875 -1.28125 0.46875 -2.375q0 -1.21875 -0.59375 -1.890625q-0.578125 -0.671875 -1.4375 -0.671875q-0.90625 0 -1.65625 0.6875q-0.734375 0.6875 -1.234375 2.125q-0.375 1.0625 -0.375 1.78125zm14.531967 2.21875q-1.734375 1.96875 -3.5625 1.96875q-1.109375 0 -1.796875 -0.640625q-0.6875 -0.640625 -0.6875 -1.578125q0 -0.609375 0.296875 -2.09375l1.171875 -5.578125l1.65625 0l-1.296875 6.1875q-0.171875 0.765625 -0.171875 1.203125q0 0.546875 0.328125 0.859375q0.34375 0.296875 0.984375 0.296875q0.703125 0 1.359375 -0.328125q0.65625 -0.34375 1.125 -0.921875q0.484375 -0.578125 0.796875 -1.359375q0.1875 -0.5 0.453125 -1.765625l0.875 -4.171875l1.65625 0l-2.03125 9.671875l-1.515625 0l0.359375 -1.75zm4.000717 1.75l1.765625 -8.40625l-1.484375 0l0.265625 -1.265625l1.484375 0l0.28125 -1.375q0.21875 -1.03125 0.4375 -1.484375q0.234375 -0.453125 0.75 -0.75q0.53125 -0.296875 1.4375 -0.296875q0.625 0 1.828125 0.265625l-0.296875 1.4375q-0.84375 -0.21875 -1.40625 -0.21875q-0.484375 0 -0.734375 0.25q-0.25 0.234375 -0.4375 1.125l-0.21875 1.046875l1.84375 0l-0.265625 1.265625l-1.84375 0l-1.75 8.40625l-1.65625 0zm5.183304 0l1.765625 -8.40625l-1.484375 0l0.265625 -1.265625l1.484375 0l0.28125 -1.375q0.21875 -1.03125 0.4375 -1.484375q0.234375 -0.453125 0.75 -0.75q0.53125 -0.296875 1.4375 -0.296875q0.625 0 1.828125 0.265625l-0.296875 1.4375q-0.84375 -0.21875 -1.40625 -0.21875q-0.484375 0 -0.734375 0.25q-0.25 0.234375 -0.4375 1.125l-0.21875 1.046875l1.84375 0l-0.265625 1.265625l-1.84375 0l-1.75 8.40625l-1.65625 0zm12.058319 -3.28125l1.609375 0.15625q-0.34375 1.1875 -1.59375 2.265625q-1.234375 1.078125 -2.96875 1.078125q-1.0625 0 -1.96875 -0.5q-0.890625 -0.5 -1.359375 -1.4375q-0.46875 -0.953125 -0.46875 -2.15625q0 -1.59375 0.734375 -3.078125q0.734375 -1.484375 1.890625 -2.203125q1.171875 -0.734375 2.53125 -0.734375q1.734375 0 2.765625 1.078125q1.03125 1.0625 1.03125 2.921875q0 0.71875 -0.125 1.46875l-7.125 0q-0.046875 0.28125 -0.046875 0.5q0 1.359375 0.625 2.078125q0.625 0.71875 1.53125 0.71875q0.84375 0 1.65625 -0.546875q0.828125 -0.5625 1.28125 -1.609375zm-4.78125 -2.40625l5.421875 0q0.015625 -0.25 0.015625 -0.359375q0 -1.234375 -0.625 -1.890625q-0.625 -0.671875 -1.59375 -0.671875q-1.0625 0 -1.9375 0.734375q-0.859375 0.71875 -1.28125 2.1875zm8.063202 5.6875l2.015625 -9.671875l1.453125 0l-0.40625 1.96875q0.75 -1.109375 1.453125 -1.640625q0.71875 -0.546875 1.46875 -0.546875q0.5 0 1.21875 0.359375l-0.671875 1.53125q-0.4375 -0.3125 -0.9375 -0.3125q-0.875 0 -1.78125 0.96875q-0.90625 0.953125 -1.4375 3.46875l-0.8125 3.875l-1.5625 0zm6.368927 -3.3125l1.640625 -0.09375q0 0.703125 0.21875 1.21875q0.21875 0.5 0.796875 0.8125q0.59375 0.3125 1.375 0.3125q1.09375 0 1.640625 -0.4375q0.546875 -0.4375 0.546875 -1.015625q0 -0.4375 -0.328125 -0.8125q-0.328125 -0.390625 -1.640625 -0.953125q-1.3125 -0.5625 -1.671875 -0.78125q-0.609375 -0.375 -0.921875 -0.875q-0.3125 -0.515625 -0.3125 -1.171875q0 -1.140625 0.90625 -1.953125q0.921875 -0.828125 2.5625 -0.828125q1.828125 0 2.765625 0.84375q0.953125 0.84375 1.0 2.21875l-1.609375 0.109375q-0.046875 -0.875 -0.625 -1.390625q-0.578125 -0.515625 -1.65625 -0.515625q-0.84375 0 -1.328125 0.40625q-0.46875 0.390625 -0.46875 0.84375q0 0.453125 0.40625 0.796875q0.28125 0.234375 1.421875 0.734375q1.890625 0.8125 2.375 1.28125q0.78125 0.765625 0.78125 1.84375q0 0.71875 -0.4375 1.421875q-0.4375 0.6875 -1.34375 1.109375q-0.90625 0.40625 -2.140625 0.40625q-1.671875 0 -2.84375 -0.828125q-1.1875 -0.828125 -1.109375 -2.703125z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m198.14961 164.00919l109.44881 0l0 53.70079l-109.44881 0z" fill-rule="evenodd"/><path fill="#000000" d="m211.6696 187.61668l1.640625 -0.09375q0 0.703125 0.21875 1.21875q0.21875 0.5 0.796875 0.8125q0.59375 0.3125 1.375 0.3125q1.09375 0 1.640625 -0.4375q0.546875 -0.4375 0.546875 -1.015625q0 -0.4375 -0.328125 -0.8125q-0.328125 -0.390625 -1.640625 -0.953125q-1.3125 -0.5625 -1.671875 -0.78125q-0.609375 -0.375 -0.921875 -0.875q-0.3125 -0.515625 -0.3125 -1.171875q0 -1.140625 0.90625 -1.953125q0.921875 -0.828125 2.5625 -0.828125q1.828125 0 2.765625 0.84375q0.953125 0.84375 1.0 2.21875l-1.609375 0.109375q-0.046875 -0.875 -0.625 -1.390625q-0.578125 -0.515625 -1.65625 -0.515625q-0.84375 0 -1.328125 0.40625q-0.46875 0.390625 -0.46875 0.84375q0 0.453125 0.40625 0.796875q0.28125 0.234375 1.421875 0.734375q1.890625 0.8125 2.375 1.28125q0.78125 0.765625 0.78125 1.84375q0 0.71875 -0.4375 1.421875q-0.4375 0.6875 -1.34375 1.109375q-0.90625 0.40625 -2.140625 0.40625q-1.671875 0 -2.84375 -0.828125q-1.1875 -0.828125 -1.109375 -2.703125zm15.84375 -0.21875l1.65625 0.171875q-0.625 1.8125 -1.765625 2.703125q-1.140625 0.875 -2.609375 0.875q-1.578125 0 -2.5625 -1.015625q-0.96875 -1.03125 -0.96875 -2.859375q0 -1.578125 0.625 -3.109375q0.640625 -1.53125 1.796875 -2.328125q1.171875 -0.796875 2.6875 -0.796875q1.546875 0 2.453125 0.875q0.921875 0.875 0.921875 2.328125l-1.625 0.109375q-0.015625 -0.921875 -0.546875 -1.4375q-0.515625 -0.515625 -1.359375 -0.515625q-1.0 0 -1.734375 0.625q-0.71875 0.625 -1.140625 1.90625q-0.40625 1.28125 -0.40625 2.46875q0 1.234375 0.546875 1.859375q0.546875 0.609375 1.34375 0.609375q0.796875 0 1.53125 -0.609375q0.734375 -0.609375 1.15625 -1.859375zm9.171875 2.328125q-0.859375 0.734375 -1.65625 1.078125q-0.78125 0.34375 -1.6875 0.34375q-1.34375 0 -2.171875 -0.78125q-0.8125 -0.796875 -0.8125 -2.03125q0 -0.796875 0.375 -1.421875q0.375 -0.625 0.984375 -1.0q0.609375 -0.390625 1.484375 -0.546875q0.5625 -0.109375 2.109375 -0.171875q1.5625 -0.0625 2.234375 -0.328125q0.1875 -0.671875 0.1875 -1.125q0 -0.578125 -0.421875 -0.90625q-0.5625 -0.453125 -1.671875 -0.453125q-1.03125 0 -1.703125 0.46875q-0.65625 0.453125 -0.953125 1.296875l-1.671875 -0.140625q0.515625 -1.4375 1.609375 -2.203125q1.109375 -0.765625 2.796875 -0.765625q1.796875 0 2.84375 0.859375q0.796875 0.625 0.796875 1.65625q0 0.765625 -0.21875 1.796875l-0.53125 2.40625q-0.265625 1.140625 -0.265625 1.859375q0 0.453125 0.203125 1.3125l-1.671875 0q-0.125 -0.46875 -0.1875 -1.203125zm0.609375 -3.703125q-0.34375 0.140625 -0.75 0.21875q-0.390625 0.0625 -1.3125 0.15625q-1.4375 0.125 -2.03125 0.328125q-0.59375 0.1875 -0.90625 0.625q-0.296875 0.421875 -0.296875 0.9375q0 0.6875 0.484375 1.140625q0.484375 0.4375 1.359375 0.4375q0.828125 0 1.578125 -0.421875q0.75 -0.4375 1.1875 -1.203125q0.4375 -0.78125 0.6875 -2.21875zm7.094467 3.5625l-0.265625 1.359375q-0.59375 0.140625 -1.15625 0.140625q-0.984375 0 -1.5625 -0.46875q-0.4375 -0.375 -0.4375 -1.0q0 -0.3125 0.234375 -1.46875l1.171875 -5.625l-1.296875 0l0.265625 -1.265625l1.296875 0l0.5 -2.375l1.890625 -1.140625l-0.734375 3.515625l1.625 0l-0.28125 1.265625l-1.609375 0l-1.125 5.359375q-0.203125 1.015625 -0.203125 1.21875q0 0.28125 0.15625 0.4375q0.171875 0.15625 0.5625 0.15625q0.546875 0 0.96875 -0.109375zm5.183304 0l-0.265625 1.359375q-0.59375 0.140625 -1.15625 0.140625q-0.984375 0 -1.5625 -0.46875q-0.4375 -0.375 -0.4375 -1.0q0 -0.3125 0.234375 -1.46875l1.171875 -5.625l-1.296875 0l0.265625 -1.265625l1.296875 0l0.5 -2.375l1.890625 -1.140625l-0.734375 3.515625l1.625 0l-0.28125 1.265625l-1.609375 0l-1.125 5.359375q-0.203125 1.015625 -0.203125 1.21875q0 0.28125 0.15625 0.4375q0.171875 0.15625 0.5625 0.15625q0.546875 0 0.96875 -0.109375zm8.433304 -1.9375l1.609375 0.15625q-0.34375 1.1875 -1.59375 2.265625q-1.234375 1.078125 -2.96875 1.078125q-1.0625 0 -1.96875 -0.5q-0.890625 -0.5 -1.359375 -1.4375q-0.46875 -0.953125 -0.46875 -2.15625q0 -1.59375 0.734375 -3.078125q0.734375 -1.484375 1.890625 -2.203125q1.171875 -0.734375 2.53125 -0.734375q1.734375 0 2.765625 1.078125q1.03125 1.0625 1.03125 2.921875q0 0.71875 -0.125 1.46875l-7.125 0q-0.046875 0.28125 -0.046875 0.5q0 1.359375 0.625 2.078125q0.625 0.71875 1.53125 0.71875q0.84375 0 1.65625 -0.546875q0.828125 -0.5625 1.28125 -1.609375zm-4.78125 -2.40625l5.421875 0q0.015625 -0.25 0.015625 -0.359375q0 -1.234375 -0.625 -1.890625q-0.625 -0.671875 -1.59375 -0.671875q-1.0625 0 -1.9375 0.734375q-0.859375 0.71875 -1.28125 2.1875zm8.063202 5.6875l2.015625 -9.671875l1.453125 0l-0.40625 1.96875q0.75 -1.109375 1.453125 -1.640625q0.71875 -0.546875 1.46875 -0.546875q0.5 0 1.21875 0.359375l-0.671875 1.53125q-0.4375 -0.3125 -0.9375 -0.3125q-0.875 0 -1.78125 0.96875q-0.90625 0.953125 -1.4375 3.46875l-0.8125 3.875l-1.5625 0zm11.255371 0l2.796875 -13.359375l1.640625 0l-2.78125 13.359375l-1.65625 0zm6.613556 -11.484375l0.40625 -1.875l1.625 0l-0.390625 1.875l-1.640625 0zm-2.390625 11.484375l2.015625 -9.671875l1.65625 0l-2.03125 9.671875l-1.640625 0zm4.3635864 -3.3125l1.640625 -0.09375q0 0.703125 0.21875 1.21875q0.21875 0.5 0.796875 0.8125q0.59375 0.3125 1.375 0.3125q1.09375 0 1.640625 -0.4375q0.546875 -0.4375 0.546875 -1.015625q0 -0.4375 -0.328125 -0.8125q-0.328125 -0.390625 -1.640625 -0.953125q-1.3125 -0.5625 -1.671875 -0.78125q-0.609375 -0.375 -0.921875 -0.875q-0.3125 -0.515625 -0.3125 -1.171875q0 -1.140625 0.90625 -1.953125q0.921875 -0.828125 2.5625 -0.828125q1.828125 0 2.765625 0.84375q0.953125 0.84375 1.0 2.21875l-1.609375 0.109375q-0.046875 -0.875 -0.625 -1.390625q-0.578125 -0.515625 -1.65625 -0.515625q-0.84375 0 -1.328125 0.40625q-0.46875 0.390625 -0.46875 0.84375q0 0.453125 0.40625 0.796875q0.28125 0.234375 1.421875 0.734375q1.890625 0.8125 2.375 1.28125q0.78125 0.765625 0.78125 1.84375q0 0.71875 -0.4375 1.421875q-0.4375 0.6875 -1.34375 1.109375q-0.90625 0.40625 -2.140625 0.40625q-1.671875 0 -2.84375 -0.828125q-1.1875 -0.828125 -1.109375 -2.703125zm13.015625 1.96875l-0.265625 1.359375q-0.59375 0.140625 -1.15625 0.140625q-0.984375 0 -1.5625 -0.46875q-0.4375 -0.375 -0.4375 -1.0q0 -0.3125 0.234375 -1.46875l1.171875 -5.625l-1.296875 0l0.265625 -1.265625l1.296875 0l0.5 -2.375l1.890625 -1.140625l-0.734375 3.515625l1.625 0l-0.28125 1.265625l-1.609375 0l-1.125 5.359375q-0.203125 1.015625 -0.203125 1.21875q0 0.28125 0.15625 0.4375q0.171875 0.15625 0.5625 0.15625q0.546875 0 0.96875 -0.109375z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m198.14961 280.1392l109.44881 0l0 53.700806l-109.44881 0z" fill-rule="evenodd"/><path fill="#000000" d="m223.58026 303.7467l1.640625 -0.09375q0 0.703125 0.21875 1.21875q0.21875 0.5 0.796875 0.8125q0.59375 0.3125 1.375 0.3125q1.09375 0 1.640625 -0.4375q0.546875 -0.4375 0.546875 -1.015625q0 -0.4375 -0.328125 -0.8125q-0.328125 -0.390625 -1.640625 -0.953125q-1.3125 -0.5625 -1.671875 -0.78125q-0.609375 -0.375 -0.921875 -0.875q-0.3125 -0.515625 -0.3125 -1.171875q0 -1.140625 0.90625 -1.953125q0.921875 -0.828125 2.5625 -0.828125q1.828125 0 2.765625 0.84375q0.953125 0.84375 1.0 2.21875l-1.609375 0.109375q-0.046875 -0.875 -0.625 -1.390625q-0.578125 -0.515625 -1.65625 -0.515625q-0.84375 0 -1.328125 0.40625q-0.46875 0.390625 -0.46875 0.84375q0 0.453125 0.40625 0.796875q0.28125 0.234375 1.421875 0.734375q1.890625 0.8125 2.375 1.28125q0.78125 0.765625 0.78125 1.84375q0 0.71875 -0.4375 1.421875q-0.4375 0.6875 -1.34375 1.109375q-0.90625 0.40625 -2.140625 0.40625q-1.671875 0 -2.84375 -0.828125q-1.1875 -0.828125 -1.109375 -2.703125zm9.1875 3.3125l2.796875 -13.359375l1.640625 0l-1.734375 8.28125l4.8125 -4.59375l2.171875 0l-4.125 3.609375l2.5 6.0625l-1.8125 0l-1.921875 -4.96875l-2.015625 1.734375l-0.671875 3.234375l-1.640625 0zm7.5 3.703125l0 -1.1875l10.875 0l0 1.1875l-10.875 0zm12.188217 -3.703125l2.78125 -13.359375l1.6562653 0l-1.0000153 4.78125q0.78126526 -0.71875 1.4218903 -1.015625q0.640625 -0.296875 1.328125 -0.296875q1.359375 0 2.265625 1.015625q0.90625 1.0 0.90625 2.9375q0 1.28125 -0.375 2.359375q-0.359375 1.0625 -0.890625 1.78125q-0.53125 0.71875 -1.109375 1.15625q-0.578125 0.4375 -1.1875 0.640625q-0.59375 0.21875 -1.140625 0.21875q-0.96875 0 -1.7031403 -0.5q-0.71875 -0.515625 -1.125 -1.546875l-0.390625 1.828125l-1.4375 0zm2.4375 -3.96875l-0.015625 0.3125q0 1.234375 0.59375 1.890625q0.59376526 0.640625 1.4843903 0.640625q0.859375 0 1.578125 -0.609375q0.734375 -0.609375 1.1875 -1.890625q0.46875 -1.28125 0.46875 -2.375q0 -1.21875 -0.59375 -1.890625q-0.578125 -0.671875 -1.4375 -0.671875q-0.90625 0 -1.65625 0.6875q-0.73439026 0.6875 -1.2343903 2.125q-0.375 1.0625 -0.375 1.78125zm14.531967 2.21875q-1.734375 1.96875 -3.5625 1.96875q-1.109375 0 -1.796875 -0.640625q-0.6875 -0.640625 -0.6875 -1.578125q0 -0.609375 0.296875 -2.09375l1.171875 -5.578125l1.65625 0l-1.296875 6.1875q-0.171875 0.765625 -0.171875 1.203125q0 0.546875 0.328125 0.859375q0.34375 0.296875 0.984375 0.296875q0.703125 0 1.359375 -0.328125q0.65625 -0.34375 1.125 -0.921875q0.484375 -0.578125 0.796875 -1.359375q0.1875 -0.5 0.453125 -1.765625l0.875 -4.171875l1.65625 0l-2.03125 9.671875l-1.515625 0l0.359375 -1.75zm4.0007324 1.75l1.765625 -8.40625l-1.484375 0l0.265625 -1.265625l1.484375 0l0.28125 -1.375q0.21875 -1.03125 0.4375 -1.484375q0.234375 -0.453125 0.75 -0.75q0.53125 -0.296875 1.4375 -0.296875q0.625 0 1.828125 0.265625l-0.296875 1.4375q-0.84375 -0.21875 -1.40625 -0.21875q-0.484375 0 -0.734375 0.25q-0.25 0.234375 -0.4375 1.125l-0.21875 1.046875l1.84375 0l-0.265625 1.265625l-1.84375 0l-1.75 8.40625l-1.65625 0zm5.1832886 0l1.765625 -8.40625l-1.484375 0l0.265625 -1.265625l1.484375 0l0.28125 -1.375q0.21875 -1.03125 0.4375 -1.484375q0.234375 -0.453125 0.75 -0.75q0.53125 -0.296875 1.4375 -0.296875q0.625 0 1.828125 0.265625l-0.296875 1.4375q-0.84375 -0.21875 -1.40625 -0.21875q-0.484375 0 -0.734375 0.25q-0.25 0.234375 -0.4375 1.125l-0.21875 1.046875l1.84375 0l-0.265625 1.265625l-1.84375 0l-1.75 8.40625l-1.65625 0z" fill-rule="nonzero"/><path fill="#000000" fill-opacity="0.0" d="m163.81627 395.2362l178.11024 0l0 53.700806l-178.11024 0z" fill-rule="evenodd"/><path fill="#000000" d="m195.60925 418.62497l1.65625 0.171875q-0.625 1.8125 -1.765625 2.703125q-1.140625 0.875 -2.609375 0.875q-1.578125 0 -2.5625 -1.015625q-0.96875 -1.03125 -0.96875 -2.859375q0 -1.578125 0.625 -3.109375q0.640625 -1.53125 1.796875 -2.328125q1.171875 -0.796875 2.6875 -0.796875q1.546875 0 2.453125 0.875q0.921875 0.875 0.921875 2.328125l-1.625 0.109375q-0.015625 -0.921875 -0.546875 -1.4375q-0.515625 -0.515625 -1.359375 -0.515625q-1.0 0 -1.734375 0.625q-0.71875 0.625 -1.140625 1.90625q-0.40625 1.28125 -0.40625 2.46875q0 1.234375 0.546875 1.859375q0.546875 0.609375 1.34375 0.609375q0.796875 0 1.53125 -0.609375q0.734375 -0.609375 1.15625 -1.859375zm2.9375 -0.140625q0 -2.828125 1.671875 -4.6875q1.375 -1.53125 3.609375 -1.53125q1.75 0 2.8125 1.09375q1.078125 1.09375 1.078125 2.953125q0 1.65625 -0.671875 3.09375q-0.671875 1.4375 -1.921875 2.203125q-1.25 0.765625 -2.625 0.765625q-1.125 0 -2.046875 -0.484375q-0.921875 -0.484375 -1.421875 -1.359375q-0.484375 -0.890625 -0.484375 -2.046875zm1.65625 -0.15625q0 1.359375 0.65625 2.0625q0.65625 0.703125 1.65625 0.703125q0.53125 0 1.046875 -0.203125q0.53125 -0.21875 0.96875 -0.65625q0.453125 -0.4375 0.765625 -1.0q0.3125 -0.5625 0.5 -1.203125q0.28125 -0.90625 0.28125 -1.734375q0 -1.3125 -0.65625 -2.03125q-0.65625 -0.734375 -1.65625 -0.734375q-0.78125 0 -1.421875 0.375q-0.625 0.375 -1.140625 1.09375q-0.515625 0.703125 -0.765625 1.640625q-0.234375 0.9375 -0.234375 1.6875zm8.438217 3.828125l2.015625 -9.671875l1.5 0l-0.359375 1.6875q0.96875 -1.0 1.8125 -1.453125q0.859375 -0.453125 1.734375 -0.453125q1.1875 0 1.84375 0.640625q0.671875 0.625 0.671875 1.703125q0 0.53125 -0.234375 1.6875l-1.234375 5.859375l-1.640625 0l1.28125 -6.125q0.1875 -0.890625 0.1875 -1.328125q0 -0.484375 -0.328125 -0.78125q-0.328125 -0.296875 -0.953125 -0.296875q-1.28125 0 -2.265625 0.90625q-0.984375 0.90625 -1.453125 3.125l-0.9375 4.5l-1.640625 0zm14.219467 -1.34375l-0.265625 1.359375q-0.59375 0.140625 -1.15625 0.140625q-0.984375 0 -1.5625 -0.46875q-0.4375 -0.375 -0.4375 -1.0q0 -0.3125 0.234375 -1.46875l1.171875 -5.625l-1.296875 0l0.265625 -1.265625l1.296875 0l0.5 -2.375l1.890625 -1.140625l-0.734375 3.515625l1.625 0l-0.28125 1.265625l-1.609375 0l-1.125 5.359375q-0.203125 1.015625 -0.203125 1.21875q0 0.28125 0.15625 0.4375q0.171875 0.15625 0.5625 0.15625q0.546875 0 0.96875 -0.109375zm8.433304 -1.9375l1.609375 0.15625q-0.34375 1.1875 -1.59375 2.265625q-1.234375 1.078125 -2.96875 1.078125q-1.0625 0 -1.96875 -0.5q-0.890625 -0.5 -1.359375 -1.4375q-0.46875 -0.953125 -0.46875 -2.15625q0 -1.59375 0.734375 -3.078125q0.734375 -1.484375 1.890625 -2.203125q1.171875 -0.734375 2.53125 -0.734375q1.734375 0 2.765625 1.078125q1.03125 1.0625 1.03125 2.921875q0 0.71875 -0.125 1.46875l-7.125 0q-0.046875 0.28125 -0.046875 0.5q0 1.359375 0.625 2.078125q0.625 0.71875 1.53125 0.71875q0.84375 0 1.65625 -0.546875q0.828125 -0.5625 1.28125 -1.609375zm-4.78125 -2.40625l5.421875 0q0.015625 -0.25 0.015625 -0.359375q0 -1.234375 -0.625 -1.890625q-0.625 -0.671875 -1.59375 -0.671875q-1.0625 0 -1.9375 0.734375q-0.859375 0.71875 -1.28125 2.1875zm7.406967 5.6875l4.21875 -4.90625l-2.421875 -4.765625l1.828125 0l0.8125 1.71875q0.453125 0.96875 0.828125 1.84375l2.78125 -3.5625l2.015625 0l-4.0625 4.890625l2.4375 4.78125l-1.8125 0l-0.96875 -1.96875q-0.3125 -0.625 -0.703125 -1.5625l-2.875 3.53125l-2.078125 0zm13.828125 -1.34375l-0.265625 1.359375q-0.59375 0.140625 -1.15625 0.140625q-0.984375 0 -1.5625 -0.46875q-0.4375 -0.375 -0.4375 -1.0q0 -0.3125 0.234375 -1.46875l1.171875 -5.625l-1.296875 0l0.265625 -1.265625l1.296875 0l0.5 -2.375l1.890625 -1.140625l-0.734375 3.515625l1.625 0l-0.28125 1.265625l-1.609375 0l-1.125 5.359375q-0.203125 1.015625 -0.203125 1.21875q0 0.28125 0.15625 0.4375q0.171875 0.15625 0.5625 0.15625q0.546875 0 0.96875 -0.109375zm11.210358 -0.8125l0 -3.671875l-3.640625 0l0 -1.515625l3.640625 0l0 -3.640625l1.546875 0l0 3.640625l3.640625 0l0 1.515625l-3.640625 0l0 3.671875l-1.546875 0zm11.390778 2.15625l2.78125 -13.359375l1.65625 0l-1.0 4.78125q0.78125 -0.71875 1.421875 -1.015625q0.640625 -0.296875 1.328125 -0.296875q1.359375 0 2.265625 1.015625q0.90625 1.0 0.90625 2.9375q0 1.28125 -0.375 2.359375q-0.359375 1.0625 -0.890625 1.78125q-0.53125 0.71875 -1.109375 1.15625q-0.578125 0.4375 -1.1875 0.640625q-0.59375 0.21875 -1.140625 0.21875q-0.96875 0 -1.703125 -0.5q-0.71875 -0.515625 -1.125 -1.546875l-0.390625 1.828125l-1.4375 0zm2.4375 -3.96875l-0.015625 0.3125q0 1.234375 0.59375 1.890625q0.59375 0.640625 1.484375 0.640625q0.859375 0 1.578125 -0.609375q0.734375 -0.609375 1.1875 -1.890625q0.46875 -1.28125 0.46875 -2.375q0 -1.21875 -0.59375 -1.890625q-0.578125 -0.671875 -1.4375 -0.671875q-0.90625 0 -1.65625 0.6875q-0.734375 0.6875 -1.234375 2.125q-0.375 1.0625 -0.375 1.78125zm14.531952 2.21875q-1.734375 1.96875 -3.5625 1.96875q-1.109375 0 -1.796875 -0.640625q-0.6875 -0.640625 -0.6875 -1.578125q0 -0.609375 0.296875 -2.09375l1.171875 -5.578125l1.65625 0l-1.296875 6.1875q-0.171875 0.765625 -0.171875 1.203125q0 0.546875 0.328125 0.859375q0.34375 0.296875 0.984375 0.296875q0.703125 0 1.359375 -0.328125q0.65625 -0.34375 1.125 -0.921875q0.484375 -0.578125 0.796875 -1.359375q0.1875 -0.5 0.453125 -1.765625l0.875 -4.171875l1.65625 0l-2.03125 9.671875l-1.515625 0l0.359375 -1.75zm4.0007324 1.75l1.765625 -8.40625l-1.484375 0l0.265625 -1.265625l1.484375 0l0.28125 -1.375q0.21875 -1.03125 0.4375 -1.484375q0.234375 -0.453125 0.75 -0.75q0.53125 -0.296875 1.4375 -0.296875q0.625 0 1.828125 0.265625l-0.296875 1.4375q-0.84375 -0.21875 -1.40625 -0.21875q-0.484375 0 -0.734375 0.25q-0.25 0.234375 -0.4375 1.125l-0.21875 1.046875l1.84375 0l-0.265625 1.265625l-1.84375 0l-1.75 8.40625l-1.65625 0zm5.1832886 0l1.765625 -8.40625l-1.484375 0l0.265625 -1.265625l1.484375 0l0.28125 -1.375q0.21875 -1.03125 0.4375 -1.484375q0.234375 -0.453125 0.75 -0.75q0.53125 -0.296875 1.4375 -0.296875q0.625 0 1.828125 0.265625l-0.296875 1.4375q-0.84375 -0.21875 -1.40625 -0.21875q-0.484375 0 -0.734375 0.25q-0.25 0.234375 -0.4375 1.125l-0.21875 1.046875l1.84375 0l-0.265625 1.265625l-1.84375 0l-1.75 8.40625l-1.65625 0zm12.058319 -3.28125l1.609375 0.15625q-0.34375 1.1875 -1.59375 2.265625q-1.234375 1.078125 -2.96875 1.078125q-1.0625 0 -1.96875 -0.5q-0.890625 -0.5 -1.359375 -1.4375q-0.46875 -0.953125 -0.46875 -2.15625q0 -1.59375 0.734375 -3.078125q0.734375 -1.484375 1.890625 -2.203125q1.171875 -0.734375 2.53125 -0.734375q1.734375 0 2.765625 1.078125q1.03125 1.0625 1.03125 2.921875q0 0.71875 -0.125 1.46875l-7.125 0q-0.046875 0.28125 -0.046875 0.5q0 1.359375 0.625 2.078125q0.625 0.71875 1.53125 0.71875q0.84375 0 1.65625 -0.546875q0.828125 -0.5625 1.28125 -1.609375zm-4.78125 -2.40625l5.421875 0q0.015625 -0.25 0.015625 -0.359375q0 -1.234375 -0.625 -1.890625q-0.625 -0.671875 -1.59375 -0.671875q-1.0625 0 -1.9375 0.734375q-0.859375 0.71875 -1.28125 2.1875zm8.063202 5.6875l2.015625 -9.671875l1.453125 0l-0.40625 1.96875q0.75 -1.109375 1.453125 -1.640625q0.71875 -0.546875 1.46875 -0.546875q0.5 0 1.21875 0.359375l-0.671875 1.53125q-0.4375 -0.3125 -0.9375 -0.3125q-0.875 0 -1.78125 0.96875q-0.90625 0.953125 -1.4375 3.46875l-0.8125 3.875l-1.5625 0z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m0 165.96588l118.74016 0l0 40.25197l-118.74016 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m0 165.96588l118.74016 0l0 40.25197l-118.74016 0z" fill-rule="evenodd"/><path fill="#000000" d="m23.145836 190.12123l1.625 -0.25q0.125 0.96875 0.75 1.5q0.625 0.515625 1.75 0.515625q1.125 0 1.671875 -0.453125q0.546875 -0.46875 0.546875 -1.09375q0 -0.546875 -0.484375 -0.875q-0.328125 -0.21875 -1.671875 -0.546875q-1.8125 -0.46875 -2.515625 -0.796875q-0.6875 -0.328125 -1.046875 -0.90625q-0.359375 -0.59375 -0.359375 -1.3125q0 -0.640625 0.296875 -1.1875q0.296875 -0.5625 0.8125 -0.921875q0.375 -0.28125 1.03125 -0.46875q0.671875 -0.203125 1.421875 -0.203125q1.140625 0 2.0 0.328125q0.859375 0.328125 1.265625 0.890625q0.421875 0.5625 0.578125 1.5l-1.609375 0.21875q-0.109375 -0.75 -0.640625 -1.171875q-0.515625 -0.421875 -1.46875 -0.421875q-1.140625 0 -1.625 0.375q-0.46875 0.375 -0.46875 0.875q0 0.3125 0.1875 0.578125q0.203125 0.265625 0.640625 0.4375q0.234375 0.09375 1.4375 0.421875q1.75 0.453125 2.4375 0.75q0.6875 0.296875 1.078125 0.859375q0.390625 0.5625 0.390625 1.40625q0 0.828125 -0.484375 1.546875q-0.46875 0.71875 -1.375 1.125q-0.90625 0.390625 -2.046875 0.390625q-1.875 0 -2.875 -0.78125q-0.984375 -0.78125 -1.25 -2.328125zm13.5625 1.421875l0.234375 1.453125q-0.6875 0.140625 -1.234375 0.140625q-0.890625 0 -1.390625 -0.28125q-0.484375 -0.28125 -0.6875 -0.734375q-0.203125 -0.46875 -0.203125 -1.9375l0 -5.578125l-1.203125 0l0 -1.265625l1.203125 0l0 -2.390625l1.625 -0.984375l0 3.375l1.65625 0l0 1.265625l-1.65625 0l0 5.671875q0 0.6875 0.078125 0.890625q0.09375 0.203125 0.28125 0.328125q0.203125 0.109375 0.578125 0.109375q0.265625 0 0.71875 -0.0625zm1.5895538 1.46875l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0zm6.228302 3.703125l0 -13.375l1.484375 0l0 1.25q0.53125 -0.734375 1.1875 -1.09375q0.671875 -0.375 1.625 -0.375q1.234375 0 2.171875 0.640625q0.953125 0.625 1.4375 1.796875q0.484375 1.15625 0.484375 2.546875q0 1.484375 -0.53125 2.671875q-0.53125 1.1875 -1.546875 1.828125q-1.015625 0.625 -2.140625 0.625q-0.8125 0 -1.46875 -0.34375q-0.65625 -0.34375 -1.0625 -0.875l0 4.703125l-1.640625 0zm1.484375 -8.484375q0 1.859375 0.75 2.765625q0.765625 0.890625 1.828125 0.890625q1.09375 0 1.875 -0.921875q0.78125 -0.9375 0.78125 -2.875q0 -1.84375 -0.765625 -2.765625q-0.75 -0.921875 -1.8125 -0.921875q-1.046875 0 -1.859375 0.984375q-0.796875 0.96875 -0.796875 2.84375zm15.203842 3.59375q-0.921875 0.765625 -1.765625 1.09375q-0.828125 0.3125 -1.796875 0.3125q-1.59375 0 -2.453125 -0.78125q-0.859375 -0.78125 -0.859375 -1.984375q0 -0.71875 0.328125 -1.296875q0.328125 -0.59375 0.84375 -0.9375q0.53125 -0.359375 1.1875 -0.546875q0.46875 -0.125 1.453125 -0.25q1.984375 -0.234375 2.921875 -0.5625q0.015625 -0.34375 0.015625 -0.421875q0 -1.0 -0.46875 -1.421875q-0.625 -0.546875 -1.875 -0.546875q-1.15625 0 -1.703125 0.40625q-0.546875 0.40625 -0.8125 1.421875l-1.609375 -0.21875q0.21875 -1.015625 0.71875 -1.640625q0.5 -0.640625 1.453125 -0.984375q0.953125 -0.34375 2.1875 -0.34375q1.25 0 2.015625 0.296875q0.78125 0.28125 1.140625 0.734375q0.375 0.4375 0.515625 1.109375q0.078125 0.421875 0.078125 1.515625l0 2.1875q0 2.28125 0.109375 2.890625q0.109375 0.59375 0.40625 1.15625l-1.703125 0q-0.265625 -0.515625 -0.328125 -1.1875zm-0.140625 -3.671875q-0.890625 0.375 -2.671875 0.625q-1.015625 0.140625 -1.4375 0.328125q-0.421875 0.1875 -0.65625 0.53125q-0.21875 0.34375 -0.21875 0.78125q0 0.65625 0.5 1.09375q0.5 0.4375 1.453125 0.4375q0.9375 0 1.671875 -0.40625q0.75 -0.421875 1.09375 -1.140625q0.265625 -0.5625 0.265625 -1.640625l0 -0.609375zm4.188217 4.859375l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0zm5.572052 -2.890625l1.625 -0.25q0.125 0.96875 0.75 1.5q0.625 0.515625 1.75 0.515625q1.125 0 1.671875 -0.453125q0.546875 -0.46875 0.546875 -1.09375q0 -0.546875 -0.484375 -0.875q-0.328125 -0.21875 -1.671875 -0.546875q-1.8125 -0.46875 -2.515625 -0.796875q-0.6875 -0.328125 -1.046875 -0.90625q-0.359375 -0.59375 -0.359375 -1.3125q0 -0.640625 0.296875 -1.1875q0.296875 -0.5625 0.8125 -0.921875q0.375 -0.28125 1.03125 -0.46875q0.671875 -0.203125 1.421875 -0.203125q1.140625 0 2.0 0.328125q0.859375 0.328125 1.265625 0.890625q0.421875 0.5625 0.578125 1.5l-1.609375 0.21875q-0.109375 -0.75 -0.640625 -1.171875q-0.515625 -0.421875 -1.46875 -0.421875q-1.140625 0 -1.625 0.375q-0.46875 0.375 -0.46875 0.875q0 0.3125 0.1875 0.578125q0.203125 0.265625 0.640625 0.4375q0.234375 0.09375 1.4375 0.421875q1.75 0.453125 2.4375 0.75q0.6875 0.296875 1.078125 0.859375q0.390625 0.5625 0.390625 1.40625q0 0.828125 -0.484375 1.546875q-0.46875 0.71875 -1.375 1.125q-0.90625 0.390625 -2.046875 0.390625q-1.875 0 -2.875 -0.78125q-0.984375 -0.78125 -1.25 -2.328125zm16.609375 -0.21875l1.6875 0.203125q-0.40625 1.484375 -1.484375 2.3125q-1.078125 0.8125 -2.765625 0.8125q-2.125 0 -3.375 -1.296875q-1.234375 -1.3125 -1.234375 -3.671875q0 -2.453125 1.25 -3.796875q1.265625 -1.34375 3.265625 -1.34375q1.9375 0 3.15625 1.328125q1.234375 1.3125 1.234375 3.703125q0 0.15625 0 0.4375l-7.21875 0q0.09375 1.59375 0.90625 2.453125q0.8125 0.84375 2.015625 0.84375q0.90625 0 1.546875 -0.46875q0.640625 -0.484375 1.015625 -1.515625zm-5.390625 -2.65625l5.40625 0q-0.109375 -1.21875 -0.625 -1.828125q-0.78125 -0.953125 -2.03125 -0.953125q-1.125 0 -1.90625 0.765625q-0.765625 0.75 -0.84375 2.015625zm9.125717 5.765625l0 -9.671875l1.46875 0l0 1.46875q0.5625 -1.03125 1.03125 -1.359375q0.484375 -0.328125 1.0625 -0.328125q0.828125 0 1.6875 0.53125l-0.5625 1.515625q-0.609375 -0.359375 -1.203125 -0.359375q-0.546875 0 -0.96875 0.328125q-0.421875 0.328125 -0.609375 0.890625q-0.28125 0.875 -0.28125 1.921875l0 5.0625l-1.625 0z" fill-rule="nonzero"/></g></svg>
diff --git a/Documentation/networking/tls-offload-reorder-bad.svg b/Documentation/networking/tls-offload-reorder-bad.svg
new file mode 100644
index 000000000000..d107aaf0f71e
--- /dev/null
+++ b/Documentation/networking/tls-offload-reorder-bad.svg
@@ -0,0 +1 @@
+<svg version="1.1" viewBox="0.0 0.0 672.0 68.0" fill="none" stroke="none" stroke-linecap="square" stroke-miterlimit="10" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><clipPath id="p.0"><path d="m0 0l960.0 0l0 720.0l-960.0 0l0 -720.0z" clip-rule="nonzero"/></clipPath><g clip-path="url(#p.0)"><path fill="#000000" fill-opacity="0.0" d="m0 0l960.0 0l0 720.0l-960.0 0z" fill-rule="evenodd"/><path fill="#b6d7a8" d="m0 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m0 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m15.953125 52.942722l-1.640625 0l0 -10.453125q-0.59375 0.5625 -1.5625 1.140625q-0.953125 0.5625 -1.71875 0.84375l0 -1.59375q1.375 -0.640625 2.40625 -1.5625q1.03125 -0.921875 1.453125 -1.78125l1.0625 0l0 13.40625z" fill-rule="nonzero"/><path fill="#c9daf8" d="m340.69897 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m340.69897 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m355.73022 52.942722l0 -3.203125l-5.796875 0l0 -1.5l6.09375 -8.65625l1.34375 0l0 8.65625l1.796875 0l0 1.5l-1.796875 0l0 3.203125l-1.640625 0zm0 -4.703125l0 -6.015625l-4.1875 6.015625l4.1875 0z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m225.37527 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m225.37527 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m235.15652 49.411472l1.640625 -0.21875q0.28125 1.40625 0.953125 2.015625q0.6875 0.609375 1.65625 0.609375q1.15625 0 1.953125 -0.796875q0.796875 -0.796875 0.796875 -1.984375q0 -1.125 -0.734375 -1.859375q-0.734375 -0.734375 -1.875 -0.734375q-0.46875 0 -1.15625 0.171875l0.1875 -1.4375q0.15625 0.015625 0.265625 0.015625q1.046875 0 1.875 -0.546875q0.84375 -0.546875 0.84375 -1.671875q0 -0.90625 -0.609375 -1.5q-0.609375 -0.59375 -1.578125 -0.59375q-0.953125 0 -1.59375 0.609375q-0.640625 0.59375 -0.8125 1.796875l-1.640625 -0.296875q0.296875 -1.640625 1.359375 -2.546875q1.0625 -0.90625 2.65625 -0.90625q1.09375 0 2.0 0.46875q0.921875 0.46875 1.40625 1.28125q0.5 0.8125 0.5 1.71875q0 0.859375 -0.46875 1.578125q-0.46875 0.703125 -1.375 1.125q1.1875 0.28125 1.84375 1.140625q0.65625 0.859375 0.65625 2.15625q0 1.734375 -1.28125 2.953125q-1.265625 1.21875 -3.21875 1.21875q-1.765625 0 -2.921875 -1.046875q-1.15625 -1.046875 -1.328125 -2.71875z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m572.3295 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m572.3295 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m590.72015 51.364597l0 1.578125l-8.828125 0q-0.015625 -0.59375 0.1875 -1.140625q0.34375 -0.90625 1.078125 -1.78125q0.75 -0.875 2.15625 -2.015625q2.171875 -1.78125 2.9375 -2.828125q0.765625 -1.046875 0.765625 -1.96875q0 -0.984375 -0.703125 -1.640625q-0.6875 -0.671875 -1.8125 -0.671875q-1.1875 0 -1.90625 0.71875q-0.703125 0.703125 -0.703125 1.953125l-1.6875 -0.171875q0.171875 -1.890625 1.296875 -2.875q1.140625 -0.984375 3.03125 -0.984375q1.921875 0 3.046875 1.0625q1.125 1.0625 1.125 2.640625q0 0.796875 -0.328125 1.578125q-0.328125 0.78125 -1.09375 1.640625q-0.75 0.84375 -2.53125 2.34375q-1.46875 1.234375 -1.890625 1.6875q-0.421875 0.4375 -0.6875 0.875l6.546875 0z" fill-rule="nonzero"/><path fill="#e06666" d="m615.56793 24.999102l6.5512085 0l0 42.04725l-6.5512085 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m615.56793 24.999102l6.5512085 0l0 42.04725l-6.5512085 0z" fill-rule="evenodd"/><path fill="#c9daf8" d="m456.51425 24.999102l99.02365 0l0 42.04725l-99.02365 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m456.51425 24.999102l99.02365 0l0 42.04725l-99.02365 0z" fill-rule="evenodd"/><path fill="#000000" d="m466.2955 49.442722l1.71875 -0.140625q0.1875 1.25 0.875 1.890625q0.703125 0.625 1.6875 0.625q1.1875 0 2.0 -0.890625q0.828125 -0.890625 0.828125 -2.359375q0 -1.40625 -0.796875 -2.21875q-0.78125 -0.8125 -2.0625 -0.8125q-0.78125 0 -1.421875 0.359375q-0.640625 0.359375 -1.0 0.9375l-1.546875 -0.203125l1.296875 -6.859375l6.640625 0l0 1.5625l-5.328125 0l-0.71875 3.59375q1.203125 -0.84375 2.515625 -0.84375q1.75 0 2.953125 1.21875q1.203125 1.203125 1.203125 3.109375q0 1.8125 -1.046875 3.140625q-1.296875 1.625 -3.515625 1.625q-1.8125 0 -2.96875 -1.015625q-1.15625 -1.03125 -1.3125 -2.71875z" fill-rule="nonzero"/><path fill="#e06666" d="m391.1985 24.999102l6.551178 0l0 42.04725l-6.551178 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m391.1985 24.999102l6.551178 0l0 42.04725l-6.551178 0z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m114.43843 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" stroke-dasharray="4.0,3.0" d="m114.43843 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m163.95024 24.999102c0 -12.5 114.47246 -25.007874 228.9449 -25.0c114.47241 0.007874016 228.94489 12.531496 228.94489 25.062992" fill-rule="evenodd"/><path stroke="#000000" stroke-width="2.0" stroke-linejoin="round" stroke-linecap="butt" d="m163.95024 24.9991c0 -12.499998 114.47246 -25.007872 228.9449 -24.999998c57.236206 0.003937008 114.47244 3.136811 157.3996 7.835138c21.463562 2.3491635 39.349915 5.0896897 51.8703 8.026144c3.130127 0.7341137 5.9248657 1.4804726 8.356262 2.236023c0.30395508 0.09444237 0.6022339 0.1890316 0.89471436 0.28375435l0.37457275 0.12388611" fill-rule="evenodd"/><path fill="#000000" stroke="#000000" stroke-width="2.0" stroke-linecap="butt" d="m609.98517 21.270555l9.406311 2.1936665l-5.7955933 -7.7266836z" fill-rule="evenodd"/><path fill="#e06666" d="m47.56793 24.999102l6.551182 0l0 42.04725l-6.551182 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m47.56793 24.999102l6.551182 0l0 42.04725l-6.551182 0z" fill-rule="evenodd"/></g></svg>
diff --git a/Documentation/networking/tls-offload-reorder-good.svg b/Documentation/networking/tls-offload-reorder-good.svg
new file mode 100644
index 000000000000..10e17d91f70c
--- /dev/null
+++ b/Documentation/networking/tls-offload-reorder-good.svg
@@ -0,0 +1 @@
+<svg version="1.1" viewBox="0.0 0.0 672.0 68.0" fill="none" stroke="none" stroke-linecap="square" stroke-miterlimit="10" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><clipPath id="p.0"><path d="m0 0l960.0 0l0 720.0l-960.0 0l0 -720.0z" clip-rule="nonzero"/></clipPath><g clip-path="url(#p.0)"><path fill="#000000" fill-opacity="0.0" d="m0 0l960.0 0l0 720.0l-960.0 0z" fill-rule="evenodd"/><path fill="#b6d7a8" d="m0 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m0 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m15.953125 52.942722l-1.640625 0l0 -10.453125q-0.59375 0.5625 -1.5625 1.140625q-0.953125 0.5625 -1.71875 0.84375l0 -1.59375q1.375 -0.640625 2.40625 -1.5625q1.03125 -0.921875 1.453125 -1.78125l1.0625 0l0 13.40625z" fill-rule="nonzero"/><path fill="#b6d7a8" d="m340.69897 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m340.69897 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m355.73022 52.942722l0 -3.203125l-5.796875 0l0 -1.5l6.09375 -8.65625l1.34375 0l0 8.65625l1.796875 0l0 1.5l-1.796875 0l0 3.203125l-1.640625 0zm0 -4.703125l0 -6.015625l-4.1875 6.015625l4.1875 0z" fill-rule="nonzero"/><path fill="#cfe2f3" d="m225.37527 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m225.37527 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m235.15652 49.411472l1.640625 -0.21875q0.28125 1.40625 0.953125 2.015625q0.6875 0.609375 1.65625 0.609375q1.15625 0 1.953125 -0.796875q0.796875 -0.796875 0.796875 -1.984375q0 -1.125 -0.734375 -1.859375q-0.734375 -0.734375 -1.875 -0.734375q-0.46875 0 -1.15625 0.171875l0.1875 -1.4375q0.15625 0.015625 0.265625 0.015625q1.046875 0 1.875 -0.546875q0.84375 -0.546875 0.84375 -1.671875q0 -0.90625 -0.609375 -1.5q-0.609375 -0.59375 -1.578125 -0.59375q-0.953125 0 -1.59375 0.609375q-0.640625 0.59375 -0.8125 1.796875l-1.640625 -0.296875q0.296875 -1.640625 1.359375 -2.546875q1.0625 -0.90625 2.65625 -0.90625q1.09375 0 2.0 0.46875q0.921875 0.46875 1.40625 1.28125q0.5 0.8125 0.5 1.71875q0 0.859375 -0.46875 1.578125q-0.46875 0.703125 -1.375 1.125q1.1875 0.28125 1.84375 1.140625q0.65625 0.859375 0.65625 2.15625q0 1.734375 -1.28125 2.953125q-1.265625 1.21875 -3.21875 1.21875q-1.765625 0 -2.921875 -1.046875q-1.15625 -1.046875 -1.328125 -2.71875z" fill-rule="nonzero"/><path fill="#e06666" d="m271.56793 24.999102l6.551178 0l0 42.04725l-6.551178 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m271.56793 24.999102l6.551178 0l0 42.04725l-6.551178 0z" fill-rule="evenodd"/><path fill="#cfe2f3" d="m572.3295 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m572.3295 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" d="m590.72015 51.364597l0 1.578125l-8.828125 0q-0.015625 -0.59375 0.1875 -1.140625q0.34375 -0.90625 1.078125 -1.78125q0.75 -0.875 2.15625 -2.015625q2.171875 -1.78125 2.9375 -2.828125q0.765625 -1.046875 0.765625 -1.96875q0 -0.984375 -0.703125 -1.640625q-0.6875 -0.671875 -1.8125 -0.671875q-1.1875 0 -1.90625 0.71875q-0.703125 0.703125 -0.703125 1.953125l-1.6875 -0.171875q0.171875 -1.890625 1.296875 -2.875q1.140625 -0.984375 3.03125 -0.984375q1.921875 0 3.046875 1.0625q1.125 1.0625 1.125 2.640625q0 0.796875 -0.328125 1.578125q-0.328125 0.78125 -1.09375 1.640625q-0.75 0.84375 -2.53125 2.34375q-1.46875 1.234375 -1.890625 1.6875q-0.421875 0.4375 -0.6875 0.875l6.546875 0z" fill-rule="nonzero"/><path fill="#b6d7a8" d="m456.51425 24.999102l99.02365 0l0 42.04725l-99.02365 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m456.51425 24.999102l99.02365 0l0 42.04725l-99.02365 0z" fill-rule="evenodd"/><path fill="#000000" d="m466.2955 49.442722l1.71875 -0.140625q0.1875 1.25 0.875 1.890625q0.703125 0.625 1.6875 0.625q1.1875 0 2.0 -0.890625q0.828125 -0.890625 0.828125 -2.359375q0 -1.40625 -0.796875 -2.21875q-0.78125 -0.8125 -2.0625 -0.8125q-0.78125 0 -1.421875 0.359375q-0.640625 0.359375 -1.0 0.9375l-1.546875 -0.203125l1.296875 -6.859375l6.640625 0l0 1.5625l-5.328125 0l-0.71875 3.59375q1.203125 -0.84375 2.515625 -0.84375q1.75 0 2.953125 1.21875q1.203125 1.203125 1.203125 3.109375q0 1.8125 -1.046875 3.140625q-1.296875 1.625 -3.515625 1.625q-1.8125 0 -2.96875 -1.015625q-1.15625 -1.03125 -1.3125 -2.71875z" fill-rule="nonzero"/><path fill="#e06666" d="m503.1985 24.999102l6.551178 0l0 42.04725l-6.551178 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m503.1985 24.999102l6.551178 0l0 42.04725l-6.551178 0z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m114.43843 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" stroke-dasharray="4.0,3.0" d="m114.43843 24.999102l99.02362 0l0 42.04725l-99.02362 0z" fill-rule="evenodd"/><path fill="#000000" fill-opacity="0.0" d="m163.95024 24.999102c0 -12.5 114.47246 -25.007874 228.9449 -25.0c114.47241 0.007874016 228.94489 12.531496 228.94489 25.062992" fill-rule="evenodd"/><path stroke="#000000" stroke-width="2.0" stroke-linejoin="round" stroke-linecap="butt" d="m163.95024 24.9991c0 -12.499998 114.47246 -25.007872 228.9449 -24.999998c57.236206 0.003937008 114.47244 3.136811 157.3996 7.835138c21.463562 2.3491635 39.349915 5.0896897 51.8703 8.026144c3.130127 0.7341137 5.9248657 1.4804726 8.356262 2.236023c0.30395508 0.09444237 0.6022339 0.1890316 0.89471436 0.28375435l0.37457275 0.12388611" fill-rule="evenodd"/><path fill="#000000" stroke="#000000" stroke-width="2.0" stroke-linecap="butt" d="m609.98517 21.270555l9.406311 2.1936665l-5.7955933 -7.7266836z" fill-rule="evenodd"/><path fill="#e06666" d="m47.56793 24.999102l6.551182 0l0 42.04725l-6.551182 0z" fill-rule="evenodd"/><path stroke="#000000" stroke-width="1.0" stroke-linejoin="round" stroke-linecap="butt" d="m47.56793 24.999102l6.551182 0l0 42.04725l-6.551182 0z" fill-rule="evenodd"/></g></svg>
diff --git a/Documentation/networking/tls-offload.rst b/Documentation/networking/tls-offload.rst
new file mode 100644
index 000000000000..cb85af559dff
--- /dev/null
+++ b/Documentation/networking/tls-offload.rst
@@ -0,0 +1,482 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+
+==================
+Kernel TLS offload
+==================
+
+Kernel TLS operation
+====================
+
+Linux kernel provides TLS connection offload infrastructure. Once a TCP
+connection is in ``ESTABLISHED`` state user space can enable the TLS Upper
+Layer Protocol (ULP) and install the cryptographic connection state.
