aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/obsolete/sysfs-driver-hid-roccat-pyra2
-rw-r--r--Documentation/ABI/obsolete/sysfs-gpio2
-rw-r--r--Documentation/ABI/removed/sysfs-class-rfkill2
-rw-r--r--Documentation/ABI/stable/sysfs-bus-w12
-rw-r--r--Documentation/ABI/stable/sysfs-class-infiniband17
-rw-r--r--Documentation/ABI/stable/sysfs-class-rfkill2
-rw-r--r--Documentation/ABI/stable/sysfs-devices-node2
-rw-r--r--Documentation/ABI/stable/sysfs-driver-mlxreg-io65
-rw-r--r--Documentation/ABI/stable/sysfs-driver-w1_ds28e044
-rw-r--r--Documentation/ABI/stable/sysfs-driver-w1_ds28ea002
-rw-r--r--Documentation/ABI/testing/debugfs-cec-error-inj2
-rw-r--r--Documentation/ABI/testing/debugfs-cros-ec56
-rw-r--r--Documentation/ABI/testing/debugfs-driver-habanalabs18
-rw-r--r--Documentation/ABI/testing/debugfs-hisi-zip50
-rw-r--r--Documentation/ABI/testing/debugfs-moxtet23
-rw-r--r--Documentation/ABI/testing/debugfs-wilco-ec16
-rw-r--r--Documentation/ABI/testing/dev-kmsg15
-rw-r--r--Documentation/ABI/testing/ima_policy12
-rw-r--r--Documentation/ABI/testing/procfs-diskstats2
-rw-r--r--Documentation/ABI/testing/procfs-smaps_rollup14
-rw-r--r--Documentation/ABI/testing/pstore4
-rw-r--r--Documentation/ABI/testing/sysfs-block2
-rw-r--r--Documentation/ABI/testing/sysfs-block-device2
-rw-r--r--Documentation/ABI/testing/sysfs-bus-css23
-rw-r--r--Documentation/ABI/testing/sysfs-bus-event_source-devices-format4
-rw-r--r--Documentation/ABI/testing/sysfs-bus-i2c-devices-hm635212
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio7
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-cros-ec10
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-dfsdm-adc-stm322
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-distance-srf084
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-frequency-adf437144
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-proximity-as39354
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-timer-stm3223
-rw-r--r--Documentation/ABI/testing/sysfs-bus-intel_th-devices-msc3
-rw-r--r--Documentation/ABI/testing/sysfs-bus-moxtet-devices17
-rw-r--r--Documentation/ABI/testing/sysfs-bus-pci-devices-aer_stats24
-rw-r--r--Documentation/ABI/testing/sysfs-bus-pci-devices-cciss44
-rw-r--r--Documentation/ABI/testing/sysfs-bus-usb-devices-usbsevseg22
-rw-r--r--Documentation/ABI/testing/sysfs-class-backlight26
-rw-r--r--Documentation/ABI/testing/sysfs-class-backlight-driver-lm35336
-rw-r--r--Documentation/ABI/testing/sysfs-class-cxl6
-rw-r--r--Documentation/ABI/testing/sysfs-class-devfreq2
-rw-r--r--Documentation/ABI/testing/sysfs-class-led-driver-lm35338
-rw-r--r--Documentation/ABI/testing/sysfs-class-leds-gt683r4
-rw-r--r--Documentation/ABI/testing/sysfs-class-mic (renamed from Documentation/ABI/testing/sysfs-class-mic.txt)0
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-phydev8
-rw-r--r--Documentation/ABI/testing/sysfs-class-power32
-rw-r--r--Documentation/ABI/testing/sysfs-class-power-wilco30
-rw-r--r--Documentation/ABI/testing/sysfs-class-powercap4
-rw-r--r--Documentation/ABI/testing/sysfs-class-remoteproc10
-rw-r--r--Documentation/ABI/testing/sysfs-class-switchtec2
-rw-r--r--Documentation/ABI/testing/sysfs-class-uwb_rc6
-rw-r--r--Documentation/ABI/testing/sysfs-class-wakeup76
-rw-r--r--Documentation/ABI/testing/sysfs-class-watchdog34
-rw-r--r--Documentation/ABI/testing/sysfs-devices-platform-stratix10-rsu128
-rw-r--r--Documentation/ABI/testing/sysfs-devices-power9
-rw-r--r--Documentation/ABI/testing/sysfs-devices-soc7
-rw-r--r--Documentation/ABI/testing/sysfs-devices-system-cpu40
-rw-r--r--Documentation/ABI/testing/sysfs-driver-altera-cvp2
-rw-r--r--Documentation/ABI/testing/sysfs-driver-habanalabs56
-rw-r--r--Documentation/ABI/testing/sysfs-driver-hid12
-rw-r--r--Documentation/ABI/testing/sysfs-driver-hid-roccat-kone2
-rw-r--r--Documentation/ABI/testing/sysfs-driver-ppi2
-rw-r--r--Documentation/ABI/testing/sysfs-driver-st2
-rw-r--r--Documentation/ABI/testing/sysfs-driver-wacom2
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-efi8
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-turris-mox-rwtm37
-rw-r--r--Documentation/ABI/testing/sysfs-fs-f2fs15
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-btf17
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-fscaps2
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-iommu_groups9
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-slab13
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-uids2
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-vmcoreinfo2
-rw-r--r--Documentation/ABI/testing/sysfs-platform-asus-laptop2
-rw-r--r--Documentation/ABI/testing/sysfs-platform-asus-wmi10
-rw-r--r--Documentation/ABI/testing/sysfs-platform-dfl-fme85
-rw-r--r--Documentation/ABI/testing/sysfs-platform-dfl-port85
-rw-r--r--Documentation/ABI/testing/sysfs-platform-i2c-demux-pinctrl4
-rw-r--r--Documentation/ABI/testing/sysfs-platform-wilco-ec40
-rw-r--r--Documentation/ABI/testing/sysfs-power108
-rw-r--r--Documentation/COPYING-logo (renamed from Documentation/logo.txt)0
-rw-r--r--Documentation/DMA-API-HOWTO.txt2
-rw-r--r--Documentation/DMA-API.txt21
-rw-r--r--Documentation/Kconfig13
-rw-r--r--Documentation/Makefile14
-rw-r--r--Documentation/PCI/acpi-info.rst (renamed from Documentation/PCI/acpi-info.txt)15
-rw-r--r--Documentation/PCI/endpoint/index.rst13
-rw-r--r--Documentation/PCI/endpoint/pci-endpoint-cfs.rst (renamed from Documentation/PCI/endpoint/pci-endpoint-cfs.txt)99
-rw-r--r--Documentation/PCI/endpoint/pci-endpoint.rst (renamed from Documentation/PCI/endpoint/pci-endpoint.txt)92
-rw-r--r--Documentation/PCI/endpoint/pci-test-function.rst (renamed from Documentation/PCI/endpoint/pci-test-function.txt)84
-rw-r--r--Documentation/PCI/endpoint/pci-test-howto.rst (renamed from Documentation/PCI/endpoint/pci-test-howto.txt)81
-rw-r--r--Documentation/PCI/index.rst18
-rw-r--r--Documentation/PCI/msi-howto.rst (renamed from Documentation/PCI/MSI-HOWTO.txt)85
-rw-r--r--Documentation/PCI/pci-error-recovery.rst (renamed from Documentation/PCI/pci-error-recovery.txt)283
-rw-r--r--Documentation/PCI/pci-iov-howto.rst (renamed from Documentation/PCI/pci-iov-howto.txt)161
-rw-r--r--Documentation/PCI/pci.rst (renamed from Documentation/PCI/pci.txt)356
-rw-r--r--Documentation/PCI/pcieaer-howto.rst (renamed from Documentation/PCI/pcieaer-howto.txt)156
-rw-r--r--Documentation/PCI/pciebus-howto.rst (renamed from Documentation/PCI/PCIEBUS-HOWTO.txt)140
-rw-r--r--Documentation/RCU/Design/Requirements/Requirements.html73
-rw-r--r--Documentation/RCU/UP.rst (renamed from Documentation/RCU/UP.txt)50
-rw-r--r--Documentation/RCU/index.rst19
-rw-r--r--Documentation/RCU/listRCU.rst (renamed from Documentation/RCU/listRCU.txt)38
-rw-r--r--Documentation/RCU/rcu.rst92
-rw-r--r--Documentation/RCU/rcu.txt89
-rw-r--r--Documentation/RCU/rculist_nulls.txt2
-rw-r--r--Documentation/RCU/rcuref.txt21
-rw-r--r--Documentation/RCU/stallwarn.txt8
-rw-r--r--Documentation/RCU/whatisRCU.txt8
-rw-r--r--Documentation/accounting/cgroupstats.rst (renamed from Documentation/accounting/cgroupstats.txt)14
-rw-r--r--Documentation/accounting/delay-accounting.rst (renamed from Documentation/accounting/delay-accounting.txt)61
-rw-r--r--Documentation/accounting/index.rst14
-rw-r--r--Documentation/accounting/psi.rst (renamed from Documentation/accounting/psi.txt)42
-rw-r--r--Documentation/accounting/taskstats-struct.rst (renamed from Documentation/accounting/taskstats-struct.txt)79
-rw-r--r--Documentation/accounting/taskstats.rst (renamed from Documentation/accounting/taskstats.txt)15
-rw-r--r--Documentation/admin-guide/LSM/LoadPin.rst10
-rw-r--r--Documentation/admin-guide/README.rst2
-rw-r--r--Documentation/admin-guide/aoe/aoe.rst (renamed from Documentation/aoe/aoe.txt)67
-rw-r--r--Documentation/admin-guide/aoe/autoload.sh (renamed from Documentation/aoe/autoload.sh)0
-rw-r--r--Documentation/admin-guide/aoe/examples.rst23
-rw-r--r--Documentation/admin-guide/aoe/index.rst17
-rw-r--r--Documentation/admin-guide/aoe/status.sh (renamed from Documentation/aoe/status.sh)0
-rw-r--r--Documentation/admin-guide/aoe/todo.rst (renamed from Documentation/aoe/todo.txt)3
-rw-r--r--Documentation/admin-guide/aoe/udev-install.sh (renamed from Documentation/aoe/udev-install.sh)0
-rw-r--r--Documentation/admin-guide/aoe/udev.txt (renamed from Documentation/aoe/udev.txt)2
-rw-r--r--Documentation/admin-guide/auxdisplay/cfag12864b.rst98
-rw-r--r--Documentation/admin-guide/auxdisplay/index.rst16
-rw-r--r--Documentation/admin-guide/auxdisplay/ks0108.rst50
-rw-r--r--Documentation/admin-guide/binderfs.rst (renamed from Documentation/filesystems/binderfs.rst)0
-rw-r--r--Documentation/admin-guide/blockdev/drbd/DRBD-8.3-data-packets.svg (renamed from Documentation/blockdev/drbd/DRBD-8.3-data-packets.svg)0
-rw-r--r--Documentation/admin-guide/blockdev/drbd/DRBD-data-packets.svg (renamed from Documentation/blockdev/drbd/DRBD-data-packets.svg)0
-rw-r--r--Documentation/admin-guide/blockdev/drbd/conn-states-8.dot (renamed from Documentation/blockdev/drbd/conn-states-8.dot)0
-rw-r--r--Documentation/admin-guide/blockdev/drbd/data-structure-v9.rst (renamed from Documentation/blockdev/drbd/data-structure-v9.txt)6
-rw-r--r--Documentation/admin-guide/blockdev/drbd/disk-states-8.dot (renamed from Documentation/blockdev/drbd/disk-states-8.dot)0
-rw-r--r--Documentation/admin-guide/blockdev/drbd/drbd-connection-state-overview.dot (renamed from Documentation/blockdev/drbd/drbd-connection-state-overview.dot)0
-rw-r--r--Documentation/admin-guide/blockdev/drbd/figures.rst30
-rw-r--r--Documentation/admin-guide/blockdev/drbd/index.rst (renamed from Documentation/blockdev/drbd/README.txt)15
-rw-r--r--Documentation/admin-guide/blockdev/drbd/node-states-8.dot (renamed from Documentation/blockdev/drbd/node-states-8.dot)1
-rw-r--r--Documentation/admin-guide/blockdev/floppy.rst (renamed from Documentation/blockdev/floppy.txt)88
-rw-r--r--Documentation/admin-guide/blockdev/index.rst16
-rw-r--r--Documentation/admin-guide/blockdev/nbd.rst (renamed from Documentation/blockdev/nbd.txt)2
-rw-r--r--Documentation/admin-guide/blockdev/paride.rst (renamed from Documentation/blockdev/paride.txt)196
-rw-r--r--Documentation/admin-guide/blockdev/ramdisk.rst (renamed from Documentation/blockdev/ramdisk.txt)55
-rw-r--r--Documentation/admin-guide/blockdev/zram.rst (renamed from Documentation/blockdev/zram.txt)197
-rw-r--r--Documentation/admin-guide/btmrvl.rst (renamed from Documentation/btmrvl.txt)0
-rw-r--r--Documentation/admin-guide/bug-hunting.rst4
-rw-r--r--Documentation/admin-guide/cgroup-v1/blkio-controller.rst (renamed from Documentation/cgroup-v1/blkio-controller.txt)103
-rw-r--r--Documentation/admin-guide/cgroup-v1/cgroups.rst (renamed from Documentation/cgroup-v1/cgroups.txt)186
-rw-r--r--Documentation/admin-guide/cgroup-v1/cpuacct.rst (renamed from Documentation/cgroup-v1/cpuacct.txt)15
-rw-r--r--Documentation/admin-guide/cgroup-v1/cpusets.rst (renamed from Documentation/cgroup-v1/cpusets.txt)209
-rw-r--r--Documentation/admin-guide/cgroup-v1/devices.rst (renamed from Documentation/cgroup-v1/devices.txt)40
-rw-r--r--Documentation/admin-guide/cgroup-v1/freezer-subsystem.rst (renamed from Documentation/cgroup-v1/freezer-subsystem.txt)14
-rw-r--r--Documentation/admin-guide/cgroup-v1/hugetlb.rst (renamed from Documentation/cgroup-v1/hugetlb.txt)41
-rw-r--r--Documentation/admin-guide/cgroup-v1/index.rst28
-rw-r--r--Documentation/admin-guide/cgroup-v1/memcg_test.rst (renamed from Documentation/cgroup-v1/memcg_test.txt)265
-rw-r--r--Documentation/admin-guide/cgroup-v1/memory.rst (renamed from Documentation/cgroup-v1/memory.txt)465
-rw-r--r--Documentation/admin-guide/cgroup-v1/net_cls.rst (renamed from Documentation/cgroup-v1/net_cls.txt)37
-rw-r--r--Documentation/admin-guide/cgroup-v1/net_prio.rst (renamed from Documentation/cgroup-v1/net_prio.txt)24
-rw-r--r--Documentation/admin-guide/cgroup-v1/pids.rst (renamed from Documentation/cgroup-v1/pids.txt)82
-rw-r--r--Documentation/admin-guide/cgroup-v1/rdma.rst (renamed from Documentation/cgroup-v1/rdma.txt)66
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst157
-rw-r--r--Documentation/admin-guide/cifs/authors.rst (renamed from Documentation/filesystems/cifs/AUTHORS)64
-rw-r--r--Documentation/admin-guide/cifs/changes.rst (renamed from Documentation/filesystems/cifs/CHANGES)4
-rw-r--r--Documentation/admin-guide/cifs/index.rst21
-rw-r--r--Documentation/admin-guide/cifs/introduction.rst (renamed from Documentation/filesystems/cifs/cifs.txt)8
-rw-r--r--Documentation/admin-guide/cifs/todo.rst (renamed from Documentation/filesystems/cifs/TODO)98
-rw-r--r--Documentation/admin-guide/cifs/usage.rst (renamed from Documentation/filesystems/cifs/README)562
-rwxr-xr-xDocumentation/admin-guide/cifs/winucase_convert.pl (renamed from Documentation/filesystems/cifs/winucase_convert.pl)0
-rw-r--r--Documentation/admin-guide/clearing-warn-once.rst (renamed from Documentation/clearing-warn-once.txt)0
-rw-r--r--Documentation/admin-guide/conf.py10
-rw-r--r--Documentation/admin-guide/cpu-load.rst (renamed from Documentation/cpu-load.txt)0
-rw-r--r--Documentation/admin-guide/cputopology.rst (renamed from Documentation/cputopology.txt)48
-rw-r--r--Documentation/admin-guide/device-mapper/cache-policies.rst (renamed from Documentation/device-mapper/cache-policies.txt)24
-rw-r--r--Documentation/admin-guide/device-mapper/cache.rst (renamed from Documentation/device-mapper/cache.txt)214
-rw-r--r--Documentation/admin-guide/device-mapper/delay.rst (renamed from Documentation/device-mapper/delay.txt)29
-rw-r--r--Documentation/admin-guide/device-mapper/dm-clone.rst333
-rw-r--r--Documentation/admin-guide/device-mapper/dm-crypt.rst (renamed from Documentation/device-mapper/dm-crypt.txt)61
-rw-r--r--Documentation/admin-guide/device-mapper/dm-dust.txt (renamed from Documentation/device-mapper/dm-dust.txt)0
-rw-r--r--Documentation/admin-guide/device-mapper/dm-flakey.rst (renamed from Documentation/device-mapper/dm-flakey.txt)45
-rw-r--r--Documentation/admin-guide/device-mapper/dm-init.rst (renamed from Documentation/device-mapper/dm-init.txt)89
-rw-r--r--Documentation/admin-guide/device-mapper/dm-integrity.rst (renamed from Documentation/device-mapper/dm-integrity.txt)62
-rw-r--r--Documentation/admin-guide/device-mapper/dm-io.rst (renamed from Documentation/device-mapper/dm-io.txt)14
-rw-r--r--Documentation/admin-guide/device-mapper/dm-log.rst (renamed from Documentation/device-mapper/dm-log.txt)5
-rw-r--r--Documentation/admin-guide/device-mapper/dm-queue-length.rst (renamed from Documentation/device-mapper/dm-queue-length.txt)25
-rw-r--r--Documentation/admin-guide/device-mapper/dm-raid.rst (renamed from Documentation/device-mapper/dm-raid.txt)225
-rw-r--r--Documentation/admin-guide/device-mapper/dm-service-time.rst (renamed from Documentation/device-mapper/dm-service-time.txt)76
-rw-r--r--Documentation/admin-guide/device-mapper/dm-uevent.rst110
-rw-r--r--Documentation/admin-guide/device-mapper/dm-zoned.rst (renamed from Documentation/device-mapper/dm-zoned.txt)10
-rw-r--r--Documentation/admin-guide/device-mapper/era.rst (renamed from Documentation/device-mapper/era.txt)36
-rw-r--r--Documentation/admin-guide/device-mapper/index.rst42
-rw-r--r--Documentation/admin-guide/device-mapper/kcopyd.rst (renamed from Documentation/device-mapper/kcopyd.txt)10
-rw-r--r--Documentation/admin-guide/device-mapper/linear.rst63
-rw-r--r--Documentation/admin-guide/device-mapper/log-writes.rst (renamed from Documentation/device-mapper/log-writes.txt)105
-rw-r--r--Documentation/admin-guide/device-mapper/persistent-data.rst (renamed from Documentation/device-mapper/persistent-data.txt)4
-rw-r--r--Documentation/admin-guide/device-mapper/snapshot.rst (renamed from Documentation/device-mapper/snapshot.txt)134
-rw-r--r--Documentation/admin-guide/device-mapper/statistics.rst (renamed from Documentation/device-mapper/statistics.txt)66
-rw-r--r--Documentation/admin-guide/device-mapper/striped.rst61
-rw-r--r--Documentation/admin-guide/device-mapper/switch.rst (renamed from Documentation/device-mapper/switch.txt)47
-rw-r--r--Documentation/admin-guide/device-mapper/thin-provisioning.rst (renamed from Documentation/device-mapper/thin-provisioning.txt)68
-rw-r--r--Documentation/admin-guide/device-mapper/unstriped.rst (renamed from Documentation/device-mapper/unstriped.txt)93
-rw-r--r--Documentation/admin-guide/device-mapper/verity.rst (renamed from Documentation/device-mapper/verity.txt)27
-rw-r--r--Documentation/admin-guide/device-mapper/writecache.rst (renamed from Documentation/device-mapper/writecache.txt)13
-rw-r--r--Documentation/admin-guide/device-mapper/zero.rst (renamed from Documentation/device-mapper/zero.txt)14
-rw-r--r--Documentation/admin-guide/devices.txt15
-rw-r--r--Documentation/admin-guide/efi-stub.rst (renamed from Documentation/efi-stub.txt)0
-rw-r--r--Documentation/admin-guide/gpio/index.rst (renamed from Documentation/gpio/index.rst)2
-rw-r--r--Documentation/admin-guide/gpio/sysfs.rst (renamed from Documentation/gpio/sysfs.rst)0
-rw-r--r--Documentation/admin-guide/highuid.rst (renamed from Documentation/highuid.txt)0
-rw-r--r--Documentation/admin-guide/hw-vuln/index.rst1
-rw-r--r--Documentation/admin-guide/hw-vuln/l1tf.rst2
-rw-r--r--Documentation/admin-guide/hw-vuln/spectre.rst769
-rw-r--r--Documentation/admin-guide/hw_random.rst (renamed from Documentation/hw_random.txt)0
-rw-r--r--Documentation/admin-guide/index.rst35
-rw-r--r--Documentation/admin-guide/iostats.rst (renamed from Documentation/iostats.txt)4
-rw-r--r--Documentation/admin-guide/jfs.rst (renamed from Documentation/filesystems/jfs.txt)44
-rw-r--r--Documentation/admin-guide/kdump/gdbmacros.txt (renamed from Documentation/kdump/gdbmacros.txt)0
-rw-r--r--Documentation/admin-guide/kdump/index.rst20
-rw-r--r--Documentation/admin-guide/kdump/kdump.rst (renamed from Documentation/kdump/kdump.txt)131
-rw-r--r--Documentation/admin-guide/kdump/vmcoreinfo.rst (renamed from Documentation/kdump/vmcoreinfo.txt)59
-rw-r--r--Documentation/admin-guide/kernel-parameters.rst12
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt269
-rw-r--r--Documentation/admin-guide/kernel-per-CPU-kthreads.rst (renamed from Documentation/kernel-per-CPU-kthreads.txt)12
-rw-r--r--Documentation/admin-guide/laptops/asus-laptop.rst (renamed from Documentation/laptops/asus-laptop.txt)92
-rw-r--r--Documentation/admin-guide/laptops/disk-shock-protection.rst (renamed from Documentation/laptops/disk-shock-protection.txt)32
-rw-r--r--Documentation/admin-guide/laptops/index.rst17
-rw-r--r--Documentation/admin-guide/laptops/laptop-mode.rst (renamed from Documentation/laptops/laptop-mode.txt)579
-rw-r--r--Documentation/admin-guide/laptops/lg-laptop.rst (renamed from Documentation/laptops/lg-laptop.rst)1
-rw-r--r--Documentation/admin-guide/laptops/sony-laptop.rst (renamed from Documentation/laptops/sony-laptop.txt)58
-rw-r--r--Documentation/admin-guide/laptops/sonypi.rst (renamed from Documentation/laptops/sonypi.txt)50
-rw-r--r--Documentation/admin-guide/laptops/thinkpad-acpi.rst (renamed from Documentation/laptops/thinkpad-acpi.txt)396
-rw-r--r--Documentation/admin-guide/laptops/toshiba_haps.rst (renamed from Documentation/laptops/toshiba_haps.txt)49
-rw-r--r--Documentation/admin-guide/lcd-panel-cgram.rst (renamed from Documentation/auxdisplay/lcd-panel-cgram.txt)7
-rw-r--r--Documentation/admin-guide/ldm.rst (renamed from Documentation/ldm.txt)0
-rw-r--r--Documentation/admin-guide/lockup-watchdogs.rst (renamed from Documentation/lockup-watchdogs.txt)0
-rw-r--r--Documentation/admin-guide/mm/cma_debugfs.rst (renamed from Documentation/cma/debugfs.txt)6
-rw-r--r--Documentation/admin-guide/mm/index.rst3
-rw-r--r--Documentation/admin-guide/mm/ksm.rst2
-rw-r--r--Documentation/admin-guide/mm/numa_memory_policy.rst2
-rw-r--r--Documentation/admin-guide/mm/numaperf.rst5
-rw-r--r--Documentation/admin-guide/mm/transhuge.rst2
-rw-r--r--Documentation/admin-guide/namespaces/compatibility-list.rst (renamed from Documentation/namespaces/compatibility-list.txt)10
-rw-r--r--Documentation/admin-guide/namespaces/index.rst11
-rw-r--r--Documentation/admin-guide/namespaces/resource-control.rst (renamed from Documentation/namespaces/resource-control.txt)4
-rw-r--r--Documentation/admin-guide/numastat.rst (renamed from Documentation/numastat.txt)0
-rw-r--r--Documentation/admin-guide/perf/arm-ccn.rst (renamed from Documentation/perf/arm-ccn.txt)18
-rw-r--r--Documentation/admin-guide/perf/arm_dsu_pmu.rst (renamed from Documentation/perf/arm_dsu_pmu.txt)5
-rw-r--r--Documentation/admin-guide/perf/hisi-pmu.rst (renamed from Documentation/perf/hisi-pmu.txt)37
-rw-r--r--Documentation/admin-guide/perf/imx-ddr.rst52
-rw-r--r--Documentation/admin-guide/perf/index.rst16
-rw-r--r--Documentation/admin-guide/perf/qcom_l2_pmu.rst (renamed from Documentation/perf/qcom_l2_pmu.txt)3
-rw-r--r--Documentation/admin-guide/perf/qcom_l3_pmu.rst (renamed from Documentation/perf/qcom_l3_pmu.txt)3
-rw-r--r--Documentation/admin-guide/perf/thunderx2-pmu.rst (renamed from Documentation/perf/thunderx2-pmu.txt)25
-rw-r--r--Documentation/admin-guide/perf/xgene-pmu.rst (renamed from Documentation/perf/xgene-pmu.txt)3
-rw-r--r--Documentation/admin-guide/pnp.rst (renamed from Documentation/pnp.txt)0
-rw-r--r--Documentation/admin-guide/rapidio.rst (renamed from Documentation/driver-api/rapidio.rst)0
-rw-r--r--Documentation/admin-guide/ras.rst2
-rw-r--r--Documentation/admin-guide/rtc.rst (renamed from Documentation/rtc.txt)0
-rw-r--r--Documentation/admin-guide/svga.rst (renamed from Documentation/svga.txt)0
-rw-r--r--Documentation/admin-guide/sysctl/abi.rst67
-rw-r--r--Documentation/admin-guide/sysctl/fs.rst (renamed from Documentation/sysctl/fs.txt)146
-rw-r--r--Documentation/admin-guide/sysctl/index.rst (renamed from Documentation/sysctl/README)34
-rw-r--r--Documentation/admin-guide/sysctl/kernel.rst (renamed from Documentation/sysctl/kernel.txt)394
-rw-r--r--Documentation/admin-guide/sysctl/net.rst (renamed from Documentation/sysctl/net.txt)166
-rw-r--r--Documentation/admin-guide/sysctl/sunrpc.rst (renamed from Documentation/sysctl/sunrpc.txt)13
-rw-r--r--Documentation/admin-guide/sysctl/user.rst (renamed from Documentation/sysctl/user.txt)32
-rw-r--r--Documentation/admin-guide/sysctl/vm.rst (renamed from Documentation/sysctl/vm.txt)264
-rw-r--r--Documentation/admin-guide/sysrq.rst20
-rw-r--r--Documentation/admin-guide/ufs.rst (renamed from Documentation/filesystems/ufs.txt)36
-rw-r--r--Documentation/admin-guide/video-output.rst (renamed from Documentation/video-output.txt)0
-rw-r--r--Documentation/admin-guide/wimax/i2400m.rst (renamed from Documentation/wimax/README.i2400m)145
-rw-r--r--Documentation/admin-guide/wimax/index.rst19
-rw-r--r--Documentation/admin-guide/wimax/wimax.rst (renamed from Documentation/wimax/README.wimax)38
-rw-r--r--Documentation/admin-guide/xfs.rst (renamed from Documentation/filesystems/xfs.txt)137
-rw-r--r--Documentation/arm/Marvell/README395
-rw-r--r--Documentation/arm/Netwinder78
-rw-r--r--Documentation/arm/SA1100/ADSBitsy43
-rw-r--r--Documentation/arm/SA1100/Brutus66
-rw-r--r--Documentation/arm/SA1100/FreeBird21
-rw-r--r--Documentation/arm/SA1100/GraphicsClient98
-rw-r--r--Documentation/arm/SA1100/GraphicsMaster53
-rw-r--r--Documentation/arm/SA1100/HUW_WEBPANEL17
-rw-r--r--Documentation/arm/SA1100/Itsy39
-rw-r--r--Documentation/arm/SA1100/PLEB11
-rw-r--r--Documentation/arm/SA1100/Pangolin23
-rw-r--r--Documentation/arm/SA1100/Tifon7
-rw-r--r--Documentation/arm/SA1100/Yopy2
-rw-r--r--Documentation/arm/SA1100/empeg2
-rw-r--r--Documentation/arm/SA1100/nanoEngine11
-rw-r--r--Documentation/arm/SA1100/serial_UART47
-rw-r--r--Documentation/arm/SH-Mobile/.gitignore1
-rw-r--r--Documentation/arm/arm.rst (renamed from Documentation/arm/README)50
-rw-r--r--Documentation/arm/booting.rst (renamed from Documentation/arm/Booting)71
-rw-r--r--Documentation/arm/cluster-pm-race-avoidance.rst (renamed from Documentation/arm/cluster-pm-race-avoidance.txt)177
-rw-r--r--Documentation/arm/firmware.rst (renamed from Documentation/arm/firmware.txt)14
-rw-r--r--Documentation/arm/index.rst80
-rw-r--r--Documentation/arm/interrupts.rst (renamed from Documentation/arm/Interrupts)90
-rw-r--r--Documentation/arm/ixp4xx.rst (renamed from Documentation/arm/IXP4xx)61
-rw-r--r--Documentation/arm/kernel_mode_neon.rst (renamed from Documentation/arm/kernel_mode_neon.txt)3
-rw-r--r--Documentation/arm/kernel_user_helpers.rst (renamed from Documentation/arm/kernel_user_helpers.txt)79
-rw-r--r--Documentation/arm/keystone/knav-qmss.rst (renamed from Documentation/arm/keystone/knav-qmss.txt)6
-rw-r--r--Documentation/arm/keystone/overview.rst (renamed from Documentation/arm/keystone/Overview.txt)47
-rw-r--r--Documentation/arm/marvel.rst488
-rw-r--r--Documentation/arm/mem_alignment.rst (renamed from Documentation/arm/mem_alignment)13
-rw-r--r--Documentation/arm/memory.rst (renamed from Documentation/arm/memory.txt)9
-rw-r--r--Documentation/arm/microchip.rst (renamed from Documentation/arm/Microchip/README)63
-rw-r--r--Documentation/arm/netwinder.rst85
-rw-r--r--Documentation/arm/nwfpe/index.rst13
-rw-r--r--Documentation/arm/nwfpe/netwinder-fpe.rst (renamed from Documentation/arm/nwfpe/README.FPE)24
-rw-r--r--Documentation/arm/nwfpe/notes.rst (renamed from Documentation/arm/nwfpe/NOTES)3
-rw-r--r--Documentation/arm/nwfpe/nwfpe.rst (renamed from Documentation/arm/nwfpe/README)10
-rw-r--r--Documentation/arm/nwfpe/todo.rst (renamed from Documentation/arm/nwfpe/TODO)47
-rw-r--r--Documentation/arm/omap/dss.rst (renamed from Documentation/arm/OMAP/DSS)102
-rw-r--r--Documentation/arm/omap/index.rst12
-rw-r--r--Documentation/arm/omap/omap.rst (renamed from Documentation/arm/OMAP/README)7
-rw-r--r--Documentation/arm/omap/omap_pm.rst (renamed from Documentation/arm/OMAP/omap_pm)55
-rw-r--r--Documentation/arm/porting.rst (renamed from Documentation/arm/Porting)14
-rw-r--r--Documentation/arm/pxa/mfp.rst (renamed from Documentation/arm/pxa/mfp.txt)110
-rw-r--r--Documentation/arm/sa1100/assabet.rst (renamed from Documentation/arm/SA1100/Assabet)195
-rw-r--r--Documentation/arm/sa1100/cerf.rst (renamed from Documentation/arm/SA1100/CERF)10
-rw-r--r--Documentation/arm/sa1100/index.rst13
-rw-r--r--Documentation/arm/sa1100/lart.rst (renamed from Documentation/arm/SA1100/LART)3
-rw-r--r--Documentation/arm/sa1100/serial_uart.rst51
-rw-r--r--Documentation/arm/samsung-s3c24xx/cpufreq.rst (renamed from Documentation/arm/Samsung-S3C24XX/CPUfreq.txt)5
-rw-r--r--Documentation/arm/samsung-s3c24xx/eb2410itx.rst (renamed from Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt)5
-rw-r--r--Documentation/arm/samsung-s3c24xx/gpio.rst (renamed from Documentation/arm/Samsung-S3C24XX/GPIO.txt)23
-rw-r--r--Documentation/arm/samsung-s3c24xx/h1940.rst (renamed from Documentation/arm/Samsung-S3C24XX/H1940.txt)5
-rw-r--r--Documentation/arm/samsung-s3c24xx/index.rst20
-rw-r--r--Documentation/arm/samsung-s3c24xx/nand.rst (renamed from Documentation/arm/Samsung-S3C24XX/NAND.txt)6
-rw-r--r--Documentation/arm/samsung-s3c24xx/overview.rst (renamed from Documentation/arm/Samsung-S3C24XX/Overview.txt)21
-rw-r--r--Documentation/arm/samsung-s3c24xx/s3c2412.rst (renamed from Documentation/arm/Samsung-S3C24XX/S3C2412.txt)5
-rw-r--r--Documentation/arm/samsung-s3c24xx/s3c2413.rst (renamed from Documentation/arm/Samsung-S3C24XX/S3C2413.txt)7
-rw-r--r--Documentation/arm/samsung-s3c24xx/smdk2440.rst (renamed from Documentation/arm/Samsung-S3C24XX/SMDK2440.txt)5
-rw-r--r--Documentation/arm/samsung-s3c24xx/suspend.rst (renamed from Documentation/arm/Samsung-S3C24XX/Suspend.txt)20
-rw-r--r--Documentation/arm/samsung-s3c24xx/usb-host.rst (renamed from Documentation/arm/Samsung-S3C24XX/USB-Host.txt)16
-rw-r--r--Documentation/arm/samsung/bootloader-interface.rst (renamed from Documentation/arm/Samsung/Bootloader-interface.txt)27
-rwxr-xr-xDocumentation/arm/samsung/clksrc-change-registers.awk (renamed from Documentation/arm/Samsung/clksrc-change-registers.awk)0
-rw-r--r--Documentation/arm/samsung/gpio.rst (renamed from Documentation/arm/Samsung/GPIO.txt)7
-rw-r--r--Documentation/arm/samsung/index.rst12
-rw-r--r--Documentation/arm/samsung/overview.rst (renamed from Documentation/arm/Samsung/Overview.txt)15
-rw-r--r--Documentation/arm/setup.rst (renamed from Documentation/arm/Setup)49
-rw-r--r--Documentation/arm/spear/overview.rst (renamed from Documentation/arm/SPEAr/overview.txt)21
-rw-r--r--Documentation/arm/sti/overview.rst (renamed from Documentation/arm/sti/overview.txt)21
-rw-r--r--Documentation/arm/sti/stih407-overview.rst (renamed from Documentation/arm/sti/stih407-overview.txt)9
-rw-r--r--Documentation/arm/sti/stih415-overview.rst (renamed from Documentation/arm/sti/stih415-overview.txt)8
-rw-r--r--Documentation/arm/sti/stih416-overview.rst (renamed from Documentation/arm/sti/stih416-overview.txt)5
-rw-r--r--Documentation/arm/sti/stih418-overview.rst (renamed from Documentation/arm/sti/stih418-overview.txt)9
-rw-r--r--Documentation/arm/stm32/stm32f429-overview.rst5
-rw-r--r--Documentation/arm/stm32/stm32f746-overview.rst5
-rw-r--r--Documentation/arm/stm32/stm32f769-overview.rst5
-rw-r--r--Documentation/arm/stm32/stm32h743-overview.rst5
-rw-r--r--Documentation/arm/stm32/stm32mp157-overview.rst1
-rw-r--r--Documentation/arm/sunxi.rst (renamed from Documentation/arm/sunxi/README)98
-rw-r--r--Documentation/arm/sunxi/clocks.rst (renamed from Documentation/arm/sunxi/clocks.txt)7
-rw-r--r--Documentation/arm/swp_emulation.rst (renamed from Documentation/arm/swp_emulation)24
-rw-r--r--Documentation/arm/tcm.rst (renamed from Documentation/arm/tcm.txt)54
-rw-r--r--Documentation/arm/uefi.rst (renamed from Documentation/arm/uefi.txt)39
-rw-r--r--Documentation/arm/vfp/release-notes.rst (renamed from Documentation/arm/VFP/release-notes.txt)4
-rw-r--r--Documentation/arm/vlocks.rst (renamed from Documentation/arm/vlocks.txt)9
-rw-r--r--Documentation/arm64/acpi_object_usage.rst (renamed from Documentation/arm64/acpi_object_usage.txt)288
-rw-r--r--Documentation/arm64/arm-acpi.rst (renamed from Documentation/arm64/arm-acpi.txt)163
-rw-r--r--Documentation/arm64/booting.rst (renamed from Documentation/arm64/booting.txt)93
-rw-r--r--Documentation/arm64/cpu-feature-registers.rst (renamed from Documentation/arm64/cpu-feature-registers.txt)210
-rw-r--r--Documentation/arm64/elf_hwcaps.rst (renamed from Documentation/arm64/elf_hwcaps.txt)64
-rw-r--r--Documentation/arm64/hugetlbpage.rst (renamed from Documentation/arm64/hugetlbpage.txt)7
-rw-r--r--Documentation/arm64/index.rst27
-rw-r--r--Documentation/arm64/kasan-offsets.sh27
-rw-r--r--Documentation/arm64/legacy_instructions.rst (renamed from Documentation/arm64/legacy_instructions.txt)43
-rw-r--r--Documentation/arm64/memory.rst165
-rw-r--r--Documentation/arm64/memory.txt97
-rw-r--r--Documentation/arm64/pointer-authentication.rst (renamed from Documentation/arm64/pointer-authentication.txt)2
-rw-r--r--Documentation/arm64/silicon-errata.rst (renamed from Documentation/arm64/silicon-errata.txt)69
-rw-r--r--Documentation/arm64/sve.rst (renamed from Documentation/arm64/sve.txt)12
-rw-r--r--Documentation/arm64/tagged-address-abi.rst156
-rw-r--r--Documentation/arm64/tagged-pointers.rst (renamed from Documentation/arm64/tagged-pointers.txt)27
-rw-r--r--Documentation/atomic_t.txt26
-rw-r--r--Documentation/auxdisplay/cfag12864b105
-rw-r--r--Documentation/auxdisplay/ks010855
-rw-r--r--Documentation/backlight/lp855x-driver.txt66
-rw-r--r--Documentation/block/bfq-iosched.rst (renamed from Documentation/block/bfq-iosched.txt)80
-rw-r--r--Documentation/block/biodoc.rst (renamed from Documentation/block/biodoc.txt)341
-rw-r--r--Documentation/block/biovecs.rst (renamed from Documentation/block/biovecs.txt)20
-rw-r--r--Documentation/block/capability.rst18
-rw-r--r--Documentation/block/capability.txt15
-rw-r--r--Documentation/block/cmdline-partition.rst (renamed from Documentation/block/cmdline-partition.txt)13
-rw-r--r--Documentation/block/data-integrity.rst (renamed from Documentation/block/data-integrity.txt)60
-rw-r--r--Documentation/block/deadline-iosched.rst (renamed from Documentation/block/deadline-iosched.txt)21
-rw-r--r--Documentation/block/index.rst25
-rw-r--r--Documentation/block/ioprio.rst (renamed from Documentation/block/ioprio.txt)103
-rw-r--r--Documentation/block/kyber-iosched.rst (renamed from Documentation/block/kyber-iosched.txt)3
-rw-r--r--Documentation/block/null_blk.rst (renamed from Documentation/block/null_blk.txt)84
-rw-r--r--Documentation/block/pr.rst (renamed from Documentation/block/pr.txt)18
-rw-r--r--Documentation/block/queue-sysfs.rst (renamed from Documentation/block/queue-sysfs.txt)71
-rw-r--r--Documentation/block/request.rst (renamed from Documentation/block/request.txt)47
-rw-r--r--Documentation/block/stat.rst (renamed from Documentation/block/stat.txt)13
-rw-r--r--Documentation/block/switching-sched.rst (renamed from Documentation/block/switching-sched.txt)30
-rw-r--r--Documentation/block/writeback_cache_control.rst (renamed from Documentation/block/writeback_cache_control.txt)12
-rw-r--r--Documentation/bpf/bpf_design_QA.rst30
-rw-r--r--Documentation/bpf/btf.rst2
-rw-r--r--Documentation/bpf/index.rst1
-rw-r--r--Documentation/bpf/prog_cgroup_sockopt.rst93
-rw-r--r--Documentation/bpf/prog_flow_dissector.rst18
-rw-r--r--Documentation/cdrom/Makefile21
-rw-r--r--Documentation/cdrom/cdrom-standard.rst1063
-rw-r--r--Documentation/cdrom/cdrom-standard.tex1026
-rw-r--r--Documentation/cdrom/ide-cd.rst (renamed from Documentation/cdrom/ide-cd)202
-rw-r--r--Documentation/cdrom/index.rst19
-rw-r--r--Documentation/cdrom/packet-writing.rst (renamed from Documentation/cdrom/packet-writing.txt)27
-rw-r--r--Documentation/conf.py35
-rw-r--r--Documentation/core-api/circular-buffers.rst2
-rw-r--r--Documentation/core-api/conf.py10
-rw-r--r--Documentation/core-api/gcc-plugins.rst (renamed from Documentation/gcc-plugins.txt)0
-rw-r--r--Documentation/core-api/index.rst6
-rw-r--r--Documentation/core-api/kernel-api.rst19
-rw-r--r--Documentation/core-api/packing.rst (renamed from Documentation/packing.txt)81
-rw-r--r--Documentation/core-api/printk-formats.rst18
-rw-r--r--Documentation/core-api/protection-keys.rst (renamed from Documentation/x86/protection-keys.rst)0
-rw-r--r--Documentation/core-api/timekeeping.rst14
-rw-r--r--Documentation/core-api/xarray.rst270
-rw-r--r--Documentation/cpu-freq/core.txt18
-rw-r--r--Documentation/crypto/api-samples.rst176
-rw-r--r--Documentation/crypto/api-skcipher.rst2
-rw-r--r--Documentation/crypto/architecture.rst4
-rw-r--r--Documentation/crypto/conf.py10
-rw-r--r--Documentation/crypto/crypto_engine.rst112
-rw-r--r--Documentation/dev-tools/conf.py10
-rw-r--r--Documentation/dev-tools/kmemleak.rst48
-rw-r--r--Documentation/dev-tools/sparse.rst5
-rw-r--r--Documentation/device-mapper/dm-uevent.txt97
-rw-r--r--Documentation/device-mapper/linear.txt61
-rw-r--r--Documentation/device-mapper/striped.txt57
-rw-r--r--Documentation/devicetree/bindings/Makefile6
-rw-r--r--Documentation/devicetree/bindings/arm/actions.txt56
-rw-r--r--Documentation/devicetree/bindings/arm/actions.yaml38
-rw-r--r--Documentation/devicetree/bindings/arm/al,alpine.txt16
-rw-r--r--Documentation/devicetree/bindings/arm/al,alpine.yaml21
-rw-r--r--Documentation/devicetree/bindings/arm/amlogic.txt142
-rw-r--r--Documentation/devicetree/bindings/arm/amlogic.yaml159
-rw-r--r--Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-gx-ao-secure.yaml52
-rw-r--r--Documentation/devicetree/bindings/arm/arm,scmi.txt19
-rw-r--r--Documentation/devicetree/bindings/arm/arm-boards4
-rw-r--r--Documentation/devicetree/bindings/arm/atmel-at91.txt73
-rw-r--r--Documentation/devicetree/bindings/arm/atmel-at91.yaml134
-rw-r--r--Documentation/devicetree/bindings/arm/axxia.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/axxia.yaml19
-rw-r--r--Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt4
-rw-r--r--Documentation/devicetree/bindings/arm/coresight.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/cpus.yaml490
-rw-r--r--Documentation/devicetree/bindings/arm/digicolor.txt6
-rw-r--r--Documentation/devicetree/bindings/arm/digicolor.yaml16
-rw-r--r--Documentation/devicetree/bindings/arm/emtrion.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt39
-rw-r--r--Documentation/devicetree/bindings/arm/fsl.yaml70
-rw-r--r--Documentation/devicetree/bindings/arm/idle-states.txt47
-rw-r--r--Documentation/devicetree/bindings/arm/l2c2x0.yaml4
-rw-r--r--Documentation/devicetree/bindings/arm/marvell/ap806-system-controller.txt42
-rw-r--r--Documentation/devicetree/bindings/arm/marvell/armada-37xx.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/marvell/cp110-system-controller.txt4
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek.txt89
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek.yaml95
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,apmixedsys.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,audsys.txt2
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,camsys.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,imgsys.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,infracfg.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,ipesys.txt22
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,mfgcfg.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,mmsys.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,pericfg.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,topckgen.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,vdecsys.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek/mediatek,vencsys.txt1
-rw-r--r--Documentation/devicetree/bindings/arm/moxart.txt12
-rw-r--r--Documentation/devicetree/bindings/arm/moxart.yaml19
-rw-r--r--Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml25
-rw-r--r--Documentation/devicetree/bindings/arm/omap/omap.txt3
-rw-r--r--Documentation/devicetree/bindings/arm/psci.txt111
-rw-r--r--Documentation/devicetree/bindings/arm/psci.yaml163
-rw-r--r--Documentation/devicetree/bindings/arm/qcom.yaml22
-rw-r--r--Documentation/devicetree/bindings/arm/rda.txt17
-rw-r--r--Documentation/devicetree/bindings/arm/rda.yaml20
-rw-r--r--Documentation/devicetree/bindings/arm/realtek.txt22
-rw-r--r--Documentation/devicetree/bindings/arm/realtek.yaml23
-rw-r--r--Documentation/devicetree/bindings/arm/renesas.yaml10
-rw-r--r--Documentation/devicetree/bindings/arm/rockchip.yaml58
-rw-r--r--Documentation/devicetree/bindings/arm/socionext/milbeaut.yaml2
-rw-r--r--Documentation/devicetree/bindings/arm/stm32/mlahb.txt37
-rw-r--r--Documentation/devicetree/bindings/arm/stm32/stm32.txt10
-rw-r--r--Documentation/devicetree/bindings/arm/stm32/stm32.yaml31
-rw-r--r--Documentation/devicetree/bindings/arm/sunxi.yaml18
-rw-r--r--Documentation/devicetree/bindings/arm/ti/k3.txt3
-rw-r--r--Documentation/devicetree/bindings/arm/ti/ti,davinci.yaml2
-rw-r--r--Documentation/devicetree/bindings/arm/xen.txt2
-rw-r--r--Documentation/devicetree/bindings/ata/ahci-platform.txt2
-rw-r--r--Documentation/devicetree/bindings/bus/allwinner,sun50i-a64-de2.yaml85
-rw-r--r--Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml80
-rw-r--r--Documentation/devicetree/bindings/bus/imx-weim.txt4
-rw-r--r--Documentation/devicetree/bindings/bus/moxtet.txt46
-rw-r--r--Documentation/devicetree/bindings/bus/qcom,ebi2.txt2
-rw-r--r--Documentation/devicetree/bindings/bus/sun50i-de2-bus.txt40
-rw-r--r--Documentation/devicetree/bindings/bus/sunxi-rsb.txt47
-rw-r--r--Documentation/devicetree/bindings/clock/allwinner,sun4i-a10-ccu.yaml142
-rw-r--r--Documentation/devicetree/bindings/clock/amlogic,axg-audio-clkc.txt1
-rw-r--r--Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt2
-rw-r--r--Documentation/devicetree/bindings/clock/at91-clock.txt7
-rw-r--r--Documentation/devicetree/bindings/clock/brcm,bcm2835-cprman.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/brcm,bcm63xx-clocks.txt22
-rw-r--r--Documentation/devicetree/bindings/clock/cirrus,lochnagar.txt1
-rw-r--r--Documentation/devicetree/bindings/clock/imx8mn-clock.yaml112
-rw-r--r--Documentation/devicetree/bindings/clock/mvebu-core-clock.txt1
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,gcc.txt21
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,gpucc.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt7
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,emev2-smu.txt (renamed from Documentation/devicetree/bindings/clock/emev2-clock.txt)0
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,r9a06g032-sysctrl.txt7
-rw-r--r--Documentation/devicetree/bindings/clock/rockchip,rk3308-cru.txt60
-rw-r--r--Documentation/devicetree/bindings/clock/silabs,si5341.txt162
-rw-r--r--Documentation/devicetree/bindings/clock/sunxi-ccu.txt62
-rw-r--r--Documentation/devicetree/bindings/clock/ti,cdce925.txt4
-rw-r--r--Documentation/devicetree/bindings/common-properties.txt17
-rw-r--r--Documentation/devicetree/bindings/connector/usb-connector.txt14
-rw-r--r--Documentation/devicetree/bindings/cpu/cpu-topology.txt (renamed from Documentation/devicetree/bindings/arm/topology.txt)256
-rw-r--r--Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt37
-rw-r--r--Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml79
-rw-r--r--Documentation/devicetree/bindings/crypto/atmel-crypto.txt13
-rw-r--r--Documentation/devicetree/bindings/crypto/sun4i-ss.txt23
-rw-r--r--Documentation/devicetree/bindings/csky/pmu.txt38
-rw-r--r--Documentation/devicetree/bindings/display/allwinner,sun6i-a31-mipi-dsi.yaml100
-rw-r--r--Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.txt119
-rw-r--r--Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.yaml150
-rw-r--r--Documentation/devicetree/bindings/display/amlogic,meson-vpu.txt121
-rw-r--r--Documentation/devicetree/bindings/display/amlogic,meson-vpu.yaml137
-rw-r--r--Documentation/devicetree/bindings/display/arm,komeda.txt23
-rw-r--r--Documentation/devicetree/bindings/display/arm,pl11x.txt9
-rw-r--r--Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt4
-rw-r--r--Documentation/devicetree/bindings/display/bridge/renesas,lvds.txt19
-rw-r--r--Documentation/devicetree/bindings/display/bridge/sii902x.txt41
-rw-r--r--Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt6
-rw-r--r--Documentation/devicetree/bindings/display/bridge/toshiba,tc358767.txt1
-rw-r--r--Documentation/devicetree/bindings/display/connector/hdmi-connector.txt1
-rw-r--r--Documentation/devicetree/bindings/display/ingenic,lcd.txt44
-rw-r--r--Documentation/devicetree/bindings/display/msm/dpu.txt10
-rw-r--r--Documentation/devicetree/bindings/display/msm/dsi.txt1
-rw-r--r--Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.txt26
-rw-r--r--Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.yaml42
-rw-r--r--Documentation/devicetree/bindings/display/panel/arm,versatile-tft-panel.txt2
-rw-r--r--Documentation/devicetree/bindings/display/panel/armadeus,st0700-adapt.yaml33
-rw-r--r--Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.txt12
-rw-r--r--Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.yaml31
-rw-r--r--Documentation/devicetree/bindings/display/panel/boe,himax8279d.txt24
-rw-r--r--Documentation/devicetree/bindings/display/panel/dlc,dlc0700yzg-1.yaml31
-rw-r--r--Documentation/devicetree/bindings/display/panel/edt,et-series.txt18
-rw-r--r--Documentation/devicetree/bindings/display/panel/evervision,vgg804821.txt (renamed from Documentation/devicetree/bindings/display/panel/dlc,dlc0700yzg-1.txt)7
-rw-r--r--Documentation/devicetree/bindings/display/panel/friendlyarm,hd702e.txt32
-rw-r--r--Documentation/devicetree/bindings/display/panel/giantplus,gpm940b0.txt12
-rw-r--r--Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.txt7
-rw-r--r--Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.yaml31
-rw-r--r--Documentation/devicetree/bindings/display/panel/kingdisplay,kd035g6-54nt.txt42
-rw-r--r--Documentation/devicetree/bindings/display/panel/koe,tx14d24vm1bpa.txt42
-rw-r--r--Documentation/devicetree/bindings/display/panel/lvds.yaml107
-rw-r--r--Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.txt47
-rw-r--r--Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.yaml75
-rw-r--r--Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.txt47
-rw-r--r--Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.yaml74
-rw-r--r--Documentation/devicetree/bindings/display/panel/nec,nl8048hl11.yaml62
-rw-r--r--Documentation/devicetree/bindings/display/panel/ortustech,com37h3m05dtc.txt12
-rw-r--r--Documentation/devicetree/bindings/display/panel/ortustech,com37h3m99dtc.txt12
-rw-r--r--Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2045-53ts.txt11
-rw-r--r--Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2587-53ts.txt14
-rw-r--r--Documentation/devicetree/bindings/display/panel/panel-common.txt101
-rw-r--r--Documentation/devicetree/bindings/display/panel/panel-common.yaml149
-rw-r--r--Documentation/devicetree/bindings/display/panel/panel-lvds.txt121
-rw-r--r--Documentation/devicetree/bindings/display/panel/panel.txt4
-rw-r--r--Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.txt14
-rw-r--r--Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.yaml31
-rw-r--r--Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.txt49
-rw-r--r--Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.yaml71
-rw-r--r--Documentation/devicetree/bindings/display/panel/raydium,rm67191.txt41
-rw-r--r--Documentation/devicetree/bindings/display/panel/rocktech,jh057n00900.txt5
-rw-r--r--Documentation/devicetree/bindings/display/panel/samsung,s6e63m0.txt33
-rw-r--r--Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.txt41
-rw-r--r--Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.yaml68
-rw-r--r--Documentation/devicetree/bindings/display/panel/sharp,ld-d5116z01b.txt26
-rw-r--r--Documentation/devicetree/bindings/display/panel/sharp,lq070y3dg3b.txt12
-rw-r--r--Documentation/devicetree/bindings/display/panel/sharp,ls020b1dd01d.txt12
-rw-r--r--Documentation/devicetree/bindings/display/panel/simple-panel.txt29
-rw-r--r--Documentation/devicetree/bindings/display/panel/tfc,s9700rtwv43tr-01b.yaml33
-rw-r--r--Documentation/devicetree/bindings/display/panel/ti,nspire.yaml36
-rw-r--r--Documentation/devicetree/bindings/display/panel/tpo,tpg110.txt70
-rw-r--r--Documentation/devicetree/bindings/display/panel/tpo,tpg110.yaml101
-rw-r--r--Documentation/devicetree/bindings/display/panel/vl050_8048nt_c01.txt12
-rw-r--r--Documentation/devicetree/bindings/display/renesas,du.txt2
-rw-r--r--Documentation/devicetree/bindings/display/rockchip/dw_hdmi-rockchip.txt8
-rw-r--r--Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt23
-rw-r--r--Documentation/devicetree/bindings/display/rockchip/rockchip-lvds.txt11
-rw-r--r--Documentation/devicetree/bindings/display/simple-framebuffer.yaml25
-rw-r--r--Documentation/devicetree/bindings/display/ssd1307fb.txt10
-rw-r--r--Documentation/devicetree/bindings/display/st,stm32-ltdc.txt3
-rw-r--r--Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt93
-rw-r--r--Documentation/devicetree/bindings/dma/8250_mtk_dma.txt33
-rw-r--r--Documentation/devicetree/bindings/dma/allwinner,sun4i-a10-dma.yaml55
-rw-r--r--Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml88
-rw-r--r--Documentation/devicetree/bindings/dma/allwinner,sun6i-a31-dma.yaml62
-rw-r--r--Documentation/devicetree/bindings/dma/arm-pl330.txt3
-rw-r--r--Documentation/devicetree/bindings/dma/dma-common.yaml45
-rw-r--r--Documentation/devicetree/bindings/dma/dma-controller.yaml35
-rw-r--r--Documentation/devicetree/bindings/dma/dma-router.yaml50
-rw-r--r--Documentation/devicetree/bindings/dma/dma.txt114
-rw-r--r--Documentation/devicetree/bindings/dma/fsl-edma.txt44
-rw-r--r--Documentation/devicetree/bindings/dma/fsl-qdma.txt1
-rw-r--r--Documentation/devicetree/bindings/dma/mtk-uart-apdma.txt54
-rw-r--r--Documentation/devicetree/bindings/dma/renesas,nbpfaxi.txt (renamed from Documentation/devicetree/bindings/dma/nbpfaxi.txt)0
-rw-r--r--Documentation/devicetree/bindings/dma/renesas,shdma.txt (renamed from Documentation/devicetree/bindings/dma/shdma.txt)0
-rw-r--r--Documentation/devicetree/bindings/dma/sun4i-dma.txt45
-rw-r--r--Documentation/devicetree/bindings/dma/sun6i-dma.txt76
-rw-r--r--Documentation/devicetree/bindings/dsp/fsl,dsp.yaml88
-rw-r--r--Documentation/devicetree/bindings/eeprom/at25.txt1
-rw-r--r--Documentation/devicetree/bindings/example-schema.yaml2
-rw-r--r--Documentation/devicetree/bindings/extcon/extcon-arizona.txt2
-rw-r--r--Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt21
-rw-r--r--Documentation/devicetree/bindings/fieldbus/arcx,anybus-controller.txt71
-rw-r--r--Documentation/devicetree/bindings/firmware/cznic,turris-mox-rwtm.txt19
-rw-r--r--Documentation/devicetree/bindings/firmware/intel,ixp4xx-network-processing-engine.yaml2
-rw-r--r--Documentation/devicetree/bindings/firmware/qcom,scm.txt4
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt5
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt5
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt5
-rw-r--r--Documentation/devicetree/bindings/fpga/fpga-bridge.txt13
-rw-r--r--Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt8
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-aspeed.txt7
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-davinci.txt19
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-moxtet.txt18
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt16
-rw-r--r--Documentation/devicetree/bindings/gpio/pl061-gpio.txt10
-rw-r--r--Documentation/devicetree/bindings/gpio/pl061-gpio.yaml69
-rw-r--r--Documentation/devicetree/bindings/gpio/sgpio-aspeed.txt45
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-bifrost.txt92
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml116
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-midgard.txt101
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml168
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-utgard.txt123
-rw-r--r--Documentation/devicetree/bindings/gpu/arm,mali-utgard.yaml168
-rw-r--r--Documentation/devicetree/bindings/hwlock/omap-hwspinlock.txt25
-rw-r--r--Documentation/devicetree/bindings/hwmon/as370.txt11
-rw-r--r--Documentation/devicetree/bindings/hwmon/ibm,cffps1.txt8
-rw-r--r--Documentation/devicetree/bindings/hwmon/lm75.txt1
-rw-r--r--Documentation/devicetree/bindings/i2c/allwinner,sun6i-a31-p2wi.yaml65
-rw-r--r--Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt4
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mt7621.txt25
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mux-gpmux.txt2
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt64
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-ocores.txt9
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-omap.txt1
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-stm32.txt2
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-sun6i-p2wi.txt41
-rw-r--r--Documentation/devicetree/bindings/i2c/marvell,mv64xxx-i2c.yaml127
-rw-r--r--Documentation/devicetree/bindings/i2c/renesas,i2c.txt (renamed from Documentation/devicetree/bindings/i2c/i2c-rcar.txt)0
-rw-r--r--Documentation/devicetree/bindings/i2c/renesas,iic-emev2.txt (renamed from Documentation/devicetree/bindings/i2c/i2c-emev2.txt)0
-rw-r--r--Documentation/devicetree/bindings/i2c/renesas,iic.txt (renamed from Documentation/devicetree/bindings/i2c/i2c-sh_mobile.txt)0
-rw-r--r--Documentation/devicetree/bindings/i2c/renesas,riic.txt (renamed from Documentation/devicetree/bindings/i2c/i2c-riic.txt)0
-rw-r--r--Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt2
-rw-r--r--Documentation/devicetree/bindings/i3c/i3c.txt4
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml72
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml63
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adxl345.txt39
-rw-r--r--Documentation/devicetree/bindings/iio/accel/adxl372.txt33
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt75
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml160
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml121
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7606.txt66
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7606.yaml138
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt48
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml87
-rw-r--r--Documentation/devicetree/bindings/iio/adc/ads1015.txt (renamed from Documentation/devicetree/bindings/hwmon/ads1015.txt)0
-rw-r--r--Documentation/devicetree/bindings/iio/adc/allwinner,sun8i-a33-ths.yaml43
-rw-r--r--Documentation/devicetree/bindings/iio/adc/avia-hx711.yaml2
-rw-r--r--Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt2
-rw-r--r--Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt7
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.txt26
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.yaml51
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt12
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml39
-rw-r--r--Documentation/devicetree/bindings/iio/frequency/adf4371.yaml63
-rw-r--r--Documentation/devicetree/bindings/iio/imu/adi,adis16460.yaml53
-rw-r--r--Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt3
-rw-r--r--Documentation/devicetree/bindings/iio/light/isl29018.txt27
-rw-r--r--Documentation/devicetree/bindings/iio/light/isl29018.yaml56
-rw-r--r--Documentation/devicetree/bindings/iio/light/noa1305.yaml44
-rw-r--r--Documentation/devicetree/bindings/iio/light/renesas,isl29501.txt (renamed from Documentation/devicetree/bindings/iio/light/isl29501.txt)0
-rw-r--r--Documentation/devicetree/bindings/iio/light/stk33xx.yaml49
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2583.txt25
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2583.yaml46
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2772.txt42
-rw-r--r--Documentation/devicetree/bindings/iio/light/tsl2772.yaml83
-rw-r--r--Documentation/devicetree/bindings/iio/mount-matrix.txt203
-rw-r--r--Documentation/devicetree/bindings/iio/potentiometer/max5432.yaml44
-rw-r--r--Documentation/devicetree/bindings/input/allwinner,sun4i-a10-lradc-keys.yaml95
-rw-r--r--Documentation/devicetree/bindings/input/elan_i2c.txt11
-rw-r--r--Documentation/devicetree/bindings/input/sun4i-lradc-keys.txt64
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/ads7846.txt29
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/bu21013.txt27
-rw-r--r--Documentation/devicetree/bindings/interconnect/qcom,qcs404.txt45
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-a10-ic.yaml47
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt20
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml70
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt29
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt27
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt2
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/arm,gic-v3.yaml6
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt20
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/intel,ixp4xx-interrupt.yaml2
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/interrupts.txt8
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt1
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt43
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt30
-rw-r--r--Documentation/devicetree/bindings/iommu/mediatek,iommu.txt30
-rw-r--r--Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt2
-rw-r--r--Documentation/devicetree/bindings/leds/ams,as3645a.txt22
-rw-r--r--Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml21
-rw-r--r--Documentation/devicetree/bindings/leds/common.txt62
-rw-r--r--Documentation/devicetree/bindings/leds/leds-aat1290.txt12
-rw-r--r--Documentation/devicetree/bindings/leds/leds-an30259a.txt22
-rw-r--r--Documentation/devicetree/bindings/leds/leds-cr0014114.txt26
-rw-r--r--Documentation/devicetree/bindings/leds/leds-gpio.txt23
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm3532.txt4
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm3601x.txt10
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm36274.txt85
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm3692x.txt9
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lm3697.txt73
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lp8860.txt9
-rw-r--r--Documentation/devicetree/bindings/leds/leds-lt3593.txt11
-rw-r--r--Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt10
-rw-r--r--Documentation/devicetree/bindings/leds/leds-spi-byte.txt44
-rw-r--r--Documentation/devicetree/bindings/mailbox/amlogic,meson-gxbb-mhu.yaml52
-rw-r--r--Documentation/devicetree/bindings/mailbox/meson-mhu.txt34
-rw-r--r--Documentation/devicetree/bindings/mailbox/mtk-gce.txt23
-rw-r--r--Documentation/devicetree/bindings/mailbox/omap-mailbox.txt59
-rw-r--r--Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt3
-rw-r--r--Documentation/devicetree/bindings/media/allegro.txt43
-rw-r--r--Documentation/devicetree/bindings/media/allwinner,sun4i-a10-csi.yaml109
-rw-r--r--Documentation/devicetree/bindings/media/allwinner,sun4i-a10-ir.yaml80
-rw-r--r--Documentation/devicetree/bindings/media/amlogic,vdec.txt72
-rw-r--r--Documentation/devicetree/bindings/media/cdns,csi2tx.txt3
-rw-r--r--Documentation/devicetree/bindings/media/i2c/nokia,smia.txt10
-rw-r--r--Documentation/devicetree/bindings/media/imx7-csi.txt11
-rw-r--r--Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt50
-rw-r--r--Documentation/devicetree/bindings/media/meson-ao-cec.txt8
-rw-r--r--Documentation/devicetree/bindings/media/nvidia,tegra-vde.txt2
-rw-r--r--Documentation/devicetree/bindings/media/rc.txt118
-rw-r--r--Documentation/devicetree/bindings/media/rc.yaml145
-rw-r--r--Documentation/devicetree/bindings/media/renesas,csi2.txt (renamed from Documentation/devicetree/bindings/media/renesas,rcar-csi2.txt)0
-rw-r--r--Documentation/devicetree/bindings/media/renesas,imr.txt (renamed from Documentation/devicetree/bindings/media/rcar_imr.txt)0
-rw-r--r--Documentation/devicetree/bindings/media/renesas,vin.txt (renamed from Documentation/devicetree/bindings/media/rcar_vin.txt)0
-rw-r--r--Documentation/devicetree/bindings/media/rockchip-vpu.txt18
-rw-r--r--Documentation/devicetree/bindings/media/st,stm32-dcmi.txt2
-rw-r--r--Documentation/devicetree/bindings/media/sun6i-csi.txt1
-rw-r--r--Documentation/devicetree/bindings/media/sunxi-ir.txt28
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt1
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/mediatek,smi-common.txt12
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt4
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/renesas,dbsc.txt (renamed from Documentation/devicetree/bindings/memory-controllers/renesas-memory-controllers.txt)0
-rw-r--r--Documentation/devicetree/bindings/mfd/allwinner,sun4i-a10-ts.yaml76
-rw-r--r--Documentation/devicetree/bindings/mfd/aspeed-scu.txt2
-rw-r--r--Documentation/devicetree/bindings/mfd/atmel-usart.txt20
-rw-r--r--Documentation/devicetree/bindings/mfd/cros-ec.txt5
-rw-r--r--Documentation/devicetree/bindings/mfd/lp87565.txt36
-rw-r--r--Documentation/devicetree/bindings/mfd/madera.txt8
-rw-r--r--Documentation/devicetree/bindings/mfd/mt6397.txt20
-rw-r--r--Documentation/devicetree/bindings/mfd/rk808.txt44
-rw-r--r--Documentation/devicetree/bindings/mfd/rn5t618.txt5
-rw-r--r--Documentation/devicetree/bindings/mfd/rohm,bd70528-pmic.txt102
-rw-r--r--Documentation/devicetree/bindings/mfd/rohm,bd71837-pmic.txt10
-rw-r--r--Documentation/devicetree/bindings/mfd/sun4i-gpadc.txt59
-rw-r--r--Documentation/devicetree/bindings/mfd/ti-lmu.txt88
-rw-r--r--Documentation/devicetree/bindings/misc/aspeed-p2a-ctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/misc/fsl,dpaa2-console.txt11
-rw-r--r--Documentation/devicetree/bindings/misc/intel,ixp4xx-ahb-queue-manager.yaml (renamed from Documentation/devicetree/bindings/misc/intel,ixp4xx-queue-manager.yaml)2
-rw-r--r--Documentation/devicetree/bindings/misc/olpc,xo1.75-ec.txt23
-rw-r--r--Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt58
-rw-r--r--Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml104
-rw-r--r--Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt4
-rw-r--r--Documentation/devicetree/bindings/mmc/arasan,sdhci.txt17
-rw-r--r--Documentation/devicetree/bindings/mmc/aspeed,sdhci.yaml106
-rw-r--r--Documentation/devicetree/bindings/mmc/brcm,sdhci-iproc.txt4
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc-controller.yaml374
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc.txt178
-rw-r--r--Documentation/devicetree/bindings/mmc/renesas,sdhi.txt (renamed from Documentation/devicetree/bindings/mmc/tmio_mmc.txt)11
-rw-r--r--Documentation/devicetree/bindings/mmc/sdhci-am654.txt9
-rw-r--r--Documentation/devicetree/bindings/mmc/sdhci-sprd.txt26
-rw-r--r--Documentation/devicetree/bindings/mmc/sunxi-mmc.txt52
-rw-r--r--Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml2
-rw-r--r--Documentation/devicetree/bindings/mtd/brcm,brcmnand.txt5
-rw-r--r--Documentation/devicetree/bindings/mtd/cadence-quadspi.txt5
-rw-r--r--Documentation/devicetree/bindings/mtd/cypress,hyperflash.txt13
-rw-r--r--Documentation/devicetree/bindings/mtd/mxic-nand.txt36
-rw-r--r--Documentation/devicetree/bindings/mtd/nand-controller.yaml1
-rw-r--r--Documentation/devicetree/bindings/mtd/stm32-quadspi.txt43
-rw-r--r--Documentation/devicetree/bindings/mtd/ti,am654-hbmc.txt51
-rw-r--r--Documentation/devicetree/bindings/mux/mmio-mux.txt60
-rw-r--r--Documentation/devicetree/bindings/mux/reg-mux.txt129
-rw-r--r--Documentation/devicetree/bindings/net/adi,adin.yaml73
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml56
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml70
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt19
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt27
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt27
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml68
-rw-r--r--Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml321
-rw-r--r--Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml113
-rw-r--r--Documentation/devicetree/bindings/net/aspeed,ast2600-mdio.yaml45
-rw-r--r--Documentation/devicetree/bindings/net/broadcom-bluetooth.txt1
-rw-r--r--Documentation/devicetree/bindings/net/can/fsl-flexcan.txt10
-rw-r--r--Documentation/devicetree/bindings/net/can/rcar_can.txt19
-rw-r--r--Documentation/devicetree/bindings/net/can/rcar_canfd.txt15
-rw-r--r--Documentation/devicetree/bindings/net/can/tcan4x5x.txt40
-rw-r--r--Documentation/devicetree/bindings/net/dsa/ksz.txt6
-rw-r--r--Documentation/devicetree/bindings/net/dsa/marvell.txt7
-rw-r--r--Documentation/devicetree/bindings/net/dsa/mt7530.txt214
-rw-r--r--Documentation/devicetree/bindings/net/dsa/qca8k.txt6
-rw-r--r--Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt58
-rw-r--r--Documentation/devicetree/bindings/net/dwmac-sun8i.txt201
-rw-r--r--Documentation/devicetree/bindings/net/ethernet-controller.yaml206
-rw-r--r--Documentation/devicetree/bindings/net/ethernet-phy.yaml177
-rw-r--r--Documentation/devicetree/bindings/net/ethernet.txt68
-rw-r--r--Documentation/devicetree/bindings/net/fixed-link.txt55
-rw-r--r--Documentation/devicetree/bindings/net/fsl-enetc.txt49
-rw-r--r--Documentation/devicetree/bindings/net/fsl-fec.txt30
-rw-r--r--Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt7
-rw-r--r--Documentation/devicetree/bindings/net/keystone-netcp.txt44
-rw-r--r--Documentation/devicetree/bindings/net/macb.txt3
-rw-r--r--Documentation/devicetree/bindings/net/marvell-bluetooth.txt25
-rw-r--r--Documentation/devicetree/bindings/net/marvell-orion-mdio.txt2
-rw-r--r--Documentation/devicetree/bindings/net/mdio.txt38
-rw-r--r--Documentation/devicetree/bindings/net/mdio.yaml74
-rw-r--r--Documentation/devicetree/bindings/net/mediatek-bluetooth.txt17
-rw-r--r--Documentation/devicetree/bindings/net/mediatek-net.txt15
-rw-r--r--Documentation/devicetree/bindings/net/meson-dwmac.txt71
-rw-r--r--Documentation/devicetree/bindings/net/mscc-ocelot.txt20
-rw-r--r--Documentation/devicetree/bindings/net/phy.txt80
-rw-r--r--Documentation/devicetree/bindings/net/qca,ar71xx.txt45
-rw-r--r--Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt4
-rw-r--r--Documentation/devicetree/bindings/net/snps,dwmac.yaml425
-rw-r--r--Documentation/devicetree/bindings/net/socfpga-dwmac.txt10
-rw-r--r--Documentation/devicetree/bindings/net/stmmac.txt179
-rw-r--r--Documentation/devicetree/bindings/net/ti,dp83867.txt18
-rw-r--r--Documentation/devicetree/bindings/net/wiznet,w5x00.txt50
-rw-r--r--Documentation/devicetree/bindings/net/xilinx_axienet.txt29
-rw-r--r--Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml51
-rw-r--r--Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt29
-rw-r--r--Documentation/devicetree/bindings/nvmem/imx-ocotp.txt4
-rw-r--r--Documentation/devicetree/bindings/nvmem/nvmem-consumer.yaml45
-rw-r--r--Documentation/devicetree/bindings/nvmem/nvmem.txt81
-rw-r--r--Documentation/devicetree/bindings/nvmem/nvmem.yaml93
-rw-r--r--Documentation/devicetree/bindings/opp/opp.txt4
-rw-r--r--Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt (renamed from Documentation/devicetree/bindings/opp/kryo-cpufreq.txt)127
-rw-r--r--Documentation/devicetree/bindings/opp/qcom-opp.txt19
-rw-r--r--Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt167
-rw-r--r--Documentation/devicetree/bindings/pci/83xx-512x-pci.txt1
-rw-r--r--Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt2
-rw-r--r--Documentation/devicetree/bindings/pci/designware-pcie.txt6
-rw-r--r--Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt2
-rw-r--r--Documentation/devicetree/bindings/pci/mediatek-pcie.txt1
-rw-r--r--Documentation/devicetree/bindings/pci/mobiveil-pcie.txt2
-rw-r--r--Documentation/devicetree/bindings/pci/nvidia,tegra194-pcie.txt171
-rw-r--r--Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt8
-rw-r--r--Documentation/devicetree/bindings/pci/pci-armada8k.txt10
-rw-r--r--Documentation/devicetree/bindings/pci/pci-msi.txt2
-rw-r--r--Documentation/devicetree/bindings/pci/pci.txt8
-rw-r--r--Documentation/devicetree/bindings/pci/pcie-al.txt46
-rw-r--r--Documentation/devicetree/bindings/pci/qcom,pcie.txt25
-rw-r--r--Documentation/devicetree/bindings/pci/rcar-pci.txt1
-rw-r--r--Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt21
-rw-r--r--Documentation/devicetree/bindings/phy/allwinner,sun6i-a31-mipi-dphy.yaml57
-rw-r--r--Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml63
-rw-r--r--Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb3-pcie-phy.yaml57
-rw-r--r--Documentation/devicetree/bindings/phy/lantiq,vrx200-pcie-phy.yaml95
-rw-r--r--Documentation/devicetree/bindings/phy/meson-g12a-usb2-phy.txt22
-rw-r--r--Documentation/devicetree/bindings/phy/meson-g12a-usb3-pcie-phy.txt22
-rw-r--r--Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt29
-rw-r--r--Documentation/devicetree/bindings/phy/mxs-usb-phy.txt3
-rw-r--r--Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt12
-rw-r--r--Documentation/devicetree/bindings/phy/phy-bindings.txt2
-rw-r--r--Documentation/devicetree/bindings/phy/phy-mvebu-comphy.txt10
-rw-r--r--Documentation/devicetree/bindings/phy/phy-pxa-usb.txt18
-rw-r--r--Documentation/devicetree/bindings/phy/phy-tegra194-p2u.txt28
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt42
-rw-r--r--Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt13
-rw-r--r--Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/aspeed,ast2400-pinctrl.yaml76
-rw-r--r--Documentation/devicetree/bindings/pinctrl/aspeed,ast2500-pinctrl.yaml126
-rw-r--r--Documentation/devicetree/bindings/pinctrl/aspeed,ast2600-pinctrl.yaml115
-rw-r--r--Documentation/devicetree/bindings/pinctrl/bitmain,bm1880-pinctrl.txt34
-rw-r--r--Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt4
-rw-r--r--Documentation/devicetree/bindings/pinctrl/fsl,imx8mm-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/fsl,imx8mn-pinctrl.txt39
-rw-r--r--Documentation/devicetree/bindings/pinctrl/ingenic,pinctrl.txt17
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt44
-rw-r--r--Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt16
-rw-r--r--Documentation/devicetree/bindings/pinctrl/microchip,pic32-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/nvidia,tegra194-pinmux.txt107
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt172
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt3
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt2
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,apq8084-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,ipq8074-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,mdm9615-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,msm8916-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,msm8960-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,msm8994-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,msm8996-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,msm8998-pinctrl.txt21
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,pmic-gpio.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,qcs404-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,sc7180-pinctrl.txt186
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,sdm660-pinctrl.txt6
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,sdm845-pinctrl.txt8
-rw-r--r--Documentation/devicetree/bindings/pinctrl/qcom,sm8150-pinctrl.txt190
-rw-r--r--Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt208
-rw-r--r--Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml272
-rw-r--r--Documentation/devicetree/bindings/power/amlogic,meson-ee-pwrc.yaml93
-rw-r--r--Documentation/devicetree/bindings/power/qcom,rpmpd.txt2
-rw-r--r--Documentation/devicetree/bindings/power/reset/mt6323-poweroff.txt20
-rw-r--r--Documentation/devicetree/bindings/power/reset/nvmem-reboot-mode.txt26
-rw-r--r--Documentation/devicetree/bindings/power/reset/qcom,pon.txt1
-rw-r--r--Documentation/devicetree/bindings/property-units.txt34
-rw-r--r--Documentation/devicetree/bindings/ptp/ptp-qoriq.txt2
-rw-r--r--Documentation/devicetree/bindings/pwm/allwinner,sun4i-a10-pwm.yaml57
-rw-r--r--Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt25
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-mediatek.txt2
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-sifive.txt33
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-sprd.txt40
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt9
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-stm32.txt3
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-sun4i.txt24
-rw-r--r--Documentation/devicetree/bindings/regulator/act8865-regulator.txt27
-rw-r--r--Documentation/devicetree/bindings/regulator/arizona-regulator.txt3
-rw-r--r--Documentation/devicetree/bindings/regulator/fixed-regulator.yaml24
-rw-r--r--Documentation/devicetree/bindings/regulator/gpio-regulator.txt57
-rw-r--r--Documentation/devicetree/bindings/regulator/gpio-regulator.yaml118
-rw-r--r--Documentation/devicetree/bindings/regulator/max8660.txt47
-rw-r--r--Documentation/devicetree/bindings/regulator/max8660.yaml77
-rw-r--r--Documentation/devicetree/bindings/regulator/mt6358-regulator.txt358
-rw-r--r--Documentation/devicetree/bindings/regulator/pv88060.txt2
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt17
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt22
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.txt140
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.yaml200
-rw-r--r--Documentation/devicetree/bindings/regulator/slg51000.txt88
-rw-r--r--Documentation/devicetree/bindings/regulator/st,stm32-booster.txt18
-rw-r--r--Documentation/devicetree/bindings/regulator/sy8824x.txt24
-rw-r--r--Documentation/devicetree/bindings/regulator/twl-regulator.txt7
-rw-r--r--Documentation/devicetree/bindings/regulator/uniphier-regulator.txt5
-rw-r--r--Documentation/devicetree/bindings/remoteproc/qcom,hexagon-v56.txt (renamed from Documentation/devicetree/bindings/remoteproc/qcom,adsp-pil.txt)35
-rw-r--r--Documentation/devicetree/bindings/remoteproc/stm32-rproc.txt63
-rw-r--r--Documentation/devicetree/bindings/reset/amlogic,meson-reset.txt19
-rw-r--r--Documentation/devicetree/bindings/reset/amlogic,meson-reset.yaml37
-rw-r--r--Documentation/devicetree/bindings/reset/bitmain,bm1880-reset.txt18
-rw-r--r--Documentation/devicetree/bindings/reset/fsl,imx7-src.txt8
-rw-r--r--Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt1
-rw-r--r--Documentation/devicetree/bindings/reset/snps,dw-reset.txt30
-rw-r--r--Documentation/devicetree/bindings/riscv/cpus.txt162
-rw-r--r--Documentation/devicetree/bindings/riscv/cpus.yaml161
-rw-r--r--Documentation/devicetree/bindings/riscv/sifive.yaml2
-rw-r--r--Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt21
-rw-r--r--Documentation/devicetree/bindings/rng/amlogic,meson-rng.yaml37
-rw-r--r--Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt1
-rw-r--r--Documentation/devicetree/bindings/rng/mtk-rng.txt1
-rw-r--r--Documentation/devicetree/bindings/rng/timeriomem_rng.txt2
-rw-r--r--Documentation/devicetree/bindings/rtc/allwinner,sun4i-a10-rtc.yaml43
-rw-r--r--Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml147
-rw-r--r--Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt4
-rw-r--r--Documentation/devicetree/bindings/rtc/pcf8563.txt4
-rw-r--r--Documentation/devicetree/bindings/rtc/rtc-ds1307.txt1
-rw-r--r--Documentation/devicetree/bindings/rtc/rtc-fsl-ftm-alarm.txt36
-rw-r--r--Documentation/devicetree/bindings/rtc/rtc-meson-vrtc.txt22
-rw-r--r--Documentation/devicetree/bindings/rtc/rtc.txt73
-rw-r--r--Documentation/devicetree/bindings/rtc/rtc.yaml50
-rw-r--r--Documentation/devicetree/bindings/rtc/sun6i-rtc.txt46
-rw-r--r--Documentation/devicetree/bindings/rtc/sunxi-rtc.txt17
-rw-r--r--Documentation/devicetree/bindings/rtc/trivial-rtc.yaml90
-rw-r--r--Documentation/devicetree/bindings/serial/8250.txt19
-rw-r--r--Documentation/devicetree/bindings/serial/amlogic,meson-uart.txt38
-rw-r--r--Documentation/devicetree/bindings/serial/amlogic,meson-uart.yaml73
-rw-r--r--Documentation/devicetree/bindings/serial/fsl,s32-linflexuart.txt22
-rw-r--r--Documentation/devicetree/bindings/serial/fsl-lpuart.txt5
-rw-r--r--Documentation/devicetree/bindings/serial/mtk-uart.txt14
-rw-r--r--Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt39
-rw-r--r--Documentation/devicetree/bindings/serial/omap_serial.txt1
-rw-r--r--Documentation/devicetree/bindings/serial/sifive-serial.txt33
-rw-r--r--Documentation/devicetree/bindings/serial/sifive-serial.yaml62
-rw-r--r--Documentation/devicetree/bindings/serial/st,stm32-usart.txt6
-rw-r--r--Documentation/devicetree/bindings/soc/amlogic/amlogic,canvas.txt10
-rw-r--r--Documentation/devicetree/bindings/soc/amlogic/clk-measure.txt1
-rw-r--r--Documentation/devicetree/bindings/soc/fsl/cpm_qe/qe.txt13
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt84
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt6
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,glink.txt5
-rw-r--r--Documentation/devicetree/bindings/soc/ti/sci-pm-domain.txt11
-rw-r--r--Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml132
-rw-r--r--Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml122
-rw-r--r--Documentation/devicetree/bindings/sound/allwinner,sun50i-a64-codec-analog.yaml39
-rw-r--r--Documentation/devicetree/bindings/sound/allwinner,sun8i-a33-codec.yaml57
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,axg-fifo.txt9
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,axg-pdm.txt6
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,axg-spdifin.txt6
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,axg-spdifout.txt6
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt10
-rw-r--r--Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt58
-rw-r--r--Documentation/devicetree/bindings/sound/cs42l73.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/cs42xx8.txt6
-rw-r--r--Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt3
-rw-r--r--Documentation/devicetree/bindings/sound/everest,es8316.txt23
-rw-r--r--Documentation/devicetree/bindings/sound/fsl,esai.txt7
-rw-r--r--Documentation/devicetree/bindings/sound/fsl-sai.txt4
-rw-r--r--Documentation/devicetree/bindings/sound/madera.txt67
-rw-r--r--Documentation/devicetree/bindings/sound/max98357a.txt4
-rw-r--r--Documentation/devicetree/bindings/sound/rt1011.txt32
-rwxr-xr-xDocumentation/devicetree/bindings/sound/rt1308.txt17
-rw-r--r--Documentation/devicetree/bindings/sound/st,stm32-i2s.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/st,stm32-sai.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/sun4i-i2s.txt45
-rw-r--r--Documentation/devicetree/bindings/sound/sun50i-codec-analog.txt14
-rw-r--r--Documentation/devicetree/bindings/sound/sun8i-a33-codec.txt63
-rw-r--r--Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt42
-rw-r--r--Documentation/devicetree/bindings/sound/uda1334.txt17
-rw-r--r--Documentation/devicetree/bindings/soundwire/soundwire-controller.yaml82
-rw-r--r--Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml87
-rw-r--r--Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml107
-rw-r--r--Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml67
-rw-r--r--Documentation/devicetree/bindings/spi/amlogic,meson6-spifc.yaml53
-rw-r--r--Documentation/devicetree/bindings/spi/nuvoton,npcm-fiu.txt47
-rw-r--r--Documentation/devicetree/bindings/spi/spi-bus.txt112
-rw-r--r--Documentation/devicetree/bindings/spi/spi-controller.yaml160
-rw-r--r--Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt1
-rw-r--r--Documentation/devicetree/bindings/spi/spi-fsl-qspi.txt9
-rw-r--r--Documentation/devicetree/bindings/spi/spi-gpio.txt43
-rw-r--r--Documentation/devicetree/bindings/spi/spi-gpio.yaml72
-rw-r--r--Documentation/devicetree/bindings/spi/spi-meson.txt55
-rw-r--r--Documentation/devicetree/bindings/spi/spi-mt65xx.txt1
-rw-r--r--Documentation/devicetree/bindings/spi/spi-pl022.yaml165
-rw-r--r--Documentation/devicetree/bindings/spi/spi-sprd-adi.txt11
-rw-r--r--Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt5
-rw-r--r--Documentation/devicetree/bindings/spi/spi-sun4i.txt23
-rw-r--r--Documentation/devicetree/bindings/spi/spi-sun6i.txt44
-rw-r--r--Documentation/devicetree/bindings/spi/spi-synquacer.txt27
-rw-r--r--Documentation/devicetree/bindings/spi/spi_pl022.txt70
-rw-r--r--Documentation/devicetree/bindings/thermal/qoriq-thermal.txt1
-rw-r--r--Documentation/devicetree/bindings/timer/allwinner,sun4i-a10-timer.yaml102
-rw-r--r--Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt19
-rw-r--r--Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt26
-rw-r--r--Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.yaml79
-rw-r--r--Documentation/devicetree/bindings/timer/ingenic,tcu.txt137
-rw-r--r--Documentation/devicetree/bindings/timer/intel,ixp4xx-timer.yaml2
-rw-r--r--Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt25
-rw-r--r--Documentation/devicetree/bindings/timer/renesas,cmt.txt40
-rw-r--r--Documentation/devicetree/bindings/trivial-devices.yaml6
-rw-r--r--Documentation/devicetree/bindings/ufs/ufshcd-pltfrm.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/cdns-usb3.txt45
-rw-r--r--Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt1
-rw-r--r--Documentation/devicetree/bindings/usb/dwc2.txt3
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/exynos-usb.txt41
-rw-r--r--Documentation/devicetree/bindings/usb/fcs,fusb302.txt7
-rw-r--r--Documentation/devicetree/bindings/usb/generic-ehci.yaml3
-rw-r--r--Documentation/devicetree/bindings/usb/generic.txt4
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt5
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,mtu3.txt12
-rw-r--r--Documentation/devicetree/bindings/usb/renesas,usb3-peri.txt (renamed from Documentation/devicetree/bindings/usb/renesas_usb3.txt)0
-rw-r--r--Documentation/devicetree/bindings/usb/renesas,usbhs.txt (renamed from Documentation/devicetree/bindings/usb/renesas_usbhs.txt)2
-rw-r--r--Documentation/devicetree/bindings/usb/s3c2410-usb.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/usb-conn-gpio.txt30
-rw-r--r--Documentation/devicetree/bindings/usb/usb251xb.txt6
-rw-r--r--Documentation/devicetree/bindings/usb/usbmisc-imx.txt1
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.yaml113
-rw-r--r--Documentation/devicetree/bindings/virtio/iommu.txt66
-rw-r--r--Documentation/devicetree/bindings/virtio/mmio.txt30
-rw-r--r--Documentation/devicetree/bindings/watchdog/allwinner,sun4i-a10-wdt.yaml58
-rw-r--r--Documentation/devicetree/bindings/watchdog/amlogic,meson-gxbb-wdt.yaml37
-rw-r--r--Documentation/devicetree/bindings/watchdog/aspeed-wdt.txt1
-rw-r--r--Documentation/devicetree/bindings/watchdog/fsl-imx-sc-wdt.txt24
-rw-r--r--Documentation/devicetree/bindings/watchdog/fsl-imx7ulp-wdt.txt22
-rw-r--r--Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt17
-rw-r--r--Documentation/devicetree/bindings/watchdog/meson-gxbb-wdt.txt16
-rw-r--r--Documentation/devicetree/bindings/watchdog/renesas,wdt.txt (renamed from Documentation/devicetree/bindings/watchdog/renesas-wdt.txt)0
-rw-r--r--Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt21
-rw-r--r--Documentation/devicetree/bindings/watchdog/watchdog.yaml26
-rw-r--r--Documentation/devicetree/booting-without-of.txt6
-rw-r--r--Documentation/devicetree/writing-schema.md130
-rw-r--r--Documentation/devicetree/writing-schema.rst154
-rw-r--r--Documentation/doc-guide/conf.py10
-rw-r--r--Documentation/doc-guide/kernel-doc.rst2
-rw-r--r--Documentation/doc-guide/sphinx.rst32
-rw-r--r--Documentation/docutils.conf2
-rw-r--r--Documentation/dontdiff1
-rw-r--r--Documentation/driver-api/80211/conf.py10
-rw-r--r--Documentation/driver-api/80211/mac80211-advanced.rst3
-rw-r--r--Documentation/driver-api/backlight/lp855x-driver.rst81
-rw-r--r--Documentation/driver-api/basics.rst3
-rw-r--r--Documentation/driver-api/bt8xxgpio.rst (renamed from Documentation/bt8xxgpio.txt)0
-rw-r--r--Documentation/driver-api/clk.rst6
-rw-r--r--Documentation/driver-api/conf.py10
-rw-r--r--Documentation/driver-api/connector.rst (renamed from Documentation/connector/connector.txt)130
-rw-r--r--Documentation/driver-api/console.rst (renamed from Documentation/console/console.txt)63
-rw-r--r--Documentation/driver-api/dcdbas.rst (renamed from Documentation/dcdbas.txt)0
-rw-r--r--Documentation/driver-api/dell_rbu.rst (renamed from Documentation/dell_rbu.txt)0
-rw-r--r--Documentation/driver-api/device_link.rst4
-rw-r--r--Documentation/driver-api/dmaengine/dmatest.rst21
-rw-r--r--Documentation/driver-api/dmaengine/index.rst2
-rw-r--r--Documentation/driver-api/driver-model/binding.rst (renamed from Documentation/driver-model/binding.txt)20
-rw-r--r--Documentation/driver-api/driver-model/bus.rst (renamed from Documentation/driver-model/bus.txt)69
-rw-r--r--Documentation/driver-api/driver-model/class.rst (renamed from Documentation/driver-model/class.txt)74
-rw-r--r--Documentation/driver-api/driver-model/design-patterns.rst (renamed from Documentation/driver-model/design-patterns.txt)106
-rw-r--r--Documentation/driver-api/driver-model/device.rst (renamed from Documentation/driver-model/device.txt)57
-rw-r--r--Documentation/driver-api/driver-model/devres.rst (renamed from Documentation/driver-model/devres.txt)54
-rw-r--r--Documentation/driver-api/driver-model/driver.rst (renamed from Documentation/driver-model/driver.txt)114
-rw-r--r--Documentation/driver-api/driver-model/index.rst24
-rw-r--r--Documentation/driver-api/driver-model/overview.rst (renamed from Documentation/driver-model/overview.txt)37
-rw-r--r--Documentation/driver-api/driver-model/platform.rst (renamed from Documentation/driver-model/platform.txt)30
-rw-r--r--Documentation/driver-api/driver-model/porting.rst (renamed from Documentation/driver-model/porting.txt)335
-rw-r--r--Documentation/driver-api/early-userspace/buffer-format.rst (renamed from Documentation/early-userspace/buffer-format.txt)19
-rw-r--r--Documentation/driver-api/early-userspace/early_userspace_support.rst (renamed from Documentation/early-userspace/README)3
-rw-r--r--Documentation/driver-api/early-userspace/index.rst18
-rw-r--r--Documentation/driver-api/edid.rst (renamed from Documentation/EDID/HOWTO.txt)35
-rw-r--r--Documentation/driver-api/eisa.rst (renamed from Documentation/eisa.txt)4
-rw-r--r--Documentation/driver-api/firmware/other_interfaces.rst2
-rw-r--r--Documentation/driver-api/generic-counter.rst4
-rw-r--r--Documentation/driver-api/gpio/board.rst2
-rw-r--r--Documentation/driver-api/gpio/consumer.rst6
-rw-r--r--Documentation/driver-api/gpio/driver.rst150
-rw-r--r--Documentation/driver-api/iio/hw-consumer.rst1
-rw-r--r--Documentation/driver-api/index.rst47
-rw-r--r--Documentation/driver-api/interconnect.rst (renamed from Documentation/interconnect/interconnect.rst)5
-rw-r--r--Documentation/driver-api/ipmb.rst105
-rw-r--r--Documentation/driver-api/isa.rst (renamed from Documentation/isa.txt)0
-rw-r--r--Documentation/driver-api/isapnp.rst (renamed from Documentation/isapnp.txt)0
-rw-r--r--Documentation/driver-api/lightnvm-pblk.rst (renamed from Documentation/lightnvm/pblk.txt)0
-rw-r--r--Documentation/driver-api/md/index.rst12
-rw-r--r--Documentation/driver-api/md/md-cluster.rst (renamed from Documentation/md/md-cluster.txt)184
-rw-r--r--Documentation/driver-api/md/raid5-cache.rst (renamed from Documentation/md/raid5-cache.txt)28
-rw-r--r--Documentation/driver-api/md/raid5-ppl.rst (renamed from Documentation/md/raid5-ppl.txt)2
-rw-r--r--Documentation/driver-api/mei/hdcp.rst32
-rw-r--r--Documentation/driver-api/mei/iamt.rst101
-rw-r--r--Documentation/driver-api/mei/index.rst23
-rw-r--r--Documentation/driver-api/mei/mei-client-bus.rst168
-rw-r--r--Documentation/driver-api/mei/mei.rst176
-rw-r--r--Documentation/driver-api/mei/nfc.rst28
-rw-r--r--Documentation/driver-api/memory-devices/index.rst18
-rw-r--r--Documentation/driver-api/memory-devices/ti-emif.rst (renamed from Documentation/memory-devices/ti-emif.txt)27
-rw-r--r--Documentation/driver-api/memory-devices/ti-gpmc.rst (renamed from Documentation/bus-devices/ti-gpmc.txt)163
-rw-r--r--Documentation/driver-api/men-chameleon-bus.rst (renamed from Documentation/men-chameleon-bus.txt)0
-rw-r--r--Documentation/driver-api/mmc/index.rst13
-rw-r--r--Documentation/driver-api/mmc/mmc-async-req.rst (renamed from Documentation/mmc/mmc-async-req.txt)59
-rw-r--r--Documentation/driver-api/mmc/mmc-dev-attrs.rst (renamed from Documentation/mmc/mmc-dev-attrs.txt)32
-rw-r--r--Documentation/driver-api/mmc/mmc-dev-parts.rst (renamed from Documentation/mmc/mmc-dev-parts.txt)13
-rw-r--r--Documentation/driver-api/mmc/mmc-tools.rst (renamed from Documentation/mmc/mmc-tools.txt)5
-rw-r--r--Documentation/driver-api/mtd/index.rst12
-rw-r--r--Documentation/driver-api/mtd/intel-spi.rst (renamed from Documentation/mtd/intel-spi.txt)46
-rw-r--r--Documentation/driver-api/mtd/nand_ecc.rst (renamed from Documentation/mtd/nand_ecc.txt)497
-rw-r--r--Documentation/driver-api/mtd/spi-nor.rst (renamed from Documentation/mtd/spi-nor.txt)9
-rw-r--r--Documentation/driver-api/nfc/index.rst11
-rw-r--r--Documentation/driver-api/nfc/nfc-hci.rst (renamed from Documentation/nfc/nfc-hci.txt)167
-rw-r--r--Documentation/driver-api/nfc/nfc-pn544.rst (renamed from Documentation/nfc/nfc-pn544.txt)6
-rw-r--r--Documentation/driver-api/ntb.rst (renamed from Documentation/ntb.txt)27
-rw-r--r--Documentation/driver-api/nvdimm/btt.rst (renamed from Documentation/nvdimm/btt.txt)144
-rw-r--r--Documentation/driver-api/nvdimm/index.rst12
-rw-r--r--Documentation/driver-api/nvdimm/nvdimm.rst (renamed from Documentation/nvdimm/nvdimm.txt)530
-rw-r--r--Documentation/driver-api/nvdimm/security.rst (renamed from Documentation/nvdimm/security.txt)4
-rw-r--r--Documentation/driver-api/nvmem.rst (renamed from Documentation/nvmem/nvmem.txt)112
-rw-r--r--Documentation/driver-api/parport-lowlevel.rst (renamed from Documentation/parport-lowlevel.txt)0
-rw-r--r--Documentation/driver-api/phy/index.rst18
-rw-r--r--Documentation/driver-api/phy/phy.rst (renamed from Documentation/phy.txt)4
-rw-r--r--Documentation/driver-api/phy/samsung-usb2.rst (renamed from Documentation/phy/samsung-usb2.txt)60
-rw-r--r--Documentation/driver-api/pinctl.rst6
-rw-r--r--Documentation/driver-api/pm/conf.py10
-rw-r--r--Documentation/driver-api/pm/devices.rst6
-rw-r--r--Documentation/driver-api/pps.rst (renamed from Documentation/pps/pps.txt)67
-rw-r--r--Documentation/driver-api/pti_intel_mid.rst106
-rw-r--r--Documentation/driver-api/ptp.rst (renamed from Documentation/ptp/ptp.txt)26
-rw-r--r--Documentation/driver-api/pwm.rst (renamed from Documentation/pwm.txt)7
-rw-r--r--Documentation/driver-api/rapidio/index.rst15
-rw-r--r--Documentation/driver-api/rapidio/mport_cdev.rst (renamed from Documentation/rapidio/mport_cdev.txt)47
-rw-r--r--Documentation/driver-api/rapidio/rapidio.rst (renamed from Documentation/rapidio/rapidio.txt)39
-rw-r--r--Documentation/driver-api/rapidio/rio_cm.rst (renamed from Documentation/rapidio/rio_cm.txt)66
-rw-r--r--Documentation/driver-api/rapidio/sysfs.rst (renamed from Documentation/rapidio/sysfs.txt)4
-rw-r--r--Documentation/driver-api/rapidio/tsi721.rst (renamed from Documentation/rapidio/tsi721.txt)45
-rw-r--r--Documentation/driver-api/rfkill.rst (renamed from Documentation/rfkill.txt)0
-rw-r--r--Documentation/driver-api/s390-drivers.rst4
-rw-r--r--Documentation/driver-api/serial/cyclades_z.rst (renamed from Documentation/serial/cyclades_z.rst)0
-rw-r--r--Documentation/driver-api/serial/driver.rst (renamed from Documentation/serial/driver.rst)2
-rw-r--r--Documentation/driver-api/serial/index.rst (renamed from Documentation/serial/index.rst)2
-rw-r--r--Documentation/driver-api/serial/moxa-smartio.rst (renamed from Documentation/serial/moxa-smartio.rst)0
-rw-r--r--Documentation/driver-api/serial/n_gsm.rst (renamed from Documentation/serial/n_gsm.rst)19
-rw-r--r--Documentation/driver-api/serial/rocket.rst (renamed from Documentation/serial/rocket.rst)0
-rw-r--r--Documentation/driver-api/serial/serial-iso7816.rst (renamed from Documentation/serial/serial-iso7816.rst)0
-rw-r--r--Documentation/driver-api/serial/serial-rs485.rst (renamed from Documentation/serial/serial-rs485.rst)0
-rw-r--r--Documentation/driver-api/serial/tty.rst (renamed from Documentation/serial/tty.rst)0
-rw-r--r--Documentation/driver-api/sm501.rst (renamed from Documentation/SM501.txt)0
-rw-r--r--Documentation/driver-api/smsc_ece1099.rst (renamed from Documentation/smsc_ece1099.txt)0
-rw-r--r--Documentation/driver-api/soundwire/index.rst2
-rw-r--r--Documentation/driver-api/soundwire/locking.rst4
-rw-r--r--Documentation/driver-api/switchtec.rst (renamed from Documentation/switchtec.txt)2
-rw-r--r--Documentation/driver-api/sync_file.rst (renamed from Documentation/sync_file.txt)0
-rw-r--r--Documentation/driver-api/target.rst4
-rw-r--r--Documentation/driver-api/thermal/cpu-cooling-api.rst (renamed from Documentation/thermal/cpu-cooling-api.txt)39
-rw-r--r--Documentation/driver-api/thermal/exynos_thermal.rst (renamed from Documentation/thermal/exynos_thermal)47
-rw-r--r--Documentation/driver-api/thermal/exynos_thermal_emulation.rst61
-rw-r--r--Documentation/driver-api/thermal/index.rst18
-rw-r--r--Documentation/driver-api/thermal/intel_powerclamp.rst (renamed from Documentation/thermal/intel_powerclamp.txt)183
-rw-r--r--Documentation/driver-api/thermal/nouveau_thermal.rst (renamed from Documentation/thermal/nouveau_thermal)54
-rw-r--r--Documentation/driver-api/thermal/power_allocator.rst (renamed from Documentation/thermal/power_allocator.txt)144
-rw-r--r--Documentation/driver-api/thermal/sysfs-api.rst (renamed from Documentation/thermal/sysfs-api.txt)488
-rw-r--r--Documentation/driver-api/thermal/x86_pkg_temperature_thermal.rst (renamed from Documentation/thermal/x86_pkg_temperature_thermal)28
-rw-r--r--Documentation/driver-api/uio-howto.rst7
-rw-r--r--Documentation/driver-api/usb/power-management.rst2
-rw-r--r--Documentation/driver-api/vfio-mediated-device.rst (renamed from Documentation/vfio-mediated-device.txt)2
-rw-r--r--Documentation/driver-api/vfio.rst (renamed from Documentation/vfio.txt)0
-rw-r--r--Documentation/driver-api/xilinx/eemi.rst (renamed from Documentation/xilinx/eemi.txt)8
-rw-r--r--Documentation/driver-api/xilinx/index.rst16
-rw-r--r--Documentation/driver-api/xillybus.rst (renamed from Documentation/xillybus.txt)0
-rw-r--r--Documentation/driver-api/zorro.rst (renamed from Documentation/zorro.txt)0
-rw-r--r--Documentation/fault-injection/fault-injection.rst (renamed from Documentation/fault-injection/fault-injection.txt)281
-rw-r--r--Documentation/fault-injection/index.rst20
-rw-r--r--Documentation/fault-injection/notifier-error-inject.rst (renamed from Documentation/fault-injection/notifier-error-inject.txt)18
-rw-r--r--Documentation/fault-injection/nvme-fault-injection.rst178
-rw-r--r--Documentation/fault-injection/nvme-fault-injection.txt116
-rw-r--r--Documentation/fault-injection/provoke-crashes.rst48
-rw-r--r--Documentation/fault-injection/provoke-crashes.txt38
-rw-r--r--Documentation/fb/api.rst (renamed from Documentation/fb/api.txt)29
-rw-r--r--Documentation/fb/arkfb.rst (renamed from Documentation/fb/arkfb.txt)8
-rw-r--r--Documentation/fb/aty128fb.rst (renamed from Documentation/fb/aty128fb.txt)35
-rw-r--r--Documentation/fb/cirrusfb.rst (renamed from Documentation/fb/cirrusfb.txt)47
-rw-r--r--Documentation/fb/cmap_xfbdev.rst (renamed from Documentation/fb/cmap_xfbdev.txt)57
-rw-r--r--Documentation/fb/deferred_io.rst (renamed from Documentation/fb/deferred_io.txt)28
-rw-r--r--Documentation/fb/efifb.rst (renamed from Documentation/fb/efifb.txt)18
-rw-r--r--Documentation/fb/ep93xx-fb.rst (renamed from Documentation/fb/ep93xx-fb.txt)27
-rw-r--r--Documentation/fb/fbcon.rst (renamed from Documentation/fb/fbcon.txt)183
-rw-r--r--Documentation/fb/framebuffer.rst (renamed from Documentation/fb/framebuffer.txt)80
-rw-r--r--Documentation/fb/gxfb.rst (renamed from Documentation/fb/gxfb.txt)24
-rw-r--r--Documentation/fb/index.rst50
-rw-r--r--Documentation/fb/intel810.rst (renamed from Documentation/fb/intel810.txt)79
-rw-r--r--Documentation/fb/intelfb.rst (renamed from Documentation/fb/intelfb.txt)62
-rw-r--r--Documentation/fb/internals.rst (renamed from Documentation/fb/internals.txt)24
-rw-r--r--Documentation/fb/lxfb.rst (renamed from Documentation/fb/lxfb.txt)25
-rw-r--r--Documentation/fb/matroxfb.rst443
-rw-r--r--Documentation/fb/matroxfb.txt413
-rw-r--r--Documentation/fb/metronomefb.rst (renamed from Documentation/fb/metronomefb.txt)8
-rw-r--r--Documentation/fb/modedb.rst (renamed from Documentation/fb/modedb.txt)58
-rw-r--r--Documentation/fb/pvr2fb.rst66
-rw-r--r--Documentation/fb/pvr2fb.txt65
-rw-r--r--Documentation/fb/pxafb.rst (renamed from Documentation/fb/pxafb.txt)81
-rw-r--r--Documentation/fb/s3fb.rst (renamed from Documentation/fb/s3fb.txt)8
-rw-r--r--Documentation/fb/sa1100fb.rst (renamed from Documentation/fb/sa1100fb.txt)23
-rw-r--r--Documentation/fb/sh7760fb.rst130
-rw-r--r--Documentation/fb/sh7760fb.txt131
-rw-r--r--Documentation/fb/sisfb.rst (renamed from Documentation/fb/sisfb.txt)40
-rw-r--r--Documentation/fb/sm501.rst (renamed from Documentation/fb/sm501.txt)7
-rw-r--r--Documentation/fb/sm712fb.rst (renamed from Documentation/fb/sm712fb.txt)18
-rw-r--r--Documentation/fb/sstfb.rst207
-rw-r--r--Documentation/fb/sstfb.txt174
-rw-r--r--Documentation/fb/tgafb.rst (renamed from Documentation/fb/tgafb.txt)30
-rw-r--r--Documentation/fb/tridentfb.rst (renamed from Documentation/fb/tridentfb.txt)36
-rw-r--r--Documentation/fb/udlfb.rst (renamed from Documentation/fb/udlfb.txt)55
-rw-r--r--Documentation/fb/uvesafb.rst (renamed from Documentation/fb/uvesafb.txt)142
-rw-r--r--Documentation/fb/vesafb.rst (renamed from Documentation/fb/vesafb.txt)123
-rw-r--r--Documentation/fb/viafb.rst297
-rw-r--r--Documentation/fb/viafb.txt252
-rw-r--r--Documentation/fb/vt8623fb.rst (renamed from Documentation/fb/vt8623fb.txt)10
-rw-r--r--Documentation/features/core/jump-labels/arch-support.txt2
-rw-r--r--Documentation/features/debug/kprobes-on-ftrace/arch-support.txt2
-rw-r--r--Documentation/features/debug/stackprotector/arch-support.txt2
-rw-r--r--Documentation/features/locking/queued-rwlocks/arch-support.txt2
-rw-r--r--Documentation/features/locking/queued-spinlocks/arch-support.txt4
-rw-r--r--Documentation/features/locking/rwsem-optimized/arch-support.txt34
-rw-r--r--Documentation/filesystems/api-summary.rst3
-rw-r--r--Documentation/filesystems/ceph.txt14
-rw-r--r--Documentation/filesystems/cifs/cifsroot.txt97
-rw-r--r--Documentation/filesystems/coda.txt15
-rw-r--r--Documentation/filesystems/conf.py10
-rw-r--r--Documentation/filesystems/dax.txt2
-rw-r--r--Documentation/filesystems/debugfs.txt2
-rw-r--r--Documentation/filesystems/directory-locking.rst (renamed from Documentation/filesystems/directory-locking)40
-rw-r--r--Documentation/filesystems/erofs.txt210
-rw-r--r--Documentation/filesystems/ext2.txt8
-rw-r--r--Documentation/filesystems/ext4/bigalloc.rst32
-rw-r--r--Documentation/filesystems/ext4/blockgroup.rst10
-rw-r--r--Documentation/filesystems/ext4/blocks.rst4
-rw-r--r--Documentation/filesystems/ext4/directory.rst2
-rw-r--r--Documentation/filesystems/ext4/group_descr.rst9
-rw-r--r--Documentation/filesystems/ext4/index.rst8
-rw-r--r--Documentation/filesystems/ext4/inodes.rst10
-rw-r--r--Documentation/filesystems/ext4/overview.rst1
-rw-r--r--Documentation/filesystems/ext4/super.rst22
-rw-r--r--Documentation/filesystems/ext4/verity.rst41
-rw-r--r--Documentation/filesystems/f2fs.txt141
-rw-r--r--Documentation/filesystems/fscrypt.rst801
-rw-r--r--Documentation/filesystems/fsverity.rst726
-rw-r--r--Documentation/filesystems/index.rst16
-rw-r--r--Documentation/filesystems/locking.rst (renamed from Documentation/filesystems/Locking)273
-rw-r--r--Documentation/filesystems/mandatory-locking.txt10
-rw-r--r--Documentation/filesystems/nfs/exporting.rst (renamed from Documentation/filesystems/nfs/Exporting)31
-rw-r--r--Documentation/filesystems/nfs/nfsroot.txt2
-rw-r--r--Documentation/filesystems/overlayfs.txt2
-rw-r--r--Documentation/filesystems/porting675
-rw-r--r--Documentation/filesystems/porting.rst852
-rw-r--r--Documentation/filesystems/proc.txt87
-rw-r--r--Documentation/filesystems/ramfs-rootfs-initramfs.txt4
-rw-r--r--Documentation/filesystems/sysfs.txt2
-rw-r--r--Documentation/filesystems/tmpfs.txt2
-rw-r--r--Documentation/filesystems/ubifs-authentication.rst (renamed from Documentation/filesystems/ubifs-authentication.md)74
-rw-r--r--Documentation/filesystems/vfs.rst1428
-rw-r--r--Documentation/filesystems/vfs.txt1268
-rw-r--r--Documentation/filesystems/virtiofs.rst60
-rw-r--r--Documentation/filesystems/xfs-delayed-logging-design.txt2
-rw-r--r--Documentation/filesystems/xfs-self-describing-metadata.txt8
-rw-r--r--Documentation/firmware-guide/acpi/dsd/leds.rst (renamed from Documentation/acpi/dsd/leds.txt)22
-rw-r--r--Documentation/firmware-guide/acpi/enumeration.rst4
-rw-r--r--Documentation/firmware-guide/acpi/extcon-intel-int3496.rst (renamed from Documentation/extcon/intel-int3496.txt)14
-rw-r--r--Documentation/firmware-guide/acpi/index.rst2
-rw-r--r--Documentation/firmware-guide/acpi/method-tracing.rst2
-rw-r--r--Documentation/fmc/API.txt47
-rw-r--r--Documentation/fmc/FMC-and-SDB.txt88
-rw-r--r--Documentation/fmc/carrier.txt311
-rw-r--r--Documentation/fmc/fmc-chardev.txt64
-rw-r--r--Documentation/fmc/fmc-fakedev.txt36
-rw-r--r--Documentation/fmc/fmc-trivial.txt17
-rw-r--r--Documentation/fmc/fmc-write-eeprom.txt98
-rw-r--r--Documentation/fmc/identifiers.txt168
-rw-r--r--Documentation/fmc/mezzanine.txt123
-rw-r--r--Documentation/fmc/parameters.txt56
-rw-r--r--Documentation/fpga/dfl.rst (renamed from Documentation/fpga/dfl.txt)163
-rw-r--r--Documentation/fpga/index.rst17
-rw-r--r--Documentation/gpu/amdgpu.rst24
-rw-r--r--Documentation/gpu/conf.py10
-rw-r--r--Documentation/gpu/drivers.rst2
-rw-r--r--Documentation/gpu/drm-client.rst3
-rw-r--r--Documentation/gpu/drm-kms-helpers.rst27
-rw-r--r--Documentation/gpu/drm-mm.rst74
-rw-r--r--Documentation/gpu/drm-uapi.rst19
-rw-r--r--Documentation/gpu/i915.rst110
-rw-r--r--Documentation/gpu/introduction.rst16
-rw-r--r--Documentation/gpu/mcde.rst8
-rw-r--r--Documentation/gpu/msm-crash-dump.rst2
-rw-r--r--Documentation/gpu/tinydrm.rst30
-rw-r--r--Documentation/gpu/todo.rst126
-rw-r--r--Documentation/hid/hid-alps.rst (renamed from Documentation/hid/hid-alps.txt)87
-rw-r--r--Documentation/hid/hid-sensor.rst (renamed from Documentation/hid/hid-sensor.txt)194
-rw-r--r--Documentation/hid/hid-transport.rst (renamed from Documentation/hid/hid-transport.txt)88
-rw-r--r--Documentation/hid/hiddev.rst (renamed from Documentation/hid/hiddev.txt)154
-rw-r--r--Documentation/hid/hidraw.rst (renamed from Documentation/hid/hidraw.txt)53
-rw-r--r--Documentation/hid/index.rst18
-rw-r--r--Documentation/hid/intel-ish-hid.rst485
-rw-r--r--Documentation/hid/intel-ish-hid.txt454
-rw-r--r--Documentation/hid/uhid.rst (renamed from Documentation/hid/uhid.txt)46
-rw-r--r--Documentation/hwmon/adm1021.rst2
-rw-r--r--Documentation/hwmon/adm1275.rst2
-rw-r--r--Documentation/hwmon/ads1015.rst90
-rw-r--r--Documentation/hwmon/hih6130.rst2
-rw-r--r--Documentation/hwmon/ibm-cffps.rst2
-rw-r--r--Documentation/hwmon/index.rst2
-rw-r--r--Documentation/hwmon/inspur-ipsps1.rst79
-rw-r--r--Documentation/hwmon/k8temp.rst2
-rw-r--r--Documentation/hwmon/lm25066.rst2
-rw-r--r--Documentation/hwmon/lm75.rst6
-rw-r--r--Documentation/hwmon/max16064.rst2
-rw-r--r--Documentation/hwmon/max16065.rst2
-rw-r--r--Documentation/hwmon/max20751.rst2
-rw-r--r--Documentation/hwmon/max34440.rst2
-rw-r--r--Documentation/hwmon/max6650.rst2
-rw-r--r--Documentation/hwmon/max8688.rst2
-rw-r--r--Documentation/hwmon/menf21bmc.rst2
-rw-r--r--Documentation/hwmon/pcf8591.rst2
-rw-r--r--Documentation/hwmon/pxe1610.rst107
-rw-r--r--Documentation/hwmon/sht3x.rst2
-rw-r--r--Documentation/hwmon/shtc1.rst21
-rw-r--r--Documentation/hwmon/submitting-patches.rst10
-rw-r--r--Documentation/hwmon/tmp103.rst2
-rw-r--r--Documentation/hwmon/tps40422.rst2
-rw-r--r--Documentation/hwmon/ucd9000.rst2
-rw-r--r--Documentation/hwmon/ucd9200.rst2
-rw-r--r--Documentation/hwmon/via686a.rst2
-rw-r--r--Documentation/hwmon/zl6100.rst2
-rw-r--r--Documentation/hwspinlock.txt81
-rw-r--r--Documentation/i2c/busses/i2c-ali1535.rst (renamed from Documentation/i2c/busses/i2c-ali1535)13
-rw-r--r--Documentation/i2c/busses/i2c-ali1563.rst (renamed from Documentation/i2c/busses/i2c-ali1563)3
-rw-r--r--Documentation/i2c/busses/i2c-ali15x3.rst (renamed from Documentation/i2c/busses/i2c-ali15x3)64
-rw-r--r--Documentation/i2c/busses/i2c-amd-mp223
-rw-r--r--Documentation/i2c/busses/i2c-amd-mp2.rst25
-rw-r--r--Documentation/i2c/busses/i2c-amd756.rst (renamed from Documentation/i2c/busses/i2c-amd756)8
-rw-r--r--Documentation/i2c/busses/i2c-amd8111.rst (renamed from Documentation/i2c/busses/i2c-amd8111)14
-rw-r--r--Documentation/i2c/busses/i2c-diolan-u2c.rst (renamed from Documentation/i2c/busses/i2c-diolan-u2c)3
-rw-r--r--Documentation/i2c/busses/i2c-i801.rst (renamed from Documentation/i2c/busses/i2c-i801)53
-rw-r--r--Documentation/i2c/busses/i2c-ismt.rst (renamed from Documentation/i2c/busses/i2c-ismt)20
-rw-r--r--Documentation/i2c/busses/i2c-mlxcpld.rst (renamed from Documentation/i2c/busses/i2c-mlxcpld)6
-rw-r--r--Documentation/i2c/busses/i2c-nforce2.rst (renamed from Documentation/i2c/busses/i2c-nforce2)33
-rw-r--r--Documentation/i2c/busses/i2c-nvidia-gpu.rst (renamed from Documentation/i2c/busses/i2c-nvidia-gpu)6
-rw-r--r--Documentation/i2c/busses/i2c-ocores.rst (renamed from Documentation/i2c/busses/i2c-ocores)22
-rw-r--r--Documentation/i2c/busses/i2c-parport178
-rw-r--r--Documentation/i2c/busses/i2c-parport-light.rst (renamed from Documentation/i2c/busses/i2c-parport-light)8
-rw-r--r--Documentation/i2c/busses/i2c-parport.rst190
-rw-r--r--Documentation/i2c/busses/i2c-pca-isa.rst (renamed from Documentation/i2c/busses/i2c-pca-isa)9
-rw-r--r--Documentation/i2c/busses/i2c-piix4.rst (renamed from Documentation/i2c/busses/i2c-piix4)18
-rw-r--r--Documentation/i2c/busses/i2c-sis5595.rst (renamed from Documentation/i2c/busses/i2c-sis5595)19
-rw-r--r--Documentation/i2c/busses/i2c-sis63058
-rw-r--r--Documentation/i2c/busses/i2c-sis630.rst63
-rw-r--r--Documentation/i2c/busses/i2c-sis96x.rst (renamed from Documentation/i2c/busses/i2c-sis96x)31
-rw-r--r--Documentation/i2c/busses/i2c-taos-evm.rst (renamed from Documentation/i2c/busses/i2c-taos-evm)8
-rw-r--r--Documentation/i2c/busses/i2c-via.rst (renamed from Documentation/i2c/busses/i2c-via)28
-rw-r--r--Documentation/i2c/busses/i2c-viapro.rst (renamed from Documentation/i2c/busses/i2c-viapro)12
-rw-r--r--Documentation/i2c/busses/index.rst33
-rw-r--r--Documentation/i2c/busses/scx200_acb.rst (renamed from Documentation/i2c/busses/scx200_acb)9
-rw-r--r--Documentation/i2c/dev-interface.rst (renamed from Documentation/i2c/dev-interface)104
-rw-r--r--Documentation/i2c/dma-considerations.rst (renamed from Documentation/i2c/DMA-considerations)0
-rw-r--r--Documentation/i2c/fault-codes.rst (renamed from Documentation/i2c/fault-codes)5
-rw-r--r--Documentation/i2c/functionality.rst (renamed from Documentation/i2c/functionality)22
-rw-r--r--Documentation/i2c/gpio-fault-injection.rst (renamed from Documentation/i2c/gpio-fault-injection)12
-rw-r--r--Documentation/i2c/i2c-protocol.rst (renamed from Documentation/i2c/i2c-protocol)28
-rw-r--r--Documentation/i2c/i2c-stub.rst (renamed from Documentation/i2c/i2c-stub)20
-rw-r--r--Documentation/i2c/i2c-topology.rst (renamed from Documentation/i2c/i2c-topology)68
-rw-r--r--Documentation/i2c/index.rst37
-rw-r--r--Documentation/i2c/instantiating-devices.rst (renamed from Documentation/i2c/instantiating-devices)49
-rw-r--r--Documentation/i2c/muxes/i2c-mux-gpio.rst (renamed from Documentation/i2c/muxes/i2c-mux-gpio)26
-rw-r--r--Documentation/i2c/old-module-parameters.rst (renamed from Documentation/i2c/old-module-parameters)27
-rw-r--r--Documentation/i2c/slave-eeprom-backend.rst (renamed from Documentation/i2c/slave-eeprom-backend)4
-rw-r--r--Documentation/i2c/slave-interface.rst (renamed from Documentation/i2c/slave-interface)33
-rw-r--r--Documentation/i2c/smbus-protocol.rst (renamed from Documentation/i2c/smbus-protocol)86
-rw-r--r--Documentation/i2c/summary.rst (renamed from Documentation/i2c/summary)6
-rw-r--r--Documentation/i2c/ten-bit-addresses.rst (renamed from Documentation/i2c/ten-bit-addresses)5
-rw-r--r--Documentation/i2c/upgrading-clients.rst (renamed from Documentation/i2c/upgrading-clients)206
-rw-r--r--Documentation/i2c/writing-clients.rst (renamed from Documentation/i2c/writing-clients)94
-rw-r--r--Documentation/ia64/aliasing.rst (renamed from Documentation/ia64/aliasing.txt)73
-rw-r--r--Documentation/ia64/efirtc.rst (renamed from Documentation/ia64/efirtc.txt)120
-rw-r--r--Documentation/ia64/err_inject.rst (renamed from Documentation/ia64/err_inject.txt)359
-rw-r--r--Documentation/ia64/fsys.rst (renamed from Documentation/ia64/fsys.txt)133
-rw-r--r--Documentation/ia64/ia64.rst (renamed from Documentation/ia64/README)26
-rw-r--r--Documentation/ia64/index.rst18
-rw-r--r--Documentation/ia64/irq-redir.rst (renamed from Documentation/ia64/IRQ-redir.txt)31
-rw-r--r--Documentation/ia64/mca.rst (renamed from Documentation/ia64/mca.txt)10
-rw-r--r--Documentation/ia64/serial.rst (renamed from Documentation/ia64/serial.txt)36
-rw-r--r--Documentation/ia64/xen.rst206
-rw-r--r--Documentation/ia64/xen.txt183
-rw-r--r--Documentation/ide/changelogs.rst17
-rw-r--r--Documentation/ide/ide-tape.rst (renamed from Documentation/ide/ide-tape.txt)23
-rw-r--r--Documentation/ide/ide.rst (renamed from Documentation/ide/ide.txt)147
-rw-r--r--Documentation/ide/index.rst21
-rw-r--r--Documentation/ide/warm-plug-howto.rst (renamed from Documentation/ide/warm-plug-howto.txt)10
-rw-r--r--Documentation/iio/ep93xx_adc.rst (renamed from Documentation/iio/ep93xx_adc.txt)15
-rw-r--r--Documentation/iio/iio_configfs.rst (renamed from Documentation/iio/iio_configfs.txt)52
-rw-r--r--Documentation/iio/index.rst12
-rw-r--r--Documentation/index.rst46
-rw-r--r--Documentation/infiniband/core_locking.rst (renamed from Documentation/infiniband/core_locking.txt)64
-rw-r--r--Documentation/infiniband/index.rst23
-rw-r--r--Documentation/infiniband/ipoib.rst (renamed from Documentation/infiniband/ipoib.txt)24
-rw-r--r--Documentation/infiniband/opa_vnic.rst (renamed from Documentation/infiniband/opa_vnic.txt)110
-rw-r--r--Documentation/infiniband/sysfs.rst (renamed from Documentation/infiniband/sysfs.txt)4
-rw-r--r--Documentation/infiniband/tag_matching.rst (renamed from Documentation/infiniband/tag_matching.txt)5
-rw-r--r--Documentation/infiniband/user_mad.rst (renamed from Documentation/infiniband/user_mad.txt)33
-rw-r--r--Documentation/infiniband/user_verbs.rst (renamed from Documentation/infiniband/user_verbs.txt)12
-rw-r--r--Documentation/input/conf.py10
-rw-r--r--Documentation/input/input.rst2
-rw-r--r--Documentation/input/multi-touch-protocol.rst2
-rw-r--r--Documentation/ioctl/botching-up-ioctls.rst (renamed from Documentation/ioctl/botching-up-ioctls.txt)1
-rw-r--r--Documentation/ioctl/cdrom.rst1233
-rw-r--r--Documentation/ioctl/cdrom.txt967
-rw-r--r--Documentation/ioctl/hdio.rst (renamed from Documentation/ioctl/hdio.txt)835
-rw-r--r--Documentation/ioctl/index.rst16
-rw-r--r--Documentation/ioctl/ioctl-decoding.rst (renamed from Documentation/ioctl/ioctl-decoding.txt)13
-rw-r--r--Documentation/ioctl/ioctl-number.rst362
-rw-r--r--Documentation/ioctl/ioctl-number.txt350
-rw-r--r--Documentation/isdn/HiSax.cert96
-rw-r--r--Documentation/isdn/INTERFACE759
-rw-r--r--Documentation/isdn/INTERFACE.fax163
-rw-r--r--Documentation/isdn/README599
-rw-r--r--Documentation/isdn/README.FAQ26
-rw-r--r--Documentation/isdn/README.HiSax659
-rw-r--r--Documentation/isdn/README.audio138
-rw-r--r--Documentation/isdn/README.concap259
-rw-r--r--Documentation/isdn/README.diversion127
-rw-r--r--Documentation/isdn/README.fax45
-rw-r--r--Documentation/isdn/README.hfc-pci41
-rw-r--r--Documentation/isdn/README.syncppp58
-rw-r--r--Documentation/isdn/README.x25184
-rw-r--r--Documentation/isdn/avmb1.rst (renamed from Documentation/isdn/README.avmb1)229
-rw-r--r--Documentation/isdn/credits.rst (renamed from Documentation/isdn/CREDITS)7
-rw-r--r--Documentation/isdn/gigaset.rst (renamed from Documentation/isdn/README.gigaset)328
-rw-r--r--Documentation/isdn/hysdn.rst (renamed from Documentation/isdn/README.hysdn)125
-rw-r--r--Documentation/isdn/index.rst24
-rw-r--r--Documentation/isdn/interface_capi.rst (renamed from Documentation/isdn/INTERFACE.CAPI)174
-rw-r--r--Documentation/isdn/m_isdn.rst (renamed from Documentation/isdn/README.mISDN)5
-rw-r--r--Documentation/isdn/syncPPP.FAQ224
-rw-r--r--Documentation/kbuild/headers_install.rst (renamed from Documentation/kbuild/headers_install.txt)12
-rw-r--r--Documentation/kbuild/index.rst28
-rw-r--r--Documentation/kbuild/issues.rst15
-rw-r--r--Documentation/kbuild/kbuild.rst (renamed from Documentation/kbuild/kbuild.txt)156
-rw-r--r--Documentation/kbuild/kconfig-language.rst (renamed from Documentation/kbuild/kconfig-language.txt)252
-rw-r--r--Documentation/kbuild/kconfig-macro-language.rst (renamed from Documentation/kbuild/kconfig-macro-language.txt)37
-rw-r--r--Documentation/kbuild/kconfig.rst (renamed from Documentation/kbuild/kconfig.txt)144
-rw-r--r--Documentation/kbuild/makefiles.rst (renamed from Documentation/kbuild/makefiles.txt)580
-rw-r--r--Documentation/kbuild/modules.rst (renamed from Documentation/kbuild/modules.txt)177
-rw-r--r--Documentation/kbuild/namespaces.rst154
-rw-r--r--Documentation/kbuild/reproducible-builds.rst122
-rw-r--r--Documentation/kernel-hacking/conf.py10
-rw-r--r--Documentation/kernel-hacking/hacking.rst22
-rw-r--r--Documentation/kernel-hacking/locking.rst8
-rw-r--r--Documentation/leds/index.rst25
-rw-r--r--Documentation/leds/leds-blinkm.rst (renamed from Documentation/leds/leds-blinkm.txt)64
-rw-r--r--Documentation/leds/leds-class-flash.rst (renamed from Documentation/leds/leds-class-flash.txt)49
-rw-r--r--Documentation/leds/leds-class.rst (renamed from Documentation/leds/leds-class.txt)83
-rw-r--r--Documentation/leds/leds-lm3556.rst (renamed from Documentation/leds/leds-lm3556.txt)100
-rw-r--r--Documentation/leds/leds-lp3944.rst (renamed from Documentation/leds/leds-lp3944.txt)23
-rw-r--r--Documentation/leds/leds-lp5521.rst115
-rw-r--r--Documentation/leds/leds-lp5521.txt101
-rw-r--r--Documentation/leds/leds-lp5523.rst147
-rw-r--r--Documentation/leds/leds-lp5523.txt130
-rw-r--r--Documentation/leds/leds-lp5562.rst137
-rw-r--r--Documentation/leds/leds-lp5562.txt120
-rw-r--r--Documentation/leds/leds-lp55xx.rst224
-rw-r--r--Documentation/leds/leds-lp55xx.txt194
-rw-r--r--Documentation/leds/leds-mlxcpld.rst118
-rw-r--r--Documentation/leds/leds-mlxcpld.txt110
-rw-r--r--Documentation/leds/ledtrig-oneshot.rst (renamed from Documentation/leds/ledtrig-oneshot.txt)11
-rw-r--r--Documentation/leds/ledtrig-transient.rst (renamed from Documentation/leds/ledtrig-transient.txt)65
-rw-r--r--Documentation/leds/ledtrig-usbport.rst (renamed from Documentation/leds/ledtrig-usbport.txt)11
-rw-r--r--Documentation/leds/uleds.rst (renamed from Documentation/leds/uleds.txt)5
-rw-r--r--Documentation/livepatch/index.rst2
-rw-r--r--Documentation/locking/index.rst24
-rw-r--r--Documentation/locking/lockdep-design.rst (renamed from Documentation/locking/lockdep-design.txt)147
-rw-r--r--Documentation/locking/lockstat.rst204
-rw-r--r--Documentation/locking/lockstat.txt183
-rw-r--r--Documentation/locking/locktorture.rst (renamed from Documentation/locking/locktorture.txt)105
-rw-r--r--Documentation/locking/mutex-design.rst (renamed from Documentation/locking/mutex-design.txt)26
-rw-r--r--Documentation/locking/rt-mutex-design.rst (renamed from Documentation/locking/rt-mutex-design.txt)139
-rw-r--r--Documentation/locking/rt-mutex.rst (renamed from Documentation/locking/rt-mutex.txt)30
-rw-r--r--Documentation/locking/spinlocks.rst (renamed from Documentation/locking/spinlocks.txt)48
-rw-r--r--Documentation/locking/ww-mutex-design.rst (renamed from Documentation/locking/ww-mutex-design.txt)82
-rw-r--r--Documentation/m68k/buddha-driver.rst (renamed from Documentation/m68k/README.buddha)95
-rw-r--r--Documentation/m68k/index.rst18
-rw-r--r--Documentation/m68k/kernel-options.rst (renamed from Documentation/m68k/kernel-options.txt)319
-rw-r--r--Documentation/maintainer/conf.py10
-rw-r--r--Documentation/maintainer/index.rst1
-rw-r--r--Documentation/maintainer/pull-requests.rst2
-rw-r--r--Documentation/maintainer/rebasing-and-merging.rst226
-rw-r--r--Documentation/media/conf.py12
-rw-r--r--Documentation/media/kapi/csi2.rst17
-rw-r--r--Documentation/media/kapi/dtv-core.rst6
-rw-r--r--Documentation/media/kapi/v4l2-controls.rst206
-rw-r--r--Documentation/media/kapi/v4l2-dev.rst1
-rw-r--r--Documentation/media/uapi/cec/cec-api.rst2
-rw-r--r--Documentation/media/uapi/cec/cec-ioc-g-mode.rst3
-rw-r--r--Documentation/media/uapi/cec/cec-ioc-receive.rst15
-rw-r--r--Documentation/media/uapi/mediactl/media-ioc-enum-links.rst7
-rw-r--r--Documentation/media/uapi/rc/lirc-dev-intro.rst57
-rw-r--r--Documentation/media/uapi/rc/lirc-read.rst3
-rw-r--r--Documentation/media/uapi/rc/lirc-write.rst3
-rw-r--r--Documentation/media/uapi/rc/rc-protos.rst456
-rw-r--r--Documentation/media/uapi/rc/rc-tables.rst30
-rw-r--r--Documentation/media/uapi/rc/remote_controllers.rst1
-rw-r--r--Documentation/media/uapi/v4l/biblio.rst19
-rw-r--r--Documentation/media/uapi/v4l/control.rst2
-rw-r--r--Documentation/media/uapi/v4l/dev-decoder.rst1101
-rw-r--r--Documentation/media/uapi/v4l/dev-mem2mem.rst8
-rw-r--r--Documentation/media/uapi/v4l/ext-ctrls-codec.rst1027
-rw-r--r--Documentation/media/uapi/v4l/extended-controls.rst15
-rw-r--r--Documentation/media/uapi/v4l/field-order.rst17
-rw-r--r--Documentation/media/uapi/v4l/hist-v4l2.rst2
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-bayer.rst38
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-compressed.rst84
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-packed-rgb.rst1306
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-rgb.rst1302
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst15
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-v4l2.rst20
-rw-r--r--Documentation/media/uapi/v4l/pixfmt.rst1
-rw-r--r--Documentation/media/uapi/v4l/subdev-formats.rst115
-rw-r--r--Documentation/media/uapi/v4l/v4l2.rst10
-rw-r--r--Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst41
-rw-r--r--Documentation/media/uapi/v4l/vidioc-dqevent.rst11
-rw-r--r--Documentation/media/uapi/v4l/vidioc-enum-fmt.rst16
-rw-r--r--Documentation/media/uapi/v4l/vidioc-qbuf.rst8
-rw-r--r--Documentation/media/uapi/v4l/vidioc-queryctrl.rst34
-rw-r--r--Documentation/media/v4l-drivers/imx7.rst127
-rw-r--r--Documentation/media/v4l-drivers/index.rst1
-rw-r--r--Documentation/media/v4l-drivers/vimc.dot22
-rw-r--r--Documentation/media/v4l-drivers/vimc.rst109
-rw-r--r--Documentation/media/v4l-drivers/vivid.rst5
-rw-r--r--Documentation/media/videodev2.h.rst.exceptions11
-rw-r--r--Documentation/memory-barriers.txt4
-rw-r--r--Documentation/mic/index.rst16
-rw-r--r--Documentation/mic/mic_overview.rst (renamed from Documentation/mic/mic_overview.txt)6
-rw-r--r--Documentation/mic/scif_overview.rst (renamed from Documentation/mic/scif_overview.txt)58
-rw-r--r--Documentation/mips/au1xxx_ide.rst (renamed from Documentation/mips/AU1xxx_IDE.README)89
-rw-r--r--Documentation/mips/index.rst20
-rw-r--r--Documentation/mips/ingenic-tcu.rst71
-rw-r--r--Documentation/misc-devices/eeprom.rst (renamed from Documentation/misc-devices/eeprom)43
-rw-r--r--Documentation/misc-devices/ics932s401.rst (renamed from Documentation/misc-devices/ics932s401)7
-rw-r--r--Documentation/misc-devices/index.rst6
-rw-r--r--Documentation/misc-devices/isl29003.rst (renamed from Documentation/misc-devices/isl29003)15
-rw-r--r--Documentation/misc-devices/lis3lv02d.rst (renamed from Documentation/misc-devices/lis3lv02d)20
-rw-r--r--Documentation/misc-devices/max6875.rst (renamed from Documentation/misc-devices/max6875)52
-rw-r--r--Documentation/misc-devices/mei/mei-client-bus.txt141
-rw-r--r--Documentation/misc-devices/mei/mei.txt266
-rw-r--r--Documentation/netlabel/cipso_ipv4.rst (renamed from Documentation/netlabel/cipso_ipv4.txt)19
-rw-r--r--Documentation/netlabel/draft_ietf.rst5
-rw-r--r--Documentation/netlabel/index.rst21
-rw-r--r--Documentation/netlabel/introduction.rst (renamed from Documentation/netlabel/introduction.txt)16
-rw-r--r--Documentation/netlabel/lsm_interface.rst (renamed from Documentation/netlabel/lsm_interface.txt)16
-rw-r--r--Documentation/networking/af_xdp.rst26
-rw-r--r--Documentation/networking/bonding.txt16
-rw-r--r--Documentation/networking/caif/caif.rst (renamed from Documentation/networking/caif/README)88
-rw-r--r--Documentation/networking/conf.py10
-rw-r--r--Documentation/networking/device_drivers/amazon/ena.txt5
-rw-r--r--Documentation/networking/device_drivers/aquantia/atlantic.txt439
-rw-r--r--Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst4
-rw-r--r--Documentation/networking/device_drivers/google/gve.rst123
-rw-r--r--Documentation/networking/device_drivers/index.rst5
-rw-r--r--Documentation/networking/device_drivers/intel/iavf.rst115
-rw-r--r--Documentation/networking/device_drivers/mellanox/mlx5.rst300
-rw-r--r--Documentation/networking/device_drivers/netronome/nfp.rst133
-rw-r--r--Documentation/networking/device_drivers/pensando/ionic.rst43
-rw-r--r--Documentation/networking/devlink-info-versions.rst16
-rw-r--r--Documentation/networking/devlink-params-nfp.txt5
-rw-r--r--Documentation/networking/devlink-params.txt16
-rw-r--r--Documentation/networking/devlink-trap-netdevsim.rst20
-rw-r--r--Documentation/networking/devlink-trap.rst208
-rw-r--r--Documentation/networking/dsa/b53.rst183
-rw-r--r--Documentation/networking/dsa/configuration.rst292
-rw-r--r--Documentation/networking/dsa/dsa.rst4
-rw-r--r--Documentation/networking/dsa/index.rst2
-rw-r--r--Documentation/networking/dsa/sja1105.rst96
-rw-r--r--Documentation/networking/index.rst5
-rw-r--r--Documentation/networking/ip-sysctl.txt52
-rw-r--r--Documentation/networking/j1939.rst422
-rw-r--r--Documentation/networking/mac80211_hwsim/mac80211_hwsim.rst (renamed from Documentation/networking/mac80211_hwsim/README)28
-rw-r--r--Documentation/networking/mpls-sysctl.txt2
-rw-r--r--Documentation/networking/phy.rst45
-rw-r--r--Documentation/networking/sfp-phylink.rst8
-rw-r--r--Documentation/networking/timestamping.txt2
-rw-r--r--Documentation/networking/tls-offload.rst114
-rw-r--r--Documentation/networking/tuntap.txt4
-rw-r--r--Documentation/nios2/nios2.rst (renamed from Documentation/nios2/README)1
-rw-r--r--Documentation/openrisc/index.rst18
-rw-r--r--Documentation/openrisc/openrisc_port.rst (renamed from Documentation/openrisc/README)25
-rw-r--r--Documentation/openrisc/todo.rst (renamed from Documentation/openrisc/TODO)9
-rw-r--r--Documentation/padata.txt12
-rw-r--r--Documentation/parisc/debugging.rst (renamed from Documentation/parisc/debugging)7
-rw-r--r--Documentation/parisc/index.rst18
-rw-r--r--Documentation/parisc/registers.rst (renamed from Documentation/parisc/registers)59
-rw-r--r--Documentation/pcmcia/devicetable.rst (renamed from Documentation/pcmcia/devicetable.txt)4
-rw-r--r--Documentation/pcmcia/driver-changes.rst (renamed from Documentation/pcmcia/driver-changes.txt)35
-rw-r--r--Documentation/pcmcia/driver.rst (renamed from Documentation/pcmcia/driver.txt)18
-rw-r--r--Documentation/pcmcia/index.rst20
-rw-r--r--Documentation/pcmcia/locking.rst (renamed from Documentation/pcmcia/locking.txt)39
-rw-r--r--Documentation/pi-futex.txt2
-rw-r--r--Documentation/platform/x86-laptop-drivers.txt18
-rw-r--r--Documentation/power/apm-acpi.rst (renamed from Documentation/power/apm-acpi.txt)10
-rw-r--r--Documentation/power/basic-pm-debugging.rst (renamed from Documentation/power/basic-pm-debugging.txt)79
-rw-r--r--Documentation/power/charger-manager.rst (renamed from Documentation/power/charger-manager.txt)105
-rw-r--r--Documentation/power/drivers-testing.rst (renamed from Documentation/power/drivers-testing.txt)15
-rw-r--r--Documentation/power/energy-model.rst (renamed from Documentation/power/energy-model.txt)105
-rw-r--r--Documentation/power/freezing-of-tasks.rst (renamed from Documentation/power/freezing-of-tasks.txt)91
-rw-r--r--Documentation/power/index.rst46
-rw-r--r--Documentation/power/interface.rst (renamed from Documentation/power/interface.txt)24
-rw-r--r--Documentation/power/opp.rst (renamed from Documentation/power/opp.txt)177
-rw-r--r--Documentation/power/pci.rst (renamed from Documentation/power/pci.txt)87
-rw-r--r--Documentation/power/pm_qos_interface.rst (renamed from Documentation/power/pm_qos_interface.txt)140
-rw-r--r--Documentation/power/power_supply_class.rst288
-rw-r--r--Documentation/power/power_supply_class.txt231
-rw-r--r--Documentation/power/powercap/powercap.rst257
-rw-r--r--Documentation/power/powercap/powercap.txt236
-rw-r--r--Documentation/power/regulator/consumer.rst (renamed from Documentation/power/regulator/consumer.txt)141
-rw-r--r--Documentation/power/regulator/design.rst (renamed from Documentation/power/regulator/design.txt)9
-rw-r--r--Documentation/power/regulator/machine.rst (renamed from Documentation/power/regulator/machine.txt)47
-rw-r--r--Documentation/power/regulator/overview.rst (renamed from Documentation/power/regulator/overview.txt)57
-rw-r--r--Documentation/power/regulator/regulator.rst32
-rw-r--r--Documentation/power/regulator/regulator.txt30
-rw-r--r--Documentation/power/runtime_pm.rst (renamed from Documentation/power/runtime_pm.txt)234
-rw-r--r--Documentation/power/s2ram.rst (renamed from Documentation/power/s2ram.txt)20
-rw-r--r--Documentation/power/suspend-and-cpuhotplug.rst (renamed from Documentation/power/suspend-and-cpuhotplug.txt)42
-rw-r--r--Documentation/power/suspend-and-interrupts.rst (renamed from Documentation/power/suspend-and-interrupts.txt)2
-rw-r--r--Documentation/power/swsusp-and-swap-files.rst (renamed from Documentation/power/swsusp-and-swap-files.txt)17
-rw-r--r--Documentation/power/swsusp-dmcrypt.rst (renamed from Documentation/power/swsusp-dmcrypt.txt)122
-rw-r--r--Documentation/power/swsusp.rst501
-rw-r--r--Documentation/power/swsusp.txt446
-rw-r--r--Documentation/power/tricks.rst (renamed from Documentation/power/tricks.txt)6
-rw-r--r--Documentation/power/userland-swsusp.rst (renamed from Documentation/power/userland-swsusp.txt)55
-rw-r--r--Documentation/power/video.rst (renamed from Documentation/power/video.txt)156
-rw-r--r--Documentation/powerpc/bootwrapper.rst (renamed from Documentation/powerpc/bootwrapper.txt)28
-rw-r--r--Documentation/powerpc/cpu_families.rst (renamed from Documentation/powerpc/cpu_families.txt)23
-rw-r--r--Documentation/powerpc/cpu_features.rst (renamed from Documentation/powerpc/cpu_features.txt)6
-rw-r--r--Documentation/powerpc/cxl.rst (renamed from Documentation/powerpc/cxl.txt)46
-rw-r--r--Documentation/powerpc/cxlflash.rst (renamed from Documentation/powerpc/cxlflash.txt)10
-rw-r--r--Documentation/powerpc/dawr-power9.rst (renamed from Documentation/powerpc/DAWR-POWER9.txt)15
-rw-r--r--Documentation/powerpc/dscr.rst (renamed from Documentation/powerpc/dscr.txt)18
-rw-r--r--Documentation/powerpc/eeh-pci-error-recovery.rst (renamed from Documentation/powerpc/eeh-pci-error-recovery.txt)108
-rw-r--r--Documentation/powerpc/elfnote.rst41
-rw-r--r--Documentation/powerpc/firmware-assisted-dump.rst361
-rw-r--r--Documentation/powerpc/firmware-assisted-dump.txt292
-rw-r--r--Documentation/powerpc/hvcs.rst (renamed from Documentation/powerpc/hvcs.txt)108
-rw-r--r--Documentation/powerpc/index.rst36
-rw-r--r--Documentation/powerpc/isa-versions.rst13
-rw-r--r--Documentation/powerpc/mpc52xx.rst (renamed from Documentation/powerpc/mpc52xx.txt)12
-rw-r--r--Documentation/powerpc/pci_iov_resource_on_powernv.rst (renamed from Documentation/powerpc/pci_iov_resource_on_powernv.txt)15
-rw-r--r--Documentation/powerpc/pmu-ebb.rst (renamed from Documentation/powerpc/pmu-ebb.txt)1
-rw-r--r--Documentation/powerpc/ptrace.rst156
-rw-r--r--Documentation/powerpc/ptrace.txt151
-rw-r--r--Documentation/powerpc/qe_firmware.rst (renamed from Documentation/powerpc/qe_firmware.txt)37
-rw-r--r--Documentation/powerpc/syscall64-abi.rst (renamed from Documentation/powerpc/syscall64-abi.txt)29
-rw-r--r--Documentation/powerpc/transactional_memory.rst (renamed from Documentation/powerpc/transactional_memory.txt)45
-rw-r--r--Documentation/powerpc/ultravisor.rst1054
-rw-r--r--Documentation/powerpc/vcpudispatch_stats.txt68
-rw-r--r--Documentation/process/4.Coding.rst2
-rw-r--r--Documentation/process/changes.rst22
-rw-r--r--Documentation/process/coding-style.rst2
-rw-r--r--Documentation/process/conf.py10
-rw-r--r--Documentation/process/deprecated.rst14
-rw-r--r--Documentation/process/email-clients.rst20
-rw-r--r--Documentation/process/embargoed-hardware-issues.rst279
-rw-r--r--Documentation/process/howto.rst2
-rw-r--r--Documentation/process/index.rst1
-rw-r--r--Documentation/process/maintainer-pgp-guide.rst31
-rw-r--r--Documentation/process/submit-checklist.rst4
-rw-r--r--Documentation/process/submitting-drivers.rst2
-rw-r--r--Documentation/process/submitting-patches.rst2
-rw-r--r--Documentation/pti/pti_intel_mid.txt99
-rw-r--r--Documentation/rbtree.txt6
-rw-r--r--Documentation/remoteproc.txt14
-rw-r--r--Documentation/riscv/boot-image-header.rst62
-rw-r--r--Documentation/riscv/index.rst16
-rw-r--r--Documentation/riscv/pmu.rst (renamed from Documentation/riscv/pmu.txt)98
-rw-r--r--Documentation/s390/3270.rst (renamed from Documentation/s390/3270.txt)85
-rw-r--r--Documentation/s390/DASD73
-rw-r--r--Documentation/s390/Debugging390.txt2142
-rw-r--r--Documentation/s390/cds.rst (renamed from Documentation/s390/cds.txt)368
-rw-r--r--Documentation/s390/common_io.rst (renamed from Documentation/s390/CommonIO)49
-rw-r--r--Documentation/s390/driver-model.rst (renamed from Documentation/s390/driver-model.txt)179
-rw-r--r--Documentation/s390/index.rst26
-rw-r--r--Documentation/s390/monreader.rst (renamed from Documentation/s390/monreader.txt)85
-rw-r--r--Documentation/s390/qeth.rst (renamed from Documentation/s390/qeth.txt)36
-rw-r--r--Documentation/s390/s390dbf.rst487
-rw-r--r--Documentation/s390/s390dbf.txt667
-rw-r--r--Documentation/s390/text_files.rst11
-rw-r--r--Documentation/s390/vfio-ap.rst (renamed from Documentation/s390/vfio-ap.txt)499
-rw-r--r--Documentation/s390/vfio-ccw.rst (renamed from Documentation/s390/vfio-ccw.txt)129
-rw-r--r--Documentation/s390/zfcpdump.rst (renamed from Documentation/s390/zfcpdump.txt)2
-rw-r--r--Documentation/scheduler/completion.rst (renamed from Documentation/scheduler/completion.txt)38
-rw-r--r--Documentation/scheduler/index.rst27
-rw-r--r--Documentation/scheduler/sched-arch.rst (renamed from Documentation/scheduler/sched-arch.txt)18
-rw-r--r--Documentation/scheduler/sched-bwc.rst174
-rw-r--r--Documentation/scheduler/sched-bwc.txt122
-rw-r--r--Documentation/scheduler/sched-deadline.rst (renamed from Documentation/scheduler/sched-deadline.txt)313
-rw-r--r--Documentation/scheduler/sched-design-CFS.rst (renamed from Documentation/scheduler/sched-design-CFS.txt)17
-rw-r--r--Documentation/scheduler/sched-domains.rst (renamed from Documentation/scheduler/sched-domains.txt)8
-rw-r--r--Documentation/scheduler/sched-energy.rst (renamed from Documentation/scheduler/sched-energy.txt)53
-rw-r--r--Documentation/scheduler/sched-nice-design.rst (renamed from Documentation/scheduler/sched-nice-design.txt)6
-rw-r--r--Documentation/scheduler/sched-pelt.c3
-rw-r--r--Documentation/scheduler/sched-rt-group.rst (renamed from Documentation/scheduler/sched-rt-group.txt)30
-rw-r--r--Documentation/scheduler/sched-stats.rst (renamed from Documentation/scheduler/sched-stats.txt)35
-rw-r--r--Documentation/scheduler/text_files.rst5
-rw-r--r--Documentation/scsi/osst.txt218
-rw-r--r--Documentation/scsi/ufs.txt7
-rw-r--r--Documentation/security/IMA-templates.rst10
-rw-r--r--Documentation/security/index.rst5
-rw-r--r--Documentation/security/keys/core.rst107
-rw-r--r--Documentation/security/keys/request-key.rst50
-rw-r--r--Documentation/security/keys/trusted-encrypted.rst4
-rw-r--r--Documentation/security/lsm-development.rst (renamed from Documentation/security/LSM.rst)0
-rw-r--r--Documentation/security/lsm.rst (renamed from Documentation/lsm.txt)0
-rw-r--r--Documentation/security/sak.rst (renamed from Documentation/SAK.txt)0
-rw-r--r--Documentation/security/siphash.rst (renamed from Documentation/siphash.txt)0
-rw-r--r--Documentation/security/tpm/index.rst3
-rw-r--r--Documentation/security/tpm/tpm_event_log.rst55
-rw-r--r--Documentation/security/tpm/tpm_ftpm_tee.rst27
-rw-r--r--Documentation/security/tpm/xen-tpmfront.rst (renamed from Documentation/security/tpm/xen-tpmfront.txt)105
-rw-r--r--Documentation/sgi-ioc4.txt49
-rw-r--r--Documentation/sh/conf.py10
-rw-r--r--Documentation/sound/alsa-configuration.rst2
-rw-r--r--Documentation/sound/conf.py10
-rw-r--r--Documentation/sound/hd-audio/models.rst3
-rw-r--r--Documentation/sound/hd-audio/notes.rst5
-rw-r--r--Documentation/sound/index.rst2
-rw-r--r--Documentation/sparc/index.rst2
-rw-r--r--Documentation/sphinx/automarkup.py102
-rw-r--r--Documentation/sphinx/cdomain.py5
-rw-r--r--Documentation/sphinx/load_config.py27
-rw-r--r--Documentation/sphinx/requirements.txt4
-rw-r--r--Documentation/spi/butterfly.rst (renamed from Documentation/spi/butterfly)44
-rw-r--r--Documentation/spi/index.rst22
-rw-r--r--Documentation/spi/pxa2xx.rst (renamed from Documentation/spi/pxa2xx)95
-rw-r--r--Documentation/spi/spi-lm70llp.rst (renamed from Documentation/spi/spi-lm70llp)17
-rw-r--r--Documentation/spi/spi-sc18is602.rst (renamed from Documentation/spi/spi-sc18is602)5
-rw-r--r--Documentation/spi/spi-summary.rst (renamed from Documentation/spi/spi-summary)105
-rw-r--r--Documentation/spi/spidev.rst (renamed from Documentation/spi/spidev)30
-rw-r--r--Documentation/sysctl/abi.txt54
-rw-r--r--Documentation/target/index.rst19
-rw-r--r--Documentation/target/scripts.rst11
-rw-r--r--Documentation/target/tcm_mod_builder.rst149
-rw-r--r--Documentation/target/tcm_mod_builder.txt145
-rw-r--r--Documentation/target/tcmu-design.rst (renamed from Documentation/target/tcmu-design.txt)272
-rw-r--r--Documentation/tee.txt2
-rw-r--r--Documentation/thermal/exynos_thermal_emulation53
-rw-r--r--Documentation/timers/highres.rst (renamed from Documentation/timers/highres.txt)13
-rw-r--r--Documentation/timers/hpet.rst (renamed from Documentation/timers/hpet.txt)4
-rw-r--r--Documentation/timers/hrtimers.rst (renamed from Documentation/timers/hrtimers.txt)6
-rw-r--r--Documentation/timers/index.rst22
-rw-r--r--Documentation/timers/no_hz.rst (renamed from Documentation/timers/NO_HZ.txt)40
-rw-r--r--Documentation/timers/timekeeping.rst (renamed from Documentation/timers/timekeeping.txt)3
-rw-r--r--Documentation/timers/timers-howto.rst (renamed from Documentation/timers/timers-howto.txt)15
-rw-r--r--Documentation/trace/coresight-cpu-debug.rst (renamed from Documentation/trace/coresight-cpu-debug.txt)69
-rw-r--r--Documentation/trace/coresight.rst498
-rw-r--r--Documentation/trace/coresight.txt430
-rw-r--r--Documentation/trace/ftrace.rst13
-rw-r--r--Documentation/trace/histogram.rst10
-rw-r--r--Documentation/trace/index.rst2
-rw-r--r--Documentation/trace/kprobetrace.rst50
-rw-r--r--Documentation/trace/uprobetracer.rst18
-rw-r--r--Documentation/translations/it_IT/admin-guide/kernel-parameters.rst12
-rw-r--r--Documentation/translations/it_IT/doc-guide/sphinx.rst36
-rw-r--r--Documentation/translations/it_IT/kernel-hacking/hacking.rst4
-rw-r--r--Documentation/translations/it_IT/kernel-hacking/locking.rst8
-rw-r--r--Documentation/translations/it_IT/process/4.Coding.rst2
-rw-r--r--Documentation/translations/it_IT/process/adding-syscalls.rst2
-rw-r--r--Documentation/translations/it_IT/process/changes.rst22
-rw-r--r--Documentation/translations/it_IT/process/coding-style.rst2
-rw-r--r--Documentation/translations/it_IT/process/howto.rst4
-rw-r--r--Documentation/translations/it_IT/process/index.rst1
-rw-r--r--Documentation/translations/it_IT/process/kernel-docs.rst11
-rw-r--r--Documentation/translations/it_IT/process/license-rules.rst28
-rw-r--r--Documentation/translations/it_IT/process/magic-number.rst2
-rw-r--r--Documentation/translations/it_IT/process/maintainer-pgp-guide.rst25
-rw-r--r--Documentation/translations/it_IT/process/programming-language.rst51
-rw-r--r--Documentation/translations/it_IT/process/stable-kernel-rules.rst4
-rw-r--r--Documentation/translations/it_IT/process/submit-checklist.rst4
-rw-r--r--Documentation/translations/it_IT/process/submitting-patches.rst2
-rw-r--r--Documentation/translations/ja_JP/SubmittingPatches2
-rw-r--r--Documentation/translations/ja_JP/howto.rst2
-rw-r--r--Documentation/translations/ko_KR/howto.rst2
-rw-r--r--Documentation/translations/ko_KR/memory-barriers.txt4
-rw-r--r--Documentation/translations/zh_CN/arm/Booting4
-rw-r--r--Documentation/translations/zh_CN/arm/kernel_user_helpers.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/booting.txt10
-rw-r--r--Documentation/translations/zh_CN/arm64/legacy_instructions.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/memory.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/silicon-errata.txt4
-rw-r--r--Documentation/translations/zh_CN/arm64/tagged-pointers.txt4
-rw-r--r--Documentation/translations/zh_CN/basic_profiling.txt71
-rw-r--r--Documentation/translations/zh_CN/filesystems/sysfs.txt2
-rw-r--r--Documentation/translations/zh_CN/gpio.txt4
-rw-r--r--Documentation/translations/zh_CN/oops-tracing.txt4
-rw-r--r--Documentation/translations/zh_CN/process/4.Coding.rst4
-rw-r--r--Documentation/translations/zh_CN/process/coding-style.rst2
-rw-r--r--Documentation/translations/zh_CN/process/howto.rst14
-rw-r--r--Documentation/translations/zh_CN/process/management-style.rst4
-rw-r--r--Documentation/translations/zh_CN/process/programming-language.rst59
-rw-r--r--Documentation/translations/zh_CN/process/submit-checklist.rst4
-rw-r--r--Documentation/translations/zh_CN/process/submitting-drivers.rst4
-rw-r--r--Documentation/translations/zh_CN/process/submitting-patches.rst2
-rw-r--r--Documentation/translations/zh_CN/sparse.txt4
-rw-r--r--Documentation/usb/WUSB-Design-overview.txt457
-rw-r--r--Documentation/usb/acm.rst (renamed from Documentation/usb/acm.txt)0
-rw-r--r--Documentation/usb/authorization.rst (renamed from Documentation/usb/authorization.txt)0
-rw-r--r--Documentation/usb/chipidea.rst (renamed from Documentation/usb/chipidea.txt)0
-rw-r--r--Documentation/usb/dwc3.rst (renamed from Documentation/usb/dwc3.txt)0
-rw-r--r--Documentation/usb/ehci.rst (renamed from Documentation/usb/ehci.txt)0
-rw-r--r--Documentation/usb/functionfs.rst (renamed from Documentation/usb/functionfs.txt)0
-rw-r--r--Documentation/usb/gadget-testing.rst (renamed from Documentation/usb/gadget-testing.txt)4
-rw-r--r--Documentation/usb/gadget_configfs.rst (renamed from Documentation/usb/gadget_configfs.txt)0
-rw-r--r--Documentation/usb/gadget_hid.rst (renamed from Documentation/usb/gadget_hid.txt)0
-rw-r--r--Documentation/usb/gadget_multi.rst (renamed from Documentation/usb/gadget_multi.txt)0
-rw-r--r--Documentation/usb/gadget_printer.rst (renamed from Documentation/usb/gadget_printer.txt)0
-rw-r--r--Documentation/usb/gadget_serial.rst (renamed from Documentation/usb/gadget_serial.txt)0
-rw-r--r--Documentation/usb/index.rst39
-rw-r--r--Documentation/usb/iuu_phoenix.rst (renamed from Documentation/usb/iuu_phoenix.txt)0
-rw-r--r--Documentation/usb/mass-storage.rst (renamed from Documentation/usb/mass-storage.txt)0
-rw-r--r--Documentation/usb/misc_usbsevseg.rst (renamed from Documentation/usb/misc_usbsevseg.txt)0
-rw-r--r--Documentation/usb/mtouchusb.rst (renamed from Documentation/usb/mtouchusb.txt)0
-rw-r--r--Documentation/usb/ohci.rst (renamed from Documentation/usb/ohci.txt)0
-rw-r--r--Documentation/usb/rio.rst (renamed from Documentation/usb/rio.txt)0
-rw-r--r--Documentation/usb/text_files.rst29
-rw-r--r--Documentation/usb/usb-help.rst (renamed from Documentation/usb/usb-help.txt)0
-rw-r--r--Documentation/usb/usb-serial.rst (renamed from Documentation/usb/usb-serial.txt)0
-rw-r--r--Documentation/usb/usbip_protocol.rst (renamed from Documentation/usb/usbip_protocol.txt)0
-rw-r--r--Documentation/usb/usbmon.rst (renamed from Documentation/usb/usbmon.txt)0
-rw-r--r--Documentation/usb/wusb-cbaf130
-rw-r--r--Documentation/userspace-api/accelerators/ocxl.rst (renamed from Documentation/accelerators/ocxl.rst)0
-rw-r--r--Documentation/userspace-api/conf.py10
-rw-r--r--Documentation/userspace-api/index.rst1
-rw-r--r--Documentation/userspace-api/spec_ctrl.rst2
-rw-r--r--Documentation/virt/index.rst18
-rw-r--r--Documentation/virt/kvm/amd-memory-encryption.rst (renamed from Documentation/virtual/kvm/amd-memory-encryption.rst)3
-rw-r--r--Documentation/virt/kvm/api.txt (renamed from Documentation/virtual/kvm/api.txt)83
-rw-r--r--Documentation/virt/kvm/arm/hyp-abi.txt (renamed from Documentation/virtual/kvm/arm/hyp-abi.txt)0
-rw-r--r--Documentation/virt/kvm/arm/psci.txt61
-rw-r--r--Documentation/virt/kvm/cpuid.rst107
-rw-r--r--Documentation/virt/kvm/devices/README (renamed from Documentation/virtual/kvm/devices/README)0
-rw-r--r--Documentation/virt/kvm/devices/arm-vgic-its.txt (renamed from Documentation/virtual/kvm/devices/arm-vgic-its.txt)2
-rw-r--r--Documentation/virt/kvm/devices/arm-vgic-v3.txt (renamed from Documentation/virtual/kvm/devices/arm-vgic-v3.txt)0
-rw-r--r--Documentation/virt/kvm/devices/arm-vgic.txt (renamed from Documentation/virtual/kvm/devices/arm-vgic.txt)0
-rw-r--r--Documentation/virt/kvm/devices/mpic.txt (renamed from Documentation/virtual/kvm/devices/mpic.txt)0
-rw-r--r--Documentation/virt/kvm/devices/s390_flic.txt (renamed from Documentation/virtual/kvm/devices/s390_flic.txt)0
-rw-r--r--Documentation/virt/kvm/devices/vcpu.txt (renamed from Documentation/virtual/kvm/devices/vcpu.txt)0
-rw-r--r--Documentation/virt/kvm/devices/vfio.txt (renamed from Documentation/virtual/kvm/devices/vfio.txt)0
-rw-r--r--Documentation/virt/kvm/devices/vm.txt (renamed from Documentation/virtual/kvm/devices/vm.txt)0
-rw-r--r--Documentation/virt/kvm/devices/xics.txt (renamed from Documentation/virtual/kvm/devices/xics.txt)0
-rw-r--r--Documentation/virt/kvm/devices/xive.txt (renamed from Documentation/virtual/kvm/devices/xive.txt)0
-rw-r--r--Documentation/virt/kvm/halt-polling.txt (renamed from Documentation/virtual/kvm/halt-polling.txt)0
-rw-r--r--Documentation/virt/kvm/hypercalls.txt (renamed from Documentation/virtual/kvm/hypercalls.txt)15
-rw-r--r--Documentation/virt/kvm/index.rst12
-rw-r--r--Documentation/virt/kvm/locking.txt (renamed from Documentation/virtual/kvm/locking.txt)4
-rw-r--r--Documentation/virt/kvm/mmu.txt (renamed from Documentation/virtual/kvm/mmu.txt)6
-rw-r--r--Documentation/virt/kvm/msr.txt (renamed from Documentation/virtual/kvm/msr.txt)9
-rw-r--r--Documentation/virt/kvm/nested-vmx.txt (renamed from Documentation/virtual/kvm/nested-vmx.txt)0
-rw-r--r--Documentation/virt/kvm/ppc-pv.txt (renamed from Documentation/virtual/kvm/ppc-pv.txt)0
-rw-r--r--Documentation/virt/kvm/review-checklist.txt (renamed from Documentation/virtual/kvm/review-checklist.txt)2
-rw-r--r--Documentation/virt/kvm/s390-diag.txt (renamed from Documentation/virtual/kvm/s390-diag.txt)0
-rw-r--r--Documentation/virt/kvm/timekeeping.txt (renamed from Documentation/virtual/kvm/timekeeping.txt)0
-rw-r--r--Documentation/virt/kvm/vcpu-requests.rst (renamed from Documentation/virtual/kvm/vcpu-requests.rst)0
-rw-r--r--Documentation/virt/paravirt_ops.rst (renamed from Documentation/virtual/paravirt_ops.txt)19
-rw-r--r--Documentation/virt/uml/UserModeLinux-HOWTO.txt (renamed from Documentation/virtual/uml/UserModeLinux-HOWTO.txt)0
-rw-r--r--Documentation/virtual/guest-halt-polling.txt78
-rw-r--r--Documentation/virtual/kvm/arm/psci.txt30
-rw-r--r--Documentation/virtual/kvm/cpuid.txt83
-rw-r--r--Documentation/vm/conf.py10
-rw-r--r--Documentation/vm/hmm.rst237
-rw-r--r--Documentation/vm/hwpoison.rst52
-rw-r--r--Documentation/vm/memory-model.rst40
-rw-r--r--Documentation/vm/numa.rst6
-rw-r--r--Documentation/vm/page_migration.rst2
-rw-r--r--Documentation/vm/split_page_table_lock.rst10
-rw-r--r--Documentation/vm/unevictable-lru.rst4
-rw-r--r--Documentation/w1/index.rst21
-rw-r--r--Documentation/w1/masters/ds2482.rst (renamed from Documentation/w1/masters/ds2482)16
-rw-r--r--Documentation/w1/masters/ds2490.rst (renamed from Documentation/w1/masters/ds2490)6
-rw-r--r--Documentation/w1/masters/index.rst14
-rw-r--r--Documentation/w1/masters/mxc-w112
-rw-r--r--Documentation/w1/masters/mxc-w1.rst17
-rw-r--r--Documentation/w1/masters/omap-hdq.rst (renamed from Documentation/w1/masters/omap-hdq)12
-rw-r--r--Documentation/w1/masters/w1-gpio.rst (renamed from Documentation/w1/masters/w1-gpio)21
-rw-r--r--Documentation/w1/slaves/index.rst16
-rw-r--r--Documentation/w1/slaves/w1_ds2406.rst (renamed from Documentation/w1/slaves/w1_ds2406)4
-rw-r--r--Documentation/w1/slaves/w1_ds2413.rst (renamed from Documentation/w1/slaves/w1_ds2413)9
-rw-r--r--Documentation/w1/slaves/w1_ds242347
-rw-r--r--Documentation/w1/slaves/w1_ds2423.rst54
-rw-r--r--Documentation/w1/slaves/w1_ds2438.rst (renamed from Documentation/w1/slaves/w1_ds2438)10
-rw-r--r--Documentation/w1/slaves/w1_ds28e04.rst (renamed from Documentation/w1/slaves/w1_ds28e04)5
-rw-r--r--Documentation/w1/slaves/w1_ds28e17.rst (renamed from Documentation/w1/slaves/w1_ds28e17)16
-rw-r--r--Documentation/w1/slaves/w1_therm.rst (renamed from Documentation/w1/slaves/w1_therm)11
-rw-r--r--Documentation/w1/w1-generic.rst (renamed from Documentation/w1/w1.generic)88
-rw-r--r--Documentation/w1/w1-netlink.rst (renamed from Documentation/w1/w1.netlink)91
-rw-r--r--Documentation/watchdog/convert_drivers_to_kernel_api.rst (renamed from Documentation/watchdog/convert_drivers_to_kernel_api.txt)109
-rw-r--r--Documentation/watchdog/hpwdt.rst (renamed from Documentation/watchdog/hpwdt.txt)31
-rw-r--r--Documentation/watchdog/index.rst25
-rw-r--r--Documentation/watchdog/mlx-wdt.rst (renamed from Documentation/watchdog/mlx-wdt.txt)24
-rw-r--r--Documentation/watchdog/pcwd-watchdog.rst (renamed from Documentation/watchdog/pcwd-watchdog.txt)13
-rw-r--r--Documentation/watchdog/watchdog-api.rst (renamed from Documentation/watchdog/watchdog-api.txt)76
-rw-r--r--Documentation/watchdog/watchdog-kernel-api.rst (renamed from Documentation/watchdog/watchdog-kernel-api.txt)91
-rw-r--r--Documentation/watchdog/watchdog-parameters.rst728
-rw-r--r--Documentation/watchdog/watchdog-parameters.txt410
-rw-r--r--Documentation/watchdog/watchdog-pm.rst (renamed from Documentation/watchdog/watchdog-pm.txt)3
-rw-r--r--Documentation/watchdog/wdt.rst (renamed from Documentation/watchdog/wdt.txt)31
-rw-r--r--Documentation/x86/conf.py10
-rw-r--r--Documentation/x86/exception-tables.rst2
-rw-r--r--Documentation/x86/index.rst3
-rw-r--r--Documentation/x86/intel-iommu.rst (renamed from Documentation/Intel-IOMMU.txt)0
-rw-r--r--Documentation/x86/intel_txt.rst (renamed from Documentation/intel_txt.txt)0
-rw-r--r--Documentation/x86/resctrl_ui.rst30
-rw-r--r--Documentation/x86/topology.rst6
-rw-r--r--Documentation/x86/x86_64/5level-paging.rst2
-rw-r--r--Documentation/x86/x86_64/boot-options.rst6
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets.rst6
-rw-r--r--Documentation/xtensa/atomctl.rst (renamed from Documentation/xtensa/atomctl.txt)13
-rw-r--r--Documentation/xtensa/booting.rst (renamed from Documentation/xtensa/booting.txt)5
-rw-r--r--Documentation/xtensa/index.rst12
-rw-r--r--Documentation/xtensa/mmu.rst195
-rw-r--r--Documentation/xtensa/mmu.txt189
1973 files changed, 73458 insertions, 45830 deletions
diff --git a/Documentation/ABI/obsolete/sysfs-driver-hid-roccat-pyra b/Documentation/ABI/obsolete/sysfs-driver-hid-roccat-pyra
index 16020b31ae64..5d41ebadf15e 100644
--- a/Documentation/ABI/obsolete/sysfs-driver-hid-roccat-pyra
+++ b/Documentation/ABI/obsolete/sysfs-driver-hid-roccat-pyra
@@ -5,7 +5,7 @@ Description: It is possible to switch the cpi setting of the mouse with the
press of a button.