+For details regarding the user-facing interface refer to the TLS
+documentation in :ref:`Documentation/networking/tls.rst <kernel_tls>`.
+
+``ktls`` can operate in three modes:
+
+ * Software crypto mode (``TLS_SW``) - CPU handles the cryptography.
+ In most basic cases only crypto operations synchronous with the CPU
+ can be used, but depending on calling context CPU may utilize
+ asynchronous crypto accelerators. The use of accelerators introduces extra
+ latency on socket reads (decryption only starts when a read syscall
+ is made) and additional I/O load on the system.
+ * Packet-based NIC offload mode (``TLS_HW``) - the NIC handles crypto
+ on a packet by packet basis, provided the packets arrive in order.
+ This mode integrates best with the kernel stack and is described in detail
+ in the remaining part of this document
+ (``ethtool`` flags ``tls-hw-tx-offload`` and ``tls-hw-rx-offload``).
+ * Full TCP NIC offload mode (``TLS_HW_RECORD``) - mode of operation where
+ NIC driver and firmware replace the kernel networking stack
+ with its own TCP handling, it is not usable in production environments
+ making use of the Linux networking stack for example any firewalling
+ abilities or QoS and packet scheduling (``ethtool`` flag ``tls-hw-record``).
+
+The operation mode is selected automatically based on device configuration,
+offload opt-in or opt-out on per-connection basis is not currently supported.
+
+TX
+--
+
+At a high level user write requests are turned into a scatter list, the TLS ULP
+intercepts them, inserts record framing, performs encryption (in ``TLS_SW``
+mode) and then hands the modified scatter list to the TCP layer. From this
+point on the TCP stack proceeds as normal.
+
+In ``TLS_HW`` mode the encryption is not performed in the TLS ULP.
+Instead packets reach a device driver, the driver will mark the packets
+for crypto offload based on the socket the packet is attached to,
+and send them to the device for encryption and transmission.
+
+RX
+--
+
+On the receive side if the device handled decryption and authentication
+successfully, the driver will set the decrypted bit in the associated
+:c:type:`struct sk_buff <sk_buff>`. The packets reach the TCP stack and
+are handled normally. ``ktls`` is informed when data is queued to the socket
+and the ``strparser`` mechanism is used to delineate the records. Upon read
+request, records are retrieved from the socket and passed to decryption routine.
+If device decrypted all the segments of the record the decryption is skipped,
+otherwise software path handles decryption.
+
+.. kernel-figure:: tls-offload-layers.svg
+ :alt: TLS offload layers
+ :align: center
+ :figwidth: 28em
+
+ Layers of Kernel TLS stack
+
+Device configuration
+====================
+
+During driver initialization device sets the ``NETIF_F_HW_TLS_RX`` and
+``NETIF_F_HW_TLS_TX`` features and installs its
+:c:type:`struct tlsdev_ops <tlsdev_ops>`
+pointer in the :c:member:`tlsdev_ops` member of the
+:c:type:`struct net_device <net_device>`.
+
+When TLS cryptographic connection state is installed on a ``ktls`` socket
+(note that it is done twice, once for RX and once for TX direction,
+and the two are completely independent), the kernel checks if the underlying
+network device is offload-capable and attempts the offload. In case offload
+fails the connection is handled entirely in software using the same mechanism
+as if the offload was never tried.
+
+Offload request is performed via the :c:member:`tls_dev_add` callback of
+:c:type:`struct tlsdev_ops <tlsdev_ops>`:
+
+.. code-block:: c
+
+ int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
+ enum tls_offload_ctx_dir direction,
+ struct tls_crypto_info *crypto_info,
+ u32 start_offload_tcp_sn);
+
+``direction`` indicates whether the cryptographic information is for
+the received or transmitted packets. Driver uses the ``sk`` parameter
+to retrieve the connection 5-tuple and socket family (IPv4 vs IPv6).
+Cryptographic information in ``crypto_info`` includes the key, iv, salt
+as well as TLS record sequence number. ``start_offload_tcp_sn`` indicates
+which TCP sequence number corresponds to the beginning of the record with
+sequence number from ``crypto_info``. The driver can add its state
+at the end of kernel structures (see :c:member:`driver_state` members
+in ``include/net/tls.h``) to avoid additional allocations and pointer
+dereferences.
+
+TX
+--
+
+After TX state is installed, the stack guarantees that the first segment
+of the stream will start exactly at the ``start_offload_tcp_sn`` sequence
+number, simplifying TCP sequence number matching.
+
+TX offload being fully initialized does not imply that all segments passing
+through the driver and which belong to the offloaded socket will be after
+the expected sequence number and will have kernel record information.
+In particular, already encrypted data may have been queued to the socket
+before installing the connection state in the kernel.
+
+RX
+--
+
+In RX direction local networking stack has little control over the segmentation,
+so the initial records' TCP sequence number may be anywhere inside the segment.
+
+Normal operation
+================
+
+At the minimum the device maintains the following state for each connection, in
+each direction:
+
+ * crypto secrets (key, iv, salt)
+ * crypto processing state (partial blocks, partial authentication tag, etc.)
+ * record metadata (sequence number, processing offset and length)
+ * expected TCP sequence number
+
+There are no guarantees on record length or record segmentation. In particular
+segments may start at any point of a record and contain any number of records.
+Assuming segments are received in order, the device should be able to perform
+crypto operations and authentication regardless of segmentation. For this
+to be possible device has to keep small amount of segment-to-segment state.
+This includes at least:
+
+ * partial headers (if a segment carried only a part of the TLS header)
+ * partial data block
+ * partial authentication tag (all data had been seen but part of the
+ authentication tag has to be written or read from the subsequent segment)
+
+Record reassembly is not necessary for TLS offload. If the packets arrive
+in order the device should be able to handle them separately and make
+forward progress.
+
+TX
+--
+
+The kernel stack performs record framing reserving space for the authentication
+tag and populating all other TLS header and tailer fields.
+
+Both the device and the driver maintain expected TCP sequence numbers
+due to the possibility of retransmissions and the lack of software fallback
+once the packet reaches the device.
+For segments passed in order, the driver marks the packets with
+a connection identifier (note that a 5-tuple lookup is insufficient to identify
+packets requiring HW offload, see the :ref:`5tuple_problems` section)
+and hands them to the device. The device identifies the packet as requiring
+TLS handling and confirms the sequence number matches its expectation.
+The device performs encryption and authentication of the record data.
+It replaces the authentication tag and TCP checksum with correct values.
+
+RX
+--
+
+Before a packet is DMAed to the host (but after NIC's embedded switching
+and packet transformation functions) the device validates the Layer 4
+checksum and performs a 5-tuple lookup to find any TLS connection the packet
+may belong to (technically a 4-tuple
+lookup is sufficient - IP addresses and TCP port numbers, as the protocol
+is always TCP). If connection is matched device confirms if the TCP sequence
+number is the expected one and proceeds to TLS handling (record delineation,
+decryption, authentication for each record in the packet). The device leaves
+the record framing unmodified, the stack takes care of record decapsulation.
+Device indicates successful handling of TLS offload in the per-packet context
+(descriptor) passed to the host.
+
+Upon reception of a TLS offloaded packet, the driver sets
+the :c:member:`decrypted` mark in :c:type:`struct sk_buff <sk_buff>`
+corresponding to the segment. Networking stack makes sure decrypted
+and non-decrypted segments do not get coalesced (e.g. by GRO or socket layer)
+and takes care of partial decryption.
+
+Resync handling
+===============
+
+In presence of packet drops or network packet reordering, the device may lose
+synchronization with the TLS stream, and require a resync with the kernel's
+TCP stack.
+
+Note that resync is only attempted for connections which were successfully
+added to the device table and are in TLS_HW mode. For example,
+if the table was full when cryptographic state was installed in the kernel,
+such connection will never get offloaded. Therefore the resync request
+does not carry any cryptographic connection state.
+
+TX
+--
+
+Segments transmitted from an offloaded socket can get out of sync
+in similar ways to the receive side-retransmissions - local drops
+are possible, though network reorders are not.
+
+Whenever an out of order segment is transmitted the driver provides
+the device with enough information to perform cryptographic operations.
+This means most likely that the part of the record preceding the current
+segment has to be passed to the device as part of the packet context,
+together with its TCP sequence number and TLS record number. The device
+can then initialize its crypto state, process and discard the preceding
+data (to be able to insert the authentication tag) and move onto handling
+the actual packet.
+
+In this mode depending on the implementation the driver can either ask
+for a continuation with the crypto state and the new sequence number
+(next expected segment is the one after the out of order one), or continue
+with the previous stream state - assuming that the out of order segment
+was just a retransmission. The former is simpler, and does not require
+retransmission detection therefore it is the recommended method until
+such time it is proven inefficient.
+
+RX
+--
+
+A small amount of RX reorder events may not require a full resynchronization.
+In particular the device should not lose synchronization
+when record boundary can be recovered:
+
+.. kernel-figure:: tls-offload-reorder-good.svg
+ :alt: reorder of non-header segment
+ :align: center
+
+ Reorder of non-header segment
+
+Green segments are successfully decrypted, blue ones are passed
+as received on wire, red stripes mark start of new records.
+
+In above case segment 1 is received and decrypted successfully.
+Segment 2 was dropped so 3 arrives out of order. The device knows
+the next record starts inside 3, based on record length in segment 1.
+Segment 3 is passed untouched, because due to lack of data from segment 2
+the remainder of the previous record inside segment 3 cannot be handled.
+The device can, however, collect the authentication algorithm's state
+and partial block from the new record in segment 3 and when 4 and 5
+arrive continue decryption. Finally when 2 arrives it's completely outside
+of expected window of the device so it's passed as is without special
+handling. ``ktls`` software fallback handles the decryption of record
+spanning segments 1, 2 and 3. The device did not get out of sync,
+even though two segments did not get decrypted.
+
+Kernel synchronization may be necessary if the lost segment contained
+a record header and arrived after the next record header has already passed:
+
+.. kernel-figure:: tls-offload-reorder-bad.svg
+ :alt: reorder of header segment
+ :align: center
+
+ Reorder of segment with a TLS header
+
+In this example segment 2 gets dropped, and it contains a record header.
+Device can only detect that segment 4 also contains a TLS header
+if it knows the length of the previous record from segment 2. In this case
+the device will lose synchronization with the stream.
+
+When the device gets out of sync and the stream reaches TCP sequence
+numbers more than a max size record past the expected TCP sequence number,
+the device starts scanning for a known header pattern. For example
+for TLS 1.2 and TLS 1.3 subsequent bytes of value ``0x03 0x03`` occur
+in the SSL/TLS version field of the header. Once pattern is matched
+the device continues attempting parsing headers at expected locations
+(based on the length fields at guessed locations).
+Whenever the expected location does not contain a valid header the scan
+is restarted.
+
+When the header is matched the device sends a confirmation request
+to the kernel, asking if the guessed location is correct (if a TLS record
+really starts there), and which record sequence number the given header had.
+The kernel confirms the guessed location was correct and tells the device
+the record sequence number. Meanwhile, the device had been parsing
+and counting all records since the just-confirmed one, it adds the number
+of records it had seen to the record number provided by the kernel.
+At this point the device is in sync and can resume decryption at next
+segment boundary.
+
+In a pathological case the device may latch onto a sequence of matching
+headers and never hear back from the kernel (there is no negative
+confirmation from the kernel). The implementation may choose to periodically
+restart scan. Given how unlikely falsely-matching stream is, however,
+periodic restart is not deemed necessary.
+
+Special care has to be taken if the confirmation request is passed
+asynchronously to the packet stream and record may get processed
+by the kernel before the confirmation request.
+
+Error handling
+==============
+
+TX
+--
+
+Packets may be redirected or rerouted by the stack to a different
+device than the selected TLS offload device. The stack will handle
+such condition using the :c:func:`sk_validate_xmit_skb` helper
+(TLS offload code installs :c:func:`tls_validate_xmit_skb` at this hook).
+Offload maintains information about all records until the data is
+fully acknowledged, so if skbs reach the wrong device they can be handled
+by software fallback.
+
+Any device TLS offload handling error on the transmission side must result
+in the packet being dropped. For example if a packet got out of order
+due to a bug in the stack or the device, reached the device and can't
+be encrypted such packet must be dropped.
+
+RX
+--
+
+If the device encounters any problems with TLS offload on the receive
+side it should pass the packet to the host's networking stack as it was
+received on the wire.
+
+For example authentication failure for any record in the segment should
+result in passing the unmodified packet to the software fallback. This means
+packets should not be modified "in place". Splitting segments to handle partial
+decryption is not advised. In other words either all records in the packet
+had been handled successfully and authenticated or the packet has to be passed
+to the host's stack as it was on the wire (recovering original packet in the
+driver if device provides precise error is sufficient).
+
+The Linux networking stack does not provide a way of reporting per-packet
+decryption and authentication errors, packets with errors must simply not
+have the :c:member:`decrypted` mark set.
+
+A packet should also not be handled by the TLS offload if it contains
+incorrect checksums.
+
+Performance metrics
+===================
+
+TLS offload can be characterized by the following basic metrics:
+
+ * max connection count
+ * connection installation rate
+ * connection installation latency
+ * total cryptographic performance
+
+Note that each TCP connection requires a TLS session in both directions,
+the performance may be reported treating each direction separately.
+
+Max connection count
+--------------------
+
+The number of connections device can support can be exposed via
+``devlink resource`` API.
+
+Total cryptographic performance
+-------------------------------
+
+Offload performance may depend on segment and record size.
+
+Overload of the cryptographic subsystem of the device should not have
+significant performance impact on non-offloaded streams.
+
+Statistics
+==========
+
+Following minimum set of TLS-related statistics should be reported
+by the driver:
+
+ * ``rx_tls_decrypted`` - number of successfully decrypted TLS segments
+ * ``tx_tls_encrypted`` - number of in-order TLS segments passed to device
+ for encryption
+ * ``tx_tls_ooo`` - number of TX packets which were part of a TLS stream
+ but did not arrive in the expected order
+ * ``tx_tls_drop_no_sync_data`` - number of TX packets dropped because
+ they arrived out of order and associated record could not be found
+ (see also :ref:`pre_tls_data`)
+
+Notable corner cases, exceptions and additional requirements
+============================================================
+
+.. _5tuple_problems:
+
+5-tuple matching limitations
+----------------------------
+
+The device can only recognize received packets based on the 5-tuple
+of the socket. Current ``ktls`` implementation will not offload sockets
+routed through software interfaces such as those used for tunneling
+or virtual networking. However, many packet transformations performed
+by the networking stack (most notably any BPF logic) do not require
+any intermediate software device, therefore a 5-tuple match may
+consistently miss at the device level. In such cases the device
+should still be able to perform TX offload (encryption) and should
+fallback cleanly to software decryption (RX).
+
+Out of order
+------------
+
+Introducing extra processing in NICs should not cause packets to be
+transmitted or received out of order, for example pure ACK packets
+should not be reordered with respect to data segments.
+
+Ingress reorder
+---------------
+
+A device is permitted to perform packet reordering for consecutive
+TCP segments (i.e. placing packets in the correct order) but any form
+of additional buffering is disallowed.
+
+Coexistence with standard networking offload features
+-----------------------------------------------------
+
+Offloaded ``ktls`` sockets should support standard TCP stack features
+transparently. Enabling device TLS offload should not cause any difference
+in packets as seen on the wire.
+
+Transport layer transparency
+----------------------------
+
+The device should not modify any packet headers for the purpose
+of the simplifying TLS offload.
+
+The device should not depend on any packet headers beyond what is strictly
+necessary for TLS offload.
+
+Segment drops
+-------------
+
+Dropping packets is acceptable only in the event of catastrophic
+system errors and should never be used as an error handling mechanism
+in cases arising from normal operation. In other words, reliance
+on TCP retransmissions to handle corner cases is not acceptable.
+
+TLS device features
+-------------------
+
+Drivers should ignore the changes to TLS the device feature flags.
+These flags will be acted upon accordingly by the core ``ktls`` code.
+TLS device feature flags only control adding of new TLS connection
+offloads, old connections will remain active after flags are cleared.
+
+Known bugs
+==========
+
+skb_orphan() leaks clear text
+-----------------------------
+
+Currently drivers depend on the :c:member:`sk` member of
+:c:type:`struct sk_buff <sk_buff>` to identify segments requiring
+encryption. Any operation which removes or does not preserve the socket
+association such as :c:func:`skb_orphan` or :c:func:`skb_clone`
+will cause the driver to miss the packets and lead to clear text leaks.
+
+Redirects leak clear text
+-------------------------
+
+In the RX direction, if segment has already been decrypted by the device
+and it gets redirected or mirrored - clear text will be transmitted out.
+
+.. _pre_tls_data:
+
+Transmission of pre-TLS data
+----------------------------
+
+User can enqueue some already encrypted and framed records before enabling
+``ktls`` on the socket. Those records have to get sent as they are. This is
+perfectly easy to handle in the software case - such data will be waiting
+in the TCP layer, TLS ULP won't see it. In the offloaded case when pre-queued
+segment reaches transmission point it appears to be out of order (before the
+expected TCP sequence number) and the stack does not have a record information
+associated.
+
+All segments without record information cannot, however, be assumed to be
+pre-queued data, because a race condition exists between TCP stack queuing
+a retransmission, the driver seeing the retransmission and TCP ACK arriving
+for the retransmitted data.
diff --git a/Documentation/networking/tls.txt b/Documentation/networking/tls.rst
index 58b5ef75f1b7..5bcbf75e2025 100644
--- a/Documentation/networking/tls.txt
+++ b/Documentation/networking/tls.rst
@@ -1,3 +1,9 @@
+.. _kernel_tls:
+
+==========
+Kernel TLS
+==========
+
Overview
========
@@ -12,6 +18,8 @@ Creating a TLS connection
First create a new TCP socket and set the TLS ULP.
+.. code-block:: c
+
sock = socket(AF_INET, SOCK_STREAM, 0);
setsockopt(sock, SOL_TCP, TCP_ULP, "tls", sizeof("tls"));
@@ -21,6 +29,8 @@ handshake is complete, we have all the parameters required to move the
data-path to the kernel. There is a separate socket option for moving
the transmit and the receive into the kernel.
+.. code-block:: c
+
/* From linux/tls.h */
struct tls_crypto_info {
unsigned short version;
@@ -58,6 +68,8 @@ After setting the TLS_TX socket option all application data sent over this
socket is encrypted using TLS and the parameters provided in the socket option.
For example, we can send an encrypted hello world record as follows:
+.. code-block:: c
+
const char *msg = "hello world\n";
send(sock, msg, strlen(msg));
@@ -67,6 +79,8 @@ to the encrypted kernel send buffer if possible.
The sendfile system call will send the file's data over TLS records of maximum
length (2^14).
+.. code-block:: c
+
file = open(filename, O_RDONLY);
fstat(file, &stat);
sendfile(sock, file, &offset, stat.st_size);
@@ -89,6 +103,8 @@ After setting the TLS_RX socket option, all recv family socket calls
are decrypted using TLS parameters provided. A full TLS record must
be received before decryption can happen.
+.. code-block:: c
+
char buffer[16384];
recv(sock, buffer, 16384);
@@ -97,12 +113,12 @@ large enough, and no additional allocations occur. If the userspace
buffer is too small, data is decrypted in the kernel and copied to
userspace.
-EINVAL is returned if the TLS version in the received message does not
+``EINVAL`` is returned if the TLS version in the received message does not
match the version passed in setsockopt.
-EMSGSIZE is returned if the received message is too big.
+``EMSGSIZE`` is returned if the received message is too big.
-EBADMSG is returned if decryption failed for any other reason.
+``EBADMSG`` is returned if decryption failed for any other reason.
Send TLS control messages
-------------------------
@@ -113,9 +129,11 @@ These messages can be sent over the socket by providing the TLS record type
via a CMSG. For example the following function sends @data of @length bytes
using a record of type @record_type.
-/* send TLS control message using record_type */
+.. code-block:: c
+
+ /* send TLS control message using record_type */
static int klts_send_ctrl_message(int sock, unsigned char record_type,
- void *data, size_t length)
+ void *data, size_t length)
{
struct msghdr msg = {0};
int cmsg_len = sizeof(record_type);
@@ -151,6 +169,8 @@ type passed via cmsg. If no cmsg buffer is provided, an error is
returned if a control message is received. Data messages may be
received without a cmsg buffer set.
+.. code-block:: c
+
char buffer[16384];
char cmsg[CMSG_SPACE(sizeof(unsigned char))];
struct msghdr msg = {0};
@@ -186,12 +206,10 @@ Integrating in to userspace TLS library
At a high level, the kernel TLS ULP is a replacement for the record
layer of a userspace TLS library.
-A patchset to OpenSSL to use ktls as the record layer is here:
-
-https://github.com/Mellanox/openssl/commits/tls_rx2
-
-An example of calling send directly after a handshake using
-gnutls. Since it doesn't implement a full record layer, control
-messages are not supported:
+A patchset to OpenSSL to use ktls as the record layer is
+`here <https://github.com/Mellanox/openssl/commits/tls_rx2>`_.
-https://github.com/ktls/af_ktls-tool/commits/RX
+`An example <https://github.com/ktls/af_ktls-tool/commits/RX>`_
+of calling send directly after a handshake using gnutls.
+Since it doesn't implement a full record layer, control
+messages are not supported.
diff --git a/Documentation/process/changes.rst b/Documentation/process/changes.rst
index 18735dc460a0..0a18075c485e 100644
--- a/Documentation/process/changes.rst
+++ b/Documentation/process/changes.rst
@@ -31,7 +31,7 @@ you probably needn't concern yourself with isdn4k-utils.
====================== =============== ========================================
GNU C 4.6 gcc --version
GNU make 3.81 make --version
-binutils 2.20 ld -v
+binutils 2.21 ld -v
flex 2.5.35 flex --version
bison 2.0 bison --version
util-linux 2.10o fdformat --version
@@ -77,9 +77,7 @@ You will need GNU make 3.81 or later to build the kernel.
Binutils
--------
-The build system has, as of 4.13, switched to using thin archives (`ar T`)
-rather than incremental linking (`ld -r`) for built-in.a intermediate steps.
-This requires binutils 2.20 or newer.
+Binutils 2.21 or newer is needed to build the kernel.
pkg-config
----------
diff --git a/Documentation/pwm.txt b/Documentation/pwm.txt
index 8fbf0aa3ba2d..ab62f1bb0366 100644
--- a/Documentation/pwm.txt
+++ b/Documentation/pwm.txt
@@ -65,6 +65,10 @@ period). struct pwm_args contains 2 fields (period and polarity) and should
be used to set the initial PWM config (usually done in the probe function
of the PWM user). PWM arguments are retrieved with pwm_get_args().
+All consumers should really be reconfiguring the PWM upon resume as
+appropriate. This is the only way to ensure that everything is resumed in
+the proper order.
+
Using PWMs with the sysfs interface
-----------------------------------
@@ -141,6 +145,9 @@ The implementation of ->get_state() (a method used to retrieve initial PWM
state) is also encouraged for the same reason: letting the PWM user know
about the current PWM state would allow him to avoid glitches.
+Drivers should not implement any power management. In other words,
+consumers should implement it as described in the "Using PWMs" section.
+
Locking
-------
diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.rst
index 7c715de99774..e09e77954238 100644
--- a/Documentation/s390/3270.txt
+++ b/Documentation/s390/3270.rst
@@ -1,13 +1,17 @@
+===============================
IBM 3270 Display System support
+===============================
This file describes the driver that supports local channel attachment
of IBM 3270 devices. It consists of three sections:
+
* Introduction
* Installation
* Operation
-INTRODUCTION.
+Introduction
+============
This paper describes installing and operating 3270 devices under
Linux/390. A 3270 device is a block-mode rows-and-columns terminal of
@@ -17,12 +21,12 @@ twenty and thirty years ago.
You may have 3270s in-house and not know it. If you're using the
VM-ESA operating system, define a 3270 to your virtual machine by using
the command "DEF GRAF <hex-address>" This paper presumes you will be
-defining four 3270s with the CP/CMS commands
+defining four 3270s with the CP/CMS commands:
- DEF GRAF 620
- DEF GRAF 621
- DEF GRAF 622
- DEF GRAF 623
+ - DEF GRAF 620
+ - DEF GRAF 621
+ - DEF GRAF 622
+ - DEF GRAF 623
Your network connection from VM-ESA allows you to use x3270, tn3270, or
another 3270 emulator, started from an xterm window on your PC or
@@ -34,7 +38,8 @@ This paper covers installation of the driver and operation of a
dialed-in x3270.
-INSTALLATION.
+Installation
+============
You install the driver by installing a patch, doing a kernel build, and
running the configuration script (config3270.sh, in this directory).
@@ -59,13 +64,15 @@ Use #CP TERM CONMODE 3270 to change it to 3270. If you generate only
at boot time to a 3270 if it is a 3215.
In brief, these are the steps:
+
1. Install the tub3270 patch
- 2. (If a module) add a line to a file in /etc/modprobe.d/*.conf
+ 2. (If a module) add a line to a file in `/etc/modprobe.d/*.conf`
3. (If VM) define devices with DEF GRAF
4. Reboot
5. Configure
To test that everything works, assuming VM and x3270,
+
1. Bring up an x3270 window.
2. Use the DIAL command in that window.
3. You should immediately see a Linux login screen.
@@ -74,7 +81,8 @@ Here are the installation steps in detail:
1. The 3270 driver is a part of the official Linux kernel
source. Build a tree with the kernel source and any necessary
- patches. Then do
+ patches. Then do::
+
make oldconfig
(If you wish to disable 3215 console support, edit
.config; change CONFIG_TN3215's value to "n";
@@ -84,20 +92,22 @@ Here are the installation steps in detail:
make modules_install
2. (Perform this step only if you have configured tub3270 as a
- module.) Add a line to a file /etc/modprobe.d/*.conf to automatically
+ module.) Add a line to a file `/etc/modprobe.d/*.conf` to automatically
load the driver when it's needed. With this line added, you will see
login prompts appear on your 3270s as soon as boot is complete (or
with emulated 3270s, as soon as you dial into your vm guest using the
command "DIAL <vmguestname>"). Since the line-mode major number is
- 227, the line to add should be:
+ 227, the line to add should be::
+
alias char-major-227 tub3270
3. Define graphic devices to your vm guest machine, if you
haven't already. Define them before you reboot (reipl):
- DEFINE GRAF 620
- DEFINE GRAF 621
- DEFINE GRAF 622
- DEFINE GRAF 623
+
+ - DEFINE GRAF 620
+ - DEFINE GRAF 621
+ - DEFINE GRAF 622
+ - DEFINE GRAF 623
4. Reboot. The reboot process scans hardware devices, including
3270s, and this enables the tub3270 driver once loaded to respond
@@ -107,21 +117,23 @@ Here are the installation steps in detail:
5. Run the 3270 configuration script config3270. It is
distributed in this same directory, Documentation/s390, as
- config3270.sh. Inspect the output script it produces,
+ config3270.sh. Inspect the output script it produces,
/tmp/mkdev3270, and then run that script. This will create the
necessary character special device files and make the necessary
changes to /etc/inittab.
Then notify /sbin/init that /etc/inittab has changed, by issuing
- the telinit command with the q operand:
+ the telinit command with the q operand::
+
cd Documentation/s390
sh config3270.sh
sh /tmp/mkdev3270
telinit q
- This should be sufficient for your first time. If your 3270
+ This should be sufficient for your first time. If your 3270
configuration has changed and you're reusing config3270, you
- should follow these steps:
+ should follow these steps::
+
Change 3270 configuration
Reboot
Run config3270 and /tmp/mkdev3270
@@ -132,8 +144,10 @@ Here are the testing steps in detail:
1. Bring up an x3270 window, or use an actual hardware 3278 or
3279, or use the 3270 emulator of your choice. You would be
running the emulator on your PC or workstation. You would use
- the command, for example,
+ the command, for example::
+
x3270 vm-esa-domain-name &
+
if you wanted a 3278 Model 4 with 43 rows of 80 columns, the
default model number. The driver does not take advantage of
extended attributes.
@@ -144,7 +158,8 @@ Here are the testing steps in detail:
2. Use the DIAL command instead of the LOGIN command to connect
to one of the virtual 3270s you defined with the DEF GRAF
- commands:
+ commands::
+
dial my-vm-guest-name
3. You should immediately see a login prompt from your
@@ -171,14 +186,17 @@ Here are the testing steps in detail:
Wrong major number? Wrong minor number? There's your
problem!
- D. Do you get the message
+ D. Do you get the message::
+
"HCPDIA047E my-vm-guest-name 0620 does not exist"?
+
If so, you must issue the command "DEF GRAF 620" from your VM
3215 console and then reboot the system.
OPERATION.
+==========
The driver defines three areas on the 3270 screen: the log area, the
input area, and the status area.
@@ -203,8 +221,10 @@ which indicates no scrolling will occur. (If you hit ENTER with "Linux
Running" and nothing typed, the application receives a newline.)
You may change the scrolling timeout value. For example, the following
-command line:
+command line::
+
echo scrolltime=60 > /proc/tty/driver/tty3270
+
changes the scrolling timeout value to 60 sec. Set scrolltime to 0 if
you wish to prevent scrolling entirely.
@@ -228,7 +248,8 @@ cause an EOF also by typing "^D" and hitting ENTER.
No PF key is preassigned to cause a job suspension, but you may cause a
job suspension by typing "^Z" and hitting ENTER. You may wish to
assign this function to a PF key. To make PF7 cause job suspension,
-execute the command:
+execute the command::
+
echo pf7=^z > /proc/tty/driver/tty3270
If the input you type does not end with the two characters "^n", the
@@ -243,8 +264,10 @@ command is entered into the stack only when the input area is not made
invisible (such as for password entry) and it is not identical to the
current top entry. PF10 rotates backward through the command stack;
PF11 rotates forward. You may assign the backward function to any PF
-key (or PA key, for that matter), say, PA3, with the command:
+key (or PA key, for that matter), say, PA3, with the command::
+
echo -e pa3=\\033k > /proc/tty/driver/tty3270
+
This assigns the string ESC-k to PA3. Similarly, the string ESC-j
performs the forward function. (Rationale: In bash with vi-mode line
editing, ESC-k and ESC-j retrieve backward and forward history.
@@ -252,15 +275,19 @@ Suggestions welcome.)
Is a stack size of twenty commands not to your liking? Change it on
the fly. To change to saving the last 100 commands, execute the
-command:
+command::
+
echo recallsize=100 > /proc/tty/driver/tty3270
Have a command you issue frequently? Assign it to a PF or PA key! Use
-the command
- echo pf24="mkdir foobar; cd foobar" > /proc/tty/driver/tty3270
+the command::
+
+ echo pf24="mkdir foobar; cd foobar" > /proc/tty/driver/tty3270
+
to execute the commands mkdir foobar and cd foobar immediately when you
hit PF24. Want to see the command line first, before you execute it?
-Use the -n option of the echo command:
+Use the -n option of the echo command::
+
echo -n pf24="mkdir foo; cd foo" > /proc/tty/driver/tty3270
diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/Debugging390.txt
deleted file mode 100644
index 5ae7f868a007..000000000000
--- a/Documentation/s390/Debugging390.txt
+++ /dev/null
@@ -1,2142 +0,0 @@
-
- Debugging on Linux for s/390 & z/Architecture
- by
- Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
- Copyright (C) 2000-2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
- Best viewed with fixed width fonts
-
-Overview of Document:
-=====================
-This document is intended to give a good overview of how to debug Linux for
-s/390 and z/Architecture. It is not intended as a complete reference and not a
-tutorial on the fundamentals of C & assembly. It doesn't go into
-390 IO in any detail. It is intended to complement the documents in the
-reference section below & any other worthwhile references you get.
-
-It is intended like the Enterprise Systems Architecture/390 Reference Summary
-to be printed out & used as a quick cheat sheet self help style reference when
-problems occur.
-
-Contents
-========
-Register Set
-Address Spaces on Intel Linux
-Address Spaces on Linux for s/390 & z/Architecture
-The Linux for s/390 & z/Architecture Kernel Task Structure
-Register Usage & Stackframes on Linux for s/390 & z/Architecture
-A sample program with comments
-Compiling programs for debugging on Linux for s/390 & z/Architecture
-Debugging under VM
-s/390 & z/Architecture IO Overview
-Debugging IO on s/390 & z/Architecture under VM
-GDB on s/390 & z/Architecture
-Stack chaining in gdb by hand
-Examining core dumps
-ldd
-Debugging modules
-The proc file system
-SysRq
-References
-Special Thanks
-
-Register Set
-============
-The current architectures have the following registers.
-
-16 General propose registers, 32 bit on s/390 and 64 bit on z/Architecture,
-r0-r15 (or gpr0-gpr15), used for arithmetic and addressing.
-
-16 Control registers, 32 bit on s/390 and 64 bit on z/Architecture, cr0-cr15,
-kernel usage only, used for memory management, interrupt control, debugging
-control etc.
-
-16 Access registers (ar0-ar15), 32 bit on both s/390 and z/Architecture,
-normally not used by normal programs but potentially could be used as
-temporary storage. These registers have a 1:1 association with general
-purpose registers and are designed to be used in the so-called access
-register mode to select different address spaces.
-Access register 0 (and access register 1 on z/Architecture, which needs a
-64 bit pointer) is currently used by the pthread library as a pointer to
-the current running threads private area.
-
-16 64 bit floating point registers (fp0-fp15 ) IEEE & HFP floating
-point format compliant on G5 upwards & a Floating point control reg (FPC)
-4 64 bit registers (fp0,fp2,fp4 & fp6) HFP only on older machines.
-Note:
-Linux (currently) always uses IEEE & emulates G5 IEEE format on older machines,
-( provided the kernel is configured for this ).
-
-
-The PSW is the most important register on the machine it
-is 64 bit on s/390 & 128 bit on z/Architecture & serves the roles of
-a program counter (pc), condition code register,memory space designator.
-In IBM standard notation I am counting bit 0 as the MSB.
-It has several advantages over a normal program counter
-in that you can change address translation & program counter
-in a single instruction. To change address translation,
-e.g. switching address translation off requires that you
-have a logical=physical mapping for the address you are
-currently running at.
-
- Bit Value
-s/390 z/Architecture
-0 0 Reserved ( must be 0 ) otherwise specification exception occurs.
-
-1 1 Program Event Recording 1 PER enabled,
- PER is used to facilitate debugging e.g. single stepping.
-
-2-4 2-4 Reserved ( must be 0 ).
-
-5 5 Dynamic address translation 1=DAT on.
-
-6 6 Input/Output interrupt Mask
-
-7 7 External interrupt Mask used primarily for interprocessor
- signalling and clock interrupts.
-
-8-11 8-11 PSW Key used for complex memory protection mechanism
- (not used under linux)
-
-12 12 1 on s/390 0 on z/Architecture
-
-13 13 Machine Check Mask 1=enable machine check interrupts
-
-14 14 Wait State. Set this to 1 to stop the processor except for
- interrupts and give time to other LPARS. Used in CPU idle in
- the kernel to increase overall usage of processor resources.
-
-15 15 Problem state ( if set to 1 certain instructions are disabled )
- all linux user programs run with this bit 1
- ( useful info for debugging under VM ).
-
-16-17 16-17 Address Space Control
-
- 00 Primary Space Mode:
- The register CR1 contains the primary address-space control ele-
- ment (PASCE), which points to the primary space region/segment
- table origin.
-
- 01 Access register mode
-
- 10 Secondary Space Mode:
- The register CR7 contains the secondary address-space control
- element (SASCE), which points to the secondary space region or
- segment table origin.
-
- 11 Home Space Mode:
- The register CR13 contains the home space address-space control
- element (HASCE), which points to the home space region/segment
- table origin.
-
- See "Address Spaces on Linux for s/390 & z/Architecture" below
- for more information about address space usage in Linux.
-
-18-19 18-19 Condition codes (CC)
-
-20 20 Fixed point overflow mask if 1=FPU exceptions for this event
- occur ( normally 0 )
-
-21 21 Decimal overflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-22 22 Exponent underflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-23 23 Significance Mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-24-31 24-30 Reserved Must be 0.
-
- 31 Extended Addressing Mode
- 32 Basic Addressing Mode
- Used to set addressing mode
- PSW 31 PSW 32
- 0 0 24 bit
- 0 1 31 bit
- 1 1 64 bit
-
-32 1=31 bit addressing mode 0=24 bit addressing mode (for backward
- compatibility), linux always runs with this bit set to 1
-
-33-64 Instruction address.
- 33-63 Reserved must be 0
- 64-127 Address
- In 24 bits mode bits 64-103=0 bits 104-127 Address
- In 31 bits mode bits 64-96=0 bits 97-127 Address
- Note: unlike 31 bit mode on s/390 bit 96 must be zero
- when loading the address with LPSWE otherwise a
- specification exception occurs, LPSW is fully backward
- compatible.
-
-
-Prefix Page(s)
---------------
-This per cpu memory area is too intimately tied to the processor not to mention.
-It exists between the real addresses 0-4096 on s/390 and between 0-8192 on
-z/Architecture and is exchanged with one page on s/390 or two pages on
-z/Architecture in absolute storage by the set prefix instruction during Linux
-startup.
-This page is mapped to a different prefix for each processor in an SMP
-configuration (assuming the OS designer is sane of course).
-Bytes 0-512 (200 hex) on s/390 and 0-512, 4096-4544, 4604-5119 currently on
-z/Architecture are used by the processor itself for holding such information
-as exception indications and entry points for exceptions.
-Bytes after 0xc00 hex are used by linux for per processor globals on s/390 and
-z/Architecture (there is a gap on z/Architecture currently between 0xc00 and
-0x1000, too, which is used by Linux).
-The closest thing to this on traditional architectures is the interrupt
-vector table. This is a good thing & does simplify some of the kernel coding
-however it means that we now cannot catch stray NULL pointers in the
-kernel without hard coded checks.
-
-
-
-Address Spaces on Intel Linux
-=============================
-
-The traditional Intel Linux is approximately mapped as follows forgive
-the ascii art.
-0xFFFFFFFF 4GB Himem *****************
- * *
- * Kernel Space *
- * *
- ***************** ****************
-User Space Himem * User Stack * * *
-(typically 0xC0000000 3GB ) ***************** * *
- * Shared Libs * * Next Process *
- ***************** * to *
- * * <== * Run * <==
- * User Program * * *
- * Data BSS * * *
- * Text * * *
- * Sections * * *
-0x00000000 ***************** ****************
-
-Now it is easy to see that on Intel it is quite easy to recognise a kernel
-address as being one greater than user space himem (in this case 0xC0000000),
-and addresses of less than this are the ones in the current running program on
-this processor (if an smp box).
-If using the virtual machine ( VM ) as a debugger it is quite difficult to
-know which user process is running as the address space you are looking at
-could be from any process in the run queue.
-
-The limitation of Intels addressing technique is that the linux
-kernel uses a very simple real address to virtual addressing technique
-of Real Address=Virtual Address-User Space Himem.
-This means that on Intel the kernel linux can typically only address
-Himem=0xFFFFFFFF-0xC0000000=1GB & this is all the RAM these machines
-can typically use.
-They can lower User Himem to 2GB or lower & thus be
-able to use 2GB of RAM however this shrinks the maximum size
-of User Space from 3GB to 2GB they have a no win limit of 4GB unless
-they go to 64 Bit.
-
-
-On 390 our limitations & strengths make us slightly different.
-For backward compatibility we are only allowed use 31 bits (2GB)
-of our 32 bit addresses, however, we use entirely separate address
-spaces for the user & kernel.
-
-This means we can support 2GB of non Extended RAM on s/390, & more
-with the Extended memory management swap device &
-currently 4TB of physical memory currently on z/Architecture.
-
-
-Address Spaces on Linux for s/390 & z/Architecture
-==================================================
-
-Our addressing scheme is basically as follows:
-
- Primary Space Home Space
-Himem 0x7fffffff 2GB on s/390 ***************** ****************
-currently 0x3ffffffffff (2^42)-1 * User Stack * * *
-on z/Architecture. ***************** * *
- * Shared Libs * * *
- ***************** * *
- * * * Kernel *
- * User Program * * *
- * Data BSS * * *
- * Text * * *
- * Sections * * *
-0x00000000 ***************** ****************
-
-This also means that we need to look at the PSW problem state bit and the
-addressing mode to decide whether we are looking at user or kernel space.
-
-User space runs in primary address mode (or access register mode within
-the vdso code).
-
-The kernel usually also runs in home space mode, however when accessing
-user space the kernel switches to primary or secondary address mode if
-the mvcos instruction is not available or if a compare-and-swap (futex)
-instruction on a user space address is performed.
-
-When also looking at the ASCE control registers, this means:
-
-User space:
-- runs in primary or access register mode
-- cr1 contains the user asce
-- cr7 contains the user asce
-- cr13 contains the kernel asce
-
-Kernel space:
-- runs in home space mode
-- cr1 contains the user or kernel asce
- -> the kernel asce is loaded when a uaccess requires primary or
- secondary address mode
-- cr7 contains the user or kernel asce, (changed with set_fs())
-- cr13 contains the kernel asce
-
-In case of uaccess the kernel changes to:
-- primary space mode in case of a uaccess (copy_to_user) and uses
- e.g. the mvcp instruction to access user space. However the kernel
- will stay in home space mode if the mvcos instruction is available
-- secondary space mode in case of futex atomic operations, so that the
- instructions come from primary address space and data from secondary
- space
-
-In case of KVM, the kernel runs in home space mode, but cr1 gets switched
-to contain the gmap asce before the SIE instruction gets executed. When
-the SIE instruction is finished, cr1 will be switched back to contain the
-user asce.
-
-
-Virtual Addresses on s/390 & z/Architecture
-===========================================
-
-A virtual address on s/390 is made up of 3 parts
-The SX (segment index, roughly corresponding to the PGD & PMD in Linux
-terminology) being bits 1-11.
-The PX (page index, corresponding to the page table entry (pte) in Linux
-terminology) being bits 12-19.
-The remaining bits BX (the byte index are the offset in the page )
-i.e. bits 20 to 31.
-
-On z/Architecture in linux we currently make up an address from 4 parts.
-The region index bits (RX) 0-32 we currently use bits 22-32
-The segment index (SX) being bits 33-43
-The page index (PX) being bits 44-51
-The byte index (BX) being bits 52-63
-
-Notes:
-1) s/390 has no PMD so the PMD is really the PGD also.
-A lot of this stuff is defined in pgtable.h.
-
-2) Also seeing as s/390's page indexes are only 1k in size
-(bits 12-19 x 4 bytes per pte ) we use 1 ( page 4k )
-to make the best use of memory by updating 4 segment indices
-entries each time we mess with a PMD & use offsets
-0,1024,2048 & 3072 in this page as for our segment indexes.
-On z/Architecture our page indexes are now 2k in size
-( bits 12-19 x 8 bytes per pte ) we do a similar trick
-but only mess with 2 segment indices each time we mess with
-a PMD.
-
-3) As z/Architecture supports up to a massive 5-level page table lookup we
-can only use 3 currently on Linux ( as this is all the generic kernel
-currently supports ) however this may change in future
-this allows us to access ( according to my sums )
-4TB of virtual storage per process i.e.
-4096*512(PTES)*1024(PMDS)*2048(PGD) = 4398046511104 bytes,
-enough for another 2 or 3 of years I think :-).
-to do this we use a region-third-table designation type in
-our address space control registers.
-
-
-The Linux for s/390 & z/Architecture Kernel Task Structure
-==========================================================
-Each process/thread under Linux for S390 has its own kernel task_struct
-defined in linux/include/linux/sched.h
-The S390 on initialisation & resuming of a process on a cpu sets
-the __LC_KERNEL_STACK variable in the spare prefix area for this cpu
-(which we use for per-processor globals).
-
-The kernel stack pointer is intimately tied with the task structure for
-each processor as follows.
-
- s/390
- ************************
- * 1 page kernel stack *
- * ( 4K ) *
- ************************
- * 1 page task_struct *
- * ( 4K ) *
-8K aligned ************************
-
- z/Architecture
- ************************
- * 2 page kernel stack *
- * ( 8K ) *
- ************************
- * 2 page task_struct *
- * ( 8K ) *
-16K aligned ************************
-
-What this means is that we don't need to dedicate any register or global
-variable to point to the current running process & can retrieve it with the
-following very simple construct for s/390 & one very similar for z/Architecture.
-
-static inline struct task_struct * get_current(void)
-{
- struct task_struct *current;
- __asm__("lhi %0,-8192\n\t"
- "nr %0,15"
- : "=r" (current) );
- return current;
-}
-
-i.e. just anding the current kernel stack pointer with the mask -8192.