When read, this file returns the raw number of the actual cpi
setting reported by the mouse. This number has to be further
- processed to receive the real dpi value.
+ processed to receive the real dpi value:
VALUE DPI
1 400
diff --git a/Documentation/ABI/obsolete/sysfs-gpio b/Documentation/ABI/obsolete/sysfs-gpio
index 40d41ea1a3f5..e0d4e5e2dd90 100644
--- a/Documentation/ABI/obsolete/sysfs-gpio
+++ b/Documentation/ABI/obsolete/sysfs-gpio
@@ -11,7 +11,7 @@ Description:
Kernel code may export it for complete or partial access.
GPIOs are identified as they are inside the kernel, using integers in
- the range 0..INT_MAX. See Documentation/gpio for more information.
+ the range 0..INT_MAX. See Documentation/admin-guide/gpio for more information.
/sys/class/gpio
/export ... asks the kernel to export a GPIO to userspace
diff --git a/Documentation/ABI/removed/sysfs-class-rfkill b/Documentation/ABI/removed/sysfs-class-rfkill
index 3ce6231f20b2..9c08c7f98ffb 100644
--- a/Documentation/ABI/removed/sysfs-class-rfkill
+++ b/Documentation/ABI/removed/sysfs-class-rfkill
@@ -1,6 +1,6 @@
rfkill - radio frequency (RF) connector kill switch support
-For details to this subsystem look at Documentation/rfkill.txt.
+For details to this subsystem look at Documentation/driver-api/rfkill.rst.
What: /sys/class/rfkill/rfkill[0-9]+/claim
Date: 09-Jul-2007
diff --git a/Documentation/ABI/stable/sysfs-bus-w1 b/Documentation/ABI/stable/sysfs-bus-w1
index 140d85b4ae92..992dfb183ed0 100644
--- a/Documentation/ABI/stable/sysfs-bus-w1
+++ b/Documentation/ABI/stable/sysfs-bus-w1
@@ -6,6 +6,6 @@ Description: Bus scanning interval, microseconds component.
control systems are attached/generate presence for as short as
100 ms - hence the tens-to-hundreds milliseconds scan intervals
are required.
- see Documentation/w1/w1.generic for detailed information.
+ see Documentation/w1/w1-generic.rst for detailed information.
Users: any user space application which wants to know bus scanning
interval
diff --git a/Documentation/ABI/stable/sysfs-class-infiniband b/Documentation/ABI/stable/sysfs-class-infiniband
index 17211ceb9bf4..aed21b8916a2 100644
--- a/Documentation/ABI/stable/sysfs-class-infiniband
+++ b/Documentation/ABI/stable/sysfs-class-infiniband
@@ -423,23 +423,6 @@ Description:
(e.g. driver restart on the VM which owns the VF).
-sysfs interface for NetEffect RNIC Low-Level iWARP driver (nes)
----------------------------------------------------------------
-
-What: /sys/class/infiniband/nesX/hw_rev
-What: /sys/class/infiniband/nesX/hca_type
-What: /sys/class/infiniband/nesX/board_id
-Date: Feb, 2008
-KernelVersion: v2.6.25
-Contact: linux-rdma@vger.kernel.org
-Description:
- hw_rev: (RO) Hardware revision number
-
- hca_type: (RO) Host Channel Adapter type (NEX020)
-
- board_id: (RO) Manufacturing board id
-
-
sysfs interface for Chelsio T4/T5 RDMA driver (cxgb4)
-----------------------------------------------------
diff --git a/Documentation/ABI/stable/sysfs-class-rfkill b/Documentation/ABI/stable/sysfs-class-rfkill
index 80151a409d67..5b154f922643 100644
--- a/Documentation/ABI/stable/sysfs-class-rfkill
+++ b/Documentation/ABI/stable/sysfs-class-rfkill
@@ -1,6 +1,6 @@
rfkill - radio frequency (RF) connector kill switch support
-For details to this subsystem look at Documentation/rfkill.txt.
+For details to this subsystem look at Documentation/driver-api/rfkill.rst.
For the deprecated /sys/class/rfkill/*/claim knobs of this interface look in
Documentation/ABI/removed/sysfs-class-rfkill.
diff --git a/Documentation/ABI/stable/sysfs-devices-node b/Documentation/ABI/stable/sysfs-devices-node
index f7ce68fbd4b9..df8413cf1468 100644
--- a/Documentation/ABI/stable/sysfs-devices-node
+++ b/Documentation/ABI/stable/sysfs-devices-node
@@ -61,7 +61,7 @@ Date: October 2002
Contact: Linux Memory Management list <linux-mm@kvack.org>
Description:
The node's hit/miss statistics, in units of pages.
- See Documentation/numastat.txt
+ See Documentation/admin-guide/numastat.rst
What: /sys/devices/system/node/nodeX/distance
Date: October 2002
diff --git a/Documentation/ABI/stable/sysfs-driver-mlxreg-io b/Documentation/ABI/stable/sysfs-driver-mlxreg-io
index 156319fc5b80..8ca498447aeb 100644
--- a/Documentation/ABI/stable/sysfs-driver-mlxreg-io
+++ b/Documentation/ABI/stable/sysfs-driver-mlxreg-io
@@ -1,5 +1,4 @@
-What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
- asic_health
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/asic_health
Date: June 2018
KernelVersion: 4.19
@@ -9,9 +8,8 @@ Description: This file shows ASIC health status. The possible values are:
The files are read only.
-What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
- cpld1_version
- cpld2_version
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/cpld1_version
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/cpld2_version
Date: June 2018
KernelVersion: 4.19
Contact: Vadim Pasternak <vadimpmellanox.com>
@@ -20,8 +18,7 @@ Description: These files show with which CPLD versions have been burned
The files are read only.
-What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
- fan_dir
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/fan_dir
Date: December 2018
KernelVersion: 5.0
@@ -32,8 +29,7 @@ Description: This file shows the system fans direction:
The files are read only.
-What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
- jtag_enable
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/jtag_enable
Date: November 2018
KernelVersion: 5.0
@@ -43,8 +39,7 @@ Description: These files show with which CPLD versions have been burned
The files are read only.
-What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
- jtag_enable
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/jtag_enable
Date: November 2018
KernelVersion: 5.0
@@ -87,16 +82,15 @@ Description: These files allow asserting system power cycling, switching
The files are write only.
-What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
- reset_aux_pwr_or_ref
- reset_asic_thermal
- reset_hotswap_or_halt
- reset_hotswap_or_wd
- reset_fw_reset
- reset_long_pb
- reset_main_pwr_fail
- reset_short_pb
- reset_sw_reset
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_aux_pwr_or_ref
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_asic_thermal
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_hotswap_or_halt
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_hotswap_or_wd
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_fw_reset
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_long_pb
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_main_pwr_fail
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_short_pb
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_sw_reset
Date: June 2018
KernelVersion: 4.19
Contact: Vadim Pasternak <vadimpmellanox.com>
@@ -110,11 +104,10 @@ Description: These files show the system reset cause, as following: power
The files are read only.
-What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/
- reset_comex_pwr_fail
- reset_from_comex
- reset_system
- reset_voltmon_upgrade_fail
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_comex_pwr_fail
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_from_comex
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_system
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_voltmon_upgrade_fail
Date: November 2018
KernelVersion: 5.0
@@ -127,3 +120,23 @@ Description: These files show the system reset cause, as following: ComEx
the last reset cause.
The files are read only.
+
+Date: June 2019
+KernelVersion: 5.3
+Contact: Vadim Pasternak <vadimpmellanox.com>
+Description: These files show the system reset cause, as following:
+ COMEX thermal shutdown; wathchdog power off or reset was derived
+ by one of the next components: COMEX, switch board or by Small Form
+ Factor mezzanine, reset requested from ASIC, reset cuased by BIOS
+ reload. Value 1 in file means this is reset cause, 0 - otherwise.
+ Only one of the above causes could be 1 at the same time, representing
+ only last reset cause.
+
+ The files are read only.
+
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_comex_thermal
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_comex_wd
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_from_asic
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_reload_bios
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_sff_wd
+What: /sys/devices/platform/mlxplat/mlxreg-io/hwmon/hwmon*/reset_swb_wd
diff --git a/Documentation/ABI/stable/sysfs-driver-w1_ds28e04 b/Documentation/ABI/stable/sysfs-driver-w1_ds28e04
index 26579ee868c9..3e1c1fa8d54d 100644
--- a/Documentation/ABI/stable/sysfs-driver-w1_ds28e04
+++ b/Documentation/ABI/stable/sysfs-driver-w1_ds28e04
@@ -2,7 +2,7 @@ What: /sys/bus/w1/devices/.../pio
Date: May 2012
Contact: Markus Franke <franm@hrz.tu-chemnitz.de>
Description: read/write the contents of the two PIO's of the DS28E04-100
- see Documentation/w1/slaves/w1_ds28e04 for detailed information
+ see Documentation/w1/slaves/w1_ds28e04.rst for detailed information
Users: any user space application which wants to communicate with DS28E04-100
@@ -11,5 +11,5 @@ What: /sys/bus/w1/devices/.../eeprom
Date: May 2012
Contact: Markus Franke <franm@hrz.tu-chemnitz.de>
Description: read/write the contents of the EEPROM memory of the DS28E04-100
- see Documentation/w1/slaves/w1_ds28e04 for detailed information
+ see Documentation/w1/slaves/w1_ds28e04.rst for detailed information
Users: any user space application which wants to communicate with DS28E04-100
diff --git a/Documentation/ABI/stable/sysfs-driver-w1_ds28ea00 b/Documentation/ABI/stable/sysfs-driver-w1_ds28ea00
index e928def14f28..534e63731a49 100644
--- a/Documentation/ABI/stable/sysfs-driver-w1_ds28ea00
+++ b/Documentation/ABI/stable/sysfs-driver-w1_ds28ea00
@@ -2,5 +2,5 @@ What: /sys/bus/w1/devices/.../w1_seq
Date: Apr 2015
Contact: Matt Campbell <mattrcampbell@gmail.com>
Description: Support for the DS28EA00 chain sequence function
- see Documentation/w1/slaves/w1_therm for detailed information
+ see Documentation/w1/slaves/w1_therm.rst for detailed information
Users: any user space application which wants to communicate with DS28EA00
diff --git a/Documentation/ABI/testing/debugfs-cec-error-inj b/Documentation/ABI/testing/debugfs-cec-error-inj
index 122b65c5fe62..4c3596c6d25b 100644
--- a/Documentation/ABI/testing/debugfs-cec-error-inj
+++ b/Documentation/ABI/testing/debugfs-cec-error-inj
@@ -1,6 +1,6 @@
What: /sys/kernel/debug/cec/*/error-inj
Date: March 2018
-Contact: Hans Verkuil <hans.verkuil@cisco.com>
+Contact: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Description:
The CEC Framework allows for CEC error injection commands through
diff --git a/Documentation/ABI/testing/debugfs-cros-ec b/Documentation/ABI/testing/debugfs-cros-ec
new file mode 100644
index 000000000000..1fe0add99a2a
--- /dev/null
+++ b/Documentation/ABI/testing/debugfs-cros-ec
@@ -0,0 +1,56 @@
+What: /sys/kernel/debug/<cros-ec-device>/console_log
+Date: September 2017
+KernelVersion: 4.13
+Description:
+ If the EC supports the CONSOLE_READ command type, this file
+ can be used to grab the EC logs. The kernel polls for the log
+ and keeps its own buffer but userspace should grab this and
+ write it out to some logs.
+
+What: /sys/kernel/debug/<cros-ec-device>/panicinfo
+Date: September 2017
+KernelVersion: 4.13
+Description:
+ This file dumps the EC panic information from the previous
+ reboot. This file will only exist if the PANIC_INFO command
+ type is supported by the EC.
+
+What: /sys/kernel/debug/<cros-ec-device>/pdinfo
+Date: June 2018
+KernelVersion: 4.17
+Description:
+ This file provides the port role, muxes and power debug
+ information for all the USB PD/type-C ports available. If
+ the are no ports available, this file will be just an empty
+ file.
+
+What: /sys/kernel/debug/<cros-ec-device>/uptime
+Date: June 2019
+KernelVersion: 5.3
+Description:
+ A u32 providing the time since EC booted in ms. This is
+ is used for synchronizing the AP host time with the EC
+ log. An error is returned if the command is not supported
+ by the EC or there is a communication problem.
+
+What: /sys/kernel/debug/<cros-ec-device>/last_resume_result
+Date: June 2019
+KernelVersion: 5.3
+Description:
+ Some ECs have a feature where they will track transitions to
+ the (Intel) processor's SLP_S0 line, in order to detect cases
+ where a system failed to go into S0ix. When the system resumes,
+ an EC with this feature will return a summary of SLP_S0
+ transitions that occurred. The last_resume_result file returns
+ the most recent response from the AP's resume message to the EC.
+
+ The bottom 31 bits contain a count of the number of SLP_S0
+ transitions that occurred since the suspend message was
+ received. Bit 31 is set if the EC attempted to wake the
+ system due to a timeout when watching for SLP_S0 transitions.
+ Callers can use this to detect a wake from the EC due to
+ S0ix timeouts. The result will be zero if no suspend
+ transitions have been attempted, or the EC does not support
+ this feature.
+
+ Output will be in the format: "0x%08x\n".
diff --git a/Documentation/ABI/testing/debugfs-driver-habanalabs b/Documentation/ABI/testing/debugfs-driver-habanalabs
index 2f5b80be07a3..f0ac14b70ecb 100644
--- a/Documentation/ABI/testing/debugfs-driver-habanalabs
+++ b/Documentation/ABI/testing/debugfs-driver-habanalabs
@@ -3,7 +3,10 @@ Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
Description: Sets the device address to be used for read or write through
- PCI bar. The acceptable value is a string that starts with "0x"
+ PCI bar, or the device VA of a host mapped memory to be read or
+ written directly from the host. The latter option is allowed
+ only when the IOMMU is disabled.
+ The acceptable value is a string that starts with "0x"
What: /sys/kernel/debug/habanalabs/hl<n>/command_buffers
Date: Jan 2019
@@ -33,10 +36,12 @@ Contact: oded.gabbay@gmail.com
Description: Allows the root user to read or write directly through the
device's PCI bar. Writing to this file generates a write
transaction while reading from the file generates a read
- transcation. This custom interface is needed (instead of using
+ transaction. This custom interface is needed (instead of using
the generic Linux user-space PCI mapping) because the DDR bar
is very small compared to the DDR memory and only the driver can
- move the bar before and after the transaction
+ move the bar before and after the transaction.
+ If the IOMMU is disabled, it also allows the root user to read
+ or write from the host a device VA of a host mapped memory
What: /sys/kernel/debug/habanalabs/hl<n>/device
Date: Jan 2019
@@ -46,6 +51,13 @@ Description: Enables the root user to set the device to specific state.
Valid values are "disable", "enable", "suspend", "resume".
User can read this property to see the valid values
+What: /sys/kernel/debug/habanalabs/hl<n>/engines
+Date: Jul 2019
+KernelVersion: 5.3
+Contact: oded.gabbay@gmail.com
+Description: Displays the status registers values of the device engines and
+ their derived idle status
+
What: /sys/kernel/debug/habanalabs/hl<n>/i2c_addr
Date: Jan 2019
KernelVersion: 5.1
diff --git a/Documentation/ABI/testing/debugfs-hisi-zip b/Documentation/ABI/testing/debugfs-hisi-zip
new file mode 100644
index 000000000000..a7c63e6c4bc3
--- /dev/null
+++ b/Documentation/ABI/testing/debugfs-hisi-zip
@@ -0,0 +1,50 @@
+What: /sys/kernel/debug/hisi_zip/<bdf>/comp_core[01]/regs
+Date: Nov 2018
+Contact: linux-crypto@vger.kernel.org
+Description: Dump of compression cores related debug registers.
+ Only available for PF.
+
+What: /sys/kernel/debug/hisi_zip/<bdf>/decomp_core[0-5]/regs
+Date: Nov 2018
+Contact: linux-crypto@vger.kernel.org
+Description: Dump of decompression cores related debug registers.
+ Only available for PF.
+
+What: /sys/kernel/debug/hisi_zip/<bdf>/clear_enable
+Date: Nov 2018
+Contact: linux-crypto@vger.kernel.org
+Description: Compression/decompression core debug registers read clear
+ control. 1 means enable register read clear, otherwise 0.
+ Writing to this file has no functional effect, only enable or
+ disable counters clear after reading of these registers.
+ Only available for PF.
+
+What: /sys/kernel/debug/hisi_zip/<bdf>/current_qm
+Date: Nov 2018
+Contact: linux-crypto@vger.kernel.org
+Description: One ZIP controller has one PF and multiple VFs, each function
+ has a QM. Select the QM which below qm refers to.
+ Only available for PF.
+
+What: /sys/kernel/debug/hisi_zip/<bdf>/qm/qm_regs
+Date: Nov 2018
+Contact: linux-crypto@vger.kernel.org
+Description: Dump of QM related debug registers.
+ Available for PF and VF in host. VF in guest currently only
+ has one debug register.
+
+What: /sys/kernel/debug/hisi_zip/<bdf>/qm/current_q
+Date: Nov 2018
+Contact: linux-crypto@vger.kernel.org
+Description: One QM may contain multiple queues. Select specific queue to
+ show its debug registers in above qm_regs.
+ Only available for PF.
+
+What: /sys/kernel/debug/hisi_zip/<bdf>/qm/clear_enable
+Date: Nov 2018
+Contact: linux-crypto@vger.kernel.org
+Description: QM debug registers(qm_regs) read clear control. 1 means enable
+ register read clear, otherwise 0.
+ Writing to this file has no functional effect, only enable or
+ disable counters clear after reading of these registers.
+ Only available for PF.
diff --git a/Documentation/ABI/testing/debugfs-moxtet b/Documentation/ABI/testing/debugfs-moxtet
new file mode 100644
index 000000000000..67b1717794d8
--- /dev/null
+++ b/Documentation/ABI/testing/debugfs-moxtet
@@ -0,0 +1,23 @@
+What: /sys/kernel/debug/moxtet/input
+Date: March 2019
+KernelVersion: 5.3
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) Read input from the shift registers, in hexadecimal.
+ Returns N+1 bytes, where N is the number of Moxtet connected
+ modules. The first byte is from the CPU board itself.
+ Example: 101214
+ 10: CPU board with SD card
+ 12: 2 = PCIe module, 1 = IRQ not active
+ 14: 4 = Peridot module, 1 = IRQ not active
+
+What: /sys/kernel/debug/moxtet/output
+Date: March 2019
+KernelVersion: 5.3
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (RW) Read last written value to the shift registers, in
+ hexadecimal, or write values to the shift registers, also
+ in hexadecimal.
+ Example: 0102
+ 01: 01 was last written, or is to be written, to the
+ first module's shift register
+ 02: the same for second module
diff --git a/Documentation/ABI/testing/debugfs-wilco-ec b/Documentation/ABI/testing/debugfs-wilco-ec
index 73a5a66ddca6..9d8d9d2def5b 100644
--- a/Documentation/ABI/testing/debugfs-wilco-ec
+++ b/Documentation/ABI/testing/debugfs-wilco-ec
@@ -23,11 +23,9 @@ Description:
For writing, bytes 0-1 indicate the message type, one of enum
wilco_ec_msg_type. Byte 2+ consist of the data passed in the
- request, starting at MBOX[0]
-
- At least three bytes are required for writing, two for the type
- and at least a single byte of data. Only the first
- EC_MAILBOX_DATA_SIZE bytes of MBOX will be used.
+ request, starting at MBOX[0]. At least three bytes are required
+ for writing, two for the type and at least a single byte of
+ data.
Example:
// Request EC info type 3 (EC firmware build date)
@@ -40,7 +38,7 @@ Description:
$ cat /sys/kernel/debug/wilco_ec/raw
00 00 31 32 2f 32 31 2f 31 38 00 38 00 01 00 2f 00 ..12/21/18.8...
- Note that the first 32 bytes of the received MBOX[] will be
- printed, even if some of the data is junk. It is up to you to
- know how many of the first bytes of data are the actual
- response.
+ Note that the first 16 bytes of the received MBOX[] will be
+ printed, even if some of the data is junk, and skipping bytes
+ 17 to 32. It is up to you to know how many of the first bytes of
+ data are the actual response.
diff --git a/Documentation/ABI/testing/dev-kmsg b/Documentation/ABI/testing/dev-kmsg
index fff817efa508..f307506eb54c 100644
--- a/Documentation/ABI/testing/dev-kmsg
+++ b/Documentation/ABI/testing/dev-kmsg
@@ -12,7 +12,7 @@ Description: The /dev/kmsg character device node provides userspace access
The logged line can be prefixed with a <N> syslog prefix, which
carries the syslog priority and facility. The single decimal
prefix number is composed of the 3 lowest bits being the syslog
- priority and the higher bits the syslog facility number.
+ priority and the next 8 bits the syslog facility number.
If no prefix is given, the priority number is the default kernel
log priority and the facility number is set to LOG_USER (1). It
@@ -90,13 +90,12 @@ Description: The /dev/kmsg character device node provides userspace access
+sound:card0 - subsystem:devname
The flags field carries '-' by default. A 'c' indicates a
- fragment of a line. All following fragments are flagged with
- '+'. Note, that these hints about continuation lines are not
- necessarily correct, and the stream could be interleaved with
- unrelated messages, but merging the lines in the output
- usually produces better human readable results. A similar
- logic is used internally when messages are printed to the
- console, /proc/kmsg or the syslog() syscall.
+ fragment of a line. Note, that these hints about continuation
+ lines are not necessarily correct, and the stream could be
+ interleaved with unrelated messages, but merging the lines in
+ the output usually produces better human readable results. A
+ similar logic is used internally when messages are printed to
+ the console, /proc/kmsg or the syslog() syscall.
By default, kernel tries to avoid fragments by concatenating
when it can and fragments are rare; however, when extended
diff --git a/Documentation/ABI/testing/ima_policy b/Documentation/ABI/testing/ima_policy
index 74c6702de74e..29ebe9afdac4 100644
--- a/Documentation/ABI/testing/ima_policy
+++ b/Documentation/ABI/testing/ima_policy
@@ -24,11 +24,11 @@ Description:
[euid=] [fowner=] [fsname=]]
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
- option: [[appraise_type=]] [permit_directio]
-
+ option: [[appraise_type=]] [template=] [permit_directio]
base: func:= [BPRM_CHECK][MMAP_CHECK][CREDS_CHECK][FILE_CHECK][MODULE_CHECK]
[FIRMWARE_CHECK]
[KEXEC_KERNEL_CHECK] [KEXEC_INITRAMFS_CHECK]
+ [KEXEC_CMDLINE]
mask:= [[^]MAY_READ] [[^]MAY_WRITE] [[^]MAY_APPEND]
[[^]MAY_EXEC]
fsmagic:= hex value
@@ -37,7 +37,9 @@ Description:
euid:= decimal value
fowner:= decimal value
lsm: are LSM specific
- option: appraise_type:= [imasig]
+ option: appraise_type:= [imasig] [imasig|modsig]
+ template:= name of a defined IMA template type
+ (eg, ima-ng). Only valid when action is "measure".
pcr:= decimal value
default policy:
@@ -103,3 +105,7 @@ Description:
measure func=KEXEC_KERNEL_CHECK pcr=4
measure func=KEXEC_INITRAMFS_CHECK pcr=5
+
+ Example of appraise rule allowing modsig appended signatures:
+
+ appraise func=KEXEC_KERNEL_CHECK appraise_type=imasig|modsig
diff --git a/Documentation/ABI/testing/procfs-diskstats b/Documentation/ABI/testing/procfs-diskstats
index abac31d216de..2c44b4f1b060 100644
--- a/Documentation/ABI/testing/procfs-diskstats
+++ b/Documentation/ABI/testing/procfs-diskstats
@@ -29,4 +29,4 @@ Description:
17 - sectors discarded
18 - time spent discarding
- For more details refer to Documentation/iostats.txt
+ For more details refer to Documentation/admin-guide/iostats.rst
diff --git a/Documentation/ABI/testing/procfs-smaps_rollup b/Documentation/ABI/testing/procfs-smaps_rollup
index 0a54ed0d63c9..274df44d8b1b 100644
--- a/Documentation/ABI/testing/procfs-smaps_rollup
+++ b/Documentation/ABI/testing/procfs-smaps_rollup
@@ -3,18 +3,28 @@ Date: August 2017
Contact: Daniel Colascione <dancol@google.com>
Description:
This file provides pre-summed memory information for a
- process. The format is identical to /proc/pid/smaps,
+ process. The format is almost identical to /proc/pid/smaps,
except instead of an entry for each VMA in a process,
smaps_rollup has a single entry (tagged "[rollup]")
for which each field is the sum of the corresponding
fields from all the maps in /proc/pid/smaps.
- For more details, see the procfs man page.
+ Additionally, the fields Pss_Anon, Pss_File and Pss_Shmem
+ are not present in /proc/pid/smaps. These fields represent
+ the sum of the Pss field of each type (anon, file, shmem).
+ For more details, see Documentation/filesystems/proc.txt
+ and the procfs man page.
Typical output looks like this:
00100000-ff709000 ---p 00000000 00:00 0 [rollup]
+ Size: 1192 kB
+ KernelPageSize: 4 kB
+ MMUPageSize: 4 kB
Rss: 884 kB
Pss: 385 kB
+ Pss_Anon: 301 kB
+ Pss_File: 80 kB
+ Pss_Shmem: 4 kB
Shared_Clean: 696 kB
Shared_Dirty: 0 kB
Private_Clean: 120 kB
diff --git a/Documentation/ABI/testing/pstore b/Documentation/ABI/testing/pstore
index 5fca9f5e10a3..d45209abdb1b 100644
--- a/Documentation/ABI/testing/pstore
+++ b/Documentation/ABI/testing/pstore
@@ -1,6 +1,6 @@
-Where: /sys/fs/pstore/... (or /dev/pstore/...)
+What: /sys/fs/pstore/... (or /dev/pstore/...)
Date: March 2011
-Kernel Version: 2.6.39
+KernelVersion: 2.6.39
Contact: tony.luck@intel.com
Description: Generic interface to platform dependent persistent storage.
diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block
index dfad7427817c..f8c7c7126bb1 100644
--- a/Documentation/ABI/testing/sysfs-block
+++ b/Documentation/ABI/testing/sysfs-block
@@ -15,7 +15,7 @@ Description:
9 - I/Os currently in progress
10 - time spent doing I/Os (ms)
11 - weighted time spent doing I/Os (ms)
- For more details refer Documentation/iostats.txt
+ For more details refer Documentation/admin-guide/iostats.rst
What: /sys/block/<disk>/<part>/stat
diff --git a/Documentation/ABI/testing/sysfs-block-device b/Documentation/ABI/testing/sysfs-block-device
index 82ef6eab042d..17f2bc7dd261 100644
--- a/Documentation/ABI/testing/sysfs-block-device
+++ b/Documentation/ABI/testing/sysfs-block-device
@@ -45,7 +45,7 @@ Description:
- Values below -2 are rejected with -EINVAL
For more information, see
- Documentation/laptops/disk-shock-protection.txt
+ Documentation/admin-guide/laptops/disk-shock-protection.rst
What: /sys/block/*/device/ncq_prio_enable
diff --git a/Documentation/ABI/testing/sysfs-bus-css b/Documentation/ABI/testing/sysfs-bus-css
index 2979c40c10e9..966f8504bd7b 100644
--- a/Documentation/ABI/testing/sysfs-bus-css
+++ b/Documentation/ABI/testing/sysfs-bus-css
@@ -33,3 +33,26 @@ Description: Contains the PIM/PAM/POM values, as reported by the
in sync with the values current in the channel subsystem).
Note: This is an I/O-subchannel specific attribute.
Users: s390-tools, HAL
+
+What: /sys/bus/css/devices/.../driver_override
+Date: June 2019
+Contact: Cornelia Huck <cohuck@redhat.com>
+ linux-s390@vger.kernel.org
+Description: This file allows the driver for a device to be specified. When
+ specified, only a driver with a name matching the value written
+ to driver_override will have an opportunity to bind to the
+ device. The override is specified by writing a string to the
+ driver_override file (echo vfio-ccw > driver_override) and
+ may be cleared with an empty string (echo > driver_override).
+ This returns the device to standard matching rules binding.
+ Writing to driver_override does not automatically unbind the
+ device from its current driver or make any attempt to
+ automatically load the specified driver. If no driver with a
+ matching name is currently loaded in the kernel, the device
+ will not bind to any driver. This also allows devices to
+ opt-out of driver binding using a driver_override name such as
+ "none". Only a single driver may be specified in the override,
+ there is no support for parsing delimiters.
+ Note that unlike the mechanism of the same name for pci, this
+ file does not allow to override basic matching rules. I.e.,
+ the driver must still match the subchannel type of the device.
diff --git a/Documentation/ABI/testing/sysfs-bus-event_source-devices-format b/Documentation/ABI/testing/sysfs-bus-event_source-devices-format
index 77f47ff5ee02..5bb793ec926c 100644
--- a/Documentation/ABI/testing/sysfs-bus-event_source-devices-format
+++ b/Documentation/ABI/testing/sysfs-bus-event_source-devices-format
@@ -1,6 +1,6 @@
-Where: /sys/bus/event_source/devices/<dev>/format
+What: /sys/bus/event_source/devices/<dev>/format
Date: January 2012
-Kernel Version: 3.3
+KernelVersion: 3.3
Contact: Jiri Olsa <jolsa@redhat.com>
Description:
Attribute group to describe the magic bits that go into
diff --git a/Documentation/ABI/testing/sysfs-bus-i2c-devices-hm6352 b/Documentation/ABI/testing/sysfs-bus-i2c-devices-hm6352
index feb2e4a87075..4a251b7f11e4 100644
--- a/Documentation/ABI/testing/sysfs-bus-i2c-devices-hm6352
+++ b/Documentation/ABI/testing/sysfs-bus-i2c-devices-hm6352
@@ -1,20 +1,20 @@
-Where: /sys/bus/i2c/devices/.../heading0_input
+What: /sys/bus/i2c/devices/.../heading0_input
Date: April 2010
-Kernel Version: 2.6.36?
+KernelVersion: 2.6.36?
Contact: alan.cox@intel.com
Description: Reports the current heading from the compass as a floating
point value in degrees.
-Where: /sys/bus/i2c/devices/.../power_state
+What: /sys/bus/i2c/devices/.../power_state
Date: April 2010
-Kernel Version: 2.6.36?
+KernelVersion: 2.6.36?
Contact: alan.cox@intel.com
Description: Sets the power state of the device. 0 sets the device into
sleep mode, 1 wakes it up.
-Where: /sys/bus/i2c/devices/.../calibration
+What: /sys/bus/i2c/devices/.../calibration
Date: April 2010
-Kernel Version: 2.6.36?
+KernelVersion: 2.6.36?
Contact: alan.cox@intel.com
Description: Sets the calibration on or off (1 = on, 0 = off). See the
chip data sheet.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio
index 6aef7dbbde44..680451695422 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio
+++ b/Documentation/ABI/testing/sysfs-bus-iio
@@ -61,8 +61,11 @@ What: /sys/bus/iio/devices/triggerX/sampling_frequency_available
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
- When the internal sampling clock can only take a small
- discrete set of values, this file lists those available.
+ When the internal sampling clock can only take a specific set of
+ frequencies, we can specify the available values with:
+ - a small discrete set of values like "0 2 4 6 8"
+ - a range with minimum, step and maximum frequencies like
+ "[min step max]"
What: /sys/bus/iio/devices/iio:deviceX/oversampling_ratio
KernelVersion: 2.6.38
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-cros-ec b/Documentation/ABI/testing/sysfs-bus-iio-cros-ec
index 0e95c2ca105c..6158f831c761 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-cros-ec
+++ b/Documentation/ABI/testing/sysfs-bus-iio-cros-ec
@@ -18,11 +18,11 @@ Description:
values are 'base' and 'lid'.
What: /sys/bus/iio/devices/iio:deviceX/id
-Date: Septembre 2017
+Date: September 2017
KernelVersion: 4.14
Contact: linux-iio@vger.kernel.org
Description:
- This attribute is exposed by the CrOS EC legacy accelerometer
- driver and represents the sensor ID as exposed by the EC. This
- ID is used by the Android sensor service hardware abstraction
- layer (sensor HAL) through the Android container on ChromeOS.
+ This attribute is exposed by the CrOS EC sensors driver and
+ represents the sensor ID as exposed by the EC. This ID is used
+ by the Android sensor service hardware abstraction layer (sensor
+ HAL) through the Android container on ChromeOS.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-dfsdm-adc-stm32 b/Documentation/ABI/testing/sysfs-bus-iio-dfsdm-adc-stm32
index da9822309f07..0e66ae9b0071 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-dfsdm-adc-stm32
+++ b/Documentation/ABI/testing/sysfs-bus-iio-dfsdm-adc-stm32
@@ -13,4 +13,4 @@ Description:
error on writing
If DFSDM input is SPI Slave:
Reading returns value previously set.
- Writing value before starting conversions. \ No newline at end of file
+ Writing value before starting conversions.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-distance-srf08 b/Documentation/ABI/testing/sysfs-bus-iio-distance-srf08
index 0a1ca1487fa9..a133fd8d081a 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-distance-srf08
+++ b/Documentation/ABI/testing/sysfs-bus-iio-distance-srf08
@@ -1,4 +1,4 @@
-What /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
+What: /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
Date: January 2017
KernelVersion: 4.11
Contact: linux-iio@vger.kernel.org
@@ -6,7 +6,7 @@ Description:
Show or set the gain boost of the amp, from 0-31 range.
default 31
-What /sys/bus/iio/devices/iio:deviceX/sensor_max_range
+What: /sys/bus/iio/devices/iio:deviceX/sensor_max_range
Date: January 2017
KernelVersion: 4.11
Contact: linux-iio@vger.kernel.org
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-frequency-adf4371 b/Documentation/ABI/testing/sysfs-bus-iio-frequency-adf4371
new file mode 100644
index 000000000000..302de64cb424
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-iio-frequency-adf4371
@@ -0,0 +1,44 @@
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_frequency
+KernelVersion:
+Contact: linux-iio@vger.kernel.org
+Description:
+ Stores the PLL frequency in Hz for channel Y.
+ Reading returns the actual frequency in Hz.
+ The ADF4371 has an integrated VCO with fundamendal output
+ frequency ranging from 4000000000 Hz 8000000000 Hz.
+
+ out_altvoltage0_frequency:
+ A divide by 1, 2, 4, 8, 16, 32 or circuit generates
+ frequencies from 62500000 Hz to 8000000000 Hz.
+ out_altvoltage1_frequency:
+ This channel duplicates the channel 0 frequency
+ out_altvoltage2_frequency:
+ A frequency doubler generates frequencies from
+ 8000000000 Hz to 16000000000 Hz.
+ out_altvoltage3_frequency:
+ A frequency quadrupler generates frequencies from
+ 16000000000 Hz to 32000000000 Hz.
+
+ Note: writes to one of the channels will affect the frequency of
+ all the other channels, since it involves changing the VCO
+ fundamental output frequency.
+
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_name
+KernelVersion:
+Contact: linux-iio@vger.kernel.org
+Description:
+ Reading returns the datasheet name for channel Y:
+
+ out_altvoltage0_name: RF8x
+ out_altvoltage1_name: RFAUX8x
+ out_altvoltage2_name: RF16x
+ out_altvoltage3_name: RF32x
+
+What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_powerdown
+KernelVersion:
+Contact: linux-iio@vger.kernel.org
+Description:
+ This attribute allows the user to power down the PLL and it's
+ RFOut buffers.
+ Writing 1 causes the specified channel to power down.
+ Clearing returns to normal operation.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935 b/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
index 9a17ab5036a4..c59d95346341 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
+++ b/Documentation/ABI/testing/sysfs-bus-iio-proximity-as3935
@@ -1,4 +1,4 @@
-What /sys/bus/iio/devices/iio:deviceX/in_proximity_input
+What: /sys/bus/iio/devices/iio:deviceX/in_proximity_input
Date: March 2014
KernelVersion: 3.15
Contact: Matt Ranostay <matt.ranostay@konsulko.com>
@@ -6,7 +6,7 @@ Description:
Get the current distance in meters of storm (1km steps)
1000-40000 = distance in meters
-What /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
+What: /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
Date: March 2014
KernelVersion: 3.15
Contact: Matt Ranostay <matt.ranostay@konsulko.com>
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32 b/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32
index 161c147d3c40..b7259234ad70 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32
+++ b/Documentation/ABI/testing/sysfs-bus-iio-timer-stm32
@@ -91,29 +91,6 @@ Description:
When counting down the counter start from preset value
and fire event when reach 0.
-What: /sys/bus/iio/devices/iio:deviceX/in_count_quadrature_mode_available
-KernelVersion: 4.12
-Contact: benjamin.gaignard@st.com
-Description:
- Reading returns the list possible quadrature modes.
-
-What: /sys/bus/iio/devices/iio:deviceX/in_count0_quadrature_mode
-KernelVersion: 4.12
-Contact: benjamin.gaignard@st.com
-Description:
- Configure the device counter quadrature modes:
- channel_A:
- Encoder A input servers as the count input and B as
- the UP/DOWN direction control input.
-
- channel_B:
- Encoder B input serves as the count input and A as
- the UP/DOWN direction control input.
-
- quadrature:
- Encoder A and B inputs are mixed to get direction
- and count with a scale of 0.25.
-
What: /sys/bus/iio/devices/iio:deviceX/in_count_enable_mode_available
KernelVersion: 4.12
Contact: benjamin.gaignard@st.com
diff --git a/Documentation/ABI/testing/sysfs-bus-intel_th-devices-msc b/Documentation/ABI/testing/sysfs-bus-intel_th-devices-msc
index f54ae244f3f1..456cb62b384c 100644
--- a/Documentation/ABI/testing/sysfs-bus-intel_th-devices-msc
+++ b/Documentation/ABI/testing/sysfs-bus-intel_th-devices-msc
@@ -12,7 +12,8 @@ Description: (RW) Configure MSC operating mode:
- "single", for contiguous buffer mode (high-order alloc);
- "multi", for multiblock mode;
- "ExI", for DCI handler mode;
- - "debug", for debug mode.
+ - "debug", for debug mode;
+ - any of the currently loaded buffer sinks.
If operating mode changes, existing buffer is deallocated,
provided there are no active users and tracing is not enabled,
otherwise the write will fail.
diff --git a/Documentation/ABI/testing/sysfs-bus-moxtet-devices b/Documentation/ABI/testing/sysfs-bus-moxtet-devices
new file mode 100644
index 000000000000..355958527fa3
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-moxtet-devices
@@ -0,0 +1,17 @@
+What: /sys/bus/moxtet/devices/moxtet-<name>.<addr>/module_description
+Date: March 2019
+KernelVersion: 5.3
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) Moxtet module description. Format: string
+
+What: /sys/bus/moxtet/devices/moxtet-<name>.<addr>/module_id
+Date: March 2019
+KernelVersion: 5.3
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) Moxtet module ID. Format: %x
+
+What: /sys/bus/moxtet/devices/moxtet-<name>.<addr>/module_name
+Date: March 2019
+KernelVersion: 5.3
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) Moxtet module name. Format: string
diff --git a/Documentation/ABI/testing/sysfs-bus-pci-devices-aer_stats b/Documentation/ABI/testing/sysfs-bus-pci-devices-aer_stats
index 4b0318c99507..3c9a8c4a25eb 100644
--- a/Documentation/ABI/testing/sysfs-bus-pci-devices-aer_stats
+++ b/Documentation/ABI/testing/sysfs-bus-pci-devices-aer_stats
@@ -9,9 +9,9 @@ errors may be "seen" / reported by the link partner and not the
problematic endpoint itself (which may report all counters as 0 as it never
saw any problems).
-Where: /sys/bus/pci/devices/<dev>/aer_dev_correctable
+What: /sys/bus/pci/devices/<dev>/aer_dev_correctable
Date: July 2018
-Kernel Version: 4.19.0
+KernelVersion: 4.19.0
Contact: linux-pci@vger.kernel.org, rajatja@google.com
Description: List of correctable errors seen and reported by this
PCI device using ERR_COR. Note that since multiple errors may
@@ -31,9 +31,9 @@ Header Log Overflow 0
TOTAL_ERR_COR 2
-------------------------------------------------------------------------
-Where: /sys/bus/pci/devices/<dev>/aer_dev_fatal
+What: /sys/bus/pci/devices/<dev>/aer_dev_fatal
Date: July 2018
-Kernel Version: 4.19.0
+KernelVersion: 4.19.0
Contact: linux-pci@vger.kernel.org, rajatja@google.com
Description: List of uncorrectable fatal errors seen and reported by this
PCI device using ERR_FATAL. Note that since multiple errors may
@@ -62,9 +62,9 @@ TLP Prefix Blocked Error 0
TOTAL_ERR_FATAL 0
-------------------------------------------------------------------------
-Where: /sys/bus/pci/devices/<dev>/aer_dev_nonfatal
+What: /sys/bus/pci/devices/<dev>/aer_dev_nonfatal
Date: July 2018
-Kernel Version: 4.19.0
+KernelVersion: 4.19.0
Contact: linux-pci@vger.kernel.org, rajatja@google.com
Description: List of uncorrectable nonfatal errors seen and reported by this
PCI device using ERR_NONFATAL. Note that since multiple errors
@@ -103,20 +103,20 @@ collectors) that are AER capable. These indicate the number of error messages as
device, so these counters include them and are thus cumulative of all the error
messages on the PCI hierarchy originating at that root port.
-Where: /sys/bus/pci/devices/<dev>/aer_stats/aer_rootport_total_err_cor
+What: /sys/bus/pci/devices/<dev>/aer_stats/aer_rootport_total_err_cor
Date: July 2018
-Kernel Version: 4.19.0
+KernelVersion: 4.19.0
Contact: linux-pci@vger.kernel.org, rajatja@google.com
Description: Total number of ERR_COR messages reported to rootport.
-Where: /sys/bus/pci/devices/<dev>/aer_stats/aer_rootport_total_err_fatal
+What: /sys/bus/pci/devices/<dev>/aer_stats/aer_rootport_total_err_fatal
Date: July 2018
-Kernel Version: 4.19.0
+KernelVersion: 4.19.0
Contact: linux-pci@vger.kernel.org, rajatja@google.com
Description: Total number of ERR_FATAL messages reported to rootport.
-Where: /sys/bus/pci/devices/<dev>/aer_stats/aer_rootport_total_err_nonfatal
+What: /sys/bus/pci/devices/<dev>/aer_stats/aer_rootport_total_err_nonfatal
Date: July 2018
-Kernel Version: 4.19.0
+KernelVersion: 4.19.0
Contact: linux-pci@vger.kernel.org, rajatja@google.com
Description: Total number of ERR_NONFATAL messages reported to rootport.
diff --git a/Documentation/ABI/testing/sysfs-bus-pci-devices-cciss b/Documentation/ABI/testing/sysfs-bus-pci-devices-cciss
index 53d99edd1d75..92a94e1068c2 100644
--- a/Documentation/ABI/testing/sysfs-bus-pci-devices-cciss
+++ b/Documentation/ABI/testing/sysfs-bus-pci-devices-cciss
@@ -1,68 +1,68 @@
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/model
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/model
Date: March 2009
-Kernel Version: 2.6.30
+KernelVersion: 2.6.30
Contact: iss_storagedev@hp.com
Description: Displays the SCSI INQUIRY page 0 model for logical drive
Y of controller X.
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/rev
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/rev
Date: March 2009
-Kernel Version: 2.6.30
+KernelVersion: 2.6.30
Contact: iss_storagedev@hp.com
Description: Displays the SCSI INQUIRY page 0 revision for logical
drive Y of controller X.
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/unique_id
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/unique_id
Date: March 2009
-Kernel Version: 2.6.30
+KernelVersion: 2.6.30
Contact: iss_storagedev@hp.com
Description: Displays the SCSI INQUIRY page 83 serial number for logical
drive Y of controller X.
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/vendor
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/vendor
Date: March 2009
-Kernel Version: 2.6.30
+KernelVersion: 2.6.30
Contact: iss_storagedev@hp.com
Description: Displays the SCSI INQUIRY page 0 vendor for logical drive
Y of controller X.
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/block:cciss!cXdY
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/block:cciss!cXdY
Date: March 2009
-Kernel Version: 2.6.30
+KernelVersion: 2.6.30
Contact: iss_storagedev@hp.com
Description: A symbolic link to /sys/block/cciss!cXdY
-Where: /sys/bus/pci/devices/<dev>/ccissX/rescan
+What: /sys/bus/pci/devices/<dev>/ccissX/rescan
Date: August 2009
-Kernel Version: 2.6.31
+KernelVersion: 2.6.31
Contact: iss_storagedev@hp.com
Description: Kicks of a rescan of the controller to discover logical
drive topology changes.
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/lunid
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/lunid
Date: August 2009
-Kernel Version: 2.6.31
+KernelVersion: 2.6.31
Contact: iss_storagedev@hp.com
Description: Displays the 8-byte LUN ID used to address logical
drive Y of controller X.
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/raid_level
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/raid_level
Date: August 2009
-Kernel Version: 2.6.31
+KernelVersion: 2.6.31
Contact: iss_storagedev@hp.com
Description: Displays the RAID level of logical drive Y of
controller X.
-Where: /sys/bus/pci/devices/<dev>/ccissX/cXdY/usage_count
+What: /sys/bus/pci/devices/<dev>/ccissX/cXdY/usage_count
Date: August 2009
-Kernel Version: 2.6.31
+KernelVersion: 2.6.31
Contact: iss_storagedev@hp.com
Description: Displays the usage count (number of opens) of logical drive Y
of controller X.
-Where: /sys/bus/pci/devices/<dev>/ccissX/resettable
+What: /sys/bus/pci/devices/<dev>/ccissX/resettable
Date: February 2011
-Kernel Version: 2.6.38
+KernelVersion: 2.6.38
Contact: iss_storagedev@hp.com
Description: Value of 1 indicates the controller can honor the reset_devices
kernel parameter. Value of 0 indicates reset_devices cannot be
@@ -71,9 +71,9 @@ Description: Value of 1 indicates the controller can honor the reset_devices
a dump device, as kdump requires resetting the device in order
to work reliably.
-Where: /sys/bus/pci/devices/<dev>/ccissX/transport_mode
+What: /sys/bus/pci/devices/<dev>/ccissX/transport_mode
Date: July 2011
-Kernel Version: 3.0
+KernelVersion: 3.0
Contact: iss_storagedev@hp.com
Description: Value of "simple" indicates that the controller has been placed
in "simple mode". Value of "performant" indicates that the
diff --git a/Documentation/ABI/testing/sysfs-bus-usb-devices-usbsevseg b/Documentation/ABI/testing/sysfs-bus-usb-devices-usbsevseg
index 70d00dfa443d..9ade80f81f96 100644
--- a/Documentation/ABI/testing/sysfs-bus-usb-devices-usbsevseg
+++ b/Documentation/ABI/testing/sysfs-bus-usb-devices-usbsevseg
@@ -1,14 +1,14 @@
-Where: /sys/bus/usb/.../powered
+What: /sys/bus/usb/.../powered
Date: August 2008
-Kernel Version: 2.6.26
+KernelVersion: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls whether the device's display will powered.
A value of 0 is off and a non-zero value is on.
-Where: /sys/bus/usb/.../mode_msb
-Where: /sys/bus/usb/.../mode_lsb
+What: /sys/bus/usb/.../mode_msb
+What: /sys/bus/usb/.../mode_lsb
Date: August 2008
-Kernel Version: 2.6.26
+KernelVersion: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls the devices display mode.
For a 6 character display the values are
@@ -16,24 +16,24 @@ Description: Controls the devices display mode.
for an 8 character display the values are
MSB 0x08; LSB 0xFF.
-Where: /sys/bus/usb/.../textmode
+What: /sys/bus/usb/.../textmode
Date: August 2008
-Kernel Version: 2.6.26
+KernelVersion: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls the way the device interprets its text buffer.
raw: each character controls its segment manually
hex: each character is between 0-15
ascii: each character is between '0'-'9' and 'A'-'F'.
-Where: /sys/bus/usb/.../text
+What: /sys/bus/usb/.../text
Date: August 2008
-Kernel Version: 2.6.26
+KernelVersion: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: The text (or data) for the device to display
-Where: /sys/bus/usb/.../decimals
+What: /sys/bus/usb/.../decimals
Date: August 2008
-Kernel Version: 2.6.26
+KernelVersion: 2.6.26
Contact: Harrison Metzger <harrisonmetz@gmail.com>
Description: Controls the decimal places on the device.
To set the nth decimal place, give this field
diff --git a/Documentation/ABI/testing/sysfs-class-backlight b/Documentation/ABI/testing/sysfs-class-backlight
new file mode 100644
index 000000000000..3ab175a3f5cb
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-backlight
@@ -0,0 +1,26 @@
+What: /sys/class/backlight/<backlight>/scale
+Date: July 2019
+KernelVersion: 5.4
+Contact: Daniel Thompson <daniel.thompson@linaro.org>
+Description:
+ Description of the scale of the brightness curve.
+
+ The human eye senses brightness approximately logarithmically,
+ hence linear changes in brightness are perceived as being
+ non-linear. To achieve a linear perception of brightness changes
+ controls like sliders need to apply a logarithmic mapping for
+ backlights with a linear brightness curve.
+
+ Possible values of the attribute are:
+
+ unknown
+ The scale of the brightness curve is unknown.
+
+ linear
+ The brightness changes linearly with each step. Brightness
+ controls should apply a logarithmic mapping for a linear
+ perception.
+
+ non-linear
+ The brightness changes non-linearly with each step. Brightness
+ controls should use a linear mapping for a linear perception.
diff --git a/Documentation/ABI/testing/sysfs-class-backlight-driver-lm3533 b/Documentation/ABI/testing/sysfs-class-backlight-driver-lm3533
index 77cf7ac949af..c0e0a9ae7b3d 100644
--- a/Documentation/ABI/testing/sysfs-class-backlight-driver-lm3533
+++ b/Documentation/ABI/testing/sysfs-class-backlight-driver-lm3533
@@ -4,7 +4,7 @@ KernelVersion: 3.5
Contact: Johan Hovold <jhovold@gmail.com>
Description:
Get the ALS output channel used as input in
- ALS-current-control mode (0, 1), where
+ ALS-current-control mode (0, 1), where:
0 - out_current0 (backlight 0)
1 - out_current1 (backlight 1)
@@ -28,7 +28,7 @@ Date: April 2012
KernelVersion: 3.5
Contact: Johan Hovold <jhovold@gmail.com>
Description:
- Set the brightness-mapping mode (0, 1), where
+ Set the brightness-mapping mode (0, 1), where:
0 - exponential mode
1 - linear mode
@@ -38,7 +38,7 @@ Date: April 2012
KernelVersion: 3.5
Contact: Johan Hovold <jhovold@gmail.com>
Description:
- Set the PWM-input control mask (5 bits), where
+ Set the PWM-input control mask (5 bits), where:
bit 5 - PWM-input enabled in Zone 4
bit 4 - PWM-input enabled in Zone 3
diff --git a/Documentation/ABI/testing/sysfs-class-cxl b/Documentation/ABI/testing/sysfs-class-cxl
index bbbabffc682a..7970e3713e70 100644
--- a/Documentation/ABI/testing/sysfs-class-cxl
+++ b/Documentation/ABI/testing/sysfs-class-cxl
@@ -1,6 +1,6 @@
-Note: Attributes that are shared between devices are stored in the directory
-pointed to by the symlink device/.
-Example: The real path of the attribute /sys/class/cxl/afu0.0s/irqs_max is
+Please note that attributes that are shared between devices are stored in
+the directory pointed to by the symlink device/.
+For example, the real path of the attribute /sys/class/cxl/afu0.0s/irqs_max is
/sys/class/cxl/afu0.0s/device/irqs_max, i.e. /sys/class/cxl/afu0.0/irqs_max.
diff --git a/Documentation/ABI/testing/sysfs-class-devfreq b/Documentation/ABI/testing/sysfs-class-devfreq
index ee39acacf6f8..01196e19afca 100644
--- a/Documentation/ABI/testing/sysfs-class-devfreq
+++ b/Documentation/ABI/testing/sysfs-class-devfreq
@@ -47,7 +47,7 @@ Description:
What: /sys/class/devfreq/.../trans_stat
Date: October 2012
Contact: MyungJoo Ham <myungjoo.ham@samsung.com>
-Descrtiption:
+Description:
This ABI shows the statistics of devfreq behavior on a
specific device. It shows the time spent in each state and
the number of transitions between states.
diff --git a/Documentation/ABI/testing/sysfs-class-led-driver-lm3533 b/Documentation/ABI/testing/sysfs-class-led-driver-lm3533
index 620ebb3b9baa..e4c89b261546 100644
--- a/Documentation/ABI/testing/sysfs-class-led-driver-lm3533
+++ b/Documentation/ABI/testing/sysfs-class-led-driver-lm3533
@@ -4,7 +4,7 @@ KernelVersion: 3.5
Contact: Johan Hovold <jhovold@gmail.com>
Description:
Set the ALS output channel to use as input in
- ALS-current-control mode (1, 2), where
+ ALS-current-control mode (1, 2), where:
1 - out_current1
2 - out_current2
@@ -22,7 +22,7 @@ Date: April 2012
KernelVersion: 3.5
Contact: Johan Hovold <jhovold@gmail.com>
Description:
- Set the pattern generator fall and rise times (0..7), where
+ Set the pattern generator fall and rise times (0..7), where:
0 - 2048 us
1 - 262 ms
@@ -45,7 +45,7 @@ Date: April 2012
KernelVersion: 3.5
Contact: Johan Hovold <jhovold@gmail.com>
Description:
- Set the brightness-mapping mode (0, 1), where
+ Set the brightness-mapping mode (0, 1), where:
0 - exponential mode
1 - linear mode
@@ -55,7 +55,7 @@ Date: April 2012
KernelVersion: 3.5
Contact: Johan Hovold <jhovold@gmail.com>
Description:
- Set the PWM-input control mask (5 bits), where
+ Set the PWM-input control mask (5 bits), where:
bit 5 - PWM-input enabled in Zone 4
bit 4 - PWM-input enabled in Zone 3
diff --git a/Documentation/ABI/testing/sysfs-class-leds-gt683r b/Documentation/ABI/testing/sysfs-class-leds-gt683r
index e4fae6026e79..6adab27f646e 100644
--- a/Documentation/ABI/testing/sysfs-class-leds-gt683r
+++ b/Documentation/ABI/testing/sysfs-class-leds-gt683r
@@ -5,7 +5,7 @@ Contact: Janne Kanniainen <janne.kanniainen@gmail.com>
Description:
Set the mode of LEDs. You should notice that changing the mode
of one LED will update the mode of its two sibling devices as
- well.
+ well. Possible values are:
0 - normal
1 - audio
@@ -13,4 +13,4 @@ Description:
Normal: LEDs are fully on when enabled
Audio: LEDs brightness depends on sound level
- Breathing: LEDs brightness varies at human breathing rate \ No newline at end of file
+ Breathing: LEDs brightness varies at human breathing rate
diff --git a/Documentation/ABI/testing/sysfs-class-mic.txt b/Documentation/ABI/testing/sysfs-class-mic
index 6ef682603179..6ef682603179 100644
--- a/Documentation/ABI/testing/sysfs-class-mic.txt
+++ b/Documentation/ABI/testing/sysfs-class-mic
diff --git a/Documentation/ABI/testing/sysfs-class-net-phydev b/Documentation/ABI/testing/sysfs-class-net-phydev
index 2a5723343aba..206cbf538b59 100644
--- a/Documentation/ABI/testing/sysfs-class-net-phydev
+++ b/Documentation/ABI/testing/sysfs-class-net-phydev
@@ -41,3 +41,11 @@ Description:
xgmii, moca, qsgmii, trgmii, 1000base-x, 2500base-x, rxaui,
xaui, 10gbase-kr, unknown
+What: /sys/class/mdio_bus/<bus>/<device>/phy_standalone
+Date: May 2019
+KernelVersion: 5.3
+Contact: netdev@vger.kernel.org
+Description:
+ Boolean value indicating whether the PHY device is used in
+ standalone mode, without a net_device associated, by PHYLINK.
+ Attribute created only when this is the case.
diff --git a/Documentation/ABI/testing/sysfs-class-power b/Documentation/ABI/testing/sysfs-class-power
index b77e30b9014e..27edc06e2495 100644
--- a/Documentation/ABI/testing/sysfs-class-power
+++ b/Documentation/ABI/testing/sysfs-class-power
@@ -376,10 +376,42 @@ Description:
supply. Normally this is configured based on the type of
connection made (e.g. A configured SDP should output a maximum
of 500mA so the input current limit is set to the same value).
+ Use preferably input_power_limit, and for problems that can be
+ solved using power limit use input_current_limit.
Access: Read, Write
Valid values: Represented in microamps
+What: /sys/class/power_supply/<supply_name>/input_voltage_limit
+Date: May 2019
+Contact: linux-pm@vger.kernel.org
+Description:
+ This entry configures the incoming VBUS voltage limit currently
+ set in the supply. Normally this is configured based on
+ system-level knowledge or user input (e.g. This is part of the
+ Pixel C's thermal management strategy to effectively limit the
+ input power to 5V when the screen is on to meet Google's skin
+ temperature targets). Note that this feature should not be
+ used for safety critical things.
+ Use preferably input_power_limit, and for problems that can be
+ solved using power limit use input_voltage_limit.
+
+ Access: Read, Write
+ Valid values: Represented in microvolts
+
+What: /sys/class/power_supply/<supply_name>/input_power_limit
+Date: May 2019
+Contact: linux-pm@vger.kernel.org
+Description:
+ This entry configures the incoming power limit currently set
+ in the supply. Normally this is configured based on
+ system-level knowledge or user input. Use preferably this
+ feature to limit the incoming power and use current/voltage
+ limit only for problems that can be solved using power limit.
+
+ Access: Read, Write
+ Valid values: Represented in microwatts
+
What: /sys/class/power_supply/<supply_name>/online,
Date: May 2007
Contact: linux-pm@vger.kernel.org
diff --git a/Documentation/ABI/testing/sysfs-class-power-wilco b/Documentation/ABI/testing/sysfs-class-power-wilco
new file mode 100644
index 000000000000..da1d6ffe5e3c
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-power-wilco
@@ -0,0 +1,30 @@
+What: /sys/class/power_supply/wilco-charger/charge_type
+Date: April 2019
+KernelVersion: 5.2
+Description:
+ What charging algorithm to use:
+
+ Standard: Fully charges battery at a standard rate.
+ Adaptive: Battery settings adaptively optimized based on
+ typical battery usage pattern.
+ Fast: Battery charges over a shorter period.
+ Trickle: Extends battery lifespan, intended for users who
+ primarily use their Chromebook while connected to AC.
+ Custom: A low and high threshold percentage is specified.
+ Charging begins when level drops below
+ charge_control_start_threshold, and ceases when
+ level is above charge_control_end_threshold.
+
+What: /sys/class/power_supply/wilco-charger/charge_control_start_threshold
+Date: April 2019
+KernelVersion: 5.2
+Description:
+ Used when charge_type="Custom", as described above. Measured in
+ percentages. The valid range is [50, 95].
+
+What: /sys/class/power_supply/wilco-charger/charge_control_end_threshold
+Date: April 2019
+KernelVersion: 5.2
+Description:
+ Used when charge_type="Custom", as described above. Measured in
+ percentages. The valid range is [55, 100].
diff --git a/Documentation/ABI/testing/sysfs-class-powercap b/Documentation/ABI/testing/sysfs-class-powercap
index db3b3ff70d84..ca491ec4e693 100644
--- a/Documentation/ABI/testing/sysfs-class-powercap
+++ b/Documentation/ABI/testing/sysfs-class-powercap
@@ -5,7 +5,7 @@ Contact: linux-pm@vger.kernel.org
Description:
The powercap/ class sub directory belongs to the power cap
subsystem. Refer to
- Documentation/power/powercap/powercap.txt for details.
+ Documentation/power/powercap/powercap.rst for details.
What: /sys/class/powercap/<control type>
Date: September 2013
@@ -147,6 +147,6 @@ What: /sys/class/powercap/.../<power zone>/enabled
Date: September 2013
KernelVersion: 3.13
Contact: linux-pm@vger.kernel.org
-Description
+Description:
This allows to enable/disable power capping at power zone level.
This applies to current power zone and its children.
diff --git a/Documentation/ABI/testing/sysfs-class-remoteproc b/Documentation/ABI/testing/sysfs-class-remoteproc
index c3afe9fab646..36094fbeb974 100644
--- a/Documentation/ABI/testing/sysfs-class-remoteproc
+++ b/Documentation/ABI/testing/sysfs-class-remoteproc
@@ -48,3 +48,13 @@ Description: Remote processor state
Writing "stop" will attempt to halt the remote processor and
return it to the "offline" state.
+
+What: /sys/class/remoteproc/.../name
+Date: August 2019
+KernelVersion: 5.4
+Contact: Suman Anna <s-anna@ti.com>
+Description: Remote processor name
+
+ Reports the name of the remote processor. This can be used by
+ userspace in exactly identifying a remote processor and ease
+ up the usage in modifying the 'firmware' or 'state' files.
diff --git a/Documentation/ABI/testing/sysfs-class-switchtec b/Documentation/ABI/testing/sysfs-class-switchtec
index 48cb4c15e430..76c7a661a595 100644
--- a/Documentation/ABI/testing/sysfs-class-switchtec
+++ b/Documentation/ABI/testing/sysfs-class-switchtec
@@ -1,6 +1,6 @@
switchtec - Microsemi Switchtec PCI Switch Management Endpoint
-For details on this subsystem look at Documentation/switchtec.txt.
+For details on this subsystem look at Documentation/driver-api/switchtec.rst.
What: /sys/class/switchtec
Date: 05-Jan-2017
diff --git a/Documentation/ABI/testing/sysfs-class-uwb_rc b/Documentation/ABI/testing/sysfs-class-uwb_rc
index 85f4875d16ac..a0578751c1e3 100644
--- a/Documentation/ABI/testing/sysfs-class-uwb_rc
+++ b/Documentation/ABI/testing/sysfs-class-uwb_rc
@@ -125,12 +125,6 @@ Description:
The EUI-48 of this device in colon separated hex
octets.
-What: /sys/class/uwb_rc/uwbN/<EUI-48>/BPST
-Date: July 2008
-KernelVersion: 2.6.27
-Contact: linux-usb@vger.kernel.org
-Description:
-
What: /sys/class/uwb_rc/uwbN/<EUI-48>/IEs
Date: July 2008
KernelVersion: 2.6.27
diff --git a/Documentation/ABI/testing/sysfs-class-wakeup b/Documentation/ABI/testing/sysfs-class-wakeup
new file mode 100644
index 000000000000..754aab8b6dcd
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-wakeup
@@ -0,0 +1,76 @@
+What: /sys/class/wakeup/
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ The /sys/class/wakeup/ directory contains pointers to all
+ wakeup sources in the kernel at that moment in time.
+
+What: /sys/class/wakeup/.../name
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the name of the wakeup source.
+
+What: /sys/class/wakeup/.../active_count
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the number of times the wakeup source was
+ activated.
+
+What: /sys/class/wakeup/.../event_count
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the number of signaled wakeup events
+ associated with the wakeup source.
+
+What: /sys/class/wakeup/.../wakeup_count
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the number of times the wakeup source might
+ abort suspend.
+
+What: /sys/class/wakeup/.../expire_count
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the number of times the wakeup source's
+ timeout has expired.
+
+What: /sys/class/wakeup/.../active_time_ms
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the amount of time the wakeup source has
+ been continuously active, in milliseconds. If the wakeup
+ source is not active, this file contains '0'.
+
+What: /sys/class/wakeup/.../total_time_ms
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the total amount of time this wakeup source
+ has been active, in milliseconds.
+
+What: /sys/class/wakeup/.../max_time_ms
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the maximum amount of time this wakeup
+ source has been continuously active, in milliseconds.
+
+What: /sys/class/wakeup/.../last_change_ms
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ This file contains the monotonic clock time when the wakeup
+ source was touched last time, in milliseconds.
+
+What: /sys/class/wakeup/.../prevent_suspend_time_ms
+Date: June 2019
+Contact: Tri Vo <trong@android.com>
+Description:
+ The file contains the total amount of time this wakeup source
+ has been preventing autosleep, in milliseconds.
diff --git a/Documentation/ABI/testing/sysfs-class-watchdog b/Documentation/ABI/testing/sysfs-class-watchdog
index 6317ade5ad19..675f9b537661 100644
--- a/Documentation/ABI/testing/sysfs-class-watchdog
+++ b/Documentation/ABI/testing/sysfs-class-watchdog
@@ -72,3 +72,37 @@ Description:
It is a read/write file. When read, the currently assigned
pretimeout governor is returned. When written, it sets
the pretimeout governor.
+
+What: /sys/class/watchdog/watchdog1/access_cs0
+Date: August 2019
+Contact: Ivan Mikhaylov <i.mikhaylov@yadro.com>,
+ Alexander Amelkin <a.amelkin@yadro.com>
+Description:
+ It is a read/write file. This attribute exists only if the
+ system has booted from the alternate flash chip due to
+ expiration of a watchdog timer of AST2400/AST2500 when
+ alternate boot function was enabled with 'aspeed,alt-boot'
+ devicetree option for that watchdog or with an appropriate
+ h/w strapping (for WDT2 only).
+
+ At alternate flash the 'access_cs0' sysfs node provides:
+ ast2400: a way to get access to the primary SPI flash
+ chip at CS0 after booting from the alternate
+ chip at CS1.
+ ast2500: a way to restore the normal address mapping
+ from (CS0->CS1, CS1->CS0) to (CS0->CS0,
+ CS1->CS1).
+
+ Clearing the boot code selection and timeout counter also
+ resets to the initial state the chip select line mapping. When
+ the SoC is in normal mapping state (i.e. booted from CS0),
+ clearing those bits does nothing for both versions of the SoC.
+ For alternate boot mode (booted from CS1 due to wdt2
+ expiration) the behavior differs as described above.
+
+ This option can be used with wdt2 (watchdog1) only.
+
+ When read, the current status of the boot code selection is
+ shown. When written with any non-zero value, it clears
+ the boot code selection and the timeout counter, which results
+ in chipselect reset for AST2400/AST2500.
diff --git a/Documentation/ABI/testing/sysfs-devices-platform-stratix10-rsu b/Documentation/ABI/testing/sysfs-devices-platform-stratix10-rsu
new file mode 100644
index 000000000000..ae9af984471a
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-devices-platform-stratix10-rsu
@@ -0,0 +1,128 @@
+ Intel Stratix10 Remote System Update (RSU) device attributes
+
+What: /sys/devices/platform/stratix10-rsu.0/current_image
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (RO) the address in flash of currently running image.
+
+What: /sys/devices/platform/stratix10-rsu.0/fail_image
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (RO) the address in flash of failed image.
+
+What: /sys/devices/platform/stratix10-rsu.0/state
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (RO) the state of RSU system.
+ The state field has two parts: major error code in
+ upper 16 bits and minor error code in lower 16 bits.
+
+ b[15:0]
+ Currently used only when major error is 0xF006
+ (CPU watchdog timeout), in which case the minor
+ error code is the value reported by CPU to
+ firmware through the RSU notify command before
+ the watchdog timeout occurs.
+
+ b[31:16]
+ 0xF001 bitstream error
+ 0xF002 hardware access failure
+ 0xF003 bitstream corruption
+ 0xF004 internal error
+ 0xF005 device error
+ 0xF006 CPU watchdog timeout
+ 0xF007 internal unknown error
+
+What: /sys/devices/platform/stratix10-rsu.0/version
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (RO) the version number of RSU firmware. 19.3 or late
+ version includes information about the firmware which
+ reported the error.
+
+ pre 19.3:
+ b[31:0]
+ 0x0 version number
+
+ 19.3 or late:
+ b[15:0]
+ 0x1 version number
+ b[31:16]
+ 0x0 no error
+ 0x0DCF Decision CMF error
+ 0x0ACF Application CMF error
+
+What: /sys/devices/platform/stratix10-rsu.0/error_location
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (RO) the error offset inside the image that failed.
+
+What: /sys/devices/platform/stratix10-rsu.0/error_details
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (RO) error code.
+
+What: /sys/devices/platform/stratix10-rsu.0/retry_counter
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (RO) the current image's retry counter, which is used by
+ user to know how many times the images is still allowed
+ to reload itself before giving up and starting RSU
+ fail-over flow.
+
+What: /sys/devices/platform/stratix10-rsu.0/reboot_image
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (WO) the address in flash of image to be loaded on next
+ reboot command.
+
+What: /sys/devices/platform/stratix10-rsu.0/notify
+Date: August 2019
+KernelVersion: 5.4
+Contact: Richard Gong <richard.gong@linux.intel.com>
+Description:
+ (WO) client to notify firmware with different actions.
+
+ b[15:0]
+ inform firmware the current software execution
+ stage.
+ 0 the first stage bootloader didn't run or
+ didn't reach the point of launching second
+ stage bootloader.
+ 1 failed in second bootloader or didn't get
+ to the point of launching the operating
+ system.
+ 2 both first and second stage bootloader ran
+ and the operating system launch was
+ attempted.
+
+ b[16]
+ 1 firmware to reset current image retry
+ counter.
+ 0 no action.
+
+ b[17]
+ 1 firmware to clear RSU log
+ 0 no action.
+
+ b[18]
+ this is negative logic
+ 1 no action
+ 0 firmware record the notify code defined
+ in b[15:0].
diff --git a/Documentation/ABI/testing/sysfs-devices-power b/Documentation/ABI/testing/sysfs-devices-power
index 80a00f7b6667..1763e64dd152 100644
--- a/Documentation/ABI/testing/sysfs-devices-power
+++ b/Documentation/ABI/testing/sysfs-devices-power
@@ -260,3 +260,12 @@ Description:
This attribute has no effect on system-wide suspend/resume and
hibernation.
+
+What: /sys/devices/.../power/runtime_status
+Date: April 2010
+Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
+Description:
+ The /sys/devices/.../power/runtime_status attribute contains
+ the current runtime PM status of the device, which may be
+ "suspended", "suspending", "resuming", "active", "error" (fatal
+ error), or "unsupported" (runtime PM is disabled).
diff --git a/Documentation/ABI/testing/sysfs-devices-soc b/Documentation/ABI/testing/sysfs-devices-soc
index 6d9cc253f2b2..ba3a3fac0ee1 100644
--- a/Documentation/ABI/testing/sysfs-devices-soc
+++ b/Documentation/ABI/testing/sysfs-devices-soc
@@ -26,6 +26,13 @@ Description:
Read-only attribute common to all SoCs. Contains SoC family name
(e.g. DB8500).
+What: /sys/devices/socX/serial_number
+Date: January 2019
+contact: Bjorn Andersson <bjorn.andersson@linaro.org>
+Description:
+ Read-only attribute supported by most SoCs. Contains the SoC's
+ serial number, if available.
+
What: /sys/devices/socX/soc_id
Date: January 2012
contact: Lee Jones <lee.jones@linaro.org>
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu
index 1528239f69b2..06d0931119cc 100644
--- a/Documentation/ABI/testing/sysfs-devices-system-cpu
+++ b/Documentation/ABI/testing/sysfs-devices-system-cpu
@@ -34,7 +34,7 @@ Description: CPU topology files that describe kernel limits related to
present: cpus that have been identified as being present in
the system.
- See Documentation/cputopology.txt for more information.
+ See Documentation/admin-guide/cputopology.rst for more information.
What: /sys/devices/system/cpu/probe
@@ -103,7 +103,7 @@ Description: CPU topology files that describe a logical CPU's relationship
thread_siblings_list: human-readable list of cpu#'s hardware
threads within the same core as cpu#
- See Documentation/cputopology.txt for more information.
+ See Documentation/admin-guide/cputopology.rst for more information.
What: /sys/devices/system/cpu/cpuidle/current_driver
@@ -137,7 +137,8 @@ Description: Discover cpuidle policy and mechanism
current_governor: (RW) displays current idle policy. Users can
switch the governor at runtime by writing to this file.
- See files in Documentation/cpuidle/ for more information.
+ See Documentation/admin-guide/pm/cpuidle.rst and
+ Documentation/driver-api/pm/cpuidle.rst for more information.
What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/name
@@ -538,3 +539,36 @@ Description: Intel Energy and Performance Bias Hint (EPB)
This attribute is present for all online CPUs supporting the
Intel EPB feature.
+
+What: /sys/devices/system/cpu/umwait_control
+ /sys/devices/system/cpu/umwait_control/enable_c02
+ /sys/devices/system/cpu/umwait_control/max_time
+Date: May 2019
+Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
+Description: Umwait control
+
+ enable_c02: Read/write interface to control umwait C0.2 state
+ Read returns C0.2 state status:
+ 0: C0.2 is disabled
+ 1: C0.2 is enabled
+
+ Write 'y' or '1' or 'on' to enable C0.2 state.
+ Write 'n' or '0' or 'off' to disable C0.2 state.
+
+ The interface is case insensitive.
+
+ max_time: Read/write interface to control umwait maximum time
+ in TSC-quanta that the CPU can reside in either C0.1
+ or C0.2 state. The time is an unsigned 32-bit number.
+ Note that a value of zero means there is no limit.
+ Low order two bits must be zero.
+
+What: /sys/devices/system/cpu/svm
+Date: August 2019
+Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
+ Linux for PowerPC mailing list <linuxppc-dev@ozlabs.org>
+Description: Secure Virtual Machine
+
+ If 1, it means the system is using the Protected Execution
+ Facility in POWER9 and newer processors. i.e., it is a Secure
+ Virtual Machine.
diff --git a/Documentation/ABI/testing/sysfs-driver-altera-cvp b/Documentation/ABI/testing/sysfs-driver-altera-cvp
index 8cde64a71edb..fbd8078fd7ad 100644
--- a/Documentation/ABI/testing/sysfs-driver-altera-cvp
+++ b/Documentation/ABI/testing/sysfs-driver-altera-cvp
@@ -1,6 +1,6 @@
What: /sys/bus/pci/drivers/altera-cvp/chkcfg
Date: May 2017
-Kernel Version: 4.13
+KernelVersion: 4.13
Contact: Anatolij Gustschin <agust@denx.de>
Description:
Contains either 1 or 0 and controls if configuration
diff --git a/Documentation/ABI/testing/sysfs-driver-habanalabs b/Documentation/ABI/testing/sysfs-driver-habanalabs
index 78b2bcf316a3..782df74042ed 100644
--- a/Documentation/ABI/testing/sysfs-driver-habanalabs
+++ b/Documentation/ABI/testing/sysfs-driver-habanalabs
@@ -57,23 +57,26 @@ KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
Description: Allows the user to set the maximum clock frequency for MME, TPC
and IC when the power management profile is set to "automatic".
+ This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/ic_clk
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Allows the user to set the maximum clock frequency of the
- Interconnect fabric. Writes to this parameter affect the device
- only when the power management profile is set to "manual" mode.
- The device IC clock might be set to lower value then the
+Description: Allows the user to set the maximum clock frequency, in Hz, of
+ the Interconnect fabric. Writes to this parameter affect the
+ device only when the power management profile is set to "manual"
+ mode. The device IC clock might be set to lower value than the
maximum. The user should read the ic_clk_curr to see the actual
- frequency value of the IC
+ frequency value of the IC. This property is valid only for the
+ Goya ASIC family
What: /sys/class/habanalabs/hl<n>/ic_clk_curr
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Displays the current clock frequency of the Interconnect fabric
+Description: Displays the current clock frequency, in Hz, of the Interconnect
+ fabric. This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/infineon_ver
Date: Jan 2019
@@ -92,18 +95,20 @@ What: /sys/class/habanalabs/hl<n>/mme_clk
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Allows the user to set the maximum clock frequency of the
- MME compute engine. Writes to this parameter affect the device
- only when the power management profile is set to "manual" mode.
- The device MME clock might be set to lower value then the
+Description: Allows the user to set the maximum clock frequency, in Hz, of
+ the MME compute engine. Writes to this parameter affect the
+ device only when the power management profile is set to "manual"
+ mode. The device MME clock might be set to lower value than the
maximum. The user should read the mme_clk_curr to see the actual
- frequency value of the MME
+ frequency value of the MME. This property is valid only for the
+ Goya ASIC family
What: /sys/class/habanalabs/hl<n>/mme_clk_curr
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Displays the current clock frequency of the MME compute engine
+Description: Displays the current clock frequency, in Hz, of the MME compute
+ engine. This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/pci_addr
Date: Jan 2019
@@ -123,8 +128,8 @@ Description: Power management profile. Values are "auto", "manual". In "auto"
the max clock frequency to a low value when there are no user
processes that are opened on the device's file. In "manual"
mode, the user sets the maximum clock frequency by writing to
- ic_clk, mme_clk and tpc_clk
-
+ ic_clk, mme_clk and tpc_clk. This property is valid only for
+ the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/preboot_btl_ver
Date: Jan 2019
@@ -163,28 +168,23 @@ What: /sys/class/habanalabs/hl<n>/tpc_clk
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Allows the user to set the maximum clock frequency of the
- TPC compute engines. Writes to this parameter affect the device
- only when the power management profile is set to "manual" mode.
- The device TPC clock might be set to lower value then the
+Description: Allows the user to set the maximum clock frequency, in Hz, of
+ the TPC compute engines. Writes to this parameter affect the
+ device only when the power management profile is set to "manual"
+ mode. The device TPC clock might be set to lower value than the
maximum. The user should read the tpc_clk_curr to see the actual
- frequency value of the TPC
+ frequency value of the TPC. This property is valid only for
+ Goya ASIC family
What: /sys/class/habanalabs/hl<n>/tpc_clk_curr
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Displays the current clock frequency of the TPC compute engines
+Description: Displays the current clock frequency, in Hz, of the TPC compute
+ engines. This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/uboot_ver
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
-Description: Version of the u-boot running on the device's CPU
-
-What: /sys/class/habanalabs/hl<n>/write_open_cnt
-Date: Jan 2019
-KernelVersion: 5.1
-Contact: oded.gabbay@gmail.com
-Description: Displays the total number of user processes that are currently
- opened on the device's file
+Description: Version of the u-boot running on the device's CPU \ No newline at end of file
diff --git a/Documentation/ABI/testing/sysfs-driver-hid b/Documentation/ABI/testing/sysfs-driver-hid
index 48942cacb0bf..a59533410871 100644
--- a/Documentation/ABI/testing/sysfs-driver-hid
+++ b/Documentation/ABI/testing/sysfs-driver-hid
@@ -1,6 +1,6 @@
-What: For USB devices : /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/report_descriptor
- For BT devices : /sys/class/bluetooth/hci<addr>/<hid-bus>:<vendor-id>:<product-id>.<num>/report_descriptor
- Symlink : /sys/class/hidraw/hidraw<num>/device/report_descriptor
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/report_descriptor
+What: /sys/class/bluetooth/hci<addr>/<hid-bus>:<vendor-id>:<product-id>.<num>/report_descriptor
+What: /sys/class/hidraw/hidraw<num>/device/report_descriptor
Date: Jan 2011
KernelVersion: 2.0.39
Contact: Alan Ott <alan@signal11.us>
@@ -9,9 +9,9 @@ Description: When read, this file returns the device's raw binary HID
This file cannot be written.
Users: HIDAPI library (http://www.signal11.us/oss/hidapi)
-What: For USB devices : /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/country
- For BT devices : /sys/class/bluetooth/hci<addr>/<hid-bus>:<vendor-id>:<product-id>.<num>/country
- Symlink : /sys/class/hidraw/hidraw<num>/device/country
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/country
+What: /sys/class/bluetooth/hci<addr>/<hid-bus>:<vendor-id>:<product-id>.<num>/country
+What: /sys/class/hidraw/hidraw<num>/device/country
Date: February 2015
KernelVersion: 3.19
Contact: Olivier Gay <ogay@logitech.com>
diff --git a/Documentation/ABI/testing/sysfs-driver-hid-roccat-kone b/Documentation/ABI/testing/sysfs-driver-hid-roccat-kone
index 3ca3971109bf..8f7982c70d72 100644
--- a/Documentation/ABI/testing/sysfs-driver-hid-roccat-kone
+++ b/Documentation/ABI/testing/sysfs-driver-hid-roccat-kone
@@ -5,7 +5,7 @@ Description: It is possible to switch the dpi setting of the mouse with the
press of a button.
When read, this file returns the raw number of the actual dpi
setting reported by the mouse. This number has to be further
- processed to receive the real dpi value.
+ processed to receive the real dpi value:
VALUE DPI
1 800
diff --git a/Documentation/ABI/testing/sysfs-driver-ppi b/Documentation/ABI/testing/sysfs-driver-ppi
index 9921ef285899..1a56fc507689 100644
--- a/Documentation/ABI/testing/sysfs-driver-ppi
+++ b/Documentation/ABI/testing/sysfs-driver-ppi
@@ -1,6 +1,6 @@
What: /sys/class/tpm/tpmX/ppi/
Date: August 2012
-Kernel Version: 3.6
+KernelVersion: 3.6
Contact: xiaoyan.zhang@intel.com
Description:
This folder includes the attributes related with PPI (Physical
diff --git a/Documentation/ABI/testing/sysfs-driver-st b/Documentation/ABI/testing/sysfs-driver-st
index ba5d77008a85..88cab66fd77f 100644
--- a/Documentation/ABI/testing/sysfs-driver-st
+++ b/Documentation/ABI/testing/sysfs-driver-st
@@ -1,6 +1,6 @@
What: /sys/bus/scsi/drivers/st/debug_flag
Date: October 2015
-Kernel Version: ?.?
+KernelVersion: ?.?
Contact: shane.seymour@hpe.com
Description:
This file allows you to turn debug output from the st driver
diff --git a/Documentation/ABI/testing/sysfs-driver-wacom b/Documentation/ABI/testing/sysfs-driver-wacom
index 2aa5503ee200..afc48fc163b5 100644
--- a/Documentation/ABI/testing/sysfs-driver-wacom
+++ b/Documentation/ABI/testing/sysfs-driver-wacom
@@ -1,6 +1,6 @@
What: /sys/bus/hid/devices/<bus>:<vid>:<pid>.<n>/speed
Date: April 2010
-Kernel Version: 2.6.35
+KernelVersion: 2.6.35
Contact: linux-bluetooth@vger.kernel.org
Description:
The /sys/bus/hid/devices/<bus>:<vid>:<pid>.<n>/speed file
diff --git a/Documentation/ABI/testing/sysfs-firmware-efi b/Documentation/ABI/testing/sysfs-firmware-efi
index e794eac32a90..5e4d0b27cdfe 100644
--- a/Documentation/ABI/testing/sysfs-firmware-efi
+++ b/Documentation/ABI/testing/sysfs-firmware-efi
@@ -28,3 +28,11 @@ Description: Displays the physical addresses of all EFI Configuration
versions are always printed first, i.e. ACPI20 comes
before ACPI.
Users: dmidecode
+
+What: /sys/firmware/efi/tables/rci2
+Date: July 2019
+Contact: Narendra K <Narendra.K@dell.com>, linux-bugs@dell.com
+Description: Displays the content of the Runtime Configuration Interface
+ Table version 2 on Dell EMC PowerEdge systems in binary format
+Users: It is used by Dell EMC OpenManage Server Administrator tool to
+ populate BIOS setup page.
diff --git a/Documentation/ABI/testing/sysfs-firmware-turris-mox-rwtm b/Documentation/ABI/testing/sysfs-firmware-turris-mox-rwtm
new file mode 100644
index 000000000000..15595fab88d1
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-firmware-turris-mox-rwtm
@@ -0,0 +1,37 @@
+What: /sys/firmware/turris-mox-rwtm/board_version
+Date: August 2019
+KernelVersion: 5.4
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) Board version burned into eFuses of this Turris Mox board.
+ Format: %i
+
+What: /sys/firmware/turris-mox-rwtm/mac_address*
+Date: August 2019
+KernelVersion: 5.4
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) MAC addresses burned into eFuses of this Turris Mox board.
+ Format: %pM
+
+What: /sys/firmware/turris-mox-rwtm/pubkey
+Date: August 2019
+KernelVersion: 5.4
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) ECDSA public key (in pubkey hex compressed form) computed
+ as pair to the ECDSA private key burned into eFuses of this
+ Turris Mox Board.
+ Format: string
+
+What: /sys/firmware/turris-mox-rwtm/ram_size
+Date: August 2019
+KernelVersion: 5.4
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) RAM size in MiB of this Turris Mox board as was detected
+ during manufacturing and burned into eFuses. Can be 512 or 1024.
+ Format: %i
+
+What: /sys/firmware/turris-mox-rwtm/serial_number
+Date: August 2019
+KernelVersion: 5.4
+Contact: Marek Behún <marek.behun@nic.cz>
+Description: (R) Serial number burned into eFuses of this Turris Mox device.
+ Format: %016X
diff --git a/Documentation/ABI/testing/sysfs-fs-f2fs b/Documentation/ABI/testing/sysfs-fs-f2fs
index 91822ce25831..7ab2b1b5e255 100644
--- a/Documentation/ABI/testing/sysfs-fs-f2fs
+++ b/Documentation/ABI/testing/sysfs-fs-f2fs
@@ -243,3 +243,18 @@ Description:
- Del: echo '[h/c]!extension' > /sys/fs/f2fs/<disk>/extension_list
- [h] means add/del hot file extension
- [c] means add/del cold file extension
+
+What: /sys/fs/f2fs/<disk>/unusable
+Date April 2019
+Contact: "Daniel Rosenberg" <drosen@google.com>
+Description:
+ If checkpoint=disable, it displays the number of blocks that are unusable.
+ If checkpoint=enable it displays the enumber of blocks that would be unusable
+ if checkpoint=disable were to be set.
+
+What: /sys/fs/f2fs/<disk>/encoding
+Date July 2019
+Contact: "Daniel Rosenberg" <drosen@google.com>
+Description:
+ Displays name and version of the encoding set for the filesystem.
+ If no encoding is set, displays (none)
diff --git a/Documentation/ABI/testing/sysfs-kernel-btf b/Documentation/ABI/testing/sysfs-kernel-btf
new file mode 100644
index 000000000000..2c9744b2cd59
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-kernel-btf
@@ -0,0 +1,17 @@
+What: /sys/kernel/btf
+Date: Aug 2019
+KernelVersion: 5.5
+Contact: bpf@vger.kernel.org
+Description:
+ Contains BTF type information and related data for kernel and
+ kernel modules.
+
+What: /sys/kernel/btf/vmlinux
+Date: Aug 2019
+KernelVersion: 5.5
+Contact: bpf@vger.kernel.org
+Description:
+ Read-only binary attribute exposing kernel's own BTF type
+ information with description of all internal kernel types. See
+ Documentation/bpf/btf.rst for detailed description of format
+ itself.
diff --git a/Documentation/ABI/testing/sysfs-kernel-fscaps b/Documentation/ABI/testing/sysfs-kernel-fscaps
index 50a3033b5e15..bcff34665192 100644
--- a/Documentation/ABI/testing/sysfs-kernel-fscaps
+++ b/Documentation/ABI/testing/sysfs-kernel-fscaps
@@ -2,7 +2,7 @@ What: /sys/kernel/fscaps
Date: February 2011
KernelVersion: 2.6.38
Contact: Ludwig Nussel <ludwig.nussel@suse.de>
-Description
+Description:
Shows whether file system capabilities are honored
when executing a binary
diff --git a/Documentation/ABI/testing/sysfs-kernel-iommu_groups b/Documentation/ABI/testing/sysfs-kernel-iommu_groups
index 35c64e00b35c..017f5bc3920c 100644
--- a/Documentation/ABI/testing/sysfs-kernel-iommu_groups
+++ b/Documentation/ABI/testing/sysfs-kernel-iommu_groups
@@ -24,3 +24,12 @@ Description: /sys/kernel/iommu_groups/reserved_regions list IOVA
region is described on a single line: the 1st field is
the base IOVA, the second is the end IOVA and the third
field describes the type of the region.
+
+What: /sys/kernel/iommu_groups/reserved_regions
+Date: June 2019
+KernelVersion: v5.3
+Contact: Eric Auger <eric.auger@redhat.com>
+Description: In case an RMRR is used only by graphics or USB devices
+ it is now exposed as "direct-relaxable" instead of "direct".
+ In device assignment use case, for instance, those RMRR
+ are considered to be relaxable and safe.
diff --git a/Documentation/ABI/testing/sysfs-kernel-slab b/Documentation/ABI/testing/sysfs-kernel-slab
index 29601d93a1c2..ed35833ad7f0 100644
--- a/Documentation/ABI/testing/sysfs-kernel-slab
+++ b/Documentation/ABI/testing/sysfs-kernel-slab
@@ -429,10 +429,15 @@ KernelVersion: 2.6.22
Contact: Pekka Enberg <penberg@cs.helsinki.fi>,
Christoph Lameter <cl@linux-foundation.org>
Description:
- The shrink file is written when memory should be reclaimed from
- a cache. Empty partial slabs are freed and the partial list is
- sorted so the slabs with the fewest available objects are used
- first.
+ The shrink file is used to reclaim unused slab cache
+ memory from a cache. Empty per-cpu or partial slabs
+ are freed and the partial list is sorted so the slabs
+ with the fewest available objects are used first.
+ It only accepts a value of "1" on write for shrinking
+ the cache. Other input values are considered invalid.
+ Shrinking slab caches might be expensive and can
+ adversely impact other running applications. So it
+ should be used with care.
What: /sys/kernel/slab/cache/slab_size
Date: May 2007
diff --git a/Documentation/ABI/testing/sysfs-kernel-uids b/Documentation/ABI/testing/sysfs-kernel-uids
index 28f14695a852..4182b7061816 100644
--- a/Documentation/ABI/testing/sysfs-kernel-uids
+++ b/Documentation/ABI/testing/sysfs-kernel-uids
@@ -11,4 +11,4 @@ Description:
example would be, if User A has shares = 1024 and user
B has shares = 2048, User B will get twice the CPU
bandwidth user A will. For more details refer
- Documentation/scheduler/sched-design-CFS.txt
+ Documentation/scheduler/sched-design-CFS.rst
diff --git a/Documentation/ABI/testing/sysfs-kernel-vmcoreinfo b/Documentation/ABI/testing/sysfs-kernel-vmcoreinfo
index 7bd81168e063..1f1087a5f075 100644
--- a/Documentation/ABI/testing/sysfs-kernel-vmcoreinfo
+++ b/Documentation/ABI/testing/sysfs-kernel-vmcoreinfo
@@ -4,7 +4,7 @@ KernelVersion: 2.6.24
Contact: Ken'ichi Ohmichi <oomichi@mxs.nes.nec.co.jp>
Kexec Mailing List <kexec@lists.infradead.org>
Vivek Goyal <vgoyal@redhat.com>
-Description
+Description:
Shows physical address and size of vmcoreinfo ELF note.
First value contains physical address of note in hex and
second value contains the size of note in hex. This ELF
diff --git a/Documentation/ABI/testing/sysfs-platform-asus-laptop b/Documentation/ABI/testing/sysfs-platform-asus-laptop
index cd9d667c3da2..8b0e8205a6a2 100644
--- a/Documentation/ABI/testing/sysfs-platform-asus-laptop
+++ b/Documentation/ABI/testing/sysfs-platform-asus-laptop
@@ -31,7 +31,7 @@ Description:
To control the LED display, use the following :
echo 0x0T000DDD > /sys/devices/platform/asus_laptop/
where T control the 3 letters display, and DDD the 3 digits display.
- The DDD table can be found in Documentation/laptops/asus-laptop.txt
+ The DDD table can be found in Documentation/admin-guide/laptops/asus-laptop.rst
What: /sys/devices/platform/asus_laptop/bluetooth
Date: January 2007
diff --git a/Documentation/ABI/testing/sysfs-platform-asus-wmi b/Documentation/ABI/testing/sysfs-platform-asus-wmi
index 019e1e29370e..9e99f2909612 100644
--- a/Documentation/ABI/testing/sysfs-platform-asus-wmi
+++ b/Documentation/ABI/testing/sysfs-platform-asus-wmi
@@ -36,3 +36,13 @@ KernelVersion: 3.5
Contact: "AceLan Kao" <acelan.kao@canonical.com>
Description:
Resume on lid open. 1 means on, 0 means off.
+
+What: /sys/devices/platform/<platform>/fan_boost_mode
+Date: Sep 2019
+KernelVersion: 5.3
+Contact: "Yurii Pavlovskyi" <yurii.pavlovskyi@gmail.com>
+Description:
+ Fan boost mode:
+ * 0 - normal,
+ * 1 - overboost,
+ * 2 - silent
diff --git a/Documentation/ABI/testing/sysfs-platform-dfl-fme b/Documentation/ABI/testing/sysfs-platform-dfl-fme
index 8fa4febfa4b2..72634d3ae4f4 100644
--- a/Documentation/ABI/testing/sysfs-platform-dfl-fme
+++ b/Documentation/ABI/testing/sysfs-platform-dfl-fme
@@ -21,3 +21,88 @@ Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It returns Bitstream (static FPGA region) meta
data, which includes the synthesis date, seed and other
information of this static FPGA region.
+
+What: /sys/bus/platform/devices/dfl-fme.0/cache_size
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. It returns cache size of this FPGA device.
+
+What: /sys/bus/platform/devices/dfl-fme.0/fabric_version
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. It returns fabric version of this FPGA device.
+ Userspace applications need this information to select
+ best data channels per different fabric design.
+
+What: /sys/bus/platform/devices/dfl-fme.0/socket_id
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. It returns socket_id to indicate which socket
+ this FPGA belongs to, only valid for integrated solution.
+ User only needs this information, in case standard numa node
+ can't provide correct information.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/pcie0_errors
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-Write. Read this file for errors detected on pcie0 link.
+ Write this file to clear errors logged in pcie0_errors. Write
+ fails with -EINVAL if input parsing fails or input error code
+ doesn't match.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/pcie1_errors
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-Write. Read this file for errors detected on pcie1 link.
+ Write this file to clear errors logged in pcie1_errors. Write
+ fails with -EINVAL if input parsing fails or input error code
+ doesn't match.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/nonfatal_errors
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. It returns non-fatal errors detected.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/catfatal_errors
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. It returns catastrophic and fatal errors detected.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/inject_errors
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-Write. Read this file to check errors injected. Write this
+ file to inject errors for testing purpose. Write fails with
+ -EINVAL if input parsing fails or input inject error code isn't
+ supported.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/fme_errors
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-Write. Read this file to get errors detected on FME.
+ Write this file to clear errors logged in fme_errors. Write
+ fials with -EINVAL if input parsing fails or input error code
+ doesn't match.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/first_error
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. Read this file to get the first error detected by
+ hardware.
+
+What: /sys/bus/platform/devices/dfl-fme.0/errors/next_error
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. Read this file to get the second error detected by
+ hardware.
diff --git a/Documentation/ABI/testing/sysfs-platform-dfl-port b/Documentation/ABI/testing/sysfs-platform-dfl-port
index 6a92dda517b0..65658267fcc0 100644
--- a/Documentation/ABI/testing/sysfs-platform-dfl-port
+++ b/Documentation/ABI/testing/sysfs-platform-dfl-port
@@ -14,3 +14,88 @@ Description: Read-only. User can program different PR bitstreams to FPGA
Accelerator Function Unit (AFU) for different functions. It
returns uuid which could be used to identify which PR bitstream
is programmed in this AFU.
+
+What: /sys/bus/platform/devices/dfl-port.0/power_state
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. It reports the APx (AFU Power) state, different APx
+ means different throttling level. When reading this file, it
+ returns "0" - Normal / "1" - AP1 / "2" - AP2 / "6" - AP6.
+
+What: /sys/bus/platform/devices/dfl-port.0/ap1_event
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-write. Read this file for AP1 (AFU Power State 1) event.
+ It's used to indicate transient AP1 state. Write 1 to this
+ file to clear AP1 event.
+
+What: /sys/bus/platform/devices/dfl-port.0/ap2_event
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-write. Read this file for AP2 (AFU Power State 2) event.
+ It's used to indicate transient AP2 state. Write 1 to this
+ file to clear AP2 event.
+
+What: /sys/bus/platform/devices/dfl-port.0/ltr
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-write. Read or set AFU latency tolerance reporting value.
+ Set ltr to 1 if the AFU can tolerate latency >= 40us or set it
+ to 0 if it is latency sensitive.
+
+What: /sys/bus/platform/devices/dfl-port.0/userclk_freqcmd
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Write-only. User writes command to this interface to set
+ userclock to AFU.
+
+What: /sys/bus/platform/devices/dfl-port.0/userclk_freqsts
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. Read this file to get the status of issued command
+ to userclck_freqcmd.
+
+What: /sys/bus/platform/devices/dfl-port.0/userclk_freqcntrcmd
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Write-only. User writes command to this interface to set
+ userclock counter.
+
+What: /sys/bus/platform/devices/dfl-port.0/userclk_freqcntrsts
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. Read this file to get the status of issued command
+ to userclck_freqcntrcmd.
+
+What: /sys/bus/platform/devices/dfl-port.0/errors/errors
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-Write. Read this file to get errors detected on port and
+ Accelerated Function Unit (AFU). Write error code to this file
+ to clear errors. Write fails with -EINVAL if input parsing
+ fails or input error code doesn't match. Write fails with
+ -EBUSY or -ETIMEDOUT if error can't be cleared as hardware
+ in low power state (-EBUSY) or not respoding (-ETIMEDOUT).
+
+What: /sys/bus/platform/devices/dfl-port.0/errors/first_error
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. Read this file to get the first error detected by
+ hardware.
+
+What: /sys/bus/platform/devices/dfl-port.0/errors/first_malformed_req
+Date: August 2019
+KernelVersion: 5.4
+Contact: Wu Hao <hao.wu@intel.com>
+Description: Read-only. Read this file to get the first malformed request
+ captured by hardware.
diff --git a/Documentation/ABI/testing/sysfs-platform-i2c-demux-pinctrl b/Documentation/ABI/testing/sysfs-platform-i2c-demux-pinctrl
index 3c3514815cd5..c394b808be19 100644
--- a/Documentation/ABI/testing/sysfs-platform-i2c-demux-pinctrl
+++ b/Documentation/ABI/testing/sysfs-platform-i2c-demux-pinctrl
@@ -1,7 +1,7 @@
What: /sys/devices/platform/<i2c-demux-name>/available_masters
Date: January 2016
KernelVersion: 4.6
-Contact: Wolfram Sang <wsa@the-dreams.de>
+Contact: Wolfram Sang <wsa+renesas@sang-engineering.com>
Description:
Reading the file will give you a list of masters which can be
selected for a demultiplexed bus. The format is
@@ -12,7 +12,7 @@ Description:
What: /sys/devices/platform/<i2c-demux-name>/current_master
Date: January 2016
KernelVersion: 4.6
-Contact: Wolfram Sang <wsa@the-dreams.de>
+Contact: Wolfram Sang <wsa+renesas@sang-engineering.com>
Description:
This file selects/shows the active I2C master for a demultiplexed
bus. It uses the <index> value from the file 'available_masters'.
diff --git a/Documentation/ABI/testing/sysfs-platform-wilco-ec b/Documentation/ABI/testing/sysfs-platform-wilco-ec
new file mode 100644
index 000000000000..8827a734f933
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-platform-wilco-ec
@@ -0,0 +1,40 @@
+What: /sys/bus/platform/devices/GOOG000C\:00/boot_on_ac
+Date: April 2019
+KernelVersion: 5.3
+Description:
+ Boot on AC is a policy which makes the device boot from S5
+ when AC power is connected. This is useful for users who
+ want to run their device headless or with a dock.
+
+ Input should be parseable by kstrtou8() to 0 or 1.
+
+What: /sys/bus/platform/devices/GOOG000C\:00/build_date
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller firmware build date.
+ Output will a MM/DD/YY string.
+
+What: /sys/bus/platform/devices/GOOG000C\:00/build_revision
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller build revision.
+ Output will a version string be similar to the example below:
+ d2592cae0
+
+What: /sys/bus/platform/devices/GOOG000C\:00/model_number
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller model number.
+ Output will a version string be similar to the example below:
+ 08B6
+
+What: /sys/bus/platform/devices/GOOG000C\:00/version
+Date: May 2019
+KernelVersion: 5.3
+Description:
+ Display Wilco Embedded Controller firmware version.
+ The format of the string is x.y.z. Where x is major, y is minor
+ and z is the build number. For example: 95.00.06
diff --git a/Documentation/ABI/testing/sysfs-power b/Documentation/ABI/testing/sysfs-power
index 18b7dc929234..6f87b9dd384b 100644
--- a/Documentation/ABI/testing/sysfs-power
+++ b/Documentation/ABI/testing/sysfs-power
@@ -300,4 +300,110 @@ Description:
attempt.
Using this sysfs file will override any values that were
- set using the kernel command line for disk offset. \ No newline at end of file
+ set using the kernel command line for disk offset.
+
+What: /sys/power/suspend_stats
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats directory contains suspend related
+ statistics.
+
+What: /sys/power/suspend_stats/success
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/success file contains the number
+ of times entering system sleep state succeeded.
+
+What: /sys/power/suspend_stats/fail
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/fail file contains the number
+ of times entering system sleep state failed.
+
+What: /sys/power/suspend_stats/failed_freeze
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_freeze file contains the
+ number of times freezing processes failed.
+
+What: /sys/power/suspend_stats/failed_prepare
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_prepare file contains the
+ number of times preparing all non-sysdev devices for
+ a system PM transition failed.
+
+What: /sys/power/suspend_stats/failed_resume
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_resume file contains the
+ number of times executing "resume" callbacks of
+ non-sysdev devices failed.
+
+What: /sys/power/suspend_stats/failed_resume_early
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_resume_early file contains
+ the number of times executing "early resume" callbacks
+ of devices failed.
+
+What: /sys/power/suspend_stats/failed_resume_noirq
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_resume_noirq file contains
+ the number of times executing "noirq resume" callbacks
+ of devices failed.
+
+What: /sys/power/suspend_stats/failed_suspend
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_suspend file contains
+ the number of times executing "suspend" callbacks
+ of all non-sysdev devices failed.
+
+What: /sys/power/suspend_stats/failed_suspend_late
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_suspend_late file contains
+ the number of times executing "late suspend" callbacks
+ of all devices failed.
+
+What: /sys/power/suspend_stats/failed_suspend_noirq
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/failed_suspend_noirq file contains
+ the number of times executing "noirq suspend" callbacks
+ of all devices failed.
+
+What: /sys/power/suspend_stats/last_failed_dev
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/last_failed_dev file contains
+ the last device for which a suspend/resume callback failed.
+
+What: /sys/power/suspend_stats/last_failed_errno
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/last_failed_errno file contains
+ the errno of the last failed attempt at entering
+ system sleep state.
+
+What: /sys/power/suspend_stats/last_failed_step
+Date: July 2019
+Contact: Kalesh Singh <kaleshsingh96@gmail.com>
+Description:
+ The /sys/power/suspend_stats/last_failed_step file contains
+ the last failed step in the suspend/resume path.
diff --git a/Documentation/logo.txt b/Documentation/COPYING-logo
index 296f0f7f67eb..296f0f7f67eb 100644
--- a/Documentation/logo.txt
+++ b/Documentation/COPYING-logo
diff --git a/Documentation/DMA-API-HOWTO.txt b/Documentation/DMA-API-HOWTO.txt
index cb712a02f59f..358d495456d1 100644
--- a/Documentation/DMA-API-HOWTO.txt
+++ b/Documentation/DMA-API-HOWTO.txt
@@ -212,7 +212,7 @@ The standard 64-bit addressing device would do something like this::
If the device only supports 32-bit addressing for descriptors in the
coherent allocations, but supports full 64-bits for streaming mappings
-it would look like this:
+it would look like this::
if (dma_set_mask(dev, DMA_BIT_MASK(64))) {
dev_warn(dev, "mydev: No suitable DMA available\n");
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 0076150fdccb..2d8d2fed7317 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -198,12 +198,20 @@ call to set the mask to the value returned.
::
size_t
- dma_direct_max_mapping_size(struct device *dev);
+ dma_max_mapping_size(struct device *dev);
Returns the maximum size of a mapping for the device. The size parameter
of the mapping functions like dma_map_single(), dma_map_page() and
others should not be larger than the returned value.
+::
+
+ unsigned long
+ dma_get_merge_boundary(struct device *dev);
+
+Returns the DMA merge boundary. If the device cannot merge any the DMA address
+segments, the function returns 0.
+
Part Id - Streaming DMA mappings
--------------------------------
@@ -595,17 +603,6 @@ For reasons of efficiency, most platforms choose to track the declared
region only at the granularity of a page. For smaller allocations,
you should use the dma_pool() API.
-::
-
- void
- dma_release_declared_memory(struct device *dev)
-
-Remove the memory region previously declared from the system. This
-API performs *no* in-use checking for this region and will return
-unconditionally having removed all the required structures. It is the
-driver's job to ensure that no parts of this memory region are
-currently in use.
-
Part III - Debug drivers use of the DMA-API
-------------------------------------------
diff --git a/Documentation/Kconfig b/Documentation/Kconfig
new file mode 100644
index 000000000000..66046fa1c341
--- /dev/null
+++ b/Documentation/Kconfig
@@ -0,0 +1,13 @@
+config WARN_MISSING_DOCUMENTS
+
+ bool "Warn if there's a missing documentation file"
+ depends on COMPILE_TEST
+ help
+ It is not uncommon that a document gets renamed.
+ This option makes the Kernel to check for missing dependencies,
+ warning when something is missing. Works only if the Kernel
+ is built from a git tree.
+
+ If unsure, select 'N'.
+
+
diff --git a/Documentation/Makefile b/Documentation/Makefile
index e889e7cb8511..e145e4db508b 100644
--- a/Documentation/Makefile
+++ b/Documentation/Makefile
@@ -4,6 +4,11 @@
subdir-y := devicetree/bindings/
+# Check for broken documentation file references
+ifeq ($(CONFIG_WARN_MISSING_DOCUMENTS),y)
+$(shell $(srctree)/scripts/documentation-file-ref-check --warn)
+endif
+
# You can set these variables from the command line.
SPHINXBUILD = sphinx-build
SPHINXOPTS =
@@ -23,11 +28,13 @@ ifeq ($(HAVE_SPHINX),0)
.DEFAULT:
$(warning The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed and in PATH, or set the SPHINXBUILD make variable to point to the full path of the '$(SPHINXBUILD)' executable.)
@echo
- @./scripts/sphinx-pre-install
+ @$(srctree)/scripts/sphinx-pre-install
@echo " SKIP Sphinx $@ target."
else # HAVE_SPHINX
+export SPHINXOPTS = $(shell perl -e 'open IN,"sphinx-build --version 2>&1 |"; while (<IN>) { if (m/([\d\.]+)/) { print "-jauto" if ($$1 >= "1.7") } ;} close IN')
+
# User-friendly check for pdflatex and latexmk
HAVE_PDFLATEX := $(shell if which $(PDFLATEX) >/dev/null 2>&1; then echo 1; else echo 0; fi)
HAVE_LATEXMK := $(shell if which latexmk >/dev/null 2>&1; then echo 1; else echo 0; fi)
@@ -70,12 +77,14 @@ quiet_cmd_sphinx = SPHINX $@ --> file://$(abspath $(BUILDDIR)/$3/$4)
$(abspath $(BUILDDIR)/$3/$4)
htmldocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,html,$(var),,$(var)))
linkcheckdocs:
@$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,linkcheck,$(var),,$(var)))
latexdocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,latex,$(var),latex,$(var)))
ifeq ($(HAVE_PDFLATEX),0)
@@ -87,14 +96,17 @@ pdfdocs:
else # HAVE_PDFLATEX
pdfdocs: latexdocs
+ @$(srctree)/scripts/sphinx-pre-install --version-check
$(foreach var,$(SPHINXDIRS), $(MAKE) PDFLATEX="$(PDFLATEX)" LATEXOPTS="$(LATEXOPTS)" -C $(BUILDDIR)/$(var)/latex || exit;)
endif # HAVE_PDFLATEX
epubdocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,epub,$(var),epub,$(var)))
xmldocs:
+ @$(srctree)/scripts/sphinx-pre-install --version-check
@+$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,xml,$(var),xml,$(var)))
endif # HAVE_SPHINX
diff --git a/Documentation/PCI/acpi-info.txt b/Documentation/PCI/acpi-info.rst
index 3ffa3b03970e..060217081c79 100644
--- a/Documentation/PCI/acpi-info.txt
+++ b/Documentation/PCI/acpi-info.rst
@@ -1,4 +1,8 @@
- ACPI considerations for PCI host bridges
+.. SPDX-License-Identifier: GPL-2.0
+
+========================================
+ACPI considerations for PCI host bridges
+========================================
The general rule is that the ACPI namespace should describe everything the
OS might use unless there's another way for the OS to find it [1, 2].
@@ -131,12 +135,13 @@ address always corresponds to bus 0, even if the bus range below the bridge
[4] ACPI 6.2, sec 6.4.3.5.1, 2, 3, 4:
QWord/DWord/Word Address Space Descriptor (.1, .2, .3)
- General Flags: Bit [0] Ignored
+ General Flags: Bit [0] Ignored
Extended Address Space Descriptor (.4)
- General Flags: Bit [0] Consumer/Producer:
- 1–This device consumes this resource
- 0–This device produces and consumes this resource
+ General Flags: Bit [0] Consumer/Producer:
+
+ * 1 – This device consumes this resource
+ * 0 – This device produces and consumes this resource
[5] ACPI 6.2, sec 19.6.43:
ResourceUsage specifies whether the Memory range is consumed by
diff --git a/Documentation/PCI/endpoint/index.rst b/Documentation/PCI/endpoint/index.rst
new file mode 100644
index 000000000000..d114ea74b444
--- /dev/null
+++ b/Documentation/PCI/endpoint/index.rst
@@ -0,0 +1,13 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================
+PCI Endpoint Framework
+======================
+
+.. toctree::
+ :maxdepth: 2
+
+ pci-endpoint
+ pci-endpoint-cfs
+ pci-test-function
+ pci-test-howto
diff --git a/Documentation/PCI/endpoint/pci-endpoint-cfs.txt b/Documentation/PCI/endpoint/pci-endpoint-cfs.rst
index d740f29960a4..b6d39cdec56e 100644
--- a/Documentation/PCI/endpoint/pci-endpoint-cfs.txt
+++ b/Documentation/PCI/endpoint/pci-endpoint-cfs.rst
@@ -1,41 +1,51 @@
- CONFIGURING PCI ENDPOINT USING CONFIGFS
- Kishon Vijay Abraham I <kishon@ti.com>
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================
+Configuring PCI Endpoint Using CONFIGFS
+=======================================
+
+:Author: Kishon Vijay Abraham I <kishon@ti.com>
The PCI Endpoint Core exposes configfs entry (pci_ep) to configure the
PCI endpoint function and to bind the endpoint function
with the endpoint controller. (For introducing other mechanisms to
configure the PCI Endpoint Function refer to [1]).
-*) Mounting configfs
+Mounting configfs
+=================
The PCI Endpoint Core layer creates pci_ep directory in the mounted configfs
-directory. configfs can be mounted using the following command.
+directory. configfs can be mounted using the following command::
mount -t configfs none /sys/kernel/config
-*) Directory Structure
+Directory Structure
+===================
The pci_ep configfs has two directories at its root: controllers and
functions. Every EPC device present in the system will have an entry in
the *controllers* directory and and every EPF driver present in the system
will have an entry in the *functions* directory.
+::
-/sys/kernel/config/pci_ep/
- .. controllers/
- .. functions/
+ /sys/kernel/config/pci_ep/
+ .. controllers/
+ .. functions/
-*) Creating EPF Device
+Creating EPF Device
+===================
Every registered EPF driver will be listed in controllers directory. The
entries corresponding to EPF driver will be created by the EPF core.
+::
-/sys/kernel/config/pci_ep/functions/
- .. <EPF Driver1>/
- ... <EPF Device 11>/
- ... <EPF Device 21>/
- .. <EPF Driver2>/
- ... <EPF Device 12>/
- ... <EPF Device 22>/
+ /sys/kernel/config/pci_ep/functions/
+ .. <EPF Driver1>/
+ ... <EPF Device 11>/
+ ... <EPF Device 21>/
+ .. <EPF Driver2>/
+ ... <EPF Device 12>/
+ ... <EPF Device 22>/
In order to create a <EPF device> of the type probed by <EPF Driver>, the
user has to create a directory inside <EPF DriverN>.
@@ -44,34 +54,37 @@ Every <EPF device> directory consists of the following entries that can be
used to configure the standard configuration header of the endpoint function.
(These entries are created by the framework when any new <EPF Device> is
created)
-
- .. <EPF Driver1>/
- ... <EPF Device 11>/
- ... vendorid
- ... deviceid
- ... revid
- ... progif_code
- ... subclass_code
- ... baseclass_code
- ... cache_line_size
- ... subsys_vendor_id
- ... subsys_id
- ... interrupt_pin
-
-*) EPC Device
+::
+
+ .. <EPF Driver1>/
+ ... <EPF Device 11>/
+ ... vendorid
+ ... deviceid
+ ... revid
+ ... progif_code
+ ... subclass_code
+ ... baseclass_code
+ ... cache_line_size
+ ... subsys_vendor_id
+ ... subsys_id
+ ... interrupt_pin
+
+EPC Device
+==========
Every registered EPC device will be listed in controllers directory. The
entries corresponding to EPC device will be created by the EPC core.
-
-/sys/kernel/config/pci_ep/controllers/
- .. <EPC Device1>/
- ... <Symlink EPF Device11>/
- ... <Symlink EPF Device12>/
- ... start
- .. <EPC Device2>/
- ... <Symlink EPF Device21>/
- ... <Symlink EPF Device22>/
- ... start
+::
+
+ /sys/kernel/config/pci_ep/controllers/
+ .. <EPC Device1>/
+ ... <Symlink EPF Device11>/
+ ... <Symlink EPF Device12>/
+ ... start
+ .. <EPC Device2>/
+ ... <Symlink EPF Device21>/
+ ... <Symlink EPF Device22>/
+ ... start
The <EPC Device> directory will have a list of symbolic links to
<EPF Device>. These symbolic links should be created by the user to
@@ -81,7 +94,7 @@ The <EPC Device> directory will also have a *start* field. Once
"1" is written to this field, the endpoint device will be ready to
establish the link with the host. This is usually done after
all the EPF devices are created and linked with the EPC device.
-
+::
| controllers/
| <Directory: EPC name>/
@@ -102,4 +115,4 @@ all the EPF devices are created and linked with the EPC device.
| interrupt_pin
| function
-[1] -> Documentation/PCI/endpoint/pci-endpoint.txt
+[1] :doc:`pci-endpoint`
diff --git a/Documentation/PCI/endpoint/pci-endpoint.txt b/Documentation/PCI/endpoint/pci-endpoint.rst
index e86a96b66a6a..0e2311b5617b 100644
--- a/Documentation/PCI/endpoint/pci-endpoint.txt
+++ b/Documentation/PCI/endpoint/pci-endpoint.rst
@@ -1,11 +1,13 @@
- PCI ENDPOINT FRAMEWORK
- Kishon Vijay Abraham I <kishon@ti.com>
+.. SPDX-License-Identifier: GPL-2.0
+
+:Author: Kishon Vijay Abraham I <kishon@ti.com>
This document is a guide to use the PCI Endpoint Framework in order to create
endpoint controller driver, endpoint function driver, and using configfs
interface to bind the function driver to the controller driver.
-1. Introduction
+Introduction
+============
Linux has a comprehensive PCI subsystem to support PCI controllers that
operates in Root Complex mode. The subsystem has capability to scan PCI bus,
@@ -19,26 +21,30 @@ add endpoint mode support in Linux. This will help to run Linux in an
EP system which can have a wide variety of use cases from testing or
validation, co-processor accelerator, etc.
-2. PCI Endpoint Core
+PCI Endpoint Core
+=================
The PCI Endpoint Core layer comprises 3 components: the Endpoint Controller
library, the Endpoint Function library, and the configfs layer to bind the
endpoint function with the endpoint controller.
-2.1 PCI Endpoint Controller(EPC) Library
+PCI Endpoint Controller(EPC) Library
+------------------------------------
The EPC library provides APIs to be used by the controller that can operate
in endpoint mode. It also provides APIs to be used by function driver/library
in order to implement a particular endpoint function.
-2.1.1 APIs for the PCI controller Driver
+APIs for the PCI controller Driver
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section lists the APIs that the PCI Endpoint core provides to be used
by the PCI controller driver.
-*) devm_pci_epc_create()/pci_epc_create()
+* devm_pci_epc_create()/pci_epc_create()
The PCI controller driver should implement the following ops:
+
* write_header: ops to populate configuration space header
* set_bar: ops to configure the BAR
* clear_bar: ops to reset the BAR
@@ -51,110 +57,116 @@ by the PCI controller driver.
The PCI controller driver can then create a new EPC device by invoking
devm_pci_epc_create()/pci_epc_create().
-*) devm_pci_epc_destroy()/pci_epc_destroy()
+* devm_pci_epc_destroy()/pci_epc_destroy()
The PCI controller driver can destroy the EPC device created by either
devm_pci_epc_create() or pci_epc_create() using devm_pci_epc_destroy() or
pci_epc_destroy().
-*) pci_epc_linkup()
+* pci_epc_linkup()
In order to notify all the function devices that the EPC device to which
they are linked has established a link with the host, the PCI controller
driver should invoke pci_epc_linkup().
-*) pci_epc_mem_init()
+* pci_epc_mem_init()
Initialize the pci_epc_mem structure used for allocating EPC addr space.
-*) pci_epc_mem_exit()
+* pci_epc_mem_exit()
Cleanup the pci_epc_mem structure allocated during pci_epc_mem_init().
-2.1.2 APIs for the PCI Endpoint Function Driver
+
+APIs for the PCI Endpoint Function Driver
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section lists the APIs that the PCI Endpoint core provides to be used
by the PCI endpoint function driver.
-*) pci_epc_write_header()
+* pci_epc_write_header()
The PCI endpoint function driver should use pci_epc_write_header() to
write the standard configuration header to the endpoint controller.
-*) pci_epc_set_bar()
+* pci_epc_set_bar()
The PCI endpoint function driver should use pci_epc_set_bar() to configure
the Base Address Register in order for the host to assign PCI addr space.
Register space of the function driver is usually configured
using this API.
-*) pci_epc_clear_bar()
+* pci_epc_clear_bar()
The PCI endpoint function driver should use pci_epc_clear_bar() to reset
the BAR.
-*) pci_epc_raise_irq()
+* pci_epc_raise_irq()
The PCI endpoint function driver should use pci_epc_raise_irq() to raise
Legacy Interrupt, MSI or MSI-X Interrupt.
-*) pci_epc_mem_alloc_addr()
+* pci_epc_mem_alloc_addr()
The PCI endpoint function driver should use pci_epc_mem_alloc_addr(), to
allocate memory address from EPC addr space which is required to access
RC's buffer
-*) pci_epc_mem_free_addr()
+* pci_epc_mem_free_addr()
The PCI endpoint function driver should use pci_epc_mem_free_addr() to
free the memory space allocated using pci_epc_mem_alloc_addr().
-2.1.3 Other APIs
+Other APIs
+~~~~~~~~~~
There are other APIs provided by the EPC library. These are used for binding
the EPF device with EPC device. pci-ep-cfs.c can be used as reference for
using these APIs.
-*) pci_epc_get()
+* pci_epc_get()
Get a reference to the PCI endpoint controller based on the device name of
the controller.
-*) pci_epc_put()
+* pci_epc_put()
Release the reference to the PCI endpoint controller obtained using
pci_epc_get()
-*) pci_epc_add_epf()
+* pci_epc_add_epf()
Add a PCI endpoint function to a PCI endpoint controller. A PCIe device
can have up to 8 functions according to the specification.
-*) pci_epc_remove_epf()
+* pci_epc_remove_epf()
Remove the PCI endpoint function from PCI endpoint controller.
-*) pci_epc_start()
+* pci_epc_start()
The PCI endpoint function driver should invoke pci_epc_start() once it
has configured the endpoint function and wants to start the PCI link.
-*) pci_epc_stop()
+* pci_epc_stop()
The PCI endpoint function driver should invoke pci_epc_stop() to stop
the PCI LINK.
-2.2 PCI Endpoint Function(EPF) Library
+
+PCI Endpoint Function(EPF) Library
+----------------------------------
The EPF library provides APIs to be used by the function driver and the EPC
library to provide endpoint mode functionality.
-2.2.1 APIs for the PCI Endpoint Function Driver
+APIs for the PCI Endpoint Function Driver
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section lists the APIs that the PCI Endpoint core provides to be used
by the PCI endpoint function driver.
-*) pci_epf_register_driver()
+* pci_epf_register_driver()
The PCI Endpoint Function driver should implement the following ops:
* bind: ops to perform when a EPC device has been bound to EPF device
@@ -166,50 +178,54 @@ by the PCI endpoint function driver.
The PCI Function driver can then register the PCI EPF driver by using
pci_epf_register_driver().
-*) pci_epf_unregister_driver()
+* pci_epf_unregister_driver()
The PCI Function driver can unregister the PCI EPF driver by using
pci_epf_unregister_driver().
-*) pci_epf_alloc_space()
+* pci_epf_alloc_space()
The PCI Function driver can allocate space for a particular BAR using
pci_epf_alloc_space().
-*) pci_epf_free_space()
+* pci_epf_free_space()
The PCI Function driver can free the allocated space
(using pci_epf_alloc_space) by invoking pci_epf_free_space().
-2.2.2 APIs for the PCI Endpoint Controller Library
+APIs for the PCI Endpoint Controller Library
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
This section lists the APIs that the PCI Endpoint core provides to be used
by the PCI endpoint controller library.
-*) pci_epf_linkup()
+* pci_epf_linkup()
The PCI endpoint controller library invokes pci_epf_linkup() when the
EPC device has established the connection to the host.
-2.2.2 Other APIs
+Other APIs
+~~~~~~~~~~
+
There are other APIs provided by the EPF library. These are used to notify
the function driver when the EPF device is bound to the EPC device.
pci-ep-cfs.c can be used as reference for using these APIs.
-*) pci_epf_create()
+* pci_epf_create()
Create a new PCI EPF device by passing the name of the PCI EPF device.
This name will be used to bind the the EPF device to a EPF driver.
-*) pci_epf_destroy()
+* pci_epf_destroy()
Destroy the created PCI EPF device.
-*) pci_epf_bind()
+* pci_epf_bind()
pci_epf_bind() should be invoked when the EPF device has been bound to
a EPC device.
-*) pci_epf_unbind()
+* pci_epf_unbind()
pci_epf_unbind() should be invoked when the binding between EPC device
and EPF device is lost.
diff --git a/Documentation/PCI/endpoint/pci-test-function.txt b/Documentation/PCI/endpoint/pci-test-function.rst
index 5916f1f592bb..3c8521d7aa31 100644
--- a/Documentation/PCI/endpoint/pci-test-function.txt
+++ b/Documentation/PCI/endpoint/pci-test-function.rst
@@ -1,5 +1,10 @@
- PCI TEST
- Kishon Vijay Abraham I <kishon@ti.com>
+.. SPDX-License-Identifier: GPL-2.0
+
+=================
+PCI Test Function
+=================
+
+:Author: Kishon Vijay Abraham I <kishon@ti.com>
Traditionally PCI RC has always been validated by using standard
PCI cards like ethernet PCI cards or USB PCI cards or SATA PCI cards.
@@ -23,65 +28,76 @@ The PCI endpoint test device has the following registers:
8) PCI_ENDPOINT_TEST_IRQ_TYPE
9) PCI_ENDPOINT_TEST_IRQ_NUMBER
-*) PCI_ENDPOINT_TEST_MAGIC
+* PCI_ENDPOINT_TEST_MAGIC
This register will be used to test BAR0. A known pattern will be written
and read back from MAGIC register to verify BAR0.
-*) PCI_ENDPOINT_TEST_COMMAND:
+* PCI_ENDPOINT_TEST_COMMAND
This register will be used by the host driver to indicate the function
that the endpoint device must perform.
-Bitfield Description:
- Bit 0 : raise legacy IRQ
- Bit 1 : raise MSI IRQ
- Bit 2 : raise MSI-X IRQ
- Bit 3 : read command (read data from RC buffer)
- Bit 4 : write command (write data to RC buffer)
- Bit 5 : copy command (copy data from one RC buffer to another
- RC buffer)
+======== ================================================================
+Bitfield Description
+======== ================================================================
+Bit 0 raise legacy IRQ
+Bit 1 raise MSI IRQ
+Bit 2 raise MSI-X IRQ
+Bit 3 read command (read data from RC buffer)
+Bit 4 write command (write data to RC buffer)
+Bit 5 copy command (copy data from one RC buffer to another RC buffer)
+======== ================================================================
-*) PCI_ENDPOINT_TEST_STATUS
+* PCI_ENDPOINT_TEST_STATUS
This register reflects the status of the PCI endpoint device.
-Bitfield Description:
- Bit 0 : read success
- Bit 1 : read fail
- Bit 2 : write success
- Bit 3 : write fail
- Bit 4 : copy success
- Bit 5 : copy fail
- Bit 6 : IRQ raised
- Bit 7 : source address is invalid
- Bit 8 : destination address is invalid
-
-*) PCI_ENDPOINT_TEST_SRC_ADDR
+======== ==============================
+Bitfield Description
+======== ==============================
+Bit 0 read success
+Bit 1 read fail
+Bit 2 write success
+Bit 3 write fail
+Bit 4 copy success
+Bit 5 copy fail
+Bit 6 IRQ raised
+Bit 7 source address is invalid
+Bit 8 destination address is invalid
+======== ==============================
+
+* PCI_ENDPOINT_TEST_SRC_ADDR
This register contains the source address (RC buffer address) for the
COPY/READ command.
-*) PCI_ENDPOINT_TEST_DST_ADDR
+* PCI_ENDPOINT_TEST_DST_ADDR
This register contains the destination address (RC buffer address) for
the COPY/WRITE command.
-*) PCI_ENDPOINT_TEST_IRQ_TYPE
+* PCI_ENDPOINT_TEST_IRQ_TYPE
This register contains the interrupt type (Legacy/MSI) triggered
for the READ/WRITE/COPY and raise IRQ (Legacy/MSI) commands.
Possible types:
- - Legacy : 0
- - MSI : 1
- - MSI-X : 2
-*) PCI_ENDPOINT_TEST_IRQ_NUMBER
+====== ==
+Legacy 0
+MSI 1
+MSI-X 2
+====== ==
+
+* PCI_ENDPOINT_TEST_IRQ_NUMBER
This register contains the triggered ID interrupt.
Admissible values:
- - Legacy : 0
- - MSI : [1 .. 32]
- - MSI-X : [1 .. 2048]
+
+====== ===========
+Legacy 0
+MSI [1 .. 32]
+MSI-X [1 .. 2048]
+====== ===========
diff --git a/Documentation/PCI/endpoint/pci-test-howto.txt b/Documentation/PCI/endpoint/pci-test-howto.rst
index 040479f437a5..909f770a07d6 100644
--- a/Documentation/PCI/endpoint/pci-test-howto.txt
+++ b/Documentation/PCI/endpoint/pci-test-howto.rst
@@ -1,38 +1,51 @@
- PCI TEST USERGUIDE
- Kishon Vijay Abraham I <kishon@ti.com>
+.. SPDX-License-Identifier: GPL-2.0
+
+===================
+PCI Test User Guide
+===================
+
+:Author: Kishon Vijay Abraham I <kishon@ti.com>
This document is a guide to help users use pci-epf-test function driver
and pci_endpoint_test host driver for testing PCI. The list of steps to
be followed in the host side and EP side is given below.