-Thankfully because Linux doesn't have support for nested IO interrupts
-& our devices have large buffers can survive interrupts being shut for
-short amounts of time we don't need a separate stack for interrupts.
-
-
-
-
-Register Usage & Stackframes on Linux for s/390 & z/Architecture
-=================================================================
-Overview:
----------
-This is the code that gcc produces at the top & the bottom of
-each function. It usually is fairly consistent & similar from
-function to function & if you know its layout you can probably
-make some headway in finding the ultimate cause of a problem
-after a crash without a source level debugger.
-
-Note: To follow stackframes requires a knowledge of C or Pascal &
-limited knowledge of one assembly language.
-
-It should be noted that there are some differences between the
-s/390 and z/Architecture stack layouts as the z/Architecture stack layout
-didn't have to maintain compatibility with older linkage formats.
-
-Glossary:
----------
-alloca:
-This is a built in compiler function for runtime allocation
-of extra space on the callers stack which is obviously freed
-up on function exit ( e.g. the caller may choose to allocate nothing
-of a buffer of 4k if required for temporary purposes ), it generates
-very efficient code ( a few cycles ) when compared to alternatives
-like malloc.
-
-automatics: These are local variables on the stack,
-i.e they aren't in registers & they aren't static.
-
-back-chain:
-This is a pointer to the stack pointer before entering a
-framed functions ( see frameless function ) prologue got by
-dereferencing the address of the current stack pointer,
- i.e. got by accessing the 32 bit value at the stack pointers
-current location.
-
-base-pointer:
-This is a pointer to the back of the literal pool which
-is an area just behind each procedure used to store constants
-in each function.
-
-call-clobbered: The caller probably needs to save these registers if there
-is something of value in them, on the stack or elsewhere before making a
-call to another procedure so that it can restore it later.
-
-epilogue:
-The code generated by the compiler to return to the caller.
-
-frameless-function
-A frameless function in Linux for s390 & z/Architecture is one which doesn't
-need more than the register save area (96 bytes on s/390, 160 on z/Architecture)
-given to it by the caller.
-A frameless function never:
-1) Sets up a back chain.
-2) Calls alloca.
-3) Calls other normal functions
-4) Has automatics.
-
-GOT-pointer:
-This is a pointer to the global-offset-table in ELF
-( Executable Linkable Format, Linux'es most common executable format ),
-all globals & shared library objects are found using this pointer.
-
-lazy-binding
-ELF shared libraries are typically only loaded when routines in the shared
-library are actually first called at runtime. This is lazy binding.
-
-procedure-linkage-table
-This is a table found from the GOT which contains pointers to routines
-in other shared libraries which can't be called to by easier means.
-
-prologue:
-The code generated by the compiler to set up the stack frame.
-
-outgoing-args:
-This is extra area allocated on the stack of the calling function if the
-parameters for the callee's cannot all be put in registers, the same
-area can be reused by each function the caller calls.
-
-routine-descriptor:
-A COFF executable format based concept of a procedure reference
-actually being 8 bytes or more as opposed to a simple pointer to the routine.
-This is typically defined as follows
-Routine Descriptor offset 0=Pointer to Function
-Routine Descriptor offset 4=Pointer to Table of Contents
-The table of contents/TOC is roughly equivalent to a GOT pointer.
-& it means that shared libraries etc. can be shared between several
-environments each with their own TOC.
-
-
-static-chain: This is used in nested functions a concept adopted from pascal
-by gcc not used in ansi C or C++ ( although quite useful ), basically it
-is a pointer used to reference local variables of enclosing functions.
-You might come across this stuff once or twice in your lifetime.
-
-e.g.
-The function below should return 11 though gcc may get upset & toss warnings
-about unused variables.
-int FunctionA(int a)
-{
- int b;
- FunctionC(int c)
- {
- b=c+1;
- }
- FunctionC(10);
- return(b);
-}
-
-
-s/390 & z/Architecture Register usage
-=====================================
-r0 used by syscalls/assembly call-clobbered
-r1 used by syscalls/assembly call-clobbered
-r2 argument 0 / return value 0 call-clobbered
-r3 argument 1 / return value 1 (if long long) call-clobbered
-r4 argument 2 call-clobbered
-r5 argument 3 call-clobbered
-r6 argument 4 saved
-r7 pointer-to arguments 5 to ... saved
-r8 this & that saved
-r9 this & that saved
-r10 static-chain ( if nested function ) saved
-r11 frame-pointer ( if function used alloca ) saved
-r12 got-pointer saved
-r13 base-pointer saved
-r14 return-address saved
-r15 stack-pointer saved
-
-f0 argument 0 / return value ( float/double ) call-clobbered
-f2 argument 1 call-clobbered
-f4 z/Architecture argument 2 saved
-f6 z/Architecture argument 3 saved
-The remaining floating points
-f1,f3,f5 f7-f15 are call-clobbered.
-
-Notes:
-------
-1) The only requirement is that registers which are used
-by the callee are saved, e.g. the compiler is perfectly
-capable of using r11 for purposes other than a frame a
-frame pointer if a frame pointer is not needed.
-2) In functions with variable arguments e.g. printf the calling procedure
-is identical to one without variable arguments & the same number of
-parameters. However, the prologue of this function is somewhat more
-hairy owing to it having to move these parameters to the stack to
-get va_start, va_arg & va_end to work.
-3) Access registers are currently unused by gcc but are used in
-the kernel. Possibilities exist to use them at the moment for
-temporary storage but it isn't recommended.
-4) Only 4 of the floating point registers are used for
-parameter passing as older machines such as G3 only have only 4
-& it keeps the stack frame compatible with other compilers.
-However with IEEE floating point emulation under linux on the
-older machines you are free to use the other 12.
-5) A long long or double parameter cannot be have the
-first 4 bytes in a register & the second four bytes in the
-outgoing args area. It must be purely in the outgoing args
-area if crossing this boundary.
-6) Floating point parameters are mixed with outgoing args
-on the outgoing args area in the order the are passed in as parameters.
-7) Floating point arguments 2 & 3 are saved in the outgoing args area for
-z/Architecture
-
-
-Stack Frame Layout
-------------------
-s/390 z/Architecture
-0 0 back chain ( a 0 here signifies end of back chain )
-4 8 eos ( end of stack, not used on Linux for S390 used in other linkage formats )
-8 16 glue used in other s/390 linkage formats for saved routine descriptors etc.
-12 24 glue used in other s/390 linkage formats for saved routine descriptors etc.
-16 32 scratch area
-20 40 scratch area
-24 48 saved r6 of caller function
-28 56 saved r7 of caller function
-32 64 saved r8 of caller function
-36 72 saved r9 of caller function
-40 80 saved r10 of caller function
-44 88 saved r11 of caller function
-48 96 saved r12 of caller function
-52 104 saved r13 of caller function
-56 112 saved r14 of caller function
-60 120 saved r15 of caller function
-64 128 saved f4 of caller function
-72 132 saved f6 of caller function
-80 undefined
-96 160 outgoing args passed from caller to callee
-96+x 160+x possible stack alignment ( 8 bytes desirable )
-96+x+y 160+x+y alloca space of caller ( if used )
-96+x+y+z 160+x+y+z automatics of caller ( if used )
-0 back-chain
-
-A sample program with comments.
-===============================
-
-Comments on the function test
------------------------------
-1) It didn't need to set up a pointer to the constant pool gpr13 as it is not
-used ( :-( ).
-2) This is a frameless function & no stack is bought.
-3) The compiler was clever enough to recognise that it could return the
-value in r2 as well as use it for the passed in parameter ( :-) ).
-4) The basr ( branch relative & save ) trick works as follows the instruction
-has a special case with r0,r0 with some instruction operands is understood as
-the literal value 0, some risc architectures also do this ). So now
-we are branching to the next address & the address new program counter is
-in r13,so now we subtract the size of the function prologue we have executed
-+ the size of the literal pool to get to the top of the literal pool
-0040037c int test(int b)
-{ # Function prologue below
- 40037c: 90 de f0 34 stm %r13,%r14,52(%r15) # Save registers r13 & r14
- 400380: 0d d0 basr %r13,%r0 # Set up pointer to constant pool using
- 400382: a7 da ff fa ahi %r13,-6 # basr trick
- return(5+b);
- # Huge main program
- 400386: a7 2a 00 05 ahi %r2,5 # add 5 to r2
-
- # Function epilogue below
- 40038a: 98 de f0 34 lm %r13,%r14,52(%r15) # restore registers r13 & 14
- 40038e: 07 fe br %r14 # return
-}
-
-Comments on the function main
------------------------------
-1) The compiler did this function optimally ( 8-) )
-
-Literal pool for main.
-400390: ff ff ff ec .long 0xffffffec
-main(int argc,char *argv[])
-{ # Function prologue below
- 400394: 90 bf f0 2c stm %r11,%r15,44(%r15) # Save necessary registers
- 400398: 18 0f lr %r0,%r15 # copy stack pointer to r0
- 40039a: a7 fa ff a0 ahi %r15,-96 # Make area for callee saving
- 40039e: 0d d0 basr %r13,%r0 # Set up r13 to point to
- 4003a0: a7 da ff f0 ahi %r13,-16 # literal pool
- 4003a4: 50 00 f0 00 st %r0,0(%r15) # Save backchain
-
- return(test(5)); # Main Program Below
- 4003a8: 58 e0 d0 00 l %r14,0(%r13) # load relative address of test from
- # literal pool
- 4003ac: a7 28 00 05 lhi %r2,5 # Set first parameter to 5
- 4003b0: 4d ee d0 00 bas %r14,0(%r14,%r13) # jump to test setting r14 as return
- # address using branch & save instruction.
-
- # Function Epilogue below
- 4003b4: 98 bf f0 8c lm %r11,%r15,140(%r15)# Restore necessary registers.
- 4003b8: 07 fe br %r14 # return to do program exit
-}
-
-
-Compiler updates
-----------------
-
-main(int argc,char *argv[])
-{
- 4004fc: 90 7f f0 1c stm %r7,%r15,28(%r15)
- 400500: a7 d5 00 04 bras %r13,400508 <main+0xc>
- 400504: 00 40 04 f4 .long 0x004004f4
- # compiler now puts constant pool in code to so it saves an instruction
- 400508: 18 0f lr %r0,%r15
- 40050a: a7 fa ff a0 ahi %r15,-96
- 40050e: 50 00 f0 00 st %r0,0(%r15)
- return(test(5));
- 400512: 58 10 d0 00 l %r1,0(%r13)
- 400516: a7 28 00 05 lhi %r2,5
- 40051a: 0d e1 basr %r14,%r1
- # compiler adds 1 extra instruction to epilogue this is done to
- # avoid processor pipeline stalls owing to data dependencies on g5 &
- # above as register 14 in the old code was needed directly after being loaded
- # by the lm %r11,%r15,140(%r15) for the br %14.
- 40051c: 58 40 f0 98 l %r4,152(%r15)
- 400520: 98 7f f0 7c lm %r7,%r15,124(%r15)
- 400524: 07 f4 br %r4
-}
-
-
-Hartmut ( our compiler developer ) also has been threatening to take out the
-stack backchain in optimised code as this also causes pipeline stalls, you
-have been warned.
-
-64 bit z/Architecture code disassembly
---------------------------------------
-
-If you understand the stuff above you'll understand the stuff
-below too so I'll avoid repeating myself & just say that
-some of the instructions have g's on the end of them to indicate
-they are 64 bit & the stack offsets are a bigger,
-the only other difference you'll find between 32 & 64 bit is that
-we now use f4 & f6 for floating point arguments on 64 bit.
-00000000800005b0 <test>:
-int test(int b)
-{
- return(5+b);
- 800005b0: a7 2a 00 05 ahi %r2,5
- 800005b4: b9 14 00 22 lgfr %r2,%r2 # downcast to integer
- 800005b8: 07 fe br %r14
- 800005ba: 07 07 bcr 0,%r7
-
-
-}
-
-00000000800005bc <main>:
-main(int argc,char *argv[])
-{
- 800005bc: eb bf f0 58 00 24 stmg %r11,%r15,88(%r15)
- 800005c2: b9 04 00 1f lgr %r1,%r15
- 800005c6: a7 fb ff 60 aghi %r15,-160
- 800005ca: e3 10 f0 00 00 24 stg %r1,0(%r15)
- return(test(5));
- 800005d0: a7 29 00 05 lghi %r2,5
- # brasl allows jumps > 64k & is overkill here bras would do fune
- 800005d4: c0 e5 ff ff ff ee brasl %r14,800005b0 <test>
- 800005da: e3 40 f1 10 00 04 lg %r4,272(%r15)
- 800005e0: eb bf f0 f8 00 04 lmg %r11,%r15,248(%r15)
- 800005e6: 07 f4 br %r4
-}
-
-
-
-Compiling programs for debugging on Linux for s/390 & z/Architecture
-====================================================================
--gdwarf-2 now works it should be considered the default debugging
-format for s/390 & z/Architecture as it is more reliable for debugging
-shared libraries, normal -g debugging works much better now
-Thanks to the IBM java compiler developers bug reports.
-
-This is typically done adding/appending the flags -g or -gdwarf-2 to the
-CFLAGS & LDFLAGS variables Makefile of the program concerned.
-
-If using gdb & you would like accurate displays of registers &
- stack traces compile without optimisation i.e make sure
-that there is no -O2 or similar on the CFLAGS line of the Makefile &
-the emitted gcc commands, obviously this will produce worse code
-( not advisable for shipment ) but it is an aid to the debugging process.
-
-This aids debugging because the compiler will copy parameters passed in
-in registers onto the stack so backtracing & looking at passed in
-parameters will work, however some larger programs which use inline functions
-will not compile without optimisation.
-
-Debugging with optimisation has since much improved after fixing
-some bugs, please make sure you are using gdb-5.0 or later developed
-after Nov'2000.
-
-
-
-Debugging under VM
-==================
-
-Notes
------
-Addresses & values in the VM debugger are always hex never decimal
-Address ranges are of the format <HexValue1>-<HexValue2> or
-<HexValue1>.<HexValue2>
-For example, the address range 0x2000 to 0x3000 can be described as 2000-3000
-or 2000.1000
-
-The VM Debugger is case insensitive.
-
-VM's strengths are usually other debuggers weaknesses you can get at any
-resource no matter how sensitive e.g. memory management resources, change
-address translation in the PSW. For kernel hacking you will reap dividends if
-you get good at it.
-
-The VM Debugger displays operators but not operands, and also the debugger
-displays useful information on the same line as the author of the code probably
-felt that it was a good idea not to go over the 80 columns on the screen.
-This isn't as unintuitive as it may seem as the s/390 instructions are easy to
-decode mentally and you can make a good guess at a lot of them as all the
-operands are nibble (half byte aligned).
-So if you have an objdump listing by hand, it is quite easy to follow, and if
-you don't have an objdump listing keep a copy of the s/390 Reference Summary
-or alternatively the s/390 principles of operation next to you.
-e.g. even I can guess that
-0001AFF8' LR 180F CC 0
-is a ( load register ) lr r0,r15
-
-Also it is very easy to tell the length of a 390 instruction from the 2 most
-significant bits in the instruction (not that this info is really useful except
-if you are trying to make sense of a hexdump of code).
-Here is a table
-Bits Instruction Length
-------------------------------------------
-00 2 Bytes
-01 4 Bytes
-10 4 Bytes
-11 6 Bytes
-
-The debugger also displays other useful info on the same line such as the
-addresses being operated on destination addresses of branches & condition codes.
-e.g.
-00019736' AHI A7DAFF0E CC 1
-000198BA' BRC A7840004 -> 000198C2' CC 0
-000198CE' STM 900EF068 >> 0FA95E78 CC 2
-
-
-
-Useful VM debugger commands
----------------------------
-
-I suppose I'd better mention this before I start
-to list the current active traces do
-Q TR
-there can be a maximum of 255 of these per set
-( more about trace sets later ).
-To stop traces issue a
-TR END.
-To delete a particular breakpoint issue
-TR DEL <breakpoint number>
-
-The PA1 key drops to CP mode so you can issue debugger commands,
-Doing alt c (on my 3270 console at least ) clears the screen.
-hitting b <enter> comes back to the running operating system
-from cp mode ( in our case linux ).
-It is typically useful to add shortcuts to your profile.exec file
-if you have one ( this is roughly equivalent to autoexec.bat in DOS ).
-file here are a few from mine.
-/* this gives me command history on issuing f12 */
-set pf12 retrieve
-/* this continues */
-set pf8 imm b
-/* goes to trace set a */
-set pf1 imm tr goto a
-/* goes to trace set b */
-set pf2 imm tr goto b
-/* goes to trace set c */
-set pf3 imm tr goto c
-
-
-
-Instruction Tracing
--------------------
-Setting a simple breakpoint
-TR I PSWA <address>
-To debug a particular function try
-TR I R <function address range>
-TR I on its own will single step.
-TR I DATA <MNEMONIC> <OPTIONAL RANGE> will trace for particular mnemonics
-e.g.
-TR I DATA 4D R 0197BC.4000
-will trace for BAS'es ( opcode 4D ) in the range 0197BC.4000
-if you were inclined you could add traces for all branch instructions &
-suffix them with the run prefix so you would have a backtrace on screen
-when a program crashes.
-TR BR <INTO OR FROM> will trace branches into or out of an address.
-e.g.
-TR BR INTO 0 is often quite useful if a program is getting awkward & deciding
-to branch to 0 & crashing as this will stop at the address before in jumps to 0.
-TR I R <address range> RUN cmd d g
-single steps a range of addresses but stays running &
-displays the gprs on each step.
-
-
-
-Displaying & modifying Registers
---------------------------------
-D G will display all the gprs
-Adding a extra G to all the commands is necessary to access the full 64 bit
-content in VM on z/Architecture. Obviously this isn't required for access
-registers as these are still 32 bit.
-e.g. DGG instead of DG
-D X will display all the control registers
-D AR will display all the access registers
-D AR4-7 will display access registers 4 to 7
-CPU ALL D G will display the GRPS of all CPUS in the configuration
-D PSW will display the current PSW
-st PSW 2000 will put the value 2000 into the PSW &
-cause crash your machine.
-D PREFIX displays the prefix offset
-
-
-Displaying Memory
------------------
-To display memory mapped using the current PSW's mapping try
-D <range>
-To make VM display a message each time it hits a particular address and
-continue try
-D I<range> will disassemble/display a range of instructions.
-ST addr 32 bit word will store a 32 bit aligned address
-D T<range> will display the EBCDIC in an address (if you are that way inclined)
-D R<range> will display real addresses ( without DAT ) but with prefixing.
-There are other complex options to display if you need to get at say home space
-but are in primary space the easiest thing to do is to temporarily
-modify the PSW to the other addressing mode, display the stuff & then
-restore it.
-
-
-
-Hints
------
-If you want to issue a debugger command without halting your virtual machine
-with the PA1 key try prefixing the command with #CP e.g.
-#cp tr i pswa 2000
-also suffixing most debugger commands with RUN will cause them not
-to stop just display the mnemonic at the current instruction on the console.
-If you have several breakpoints you want to put into your program &
-you get fed up of cross referencing with System.map
-you can do the following trick for several symbols.
-grep do_signal System.map
-which emits the following among other things
-0001f4e0 T do_signal
-now you can do
-
-TR I PSWA 0001f4e0 cmd msg * do_signal
-This sends a message to your own console each time do_signal is entered.
-( As an aside I wrote a perl script once which automatically generated a REXX
-script with breakpoints on every kernel procedure, this isn't a good idea
-because there are thousands of these routines & VM can only set 255 breakpoints
-at a time so you nearly had to spend as long pruning the file down as you would
-entering the msgs by hand), however, the trick might be useful for a single
-object file. In the 3270 terminal emulator x3270 there is a very useful option
-in the file menu called "Save Screen In File" - this is very good for keeping a
-copy of traces.
-
-From CMS help <command name> will give you online help on a particular command.
-e.g.
-HELP DISPLAY
-
-Also CP has a file called profile.exec which automatically gets called
-on startup of CMS ( like autoexec.bat ), keeping on a DOS analogy session
-CP has a feature similar to doskey, it may be useful for you to
-use profile.exec to define some keystrokes.
-e.g.
-SET PF9 IMM B
-This does a single step in VM on pressing F8.
-SET PF10 ^
-This sets up the ^ key.
-which can be used for ^c (ctrl-c),^z (ctrl-z) which can't be typed directly
-into some 3270 consoles.
-SET PF11 ^-
-This types the starting keystrokes for a sysrq see SysRq below.
-SET PF12 RETRIEVE
-This retrieves command history on pressing F12.
-
-
-Sometimes in VM the display is set up to scroll automatically this
-can be very annoying if there are messages you wish to look at
-to stop this do
-TERM MORE 255 255
-This will nearly stop automatic screen updates, however it will
-cause a denial of service if lots of messages go to the 3270 console,
-so it would be foolish to use this as the default on a production machine.
-
-
-Tracing particular processes
-----------------------------
-The kernel's text segment is intentionally at an address in memory that it will
-very seldom collide with text segments of user programs ( thanks Martin ),
-this simplifies debugging the kernel.
-However it is quite common for user processes to have addresses which collide
-this can make debugging a particular process under VM painful under normal
-circumstances as the process may change when doing a
-TR I R <address range>.
-Thankfully after reading VM's online help I figured out how to debug
-I particular process.
-
-Your first problem is to find the STD ( segment table designation )
-of the program you wish to debug.
-There are several ways you can do this here are a few
-1) objdump --syms <program to be debugged> | grep main
-To get the address of main in the program.
-tr i pswa <address of main>
-Start the program, if VM drops to CP on what looks like the entry
-point of the main function this is most likely the process you wish to debug.
-Now do a D X13 or D XG13 on z/Architecture.
-On 31 bit the STD is bits 1-19 ( the STO segment table origin )
-& 25-31 ( the STL segment table length ) of CR13.
-now type
-TR I R STD <CR13's value> 0.7fffffff
-e.g.
-TR I R STD 8F32E1FF 0.7fffffff
-Another very useful variation is
-TR STORE INTO STD <CR13's value> <address range>
-for finding out when a particular variable changes.
-
-An alternative way of finding the STD of a currently running process
-is to do the following, ( this method is more complex but
-could be quite convenient if you aren't updating the kernel much &
-so your kernel structures will stay constant for a reasonable period of
-time ).
-
-grep task /proc/<pid>/status
-from this you should see something like
-task: 0f160000 ksp: 0f161de8 pt_regs: 0f161f68
-This now gives you a pointer to the task structure.
-Now make CC:="s390-gcc -g" kernel/sched.s
-To get the task_struct stabinfo.
-( task_struct is defined in include/linux/sched.h ).
-Now we want to look at
-task->active_mm->pgd
-on my machine the active_mm in the task structure stab is
-active_mm:(4,12),672,32
-its offset is 672/8=84=0x54
-the pgd member in the mm_struct stab is
-pgd:(4,6)=*(29,5),96,32
-so its offset is 96/8=12=0xc
-
-so we'll
-hexdump -s 0xf160054 /dev/mem | more
-i.e. task_struct+active_mm offset
-to look at the active_mm member
-f160054 0fee cc60 0019 e334 0000 0000 0000 0011
-hexdump -s 0x0feecc6c /dev/mem | more
-i.e. active_mm+pgd offset
-feecc6c 0f2c 0000 0000 0001 0000 0001 0000 0010
-we get something like
-now do
-TR I R STD <pgd|0x7f> 0.7fffffff
-i.e. the 0x7f is added because the pgd only
-gives the page table origin & we need to set the low bits
-to the maximum possible segment table length.
-TR I R STD 0f2c007f 0.7fffffff
-on z/Architecture you'll probably need to do
-TR I R STD <pgd|0x7> 0.ffffffffffffffff
-to set the TableType to 0x1 & the Table length to 3.
-
-
-
-Tracing Program Exceptions
---------------------------
-If you get a crash which says something like
-illegal operation or specification exception followed by a register dump
-You can restart linux & trace these using the tr prog <range or value> trace
-option.
-
-
-The most common ones you will normally be tracing for is
-1=operation exception
-2=privileged operation exception
-4=protection exception
-5=addressing exception
-6=specification exception
-10=segment translation exception
-11=page translation exception
-
-The full list of these is on page 22 of the current s/390 Reference Summary.
-e.g.
-tr prog 10 will trace segment translation exceptions.
-tr prog on its own will trace all program interruption codes.
-
-Trace Sets
-----------
-On starting VM you are initially in the INITIAL trace set.
-You can do a Q TR to verify this.
-If you have a complex tracing situation where you wish to wait for instance
-till a driver is open before you start tracing IO, but know in your
-heart that you are going to have to make several runs through the code till you
-have a clue whats going on.
-
-What you can do is
-TR I PSWA <Driver open address>
-hit b to continue till breakpoint
-reach the breakpoint
-now do your
-TR GOTO B
-TR IO 7c08-7c09 inst int run
-or whatever the IO channels you wish to trace are & hit b
-
-To got back to the initial trace set do
-TR GOTO INITIAL
-& the TR I PSWA <Driver open address> will be the only active breakpoint again.
-
-
-Tracing linux syscalls under VM
--------------------------------
-Syscalls are implemented on Linux for S390 by the Supervisor call instruction
-(SVC). There 256 possibilities of these as the instruction is made up of a 0xA
-opcode and the second byte being the syscall number. They are traced using the
-simple command:
-TR SVC <Optional value or range>
-the syscalls are defined in linux/arch/s390/include/asm/unistd.h
-e.g. to trace all file opens just do
-TR SVC 5 ( as this is the syscall number of open )
-
-
-SMP Specific commands
----------------------
-To find out how many cpus you have
-Q CPUS displays all the CPU's available to your virtual machine
-To find the cpu that the current cpu VM debugger commands are being directed at
-do Q CPU to change the current cpu VM debugger commands are being directed at do
-CPU <desired cpu no>
-
-On a SMP guest issue a command to all CPUs try prefixing the command with cpu
-all. To issue a command to a particular cpu try cpu <cpu number> e.g.
-CPU 01 TR I R 2000.3000
-If you are running on a guest with several cpus & you have a IO related problem
-& cannot follow the flow of code but you know it isn't smp related.
-from the bash prompt issue
-shutdown -h now or halt.
-do a Q CPUS to find out how many cpus you have
-detach each one of them from cp except cpu 0
-by issuing a
-DETACH CPU 01-(number of cpus in configuration)
-& boot linux again.
-TR SIGP will trace inter processor signal processor instructions.
-DEFINE CPU 01-(number in configuration)
-will get your guests cpus back.
-
-
-Help for displaying ascii textstrings
--------------------------------------
-On the very latest VM Nucleus'es VM can now display ascii
-( thanks Neale for the hint ) by doing
-D TX<lowaddr>.<len>
-e.g.
-D TX0.100
-
-Alternatively
-=============
-Under older VM debuggers (I love EBDIC too) you can use following little
-program which converts a command line of hex digits to ascii text. It can be
-compiled under linux and you can copy the hex digits from your x3270 terminal
-to your xterm if you are debugging from a linuxbox.
-
-This is quite useful when looking at a parameter passed in as a text string
-under VM ( unless you are good at decoding ASCII in your head ).
-
-e.g. consider tracing an open syscall
-TR SVC 5
-We have stopped at a breakpoint
-000151B0' SVC 0A05 -> 0001909A' CC 0
-
-D 20.8 to check the SVC old psw in the prefix area and see was it from userspace
-(for the layout of the prefix area consult the "Fixed Storage Locations"
-chapter of the s/390 Reference Summary if you have it available).
-V00000020 070C2000 800151B2
-The problem state bit wasn't set & it's also too early in the boot sequence
-for it to be a userspace SVC if it was we would have to temporarily switch the
-psw to user space addressing so we could get at the first parameter of the open
-in gpr2.
-Next do a
-D G2
-GPR 2 = 00014CB4
-Now display what gpr2 is pointing to
-D 00014CB4.20
-V00014CB4 2F646576 2F636F6E 736F6C65 00001BF5
-V00014CC4 FC00014C B4001001 E0001000 B8070707
-Now copy the text till the first 00 hex ( which is the end of the string
-to an xterm & do hex2ascii on it.
-hex2ascii 2F646576 2F636F6E 736F6C65 00
-outputs
-Decoded Hex:=/ d e v / c o n s o l e 0x00
-We were opening the console device,
-
-You can compile the code below yourself for practice :-),
-/*
- * hex2ascii.c
- * a useful little tool for converting a hexadecimal command line to ascii
- *
- * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
- * (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation.
- */
-#include <stdio.h>
-
-int main(int argc,char *argv[])
-{
- int cnt1,cnt2,len,toggle=0;
- int startcnt=1;
- unsigned char c,hex;
-
- if(argc>1&&(strcmp(argv[1],"-a")==0))
- startcnt=2;
- printf("Decoded Hex:=");
- for(cnt1=startcnt;cnt1<argc;cnt1++)
- {
- len=strlen(argv[cnt1]);
- for(cnt2=0;cnt2<len;cnt2++)
- {
- c=argv[cnt1][cnt2];
- if(c>='0'&&c<='9')
- c=c-'0';
- if(c>='A'&&c<='F')
- c=c-'A'+10;
- if(c>='a'&&c<='f')
- c=c-'a'+10;
- switch(toggle)
- {
- case 0:
- hex=c<<4;
- toggle=1;
- break;
- case 1:
- hex+=c;
- if(hex<32||hex>127)
- {
- if(startcnt==1)
- printf("0x%02X ",(int)hex);
- else
- printf(".");
- }
- else
- {
- printf("%c",hex);
- if(startcnt==1)
- printf(" ");
- }
- toggle=0;
- break;
- }
- }
- }
- printf("\n");
-}
-
-
-
-
-Stack tracing under VM
-----------------------
-A basic backtrace
------------------
-
-Here are the tricks I use 9 out of 10 times it works pretty well,
-
-When your backchain reaches a dead end
---------------------------------------
-This can happen when an exception happens in the kernel and the kernel is
-entered twice. If you reach the NULL pointer at the end of the back chain you
-should be able to sniff further back if you follow the following tricks.
-1) A kernel address should be easy to recognise since it is in
-primary space & the problem state bit isn't set & also
-The Hi bit of the address is set.
-2) Another backchain should also be easy to recognise since it is an
-address pointing to another address approximately 100 bytes or 0x70 hex
-behind the current stackpointer.
-
-
-Here is some practice.
-boot the kernel & hit PA1 at some random time
-d g to display the gprs, this should display something like
-GPR 0 = 00000001 00156018 0014359C 00000000
-GPR 4 = 00000001 001B8888 000003E0 00000000
-GPR 8 = 00100080 00100084 00000000 000FE000
-GPR 12 = 00010400 8001B2DC 8001B36A 000FFED8
-Note that GPR14 is a return address but as we are real men we are going to
-trace the stack.
-display 0x40 bytes after the stack pointer.
-
-V000FFED8 000FFF38 8001B838 80014C8E 000FFF38
-V000FFEE8 00000000 00000000 000003E0 00000000
-V000FFEF8 00100080 00100084 00000000 000FE000
-V000FFF08 00010400 8001B2DC 8001B36A 000FFED8
-
-
-Ah now look at whats in sp+56 (sp+0x38) this is 8001B36A our saved r14 if
-you look above at our stackframe & also agrees with GPR14.
-
-now backchain
-d 000FFF38.40
-we now are taking the contents of SP to get our first backchain.
-
-V000FFF38 000FFFA0 00000000 00014995 00147094
-V000FFF48 00147090 001470A0 000003E0 00000000
-V000FFF58 00100080 00100084 00000000 001BF1D0
-V000FFF68 00010400 800149BA 80014CA6 000FFF38
-
-This displays a 2nd return address of 80014CA6
-
-now do d 000FFFA0.40 for our 3rd backchain
-
-V000FFFA0 04B52002 0001107F 00000000 00000000
-V000FFFB0 00000000 00000000 FF000000 0001107F
-V000FFFC0 00000000 00000000 00000000 00000000
-V000FFFD0 00010400 80010802 8001085A 000FFFA0
-
-
-our 3rd return address is 8001085A
-
-as the 04B52002 looks suspiciously like rubbish it is fair to assume that the
-kernel entry routines for the sake of optimisation don't set up a backchain.
-
-now look at System.map to see if the addresses make any sense.
-
-grep -i 0001b3 System.map
-outputs among other things
-0001b304 T cpu_idle
-so 8001B36A
-is cpu_idle+0x66 ( quiet the cpu is asleep, don't wake it )
-
-
-grep -i 00014 System.map
-produces among other things
-00014a78 T start_kernel
-so 0014CA6 is start_kernel+some hex number I can't add in my head.
-
-grep -i 00108 System.map
-this produces
-00010800 T _stext
-so 8001085A is _stext+0x5a
-
-Congrats you've done your first backchain.
-
-
-
-s/390 & z/Architecture IO Overview
-==================================
-
-I am not going to give a course in 390 IO architecture as this would take me
-quite a while and I'm no expert. Instead I'll give a 390 IO architecture
-summary for Dummies. If you have the s/390 principles of operation available
-read this instead. If nothing else you may find a few useful keywords in here
-and be able to use them on a web search engine to find more useful information.
-
-Unlike other bus architectures modern 390 systems do their IO using mostly
-fibre optics and devices such as tapes and disks can be shared between several
-mainframes. Also S390 can support up to 65536 devices while a high end PC based
-system might be choking with around 64.
-
-Here is some of the common IO terminology:
-
-Subchannel:
-This is the logical number most IO commands use to talk to an IO device. There
-can be up to 0x10000 (65536) of these in a configuration, typically there are a
-few hundred. Under VM for simplicity they are allocated contiguously, however
-on the native hardware they are not. They typically stay consistent between
-boots provided no new hardware is inserted or removed.
-Under Linux for s390 we use these as IRQ's and also when issuing an IO command
-(CLEAR SUBCHANNEL, HALT SUBCHANNEL, MODIFY SUBCHANNEL, RESUME SUBCHANNEL,
-START SUBCHANNEL, STORE SUBCHANNEL and TEST SUBCHANNEL). We use this as the ID
-of the device we wish to talk to. The most important of these instructions are
-START SUBCHANNEL (to start IO), TEST SUBCHANNEL (to check whether the IO
-completed successfully) and HALT SUBCHANNEL (to kill IO). A subchannel can have
-up to 8 channel paths to a device, this offers redundancy if one is not
-available.
-
-Device Number:
-This number remains static and is closely tied to the hardware. There are 65536
-of these, made up of a CHPID (Channel Path ID, the most significant 8 bits) and
-another lsb 8 bits. These remain static even if more devices are inserted or
-removed from the hardware. There is a 1 to 1 mapping between subchannels and
-device numbers, provided devices aren't inserted or removed.
-
-Channel Control Words:
-CCWs are linked lists of instructions initially pointed to by an operation
-request block (ORB), which is initially given to Start Subchannel (SSCH)
-command along with the subchannel number for the IO subsystem to process
-while the CPU continues executing normal code.
-CCWs come in two flavours, Format 0 (24 bit for backward compatibility) and
-Format 1 (31 bit). These are typically used to issue read and write (and many
-other) instructions. They consist of a length field and an absolute address
-field.
-Each IO typically gets 1 or 2 interrupts, one for channel end (primary status)
-when the channel is idle, and the second for device end (secondary status).
-Sometimes you get both concurrently. You check how the IO went on by issuing a
-TEST SUBCHANNEL at each interrupt, from which you receive an Interruption
-response block (IRB). If you get channel and device end status in the IRB
-without channel checks etc. your IO probably went okay. If you didn't you
-probably need to examine the IRB, extended status word etc.
-If an error occurs, more sophisticated control units have a facility known as
-concurrent sense. This means that if an error occurs Extended sense information
-will be presented in the Extended status word in the IRB. If not you have to
-issue a subsequent SENSE CCW command after the test subchannel.
-
-
-TPI (Test pending interrupt) can also be used for polled IO, but in
-multitasking multiprocessor systems it isn't recommended except for
-checking special cases (i.e. non looping checks for pending IO etc.).
-
-Store Subchannel and Modify Subchannel can be used to examine and modify
-operating characteristics of a subchannel (e.g. channel paths).
-
-Other IO related Terms:
-Sysplex: S390's Clustering Technology
-QDIO: S390's new high speed IO architecture to support devices such as gigabit
-ethernet, this architecture is also designed to be forward compatible with
-upcoming 64 bit machines.
-
-
-General Concepts
-
-Input Output Processors (IOP's) are responsible for communicating between
-the mainframe CPU's & the channel & relieve the mainframe CPU's from the
-burden of communicating with IO devices directly, this allows the CPU's to
-concentrate on data processing.
-
-IOP's can use one or more links ( known as channel paths ) to talk to each
-IO device. It first checks for path availability & chooses an available one,
-then starts ( & sometimes terminates IO ).
-There are two types of channel path: ESCON & the Parallel IO interface.
-
-IO devices are attached to control units, control units provide the
-logic to interface the channel paths & channel path IO protocols to
-the IO devices, they can be integrated with the devices or housed separately
-& often talk to several similar devices ( typical examples would be raid
-controllers or a control unit which connects to 1000 3270 terminals ).
-
-
- +---------------------------------------------------------------+
- | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
- | | CPU | | CPU | | CPU | | CPU | | Main | | Expanded | |
- | | | | | | | | | | Memory | | Storage | |
- | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
- |---------------------------------------------------------------+
- | IOP | IOP | IOP |
- |---------------------------------------------------------------
- | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C |
- ----------------------------------------------------------------
- || ||
- || Bus & Tag Channel Path || ESCON
- || ====================== || Channel
- || || || || Path
- +----------+ +----------+ +----------+
- | | | | | |
- | CU | | CU | | CU |
- | | | | | |
- +----------+ +----------+ +----------+
- | | | | |
-+----------+ +----------+ +----------+ +----------+ +----------+
-|I/O Device| |I/O Device| |I/O Device| |I/O Device| |I/O Device|
-+----------+ +----------+ +----------+ +----------+ +----------+
- CPU = Central Processing Unit
- C = Channel
- IOP = IP Processor
- CU = Control Unit
-
-The 390 IO systems come in 2 flavours the current 390 machines support both
-
-The Older 360 & 370 Interface,sometimes called the Parallel I/O interface,
-sometimes called Bus-and Tag & sometimes Original Equipment Manufacturers
-Interface (OEMI).
-
-This byte wide Parallel channel path/bus has parity & data on the "Bus" cable
-and control lines on the "Tag" cable. These can operate in byte multiplex mode
-for sharing between several slow devices or burst mode and monopolize the
-channel for the whole burst. Up to 256 devices can be addressed on one of these
-cables. These cables are about one inch in diameter. The maximum unextended
-length supported by these cables is 125 Meters but this can be extended up to
-2km with a fibre optic channel extended such as a 3044. The maximum burst speed
-supported is 4.5 megabytes per second. However, some really old processors
-support only transfer rates of 3.0, 2.0 & 1.0 MB/sec.
-One of these paths can be daisy chained to up to 8 control units.
-
-
-ESCON if fibre optic it is also called FICON
-Was introduced by IBM in 1990. Has 2 fibre optic cables and uses either leds or
-lasers for communication at a signaling rate of up to 200 megabits/sec. As
-10bits are transferred for every 8 bits info this drops to 160 megabits/sec
-and to 18.6 Megabytes/sec once control info and CRC are added. ESCON only
-operates in burst mode.
-
-ESCONs typical max cable length is 3km for the led version and 20km for the
-laser version known as XDF (extended distance facility). This can be further
-extended by using an ESCON director which triples the above mentioned ranges.
-Unlike Bus & Tag as ESCON is serial it uses a packet switching architecture,
-the standard Bus & Tag control protocol is however present within the packets.
-Up to 256 devices can be attached to each control unit that uses one of these
-interfaces.
-
-Common 390 Devices include:
-Network adapters typically OSA2,3172's,2116's & OSA-E gigabit ethernet adapters,
-Consoles 3270 & 3215 (a teletype emulated under linux for a line mode console).
-DASD's direct access storage devices ( otherwise known as hard disks ).
-Tape Drives.
-CTC ( Channel to Channel Adapters ),
-ESCON or Parallel Cables used as a very high speed serial link
-between 2 machines.
-
-
-Debugging IO on s/390 & z/Architecture under VM
-===============================================
-
-Now we are ready to go on with IO tracing commands under VM
-
-A few self explanatory queries:
-Q OSA
-Q CTC
-Q DISK ( This command is CMS specific )
-Q DASD
-
-
-
-
-
-
-Q OSA on my machine returns
-OSA 7C08 ON OSA 7C08 SUBCHANNEL = 0000
-OSA 7C09 ON OSA 7C09 SUBCHANNEL = 0001
-OSA 7C14 ON OSA 7C14 SUBCHANNEL = 0002
-OSA 7C15 ON OSA 7C15 SUBCHANNEL = 0003
-
-If you have a guest with certain privileges you may be able to see devices
-which don't belong to you. To avoid this, add the option V.
-e.g.
-Q V OSA
-
-Now using the device numbers returned by this command we will
-Trace the io starting up on the first device 7c08 & 7c09
-In our simplest case we can trace the
-start subchannels
-like TR SSCH 7C08-7C09
-or the halt subchannels
-or TR HSCH 7C08-7C09
-MSCH's ,STSCH's I think you can guess the rest
-
-A good trick is tracing all the IO's and CCWS and spooling them into the reader
-of another VM guest so he can ftp the logfile back to his own machine. I'll do
-a small bit of this and give you a look at the output.
-
-1) Spool stdout to VM reader
-SP PRT TO (another vm guest ) or * for the local vm guest
-2) Fill the reader with the trace
-TR IO 7c08-7c09 INST INT CCW PRT RUN
-3) Start up linux
-i 00c
-4) Finish the trace
-TR END
-5) close the reader
-C PRT
-6) list reader contents
-RDRLIST
-7) copy it to linux4's minidisk
-RECEIVE / LOG TXT A1 ( replace
-8)
-filel & press F11 to look at it
-You should see something like:
-
-00020942' SSCH B2334000 0048813C CC 0 SCH 0000 DEV 7C08
- CPA 000FFDF0 PARM 00E2C9C4 KEY 0 FPI C0 LPM 80
- CCW 000FFDF0 E4200100 00487FE8 0000 E4240100 ........
- IDAL 43D8AFE8
- IDAL 0FB76000
-00020B0A' I/O DEV 7C08 -> 000197BC' SCH 0000 PARM 00E2C9C4
-00021628' TSCH B2354000 >> 00488164 CC 0 SCH 0000 DEV 7C08
- CCWA 000FFDF8 DEV STS 0C SCH STS 00 CNT 00EC
- KEY 0 FPI C0 CC 0 CTLS 4007
-00022238' STSCH B2344000 >> 00488108 CC 0 SCH 0000 DEV 7C08
-
-If you don't like messing up your readed ( because you possibly booted from it )
-you can alternatively spool it to another readers guest.
-
-
-Other common VM device related commands
----------------------------------------------
-These commands are listed only because they have
-been of use to me in the past & may be of use to
-you too. For more complete info on each of the commands
-use type HELP <command> from CMS.
-detaching devices
-DET <devno range>
-ATT <devno range> <guest>
-attach a device to guest * for your own guest
-READY <devno> cause VM to issue a fake interrupt.
-
-The VARY command is normally only available to VM administrators.
-VARY ON PATH <path> TO <devno range>
-VARY OFF PATH <PATH> FROM <devno range>
-This is used to switch on or off channel paths to devices.
-
-Q CHPID <channel path ID>
-This displays state of devices using this channel path
-D SCHIB <subchannel>
-This displays the subchannel information SCHIB block for the device.
-this I believe is also only available to administrators.
-DEFINE CTC <devno>
-defines a virtual CTC channel to channel connection
-2 need to be defined on each guest for the CTC driver to use.
-COUPLE devno userid remote devno
-Joins a local virtual device to a remote virtual device
-( commonly used for the CTC driver ).
-
-Building a VM ramdisk under CMS which linux can use
-def vfb-<blocksize> <subchannel> <number blocks>
-blocksize is commonly 4096 for linux.
-Formatting it
-format <subchannel> <driver letter e.g. x> (blksize <blocksize>
-
-Sharing a disk between multiple guests
-LINK userid devno1 devno2 mode password
-
-
-
-GDB on S390
-===========
-N.B. if compiling for debugging gdb works better without optimisation
-( see Compiling programs for debugging )
-
-invocation
-----------
-gdb <victim program> <optional corefile>
-
-Online help
------------
-help: gives help on commands
-e.g.
-help
-help display
-Note gdb's online help is very good use it.
-
-
-Assembly
---------
-info registers: displays registers other than floating point.
-info all-registers: displays floating points as well.
-disassemble: disassembles
-e.g.
-disassemble without parameters will disassemble the current function
-disassemble $pc $pc+10
-
-Viewing & modifying variables
------------------------------
-print or p: displays variable or register
-e.g. p/x $sp will display the stack pointer
-
-display: prints variable or register each time program stops
-e.g.
-display/x $pc will display the program counter
-display argc
-
-undisplay : undo's display's
-
-info breakpoints: shows all current breakpoints
-
-info stack: shows stack back trace (if this doesn't work too well, I'll show
-you the stacktrace by hand below).
-
-info locals: displays local variables.
-
-info args: display current procedure arguments.
-
-set args: will set argc & argv each time the victim program is invoked.
-
-set <variable>=value
-set argc=100
-set $pc=0
-
-
-
-Modifying execution
--------------------
-step: steps n lines of sourcecode
-step steps 1 line.
-step 100 steps 100 lines of code.
-
-next: like step except this will not step into subroutines
-
-stepi: steps a single machine code instruction.
-e.g. stepi 100
-
-nexti: steps a single machine code instruction but will not step into
-subroutines.
-
-finish: will run until exit of the current routine
-
-run: (re)starts a program
-
-cont: continues a program
-
-quit: exits gdb.
-
-
-breakpoints
-------------
-
-break
-sets a breakpoint
-e.g.
-
-break main
-
-break *$pc
-
-break *0x400618
-
-Here's a really useful one for large programs
-rbr
-Set a breakpoint for all functions matching REGEXP
-e.g.
-rbr 390
-will set a breakpoint with all functions with 390 in their name.
-
-info breakpoints
-lists all breakpoints
-
-delete: delete breakpoint by number or delete them all
-e.g.
-delete 1 will delete the first breakpoint
-delete will delete them all
-
-watch: This will set a watchpoint ( usually hardware assisted ),
-This will watch a variable till it changes
-e.g.
-watch cnt, will watch the variable cnt till it changes.
-As an aside unfortunately gdb's, architecture independent watchpoint code
-is inconsistent & not very good, watchpoints usually work but not always.
-
-info watchpoints: Display currently active watchpoints
-
-condition: ( another useful one )
-Specify breakpoint number N to break only if COND is true.
-Usage is `condition N COND', where N is an integer and COND is an
-expression to be evaluated whenever breakpoint N is reached.
-
-
-
-User defined functions/macros
------------------------------
-define: ( Note this is very very useful,simple & powerful )
-usage define <name> <list of commands> end
-
-examples which you should consider putting into .gdbinit in your home directory
-define d
-stepi
-disassemble $pc $pc+10
-end
-
-define e
-nexti
-disassemble $pc $pc+10
-end
-
-
-Other hard to classify stuff
-----------------------------
-signal n:
-sends the victim program a signal.
-e.g. signal 3 will send a SIGQUIT.
-
-info signals:
-what gdb does when the victim receives certain signals.
-
-list:
-e.g.
-list lists current function source
-list 1,10 list first 10 lines of current file.
-list test.c:1,10
-
-
-directory:
-Adds directories to be searched for source if gdb cannot find the source.
-(note it is a bit sensitive about slashes)
-e.g. To add the root of the filesystem to the searchpath do
-directory //
-
-
-call <function>
-This calls a function in the victim program, this is pretty powerful
-e.g.
-(gdb) call printf("hello world")
-outputs:
-$1 = 11
-
-You might now be thinking that the line above didn't work, something extra had
-to be done.
-(gdb) call fflush(stdout)
-hello world$2 = 0
-As an aside the debugger also calls malloc & free under the hood
-to make space for the "hello world" string.
-
-
-
-hints
------
-1) command completion works just like bash
-( if you are a bad typist like me this really helps )
-e.g. hit br <TAB> & cursor up & down :-).
-
-2) if you have a debugging problem that takes a few steps to recreate
-put the steps into a file called .gdbinit in your current working directory
-if you have defined a few extra useful user defined commands put these in
-your home directory & they will be read each time gdb is launched.
-
-A typical .gdbinit file might be.
-break main
-run
-break runtime_exception
-cont
-
-
-stack chaining in gdb by hand
------------------------------
-This is done using a the same trick described for VM
-p/x (*($sp+56))&0x7fffffff get the first backchain.
-
-For z/Architecture
-Replace 56 with 112 & ignore the &0x7fffffff
-in the macros below & do nasty casts to longs like the following
-as gdb unfortunately deals with printed arguments as ints which
-messes up everything.
-i.e. here is a 3rd backchain dereference
-p/x *(long *)(***(long ***)$sp+112)
-
-
-this outputs
-$5 = 0x528f18
-on my machine.
-Now you can use
-info symbol (*($sp+56))&0x7fffffff
-you might see something like.
-rl_getc + 36 in section .text telling you what is located at address 0x528f18
-Now do.
-p/x (*(*$sp+56))&0x7fffffff
-This outputs
-$6 = 0x528ed0
-Now do.
-info symbol (*(*$sp+56))&0x7fffffff
-rl_read_key + 180 in section .text
-now do
-p/x (*(**$sp+56))&0x7fffffff
-& so on.
-
-Disassembling instructions without debug info
----------------------------------------------
-gdb typically complains if there is a lack of debugging
-symbols in the disassemble command with
-"No function contains specified address." To get around
-this do
-x/<number lines to disassemble>xi <address>
-e.g.