-1. Endpoint Device
+Endpoint Device
+===============
-1.1 Endpoint Controller Devices
+Endpoint Controller Devices
+---------------------------
-To find the list of endpoint controller devices in the system:
+To find the list of endpoint controller devices in the system::
# ls /sys/class/pci_epc/
51000000.pcie_ep
-If PCI_ENDPOINT_CONFIGFS is enabled
+If PCI_ENDPOINT_CONFIGFS is enabled::
+
# ls /sys/kernel/config/pci_ep/controllers
51000000.pcie_ep
-1.2 Endpoint Function Drivers
-To find the list of endpoint function drivers in the system:
+Endpoint Function Drivers
+-------------------------
+
+To find the list of endpoint function drivers in the system::
# ls /sys/bus/pci-epf/drivers
pci_epf_test
-If PCI_ENDPOINT_CONFIGFS is enabled
+If PCI_ENDPOINT_CONFIGFS is enabled::
+
# ls /sys/kernel/config/pci_ep/functions
pci_epf_test
-1.3 Creating pci-epf-test Device
+
+Creating pci-epf-test Device
+----------------------------
PCI endpoint function device can be created using the configfs. To create
-pci-epf-test device, the following commands can be used
+pci-epf-test device, the following commands can be used::
# mount -t configfs none /sys/kernel/config
# cd /sys/kernel/config/pci_ep/
@@ -42,7 +55,7 @@ The "mkdir func1" above creates the pci-epf-test function device that will
be probed by pci_epf_test driver.
The PCI endpoint framework populates the directory with the following
-configurable fields.
+configurable fields::
# ls functions/pci_epf_test/func1
baseclass_code interrupt_pin progif_code subsys_id
@@ -51,67 +64,83 @@ configurable fields.
The PCI endpoint function driver populates these entries with default values
when the device is bound to the driver. The pci-epf-test driver populates
-vendorid with 0xffff and interrupt_pin with 0x0001
+vendorid with 0xffff and interrupt_pin with 0x0001::
# cat functions/pci_epf_test/func1/vendorid
0xffff
# cat functions/pci_epf_test/func1/interrupt_pin
0x0001
-1.4 Configuring pci-epf-test Device
+
+Configuring pci-epf-test Device
+-------------------------------
The user can configure the pci-epf-test device using configfs entry. In order
to change the vendorid and the number of MSI interrupts used by the function
-device, the following commands can be used.
+device, the following commands can be used::
# echo 0x104c > functions/pci_epf_test/func1/vendorid
# echo 0xb500 > functions/pci_epf_test/func1/deviceid
# echo 16 > functions/pci_epf_test/func1/msi_interrupts
# echo 8 > functions/pci_epf_test/func1/msix_interrupts
-1.5 Binding pci-epf-test Device to EP Controller
+
+Binding pci-epf-test Device to EP Controller
+--------------------------------------------
In order for the endpoint function device to be useful, it has to be bound to
a PCI endpoint controller driver. Use the configfs to bind the function
-device to one of the controller driver present in the system.
+device to one of the controller driver present in the system::
# ln -s functions/pci_epf_test/func1 controllers/51000000.pcie_ep/
Once the above step is completed, the PCI endpoint is ready to establish a link
with the host.
-1.6 Start the Link
+
+Start the Link
+--------------
In order for the endpoint device to establish a link with the host, the _start_
-field should be populated with '1'.
+field should be populated with '1'::
# echo 1 > controllers/51000000.pcie_ep/start
-2. RootComplex Device
-2.1 lspci Output
+RootComplex Device
+==================
+
+lspci Output
+------------
-Note that the devices listed here correspond to the value populated in 1.4 above
+Note that the devices listed here correspond to the value populated in 1.4
+above::
00:00.0 PCI bridge: Texas Instruments Device 8888 (rev 01)
01:00.0 Unassigned class [ff00]: Texas Instruments Device b500
-2.2 Using Endpoint Test function Device
+
+Using Endpoint Test function Device
+-----------------------------------
pcitest.sh added in tools/pci/ can be used to run all the default PCI endpoint
-tests. To compile this tool the following commands should be used:
+tests. To compile this tool the following commands should be used::
# cd <kernel-dir>
# make -C tools/pci
-or if you desire to compile and install in your system:
+or if you desire to compile and install in your system::
# cd <kernel-dir>
# make -C tools/pci install
The tool and script will be located in <rootfs>/usr/bin/
-2.2.1 pcitest.sh Output
+
+pcitest.sh Output
+~~~~~~~~~~~~~~~~~
+::
+
# pcitest.sh
BAR tests
diff --git a/Documentation/PCI/index.rst b/Documentation/PCI/index.rst
new file mode 100644
index 000000000000..6768305e4c26
--- /dev/null
+++ b/Documentation/PCI/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================
+Linux PCI Bus Subsystem
+=======================
+
+.. toctree::
+ :maxdepth: 2
+ :numbered:
+
+ pci
+ pciebus-howto
+ pci-iov-howto
+ msi-howto
+ acpi-info
+ pci-error-recovery
+ pcieaer-howto
+ endpoint/index
diff --git a/Documentation/PCI/MSI-HOWTO.txt b/Documentation/PCI/msi-howto.rst
index 618e13d5e276..994cbb660ade 100644
--- a/Documentation/PCI/MSI-HOWTO.txt
+++ b/Documentation/PCI/msi-howto.rst
@@ -1,13 +1,16 @@
- The MSI Driver Guide HOWTO
- Tom L Nguyen tom.l.nguyen@intel.com
- 10/03/2003
- Revised Feb 12, 2004 by Martine Silbermann
- email: Martine.Silbermann@hp.com
- Revised Jun 25, 2004 by Tom L Nguyen
- Revised Jul 9, 2008 by Matthew Wilcox <willy@linux.intel.com>
- Copyright 2003, 2008 Intel Corporation
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
-1. About this guide
+==========================
+The MSI Driver Guide HOWTO
+==========================
+
+:Authors: Tom L Nguyen; Martine Silbermann; Matthew Wilcox
+
+:Copyright: 2003, 2008 Intel Corporation
+
+About this guide
+================
This guide describes the basics of Message Signaled Interrupts (MSIs),
the advantages of using MSI over traditional interrupt mechanisms, how
@@ -15,7 +18,8 @@ to change your driver to use MSI or MSI-X and some basic diagnostics to
try if a device doesn't support MSIs.
-2. What are MSIs?
+What are MSIs?
+==============
A Message Signaled Interrupt is a write from the device to a special
address which causes an interrupt to be received by the CPU.
@@ -29,7 +33,8 @@ Devices may support both MSI and MSI-X, but only one can be enabled at
a time.
-3. Why use MSIs?
+Why use MSIs?
+=============
There are three reasons why using MSIs can give an advantage over
traditional pin-based interrupts.
@@ -61,14 +66,16 @@ Other possible designs include giving one interrupt to each packet queue
in a network card or each port in a storage controller.
-4. How to use MSIs
+How to use MSIs
+===============
PCI devices are initialised to use pin-based interrupts. The device
driver has to set up the device to use MSI or MSI-X. Not all machines
support MSIs correctly, and for those machines, the APIs described below
will simply fail and the device will continue to use pin-based interrupts.
-4.1 Include kernel support for MSIs
+Include kernel support for MSIs
+-------------------------------
To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI
option enabled. This option is only available on some architectures,
@@ -76,14 +83,15 @@ and it may depend on some other options also being set. For example,
on x86, you must also enable X86_UP_APIC or SMP in order to see the
CONFIG_PCI_MSI option.
-4.2 Using MSI
+Using MSI
+---------
Most of the hard work is done for the driver in the PCI layer. The driver
simply has to request that the PCI layer set up the MSI capability for this
device.
To automatically use MSI or MSI-X interrupt vectors, use the following
-function:
+function::
int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs,
unsigned int max_vecs, unsigned int flags);
@@ -101,12 +109,12 @@ any possible kind of interrupt. If the PCI_IRQ_AFFINITY flag is set,
pci_alloc_irq_vectors() will spread the interrupts around the available CPUs.
To get the Linux IRQ numbers passed to request_irq() and free_irq() and the
-vectors, use the following function:
+vectors, use the following function::
int pci_irq_vector(struct pci_dev *dev, unsigned int nr);
Any allocated resources should be freed before removing the device using
-the following function:
+the following function::
void pci_free_irq_vectors(struct pci_dev *dev);
@@ -126,7 +134,7 @@ The typical usage of MSI or MSI-X interrupts is to allocate as many vectors
as possible, likely up to the limit supported by the device. If nvec is
larger than the number supported by the device it will automatically be
capped to the supported limit, so there is no need to query the number of
-vectors supported beforehand:
+vectors supported beforehand::
nvec = pci_alloc_irq_vectors(pdev, 1, nvec, PCI_IRQ_ALL_TYPES)
if (nvec < 0)
@@ -135,7 +143,7 @@ vectors supported beforehand:
If a driver is unable or unwilling to deal with a variable number of MSI
interrupts it can request a particular number of interrupts by passing that
number to pci_alloc_irq_vectors() function as both 'min_vecs' and
-'max_vecs' parameters:
+'max_vecs' parameters::
ret = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_ALL_TYPES);
if (ret < 0)
@@ -143,23 +151,24 @@ number to pci_alloc_irq_vectors() function as both 'min_vecs' and
The most notorious example of the request type described above is enabling
the single MSI mode for a device. It could be done by passing two 1s as
-'min_vecs' and 'max_vecs':
+'min_vecs' and 'max_vecs'::
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
if (ret < 0)
goto out_err;
Some devices might not support using legacy line interrupts, in which case
-the driver can specify that only MSI or MSI-X is acceptable:
+the driver can specify that only MSI or MSI-X is acceptable::
nvec = pci_alloc_irq_vectors(pdev, 1, nvec, PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (nvec < 0)
goto out_err;
-4.3 Legacy APIs
+Legacy APIs
+-----------
The following old APIs to enable and disable MSI or MSI-X interrupts should
-not be used in new code:
+not be used in new code::
pci_enable_msi() /* deprecated */
pci_disable_msi() /* deprecated */
@@ -174,9 +183,11 @@ number of vectors. If you have a legitimate special use case for the count
of vectors we might have to revisit that decision and add a
pci_nr_irq_vectors() helper that handles MSI and MSI-X transparently.
-4.4 Considerations when using MSIs
+Considerations when using MSIs
+------------------------------
-4.4.1 Spinlocks
+Spinlocks
+~~~~~~~~~
Most device drivers have a per-device spinlock which is taken in the
interrupt handler. With pin-based interrupts or a single MSI, it is not
@@ -188,7 +199,8 @@ acquire the spinlock. Such deadlocks can be avoided by using
spin_lock_irqsave() or spin_lock_irq() which disable local interrupts
and acquire the lock (see Documentation/kernel-hacking/locking.rst).
-4.5 How to tell whether MSI/MSI-X is enabled on a device
+How to tell whether MSI/MSI-X is enabled on a device
+----------------------------------------------------
Using 'lspci -v' (as root) may show some devices with "MSI", "Message
Signalled Interrupts" or "MSI-X" capabilities. Each of these capabilities
@@ -196,7 +208,8 @@ has an 'Enable' flag which is followed with either "+" (enabled)
or "-" (disabled).
-5. MSI quirks
+MSI quirks
+==========
Several PCI chipsets or devices are known not to support MSIs.
The PCI stack provides three ways to disable MSIs:
@@ -205,7 +218,8 @@ The PCI stack provides three ways to disable MSIs:
2. on all devices behind a specific bridge
3. on a single device
-5.1. Disabling MSIs globally
+Disabling MSIs globally
+-----------------------
Some host chipsets simply don't support MSIs properly. If we're
lucky, the manufacturer knows this and has indicated it in the ACPI
@@ -219,7 +233,8 @@ on the kernel command line to disable MSIs on all devices. It would be
in your best interests to report the problem to linux-pci@vger.kernel.org
including a full 'lspci -v' so we can add the quirks to the kernel.
-5.2. Disabling MSIs below a bridge
+Disabling MSIs below a bridge
+-----------------------------
Some PCI bridges are not able to route MSIs between busses properly.
In this case, MSIs must be disabled on all devices behind the bridge.
@@ -230,7 +245,7 @@ as the nVidia nForce and Serverworks HT2000). As with host chipsets,
Linux mostly knows about them and automatically enables MSIs if it can.
If you have a bridge unknown to Linux, you can enable
MSIs in configuration space using whatever method you know works, then
-enable MSIs on that bridge by doing:
+enable MSIs on that bridge by doing::
echo 1 > /sys/bus/pci/devices/$bridge/msi_bus
@@ -244,7 +259,8 @@ below this bridge.
Again, please notify linux-pci@vger.kernel.org of any bridges that need
special handling.
-5.3. Disabling MSIs on a single device
+Disabling MSIs on a single device
+---------------------------------
Some devices are known to have faulty MSI implementations. Usually this
is handled in the individual device driver, but occasionally it's necessary
@@ -252,7 +268,8 @@ to handle this with a quirk. Some drivers have an option to disable use
of MSI. While this is a convenient workaround for the driver author,
it is not good practice, and should not be emulated.
-5.4. Finding why MSIs are disabled on a device
+Finding why MSIs are disabled on a device
+-----------------------------------------
From the above three sections, you can see that there are many reasons
why MSIs may not be enabled for a given device. Your first step should
@@ -260,8 +277,8 @@ be to examine your dmesg carefully to determine whether MSIs are enabled
for your machine. You should also check your .config to be sure you
have enabled CONFIG_PCI_MSI.
-Then, 'lspci -t' gives the list of bridges above a device. Reading
-/sys/bus/pci/devices/*/msi_bus will tell you whether MSIs are enabled (1)
+Then, 'lspci -t' gives the list of bridges above a device. Reading
+`/sys/bus/pci/devices/*/msi_bus` will tell you whether MSIs are enabled (1)
or disabled (0). If 0 is found in any of the msi_bus files belonging
to bridges between the PCI root and the device, MSIs are disabled.
diff --git a/Documentation/PCI/pci-error-recovery.txt b/Documentation/PCI/pci-error-recovery.rst
index 0b6bb3ef449e..13beee23cb04 100644
--- a/Documentation/PCI/pci-error-recovery.txt
+++ b/Documentation/PCI/pci-error-recovery.rst
@@ -1,12 +1,13 @@
+.. SPDX-License-Identifier: GPL-2.0
- PCI Error Recovery
- ------------------
- February 2, 2006
+==================
+PCI Error Recovery
+==================
- Current document maintainer:
- Linas Vepstas <linasvepstas@gmail.com>
- updated by Richard Lary <rlary@us.ibm.com>
- and Mike Mason <mmlnx@us.ibm.com> on 27-Jul-2009
+
+:Authors: - Linas Vepstas <linasvepstas@gmail.com>
+ - Richard Lary <rlary@us.ibm.com>
+ - Mike Mason <mmlnx@us.ibm.com>
Many PCI bus controllers are able to detect a variety of hardware
@@ -63,7 +64,8 @@ mechanisms for dealing with SCSI bus errors and SCSI bus resets.
Detailed Design
----------------
+===============
+
Design and implementation details below, based on a chain of
public email discussions with Ben Herrenschmidt, circa 5 April 2005.
@@ -73,30 +75,33 @@ pci_driver. A driver that fails to provide the structure is "non-aware",
and the actual recovery steps taken are platform dependent. The
arch/powerpc implementation will simulate a PCI hotplug remove/add.
-This structure has the form:
-struct pci_error_handlers
-{
- int (*error_detected)(struct pci_dev *dev, enum pci_channel_state);
- int (*mmio_enabled)(struct pci_dev *dev);
- int (*slot_reset)(struct pci_dev *dev);
- void (*resume)(struct pci_dev *dev);
-};
-
-The possible channel states are:
-enum pci_channel_state {
- pci_channel_io_normal, /* I/O channel is in normal state */
- pci_channel_io_frozen, /* I/O to channel is blocked */
- pci_channel_io_perm_failure, /* PCI card is dead */
-};
-
-Possible return values are:
-enum pci_ers_result {
- PCI_ERS_RESULT_NONE, /* no result/none/not supported in device driver */
- PCI_ERS_RESULT_CAN_RECOVER, /* Device driver can recover without slot reset */
- PCI_ERS_RESULT_NEED_RESET, /* Device driver wants slot to be reset. */
- PCI_ERS_RESULT_DISCONNECT, /* Device has completely failed, is unrecoverable */
- PCI_ERS_RESULT_RECOVERED, /* Device driver is fully recovered and operational */
-};
+This structure has the form::
+
+ struct pci_error_handlers
+ {
+ int (*error_detected)(struct pci_dev *dev, enum pci_channel_state);
+ int (*mmio_enabled)(struct pci_dev *dev);
+ int (*slot_reset)(struct pci_dev *dev);
+ void (*resume)(struct pci_dev *dev);
+ };
+
+The possible channel states are::
+
+ enum pci_channel_state {
+ pci_channel_io_normal, /* I/O channel is in normal state */
+ pci_channel_io_frozen, /* I/O to channel is blocked */
+ pci_channel_io_perm_failure, /* PCI card is dead */
+ };
+
+Possible return values are::
+
+ enum pci_ers_result {
+ PCI_ERS_RESULT_NONE, /* no result/none/not supported in device driver */
+ PCI_ERS_RESULT_CAN_RECOVER, /* Device driver can recover without slot reset */
+ PCI_ERS_RESULT_NEED_RESET, /* Device driver wants slot to be reset. */
+ PCI_ERS_RESULT_DISCONNECT, /* Device has completely failed, is unrecoverable */
+ PCI_ERS_RESULT_RECOVERED, /* Device driver is fully recovered and operational */
+ };
A driver does not have to implement all of these callbacks; however,
if it implements any, it must implement error_detected(). If a callback
@@ -134,16 +139,17 @@ shouldn't do any new IOs. Called in task context. This is sort of a
All drivers participating in this system must implement this call.
The driver must return one of the following result codes:
- - PCI_ERS_RESULT_CAN_RECOVER:
- Driver returns this if it thinks it might be able to recover
- the HW by just banging IOs or if it wants to be given
- a chance to extract some diagnostic information (see
- mmio_enable, below).
- - PCI_ERS_RESULT_NEED_RESET:
- Driver returns this if it can't recover without a
- slot reset.
- - PCI_ERS_RESULT_DISCONNECT:
- Driver returns this if it doesn't want to recover at all.
+
+ - PCI_ERS_RESULT_CAN_RECOVER
+ Driver returns this if it thinks it might be able to recover
+ the HW by just banging IOs or if it wants to be given
+ a chance to extract some diagnostic information (see
+ mmio_enable, below).
+ - PCI_ERS_RESULT_NEED_RESET
+ Driver returns this if it can't recover without a
+ slot reset.
+ - PCI_ERS_RESULT_DISCONNECT
+ Driver returns this if it doesn't want to recover at all.
The next step taken will depend on the result codes returned by the
drivers.
@@ -159,25 +165,27 @@ then recovery proceeds to STEP 4 (Slot Reset).
If the platform is unable to recover the slot, the next step
is STEP 6 (Permanent Failure).
->>> The current powerpc implementation assumes that a device driver will
->>> *not* schedule or semaphore in this routine; the current powerpc
->>> implementation uses one kernel thread to notify all devices;
->>> thus, if one device sleeps/schedules, all devices are affected.
->>> Doing better requires complex multi-threaded logic in the error
->>> recovery implementation (e.g. waiting for all notification threads
->>> to "join" before proceeding with recovery.) This seems excessively
->>> complex and not worth implementing.
-
->>> The current powerpc implementation doesn't much care if the device
->>> attempts I/O at this point, or not. I/O's will fail, returning
->>> a value of 0xff on read, and writes will be dropped. If more than
->>> EEH_MAX_FAILS I/O's are attempted to a frozen adapter, EEH
->>> assumes that the device driver has gone into an infinite loop
->>> and prints an error to syslog. A reboot is then required to
->>> get the device working again.
+.. note::
+
+ The current powerpc implementation assumes that a device driver will
+ *not* schedule or semaphore in this routine; the current powerpc
+ implementation uses one kernel thread to notify all devices;
+ thus, if one device sleeps/schedules, all devices are affected.
+ Doing better requires complex multi-threaded logic in the error
+ recovery implementation (e.g. waiting for all notification threads
+ to "join" before proceeding with recovery.) This seems excessively
+ complex and not worth implementing.
+
+ The current powerpc implementation doesn't much care if the device
+ attempts I/O at this point, or not. I/O's will fail, returning
+ a value of 0xff on read, and writes will be dropped. If more than
+ EEH_MAX_FAILS I/O's are attempted to a frozen adapter, EEH
+ assumes that the device driver has gone into an infinite loop
+ and prints an error to syslog. A reboot is then required to
+ get the device working again.
STEP 2: MMIO Enabled
--------------------
+--------------------
The platform re-enables MMIO to the device (but typically not the
DMA), and then calls the mmio_enabled() callback on all affected
device drivers.
@@ -192,34 +200,36 @@ link reset was performed by the HW. If the platform can't just re-enable IOs
without a slot reset or a link reset, it will not call this callback, and
instead will have gone directly to STEP 3 (Link Reset) or STEP 4 (Slot Reset)
->>> The following is proposed; no platform implements this yet:
->>> Proposal: All I/O's should be done _synchronously_ from within
->>> this callback, errors triggered by them will be returned via
->>> the normal pci_check_whatever() API, no new error_detected()
->>> callback will be issued due to an error happening here. However,
->>> such an error might cause IOs to be re-blocked for the whole
->>> segment, and thus invalidate the recovery that other devices
->>> on the same segment might have done, forcing the whole segment
->>> into one of the next states, that is, link reset or slot reset.
+.. note::
+
+ The following is proposed; no platform implements this yet:
+ Proposal: All I/O's should be done _synchronously_ from within
+ this callback, errors triggered by them will be returned via
+ the normal pci_check_whatever() API, no new error_detected()
+ callback will be issued due to an error happening here. However,
+ such an error might cause IOs to be re-blocked for the whole
+ segment, and thus invalidate the recovery that other devices
+ on the same segment might have done, forcing the whole segment
+ into one of the next states, that is, link reset or slot reset.
The driver should return one of the following result codes:
- - PCI_ERS_RESULT_RECOVERED
- Driver returns this if it thinks the device is fully
- functional and thinks it is ready to start
- normal driver operations again. There is no
- guarantee that the driver will actually be
- allowed to proceed, as another driver on the
- same segment might have failed and thus triggered a
- slot reset on platforms that support it.
-
- - PCI_ERS_RESULT_NEED_RESET
- Driver returns this if it thinks the device is not
- recoverable in its current state and it needs a slot
- reset to proceed.
-
- - PCI_ERS_RESULT_DISCONNECT
- Same as above. Total failure, no recovery even after
- reset driver dead. (To be defined more precisely)
+ - PCI_ERS_RESULT_RECOVERED
+ Driver returns this if it thinks the device is fully
+ functional and thinks it is ready to start
+ normal driver operations again. There is no
+ guarantee that the driver will actually be
+ allowed to proceed, as another driver on the
+ same segment might have failed and thus triggered a
+ slot reset on platforms that support it.
+
+ - PCI_ERS_RESULT_NEED_RESET
+ Driver returns this if it thinks the device is not
+ recoverable in its current state and it needs a slot
+ reset to proceed.
+
+ - PCI_ERS_RESULT_DISCONNECT
+ Same as above. Total failure, no recovery even after
+ reset driver dead. (To be defined more precisely)
The next step taken depends on the results returned by the drivers.
If all drivers returned PCI_ERS_RESULT_RECOVERED, then the platform
@@ -293,31 +303,33 @@ device will be considered "dead" in this case.
Drivers for multi-function cards will need to coordinate among
themselves as to which driver instance will perform any "one-shot"
or global device initialization. For example, the Symbios sym53cxx2
-driver performs device init only from PCI function 0:
+driver performs device init only from PCI function 0::
-+ if (PCI_FUNC(pdev->devfn) == 0)
-+ sym_reset_scsi_bus(np, 0);
+ + if (PCI_FUNC(pdev->devfn) == 0)
+ + sym_reset_scsi_bus(np, 0);
- Result codes:
- - PCI_ERS_RESULT_DISCONNECT
- Same as above.
+Result codes:
+ - PCI_ERS_RESULT_DISCONNECT
+ Same as above.
Drivers for PCI Express cards that require a fundamental reset must
set the needs_freset bit in the pci_dev structure in their probe function.
For example, the QLogic qla2xxx driver sets the needs_freset bit for certain
-PCI card types:
+PCI card types::
-+ /* Set EEH reset type to fundamental if required by hba */
-+ if (IS_QLA24XX(ha) || IS_QLA25XX(ha) || IS_QLA81XX(ha))
-+ pdev->needs_freset = 1;
-+
+ + /* Set EEH reset type to fundamental if required by hba */
+ + if (IS_QLA24XX(ha) || IS_QLA25XX(ha) || IS_QLA81XX(ha))
+ + pdev->needs_freset = 1;
+ +
Platform proceeds either to STEP 5 (Resume Operations) or STEP 6 (Permanent
Failure).
->>> The current powerpc implementation does not try a power-cycle
->>> reset if the driver returned PCI_ERS_RESULT_DISCONNECT.
->>> However, it probably should.
+.. note::
+
+ The current powerpc implementation does not try a power-cycle
+ reset if the driver returned PCI_ERS_RESULT_DISCONNECT.
+ However, it probably should.
STEP 5: Resume Operations
@@ -370,44 +382,45 @@ The current policy is to turn this into a platform policy.
That is, the recovery API only requires that:
- There is no guarantee that interrupt delivery can proceed from any
-device on the segment starting from the error detection and until the
-slot_reset callback is called, at which point interrupts are expected
-to be fully operational.
+ device on the segment starting from the error detection and until the
+ slot_reset callback is called, at which point interrupts are expected
+ to be fully operational.
- There is no guarantee that interrupt delivery is stopped, that is,
-a driver that gets an interrupt after detecting an error, or that detects
-an error within the interrupt handler such that it prevents proper
-ack'ing of the interrupt (and thus removal of the source) should just
-return IRQ_NOTHANDLED. It's up to the platform to deal with that
-condition, typically by masking the IRQ source during the duration of
-the error handling. It is expected that the platform "knows" which
-interrupts are routed to error-management capable slots and can deal
-with temporarily disabling that IRQ number during error processing (this
-isn't terribly complex). That means some IRQ latency for other devices
-sharing the interrupt, but there is simply no other way. High end
-platforms aren't supposed to share interrupts between many devices
-anyway :)
-
->>> Implementation details for the powerpc platform are discussed in
->>> the file Documentation/powerpc/eeh-pci-error-recovery.txt
-
->>> As of this writing, there is a growing list of device drivers with
->>> patches implementing error recovery. Not all of these patches are in
->>> mainline yet. These may be used as "examples":
->>>
->>> drivers/scsi/ipr
->>> drivers/scsi/sym53c8xx_2
->>> drivers/scsi/qla2xxx
->>> drivers/scsi/lpfc
->>> drivers/next/bnx2.c
->>> drivers/next/e100.c
->>> drivers/net/e1000
->>> drivers/net/e1000e
->>> drivers/net/ixgb
->>> drivers/net/ixgbe
->>> drivers/net/cxgb3
->>> drivers/net/s2io.c
->>> drivers/net/qlge
+ a driver that gets an interrupt after detecting an error, or that detects
+ an error within the interrupt handler such that it prevents proper
+ ack'ing of the interrupt (and thus removal of the source) should just
+ return IRQ_NOTHANDLED. It's up to the platform to deal with that
+ condition, typically by masking the IRQ source during the duration of
+ the error handling. It is expected that the platform "knows" which
+ interrupts are routed to error-management capable slots and can deal
+ with temporarily disabling that IRQ number during error processing (this
+ isn't terribly complex). That means some IRQ latency for other devices
+ sharing the interrupt, but there is simply no other way. High end
+ platforms aren't supposed to share interrupts between many devices
+ anyway :)
+
+.. note::
+
+ Implementation details for the powerpc platform are discussed in
+ the file Documentation/powerpc/eeh-pci-error-recovery.rst
+
+ As of this writing, there is a growing list of device drivers with
+ patches implementing error recovery. Not all of these patches are in
+ mainline yet. These may be used as "examples":
+
+ - drivers/scsi/ipr
+ - drivers/scsi/sym53c8xx_2
+ - drivers/scsi/qla2xxx
+ - drivers/scsi/lpfc
+ - drivers/next/bnx2.c
+ - drivers/next/e100.c
+ - drivers/net/e1000
+ - drivers/net/e1000e
+ - drivers/net/ixgb
+ - drivers/net/ixgbe
+ - drivers/net/cxgb3
+ - drivers/net/s2io.c
The End
-------
diff --git a/Documentation/PCI/pci-iov-howto.txt b/Documentation/PCI/pci-iov-howto.rst
index d2a84151e99c..b9fd003206f1 100644
--- a/Documentation/PCI/pci-iov-howto.txt
+++ b/Documentation/PCI/pci-iov-howto.rst
@@ -1,14 +1,19 @@
- PCI Express I/O Virtualization Howto
- Copyright (C) 2009 Intel Corporation
- Yu Zhao <yu.zhao@intel.com>
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
- Update: November 2012
- -- sysfs-based SRIOV enable-/disable-ment
- Donald Dutile <ddutile@redhat.com>
+====================================
+PCI Express I/O Virtualization Howto
+====================================
-1. Overview
+:Copyright: |copy| 2009 Intel Corporation
+:Authors: - Yu Zhao <yu.zhao@intel.com>
+ - Donald Dutile <ddutile@redhat.com>
-1.1 What is SR-IOV
+Overview
+========
+
+What is SR-IOV
+--------------
Single Root I/O Virtualization (SR-IOV) is a PCI Express Extended
capability which makes one physical device appear as multiple virtual
@@ -23,9 +28,11 @@ Memory Space, which is used to map its register set. VF device driver
operates on the register set so it can be functional and appear as a
real existing PCI device.
-2. User Guide
+User Guide
+==========
-2.1 How can I enable SR-IOV capability
+How can I enable SR-IOV capability
+----------------------------------
Multiple methods are available for SR-IOV enablement.
In the first method, the device driver (PF driver) will control the
@@ -43,105 +50,123 @@ checks, e.g., check numvfs == 0 if enabling VFs, ensure
numvfs <= totalvfs.
The second method is the recommended method for new/future VF devices.
-2.2 How can I use the Virtual Functions
+How can I use the Virtual Functions
+-----------------------------------
The VF is treated as hot-plugged PCI devices in the kernel, so they
should be able to work in the same way as real PCI devices. The VF
requires device driver that is same as a normal PCI device's.
-3. Developer Guide
+Developer Guide
+===============
-3.1 SR-IOV API
+SR-IOV API
+----------
To enable SR-IOV capability:
-(a) For the first method, in the driver:
+
+(a) For the first method, in the driver::
+
int pci_enable_sriov(struct pci_dev *dev, int nr_virtfn);
- 'nr_virtfn' is number of VFs to be enabled.
-(b) For the second method, from sysfs:
+
+'nr_virtfn' is number of VFs to be enabled.
+
+(b) For the second method, from sysfs::
+
echo 'nr_virtfn' > \
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_numvfs
To disable SR-IOV capability:
-(a) For the first method, in the driver:
+
+(a) For the first method, in the driver::
+
void pci_disable_sriov(struct pci_dev *dev);
-(b) For the second method, from sysfs:
+
+(b) For the second method, from sysfs::
+
echo 0 > \
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_numvfs
To enable auto probing VFs by a compatible driver on the host, run
command below before enabling SR-IOV capabilities. This is the
default behavior.
+::
+
echo 1 > \
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_drivers_autoprobe
To disable auto probing VFs by a compatible driver on the host, run
command below before enabling SR-IOV capabilities. Updating this
entry will not affect VFs which are already probed.
+::
+
echo 0 > \
/sys/bus/pci/devices/<DOMAIN:BUS:DEVICE.FUNCTION>/sriov_drivers_autoprobe
-3.2 Usage example
+Usage example
+-------------
Following piece of code illustrates the usage of the SR-IOV API.
+::
-static int dev_probe(struct pci_dev *dev, const struct pci_device_id *id)
-{
- pci_enable_sriov(dev, NR_VIRTFN);
+ static int dev_probe(struct pci_dev *dev, const struct pci_device_id *id)
+ {
+ pci_enable_sriov(dev, NR_VIRTFN);
- ...
-
- return 0;
-}
+ ...
-static void dev_remove(struct pci_dev *dev)
-{
- pci_disable_sriov(dev);
+ return 0;
+ }
- ...
-}
+ static void dev_remove(struct pci_dev *dev)
+ {
+ pci_disable_sriov(dev);
-static int dev_suspend(struct pci_dev *dev, pm_message_t state)
-{
- ...
+ ...
+ }
- return 0;
-}
+ static int dev_suspend(struct pci_dev *dev, pm_message_t state)
+ {
+ ...
-static int dev_resume(struct pci_dev *dev)
-{
- ...
+ return 0;
+ }
- return 0;
-}
+ static int dev_resume(struct pci_dev *dev)
+ {
+ ...
-static void dev_shutdown(struct pci_dev *dev)
-{
- ...
-}
+ return 0;
+ }
-static int dev_sriov_configure(struct pci_dev *dev, int numvfs)
-{
- if (numvfs > 0) {
- ...
- pci_enable_sriov(dev, numvfs);
+ static void dev_shutdown(struct pci_dev *dev)
+ {
...
- return numvfs;
}
- if (numvfs == 0) {
- ....
- pci_disable_sriov(dev);
- ...
- return 0;
+
+ static int dev_sriov_configure(struct pci_dev *dev, int numvfs)
+ {
+ if (numvfs > 0) {
+ ...
+ pci_enable_sriov(dev, numvfs);
+ ...
+ return numvfs;
+ }
+ if (numvfs == 0) {
+ ....
+ pci_disable_sriov(dev);
+ ...
+ return 0;
+ }
}
-}
-
-static struct pci_driver dev_driver = {
- .name = "SR-IOV Physical Function driver",
- .id_table = dev_id_table,
- .probe = dev_probe,
- .remove = dev_remove,
- .suspend = dev_suspend,
- .resume = dev_resume,
- .shutdown = dev_shutdown,
- .sriov_configure = dev_sriov_configure,
-};
+
+ static struct pci_driver dev_driver = {
+ .name = "SR-IOV Physical Function driver",
+ .id_table = dev_id_table,
+ .probe = dev_probe,
+ .remove = dev_remove,
+ .suspend = dev_suspend,
+ .resume = dev_resume,
+ .shutdown = dev_shutdown,
+ .sriov_configure = dev_sriov_configure,
+ };
diff --git a/Documentation/PCI/pci.txt b/Documentation/PCI/pci.rst
index badb26ac33dc..6864f9a70f5f 100644
--- a/Documentation/PCI/pci.txt
+++ b/Documentation/PCI/pci.rst
@@ -1,10 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
- How To Write Linux PCI Drivers
+==============================
+How To Write Linux PCI Drivers
+==============================
- by Martin Mares <mj@ucw.cz> on 07-Feb-2000
- updated by Grant Grundler <grundler@parisc-linux.org> on 23-Dec-2006
+:Authors: - Martin Mares <mj@ucw.cz>
+ - Grant Grundler <grundler@parisc-linux.org>
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The world of PCI is vast and full of (mostly unpleasant) surprises.
Since each CPU architecture implements different chip-sets and PCI devices
have different requirements (erm, "features"), the result is the PCI support
@@ -15,8 +17,7 @@ PCI device drivers.
A more complete resource is the third edition of "Linux Device Drivers"
by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
LDD3 is available for free (under Creative Commons License) from:
-
- http://lwn.net/Kernel/LDD3/
+http://lwn.net/Kernel/LDD3/.
However, keep in mind that all documents are subject to "bit rot".
Refer to the source code if things are not working as described here.
@@ -25,9 +26,8 @@ Please send questions/comments/patches about Linux PCI API to the
"Linux PCI" <linux-pci@atrey.karlin.mff.cuni.cz> mailing list.
-
-0. Structure of PCI drivers
-~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Structure of PCI drivers
+========================
PCI drivers "discover" PCI devices in a system via pci_register_driver().
Actually, it's the other way around. When the PCI generic code discovers
a new device, the driver with a matching "description" will be notified.
@@ -42,24 +42,25 @@ pointers and thus dictates the high level structure of a driver.
Once the driver knows about a PCI device and takes ownership, the
driver generally needs to perform the following initialization:
- Enable the device
- Request MMIO/IOP resources
- Set the DMA mask size (for both coherent and streaming DMA)
- Allocate and initialize shared control data (pci_allocate_coherent())
- Access device configuration space (if needed)
- Register IRQ handler (request_irq())
- Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
- Enable DMA/processing engines
+ - Enable the device
+ - Request MMIO/IOP resources
+ - Set the DMA mask size (for both coherent and streaming DMA)
+ - Allocate and initialize shared control data (pci_allocate_coherent())
+ - Access device configuration space (if needed)
+ - Register IRQ handler (request_irq())
+ - Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
+ - Enable DMA/processing engines
When done using the device, and perhaps the module needs to be unloaded,
the driver needs to take the follow steps:
- Disable the device from generating IRQs
- Release the IRQ (free_irq())
- Stop all DMA activity
- Release DMA buffers (both streaming and coherent)
- Unregister from other subsystems (e.g. scsi or netdev)
- Release MMIO/IOP resources
- Disable the device
+
+ - Disable the device from generating IRQs
+ - Release the IRQ (free_irq())
+ - Stop all DMA activity
+ - Release DMA buffers (both streaming and coherent)
+ - Unregister from other subsystems (e.g. scsi or netdev)
+ - Release MMIO/IOP resources
+ - Disable the device
Most of these topics are covered in the following sections.
For the rest look at LDD3 or <linux/pci.h> .
@@ -70,99 +71,38 @@ completely empty or just returning an appropriate error codes to avoid
lots of ifdefs in the drivers.
+pci_register_driver() call
+==========================
-1. pci_register_driver() call
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-PCI device drivers call pci_register_driver() during their
+PCI device drivers call ``pci_register_driver()`` during their
initialization with a pointer to a structure describing the driver
-(struct pci_driver):
-
- field name Description
- ---------- ------------------------------------------------------
- id_table Pointer to table of device ID's the driver is
- interested in. Most drivers should export this
- table using MODULE_DEVICE_TABLE(pci,...).
-
- probe This probing function gets called (during execution
- of pci_register_driver() for already existing
- devices or later if a new device gets inserted) for
- all PCI devices which match the ID table and are not
- "owned" by the other drivers yet. This function gets
- passed a "struct pci_dev *" for each device whose
- entry in the ID table matches the device. The probe
- function returns zero when the driver chooses to
- take "ownership" of the device or an error code
- (negative number) otherwise.
- The probe function always gets called from process
- context, so it can sleep.
-
- remove The remove() function gets called whenever a device
- being handled by this driver is removed (either during
- deregistration of the driver or when it's manually
- pulled out of a hot-pluggable slot).
- The remove function always gets called from process
- context, so it can sleep.
-
- suspend Put device into low power state.
- suspend_late Put device into low power state.
-
- resume_early Wake device from low power state.
- resume Wake device from low power state.
-
- (Please see Documentation/power/pci.txt for descriptions
- of PCI Power Management and the related functions.)
-
- shutdown Hook into reboot_notifier_list (kernel/sys.c).
- Intended to stop any idling DMA operations.
- Useful for enabling wake-on-lan (NIC) or changing
- the power state of a device before reboot.
- e.g. drivers/net/e100.c.
-
- err_handler See Documentation/PCI/pci-error-recovery.txt
-
-
-The ID table is an array of struct pci_device_id entries ending with an
-all-zero entry. Definitions with static const are generally preferred.
-
-Each entry consists of:
-
- vendor,device Vendor and device ID to match (or PCI_ANY_ID)
+(``struct pci_driver``):
- subvendor, Subsystem vendor and device ID to match (or PCI_ANY_ID)
- subdevice,
+.. kernel-doc:: include/linux/pci.h
+ :functions: pci_driver
- class Device class, subclass, and "interface" to match.
- See Appendix D of the PCI Local Bus Spec or
- include/linux/pci_ids.h for a full list of classes.
- Most drivers do not need to specify class/class_mask
- as vendor/device is normally sufficient.
-
- class_mask limit which sub-fields of the class field are compared.
- See drivers/scsi/sym53c8xx_2/ for example of usage.
-
- driver_data Data private to the driver.
- Most drivers don't need to use driver_data field.
- Best practice is to use driver_data as an index
- into a static list of equivalent device types,
- instead of using it as a pointer.
+The ID table is an array of ``struct pci_device_id`` entries ending with an
+all-zero entry. Definitions with static const are generally preferred.
+.. kernel-doc:: include/linux/mod_devicetable.h
+ :functions: pci_device_id
-Most drivers only need PCI_DEVICE() or PCI_DEVICE_CLASS() to set up
+Most drivers only need ``PCI_DEVICE()`` or ``PCI_DEVICE_CLASS()`` to set up
a pci_device_id table.
New PCI IDs may be added to a device driver pci_ids table at runtime
-as shown below:
+as shown below::
-echo "vendor device subvendor subdevice class class_mask driver_data" > \
-/sys/bus/pci/drivers/{driver}/new_id
+ echo "vendor device subvendor subdevice class class_mask driver_data" > \
+ /sys/bus/pci/drivers/{driver}/new_id
All fields are passed in as hexadecimal values (no leading 0x).
The vendor and device fields are mandatory, the others are optional. Users
need pass only as many optional fields as necessary:
- o subvendor and subdevice fields default to PCI_ANY_ID (FFFFFFFF)
- o class and classmask fields default to 0
- o driver_data defaults to 0UL.
+
+ - subvendor and subdevice fields default to PCI_ANY_ID (FFFFFFFF)
+ - class and classmask fields default to 0
+ - driver_data defaults to 0UL.
Note that driver_data must match the value used by any of the pci_device_id
entries defined in the driver. This makes the driver_data field mandatory
@@ -175,29 +115,31 @@ When the driver exits, it just calls pci_unregister_driver() and the PCI layer
automatically calls the remove hook for all devices handled by the driver.
-1.1 "Attributes" for driver functions/data
+"Attributes" for driver functions/data
+--------------------------------------
Please mark the initialization and cleanup functions where appropriate
(the corresponding macros are defined in <linux/init.h>):
+ ====== =================================================
__init Initialization code. Thrown away after the driver
initializes.
__exit Exit code. Ignored for non-modular drivers.
+ ====== =================================================
Tips on when/where to use the above attributes:
- o The module_init()/module_exit() functions (and all
+ - The module_init()/module_exit() functions (and all
initialization functions called _only_ from these)
should be marked __init/__exit.
- o Do not mark the struct pci_driver.
+ - Do not mark the struct pci_driver.
- o Do NOT mark a function if you are not sure which mark to use.
+ - Do NOT mark a function if you are not sure which mark to use.
Better to not mark the function than mark the function wrong.
-
-2. How to find PCI devices manually
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+How to find PCI devices manually
+================================
PCI drivers should have a really good reason for not using the
pci_register_driver() interface to search for PCI devices.
@@ -207,17 +149,17 @@ E.g. combined serial/parallel port/floppy controller.
A manual search may be performed using the following constructs:
-Searching by vendor and device ID:
+Searching by vendor and device ID::
struct pci_dev *dev = NULL;
while (dev = pci_get_device(VENDOR_ID, DEVICE_ID, dev))
configure_device(dev);
-Searching by class ID (iterate in a similar way):
+Searching by class ID (iterate in a similar way)::
pci_get_class(CLASS_ID, dev)
-Searching by both vendor/device and subsystem vendor/device ID:
+Searching by both vendor/device and subsystem vendor/device ID::
pci_get_subsys(VENDOR_ID,DEVICE_ID, SUBSYS_VENDOR_ID, SUBSYS_DEVICE_ID, dev).
@@ -230,21 +172,20 @@ the pci_dev that they return. You must eventually (possibly at module unload)
decrement the reference count on these devices by calling pci_dev_put().
-
-3. Device Initialization Steps
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Device Initialization Steps
+===========================
As noted in the introduction, most PCI drivers need the following steps
for device initialization:
- Enable the device
- Request MMIO/IOP resources
- Set the DMA mask size (for both coherent and streaming DMA)
- Allocate and initialize shared control data (pci_allocate_coherent())
- Access device configuration space (if needed)
- Register IRQ handler (request_irq())
- Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
- Enable DMA/processing engines.
+ - Enable the device
+ - Request MMIO/IOP resources
+ - Set the DMA mask size (for both coherent and streaming DMA)
+ - Allocate and initialize shared control data (pci_allocate_coherent())
+ - Access device configuration space (if needed)
+ - Register IRQ handler (request_irq())
+ - Initialize non-PCI (i.e. LAN/SCSI/etc parts of the chip)
+ - Enable DMA/processing engines.
The driver can access PCI config space registers at any time.
(Well, almost. When running BIST, config space can go away...but
@@ -252,26 +193,29 @@ that will just result in a PCI Bus Master Abort and config reads
will return garbage).
-3.1 Enable the PCI device
-~~~~~~~~~~~~~~~~~~~~~~~~~
+Enable the PCI device
+---------------------
Before touching any device registers, the driver needs to enable
the PCI device by calling pci_enable_device(). This will:
- o wake up the device if it was in suspended state,
- o allocate I/O and memory regions of the device (if BIOS did not),
- o allocate an IRQ (if BIOS did not).
-NOTE: pci_enable_device() can fail! Check the return value.
+ - wake up the device if it was in suspended state,
+ - allocate I/O and memory regions of the device (if BIOS did not),
+ - allocate an IRQ (if BIOS did not).
-[ OS BUG: we don't check resource allocations before enabling those
- resources. The sequence would make more sense if we called
- pci_request_resources() before calling pci_enable_device().
- Currently, the device drivers can't detect the bug when when two
- devices have been allocated the same range. This is not a common
- problem and unlikely to get fixed soon.
+.. note::
+ pci_enable_device() can fail! Check the return value.
+
+.. warning::
+ OS BUG: we don't check resource allocations before enabling those
+ resources. The sequence would make more sense if we called
+ pci_request_resources() before calling pci_enable_device().
+ Currently, the device drivers can't detect the bug when when two
+ devices have been allocated the same range. This is not a common
+ problem and unlikely to get fixed soon.
+
+ This has been discussed before but not changed as of 2.6.19:
+ http://lkml.org/lkml/2006/3/2/194
- This has been discussed before but not changed as of 2.6.19:
- http://lkml.org/lkml/2006/3/2/194
-]
pci_set_master() will enable DMA by setting the bus master bit
in the PCI_COMMAND register. It also fixes the latency timer value if
@@ -288,8 +232,8 @@ pci_try_set_mwi() to have the system do its best effort at enabling
Mem-Wr-Inval.
-3.2 Request MMIO/IOP resources
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Request MMIO/IOP resources
+--------------------------
Memory (MMIO), and I/O port addresses should NOT be read directly
from the PCI device config space. Use the values in the pci_dev structure
as the PCI "bus address" might have been remapped to a "host physical"
@@ -304,9 +248,10 @@ Conversely, drivers should call pci_release_region() AFTER
calling pci_disable_device().
The idea is to prevent two devices colliding on the same address range.
-[ See OS BUG comment above. Currently (2.6.19), The driver can only
- determine MMIO and IO Port resource availability _after_ calling
- pci_enable_device(). ]
+.. tip::
+ See OS BUG comment above. Currently (2.6.19), The driver can only
+ determine MMIO and IO Port resource availability _after_ calling
+ pci_enable_device().
Generic flavors of pci_request_region() are request_mem_region()
(for MMIO ranges) and request_region() (for IO Port ranges).
@@ -316,12 +261,13 @@ BARs.
Also see pci_request_selected_regions() below.
-3.3 Set the DMA mask size
-~~~~~~~~~~~~~~~~~~~~~~~~~
-[ If anything below doesn't make sense, please refer to
- Documentation/DMA-API.txt. This section is just a reminder that
- drivers need to indicate DMA capabilities of the device and is not
- an authoritative source for DMA interfaces. ]
+Set the DMA mask size
+---------------------
+.. note::
+ If anything below doesn't make sense, please refer to
+ Documentation/DMA-API.txt. This section is just a reminder that
+ drivers need to indicate DMA capabilities of the device and is not
+ an authoritative source for DMA interfaces.
While all drivers should explicitly indicate the DMA capability
(e.g. 32 or 64 bit) of the PCI bus master, devices with more than
@@ -342,23 +288,23 @@ Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are
("consistent") data.
-3.4 Setup shared control data
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Setup shared control data
+-------------------------
Once the DMA masks are set, the driver can allocate "consistent" (a.k.a. shared)
memory. See Documentation/DMA-API.txt for a full description of
the DMA APIs. This section is just a reminder that it needs to be done
before enabling DMA on the device.
-3.5 Initialize device registers
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Initialize device registers
+---------------------------
Some drivers will need specific "capability" fields programmed
or other "vendor specific" register initialized or reset.
E.g. clearing pending interrupts.
-3.6 Register IRQ handler
-~~~~~~~~~~~~~~~~~~~~~~~~
+Register IRQ handler
+--------------------
While calling request_irq() is the last step described here,
this is often just another intermediate step to initialize a device.
This step can often be deferred until the device is opened for use.
@@ -396,6 +342,7 @@ and msix_enabled flags in the pci_dev structure after calling
pci_alloc_irq_vectors.
There are (at least) two really good reasons for using MSI:
+
1) MSI is an exclusive interrupt vector by definition.
This means the interrupt handler doesn't have to verify
its device caused the interrupt.
@@ -410,24 +357,23 @@ See drivers/infiniband/hw/mthca/ or drivers/net/tg3.c for examples
of MSI/MSI-X usage.
-
-4. PCI device shutdown
-~~~~~~~~~~~~~~~~~~~~~~~
+PCI device shutdown
+===================
When a PCI device driver is being unloaded, most of the following
steps need to be performed:
- Disable the device from generating IRQs
- Release the IRQ (free_irq())
- Stop all DMA activity
- Release DMA buffers (both streaming and consistent)
- Unregister from other subsystems (e.g. scsi or netdev)
- Disable device from responding to MMIO/IO Port addresses
- Release MMIO/IO Port resource(s)
+ - Disable the device from generating IRQs
+ - Release the IRQ (free_irq())
+ - Stop all DMA activity
+ - Release DMA buffers (both streaming and consistent)
+ - Unregister from other subsystems (e.g. scsi or netdev)
+ - Disable device from responding to MMIO/IO Port addresses
+ - Release MMIO/IO Port resource(s)
-4.1 Stop IRQs on the device
-~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Stop IRQs on the device
+-----------------------
How to do this is chip/device specific. If it's not done, it opens
the possibility of a "screaming interrupt" if (and only if)
the IRQ is shared with another device.
@@ -446,16 +392,16 @@ MSI and MSI-X are defined to be exclusive interrupts and thus
are not susceptible to the "screaming interrupt" problem.
-4.2 Release the IRQ
-~~~~~~~~~~~~~~~~~~~
+Release the IRQ
+---------------
Once the device is quiesced (no more IRQs), one can call free_irq().
This function will return control once any pending IRQs are handled,
"unhook" the drivers IRQ handler from that IRQ, and finally release
the IRQ if no one else is using it.
-4.3 Stop all DMA activity
-~~~~~~~~~~~~~~~~~~~~~~~~~
+Stop all DMA activity
+---------------------
It's extremely important to stop all DMA operations BEFORE attempting
to deallocate DMA control data. Failure to do so can result in memory
corruption, hangs, and on some chip-sets a hard crash.
@@ -467,8 +413,8 @@ While this step sounds obvious and trivial, several "mature" drivers
didn't get this step right in the past.
-4.4 Release DMA buffers
-~~~~~~~~~~~~~~~~~~~~~~~
+Release DMA buffers
+-------------------
Once DMA is stopped, clean up streaming DMA first.
I.e. unmap data buffers and return buffers to "upstream"
owners if there is one.
@@ -478,8 +424,8 @@ Then clean up "consistent" buffers which contain the control data.
See Documentation/DMA-API.txt for details on unmapping interfaces.
-4.5 Unregister from other subsystems
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Unregister from other subsystems
+--------------------------------
Most low level PCI device drivers support some other subsystem
like USB, ALSA, SCSI, NetDev, Infiniband, etc. Make sure your
driver isn't losing resources from that other subsystem.
@@ -487,31 +433,30 @@ If this happens, typically the symptom is an Oops (panic) when
the subsystem attempts to call into a driver that has been unloaded.
-4.6 Disable Device from responding to MMIO/IO Port addresses
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Disable Device from responding to MMIO/IO Port addresses
+--------------------------------------------------------
io_unmap() MMIO or IO Port resources and then call pci_disable_device().
This is the symmetric opposite of pci_enable_device().
Do not access device registers after calling pci_disable_device().
-4.7 Release MMIO/IO Port Resource(s)
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Release MMIO/IO Port Resource(s)
+--------------------------------
Call pci_release_region() to mark the MMIO or IO Port range as available.
Failure to do so usually results in the inability to reload the driver.
+How to access PCI config space
+==============================
-5. How to access PCI config space
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-You can use pci_(read|write)_config_(byte|word|dword) to access the config
-space of a device represented by struct pci_dev *. All these functions return 0
-when successful or an error code (PCIBIOS_...) which can be translated to a text
-string by pcibios_strerror. Most drivers expect that accesses to valid PCI
+You can use `pci_(read|write)_config_(byte|word|dword)` to access the config
+space of a device represented by `struct pci_dev *`. All these functions return
+0 when successful or an error code (`PCIBIOS_...`) which can be translated to a
+text string by pcibios_strerror. Most drivers expect that accesses to valid PCI
devices don't fail.
If you don't have a struct pci_dev available, you can call
-pci_bus_(read|write)_config_(byte|word|dword) to access a given device
+`pci_bus_(read|write)_config_(byte|word|dword)` to access a given device
and function on that bus.
If you access fields in the standard portion of the config header, please
@@ -522,10 +467,10 @@ pci_find_capability() for the particular capability and it will find the
corresponding register block for you.
+Other interesting functions
+===========================
-6. Other interesting functions
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
+============================= ================================================
pci_get_domain_bus_and_slot() Find pci_dev corresponding to given domain,
bus and slot and number. If the device is
found, its reference count is increased.
@@ -539,11 +484,11 @@ pci_set_drvdata() Set private driver data pointer for a pci_dev
pci_get_drvdata() Return private driver data pointer for a pci_dev
pci_set_mwi() Enable Memory-Write-Invalidate transactions.
pci_clear_mwi() Disable Memory-Write-Invalidate transactions.
+============================= ================================================
-
-7. Miscellaneous hints
-~~~~~~~~~~~~~~~~~~~~~~
+Miscellaneous hints
+===================
When displaying PCI device names to the user (for example when a driver wants
to tell the user what card has it found), please use pci_name(pci_dev).
@@ -559,9 +504,8 @@ on the bus need to be capable of doing it, so this is something which needs
to be handled by platform and generic code, not individual drivers.
-
-8. Vendor and device identifications
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Vendor and device identifications
+=================================
Do not add new device or vendor IDs to include/linux/pci_ids.h unless they
are shared across multiple drivers. You can add private definitions in
@@ -575,28 +519,27 @@ There are mirrors of the pci.ids file at http://pciids.sourceforge.net/
and https://github.com/pciutils/pciids.
-
-9. Obsolete functions
-~~~~~~~~~~~~~~~~~~~~~
+Obsolete functions
+==================
There are several functions which you might come across when trying to
port an old driver to the new PCI interface. They are no longer present
in the kernel as they aren't compatible with hotplug or PCI domains or
having sane locking.
+================= ===========================================
pci_find_device() Superseded by pci_get_device()
pci_find_subsys() Superseded by pci_get_subsys()
pci_find_slot() Superseded by pci_get_domain_bus_and_slot()
pci_get_slot() Superseded by pci_get_domain_bus_and_slot()
-
+================= ===========================================
The alternative is the traditional PCI device driver that walks PCI
device lists. This is still possible but discouraged.
-
-10. MMIO Space and "Write Posting"
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+MMIO Space and "Write Posting"
+==============================
Converting a driver from using I/O Port space to using MMIO space
often requires some additional changes. Specifically, "write posting"
@@ -609,14 +552,14 @@ the CPU before the transaction has reached its destination.
Thus, timing sensitive code should add readl() where the CPU is
expected to wait before doing other work. The classic "bit banging"
-sequence works fine for I/O Port space:
+sequence works fine for I/O Port space::
for (i = 8; --i; val >>= 1) {
outb(val & 1, ioport_reg); /* write bit */
udelay(10);
}
-The same sequence for MMIO space should be:
+The same sequence for MMIO space should be::
for (i = 8; --i; val >>= 1) {
writeb(val & 1, mmio_reg); /* write bit */
@@ -633,4 +576,3 @@ handle the PCI master abort on all platforms if the PCI device is
expected to not respond to a readl(). Most x86 platforms will allow
MMIO reads to master abort (a.k.a. "Soft Fail") and return garbage
(e.g. ~0). But many RISC platforms will crash (a.k.a."Hard Fail").
-
diff --git a/Documentation/PCI/pcieaer-howto.txt b/Documentation/PCI/pcieaer-howto.rst
index 48ce7903e3c6..18bdefaafd1a 100644
--- a/Documentation/PCI/pcieaer-howto.txt
+++ b/Documentation/PCI/pcieaer-howto.rst
@@ -1,21 +1,29 @@
- The PCI Express Advanced Error Reporting Driver Guide HOWTO
- T. Long Nguyen <tom.l.nguyen@intel.com>
- Yanmin Zhang <yanmin.zhang@intel.com>
- 07/29/2006
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+===========================================================
+The PCI Express Advanced Error Reporting Driver Guide HOWTO
+===========================================================
-1. Overview
+:Authors: - T. Long Nguyen <tom.l.nguyen@intel.com>
+ - Yanmin Zhang <yanmin.zhang@intel.com>
-1.1 About this guide
+:Copyright: |copy| 2006 Intel Corporation
+
+Overview
+===========
+
+About this guide
+----------------
This guide describes the basics of the PCI Express Advanced Error
Reporting (AER) driver and provides information on how to use it, as
well as how to enable the drivers of endpoint devices to conform with
PCI Express AER driver.
-1.2 Copyright (C) Intel Corporation 2006.
-1.3 What is the PCI Express AER Driver?
+What is the PCI Express AER Driver?
+-----------------------------------
PCI Express error signaling can occur on the PCI Express link itself
or on behalf of transactions initiated on the link. PCI Express
@@ -30,17 +38,19 @@ The PCI Express AER driver provides the infrastructure to support PCI
Express Advanced Error Reporting capability. The PCI Express AER
driver provides three basic functions:
-- Gathers the comprehensive error information if errors occurred.
-- Reports error to the users.
-- Performs error recovery actions.
+ - Gathers the comprehensive error information if errors occurred.
+ - Reports error to the users.
+ - Performs error recovery actions.
AER driver only attaches root ports which support PCI-Express AER
capability.
-2. User Guide
+User Guide
+==========
-2.1 Include the PCI Express AER Root Driver into the Linux Kernel
+Include the PCI Express AER Root Driver into the Linux Kernel
+-------------------------------------------------------------
The PCI Express AER Root driver is a Root Port service driver attached
to the PCI Express Port Bus driver. If a user wants to use it, the driver
@@ -48,7 +58,8 @@ has to be compiled. Option CONFIG_PCIEAER supports this capability. It
depends on CONFIG_PCIEPORTBUS, so pls. set CONFIG_PCIEPORTBUS=y and
CONFIG_PCIEAER = y.
-2.2 Load PCI Express AER Root Driver
+Load PCI Express AER Root Driver
+--------------------------------
Some systems have AER support in firmware. Enabling Linux AER support at
the same time the firmware handles AER may result in unpredictable
@@ -56,30 +67,34 @@ behavior. Therefore, Linux does not handle AER events unless the firmware
grants AER control to the OS via the ACPI _OSC method. See the PCI FW 3.0
Specification for details regarding _OSC usage.
-2.3 AER error output
+AER error output
+----------------
When a PCIe AER error is captured, an error message will be output to
console. If it's a correctable error, it is output as a warning.
Otherwise, it is printed as an error. So users could choose different
log level to filter out correctable error messages.
-Below shows an example:
-0000:50:00.0: PCIe Bus Error: severity=Uncorrected (Fatal), type=Transaction Layer, id=0500(Requester ID)
-0000:50:00.0: device [8086:0329] error status/mask=00100000/00000000
-0000:50:00.0: [20] Unsupported Request (First)
-0000:50:00.0: TLP Header: 04000001 00200a03 05010000 00050100
+Below shows an example::
+
+ 0000:50:00.0: PCIe Bus Error: severity=Uncorrected (Fatal), type=Transaction Layer, id=0500(Requester ID)
+ 0000:50:00.0: device [8086:0329] error status/mask=00100000/00000000
+ 0000:50:00.0: [20] Unsupported Request (First)
+ 0000:50:00.0: TLP Header: 04000001 00200a03 05010000 00050100
In the example, 'Requester ID' means the ID of the device who sends
the error message to root port. Pls. refer to pci express specs for
other fields.
-2.4 AER Statistics / Counters
+AER Statistics / Counters
+-------------------------
When PCIe AER errors are captured, the counters / statistics are also exposed
in the form of sysfs attributes which are documented at
Documentation/ABI/testing/sysfs-bus-pci-devices-aer_stats
-3. Developer Guide
+Developer Guide
+===============
To enable AER aware support requires a software driver to configure
the AER capability structure within its device and to provide callbacks.
@@ -120,7 +135,8 @@ hierarchy and links. These errors do not include any device specific
errors because device specific errors will still get sent directly to
the device driver.
-3.1 Configure the AER capability structure
+Configure the AER capability structure
+--------------------------------------
AER aware drivers of PCI Express component need change the device
control registers to enable AER. They also could change AER registers,
@@ -128,9 +144,11 @@ including mask and severity registers. Helper function
pci_enable_pcie_error_reporting could be used to enable AER. See
section 3.3.
-3.2. Provide callbacks
+Provide callbacks
+-----------------
-3.2.1 callback reset_link to reset pci express link
+callback reset_link to reset pci express link
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This callback is used to reset the pci express physical link when a
fatal error happens. The root port aer service driver provides a
@@ -140,13 +158,15 @@ upstream ports should provide their own reset_link functions.
In struct pcie_port_service_driver, a new pointer, reset_link, is
added.
+::
-pci_ers_result_t (*reset_link) (struct pci_dev *dev);
+ pci_ers_result_t (*reset_link) (struct pci_dev *dev);
Section 3.2.2.2 provides more detailed info on when to call
reset_link.
-3.2.2 PCI error-recovery callbacks
+PCI error-recovery callbacks
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The PCI Express AER Root driver uses error callbacks to coordinate
with downstream device drivers associated with a hierarchy in question
@@ -161,7 +181,8 @@ definitions of the callbacks.
Below sections specify when to call the error callback functions.
-3.2.2.1 Correctable errors
+Correctable errors
+~~~~~~~~~~~~~~~~~~
Correctable errors pose no impacts on the functionality of
the interface. The PCI Express protocol can recover without any
@@ -169,13 +190,16 @@ software intervention or any loss of data. These errors do not
require any recovery actions. The AER driver clears the device's
correctable error status register accordingly and logs these errors.
-3.2.2.2 Non-correctable (non-fatal and fatal) errors
+Non-correctable (non-fatal and fatal) errors
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If an error message indicates a non-fatal error, performing link reset
at upstream is not required. The AER driver calls error_detected(dev,
pci_channel_io_normal) to all drivers associated within a hierarchy in
-question. for example,
-EndPoint<==>DownstreamPort B<==>UpstreamPort A<==>RootPort.
+question. for example::
+
+ EndPoint<==>DownstreamPort B<==>UpstreamPort A<==>RootPort
+
If Upstream port A captures an AER error, the hierarchy consists of
Downstream port B and EndPoint.
@@ -199,53 +223,72 @@ function. If error_detected returns PCI_ERS_RESULT_CAN_RECOVER and
reset_link returns PCI_ERS_RESULT_RECOVERED, the error handling goes
to mmio_enabled.
-3.3 helper functions
+helper functions
+----------------
+::
+
+ int pci_enable_pcie_error_reporting(struct pci_dev *dev);
-3.3.1 int pci_enable_pcie_error_reporting(struct pci_dev *dev);
pci_enable_pcie_error_reporting enables the device to send error
messages to root port when an error is detected. Note that devices
don't enable the error reporting by default, so device drivers need
call this function to enable it.
-3.3.2 int pci_disable_pcie_error_reporting(struct pci_dev *dev);
+::
+
+ int pci_disable_pcie_error_reporting(struct pci_dev *dev);
+
pci_disable_pcie_error_reporting disables the device to send error
messages to root port when an error is detected.
-3.3.3 int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);
+::
+
+ int pci_cleanup_aer_uncorrect_error_status(struct pci_dev *dev);`
+
pci_cleanup_aer_uncorrect_error_status cleanups the uncorrectable
error status register.
-3.4 Frequent Asked Questions
+Frequent Asked Questions
+------------------------
-Q: What happens if a PCI Express device driver does not provide an
-error recovery handler (pci_driver->err_handler is equal to NULL)?
+Q:
+ What happens if a PCI Express device driver does not provide an
+ error recovery handler (pci_driver->err_handler is equal to NULL)?
-A: The devices attached with the driver won't be recovered. If the
-error is fatal, kernel will print out warning messages. Please refer
-to section 3 for more information.
+A:
+ The devices attached with the driver won't be recovered. If the
+ error is fatal, kernel will print out warning messages. Please refer
+ to section 3 for more information.
-Q: What happens if an upstream port service driver does not provide
-callback reset_link?
+Q:
+ What happens if an upstream port service driver does not provide
+ callback reset_link?
-A: Fatal error recovery will fail if the errors are reported by the
-upstream ports who are attached by the service driver.
+A:
+ Fatal error recovery will fail if the errors are reported by the
+ upstream ports who are attached by the service driver.
-Q: How does this infrastructure deal with driver that is not PCI
-Express aware?
+Q:
+ How does this infrastructure deal with driver that is not PCI
+ Express aware?
-A: This infrastructure calls the error callback functions of the
-driver when an error happens. But if the driver is not aware of
-PCI Express, the device might not report its own errors to root
-port.
+A:
+ This infrastructure calls the error callback functions of the
+ driver when an error happens. But if the driver is not aware of
+ PCI Express, the device might not report its own errors to root
+ port.
-Q: What modifications will that driver need to make it compatible
-with the PCI Express AER Root driver?
+Q:
+ What modifications will that driver need to make it compatible
+ with the PCI Express AER Root driver?
-A: It could call the helper functions to enable AER in devices and
-cleanup uncorrectable status register. Pls. refer to section 3.3.
+A:
+ It could call the helper functions to enable AER in devices and
+ cleanup uncorrectable status register. Pls. refer to section 3.3.
-4. Software error injection
+Software error injection
+========================
Debugging PCIe AER error recovery code is quite difficult because it
is hard to trigger real hardware errors. Software based error
@@ -261,6 +304,7 @@ After reboot with new kernel or insert the module, a device file named
Then, you need a user space tool named aer-inject, which can be gotten
from:
+
https://git.kernel.org/cgit/linux/kernel/git/gong.chen/aer-inject.git/
More information about aer-inject can be found in the document comes
diff --git a/Documentation/PCI/PCIEBUS-HOWTO.txt b/Documentation/PCI/pciebus-howto.rst
index 15f0bb3b5045..f882ff62c51f 100644
--- a/Documentation/PCI/PCIEBUS-HOWTO.txt
+++ b/Documentation/PCI/pciebus-howto.rst
@@ -1,16 +1,23 @@
- The PCI Express Port Bus Driver Guide HOWTO
- Tom L Nguyen tom.l.nguyen@intel.com
- 11/03/2004
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
-1. About this guide
+===========================================
+The PCI Express Port Bus Driver Guide HOWTO
+===========================================
+
+:Author: Tom L Nguyen tom.l.nguyen@intel.com 11/03/2004
+:Copyright: |copy| 2004 Intel Corporation
+
+About this guide
+================
This guide describes the basics of the PCI Express Port Bus driver
and provides information on how to enable the service drivers to
register/unregister with the PCI Express Port Bus Driver.
-2. Copyright 2004 Intel Corporation
-3. What is the PCI Express Port Bus Driver
+What is the PCI Express Port Bus Driver
+=======================================
A PCI Express Port is a logical PCI-PCI Bridge structure. There
are two types of PCI Express Port: the Root Port and the Switch
@@ -30,7 +37,8 @@ support (AER), and virtual channel support (VC). These services may
be handled by a single complex driver or be individually distributed
and handled by corresponding service drivers.
-4. Why use the PCI Express Port Bus Driver?
+Why use the PCI Express Port Bus Driver?
+========================================
In existing Linux kernels, the Linux Device Driver Model allows a
physical device to be handled by only a single driver. The PCI
@@ -51,28 +59,31 @@ PCI Express Ports and distributes all provided service requests
to the corresponding service drivers as required. Some key
advantages of using the PCI Express Port Bus driver are listed below:
- - Allow multiple service drivers to run simultaneously on
- a PCI-PCI Bridge Port device.
+ - Allow multiple service drivers to run simultaneously on
+ a PCI-PCI Bridge Port device.
- - Allow service drivers implemented in an independent
- staged approach.
+ - Allow service drivers implemented in an independent
+ staged approach.
- - Allow one service driver to run on multiple PCI-PCI Bridge
- Port devices.
+ - Allow one service driver to run on multiple PCI-PCI Bridge
+ Port devices.
- - Manage and distribute resources of a PCI-PCI Bridge Port
- device to requested service drivers.
+ - Manage and distribute resources of a PCI-PCI Bridge Port
+ device to requested service drivers.
-5. Configuring the PCI Express Port Bus Driver vs. Service Drivers
+Configuring the PCI Express Port Bus Driver vs. Service Drivers
+===============================================================
-5.1 Including the PCI Express Port Bus Driver Support into the Kernel
+Including the PCI Express Port Bus Driver Support into the Kernel
+-----------------------------------------------------------------
Including the PCI Express Port Bus driver depends on whether the PCI
Express support is included in the kernel config. The kernel will
automatically include the PCI Express Port Bus driver as a kernel
driver when the PCI Express support is enabled in the kernel.
-5.2 Enabling Service Driver Support
+Enabling Service Driver Support
+-------------------------------
PCI device drivers are implemented based on Linux Device Driver Model.
All service drivers are PCI device drivers. As discussed above, it is
@@ -89,9 +100,11 @@ header file /include/linux/pcieport_if.h, before calling these APIs.
Failure to do so will result an identity mismatch, which prevents
the PCI Express Port Bus driver from loading a service driver.
-5.2.1 pcie_port_service_register
+pcie_port_service_register
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+::
-int pcie_port_service_register(struct pcie_port_service_driver *new)
+ int pcie_port_service_register(struct pcie_port_service_driver *new)
This API replaces the Linux Driver Model's pci_register_driver API. A
service driver should always calls pcie_port_service_register at
@@ -99,69 +112,76 @@ module init. Note that after service driver being loaded, calls
such as pci_enable_device(dev) and pci_set_master(dev) are no longer
necessary since these calls are executed by the PCI Port Bus driver.
-5.2.2 pcie_port_service_unregister
+pcie_port_service_unregister
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+::
-void pcie_port_service_unregister(struct pcie_port_service_driver *new)
+ void pcie_port_service_unregister(struct pcie_port_service_driver *new)
pcie_port_service_unregister replaces the Linux Driver Model's
pci_unregister_driver. It's always called by service driver when a
module exits.
-5.2.3 Sample Code
+Sample Code
+~~~~~~~~~~~
Below is sample service driver code to initialize the port service
driver data structure.
+::
-static struct pcie_port_service_id service_id[] = { {
- .vendor = PCI_ANY_ID,
- .device = PCI_ANY_ID,
- .port_type = PCIE_RC_PORT,
- .service_type = PCIE_PORT_SERVICE_AER,
- }, { /* end: all zeroes */ }
-};
+ static struct pcie_port_service_id service_id[] = { {
+ .vendor = PCI_ANY_ID,
+ .device = PCI_ANY_ID,
+ .port_type = PCIE_RC_PORT,
+ .service_type = PCIE_PORT_SERVICE_AER,
+ }, { /* end: all zeroes */ }
+ };
-static struct pcie_port_service_driver root_aerdrv = {
- .name = (char *)device_name,
- .id_table = &service_id[0],
+ static struct pcie_port_service_driver root_aerdrv = {
+ .name = (char *)device_name,
+ .id_table = &service_id[0],
- .probe = aerdrv_load,
- .remove = aerdrv_unload,
+ .probe = aerdrv_load,
+ .remove = aerdrv_unload,
- .suspend = aerdrv_suspend,
- .resume = aerdrv_resume,
-};
+ .suspend = aerdrv_suspend,
+ .resume = aerdrv_resume,
+ };
Below is a sample code for registering/unregistering a service
driver.
+::
-static int __init aerdrv_service_init(void)
-{
- int retval = 0;
+ static int __init aerdrv_service_init(void)
+ {
+ int retval = 0;
- retval = pcie_port_service_register(&root_aerdrv);
- if (!retval) {
- /*
- * FIX ME
- */
- }
- return retval;
-}
+ retval = pcie_port_service_register(&root_aerdrv);
+ if (!retval) {
+ /*
+ * FIX ME
+ */
+ }
+ return retval;
+ }
-static void __exit aerdrv_service_exit(void)
-{
- pcie_port_service_unregister(&root_aerdrv);
-}
+ static void __exit aerdrv_service_exit(void)
+ {
+ pcie_port_service_unregister(&root_aerdrv);
+ }
-module_init(aerdrv_service_init);
-module_exit(aerdrv_service_exit);
+ module_init(aerdrv_service_init);
+ module_exit(aerdrv_service_exit);
-6. Possible Resource Conflicts
+Possible Resource Conflicts
+===========================
Since all service drivers of a PCI-PCI Bridge Port device are
allowed to run simultaneously, below lists a few of possible resource
conflicts with proposed solutions.
-6.1 MSI and MSI-X Vector Resource
+MSI and MSI-X Vector Resource
+-----------------------------
Once MSI or MSI-X interrupts are enabled on a device, it stays in this
mode until they are disabled again. Since service drivers of the same
@@ -179,7 +199,8 @@ driver. Service drivers should use (struct pcie_device*)dev->irq to
call request_irq/free_irq. In addition, the interrupt mode is stored
in the field interrupt_mode of struct pcie_device.
-6.3 PCI Memory/IO Mapped Regions
+PCI Memory/IO Mapped Regions
+----------------------------
Service drivers for PCI Express Power Management (PME), Advanced
Error Reporting (AER), Hot-Plug (HP) and Virtual Channel (VC) access
@@ -188,7 +209,8 @@ registers accessed are independent of each other. This patch assumes
that all service drivers will be well behaved and not overwrite
other service driver's configuration settings.
-6.4 PCI Config Registers
+PCI Config Registers
+--------------------
Each service driver runs its PCI config operations on its own
capability structure except the PCI Express capability structure, in
diff --git a/Documentation/RCU/Design/Requirements/Requirements.html b/Documentation/RCU/Design/Requirements/Requirements.html
index 5a9238a2883c..467251f7fef6 100644
--- a/Documentation/RCU/Design/Requirements/Requirements.html
+++ b/Documentation/RCU/Design/Requirements/Requirements.html
@@ -2129,6 +2129,8 @@ Some of the relevant points of interest are as follows:
<li> <a href="#Hotplug CPU">Hotplug CPU</a>.
<li> <a href="#Scheduler and RCU">Scheduler and RCU</a>.
<li> <a href="#Tracing and RCU">Tracing and RCU</a>.
+<li> <a href="#Accesses to User Memory and RCU">
+Accesses to User Memory and RCU</a>.
<li> <a href="#Energy Efficiency">Energy Efficiency</a>.
<li> <a href="#Scheduling-Clock Interrupts and RCU">
Scheduling-Clock Interrupts and RCU</a>.
@@ -2512,7 +2514,7 @@ disabled across the entire RCU read-side critical section.
<p>
It is possible to use tracing on RCU code, but tracing itself
uses RCU.
-For this reason, <tt>rcu_dereference_raw_notrace()</tt>
+For this reason, <tt>rcu_dereference_raw_check()</tt>
is provided for use by tracing, which avoids the destructive
recursion that could otherwise ensue.
This API is also used by virtualization in some architectures,
@@ -2521,6 +2523,75 @@ cannot be used.
The tracing folks both located the requirement and provided the
needed fix, so this surprise requirement was relatively painless.
+<h3><a name="Accesses to User Memory and RCU">
+Accesses to User Memory and RCU</a></h3>
+
+<p>
+The kernel needs to access user-space memory, for example, to access
+data referenced by system-call parameters.
+The <tt>get_user()</tt> macro does this job.
+
+<p>
+However, user-space memory might well be paged out, which means
+that <tt>get_user()</tt> might well page-fault and thus block while
+waiting for the resulting I/O to complete.
+It would be a very bad thing for the compiler to reorder
+a <tt>get_user()</tt> invocation into an RCU read-side critical
+section.
+For example, suppose that the source code looked like this:
+
+<blockquote>
+<pre>
+ 1 rcu_read_lock();
+ 2 p = rcu_dereference(gp);
+ 3 v = p-&gt;value;
+ 4 rcu_read_unlock();
+ 5 get_user(user_v, user_p);
+ 6 do_something_with(v, user_v);
+</pre>
+</blockquote>
+
+<p>
+The compiler must not be permitted to transform this source code into
+the following:
+
+<blockquote>
+<pre>
+ 1 rcu_read_lock();
+ 2 p = rcu_dereference(gp);
+ 3 get_user(user_v, user_p); // BUG: POSSIBLE PAGE FAULT!!!
+ 4 v = p-&gt;value;
+ 5 rcu_read_unlock();
+ 6 do_something_with(v, user_v);
+</pre>
+</blockquote>
+
+<p>
+If the compiler did make this transformation in a
+<tt>CONFIG_PREEMPT=n</tt> kernel build, and if <tt>get_user()</tt> did
+page fault, the result would be a quiescent state in the middle
+of an RCU read-side critical section.
+This misplaced quiescent state could result in line&nbsp;4 being
+a use-after-free access, which could be bad for your kernel's
+actuarial statistics.
+Similar examples can be constructed with the call to <tt>get_user()</tt>
+preceding the <tt>rcu_read_lock()</tt>.
+
+<p>
+Unfortunately, <tt>get_user()</tt> doesn't have any particular
+ordering properties, and in some architectures the underlying <tt>asm</tt>
+isn't even marked <tt>volatile</tt>.
+And even if it was marked <tt>volatile</tt>, the above access to
+<tt>p-&gt;value</tt> is not volatile, so the compiler would not have any
+reason to keep those two accesses in order.
+
+<p>
+Therefore, the Linux-kernel definitions of <tt>rcu_read_lock()</tt>
+and <tt>rcu_read_unlock()</tt> must act as compiler barriers,
+at least for outermost instances of <tt>rcu_read_lock()</tt> and
+<tt>rcu_read_unlock()</tt> within a nested set of RCU read-side critical
+sections.
+
<h3><a name="Energy Efficiency">Energy Efficiency</a></h3>
<p>
diff --git a/Documentation/RCU/UP.txt b/Documentation/RCU/UP.rst
index 53bde717017b..e26dda27430c 100644
--- a/Documentation/RCU/UP.txt
+++ b/Documentation/RCU/UP.rst
@@ -1,17 +1,19 @@
-RCU on Uniprocessor Systems
+.. _up_doc:
+RCU on Uniprocessor Systems
+===========================
A common misconception is that, on UP systems, the call_rcu() primitive
may immediately invoke its function. The basis of this misconception
is that since there is only one CPU, it should not be necessary to
wait for anything else to get done, since there are no other CPUs for
-anything else to be happening on. Although this approach will -sort- -of-
+anything else to be happening on. Although this approach will *sort of*
work a surprising amount of the time, it is a very bad idea in general.
This document presents three examples that demonstrate exactly how bad
an idea this is.
-
Example 1: softirq Suicide
+--------------------------
Suppose that an RCU-based algorithm scans a linked list containing
elements A, B, and C in process context, and can delete elements from
@@ -28,8 +30,8 @@ your kernel.
This same problem can occur if call_rcu() is invoked from a hardware
interrupt handler.
-
Example 2: Function-Call Fatality
+---------------------------------
Of course, one could avert the suicide described in the preceding example
by having call_rcu() directly invoke its arguments only if it was called
@@ -46,11 +48,13 @@ its arguments would cause it to fail to make the fundamental guarantee
underlying RCU, namely that call_rcu() defers invoking its arguments until
all RCU read-side critical sections currently executing have completed.
-Quick Quiz #1: why is it -not- legal to invoke synchronize_rcu() in
- this case?
+Quick Quiz #1:
+ Why is it *not* legal to invoke synchronize_rcu() in this case?
+:ref:`Answers to Quick Quiz <answer_quick_quiz_up>`
Example 3: Death by Deadlock
+----------------------------
Suppose that call_rcu() is invoked while holding a lock, and that the
callback function must acquire this same lock. In this case, if
@@ -76,25 +80,30 @@ there are cases where this can be quite ugly:
If call_rcu() directly invokes the callback, painful locking restrictions
or API changes would be required.
-Quick Quiz #2: What locking restriction must RCU callbacks respect?
+Quick Quiz #2:
+ What locking restriction must RCU callbacks respect?
+:ref:`Answers to Quick Quiz <answer_quick_quiz_up>`
Summary
+-------
Permitting call_rcu() to immediately invoke its arguments breaks RCU,
even on a UP system. So do not do it! Even on a UP system, the RCU
-infrastructure -must- respect grace periods, and -must- invoke callbacks
+infrastructure *must* respect grace periods, and *must* invoke callbacks
from a known environment in which no locks are held.
-Note that it -is- safe for synchronize_rcu() to return immediately on
-UP systems, including !PREEMPT SMP builds running on UP systems.
+Note that it *is* safe for synchronize_rcu() to return immediately on
+UP systems, including PREEMPT SMP builds running on UP systems.
-Quick Quiz #3: Why can't synchronize_rcu() return immediately on
- UP systems running preemptable RCU?
+Quick Quiz #3:
+ Why can't synchronize_rcu() return immediately on UP systems running
+ preemptable RCU?
+.. _answer_quick_quiz_up:
Answer to Quick Quiz #1:
- Why is it -not- legal to invoke synchronize_rcu() in this case?
+ Why is it *not* legal to invoke synchronize_rcu() in this case?
Because the calling function is scanning an RCU-protected linked
list, and is therefore within an RCU read-side critical section.
@@ -104,12 +113,13 @@ Answer to Quick Quiz #1:
Answer to Quick Quiz #2:
What locking restriction must RCU callbacks respect?
- Any lock that is acquired within an RCU callback must be
- acquired elsewhere using an _irq variant of the spinlock
- primitive. For example, if "mylock" is acquired by an
- RCU callback, then a process-context acquisition of this
- lock must use something like spin_lock_irqsave() to
- acquire the lock.
+ Any lock that is acquired within an RCU callback must be acquired
+ elsewhere using an _bh variant of the spinlock primitive.
+ For example, if "mylock" is acquired by an RCU callback, then
+ a process-context acquisition of this lock must use something
+ like spin_lock_bh() to acquire the lock. Please note that
+ it is also OK to use _irq variants of spinlocks, for example,
+ spin_lock_irqsave().
If the process-context code were to simply use spin_lock(),
then, since RCU callbacks can be invoked from softirq context,
@@ -119,7 +129,7 @@ Answer to Quick Quiz #2:
This restriction might seem gratuitous, since very few RCU
callbacks acquire locks directly. However, a great many RCU
- callbacks do acquire locks -indirectly-, for example, via
+ callbacks do acquire locks *indirectly*, for example, via
the kfree() primitive.
Answer to Quick Quiz #3:
diff --git a/Documentation/RCU/index.rst b/Documentation/RCU/index.rst
new file mode 100644
index 000000000000..340a9725676c
--- /dev/null
+++ b/Documentation/RCU/index.rst
@@ -0,0 +1,19 @@
+.. _rcu_concepts:
+
+============
+RCU concepts
+============
+
+.. toctree::
+ :maxdepth: 1
+
+ rcu
+ listRCU
+ UP
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/RCU/listRCU.txt b/Documentation/RCU/listRCU.rst
index adb5a3782846..7956ff33042b 100644
--- a/Documentation/RCU/listRCU.txt
+++ b/Documentation/RCU/listRCU.rst
@@ -1,5 +1,7 @@
-Using RCU to Protect Read-Mostly Linked Lists
+.. _list_rcu_doc:
+Using RCU to Protect Read-Mostly Linked Lists
+=============================================
One of the best applications of RCU is to protect read-mostly linked lists
("struct list_head" in list.h). One big advantage of this approach
@@ -7,8 +9,8 @@ is that all of the required memory barriers are included for you in
the list macros. This document describes several applications of RCU,
with the best fits first.
-
Example 1: Read-Side Action Taken Outside of Lock, No In-Place Updates
+----------------------------------------------------------------------
The best applications are cases where, if reader-writer locking were
used, the read-side lock would be dropped before taking any action
@@ -24,7 +26,7 @@ added or deleted, rather than being modified in place.
A straightforward example of this use of RCU may be found in the
system-call auditing support. For example, a reader-writer locked
-implementation of audit_filter_task() might be as follows:
+implementation of audit_filter_task() might be as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
@@ -48,7 +50,7 @@ the corresponding value is returned. By the time that this value is acted
on, the list may well have been modified. This makes sense, since if
you are turning auditing off, it is OK to audit a few extra system calls.
-This means that RCU can be easily applied to the read side, as follows:
+This means that RCU can be easily applied to the read side, as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
@@ -73,7 +75,7 @@ become list_for_each_entry_rcu(). The _rcu() list-traversal primitives
insert the read-side memory barriers that are required on DEC Alpha CPUs.
The changes to the update side are also straightforward. A reader-writer
-lock might be used as follows for deletion and insertion:
+lock might be used as follows for deletion and insertion::
static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)
@@ -106,7 +108,7 @@ lock might be used as follows for deletion and insertion:
return 0;
}
-Following are the RCU equivalents for these two functions:
+Following are the RCU equivalents for these two functions::
static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)
@@ -154,13 +156,13 @@ otherwise cause concurrent readers to fail spectacularly.
So, when readers can tolerate stale data and when entries are either added
or deleted, without in-place modification, it is very easy to use RCU!
-
Example 2: Handling In-Place Updates
+------------------------------------
The system-call auditing code does not update auditing rules in place.
However, if it did, reader-writer-locked code to do so might look as
follows (presumably, the field_count is only permitted to decrease,
-otherwise, the added fields would need to be filled in):
+otherwise, the added fields would need to be filled in)::
static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
@@ -187,7 +189,7 @@ otherwise, the added fields would need to be filled in):
The RCU version creates a copy, updates the copy, then replaces the old
entry with the newly updated entry. This sequence of actions, allowing
concurrent reads while doing a copy to perform an update, is what gives
-RCU ("read-copy update") its name. The RCU code is as follows:
+RCU ("read-copy update") its name. The RCU code is as follows::
static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
@@ -216,8 +218,8 @@ RCU ("read-copy update") its name. The RCU code is as follows:
Again, this assumes that the caller holds audit_netlink_sem. Normally,
the reader-writer lock would become a spinlock in this sort of code.
-
Example 3: Eliminating Stale Data
+---------------------------------
The auditing examples above tolerate stale data, as do most algorithms
that are tracking external state. Because there is a delay from the
@@ -231,13 +233,16 @@ per-entry spinlock, and, if the "deleted" flag is set, pretends that the
entry does not exist. For this to be helpful, the search function must
return holding the per-entry spinlock, as ipc_lock() does in fact do.
-Quick Quiz: Why does the search function need to return holding the
- per-entry lock for this deleted-flag technique to be helpful?
+Quick Quiz:
+ Why does the search function need to return holding the per-entry lock for
+ this deleted-flag technique to be helpful?
+
+:ref:`Answer to Quick Quiz <answer_quick_quiz_list>`
If the system-call audit module were to ever need to reject stale data,
one way to accomplish this would be to add a "deleted" flag and a "lock"
spinlock to the audit_entry structure, and modify audit_filter_task()
-as follows:
+as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
@@ -268,7 +273,7 @@ audit_upd_rule() would need additional memory barriers to ensure
that the list_add_rcu() was really executed before the list_del_rcu().
The audit_del_rule() function would need to set the "deleted"
-flag under the spinlock as follows:
+flag under the spinlock as follows::
static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)
@@ -290,8 +295,8 @@ flag under the spinlock as follows:
return -EFAULT; /* No matching rule */
}
-
Summary
+-------
Read-mostly list-based data structures that can tolerate stale data are
the most amenable to use of RCU. The simplest case is where entries are
@@ -302,8 +307,9 @@ If stale data cannot be tolerated, then a "deleted" flag may be used
in conjunction with a per-entry spinlock in order to allow the search
function to reject newly deleted data.
+.. _answer_quick_quiz_list:
-Answer to Quick Quiz
+Answer to Quick Quiz:
Why does the search function need to return holding the per-entry
lock for this deleted-flag technique to be helpful?
diff --git a/Documentation/RCU/rcu.rst b/Documentation/RCU/rcu.rst
new file mode 100644
index 000000000000..8dfb437dacc3
--- /dev/null
+++ b/Documentation/RCU/rcu.rst
@@ -0,0 +1,92 @@
+.. _rcu_doc:
+
+RCU Concepts
+============
+
+The basic idea behind RCU (read-copy update) is to split destructive
+operations into two parts, one that prevents anyone from seeing the data
+item being destroyed, and one that actually carries out the destruction.
+A "grace period" must elapse between the two parts, and this grace period
+must be long enough that any readers accessing the item being deleted have
+since dropped their references. For example, an RCU-protected deletion
+from a linked list would first remove the item from the list, wait for
+a grace period to elapse, then free the element. See the
+Documentation/RCU/listRCU.rst file for more information on using RCU with
+linked lists.
+
+Frequently Asked Questions
+--------------------------
+
+- Why would anyone want to use RCU?
+
+ The advantage of RCU's two-part approach is that RCU readers need
+ not acquire any locks, perform any atomic instructions, write to
+ shared memory, or (on CPUs other than Alpha) execute any memory
+ barriers. The fact that these operations are quite expensive
+ on modern CPUs is what gives RCU its performance advantages
+ in read-mostly situations. The fact that RCU readers need not
+ acquire locks can also greatly simplify deadlock-avoidance code.
+
+- How can the updater tell when a grace period has completed
+ if the RCU readers give no indication when they are done?
+
+ Just as with spinlocks, RCU readers are not permitted to
+ block, switch to user-mode execution, or enter the idle loop.
+ Therefore, as soon as a CPU is seen passing through any of these
+ three states, we know that that CPU has exited any previous RCU
+ read-side critical sections. So, if we remove an item from a
+ linked list, and then wait until all CPUs have switched context,
+ executed in user mode, or executed in the idle loop, we can
+ safely free up that item.
+
+ Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the
+ same effect, but require that the readers manipulate CPU-local
+ counters. These counters allow limited types of blocking within
+ RCU read-side critical sections. SRCU also uses CPU-local
+ counters, and permits general blocking within RCU read-side
+ critical sections. These variants of RCU detect grace periods
+ by sampling these counters.
+
+- If I am running on a uniprocessor kernel, which can only do one
+ thing at a time, why should I wait for a grace period?
+
+ See the Documentation/RCU/UP.rst file for more information.
+
+- How can I see where RCU is currently used in the Linux kernel?
+
+ Search for "rcu_read_lock", "rcu_read_unlock", "call_rcu",
+ "rcu_read_lock_bh", "rcu_read_unlock_bh", "srcu_read_lock",
+ "srcu_read_unlock", "synchronize_rcu", "synchronize_net",
+ "synchronize_srcu", and the other RCU primitives. Or grab one
+ of the cscope databases from:
+
+ (http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html).
+
+- What guidelines should I follow when writing code that uses RCU?
+
+ See the checklist.txt file in this directory.
+
+- Why the name "RCU"?
+
+ "RCU" stands for "read-copy update". The file Documentation/RCU/listRCU.rst
+ has more information on where this name came from, search for
+ "read-copy update" to find it.
+
+- I hear that RCU is patented? What is with that?
+
+ Yes, it is. There are several known patents related to RCU,
+ search for the string "Patent" in RTFP.txt to find them.
+ Of these, one was allowed to lapse by the assignee, and the
+ others have been contributed to the Linux kernel under GPL.
+ There are now also LGPL implementations of user-level RCU
+ available (http://liburcu.org/).
+
+- I hear that RCU needs work in order to support realtime kernels?
+
+ Realtime-friendly RCU can be enabled via the CONFIG_PREEMPT_RCU
+ kernel configuration parameter.
+
+- Where can I find more information on RCU?
+
+ See the RTFP.txt file in this directory.
+ Or point your browser at (http://www.rdrop.com/users/paulmck/RCU/).
diff --git a/Documentation/RCU/rcu.txt b/Documentation/RCU/rcu.txt
deleted file mode 100644
index c818cf65c5a9..000000000000
--- a/Documentation/RCU/rcu.txt
+++ /dev/null
@@ -1,89 +0,0 @@
-RCU Concepts
-
-
-The basic idea behind RCU (read-copy update) is to split destructive
-operations into two parts, one that prevents anyone from seeing the data
-item being destroyed, and one that actually carries out the destruction.
-A "grace period" must elapse between the two parts, and this grace period
-must be long enough that any readers accessing the item being deleted have
-since dropped their references. For example, an RCU-protected deletion
-from a linked list would first remove the item from the list, wait for
-a grace period to elapse, then free the element. See the listRCU.txt
-file for more information on using RCU with linked lists.
-
-
-Frequently Asked Questions
-
-o Why would anyone want to use RCU?
-
- The advantage of RCU's two-part approach is that RCU readers need
- not acquire any locks, perform any atomic instructions, write to
- shared memory, or (on CPUs other than Alpha) execute any memory
- barriers. The fact that these operations are quite expensive
- on modern CPUs is what gives RCU its performance advantages
- in read-mostly situations. The fact that RCU readers need not
- acquire locks can also greatly simplify deadlock-avoidance code.
-
-o How can the updater tell when a grace period has completed
- if the RCU readers give no indication when they are done?
-
- Just as with spinlocks, RCU readers are not permitted to
- block, switch to user-mode execution, or enter the idle loop.
- Therefore, as soon as a CPU is seen passing through any of these
- three states, we know that that CPU has exited any previous RCU
- read-side critical sections. So, if we remove an item from a
- linked list, and then wait until all CPUs have switched context,
- executed in user mode, or executed in the idle loop, we can
- safely free up that item.
-
- Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the
- same effect, but require that the readers manipulate CPU-local
- counters. These counters allow limited types of blocking within
- RCU read-side critical sections. SRCU also uses CPU-local
- counters, and permits general blocking within RCU read-side
- critical sections. These variants of RCU detect grace periods
- by sampling these counters.
-
-o If I am running on a uniprocessor kernel, which can only do one
- thing at a time, why should I wait for a grace period?
-
- See the UP.txt file in this directory.
-
-o How can I see where RCU is currently used in the Linux kernel?
-
- Search for "rcu_read_lock", "rcu_read_unlock", "call_rcu",
- "rcu_read_lock_bh", "rcu_read_unlock_bh", "srcu_read_lock",
- "srcu_read_unlock", "synchronize_rcu", "synchronize_net",
- "synchronize_srcu", and the other RCU primitives. Or grab one
- of the cscope databases from:
-
- http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html
-
-o What guidelines should I follow when writing code that uses RCU?
-
- See the checklist.txt file in this directory.
-
-o Why the name "RCU"?
-
- "RCU" stands for "read-copy update". The file listRCU.txt has
- more information on where this name came from, search for
- "read-copy update" to find it.
-
-o I hear that RCU is patented? What is with that?
-
- Yes, it is. There are several known patents related to RCU,
- search for the string "Patent" in RTFP.txt to find them.
- Of these, one was allowed to lapse by the assignee, and the
- others have been contributed to the Linux kernel under GPL.
- There are now also LGPL implementations of user-level RCU
- available (http://liburcu.org/).
-
-o I hear that RCU needs work in order to support realtime kernels?
-
- Realtime-friendly RCU can be enabled via the CONFIG_PREEMPT_RCU
- kernel configuration parameter.
-
-o Where can I find more information on RCU?
-
- See the RTFP.txt file in this directory.
- Or point your browser at http://www.rdrop.com/users/paulmck/RCU/.
diff --git a/Documentation/RCU/rculist_nulls.txt b/Documentation/RCU/rculist_nulls.txt
index 8151f0195f76..23f115dc87cf 100644
--- a/Documentation/RCU/rculist_nulls.txt
+++ b/Documentation/RCU/rculist_nulls.txt
@@ -1,7 +1,7 @@
Using hlist_nulls to protect read-mostly linked lists and
objects using SLAB_TYPESAFE_BY_RCU allocations.
-Please read the basics in Documentation/RCU/listRCU.txt
+Please read the basics in Documentation/RCU/listRCU.rst
Using special makers (called 'nulls') is a convenient way
to solve following problem :
diff --git a/Documentation/RCU/rcuref.txt b/Documentation/RCU/rcuref.txt
index 613033ff2b9b..5e6429d66c24 100644
--- a/Documentation/RCU/rcuref.txt
+++ b/Documentation/RCU/rcuref.txt
@@ -12,6 +12,7 @@ please read on.
Reference counting on elements of lists which are protected by traditional
reader/writer spinlocks or semaphores are straightforward:
+CODE LISTING A:
1. 2.
add() search_and_reference()
{ {
@@ -28,7 +29,8 @@ add() search_and_reference()
release_referenced() delete()
{ {
... write_lock(&list_lock);
- atomic_dec(&el->rc, relfunc) ...
+ if(atomic_dec_and_test(&el->rc)) ...
+ kfree(el);
... remove_element
} write_unlock(&list_lock);
...
@@ -44,6 +46,7 @@ search_and_reference() could potentially hold reference to an element which
has already been deleted from the list/array. Use atomic_inc_not_zero()
in this scenario as follows:
+CODE LISTING B:
1. 2.
add() search_and_reference()
{ {
@@ -79,6 +82,7 @@ search_and_reference() code path. In such cases, the
atomic_dec_and_test() may be moved from delete() to el_free()
as follows:
+CODE LISTING C:
1. 2.
add() search_and_reference()
{ {
@@ -114,6 +118,17 @@ element can therefore safely be freed. This in turn guarantees that if
any reader finds the element, that reader may safely acquire a reference
without checking the value of the reference counter.
+A clear advantage of the RCU-based pattern in listing C over the one
+in listing B is that any call to search_and_reference() that locates
+a given object will succeed in obtaining a reference to that object,
+even given a concurrent invocation of delete() for that same object.
+Similarly, a clear advantage of both listings B and C over listing A is
+that a call to delete() is not delayed even if there are an arbitrarily
+large number of calls to search_and_reference() searching for the same
+object that delete() was invoked on. Instead, all that is delayed is
+the eventual invocation of kfree(), which is usually not a problem on
+modern computer systems, even the small ones.
+
In cases where delete() can sleep, synchronize_rcu() can be called from
delete(), so that el_free() can be subsumed into delete as follows:
@@ -130,3 +145,7 @@ delete()
kfree(el);
...
}
+
+As additional examples in the kernel, the pattern in listing C is used by
+reference counting of struct pid, while the pattern in listing B is used by
+struct posix_acl.
diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt
index 1ab70c37921f..f48f4621ccbc 100644
--- a/Documentation/RCU/stallwarn.txt
+++ b/Documentation/RCU/stallwarn.txt
@@ -57,6 +57,12 @@ o A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
CONFIG_PREEMPT_RCU case, you might see stall-warning
messages.
+ You can use the rcutree.kthread_prio kernel boot parameter to
+ increase the scheduling priority of RCU's kthreads, which can
+ help avoid this problem. However, please note that doing this
+ can increase your system's context-switch rate and thus degrade
+ performance.
+
o A periodic interrupt whose handler takes longer than the time
interval between successive pairs of interrupts. This can
prevent RCU's kthreads and softirq handlers from running.
@@ -153,7 +159,7 @@ rcupdate.rcu_task_stall_timeout
This boot/sysfs parameter controls the RCU-tasks stall warning
interval. A value of zero or less suppresses RCU-tasks stall
warnings. A positive value sets the stall-warning interval
- in jiffies. An RCU-tasks stall warning starts with the line:
+ in seconds. An RCU-tasks stall warning starts with the line:
INFO: rcu_tasks detected stalls on tasks:
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index 981651a8b65d..7e1a8721637a 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -212,7 +212,7 @@ synchronize_rcu()
rcu_assign_pointer()
- typeof(p) rcu_assign_pointer(p, typeof(p) v);
+ void rcu_assign_pointer(p, typeof(p) v);
Yes, rcu_assign_pointer() -is- implemented as a macro, though it
would be cool to be able to declare a function in this manner.
@@ -220,9 +220,9 @@ rcu_assign_pointer()
The updater uses this function to assign a new value to an
RCU-protected pointer, in order to safely communicate the change
- in value from the updater to the reader. This function returns
- the new value, and also executes any memory-barrier instructions
- required for a given CPU architecture.
+ in value from the updater to the reader. This macro does not
+ evaluate to an rvalue, but it does execute any memory-barrier
+ instructions required for a given CPU architecture.
Perhaps just as important, it serves to document (1) which
pointers are protected by RCU and (2) the point at which a
diff --git a/Documentation/accounting/cgroupstats.txt b/Documentation/accounting/cgroupstats.rst
index d16a9849e60e..b9afc48f4ea2 100644
--- a/Documentation/accounting/cgroupstats.txt
+++ b/Documentation/accounting/cgroupstats.rst
@@ -1,3 +1,7 @@
+==================
+Control Groupstats
+==================
+
Control Groupstats is inspired by the discussion at
http://lkml.org/lkml/2007/4/11/187 and implements per cgroup statistics as
suggested by Andrew Morton in http://lkml.org/lkml/2007/4/11/263.
@@ -19,9 +23,9 @@ about tasks blocked on I/O. If CONFIG_TASK_DELAY_ACCT is disabled, this
information will not be available.
To extract cgroup statistics a utility very similar to getdelays.c
-has been developed, the sample output of the utility is shown below
+has been developed, the sample output of the utility is shown below::
-~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup/a"
-sleeping 1, blocked 0, running 1, stopped 0, uninterruptible 0
-~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup"
-sleeping 155, blocked 0, running 1, stopped 0, uninterruptible 2
+ ~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup/a"
+ sleeping 1, blocked 0, running 1, stopped 0, uninterruptible 0
+ ~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup"
+ sleeping 155, blocked 0, running 1, stopped 0, uninterruptible 2
diff --git a/Documentation/accounting/delay-accounting.txt b/Documentation/accounting/delay-accounting.rst
index 042ea59b5853..7cc7f5852da0 100644
--- a/Documentation/accounting/delay-accounting.txt
+++ b/Documentation/accounting/delay-accounting.rst
@@ -1,5 +1,6 @@
+================
Delay accounting
-----------------
+================
Tasks encounter delays in execution when they wait
for some kernel resource to become available e.g. a
@@ -39,7 +40,9 @@ in detail in a separate document in this directory. Taskstats returns a
generic data structure to userspace corresponding to per-pid and per-tgid
statistics. The delay accounting functionality populates specific fields of
this structure. See
+
include/linux/taskstats.h
+
for a description of the fields pertaining to delay accounting.
It will generally be in the form of counters returning the cumulative
delay seen for cpu, sync block I/O, swapin, memory reclaim etc.
@@ -61,13 +64,16 @@ also serves as an example of using the taskstats interface.
Usage
-----
-Compile the kernel with
+Compile the kernel with::
+
CONFIG_TASK_DELAY_ACCT=y
CONFIG_TASKSTATS=y
Delay accounting is enabled by default at boot up.
-To disable, add
+To disable, add::
+
nodelayacct
+
to the kernel boot options. The rest of the instructions
below assume this has not been done.
@@ -78,40 +84,43 @@ The utility also allows a given command to be
executed and the corresponding delays to be
seen.
-General format of the getdelays command
+General format of the getdelays command::
-getdelays [-t tgid] [-p pid] [-c cmd...]
+ getdelays [-t tgid] [-p pid] [-c cmd...]
-Get delays, since system boot, for pid 10
-# ./getdelays -p 10
-(output similar to next case)
+Get delays, since system boot, for pid 10::
-Get sum of delays, since system boot, for all pids with tgid 5
-# ./getdelays -t 5
+ # ./getdelays -p 10
+ (output similar to next case)
+Get sum of delays, since system boot, for all pids with tgid 5::
-CPU count real total virtual total delay total
- 7876 92005750 100000000 24001500
-IO count delay total
- 0 0
-SWAP count delay total
- 0 0
-RECLAIM count delay total
- 0 0
+ # ./getdelays -t 5
+
+
+ CPU count real total virtual total delay total
+ 7876 92005750 100000000 24001500
+ IO count delay total
+ 0 0
+ SWAP count delay total
+ 0 0
+ RECLAIM count delay total
+ 0 0
+
+Get delays seen in executing a given simple command::
-Get delays seen in executing a given simple command
-# ./getdelays -c ls /
+ # ./getdelays -c ls /
-bin data1 data3 data5 dev home media opt root srv sys usr
-boot data2 data4 data6 etc lib mnt proc sbin subdomain tmp var
+ bin data1 data3 data5 dev home media opt root srv sys usr
+ boot data2 data4 data6 etc lib mnt proc sbin subdomain tmp var
-CPU count real total virtual total delay total
+ CPU count real total virtual total delay total
6 4000250 4000000 0
-IO count delay total
+ IO count delay total
0 0
-SWAP count delay total
+ SWAP count delay total
0 0
-RECLAIM count delay total
+ RECLAIM count delay total
0 0
diff --git a/Documentation/accounting/index.rst b/Documentation/accounting/index.rst
new file mode 100644
index 000000000000..9369d8bf32be
--- /dev/null
+++ b/Documentation/accounting/index.rst
@@ -0,0 +1,14 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========
+Accounting
+==========
+
+.. toctree::
+ :maxdepth: 1
+
+ cgroupstats
+ delay-accounting
+ psi
+ taskstats
+ taskstats-struct
diff --git a/Documentation/accounting/psi.txt b/Documentation/accounting/psi.rst
index 5cbe5659e3b7..621111ce5740 100644
--- a/Documentation/accounting/psi.txt
+++ b/Documentation/accounting/psi.rst
@@ -35,14 +35,14 @@ Pressure interface
Pressure information for each resource is exported through the
respective file in /proc/pressure/ -- cpu, memory, and io.
-The format for CPU is as such:
+The format for CPU is as such::
-some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+ some avg10=0.00 avg60=0.00 avg300=0.00 total=0
-and for memory and IO:
+and for memory and IO::
-some avg10=0.00 avg60=0.00 avg300=0.00 total=0
-full avg10=0.00 avg60=0.00 avg300=0.00 total=0
+ some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+ full avg10=0.00 avg60=0.00 avg300=0.00 total=0
The "some" line indicates the share of time in which at least some
tasks are stalled on a given resource.
@@ -77,9 +77,9 @@ To register a trigger user has to open psi interface file under
/proc/pressure/ representing the resource to be monitored and write the
desired threshold and time window. The open file descriptor should be
used to wait for trigger events using select(), poll() or epoll().
-The following format is used:
+The following format is used::
-<some|full> <stall amount in us> <time window in us>
+ <some|full> <stall amount in us> <time window in us>
For example writing "some 150000 1000000" into /proc/pressure/memory
would add 150ms threshold for partial memory stall measured within
@@ -115,18 +115,20 @@ trigger is closed.
Userspace monitor usage example
===============================
-#include <errno.h>
-#include <fcntl.h>
-#include <stdio.h>
-#include <poll.h>
-#include <string.h>
-#include <unistd.h>
-
-/*
- * Monitor memory partial stall with 1s tracking window size
- * and 150ms threshold.
- */
-int main() {
+::
+
+ #include <errno.h>
+ #include <fcntl.h>
+ #include <stdio.h>
+ #include <poll.h>
+ #include <string.h>
+ #include <unistd.h>
+
+ /*
+ * Monitor memory partial stall with 1s tracking window size
+ * and 150ms threshold.
+ */
+ int main() {
const char trig[] = "some 150000 1000000";
struct pollfd fds;
int n;
@@ -165,7 +167,7 @@ int main() {
}
return 0;
-}
+ }
Cgroup2 interface
=================
diff --git a/Documentation/accounting/taskstats-struct.txt b/Documentation/accounting/taskstats-struct.rst
index e7512c061c15..ca90fd489c9a 100644
--- a/Documentation/accounting/taskstats-struct.txt
+++ b/Documentation/accounting/taskstats-struct.rst
@@ -1,5 +1,6 @@
+====================
The struct taskstats
---------------------
+====================
This document contains an explanation of the struct taskstats fields.
@@ -10,16 +11,24 @@ There are three different groups of fields in the struct taskstats:
the common fields and basic accounting fields are collected for
delivery at do_exit() of a task.
2) Delay accounting fields
- These fields are placed between
- /* Delay accounting fields start */
- and
- /* Delay accounting fields end */
+ These fields are placed between::
+
+ /* Delay accounting fields start */
+
+ and::
+
+ /* Delay accounting fields end */
+
Their values are collected if CONFIG_TASK_DELAY_ACCT is set.
3) Extended accounting fields
- These fields are placed between
- /* Extended accounting fields start */
- and
- /* Extended accounting fields end */
+ These fields are placed between::
+
+ /* Extended accounting fields start */
+
+ and::
+
+ /* Extended accounting fields end */
+
Their values are collected if CONFIG_TASK_XACCT is set.
4) Per-task and per-thread context switch count statistics
@@ -31,31 +40,33 @@ There are three different groups of fields in the struct taskstats:
Future extension should add fields to the end of the taskstats struct, and
should not change the relative position of each field within the struct.
+::
-struct taskstats {
+ struct taskstats {
+
+1) Common and basic accounting fields::
-1) Common and basic accounting fields:
/* The version number of this struct. This field is always set to
* TAKSTATS_VERSION, which is defined in <linux/taskstats.h>.
* Each time the struct is changed, the value should be incremented.
*/
__u16 version;
- /* The exit code of a task. */
+ /* The exit code of a task. */
__u32 ac_exitcode; /* Exit status */
- /* The accounting flags of a task as defined in <linux/acct.h>
+ /* The accounting flags of a task as defined in <linux/acct.h>
* Defined values are AFORK, ASU, ACOMPAT, ACORE, and AXSIG.
*/
__u8 ac_flag; /* Record flags */
- /* The value of task_nice() of a task. */
+ /* The value of task_nice() of a task. */
__u8 ac_nice; /* task_nice */
- /* The name of the command that started this task. */
+ /* The name of the command that started this task. */
char ac_comm[TS_COMM_LEN]; /* Command name */
- /* The scheduling discipline as set in task->policy field. */
+ /* The scheduling discipline as set in task->policy field. */
__u8 ac_sched; /* Scheduling discipline */
__u8 ac_pad[3];
@@ -64,26 +75,27 @@ struct taskstats {
__u32 ac_pid; /* Process ID */
__u32 ac_ppid; /* Parent process ID */
- /* The time when a task begins, in [secs] since 1970. */
+ /* The time when a task begins, in [secs] since 1970. */
__u32 ac_btime; /* Begin time [sec since 1970] */
- /* The elapsed time of a task, in [usec]. */
+ /* The elapsed time of a task, in [usec]. */
__u64 ac_etime; /* Elapsed time [usec] */
- /* The user CPU time of a task, in [usec]. */
+ /* The user CPU time of a task, in [usec]. */
__u64 ac_utime; /* User CPU time [usec] */
- /* The system CPU time of a task, in [usec]. */
+ /* The system CPU time of a task, in [usec]. */
__u64 ac_stime; /* System CPU time [usec] */
- /* The minor page fault count of a task, as set in task->min_flt. */
+ /* The minor page fault count of a task, as set in task->min_flt. */
__u64 ac_minflt; /* Minor Page Fault Count */
/* The major page fault count of a task, as set in task->maj_flt. */
__u64 ac_majflt; /* Major Page Fault Count */
-2) Delay accounting fields:
+2) Delay accounting fields::
+
/* Delay accounting fields start
*
* All values, until the comment "Delay accounting fields end" are
@@ -134,7 +146,8 @@ struct taskstats {
/* version 1 ends here */
-3) Extended accounting fields
+3) Extended accounting fields::
+
/* Extended accounting fields start */
/* Accumulated RSS usage in duration of a task, in MBytes-usecs.
@@ -145,15 +158,15 @@ struct taskstats {
*/
__u64 coremem; /* accumulated RSS usage in MB-usec */
- /* Accumulated virtual memory usage in duration of a task.
+ /* Accumulated virtual memory usage in duration of a task.
* Same as acct_rss_mem1 above except that we keep track of VM usage.
*/
__u64 virtmem; /* accumulated VM usage in MB-usec */
- /* High watermark of RSS usage in duration of a task, in KBytes. */
+ /* High watermark of RSS usage in duration of a task, in KBytes. */
__u64 hiwater_rss; /* High-watermark of RSS usage */
- /* High watermark of VM usage in duration of a task, in KBytes. */
+ /* High watermark of VM usage in duration of a task, in KBytes. */
__u64 hiwater_vm; /* High-water virtual memory usage */
/* The following four fields are I/O statistics of a task. */
@@ -164,17 +177,23 @@ struct taskstats {
/* Extended accounting fields end */
-4) Per-task and per-thread statistics
+4) Per-task and per-thread statistics::
+
__u64 nvcsw; /* Context voluntary switch counter */
__u64 nivcsw; /* Context involuntary switch counter */
-5) Time accounting for SMT machines
+5) Time accounting for SMT machines::
+
__u64 ac_utimescaled; /* utime scaled on frequency etc */
__u64 ac_stimescaled; /* stime scaled on frequency etc */
__u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */
-6) Extended delay accounting fields for memory reclaim
+6) Extended delay accounting fields for memory reclaim::
+
/* Delay waiting for memory reclaim */
__u64 freepages_count;
__u64 freepages_delay_total;
-}
+
+::
+
+ }
diff --git a/Documentation/accounting/taskstats.txt b/Documentation/accounting/taskstats.rst
index ff06b738bb88..2a28b7f55c10 100644
--- a/Documentation/accounting/taskstats.txt
+++ b/Documentation/accounting/taskstats.rst
@@ -1,5 +1,6 @@
+=============================
Per-task statistics interface
------------------------------
+=============================
Taskstats is a netlink-based interface for sending per-task and
@@ -65,7 +66,7 @@ taskstats.h file.
The data exchanged between user and kernel space is a netlink message belonging
to the NETLINK_GENERIC family and using the netlink attributes interface.
-The messages are in the format
+The messages are in the format::
+----------+- - -+-------------+-------------------+
| nlmsghdr | Pad | genlmsghdr | taskstats payload |
@@ -167,15 +168,13 @@ extended and the number of cpus grows large.
To avoid losing statistics, userspace should do one or more of the following:
- increase the receive buffer sizes for the netlink sockets opened by
-listeners to receive exit data.
+ listeners to receive exit data.
- create more listeners and reduce the number of cpus being listened to by
-each listener. In the extreme case, there could be one listener for each cpu.
-Users may also consider setting the cpu affinity of the listener to the subset
-of cpus to which it listens, especially if they are listening to just one cpu.
+ each listener. In the extreme case, there could be one listener for each cpu.
+ Users may also consider setting the cpu affinity of the listener to the subset
+ of cpus to which it listens, especially if they are listening to just one cpu.
Despite these measures, if the userspace receives ENOBUFS error messages
indicated overflow of receive buffers, it should take measures to handle the
loss of data.
-
-----
diff --git a/Documentation/admin-guide/LSM/LoadPin.rst b/Documentation/admin-guide/LSM/LoadPin.rst
index 32070762d24c..716ad9b23c9a 100644
--- a/Documentation/admin-guide/LSM/LoadPin.rst
+++ b/Documentation/admin-guide/LSM/LoadPin.rst
@@ -19,3 +19,13 @@ block device backing the filesystem is not read-only, a sysctl is
created to toggle pinning: ``/proc/sys/kernel/loadpin/enabled``. (Having
a mutable filesystem means pinning is mutable too, but having the
sysctl allows for easy testing on systems with a mutable filesystem.)
+
+It's also possible to exclude specific file types from LoadPin using kernel
+command line option "``loadpin.exclude``". By default, all files are
+included, but they can be excluded using kernel command line option such
+as "``loadpin.exclude=kernel-module,kexec-image``". This allows to use
+different mechanisms such as ``CONFIG_MODULE_SIG`` and
+``CONFIG_KEXEC_VERIFY_SIG`` to verify kernel module and kernel image while
+still use LoadPin to protect the integrity of other files kernel loads. The
+full list of valid file types can be found in ``kernel_read_file_str``
+defined in ``include/linux/fs.h``.
diff --git a/Documentation/admin-guide/README.rst b/Documentation/admin-guide/README.rst
index a582c780c3bd..cc6151fc0845 100644
--- a/Documentation/admin-guide/README.rst
+++ b/Documentation/admin-guide/README.rst
@@ -227,7 +227,7 @@ Configuring the kernel
"make tinyconfig" Configure the tiniest possible kernel.
You can find more information on using the Linux kernel config tools
- in Documentation/kbuild/kconfig.txt.
+ in Documentation/kbuild/kconfig.rst.
- NOTES on ``make config``:
diff --git a/Documentation/aoe/aoe.txt b/Documentation/admin-guide/aoe/aoe.rst
index c71487d399d1..a05e751363a0 100644
--- a/Documentation/aoe/aoe.txt
+++ b/Documentation/admin-guide/aoe/aoe.rst
@@ -1,3 +1,6 @@
+Introduction
+============
+
ATA over Ethernet is a network protocol that provides simple access to
block storage on the LAN.
@@ -17,12 +20,13 @@ driver. The aoetools are on sourceforge.
http://aoetools.sourceforge.net/
-The scripts in this Documentation/aoe directory are intended to
+The scripts in this Documentation/admin-guide/aoe directory are intended to
document the use of the driver and are not necessary if you install
the aoetools.
-CREATING DEVICE NODES
+Creating Device Nodes
+=====================
Users of udev should find the block device nodes created
automatically, but to create all the necessary device nodes, use the
@@ -38,7 +42,8 @@ CREATING DEVICE NODES
confusing when an AoE device is not present the first time the a
command is run but appears a second later.
-USING DEVICE NODES
+Using Device Nodes
+==================
"cat /dev/etherd/err" blocks, waiting for error diagnostic output,
like any retransmitted packets.
@@ -55,7 +60,7 @@ USING DEVICE NODES
by sysfs counterparts. Using the commands in aoetools insulates
users from these implementation details.
- The block devices are named like this:
+ The block devices are named like this::
e{shelf}.{slot}
e{shelf}.{slot}p{part}
@@ -64,7 +69,8 @@ USING DEVICE NODES
first shelf (shelf address zero). That's the whole disk. The first
partition on that disk would be "e0.2p1".
-USING SYSFS
+Using sysfs
+===========
Each aoe block device in /sys/block has the extra attributes of
state, mac, and netif. The state attribute is "up" when the device
@@ -78,29 +84,29 @@ USING SYSFS
There is a script in this directory that formats this information in
a convenient way. Users with aoetools should use the aoe-stat
- command.
-
- root@makki root# sh Documentation/aoe/status.sh
- e10.0 eth3 up
- e10.1 eth3 up
- e10.2 eth3 up
- e10.3 eth3 up
- e10.4 eth3 up
- e10.5 eth3 up
- e10.6 eth3 up
- e10.7 eth3 up
- e10.8 eth3 up
- e10.9 eth3 up
- e4.0 eth1 up
- e4.1 eth1 up
- e4.2 eth1 up
- e4.3 eth1 up
- e4.4 eth1 up
- e4.5 eth1 up
- e4.6 eth1 up
- e4.7 eth1 up
- e4.8 eth1 up
- e4.9 eth1 up
+ command::
+
+ root@makki root# sh Documentation/admin-guide/aoe/status.sh
+ e10.0 eth3 up
+ e10.1 eth3 up
+ e10.2 eth3 up
+ e10.3 eth3 up
+ e10.4 eth3 up
+ e10.5 eth3 up
+ e10.6 eth3 up
+ e10.7 eth3 up
+ e10.8 eth3 up
+ e10.9 eth3 up
+ e4.0 eth1 up
+ e4.1 eth1 up
+ e4.2 eth1 up
+ e4.3 eth1 up
+ e4.4 eth1 up
+ e4.5 eth1 up
+ e4.6 eth1 up
+ e4.7 eth1 up
+ e4.8 eth1 up
+ e4.9 eth1 up
Use /sys/module/aoe/parameters/aoe_iflist (or better, the driver
option discussed below) instead of /dev/etherd/interfaces to limit
@@ -113,12 +119,13 @@ USING SYSFS
for this purpose. You can also directly use the
/dev/etherd/discover special file described above.
-DRIVER OPTIONS
+Driver Options
+==============
There is a boot option for the built-in aoe driver and a
corresponding module parameter, aoe_iflist. Without this option,
all network interfaces may be used for ATA over Ethernet. Here is a
- usage example for the module parameter.
+ usage example for the module parameter::
modprobe aoe_iflist="eth1 eth3"
diff --git a/Documentation/aoe/autoload.sh b/Documentation/admin-guide/aoe/autoload.sh
index 815dff4691c9..815dff4691c9 100644
--- a/Documentation/aoe/autoload.sh
+++ b/Documentation/admin-guide/aoe/autoload.sh
diff --git a/Documentation/admin-guide/aoe/examples.rst b/Documentation/admin-guide/aoe/examples.rst
new file mode 100644
index 000000000000..91f3198e52c1
--- /dev/null
+++ b/Documentation/admin-guide/aoe/examples.rst
@@ -0,0 +1,23 @@
+Example of udev rules
+---------------------
+
+ .. include:: udev.txt
+ :literal:
+
+Example of udev install rules script
+------------------------------------
+
+ .. literalinclude:: udev-install.sh
+ :language: shell
+
+Example script to get status
+----------------------------
+
+ .. literalinclude:: status.sh
+ :language: shell
+
+Example of AoE autoload script
+------------------------------
+
+ .. literalinclude:: autoload.sh
+ :language: shell
diff --git a/Documentation/admin-guide/aoe/index.rst b/Documentation/admin-guide/aoe/index.rst
new file mode 100644
index 000000000000..d71c5df15922
--- /dev/null
+++ b/Documentation/admin-guide/aoe/index.rst
@@ -0,0 +1,17 @@
+=======================
+ATA over Ethernet (AoE)
+=======================
+
+.. toctree::
+ :maxdepth: 1
+
+ aoe
+ todo
+ examples
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/aoe/status.sh b/Documentation/admin-guide/aoe/status.sh
index eeec7baae57a..eeec7baae57a 100644
--- a/Documentation/aoe/status.sh
+++ b/Documentation/admin-guide/aoe/status.sh
diff --git a/Documentation/aoe/todo.txt b/Documentation/admin-guide/aoe/todo.rst
index c09dfad4aed8..dea8db5a33e1 100644
--- a/Documentation/aoe/todo.txt
+++ b/Documentation/admin-guide/aoe/todo.rst
@@ -1,3 +1,6 @@
+TODO
+====
+
There is a potential for deadlock when allocating a struct sk_buff for
data that needs to be written out to aoe storage. If the data is
being written from a dirty page in order to free that page, and if
diff --git a/Documentation/aoe/udev-install.sh b/Documentation/admin-guide/aoe/udev-install.sh
index 15e86f58c036..15e86f58c036 100644
--- a/Documentation/aoe/udev-install.sh
+++ b/Documentation/admin-guide/aoe/udev-install.sh
diff --git a/Documentation/aoe/udev.txt b/Documentation/admin-guide/aoe/udev.txt
index 1f06daf03f5b..5fb756466bc7 100644
--- a/Documentation/aoe/udev.txt
+++ b/Documentation/admin-guide/aoe/udev.txt
@@ -11,7 +11,7 @@
# udev_rules="/etc/udev/rules.d/"
# bash# ls /etc/udev/rules.d/
# 10-wacom.rules 50-udev.rules
-# bash# cp /path/to/linux-2.6.xx/Documentation/aoe/udev.txt \
+# bash# cp /path/to/linux/Documentation/admin-guide/aoe/udev.txt \
# /etc/udev/rules.d/60-aoe.rules
#
diff --git a/Documentation/admin-guide/auxdisplay/cfag12864b.rst b/Documentation/admin-guide/auxdisplay/cfag12864b.rst
new file mode 100644
index 000000000000..18c2865bd322
--- /dev/null
+++ b/Documentation/admin-guide/auxdisplay/cfag12864b.rst
@@ -0,0 +1,98 @@
+===================================
+cfag12864b LCD Driver Documentation
+===================================
+
+:License: GPLv2
+:Author & Maintainer: Miguel Ojeda Sandonis
+:Date: 2006-10-27
+
+
+
+.. INDEX
+
+ 1. DRIVER INFORMATION
+ 2. DEVICE INFORMATION
+ 3. WIRING
+ 4. USERSPACE PROGRAMMING
+
+1. Driver Information
+---------------------
+
+This driver supports a cfag12864b LCD.
+
+
+2. Device Information
+---------------------
+
+:Manufacturer: Crystalfontz
+:Device Name: Crystalfontz 12864b LCD Series
+:Device Code: cfag12864b
+:Webpage: http://www.crystalfontz.com
+:Device Webpage: http://www.crystalfontz.com/products/12864b/
+:Type: LCD (Liquid Crystal Display)
+:Width: 128
+:Height: 64
+:Colors: 2 (B/N)
+:Controller: ks0108
+:Controllers: 2
+:Pages: 8 each controller
+:Addresses: 64 each page
+:Data size: 1 byte each address
+:Memory size: 2 * 8 * 64 * 1 = 1024 bytes = 1 Kbyte
+
+
+3. Wiring
+---------
+
+The cfag12864b LCD Series don't have official wiring.
+
+The common wiring is done to the parallel port as shown::
+
+ Parallel Port cfag12864b
+
+ Name Pin# Pin# Name
+
+ Strobe ( 1)------------------------------(17) Enable
+ Data 0 ( 2)------------------------------( 4) Data 0
+ Data 1 ( 3)------------------------------( 5) Data 1
+ Data 2 ( 4)------------------------------( 6) Data 2
+ Data 3 ( 5)------------------------------( 7) Data 3
+ Data 4 ( 6)------------------------------( 8) Data 4
+ Data 5 ( 7)------------------------------( 9) Data 5
+ Data 6 ( 8)------------------------------(10) Data 6
+ Data 7 ( 9)------------------------------(11) Data 7
+ (10) [+5v]---( 1) Vdd
+ (11) [GND]---( 2) Ground
+ (12) [+5v]---(14) Reset
+ (13) [GND]---(15) Read / Write
+ Line (14)------------------------------(13) Controller Select 1
+ (15)
+ Init (16)------------------------------(12) Controller Select 2
+ Select (17)------------------------------(16) Data / Instruction
+ Ground (18)---[GND] [+5v]---(19) LED +
+ Ground (19)---[GND]
+ Ground (20)---[GND] E A Values:
+ Ground (21)---[GND] [GND]---[P1]---(18) Vee - R = Resistor = 22 ohm
+ Ground (22)---[GND] | - P1 = Preset = 10 Kohm
+ Ground (23)---[GND] ---- S ------( 3) V0 - P2 = Preset = 1 Kohm
+ Ground (24)---[GND] | |
+ Ground (25)---[GND] [GND]---[P2]---[R]---(20) LED -
+
+
+4. Userspace Programming
+------------------------
+
+The cfag12864bfb describes a framebuffer device (/dev/fbX).
+
+It has a size of 1024 bytes = 1 Kbyte.
+Each bit represents one pixel. If the bit is high, the pixel will
+turn on. If the pixel is low, the pixel will turn off.
+
+You can use the framebuffer as a file: fopen, fwrite, fclose...
+Although the LCD won't get updated until the next refresh time arrives.
+
+Also, you can mmap the framebuffer: open & mmap, munmap & close...
+which is the best option for most uses.
+
+Check samples/auxdisplay/cfag12864b-example.c
+for a real working userspace complete program with usage examples.
diff --git a/Documentation/admin-guide/auxdisplay/index.rst b/Documentation/admin-guide/auxdisplay/index.rst
new file mode 100644
index 000000000000..e466f0595248
--- /dev/null
+++ b/Documentation/admin-guide/auxdisplay/index.rst
@@ -0,0 +1,16 @@
+=========================
+Auxiliary Display Support
+=========================
+
+.. toctree::
+ :maxdepth: 1
+
+ ks0108.rst
+ cfag12864b.rst
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/admin-guide/auxdisplay/ks0108.rst b/Documentation/admin-guide/auxdisplay/ks0108.rst
new file mode 100644
index 000000000000..c0b7faf73136
--- /dev/null
+++ b/Documentation/admin-guide/auxdisplay/ks0108.rst
@@ -0,0 +1,50 @@
+==========================================
+ks0108 LCD Controller Driver Documentation
+==========================================
+
+:License: GPLv2
+:Author & Maintainer: Miguel Ojeda Sandonis
+:Date: 2006-10-27
+
+
+
+.. INDEX
+
+ 1. DRIVER INFORMATION
+ 2. DEVICE INFORMATION
+ 3. WIRING
+
+
+1. Driver Information
+---------------------
+
+This driver supports the ks0108 LCD controller.
+
+
+2. Device Information
+---------------------
+
+:Manufacturer: Samsung
+:Device Name: KS0108 LCD Controller
+:Device Code: ks0108
+:Webpage: -
+:Device Webpage: -
+:Type: LCD Controller (Liquid Crystal Display Controller)
+:Width: 64
+:Height: 64
+:Colors: 2 (B/N)
+:Pages: 8
+:Addresses: 64 each page
+:Data size: 1 byte each address
+:Memory size: 8 * 64 * 1 = 512 bytes
+
+
+3. Wiring
+---------
+
+The driver supports data parallel port wiring.
+
+If you aren't building LCD related hardware, you should check
+your LCD specific wiring information in the same folder.
+
+For example, check Documentation/admin-guide/auxdisplay/cfag12864b.rst
diff --git a/Documentation/filesystems/binderfs.rst b/Documentation/admin-guide/binderfs.rst
index c009671f8434..c009671f8434 100644
--- a/Documentation/filesystems/binderfs.rst
+++ b/Documentation/admin-guide/binderfs.rst
diff --git a/Documentation/blockdev/drbd/DRBD-8.3-data-packets.svg b/Documentation/admin-guide/blockdev/drbd/DRBD-8.3-data-packets.svg
index f87cfa0dc2fb..f87cfa0dc2fb 100644
--- a/Documentation/blockdev/drbd/DRBD-8.3-data-packets.svg
+++ b/Documentation/admin-guide/blockdev/drbd/DRBD-8.3-data-packets.svg
diff --git a/Documentation/blockdev/drbd/DRBD-data-packets.svg b/Documentation/admin-guide/blockdev/drbd/DRBD-data-packets.svg
index 48a1e2165fec..48a1e2165fec 100644
--- a/Documentation/blockdev/drbd/DRBD-data-packets.svg
+++ b/Documentation/admin-guide/blockdev/drbd/DRBD-data-packets.svg
diff --git a/Documentation/blockdev/drbd/conn-states-8.dot b/Documentation/admin-guide/blockdev/drbd/conn-states-8.dot
index 025e8cf5e64a..025e8cf5e64a 100644
--- a/Documentation/blockdev/drbd/conn-states-8.dot
+++ b/Documentation/admin-guide/blockdev/drbd/conn-states-8.dot
diff --git a/Documentation/blockdev/drbd/data-structure-v9.txt b/Documentation/admin-guide/blockdev/drbd/data-structure-v9.rst
index 1e52a0e32624..66036b901644 100644
--- a/Documentation/blockdev/drbd/data-structure-v9.txt
+++ b/Documentation/admin-guide/blockdev/drbd/data-structure-v9.rst
@@ -1,3 +1,7 @@
+================================
+kernel data structure for DRBD-9
+================================
+
This describes the in kernel data structure for DRBD-9. Starting with
Linux v3.14 we are reorganizing DRBD to use this data structure.
@@ -10,7 +14,7 @@ device is represented by a block device locally.
The DRBD objects are interconnected to form a matrix as depicted below; a
drbd_peer_device object sits at each intersection between a drbd_device and a
-drbd_connection:
+drbd_connection::
/--------------+---------------+.....+---------------\
| resource | device | | device |
diff --git a/Documentation/blockdev/drbd/disk-states-8.dot b/Documentation/admin-guide/blockdev/drbd/disk-states-8.dot
index d06cfb46fb98..d06cfb46fb98 100644
--- a/Documentation/blockdev/drbd/disk-states-8.dot
+++ b/Documentation/admin-guide/blockdev/drbd/disk-states-8.dot
diff --git a/Documentation/blockdev/drbd/drbd-connection-state-overview.dot b/Documentation/admin-guide/blockdev/drbd/drbd-connection-state-overview.dot
index 6d9cf0a7b11d..6d9cf0a7b11d 100644
--- a/Documentation/blockdev/drbd/drbd-connection-state-overview.dot
+++ b/Documentation/admin-guide/blockdev/drbd/drbd-connection-state-overview.dot
diff --git a/Documentation/admin-guide/blockdev/drbd/figures.rst b/Documentation/admin-guide/blockdev/drbd/figures.rst
new file mode 100644
index 000000000000..bd9a4901fe46
--- /dev/null
+++ b/Documentation/admin-guide/blockdev/drbd/figures.rst
@@ -0,0 +1,30 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. The here included files are intended to help understand the implementation
+
+Data flows that Relate some functions, and write packets
+========================================================
+
+.. kernel-figure:: DRBD-8.3-data-packets.svg
+ :alt: DRBD-8.3-data-packets.svg
+ :align: center
+
+.. kernel-figure:: DRBD-data-packets.svg
+ :alt: DRBD-data-packets.svg
+ :align: center
+
+
+Sub graphs of DRBD's state transitions
+======================================
+
+.. kernel-figure:: conn-states-8.dot
+ :alt: conn-states-8.dot
+ :align: center
+
+.. kernel-figure:: disk-states-8.dot
+ :alt: disk-states-8.dot
+ :align: center
+
+.. kernel-figure:: node-states-8.dot
+ :alt: node-states-8.dot
+ :align: center
diff --git a/Documentation/blockdev/drbd/README.txt b/Documentation/admin-guide/blockdev/drbd/index.rst
index 627b0a1bf35e..68ecd5c113e9 100644
--- a/Documentation/blockdev/drbd/README.txt
+++ b/Documentation/admin-guide/blockdev/drbd/index.rst
@@ -1,4 +1,9 @@
+==========================================
+Distributed Replicated Block Device - DRBD
+==========================================
+
Description
+===========
DRBD is a shared-nothing, synchronously replicated block device. It
is designed to serve as a building block for high availability
@@ -7,10 +12,8 @@ Description
Please visit http://www.drbd.org to find out more.
-The here included files are intended to help understand the implementation
-
-DRBD-8.3-data-packets.svg, DRBD-data-packets.svg
- relates some functions, and write packets.
+.. toctree::
+ :maxdepth: 1
-conn-states-8.dot, disk-states-8.dot, node-states-8.dot
- The sub graphs of DRBD's state transitions
+ data-structure-v9
+ figures
diff --git a/Documentation/blockdev/drbd/node-states-8.dot b/Documentation/admin-guide/blockdev/drbd/node-states-8.dot
index 4a2b00c23547..bfa54e1f8016 100644
--- a/Documentation/blockdev/drbd/node-states-8.dot
+++ b/Documentation/admin-guide/blockdev/drbd/node-states-8.dot
@@ -11,4 +11,3 @@ digraph peer_states {
Unknown -> Primary [ label = "connected" ]
Unknown -> Secondary [ label = "connected" ]
}
-
diff --git a/Documentation/blockdev/floppy.txt b/Documentation/admin-guide/blockdev/floppy.rst
index e2240f5ab64d..4a8f31cf4139 100644
--- a/Documentation/blockdev/floppy.txt
+++ b/Documentation/admin-guide/blockdev/floppy.rst
@@ -1,35 +1,37 @@
-This file describes the floppy driver.
+=============
+Floppy Driver
+=============
FAQ list:
=========
- A FAQ list may be found in the fdutils package (see below), and also
+A FAQ list may be found in the fdutils package (see below), and also
at <http://fdutils.linux.lu/faq.html>.
LILO configuration options (Thinkpad users, read this)
======================================================
- The floppy driver is configured using the 'floppy=' option in
+The floppy driver is configured using the 'floppy=' option in
lilo. This option can be typed at the boot prompt, or entered in the
lilo configuration file.
- Example: If your kernel is called linux-2.6.9, type the following line
-at the lilo boot prompt (if you have a thinkpad):
+Example: If your kernel is called linux-2.6.9, type the following line
+at the lilo boot prompt (if you have a thinkpad)::
linux-2.6.9 floppy=thinkpad
You may also enter the following line in /etc/lilo.conf, in the description
-of linux-2.6.9:
+of linux-2.6.9::
append = "floppy=thinkpad"
- Several floppy related options may be given, example:
+Several floppy related options may be given, example::
linux-2.6.9 floppy=daring floppy=two_fdc
append = "floppy=daring floppy=two_fdc"
- If you give options both in the lilo config file and on the boot
+If you give options both in the lilo config file and on the boot
prompt, the option strings of both places are concatenated, the boot
prompt options coming last. That's why there are also options to
restore the default behavior.
@@ -38,21 +40,23 @@ restore the default behavior.
Module configuration options
============================
- If you use the floppy driver as a module, use the following syntax:
-modprobe floppy floppy="<options>"
+If you use the floppy driver as a module, use the following syntax::
-Example:
- modprobe floppy floppy="omnibook messages"
+ modprobe floppy floppy="<options>"
- If you need certain options enabled every time you load the floppy driver,
-you can put:
+Example::
- options floppy floppy="omnibook messages"
+ modprobe floppy floppy="omnibook messages"
+
+If you need certain options enabled every time you load the floppy driver,
+you can put::
+
+ options floppy floppy="omnibook messages"
in a configuration file in /etc/modprobe.d/.
- The floppy driver related options are:
+The floppy driver related options are:
floppy=asus_pci
Sets the bit mask to allow only units 0 and 1. (default)
@@ -70,8 +74,7 @@ in a configuration file in /etc/modprobe.d/.
Tells the floppy driver that you have only one floppy controller.
(default)
- floppy=two_fdc
- floppy=<address>,two_fdc
+ floppy=two_fdc / floppy=<address>,two_fdc
Tells the floppy driver that you have two floppy controllers.
The second floppy controller is assumed to be at <address>.
This option is not needed if the second controller is at address
@@ -84,8 +87,7 @@ in a configuration file in /etc/modprobe.d/.
floppy=0,thinkpad
Tells the floppy driver that you don't have a Thinkpad.
- floppy=omnibook
- floppy=nodma
+ floppy=omnibook / floppy=nodma
Tells the floppy driver not to use Dma for data transfers.
This is needed on HP Omnibooks, which don't have a workable
DMA channel for the floppy driver. This option is also useful
@@ -144,14 +146,16 @@ in a configuration file in /etc/modprobe.d/.
described in the physical CMOS), or if your BIOS uses
non-standard CMOS types. The CMOS types are:
- 0 - Use the value of the physical CMOS
- 1 - 5 1/4 DD
- 2 - 5 1/4 HD
- 3 - 3 1/2 DD
- 4 - 3 1/2 HD
- 5 - 3 1/2 ED
- 6 - 3 1/2 ED
- 16 - unknown or not installed
+ == ==================================
+ 0 Use the value of the physical CMOS
+ 1 5 1/4 DD
+ 2 5 1/4 HD
+ 3 3 1/2 DD
+ 4 3 1/2 HD
+ 5 3 1/2 ED
+ 6 3 1/2 ED
+ 16 unknown or not installed
+ == ==================================
(Note: there are two valid types for ED drives. This is because 5 was
initially chosen to represent floppy *tapes*, and 6 for ED drives.
@@ -162,8 +166,7 @@ in a configuration file in /etc/modprobe.d/.
Print a warning message when an unexpected interrupt is received.
(default)
- floppy=no_unexpected_interrupts
- floppy=L40SX
+ floppy=no_unexpected_interrupts / floppy=L40SX
Don't print a message when an unexpected interrupt is received. This
is needed on IBM L40SX laptops in certain video modes. (There seems
to be an interaction between video and floppy. The unexpected
@@ -199,47 +202,54 @@ in a configuration file in /etc/modprobe.d/.
Sets the floppy DMA channel to <nr> instead of 2.
floppy=slow
- Use PS/2 stepping rate:
- " PS/2 floppies have much slower step rates than regular floppies.
+ Use PS/2 stepping rate::
+
+ PS/2 floppies have much slower step rates than regular floppies.
It's been recommended that take about 1/4 of the default speed
- in some more extreme cases."
+ in some more extreme cases.
Supporting utilities and additional documentation:
==================================================
- Additional parameters of the floppy driver can be configured at
+Additional parameters of the floppy driver can be configured at
runtime. Utilities which do this can be found in the fdutils package.
This package also contains a new version of mtools which allows to
access high capacity disks (up to 1992K on a high density 3 1/2 disk!).
It also contains additional documentation about the floppy driver.
The latest version can be found at fdutils homepage:
+
http://fdutils.linux.lu
The fdutils releases can be found at:
+
http://fdutils.linux.lu/download.html
+
http://www.tux.org/pub/knaff/fdutils/
+
ftp://metalab.unc.edu/pub/Linux/utils/disk-management/
Reporting problems about the floppy driver
==========================================
- If you have a question or a bug report about the floppy driver, mail
+If you have a question or a bug report about the floppy driver, mail
me at Alain.Knaff@poboxes.com . If you post to Usenet, preferably use
comp.os.linux.hardware. As the volume in these groups is rather high,
be sure to include the word "floppy" (or "FLOPPY") in the subject
line. If the reported problem happens when mounting floppy disks, be
sure to mention also the type of the filesystem in the subject line.
- Be sure to read the FAQ before mailing/posting any bug reports!
+Be sure to read the FAQ before mailing/posting any bug reports!
- Alain
+Alain
Changelog
=========
-10-30-2004 : Cleanup, updating, add reference to module configuration.
+10-30-2004 :
+ Cleanup, updating, add reference to module configuration.
James Nelson <james4765@gmail.com>
-6-3-2000 : Original Document
+6-3-2000 :
+ Original Document
diff --git a/Documentation/admin-guide/blockdev/index.rst b/Documentation/admin-guide/blockdev/index.rst
new file mode 100644
index 000000000000..b903cf152091
--- /dev/null
+++ b/Documentation/admin-guide/blockdev/index.rst
@@ -0,0 +1,16 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========================
+The Linux RapidIO Subsystem
+===========================
+
+.. toctree::
+ :maxdepth: 1
+
+ floppy
+ nbd
+ paride
+ ramdisk
+ zram
+
+ drbd/index
diff --git a/Documentation/blockdev/nbd.txt b/Documentation/admin-guide/blockdev/nbd.rst
index db242ea2bce8..d78dfe559dcf 100644
--- a/Documentation/blockdev/nbd.txt
+++ b/Documentation/admin-guide/blockdev/nbd.rst
@@ -1,3 +1,4 @@
+==================================
Network Block Device (TCP version)
==================================
@@ -28,4 +29,3 @@ max_part
nbds_max
Number of block devices that should be initialized (default: 16).
-
diff --git a/Documentation/blockdev/paride.txt b/Documentation/admin-guide/blockdev/paride.rst
index ee6717e3771d..87b4278bf314 100644
--- a/Documentation/blockdev/paride.txt
+++ b/Documentation/admin-guide/blockdev/paride.rst
@@ -1,15 +1,17 @@
-
- Linux and parallel port IDE devices
+===================================
+Linux and parallel port IDE devices
+===================================
PARIDE v1.03 (c) 1997-8 Grant Guenther <grant@torque.net>
1. Introduction
+===============
Owing to the simplicity and near universality of the parallel port interface
to personal computers, many external devices such as portable hard-disk,
CD-ROM, LS-120 and tape drives use the parallel port to connect to their
host computer. While some devices (notably scanners) use ad-hoc methods
-to pass commands and data through the parallel port interface, most
+to pass commands and data through the parallel port interface, most
external devices are actually identical to an internal model, but with
a parallel-port adapter chip added in. Some of the original parallel port
adapters were little more than mechanisms for multiplexing a SCSI bus.
@@ -28,47 +30,50 @@ were to open up a parallel port CD-ROM drive, for instance, one would
find a standard ATAPI CD-ROM drive, a power supply, and a single adapter
that interconnected a standard PC parallel port cable and a standard
IDE cable. It is usually possible to exchange the CD-ROM device with
-any other device using the IDE interface.
+any other device using the IDE interface.
The document describes the support in Linux for parallel port IDE
devices. It does not cover parallel port SCSI devices, "ditto" tape
-drives or scanners. Many different devices are supported by the
+drives or scanners. Many different devices are supported by the
parallel port IDE subsystem, including:
- MicroSolutions backpack CD-ROM
- MicroSolutions backpack PD/CD
- MicroSolutions backpack hard-drives
- MicroSolutions backpack 8000t tape drive
- SyQuest EZ-135, EZ-230 & SparQ drives
- Avatar Shark
- Imation Superdisk LS-120
- Maxell Superdisk LS-120
- FreeCom Power CD
- Hewlett-Packard 5GB and 8GB tape drives
- Hewlett-Packard 7100 and 7200 CD-RW drives
+ - MicroSolutions backpack CD-ROM
+ - MicroSolutions backpack PD/CD
+ - MicroSolutions backpack hard-drives
+ - MicroSolutions backpack 8000t tape drive
+ - SyQuest EZ-135, EZ-230 & SparQ drives
+ - Avatar Shark
+ - Imation Superdisk LS-120
+ - Maxell Superdisk LS-120
+ - FreeCom Power CD
+ - Hewlett-Packard 5GB and 8GB tape drives
+ - Hewlett-Packard 7100 and 7200 CD-RW drives
as well as most of the clone and no-name products on the market.
To support such a wide range of devices, PARIDE, the parallel port IDE
subsystem, is actually structured in three parts. There is a base
paride module which provides a registry and some common methods for
-accessing the parallel ports. The second component is a set of
-high-level drivers for each of the different types of supported devices:
+accessing the parallel ports. The second component is a set of
+high-level drivers for each of the different types of supported devices:
+ === =============
pd IDE disk
pcd ATAPI CD-ROM
pf ATAPI disk
pt ATAPI tape
pg ATAPI generic
+ === =============
(Currently, the pg driver is only used with CD-R drives).
The high-level drivers function according to the relevant standards.
The third component of PARIDE is a set of low-level protocol drivers
for each of the parallel port IDE adapter chips. Thanks to the interest
-and encouragement of Linux users from many parts of the world,
+and encouragement of Linux users from many parts of the world,
support is available for almost all known adapter protocols:
+ ==== ====================================== ====
aten ATEN EH-100 (HK)
bpck Microsolutions backpack (US)
comm DataStor (old-type) "commuter" adapter (TW)
@@ -83,9 +88,11 @@ support is available for almost all known adapter protocols:
ktti KT Technology PHd adapter (SG)
on20 OnSpec 90c20 (US)
on26 OnSpec 90c26 (US)
+ ==== ====================================== ====
2. Using the PARIDE subsystem
+=============================
While configuring the Linux kernel, you may choose either to build
the PARIDE drivers into your kernel, or to build them as modules.
@@ -94,10 +101,10 @@ In either case, you will need to select "Parallel port IDE device support"
as well as at least one of the high-level drivers and at least one
of the parallel port communication protocols. If you do not know
what kind of parallel port adapter is used in your drive, you could
-begin by checking the file names and any text files on your DOS
+begin by checking the file names and any text files on your DOS
installation floppy. Alternatively, you can look at the markings on
the adapter chip itself. That's usually sufficient to identify the
-correct device.
+correct device.
You can actually select all the protocol modules, and allow the PARIDE
subsystem to try them all for you.
@@ -105,8 +112,9 @@ subsystem to try them all for you.
For the "brand-name" products listed above, here are the protocol
and high-level drivers that you would use:
+ ================ ============ ====== ========
Manufacturer Model Driver Protocol
-
+ ================ ============ ====== ========
MicroSolutions CD-ROM pcd bpck
MicroSolutions PD drive pf bpck
MicroSolutions hard-drive pd bpck
@@ -119,8 +127,10 @@ and high-level drivers that you would use:
Hewlett-Packard 5GB Tape pt epat
Hewlett-Packard 7200e (CD) pcd epat
Hewlett-Packard 7200e (CD-R) pg epat
+ ================ ============ ====== ========
2.1 Configuring built-in drivers
+---------------------------------
We recommend that you get to know how the drivers work and how to
configure them as loadable modules, before attempting to compile a
@@ -143,7 +153,7 @@ protocol identification number and, for some devices, the drive's
chain ID. While your system is booting, a number of messages are
displayed on the console. Like all such messages, they can be
reviewed with the 'dmesg' command. Among those messages will be
-some lines like:
+some lines like::
paride: bpck registered as protocol 0
paride: epat registered as protocol 1
@@ -158,10 +168,10 @@ the last two digits of the drive's serial number (but read MicroSolutions'
documentation about this).
As an example, let's assume that you have a MicroSolutions PD/CD drive
-with unit ID number 36 connected to the parallel port at 0x378, a SyQuest
-EZ-135 connected to the chained port on the PD/CD drive and also an
-Imation Superdisk connected to port 0x278. You could give the following
-options on your boot command:
+with unit ID number 36 connected to the parallel port at 0x378, a SyQuest
+EZ-135 connected to the chained port on the PD/CD drive and also an
+Imation Superdisk connected to port 0x278. You could give the following
+options on your boot command::
pd.drive0=0x378,1 pf.drive0=0x278,1 pf.drive1=0x378,0,36
@@ -169,24 +179,27 @@ In the last option, pf.drive1 configures device /dev/pf1, the 0x378
is the parallel port base address, the 0 is the protocol registration
number and 36 is the chain ID.
-Please note: while PARIDE will work both with and without the
+Please note: while PARIDE will work both with and without the
PARPORT parallel port sharing system that is included by the
"Parallel port support" option, PARPORT must be included and enabled
if you want to use chains of devices on the same parallel port.
2.2 Loading and configuring PARIDE as modules
+----------------------------------------------
It is much faster and simpler to get to understand the PARIDE drivers
-if you use them as loadable kernel modules.