-x/20xi 0x400730
-
-
-
-Note: Remember gdb has history just like bash you don't need to retype the
-whole line just use the up & down arrows.
-
-
-
-For more info
--------------
-From your linuxbox do
-man gdb or info gdb.
-
-core dumps
-----------
-What a core dump ?,
-A core dump is a file generated by the kernel (if allowed) which contains the
-registers and all active pages of the program which has crashed.
-From this file gdb will allow you to look at the registers, stack trace and
-memory of the program as if it just crashed on your system. It is usually
-called core and created in the current working directory.
-This is very useful in that a customer can mail a core dump to a technical
-support department and the technical support department can reconstruct what
-happened. Provided they have an identical copy of this program with debugging
-symbols compiled in and the source base of this build is available.
-In short it is far more useful than something like a crash log could ever hope
-to be.
-
-Why have I never seen one ?.
-Probably because you haven't used the command
-ulimit -c unlimited in bash
-to allow core dumps, now do
-ulimit -a
-to verify that the limit was accepted.
-
-A sample core dump
-To create this I'm going to do
-ulimit -c unlimited
-gdb
-to launch gdb (my victim app. ) now be bad & do the following from another
-telnet/xterm session to the same machine
-ps -aux | grep gdb
-kill -SIGSEGV <gdb's pid>
-or alternatively use killall -SIGSEGV gdb if you have the killall command.
-Now look at the core dump.
-./gdb core
-Displays the following
-GNU gdb 4.18
-Copyright 1998 Free Software Foundation, Inc.
-GDB is free software, covered by the GNU General Public License, and you are
-welcome to change it and/or distribute copies of it under certain conditions.
-Type "show copying" to see the conditions.
-There is absolutely no warranty for GDB. Type "show warranty" for details.
-This GDB was configured as "s390-ibm-linux"...
-Core was generated by `./gdb'.
-Program terminated with signal 11, Segmentation fault.
-Reading symbols from /usr/lib/libncurses.so.4...done.
-Reading symbols from /lib/libm.so.6...done.
-Reading symbols from /lib/libc.so.6...done.
-Reading symbols from /lib/ld-linux.so.2...done.
-#0 0x40126d1a in read () from /lib/libc.so.6
-Setting up the environment for debugging gdb.
-Breakpoint 1 at 0x4dc6f8: file utils.c, line 471.
-Breakpoint 2 at 0x4d87a4: file top.c, line 2609.
-(top-gdb) info stack
-#0 0x40126d1a in read () from /lib/libc.so.6
-#1 0x528f26 in rl_getc (stream=0x7ffffde8) at input.c:402
-#2 0x528ed0 in rl_read_key () at input.c:381
-#3 0x5167e6 in readline_internal_char () at readline.c:454
-#4 0x5168ee in readline_internal_charloop () at readline.c:507
-#5 0x51692c in readline_internal () at readline.c:521
-#6 0x5164fe in readline (prompt=0x7ffff810)
- at readline.c:349
-#7 0x4d7a8a in command_line_input (prompt=0x564420 "(gdb) ", repeat=1,
- annotation_suffix=0x4d6b44 "prompt") at top.c:2091
-#8 0x4d6cf0 in command_loop () at top.c:1345
-#9 0x4e25bc in main (argc=1, argv=0x7ffffdf4) at main.c:635
-
-
-LDD
-===
-This is a program which lists the shared libraries which a library needs,
-Note you also get the relocations of the shared library text segments which
-help when using objdump --source.
-e.g.
- ldd ./gdb
-outputs
-libncurses.so.4 => /usr/lib/libncurses.so.4 (0x40018000)
-libm.so.6 => /lib/libm.so.6 (0x4005e000)
-libc.so.6 => /lib/libc.so.6 (0x40084000)
-/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
-
-
-Debugging shared libraries
-==========================
-Most programs use shared libraries, however it can be very painful
-when you single step instruction into a function like printf for the
-first time & you end up in functions like _dl_runtime_resolve this is
-the ld.so doing lazy binding, lazy binding is a concept in ELF where
-shared library functions are not loaded into memory unless they are
-actually used, great for saving memory but a pain to debug.
-To get around this either relink the program -static or exit gdb type
-export LD_BIND_NOW=true this will stop lazy binding & restart the gdb'ing
-the program in question.
-
-
-
-Debugging modules
-=================
-As modules are dynamically loaded into the kernel their address can be
-anywhere to get around this use the -m option with insmod to emit a load
-map which can be piped into a file if required.
-
-The proc file system
-====================
-What is it ?.
-It is a filesystem created by the kernel with files which are created on demand
-by the kernel if read, or can be used to modify kernel parameters,
-it is a powerful concept.
-
-e.g.
-
-cat /proc/sys/net/ipv4/ip_forward
-On my machine outputs
-0
-telling me ip_forwarding is not on to switch it on I can do
-echo 1 > /proc/sys/net/ipv4/ip_forward
-cat it again
-cat /proc/sys/net/ipv4/ip_forward
-On my machine now outputs
-1
-IP forwarding is on.
-There is a lot of useful info in here best found by going in and having a look
-around, so I'll take you through some entries I consider important.
-
-All the processes running on the machine have their own entry defined by
-/proc/<pid>
-So lets have a look at the init process
-cd /proc/1
-
-cat cmdline
-emits
-init [2]
-
-cd /proc/1/fd
-This contains numerical entries of all the open files,
-some of these you can cat e.g. stdout (2)
-
-cat /proc/29/maps
-on my machine emits
-
-00400000-00478000 r-xp 00000000 5f:00 4103 /bin/bash
-00478000-0047e000 rw-p 00077000 5f:00 4103 /bin/bash
-0047e000-00492000 rwxp 00000000 00:00 0
-40000000-40015000 r-xp 00000000 5f:00 14382 /lib/ld-2.1.2.so
-40015000-40016000 rw-p 00014000 5f:00 14382 /lib/ld-2.1.2.so
-40016000-40017000 rwxp 00000000 00:00 0
-40017000-40018000 rw-p 00000000 00:00 0
-40018000-4001b000 r-xp 00000000 5f:00 14435 /lib/libtermcap.so.2.0.8
-4001b000-4001c000 rw-p 00002000 5f:00 14435 /lib/libtermcap.so.2.0.8
-4001c000-4010d000 r-xp 00000000 5f:00 14387 /lib/libc-2.1.2.so
-4010d000-40111000 rw-p 000f0000 5f:00 14387 /lib/libc-2.1.2.so
-40111000-40114000 rw-p 00000000 00:00 0
-40114000-4011e000 r-xp 00000000 5f:00 14408 /lib/libnss_files-2.1.2.so
-4011e000-4011f000 rw-p 00009000 5f:00 14408 /lib/libnss_files-2.1.2.so
-7fffd000-80000000 rwxp ffffe000 00:00 0
-
-
-Showing us the shared libraries init uses where they are in memory
-& memory access permissions for each virtual memory area.
-
-/proc/1/cwd is a softlink to the current working directory.
-/proc/1/root is the root of the filesystem for this process.
-
-/proc/1/mem is the current running processes memory which you
-can read & write to like a file.
-strace uses this sometimes as it is a bit faster than the
-rather inefficient ptrace interface for peeking at DATA.
-
-
-cat status
-
-Name: init
-State: S (sleeping)
-Pid: 1
-PPid: 0
-Uid: 0 0 0 0
-Gid: 0 0 0 0
-Groups:
-VmSize: 408 kB
-VmLck: 0 kB
-VmRSS: 208 kB
-VmData: 24 kB
-VmStk: 8 kB
-VmExe: 368 kB
-VmLib: 0 kB
-SigPnd: 0000000000000000
-SigBlk: 0000000000000000
-SigIgn: 7fffffffd7f0d8fc
-SigCgt: 00000000280b2603
-CapInh: 00000000fffffeff
-CapPrm: 00000000ffffffff
-CapEff: 00000000fffffeff
-
-User PSW: 070de000 80414146
-task: 004b6000 tss: 004b62d8 ksp: 004b7ca8 pt_regs: 004b7f68
-User GPRS:
-00000400 00000000 0000000b 7ffffa90
-00000000 00000000 00000000 0045d9f4
-0045cafc 7ffffa90 7fffff18 0045cb08
-00010400 804039e8 80403af8 7ffff8b0
-User ACRS:
-00000000 00000000 00000000 00000000
-00000001 00000000 00000000 00000000
-00000000 00000000 00000000 00000000
-00000000 00000000 00000000 00000000
-Kernel BackChain CallChain BackChain CallChain
- 004b7ca8 8002bd0c 004b7d18 8002b92c
- 004b7db8 8005cd50 004b7e38 8005d12a
- 004b7f08 80019114
-Showing among other things memory usage & status of some signals &
-the processes'es registers from the kernel task_structure
-as well as a backchain which may be useful if a process crashes
-in the kernel for some unknown reason.
-
-Some driver debugging techniques
-================================
-debug feature
--------------
-Some of our drivers now support a "debug feature" in
-/proc/s390dbf see s390dbf.txt in the linux/Documentation directory
-for more info.
-e.g.
-to switch on the lcs "debug feature"
-echo 5 > /proc/s390dbf/lcs/level
-& then after the error occurred.
-cat /proc/s390dbf/lcs/sprintf >/logfile
-the logfile now contains some information which may help
-tech support resolve a problem in the field.
-
-
-
-high level debugging network drivers
-------------------------------------
-ifconfig is a quite useful command
-it gives the current state of network drivers.
-
-If you suspect your network device driver is dead
-one way to check is type
-ifconfig <network device>
-e.g. tr0
-You should see something like
-tr0 Link encap:16/4 Mbps Token Ring (New) HWaddr 00:04:AC:20:8E:48
- inet addr:9.164.185.132 Bcast:9.164.191.255 Mask:255.255.224.0
- UP BROADCAST RUNNING MULTICAST MTU:2000 Metric:1
- RX packets:246134 errors:0 dropped:0 overruns:0 frame:0
- TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
- collisions:0 txqueuelen:100
-
-if the device doesn't say up
-try
-/etc/rc.d/init.d/network start
-( this starts the network stack & hopefully calls ifconfig tr0 up ).
-ifconfig looks at the output of /proc/net/dev and presents it in a more
-presentable form.
-Now ping the device from a machine in the same subnet.
-if the RX packets count & TX packets counts don't increment you probably
-have problems.
-next
-cat /proc/net/arp
-Do you see any hardware addresses in the cache if not you may have problems.
-Next try
-ping -c 5 <broadcast_addr> i.e. the Bcast field above in the output of
-ifconfig. Do you see any replies from machines other than the local machine
-if not you may have problems. also if the TX packets count in ifconfig
-hasn't incremented either you have serious problems in your driver
-(e.g. the txbusy field of the network device being stuck on )
-or you may have multiple network devices connected.
-
-
-chandev
--------
-There is a new device layer for channel devices, some
-drivers e.g. lcs are registered with this layer.
-If the device uses the channel device layer you'll be
-able to find what interrupts it uses & the current state
-of the device.
-See the manpage chandev.8 &type cat /proc/chandev for more info.
-
-
-SysRq
-=====
-This is now supported by linux for s/390 & z/Architecture.
-To enable it do compile the kernel with
-Kernel Hacking -> Magic SysRq Key Enabled
-echo "1" > /proc/sys/kernel/sysrq
-also type
-echo "8" >/proc/sys/kernel/printk
-To make printk output go to console.
-On 390 all commands are prefixed with
-^-
-e.g.
-^-t will show tasks.
-^-? or some unknown command will display help.
-The sysrq key reading is very picky ( I have to type the keys in an
- xterm session & paste them into the x3270 console )
-& it may be wise to predefine the keys as described in the VM hints above
-
-This is particularly useful for syncing disks unmounting & rebooting
-if the machine gets partially hung.
-
-Read Documentation/admin-guide/sysrq.rst for more info
-
-References:
-===========
-Enterprise Systems Architecture Reference Summary
-Enterprise Systems Architecture Principles of Operation
-Hartmut Penners s390 stack frame sheet.
-IBM Mainframe Channel Attachment a technology brief from a CISCO webpage
-Various bits of man & info pages of Linux.
-Linux & GDB source.
-Various info & man pages.
-CMS Help on tracing commands.
-Linux for s/390 Elf Application Binary Interface
-Linux for z/Series Elf Application Binary Interface ( Both Highly Recommended )
-z/Architecture Principles of Operation SA22-7832-00
-Enterprise Systems Architecture/390 Reference Summary SA22-7209-01 & the
-Enterprise Systems Architecture/390 Principles of Operation SA22-7201-05
-
-Special Thanks
-==============
-Special thanks to Neale Ferguson who maintains a much
-prettier HTML version of this page at
-http://linuxvm.org/penguinvm/
-Bob Grainger Stefan Bader & others for reporting bugs
diff --git a/Documentation/s390/cds.txt b/Documentation/s390/cds.rst
index 480a78ef5a1e..7006d8209d2e 100644
--- a/Documentation/s390/cds.txt
+++ b/Documentation/s390/cds.rst
@@ -1,14 +1,18 @@
+===========================
Linux for S/390 and zSeries
+===========================
Common Device Support (CDS)
Device Driver I/O Support Routines
-Authors : Ingo Adlung
- Cornelia Huck
+Authors:
+ - Ingo Adlung
+ - Cornelia Huck
Copyright, IBM Corp. 1999-2002
Introduction
+============
This document describes the common device support routines for Linux/390.
Different than other hardware architectures, ESA/390 has defined a unified
@@ -27,18 +31,20 @@ Operation manual (IBM Form. No. SA22-7201).
In order to build common device support for ESA/390 I/O interfaces, a
functional layer was introduced that provides generic I/O access methods to
-the hardware.
+the hardware.
-The common device support layer comprises the I/O support routines defined
-below. Some of them implement common Linux device driver interfaces, while
+The common device support layer comprises the I/O support routines defined
+below. Some of them implement common Linux device driver interfaces, while
some of them are ESA/390 platform specific.
Note:
-In order to write a driver for S/390, you also need to look into the interface
-described in Documentation/s390/driver-model.txt.
+ In order to write a driver for S/390, you also need to look into the interface
+ described in Documentation/s390/driver-model.rst.
Note for porting drivers from 2.4:
+
The major changes are:
+
* The functions use a ccw_device instead of an irq (subchannel).
* All drivers must define a ccw_driver (see driver-model.txt) and the associated
functions.
@@ -57,19 +63,16 @@ The major changes are:
ccw_device_get_ciw()
get commands from extended sense data.
-ccw_device_start()
-ccw_device_start_timeout()
-ccw_device_start_key()
-ccw_device_start_key_timeout()
+ccw_device_start(), ccw_device_start_timeout(), ccw_device_start_key(), ccw_device_start_key_timeout()
initiate an I/O request.
ccw_device_resume()
resume channel program execution.
-ccw_device_halt()
+ccw_device_halt()
terminate the current I/O request processed on the device.
-do_IRQ()
+do_IRQ()
generic interrupt routine. This function is called by the interrupt entry
routine whenever an I/O interrupt is presented to the system. The do_IRQ()
routine determines the interrupt status and calls the device specific
@@ -82,12 +85,15 @@ first level interrupt handler only and does not comprise a device driver
callable interface. Instead, the functional description of do_IO() also
describes the input to the device specific interrupt handler.
-Note: All explanations apply also to the 64 bit architecture s390x.
+Note:
+ All explanations apply also to the 64 bit architecture s390x.
Common Device Support (CDS) for Linux/390 Device Drivers
+========================================================
General Information
+-------------------
The following chapters describe the I/O related interface routines the
Linux/390 common device support (CDS) provides to allow for device specific
@@ -101,6 +107,7 @@ can be found in the architecture specific C header file
linux/arch/s390/include/asm/irq.h.
Overview of CDS interface concepts
+----------------------------------
Different to other hardware platforms, the ESA/390 architecture doesn't define
interrupt lines managed by a specific interrupt controller and bus systems
@@ -126,7 +133,7 @@ has to call every single device driver registered on this IRQ in order to
determine the device driver owning the device that raised the interrupt.
Up to kernel 2.4, Linux/390 used to provide interfaces via the IRQ (subchannel).
-For internal use of the common I/O layer, these are still there. However,
+For internal use of the common I/O layer, these are still there. However,
device drivers should use the new calling interface via the ccw_device only.
During its startup the Linux/390 system checks for peripheral devices. Each
@@ -134,7 +141,7 @@ of those devices is uniquely defined by a so called subchannel by the ESA/390
channel subsystem. While the subchannel numbers are system generated, each
subchannel also takes a user defined attribute, the so called device number.
Both subchannel number and device number cannot exceed 65535. During sysfs
-initialisation, the information about control unit type and device types that
+initialisation, the information about control unit type and device types that
imply specific I/O commands (channel command words - CCWs) in order to operate
the device are gathered. Device drivers can retrieve this set of hardware
information during their initialization step to recognize the devices they
@@ -164,18 +171,26 @@ get_ciw() - get command information word
This call enables a device driver to get information about supported commands
from the extended SenseID data.
-struct ciw *
-ccw_device_get_ciw(struct ccw_device *cdev, __u32 cmd);
+::
-cdev - The ccw_device for which the command is to be retrieved.
-cmd - The command type to be retrieved.
+ struct ciw *
+ ccw_device_get_ciw(struct ccw_device *cdev, __u32 cmd);
+
+==== ========================================================
+cdev The ccw_device for which the command is to be retrieved.
+cmd The command type to be retrieved.
+==== ========================================================
ccw_device_get_ciw() returns:
-NULL - No extended data available, invalid device or command not found.
-!NULL - The command requested.
+===== ================================================================
+ NULL No extended data available, invalid device or command not found.
+!NULL The command requested.
+===== ================================================================
+
+::
-ccw_device_start() - Initiate I/O Request
+ ccw_device_start() - Initiate I/O Request
The ccw_device_start() routines is the I/O request front-end processor. All
device driver I/O requests must be issued using this routine. A device driver
@@ -186,93 +201,105 @@ This description also covers the status information passed to the device
driver's interrupt handler as this is related to the rules (flags) defined
with the associated I/O request when calling ccw_device_start().
-int ccw_device_start(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- unsigned long flags);
-int ccw_device_start_timeout(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- unsigned long flags,
- int expires);
-int ccw_device_start_key(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- __u8 key,
- unsigned long flags);
-int ccw_device_start_key_timeout(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- __u8 key,
- unsigned long flags,
- int expires);
-
-cdev : ccw_device the I/O is destined for
-cpa : logical start address of channel program
-user_intparm : user specific interrupt information; will be presented
- back to the device driver's interrupt handler. Allows a
- device driver to associate the interrupt with a
- particular I/O request.
-lpm : defines the channel path to be used for a specific I/O
- request. A value of 0 will make cio use the opm.
-key : the storage key to use for the I/O (useful for operating on a
- storage with a storage key != default key)
-flag : defines the action to be performed for I/O processing
-expires : timeout value in jiffies. The common I/O layer will terminate
- the running program after this and call the interrupt handler
- with ERR_PTR(-ETIMEDOUT) as irb.
-
-Possible flag values are :
-
-DOIO_ALLOW_SUSPEND - channel program may become suspended
-DOIO_DENY_PREFETCH - don't allow for CCW prefetch; usually
- this implies the channel program might
- become modified
-DOIO_SUPPRESS_INTER - don't call the handler on intermediate status
-
-The cpa parameter points to the first format 1 CCW of a channel program :
-
-struct ccw1 {
- __u8 cmd_code;/* command code */
- __u8 flags; /* flags, like IDA addressing, etc. */
- __u16 count; /* byte count */
- __u32 cda; /* data address */
-} __attribute__ ((packed,aligned(8)));
-
-with the following CCW flags values defined :
-
-CCW_FLAG_DC - data chaining
-CCW_FLAG_CC - command chaining
-CCW_FLAG_SLI - suppress incorrect length
-CCW_FLAG_SKIP - skip
-CCW_FLAG_PCI - PCI
-CCW_FLAG_IDA - indirect addressing
-CCW_FLAG_SUSPEND - suspend
+::
+
+ int ccw_device_start(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ unsigned long flags);
+ int ccw_device_start_timeout(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ unsigned long flags,
+ int expires);
+ int ccw_device_start_key(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ __u8 key,
+ unsigned long flags);
+ int ccw_device_start_key_timeout(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ __u8 key,
+ unsigned long flags,
+ int expires);
+
+============= =============================================================
+cdev ccw_device the I/O is destined for
+cpa logical start address of channel program
+user_intparm user specific interrupt information; will be presented
+ back to the device driver's interrupt handler. Allows a
+ device driver to associate the interrupt with a
+ particular I/O request.
+lpm defines the channel path to be used for a specific I/O
+ request. A value of 0 will make cio use the opm.
+key the storage key to use for the I/O (useful for operating on a
+ storage with a storage key != default key)
+flag defines the action to be performed for I/O processing
+expires timeout value in jiffies. The common I/O layer will terminate
+ the running program after this and call the interrupt handler
+ with ERR_PTR(-ETIMEDOUT) as irb.
+============= =============================================================
+
+Possible flag values are:
+
+========================= =============================================
+DOIO_ALLOW_SUSPEND channel program may become suspended
+DOIO_DENY_PREFETCH don't allow for CCW prefetch; usually
+ this implies the channel program might
+ become modified
+DOIO_SUPPRESS_INTER don't call the handler on intermediate status
+========================= =============================================
+
+The cpa parameter points to the first format 1 CCW of a channel program::
+
+ struct ccw1 {
+ __u8 cmd_code;/* command code */
+ __u8 flags; /* flags, like IDA addressing, etc. */
+ __u16 count; /* byte count */
+ __u32 cda; /* data address */
+ } __attribute__ ((packed,aligned(8)));
+
+with the following CCW flags values defined:
+
+=================== =========================
+CCW_FLAG_DC data chaining
+CCW_FLAG_CC command chaining
+CCW_FLAG_SLI suppress incorrect length
+CCW_FLAG_SKIP skip
+CCW_FLAG_PCI PCI
+CCW_FLAG_IDA indirect addressing
+CCW_FLAG_SUSPEND suspend
+=================== =========================
Via ccw_device_set_options(), the device driver may specify the following
options for the device:
-DOIO_EARLY_NOTIFICATION - allow for early interrupt notification
-DOIO_REPORT_ALL - report all interrupt conditions
+========================= ======================================
+DOIO_EARLY_NOTIFICATION allow for early interrupt notification
+DOIO_REPORT_ALL report all interrupt conditions
+========================= ======================================
-The ccw_device_start() function returns :
+The ccw_device_start() function returns:
- 0 - successful completion or request successfully initiated
--EBUSY - The device is currently processing a previous I/O request, or there is
- a status pending at the device.
--ENODEV - cdev is invalid, the device is not operational or the ccw_device is
- not online.
+======== ======================================================================
+ 0 successful completion or request successfully initiated
+ -EBUSY The device is currently processing a previous I/O request, or there is
+ a status pending at the device.
+-ENODEV cdev is invalid, the device is not operational or the ccw_device is
+ not online.
+======== ======================================================================
When the I/O request completes, the CDS first level interrupt handler will
accumulate the status in a struct irb and then call the device interrupt handler.
-The intparm field will contain the value the device driver has associated with a
-particular I/O request. If a pending device status was recognized,
+The intparm field will contain the value the device driver has associated with a
+particular I/O request. If a pending device status was recognized,
intparm will be set to 0 (zero). This may happen during I/O initiation or delayed
by an alert status notification. In any case this status is not related to the
current (last) I/O request. In case of a delayed status notification no special
@@ -282,9 +309,11 @@ never started, even though ccw_device_start() returned with successful completio
The irb may contain an error value, and the device driver should check for this
first:
--ETIMEDOUT: the common I/O layer terminated the request after the specified
- timeout value
--EIO: the common I/O layer terminated the request due to an error state
+========== =================================================================
+-ETIMEDOUT the common I/O layer terminated the request after the specified
+ timeout value
+-EIO the common I/O layer terminated the request due to an error state
+========== =================================================================
If the concurrent sense flag in the extended status word (esw) in the irb is
set, the field erw.scnt in the esw describes the number of device specific
@@ -294,6 +323,7 @@ sensing by the device driver itself is required.
The device interrupt handler can use the following definitions to investigate
the primary unit check source coded in sense byte 0 :
+======================= ====
SNS0_CMD_REJECT 0x80
SNS0_INTERVENTION_REQ 0x40
SNS0_BUS_OUT_CHECK 0x20
@@ -301,36 +331,41 @@ SNS0_EQUIPMENT_CHECK 0x10
SNS0_DATA_CHECK 0x08
SNS0_OVERRUN 0x04
SNS0_INCOMPL_DOMAIN 0x01
+======================= ====
Depending on the device status, multiple of those values may be set together.
Please refer to the device specific documentation for details.
The irb->scsw.cstat field provides the (accumulated) subchannel status :
-SCHN_STAT_PCI - program controlled interrupt
-SCHN_STAT_INCORR_LEN - incorrect length
-SCHN_STAT_PROG_CHECK - program check
-SCHN_STAT_PROT_CHECK - protection check
-SCHN_STAT_CHN_DATA_CHK - channel data check
-SCHN_STAT_CHN_CTRL_CHK - channel control check
-SCHN_STAT_INTF_CTRL_CHK - interface control check
-SCHN_STAT_CHAIN_CHECK - chaining check
+========================= ============================
+SCHN_STAT_PCI program controlled interrupt
+SCHN_STAT_INCORR_LEN incorrect length
+SCHN_STAT_PROG_CHECK program check
+SCHN_STAT_PROT_CHECK protection check
+SCHN_STAT_CHN_DATA_CHK channel data check
+SCHN_STAT_CHN_CTRL_CHK channel control check
+SCHN_STAT_INTF_CTRL_CHK interface control check
+SCHN_STAT_CHAIN_CHECK chaining check
+========================= ============================
The irb->scsw.dstat field provides the (accumulated) device status :
-DEV_STAT_ATTENTION - attention
-DEV_STAT_STAT_MOD - status modifier
-DEV_STAT_CU_END - control unit end
-DEV_STAT_BUSY - busy
-DEV_STAT_CHN_END - channel end
-DEV_STAT_DEV_END - device end
-DEV_STAT_UNIT_CHECK - unit check
-DEV_STAT_UNIT_EXCEP - unit exception
+===================== =================
+DEV_STAT_ATTENTION attention
+DEV_STAT_STAT_MOD status modifier
+DEV_STAT_CU_END control unit end
+DEV_STAT_BUSY busy
+DEV_STAT_CHN_END channel end
+DEV_STAT_DEV_END device end
+DEV_STAT_UNIT_CHECK unit check
+DEV_STAT_UNIT_EXCEP unit exception
+===================== =================
Please see the ESA/390 Principles of Operation manual for details on the
individual flag meanings.
-Usage Notes :
+Usage Notes:
ccw_device_start() must be called disabled and with the ccw device lock held.
@@ -374,32 +409,39 @@ secondary status without error (alert status) is presented, this indicates
successful completion for all overlapping ccw_device_start() requests that have
been issued since the last secondary (final) status.
-Channel programs that intend to set the suspend flag on a channel command word
-(CCW) must start the I/O operation with the DOIO_ALLOW_SUSPEND option or the
-suspend flag will cause a channel program check. At the time the channel program
-becomes suspended an intermediate interrupt will be generated by the channel
+Channel programs that intend to set the suspend flag on a channel command word
+(CCW) must start the I/O operation with the DOIO_ALLOW_SUSPEND option or the
+suspend flag will cause a channel program check. At the time the channel program
+becomes suspended an intermediate interrupt will be generated by the channel
subsystem.
-ccw_device_resume() - Resume Channel Program Execution
+ccw_device_resume() - Resume Channel Program Execution
-If a device driver chooses to suspend the current channel program execution by
-setting the CCW suspend flag on a particular CCW, the channel program execution
-is suspended. In order to resume channel program execution the CIO layer
-provides the ccw_device_resume() routine.
+If a device driver chooses to suspend the current channel program execution by
+setting the CCW suspend flag on a particular CCW, the channel program execution
+is suspended. In order to resume channel program execution the CIO layer
+provides the ccw_device_resume() routine.
-int ccw_device_resume(struct ccw_device *cdev);
+::
-cdev - ccw_device the resume operation is requested for
+ int ccw_device_resume(struct ccw_device *cdev);
+
+==== ================================================
+cdev ccw_device the resume operation is requested for
+==== ================================================
The ccw_device_resume() function returns:
- 0 - suspended channel program is resumed
--EBUSY - status pending
--ENODEV - cdev invalid or not-operational subchannel
--EINVAL - resume function not applicable
--ENOTCONN - there is no I/O request pending for completion
+========= ==============================================
+ 0 suspended channel program is resumed
+ -EBUSY status pending
+ -ENODEV cdev invalid or not-operational subchannel
+ -EINVAL resume function not applicable
+-ENOTCONN there is no I/O request pending for completion
+========= ==============================================
Usage Notes:
+
Please have a look at the ccw_device_start() usage notes for more details on
suspended channel programs.
@@ -412,22 +454,28 @@ command is provided.
ccw_device_halt() must be called disabled and with the ccw device lock held.
-int ccw_device_halt(struct ccw_device *cdev,
- unsigned long intparm);
+::
+
+ int ccw_device_halt(struct ccw_device *cdev,
+ unsigned long intparm);
-cdev : ccw_device the halt operation is requested for
-intparm : interruption parameter; value is only used if no I/O
- is outstanding, otherwise the intparm associated with
- the I/O request is returned
+======= =====================================================
+cdev ccw_device the halt operation is requested for
+intparm interruption parameter; value is only used if no I/O
+ is outstanding, otherwise the intparm associated with
+ the I/O request is returned
+======= =====================================================
-The ccw_device_halt() function returns :
+The ccw_device_halt() function returns:
- 0 - request successfully initiated
--EBUSY - the device is currently busy, or status pending.
--ENODEV - cdev invalid.
--EINVAL - The device is not operational or the ccw device is not online.
+======= ==============================================================
+ 0 request successfully initiated
+-EBUSY the device is currently busy, or status pending.
+-ENODEV cdev invalid.
+-EINVAL The device is not operational or the ccw device is not online.
+======= ==============================================================
-Usage Notes :
+Usage Notes:
A device driver may write a never-ending channel program by writing a channel
program that at its end loops back to its beginning by means of a transfer in
@@ -438,25 +486,34 @@ can then perform an appropriate action. Prior to interrupt of an outstanding
read to a network device (with or without PCI flag) a ccw_device_halt()
is required to end the pending operation.
-ccw_device_clear() - Terminage I/O Request Processing
+::
+
+ ccw_device_clear() - Terminage I/O Request Processing
In order to terminate all I/O processing at the subchannel, the clear subchannel
(CSCH) command is used. It can be issued via ccw_device_clear().
ccw_device_clear() must be called disabled and with the ccw device lock held.
-int ccw_device_clear(struct ccw_device *cdev, unsigned long intparm);
+::
+
+ int ccw_device_clear(struct ccw_device *cdev, unsigned long intparm);
-cdev: ccw_device the clear operation is requested for
-intparm: interruption parameter (see ccw_device_halt())
+======= ===============================================
+cdev ccw_device the clear operation is requested for
+intparm interruption parameter (see ccw_device_halt())
+======= ===============================================
The ccw_device_clear() function returns:
- 0 - request successfully initiated
--ENODEV - cdev invalid
--EINVAL - The device is not operational or the ccw device is not online.
+======= ==============================================================
+ 0 request successfully initiated
+-ENODEV cdev invalid
+-EINVAL The device is not operational or the ccw device is not online.
+======= ==============================================================
Miscellaneous Support Routines
+------------------------------
This chapter describes various routines to be used in a Linux/390 device
driver programming environment.
@@ -466,7 +523,8 @@ get_ccwdev_lock()
Get the address of the device specific lock. This is then used in
spin_lock() / spin_unlock() calls.
+::
-__u8 ccw_device_get_path_mask(struct ccw_device *cdev);
+ __u8 ccw_device_get_path_mask(struct ccw_device *cdev);
Get the mask of the path currently available for cdev.
diff --git a/Documentation/s390/CommonIO b/Documentation/s390/common_io.rst
index 6e0f63f343b4..846485681ce7 100644
--- a/Documentation/s390/CommonIO
+++ b/Documentation/s390/common_io.rst
@@ -1,5 +1,9 @@
-S/390 common I/O-Layer - command line parameters, procfs and debugfs entries
-============================================================================
+======================
+S/390 common I/O-Layer
+======================
+
+command line parameters, procfs and debugfs entries
+===================================================
Command line parameters
-----------------------
@@ -13,7 +17,7 @@ Command line parameters
device := {all | [!]ipldev | [!]condev | [!]<devno> | [!]<devno>-<devno>}
The given devices will be ignored by the common I/O-layer; no detection
- and device sensing will be done on any of those devices. The subchannel to
+ and device sensing will be done on any of those devices. The subchannel to
which the device in question is attached will be treated as if no device was
attached.
@@ -28,14 +32,20 @@ Command line parameters
keywords can be used to refer to the CCW based boot device and CCW console
device respectively (these are probably useful only when combined with the '!'
operator). The '!' operator will cause the I/O-layer to _not_ ignore a device.
- The command line is parsed from left to right.
+ The command line
+ is parsed from left to right.
+
+ For example::
- For example,
cio_ignore=0.0.0023-0.0.0042,0.0.4711
+
will ignore all devices ranging from 0.0.0023 to 0.0.0042 and the device
0.0.4711, if detected.
- As another example,
+
+ As another example::
+
cio_ignore=all,!0.0.4711,!0.0.fd00-0.0.fd02
+
will ignore all devices but 0.0.4711, 0.0.fd00, 0.0.fd01, 0.0.fd02.
By default, no devices are ignored.
@@ -48,40 +58,45 @@ Command line parameters
Lists the ranges of devices (by bus id) which are ignored by common I/O.
- You can un-ignore certain or all devices by piping to /proc/cio_ignore.
- "free all" will un-ignore all ignored devices,
+ You can un-ignore certain or all devices by piping to /proc/cio_ignore.
+ "free all" will un-ignore all ignored devices,
"free <device range>, <device range>, ..." will un-ignore the specified
devices.
For example, if devices 0.0.0023 to 0.0.0042 and 0.0.4711 are ignored,
+
- echo free 0.0.0030-0.0.0032 > /proc/cio_ignore
will un-ignore devices 0.0.0030 to 0.0.0032 and will leave devices 0.0.0023
to 0.0.002f, 0.0.0033 to 0.0.0042 and 0.0.4711 ignored;
- echo free 0.0.0041 > /proc/cio_ignore will furthermore un-ignore device
0.0.0041;
- - echo free all > /proc/cio_ignore will un-ignore all remaining ignored
+ - echo free all > /proc/cio_ignore will un-ignore all remaining ignored
devices.
- When a device is un-ignored, device recognition and sensing is performed and
+ When a device is un-ignored, device recognition and sensing is performed and
the device driver will be notified if possible, so the device will become
available to the system. Note that un-ignoring is performed asynchronously.
- You can also add ranges of devices to be ignored by piping to
+ You can also add ranges of devices to be ignored by piping to
/proc/cio_ignore; "add <device range>, <device range>, ..." will ignore the
specified devices.
Note: While already known devices can be added to the list of devices to be
- ignored, there will be no effect on then. However, if such a device
+ ignored, there will be no effect on then. However, if such a device
disappears and then reappears, it will then be ignored. To make
known devices go away, you need the "purge" command (see below).
- For example,
+ For example::
+
"echo add 0.0.a000-0.0.accc, 0.0.af00-0.0.afff > /proc/cio_ignore"
+
will add 0.0.a000-0.0.accc and 0.0.af00-0.0.afff to the list of ignored
devices.
- You can remove already known but now ignored devices via
+ You can remove already known but now ignored devices via::
+
"echo purge > /proc/cio_ignore"
+
All devices ignored but still registered and not online (= not in use)
will be deregistered and thus removed from the system.
@@ -115,11 +130,11 @@ debugfs entries
Various debug messages from the common I/O-layer.
- /sys/kernel/debug/s390dbf/cio_trace/hex_ascii
- Logs the calling of functions in the common I/O-layer and, if applicable,
+ Logs the calling of functions in the common I/O-layer and, if applicable,
which subchannel they were called for, as well as dumps of some data
structures (like irb in an error case).
- The level of logging can be changed to be more or less verbose by piping to
+ The level of logging can be changed to be more or less verbose by piping to
/sys/kernel/debug/s390dbf/cio_*/level a number between 0 and 6; see the
- documentation on the S/390 debug feature (Documentation/s390/s390dbf.txt)
+ documentation on the S/390 debug feature (Documentation/s390/s390dbf.rst)
for details.
diff --git a/Documentation/s390/DASD b/Documentation/s390/dasd.rst
index 9963f1e9c98a..9e22247285c8 100644
--- a/Documentation/s390/DASD
+++ b/Documentation/s390/dasd.rst
@@ -1,4 +1,6 @@
+==================
DASD device driver
+==================
S/390's disk devices (DASDs) are managed by Linux via the DASD device
driver. It is valid for all types of DASDs and represents them to
@@ -14,14 +16,14 @@ parameters are to be given in hexadecimal notation without a leading
If you supply kernel parameters the different instances are processed
in order of appearance and a minor number is reserved for any device
covered by the supplied range up to 64 volumes. Additional DASDs are
-ignored. If you do not supply the 'dasd=' kernel parameter at all, the
+ignored. If you do not supply the 'dasd=' kernel parameter at all, the
DASD driver registers all supported DASDs of your system to a minor
number in ascending order of the subchannel number.
The driver currently supports ECKD-devices and there are stubs for
support of the FBA and CKD architectures. For the FBA architecture
only some smart data structures are missing to make the support
-complete.
+complete.
We performed our testing on 3380 and 3390 type disks of different
sizes, under VM and on the bare hardware (LPAR), using internal disks
of the multiprise as well as a RAMAC virtual array. Disks exported by
@@ -34,19 +36,22 @@ accessibility of the DASD from other OSs. In a later stage we will
provide support of partitions, maybe VTOC oriented or using a kind of
partition table in the label record.
-USAGE
+Usage
+=====
-Low-level format (?CKD only)
For using an ECKD-DASD as a Linux harddisk you have to low-level
format the tracks by issuing the BLKDASDFORMAT-ioctl on that
device. This will erase any data on that volume including IBM volume
-labels, VTOCs etc. The ioctl may take a 'struct format_data *' or
-'NULL' as an argument.
-typedef struct {
+labels, VTOCs etc. The ioctl may take a `struct format_data *` or
+'NULL' as an argument::
+
+ typedef struct {
int start_unit;
int stop_unit;
int blksize;
-} format_data_t;
+ } format_data_t;
+
When a NULL argument is passed to the BLKDASDFORMAT ioctl the whole
disk is formatted to a blocksize of 1024 bytes. Otherwise start_unit
and stop_unit are the first and last track to be formatted. If
@@ -56,17 +61,23 @@ up to the last track. blksize can be any power of two between 512 and
1kB blocks anyway and you gain approx. 50% of capacity increasing your
blksize from 512 byte to 1kB.
--Make a filesystem
+Make a filesystem
+=================
+
Then you can mk??fs the filesystem of your choice on that volume or
partition. For reasons of sanity you should build your filesystem on
-the partition /dev/dd?1 instead of the whole volume. You only lose 3kB
+the partition /dev/dd?1 instead of the whole volume. You only lose 3kB
but may be sure that you can reuse your data after introduction of a
real partition table.
-BUGS:
+Bugs
+====
+
- Performance sometimes is rather low because we don't fully exploit clustering
-TODO-List:
+TODO-List
+=========
+
- Add IBM'S Disk layout to genhd
- Enhance driver to use more than one major number
- Enable usage as a module
diff --git a/Documentation/s390/debugging390.rst b/Documentation/s390/debugging390.rst
new file mode 100644
index 000000000000..d49305fd5e1a
--- /dev/null
+++ b/Documentation/s390/debugging390.rst
@@ -0,0 +1,2613 @@
+=============================================
+Debugging on Linux for s/390 & z/Architecture
+=============================================
+
+Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
+
+Copyright (C) 2000-2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
+
+.. Best viewed with fixed width fonts
+
+Overview of Document:
+=====================
+This document is intended to give a good overview of how to debug Linux for
+s/390 and z/Architecture. It is not intended as a complete reference and not a
+tutorial on the fundamentals of C & assembly. It doesn't go into
+390 IO in any detail. It is intended to complement the documents in the
+reference section below & any other worthwhile references you get.
+
+It is intended like the Enterprise Systems Architecture/390 Reference Summary
+to be printed out & used as a quick cheat sheet self help style reference when
+problems occur.
+
+.. Contents
+ ========
+ Register Set
+ Address Spaces on Intel Linux
+ Address Spaces on Linux for s/390 & z/Architecture
+ The Linux for s/390 & z/Architecture Kernel Task Structure
+ Register Usage & Stackframes on Linux for s/390 & z/Architecture
+ A sample program with comments
+ Compiling programs for debugging on Linux for s/390 & z/Architecture
+ Debugging under VM
+ s/390 & z/Architecture IO Overview
+ Debugging IO on s/390 & z/Architecture under VM
+ GDB on s/390 & z/Architecture
+ Stack chaining in gdb by hand
+ Examining core dumps
+ ldd
+ Debugging modules
+ The proc file system
+ SysRq
+ References
+ Special Thanks
+
+Register Set
+============
+The current architectures have the following registers.
+
+16 General propose registers, 32 bit on s/390 and 64 bit on z/Architecture,
+r0-r15 (or gpr0-gpr15), used for arithmetic and addressing.
+
+16 Control registers, 32 bit on s/390 and 64 bit on z/Architecture, cr0-cr15,
+kernel usage only, used for memory management, interrupt control, debugging
+control etc.
+
+16 Access registers (ar0-ar15), 32 bit on both s/390 and z/Architecture,
+normally not used by normal programs but potentially could be used as
+temporary storage. These registers have a 1:1 association with general
+purpose registers and are designed to be used in the so-called access
+register mode to select different address spaces.
+Access register 0 (and access register 1 on z/Architecture, which needs a
+64 bit pointer) is currently used by the pthread library as a pointer to
+the current running threads private area.
+
+16 64-bit floating point registers (fp0-fp15 ) IEEE & HFP floating
+point format compliant on G5 upwards & a Floating point control reg (FPC)
+
+4 64-bit registers (fp0,fp2,fp4 & fp6) HFP only on older machines.
+
+Note:
+ Linux (currently) always uses IEEE & emulates G5 IEEE format on older
+ machines, ( provided the kernel is configured for this ).
+
+
+The PSW is the most important register on the machine it
+is 64 bit on s/390 & 128 bit on z/Architecture & serves the roles of
+a program counter (pc), condition code register,memory space designator.
+In IBM standard notation I am counting bit 0 as the MSB.
+It has several advantages over a normal program counter
+in that you can change address translation & program counter
+in a single instruction. To change address translation,
+e.g. switching address translation off requires that you
+have a logical=physical mapping for the address you are
+currently running at.
+
++-------------------------+-------------------------------------------------+
+| Bit | |
++--------+----------------+ Value |
+| s/390 | z/Architecture | |
++========+================+=================================================+
+| 0 | 0 | Reserved (must be 0) otherwise specification |
+| | | exception occurs. |
++--------+----------------+-------------------------------------------------+
+| 1 | 1 | Program Event Recording 1 PER enabled, |
+| | | PER is used to facilitate debugging e.g. |
+| | | single stepping. |
++--------+----------------+-------------------------------------------------+
+| 2-4 | 2-4 | Reserved (must be 0). |
++--------+----------------+-------------------------------------------------+
+| 5 | 5 | Dynamic address translation 1=DAT on. |
++--------+----------------+-------------------------------------------------+
+| 6 | 6 | Input/Output interrupt Mask |
++--------+----------------+-------------------------------------------------+
+| 7 | 7 | External interrupt Mask used primarily for |
+| | | interprocessor signalling and clock interrupts. |
++--------+----------------+-------------------------------------------------+
+| 8-11 | 8-11 | PSW Key used for complex memory protection |
+| | | mechanism (not used under linux) |
++--------+----------------+-------------------------------------------------+
+| 12 | 12 | 1 on s/390 0 on z/Architecture |
++--------+----------------+-------------------------------------------------+
+| 13 | 13 | Machine Check Mask 1=enable machine check |
+| | | interrupts |
++--------+----------------+-------------------------------------------------+
+| 14 | 14 | Wait State. Set this to 1 to stop the processor |
+| | | except for interrupts and give time to other |
+| | | LPARS. Used in CPU idle in the kernel to |
+| | | increase overall usage of processor resources. |
++--------+----------------+-------------------------------------------------+
+| 15 | 15 | Problem state (if set to 1 certain instructions |
+| | | are disabled). All linux user programs run with |
+| | | this bit 1 (useful info for debugging under VM).|
++--------+----------------+-------------------------------------------------+
+| 16-17 | 16-17 | Address Space Control |
+| | | |
+| | | 00 Primary Space Mode: |
+| | | |
+| | | The register CR1 contains the primary |
+| | | address-space control element (PASCE), which |
+| | | points to the primary space region/segment |
+| | | table origin. |
+| | | |
+| | | 01 Access register mode |
+| | | |
+| | | 10 Secondary Space Mode: |
+| | | |
+| | | The register CR7 contains the secondary |
+| | | address-space control element (SASCE), which |
+| | | points to the secondary space region or |
+| | | segment table origin. |
+| | | |
+| | | 11 Home Space Mode: |
+| | | |
+| | | The register CR13 contains the home space |
+| | | address-space control element (HASCE), which |
+| | | points to the home space region/segment |
+| | | table origin. |
+| | | |
+| | | See "Address Spaces on Linux for s/390 & |
+| | | z/Architecture" below for more information |
+| | | about address space usage in Linux. |
++--------+----------------+-------------------------------------------------+
+| 18-19 | 18-19 | Condition codes (CC) |
++--------+----------------+-------------------------------------------------+
+| 20 | 20 | Fixed point overflow mask if 1=FPU exceptions |
+| | | for this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 21 | 21 | Decimal overflow mask if 1=FPU exceptions for |
+| | | this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 22 | 22 | Exponent underflow mask if 1=FPU exceptions |
+| | | for this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 23 | 23 | Significance Mask if 1=FPU exceptions for this |
+| | | event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 24-31 | 24-30 | Reserved Must be 0. |
+| +----------------+-------------------------------------------------+
+| | 31 | Extended Addressing Mode |
+| +----------------+-------------------------------------------------+
+| | 32 | Basic Addressing Mode |
+| | | |
+| | | Used to set addressing mode |
+| | | |
+| | | +---------+----------+----------+ |
+| | | | PSW 31 | PSW 32 | | |
+| | | +---------+----------+----------+ |
+| | | | 0 | 0 | 24 bit | |
+| | | +---------+----------+----------+ |
+| | | | 0 | 1 | 31 bit | |
+| | | +---------+----------+----------+ |
+| | | | 1 | 1 | 64 bit | |
+| | | +---------+----------+----------+ |
++--------+----------------+-------------------------------------------------+
+| 32 | | 1=31 bit addressing mode 0=24 bit addressing |
+| | | mode (for backward compatibility), linux |
+| | | always runs with this bit set to 1 |
++--------+----------------+-------------------------------------------------+
+| 33-64 | | Instruction address. |
+| +----------------+-------------------------------------------------+
+| | 33-63 | Reserved must be 0 |
+| +----------------+-------------------------------------------------+
+| | 64-127 | Address |
+| | | |
+| | | - In 24 bits mode bits 64-103=0 bits 104-127 |
+| | | Address |
+| | | - In 31 bits mode bits 64-96=0 bits 97-127 |
+| | | Address |
+| | | |
+| | | Note: |
+| | | unlike 31 bit mode on s/390 bit 96 must be |
+| | | zero when loading the address with LPSWE |
+| | | otherwise a specification exception occurs, |
+| | | LPSW is fully backward compatible. |
++--------+----------------+-------------------------------------------------+
+
+Prefix Page(s)
+--------------
+This per cpu memory area is too intimately tied to the processor not to mention.
+It exists between the real addresses 0-4096 on s/390 and between 0-8192 on
+z/Architecture and is exchanged with one page on s/390 or two pages on
+z/Architecture in absolute storage by the set prefix instruction during Linux
+startup.
+
+This page is mapped to a different prefix for each processor in an SMP
+configuration (assuming the OS designer is sane of course).
+
+Bytes 0-512 (200 hex) on s/390 and 0-512, 4096-4544, 4604-5119 currently on
+z/Architecture are used by the processor itself for holding such information
+as exception indications and entry points for exceptions.
+
+Bytes after 0xc00 hex are used by linux for per processor globals on s/390 and
+z/Architecture (there is a gap on z/Architecture currently between 0xc00 and
+0x1000, too, which is used by Linux).
+
+The closest thing to this on traditional architectures is the interrupt
+vector table. This is a good thing & does simplify some of the kernel coding
+however it means that we now cannot catch stray NULL pointers in the
+kernel without hard coded checks.
+
+
+
+Address Spaces on Intel Linux
+=============================
+
+The traditional Intel Linux is approximately mapped as follows forgive
+the ascii art::
+
+ 0xFFFFFFFF 4GB Himem *****************
+ * *
+ * Kernel Space *
+ * *
+ ***************** ****************
+ User Space Himem * User Stack * * *
+ (typically 0xC0000000 3GB ) ***************** * *
+ * Shared Libs * * Next Process *
+ ***************** * to *
+ * * <== * Run * <==
+ * User Program * * *
+ * Data BSS * * *
+ * Text * * *
+ * Sections * * *
+ 0x00000000 ***************** ****************
+
+Now it is easy to see that on Intel it is quite easy to recognise a kernel
+address as being one greater than user space himem (in this case 0xC0000000),
+and addresses of less than this are the ones in the current running program on
+this processor (if an smp box).
+
+If using the virtual machine ( VM ) as a debugger it is quite difficult to
+know which user process is running as the address space you are looking at
+could be from any process in the run queue.