+if you use them as loadable kernel modules.
-Note 1: using these drivers with the "kerneld" automatic module loading
-system is not recommended for beginners, and is not documented here.
+Note 1:
+ using these drivers with the "kerneld" automatic module loading
+ system is not recommended for beginners, and is not documented here.
-Note 2: if you build PARPORT support as a loadable module, PARIDE must
-also be built as loadable modules, and PARPORT must be loaded before the
-PARIDE modules.
+Note 2:
+ if you build PARPORT support as a loadable module, PARIDE must
+ also be built as loadable modules, and PARPORT must be loaded before
+ the PARIDE modules.
-To use PARIDE, you must begin by
+To use PARIDE, you must begin by::
insmod paride
@@ -195,8 +208,8 @@ among other tasks.
Then, load as many of the protocol modules as you think you might need.
As you load each module, it will register the protocols that it supports,
-and print a log message to your kernel log file and your console. For
-example:
+and print a log message to your kernel log file and your console. For
+example::
# insmod epat
paride: epat registered as protocol 0
@@ -205,22 +218,22 @@ example:
paride: k971 registered as protocol 2
Finally, you can load high-level drivers for each kind of device that
-you have connected. By default, each driver will autoprobe for a single
+you have connected. By default, each driver will autoprobe for a single
device, but you can support up to four similar devices by giving their
individual co-ordinates when you load the driver.
For example, if you had two no-name CD-ROM drives both using the
KingByte KBIC-951A adapter, one on port 0x378 and the other on 0x3bc
-you could give the following command:
+you could give the following command::
# insmod pcd drive0=0x378,1 drive1=0x3bc,1
For most adapters, giving a port address and protocol number is sufficient,
-but check the source files in linux/drivers/block/paride for more
+but check the source files in linux/drivers/block/paride for more
information. (Hopefully someone will write some man pages one day !).
As another example, here's what happens when PARPORT is installed, and
-a SyQuest EZ-135 is attached to port 0x378:
+a SyQuest EZ-135 is attached to port 0x378::
# insmod paride
paride: version 1.0 installed
@@ -237,46 +250,47 @@ Note that the last line is the output from the generic partition table
scanner - in this case it reports that it has found a disk with one partition.
2.3 Using a PARIDE device
+--------------------------
Once the drivers have been loaded, you can access PARIDE devices in the
same way as their traditional counterparts. You will probably need to
create the device "special files". Here is a simple script that you can
-cut to a file and execute:
-
-#!/bin/bash
-#
-# mkd -- a script to create the device special files for the PARIDE subsystem
-#
-function mkdev {
- mknod $1 $2 $3 $4 ; chmod 0660 $1 ; chown root:disk $1
-}
-#
-function pd {
- D=$( printf \\$( printf "x%03x" $[ $1 + 97 ] ) )
- mkdev pd$D b 45 $[ $1 * 16 ]
- for P in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- do mkdev pd$D$P b 45 $[ $1 * 16 + $P ]
- done
-}
-#
-cd /dev
-#
-for u in 0 1 2 3 ; do pd $u ; done
-for u in 0 1 2 3 ; do mkdev pcd$u b 46 $u ; done
-for u in 0 1 2 3 ; do mkdev pf$u b 47 $u ; done
-for u in 0 1 2 3 ; do mkdev pt$u c 96 $u ; done
-for u in 0 1 2 3 ; do mkdev npt$u c 96 $[ $u + 128 ] ; done
-for u in 0 1 2 3 ; do mkdev pg$u c 97 $u ; done
-#
-# end of mkd
+cut to a file and execute::
+
+ #!/bin/bash
+ #
+ # mkd -- a script to create the device special files for the PARIDE subsystem
+ #
+ function mkdev {
+ mknod $1 $2 $3 $4 ; chmod 0660 $1 ; chown root:disk $1
+ }
+ #
+ function pd {
+ D=$( printf \\$( printf "x%03x" $[ $1 + 97 ] ) )
+ mkdev pd$D b 45 $[ $1 * 16 ]
+ for P in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+ do mkdev pd$D$P b 45 $[ $1 * 16 + $P ]
+ done
+ }
+ #
+ cd /dev
+ #
+ for u in 0 1 2 3 ; do pd $u ; done
+ for u in 0 1 2 3 ; do mkdev pcd$u b 46 $u ; done
+ for u in 0 1 2 3 ; do mkdev pf$u b 47 $u ; done
+ for u in 0 1 2 3 ; do mkdev pt$u c 96 $u ; done
+ for u in 0 1 2 3 ; do mkdev npt$u c 96 $[ $u + 128 ] ; done
+ for u in 0 1 2 3 ; do mkdev pg$u c 97 $u ; done
+ #
+ # end of mkd
With the device files and drivers in place, you can access PARIDE devices
-like any other Linux device. For example, to mount a CD-ROM in pcd0, use:
+like any other Linux device. For example, to mount a CD-ROM in pcd0, use::
mount /dev/pcd0 /cdrom
If you have a fresh Avatar Shark cartridge, and the drive is pda, you
-might do something like:
+might do something like::
fdisk /dev/pda -- make a new partition table with
partition 1 of type 83
@@ -289,41 +303,46 @@ might do something like:
Devices like the Imation superdisk work in the same way, except that
they do not have a partition table. For example to make a 120MB
-floppy that you could share with a DOS system:
+floppy that you could share with a DOS system::
mkdosfs /dev/pf0
mount /dev/pf0 /mnt
2.4 The pf driver
+------------------
The pf driver is intended for use with parallel port ATAPI disk
devices. The most common devices in this category are PD drives
and LS-120 drives. Traditionally, media for these devices are not
partitioned. Consequently, the pf driver does not support partitioned
-media. This may be changed in a future version of the driver.
+media. This may be changed in a future version of the driver.
2.5 Using the pt driver
+------------------------
The pt driver for parallel port ATAPI tape drives is a minimal driver.
-It does not yet support many of the standard tape ioctl operations.
+It does not yet support many of the standard tape ioctl operations.
For best performance, a block size of 32KB should be used. You will
probably want to set the parallel port delay to 0, if you can.
2.6 Using the pg driver
+------------------------
The pg driver can be used in conjunction with the cdrecord program
to create CD-ROMs. Please get cdrecord version 1.6.1 or later
-from ftp://ftp.fokus.gmd.de/pub/unix/cdrecord/ . To record CD-R media
-your parallel port should ideally be set to EPP mode, and the "port delay"
-should be set to 0. With those settings it is possible to record at 2x
+from ftp://ftp.fokus.gmd.de/pub/unix/cdrecord/ . To record CD-R media
+your parallel port should ideally be set to EPP mode, and the "port delay"
+should be set to 0. With those settings it is possible to record at 2x
speed without any buffer underruns. If you cannot get the driver to work
in EPP mode, try to use "bidirectional" or "PS/2" mode and 1x speeds only.
3. Troubleshooting
+==================
3.1 Use EPP mode if you can
+----------------------------
The most common problems that people report with the PARIDE drivers
concern the parallel port CMOS settings. At this time, none of the
@@ -332,6 +351,7 @@ If you are able to do so, please set your parallel port into EPP mode
using your CMOS setup procedure.
3.2 Check the port delay
+-------------------------
Some parallel ports cannot reliably transfer data at full speed. To
offset the errors, the PARIDE protocol modules introduce a "port
@@ -347,23 +367,25 @@ read the comments at the beginning of the driver source files in
linux/drivers/block/paride.
3.3 Some drives need a printer reset
+-------------------------------------
There appear to be a number of "noname" external drives on the market
that do not always power up correctly. We have noticed this with some
drives based on OnSpec and older Freecom adapters. In these rare cases,
the adapter can often be reinitialised by issuing a "printer reset" on
-the parallel port. As the reset operation is potentially disruptive in
-multiple device environments, the PARIDE drivers will not do it
-automatically. You can however, force a printer reset by doing:
+the parallel port. As the reset operation is potentially disruptive in
+multiple device environments, the PARIDE drivers will not do it
+automatically. You can however, force a printer reset by doing::
insmod lp reset=1
rmmod lp
If you have one of these marginal cases, you should probably build
your paride drivers as modules, and arrange to do the printer reset
-before loading the PARIDE drivers.
+before loading the PARIDE drivers.
3.4 Use the verbose option and dmesg if you need help
+------------------------------------------------------
While a lot of testing has gone into these drivers to make them work
as smoothly as possible, problems will arise. If you do have problems,
@@ -373,7 +395,7 @@ clues, then please make sure that only one drive is hooked to your system,
and that either (a) PARPORT is enabled or (b) no other device driver
is using your parallel port (check in /proc/ioports). Then, load the
appropriate drivers (you can load several protocol modules if you want)
-as in:
+as in::
# insmod paride
# insmod epat
@@ -394,12 +416,14 @@ by e-mail to grant@torque.net, or join the linux-parport mailing list
and post your report there.
3.5 For more information or help
+---------------------------------
You can join the linux-parport mailing list by sending a mail message
-to
+to:
+
linux-parport-request@torque.net
-with the single word
+with the single word::
subscribe
@@ -412,6 +436,4 @@ have in your mail headers, when sending mail to the list server.
You might also find some useful information on the linux-parport
web pages (although they are not always up to date) at
- http://web.archive.org/web/*/http://www.torque.net/parport/
-
-
+ http://web.archive.org/web/%2E/http://www.torque.net/parport/
diff --git a/Documentation/blockdev/ramdisk.txt b/Documentation/admin-guide/blockdev/ramdisk.rst
index 501e12e0323e..b7c2268f8dec 100644
--- a/Documentation/blockdev/ramdisk.txt
+++ b/Documentation/admin-guide/blockdev/ramdisk.rst
@@ -1,7 +1,8 @@
+==========================================
Using the RAM disk block device with Linux
-------------------------------------------
+==========================================
-Contents:
+.. Contents:
1) Overview
2) Kernel Command Line Parameters
@@ -42,7 +43,7 @@ rescue floppy disk.
2a) Kernel Command Line Parameters
ramdisk_size=N
- ==============
+ Size of the ramdisk.
This parameter tells the RAM disk driver to set up RAM disks of N k size. The
default is 4096 (4 MB).
@@ -50,16 +51,13 @@ default is 4096 (4 MB).
2b) Module parameters
rd_nr
- =====
- /dev/ramX devices created.
+ /dev/ramX devices created.
max_part
- ========
- Maximum partition number.
+ Maximum partition number.
rd_size
- =======
- See ramdisk_size.
+ See ramdisk_size.
3) Using "rdev -r"
------------------
@@ -71,11 +69,11 @@ to 2 MB (2^11) of where to find the RAM disk (this used to be the size). Bit
prompt/wait sequence is to be given before trying to read the RAM disk. Since
the RAM disk dynamically grows as data is being written into it, a size field
is not required. Bits 11 to 13 are not currently used and may as well be zero.
-These numbers are no magical secrets, as seen below:
+These numbers are no magical secrets, as seen below::
-./arch/x86/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF
-./arch/x86/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000
-./arch/x86/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000
+ ./arch/x86/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF
+ ./arch/x86/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000
+ ./arch/x86/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000
Consider a typical two floppy disk setup, where you will have the
kernel on disk one, and have already put a RAM disk image onto disk #2.
@@ -92,20 +90,23 @@ sequence so that you have a chance to switch floppy disks.
The command line equivalent is: "prompt_ramdisk=1"
Putting that together gives 2^15 + 2^14 + 0 = 49152 for an rdev word.
-So to create disk one of the set, you would do:
+So to create disk one of the set, you would do::
/usr/src/linux# cat arch/x86/boot/zImage > /dev/fd0
/usr/src/linux# rdev /dev/fd0 /dev/fd0
/usr/src/linux# rdev -r /dev/fd0 49152
-If you make a boot disk that has LILO, then for the above, you would use:
+If you make a boot disk that has LILO, then for the above, you would use::
+
append = "ramdisk_start=0 load_ramdisk=1 prompt_ramdisk=1"
-Since the default start = 0 and the default prompt = 1, you could use:
+
+Since the default start = 0 and the default prompt = 1, you could use::
+
append = "load_ramdisk=1"
4) An Example of Creating a Compressed RAM Disk
-----------------------------------------------
+-----------------------------------------------
To create a RAM disk image, you will need a spare block device to
construct it on. This can be the RAM disk device itself, or an
@@ -120,11 +121,11 @@ a) Decide on the RAM disk size that you want. Say 2 MB for this example.
Create it by writing to the RAM disk device. (This step is not currently
required, but may be in the future.) It is wise to zero out the
area (esp. for disks) so that maximal compression is achieved for
- the unused blocks of the image that you are about to create.
+ the unused blocks of the image that you are about to create::
dd if=/dev/zero of=/dev/ram0 bs=1k count=2048
-b) Make a filesystem on it. Say ext2fs for this example.
+b) Make a filesystem on it. Say ext2fs for this example::
mke2fs -vm0 /dev/ram0 2048
@@ -133,11 +134,11 @@ c) Mount it, copy the files you want to it (eg: /etc/* /dev/* ...)
d) Compress the contents of the RAM disk. The level of compression
will be approximately 50% of the space used by the files. Unused
- space on the RAM disk will compress to almost nothing.
+ space on the RAM disk will compress to almost nothing::
dd if=/dev/ram0 bs=1k count=2048 | gzip -v9 > /tmp/ram_image.gz
-e) Put the kernel onto the floppy
+e) Put the kernel onto the floppy::
dd if=zImage of=/dev/fd0 bs=1k
@@ -146,13 +147,13 @@ f) Put the RAM disk image onto the floppy, after the kernel. Use an offset
(possibly larger) kernel onto the same floppy later without overlapping
the RAM disk image. An offset of 400 kB for kernels about 350 kB in
size would be reasonable. Make sure offset+size of ram_image.gz is
- not larger than the total space on your floppy (usually 1440 kB).
+ not larger than the total space on your floppy (usually 1440 kB)::
dd if=/tmp/ram_image.gz of=/dev/fd0 bs=1k seek=400
g) Use "rdev" to set the boot device, RAM disk offset, prompt flag, etc.
For prompt_ramdisk=1, load_ramdisk=1, ramdisk_start=400, one would
- have 2^15 + 2^14 + 400 = 49552.
+ have 2^15 + 2^14 + 400 = 49552::
rdev /dev/fd0 /dev/fd0
rdev -r /dev/fd0 49552
@@ -160,15 +161,17 @@ g) Use "rdev" to set the boot device, RAM disk offset, prompt flag, etc.
That is it. You now have your boot/root compressed RAM disk floppy. Some
users may wish to combine steps (d) and (f) by using a pipe.
---------------------------------------------------------------------------
+
Paul Gortmaker 12/95
Changelog:
----------
-10-22-04 : Updated to reflect changes in command line options, remove
+10-22-04 :
+ Updated to reflect changes in command line options, remove
obsolete references, general cleanup.
James Nelson (james4765@gmail.com)
-12-95 : Original Document
+12-95 :
+ Original Document
diff --git a/Documentation/blockdev/zram.txt b/Documentation/admin-guide/blockdev/zram.rst
index 4df0ce271085..6eccf13219ff 100644
--- a/Documentation/blockdev/zram.txt
+++ b/Documentation/admin-guide/blockdev/zram.rst
@@ -1,7 +1,9 @@
+========================================
zram: Compressed RAM based block devices
-----------------------------------------
+========================================
-* Introduction
+Introduction
+============
The zram module creates RAM based block devices named /dev/zram<id>
(<id> = 0, 1, ...). Pages written to these disks are compressed and stored
@@ -12,9 +14,11 @@ use as swap disks, various caches under /var and maybe many more :)
Statistics for individual zram devices are exported through sysfs nodes at
/sys/block/zram<id>/
-* Usage
+Usage
+=====
There are several ways to configure and manage zram device(-s):
+
a) using zram and zram_control sysfs attributes
b) using zramctl utility, provided by util-linux (util-linux@vger.kernel.org).
@@ -22,7 +26,7 @@ In this document we will describe only 'manual' zram configuration steps,
IOW, zram and zram_control sysfs attributes.
In order to get a better idea about zramctl please consult util-linux
-documentation, zramctl man-page or `zramctl --help'. Please be informed
+documentation, zramctl man-page or `zramctl --help`. Please be informed
that zram maintainers do not develop/maintain util-linux or zramctl, should
you have any questions please contact util-linux@vger.kernel.org
@@ -30,19 +34,23 @@ Following shows a typical sequence of steps for using zram.
WARNING
=======
+
For the sake of simplicity we skip error checking parts in most of the
examples below. However, it is your sole responsibility to handle errors.
zram sysfs attributes always return negative values in case of errors.
The list of possible return codes:
--EBUSY -- an attempt to modify an attribute that cannot be changed once
-the device has been initialised. Please reset device first;
--ENOMEM -- zram was not able to allocate enough memory to fulfil your
-needs;
--EINVAL -- invalid input has been provided.
+
+======== =============================================================
+-EBUSY an attempt to modify an attribute that cannot be changed once
+ the device has been initialised. Please reset device first;
+-ENOMEM zram was not able to allocate enough memory to fulfil your
+ needs;
+-EINVAL invalid input has been provided.
+======== =============================================================
If you use 'echo', the returned value that is changed by 'echo' utility,
-and, in general case, something like:
+and, in general case, something like::
echo 3 > /sys/block/zram0/max_comp_streams
if [ $? -ne 0 ];
@@ -51,7 +59,11 @@ and, in general case, something like:
should suffice.
-1) Load Module:
+1) Load Module
+==============
+
+::
+
modprobe zram num_devices=4
This creates 4 devices: /dev/zram{0,1,2,3}
@@ -59,6 +71,8 @@ num_devices parameter is optional and tells zram how many devices should be
pre-created. Default: 1.
2) Set max number of compression streams
+========================================
+
Regardless the value passed to this attribute, ZRAM will always
allocate multiple compression streams - one per online CPUs - thus
allowing several concurrent compression operations. The number of
@@ -66,16 +80,20 @@ allocated compression streams goes down when some of the CPUs
become offline. There is no single-compression-stream mode anymore,
unless you are running a UP system or has only 1 CPU online.
-To find out how many streams are currently available:
+To find out how many streams are currently available::
+
cat /sys/block/zram0/max_comp_streams
3) Select compression algorithm
+===============================
+
Using comp_algorithm device attribute one can see available and
currently selected (shown in square brackets) compression algorithms,
change selected compression algorithm (once the device is initialised
there is no way to change compression algorithm).
-Examples:
+Examples::
+
#show supported compression algorithms
cat /sys/block/zram0/comp_algorithm
lzo [lz4]
@@ -83,20 +101,23 @@ Examples:
#select lzo compression algorithm
echo lzo > /sys/block/zram0/comp_algorithm
-For the time being, the `comp_algorithm' content does not necessarily
+For the time being, the `comp_algorithm` content does not necessarily
show every compression algorithm supported by the kernel. We keep this
list primarily to simplify device configuration and one can configure
a new device with a compression algorithm that is not listed in
-`comp_algorithm'. The thing is that, internally, ZRAM uses Crypto API
+`comp_algorithm`. The thing is that, internally, ZRAM uses Crypto API
and, if some of the algorithms were built as modules, it's impossible
to list all of them using, for instance, /proc/crypto or any other
method. This, however, has an advantage of permitting the usage of
custom crypto compression modules (implementing S/W or H/W compression).
4) Set Disksize
+===============
+
Set disk size by writing the value to sysfs node 'disksize'.
The value can be either in bytes or you can use mem suffixes.
-Examples:
+Examples::
+
# Initialize /dev/zram0 with 50MB disksize
echo $((50*1024*1024)) > /sys/block/zram0/disksize
@@ -111,10 +132,13 @@ since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the
size of the disk when not in use so a huge zram is wasteful.
5) Set memory limit: Optional
+=============================
+
Set memory limit by writing the value to sysfs node 'mem_limit'.
The value can be either in bytes or you can use mem suffixes.
In addition, you could change the value in runtime.
-Examples:
+Examples::
+
# limit /dev/zram0 with 50MB memory
echo $((50*1024*1024)) > /sys/block/zram0/mem_limit
@@ -126,7 +150,11 @@ Examples:
# To disable memory limit
echo 0 > /sys/block/zram0/mem_limit
-6) Activate:
+6) Activate
+===========
+
+::
+
mkswap /dev/zram0
swapon /dev/zram0
@@ -134,6 +162,7 @@ Examples:
mount /dev/zram1 /tmp
7) Add/remove zram devices
+==========================
zram provides a control interface, which enables dynamic (on-demand) device
addition and removal.
@@ -142,44 +171,51 @@ In order to add a new /dev/zramX device, perform read operation on hot_add
attribute. This will return either new device's device id (meaning that you
can use /dev/zram<id>) or error code.
-Example:
+Example::
+
cat /sys/class/zram-control/hot_add
1
To remove the existing /dev/zramX device (where X is a device id)
-execute
+execute::
+
echo X > /sys/class/zram-control/hot_remove
-8) Stats:
+8) Stats
+========
+
Per-device statistics are exported as various nodes under /sys/block/zram<id>/
A brief description of exported device attributes. For more details please
read Documentation/ABI/testing/sysfs-block-zram.
+====================== ====== ===============================================
Name access description
----- ------ -----------
+====================== ====== ===============================================
disksize RW show and set the device's disk size
initstate RO shows the initialization state of the device
reset WO trigger device reset
-mem_used_max WO reset the `mem_used_max' counter (see later)
-mem_limit WO specifies the maximum amount of memory ZRAM can use
- to store the compressed data
-writeback_limit WO specifies the maximum amount of write IO zram can
- write out to backing device as 4KB unit
+mem_used_max WO reset the `mem_used_max` counter (see later)
+mem_limit WO specifies the maximum amount of memory ZRAM can
+ use to store the compressed data
+writeback_limit WO specifies the maximum amount of write IO zram
+ can write out to backing device as 4KB unit
writeback_limit_enable RW show and set writeback_limit feature
-max_comp_streams RW the number of possible concurrent compress operations
+max_comp_streams RW the number of possible concurrent compress
+ operations
comp_algorithm RW show and change the compression algorithm
compact WO trigger memory compaction
debug_stat RO this file is used for zram debugging purposes
backing_dev RW set up backend storage for zram to write out
idle WO mark allocated slot as idle
+====================== ====== ===============================================
User space is advised to use the following files to read the device statistics.
File /sys/block/zram<id>/stat
-Represents block layer statistics. Read Documentation/block/stat.txt for
+Represents block layer statistics. Read Documentation/block/stat.rst for
details.
File /sys/block/zram<id>/io_stat
@@ -188,23 +224,31 @@ The stat file represents device's I/O statistics not accounted by block
layer and, thus, not available in zram<id>/stat file. It consists of a
single line of text and contains the following stats separated by
whitespace:
- failed_reads the number of failed reads
- failed_writes the number of failed writes
- invalid_io the number of non-page-size-aligned I/O requests
+
+ ============= =============================================================
+ failed_reads The number of failed reads
+ failed_writes The number of failed writes
+ invalid_io The number of non-page-size-aligned I/O requests
notify_free Depending on device usage scenario it may account
+
a) the number of pages freed because of swap slot free
- notifications or b) the number of pages freed because of
- REQ_OP_DISCARD requests sent by bio. The former ones are
- sent to a swap block device when a swap slot is freed,
- which implies that this disk is being used as a swap disk.
+ notifications
+ b) the number of pages freed because of
+ REQ_OP_DISCARD requests sent by bio. The former ones are
+ sent to a swap block device when a swap slot is freed,
+ which implies that this disk is being used as a swap disk.
+
The latter ones are sent by filesystem mounted with
discard option, whenever some data blocks are getting
discarded.
+ ============= =============================================================
File /sys/block/zram<id>/mm_stat
The stat file represents device's mm statistics. It consists of a single
line of text and contains the following stats separated by whitespace:
+
+ ================ =============================================================
orig_data_size uncompressed size of data stored in this disk.
This excludes same-element-filled pages (same_pages) since
no memory is allocated for them.
@@ -223,58 +267,71 @@ line of text and contains the following stats separated by whitespace:
No memory is allocated for such pages.
pages_compacted the number of pages freed during compaction
huge_pages the number of incompressible pages
+ ================ =============================================================
File /sys/block/zram<id>/bd_stat
The stat file represents device's backing device statistics. It consists of
a single line of text and contains the following stats separated by whitespace:
+
+ ============== =============================================================
bd_count size of data written in backing device.
Unit: 4K bytes
bd_reads the number of reads from backing device
Unit: 4K bytes
bd_writes the number of writes to backing device
Unit: 4K bytes
+ ============== =============================================================
+
+9) Deactivate
+=============
+
+::
-9) Deactivate:
swapoff /dev/zram0
umount /dev/zram1
-10) Reset:
- Write any positive value to 'reset' sysfs node
- echo 1 > /sys/block/zram0/reset
- echo 1 > /sys/block/zram1/reset
+10) Reset
+=========
+
+ Write any positive value to 'reset' sysfs node::
+
+ echo 1 > /sys/block/zram0/reset
+ echo 1 > /sys/block/zram1/reset
This frees all the memory allocated for the given device and
resets the disksize to zero. You must set the disksize again
before reusing the device.
-* Optional Feature
+Optional Feature
+================
-= writeback
+writeback
+---------
With CONFIG_ZRAM_WRITEBACK, zram can write idle/incompressible page
to backing storage rather than keeping it in memory.
-To use the feature, admin should set up backing device via
+To use the feature, admin should set up backing device via::
- "echo /dev/sda5 > /sys/block/zramX/backing_dev"
+ echo /dev/sda5 > /sys/block/zramX/backing_dev
before disksize setting. It supports only partition at this moment.
-If admin want to use incompressible page writeback, they could do via
+If admin want to use incompressible page writeback, they could do via::
- "echo huge > /sys/block/zramX/write"
+ echo huge > /sys/block/zramX/write
To use idle page writeback, first, user need to declare zram pages
-as idle.
+as idle::
- "echo all > /sys/block/zramX/idle"
+ echo all > /sys/block/zramX/idle
From now on, any pages on zram are idle pages. The idle mark
will be removed until someone request access of the block.
IOW, unless there is access request, those pages are still idle pages.
-Admin can request writeback of those idle pages at right timing via
+Admin can request writeback of those idle pages at right timing via::
- "echo idle > /sys/block/zramX/writeback"
+ echo idle > /sys/block/zramX/writeback
With the command, zram writeback idle pages from memory to the storage.
@@ -285,7 +342,7 @@ to guarantee storage health for entire product life.
To overcome the concern, zram supports "writeback_limit" feature.
The "writeback_limit_enable"'s default value is 0 so that it doesn't limit
any writeback. IOW, if admin want to apply writeback budget, he should
-enable writeback_limit_enable via
+enable writeback_limit_enable via::
$ echo 1 > /sys/block/zramX/writeback_limit_enable
@@ -296,7 +353,7 @@ until admin set the budget via /sys/block/zramX/writeback_limit.
assigned via /sys/block/zramX/writeback_limit is meaninless.)
If admin want to limit writeback as per-day 400M, he could do it
-like below.
+like below::
$ MB_SHIFT=20
$ 4K_SHIFT=12
@@ -305,16 +362,16 @@ like below.
$ echo 1 > /sys/block/zram0/writeback_limit_enable
If admin want to allow further write again once the bugdet is exausted,
-he could do it like below
+he could do it like below::
$ echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit
-If admin want to see remaining writeback budget since he set,
+If admin want to see remaining writeback budget since he set::
$ cat /sys/block/zramX/writeback_limit
-If admin want to disable writeback limit, he could do
+If admin want to disable writeback limit, he could do::
$ echo 0 > /sys/block/zramX/writeback_limit_enable
@@ -326,25 +383,35 @@ budget in next setting is user's job.
If admin want to measure writeback count in a certain period, he could
know it via /sys/block/zram0/bd_stat's 3rd column.
-= memory tracking
+memory tracking
+===============
With CONFIG_ZRAM_MEMORY_TRACKING, user can know information of the
zram block. It could be useful to catch cold or incompressible
pages of the process with*pagemap.
+
If you enable the feature, you could see block state via
-/sys/kernel/debug/zram/zram0/block_state". The output is as follows,
+/sys/kernel/debug/zram/zram0/block_state". The output is as follows::
300 75.033841 .wh.
301 63.806904 s...
302 63.806919 ..hi
-First column is zram's block index.
-Second column is access time since the system was booted
-Third column is state of the block.
-(s: same page
-w: written page to backing store
-h: huge page
-i: idle page)
+First column
+ zram's block index.
+Second column
+ access time since the system was booted
+Third column
+ state of the block:
+
+ s:
+ same page
+ w:
+ written page to backing store
+ h:
+ huge page
+ i:
+ idle page
First line of above example says 300th block is accessed at 75.033841sec
and the block's state is huge so it is written back to the backing
diff --git a/Documentation/btmrvl.txt b/Documentation/admin-guide/btmrvl.rst
index ec57740ead0c..ec57740ead0c 100644
--- a/Documentation/btmrvl.txt
+++ b/Documentation/admin-guide/btmrvl.rst
diff --git a/Documentation/admin-guide/bug-hunting.rst b/Documentation/admin-guide/bug-hunting.rst
index f278b289e260..44b8a4edd348 100644
--- a/Documentation/admin-guide/bug-hunting.rst
+++ b/Documentation/admin-guide/bug-hunting.rst
@@ -90,9 +90,9 @@ the disk is not available then you have three options:
run a null modem to a second machine and capture the output there
using your favourite communication program. Minicom works well.
-(3) Use Kdump (see Documentation/kdump/kdump.txt),
+(3) Use Kdump (see Documentation/admin-guide/kdump/kdump.rst),
extract the kernel ring buffer from old memory with using dmesg
- gdbmacro in Documentation/kdump/gdbmacros.txt.
+ gdbmacro in Documentation/admin-guide/kdump/gdbmacros.txt.
Finding the bug's location
--------------------------
diff --git a/Documentation/cgroup-v1/blkio-controller.txt b/Documentation/admin-guide/cgroup-v1/blkio-controller.rst
index d1a1b7bdd03a..36d43ae7dc13 100644
--- a/Documentation/cgroup-v1/blkio-controller.txt
+++ b/Documentation/admin-guide/cgroup-v1/blkio-controller.rst
@@ -1,5 +1,7 @@
- Block IO Controller
- ===================
+===================
+Block IO Controller
+===================
+
Overview
========
cgroup subsys "blkio" implements the block io controller. There seems to be
@@ -17,24 +19,27 @@ HOWTO
=====
Throttling/Upper Limit policy
-----------------------------
-- Enable Block IO controller
+- Enable Block IO controller::
+
CONFIG_BLK_CGROUP=y
-- Enable throttling in block layer
+- Enable throttling in block layer::
+
CONFIG_BLK_DEV_THROTTLING=y
-- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)
+- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)::
+
mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
- Specify a bandwidth rate on particular device for root group. The format
- for policy is "<major>:<minor> <bytes_per_second>".
+ for policy is "<major>:<minor> <bytes_per_second>"::
echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device
Above will put a limit of 1MB/second on reads happening for root group
on device having major/minor number 8:16.
-- Run dd to read a file and see if rate is throttled to 1MB/s or not.
+- Run dd to read a file and see if rate is throttled to 1MB/s or not::
# dd iflag=direct if=/mnt/common/zerofile of=/dev/null bs=4K count=1024
1024+0 records in
@@ -51,7 +56,7 @@ throttling's hierarchy support is enabled iff "sane_behavior" is
enabled from cgroup side, which currently is a development option and
not publicly available.
-If somebody created a hierarchy like as follows.
+If somebody created a hierarchy like as follows::
root
/ \
@@ -66,7 +71,7 @@ directly generated by tasks in that cgroup.
Throttling without "sane_behavior" enabled from cgroup side will
practically treat all groups at same level as if it looks like the
-following.
+following::
pivot
/ / \ \
@@ -77,7 +82,7 @@ Various user visible config options
CONFIG_BLK_CGROUP
- Block IO controller.
-CONFIG_DEBUG_BLK_CGROUP
+CONFIG_BFQ_CGROUP_DEBUG
- Debug help. Right now some additional stats file show up in cgroup
if this option is enabled.
@@ -99,33 +104,31 @@ Proportional weight policy files
These rules override the default value of group weight as specified
by blkio.weight.
- Following is the format.
-
- # echo dev_maj:dev_minor weight > blkio.weight_device
- Configure weight=300 on /dev/sdb (8:16) in this cgroup
- # echo 8:16 300 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
-
- Configure weight=500 on /dev/sda (8:0) in this cgroup
- # echo 8:0 500 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:0 500
- 8:16 300
-
- Remove specific weight for /dev/sda in this cgroup
- # echo 8:0 0 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
-
-- blkio.leaf_weight[_device]
- - Equivalents of blkio.weight[_device] for the purpose of
- deciding how much weight tasks in the given cgroup has while
- competing with the cgroup's child cgroups. For details,
- please refer to Documentation/block/cfq-iosched.txt.
+ Following is the format::
+
+ # echo dev_maj:dev_minor weight > blkio.weight_device
+
+ Configure weight=300 on /dev/sdb (8:16) in this cgroup::
+
+ # echo 8:16 300 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
+
+ Configure weight=500 on /dev/sda (8:0) in this cgroup::
+
+ # echo 8:0 500 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:0 500
+ 8:16 300
+
+ Remove specific weight for /dev/sda in this cgroup::
+
+ # echo 8:0 0 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
- blkio.time
- disk time allocated to cgroup per device in milliseconds. First
@@ -193,13 +196,13 @@ Proportional weight policy files
write, sync or async.
- blkio.avg_queue_size
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
The average queue size for this cgroup over the entire time of this
cgroup's existence. Queue size samples are taken each time one of the
queues of this cgroup gets a timeslice.
- blkio.group_wait_time
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
This is the amount of time the cgroup had to wait since it became busy
(i.e., went from 0 to 1 request queued) to get a timeslice for one of
its queues. This is different from the io_wait_time which is the
@@ -210,7 +213,7 @@ Proportional weight policy files
got a timeslice and will not include the current delta.
- blkio.empty_time
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
This is the amount of time a cgroup spends without any pending
requests when not being served, i.e., it does not include any time
spent idling for one of the queues of the cgroup. This is in
@@ -219,7 +222,7 @@ Proportional weight policy files
time it had a pending request and will not include the current delta.
- blkio.idle_time
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y.
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
This is the amount of time spent by the IO scheduler idling for a
given cgroup in anticipation of a better request than the existing ones
from other queues/cgroups. This is in nanoseconds. If this is read
@@ -228,7 +231,7 @@ Proportional weight policy files
the current delta.
- blkio.dequeue
- - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. This
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y. This
gives the statistics about how many a times a group was dequeued
from service tree of the device. First two fields specify the major
and minor number of the device and third field specifies the number
@@ -244,30 +247,30 @@ Throttling/Upper limit policy files
- blkio.throttle.read_bps_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
- blkio.throttle.write_bps_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in bytes per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
- blkio.throttle.read_iops_device
- Specifies upper limit on READ rate from the device. IO rate is
specified in IO per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
- blkio.throttle.write_iops_device
- Specifies upper limit on WRITE rate to the device. IO rate is
specified in io per second. Rules are per device. Following is
- the format.
+ the format::
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
Note: If both BW and IOPS rules are specified for a device, then IO is
subjected to both the constraints.
diff --git a/Documentation/cgroup-v1/cgroups.txt b/Documentation/admin-guide/cgroup-v1/cgroups.rst
index 059f7063eea6..b0688011ed06 100644
--- a/Documentation/cgroup-v1/cgroups.txt
+++ b/Documentation/admin-guide/cgroup-v1/cgroups.rst
@@ -1,35 +1,39 @@
- CGROUPS
- -------
+==============
+Control Groups
+==============
Written by Paul Menage <menage@google.com> based on
-Documentation/cgroup-v1/cpusets.txt
+Documentation/admin-guide/cgroup-v1/cpusets.rst
Original copyright statements from cpusets.txt:
+
Portions Copyright (C) 2004 BULL SA.
+
Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+
Modified by Paul Jackson <pj@sgi.com>
+
Modified by Christoph Lameter <cl@linux.com>
-CONTENTS:
-=========
-
-1. Control Groups
- 1.1 What are cgroups ?
- 1.2 Why are cgroups needed ?
- 1.3 How are cgroups implemented ?
- 1.4 What does notify_on_release do ?
- 1.5 What does clone_children do ?
- 1.6 How do I use cgroups ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Attaching processes
- 2.3 Mounting hierarchies by name
-3. Kernel API
- 3.1 Overview
- 3.2 Synchronization
- 3.3 Subsystem API
-4. Extended attributes usage
-5. Questions
+.. CONTENTS:
+
+ 1. Control Groups
+ 1.1 What are cgroups ?
+ 1.2 Why are cgroups needed ?
+ 1.3 How are cgroups implemented ?
+ 1.4 What does notify_on_release do ?
+ 1.5 What does clone_children do ?
+ 1.6 How do I use cgroups ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Attaching processes
+ 2.3 Mounting hierarchies by name
+ 3. Kernel API
+ 3.1 Overview
+ 3.2 Synchronization
+ 3.3 Subsystem API
+ 4. Extended attributes usage
+ 5. Questions
1. Control Groups
=================
@@ -72,7 +76,7 @@ On their own, the only use for cgroups is for simple job
tracking. The intention is that other subsystems hook into the generic
cgroup support to provide new attributes for cgroups, such as
accounting/limiting the resources which processes in a cgroup can
-access. For example, cpusets (see Documentation/cgroup-v1/cpusets.txt) allow
+access. For example, cpusets (see Documentation/admin-guide/cgroup-v1/cpusets.rst) allow
you to associate a set of CPUs and a set of memory nodes with the
tasks in each cgroup.
@@ -108,7 +112,7 @@ As an example of a scenario (originally proposed by vatsa@in.ibm.com)
that can benefit from multiple hierarchies, consider a large
university server with various users - students, professors, system
tasks etc. The resource planning for this server could be along the
-following lines:
+following lines::
CPU : "Top cpuset"
/ \
@@ -136,7 +140,7 @@ depending on who launched it (prof/student).
With the ability to classify tasks differently for different resources
(by putting those resource subsystems in different hierarchies),
the admin can easily set up a script which receives exec notifications
-and depending on who is launching the browser he can
+and depending on who is launching the browser he can::
# echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
@@ -151,7 +155,7 @@ wants to do online gaming :)) OR give one of the student's simulation
apps enhanced CPU power.
With ability to write PIDs directly to resource classes, it's just a
-matter of:
+matter of::
# echo pid > /sys/fs/cgroup/network/<new_class>/tasks
(after some time)
@@ -306,7 +310,7 @@ configuration from the parent during initialization.
--------------------------
To start a new job that is to be contained within a cgroup, using
-the "cpuset" cgroup subsystem, the steps are something like:
+the "cpuset" cgroup subsystem, the steps are something like::
1) mount -t tmpfs cgroup_root /sys/fs/cgroup
2) mkdir /sys/fs/cgroup/cpuset
@@ -320,7 +324,7 @@ the "cpuset" cgroup subsystem, the steps are something like:
For example, the following sequence of commands will setup a cgroup
named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cgroup:
+and then start a subshell 'sh' in that cgroup::
mount -t tmpfs cgroup_root /sys/fs/cgroup
mkdir /sys/fs/cgroup/cpuset
@@ -345,8 +349,9 @@ and then start a subshell 'sh' in that cgroup:
Creating, modifying, using cgroups can be done through the cgroup
virtual filesystem.
-To mount a cgroup hierarchy with all available subsystems, type:
-# mount -t cgroup xxx /sys/fs/cgroup
+To mount a cgroup hierarchy with all available subsystems, type::
+
+ # mount -t cgroup xxx /sys/fs/cgroup
The "xxx" is not interpreted by the cgroup code, but will appear in
/proc/mounts so may be any useful identifying string that you like.
@@ -355,18 +360,19 @@ Note: Some subsystems do not work without some user input first. For instance,
if cpusets are enabled the user will have to populate the cpus and mems files
for each new cgroup created before that group can be used.
-As explained in section `1.2 Why are cgroups needed?' you should create
+As explained in section `1.2 Why are cgroups needed?` you should create
different hierarchies of cgroups for each single resource or group of
resources you want to control. Therefore, you should mount a tmpfs on
/sys/fs/cgroup and create directories for each cgroup resource or resource
-group.
+group::
-# mount -t tmpfs cgroup_root /sys/fs/cgroup
-# mkdir /sys/fs/cgroup/rg1
+ # mount -t tmpfs cgroup_root /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/rg1
To mount a cgroup hierarchy with just the cpuset and memory
-subsystems, type:
-# mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
+subsystems, type::
+
+ # mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
While remounting cgroups is currently supported, it is not recommend
to use it. Remounting allows changing bound subsystems and
@@ -375,9 +381,10 @@ hierarchy is empty and release_agent itself should be replaced with
conventional fsnotify. The support for remounting will be removed in
the future.
-To Specify a hierarchy's release_agent:
-# mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
- xxx /sys/fs/cgroup/rg1
+To Specify a hierarchy's release_agent::
+
+ # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
+ xxx /sys/fs/cgroup/rg1
Note that specifying 'release_agent' more than once will return failure.
@@ -390,32 +397,39 @@ Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the
tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1
is the cgroup that holds the whole system.
-If you want to change the value of release_agent:
-# echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
+If you want to change the value of release_agent::
+
+ # echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
It can also be changed via remount.
-If you want to create a new cgroup under /sys/fs/cgroup/rg1:
-# cd /sys/fs/cgroup/rg1
-# mkdir my_cgroup
+If you want to create a new cgroup under /sys/fs/cgroup/rg1::
+
+ # cd /sys/fs/cgroup/rg1
+ # mkdir my_cgroup
+
+Now you want to do something with this cgroup:
+
+ # cd my_cgroup
-Now you want to do something with this cgroup.
-# cd my_cgroup
+In this directory you can find several files::
-In this directory you can find several files:
-# ls
-cgroup.procs notify_on_release tasks
-(plus whatever files added by the attached subsystems)
+ # ls
+ cgroup.procs notify_on_release tasks
+ (plus whatever files added by the attached subsystems)
-Now attach your shell to this cgroup:
-# /bin/echo $$ > tasks
+Now attach your shell to this cgroup::
+
+ # /bin/echo $$ > tasks
You can also create cgroups inside your cgroup by using mkdir in this
-directory.
-# mkdir my_sub_cs
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cgroup, just use rmdir::
-To remove a cgroup, just use rmdir:
-# rmdir my_sub_cs
+ # rmdir my_sub_cs
This will fail if the cgroup is in use (has cgroups inside, or
has processes attached, or is held alive by other subsystem-specific
@@ -424,19 +438,21 @@ reference).
2.2 Attaching processes
-----------------------
-# /bin/echo PID > tasks
+::
+
+ # /bin/echo PID > tasks
Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another:
+If you have several tasks to attach, you have to do it one after another::
-# /bin/echo PID1 > tasks
-# /bin/echo PID2 > tasks
- ...
-# /bin/echo PIDn > tasks
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
+ ...
+ # /bin/echo PIDn > tasks
-You can attach the current shell task by echoing 0:
+You can attach the current shell task by echoing 0::
-# echo 0 > tasks
+ # echo 0 > tasks
You can use the cgroup.procs file instead of the tasks file to move all
threads in a threadgroup at once. Echoing the PID of any task in a
@@ -529,7 +545,7 @@ Each subsystem may export the following methods. The only mandatory
methods are css_alloc/free. Any others that are null are presumed to
be successful no-ops.
-struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)
+``struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called to allocate a subsystem state object for a cgroup. The
@@ -544,7 +560,7 @@ identified by the passed cgroup object having a NULL parent (since
it's the root of the hierarchy) and may be an appropriate place for
initialization code.
-int css_online(struct cgroup *cgrp)
+``int css_online(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
Called after @cgrp successfully completed all allocations and made
@@ -554,7 +570,7 @@ callback can be used to implement reliable state sharing and
propagation along the hierarchy. See the comment on
cgroup_for_each_descendant_pre() for details.
-void css_offline(struct cgroup *cgrp);
+``void css_offline(struct cgroup *cgrp);``
(cgroup_mutex held by caller)
This is the counterpart of css_online() and called iff css_online()
@@ -564,7 +580,7 @@ all references it's holding on @cgrp. When all references are dropped,
cgroup removal will proceed to the next step - css_free(). After this
callback, @cgrp should be considered dead to the subsystem.
-void css_free(struct cgroup *cgrp)
+``void css_free(struct cgroup *cgrp)``
(cgroup_mutex held by caller)
The cgroup system is about to free @cgrp; the subsystem should free
@@ -573,7 +589,7 @@ is completely unused; @cgrp->parent is still valid. (Note - can also
be called for a newly-created cgroup if an error occurs after this
subsystem's create() method has been called for the new cgroup).
-int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called prior to moving one or more tasks into a cgroup; if the
@@ -594,7 +610,7 @@ fork. If this method returns 0 (success) then this should remain valid
while the caller holds cgroup_mutex and it is ensured that either
attach() or cancel_attach() will be called in future.
-void css_reset(struct cgroup_subsys_state *css)
+``void css_reset(struct cgroup_subsys_state *css)``
(cgroup_mutex held by caller)
An optional operation which should restore @css's configuration to the
@@ -608,7 +624,7 @@ This prevents unexpected resource control from a hidden css and
ensures that the configuration is in the initial state when it is made
visible again later.
-void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called when a task attach operation has failed after can_attach() has succeeded.
@@ -617,26 +633,26 @@ function, so that the subsystem can implement a rollback. If not, not necessary.
This will be called only about subsystems whose can_attach() operation have
succeeded. The parameters are identical to can_attach().
-void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
+``void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
(cgroup_mutex held by caller)
Called after the task has been attached to the cgroup, to allow any
post-attachment activity that requires memory allocations or blocking.
The parameters are identical to can_attach().
-void fork(struct task_struct *task)
+``void fork(struct task_struct *task)``
Called when a task is forked into a cgroup.
-void exit(struct task_struct *task)
+``void exit(struct task_struct *task)``
Called during task exit.
-void free(struct task_struct *task)
+``void free(struct task_struct *task)``
Called when the task_struct is freed.
-void bind(struct cgroup *root)
+``void bind(struct cgroup *root)``
(cgroup_mutex held by caller)
Called when a cgroup subsystem is rebound to a different hierarchy
@@ -649,6 +665,7 @@ that is being created/destroyed (and hence has no sub-cgroups).
cgroup filesystem supports certain types of extended attributes in its
directories and files. The current supported types are:
+
- Trusted (XATTR_TRUSTED)
- Security (XATTR_SECURITY)
@@ -666,12 +683,13 @@ in containers and systemd for assorted meta data like main PID in a cgroup
5. Questions
============
-Q: what's up with this '/bin/echo' ?
-A: bash's builtin 'echo' command does not check calls to write() against
- errors. If you use it in the cgroup file system, you won't be
- able to tell whether a command succeeded or failed.
+::
-Q: When I attach processes, only the first of the line gets really attached !
-A: We can only return one error code per call to write(). So you should also
- put only ONE PID.
+ Q: what's up with this '/bin/echo' ?
+ A: bash's builtin 'echo' command does not check calls to write() against
+ errors. If you use it in the cgroup file system, you won't be
+ able to tell whether a command succeeded or failed.
+ Q: When I attach processes, only the first of the line gets really attached !
+ A: We can only return one error code per call to write(). So you should also
+ put only ONE PID.
diff --git a/Documentation/cgroup-v1/cpuacct.txt b/Documentation/admin-guide/cgroup-v1/cpuacct.rst
index 9d73cc0cadb9..d30ed81d2ad7 100644
--- a/Documentation/cgroup-v1/cpuacct.txt
+++ b/Documentation/admin-guide/cgroup-v1/cpuacct.rst
@@ -1,5 +1,6 @@
+=========================
CPU Accounting Controller
--------------------------
+=========================
The CPU accounting controller is used to group tasks using cgroups and
account the CPU usage of these groups of tasks.
@@ -8,9 +9,9 @@ The CPU accounting controller supports multi-hierarchy groups. An accounting
group accumulates the CPU usage of all of its child groups and the tasks
directly present in its group.
-Accounting groups can be created by first mounting the cgroup filesystem.
+Accounting groups can be created by first mounting the cgroup filesystem::
-# mount -t cgroup -ocpuacct none /sys/fs/cgroup
+ # mount -t cgroup -ocpuacct none /sys/fs/cgroup
With the above step, the initial or the parent accounting group becomes
visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
@@ -19,11 +20,11 @@ the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
by this group which is essentially the CPU time obtained by all the tasks
in the system.
-New accounting groups can be created under the parent group /sys/fs/cgroup.
+New accounting groups can be created under the parent group /sys/fs/cgroup::
-# cd /sys/fs/cgroup
-# mkdir g1
-# echo $$ > g1/tasks
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it. CPU time consumed by this bash and its children
diff --git a/Documentation/cgroup-v1/cpusets.txt b/Documentation/admin-guide/cgroup-v1/cpusets.rst
index 8402dd6de8df..86a6ae995d54 100644
--- a/Documentation/cgroup-v1/cpusets.txt
+++ b/Documentation/admin-guide/cgroup-v1/cpusets.rst
@@ -1,35 +1,36 @@
- CPUSETS
- -------
+=======
+CPUSETS
+=======
Copyright (C) 2004 BULL SA.
-Written by Simon.Derr@bull.net
-
-Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
-Modified by Paul Jackson <pj@sgi.com>
-Modified by Christoph Lameter <cl@linux.com>
-Modified by Paul Menage <menage@google.com>
-Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
-CONTENTS:
-=========
+Written by Simon.Derr@bull.net
-1. Cpusets
- 1.1 What are cpusets ?
- 1.2 Why are cpusets needed ?
- 1.3 How are cpusets implemented ?
- 1.4 What are exclusive cpusets ?
- 1.5 What is memory_pressure ?
- 1.6 What is memory spread ?
- 1.7 What is sched_load_balance ?
- 1.8 What is sched_relax_domain_level ?
- 1.9 How do I use cpusets ?
-2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Adding/removing cpus
- 2.3 Setting flags
- 2.4 Attaching processes
-3. Questions
-4. Contact
+- Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+- Modified by Paul Jackson <pj@sgi.com>
+- Modified by Christoph Lameter <cl@linux.com>
+- Modified by Paul Menage <menage@google.com>
+- Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
+
+.. CONTENTS:
+
+ 1. Cpusets
+ 1.1 What are cpusets ?
+ 1.2 Why are cpusets needed ?
+ 1.3 How are cpusets implemented ?
+ 1.4 What are exclusive cpusets ?
+ 1.5 What is memory_pressure ?
+ 1.6 What is memory spread ?
+ 1.7 What is sched_load_balance ?
+ 1.8 What is sched_relax_domain_level ?
+ 1.9 How do I use cpusets ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Adding/removing cpus
+ 2.3 Setting flags
+ 2.4 Attaching processes
+ 3. Questions
+ 4. Contact
1. Cpusets
==========
@@ -48,7 +49,7 @@ hooks, beyond what is already present, required to manage dynamic
job placement on large systems.
Cpusets use the generic cgroup subsystem described in
-Documentation/cgroup-v1/cgroups.txt.
+Documentation/admin-guide/cgroup-v1/cgroups.rst.
Requests by a task, using the sched_setaffinity(2) system call to
include CPUs in its CPU affinity mask, and using the mbind(2) and
@@ -157,7 +158,7 @@ modifying cpusets is via this cpuset file system.
The /proc/<pid>/status file for each task has four added lines,
displaying the task's cpus_allowed (on which CPUs it may be scheduled)
and mems_allowed (on which Memory Nodes it may obtain memory),
-in the two formats seen in the following example:
+in the two formats seen in the following example::
Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
Cpus_allowed_list: 0-127
@@ -181,6 +182,7 @@ files describing that cpuset:
- cpuset.sched_relax_domain_level: the searching range when migrating tasks
In addition, only the root cpuset has the following file:
+
- cpuset.memory_pressure_enabled flag: compute memory_pressure?
New cpusets are created using the mkdir system call or shell
@@ -266,7 +268,8 @@ to monitor a cpuset for signs of memory pressure. It's up to the
batch manager or other user code to decide what to do about it and
take action.
-==> Unless this feature is enabled by writing "1" to the special file
+==>
+ Unless this feature is enabled by writing "1" to the special file
/dev/cpuset/memory_pressure_enabled, the hook in the rebalance
code of __alloc_pages() for this metric reduces to simply noticing
that the cpuset_memory_pressure_enabled flag is zero. So only
@@ -399,6 +402,7 @@ have tasks running on them unless explicitly assigned.
This default load balancing across all CPUs is not well suited for
the following two situations:
+
1) On large systems, load balancing across many CPUs is expensive.
If the system is managed using cpusets to place independent jobs
on separate sets of CPUs, full load balancing is unnecessary.
@@ -501,6 +505,7 @@ all the CPUs that must be load balanced.
The cpuset code builds a new such partition and passes it to the
scheduler sched domain setup code, to have the sched domains rebuilt
as necessary, whenever:
+
- the 'cpuset.sched_load_balance' flag of a cpuset with non-empty CPUs changes,
- or CPUs come or go from a cpuset with this flag enabled,
- or 'cpuset.sched_relax_domain_level' value of a cpuset with non-empty CPUs
@@ -553,13 +558,15 @@ this searching range as you like. This file takes int value which
indicates size of searching range in levels ideally as follows,
otherwise initial value -1 that indicates the cpuset has no request.
- -1 : no request. use system default or follow request of others.
- 0 : no search.
- 1 : search siblings (hyperthreads in a core).
- 2 : search cores in a package.
- 3 : search cpus in a node [= system wide on non-NUMA system]
- 4 : search nodes in a chunk of node [on NUMA system]
- 5 : search system wide [on NUMA system]
+====== ===========================================================
+ -1 no request. use system default or follow request of others.
+ 0 no search.
+ 1 search siblings (hyperthreads in a core).
+ 2 search cores in a package.
+ 3 search cpus in a node [= system wide on non-NUMA system]
+ 4 search nodes in a chunk of node [on NUMA system]
+ 5 search system wide [on NUMA system]
+====== ===========================================================
The system default is architecture dependent. The system default
can be changed using the relax_domain_level= boot parameter.
@@ -578,13 +585,14 @@ and whether it is acceptable or not depends on your situation.
Don't modify this file if you are not sure.
If your situation is:
+
- The migration costs between each cpu can be assumed considerably
small(for you) due to your special application's behavior or
special hardware support for CPU cache etc.
- The searching cost doesn't have impact(for you) or you can make
the searching cost enough small by managing cpuset to compact etc.
- The latency is required even it sacrifices cache hit rate etc.
-then increasing 'sched_relax_domain_level' would benefit you.
+ then increasing 'sched_relax_domain_level' would benefit you.
1.9 How do I use cpusets ?
@@ -678,7 +686,7 @@ To start a new job that is to be contained within a cpuset, the steps are:
For example, the following sequence of commands will setup a cpuset
named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cpuset:
+and then start a subshell 'sh' in that cpuset::
mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
cd /sys/fs/cgroup/cpuset
@@ -693,6 +701,7 @@ and then start a subshell 'sh' in that cpuset:
cat /proc/self/cpuset
There are ways to query or modify cpusets:
+
- via the cpuset file system directly, using the various cd, mkdir, echo,
cat, rmdir commands from the shell, or their equivalent from C.
- via the C library libcpuset.
@@ -722,115 +731,133 @@ Then under /sys/fs/cgroup/cpuset you can find a tree that corresponds to the
tree of the cpusets in the system. For instance, /sys/fs/cgroup/cpuset
is the cpuset that holds the whole system.
-If you want to create a new cpuset under /sys/fs/cgroup/cpuset:
-# cd /sys/fs/cgroup/cpuset
-# mkdir my_cpuset
+If you want to create a new cpuset under /sys/fs/cgroup/cpuset::
+
+ # cd /sys/fs/cgroup/cpuset
+ # mkdir my_cpuset
-Now you want to do something with this cpuset.
-# cd my_cpuset
+Now you want to do something with this cpuset::
-In this directory you can find several files:
-# ls
-cgroup.clone_children cpuset.memory_pressure
-cgroup.event_control cpuset.memory_spread_page
-cgroup.procs cpuset.memory_spread_slab
-cpuset.cpu_exclusive cpuset.mems
-cpuset.cpus cpuset.sched_load_balance
-cpuset.mem_exclusive cpuset.sched_relax_domain_level
-cpuset.mem_hardwall notify_on_release
-cpuset.memory_migrate tasks
+ # cd my_cpuset
+
+In this directory you can find several files::
+
+ # ls
+ cgroup.clone_children cpuset.memory_pressure
+ cgroup.event_control cpuset.memory_spread_page
+ cgroup.procs cpuset.memory_spread_slab
+ cpuset.cpu_exclusive cpuset.mems
+ cpuset.cpus cpuset.sched_load_balance
+ cpuset.mem_exclusive cpuset.sched_relax_domain_level
+ cpuset.mem_hardwall notify_on_release
+ cpuset.memory_migrate tasks
Reading them will give you information about the state of this cpuset:
the CPUs and Memory Nodes it can use, the processes that are using
it, its properties. By writing to these files you can manipulate
the cpuset.
-Set some flags:
-# /bin/echo 1 > cpuset.cpu_exclusive
+Set some flags::
+
+ # /bin/echo 1 > cpuset.cpu_exclusive
+
+Add some cpus::
+
+ # /bin/echo 0-7 > cpuset.cpus
+
+Add some mems::
-Add some cpus:
-# /bin/echo 0-7 > cpuset.cpus
+ # /bin/echo 0-7 > cpuset.mems
-Add some mems:
-# /bin/echo 0-7 > cpuset.mems
+Now attach your shell to this cpuset::
-Now attach your shell to this cpuset:
-# /bin/echo $$ > tasks
+ # /bin/echo $$ > tasks
You can also create cpusets inside your cpuset by using mkdir in this
-directory.
-# mkdir my_sub_cs
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cpuset, just use rmdir::
+
+ # rmdir my_sub_cs
-To remove a cpuset, just use rmdir:
-# rmdir my_sub_cs
This will fail if the cpuset is in use (has cpusets inside, or has
processes attached).
Note that for legacy reasons, the "cpuset" filesystem exists as a
wrapper around the cgroup filesystem.
-The command
+The command::
-mount -t cpuset X /sys/fs/cgroup/cpuset
+ mount -t cpuset X /sys/fs/cgroup/cpuset
-is equivalent to
+is equivalent to::
-mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
-echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
+ mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
+ echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
2.2 Adding/removing cpus
------------------------
This is the syntax to use when writing in the cpus or mems files
-in cpuset directories:
+in cpuset directories::
-# /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
-# /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+ # /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+ # /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
To add a CPU to a cpuset, write the new list of CPUs including the
-CPU to be added. To add 6 to the above cpuset:
+CPU to be added. To add 6 to the above cpuset::
-# /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
+ # /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
Similarly to remove a CPU from a cpuset, write the new list of CPUs
without the CPU to be removed.
-To remove all the CPUs:
+To remove all the CPUs::
-# /bin/echo "" > cpuset.cpus -> clear cpus list
+ # /bin/echo "" > cpuset.cpus -> clear cpus list
2.3 Setting flags
-----------------
-The syntax is very simple:
+The syntax is very simple::
-# /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
-# /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
+ # /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
+ # /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
2.4 Attaching processes
-----------------------
-# /bin/echo PID > tasks
+::
+
+ # /bin/echo PID > tasks
Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another:
+If you have several tasks to attach, you have to do it one after another::
-# /bin/echo PID1 > tasks
-# /bin/echo PID2 > tasks
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
...
-# /bin/echo PIDn > tasks
+ # /bin/echo PIDn > tasks
3. Questions
============
-Q: what's up with this '/bin/echo' ?
-A: bash's builtin 'echo' command does not check calls to write() against
+Q:
+ what's up with this '/bin/echo' ?
+
+A:
+ bash's builtin 'echo' command does not check calls to write() against
errors. If you use it in the cpuset file system, you won't be
able to tell whether a command succeeded or failed.
-Q: When I attach processes, only the first of the line gets really attached !
-A: We can only return one error code per call to write(). So you should also
+Q:
+ When I attach processes, only the first of the line gets really attached !
+
+A:
+ We can only return one error code per call to write(). So you should also
put only ONE pid.
4. Contact
diff --git a/Documentation/cgroup-v1/devices.txt b/Documentation/admin-guide/cgroup-v1/devices.rst
index 3c1095ca02ea..e1886783961e 100644
--- a/Documentation/cgroup-v1/devices.txt
+++ b/Documentation/admin-guide/cgroup-v1/devices.rst
@@ -1,6 +1,9 @@
+===========================
Device Whitelist Controller
+===========================
-1. Description:
+1. Description
+==============
Implement a cgroup to track and enforce open and mknod restrictions
on device files. A device cgroup associates a device access
@@ -16,24 +19,26 @@ devices from the whitelist or add new entries. A child cgroup can
never receive a device access which is denied by its parent.
2. User Interface
+=================
An entry is added using devices.allow, and removed using
-devices.deny. For instance
+devices.deny. For instance::
echo 'c 1:3 mr' > /sys/fs/cgroup/1/devices.allow
allows cgroup 1 to read and mknod the device usually known as
-/dev/null. Doing
+/dev/null. Doing::
echo a > /sys/fs/cgroup/1/devices.deny
-will remove the default 'a *:* rwm' entry. Doing
+will remove the default 'a *:* rwm' entry. Doing::
echo a > /sys/fs/cgroup/1/devices.allow
will add the 'a *:* rwm' entry to the whitelist.
3. Security
+===========
Any task can move itself between cgroups. This clearly won't
suffice, but we can decide the best way to adequately restrict
@@ -50,6 +55,7 @@ A cgroup may not be granted more permissions than the cgroup's
parent has.
4. Hierarchy
+============
device cgroups maintain hierarchy by making sure a cgroup never has more
access permissions than its parent. Every time an entry is written to
@@ -58,7 +64,8 @@ from their whitelist and all the locally set whitelist entries will be
re-evaluated. In case one of the locally set whitelist entries would provide
more access than the cgroup's parent, it'll be removed from the whitelist.
-Example:
+Example::
+
A
/ \
B
@@ -67,10 +74,12 @@ Example:
A allow "b 8:* rwm", "c 116:1 rw"
B deny "c 1:3 rwm", "c 116:2 rwm", "b 3:* rwm"
-If a device is denied in group A:
+If a device is denied in group A::
+
# echo "c 116:* r" > A/devices.deny
+
it'll propagate down and after revalidating B's entries, the whitelist entry
-"c 116:2 rwm" will be removed:
+"c 116:2 rwm" will be removed::
group whitelist entries denied devices
A all "b 8:* rwm", "c 116:* rw"
@@ -79,7 +88,8 @@ it'll propagate down and after revalidating B's entries, the whitelist entry
In case parent's exceptions change and local exceptions are not allowed
anymore, they'll be deleted.
-Notice that new whitelist entries will not be propagated:
+Notice that new whitelist entries will not be propagated::
+
A
/ \
B
@@ -88,24 +98,30 @@ Notice that new whitelist entries will not be propagated:
A "c 1:3 rwm", "c 1:5 r" all the rest
B "c 1:3 rwm", "c 1:5 r" all the rest
-when adding "c *:3 rwm":
+when adding ``c *:3 rwm``::
+
# echo "c *:3 rwm" >A/devices.allow
-the result:
+the result::
+
group whitelist entries denied devices
A "c *:3 rwm", "c 1:5 r" all the rest
B "c 1:3 rwm", "c 1:5 r" all the rest
-but now it'll be possible to add new entries to B:
+but now it'll be possible to add new entries to B::
+
# echo "c 2:3 rwm" >B/devices.allow
# echo "c 50:3 r" >B/devices.allow
-or even
+
+or even::
+
# echo "c *:3 rwm" >B/devices.allow
Allowing or denying all by writing 'a' to devices.allow or devices.deny will
not be possible once the device cgroups has children.
4.1 Hierarchy (internal implementation)
+---------------------------------------
device cgroups is implemented internally using a behavior (ALLOW, DENY) and a
list of exceptions. The internal state is controlled using the same user
diff --git a/Documentation/cgroup-v1/freezer-subsystem.txt b/Documentation/admin-guide/cgroup-v1/freezer-subsystem.rst
index e831cb2b8394..582d3427de3f 100644
--- a/Documentation/cgroup-v1/freezer-subsystem.txt
+++ b/Documentation/admin-guide/cgroup-v1/freezer-subsystem.rst
@@ -1,3 +1,7 @@
+==============
+Cgroup Freezer
+==============
+
The cgroup freezer is useful to batch job management system which start
and stop sets of tasks in order to schedule the resources of a machine
according to the desires of a system administrator. This sort of program
@@ -23,7 +27,7 @@ blocked, or ignored it can be seen by waiting or ptracing parent tasks.
SIGCONT is especially unsuitable since it can be caught by the task. Any
programs designed to watch for SIGSTOP and SIGCONT could be broken by
attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
-demonstrate this problem using nested bash shells:
+demonstrate this problem using nested bash shells::
$ echo $$
16644
@@ -93,19 +97,19 @@ The following cgroupfs files are created by cgroup freezer.
The root cgroup is non-freezable and the above interface files don't
exist.
-* Examples of usage :
+* Examples of usage::
# mkdir /sys/fs/cgroup/freezer
# mount -t cgroup -ofreezer freezer /sys/fs/cgroup/freezer
# mkdir /sys/fs/cgroup/freezer/0
# echo $some_pid > /sys/fs/cgroup/freezer/0/tasks
-to get status of the freezer subsystem :
+to get status of the freezer subsystem::
# cat /sys/fs/cgroup/freezer/0/freezer.state
THAWED
-to freeze all tasks in the container :
+to freeze all tasks in the container::
# echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state
# cat /sys/fs/cgroup/freezer/0/freezer.state
@@ -113,7 +117,7 @@ to freeze all tasks in the container :
# cat /sys/fs/cgroup/freezer/0/freezer.state
FROZEN
-to unfreeze all tasks in the container :
+to unfreeze all tasks in the container::
# echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state
# cat /sys/fs/cgroup/freezer/0/freezer.state
diff --git a/Documentation/cgroup-v1/hugetlb.txt b/Documentation/admin-guide/cgroup-v1/hugetlb.rst
index 1260e5369b9b..a3902aa253a9 100644
--- a/Documentation/cgroup-v1/hugetlb.txt
+++ b/Documentation/admin-guide/cgroup-v1/hugetlb.rst
@@ -1,5 +1,6 @@
+==================
HugeTLB Controller
--------------------
+==================
The HugeTLB controller allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
@@ -16,16 +17,16 @@ With the above step, the initial or the parent HugeTLB group becomes
visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
-New groups can be created under the parent group /sys/fs/cgroup.
+New groups can be created under the parent group /sys/fs/cgroup::
-# cd /sys/fs/cgroup
-# mkdir g1
-# echo $$ > g1/tasks
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it.
-Brief summary of control files
+Brief summary of control files::
hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
@@ -33,17 +34,17 @@ Brief summary of control files
hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
For a system supporting three hugepage sizes (64k, 32M and 1G), the control
-files include:
-
-hugetlb.1GB.limit_in_bytes
-hugetlb.1GB.max_usage_in_bytes
-hugetlb.1GB.usage_in_bytes
-hugetlb.1GB.failcnt
-hugetlb.64KB.limit_in_bytes
-hugetlb.64KB.max_usage_in_bytes
-hugetlb.64KB.usage_in_bytes
-hugetlb.64KB.failcnt
-hugetlb.32MB.limit_in_bytes
-hugetlb.32MB.max_usage_in_bytes
-hugetlb.32MB.usage_in_bytes
-hugetlb.32MB.failcnt
+files include::
+
+ hugetlb.1GB.limit_in_bytes
+ hugetlb.1GB.max_usage_in_bytes
+ hugetlb.1GB.usage_in_bytes
+ hugetlb.1GB.failcnt
+ hugetlb.64KB.limit_in_bytes
+ hugetlb.64KB.max_usage_in_bytes
+ hugetlb.64KB.usage_in_bytes
+ hugetlb.64KB.failcnt
+ hugetlb.32MB.limit_in_bytes
+ hugetlb.32MB.max_usage_in_bytes
+ hugetlb.32MB.usage_in_bytes
+ hugetlb.32MB.failcnt
diff --git a/Documentation/admin-guide/cgroup-v1/index.rst b/Documentation/admin-guide/cgroup-v1/index.rst
new file mode 100644
index 000000000000..10bf48bae0b0
--- /dev/null
+++ b/Documentation/admin-guide/cgroup-v1/index.rst
@@ -0,0 +1,28 @@
+========================
+Control Groups version 1
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ cgroups
+
+ blkio-controller
+ cpuacct
+ cpusets
+ devices
+ freezer-subsystem
+ hugetlb
+ memcg_test
+ memory
+ net_cls
+ net_prio
+ pids
+ rdma
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/cgroup-v1/memcg_test.txt b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
index 621e29ffb358..3f7115e07b5d 100644
--- a/Documentation/cgroup-v1/memcg_test.txt
+++ b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
@@ -1,32 +1,43 @@
-Memory Resource Controller(Memcg) Implementation Memo.
+=====================================================
+Memory Resource Controller(Memcg) Implementation Memo
+=====================================================
+
Last Updated: 2010/2
+
Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
Because VM is getting complex (one of reasons is memcg...), memcg's behavior
is complex. This is a document for memcg's internal behavior.
Please note that implementation details can be changed.
-(*) Topics on API should be in Documentation/cgroup-v1/memory.txt)
+(*) Topics on API should be in Documentation/admin-guide/cgroup-v1/memory.rst)
0. How to record usage ?
+========================
+
2 objects are used.
page_cgroup ....an object per page.
+
Allocated at boot or memory hotplug. Freed at memory hot removal.
swap_cgroup ... an entry per swp_entry.
+
Allocated at swapon(). Freed at swapoff().
The page_cgroup has USED bit and double count against a page_cgroup never
occurs. swap_cgroup is used only when a charged page is swapped-out.
1. Charge
+=========
a page/swp_entry may be charged (usage += PAGE_SIZE) at
mem_cgroup_try_charge()
2. Uncharge
+===========
+
a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by
mem_cgroup_uncharge()
@@ -37,9 +48,12 @@ Please note that implementation details can be changed.
disappears.
3. charge-commit-cancel
+=======================
+
Memcg pages are charged in two steps:
- mem_cgroup_try_charge()
- mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
+
+ - mem_cgroup_try_charge()
+ - mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
At try_charge(), there are no flags to say "this page is charged".
at this point, usage += PAGE_SIZE.
@@ -51,6 +65,8 @@ Please note that implementation details can be changed.
Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
4. Anonymous
+============
+
Anonymous page is newly allocated at
- page fault into MAP_ANONYMOUS mapping.
- Copy-On-Write.
@@ -78,34 +94,45 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
(e) zap_pte() is called and swp_entry's refcnt -=1 -> 0.
5. Page Cache
- Page Cache is charged at
+=============
+
+ Page Cache is charged at
- add_to_page_cache_locked().
The logic is very clear. (About migration, see below)
- Note: __remove_from_page_cache() is called by remove_from_page_cache()
- and __remove_mapping().
+
+ Note:
+ __remove_from_page_cache() is called by remove_from_page_cache()
+ and __remove_mapping().
6. Shmem(tmpfs) Page Cache
+===========================
+
The best way to understand shmem's page state transition is to read
mm/shmem.c.
+
But brief explanation of the behavior of memcg around shmem will be
helpful to understand the logic.
Shmem's page (just leaf page, not direct/indirect block) can be on
+
- radix-tree of shmem's inode.
- SwapCache.
- Both on radix-tree and SwapCache. This happens at swap-in
and swap-out,
It's charged when...
+
- A new page is added to shmem's radix-tree.
- A swp page is read. (move a charge from swap_cgroup to page_cgroup)
7. Page Migration
+=================
mem_cgroup_migrate()
8. LRU
+======
Each memcg has its own private LRU. Now, its handling is under global
VM's control (means that it's handled under global pgdat->lru_lock).
Almost all routines around memcg's LRU is called by global LRU's
@@ -114,163 +141,211 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
A special function is mem_cgroup_isolate_pages(). This scans
memcg's private LRU and call __isolate_lru_page() to extract a page
from LRU.
+
(By __isolate_lru_page(), the page is removed from both of global and
- private LRU.)
+ private LRU.)
9. Typical Tests.
+=================
Tests for racy cases.
- 9.1 Small limit to memcg.
+9.1 Small limit to memcg.
+-------------------------
+
When you do test to do racy case, it's good test to set memcg's limit
to be very small rather than GB. Many races found in the test under
xKB or xxMB limits.
+
(Memory behavior under GB and Memory behavior under MB shows very
- different situation.)
+ different situation.)
+
+9.2 Shmem
+---------
- 9.2 Shmem
Historically, memcg's shmem handling was poor and we saw some amount
of troubles here. This is because shmem is page-cache but can be
SwapCache. Test with shmem/tmpfs is always good test.
- 9.3 Migration
+9.3 Migration
+-------------
+
For NUMA, migration is an another special case. To do easy test, cpuset
- is useful. Following is a sample script to do migration.
+ is useful. Following is a sample script to do migration::
- mount -t cgroup -o cpuset none /opt/cpuset
+ mount -t cgroup -o cpuset none /opt/cpuset
- mkdir /opt/cpuset/01
- echo 1 > /opt/cpuset/01/cpuset.cpus
- echo 0 > /opt/cpuset/01/cpuset.mems
- echo 1 > /opt/cpuset/01/cpuset.memory_migrate
- mkdir /opt/cpuset/02
- echo 1 > /opt/cpuset/02/cpuset.cpus
- echo 1 > /opt/cpuset/02/cpuset.mems
- echo 1 > /opt/cpuset/02/cpuset.memory_migrate
+ mkdir /opt/cpuset/01
+ echo 1 > /opt/cpuset/01/cpuset.cpus
+ echo 0 > /opt/cpuset/01/cpuset.mems
+ echo 1 > /opt/cpuset/01/cpuset.memory_migrate
+ mkdir /opt/cpuset/02
+ echo 1 > /opt/cpuset/02/cpuset.cpus
+ echo 1 > /opt/cpuset/02/cpuset.mems
+ echo 1 > /opt/cpuset/02/cpuset.memory_migrate
In above set, when you moves a task from 01 to 02, page migration to
node 0 to node 1 will occur. Following is a script to migrate all
- under cpuset.
- --
- move_task()
- {
- for pid in $1
- do
- /bin/echo $pid >$2/tasks 2>/dev/null
- echo -n $pid
- echo -n " "
- done
- echo END
- }
-
- G1_TASK=`cat ${G1}/tasks`
- G2_TASK=`cat ${G2}/tasks`
- move_task "${G1_TASK}" ${G2} &
- --
- 9.4 Memory hotplug.
+ under cpuset.::
+
+ --
+ move_task()
+ {
+ for pid in $1
+ do
+ /bin/echo $pid >$2/tasks 2>/dev/null
+ echo -n $pid
+ echo -n " "
+ done
+ echo END
+ }
+
+ G1_TASK=`cat ${G1}/tasks`
+ G2_TASK=`cat ${G2}/tasks`
+ move_task "${G1_TASK}" ${G2} &
+ --
+
+9.4 Memory hotplug
+------------------
+
memory hotplug test is one of good test.