+
+The limitation of Intels addressing technique is that the linux
+kernel uses a very simple real address to virtual addressing technique
+of Real Address=Virtual Address-User Space Himem.
+This means that on Intel the kernel linux can typically only address
+Himem=0xFFFFFFFF-0xC0000000=1GB & this is all the RAM these machines
+can typically use.
+
+They can lower User Himem to 2GB or lower & thus be
+able to use 2GB of RAM however this shrinks the maximum size
+of User Space from 3GB to 2GB they have a no win limit of 4GB unless
+they go to 64 Bit.
+
+
+On 390 our limitations & strengths make us slightly different.
+For backward compatibility we are only allowed use 31 bits (2GB)
+of our 32 bit addresses, however, we use entirely separate address
+spaces for the user & kernel.
+
+This means we can support 2GB of non Extended RAM on s/390, & more
+with the Extended memory management swap device &
+currently 4TB of physical memory currently on z/Architecture.
+
+
+Address Spaces on Linux for s/390 & z/Architecture
+==================================================
+
+Our addressing scheme is basically as follows::
+
+ Primary Space Home Space
+ Himem 0x7fffffff 2GB on s/390 ***************** ****************
+ currently 0x3ffffffffff (2^42)-1 * User Stack * * *
+ on z/Architecture. ***************** * *
+ * Shared Libs * * *
+ ***************** * *
+ * * * Kernel *
+ * User Program * * *
+ * Data BSS * * *
+ * Text * * *
+ * Sections * * *
+ 0x00000000 ***************** ****************
+
+This also means that we need to look at the PSW problem state bit and the
+addressing mode to decide whether we are looking at user or kernel space.
+
+User space runs in primary address mode (or access register mode within
+the vdso code).
+
+The kernel usually also runs in home space mode, however when accessing
+user space the kernel switches to primary or secondary address mode if
+the mvcos instruction is not available or if a compare-and-swap (futex)
+instruction on a user space address is performed.
+
+When also looking at the ASCE control registers, this means:
+
+User space:
+
+- runs in primary or access register mode
+- cr1 contains the user asce
+- cr7 contains the user asce
+- cr13 contains the kernel asce
+
+Kernel space:
+
+- runs in home space mode
+- cr1 contains the user or kernel asce
+
+ - the kernel asce is loaded when a uaccess requires primary or
+ secondary address mode
+
+- cr7 contains the user or kernel asce, (changed with set_fs())
+- cr13 contains the kernel asce
+
+In case of uaccess the kernel changes to:
+
+- primary space mode in case of a uaccess (copy_to_user) and uses
+ e.g. the mvcp instruction to access user space. However the kernel
+ will stay in home space mode if the mvcos instruction is available
+- secondary space mode in case of futex atomic operations, so that the
+ instructions come from primary address space and data from secondary
+ space
+
+In case of KVM, the kernel runs in home space mode, but cr1 gets switched
+to contain the gmap asce before the SIE instruction gets executed. When
+the SIE instruction is finished, cr1 will be switched back to contain the
+user asce.
+
+
+Virtual Addresses on s/390 & z/Architecture
+===========================================
+
+A virtual address on s/390 is made up of 3 parts
+The SX (segment index, roughly corresponding to the PGD & PMD in Linux
+terminology) being bits 1-11.
+
+The PX (page index, corresponding to the page table entry (pte) in Linux
+terminology) being bits 12-19.
+
+The remaining bits BX (the byte index are the offset in the page )
+i.e. bits 20 to 31.
+
+On z/Architecture in linux we currently make up an address from 4 parts.
+
+- The region index bits (RX) 0-32 we currently use bits 22-32
+- The segment index (SX) being bits 33-43
+- The page index (PX) being bits 44-51
+- The byte index (BX) being bits 52-63
+
+Notes:
+ 1) s/390 has no PMD so the PMD is really the PGD also.
+ A lot of this stuff is defined in pgtable.h.
+
+ 2) Also seeing as s/390's page indexes are only 1k in size
+ (bits 12-19 x 4 bytes per pte ) we use 1 ( page 4k )
+ to make the best use of memory by updating 4 segment indices
+ entries each time we mess with a PMD & use offsets
+ 0,1024,2048 & 3072 in this page as for our segment indexes.
+ On z/Architecture our page indexes are now 2k in size
+ ( bits 12-19 x 8 bytes per pte ) we do a similar trick
+ but only mess with 2 segment indices each time we mess with
+ a PMD.
+
+ 3) As z/Architecture supports up to a massive 5-level page table lookup we
+ can only use 3 currently on Linux ( as this is all the generic kernel
+ currently supports ) however this may change in future
+ this allows us to access ( according to my sums )
+ 4TB of virtual storage per process i.e.
+ 4096*512(PTES)*1024(PMDS)*2048(PGD) = 4398046511104 bytes,
+ enough for another 2 or 3 of years I think :-).
+ to do this we use a region-third-table designation type in
+ our address space control registers.
+
+
+The Linux for s/390 & z/Architecture Kernel Task Structure
+==========================================================
+Each process/thread under Linux for S390 has its own kernel task_struct
+defined in linux/include/linux/sched.h
+The S390 on initialisation & resuming of a process on a cpu sets
+the __LC_KERNEL_STACK variable in the spare prefix area for this cpu
+(which we use for per-processor globals).
+
+The kernel stack pointer is intimately tied with the task structure for
+each processor as follows::
+
+ s/390
+ ************************
+ * 1 page kernel stack *
+ * ( 4K ) *
+ ************************
+ * 1 page task_struct *
+ * ( 4K ) *
+ 8K aligned ************************
+
+ z/Architecture
+ ************************
+ * 2 page kernel stack *
+ * ( 8K ) *
+ ************************
+ * 2 page task_struct *
+ * ( 8K ) *
+ 16K aligned ************************
+
+What this means is that we don't need to dedicate any register or global
+variable to point to the current running process & can retrieve it with the
+following very simple construct for s/390 & one very similar for
+z/Architecture::
+
+ static inline struct task_struct * get_current(void)
+ {
+ struct task_struct *current;
+ __asm__("lhi %0,-8192\n\t"
+ "nr %0,15"
+ : "=r" (current) );
+ return current;
+ }
+
+i.e. just anding the current kernel stack pointer with the mask -8192.
+Thankfully because Linux doesn't have support for nested IO interrupts
+& our devices have large buffers can survive interrupts being shut for
+short amounts of time we don't need a separate stack for interrupts.
+
+
+
+
+Register Usage & Stackframes on Linux for s/390 & z/Architecture
+=================================================================
+Overview:
+---------
+This is the code that gcc produces at the top & the bottom of
+each function. It usually is fairly consistent & similar from
+function to function & if you know its layout you can probably
+make some headway in finding the ultimate cause of a problem
+after a crash without a source level debugger.
+
+Note: To follow stackframes requires a knowledge of C or Pascal &
+limited knowledge of one assembly language.
+
+It should be noted that there are some differences between the
+s/390 and z/Architecture stack layouts as the z/Architecture stack layout
+didn't have to maintain compatibility with older linkage formats.
+
+Glossary:
+---------
+alloca:
+ This is a built in compiler function for runtime allocation
+ of extra space on the callers stack which is obviously freed
+ up on function exit ( e.g. the caller may choose to allocate nothing
+ of a buffer of 4k if required for temporary purposes ), it generates
+ very efficient code ( a few cycles ) when compared to alternatives
+ like malloc.
+
+automatics:
+ These are local variables on the stack, i.e they aren't in registers &
+ they aren't static.
+
+back-chain:
+ This is a pointer to the stack pointer before entering a
+ framed functions ( see frameless function ) prologue got by
+ dereferencing the address of the current stack pointer,
+ i.e. got by accessing the 32 bit value at the stack pointers
+ current location.
+
+base-pointer:
+ This is a pointer to the back of the literal pool which
+ is an area just behind each procedure used to store constants
+ in each function.
+
+call-clobbered:
+ The caller probably needs to save these registers if there
+ is something of value in them, on the stack or elsewhere before making a
+ call to another procedure so that it can restore it later.
+
+epilogue:
+ The code generated by the compiler to return to the caller.
+
+frameless-function:
+ A frameless function in Linux for s390 & z/Architecture is one which doesn't
+ need more than the register save area (96 bytes on s/390, 160 on z/Architecture)
+ given to it by the caller.
+
+ A frameless function never:
+
+ 1) Sets up a back chain.
+ 2) Calls alloca.
+ 3) Calls other normal functions
+ 4) Has automatics.
+
+GOT-pointer:
+ This is a pointer to the global-offset-table in ELF
+ ( Executable Linkable Format, Linux'es most common executable format ),
+ all globals & shared library objects are found using this pointer.
+
+lazy-binding
+ ELF shared libraries are typically only loaded when routines in the shared
+ library are actually first called at runtime. This is lazy binding.
+
+procedure-linkage-table
+ This is a table found from the GOT which contains pointers to routines
+ in other shared libraries which can't be called to by easier means.
+
+prologue:
+ The code generated by the compiler to set up the stack frame.
+
+outgoing-args:
+ This is extra area allocated on the stack of the calling function if the
+ parameters for the callee's cannot all be put in registers, the same
+ area can be reused by each function the caller calls.
+
+routine-descriptor:
+ A COFF executable format based concept of a procedure reference
+ actually being 8 bytes or more as opposed to a simple pointer to the routine.
+ This is typically defined as follows:
+
+ - Routine Descriptor offset 0=Pointer to Function
+ - Routine Descriptor offset 4=Pointer to Table of Contents
+
+ The table of contents/TOC is roughly equivalent to a GOT pointer.
+ & it means that shared libraries etc. can be shared between several
+ environments each with their own TOC.
+
+static-chain:
+ This is used in nested functions a concept adopted from pascal
+ by gcc not used in ansi C or C++ ( although quite useful ), basically it
+ is a pointer used to reference local variables of enclosing functions.
+ You might come across this stuff once or twice in your lifetime.
+
+ e.g.
+
+ The function below should return 11 though gcc may get upset & toss warnings
+ about unused variables::
+
+ int FunctionA(int a)
+ {
+ int b;
+ FunctionC(int c)
+ {
+ b=c+1;
+ }
+ FunctionC(10);
+ return(b);
+ }
+
+
+s/390 & z/Architecture Register usage
+=====================================
+
+======== ========================================== ===============
+r0 used by syscalls/assembly call-clobbered
+r1 used by syscalls/assembly call-clobbered
+r2 argument 0 / return value 0 call-clobbered
+r3 argument 1 / return value 1 (if long long) call-clobbered
+r4 argument 2 call-clobbered
+r5 argument 3 call-clobbered
+r6 argument 4 saved
+r7 pointer-to arguments 5 to ... saved
+r8 this & that saved
+r9 this & that saved
+r10 static-chain ( if nested function ) saved
+r11 frame-pointer ( if function used alloca ) saved
+r12 got-pointer saved
+r13 base-pointer saved
+r14 return-address saved
+r15 stack-pointer saved
+
+f0 argument 0 / return value ( float/double ) call-clobbered
+f2 argument 1 call-clobbered
+f4 z/Architecture argument 2 saved
+f6 z/Architecture argument 3 saved
+======== ========================================== ===============
+
+The remaining floating points
+f1,f3,f5 f7-f15 are call-clobbered.
+
+Notes:
+------
+1) The only requirement is that registers which are used
+ by the callee are saved, e.g. the compiler is perfectly
+ capable of using r11 for purposes other than a frame a
+ frame pointer if a frame pointer is not needed.
+2) In functions with variable arguments e.g. printf the calling procedure
+ is identical to one without variable arguments & the same number of
+ parameters. However, the prologue of this function is somewhat more
+ hairy owing to it having to move these parameters to the stack to
+ get va_start, va_arg & va_end to work.
+3) Access registers are currently unused by gcc but are used in
+ the kernel. Possibilities exist to use them at the moment for
+ temporary storage but it isn't recommended.
+4) Only 4 of the floating point registers are used for
+ parameter passing as older machines such as G3 only have only 4
+ & it keeps the stack frame compatible with other compilers.
+ However with IEEE floating point emulation under linux on the
+ older machines you are free to use the other 12.
+5) A long long or double parameter cannot be have the
+ first 4 bytes in a register & the second four bytes in the
+ outgoing args area. It must be purely in the outgoing args
+ area if crossing this boundary.
+6) Floating point parameters are mixed with outgoing args
+ on the outgoing args area in the order the are passed in as parameters.
+7) Floating point arguments 2 & 3 are saved in the outgoing args area for
+ z/Architecture
+
+
+Stack Frame Layout
+------------------
+
+========= ============== ======================================================
+s/390 z/Architecture
+========= ============== ======================================================
+0 0 back chain ( a 0 here signifies end of back chain )
+4 8 eos ( end of stack, not used on Linux for S390 used
+ in other linkage formats )
+8 16 glue used in other s/390 linkage formats for saved
+ routine descriptors etc.
+12 24 glue used in other s/390 linkage formats for saved
+ routine descriptors etc.
+16 32 scratch area
+20 40 scratch area
+24 48 saved r6 of caller function
+28 56 saved r7 of caller function
+32 64 saved r8 of caller function
+36 72 saved r9 of caller function
+40 80 saved r10 of caller function
+44 88 saved r11 of caller function
+48 96 saved r12 of caller function
+52 104 saved r13 of caller function
+56 112 saved r14 of caller function
+60 120 saved r15 of caller function
+64 128 saved f4 of caller function
+72 132 saved f6 of caller function
+80 undefined
+96 160 outgoing args passed from caller to callee
+96+x 160+x possible stack alignment ( 8 bytes desirable )
+96+x+y 160+x+y alloca space of caller ( if used )
+96+x+y+z 160+x+y+z automatics of caller ( if used )
+0 back-chain
+========= ============== ======================================================
+
+A sample program with comments.
+===============================
+
+Comments on the function test
+-----------------------------
+1) It didn't need to set up a pointer to the constant pool gpr13 as it is not
+ used ( :-( ).
+2) This is a frameless function & no stack is bought.
+3) The compiler was clever enough to recognise that it could return the
+ value in r2 as well as use it for the passed in parameter ( :-) ).
+4) The basr ( branch relative & save ) trick works as follows the instruction
+ has a special case with r0,r0 with some instruction operands is understood as
+ the literal value 0, some risc architectures also do this ). So now
+ we are branching to the next address & the address new program counter is
+ in r13,so now we subtract the size of the function prologue we have executed
+ the size of the literal pool to get to the top of the literal pool::
+
+
+ 0040037c int test(int b)
+ { # Function prologue below
+ 40037c: 90 de f0 34 stm %r13,%r14,52(%r15) # Save registers r13 & r14
+ 400380: 0d d0 basr %r13,%r0 # Set up pointer to constant pool using
+ 400382: a7 da ff fa ahi %r13,-6 # basr trick
+ return(5+b);
+ # Huge main program
+ 400386: a7 2a 00 05 ahi %r2,5 # add 5 to r2
+
+ # Function epilogue below
+ 40038a: 98 de f0 34 lm %r13,%r14,52(%r15) # restore registers r13 & 14
+ 40038e: 07 fe br %r14 # return
+ }
+
+Comments on the function main
+-----------------------------
+1) The compiler did this function optimally ( 8-) )::
+
+ Literal pool for main.
+ 400390: ff ff ff ec .long 0xffffffec
+ main(int argc,char *argv[])
+ { # Function prologue below
+ 400394: 90 bf f0 2c stm %r11,%r15,44(%r15) # Save necessary registers
+ 400398: 18 0f lr %r0,%r15 # copy stack pointer to r0
+ 40039a: a7 fa ff a0 ahi %r15,-96 # Make area for callee saving
+ 40039e: 0d d0 basr %r13,%r0 # Set up r13 to point to
+ 4003a0: a7 da ff f0 ahi %r13,-16 # literal pool
+ 4003a4: 50 00 f0 00 st %r0,0(%r15) # Save backchain
+
+ return(test(5)); # Main Program Below
+ 4003a8: 58 e0 d0 00 l %r14,0(%r13) # load relative address of test from
+ # literal pool
+ 4003ac: a7 28 00 05 lhi %r2,5 # Set first parameter to 5
+ 4003b0: 4d ee d0 00 bas %r14,0(%r14,%r13) # jump to test setting r14 as return
+ # address using branch & save instruction.
+
+ # Function Epilogue below
+ 4003b4: 98 bf f0 8c lm %r11,%r15,140(%r15)# Restore necessary registers.
+ 4003b8: 07 fe br %r14 # return to do program exit
+ }
+
+
+Compiler updates
+----------------
+
+::
+
+ main(int argc,char *argv[])
+ {
+ 4004fc: 90 7f f0 1c stm %r7,%r15,28(%r15)
+ 400500: a7 d5 00 04 bras %r13,400508 <main+0xc>
+ 400504: 00 40 04 f4 .long 0x004004f4
+ # compiler now puts constant pool in code to so it saves an instruction
+ 400508: 18 0f lr %r0,%r15
+ 40050a: a7 fa ff a0 ahi %r15,-96
+ 40050e: 50 00 f0 00 st %r0,0(%r15)
+ return(test(5));
+ 400512: 58 10 d0 00 l %r1,0(%r13)
+ 400516: a7 28 00 05 lhi %r2,5
+ 40051a: 0d e1 basr %r14,%r1
+ # compiler adds 1 extra instruction to epilogue this is done to
+ # avoid processor pipeline stalls owing to data dependencies on g5 &
+ # above as register 14 in the old code was needed directly after being loaded
+ # by the lm %r11,%r15,140(%r15) for the br %14.
+ 40051c: 58 40 f0 98 l %r4,152(%r15)
+ 400520: 98 7f f0 7c lm %r7,%r15,124(%r15)
+ 400524: 07 f4 br %r4
+ }
+
+
+Hartmut ( our compiler developer ) also has been threatening to take out the
+stack backchain in optimised code as this also causes pipeline stalls, you
+have been warned.
+
+64 bit z/Architecture code disassembly
+--------------------------------------
+
+If you understand the stuff above you'll understand the stuff
+below too so I'll avoid repeating myself & just say that
+some of the instructions have g's on the end of them to indicate
+they are 64 bit & the stack offsets are a bigger,
+the only other difference you'll find between 32 & 64 bit is that
+we now use f4 & f6 for floating point arguments on 64 bit::
+
+ 00000000800005b0 <test>:
+ int test(int b)
+ {
+ return(5+b);
+ 800005b0: a7 2a 00 05 ahi %r2,5
+ 800005b4: b9 14 00 22 lgfr %r2,%r2 # downcast to integer
+ 800005b8: 07 fe br %r14
+ 800005ba: 07 07 bcr 0,%r7
+
+
+ }
+
+ 00000000800005bc <main>:
+ main(int argc,char *argv[])
+ {
+ 800005bc: eb bf f0 58 00 24 stmg %r11,%r15,88(%r15)
+ 800005c2: b9 04 00 1f lgr %r1,%r15
+ 800005c6: a7 fb ff 60 aghi %r15,-160
+ 800005ca: e3 10 f0 00 00 24 stg %r1,0(%r15)
+ return(test(5));
+ 800005d0: a7 29 00 05 lghi %r2,5
+ # brasl allows jumps > 64k & is overkill here bras would do fune
+ 800005d4: c0 e5 ff ff ff ee brasl %r14,800005b0 <test>
+ 800005da: e3 40 f1 10 00 04 lg %r4,272(%r15)
+ 800005e0: eb bf f0 f8 00 04 lmg %r11,%r15,248(%r15)
+ 800005e6: 07 f4 br %r4
+ }
+
+
+
+Compiling programs for debugging on Linux for s/390 & z/Architecture
+====================================================================
+-gdwarf-2 now works it should be considered the default debugging
+format for s/390 & z/Architecture as it is more reliable for debugging
+shared libraries, normal -g debugging works much better now
+Thanks to the IBM java compiler developers bug reports.
+
+This is typically done adding/appending the flags -g or -gdwarf-2 to the
+CFLAGS & LDFLAGS variables Makefile of the program concerned.
+
+If using gdb & you would like accurate displays of registers &
+stack traces compile without optimisation i.e make sure
+that there is no -O2 or similar on the CFLAGS line of the Makefile &
+the emitted gcc commands, obviously this will produce worse code
+( not advisable for shipment ) but it is an aid to the debugging process.
+
+This aids debugging because the compiler will copy parameters passed in
+in registers onto the stack so backtracing & looking at passed in
+parameters will work, however some larger programs which use inline functions
+will not compile without optimisation.
+
+Debugging with optimisation has since much improved after fixing
+some bugs, please make sure you are using gdb-5.0 or later developed
+after Nov'2000.
+
+
+
+Debugging under VM
+==================
+
+Notes
+-----
+Addresses & values in the VM debugger are always hex never decimal
+Address ranges are of the format <HexValue1>-<HexValue2> or
+<HexValue1>.<HexValue2>
+For example, the address range 0x2000 to 0x3000 can be described as 2000-3000
+or 2000.1000
+
+The VM Debugger is case insensitive.
+
+VM's strengths are usually other debuggers weaknesses you can get at any
+resource no matter how sensitive e.g. memory management resources, change
+address translation in the PSW. For kernel hacking you will reap dividends if
+you get good at it.
+
+The VM Debugger displays operators but not operands, and also the debugger
+displays useful information on the same line as the author of the code probably
+felt that it was a good idea not to go over the 80 columns on the screen.
+This isn't as unintuitive as it may seem as the s/390 instructions are easy to
+decode mentally and you can make a good guess at a lot of them as all the
+operands are nibble (half byte aligned).
+So if you have an objdump listing by hand, it is quite easy to follow, and if
+you don't have an objdump listing keep a copy of the s/390 Reference Summary
+or alternatively the s/390 principles of operation next to you.
+e.g. even I can guess that
+0001AFF8' LR 180F CC 0
+is a ( load register ) lr r0,r15
+
+Also it is very easy to tell the length of a 390 instruction from the 2 most
+significant bits in the instruction (not that this info is really useful except
+if you are trying to make sense of a hexdump of code).
+Here is a table
+
+======================= ==================
+Bits Instruction Length
+======================= ==================
+00 2 Bytes
+01 4 Bytes
+10 4 Bytes
+11 6 Bytes
+======================= ==================
+
+The debugger also displays other useful info on the same line such as the
+addresses being operated on destination addresses of branches & condition codes.
+e.g.::
+
+ 00019736' AHI A7DAFF0E CC 1
+ 000198BA' BRC A7840004 -> 000198C2' CC 0
+ 000198CE' STM 900EF068 >> 0FA95E78 CC 2
+
+
+
+Useful VM debugger commands
+---------------------------
+
+I suppose I'd better mention this before I start
+to list the current active traces do::
+
+ Q TR
+
+there can be a maximum of 255 of these per set
+( more about trace sets later ).
+
+To stop traces issue a::
+
+ TR END.
+
+To delete a particular breakpoint issue::
+
+ TR DEL <breakpoint number>
+
+The PA1 key drops to CP mode so you can issue debugger commands,
+Doing alt c (on my 3270 console at least ) clears the screen.
+
+hitting b <enter> comes back to the running operating system
+from cp mode ( in our case linux ).
+
+It is typically useful to add shortcuts to your profile.exec file
+if you have one ( this is roughly equivalent to autoexec.bat in DOS ).
+file here are a few from mine::
+
+ /* this gives me command history on issuing f12 */
+ set pf12 retrieve
+ /* this continues */
+ set pf8 imm b
+ /* goes to trace set a */
+ set pf1 imm tr goto a
+ /* goes to trace set b */
+ set pf2 imm tr goto b
+ /* goes to trace set c */
+ set pf3 imm tr goto c
+
+
+
+Instruction Tracing
+-------------------
+Setting a simple breakpoint::
+
+ TR I PSWA <address>
+
+To debug a particular function try::
+
+ TR I R <function address range>
+ TR I on its own will single step.
+ TR I DATA <MNEMONIC> <OPTIONAL RANGE> will trace for particular mnemonics
+
+e.g.::
+
+ TR I DATA 4D R 0197BC.4000
+
+will trace for BAS'es ( opcode 4D ) in the range 0197BC.4000
+
+if you were inclined you could add traces for all branch instructions &
+suffix them with the run prefix so you would have a backtrace on screen
+when a program crashes::
+
+ TR BR <INTO OR FROM> will trace branches into or out of an address.
+
+e.g.::
+
+ TR BR INTO 0
+
+is often quite useful if a program is getting awkward & deciding
+to branch to 0 & crashing as this will stop at the address before in jumps to 0.
+
+::
+
+ TR I R <address range> RUN cmd d g
+
+single steps a range of addresses but stays running &
+displays the gprs on each step.
+
+
+
+Displaying & modifying Registers
+--------------------------------
+D G
+ will display all the gprs
+
+Adding a extra G to all the commands is necessary to access the full 64 bit
+content in VM on z/Architecture. Obviously this isn't required for access
+registers as these are still 32 bit.
+
+e.g.
+
+DGG
+ instead of DG
+
+D X
+ will display all the control registers
+D AR
+ will display all the access registers
+D AR4-7
+ will display access registers 4 to 7
+CPU ALL D G
+ will display the GRPS of all CPUS in the configuration
+D PSW
+ will display the current PSW
+st PSW 2000
+ will put the value 2000 into the PSW & cause crash your machine.
+D PREFIX
+ displays the prefix offset
+
+
+Displaying Memory
+-----------------
+To display memory mapped using the current PSW's mapping try::
+
+ D <range>
+
+To make VM display a message each time it hits a particular address and
+continue try:
+
+D I<range>
+ will disassemble/display a range of instructions.
+
+ST addr 32 bit word
+ will store a 32 bit aligned address
+D T<range>
+ will display the EBCDIC in an address (if you are that way inclined)
+D R<range>
+ will display real addresses ( without DAT ) but with prefixing.
+
+There are other complex options to display if you need to get at say home space
+but are in primary space the easiest thing to do is to temporarily
+modify the PSW to the other addressing mode, display the stuff & then
+restore it.
+
+
+
+Hints
+-----
+If you want to issue a debugger command without halting your virtual machine
+with the PA1 key try prefixing the command with #CP e.g.::
+
+ #cp tr i pswa 2000
+
+also suffixing most debugger commands with RUN will cause them not
+to stop just display the mnemonic at the current instruction on the console.
+
+If you have several breakpoints you want to put into your program &
+you get fed up of cross referencing with System.map
+you can do the following trick for several symbols.
+
+::
+
+ grep do_signal System.map
+
+which emits the following among other things::
+
+ 0001f4e0 T do_signal
+
+now you can do::
+
+ TR I PSWA 0001f4e0 cmd msg * do_signal
+
+This sends a message to your own console each time do_signal is entered.
+( As an aside I wrote a perl script once which automatically generated a REXX
+script with breakpoints on every kernel procedure, this isn't a good idea
+because there are thousands of these routines & VM can only set 255 breakpoints
+at a time so you nearly had to spend as long pruning the file down as you would
+entering the msgs by hand), however, the trick might be useful for a single
+object file. In the 3270 terminal emulator x3270 there is a very useful option
+in the file menu called "Save Screen In File" - this is very good for keeping a
+copy of traces.
+
+From CMS help <command name> will give you online help on a particular command.
+e.g.::
+
+ HELP DISPLAY
+
+Also CP has a file called profile.exec which automatically gets called
+on startup of CMS ( like autoexec.bat ), keeping on a DOS analogy session
+CP has a feature similar to doskey, it may be useful for you to
+use profile.exec to define some keystrokes.
+
+SET PF9 IMM B
+ This does a single step in VM on pressing F8.
+
+SET PF10 ^
+ This sets up the ^ key.
+ which can be used for ^c (ctrl-c),^z (ctrl-z) which can't be typed
+ directly into some 3270 consoles.
+
+SET PF11 ^-
+ This types the starting keystrokes for a sysrq see SysRq below.
+SET PF12 RETRIEVE
+ This retrieves command history on pressing F12.
+
+
+Sometimes in VM the display is set up to scroll automatically this
+can be very annoying if there are messages you wish to look at
+to stop this do
+
+TERM MORE 255 255
+ This will nearly stop automatic screen updates, however it will
+ cause a denial of service if lots of messages go to the 3270 console,
+ so it would be foolish to use this as the default on a production machine.
+
+
+Tracing particular processes
+----------------------------
+The kernel's text segment is intentionally at an address in memory that it will
+very seldom collide with text segments of user programs ( thanks Martin ),
+this simplifies debugging the kernel.
+However it is quite common for user processes to have addresses which collide
+this can make debugging a particular process under VM painful under normal
+circumstances as the process may change when doing a::
+
+ TR I R <address range>.
+
+Thankfully after reading VM's online help I figured out how to debug
+I particular process.
+
+Your first problem is to find the STD ( segment table designation )
+of the program you wish to debug.
+There are several ways you can do this here are a few
+
+Run::
+
+ objdump --syms <program to be debugged> | grep main
+
+To get the address of main in the program. Then::
+
+ tr i pswa <address of main>
+
+Start the program, if VM drops to CP on what looks like the entry
+point of the main function this is most likely the process you wish to debug.
+Now do a D X13 or D XG13 on z/Architecture.
+
+On 31 bit the STD is bits 1-19 ( the STO segment table origin )
+& 25-31 ( the STL segment table length ) of CR13.
+
+now type::
+
+ TR I R STD <CR13's value> 0.7fffffff
+
+e.g.::
+
+ TR I R STD 8F32E1FF 0.7fffffff
+
+Another very useful variation is::
+
+ TR STORE INTO STD <CR13's value> <address range>
+
+for finding out when a particular variable changes.
+
+An alternative way of finding the STD of a currently running process
+is to do the following, ( this method is more complex but
+could be quite convenient if you aren't updating the kernel much &
+so your kernel structures will stay constant for a reasonable period of
+time ).
+
+::
+
+ grep task /proc/<pid>/status
+
+from this you should see something like::
+
+ task: 0f160000 ksp: 0f161de8 pt_regs: 0f161f68
+
+This now gives you a pointer to the task structure.
+
+Now make::
+
+ CC:="s390-gcc -g" kernel/sched.s
+
+To get the task_struct stabinfo.
+
+( task_struct is defined in include/linux/sched.h ).
+
+Now we want to look at
+task->active_mm->pgd
+
+on my machine the active_mm in the task structure stab is
+active_mm:(4,12),672,32
+
+its offset is 672/8=84=0x54
+
+the pgd member in the mm_struct stab is
+pgd:(4,6)=*(29,5),96,32
+so its offset is 96/8=12=0xc
+
+so we'll::
+
+ hexdump -s 0xf160054 /dev/mem | more
+
+i.e. task_struct+active_mm offset
+to look at the active_mm member::
+
+ f160054 0fee cc60 0019 e334 0000 0000 0000 0011
+
+::
+
+ hexdump -s 0x0feecc6c /dev/mem | more
+
+i.e. active_mm+pgd offset::
+
+ feecc6c 0f2c 0000 0000 0001 0000 0001 0000 0010
+
+we get something like
+now do::
+
+ TR I R STD <pgd|0x7f> 0.7fffffff
+
+i.e. the 0x7f is added because the pgd only
+gives the page table origin & we need to set the low bits
+to the maximum possible segment table length.
+
+::
+
+ TR I R STD 0f2c007f 0.7fffffff
+
+on z/Architecture you'll probably need to do::
+
+ TR I R STD <pgd|0x7> 0.ffffffffffffffff
+
+to set the TableType to 0x1 & the Table length to 3.
+
+
+
+Tracing Program Exceptions
+--------------------------
+If you get a crash which says something like
+illegal operation or specification exception followed by a register dump
+You can restart linux & trace these using the tr prog <range or value> trace
+option.
+
+
+The most common ones you will normally be tracing for is:
+
+- 1=operation exception
+- 2=privileged operation exception
+- 4=protection exception
+- 5=addressing exception
+- 6=specification exception
+- 10=segment translation exception
+- 11=page translation exception
+
+The full list of these is on page 22 of the current s/390 Reference Summary.
+e.g.
+
+tr prog 10 will trace segment translation exceptions.
+
+tr prog on its own will trace all program interruption codes.
+
+Trace Sets
+----------
+On starting VM you are initially in the INITIAL trace set.
+You can do a Q TR to verify this.
+If you have a complex tracing situation where you wish to wait for instance
+till a driver is open before you start tracing IO, but know in your
+heart that you are going to have to make several runs through the code till you
+have a clue whats going on.
+
+What you can do is::
+
+ TR I PSWA <Driver open address>
+
+hit b to continue till breakpoint
+
+reach the breakpoint
+
+now do your::
+
+ TR GOTO B
+ TR IO 7c08-7c09 inst int run
+
+or whatever the IO channels you wish to trace are & hit b
+
+To got back to the initial trace set do::
+
+ TR GOTO INITIAL
+
+& the TR I PSWA <Driver open address> will be the only active breakpoint again.
+
+
+Tracing linux syscalls under VM
+-------------------------------
+Syscalls are implemented on Linux for S390 by the Supervisor call instruction
+(SVC). There 256 possibilities of these as the instruction is made up of a 0xA
+opcode and the second byte being the syscall number. They are traced using the
+simple command::
+
+ TR SVC <Optional value or range>
+
+the syscalls are defined in linux/arch/s390/include/asm/unistd.h
+e.g. to trace all file opens just do::
+
+ TR SVC 5 ( as this is the syscall number of open )
+
+
+SMP Specific commands
+---------------------
+To find out how many cpus you have
+Q CPUS displays all the CPU's available to your virtual machine
+To find the cpu that the current cpu VM debugger commands are being directed at
+do Q CPU to change the current cpu VM debugger commands are being directed at
+do::
+
+ CPU <desired cpu no>
+
+On a SMP guest issue a command to all CPUs try prefixing the command with cpu
+all. To issue a command to a particular cpu try cpu <cpu number> e.g.::
+
+ CPU 01 TR I R 2000.3000
+
+If you are running on a guest with several cpus & you have a IO related problem
+& cannot follow the flow of code but you know it isn't smp related.
+
+from the bash prompt issue::
+
+ shutdown -h now or halt.
+
+do a::
+
+ Q CPUS
+
+to find out how many cpus you have detach each one of them from cp except
+cpu 0 by issuing a::
+
+ DETACH CPU 01-(number of cpus in configuration)
+
+& boot linux again.
+
+TR SIGP
+ will trace inter processor signal processor instructions.
+
+DEFINE CPU 01-(number in configuration)
+ will get your guests cpus back.
+
+
+Help for displaying ascii textstrings
+-------------------------------------
+On the very latest VM Nucleus'es VM can now display ascii
+( thanks Neale for the hint ) by doing::
+
+ D TX<lowaddr>.<len>
+
+e.g.::
+
+ D TX0.100
+
+Alternatively
+=============
+Under older VM debuggers (I love EBDIC too) you can use following little
+program which converts a command line of hex digits to ascii text. It can be
+compiled under linux and you can copy the hex digits from your x3270 terminal
+to your xterm if you are debugging from a linuxbox.
+
+This is quite useful when looking at a parameter passed in as a text string
+under VM ( unless you are good at decoding ASCII in your head ).
+
+e.g. consider tracing an open syscall::
+
+ TR SVC 5
+
+We have stopped at a breakpoint::
+
+ 000151B0' SVC 0A05 -> 0001909A' CC 0
+
+D 20.8 to check the SVC old psw in the prefix area and see was it from userspace
+(for the layout of the prefix area consult the "Fixed Storage Locations"
+chapter of the s/390 Reference Summary if you have it available).
+
+::
+
+ V00000020 070C2000 800151B2
+
+The problem state bit wasn't set & it's also too early in the boot sequence
+for it to be a userspace SVC if it was we would have to temporarily switch the
+psw to user space addressing so we could get at the first parameter of the open
+in gpr2.
+
+Next do a::
+
+ D G2
+ GPR 2 = 00014CB4
+
+Now display what gpr2 is pointing to::
+
+ D 00014CB4.20
+ V00014CB4 2F646576 2F636F6E 736F6C65 00001BF5
+ V00014CC4 FC00014C B4001001 E0001000 B8070707
+
+Now copy the text till the first 00 hex ( which is the end of the string
+to an xterm & do hex2ascii on it::
+
+ hex2ascii 2F646576 2F636F6E 736F6C65 00
+
+outputs::
+
+ Decoded Hex:=/ d e v / c o n s o l e 0x00
+
+We were opening the console device,
+
+You can compile the code below yourself for practice :-),
+
+::
+
+ /*
+ * hex2ascii.c
+ * a useful little tool for converting a hexadecimal command line to ascii
+ *
+ * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
+ * (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation.
+ */
+ #include <stdio.h>
+
+ int main(int argc,char *argv[])
+ {
+ int cnt1,cnt2,len,toggle=0;
+ int startcnt=1;
+ unsigned char c,hex;
+
+ if(argc>1&&(strcmp(argv[1],"-a")==0))
+ startcnt=2;
+ printf("Decoded Hex:=");
+ for(cnt1=startcnt;cnt1<argc;cnt1++)
+ {
+ len=strlen(argv[cnt1]);
+ for(cnt2=0;cnt2<len;cnt2++)
+ {
+ c=argv[cnt1][cnt2];
+ if(c>='0'&&c<='9')
+ c=c-'0';
+ if(c>='A'&&c<='F')
+ c=c-'A'+10;
+ if(c>='a'&&c<='f')
+ c=c-'a'+10;
+ switch(toggle)
+ {
+ case 0:
+ hex=c<<4;
+ toggle=1;
+ break;
+ case 1:
+ hex+=c;
+ if(hex<32||hex>127)
+ {
+ if(startcnt==1)
+ printf("0x%02X ",(int)hex);
+ else
+ printf(".");
+ }
+ else
+ {
+ printf("%c",hex);
+ if(startcnt==1)
+ printf(" ");
+ }
+ toggle=0;
+ break;
+ }
+ }
+ }
+ printf("\n");
+ }
+
+
+
+
+Stack tracing under VM
+----------------------
+A basic backtrace
+-----------------
+
+Here are the tricks I use 9 out of 10 times it works pretty well,
+
+When your backchain reaches a dead end
+--------------------------------------
+This can happen when an exception happens in the kernel and the kernel is
+entered twice. If you reach the NULL pointer at the end of the back chain you
+should be able to sniff further back if you follow the following tricks.
+1) A kernel address should be easy to recognise since it is in
+primary space & the problem state bit isn't set & also
+The Hi bit of the address is set.
+2) Another backchain should also be easy to recognise since it is an
+address pointing to another address approximately 100 bytes or 0x70 hex
+behind the current stackpointer.
+
+
+Here is some practice.
+
+boot the kernel & hit PA1 at some random time
+
+d g to display the gprs, this should display something like::
+
+ GPR 0 = 00000001 00156018 0014359C 00000000
+ GPR 4 = 00000001 001B8888 000003E0 00000000
+ GPR 8 = 00100080 00100084 00000000 000FE000
+ GPR 12 = 00010400 8001B2DC 8001B36A 000FFED8
+
+Note that GPR14 is a return address but as we are real men we are going to
+trace the stack.
+display 0x40 bytes after the stack pointer::
+
+ V000FFED8 000FFF38 8001B838 80014C8E 000FFF38
+ V000FFEE8 00000000 00000000 000003E0 00000000
+ V000FFEF8 00100080 00100084 00000000 000FE000
+ V000FFF08 00010400 8001B2DC 8001B36A 000FFED8
+
+
+Ah now look at whats in sp+56 (sp+0x38) this is 8001B36A our saved r14 if
+you look above at our stackframe & also agrees with GPR14.
+
+now backchain::
+
+ d 000FFF38.40
+
+we now are taking the contents of SP to get our first backchain::
+
+ V000FFF38 000FFFA0 00000000 00014995 00147094
+ V000FFF48 00147090 001470A0 000003E0 00000000
+ V000FFF58 00100080 00100084 00000000 001BF1D0
+ V000FFF68 00010400 800149BA 80014CA6 000FFF38
+
+This displays a 2nd return address of 80014CA6
+
+now do::
+
+ d 000FFFA0.40
+
+for our 3rd backchain::
+
+ V000FFFA0 04B52002 0001107F 00000000 00000000
+ V000FFFB0 00000000 00000000 FF000000 0001107F
+ V000FFFC0 00000000 00000000 00000000 00000000
+ V000FFFD0 00010400 80010802 8001085A 000FFFA0
+
+
+our 3rd return address is 8001085A
+
+as the 04B52002 looks suspiciously like rubbish it is fair to assume that the
+kernel entry routines for the sake of optimisation don't set up a backchain.
+
+now look at System.map to see if the addresses make any sense::
+
+ grep -i 0001b3 System.map
+
+outputs among other things::
+
+ 0001b304 T cpu_idle
+
+so 8001B36A
+is cpu_idle+0x66 ( quiet the cpu is asleep, don't wake it )
+
+::
+
+ grep -i 00014 System.map
+
+produces among other things::
+
+ 00014a78 T start_kernel
+
+so 0014CA6 is start_kernel+some hex number I can't add in my head.
+
+::
+
+ grep -i 00108 System.map
+
+this produces::
+
+ 00010800 T _stext
+
+so 8001085A is _stext+0x5a
+
+Congrats you've done your first backchain.
+
+
+
+s/390 & z/Architecture IO Overview
+==================================
+
+I am not going to give a course in 390 IO architecture as this would take me
+quite a while and I'm no expert. Instead I'll give a 390 IO architecture
+summary for Dummies. If you have the s/390 principles of operation available
+read this instead. If nothing else you may find a few useful keywords in here
+and be able to use them on a web search engine to find more useful information.
+
+Unlike other bus architectures modern 390 systems do their IO using mostly
+fibre optics and devices such as tapes and disks can be shared between several
+mainframes. Also S390 can support up to 65536 devices while a high end PC based
+system might be choking with around 64.
+
+Here is some of the common IO terminology:
+
+Subchannel:
+ This is the logical number most IO commands use to talk to an IO device. There
+ can be up to 0x10000 (65536) of these in a configuration, typically there are a
+ few hundred. Under VM for simplicity they are allocated contiguously, however
+ on the native hardware they are not. They typically stay consistent between
+ boots provided no new hardware is inserted or removed.
+
+ Under Linux for s390 we use these as IRQ's and also when issuing an IO command
+ (CLEAR SUBCHANNEL, HALT SUBCHANNEL, MODIFY SUBCHANNEL, RESUME SUBCHANNEL,
+ START SUBCHANNEL, STORE SUBCHANNEL and TEST SUBCHANNEL). We use this as the ID
+ of the device we wish to talk to. The most important of these instructions are
+ START SUBCHANNEL (to start IO), TEST SUBCHANNEL (to check whether the IO
+ completed successfully) and HALT SUBCHANNEL (to kill IO). A subchannel can have
+ up to 8 channel paths to a device, this offers redundancy if one is not
+ available.
+
+Device Number:
+ This number remains static and is closely tied to the hardware. There are 65536
+ of these, made up of a CHPID (Channel Path ID, the most significant 8 bits) and
+ another lsb 8 bits. These remain static even if more devices are inserted or
+ removed from the hardware. There is a 1 to 1 mapping between subchannels and
+ device numbers, provided devices aren't inserted or removed.
+
+Channel Control Words:
+ CCWs are linked lists of instructions initially pointed to by an operation
+ request block (ORB), which is initially given to Start Subchannel (SSCH)
+ command along with the subchannel number for the IO subsystem to process
+ while the CPU continues executing normal code.
+ CCWs come in two flavours, Format 0 (24 bit for backward compatibility) and
+ Format 1 (31 bit). These are typically used to issue read and write (and many
+ other) instructions. They consist of a length field and an absolute address
+ field.
+
+ Each IO typically gets 1 or 2 interrupts, one for channel end (primary status)
+ when the channel is idle, and the second for device end (secondary status).
+ Sometimes you get both concurrently. You check how the IO went on by issuing a
+ TEST SUBCHANNEL at each interrupt, from which you receive an Interruption
+ response block (IRB). If you get channel and device end status in the IRB
+ without channel checks etc. your IO probably went okay. If you didn't you
+ probably need to examine the IRB, extended status word etc.
+ If an error occurs, more sophisticated control units have a facility known as
+ concurrent sense. This means that if an error occurs Extended sense information
+ will be presented in the Extended status word in the IRB. If not you have to
+ issue a subsequent SENSE CCW command after the test subchannel.
+
+
+TPI (Test pending interrupt) can also be used for polled IO, but in
+multitasking multiprocessor systems it isn't recommended except for
+checking special cases (i.e. non looping checks for pending IO etc.).
+
+Store Subchannel and Modify Subchannel can be used to examine and modify
+operating characteristics of a subchannel (e.g. channel paths).
+
+Other IO related Terms:
+
+Sysplex:
+ S390's Clustering Technology
+QDIO:
+ S390's new high speed IO architecture to support devices such as gigabit
+ ethernet, this architecture is also designed to be forward compatible with
+ upcoming 64 bit machines.
+
+
+General Concepts
+----------------
+
+Input Output Processors (IOP's) are responsible for communicating between
+the mainframe CPU's & the channel & relieve the mainframe CPU's from the
+burden of communicating with IO devices directly, this allows the CPU's to
+concentrate on data processing.
+
+IOP's can use one or more links ( known as channel paths ) to talk to each
+IO device. It first checks for path availability & chooses an available one,
+then starts ( & sometimes terminates IO ).
+There are two types of channel path: ESCON & the Parallel IO interface.
+
+IO devices are attached to control units, control units provide the
+logic to interface the channel paths & channel path IO protocols to
+the IO devices, they can be integrated with the devices or housed separately
+& often talk to several similar devices ( typical examples would be raid
+controllers or a control unit which connects to 1000 3270 terminals )::
+
+
+ +---------------------------------------------------------------+
+ | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
+ | | CPU | | CPU | | CPU | | CPU | | Main | | Expanded | |
+ | | | | | | | | | | Memory | | Storage | |
+ | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
+ |---------------------------------------------------------------+
+ | IOP | IOP | IOP |
+ |---------------------------------------------------------------
+ | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C |
+ ----------------------------------------------------------------
+ || ||
+ || Bus & Tag Channel Path || ESCON
+ || ====================== || Channel
+ || || || || Path
+ +----------+ +----------+ +----------+
+ | | | | | |
+ | CU | | CU | | CU |
+ | | | | | |
+ +----------+ +----------+ +----------+
+ | | | | |
+ +----------+ +----------+ +----------+ +----------+ +----------+
+ |I/O Device| |I/O Device| |I/O Device| |I/O Device| |I/O Device|
+ +----------+ +----------+ +----------+ +----------+ +----------+
+ CPU = Central Processing Unit
+ C = Channel
+ IOP = IP Processor
+ CU = Control Unit
+
+The 390 IO systems come in 2 flavours the current 390 machines support both
+
+The Older 360 & 370 Interface,sometimes called the Parallel I/O interface,
+sometimes called Bus-and Tag & sometimes Original Equipment Manufacturers
+Interface (OEMI).
+
+This byte wide Parallel channel path/bus has parity & data on the "Bus" cable
+and control lines on the "Tag" cable. These can operate in byte multiplex mode
+for sharing between several slow devices or burst mode and monopolize the
+channel for the whole burst. Up to 256 devices can be addressed on one of these
+cables. These cables are about one inch in diameter. The maximum unextended
+length supported by these cables is 125 Meters but this can be extended up to
+2km with a fibre optic channel extended such as a 3044. The maximum burst speed
+supported is 4.5 megabytes per second. However, some really old processors
+support only transfer rates of 3.0, 2.0 & 1.0 MB/sec.
+One of these paths can be daisy chained to up to 8 control units.
+
+
+ESCON if fibre optic it is also called FICON
+Was introduced by IBM in 1990. Has 2 fibre optic cables and uses either leds or
+lasers for communication at a signaling rate of up to 200 megabits/sec. As
+10bits are transferred for every 8 bits info this drops to 160 megabits/sec
+and to 18.6 Megabytes/sec once control info and CRC are added. ESCON only
+operates in burst mode.
+
+ESCONs typical max cable length is 3km for the led version and 20km for the
+laser version known as XDF (extended distance facility). This can be further
+extended by using an ESCON director which triples the above mentioned ranges.
+Unlike Bus & Tag as ESCON is serial it uses a packet switching architecture,
+the standard Bus & Tag control protocol is however present within the packets.
+Up to 256 devices can be attached to each control unit that uses one of these
+interfaces.
+
+Common 390 Devices include:
+Network adapters typically OSA2,3172's,2116's & OSA-E gigabit ethernet adapters,
+Consoles 3270 & 3215 (a teletype emulated under linux for a line mode console).
+DASD's direct access storage devices ( otherwise known as hard disks ).
+Tape Drives.
+CTC ( Channel to Channel Adapters ),
+ESCON or Parallel Cables used as a very high speed serial link
+between 2 machines.
+
+
+Debugging IO on s/390 & z/Architecture under VM
+===============================================
+
+Now we are ready to go on with IO tracing commands under VM
+
+A few self explanatory queries::
+
+ Q OSA
+ Q CTC
+ Q DISK ( This command is CMS specific )
+ Q DASD
+
+Q OSA on my machine returns::
+
+ OSA 7C08 ON OSA 7C08 SUBCHANNEL = 0000
+ OSA 7C09 ON OSA 7C09 SUBCHANNEL = 0001
+ OSA 7C14 ON OSA 7C14 SUBCHANNEL = 0002
+ OSA 7C15 ON OSA 7C15 SUBCHANNEL = 0003
+
+If you have a guest with certain privileges you may be able to see devices
+which don't belong to you. To avoid this, add the option V.
+e.g.::
+
+ Q V OSA
+
+Now using the device numbers returned by this command we will
+Trace the io starting up on the first device 7c08 & 7c09
+In our simplest case we can trace the
+start subchannels
+like TR SSCH 7C08-7C09
+or the halt subchannels
+or TR HSCH 7C08-7C09
+MSCH's ,STSCH's I think you can guess the rest
+
+A good trick is tracing all the IO's and CCWS and spooling them into the reader
+of another VM guest so he can ftp the logfile back to his own machine. I'll do
+a small bit of this and give you a look at the output.
+
+1) Spool stdout to VM reader::
+
+ SP PRT TO (another vm guest ) or * for the local vm guest
+
+2) Fill the reader with the trace::
+
+ TR IO 7c08-7c09 INST INT CCW PRT RUN
+
+3) Start up linux::
+
+ i 00c
+4) Finish the trace::
+
+ TR END
+
+5) close the reader::
+
+ C PRT
+
+6) list reader contents::
+
+ RDRLIST
+
+7) copy it to linux4's minidisk::
+
+ RECEIVE / LOG TXT A1 ( replace
+
+8)
+filel & press F11 to look at it
+You should see something like::
+
+ 00020942' SSCH B2334000 0048813C CC 0 SCH 0000 DEV 7C08
+ CPA 000FFDF0 PARM 00E2C9C4 KEY 0 FPI C0 LPM 80
+ CCW 000FFDF0 E4200100 00487FE8 0000 E4240100 ........
+ IDAL 43D8AFE8
+ IDAL 0FB76000
+ 00020B0A' I/O DEV 7C08 -> 000197BC' SCH 0000 PARM 00E2C9C4
+ 00021628' TSCH B2354000 >> 00488164 CC 0 SCH 0000 DEV 7C08
+ CCWA 000FFDF8 DEV STS 0C SCH STS 00 CNT 00EC
+ KEY 0 FPI C0 CC 0 CTLS 4007
+ 00022238' STSCH B2344000 >> 00488108 CC 0 SCH 0000 DEV 7C08
+
+If you don't like messing up your readed ( because you possibly booted from it )
+you can alternatively spool it to another readers guest.
+
+
+Other common VM device related commands
+---------------------------------------------
+These commands are listed only because they have
+been of use to me in the past & may be of use to
+you too. For more complete info on each of the commands
+use type HELP <command> from CMS.
+
+detaching devices::
+
+ DET <devno range>
+ ATT <devno range> <guest>
+
+attach a device to guest * for your own guest
+
+READY <devno>
+ cause VM to issue a fake interrupt.
+
+The VARY command is normally only available to VM administrators::
+
+ VARY ON PATH <path> TO <devno range>
+ VARY OFF PATH <PATH> FROM <devno range>
+
+This is used to switch on or off channel paths to devices.
+
+Q CHPID <channel path ID>
+ This displays state of devices using this channel path
+
+D SCHIB <subchannel>
+ This displays the subchannel information SCHIB block for the device.
+ this I believe is also only available to administrators.
+
+DEFINE CTC <devno>
+ defines a virtual CTC channel to channel connection
+ 2 need to be defined on each guest for the CTC driver to use.
+
+COUPLE devno userid remote devno
+ Joins a local virtual device to a remote virtual device
+ ( commonly used for the CTC driver ).
+
+Building a VM ramdisk under CMS which linux can use::
+
+ def vfb-<blocksize> <subchannel> <number blocks>
+
+blocksize is commonly 4096 for linux.
+
+Formatting it::
+
+ format <subchannel> <driver letter e.g. x> (blksize <blocksize>
+
+Sharing a disk between multiple guests::
+
+ LINK userid devno1 devno2 mode password
+
+
+
+GDB on S390
+===========
+N.B. if compiling for debugging gdb works better without optimisation
+( see Compiling programs for debugging )
+
+invocation
+----------
+gdb <victim program> <optional corefile>
+
+Online help
+-----------
+help: gives help on commands
+
+e.g.::
+
+ help
+ help display
+
+Note gdb's online help is very good use it.
+
+
+Assembly
+--------
+info registers:
+ displays registers other than floating point.
+
+info all-registers:
+ displays floating points as well.
+
+disassemble:
+ disassembles
+
+e.g.::
+
+ disassemble without parameters will disassemble the current function
+ disassemble $pc $pc+10
+
+Viewing & modifying variables
+-----------------------------
+print or p:
+ displays variable or register
+
+e.g. p/x $sp will display the stack pointer
+
+display:
+ prints variable or register each time program stops
+
+e.g.::
+
+ display/x $pc will display the program counter
+ display argc
+
+undisplay:
+ undo's display's
+
+info breakpoints:
+ shows all current breakpoints
+
+info stack:
+ shows stack back trace (if this doesn't work too well, I'll show
+ you the stacktrace by hand below).
+
+info locals:
+ displays local variables.
+
+info args:
+ display current procedure arguments.
+
+set args:
+ will set argc & argv each time the victim program is invoked
+
+e.g.::
+
+ set <variable>=value
+ set argc=100
+ set $pc=0
+
+
+
+Modifying execution
+-------------------
+step:
+ steps n lines of sourcecode
+
+step
+ steps 1 line.
+
+step 100
+ steps 100 lines of code.
+
+next:
+ like step except this will not step into subroutines
+
+stepi:
+ steps a single machine code instruction.
+
+e.g.::
+
+ stepi 100
+
+nexti:
+ steps a single machine code instruction but will not step into
+ subroutines.
+
+finish:
+ will run until exit of the current routine
+
+run:
+ (re)starts a program
+
+cont:
+ continues a program
+
+quit:
+ exits gdb.
+
+
+breakpoints
+------------
+
+break
+ sets a breakpoint
+
+e.g.::
+
+ break main
+ break *$pc
+ break *0x400618
+
+Here's a really useful one for large programs
+
+rbr
+ Set a breakpoint for all functions matching REGEXP
+
+e.g.::
+
+ rbr 390
+
+will set a breakpoint with all functions with 390 in their name.
+
+info breakpoints
+ lists all breakpoints
+
+delete:
+ delete breakpoint by number or delete them all
+
+e.g.
+
+delete 1
+ will delete the first breakpoint
+
+
+delete
+ will delete them all
+
+watch:
+ This will set a watchpoint ( usually hardware assisted ),
+
+This will watch a variable till it changes
+
+e.g.
+
+watch cnt
+ will watch the variable cnt till it changes.
+
+As an aside unfortunately gdb's, architecture independent watchpoint code
+is inconsistent & not very good, watchpoints usually work but not always.
+
+info watchpoints:
+ Display currently active watchpoints
+
+condition: ( another useful one )
+ Specify breakpoint number N to break only if COND is true.
+
+Usage is `condition N COND`, where N is an integer and COND is an
+expression to be evaluated whenever breakpoint N is reached.
+
+
+
+User defined functions/macros
+-----------------------------
+define: ( Note this is very very useful,simple & powerful )
+
+usage define <name> <list of commands> end
+
+examples which you should consider putting into .gdbinit in your home
+directory::
+
+ define d
+ stepi
+ disassemble $pc $pc+10
+ end
+ define e
+ nexti
+ disassemble $pc $pc+10
+ end
+
+
+Other hard to classify stuff
+----------------------------
+signal n:
+ sends the victim program a signal.
+
+e.g. `signal 3` will send a SIGQUIT.
+
+info signals:
+ what gdb does when the victim receives certain signals.
+
+list:
+
+e.g.:
+
+list
+ lists current function source
+list 1,10
+ list first 10 lines of current file.
+
+list test.c:1,10
+
+
+directory:
+ Adds directories to be searched for source if gdb cannot find the source.
+ (note it is a bit sensitive about slashes)
+
+e.g. To add the root of the filesystem to the searchpath do::
+
+ directory //
+
+
+call <function>
+This calls a function in the victim program, this is pretty powerful
+e.g.
+(gdb) call printf("hello world")
+outputs:
+$1 = 11
+
+You might now be thinking that the line above didn't work, something extra had
+to be done.
+(gdb) call fflush(stdout)
+hello world$2 = 0
+As an aside the debugger also calls malloc & free under the hood
+to make space for the "hello world" string.
+
+
+
+hints
+-----
+1) command completion works just like bash
+ ( if you are a bad typist like me this really helps )
+
+e.g. hit br <TAB> & cursor up & down :-).
+
+2) if you have a debugging problem that takes a few steps to recreate
+put the steps into a file called .gdbinit in your current working directory
+if you have defined a few extra useful user defined commands put these in
+your home directory & they will be read each time gdb is launched.
+
+A typical .gdbinit file might be.::
+
+ break main
+ run
+ break runtime_exception
+ cont
+
+
+stack chaining in gdb by hand
+-----------------------------
+This is done using a the same trick described for VM::
+
+ p/x (*($sp+56))&0x7fffffff
+
+get the first backchain.
+
+For z/Architecture
+Replace 56 with 112 & ignore the &0x7fffffff
+in the macros below & do nasty casts to longs like the following
+as gdb unfortunately deals with printed arguments as ints which
+messes up everything.
+
+i.e. here is a 3rd backchain dereference::
+
+ p/x *(long *)(***(long ***)$sp+112)
+
+
+this outputs::
+
+ $5 = 0x528f18
+
+on my machine.
+
+Now you can use::
+
+ info symbol (*($sp+56))&0x7fffffff
+
+you might see something like::
+
+ rl_getc + 36 in section .text
+
+telling you what is located at address 0x528f18
+Now do::
+
+ p/x (*(*$sp+56))&0x7fffffff
+
+This outputs::
+
+ $6 = 0x528ed0
+
+Now do::
+
+ info symbol (*(*$sp+56))&0x7fffffff
+ rl_read_key + 180 in section .text
+
+now do::
+
+ p/x (*(**$sp+56))&0x7fffffff
+
+& so on.
+
+Disassembling instructions without debug info
+---------------------------------------------
+gdb typically complains if there is a lack of debugging
+symbols in the disassemble command with
+"No function contains specified address." To get around
+this do::
+
+ x/<number lines to disassemble>xi <address>
+
+e.g.::
+
+ x/20xi 0x400730
+
+
+
+Note:
+ Remember gdb has history just like bash you don't need to retype the
+ whole line just use the up & down arrows.
+
+
+
+For more info
+-------------
+From your linuxbox do::
+
+ man gdb
+
+or::
+
+ info gdb.
+
+core dumps
+----------
+
+What a core dump ?
+^^^^^^^^^^^^^^^^^^
+
+A core dump is a file generated by the kernel (if allowed) which contains the
+registers and all active pages of the program which has crashed.
+
+From this file gdb will allow you to look at the registers, stack trace and
+memory of the program as if it just crashed on your system. It is usually
+called core and created in the current working directory.
+
+This is very useful in that a customer can mail a core dump to a technical
+support department and the technical support department can reconstruct what
+happened. Provided they have an identical copy of this program with debugging
+symbols compiled in and the source base of this build is available.
+
+In short it is far more useful than something like a crash log could ever hope
+to be.
+
+Why have I never seen one ?
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Probably because you haven't used the command::
+
+ ulimit -c unlimited in bash
+
+to allow core dumps, now do::
+
+ ulimit -a
+
+to verify that the limit was accepted.
+
+A sample core dump
+ To create this I'm going to do::
+
+ ulimit -c unlimited
+ gdb
+
+to launch gdb (my victim app. ) now be bad & do the following from another
+telnet/xterm session to the same machine::
+
+ ps -aux | grep gdb
+ kill -SIGSEGV <gdb's pid>
+
+or alternatively use `killall -SIGSEGV gdb` if you have the killall command.
+
+Now look at the core dump::
+
+ ./gdb core
+
+Displays the following::
+
+ GNU gdb 4.18
+ Copyright 1998 Free Software Foundation, Inc.
+ GDB is free software, covered by the GNU General Public License, and you are
+ welcome to change it and/or distribute copies of it under certain conditions.
+ Type "show copying" to see the conditions.
+ There is absolutely no warranty for GDB. Type "show warranty" for details.
+ This GDB was configured as "s390-ibm-linux"...
+ Core was generated by `./gdb'.
+ Program terminated with signal 11, Segmentation fault.
+ Reading symbols from /usr/lib/libncurses.so.4...done.
+ Reading symbols from /lib/libm.so.6...done.
+ Reading symbols from /lib/libc.so.6...done.
+ Reading symbols from /lib/ld-linux.so.2...done.
+ #0 0x40126d1a in read () from /lib/libc.so.6
+ Setting up the environment for debugging gdb.
+ Breakpoint 1 at 0x4dc6f8: file utils.c, line 471.
+ Breakpoint 2 at 0x4d87a4: file top.c, line 2609.
+ (top-gdb) info stack
+ #0 0x40126d1a in read () from /lib/libc.so.6
+ #1 0x528f26 in rl_getc (stream=0x7ffffde8) at input.c:402
+ #2 0x528ed0 in rl_read_key () at input.c:381
+ #3 0x5167e6 in readline_internal_char () at readline.c:454
+ #4 0x5168ee in readline_internal_charloop () at readline.c:507
+ #5 0x51692c in readline_internal () at readline.c:521
+ #6 0x5164fe in readline (prompt=0x7ffff810)
+ at readline.c:349
+ #7 0x4d7a8a in command_line_input (prompt=0x564420 "(gdb) ", repeat=1,
+ annotation_suffix=0x4d6b44 "prompt") at top.c:2091
+ #8 0x4d6cf0 in command_loop () at top.c:1345
+ #9 0x4e25bc in main (argc=1, argv=0x7ffffdf4) at main.c:635
+
+
+LDD
+===
+This is a program which lists the shared libraries which a library needs,
+Note you also get the relocations of the shared library text segments which
+help when using objdump --source.
+
+e.g.::
+
+ ldd ./gdb
+
+outputs::
+
+ libncurses.so.4 => /usr/lib/libncurses.so.4 (0x40018000)
+ libm.so.6 => /lib/libm.so.6 (0x4005e000)
+ libc.so.6 => /lib/libc.so.6 (0x40084000)
+ /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
+
+
+Debugging shared libraries
+==========================
+Most programs use shared libraries, however it can be very painful
+when you single step instruction into a function like printf for the
+first time & you end up in functions like _dl_runtime_resolve this is
+the ld.so doing lazy binding, lazy binding is a concept in ELF where
+shared library functions are not loaded into memory unless they are
+actually used, great for saving memory but a pain to debug.
+
+To get around this either relink the program -static or exit gdb type
+export LD_BIND_NOW=true this will stop lazy binding & restart the gdb'ing
+the program in question.
+
+
+
+Debugging modules
+=================
+As modules are dynamically loaded into the kernel their address can be
+anywhere to get around this use the -m option with insmod to emit a load
+map which can be piped into a file if required.
+
+The proc file system
+====================
+What is it ?.
+It is a filesystem created by the kernel with files which are created on demand
+by the kernel if read, or can be used to modify kernel parameters,
+it is a powerful concept.
+
+e.g.::
+
+ cat /proc/sys/net/ipv4/ip_forward
+
+On my machine outputs::
+
+ 0
+
+telling me ip_forwarding is not on to switch it on I can do::
+
+ echo 1 > /proc/sys/net/ipv4/ip_forward
+
+cat it again::
+
+ cat /proc/sys/net/ipv4/ip_forward
+
+On my machine now outputs::
+
+ 1
+
+IP forwarding is on.
+
+There is a lot of useful info in here best found by going in and having a look
+around, so I'll take you through some entries I consider important.
+
+All the processes running on the machine have their own entry defined by
+/proc/<pid>
+
+So lets have a look at the init process::
+
+ cd /proc/1
+ cat cmdline
+
+emits::
+
+ init [2]
+
+::
+
+ cd /proc/1/fd
+
+This contains numerical entries of all the open files,
+some of these you can cat e.g. stdout (2)::
+
+ cat /proc/29/maps
+
+on my machine emits::
+
+ 00400000-00478000 r-xp 00000000 5f:00 4103 /bin/bash
+ 00478000-0047e000 rw-p 00077000 5f:00 4103 /bin/bash
+ 0047e000-00492000 rwxp 00000000 00:00 0
+ 40000000-40015000 r-xp 00000000 5f:00 14382 /lib/ld-2.1.2.so
+ 40015000-40016000 rw-p 00014000 5f:00 14382 /lib/ld-2.1.2.so
+ 40016000-40017000 rwxp 00000000 00:00 0
+ 40017000-40018000 rw-p 00000000 00:00 0
+ 40018000-4001b000 r-xp 00000000 5f:00 14435 /lib/libtermcap.so.2.0.8
+ 4001b000-4001c000 rw-p 00002000 5f:00 14435 /lib/libtermcap.so.2.0.8
+ 4001c000-4010d000 r-xp 00000000 5f:00 14387 /lib/libc-2.1.2.so
+ 4010d000-40111000 rw-p 000f0000 5f:00 14387 /lib/libc-2.1.2.so
+ 40111000-40114000 rw-p 00000000 00:00 0
+ 40114000-4011e000 r-xp 00000000 5f:00 14408 /lib/libnss_files-2.1.2.so
+ 4011e000-4011f000 rw-p 00009000 5f:00 14408 /lib/libnss_files-2.1.2.so
+ 7fffd000-80000000 rwxp ffffe000 00:00 0
+
+
+Showing us the shared libraries init uses where they are in memory
+& memory access permissions for each virtual memory area.
+
+/proc/1/cwd is a softlink to the current working directory.
+
+/proc/1/root is the root of the filesystem for this process.
+
+/proc/1/mem is the current running processes memory which you
+can read & write to like a file.
+
+strace uses this sometimes as it is a bit faster than the
+rather inefficient ptrace interface for peeking at DATA.
+
+::
+
+ cat status
+
+ Name: init
+ State: S (sleeping)
+ Pid: 1
+ PPid: 0
+ Uid: 0 0 0 0
+ Gid: 0 0 0 0
+ Groups:
+ VmSize: 408 kB
+ VmLck: 0 kB
+ VmRSS: 208 kB
+ VmData: 24 kB
+ VmStk: 8 kB
+ VmExe: 368 kB
+ VmLib: 0 kB
+ SigPnd: 0000000000000000
+ SigBlk: 0000000000000000
+ SigIgn: 7fffffffd7f0d8fc
+ SigCgt: 00000000280b2603
+ CapInh: 00000000fffffeff
+ CapPrm: 00000000ffffffff
+ CapEff: 00000000fffffeff
+
+ User PSW: 070de000 80414146
+ task: 004b6000 tss: 004b62d8 ksp: 004b7ca8 pt_regs: 004b7f68
+ User GPRS:
+ 00000400 00000000 0000000b 7ffffa90
+ 00000000 00000000 00000000 0045d9f4
+ 0045cafc 7ffffa90 7fffff18 0045cb08
+ 00010400 804039e8 80403af8 7ffff8b0
+ User ACRS:
+ 00000000 00000000 00000000 00000000
+ 00000001 00000000 00000000 00000000
+ 00000000 00000000 00000000 00000000
+ 00000000 00000000 00000000 00000000
+ Kernel BackChain CallChain BackChain CallChain
+ 004b7ca8 8002bd0c 004b7d18 8002b92c
+ 004b7db8 8005cd50 004b7e38 8005d12a
+ 004b7f08 80019114
+
+Showing among other things memory usage & status of some signals &
+the processes'es registers from the kernel task_structure
+as well as a backchain which may be useful if a process crashes
+in the kernel for some unknown reason.
+
+Some driver debugging techniques
+================================
+debug feature
+-------------
+Some of our drivers now support a "debug feature" in
+/proc/s390dbf see s390dbf.txt in the linux/Documentation directory
+for more info.
+
+e.g.
+to switch on the lcs "debug feature"::
+
+ echo 5 > /proc/s390dbf/lcs/level
+
+& then after the error occurred::
+
+ cat /proc/s390dbf/lcs/sprintf >/logfile
+
+the logfile now contains some information which may help
+tech support resolve a problem in the field.
+
+
+
+high level debugging network drivers
+------------------------------------
+ifconfig is a quite useful command
+it gives the current state of network drivers.
+
+If you suspect your network device driver is dead
+one way to check is type::
+
+ ifconfig <network device>
+
+e.g. tr0
+
+You should see something like::
+
+ ifconfig tr0
+ tr0 Link encap:16/4 Mbps Token Ring (New) HWaddr 00:04:AC:20:8E:48
+ inet addr:9.164.185.132 Bcast:9.164.191.255 Mask:255.255.224.0
+ UP BROADCAST RUNNING MULTICAST MTU:2000 Metric:1
+ RX packets:246134 errors:0 dropped:0 overruns:0 frame:0
+ TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
+ collisions:0 txqueuelen:100
+
+if the device doesn't say up
+try::
+
+ /etc/rc.d/init.d/network start
+
+( this starts the network stack & hopefully calls ifconfig tr0 up ).
+ifconfig looks at the output of /proc/net/dev and presents it in a more
+presentable form.
+
+Now ping the device from a machine in the same subnet.
+
+if the RX packets count & TX packets counts don't increment you probably
+have problems.
+
+next::
+
+ cat /proc/net/arp
+
+Do you see any hardware addresses in the cache if not you may have problems.
+Next try::
+
+ ping -c 5 <broadcast_addr>
+
+i.e. the Bcast field above in the output of
+ifconfig. Do you see any replies from machines other than the local machine
+if not you may have problems. also if the TX packets count in ifconfig
+hasn't incremented either you have serious problems in your driver
+(e.g. the txbusy field of the network device being stuck on )
+or you may have multiple network devices connected.
+
+
+chandev
+-------
+There is a new device layer for channel devices, some
+drivers e.g. lcs are registered with this layer.
+
+If the device uses the channel device layer you'll be
+able to find what interrupts it uses & the current state
+of the device.
+
+See the manpage chandev.8 &type cat /proc/chandev for more info.
+
+
+SysRq
+=====
+This is now supported by linux for s/390 & z/Architecture.
+
+To enable it do compile the kernel with::
+
+ Kernel Hacking -> Magic SysRq Key Enabled
+
+Then::
+
+ echo "1" > /proc/sys/kernel/sysrq
+
+also type::
+
+ echo "8" >/proc/sys/kernel/printk
+
+To make printk output go to console.
+
+On 390 all commands are prefixed with::
+
+ ^-
+
+e.g.::
+
+ ^-t will show tasks.
+ ^-? or some unknown command will display help.
+
+The sysrq key reading is very picky ( I have to type the keys in an
+xterm session & paste them into the x3270 console )
+& it may be wise to predefine the keys as described in the VM hints above
+
+This is particularly useful for syncing disks unmounting & rebooting
+if the machine gets partially hung.
+
+Read Documentation/admin-guide/sysrq.rst for more info
+
+References:
+===========
+- Enterprise Systems Architecture Reference Summary
+- Enterprise Systems Architecture Principles of Operation
+- Hartmut Penners s390 stack frame sheet.
+- IBM Mainframe Channel Attachment a technology brief from a CISCO webpage
+- Various bits of man & info pages of Linux.
+- Linux & GDB source.
+- Various info & man pages.
+- CMS Help on tracing commands.
+- Linux for s/390 Elf Application Binary Interface
+- Linux for z/Series Elf Application Binary Interface ( Both Highly Recommended )
+- z/Architecture Principles of Operation SA22-7832-00
+- Enterprise Systems Architecture/390 Reference Summary SA22-7209-01 & the
+- Enterprise Systems Architecture/390 Principles of Operation SA22-7201-05
+
+Special Thanks
+==============
+Special thanks to Neale Ferguson who maintains a much
+prettier HTML version of this page at
+http://linuxvm.org/penguinvm/
+Bob Grainger Stefan Bader & others for reporting bugs
diff --git a/Documentation/s390/driver-model.txt b/Documentation/s390/driver-model.rst
index ed265cf54cde..ad4bc2dbea43 100644
--- a/Documentation/s390/driver-model.txt
+++ b/Documentation/s390/driver-model.rst
@@ -1,5 +1,6 @@
+=============================
S/390 driver model interfaces
------------------------------
+=============================
1. CCW devices
--------------
@@ -7,13 +8,13 @@ S/390 driver model interfaces
All devices which can be addressed by means of ccws are called 'CCW devices' -
even if they aren't actually driven by ccws.
-All ccw devices are accessed via a subchannel, this is reflected in the
-structures under devices/:
+All ccw devices are accessed via a subchannel, this is reflected in the
+structures under devices/::
-devices/
+ devices/
- system/
- css0/
- - 0.0.0000/0.0.0815/
+ - 0.0.0000/0.0.0815/
- 0.0.0001/0.0.4711/
- 0.0.0002/
- 0.1.0000/0.1.1234/
@@ -35,14 +36,18 @@ be found under bus/ccw/devices/.
All ccw devices export some data via sysfs.
-cutype: The control unit type / model.
+cutype:
+ The control unit type / model.
-devtype: The device type / model, if applicable.
+devtype:
+ The device type / model, if applicable.
-availability: Can be 'good' or 'boxed'; 'no path' or 'no device' for
+availability:
+ Can be 'good' or 'boxed'; 'no path' or 'no device' for
disconnected devices.
-online: An interface to set the device online and offline.
+online:
+ An interface to set the device online and offline.
In the special case of the device being disconnected (see the
notify function under 1.2), piping 0 to online will forcibly delete
the device.
@@ -52,9 +57,11 @@ The device drivers can add entries to export per-device data and interfaces.
There is also some data exported on a per-subchannel basis (see under
bus/css/devices/):
-chpids: Via which chpids the device is connected.
+chpids:
+ Via which chpids the device is connected.
-pimpampom: The path installed, path available and path operational masks.
+pimpampom:
+ The path installed, path available and path operational masks.
There also might be additional data, for example for block devices.
@@ -74,77 +81,93 @@ b. After a. has been performed, if necessary, the device is finally brought up
------------------------------------
The basic struct ccw_device and struct ccw_driver data structures can be found
-under include/asm/ccwdev.h.
+under include/asm/ccwdev.h::
-struct ccw_device {
- spinlock_t *ccwlock;
- struct ccw_device_private *private;
- struct ccw_device_id id;
+ struct ccw_device {
+ spinlock_t *ccwlock;
+ struct ccw_device_private *private;
+ struct ccw_device_id id;
- struct ccw_driver *drv;
- struct device dev;
+ struct ccw_driver *drv;
+ struct device dev;
int online;
void (*handler) (struct ccw_device *dev, unsigned long intparm,
- struct irb *irb);
-};
+ struct irb *irb);
+ };
-struct ccw_driver {
- struct module *owner;
- struct ccw_device_id *ids;
- int (*probe) (struct ccw_device *);
+ struct ccw_driver {
+ struct module *owner;
+ struct ccw_device_id *ids;
+ int (*probe) (struct ccw_device *);
int (*remove) (struct ccw_device *);
int (*set_online) (struct ccw_device *);
int (*set_offline) (struct ccw_device *);
int (*notify) (struct ccw_device *, int);
struct device_driver driver;
char *name;
-};
+ };
The 'private' field contains data needed for internal i/o operation only, and
is not available to the device driver.
Each driver should declare in a MODULE_DEVICE_TABLE into which CU types/models
and/or device types/models it is interested. This information can later be found
-in the struct ccw_device_id fields:
+in the struct ccw_device_id fields::
-struct ccw_device_id {
- __u16 match_flags;
+ struct ccw_device_id {
+ __u16 match_flags;
- __u16 cu_type;
- __u16 dev_type;
- __u8 cu_model;
- __u8 dev_model;
+ __u16 cu_type;
+ __u16 dev_type;
+ __u8 cu_model;
+ __u8 dev_model;
unsigned long driver_info;
-};
+ };
The functions in ccw_driver should be used in the following way:
-probe: This function is called by the device layer for each device the driver
+
+probe:
+ This function is called by the device layer for each device the driver
is interested in. The driver should only allocate private structures
to put in dev->driver_data and create attributes (if needed). Also,
the interrupt handler (see below) should be set here.
-int (*probe) (struct ccw_device *cdev);
+::
+
+ int (*probe) (struct ccw_device *cdev);
-Parameters: cdev - the device to be probed.
+Parameters:
+ cdev
+ - the device to be probed.
-remove: This function is called by the device layer upon removal of the driver,
+remove:
+ This function is called by the device layer upon removal of the driver,
the device or the module. The driver should perform cleanups here.
-int (*remove) (struct ccw_device *cdev);
+::
-Parameters: cdev - the device to be removed.
+ int (*remove) (struct ccw_device *cdev);
+Parameters:
+ cdev
+ - the device to be removed.
-set_online: This function is called by the common I/O layer when the device is
+
+set_online:
+ This function is called by the common I/O layer when the device is
activated via the 'online' attribute. The driver should finally
setup and activate the device here.
-int (*set_online) (struct ccw_device *);
+::
+
+ int (*set_online) (struct ccw_device *);
-Parameters: cdev - the device to be activated. The common layer has
+Parameters:
+ cdev
+ - the device to be activated. The common layer has
verified that the device is not already online.
@@ -152,15 +175,22 @@ set_offline: This function is called by the common I/O layer when the device is
de-activated via the 'online' attribute. The driver should shut
down the device, but not de-allocate its private data.
-int (*set_offline) (struct ccw_device *);
+::
-Parameters: cdev - the device to be deactivated. The common layer has
+ int (*set_offline) (struct ccw_device *);
+
+Parameters:
+ cdev
+ - the device to be deactivated. The common layer has
verified that the device is online.
-notify: This function is called by the common I/O layer for some state changes
+notify:
+ This function is called by the common I/O layer for some state changes
of the device.
+
Signalled to the driver are:
+
* In online state, device detached (CIO_GONE) or last path gone
(CIO_NO_PATH). The driver must return !0 to keep the device; for
return code 0, the device will be deleted as usual (also when no
@@ -173,32 +203,40 @@ notify: This function is called by the common I/O layer for some state changes
return code of the notify function the device driver signals if it
wants the device back: !0 for keeping, 0 to make the device being
removed and re-registered.
-
-int (*notify) (struct ccw_device *, int);
-Parameters: cdev - the device whose state changed.
- event - the event that happened. This can be one of CIO_GONE,
- CIO_NO_PATH or CIO_OPER.
+::
+
+ int (*notify) (struct ccw_device *, int);
+
+Parameters:
+ cdev
+ - the device whose state changed.
+
+ event
+ - the event that happened. This can be one of CIO_GONE,
+ CIO_NO_PATH or CIO_OPER.
The handler field of the struct ccw_device is meant to be set to the interrupt
-handler for the device. In order to accommodate drivers which use several
+handler for the device. In order to accommodate drivers which use several
distinct handlers (e.g. multi subchannel devices), this is a member of ccw_device
instead of ccw_driver.
The handler is registered with the common layer during set_online() processing
before the driver is called, and is deregistered during set_offline() after the
-driver has been called. Also, after registering / before deregistering, path
+driver has been called. Also, after registering / before deregistering, path
grouping resp. disbanding of the path group (if applicable) are performed.
-void (*handler) (struct ccw_device *dev, unsigned long intparm, struct irb *irb);
+::
-Parameters: dev - the device the handler is called for
+ void (*handler) (struct ccw_device *dev, unsigned long intparm, struct irb *irb);
+
+Parameters: dev - the device the handler is called for
intparm - the intparm which allows the device driver to identify
- the i/o the interrupt is associated with, or to recognize
- the interrupt as unsolicited.
- irb - interruption response block which contains the accumulated
- status.
+ the i/o the interrupt is associated with, or to recognize
+ the interrupt as unsolicited.
+ irb - interruption response block which contains the accumulated
+ status.
-The device driver is called from the common ccw_device layer and can retrieve
+The device driver is called from the common ccw_device layer and can retrieve
information about the interrupt from the irb parameter.
@@ -237,23 +275,27 @@ only the logical state and not the physical state, since we cannot track the
latter consistently due to lacking machine support (we don't need to be aware
of it anyway).
-status - Can be 'online' or 'offline'.
+status
+ - Can be 'online' or 'offline'.
Piping 'on' or 'off' sets the chpid logically online/offline.
Piping 'on' to an online chpid triggers path reprobing for all devices
the chpid connects to. This can be used to force the kernel to re-use
a channel path the user knows to be online, but the machine hasn't
created a machine check for.
-type - The physical type of the channel path.
+type
+ - The physical type of the channel path.
-shared - Whether the channel path is shared.
+shared
+ - Whether the channel path is shared.
-cmg - The channel measurement group.
+cmg
+ - The channel measurement group.
3. System devices
-----------------
-3.1 xpram
+3.1 xpram
---------
xpram shows up under devices/system/ as 'xpram'.
@@ -279,9 +321,8 @@ Netiucv connections show up under devices/iucv/ as "netiucv<ifnum>". The interfa
number is assigned sequentially to the connections defined via the 'connection'
attribute.
-user - shows the connection partner.
-
-buffer - maximum buffer size.
- Pipe to it to change buffer size.
-
+user
+ - shows the connection partner.
+buffer
+ - maximum buffer size. Pipe to it to change buffer size.
diff --git a/Documentation/s390/index.rst b/Documentation/s390/index.rst
new file mode 100644
index 000000000000..1a914da2a07b
--- /dev/null
+++ b/Documentation/s390/index.rst
@@ -0,0 +1,30 @@
+:orphan:
+
+=================
+s390 Architecture
+=================
+
+.. toctree::
+ :maxdepth: 1
+
+ cds
+ 3270
+ debugging390
+ driver-model
+ monreader
+ qeth
+ s390dbf
+ vfio-ap
+ vfio-ccw
+ zfcpdump
+ dasd
+ common_io
+
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/s390/monreader.txt b/Documentation/s390/monreader.rst
index d3729585fdb0..1e857575c113 100644
--- a/Documentation/s390/monreader.txt
+++ b/Documentation/s390/monreader.rst
@@ -1,24 +1,26 @@
+=================================================
+Linux API for read access to z/VM Monitor Records
+=================================================
Date : 2004-Nov-26
+
Author: Gerald Schaefer (geraldsc@de.ibm.com)
- Linux API for read access to z/VM Monitor Records
- =================================================
Description
===========
This item delivers a new Linux API in the form of a misc char device that is
usable from user space and allows read access to the z/VM Monitor Records
-collected by the *MONITOR System Service of z/VM.
+collected by the `*MONITOR` System Service of z/VM.
User Requirements
=================
The z/VM guest on which you want to access this API needs to be configured in
-order to allow IUCV connections to the *MONITOR service, i.e. it needs the
-IUCV *MONITOR statement in its user entry. If the monitor DCSS to be used is
+order to allow IUCV connections to the `*MONITOR` service, i.e. it needs the
+IUCV `*MONITOR` statement in its user entry. If the monitor DCSS to be used is
restricted (likely), you also need the NAMESAVE <DCSS NAME> statement.
This item will use the IUCV device driver to access the z/VM services, so you
need a kernel with IUCV support. You also need z/VM version 4.4 or 5.1.
@@ -50,7 +52,9 @@ Your guest virtual storage has to end below the starting address of the DCSS
and you have to specify the "mem=" kernel parameter in your parmfile with a
value greater than the ending address of the DCSS.
-Example: DEF STOR 140M
+Example::
+
+ DEF STOR 140M
This defines 140MB storage size for your guest, the parameter "mem=160M" is
added to the parmfile.
@@ -66,24 +70,27 @@ kernel, the kernel parameter "monreader.mondcss=<DCSS NAME>" can be specified
in the parmfile.
The default name for the DCSS is "MONDCSS" if none is specified. In case that
-there are other users already connected to the *MONITOR service (e.g.
+there are other users already connected to the `*MONITOR` service (e.g.
Performance Toolkit), the monitor DCSS is already defined and you have to use
the same DCSS. The CP command Q MONITOR (Class E privileged) shows the name
of the monitor DCSS, if already defined, and the users connected to the
-*MONITOR service.
+`*MONITOR` service.
Refer to the "z/VM Performance" book (SC24-6109-00) on how to create a monitor
DCSS if your z/VM doesn't have one already, you need Class E privileges to
define and save a DCSS.
Example:
--------
-modprobe monreader mondcss=MYDCSS
+
+::
+
+ modprobe monreader mondcss=MYDCSS
This loads the module and sets the DCSS name to "MYDCSS".
NOTE:
-----
-This API provides no interface to control the *MONITOR service, e.g. specify
+This API provides no interface to control the `*MONITOR` service, e.g. specify
which data should be collected. This can be done by the CP command MONITOR
(Class E privileged), see "CP Command and Utility Reference".
@@ -98,6 +105,7 @@ If your distribution does not support udev, a device node will not be created
automatically and you have to create it manually after loading the module.
Therefore you need to know the major and minor numbers of the device. These
numbers can be found in /sys/class/misc/monreader/dev.
+
Typing cat /sys/class/misc/monreader/dev will give an output of the form
<major>:<minor>. The device node can be created via the mknod command, enter
mknod <name> c <major> <minor>, where <name> is the name of the device node
@@ -105,10 +113,13 @@ to be created.
Example:
--------
-# modprobe monreader
-# cat /sys/class/misc/monreader/dev
-10:63
-# mknod /dev/monreader c 10 63
+
+::
+
+ # modprobe monreader
+ # cat /sys/class/misc/monreader/dev
+ 10:63
+ # mknod /dev/monreader c 10 63
This loads the module with the default monitor DCSS (MONDCSS) and creates a
device node.
@@ -133,20 +144,21 @@ last byte of data. The start address is needed to handle "end-of-frame" records
correctly (domain 1, record 13), i.e. it can be used to determine the record
start offset relative to a 4K page (frame) boundary.
-See "Appendix A: *MONITOR" in the "z/VM Performance" document for a description
+See "Appendix A: `*MONITOR`" in the "z/VM Performance" document for a description
of the monitor control element layout. The layout of the monitor records can
be found here (z/VM 5.1): http://www.vm.ibm.com/pubs/mon510/index.html
-The layout of the data stream provided by the monreader device is as follows:
-...
-<0 byte read>
-<first MCE> \
-<first set of records> |
-... |- data set
-<last MCE> |
-<last set of records> /
-<0 byte read>
-...
+The layout of the data stream provided by the monreader device is as follows::
+
+ ...
+ <0 byte read>
+ <first MCE> \
+ <first set of records> |
+ ... |- data set
+ <last MCE> |
+ <last set of records> /
+ <0 byte read>
+ ...
There may be more than one combination of MCE and corresponding record set
within one data set and the end of each data set is indicated by a successful
@@ -165,15 +177,19 @@ As with most char devices, error conditions are indicated by returning a
negative value for the number of bytes read. In this case, the errno variable
indicates the error condition:
-EIO: reply failed, read data is invalid and the application
+EIO:
+ reply failed, read data is invalid and the application
should discard the data read since the last successful read with 0 size.
-EFAULT: copy_to_user failed, read data is invalid and the application should
- discard the data read since the last successful read with 0 size.
-EAGAIN: occurs on a non-blocking read if there is no data available at the
- moment. There is no data missing or corrupted, just try again or rather
- use polling for non-blocking reads.
-EOVERFLOW: message limit reached, the data read since the last successful
- read with 0 size is valid but subsequent records may be missing.
+EFAULT:
+ copy_to_user failed, read data is invalid and the application should
+ discard the data read since the last successful read with 0 size.
+EAGAIN:
+ occurs on a non-blocking read if there is no data available at the
+ moment. There is no data missing or corrupted, just try again or rather
+ use polling for non-blocking reads.
+EOVERFLOW:
+ message limit reached, the data read since the last successful
+ read with 0 size is valid but subsequent records may be missing.
In the last case (EOVERFLOW) there may be missing data, in the first two cases
(EIO, EFAULT) there will be missing data. It's up to the application if it will
@@ -183,7 +199,7 @@ Open:
-----
Only one user is allowed to open the char device. If it is already in use, the
open function will fail (return a negative value) and set errno to EBUSY.
-The open function may also fail if an IUCV connection to the *MONITOR service
+The open function may also fail if an IUCV connection to the `*MONITOR` service
cannot be established. In this case errno will be set to EIO and an error
message with an IPUSER SEVER code will be printed into syslog. The IPUSER SEVER
codes are described in the "z/VM Performance" book, Appendix A.
@@ -194,4 +210,3 @@ As soon as the device is opened, incoming messages will be accepted and they
will account for the message limit, i.e. opening the device without reading
from it will provoke the "message limit reached" error (EOVERFLOW error code)
eventually.
-
diff --git a/Documentation/s390/qeth.txt b/Documentation/s390/qeth.rst
index aa06fcf5f8c2..f02fdaa68de0 100644
--- a/Documentation/s390/qeth.txt
+++ b/Documentation/s390/qeth.rst
@@ -1,8 +1,12 @@
+=============================
IBM s390 QDIO Ethernet Driver
+=============================
OSA and HiperSockets Bridge Port Support
+========================================
Uevents
+-------
To generate the events the device must be assigned a role of either
a primary or a secondary Bridge Port. For more information, see
@@ -13,12 +17,15 @@ of some configured Bridge Port device on the channel changes, a udev
event with ACTION=CHANGE is emitted on behalf of the corresponding
ccwgroup device. The event has the following attributes:
-BRIDGEPORT=statechange - indicates that the Bridge Port device changed
+BRIDGEPORT=statechange
+ indicates that the Bridge Port device changed
its state.
-ROLE={primary|secondary|none} - the role assigned to the port.
+ROLE={primary|secondary|none}
+ the role assigned to the port.
-STATE={active|standby|inactive} - the newly assumed state of the port.
+STATE={active|standby|inactive}
+ the newly assumed state of the port.
When run on HiperSockets Bridge Capable Port hardware with host address
notifications enabled, a udev event with ACTION=CHANGE is emitted.
@@ -26,25 +33,32 @@ It is emitted on behalf of the corresponding ccwgroup device when a host
or a VLAN is registered or unregistered on the network served by the device.
The event has the following attributes:
-BRIDGEDHOST={reset|register|deregister|abort} - host address
+BRIDGEDHOST={reset|register|deregister|abort}
+ host address
notifications are started afresh, a new host or VLAN is registered or
deregistered on the Bridge Port HiperSockets channel, or address
notifications are aborted.
-VLAN=numeric-vlan-id - VLAN ID on which the event occurred. Not included
+VLAN=numeric-vlan-id
+ VLAN ID on which the event occurred. Not included
if no VLAN is involved in the event.
-MAC=xx:xx:xx:xx:xx:xx - MAC address of the host that is being registered
+MAC=xx:xx:xx:xx:xx:xx
+ MAC address of the host that is being registered
or deregistered from the HiperSockets channel. Not reported if the
event reports the creation or destruction of a VLAN.
-NTOK_BUSID=x.y.zzzz - device bus ID (CSSID, SSID and device number).
+NTOK_BUSID=x.y.zzzz
+ device bus ID (CSSID, SSID and device number).
-NTOK_IID=xx - device IID.
+NTOK_IID=xx
+ device IID.
-NTOK_CHPID=xx - device CHPID.
+NTOK_CHPID=xx
+ device CHPID.
-NTOK_CHID=xxxx - device channel ID.
+NTOK_CHID=xxxx
+ device channel ID.
-Note that the NTOK_* attributes refer to devices other than the one
+Note that the `NTOK_*` attributes refer to devices other than the one
connected to the system on which the OS is running.
diff --git a/Documentation/s390/s390dbf.rst b/Documentation/s390/s390dbf.rst
new file mode 100644
index 000000000000..cdb36842b898
--- /dev/null
+++ b/Documentation/s390/s390dbf.rst
@@ -0,0 +1,487 @@
+==================
+S390 Debug Feature
+==================
+
+files:
+ - arch/s390/kernel/debug.c
+ - arch/s390/include/asm/debug.h
+
+Description:
+------------
+The goal of this feature is to provide a kernel debug logging API
+where log records can be stored efficiently in memory, where each component
+(e.g. device drivers) can have one separate debug log.
+One purpose of this is to inspect the debug logs after a production system crash
+in order to analyze the reason for the crash.
+
+If the system still runs but only a subcomponent which uses dbf fails,
+it is possible to look at the debug logs on a live system via the Linux
+debugfs filesystem.
+
+The debug feature may also very useful for kernel and driver development.
+
+Design:
+-------
+Kernel components (e.g. device drivers) can register themselves at the debug
+feature with the function call :c:func:`debug_register()`.
+This function initializes a
+debug log for the caller. For each debug log exists a number of debug areas
+where exactly one is active at one time. Each debug area consists of contiguous
+pages in memory. In the debug areas there are stored debug entries (log records)
+which are written by event- and exception-calls.
+
+An event-call writes the specified debug entry to the active debug
+area and updates the log pointer for the active area. If the end
+of the active debug area is reached, a wrap around is done (ring buffer)
+and the next debug entry will be written at the beginning of the active
+debug area.
+
+An exception-call writes the specified debug entry to the log and
+switches to the next debug area. This is done in order to be sure
+that the records which describe the origin of the exception are not
+overwritten when a wrap around for the current area occurs.
+
+The debug areas themselves are also ordered in form of a ring buffer.
+When an exception is thrown in the last debug area, the following debug
+entries are then written again in the very first area.
+
+There are four versions for the event- and exception-calls: One for
+logging raw data, one for text, one for numbers (unsigned int and long),
+and one for sprintf-like formatted strings.
+
+Each debug entry contains the following data:
+
+- Timestamp
+- Cpu-Number of calling task
+- Level of debug entry (0...6)
+- Return Address to caller
+- Flag, if entry is an exception or not
+
+The debug logs can be inspected in a live system through entries in
+the debugfs-filesystem. Under the toplevel directory "``s390dbf``" there is
+a directory for each registered component, which is named like the
+corresponding component. The debugfs normally should be mounted to
+``/sys/kernel/debug`` therefore the debug feature can be accessed under
+``/sys/kernel/debug/s390dbf``.
+
+The content of the directories are files which represent different views
+to the debug log. Each component can decide which views should be
+used through registering them with the function :c:func:`debug_register_view()`.
+Predefined views for hex/ascii, sprintf and raw binary data are provided.
+It is also possible to define other views. The content of
+a view can be inspected simply by reading the corresponding debugfs file.
+
+All debug logs have an actual debug level (range from 0 to 6).
+The default level is 3. Event and Exception functions have a :c:data:`level`
+parameter. Only debug entries with a level that is lower or equal
+than the actual level are written to the log. This means, when
+writing events, high priority log entries should have a low level
+value whereas low priority entries should have a high one.
+The actual debug level can be changed with the help of the debugfs-filesystem
+through writing a number string "x" to the ``level`` debugfs file which is
+provided for every debug log. Debugging can be switched off completely
+by using "-" on the ``level`` debugfs file.
+
+Example::
+
+ > echo "-" > /sys/kernel/debug/s390dbf/dasd/level
+
+It is also possible to deactivate the debug feature globally for every
+debug log. You can change the behavior using 2 sysctl parameters in
+``/proc/sys/s390dbf``:
+
+There are currently 2 possible triggers, which stop the debug feature
+globally. The first possibility is to use the ``debug_active`` sysctl. If
+set to 1 the debug feature is running. If ``debug_active`` is set to 0 the
+debug feature is turned off.
+
+The second trigger which stops the debug feature is a kernel oops.
+That prevents the debug feature from overwriting debug information that
+happened before the oops. After an oops you can reactivate the debug feature
+by piping 1 to ``/proc/sys/s390dbf/debug_active``. Nevertheless, it's not
+suggested to use an oopsed kernel in a production environment.
+
+If you want to disallow the deactivation of the debug feature, you can use
+the ``debug_stoppable`` sysctl. If you set ``debug_stoppable`` to 0 the debug
+feature cannot be stopped. If the debug feature is already stopped, it
+will stay deactivated.
+
+Kernel Interfaces:
+------------------
+
+.. kernel-doc:: arch/s390/kernel/debug.c
+.. kernel-doc:: arch/s390/include/asm/debug.h
+
+Predefined views:
+-----------------
+
+.. code-block:: c
+
+ extern struct debug_view debug_hex_ascii_view;
+
+ extern struct debug_view debug_raw_view;
+
+ extern struct debug_view debug_sprintf_view;
+
+Examples
+--------
+
+.. code-block:: c
+
+ /*
+ * hex_ascii- + raw-view Example
+ */
+
+ #include <linux/init.h>
+ #include <asm/debug.h>
+
+ static debug_info_t *debug_info;
+
+ static int init(void)
+ {
+ /* register 4 debug areas with one page each and 4 byte data field */
+
+ debug_info = debug_register("test", 1, 4, 4 );
+ debug_register_view(debug_info, &debug_hex_ascii_view);
+ debug_register_view(debug_info, &debug_raw_view);
+
+ debug_text_event(debug_info, 4 , "one ");
+ debug_int_exception(debug_info, 4, 4711);
+ debug_event(debug_info, 3, &debug_info, 4);
+
+ return 0;
+ }
+
+ static void cleanup(void)
+ {
+ debug_unregister(debug_info);
+ }
+
+ module_init(init);
+ module_exit(cleanup);
+
+.. code-block:: c
+
+ /*
+ * sprintf-view Example
+ */
+
+ #include <linux/init.h>
+ #include <asm/debug.h>
+
+ static debug_info_t *debug_info;
+
+ static int init(void)
+ {
+ /* register 4 debug areas with one page each and data field for */
+ /* format string pointer + 2 varargs (= 3 * sizeof(long)) */
+
+ debug_info = debug_register("test", 1, 4, sizeof(long) * 3);
+ debug_register_view(debug_info, &debug_sprintf_view);
+
+ debug_sprintf_event(debug_info, 2 , "first event in %s:%i\n",__FILE__,__LINE__);
+ debug_sprintf_exception(debug_info, 1, "pointer to debug info: %p\n",&debug_info);
+
+ return 0;
+ }
+
+ static void cleanup(void)
+ {
+ debug_unregister(debug_info);
+ }
+
+ module_init(init);
+ module_exit(cleanup);
+
+Debugfs Interface
+-----------------
+Views to the debug logs can be investigated through reading the corresponding
+debugfs-files:
+
+Example::
+
+ > ls /sys/kernel/debug/s390dbf/dasd
+ flush hex_ascii level pages raw
+ > cat /sys/kernel/debug/s390dbf/dasd/hex_ascii | sort -k2,2 -s
+ 00 00974733272:680099 2 - 02 0006ad7e 07 ea 4a 90 | ....
+ 00 00974733272:682210 2 - 02 0006ade6 46 52 45 45 | FREE
+ 00 00974733272:682213 2 - 02 0006adf6 07 ea 4a 90 | ....
+ 00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
+ 01 00974733272:682284 2 - 02 0006ab16 45 43 4b 44 | ECKD
+ 01 00974733272:682287 2 - 02 0006ab28 00 00 00 04 | ....
+ 01 00974733272:682289 2 - 02 0006ab3e 00 00 00 20 | ...
+ 01 00974733272:682297 2 - 02 0006ad7e 07 ea 4a 90 | ....
+ 01 00974733272:684384 2 - 00 0006ade6 46 52 45 45 | FREE
+ 01 00974733272:684388 2 - 00 0006adf6 07 ea 4a 90 | ....
+
+See section about predefined views for explanation of the above output!
+
+Changing the debug level
+------------------------
+
+Example::
+
+
+ > cat /sys/kernel/debug/s390dbf/dasd/level
+ 3
+ > echo "5" > /sys/kernel/debug/s390dbf/dasd/level
+ > cat /sys/kernel/debug/s390dbf/dasd/level
+ 5
+
+Flushing debug areas
+--------------------
+Debug areas can be flushed with piping the number of the desired
+area (0...n) to the debugfs file "flush". When using "-" all debug areas
+are flushed.
+
+Examples:
+
+1. Flush debug area 0::
+
+ > echo "0" > /sys/kernel/debug/s390dbf/dasd/flush
+
+2. Flush all debug areas::
+
+ > echo "-" > /sys/kernel/debug/s390dbf/dasd/flush
+
+Changing the size of debug areas
+------------------------------------
+It is possible the change the size of debug areas through piping
+the number of pages to the debugfs file "pages". The resize request will
+also flush the debug areas.
+
+Example:
+
+Define 4 pages for the debug areas of debug feature "dasd"::
+
+ > echo "4" > /sys/kernel/debug/s390dbf/dasd/pages
+
+Stopping the debug feature
+--------------------------
+Example:
+
+1. Check if stopping is allowed::
+
+ > cat /proc/sys/s390dbf/debug_stoppable
+
+2. Stop debug feature::
+
+ > echo 0 > /proc/sys/s390dbf/debug_active
+
+crash Interface
+----------------
+The ``crash`` tool since v5.1.0 has a built-in command
+``s390dbf`` to display all the debug logs or export them to the file system.
+With this tool it is possible
+to investigate the debug logs on a live system and with a memory dump after
+a system crash.
+
+Investigating raw memory
+------------------------
+One last possibility to investigate the debug logs at a live
+system and after a system crash is to look at the raw memory
+under VM or at the Service Element.
+It is possible to find the anchor of the debug-logs through
+the ``debug_area_first`` symbol in the System map. Then one has
+to follow the correct pointers of the data-structures defined
+in debug.h and find the debug-areas in memory.
+Normally modules which use the debug feature will also have
+a global variable with the pointer to the debug-logs. Following
+this pointer it will also be possible to find the debug logs in
+memory.
+
+For this method it is recommended to use '16 * x + 4' byte (x = 0..n)
+for the length of the data field in :c:func:`debug_register()` in
+order to see the debug entries well formatted.
+
+
+Predefined Views
+----------------
+
+There are three predefined views: hex_ascii, raw and sprintf.
+The hex_ascii view shows the data field in hex and ascii representation
+(e.g. ``45 43 4b 44 | ECKD``).
+The raw view returns a bytestream as the debug areas are stored in memory.
+
+The sprintf view formats the debug entries in the same way as the sprintf
+function would do. The sprintf event/exception functions write to the
+debug entry a pointer to the format string (size = sizeof(long))
+and for each vararg a long value. So e.g. for a debug entry with a format
+string plus two varargs one would need to allocate a (3 * sizeof(long))
+byte data area in the debug_register() function.
+
+IMPORTANT:
+ Using "%s" in sprintf event functions is dangerous. You can only
+ use "%s" in the sprintf event functions, if the memory for the passed string
+ is available as long as the debug feature exists. The reason behind this is
+ that due to performance considerations only a pointer to the string is stored
+ in the debug feature. If you log a string that is freed afterwards, you will
+ get an OOPS when inspecting the debug feature, because then the debug feature
+ will access the already freed memory.
+
+NOTE:
+ If using the sprintf view do NOT use other event/exception functions
+ than the sprintf-event and -exception functions.
+
+The format of the hex_ascii and sprintf view is as follows:
+
+- Number of area
+- Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated
+ Universal Time (UTC), January 1, 1970)
+- level of debug entry
+- Exception flag (* = Exception)
+- Cpu-Number of calling task
+- Return Address to caller
+- data field
+
+The format of the raw view is:
+
+- Header as described in debug.h
+- datafield
+
+A typical line of the hex_ascii view will look like the following (first line
+is only for explanation and will not be displayed when 'cating' the view)::
+
+ area time level exception cpu caller data (hex + ascii)
+ --------------------------------------------------------------------------
+ 00 00964419409:440690 1 - 00 88023fe
+
+
+Defining views
+--------------
+
+Views are specified with the 'debug_view' structure. There are defined
+callback functions which are used for reading and writing the debugfs files:
+
+.. code-block:: c
+
+ struct debug_view {
+ char name[DEBUG_MAX_PROCF_LEN];
+ debug_prolog_proc_t* prolog_proc;
+ debug_header_proc_t* header_proc;
+ debug_format_proc_t* format_proc;
+ debug_input_proc_t* input_proc;
+ void* private_data;
+ };
+
+where:
+
+.. code-block:: c
+
+ typedef int (debug_header_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ int area,
+ debug_entry_t* entry,
+ char* out_buf);
+
+ typedef int (debug_format_proc_t) (debug_info_t* id,
+ struct debug_view* view, char* out_buf,
+ const char* in_buf);
+ typedef int (debug_prolog_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ char* out_buf);
+ typedef int (debug_input_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ struct file* file, const char* user_buf,
+ size_t in_buf_size, loff_t* offset);
+
+
+The "private_data" member can be used as pointer to view specific data.
+It is not used by the debug feature itself.
+
+The output when reading a debugfs file is structured like this::
+
+ "prolog_proc output"
+
+ "header_proc output 1" "format_proc output 1"
+ "header_proc output 2" "format_proc output 2"
+ "header_proc output 3" "format_proc output 3"
+ ...
+
+When a view is read from the debugfs, the Debug Feature calls the
+'prolog_proc' once for writing the prolog.
+Then 'header_proc' and 'format_proc' are called for each
+existing debug entry.
+
+The input_proc can be used to implement functionality when it is written to
+the view (e.g. like with ``echo "0" > /sys/kernel/debug/s390dbf/dasd/level``).
+
+For header_proc there can be used the default function
+:c:func:`debug_dflt_header_fn()` which is defined in debug.h.
+and which produces the same header output as the predefined views.
+E.g::
+
+ 00 00964419409:440761 2 - 00 88023ec
+
+In order to see how to use the callback functions check the implementation
+of the default views!
+
+Example:
+
+.. code-block:: c
+
+ #include <asm/debug.h>
+
+ #define UNKNOWNSTR "data: %08x"
+
+ const char* messages[] =
+ {"This error...........\n",
+ "That error...........\n",
+ "Problem..............\n",
+ "Something went wrong.\n",
+ "Everything ok........\n",
+ NULL
+ };
+
+ static int debug_test_format_fn(
+ debug_info_t *id, struct debug_view *view,
+ char *out_buf, const char *in_buf
+ )
+ {
+ int i, rc = 0;
+
+ if (id->buf_size >= 4) {
+ int msg_nr = *((int*)in_buf);
+ if (msg_nr < sizeof(messages) / sizeof(char*) - 1)
+ rc += sprintf(out_buf, "%s", messages[msg_nr]);
+ else
+ rc += sprintf(out_buf, UNKNOWNSTR, msg_nr);
+ }
+ return rc;
+ }
+
+ struct debug_view debug_test_view = {
+ "myview", /* name of view */
+ NULL, /* no prolog */
+ &debug_dflt_header_fn, /* default header for each entry */
+ &debug_test_format_fn, /* our own format function */
+ NULL, /* no input function */
+ NULL /* no private data */
+ };
+
+test:
+=====
+
+.. code-block:: c
+
+ debug_info_t *debug_info;
+ int i;
+ ...
+ debug_info = debug_register("test", 0, 4, 4);
+ debug_register_view(debug_info, &debug_test_view);
+ for (i = 0; i < 10; i ++)
+ debug_int_event(debug_info, 1, i);
+
+::
+
+ > cat /sys/kernel/debug/s390dbf/test/myview
+ 00 00964419734:611402 1 - 00 88042ca This error...........
+ 00 00964419734:611405 1 - 00 88042ca That error...........
+ 00 00964419734:611408 1 - 00 88042ca Problem..............
+ 00 00964419734:611411 1 - 00 88042ca Something went wrong.
+ 00 00964419734:611414 1 - 00 88042ca Everything ok........
+ 00 00964419734:611417 1 - 00 88042ca data: 00000005
+ 00 00964419734:611419 1 - 00 88042ca data: 00000006
+ 00 00964419734:611422 1 - 00 88042ca data: 00000007
+ 00 00964419734:611425 1 - 00 88042ca data: 00000008
+ 00 00964419734:611428 1 - 00 88042ca data: 00000009
diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
deleted file mode 100644
index 61329fd62e89..000000000000
--- a/Documentation/s390/s390dbf.txt
+++ /dev/null
@@ -1,667 +0,0 @@
-S390 Debug Feature
-==================
-
-files: arch/s390/kernel/debug.c
- arch/s390/include/asm/debug.h
-
-Description:
-------------
-The goal of this feature is to provide a kernel debug logging API
-where log records can be stored efficiently in memory, where each component
-(e.g. device drivers) can have one separate debug log.
-One purpose of this is to inspect the debug logs after a production system crash
-in order to analyze the reason for the crash.
-If the system still runs but only a subcomponent which uses dbf fails,
-it is possible to look at the debug logs on a live system via the Linux
-debugfs filesystem.
-The debug feature may also very useful for kernel and driver development.
-
-Design:
--------
-Kernel components (e.g. device drivers) can register themselves at the debug
-feature with the function call debug_register(). This function initializes a
-debug log for the caller. For each debug log exists a number of debug areas
-where exactly one is active at one time. Each debug area consists of contiguous
-pages in memory. In the debug areas there are stored debug entries (log records)
-which are written by event- and exception-calls.
-
-An event-call writes the specified debug entry to the active debug
-area and updates the log pointer for the active area. If the end
-of the active debug area is reached, a wrap around is done (ring buffer)
-and the next debug entry will be written at the beginning of the active
-debug area.
-
-An exception-call writes the specified debug entry to the log and
-switches to the next debug area. This is done in order to be sure
-that the records which describe the origin of the exception are not
-overwritten when a wrap around for the current area occurs.
-
-The debug areas themselves are also ordered in form of a ring buffer.
-When an exception is thrown in the last debug area, the following debug
-entries are then written again in the very first area.
-
-There are three versions for the event- and exception-calls: One for
-logging raw data, one for text and one for numbers.
-
-Each debug entry contains the following data:
-
-- Timestamp
-- Cpu-Number of calling task
-- Level of debug entry (0...6)
-- Return Address to caller
-- Flag, if entry is an exception or not
-
-The debug logs can be inspected in a live system through entries in
-the debugfs-filesystem. Under the toplevel directory "s390dbf" there is
-a directory for each registered component, which is named like the
-corresponding component. The debugfs normally should be mounted to
-/sys/kernel/debug therefore the debug feature can be accessed under
-/sys/kernel/debug/s390dbf.
-
-The content of the directories are files which represent different views
-to the debug log. Each component can decide which views should be
-used through registering them with the function debug_register_view().
-Predefined views for hex/ascii, sprintf and raw binary data are provided.
-It is also possible to define other views. The content of
-a view can be inspected simply by reading the corresponding debugfs file.
-
-All debug logs have an actual debug level (range from 0 to 6).
-The default level is 3. Event and Exception functions have a 'level'
-parameter. Only debug entries with a level that is lower or equal
-than the actual level are written to the log. This means, when
-writing events, high priority log entries should have a low level
-value whereas low priority entries should have a high one.
-The actual debug level can be changed with the help of the debugfs-filesystem
-through writing a number string "x" to the 'level' debugfs file which is
-provided for every debug log. Debugging can be switched off completely
-by using "-" on the 'level' debugfs file.
-
-Example:
-
-> echo "-" > /sys/kernel/debug/s390dbf/dasd/level
-
-It is also possible to deactivate the debug feature globally for every
-debug log. You can change the behavior using 2 sysctl parameters in
-/proc/sys/s390dbf:
-There are currently 2 possible triggers, which stop the debug feature
-globally. The first possibility is to use the "debug_active" sysctl. If
-set to 1 the debug feature is running. If "debug_active" is set to 0 the
-debug feature is turned off.
-The second trigger which stops the debug feature is a kernel oops.
-That prevents the debug feature from overwriting debug information that
-happened before the oops. After an oops you can reactivate the debug feature
-by piping 1 to /proc/sys/s390dbf/debug_active. Nevertheless, its not
-suggested to use an oopsed kernel in a production environment.
-If you want to disallow the deactivation of the debug feature, you can use
-the "debug_stoppable" sysctl. If you set "debug_stoppable" to 0 the debug
-feature cannot be stopped. If the debug feature is already stopped, it
-will stay deactivated.
-
-Kernel Interfaces:
-------------------
-
-----------------------------------------------------------------------------
-debug_info_t *debug_register(char *name, int pages, int nr_areas,
- int buf_size);
-
-Parameter: name: Name of debug log (e.g. used for debugfs entry)
- pages: number of pages, which will be allocated per area
- nr_areas: number of debug areas
- buf_size: size of data area in each debug entry
-
-Return Value: Handle for generated debug area
- NULL if register failed
-
-Description: Allocates memory for a debug log
- Must not be called within an interrupt handler
-
-----------------------------------------------------------------------------
-debug_info_t *debug_register_mode(char *name, int pages, int nr_areas,
- int buf_size, mode_t mode, uid_t uid,
- gid_t gid);
-
-Parameter: name: Name of debug log (e.g. used for debugfs entry)
- pages: Number of pages, which will be allocated per area
- nr_areas: Number of debug areas
- buf_size: Size of data area in each debug entry
- mode: File mode for debugfs files. E.g. S_IRWXUGO
- uid: User ID for debugfs files. Currently only 0 is
- supported.
- gid: Group ID for debugfs files. Currently only 0 is
- supported.
-
-Return Value: Handle for generated debug area
- NULL if register failed
-
-Description: Allocates memory for a debug log
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-void debug_unregister (debug_info_t * id);
-
-Parameter: id: handle for debug log
-
-Return Value: none
-
-Description: frees memory for a debug log and removes all registered debug
- views.
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-void debug_set_level (debug_info_t * id, int new_level);
-
-Parameter: id: handle for debug log
- new_level: new debug level
-
-Return Value: none
-
-Description: Sets new actual debug level if new_level is valid.
-
----------------------------------------------------------------------------
-bool debug_level_enabled (debug_info_t * id, int level);
-
-Parameter: id: handle for debug log
- level: debug level
-
-Return Value: True if level is less or equal to the current debug level.
-
-Description: Returns true if debug events for the specified level would be
- logged. Otherwise returns false.
----------------------------------------------------------------------------
-void debug_stop_all(void);
-
-Parameter: none
-
-Return Value: none
-
-Description: stops the debug feature if stopping is allowed. Currently
- used in case of a kernel oops.
-
----------------------------------------------------------------------------
-debug_entry_t* debug_event (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter: id: handle for debug log
- level: debug level
- data: pointer to data for debug entry
- length: length of data in bytes
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_int_event (debug_info_t * id, int level,
- unsigned int data);
-debug_entry_t* debug_long_event(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: integer value for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_text_event (debug_info_t * id, int level,
- const char* data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: string for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry in ascii format to active debug area
- (if level <= actual debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_sprintf_event (debug_info_t * id, int level,
- char* string,...);
-
-Parameter: id: handle for debug log
- level: debug level
- string: format string for debug entry
- ...: varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level).
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-debug_entry_t* debug_exception (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter: id: handle for debug log
- level: debug level
- data: pointer to data for debug entry
- length: length of data in bytes
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_int_exception (debug_info_t * id, int level,
- unsigned int data);
-debug_entry_t* debug_long_exception(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: integer value for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_text_exception (debug_info_t * id, int level,
- const char* data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: string for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry in ascii format to active debug area
- (if level <= actual debug level) and switches to next debug
- area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_sprintf_exception (debug_info_t * id, int level,
- char* string,...);
-
-Parameter: id: handle for debug log
- level: debug level
- string: format string for debug entry
- ...: varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level) and
- switches to next debug area.
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-int debug_register_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: registers new debug view and creates debugfs dir entry
-
----------------------------------------------------------------------------
-int debug_unregister_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: unregisters debug view and removes debugfs dir entry
-
-
-
-Predefined views:
------------------
-
-extern struct debug_view debug_hex_ascii_view;
-extern struct debug_view debug_raw_view;
-extern struct debug_view debug_sprintf_view;
-
-Examples
---------
-
-/*
- * hex_ascii- + raw-view Example
- */
-
-#include <linux/init.h>
-#include <asm/debug.h>
-
-static debug_info_t* debug_info;
-
-static int init(void)
-{
- /* register 4 debug areas with one page each and 4 byte data field */
-
- debug_info = debug_register ("test", 1, 4, 4 );
- debug_register_view(debug_info,&debug_hex_ascii_view);
- debug_register_view(debug_info,&debug_raw_view);
-
- debug_text_event(debug_info, 4 , "one ");
- debug_int_exception(debug_info, 4, 4711);
- debug_event(debug_info, 3, &debug_info, 4);
-
- return 0;
-}
-
-static void cleanup(void)
-{
- debug_unregister (debug_info);
-}
-
-module_init(init);
-module_exit(cleanup);
-
----------------------------------------------------------------------------
-
-/*
- * sprintf-view Example
- */
-
-#include <linux/init.h>
-#include <asm/debug.h>
-
-static debug_info_t* debug_info;
-
-static int init(void)
-{
- /* register 4 debug areas with one page each and data field for */
- /* format string pointer + 2 varargs (= 3 * sizeof(long)) */
-
- debug_info = debug_register ("test", 1, 4, sizeof(long) * 3);
- debug_register_view(debug_info,&debug_sprintf_view);
-
- debug_sprintf_event(debug_info, 2 , "first event in %s:%i\n",__FILE__,__LINE__);
- debug_sprintf_exception(debug_info, 1, "pointer to debug info: %p\n",&debug_info);
-
- return 0;
-}
-
-static void cleanup(void)
-{
- debug_unregister (debug_info);
-}
-
-module_init(init);
-module_exit(cleanup);
-
-
-
-Debugfs Interface
-----------------
-Views to the debug logs can be investigated through reading the corresponding
-debugfs-files:
-
-Example:
-
-> ls /sys/kernel/debug/s390dbf/dasd
-flush hex_ascii level pages raw
-> cat /sys/kernel/debug/s390dbf/dasd/hex_ascii | sort -k2,2 -s
-00 00974733272:680099 2 - 02 0006ad7e 07 ea 4a 90 | ....
-00 00974733272:682210 2 - 02 0006ade6 46 52 45 45 | FREE
-00 00974733272:682213 2 - 02 0006adf6 07 ea 4a 90 | ....
-00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
-01 00974733272:682284 2 - 02 0006ab16 45 43 4b 44 | ECKD
-01 00974733272:682287 2 - 02 0006ab28 00 00 00 04 | ....
-01 00974733272:682289 2 - 02 0006ab3e 00 00 00 20 | ...
-01 00974733272:682297 2 - 02 0006ad7e 07 ea 4a 90 | ....
-01 00974733272:684384 2 - 00 0006ade6 46 52 45 45 | FREE
-01 00974733272:684388 2 - 00 0006adf6 07 ea 4a 90 | ....
-
-See section about predefined views for explanation of the above output!
-
-Changing the debug level
-------------------------
-
-Example:
-
-
-> cat /sys/kernel/debug/s390dbf/dasd/level
-3
-> echo "5" > /sys/kernel/debug/s390dbf/dasd/level
-> cat /sys/kernel/debug/s390dbf/dasd/level
-5
-
-Flushing debug areas
---------------------
-Debug areas can be flushed with piping the number of the desired
-area (0...n) to the debugfs file "flush". When using "-" all debug areas
-are flushed.
-
-Examples:
-
-1. Flush debug area 0:
-> echo "0" > /sys/kernel/debug/s390dbf/dasd/flush
-
-2. Flush all debug areas:
-> echo "-" > /sys/kernel/debug/s390dbf/dasd/flush
-
-Changing the size of debug areas
-------------------------------------
-It is possible the change the size of debug areas through piping
-the number of pages to the debugfs file "pages". The resize request will
-also flush the debug areas.
-
-Example:
-
-Define 4 pages for the debug areas of debug feature "dasd":
-> echo "4" > /sys/kernel/debug/s390dbf/dasd/pages
-
-Stooping the debug feature
---------------------------
-Example:
-
-1. Check if stopping is allowed
-> cat /proc/sys/s390dbf/debug_stoppable
-2. Stop debug feature
-> echo 0 > /proc/sys/s390dbf/debug_active
-
-lcrash Interface
-----------------
-It is planned that the dump analysis tool lcrash gets an additional command
-'s390dbf' to display all the debug logs. With this tool it will be possible
-to investigate the debug logs on a live system and with a memory dump after
-a system crash.
-
-Investigating raw memory
-------------------------
-One last possibility to investigate the debug logs at a live
-system and after a system crash is to look at the raw memory
-under VM or at the Service Element.
-It is possible to find the anker of the debug-logs through
-the 'debug_area_first' symbol in the System map. Then one has
-to follow the correct pointers of the data-structures defined
-in debug.h and find the debug-areas in memory.
-Normally modules which use the debug feature will also have
-a global variable with the pointer to the debug-logs. Following
-this pointer it will also be possible to find the debug logs in
-memory.
-
-For this method it is recommended to use '16 * x + 4' byte (x = 0..n)
-for the length of the data field in debug_register() in
-order to see the debug entries well formatted.
-
-
-Predefined Views
-----------------
-
-There are three predefined views: hex_ascii, raw and sprintf.
-The hex_ascii view shows the data field in hex and ascii representation
-(e.g. '45 43 4b 44 | ECKD').
-The raw view returns a bytestream as the debug areas are stored in memory.
-
-The sprintf view formats the debug entries in the same way as the sprintf
-function would do. The sprintf event/exception functions write to the
-debug entry a pointer to the format string (size = sizeof(long))
-and for each vararg a long value. So e.g. for a debug entry with a format
-string plus two varargs one would need to allocate a (3 * sizeof(long))
-byte data area in the debug_register() function.
-
-IMPORTANT: Using "%s" in sprintf event functions is dangerous. You can only
-use "%s" in the sprintf event functions, if the memory for the passed string is
-available as long as the debug feature exists. The reason behind this is that
-due to performance considerations only a pointer to the string is stored in
-the debug feature. If you log a string that is freed afterwards, you will get
-an OOPS when inspecting the debug feature, because then the debug feature will
-access the already freed memory.
-
-NOTE: If using the sprintf view do NOT use other event/exception functions
-than the sprintf-event and -exception functions.
-
-The format of the hex_ascii and sprintf view is as follows:
-- Number of area
-- Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated
- Universal Time (UTC), January 1, 1970)
-- level of debug entry
-- Exception flag (* = Exception)
-- Cpu-Number of calling task
-- Return Address to caller
-- data field
-
-The format of the raw view is:
-- Header as described in debug.h
-- datafield
-
-A typical line of the hex_ascii view will look like the following (first line
-is only for explanation and will not be displayed when 'cating' the view):
-
-area time level exception cpu caller data (hex + ascii)
---------------------------------------------------------------------------
-00 00964419409:440690 1 - 00 88023fe
-
-
-Defining views
---------------
-
-Views are specified with the 'debug_view' structure. There are defined
-callback functions which are used for reading and writing the debugfs files:
-
-struct debug_view {
- char name[DEBUG_MAX_PROCF_LEN];
- debug_prolog_proc_t* prolog_proc;
- debug_header_proc_t* header_proc;
- debug_format_proc_t* format_proc;
- debug_input_proc_t* input_proc;
- void* private_data;
-};
-
-where
-
-typedef int (debug_header_proc_t) (debug_info_t* id,
- struct debug_view* view,
- int area,
- debug_entry_t* entry,
- char* out_buf);
-
-typedef int (debug_format_proc_t) (debug_info_t* id,
- struct debug_view* view, char* out_buf,
- const char* in_buf);
-typedef int (debug_prolog_proc_t) (debug_info_t* id,
- struct debug_view* view,
- char* out_buf);
-typedef int (debug_input_proc_t) (debug_info_t* id,
- struct debug_view* view,
- struct file* file, const char* user_buf,
- size_t in_buf_size, loff_t* offset);
-
-
-The "private_data" member can be used as pointer to view specific data.
-It is not used by the debug feature itself.
-
-The output when reading a debugfs file is structured like this:
-
-"prolog_proc output"
-
-"header_proc output 1" "format_proc output 1"
-"header_proc output 2" "format_proc output 2"
-"header_proc output 3" "format_proc output 3"
-...
-
-When a view is read from the debugfs, the Debug Feature calls the
-'prolog_proc' once for writing the prolog.
-Then 'header_proc' and 'format_proc' are called for each
-existing debug entry.
-
-The input_proc can be used to implement functionality when it is written to
-the view (e.g. like with 'echo "0" > /sys/kernel/debug/s390dbf/dasd/level).
-
-For header_proc there can be used the default function
-debug_dflt_header_fn() which is defined in debug.h.
-and which produces the same header output as the predefined views.
-E.g:
-00 00964419409:440761 2 - 00 88023ec
-
-In order to see how to use the callback functions check the implementation
-of the default views!
-
-Example
-
-#include <asm/debug.h>
-
-#define UNKNOWNSTR "data: %08x"
-
-const char* messages[] =
-{"This error...........\n",
- "That error...........\n",
- "Problem..............\n",
- "Something went wrong.\n",
- "Everything ok........\n",
- NULL
-};
-
-static int debug_test_format_fn(
- debug_info_t * id, struct debug_view *view,
- char *out_buf, const char *in_buf
-)
-{
- int i, rc = 0;
-
- if(id->buf_size >= 4) {
- int msg_nr = *((int*)in_buf);
- if(msg_nr < sizeof(messages)/sizeof(char*) - 1)
- rc += sprintf(out_buf, "%s", messages[msg_nr]);
- else
- rc += sprintf(out_buf, UNKNOWNSTR, msg_nr);
- }
- out:
- return rc;
-}
-
-struct debug_view debug_test_view = {
- "myview", /* name of view */
- NULL, /* no prolog */
- &debug_dflt_header_fn, /* default header for each entry */
- &debug_test_format_fn, /* our own format function */
- NULL, /* no input function */
- NULL /* no private data */
-};
-
-=====
-test:
-=====
-debug_info_t *debug_info;
-...
-debug_info = debug_register ("test", 0, 4, 4 ));
-debug_register_view(debug_info, &debug_test_view);
-for(i = 0; i < 10; i ++) debug_int_event(debug_info, 1, i);
-
-> cat /sys/kernel/debug/s390dbf/test/myview
-00 00964419734:611402 1 - 00 88042ca This error...........
-00 00964419734:611405 1 - 00 88042ca That error...........
-00 00964419734:611408 1 - 00 88042ca Problem..............
-00 00964419734:611411 1 - 00 88042ca Something went wrong.
-00 00964419734:611414 1 - 00 88042ca Everything ok........
-00 00964419734:611417 1 - 00 88042ca data: 00000005
-00 00964419734:611419 1 - 00 88042ca data: 00000006
-00 00964419734:611422 1 - 00 88042ca data: 00000007
-00 00964419734:611425 1 - 00 88042ca data: 00000008
-00 00964419734:611428 1 - 00 88042ca data: 00000009
diff --git a/Documentation/s390/text_files.rst b/Documentation/s390/text_files.rst
new file mode 100644
index 000000000000..c94d05d4fa17
--- /dev/null
+++ b/Documentation/s390/text_files.rst
@@ -0,0 +1,11 @@
+ibm 3270 changelog
+------------------
+
+.. include:: 3270.ChangeLog
+ :literal:
+
+ibm 3270 config3270.sh
+----------------------
+
+.. literalinclude:: config3270.sh
+ :language: shell
diff --git a/Documentation/s390/vfio-ap.txt b/Documentation/s390/vfio-ap.rst
index 65167cfe4485..b5c51f7c748d 100644
--- a/Documentation/s390/vfio-ap.txt
+++ b/Documentation/s390/vfio-ap.rst
@@ -1,4 +1,9 @@
-Introduction:
+===============================
+Adjunct Processor (AP) facility
+===============================
+
+
+Introduction
============
The Adjunct Processor (AP) facility is an IBM Z cryptographic facility comprised
of three AP instructions and from 1 up to 256 PCIe cryptographic adapter cards.
@@ -11,7 +16,7 @@ framework. This implementation relies considerably on the s390 virtualization
facilities which do most of the hard work of providing direct access to AP
devices.
-AP Architectural Overview:
+AP Architectural Overview
=========================
To facilitate the comprehension of the design, let's start with some
definitions:
@@ -31,13 +36,13 @@ definitions:
in the LPAR, the AP bus detects the AP adapter cards assigned to the LPAR and
creates a sysfs device for each assigned adapter. For example, if AP adapters
4 and 10 (0x0a) are assigned to the LPAR, the AP bus will create the following
- sysfs device entries:
+ sysfs device entries::
/sys/devices/ap/card04
/sys/devices/ap/card0a
Symbolic links to these devices will also be created in the AP bus devices
- sub-directory:
+ sub-directory::
/sys/bus/ap/devices/[card04]
/sys/bus/ap/devices/[card04]
@@ -84,7 +89,7 @@ definitions:
the cross product of the AP adapter and usage domain numbers detected when the
AP bus module is loaded. For example, if adapters 4 and 10 (0x0a) and usage
domains 6 and 71 (0x47) are assigned to the LPAR, the AP bus will create the
- following sysfs entries:
+ following sysfs entries::
/sys/devices/ap/card04/04.0006
/sys/devices/ap/card04/04.0047
@@ -92,7 +97,7 @@ definitions:
/sys/devices/ap/card0a/0a.0047
The following symbolic links to these devices will be created in the AP bus
- devices subdirectory:
+ devices subdirectory::
/sys/bus/ap/devices/[04.0006]
/sys/bus/ap/devices/[04.0047]
@@ -112,7 +117,7 @@ definitions:
domain that is not one of the usage domains, but the modified domain
must be one of the control domains.
-AP and SIE:
+AP and SIE
==========
Let's now take a look at how AP instructions executed on a guest are interpreted
by the hardware.
@@ -153,7 +158,7 @@ and 2 and usage domains 5 and 6 are assigned to a guest, the APQNs (1,5), (1,6),
The APQNs can provide secure key functionality - i.e., a private key is stored
on the adapter card for each of its domains - so each APQN must be assigned to
-at most one guest or to the linux host.
+at most one guest or to the linux host::
Example 1: Valid configuration:
------------------------------
@@ -181,8 +186,8 @@ at most one guest or to the linux host.
This is an invalid configuration because both guests have access to
APQN (1,6).
-The Design:
-===========
+The Design
+==========
The design introduces three new objects:
1. AP matrix device
@@ -205,43 +210,43 @@ The VFIO AP (vfio_ap) device driver serves the following purposes:
Reserve APQNs for exclusive use of KVM guests
---------------------------------------------
The following block diagram illustrates the mechanism by which APQNs are
-reserved:
-
- +------------------+
- 7 remove | |
- +--------------------> cex4queue driver |
- | | |
- | +------------------+
- |
- |
- | +------------------+ +-----------------+
- | 5 register driver | | 3 create | |
- | +----------------> Device core +----------> matrix device |
- | | | | | |
- | | +--------^---------+ +-----------------+
- | | |
- | | +-------------------+
- | | +-----------------------------------+ |
- | | | 4 register AP driver | | 2 register device
- | | | | |
-+--------+---+-v---+ +--------+-------+-+
-| | | |
-| ap_bus +--------------------- > vfio_ap driver |
-| | 8 probe | |
-+--------^---------+ +--^--^------------+
-6 edit | | |
- apmask | +-----------------------------+ | 9 mdev create
- aqmask | | 1 modprobe |
-+--------+-----+---+ +----------------+-+ +------------------+
-| | | |8 create | mediated |
-| admin | | VFIO device core |---------> matrix |
-| + | | | device |
-+------+-+---------+ +--------^---------+ +--------^---------+
- | | | |
- | | 9 create vfio_ap-passthrough | |
- | +------------------------------+ |
- +-------------------------------------------------------------+
- 10 assign adapter/domain/control domain
+reserved::
+
+ +------------------+
+ 7 remove | |
+ +--------------------> cex4queue driver |
+ | | |
+ | +------------------+
+ |
+ |
+ | +------------------+ +----------------+
+ | 5 register driver | | 3 create | |
+ | +----------------> Device core +----------> matrix device |
+ | | | | | |
+ | | +--------^---------+ +----------------+
+ | | |
+ | | +-------------------+
+ | | +-----------------------------------+ |
+ | | | 4 register AP driver | | 2 register device
+ | | | | |
+ +--------+---+-v---+ +--------+-------+-+
+ | | | |
+ | ap_bus +--------------------- > vfio_ap driver |
+ | | 8 probe | |
+ +--------^---------+ +--^--^------------+
+ 6 edit | | |
+ apmask | +-----------------------------+ | 9 mdev create
+ aqmask | | 1 modprobe |
+ +--------+-----+---+ +----------------+-+ +----------------+
+ | | | |8 create | mediated |
+ | admin | | VFIO device core |---------> matrix |
+ | + | | | device |
+ +------+-+---------+ +--------^---------+ +--------^-------+
+ | | | |
+ | | 9 create vfio_ap-passthrough | |
+ | +------------------------------+ |
+ +-------------------------------------------------------------+
+ 10 assign adapter/domain/control domain
The process for reserving an AP queue for use by a KVM guest is:
@@ -250,7 +255,7 @@ The process for reserving an AP queue for use by a KVM guest is:
device with the device core. This will serve as the parent device for
all mediated matrix devices used to configure an AP matrix for a guest.
3. The /sys/devices/vfio_ap/matrix device is created by the device core
-4 The vfio_ap device driver will register with the AP bus for AP queue devices
+4. The vfio_ap device driver will register with the AP bus for AP queue devices
of type 10 and higher (CEX4 and newer). The driver will provide the vfio_ap
driver's probe and remove callback interfaces. Devices older than CEX4 queues
are not supported to simplify the implementation by not needlessly
@@ -266,13 +271,14 @@ The process for reserving an AP queue for use by a KVM guest is:
it.
9. The administrator creates a passthrough type mediated matrix device to be
used by a guest
-10 The administrator assigns the adapters, usage domains and control domains
- to be exclusively used by a guest.
+10. The administrator assigns the adapters, usage domains and control domains
+ to be exclusively used by a guest.
Set up the VFIO mediated device interfaces
------------------------------------------
The VFIO AP device driver utilizes the common interface of the VFIO mediated
device core driver to:
+
* Register an AP mediated bus driver to add a mediated matrix device to and
remove it from a VFIO group.
* Create and destroy a mediated matrix device
@@ -280,25 +286,25 @@ device core driver to:
* Add a mediated matrix device to and remove it from an IOMMU group
The following high-level block diagram shows the main components and interfaces
-of the VFIO AP mediated matrix device driver:
-
- +-------------+
- | |
- | +---------+ | mdev_register_driver() +--------------+
- | | Mdev | +<-----------------------+ |
- | | bus | | | vfio_mdev.ko |
- | | driver | +----------------------->+ |<-> VFIO user
- | +---------+ | probe()/remove() +--------------+ APIs
- | |
- | MDEV CORE |
- | MODULE |
- | mdev.ko |
- | +---------+ | mdev_register_device() +--------------+
- | |Physical | +<-----------------------+ |
- | | device | | | vfio_ap.ko |<-> matrix
- | |interface| +----------------------->+ | device
- | +---------+ | callback +--------------+
- +-------------+
+of the VFIO AP mediated matrix device driver::
+
+ +-------------+
+ | |
+ | +---------+ | mdev_register_driver() +--------------+
+ | | Mdev | +<-----------------------+ |
+ | | bus | | | vfio_mdev.ko |
+ | | driver | +----------------------->+ |<-> VFIO user
+ | +---------+ | probe()/remove() +--------------+ APIs
+ | |
+ | MDEV CORE |
+ | MODULE |
+ | mdev.ko |
+ | +---------+ | mdev_register_device() +--------------+
+ | |Physical | +<-----------------------+ |
+ | | device | | | vfio_ap.ko |<-> matrix
+ | |interface| +----------------------->+ | device
+ | +---------+ | callback +--------------+
+ +-------------+
During initialization of the vfio_ap module, the matrix device is registered
with an 'mdev_parent_ops' structure that provides the sysfs attribute
@@ -306,7 +312,8 @@ structures, mdev functions and callback interfaces for managing the mediated
matrix device.
* sysfs attribute structures:
- * supported_type_groups
+
+ supported_type_groups
The VFIO mediated device framework supports creation of user-defined
mediated device types. These mediated device types are specified
via the 'supported_type_groups' structure when a device is registered
@@ -318,61 +325,72 @@ matrix device.
The VFIO AP device driver will register one mediated device type for
passthrough devices:
+
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough
+
Only the read-only attributes required by the VFIO mdev framework will
- be provided:
- ... name
- ... device_api
- ... available_instances
- ... device_api
- Where:
- * name: specifies the name of the mediated device type
- * device_api: the mediated device type's API
- * available_instances: the number of mediated matrix passthrough devices
- that can be created
- * device_api: specifies the VFIO API
- * mdev_attr_groups
+ be provided::
+
+ ... name
+ ... device_api
+ ... available_instances
+ ... device_api
+
+ Where:
+
+ * name:
+ specifies the name of the mediated device type
+ * device_api:
+ the mediated device type's API
+ * available_instances:
+ the number of mediated matrix passthrough devices
+ that can be created
+ * device_api:
+ specifies the VFIO API
+ mdev_attr_groups
This attribute group identifies the user-defined sysfs attributes of the
mediated device. When a device is registered with the VFIO mediated device
framework, the sysfs attribute files identified in the 'mdev_attr_groups'
structure will be created in the mediated matrix device's directory. The
sysfs attributes for a mediated matrix device are:
- * assign_adapter:
- * unassign_adapter:
+
+ assign_adapter / unassign_adapter:
Write-only attributes for assigning/unassigning an AP adapter to/from the
mediated matrix device. To assign/unassign an adapter, the APID of the
adapter is echoed to the respective attribute file.
- * assign_domain:
- * unassign_domain:
+ assign_domain / unassign_domain:
Write-only attributes for assigning/unassigning an AP usage domain to/from
the mediated matrix device. To assign/unassign a domain, the domain
number of the the usage domain is echoed to the respective attribute
file.
- * matrix:
+ matrix:
A read-only file for displaying the APQNs derived from the cross product
of the adapter and domain numbers assigned to the mediated matrix device.
- * assign_control_domain:
- * unassign_control_domain:
+ assign_control_domain / unassign_control_domain:
Write-only attributes for assigning/unassigning an AP control domain
to/from the mediated matrix device. To assign/unassign a control domain,
the ID of the domain to be assigned/unassigned is echoed to the respective
attribute file.
- * control_domains:
+ control_domains:
A read-only file for displaying the control domain numbers assigned to the
mediated matrix device.
* functions:
- * create:
+
+ create:
allocates the ap_matrix_mdev structure used by the vfio_ap driver to:
+
* Store the reference to the KVM structure for the guest using the mdev
* Store the AP matrix configuration for the adapters, domains, and control
domains assigned via the corresponding sysfs attributes files
- * remove:
+
+ remove:
deallocates the mediated matrix device's ap_matrix_mdev structure. This will
be allowed only if a running guest is not using the mdev.
* callback interfaces
- * open:
+
+ open:
The vfio_ap driver uses this callback to register a
VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the mdev matrix
device. The open is invoked when QEMU connects the VFIO iommu group
@@ -380,16 +398,17 @@ matrix device.
to configure the KVM guest is provided via this callback. The KVM structure,
is used to configure the guest's access to the AP matrix defined via the
mediated matrix device's sysfs attribute files.
- * release:
+ release:
unregisters the VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the
mdev matrix device and deconfigures the guest's AP matrix.
-Configure the APM, AQM and ADM in the CRYCB:
+Configure the APM, AQM and ADM in the CRYCB
-------------------------------------------
Configuring the AP matrix for a KVM guest will be performed when the
VFIO_GROUP_NOTIFY_SET_KVM notifier callback is invoked. The notifier
function is called when QEMU connects to KVM. The guest's AP matrix is
configured via it's CRYCB by:
+
* Setting the bits in the APM corresponding to the APIDs assigned to the
mediated matrix device via its 'assign_adapter' interface.
* Setting the bits in the AQM corresponding to the domains assigned to the
@@ -418,12 +437,12 @@ available to a KVM guest via the following CPU model features:
Note: If the user chooses to specify a CPU model different than the 'host'
model to QEMU, the CPU model features and facilities need to be turned on
-explicitly; for example:
+explicitly; for example::
/usr/bin/qemu-system-s390x ... -cpu z13,ap=on,apqci=on,apft=on
A guest can be precluded from using AP features/facilities by turning them off
-explicitly; for example:
+explicitly; for example::
/usr/bin/qemu-system-s390x ... -cpu host,ap=off,apqci=off,apft=off
@@ -435,7 +454,7 @@ the APFT facility is not installed on the guest, then the probe of device
drivers will fail since only type 10 and newer devices can be configured for
guest use.
-Example:
+Example
=======
Let's now provide an example to illustrate how KVM guests may be given
access to AP facilities. For this example, we will show how to configure
@@ -444,30 +463,36 @@ look like this:
Guest1
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
05 CEX5C CCA-Coproc
05.0004 CEX5C CCA-Coproc
05.00ab CEX5C CCA-Coproc
06 CEX5A Accelerator
06.0004 CEX5A Accelerator
06.00ab CEX5C CCA-Coproc
+=========== ===== ============
Guest2
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
05 CEX5A Accelerator
05.0047 CEX5A Accelerator
05.00ff CEX5A Accelerator
+=========== ===== ============
Guest2
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
06 CEX5A Accelerator
06.0047 CEX5A Accelerator
06.00ff CEX5A Accelerator
+=========== ===== ============
These are the steps:
@@ -492,25 +517,26 @@ These are the steps:
* VFIO_MDEV_DEVICE
* KVM
- If using make menuconfig select the following to build the vfio_ap module:
- -> Device Drivers
- -> IOMMU Hardware Support
- select S390 AP IOMMU Support
- -> VFIO Non-Privileged userspace driver framework
- -> Mediated device driver frramework
- -> VFIO driver for Mediated devices
- -> I/O subsystem
- -> VFIO support for AP devices
+ If using make menuconfig select the following to build the vfio_ap module::
+
+ -> Device Drivers
+ -> IOMMU Hardware Support
+ select S390 AP IOMMU Support
+ -> VFIO Non-Privileged userspace driver framework
+ -> Mediated device driver frramework
+ -> VFIO driver for Mediated devices
+ -> I/O subsystem
+ -> VFIO support for AP devices
2. Secure the AP queues to be used by the three guests so that the host can not
access them. To secure them, there are two sysfs files that specify
bitmasks marking a subset of the APQN range as 'usable by the default AP
queue device drivers' or 'not usable by the default device drivers' and thus
available for use by the vfio_ap device driver'. The location of the sysfs
- files containing the masks are:
+ files containing the masks are::
- /sys/bus/ap/apmask
- /sys/bus/ap/aqmask
+ /sys/bus/ap/apmask
+ /sys/bus/ap/aqmask
The 'apmask' is a 256-bit mask that identifies a set of AP adapter IDs
(APID). Each bit in the mask, from left to right (i.e., from most significant
@@ -526,7 +552,7 @@ These are the steps:
queue device drivers; otherwise, the APQI is usable by the vfio_ap device
driver.
- Take, for example, the following mask:
+ Take, for example, the following mask::
0x7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
@@ -548,68 +574,70 @@ These are the steps:
respective sysfs mask file in one of two formats:
* An absolute hex string starting with 0x - like "0x12345678" - sets
- the mask. If the given string is shorter than the mask, it is padded
- with 0s on the right; for example, specifying a mask value of 0x41 is
- the same as specifying:
+ the mask. If the given string is shorter than the mask, it is padded
+ with 0s on the right; for example, specifying a mask value of 0x41 is
+ the same as specifying::
- 0x4100000000000000000000000000000000000000000000000000000000000000
+ 0x4100000000000000000000000000000000000000000000000000000000000000
- Keep in mind that the mask reads from left to right (i.e., most
- significant to least significant bit in big endian order), so the mask
- above identifies device numbers 1 and 7 (01000001).
+ Keep in mind that the mask reads from left to right (i.e., most
+ significant to least significant bit in big endian order), so the mask
+ above identifies device numbers 1 and 7 (01000001).
- If the string is longer than the mask, the operation is terminated with
- an error (EINVAL).
+ If the string is longer than the mask, the operation is terminated with
+ an error (EINVAL).
* Individual bits in the mask can be switched on and off by specifying
- each bit number to be switched in a comma separated list. Each bit
- number string must be prepended with a ('+') or minus ('-') to indicate
- the corresponding bit is to be switched on ('+') or off ('-'). Some
- valid values are:
+ each bit number to be switched in a comma separated list. Each bit
+ number string must be prepended with a ('+') or minus ('-') to indicate
+ the corresponding bit is to be switched on ('+') or off ('-'). Some
+ valid values are:
- "+0" switches bit 0 on
- "-13" switches bit 13 off
- "+0x41" switches bit 65 on
- "-0xff" switches bit 255 off
+ - "+0" switches bit 0 on
+ - "-13" switches bit 13 off
+ - "+0x41" switches bit 65 on
+ - "-0xff" switches bit 255 off
- The following example:
- +0,-6,+0x47,-0xf0
+ The following example:
- Switches bits 0 and 71 (0x47) on
- Switches bits 6 and 240 (0xf0) off
+ +0,-6,+0x47,-0xf0
- Note that the bits not specified in the list remain as they were before
- the operation.
+ Switches bits 0 and 71 (0x47) on
+
+ Switches bits 6 and 240 (0xf0) off
+
+ Note that the bits not specified in the list remain as they were before
+ the operation.
2. The masks can also be changed at boot time via parameters on the kernel
command line like this:
- ap.apmask=0xffff ap.aqmask=0x40
+ ap.apmask=0xffff ap.aqmask=0x40
- This would create the following masks:
+ This would create the following masks::
- apmask:
- 0xffff000000000000000000000000000000000000000000000000000000000000
+ apmask:
+ 0xffff000000000000000000000000000000000000000000000000000000000000
- aqmask:
- 0x4000000000000000000000000000000000000000000000000000000000000000
+ aqmask:
+ 0x4000000000000000000000000000000000000000000000000000000000000000
- Resulting in these two pools:
+ Resulting in these two pools::
- default drivers pool: adapter 0-15, domain 1
- alternate drivers pool: adapter 16-255, domains 0, 2-255
+ default drivers pool: adapter 0-15, domain 1
+ alternate drivers pool: adapter 16-255, domains 0, 2-255
- Securing the APQNs for our example:
- ----------------------------------
+Securing the APQNs for our example
+----------------------------------
To secure the AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004, 06.0047,
06.00ab, and 06.00ff for use by the vfio_ap device driver, the corresponding
- APQNs can either be removed from the default masks:
+ APQNs can either be removed from the default masks::
echo -5,-6 > /sys/bus/ap/apmask
echo -4,-0x47,-0xab,-0xff > /sys/bus/ap/aqmask
- Or the masks can be set as follows:
+ Or the masks can be set as follows::
echo 0xf9ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff \
> apmask
@@ -620,19 +648,19 @@ These are the steps:
This will result in AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004,
06.0047, 06.00ab, and 06.00ff getting bound to the vfio_ap device driver. The
sysfs directory for the vfio_ap device driver will now contain symbolic links
- to the AP queue devices bound to it:
-
- /sys/bus/ap
- ... [drivers]
- ...... [vfio_ap]
- ......... [05.0004]
- ......... [05.0047]
- ......... [05.00ab]
- ......... [05.00ff]
- ......... [06.0004]
- ......... [06.0047]
- ......... [06.00ab]
- ......... [06.00ff]
+ to the AP queue devices bound to it::
+
+ /sys/bus/ap
+ ... [drivers]
+ ...... [vfio_ap]
+ ......... [05.0004]
+ ......... [05.0047]
+ ......... [05.00ab]
+ ......... [05.00ff]
+ ......... [06.0004]
+ ......... [06.0047]
+ ......... [06.00ab]
+ ......... [06.00ff]
Keep in mind that only type 10 and newer adapters (i.e., CEX4 and later)
can be bound to the vfio_ap device driver. The reason for this is to
@@ -645,96 +673,96 @@ These are the steps:
queue device can be read from the parent card's sysfs directory. For example,
to see the hardware type of the queue 05.0004:
- cat /sys/bus/ap/devices/card05/hwtype
+ cat /sys/bus/ap/devices/card05/hwtype
The hwtype must be 10 or higher (CEX4 or newer) in order to be bound to the
vfio_ap device driver.
3. Create the mediated devices needed to configure the AP matrixes for the
three guests and to provide an interface to the vfio_ap driver for
- use by the guests:
+ use by the guests::
- /sys/devices/vfio_ap/matrix/
- --- [mdev_supported_types]
- ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
- --------- create
- --------- [devices]
+ /sys/devices/vfio_ap/matrix/
+ --- [mdev_supported_types]
+ ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
+ --------- create
+ --------- [devices]
- To create the mediated devices for the three guests:
+ To create the mediated devices for the three guests::
uuidgen > create
uuidgen > create
uuidgen > create
- or
+ or
- echo $uuid1 > create
- echo $uuid2 > create
- echo $uuid3 > create
+ echo $uuid1 > create
+ echo $uuid2 > create
+ echo $uuid3 > create
This will create three mediated devices in the [devices] subdirectory named
after the UUID written to the create attribute file. We call them $uuid1,
- $uuid2 and $uuid3 and this is the sysfs directory structure after creation:
-
- /sys/devices/vfio_ap/matrix/
- --- [mdev_supported_types]
- ------ [vfio_ap-passthrough]
- --------- [devices]
- ------------ [$uuid1]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- --------------- unassign_control_domain
- --------------- unassign_domain
-
- ------------ [$uuid2]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- ----------------unassign_control_domain
- ----------------unassign_domain
-
- ------------ [$uuid3]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- ----------------unassign_control_domain
- ----------------unassign_domain
+ $uuid2 and $uuid3 and this is the sysfs directory structure after creation::
+
+ /sys/devices/vfio_ap/matrix/
+ --- [mdev_supported_types]
+ ------ [vfio_ap-passthrough]
+ --------- [devices]
+ ------------ [$uuid1]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ --------------- unassign_control_domain
+ --------------- unassign_domain
+
+ ------------ [$uuid2]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ ----------------unassign_control_domain
+ ----------------unassign_domain
+
+ ------------ [$uuid3]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ ----------------unassign_control_domain
+ ----------------unassign_domain
4. The administrator now needs to configure the matrixes for the mediated
devices $uuid1 (for Guest1), $uuid2 (for Guest2) and $uuid3 (for Guest3).
- This is how the matrix is configured for Guest1:
+ This is how the matrix is configured for Guest1::
echo 5 > assign_adapter
echo 6 > assign_adapter
echo 4 > assign_domain
echo 0xab > assign_domain
- Control domains can similarly be assigned using the assign_control_domain
- sysfs file.
+ Control domains can similarly be assigned using the assign_control_domain
+ sysfs file.
- If a mistake is made configuring an adapter, domain or control domain,
- you can use the unassign_xxx files to unassign the adapter, domain or
- control domain.
+ If a mistake is made configuring an adapter, domain or control domain,
+ you can use the unassign_xxx files to unassign the adapter, domain or
+ control domain.
- To display the matrix configuration for Guest1:
+ To display the matrix configuration for Guest1::
- cat matrix
+ cat matrix
- This is how the matrix is configured for Guest2:
+ This is how the matrix is configured for Guest2::
echo 5 > assign_adapter
echo 0x47 > assign_domain
echo 0xff > assign_domain
- This is how the matrix is configured for Guest3:
+ This is how the matrix is configured for Guest3::
echo 6 > assign_adapter
echo 0x47 > assign_domain
@@ -783,24 +811,24 @@ These are the steps:
configured for the system. If a control domain number higher than the maximum
is specified, the operation will terminate with an error (ENODEV).
-5. Start Guest1:
+5. Start Guest1::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
-7. Start Guest2:
+7. Start Guest2::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
-7. Start Guest3:
+7. Start Guest3::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
When the guest is shut down, the mediated matrix devices may be removed.
-Using our example again, to remove the mediated matrix device $uuid1:
+Using our example again, to remove the mediated matrix device $uuid1::
/sys/devices/vfio_ap/matrix/
--- [mdev_supported_types]
@@ -809,18 +837,19 @@ Using our example again, to remove the mediated matrix device $uuid1:
------------ [$uuid1]
--------------- remove
+::
echo 1 > remove
- This will remove all of the mdev matrix device's sysfs structures including
- the mdev device itself. To recreate and reconfigure the mdev matrix device,
- all of the steps starting with step 3 will have to be performed again. Note
- that the remove will fail if a guest using the mdev is still running.
+This will remove all of the mdev matrix device's sysfs structures including
+the mdev device itself. To recreate and reconfigure the mdev matrix device,
+all of the steps starting with step 3 will have to be performed again. Note
+that the remove will fail if a guest using the mdev is still running.
- It is not necessary to remove an mdev matrix device, but one may want to
- remove it if no guest will use it during the remaining lifetime of the linux
- host. If the mdev matrix device is removed, one may want to also reconfigure
- the pool of adapters and queues reserved for use by the default drivers.
+It is not necessary to remove an mdev matrix device, but one may want to
+remove it if no guest will use it during the remaining lifetime of the linux
+host. If the mdev matrix device is removed, one may want to also reconfigure
+the pool of adapters and queues reserved for use by the default drivers.
Limitations
===========
diff --git a/Documentation/s390/vfio-ccw.txt b/Documentation/s390/vfio-ccw.rst
index 2be11ad864ff..1f6d0b56d53e 100644
--- a/Documentation/s390/vfio-ccw.txt
+++ b/Documentation/s390/vfio-ccw.rst
@@ -1,3 +1,4 @@
+==================================
vfio-ccw: the basic infrastructure
==================================
@@ -11,9 +12,11 @@ virtual machine, while vfio is the means.
Different than other hardware architectures, s390 has defined a unified
I/O access method, which is so called Channel I/O. It has its own access
patterns:
+
- Channel programs run asynchronously on a separate (co)processor.
- The channel subsystem will access any memory designated by the caller
in the channel program directly, i.e. there is no iommu involved.
+
Thus when we introduce vfio support for these devices, we realize it
with a mediated device (mdev) implementation. The vfio mdev will be
added to an iommu group, so as to make itself able to be managed by the
@@ -24,6 +27,7 @@ to perform I/O instructions.
This document does not intend to explain the s390 I/O architecture in
every detail. More information/reference could be found here:
+
- A good start to know Channel I/O in general:
https://en.wikipedia.org/wiki/Channel_I/O
- s390 architecture:
@@ -80,6 +84,7 @@ until interrupted. The I/O completion result is received by the
interrupt handler in the form of interrupt response block (IRB).
Back to vfio-ccw, in short:
+
- ORBs and channel programs are built in guest kernel (with guest
physical addresses).
- ORBs and channel programs are passed to the host kernel.
@@ -106,6 +111,7 @@ it gets sent to hardware.
Within this implementation, we have two drivers for two types of
devices:
+
- The vfio_ccw driver for the physical subchannel device.
This is an I/O subchannel driver for the real subchannel device. It
realizes a group of callbacks and registers to the mdev framework as a
@@ -137,7 +143,7 @@ devices:
vfio_pin_pages and a vfio_unpin_pages interfaces from the vfio iommu
backend for the physical devices to pin and unpin pages by demand.
-Below is a high Level block diagram.
+Below is a high Level block diagram::
+-------------+
| |
@@ -158,6 +164,7 @@ Below is a high Level block diagram.
+-------------+
The process of how these work together.
+
1. vfio_ccw.ko drives the physical I/O subchannel, and registers the
physical device (with callbacks) to mdev framework.
When vfio_ccw probing the subchannel device, it registers device
@@ -178,17 +185,17 @@ vfio-ccw I/O region
An I/O region is used to accept channel program request from user
space and store I/O interrupt result for user space to retrieve. The
-definition of the region is:
-
-struct ccw_io_region {
-#define ORB_AREA_SIZE 12
- __u8 orb_area[ORB_AREA_SIZE];
-#define SCSW_AREA_SIZE 12
- __u8 scsw_area[SCSW_AREA_SIZE];
-#define IRB_AREA_SIZE 96
- __u8 irb_area[IRB_AREA_SIZE];
- __u32 ret_code;
-} __packed;
+definition of the region is::
+
+ struct ccw_io_region {
+ #define ORB_AREA_SIZE 12
+ __u8 orb_area[ORB_AREA_SIZE];
+ #define SCSW_AREA_SIZE 12
+ __u8 scsw_area[SCSW_AREA_SIZE];
+ #define IRB_AREA_SIZE 96
+ __u8 irb_area[IRB_AREA_SIZE];
+ __u32 ret_code;
+ } __packed;
While starting an I/O request, orb_area should be filled with the
guest ORB, and scsw_area should be filled with the SCSW of the Virtual
@@ -205,7 +212,7 @@ vfio-ccw follows what vfio-pci did on the s390 platform and uses
vfio-iommu-type1 as the vfio iommu backend.
* CCW translation APIs
- A group of APIs (start with 'cp_') to do CCW translation. The CCWs
+ A group of APIs (start with `cp_`) to do CCW translation. The CCWs
passed in by a user space program are organized with their guest
physical memory addresses. These APIs will copy the CCWs into kernel
space, and assemble a runnable kernel channel program by updating the
@@ -217,12 +224,14 @@ vfio-iommu-type1 as the vfio iommu backend.
This driver utilizes the CCW translation APIs and introduces
vfio_ccw, which is the driver for the I/O subchannel devices you want
to pass through.
- vfio_ccw implements the following vfio ioctls:
+ vfio_ccw implements the following vfio ioctls::
+
VFIO_DEVICE_GET_INFO
VFIO_DEVICE_GET_IRQ_INFO
VFIO_DEVICE_GET_REGION_INFO
VFIO_DEVICE_RESET
VFIO_DEVICE_SET_IRQS
+
This provides an I/O region, so that the user space program can pass a
channel program to the kernel, to do further CCW translation before
issuing them to a real device.
@@ -236,32 +245,49 @@ bit more detail how an I/O request triggered by the QEMU guest will be
handled (without error handling).
Explanation:
-Q1-Q7: QEMU side process.
-K1-K5: Kernel side process.
-Q1. Get I/O region info during initialization.
-Q2. Setup event notifier and handler to handle I/O completion.
+- Q1-Q7: QEMU side process.
+- K1-K5: Kernel side process.
+
+Q1.
+ Get I/O region info during initialization.
+
+Q2.
+ Setup event notifier and handler to handle I/O completion.
... ...
-Q3. Intercept a ssch instruction.
-Q4. Write the guest channel program and ORB to the I/O region.
- K1. Copy from guest to kernel.
- K2. Translate the guest channel program to a host kernel space
- channel program, which becomes runnable for a real device.
- K3. With the necessary information contained in the orb passed in
- by QEMU, issue the ccwchain to the device.
- K4. Return the ssch CC code.
-Q5. Return the CC code to the guest.
+Q3.
+ Intercept a ssch instruction.
+Q4.
+ Write the guest channel program and ORB to the I/O region.
+
+ K1.
+ Copy from guest to kernel.
+ K2.
+ Translate the guest channel program to a host kernel space
+ channel program, which becomes runnable for a real device.
+ K3.
+ With the necessary information contained in the orb passed in
+ by QEMU, issue the ccwchain to the device.
+ K4.
+ Return the ssch CC code.
+Q5.
+ Return the CC code to the guest.
... ...
- K5. Interrupt handler gets the I/O result and write the result to
- the I/O region.
- K6. Signal QEMU to retrieve the result.
-Q6. Get the signal and event handler reads out the result from the I/O
+ K5.
+ Interrupt handler gets the I/O result and write the result to
+ the I/O region.
+ K6.
+ Signal QEMU to retrieve the result.
+
+Q6.
+ Get the signal and event handler reads out the result from the I/O
region.
-Q7. Update the irb for the guest.
+Q7.
+ Update the irb for the guest.
Limitations
-----------
@@ -295,6 +321,6 @@ Reference
1. ESA/s390 Principles of Operation manual (IBM Form. No. SA22-7832)
2. ESA/390 Common I/O Device Commands manual (IBM Form. No. SA22-7204)
3. https://en.wikipedia.org/wiki/Channel_I/O
-4. Documentation/s390/cds.txt
+4. Documentation/s390/cds.rst
5. Documentation/vfio.txt
6. Documentation/vfio-mediated-device.txt
diff --git a/Documentation/s390/zfcpdump.txt b/Documentation/s390/zfcpdump.rst
index b064aa59714d..54e8e7caf7e7 100644
--- a/Documentation/s390/zfcpdump.txt
+++ b/Documentation/s390/zfcpdump.rst
@@ -1,4 +1,6 @@
+==================================
The s390 SCSI dump tool (zfcpdump)
+==================================
System z machines (z900 or higher) provide hardware support for creating system
dumps on SCSI disks. The dump process is initiated by booting a dump tool, which
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.txt
index b14e03ff3528..a7514343b660 100644
--- a/Documentation/scheduler/sched-deadline.txt
+++ b/Documentation/scheduler/sched-deadline.txt
@@ -652,7 +652,7 @@ CONTENTS
-deadline tasks cannot have an affinity mask smaller that the entire
root_domain they are created on. However, affinities can be specified
- through the cpuset facility (Documentation/cgroup-v1/cpusets.txt).
+ through the cpuset facility (Documentation/cgroup-v1/cpusets.rst).
5.1 SCHED_DEADLINE and cpusets HOWTO
------------------------------------
diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt
index edd861c94c1b..d1328890ef28 100644
--- a/Documentation/scheduler/sched-design-CFS.txt
+++ b/Documentation/scheduler/sched-design-CFS.txt
@@ -215,7 +215,7 @@ SCHED_BATCH) tasks.
These options need CONFIG_CGROUPS to be defined, and let the administrator
create arbitrary groups of tasks, using the "cgroup" pseudo filesystem. See
- Documentation/cgroup-v1/cgroups.txt for more information about this filesystem.
+ Documentation/cgroup-v1/cgroups.rst for more information about this filesystem.
When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
group created using the pseudo filesystem. See example steps below to create
diff --git a/Documentation/scheduler/sched-pelt.c b/Documentation/scheduler/sched-pelt.c
index e4219139386a..7238b355919c 100644
--- a/Documentation/scheduler/sched-pelt.c
+++ b/Documentation/scheduler/sched-pelt.c
@@ -20,7 +20,8 @@ void calc_runnable_avg_yN_inv(void)
int i;
unsigned int x;
- printf("static const u32 runnable_avg_yN_inv[] = {");
+ /* To silence -Wunused-but-set-variable warnings. */
+ printf("static const u32 runnable_avg_yN_inv[] __maybe_unused = {");
for (i = 0; i < HALFLIFE; i++) {
x = ((1UL<<32)-1)*pow(y, i);
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt
index d8fce3e78457..c09f7a3fee66 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.txt
@@ -133,7 +133,7 @@ This uses the cgroup virtual file system and "<cgroup>/cpu.rt_runtime_us"
to control the CPU time reserved for each control group.
For more information on working with control groups, you should read
-Documentation/cgroup-v1/cgroups.txt as well.
+Documentation/cgroup-v1/cgroups.rst as well.
Group settings are checked against the following limits in order to keep the
configuration schedulable:
diff --git a/Documentation/security/IMA-templates.rst b/Documentation/security/IMA-templates.rst
index 2cd0e273cc9a..3d1cca287aa4 100644
--- a/Documentation/security/IMA-templates.rst
+++ b/Documentation/security/IMA-templates.rst
@@ -69,15 +69,16 @@ descriptors by adding their identifier to the format string
algorithm (field format: [<hash algo>:]digest, where the digest
prefix is shown only if the hash algorithm is not SHA1 or MD5);
- 'n-ng': the name of the event, without size limitations;
- - 'sig': the file signature.
+ - 'sig': the file signature;
+ - 'buf': the buffer data that was used to generate the hash without size limitations;
Below, there is the list of defined template descriptors:
- "ima": its format is ``d|n``;
- "ima-ng" (default): its format is ``d-ng|n-ng``;
- - "ima-sig": its format is ``d-ng|n-ng|sig``.
-
+ - "ima-sig": its format is ``d-ng|n-ng|sig``;
+ - "ima-buf": its format is ``d-ng|n-ng|buf``;
Use
diff --git a/Documentation/security/keys/core.rst b/Documentation/security/keys/core.rst
index 9521c4207f01..1b3c907980ad 100644
--- a/Documentation/security/keys/core.rst
+++ b/Documentation/security/keys/core.rst
@@ -57,9 +57,9 @@ Each key has a number of attributes:
type provides an operation to perform a match between the description on a
key and a criterion string.
- * Each key has an owner user ID, a group ID and a permissions mask. These
- are used to control what a process may do to a key from userspace, and
- whether a kernel service will be able to find the key.
+ * Each key has an owner user ID, a group ID and an ACL. These are used to
+ control what a process may do to a key from userspace, and whether a
+ kernel service will be able to find the key.
* Each key can be set to expire at a specific time by the key type's
instantiation function. Keys can also be immortal.
@@ -198,43 +198,110 @@ The key service provides a number of features besides keys:
Key Access Permissions
======================
-Keys have an owner user ID, a group access ID, and a permissions mask. The mask
-has up to eight bits each for possessor, user, group and other access. Only
-six of each set of eight bits are defined. These permissions granted are:
+Keys have an owner user ID, a group ID and an ACL. The ACL is made up of a
+sequence of ACEs that each contain three elements:
- * View
+ * The type of subject.
+ * The subject.
- This permits a key or keyring's attributes to be viewed - including key
- type and description.
+ These two together indicate the subject to whom the permits are granted.
+ The type can be one of:
- * Read
+ * ``KEY_ACE_SUBJ_STANDARD``
- This permits a key's payload to be viewed or a keyring's list of linked
- keys.
+ The subject is a standard 'macro' type. The subject can be one of:
+
+ * ``KEY_ACE_EVERYONE``
+
+ The permits are granted to everyone. It replaces the old 'other'
+ type on the assumption that you wouldn't grant a permission to other
+ that you you wouldn't grant to everyone else.
+
+ * ``KEY_ACE_OWNER``
+
+ The permits are granted to the owner of the key (key->uid).
+
+ * ``KEY_ACE_GROUP``
+
+ The permits are granted to the key's group (key->gid).
+
+ * ``KEY_ACE_POSSESSOR``
+
+ The permits are granted to anyone who possesses the key.
+
+ * The set of permits granted to the subject. These include:
+
+ * ``KEY_ACE_VIEW``
+
+ This permits a key or keyring's attributes to be viewed - including the
+ key type and description.
+
+ * ``KEY_ACE_READ``
+
+ This permits a key's payload to be viewed or a keyring's list of linked
+ keys.
+
+ * ``KEY_ACE_WRITE``
+
+ This permits a key's payload to be instantiated or updated, or it allows
+ a link to be added to or removed from a keyring.
+
+ * ``KEY_ACE_SEARCH``
+
+ This permits keyrings to be searched and keys to be found. Searches can
+ only recurse into nested keyrings that have search permission set.
+
+ * ``KEY_ACE_LINK``
+
+ This permits a key or keyring to be linked to. To create a link from a
+ keyring to a key, a process must have Write permission on the keyring
+ and Link permission on the key.
+
+ * ``KEY_ACE_SET_SECURITY``
+
+ This permits a key's UID, GID and permissions mask to be changed.
- * Write
+ * ``KEY_ACE_INVAL``
- This permits a key's payload to be instantiated or updated, or it allows a
- link to be added to or removed from a keyring.
+ This permits a key to be invalidated with KEYCTL_INVALIDATE.
- * Search
+ * ``KEY_ACE_REVOKE``
- This permits keyrings to be searched and keys to be found. Searches can
- only recurse into nested keyrings that have search permission set.
+ This permits a key to be revoked with KEYCTL_REVOKE.
- * Link
+ * ``KEY_ACE_JOIN``
- This permits a key or keyring to be linked to. To create a link from a
- keyring to a key, a process must have Write permission on the keyring and
- Link permission on the key.
+ This permits a keyring to be joined as a session by
+ KEYCTL_JOIN_SESSION_KEYRING or KEYCTL_SESSION_TO_PARENT.
- * Set Attribute
+ * ``KEY_ACE_CLEAR``
- This permits a key's UID, GID and permissions mask to be changed.
+ This permits a keyring to be cleared.
For changing the ownership, group ID or permissions mask, being the owner of
the key or having the sysadmin capability is sufficient.
+The legacy KEYCTL_SETPERM and KEYCTL_DESCRIBE functions can only see/generate
+View, Read, Write, Search, Link and SetAttr permits, and do this for each of
+possessor, user, group and other permission sets as a 32-bit flag mask. These
+will be approximated/inferred:
+
+ SETPERM Permit Implied ACE Permit
+ =============== =======================
+ Search Inval, Join
+ Write Revoke, Clear
+ Setattr Set Security, Revoke
+
+ ACE Permit Described as
+ =============== =======================
+ Inval Search
+ Join Search
+ Revoke Write (unless Setattr)
+ Clear write
+ Set Security Setattr
+
+'Other' will be approximated as/inferred from the 'Everyone' subject.
+
SELinux Support
===============
@@ -433,6 +500,10 @@ The main syscalls are:
/sbin/request-key will be invoked in an attempt to obtain a key. The
callout_info string will be passed as an argument to the program.
+ To link a key into the destination keyring the key must grant link
+ permission on the key to the caller and the keyring must grant write
+ permission.
+
See also Documentation/security/keys/request-key.rst.
@@ -577,6 +648,27 @@ The keyctl syscall functions are:
added.
+ * Move a key from one keyring to another::
+
+ long keyctl(KEYCTL_MOVE,
+ key_serial_t id,
+ key_serial_t from_ring_id,
+ key_serial_t to_ring_id,
+ unsigned int flags);
+
+ Move the key specified by "id" from the keyring specified by
+ "from_ring_id" to the keyring specified by "to_ring_id". If the two
+ keyrings are the same, nothing is done.
+
+ "flags" can have KEYCTL_MOVE_EXCL set in it to cause the operation to fail
+ with EEXIST if a matching key exists in the destination keyring, otherwise
+ such a key will be replaced.
+
+ A process must have link permission on the key for this function to be
+ successful and write permission on both keyrings. Any errors that can
+ occur from KEYCTL_LINK also apply on the destination keyring here.
+
+
* Unlink a key or keyring from another keyring::
long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key);
@@ -1059,7 +1151,8 @@ payload contents" for more information.
struct key *request_key(const struct key_type *type,
const char *description,
- const char *callout_info);
+ const char *callout_info,
+ struct key_acl *acl);
This is used to request a key or keyring with a description that matches
the description specified according to the key type's match_preparse()
@@ -1074,52 +1167,50 @@ payload contents" for more information.
If successful, the key will have been attached to the default keyring for
implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING.
+ If a key is created, it will be given the specified ACL.
+
See also Documentation/security/keys/request-key.rst.
+ * To search for a key in a specific domain, call:
+
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag,
+ const char *callout_info,
+ struct key_acl *acl);
+
+ This is identical to request_key(), except that a domain tag may be
+ specifies that causes search algorithm to only match keys matching that
+ tag. The domain_tag may be NULL, specifying a global domain that is
+ separate from any nominated domain.
+
+
* To search for a key, passing auxiliary data to the upcaller, call::
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ struct key_tag *domain_tag,
const void *callout_info,
size_t callout_len,
- void *aux);
-
- This is identical to request_key(), except that the auxiliary data is
- passed to the key_type->request_key() op if it exists, and the callout_info
- is a blob of length callout_len, if given (the length may be 0).
-
-
- * A key can be requested asynchronously by calling one of::
-
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const void *callout_info,
- size_t callout_len);
-
- or::
-
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
+ void *aux,
+ struct key_acl *acl);
- which are asynchronous equivalents of request_key() and
- request_key_with_auxdata() respectively.
+ This is identical to request_key_tag(), except that the auxiliary data is
+ passed to the key_type->request_key() op if it exists, and the
+ callout_info is a blob of length callout_len, if given (the length may be
+ 0).
- These two functions return with the key potentially still under
- construction. To wait for construction completion, the following should be
- called::
- int wait_for_key_construction(struct key *key, bool intr);
+ * To search for a key under RCU conditions, call::
- The function will wait for the key to finish being constructed and then
- invokes key_validate() to return an appropriate value to indicate the state
- of the key (0 indicates the key is usable).
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag);
- If intr is true, then the wait can be interrupted by a signal, in which
- case error ERESTARTSYS will be returned.
+ which is similar to request_key_tag() except that it does not check for
+ keys that are under construction and it will not call out to userspace to
+ construct a key if it can't find a match.
* When it is no longer required, the key should be released using::
@@ -1159,11 +1250,13 @@ payload contents" for more information.
key_ref_t keyring_search(key_ref_t keyring_ref,
const struct key_type *type,
- const char *description)
+ const char *description,
+ bool recurse)
- This searches the keyring tree specified for a matching key. Error ENOKEY
- is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful,
- the returned key will need to be released.
+ This searches the specified keyring only (recurse == false) or keyring tree
+ (recurse == true) specified for a matching key. Error ENOKEY is returned
+ upon failure (use IS_ERR/PTR_ERR to determine). If successful, the returned
+ key will need to be released.
The possession attribute from the keyring reference is used to control
access through the permissions mask and is propagated to the returned key
@@ -1174,7 +1267,7 @@ payload contents" for more information.
struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
const struct cred *cred,
- key_perm_t perm,
+ struct key_acl *acl,
struct key_restriction *restrict_link,
unsigned long flags,
struct key *dest);
diff --git a/Documentation/security/keys/request-key.rst b/Documentation/security/keys/request-key.rst
index 600ad67d1707..f356fd06c8d5 100644
--- a/Documentation/security/keys/request-key.rst
+++ b/Documentation/security/keys/request-key.rst
@@ -11,30 +11,32 @@ The process starts by either the kernel requesting a service by calling
struct key *request_key(const struct key_type *type,
const char *description,
- const char *callout_info);
+ const char *callout_info,
+ struct key_acl *acl);
+
+or::
+
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag,
+ const char *callout_info,
+ struct key_acl *acl);
or::
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ const struct key_tag *domain_tag,
const char *callout_info,
size_t callout_len,
- void *aux);
+ void *aux,
+ struct key_acl *acl);
or::
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len);
-
-or::
-
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag);
Or by userspace invoking the request_key system call::
@@ -48,14 +50,18 @@ does not need to link the key to a keyring to prevent it from being immediately
destroyed. The kernel interface returns a pointer directly to the key, and
it's up to the caller to destroy the key.
-The request_key*_with_auxdata() calls are like the in-kernel request_key*()
-calls, except that they permit auxiliary data to be passed to the upcaller (the
-default is NULL). This is only useful for those key types that define their
-own upcall mechanism rather than using /sbin/request-key.
+The request_key_tag() call is like the in-kernel request_key(), except that it
+also takes a domain tag that allows keys to be separated by namespace and
+killed off as a group.
+
+The request_key_with_auxdata() calls is like the request_key_tag() call, except
+that they permit auxiliary data to be passed to the upcaller (the default is
+NULL). This is only useful for those key types that define their own upcall
+mechanism rather than using /sbin/request-key.
-The two async in-kernel calls may return keys that are still in the process of
-being constructed. The two non-async ones will wait for construction to
-complete first.
+The request_key_rcu() call is like the request_key_tag() call, except that it
+doesn't check for keys that are under construction and doesn't attempt to
+construct missing keys.
The userspace interface links the key to a keyring associated with the process
to prevent the key from going away, and returns the serial number of the key to
@@ -148,7 +154,7 @@ The Search Algorithm
A search of any particular keyring proceeds in the following fashion:
- 1) When the key management code searches for a key (keyring_search_aux) it
+ 1) When the key management code searches for a key (keyring_search_rcu) it
firstly calls key_permission(SEARCH) on the keyring it's starting with,
if this denies permission, it doesn't search further.
@@ -167,6 +173,9 @@ The process stops immediately a valid key is found with permission granted to
use it. Any error from a previous match attempt is discarded and the key is
returned.
+When request_key() is invoked, if CONFIG_KEYS_REQUEST_CACHE=y, a per-task
+one-key cache is first checked for a match.
+
When search_process_keyrings() is invoked, it performs the following searches
until one succeeds:
@@ -186,7 +195,9 @@ until one succeeds:
c) The calling process's session keyring is searched.
The moment one succeeds, all pending errors are discarded and the found key is
-returned.
+returned. If CONFIG_KEYS_REQUEST_CACHE=y, then that key is placed in the
+per-task cache, displacing the previous key. The cache is cleared on exit or
+just prior to resumption of userspace.
Only if all these fail does the whole thing fail with the highest priority
error. Note that several errors may have come from LSM.
diff --git a/Documentation/sphinx/kerneldoc.py b/Documentation/sphinx/kerneldoc.py
index 9d0a7f08f93b..1159405cb920 100644
--- a/Documentation/sphinx/kerneldoc.py
+++ b/Documentation/sphinx/kerneldoc.py
@@ -37,7 +37,19 @@ import glob
from docutils import nodes, statemachine
from docutils.statemachine import ViewList
from docutils.parsers.rst import directives, Directive
-from sphinx.ext.autodoc import AutodocReporter
+
+#
+# AutodocReporter is only good up to Sphinx 1.7
+#
+import sphinx
+
+Use_SSI = sphinx.__version__[:3] >= '1.7'
+if Use_SSI:
+ from sphinx.util.docutils import switch_source_input
+else:
+ from sphinx.ext.autodoc import AutodocReporter
+
+import kernellog
__version__ = '1.0'
@@ -90,7 +102,8 @@ class KernelDocDirective(Directive):
cmd += [filename]
try:
- env.app.verbose('calling kernel-doc \'%s\'' % (" ".join(cmd)))
+ kernellog.verbose(env.app,
+ 'calling kernel-doc \'%s\'' % (" ".join(cmd)))
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
@@ -100,7 +113,8 @@ class KernelDocDirective(Directive):
if p.returncode != 0:
sys.stderr.write(err)
- env.app.warn('kernel-doc \'%s\' failed with return code %d' % (" ".join(cmd), p.returncode))
+ kernellog.warn(env.app,
+ 'kernel-doc \'%s\' failed with return code %d' % (" ".join(cmd), p.returncode))
return [nodes.error(None, nodes.paragraph(text = "kernel-doc missing"))]
elif env.config.kerneldoc_verbosity > 0:
sys.stderr.write(err)
@@ -121,20 +135,28 @@ class KernelDocDirective(Directive):
lineoffset += 1
node = nodes.section()
- buf = self.state.memo.title_styles, self.state.memo.section_level, self.state.memo.reporter
+ self.do_parse(result, node)
+
+ return node.children
+
+ except Exception as e: # pylint: disable=W0703
+ kernellog.warn(env.app, 'kernel-doc \'%s\' processing failed with: %s' %
+ (" ".join(cmd), str(e)))
+ return [nodes.error(None, nodes.paragraph(text = "kernel-doc missing"))]
+
+ def do_parse(self, result, node):
+ if Use_SSI:
+ with switch_source_input(self.state, result):
+ self.state.nested_parse(result, 0, node, match_titles=1)
+ else:
+ save = self.state.memo.title_styles, self.state.memo.section_level, self.state.memo.reporter
self.state.memo.reporter = AutodocReporter(result, self.state.memo.reporter)
self.state.memo.title_styles, self.state.memo.section_level = [], 0
try:
self.state.nested_parse(result, 0, node, match_titles=1)
finally:
- self.state.memo.title_styles, self.state.memo.section_level, self.state.memo.reporter = buf
+ self.state.memo.title_styles, self.state.memo.section_level, self.state.memo.reporter = save
- return node.children
-
- except Exception as e: # pylint: disable=W0703
- env.app.warn('kernel-doc \'%s\' processing failed with: %s' %
- (" ".join(cmd), str(e)))
- return [nodes.error(None, nodes.paragraph(text = "kernel-doc missing"))]
def setup(app):
app.add_config_value('kerneldoc_bin', None, 'env')
diff --git a/Documentation/sphinx/kernellog.py b/Documentation/sphinx/kernellog.py
new file mode 100644
index 000000000000..af924f51a7dc
--- /dev/null
+++ b/Documentation/sphinx/kernellog.py
@@ -0,0 +1,28 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Sphinx has deprecated its older logging interface, but the replacement
+# only goes back to 1.6. So here's a wrapper layer to keep around for
+# as long as we support 1.4.
+#
+import sphinx
+
+if sphinx.__version__[:3] >= '1.6':
+ UseLogging = True
+ from sphinx.util import logging
+ logger = logging.getLogger('kerneldoc')
+else:
+ UseLogging = False
+
+def warn(app, message):
+ if UseLogging:
+ logger.warning(message)
+ else:
+ app.warn(message)
+
+def verbose(app, message):
+ if UseLogging:
+ logger.verbose(message)
+ else:
+ app.verbose(message)
+
+
diff --git a/Documentation/sphinx/kfigure.py b/Documentation/sphinx/kfigure.py
index b97228d2cc0e..fbfe6693bb60 100644
--- a/Documentation/sphinx/kfigure.py
+++ b/Documentation/sphinx/kfigure.py
@@ -60,6 +60,8 @@ import sphinx
from sphinx.util.nodes import clean_astext
from six import iteritems
+import kernellog
+
PY3 = sys.version_info[0] == 3
if PY3:
@@ -171,20 +173,20 @@ def setupTools(app):
This function is called once, when the builder is initiated.
"""
global dot_cmd, convert_cmd # pylint: disable=W0603
- app.verbose("kfigure: check installed tools ...")
+ kernellog.verbose(app, "kfigure: check installed tools ...")
dot_cmd = which('dot')
convert_cmd = which('convert')
if dot_cmd:
- app.verbose("use dot(1) from: " + dot_cmd)
+ kernellog.verbose(app, "use dot(1) from: " + dot_cmd)
else:
- app.warn("dot(1) not found, for better output quality install "
- "graphviz from http://www.graphviz.org")
+ kernellog.warn(app, "dot(1) not found, for better output quality install "
+ "graphviz from http://www.graphviz.org")
if convert_cmd:
- app.verbose("use convert(1) from: " + convert_cmd)
+ kernellog.verbose(app, "use convert(1) from: " + convert_cmd)
else:
- app.warn(
+ kernellog.warn(app,
"convert(1) not found, for SVG to PDF conversion install "
"ImageMagick (https://www.imagemagick.org)")
@@ -220,12 +222,13 @@ def convert_image(img_node, translator, src_fname=None):
# in kernel builds, use 'make SPHINXOPTS=-v' to see verbose messages
- app.verbose('assert best format for: ' + img_node['uri'])
+ kernellog.verbose(app, 'assert best format for: ' + img_node['uri'])
if in_ext == '.dot':
if not dot_cmd:
- app.verbose("dot from graphviz not available / include DOT raw.")
+ kernellog.verbose(app,
+ "dot from graphviz not available / include DOT raw.")
img_node.replace_self(file2literal(src_fname))
elif translator.builder.format == 'latex':
@@ -252,7 +255,8 @@ def convert_image(img_node, translator, src_fname=None):
if translator.builder.format == 'latex':
if convert_cmd is None:
- app.verbose("no SVG to PDF conversion available / include SVG raw.")
+ kernellog.verbose(app,
+ "no SVG to PDF conversion available / include SVG raw.")
img_node.replace_self(file2literal(src_fname))
else:
dst_fname = path.join(translator.builder.outdir, fname + '.pdf')
@@ -265,18 +269,19 @@ def convert_image(img_node, translator, src_fname=None):
_name = dst_fname[len(translator.builder.outdir) + 1:]
if isNewer(dst_fname, src_fname):
- app.verbose("convert: {out}/%s already exists and is newer" % _name)
+ kernellog.verbose(app,
+ "convert: {out}/%s already exists and is newer" % _name)
else:
ok = False
mkdir(path.dirname(dst_fname))
if in_ext == '.dot':
- app.verbose('convert DOT to: {out}/' + _name)
+ kernellog.verbose(app, 'convert DOT to: {out}/' + _name)
ok = dot2format(app, src_fname, dst_fname)
elif in_ext == '.svg':
- app.verbose('convert SVG to: {out}/' + _name)
+ kernellog.verbose(app, 'convert SVG to: {out}/' + _name)
ok = svg2pdf(app, src_fname, dst_fname)
if not ok:
@@ -305,7 +310,8 @@ def dot2format(app, dot_fname, out_fname):
with open(out_fname, "w") as out:
exit_code = subprocess.call(cmd, stdout = out)
if exit_code != 0:
- app.warn("Error #%d when calling: %s" % (exit_code, " ".join(cmd)))
+ kernellog.warn(app,
+ "Error #%d when calling: %s" % (exit_code, " ".join(cmd)))
return bool(exit_code == 0)
def svg2pdf(app, svg_fname, pdf_fname):
@@ -322,7 +328,7 @@ def svg2pdf(app, svg_fname, pdf_fname):
# use stdout and stderr from parent
exit_code = subprocess.call(cmd)
if exit_code != 0:
- app.warn("Error #%d when calling: %s" % (exit_code, " ".join(cmd)))
+ kernellog.warn(app, "Error #%d when calling: %s" % (exit_code, " ".join(cmd)))
return bool(exit_code == 0)
@@ -415,15 +421,15 @@ def visit_kernel_render(self, node):
app = self.builder.app
srclang = node.get('srclang')
- app.verbose('visit kernel-render node lang: "%s"' % (srclang))
+ kernellog.verbose(app, 'visit kernel-render node lang: "%s"' % (srclang))
tmp_ext = RENDER_MARKUP_EXT.get(srclang, None)
if tmp_ext is None:
- app.warn('kernel-render: "%s" unknown / include raw.' % (srclang))
+ kernellog.warn(app, 'kernel-render: "%s" unknown / include raw.' % (srclang))
return
if not dot_cmd and tmp_ext == '.dot':
- app.verbose("dot from graphviz not available / include raw.")
+ kernellog.verbose(app, "dot from graphviz not available / include raw.")
return
literal_block = node[0]
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index f0c86fbb3b48..5af8b131ccbc 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -23,7 +23,6 @@ show up in /proc/sys/kernel:
- auto_msgmni
- bootloader_type [ X86 only ]
- bootloader_version [ X86 only ]
-- callhome [ S390 only ]
- cap_last_cap
- core_pattern
- core_pipe_limit
@@ -171,21 +170,6 @@ Documentation/x86/boot.txt for additional information.
==============================================================
-callhome:
-
-Controls the kernel's callhome behavior in case of a kernel panic.
-
-The s390 hardware allows an operating system to send a notification
-to a service organization (callhome) in case of an operating system panic.
-
-When the value in this file is 0 (which is the default behavior)
-nothing happens in case of a kernel panic. If this value is set to "1"
-the complete kernel oops message is send to the IBM customer service
-organization in case the mainframe the Linux operating system is running
-on has a service contract with IBM.
-
-==============================================================
-
cap_last_cap
Highest valid capability of the running kernel. Exports
diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt
index db0b9d8619f1..5f3c74dcad43 100644
--- a/Documentation/translations/ko_KR/memory-barriers.txt
+++ b/Documentation/translations/ko_KR/memory-barriers.txt
@@ -24,7 +24,7 @@ Documentation/memory-barriers.txt
=========================
저자: David Howells <dhowells@redhat.com>
- Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ Paul E. McKenney <paulmck@linux.ibm.com>
Will Deacon <will.deacon@arm.com>
Peter Zijlstra <peterz@infradead.org>
diff --git a/Documentation/usb/rio.txt b/Documentation/usb/rio.txt
index ca9adcf56355..ea73475471db 100644
--- a/Documentation/usb/rio.txt
+++ b/Documentation/usb/rio.txt
@@ -76,70 +76,30 @@ Additional Information and userspace tools
Requirements
============
-A host with a USB port. Ideally, either a UHCI (Intel) or OHCI
-(Compaq and others) hardware port should work.
+A host with a USB port running a Linux kernel with RIO 500 support enabled.
-A Linux development kernel (2.3.x) with USB support enabled or a
-backported version to linux-2.2.x. See http://www.linux-usb.org for
-more information on accomplishing this.
+The driver is a module called rio500, which should be automatically loaded
+as you plug in your device. If that fails you can manually load it with
-A Linux kernel with RIO 500 support enabled.
+ modprobe rio500
-'lspci' which is only needed to determine the type of USB hardware
-available in your machine.
-
-Configuration
-
-Using `lspci -v`, determine the type of USB hardware available.
-
- If you see something like::
-
- USB Controller: ......
- Flags: .....
- I/O ports at ....
-
- Then you have a UHCI based controller.
-
- If you see something like::
-
- USB Controller: .....
- Flags: ....
- Memory at .....
-
- Then you have a OHCI based controller.
-
-Using `make menuconfig` or your preferred method for configuring the
-kernel, select 'Support for USB', 'OHCI/UHCI' depending on your
-hardware (determined from the steps above), 'USB Diamond Rio500 support', and
-'Preliminary USB device filesystem'. Compile and install the modules
-(you may need to execute `depmod -a` to update the module
-dependencies).
-
-Add a device for the USB rio500::
+Udev should automatically create a device node as soon as plug in your device.
+If that fails, you can manually add a device for the USB rio500::
mknod /dev/usb/rio500 c 180 64
-Set appropriate permissions for /dev/usb/rio500 (don't forget about
-group and world permissions). Both read and write permissions are
+In that case, set appropriate permissions for /dev/usb/rio500 (don't forget
+about group and world permissions). Both read and write permissions are
required for proper operation.
-Load the appropriate modules (if compiled as modules):
-
- OHCI::
-
- modprobe usbcore
- modprobe usb-ohci
- modprobe rio500
-
- UHCI::
-
- modprobe usbcore
- modprobe usb-uhci (or uhci)
- modprobe rio500
-
That's it. The Rio500 Utils at: http://rio500.sourceforge.net should
be able to access the rio500.
+Limits
+======
+
+You can use only a single rio500 device at a time with your computer.
+
Bugs
====
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index ba6c42c576dd..2a4531bb06bd 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -1079,7 +1079,7 @@ yet and must be cleared on entry.
4.35 KVM_SET_USER_MEMORY_REGION
-Capability: KVM_CAP_USER_MEM
+Capability: KVM_CAP_USER_MEMORY
Architectures: all
Type: vm ioctl
Parameters: struct kvm_userspace_memory_region (in)
@@ -3857,43 +3857,59 @@ Type: vcpu ioctl
Parameters: struct kvm_nested_state (in/out)
Returns: 0 on success, -1 on error
Errors:
- E2BIG: the total state size (including the fixed-size part of struct
- kvm_nested_state) exceeds the value of 'size' specified by
+ E2BIG: the total state size exceeds the value of 'size' specified by
the user; the size required will be written into size.
struct kvm_nested_state {
__u16 flags;
__u16 format;
__u32 size;
+
union {
- struct kvm_vmx_nested_state vmx;
- struct kvm_svm_nested_state svm;
+ struct kvm_vmx_nested_state_hdr vmx;
+ struct kvm_svm_nested_state_hdr svm;
+
+ /* Pad the header to 128 bytes. */
__u8 pad[120];
- };
- __u8 data[0];
+ } hdr;
+
+ union {
+ struct kvm_vmx_nested_state_data vmx[0];
+ struct kvm_svm_nested_state_data svm[0];
+ } data;
};
#define KVM_STATE_NESTED_GUEST_MODE 0x00000001
#define KVM_STATE_NESTED_RUN_PENDING 0x00000002
+#define KVM_STATE_NESTED_EVMCS 0x00000004
-#define KVM_STATE_NESTED_SMM_GUEST_MODE 0x00000001
-#define KVM_STATE_NESTED_SMM_VMXON 0x00000002
+#define KVM_STATE_NESTED_FORMAT_VMX 0
+#define KVM_STATE_NESTED_FORMAT_SVM 1
-struct kvm_vmx_nested_state {
+#define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000
+
+#define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001
+#define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002
+
+struct kvm_vmx_nested_state_hdr {
__u64 vmxon_pa;
- __u64 vmcs_pa;
+ __u64 vmcs12_pa;
struct {
__u16 flags;
} smm;
};
+struct kvm_vmx_nested_state_data {
+ __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
+ __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
+};
+
This ioctl copies the vcpu's nested virtualization state from the kernel to
userspace.
-The maximum size of the state, including the fixed-size part of struct
-kvm_nested_state, can be retrieved by passing KVM_CAP_NESTED_STATE to
-the KVM_CHECK_EXTENSION ioctl().
+The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE
+to the KVM_CHECK_EXTENSION ioctl().
4.115 KVM_SET_NESTED_STATE
@@ -3903,8 +3919,8 @@ Type: vcpu ioctl
Parameters: struct kvm_nested_state (in)
Returns: 0 on success, -1 on error
-This copies the vcpu's kvm_nested_state struct from userspace to the kernel. For
-the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
+This copies the vcpu's kvm_nested_state struct from userspace to the kernel.
+For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
4.116 KVM_(UN)REGISTER_COALESCED_MMIO
diff --git a/Documentation/vm/hmm.rst b/Documentation/vm/hmm.rst
index ec1efa32af3c..7cdf7282e022 100644
--- a/Documentation/vm/hmm.rst
+++ b/Documentation/vm/hmm.rst
@@ -288,15 +288,17 @@ For instance if the device flags for device entries are:
WRITE (1 << 62)
Now let say that device driver wants to fault with at least read a range then
-it does set:
- range->default_flags = (1 << 63)
+it does set::
+
+ range->default_flags = (1 << 63);
range->pfn_flags_mask = 0;
and calls hmm_range_fault() as described above. This will fill fault all page
in the range with at least read permission.
Now let say driver wants to do the same except for one page in the range for
-which its want to have write. Now driver set:
+which its want to have write. Now driver set::
+
range->default_flags = (1 << 63);
range->pfn_flags_mask = (1 << 62);
range->pfns[index_of_write] = (1 << 62);
diff --git a/Documentation/vm/numa.rst b/Documentation/vm/numa.rst
index 5cae13e9a08b..0d830edae8fe 100644
--- a/Documentation/vm/numa.rst
+++ b/Documentation/vm/numa.rst
@@ -67,7 +67,7 @@ nodes. Each emulated node will manage a fraction of the underlying cells'
physical memory. NUMA emluation is useful for testing NUMA kernel and
application features on non-NUMA platforms, and as a sort of memory resource
management mechanism when used together with cpusets.
-[see Documentation/cgroup-v1/cpusets.txt]
+[see Documentation/cgroup-v1/cpusets.rst]
For each node with memory, Linux constructs an independent memory management
subsystem, complete with its own free page lists, in-use page lists, usage
@@ -114,7 +114,7 @@ allocation behavior using Linux NUMA memory policy. [see
System administrators can restrict the CPUs and nodes' memories that a non-
privileged user can specify in the scheduling or NUMA commands and functions
-using control groups and CPUsets. [see Documentation/cgroup-v1/cpusets.txt]
+using control groups and CPUsets. [see Documentation/cgroup-v1/cpusets.rst]
On architectures that do not hide memoryless nodes, Linux will include only
zones [nodes] with memory in the zonelists. This means that for a memoryless
diff --git a/Documentation/vm/page_migration.rst b/Documentation/vm/page_migration.rst
index f68d61335abb..35bba27d5fff 100644
--- a/Documentation/vm/page_migration.rst
+++ b/Documentation/vm/page_migration.rst
@@ -41,7 +41,7 @@ locations.
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset (See
-Documentation/cgroup-v1/cpusets.txt).
+Documentation/cgroup-v1/cpusets.rst).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
diff --git a/Documentation/vm/unevictable-lru.rst b/Documentation/vm/unevictable-lru.rst
index b8e29f977f2d..c6d94118fbcc 100644
--- a/Documentation/vm/unevictable-lru.rst
+++ b/Documentation/vm/unevictable-lru.rst
@@ -98,7 +98,7 @@ Memory Control Group Interaction
--------------------------------
The unevictable LRU facility interacts with the memory control group [aka
-memory controller; see Documentation/cgroup-v1/memory.txt] by extending the
+memory controller; see Documentation/cgroup-v1/memory.rst] by extending the
lru_list enum.
The memory controller data structure automatically gets a per-zone unevictable
diff --git a/Documentation/x86/exception-tables.rst b/Documentation/x86/exception-tables.rst
index 24596c8210b5..ed6d4b0cf62c 100644
--- a/Documentation/x86/exception-tables.rst
+++ b/Documentation/x86/exception-tables.rst
@@ -35,7 +35,7 @@ page fault handler::
void do_page_fault(struct pt_regs *regs, unsigned long error_code)
in arch/x86/mm/fault.c. The parameters on the stack are set up by
-the low level assembly glue in arch/x86/kernel/entry_32.S. The parameter
+the low level assembly glue in arch/x86/entry/entry_32.S. The parameter
regs is a pointer to the saved registers on the stack, error_code
contains a reason code for the exception.
diff --git a/Documentation/x86/topology.rst b/Documentation/x86/topology.rst
index 6e28dbe818ab..8e9704f61017 100644
--- a/Documentation/x86/topology.rst
+++ b/Documentation/x86/topology.rst
@@ -49,6 +49,10 @@ Package-related topology information in the kernel:
The number of cores in a package. This information is retrieved via CPUID.
+ - cpuinfo_x86.x86_max_dies:
+
+ The number of dies in a package. This information is retrieved via CPUID.
+
- cpuinfo_x86.phys_proc_id:
The physical ID of the package. This information is retrieved via CPUID
diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets.rst b/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
index 74fbb78b3c67..a6926cd40f70 100644
--- a/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
+++ b/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
@@ -15,7 +15,7 @@ assign them to cpusets and their attached tasks. This is a way of limiting the
amount of system memory that are available to a certain class of tasks.
For more information on the features of cpusets, see
-Documentation/cgroup-v1/cpusets.txt.
+Documentation/cgroup-v1/cpusets.rst.
There are a number of different configurations you can use for your needs. For
more information on the numa=fake command line option and its various ways of
configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt.
@@ -40,7 +40,7 @@ A machine may be split as follows with "numa=fake=4*512," as reported by dmesg::
On node 3 totalpages: 131072
Now following the instructions for mounting the cpusets filesystem from
-Documentation/cgroup-v1/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
+Documentation/cgroup-v1/cpusets.rst, you can assign fake nodes (i.e. contiguous memory
address spaces) to individual cpusets::
[root@xroads /]# mkdir exampleset