- to offline memory, do following.
- # echo offline > /sys/devices/system/memory/memoryXXX/state
+
+ to offline memory, do following::
+
+ # echo offline > /sys/devices/system/memory/memoryXXX/state
+
(XXX is the place of memory)
+
This is an easy way to test page migration, too.
- 9.5 mkdir/rmdir
+9.5 mkdir/rmdir
+---------------
+
When using hierarchy, mkdir/rmdir test should be done.
- Use tests like the following.
+ Use tests like the following::
+
+ echo 1 >/opt/cgroup/01/memory/use_hierarchy
+ mkdir /opt/cgroup/01/child_a
+ mkdir /opt/cgroup/01/child_b
- echo 1 >/opt/cgroup/01/memory/use_hierarchy
- mkdir /opt/cgroup/01/child_a
- mkdir /opt/cgroup/01/child_b
+ set limit to 01.
+ add limit to 01/child_b
+ run jobs under child_a and child_b
- set limit to 01.
- add limit to 01/child_b
- run jobs under child_a and child_b
+ create/delete following groups at random while jobs are running::
- create/delete following groups at random while jobs are running.
- /opt/cgroup/01/child_a/child_aa
- /opt/cgroup/01/child_b/child_bb
- /opt/cgroup/01/child_c
+ /opt/cgroup/01/child_a/child_aa
+ /opt/cgroup/01/child_b/child_bb
+ /opt/cgroup/01/child_c
running new jobs in new group is also good.
- 9.6 Mount with other subsystems.
+9.6 Mount with other subsystems
+-------------------------------
+
Mounting with other subsystems is a good test because there is a
race and lock dependency with other cgroup subsystems.
- example)
- # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
+ example::
+
+ # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
and do task move, mkdir, rmdir etc...under this.
- 9.7 swapoff.
+9.7 swapoff
+-----------
+
Besides management of swap is one of complicated parts of memcg,
call path of swap-in at swapoff is not same as usual swap-in path..
It's worth to be tested explicitly.
- For example, test like following is good.
- (Shell-A)
- # mount -t cgroup none /cgroup -o memory
- # mkdir /cgroup/test
- # echo 40M > /cgroup/test/memory.limit_in_bytes
- # echo 0 > /cgroup/test/tasks
+ For example, test like following is good:
+
+ (Shell-A)::
+
+ # mount -t cgroup none /cgroup -o memory
+ # mkdir /cgroup/test
+ # echo 40M > /cgroup/test/memory.limit_in_bytes
+ # echo 0 > /cgroup/test/tasks
+
Run malloc(100M) program under this. You'll see 60M of swaps.
- (Shell-B)
- # move all tasks in /cgroup/test to /cgroup
- # /sbin/swapoff -a
- # rmdir /cgroup/test
- # kill malloc task.
+
+ (Shell-B)::
+
+ # move all tasks in /cgroup/test to /cgroup
+ # /sbin/swapoff -a
+ # rmdir /cgroup/test
+ # kill malloc task.
Of course, tmpfs v.s. swapoff test should be tested, too.
- 9.8 OOM-Killer
+9.8 OOM-Killer
+--------------
+
Out-of-memory caused by memcg's limit will kill tasks under
the memcg. When hierarchy is used, a task under hierarchy
will be killed by the kernel.
+
In this case, panic_on_oom shouldn't be invoked and tasks
in other groups shouldn't be killed.
It's not difficult to cause OOM under memcg as following.
- Case A) when you can swapoff
- #swapoff -a
- #echo 50M > /memory.limit_in_bytes
+
+ Case A) when you can swapoff::
+
+ #swapoff -a
+ #echo 50M > /memory.limit_in_bytes
+
run 51M of malloc
- Case B) when you use mem+swap limitation.
- #echo 50M > memory.limit_in_bytes
- #echo 50M > memory.memsw.limit_in_bytes
+ Case B) when you use mem+swap limitation::
+
+ #echo 50M > memory.limit_in_bytes
+ #echo 50M > memory.memsw.limit_in_bytes
+
run 51M of malloc
- 9.9 Move charges at task migration
+9.9 Move charges at task migration
+----------------------------------
+
Charges associated with a task can be moved along with task migration.
- (Shell-A)
- #mkdir /cgroup/A
- #echo $$ >/cgroup/A/tasks
+ (Shell-A)::
+
+ #mkdir /cgroup/A
+ #echo $$ >/cgroup/A/tasks
+
run some programs which uses some amount of memory in /cgroup/A.
- (Shell-B)
- #mkdir /cgroup/B
- #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
- #echo "pid of the program running in group A" >/cgroup/B/tasks
+ (Shell-B)::
+
+ #mkdir /cgroup/B
+ #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
+ #echo "pid of the program running in group A" >/cgroup/B/tasks
- You can see charges have been moved by reading *.usage_in_bytes or
+ You can see charges have been moved by reading ``*.usage_in_bytes`` or
memory.stat of both A and B.
- See 8.2 of Documentation/cgroup-v1/memory.txt to see what value should be
- written to move_charge_at_immigrate.
- 9.10 Memory thresholds
+ See 8.2 of Documentation/admin-guide/cgroup-v1/memory.rst to see what value should
+ be written to move_charge_at_immigrate.
+
+9.10 Memory thresholds
+----------------------
+
Memory controller implements memory thresholds using cgroups notification
API. You can use tools/cgroup/cgroup_event_listener.c to test it.
- (Shell-A) Create cgroup and run event listener
- # mkdir /cgroup/A
- # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
+ (Shell-A) Create cgroup and run event listener::
+
+ # mkdir /cgroup/A
+ # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
+
+ (Shell-B) Add task to cgroup and try to allocate and free memory::
- (Shell-B) Add task to cgroup and try to allocate and free memory
- # echo $$ >/cgroup/A/tasks
- # a="$(dd if=/dev/zero bs=1M count=10)"
- # a=
+ # echo $$ >/cgroup/A/tasks
+ # a="$(dd if=/dev/zero bs=1M count=10)"
+ # a=
You will see message from cgroup_event_listener every time you cross
the thresholds.
diff --git a/Documentation/cgroup-v1/memory.txt b/Documentation/admin-guide/cgroup-v1/memory.rst
index a33cedf85427..0ae4f564c2d6 100644
--- a/Documentation/cgroup-v1/memory.txt
+++ b/Documentation/admin-guide/cgroup-v1/memory.rst
@@ -1,22 +1,26 @@
+==========================
Memory Resource Controller
+==========================
-NOTE: This document is hopelessly outdated and it asks for a complete
+NOTE:
+ This document is hopelessly outdated and it asks for a complete
rewrite. It still contains a useful information so we are keeping it
here but make sure to check the current code if you need a deeper
understanding.
-NOTE: The Memory Resource Controller has generically been referred to as the
+NOTE:
+ The Memory Resource Controller has generically been referred to as the
memory controller in this document. Do not confuse memory controller
used here with the memory controller that is used in hardware.
-(For editors)
-In this document:
+(For editors) In this document:
When we mention a cgroup (cgroupfs's directory) with memory controller,
we call it "memory cgroup". When you see git-log and source code, you'll
see patch's title and function names tend to use "memcg".
In this document, we avoid using it.
Benefits and Purpose of the memory controller
+=============================================
The memory controller isolates the memory behaviour of a group of tasks
from the rest of the system. The article on LWN [12] mentions some probable
@@ -38,6 +42,7 @@ e. There are several other use cases; find one or use the controller just
Current Status: linux-2.6.34-mmotm(development version of 2010/April)
Features:
+
- accounting anonymous pages, file caches, swap caches usage and limiting them.
- pages are linked to per-memcg LRU exclusively, and there is no global LRU.
- optionally, memory+swap usage can be accounted and limited.
@@ -54,41 +59,50 @@ Features:
Brief summary of control files.
- tasks # attach a task(thread) and show list of threads
- cgroup.procs # show list of processes
- cgroup.event_control # an interface for event_fd()
- memory.usage_in_bytes # show current usage for memory
- (See 5.5 for details)
- memory.memsw.usage_in_bytes # show current usage for memory+Swap
- (See 5.5 for details)
- memory.limit_in_bytes # set/show limit of memory usage
- memory.memsw.limit_in_bytes # set/show limit of memory+Swap usage
- memory.failcnt # show the number of memory usage hits limits
- memory.memsw.failcnt # show the number of memory+Swap hits limits
- memory.max_usage_in_bytes # show max memory usage recorded
- memory.memsw.max_usage_in_bytes # show max memory+Swap usage recorded
- memory.soft_limit_in_bytes # set/show soft limit of memory usage
- memory.stat # show various statistics
- memory.use_hierarchy # set/show hierarchical account enabled
- memory.force_empty # trigger forced page reclaim
- memory.pressure_level # set memory pressure notifications
- memory.swappiness # set/show swappiness parameter of vmscan
- (See sysctl's vm.swappiness)
- memory.move_charge_at_immigrate # set/show controls of moving charges
- memory.oom_control # set/show oom controls.
- memory.numa_stat # show the number of memory usage per numa node
-
- memory.kmem.limit_in_bytes # set/show hard limit for kernel memory
- memory.kmem.usage_in_bytes # show current kernel memory allocation
- memory.kmem.failcnt # show the number of kernel memory usage hits limits
- memory.kmem.max_usage_in_bytes # show max kernel memory usage recorded
-
- memory.kmem.tcp.limit_in_bytes # set/show hard limit for tcp buf memory
- memory.kmem.tcp.usage_in_bytes # show current tcp buf memory allocation
- memory.kmem.tcp.failcnt # show the number of tcp buf memory usage hits limits
- memory.kmem.tcp.max_usage_in_bytes # show max tcp buf memory usage recorded
+==================================== ==========================================
+ tasks attach a task(thread) and show list of
+ threads
+ cgroup.procs show list of processes
+ cgroup.event_control an interface for event_fd()
+ memory.usage_in_bytes show current usage for memory
+ (See 5.5 for details)
+ memory.memsw.usage_in_bytes show current usage for memory+Swap
+ (See 5.5 for details)
+ memory.limit_in_bytes set/show limit of memory usage
+ memory.memsw.limit_in_bytes set/show limit of memory+Swap usage
+ memory.failcnt show the number of memory usage hits limits
+ memory.memsw.failcnt show the number of memory+Swap hits limits
+ memory.max_usage_in_bytes show max memory usage recorded
+ memory.memsw.max_usage_in_bytes show max memory+Swap usage recorded
+ memory.soft_limit_in_bytes set/show soft limit of memory usage
+ memory.stat show various statistics
+ memory.use_hierarchy set/show hierarchical account enabled
+ memory.force_empty trigger forced page reclaim
+ memory.pressure_level set memory pressure notifications
+ memory.swappiness set/show swappiness parameter of vmscan
+ (See sysctl's vm.swappiness)
+ memory.move_charge_at_immigrate set/show controls of moving charges
+ memory.oom_control set/show oom controls.
+ memory.numa_stat show the number of memory usage per numa
+ node
+ memory.kmem.limit_in_bytes set/show hard limit for kernel memory
+ This knob is deprecated and shouldn't be
+ used. It is planned that this be removed in
+ the foreseeable future.
+ memory.kmem.usage_in_bytes show current kernel memory allocation
+ memory.kmem.failcnt show the number of kernel memory usage
+ hits limits
+ memory.kmem.max_usage_in_bytes show max kernel memory usage recorded
+
+ memory.kmem.tcp.limit_in_bytes set/show hard limit for tcp buf memory
+ memory.kmem.tcp.usage_in_bytes show current tcp buf memory allocation
+ memory.kmem.tcp.failcnt show the number of tcp buf memory usage
+ hits limits
+ memory.kmem.tcp.max_usage_in_bytes show max tcp buf memory usage recorded
+==================================== ==========================================
1. History
+==========
The memory controller has a long history. A request for comments for the memory
controller was posted by Balbir Singh [1]. At the time the RFC was posted
@@ -103,6 +117,7 @@ at version 6; it combines both mapped (RSS) and unmapped Page
Cache Control [11].
2. Memory Control
+=================
Memory is a unique resource in the sense that it is present in a limited
amount. If a task requires a lot of CPU processing, the task can spread
@@ -120,6 +135,7 @@ are:
The memory controller is the first controller developed.
2.1. Design
+-----------
The core of the design is a counter called the page_counter. The
page_counter tracks the current memory usage and limit of the group of
@@ -127,6 +143,9 @@ processes associated with the controller. Each cgroup has a memory controller
specific data structure (mem_cgroup) associated with it.
2.2. Accounting
+---------------
+
+::
+--------------------+
| mem_cgroup |
@@ -165,6 +184,7 @@ updated. page_cgroup has its own LRU on cgroup.
(*) page_cgroup structure is allocated at boot/memory-hotplug time.
2.2.1 Accounting details
+------------------------
All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
Some pages which are never reclaimable and will not be on the LRU
@@ -191,6 +211,7 @@ Note: we just account pages-on-LRU because our purpose is to control amount
of used pages; not-on-LRU pages tend to be out-of-control from VM view.
2.3 Shared Page Accounting
+--------------------------
Shared pages are accounted on the basis of the first touch approach. The
cgroup that first touches a page is accounted for the page. The principle
@@ -207,11 +228,13 @@ be backed into memory in force, charges for pages are accounted against the
caller of swapoff rather than the users of shmem.
2.4 Swap Extension (CONFIG_MEMCG_SWAP)
+--------------------------------------
Swap Extension allows you to record charge for swap. A swapped-in page is
charged back to original page allocator if possible.
When swap is accounted, following files are added.
+
- memory.memsw.usage_in_bytes.
- memory.memsw.limit_in_bytes.
@@ -224,14 +247,16 @@ In this case, setting memsw.limit_in_bytes=3G will prevent bad use of swap.
By using the memsw limit, you can avoid system OOM which can be caused by swap
shortage.
-* why 'memory+swap' rather than swap.
+**why 'memory+swap' rather than swap**
+
The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
to move account from memory to swap...there is no change in usage of
memory+swap. In other words, when we want to limit the usage of swap without
affecting global LRU, memory+swap limit is better than just limiting swap from
an OS point of view.
-* What happens when a cgroup hits memory.memsw.limit_in_bytes
+**What happens when a cgroup hits memory.memsw.limit_in_bytes**
+
When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out
in this cgroup. Then, swap-out will not be done by cgroup routine and file
caches are dropped. But as mentioned above, global LRU can do swapout memory
@@ -239,6 +264,7 @@ from it for sanity of the system's memory management state. You can't forbid
it by cgroup.
2.5 Reclaim
+-----------
Each cgroup maintains a per cgroup LRU which has the same structure as
global VM. When a cgroup goes over its limit, we first try
@@ -251,29 +277,36 @@ The reclaim algorithm has not been modified for cgroups, except that
pages that are selected for reclaiming come from the per-cgroup LRU
list.
-NOTE: Reclaim does not work for the root cgroup, since we cannot set any
-limits on the root cgroup.
+NOTE:
+ Reclaim does not work for the root cgroup, since we cannot set any
+ limits on the root cgroup.
-Note2: When panic_on_oom is set to "2", the whole system will panic.
+Note2:
+ When panic_on_oom is set to "2", the whole system will panic.
When oom event notifier is registered, event will be delivered.
(See oom_control section)
2.6 Locking
+-----------
lock_page_cgroup()/unlock_page_cgroup() should not be called under
the i_pages lock.
Other lock order is following:
+
PG_locked.
- mm->page_table_lock
- pgdat->lru_lock
- lock_page_cgroup.
+ mm->page_table_lock
+ pgdat->lru_lock
+ lock_page_cgroup.
+
In many cases, just lock_page_cgroup() is called.
+
per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
pgdat->lru_lock, it has no lock of its own.
2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
+-----------------------------------------------
With the Kernel memory extension, the Memory Controller is able to limit
the amount of kernel memory used by the system. Kernel memory is fundamentally
@@ -288,6 +321,7 @@ Kernel memory limits are not imposed for the root cgroup. Usage for the root
cgroup may or may not be accounted. The memory used is accumulated into
memory.kmem.usage_in_bytes, or in a separate counter when it makes sense.
(currently only for tcp).
+
The main "kmem" counter is fed into the main counter, so kmem charges will
also be visible from the user counter.
@@ -295,36 +329,42 @@ Currently no soft limit is implemented for kernel memory. It is future work
to trigger slab reclaim when those limits are reached.
2.7.1 Current Kernel Memory resources accounted
+-----------------------------------------------
-* stack pages: every process consumes some stack pages. By accounting into
-kernel memory, we prevent new processes from being created when the kernel
-memory usage is too high.
+stack pages:
+ every process consumes some stack pages. By accounting into
+ kernel memory, we prevent new processes from being created when the kernel
+ memory usage is too high.
-* slab pages: pages allocated by the SLAB or SLUB allocator are tracked. A copy
-of each kmem_cache is created every time the cache is touched by the first time
-from inside the memcg. The creation is done lazily, so some objects can still be
-skipped while the cache is being created. All objects in a slab page should
-belong to the same memcg. This only fails to hold when a task is migrated to a
-different memcg during the page allocation by the cache.
+slab pages:
+ pages allocated by the SLAB or SLUB allocator are tracked. A copy
+ of each kmem_cache is created every time the cache is touched by the first time
+ from inside the memcg. The creation is done lazily, so some objects can still be
+ skipped while the cache is being created. All objects in a slab page should
+ belong to the same memcg. This only fails to hold when a task is migrated to a
+ different memcg during the page allocation by the cache.
-* sockets memory pressure: some sockets protocols have memory pressure
-thresholds. The Memory Controller allows them to be controlled individually
-per cgroup, instead of globally.
+sockets memory pressure:
+ some sockets protocols have memory pressure
+ thresholds. The Memory Controller allows them to be controlled individually
+ per cgroup, instead of globally.
-* tcp memory pressure: sockets memory pressure for the tcp protocol.
+tcp memory pressure:
+ sockets memory pressure for the tcp protocol.
2.7.2 Common use cases
+----------------------
Because the "kmem" counter is fed to the main user counter, kernel memory can
never be limited completely independently of user memory. Say "U" is the user
limit, and "K" the kernel limit. There are three possible ways limits can be
set:
- U != 0, K = unlimited:
+U != 0, K = unlimited:
This is the standard memcg limitation mechanism already present before kmem
accounting. Kernel memory is completely ignored.
- U != 0, K < U:
+U != 0, K < U:
Kernel memory is a subset of the user memory. This setup is useful in
deployments where the total amount of memory per-cgroup is overcommited.
Overcommiting kernel memory limits is definitely not recommended, since the
@@ -332,19 +372,23 @@ set:
In this case, the admin could set up K so that the sum of all groups is
never greater than the total memory, and freely set U at the cost of his
QoS.
- WARNING: In the current implementation, memory reclaim will NOT be
+
+WARNING:
+ In the current implementation, memory reclaim will NOT be
triggered for a cgroup when it hits K while staying below U, which makes
this setup impractical.
- U != 0, K >= U:
+U != 0, K >= U:
Since kmem charges will also be fed to the user counter and reclaim will be
triggered for the cgroup for both kinds of memory. This setup gives the
admin a unified view of memory, and it is also useful for people who just
want to track kernel memory usage.
3. User Interface
+=================
3.0. Configuration
+------------------
a. Enable CONFIG_CGROUPS
b. Enable CONFIG_MEMCG
@@ -352,39 +396,53 @@ c. Enable CONFIG_MEMCG_SWAP (to use swap extension)
d. Enable CONFIG_MEMCG_KMEM (to use kmem extension)
3.1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?)
-# mount -t tmpfs none /sys/fs/cgroup
-# mkdir /sys/fs/cgroup/memory
-# mount -t cgroup none /sys/fs/cgroup/memory -o memory
+-------------------------------------------------------------------
+
+::
+
+ # mount -t tmpfs none /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/memory
+ # mount -t cgroup none /sys/fs/cgroup/memory -o memory
+
+3.2. Make the new group and move bash into it::
+
+ # mkdir /sys/fs/cgroup/memory/0
+ # echo $$ > /sys/fs/cgroup/memory/0/tasks
-3.2. Make the new group and move bash into it
-# mkdir /sys/fs/cgroup/memory/0
-# echo $$ > /sys/fs/cgroup/memory/0/tasks
+Since now we're in the 0 cgroup, we can alter the memory limit::
-Since now we're in the 0 cgroup, we can alter the memory limit:
-# echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+ # echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
-NOTE: We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
-mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes, Gibibytes.)
+NOTE:
+ We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
+ mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes,
+ Gibibytes.)
-NOTE: We can write "-1" to reset the *.limit_in_bytes(unlimited).
-NOTE: We cannot set limits on the root cgroup any more.
+NOTE:
+ We can write "-1" to reset the ``*.limit_in_bytes(unlimited)``.
-# cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
-4194304
+NOTE:
+ We cannot set limits on the root cgroup any more.
-We can check the usage:
-# cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
-1216512
+::
+
+ # cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+ 4194304
+
+We can check the usage::
+
+ # cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
+ 1216512
A successful write to this file does not guarantee a successful setting of
this limit to the value written into the file. This can be due to a
number of factors, such as rounding up to page boundaries or the total
availability of memory on the system. The user is required to re-read
-this file after a write to guarantee the value committed by the kernel.
+this file after a write to guarantee the value committed by the kernel::
-# echo 1 > memory.limit_in_bytes
-# cat memory.limit_in_bytes
-4096
+ # echo 1 > memory.limit_in_bytes
+ # cat memory.limit_in_bytes
+ 4096
The memory.failcnt field gives the number of times that the cgroup limit was
exceeded.
@@ -393,6 +451,7 @@ The memory.stat file gives accounting information. Now, the number of
caches, RSS and Active pages/Inactive pages are shown.
4. Testing
+==========
For testing features and implementation, see memcg_test.txt.
@@ -408,6 +467,7 @@ But the above two are testing extreme situations.
Trying usual test under memory controller is always helpful.
4.1 Troubleshooting
+-------------------
Sometimes a user might find that the application under a cgroup is
terminated by the OOM killer. There are several causes for this:
@@ -422,6 +482,7 @@ To know what happens, disabling OOM_Kill as per "10. OOM Control" (below) and
seeing what happens will be helpful.
4.2 Task migration
+------------------
When a task migrates from one cgroup to another, its charge is not
carried forward by default. The pages allocated from the original cgroup still
@@ -432,6 +493,7 @@ You can move charges of a task along with task migration.
See 8. "Move charges at task migration"
4.3 Removing a cgroup
+---------------------
A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
cgroup might have some charge associated with it, even though all
@@ -448,13 +510,15 @@ will be charged as a new owner of it.
About use_hierarchy, see Section 6.
-5. Misc. interfaces.
+5. Misc. interfaces
+===================
5.1 force_empty
+---------------
memory.force_empty interface is provided to make cgroup's memory usage empty.
- When writing anything to this
+ When writing anything to this::
- # echo 0 > memory.force_empty
+ # echo 0 > memory.force_empty
the cgroup will be reclaimed and as many pages reclaimed as possible.
@@ -471,50 +535,61 @@ About use_hierarchy, see Section 6.
About use_hierarchy, see Section 6.
5.2 stat file
+-------------
memory.stat file includes following statistics
-# per-memory cgroup local status
-cache - # of bytes of page cache memory.
-rss - # of bytes of anonymous and swap cache memory (includes
+per-memory cgroup local status
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+=============== ===============================================================
+cache # of bytes of page cache memory.
+rss # of bytes of anonymous and swap cache memory (includes
transparent hugepages).
-rss_huge - # of bytes of anonymous transparent hugepages.
-mapped_file - # of bytes of mapped file (includes tmpfs/shmem)
-pgpgin - # of charging events to the memory cgroup. The charging
+rss_huge # of bytes of anonymous transparent hugepages.
+mapped_file # of bytes of mapped file (includes tmpfs/shmem)
+pgpgin # of charging events to the memory cgroup. The charging
event happens each time a page is accounted as either mapped
anon page(RSS) or cache page(Page Cache) to the cgroup.
-pgpgout - # of uncharging events to the memory cgroup. The uncharging
+pgpgout # of uncharging events to the memory cgroup. The uncharging
event happens each time a page is unaccounted from the cgroup.
-swap - # of bytes of swap usage
-dirty - # of bytes that are waiting to get written back to the disk.
-writeback - # of bytes of file/anon cache that are queued for syncing to
+swap # of bytes of swap usage
+dirty # of bytes that are waiting to get written back to the disk.
+writeback # of bytes of file/anon cache that are queued for syncing to
disk.
-inactive_anon - # of bytes of anonymous and swap cache memory on inactive
+inactive_anon # of bytes of anonymous and swap cache memory on inactive
LRU list.
-active_anon - # of bytes of anonymous and swap cache memory on active
+active_anon # of bytes of anonymous and swap cache memory on active
LRU list.
-inactive_file - # of bytes of file-backed memory on inactive LRU list.
-active_file - # of bytes of file-backed memory on active LRU list.
-unevictable - # of bytes of memory that cannot be reclaimed (mlocked etc).
-
-# status considering hierarchy (see memory.use_hierarchy settings)
-
-hierarchical_memory_limit - # of bytes of memory limit with regard to hierarchy
- under which the memory cgroup is
-hierarchical_memsw_limit - # of bytes of memory+swap limit with regard to
- hierarchy under which memory cgroup is.
-
-total_<counter> - # hierarchical version of <counter>, which in
- addition to the cgroup's own value includes the
- sum of all hierarchical children's values of
- <counter>, i.e. total_cache
-
-# The following additional stats are dependent on CONFIG_DEBUG_VM.
-
-recent_rotated_anon - VM internal parameter. (see mm/vmscan.c)
-recent_rotated_file - VM internal parameter. (see mm/vmscan.c)
-recent_scanned_anon - VM internal parameter. (see mm/vmscan.c)
-recent_scanned_file - VM internal parameter. (see mm/vmscan.c)
+inactive_file # of bytes of file-backed memory on inactive LRU list.
+active_file # of bytes of file-backed memory on active LRU list.
+unevictable # of bytes of memory that cannot be reclaimed (mlocked etc).
+=============== ===============================================================
+
+status considering hierarchy (see memory.use_hierarchy settings)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ===================================================
+hierarchical_memory_limit # of bytes of memory limit with regard to hierarchy
+ under which the memory cgroup is
+hierarchical_memsw_limit # of bytes of memory+swap limit with regard to
+ hierarchy under which memory cgroup is.
+
+total_<counter> # hierarchical version of <counter>, which in
+ addition to the cgroup's own value includes the
+ sum of all hierarchical children's values of
+ <counter>, i.e. total_cache
+========================= ===================================================
+
+The following additional stats are dependent on CONFIG_DEBUG_VM
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ========================================
+recent_rotated_anon VM internal parameter. (see mm/vmscan.c)
+recent_rotated_file VM internal parameter. (see mm/vmscan.c)
+recent_scanned_anon VM internal parameter. (see mm/vmscan.c)
+recent_scanned_file VM internal parameter. (see mm/vmscan.c)
+========================= ========================================
Memo:
recent_rotated means recent frequency of LRU rotation.
@@ -525,12 +600,15 @@ Note:
Only anonymous and swap cache memory is listed as part of 'rss' stat.
This should not be confused with the true 'resident set size' or the
amount of physical memory used by the cgroup.
+
'rss + mapped_file" will give you resident set size of cgroup.
+
(Note: file and shmem may be shared among other cgroups. In that case,
- mapped_file is accounted only when the memory cgroup is owner of page
- cache.)
+ mapped_file is accounted only when the memory cgroup is owner of page
+ cache.)
5.3 swappiness
+--------------
Overrides /proc/sys/vm/swappiness for the particular group. The tunable
in the root cgroup corresponds to the global swappiness setting.
@@ -541,16 +619,19 @@ there is a swap storage available. This might lead to memcg OOM killer
if there are no file pages to reclaim.
5.4 failcnt
+-----------
A memory cgroup provides memory.failcnt and memory.memsw.failcnt files.
This failcnt(== failure count) shows the number of times that a usage counter
hit its limit. When a memory cgroup hits a limit, failcnt increases and
memory under it will be reclaimed.
-You can reset failcnt by writing 0 to failcnt file.
-# echo 0 > .../memory.failcnt
+You can reset failcnt by writing 0 to failcnt file::
+
+ # echo 0 > .../memory.failcnt
5.5 usage_in_bytes
+------------------
For efficiency, as other kernel components, memory cgroup uses some optimization
to avoid unnecessary cacheline false sharing. usage_in_bytes is affected by the
@@ -560,6 +641,7 @@ If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP)
value in memory.stat(see 5.2).
5.6 numa_stat
+-------------
This is similar to numa_maps but operates on a per-memcg basis. This is
useful for providing visibility into the numa locality information within
@@ -571,22 +653,23 @@ Each memcg's numa_stat file includes "total", "file", "anon" and "unevictable"
per-node page counts including "hierarchical_<counter>" which sums up all
hierarchical children's values in addition to the memcg's own value.
-The output format of memory.numa_stat is:
+The output format of memory.numa_stat is::
-total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
-file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
-anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
-unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
-hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
The "total" count is sum of file + anon + unevictable.
6. Hierarchy support
+====================
The memory controller supports a deep hierarchy and hierarchical accounting.
The hierarchy is created by creating the appropriate cgroups in the
cgroup filesystem. Consider for example, the following cgroup filesystem
-hierarchy
+hierarchy::
root
/ | \
@@ -603,24 +686,28 @@ limit, the reclaim algorithm reclaims from the tasks in the ancestor and the
children of the ancestor.
6.1 Enabling hierarchical accounting and reclaim
+------------------------------------------------
A memory cgroup by default disables the hierarchy feature. Support
-can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup
+can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup::
-# echo 1 > memory.use_hierarchy
+ # echo 1 > memory.use_hierarchy
-The feature can be disabled by
+The feature can be disabled by::
-# echo 0 > memory.use_hierarchy
+ # echo 0 > memory.use_hierarchy
-NOTE1: Enabling/disabling will fail if either the cgroup already has other
+NOTE1:
+ Enabling/disabling will fail if either the cgroup already has other
cgroups created below it, or if the parent cgroup has use_hierarchy
enabled.
-NOTE2: When panic_on_oom is set to "2", the whole system will panic in
+NOTE2:
+ When panic_on_oom is set to "2", the whole system will panic in
case of an OOM event in any cgroup.
7. Soft limits
+==============
Soft limits allow for greater sharing of memory. The idea behind soft limits
is to allow control groups to use as much of the memory as needed, provided
@@ -640,22 +727,26 @@ hints/setup. Currently soft limit based reclaim is set up such that
it gets invoked from balance_pgdat (kswapd).
7.1 Interface
+-------------
Soft limits can be setup by using the following commands (in this example we
-assume a soft limit of 256 MiB)
+assume a soft limit of 256 MiB)::
-# echo 256M > memory.soft_limit_in_bytes
+ # echo 256M > memory.soft_limit_in_bytes
-If we want to change this to 1G, we can at any time use
+If we want to change this to 1G, we can at any time use::
-# echo 1G > memory.soft_limit_in_bytes
+ # echo 1G > memory.soft_limit_in_bytes
-NOTE1: Soft limits take effect over a long period of time, since they involve
+NOTE1:
+ Soft limits take effect over a long period of time, since they involve
reclaiming memory for balancing between memory cgroups
-NOTE2: It is recommended to set the soft limit always below the hard limit,
+NOTE2:
+ It is recommended to set the soft limit always below the hard limit,
otherwise the hard limit will take precedence.
8. Move charges at task migration
+=================================
Users can move charges associated with a task along with task migration, that
is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
@@ -663,60 +754,71 @@ This feature is not supported in !CONFIG_MMU environments because of lack of
page tables.
8.1 Interface
+-------------
This feature is disabled by default. It can be enabled (and disabled again) by
writing to memory.move_charge_at_immigrate of the destination cgroup.
-If you want to enable it:
+If you want to enable it::
-# echo (some positive value) > memory.move_charge_at_immigrate
+ # echo (some positive value) > memory.move_charge_at_immigrate
-Note: Each bits of move_charge_at_immigrate has its own meaning about what type
+Note:
+ Each bits of move_charge_at_immigrate has its own meaning about what type
of charges should be moved. See 8.2 for details.
-Note: Charges are moved only when you move mm->owner, in other words,
+Note:
+ Charges are moved only when you move mm->owner, in other words,
a leader of a thread group.
-Note: If we cannot find enough space for the task in the destination cgroup, we
+Note:
+ If we cannot find enough space for the task in the destination cgroup, we
try to make space by reclaiming memory. Task migration may fail if we
cannot make enough space.
-Note: It can take several seconds if you move charges much.
+Note:
+ It can take several seconds if you move charges much.
-And if you want disable it again:
+And if you want disable it again::
-# echo 0 > memory.move_charge_at_immigrate
+ # echo 0 > memory.move_charge_at_immigrate
8.2 Type of charges which can be moved
+--------------------------------------
Each bit in move_charge_at_immigrate has its own meaning about what type of
charges should be moved. But in any case, it must be noted that an account of
a page or a swap can be moved only when it is charged to the task's current
(old) memory cgroup.
- bit | what type of charges would be moved ?
- -----+------------------------------------------------------------------------
- 0 | A charge of an anonymous page (or swap of it) used by the target task.
- | You must enable Swap Extension (see 2.4) to enable move of swap charges.
- -----+------------------------------------------------------------------------
- 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory)
- | and swaps of tmpfs file) mmapped by the target task. Unlike the case of
- | anonymous pages, file pages (and swaps) in the range mmapped by the task
- | will be moved even if the task hasn't done page fault, i.e. they might
- | not be the task's "RSS", but other task's "RSS" that maps the same file.
- | And mapcount of the page is ignored (the page can be moved even if
- | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to
- | enable move of swap charges.
++---+--------------------------------------------------------------------------+
+|bit| what type of charges would be moved ? |
++===+==========================================================================+
+| 0 | A charge of an anonymous page (or swap of it) used by the target task. |
+| | You must enable Swap Extension (see 2.4) to enable move of swap charges. |
++---+--------------------------------------------------------------------------+
+| 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory) |
+| | and swaps of tmpfs file) mmapped by the target task. Unlike the case of |
+| | anonymous pages, file pages (and swaps) in the range mmapped by the task |
+| | will be moved even if the task hasn't done page fault, i.e. they might |
+| | not be the task's "RSS", but other task's "RSS" that maps the same file. |
+| | And mapcount of the page is ignored (the page can be moved even if |
+| | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to |
+| | enable move of swap charges. |
++---+--------------------------------------------------------------------------+
8.3 TODO
+--------
- All of moving charge operations are done under cgroup_mutex. It's not good
behavior to hold the mutex too long, so we may need some trick.
9. Memory thresholds
+====================
Memory cgroup implements memory thresholds using the cgroups notification
API (see cgroups.txt). It allows to register multiple memory and memsw
thresholds and gets notifications when it crosses.
To register a threshold, an application must:
+
- create an eventfd using eventfd(2);
- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
- write string like "<event_fd> <fd of memory.usage_in_bytes> <threshold>" to
@@ -728,6 +830,7 @@ threshold in any direction.
It's applicable for root and non-root cgroup.
10. OOM Control
+===============
memory.oom_control file is for OOM notification and other controls.
@@ -736,6 +839,7 @@ API (See cgroups.txt). It allows to register multiple OOM notification
delivery and gets notification when OOM happens.
To register a notifier, an application must:
+
- create an eventfd using eventfd(2)
- open memory.oom_control file
- write string like "<event_fd> <fd of memory.oom_control>" to
@@ -752,8 +856,11 @@ If OOM-killer is disabled, tasks under cgroup will hang/sleep
in memory cgroup's OOM-waitqueue when they request accountable memory.
For running them, you have to relax the memory cgroup's OOM status by
+
* enlarge limit or reduce usage.
+
To reduce usage,
+
* kill some tasks.
* move some tasks to other group with account migration.
* remove some files (on tmpfs?)
@@ -761,11 +868,14 @@ To reduce usage,
Then, stopped tasks will work again.
At reading, current status of OOM is shown.
- oom_kill_disable 0 or 1 (if 1, oom-killer is disabled)
- under_oom 0 or 1 (if 1, the memory cgroup is under OOM, tasks may
- be stopped.)
+
+ - oom_kill_disable 0 or 1
+ (if 1, oom-killer is disabled)
+ - under_oom 0 or 1
+ (if 1, the memory cgroup is under OOM, tasks may be stopped.)
11. Memory Pressure
+===================
The pressure level notifications can be used to monitor the memory
allocation cost; based on the pressure, applications can implement
@@ -840,21 +950,22 @@ Test:
Here is a small script example that makes a new cgroup, sets up a
memory limit, sets up a notification in the cgroup and then makes child
- cgroup experience a critical pressure:
+ cgroup experience a critical pressure::
- # cd /sys/fs/cgroup/memory/
- # mkdir foo
- # cd foo
- # cgroup_event_listener memory.pressure_level low,hierarchy &
- # echo 8000000 > memory.limit_in_bytes
- # echo 8000000 > memory.memsw.limit_in_bytes
- # echo $$ > tasks
- # dd if=/dev/zero | read x
+ # cd /sys/fs/cgroup/memory/
+ # mkdir foo
+ # cd foo
+ # cgroup_event_listener memory.pressure_level low,hierarchy &
+ # echo 8000000 > memory.limit_in_bytes
+ # echo 8000000 > memory.memsw.limit_in_bytes
+ # echo $$ > tasks
+ # dd if=/dev/zero | read x
(Expect a bunch of notifications, and eventually, the oom-killer will
trigger.)
12. TODO
+========
1. Make per-cgroup scanner reclaim not-shared pages first
2. Teach controller to account for shared-pages
@@ -862,11 +973,13 @@ Test:
not yet hit but the usage is getting closer
Summary
+=======
Overall, the memory controller has been a stable controller and has been
commented and discussed quite extensively in the community.
References
+==========
1. Singh, Balbir. RFC: Memory Controller, http://lwn.net/Articles/206697/
2. Singh, Balbir. Memory Controller (RSS Control),
diff --git a/Documentation/cgroup-v1/net_cls.txt b/Documentation/admin-guide/cgroup-v1/net_cls.rst
index ec182346dea2..a2cf272af7a0 100644
--- a/Documentation/cgroup-v1/net_cls.txt
+++ b/Documentation/admin-guide/cgroup-v1/net_cls.rst
@@ -1,5 +1,6 @@
+=========================
Network classifier cgroup
--------------------------
+=========================
The Network classifier cgroup provides an interface to
tag network packets with a class identifier (classid).
@@ -17,23 +18,27 @@ values is 0xAAAABBBB; AAAA is the major handle number and BBBB
is the minor handle number.
Reading net_cls.classid yields a decimal result.
-Example:
-mkdir /sys/fs/cgroup/net_cls
-mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
-mkdir /sys/fs/cgroup/net_cls/0
-echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
- - setting a 10:1 handle.
+Example::
-cat /sys/fs/cgroup/net_cls/0/net_cls.classid
-1048577
+ mkdir /sys/fs/cgroup/net_cls
+ mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
+ mkdir /sys/fs/cgroup/net_cls/0
+ echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
-configuring tc:
-tc qdisc add dev eth0 root handle 10: htb
+- setting a 10:1 handle::
-tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
- - creating traffic class 10:1
+ cat /sys/fs/cgroup/net_cls/0/net_cls.classid
+ 1048577
-tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+- configuring tc::
-configuring iptables, basic example:
-iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
+ tc qdisc add dev eth0 root handle 10: htb
+ tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
+
+- creating traffic class 10:1::
+
+ tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+
+configuring iptables, basic example::
+
+ iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
diff --git a/Documentation/cgroup-v1/net_prio.txt b/Documentation/admin-guide/cgroup-v1/net_prio.rst
index a82cbd28ea8a..b40905871c64 100644
--- a/Documentation/cgroup-v1/net_prio.txt
+++ b/Documentation/admin-guide/cgroup-v1/net_prio.rst
@@ -1,5 +1,6 @@
+=======================
Network priority cgroup
--------------------------
+=======================
The Network priority cgroup provides an interface to allow an administrator to
dynamically set the priority of network traffic generated by various
@@ -14,9 +15,9 @@ SO_PRIORITY socket option. This however, is not always possible because:
This cgroup allows an administrator to assign a process to a group which defines
the priority of egress traffic on a given interface. Network priority groups can
-be created by first mounting the cgroup filesystem.
+be created by first mounting the cgroup filesystem::
-# mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
+ # mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
With the above step, the initial group acting as the parent accounting group
becomes visible at '/sys/fs/cgroup/net_prio'. This group includes all tasks in
@@ -25,17 +26,18 @@ the system. '/sys/fs/cgroup/net_prio/tasks' lists the tasks in this cgroup.
Each net_prio cgroup contains two files that are subsystem specific
net_prio.prioidx
-This file is read-only, and is simply informative. It contains a unique integer
-value that the kernel uses as an internal representation of this cgroup.
+ This file is read-only, and is simply informative. It contains a unique
+ integer value that the kernel uses as an internal representation of this
+ cgroup.
net_prio.ifpriomap
-This file contains a map of the priorities assigned to traffic originating from
-processes in this group and egressing the system on various interfaces. It
-contains a list of tuples in the form <ifname priority>. Contents of this file
-can be modified by echoing a string into the file using the same tuple format.
-for example:
+ This file contains a map of the priorities assigned to traffic originating
+ from processes in this group and egressing the system on various interfaces.
+ It contains a list of tuples in the form <ifname priority>. Contents of this
+ file can be modified by echoing a string into the file using the same tuple
+ format. For example::
-echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
+ echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
This command would force any traffic originating from processes belonging to the
iscsi net_prio cgroup and egressing on interface eth0 to have the priority of
diff --git a/Documentation/cgroup-v1/pids.txt b/Documentation/admin-guide/cgroup-v1/pids.rst
index e105d708ccde..6acebd9e72c8 100644
--- a/Documentation/cgroup-v1/pids.txt
+++ b/Documentation/admin-guide/cgroup-v1/pids.rst
@@ -1,5 +1,6 @@
- Process Number Controller
- =========================
+=========================
+Process Number Controller
+=========================
Abstract
--------
@@ -34,55 +35,58 @@ pids.current tracks all child cgroup hierarchies, so parent/pids.current is a
superset of parent/child/pids.current.
The pids.events file contains event counters:
+
- max: Number of times fork failed because limit was hit.
Example
-------
-First, we mount the pids controller:
-# mkdir -p /sys/fs/cgroup/pids
-# mount -t cgroup -o pids none /sys/fs/cgroup/pids
+First, we mount the pids controller::
+
+ # mkdir -p /sys/fs/cgroup/pids
+ # mount -t cgroup -o pids none /sys/fs/cgroup/pids
+
+Then we create a hierarchy, set limits and attach processes to it::
-Then we create a hierarchy, set limits and attach processes to it:
-# mkdir -p /sys/fs/cgroup/pids/parent/child
-# echo 2 > /sys/fs/cgroup/pids/parent/pids.max
-# echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-#
+ # mkdir -p /sys/fs/cgroup/pids/parent/child
+ # echo 2 > /sys/fs/cgroup/pids/parent/pids.max
+ # echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ #
It should be noted that attempts to overcome the set limit (2 in this case) will
-fail:
+fail::
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-# ( /bin/echo "Here's some processes for you." | cat )
-sh: fork: Resource temporary unavailable
-#
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
Even if we migrate to a child cgroup (which doesn't have a set limit), we will
not be able to overcome the most stringent limit in the hierarchy (in this case,
-parent's):
-
-# echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
-# cat /sys/fs/cgroup/pids/parent/pids.current
-2
-# cat /sys/fs/cgroup/pids/parent/child/pids.current
-2
-# cat /sys/fs/cgroup/pids/parent/child/pids.max
-max
-# ( /bin/echo "Here's some processes for you." | cat )
-sh: fork: Resource temporary unavailable
-#
+parent's)::
+
+ # echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.max
+ max
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
We can set a limit that is smaller than pids.current, which will stop any new
processes from being forked at all (note that the shell itself counts towards
-pids.current):
-
-# echo 1 > /sys/fs/cgroup/pids/parent/pids.max
-# /bin/echo "We can't even spawn a single process now."
-sh: fork: Resource temporary unavailable
-# echo 0 > /sys/fs/cgroup/pids/parent/pids.max
-# /bin/echo "We can't even spawn a single process now."
-sh: fork: Resource temporary unavailable
-#
+pids.current)::
+
+ # echo 1 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ # echo 0 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ #
diff --git a/Documentation/cgroup-v1/rdma.txt b/Documentation/admin-guide/cgroup-v1/rdma.rst
index 9bdb7fd03f83..2fcb0a9bf790 100644
--- a/Documentation/cgroup-v1/rdma.txt
+++ b/Documentation/admin-guide/cgroup-v1/rdma.rst
@@ -1,16 +1,17 @@
- RDMA Controller
- ----------------
+===============
+RDMA Controller
+===============
-Contents
---------
+.. Contents
-1. Overview
- 1-1. What is RDMA controller?
- 1-2. Why RDMA controller needed?
- 1-3. How is RDMA controller implemented?
-2. Usage Examples
+ 1. Overview
+ 1-1. What is RDMA controller?
+ 1-2. Why RDMA controller needed?
+ 1-3. How is RDMA controller implemented?
+ 2. Usage Examples
1. Overview
+===========
1-1. What is RDMA controller?
-----------------------------
@@ -83,27 +84,34 @@ what is configured by user for a given cgroup and what is supported by
IB device.
Following resources can be accounted by rdma controller.
+
+ ========== =============================
hca_handle Maximum number of HCA Handles
hca_object Maximum number of HCA Objects
+ ========== =============================
2. Usage Examples
------------------
-
-(a) Configure resource limit:
-echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
-echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
-
-(b) Query resource limit:
-cat /sys/fs/cgroup/rdma/2/rdma.max
-#Output:
-mlx4_0 hca_handle=2 hca_object=2000
-ocrdma1 hca_handle=3 hca_object=max
-
-(c) Query current usage:
-cat /sys/fs/cgroup/rdma/2/rdma.current
-#Output:
-mlx4_0 hca_handle=1 hca_object=20
-ocrdma1 hca_handle=1 hca_object=23
-
-(d) Delete resource limit:
-echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
+=================
+
+(a) Configure resource limit::
+
+ echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
+ echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
+
+(b) Query resource limit::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.max
+ #Output:
+ mlx4_0 hca_handle=2 hca_object=2000
+ ocrdma1 hca_handle=3 hca_object=max
+
+(c) Query current usage::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.current
+ #Output:
+ mlx4_0 hca_handle=1 hca_object=20
+ ocrdma1 hca_handle=1 hca_object=23
+
+(d) Delete resource limit::
+
+ echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index cf88c1f98270..0fa8c0e615c2 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -9,7 +9,7 @@ This is the authoritative documentation on the design, interface and
conventions of cgroup v2. It describes all userland-visible aspects
of cgroup including core and specific controller behaviors. All
future changes must be reflected in this document. Documentation for
-v1 is available under Documentation/cgroup-v1/.
+v1 is available under Documentation/admin-guide/cgroup-v1/.
.. CONTENTS
@@ -705,6 +705,12 @@ Conventions
informational files on the root cgroup which end up showing global
information available elsewhere shouldn't exist.
+- The default time unit is microseconds. If a different unit is ever
+ used, an explicit unit suffix must be present.
+
+- A parts-per quantity should use a percentage decimal with at least
+ two digit fractional part - e.g. 13.40.
+
- If a controller implements weight based resource distribution, its
interface file should be named "weight" and have the range [1,
10000] with 100 as the default. The values are chosen to allow
@@ -945,6 +951,13 @@ controller implements weight and absolute bandwidth limit models for
normal scheduling policy and absolute bandwidth allocation model for
realtime scheduling policy.
+In all the above models, cycles distribution is defined only on a temporal
+base and it does not account for the frequency at which tasks are executed.
+The (optional) utilization clamping support allows to hint the schedutil
+cpufreq governor about the minimum desired frequency which should always be
+provided by a CPU, as well as the maximum desired frequency, which should not
+be exceeded by a CPU.
+
WARNING: cgroup2 doesn't yet support control of realtime processes and
the cpu controller can only be enabled when all RT processes are in
the root cgroup. Be aware that system management software may already
@@ -1008,7 +1021,34 @@ All time durations are in microseconds.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for CPU. See
- Documentation/accounting/psi.txt for details.
+ Documentation/accounting/psi.rst for details.
+
+ cpu.uclamp.min
+ A read-write single value file which exists on non-root cgroups.
+ The default is "0", i.e. no utilization boosting.
+
+ The requested minimum utilization (protection) as a percentage
+ rational number, e.g. 12.34 for 12.34%.
+
+ This interface allows reading and setting minimum utilization clamp
+ values similar to the sched_setattr(2). This minimum utilization
+ value is used to clamp the task specific minimum utilization clamp.
+
+ The requested minimum utilization (protection) is always capped by
+ the current value for the maximum utilization (limit), i.e.
+ `cpu.uclamp.max`.
+
+ cpu.uclamp.max
+ A read-write single value file which exists on non-root cgroups.
+ The default is "max". i.e. no utilization capping
+
+ The requested maximum utilization (limit) as a percentage rational
+ number, e.g. 98.76 for 98.76%.
+
+ This interface allows reading and setting maximum utilization clamp
+ values similar to the sched_setattr(2). This maximum utilization
+ value is used to clamp the task specific maximum utilization clamp.
+
Memory
@@ -1140,6 +1180,11 @@ PAGE_SIZE multiple when read back.
otherwise, a value change in this file generates a file
modified event.
+ Note that all fields in this file are hierarchical and the
+ file modified event can be generated due to an event down the
+ hierarchy. For for the local events at the cgroup level see
+ memory.events.local.
+
low
The number of times the cgroup is reclaimed due to
high memory pressure even though its usage is under
@@ -1179,6 +1224,11 @@ PAGE_SIZE multiple when read back.
The number of processes belonging to this cgroup
killed by any kind of OOM killer.
+ memory.events.local
+ Similar to memory.events but the fields in the file are local
+ to the cgroup i.e. not hierarchical. The file modified event
+ generated on this file reflects only the local events.
+
memory.stat
A read-only flat-keyed file which exists on non-root cgroups.
@@ -1339,7 +1389,7 @@ PAGE_SIZE multiple when read back.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for memory. See
- Documentation/accounting/psi.txt for details.
+ Documentation/accounting/psi.rst for details.
Usage Guidelines
@@ -1419,6 +1469,103 @@ IO Interface Files
8:16 rbytes=1459200 wbytes=314773504 rios=192 wios=353 dbytes=0 dios=0
8:0 rbytes=90430464 wbytes=299008000 rios=8950 wios=1252 dbytes=50331648 dios=3021
+ io.cost.qos
+ A read-write nested-keyed file with exists only on the root
+ cgroup.
+
+ This file configures the Quality of Service of the IO cost
+ model based controller (CONFIG_BLK_CGROUP_IOCOST) which
+ currently implements "io.weight" proportional control. Lines
+ are keyed by $MAJ:$MIN device numbers and not ordered. The
+ line for a given device is populated on the first write for
+ the device on "io.cost.qos" or "io.cost.model". The following
+ nested keys are defined.
+
+ ====== =====================================
+ enable Weight-based control enable
+ ctrl "auto" or "user"
+ rpct Read latency percentile [0, 100]
+ rlat Read latency threshold
+ wpct Write latency percentile [0, 100]
+ wlat Write latency threshold
+ min Minimum scaling percentage [1, 10000]
+ max Maximum scaling percentage [1, 10000]
+ ====== =====================================
+
+ The controller is disabled by default and can be enabled by
+ setting "enable" to 1. "rpct" and "wpct" parameters default
+ to zero and the controller uses internal device saturation
+ state to adjust the overall IO rate between "min" and "max".
+
+ When a better control quality is needed, latency QoS
+ parameters can be configured. For example::
+
+ 8:16 enable=1 ctrl=auto rpct=95.00 rlat=75000 wpct=95.00 wlat=150000 min=50.00 max=150.0
+
+ shows that on sdb, the controller is enabled, will consider
+ the device saturated if the 95th percentile of read completion
+ latencies is above 75ms or write 150ms, and adjust the overall
+ IO issue rate between 50% and 150% accordingly.
+
+ The lower the saturation point, the better the latency QoS at
+ the cost of aggregate bandwidth. The narrower the allowed
+ adjustment range between "min" and "max", the more conformant
+ to the cost model the IO behavior. Note that the IO issue
+ base rate may be far off from 100% and setting "min" and "max"
+ blindly can lead to a significant loss of device capacity or
+ control quality. "min" and "max" are useful for regulating
+ devices which show wide temporary behavior changes - e.g. a
+ ssd which accepts writes at the line speed for a while and
+ then completely stalls for multiple seconds.
+
+ When "ctrl" is "auto", the parameters are controlled by the
+ kernel and may change automatically. Setting "ctrl" to "user"
+ or setting any of the percentile and latency parameters puts
+ it into "user" mode and disables the automatic changes. The
+ automatic mode can be restored by setting "ctrl" to "auto".
+
+ io.cost.model
+ A read-write nested-keyed file with exists only on the root
+ cgroup.
+
+ This file configures the cost model of the IO cost model based
+ controller (CONFIG_BLK_CGROUP_IOCOST) which currently
+ implements "io.weight" proportional control. Lines are keyed
+ by $MAJ:$MIN device numbers and not ordered. The line for a
+ given device is populated on the first write for the device on
+ "io.cost.qos" or "io.cost.model". The following nested keys
+ are defined.
+
+ ===== ================================
+ ctrl "auto" or "user"
+ model The cost model in use - "linear"
+ ===== ================================
+
+ When "ctrl" is "auto", the kernel may change all parameters
+ dynamically. When "ctrl" is set to "user" or any other
+ parameters are written to, "ctrl" become "user" and the
+ automatic changes are disabled.
+
+ When "model" is "linear", the following model parameters are
+ defined.
+
+ ============= ========================================
+ [r|w]bps The maximum sequential IO throughput
+ [r|w]seqiops The maximum 4k sequential IOs per second
+ [r|w]randiops The maximum 4k random IOs per second
+ ============= ========================================
+
+ From the above, the builtin linear model determines the base
+ costs of a sequential and random IO and the cost coefficient
+ for the IO size. While simple, this model can cover most
+ common device classes acceptably.
+
+ The IO cost model isn't expected to be accurate in absolute
+ sense and is scaled to the device behavior dynamically.
+
+ If needed, tools/cgroup/iocost_coef_gen.py can be used to
+ generate device-specific coefficients.
+
io.weight
A read-write flat-keyed file which exists on non-root cgroups.
The default is "default 100".
@@ -1482,7 +1629,7 @@ IO Interface Files
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for IO. See
- Documentation/accounting/psi.txt for details.
+ Documentation/accounting/psi.rst for details.
Writeback
@@ -2108,7 +2255,7 @@ following two functions.
a queue (device) has been associated with the bio and
before submission.
- wbc_account_io(@wbc, @page, @bytes)
+ wbc_account_cgroup_owner(@wbc, @page, @bytes)
Should be called for each data segment being written out.
While this function doesn't care exactly when it's called
during the writeback session, it's the easiest and most
diff --git a/Documentation/filesystems/cifs/AUTHORS b/Documentation/admin-guide/cifs/authors.rst
index 75865da2ce14..b02d6dd6c070 100644
--- a/Documentation/filesystems/cifs/AUTHORS
+++ b/Documentation/admin-guide/cifs/authors.rst
@@ -1,5 +1,10 @@
+=======
+Authors
+=======
+
Original Author
-===============
+---------------
+
Steve French (sfrench@samba.org)
The author wishes to express his appreciation and thanks to:
@@ -12,7 +17,7 @@ side of the original CIFS Unix extensions and reviewing and implementing
portions of the newer CIFS POSIX extensions into the Samba 3 file server. Thank
Dave Boutcher of IBM Rochester (author of the OS/400 smb/cifs filesystem client)
for proving years ago that very good smb/cifs clients could be done on Unix-like
-operating systems. Volker Lendecke, Andrew Tridgell, Urban Widmark, John
+operating systems. Volker Lendecke, Andrew Tridgell, Urban Widmark, John
Newbigin and others for their work on the Linux smbfs module. Thanks to
the other members of the Storage Network Industry Association CIFS Technical
Workgroup for their work specifying this highly complex protocol and finally
@@ -20,33 +25,34 @@ thanks to the Samba team for their technical advice and encouragement.
Patch Contributors
------------------
-Zwane Mwaikambo
-Andi Kleen
-Amrut Joshi
-Shobhit Dayal
-Sergey Vlasov
-Richard Hughes
-Yury Umanets
-Mark Hamzy (for some of the early cifs IPv6 work)
-Domen Puncer
-Jesper Juhl (in particular for lots of whitespace/formatting cleanup)
-Vince Negri and Dave Stahl (for finding an important caching bug)
-Adrian Bunk (kcalloc cleanups)
-Miklos Szeredi
-Kazeon team for various fixes especially for 2.4 version.
-Asser Ferno (Change Notify support)
-Shaggy (Dave Kleikamp) for innumerable small fs suggestions and some good cleanup
-Gunter Kukkukk (testing and suggestions for support of old servers)
-Igor Mammedov (DFS support)
-Jeff Layton (many, many fixes, as well as great work on the cifs Kerberos code)
-Scott Lovenberg
-Pavel Shilovsky (for great work adding SMB2 support, and various SMB3 features)
-Aurelien Aptel (for DFS SMB3 work and some key bug fixes)
-Ronnie Sahlberg (for SMB3 xattr work, bug fixes, and lots of great work on compounding)
-Shirish Pargaonkar (for many ACL patches over the years)
-Sachin Prabhu (many bug fixes, including for reconnect, copy offload and security)
-Paulo Alcantara
-Long Li (some great work on RDMA, SMB Direct)
+
+- Zwane Mwaikambo
+- Andi Kleen
+- Amrut Joshi
+- Shobhit Dayal
+- Sergey Vlasov
+- Richard Hughes
+- Yury Umanets
+- Mark Hamzy (for some of the early cifs IPv6 work)
+- Domen Puncer
+- Jesper Juhl (in particular for lots of whitespace/formatting cleanup)
+- Vince Negri and Dave Stahl (for finding an important caching bug)
+- Adrian Bunk (kcalloc cleanups)
+- Miklos Szeredi
+- Kazeon team for various fixes especially for 2.4 version.
+- Asser Ferno (Change Notify support)
+- Shaggy (Dave Kleikamp) for innumerable small fs suggestions and some good cleanup
+- Gunter Kukkukk (testing and suggestions for support of old servers)
+- Igor Mammedov (DFS support)
+- Jeff Layton (many, many fixes, as well as great work on the cifs Kerberos code)
+- Scott Lovenberg
+- Pavel Shilovsky (for great work adding SMB2 support, and various SMB3 features)
+- Aurelien Aptel (for DFS SMB3 work and some key bug fixes)
+- Ronnie Sahlberg (for SMB3 xattr work, bug fixes, and lots of great work on compounding)
+- Shirish Pargaonkar (for many ACL patches over the years)
+- Sachin Prabhu (many bug fixes, including for reconnect, copy offload and security)
+- Paulo Alcantara
+- Long Li (some great work on RDMA, SMB Direct)
Test case and Bug Report contributors
diff --git a/Documentation/filesystems/cifs/CHANGES b/Documentation/admin-guide/cifs/changes.rst
index 1df7f4910eb2..71f2ecb62299 100644
--- a/Documentation/filesystems/cifs/CHANGES
+++ b/Documentation/admin-guide/cifs/changes.rst
@@ -1,3 +1,7 @@
+=======
+Changes
+=======
+
See https://wiki.samba.org/index.php/LinuxCIFSKernel for summary
information (that may be easier to read than parsing the output of
"git log fs/cifs") about fixes/improvements to CIFS/SMB2/SMB3 support (changes
diff --git a/Documentation/admin-guide/cifs/index.rst b/Documentation/admin-guide/cifs/index.rst
new file mode 100644
index 000000000000..fad5268635f5
--- /dev/null
+++ b/Documentation/admin-guide/cifs/index.rst
@@ -0,0 +1,21 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====
+CIFS
+====
+
+.. toctree::
+ :maxdepth: 2
+
+ introduction
+ usage
+ todo
+ changes
+ authors
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/filesystems/cifs/cifs.txt b/Documentation/admin-guide/cifs/introduction.rst
index 1be3d21c286e..0b98f672d36f 100644
--- a/Documentation/filesystems/cifs/cifs.txt
+++ b/Documentation/admin-guide/cifs/introduction.rst
@@ -1,3 +1,7 @@
+============
+Introduction
+============
+
This is the client VFS module for the SMB3 NAS protocol as well
as for older dialects such as the Common Internet File System (CIFS)
protocol which was the successor to the Server Message Block
@@ -33,7 +37,9 @@
tools (including smbinfo and setcifsacl) that can be obtained from
https://git.samba.org/?p=cifs-utils.git
+
or
+
git://git.samba.org/cifs-utils.git
mount.cifs should be installed in the directory with the other mount helpers.
@@ -41,5 +47,7 @@
For more information on the module see the project wiki page at
https://wiki.samba.org/index.php/LinuxCIFS
+
and
+
https://wiki.samba.org/index.php/LinuxCIFS_utils
diff --git a/Documentation/filesystems/cifs/TODO b/Documentation/admin-guide/cifs/todo.rst
index 9267f3fb131f..084c25f92dcb 100644
--- a/Documentation/filesystems/cifs/TODO
+++ b/Documentation/admin-guide/cifs/todo.rst
@@ -1,3 +1,7 @@
+====
+TODO
+====
+
Version 2.14 December 21, 2018
A Partial List of Missing Features
@@ -8,53 +12,60 @@ for visible, important contributions to this module. Here
is a partial list of the known problems and missing features:
a) SMB3 (and SMB3.1.1) missing optional features:
+
- multichannel (started), integration with RDMA
- directory leases (improved metadata caching), started (root dir only)
- T10 copy offload ie "ODX" (copy chunk, and "Duplicate Extents" ioctl
currently the only two server side copy mechanisms supported)
-b) improved sparse file support
+b) improved sparse file support (fiemap and SEEK_HOLE are implemented
+ but additional features would be supportable by the protocol).
c) Directory entry caching relies on a 1 second timer, rather than
-using Directory Leases, currently only the root file handle is cached longer
+ using Directory Leases, currently only the root file handle is cached longer
d) quota support (needs minor kernel change since quota calls
-to make it to network filesystems or deviceless filesystems)
+ to make it to network filesystems or deviceless filesystems)
-e) Additional use cases where we use "compoounding" (e.g. open/query/close
-and open/setinfo/close) to reduce the number of roundtrips, and also
-open to reduce redundant opens (using deferred close and reference counts more).
+e) Additional use cases can be optimized to use "compounding" (e.g.
+ open/query/close and open/setinfo/close) to reduce the number of
+ roundtrips to the server and improve performance. Various cases
+ (stat, statfs, create, unlink, mkdir) already have been improved by
+ using compounding but more can be done. In addition we could
+ significantly reduce redundant opens by using deferred close (with
+ handle caching leases) and better using reference counters on file
+ handles.
f) Finish inotify support so kde and gnome file list windows
-will autorefresh (partially complete by Asser). Needs minor kernel
-vfs change to support removing D_NOTIFY on a file.
+ will autorefresh (partially complete by Asser). Needs minor kernel
+ vfs change to support removing D_NOTIFY on a file.
g) Add GUI tool to configure /proc/fs/cifs settings and for display of
-the CIFS statistics (started)
+ the CIFS statistics (started)
h) implement support for security and trusted categories of xattrs
-(requires minor protocol extension) to enable better support for SELINUX
+ (requires minor protocol extension) to enable better support for SELINUX
i) Add support for tree connect contexts (see MS-SMB2) a new SMB3.1.1 protocol
feature (may be especially useful for virtualization).
j) Create UID mapping facility so server UIDs can be mapped on a per
-mount or a per server basis to client UIDs or nobody if no mapping
-exists. Also better integration with winbind for resolving SID owners
+ mount or a per server basis to client UIDs or nobody if no mapping
+ exists. Also better integration with winbind for resolving SID owners
k) Add tools to take advantage of more smb3 specific ioctls and features
-(passthrough ioctl/fsctl for sending various SMB3 fsctls to the server
-is in progress, and a passthrough query_info call is already implemented
-in cifs.ko to allow smb3 info levels queries to be sent from userspace)
+ (passthrough ioctl/fsctl is now implemented in cifs.ko to allow
+ sending various SMB3 fsctls and query info and set info calls
+ directly from user space) Add tools to make setting various non-POSIX
+ metadata attributes easier from tools (e.g. extending what was done
+ in smb-info tool).
l) encrypted file support
m) improved stats gathering tools (perhaps integration with nfsometer?)
-to extend and make easier to use what is currently in /proc/fs/cifs/Stats
+ to extend and make easier to use what is currently in /proc/fs/cifs/Stats
-n) allow setting more NTFS/SMB3 file attributes remotely (currently limited to compressed
-file attribute via chflags) and improve user space tools for managing and
-viewing them.
+n) Add support for claims based ACLs ("DAC")
o) mount helper GUI (to simplify the various configuration options on mount)
@@ -65,55 +76,58 @@ p) Add support for witness protocol (perhaps ioctl to cifs.ko from user space
different servers, and the server we are connected to has gone down.
q) Allow mount.cifs to be more verbose in reporting errors with dialect
-or unsupported feature errors.
+ or unsupported feature errors.
r) updating cifs documentation, and user guide.
s) Addressing bugs found by running a broader set of xfstests in standard
-file system xfstest suite.
+ file system xfstest suite.
t) split cifs and smb3 support into separate modules so legacy (and less
-secure) CIFS dialect can be disabled in environments that don't need it
-and simplify the code.
+ secure) CIFS dialect can be disabled in environments that don't need it
+ and simplify the code.
v) POSIX Extensions for SMB3.1.1 (started, create and mkdir support added
-so far).
+ so far).
w) Add support for additional strong encryption types, and additional spnego
-authentication mechanisms (see MS-SMB2)
+ authentication mechanisms (see MS-SMB2)
+
+x) Finish support for SMB3.1.1 compression
+
+Known Bugs
+==========
-KNOWN BUGS
-====================================
See http://bugzilla.samba.org - search on product "CifsVFS" for
current bug list. Also check http://bugzilla.kernel.org (Product = File System, Component = CIFS)
1) existing symbolic links (Windows reparse points) are recognized but
-can not be created remotely. They are implemented for Samba and those that
-support the CIFS Unix extensions, although earlier versions of Samba
-overly restrict the pathnames.
+ can not be created remotely. They are implemented for Samba and those that
+ support the CIFS Unix extensions, although earlier versions of Samba
+ overly restrict the pathnames.
2) follow_link and readdir code does not follow dfs junctions
-but recognizes them
+ but recognizes them
Misc testing to do
==================
1) check out max path names and max path name components against various server
-types. Try nested symlinks (8 deep). Return max path name in stat -f information
+ types. Try nested symlinks (8 deep). Return max path name in stat -f information
2) Improve xfstest's cifs/smb3 enablement and adapt xfstests where needed to test
-cifs/smb3 better
+ cifs/smb3 better
-3) Additional performance testing and optimization using iozone and similar -
-there are some easy changes that can be done to parallelize sequential writes,
-and when signing is disabled to request larger read sizes (larger than
-negotiated size) and send larger write sizes to modern servers.
+3) Additional performance testing and optimization using iozone and similar -
+ there are some easy changes that can be done to parallelize sequential writes,
+ and when signing is disabled to request larger read sizes (larger than
+ negotiated size) and send larger write sizes to modern servers.
4) More exhaustively test against less common servers
5) Continue to extend the smb3 "buildbot" which does automated xfstesting
-against Windows, Samba and Azure currently - to add additional tests and
-to allow the buildbot to execute the tests faster. The URL for the
-buildbot is: http://smb3-test-rhel-75.southcentralus.cloudapp.azure.com
+ against Windows, Samba and Azure currently - to add additional tests and
+ to allow the buildbot to execute the tests faster. The URL for the
+ buildbot is: http://smb3-test-rhel-75.southcentralus.cloudapp.azure.com
6) Address various coverity warnings (most are not bugs per-se, but
-the more warnings are addressed, the easier it is to spot real
-problems that static analyzers will point out in the future).
+ the more warnings are addressed, the easier it is to spot real
+ problems that static analyzers will point out in the future).
diff --git a/Documentation/filesystems/cifs/README b/Documentation/admin-guide/cifs/usage.rst
index 4a804619cff2..d3fb67b8a976 100644
--- a/Documentation/filesystems/cifs/README
+++ b/Documentation/admin-guide/cifs/usage.rst
@@ -1,53 +1,61 @@
+=====
+Usage
+=====
+
This module supports the SMB3 family of advanced network protocols (as well
as older dialects, originally called "CIFS" or SMB1).
The CIFS VFS module for Linux supports many advanced network filesystem
features such as hierarchical DFS like namespace, hardlinks, locking and more.
-It was designed to comply with the SNIA CIFS Technical Reference (which
-supersedes the 1992 X/Open SMB Standard) as well as to perform best practice
-practical interoperability with Windows 2000, Windows XP, Samba and equivalent
+It was designed to comply with the SNIA CIFS Technical Reference (which
+supersedes the 1992 X/Open SMB Standard) as well as to perform best practice
+practical interoperability with Windows 2000, Windows XP, Samba and equivalent
servers. This code was developed in participation with the Protocol Freedom
Information Foundation. CIFS and now SMB3 has now become a defacto
standard for interoperating between Macs and Windows and major NAS appliances.
Please see
- MS-SMB2 (for detailed SMB2/SMB3/SMB3.1.1 protocol specification)
- http://protocolfreedom.org/ and
- http://samba.org/samba/PFIF/
+MS-SMB2 (for detailed SMB2/SMB3/SMB3.1.1 protocol specification)
+http://protocolfreedom.org/ and
+http://samba.org/samba/PFIF/
for more details.
For questions or bug reports please contact:
+
smfrench@gmail.com
See the project page at: https://wiki.samba.org/index.php/LinuxCIFS_utils
-Build instructions:
+Build instructions
==================
+
For Linux:
+
1) Download the kernel (e.g. from http://www.kernel.org)
-and change directory into the top of the kernel directory tree
-(e.g. /usr/src/linux-2.5.73)
+ and change directory into the top of the kernel directory tree
+ (e.g. /usr/src/linux-2.5.73)
2) make menuconfig (or make xconfig)
3) select cifs from within the network filesystem choices
4) save and exit
5) make
-Installation instructions:
+Installation instructions
=========================
+
If you have built the CIFS vfs as module (successfully) simply
-type "make modules_install" (or if you prefer, manually copy the file to
+type ``make modules_install`` (or if you prefer, manually copy the file to
the modules directory e.g. /lib/modules/2.4.10-4GB/kernel/fs/cifs/cifs.ko).
If you have built the CIFS vfs into the kernel itself, follow the instructions
for your distribution on how to install a new kernel (usually you
-would simply type "make install").
+would simply type ``make install``).
If you do not have the utility mount.cifs (in the Samba 4.x source tree and on
the CIFS VFS web site) copy it to the same directory in which mount helpers
reside (usually /sbin). Although the helper software is not
-required, mount.cifs is recommended. Most distros include a "cifs-utils"
+required, mount.cifs is recommended. Most distros include a ``cifs-utils``
package that includes this utility so it is recommended to install this.
Note that running the Winbind pam/nss module (logon service) on all of your
@@ -57,13 +65,16 @@ found at cifs-utils.git on git.samba.org
If cifs is built as a module, then the size and number of network buffers
and maximum number of simultaneous requests to one server can be configured.
-Changing these from their defaults is not recommended. By executing modinfo
+Changing these from their defaults is not recommended. By executing modinfo::
+
modinfo kernel/fs/cifs/cifs.ko
+
on kernel/fs/cifs/cifs.ko the list of configuration changes that can be made
at module initialization time (by running insmod cifs.ko) can be seen.
Recommendations
===============
+
To improve security the SMB2.1 dialect or later (usually will get SMB3) is now
the new default. To use old dialects (e.g. to mount Windows XP) use "vers=1.0"
on mount (or vers=2.0 for Windows Vista). Note that the CIFS (vers=1.0) is
@@ -72,156 +83,168 @@ many advanced security features such as downgrade attack detection
and encrypted shares and stronger signing and authentication algorithms.
There are additional mount options that may be helpful for SMB3 to get
improved POSIX behavior (NB: can use vers=3.0 to force only SMB3, never 2.1):
- "mfsymlinks" and "cifsacl" and "idsfromsid"
+
+ ``mfsymlinks`` and ``cifsacl`` and ``idsfromsid``
Allowing User Mounts
====================
+
To permit users to mount and unmount over directories they own is possible
with the cifs vfs. A way to enable such mounting is to mark the mount.cifs
-utility as suid (e.g. "chmod +s /sbin/mount.cifs). To enable users to
+utility as suid (e.g. ``chmod +s /sbin/mount.cifs``). To enable users to
umount shares they mount requires
+
1) mount.cifs version 1.4 or later
2) an entry for the share in /etc/fstab indicating that a user may
-unmount it e.g.
-//server/usersharename /mnt/username cifs user 0 0
+ unmount it e.g.::
+
+ //server/usersharename /mnt/username cifs user 0 0
-Note that when the mount.cifs utility is run suid (allowing user mounts),
-in order to reduce risks, the "nosuid" mount flag is passed in on mount to
+Note that when the mount.cifs utility is run suid (allowing user mounts),
+in order to reduce risks, the ``nosuid`` mount flag is passed in on mount to
disallow execution of an suid program mounted on the remote target.
When mount is executed as root, nosuid is not passed in by default,
and execution of suid programs on the remote target would be enabled
-by default. This can be changed, as with nfs and other filesystems,
-by simply specifying "nosuid" among the mount options. For user mounts
-though to be able to pass the suid flag to mount requires rebuilding
+by default. This can be changed, as with nfs and other filesystems,
+by simply specifying ``nosuid`` among the mount options. For user mounts
+though to be able to pass the suid flag to mount requires rebuilding
mount.cifs with the following flag: CIFS_ALLOW_USR_SUID
There is a corresponding manual page for cifs mounting in the Samba 3.0 and
-later source tree in docs/manpages/mount.cifs.8
+later source tree in docs/manpages/mount.cifs.8
Allowing User Unmounts
======================
+
To permit users to ummount directories that they have user mounted (see above),
-the utility umount.cifs may be used. It may be invoked directly, or if
+the utility umount.cifs may be used. It may be invoked directly, or if
umount.cifs is placed in /sbin, umount can invoke the cifs umount helper
(at least for most versions of the umount utility) for umount of cifs
mounts, unless umount is invoked with -i (which will avoid invoking a umount
helper). As with mount.cifs, to enable user unmounts umount.cifs must be marked
-as suid (e.g. "chmod +s /sbin/umount.cifs") or equivalent (some distributions
+as suid (e.g. ``chmod +s /sbin/umount.cifs``) or equivalent (some distributions
allow adding entries to a file to the /etc/permissions file to achieve the
equivalent suid effect). For this utility to succeed the target path
must be a cifs mount, and the uid of the current user must match the uid
of the user who mounted the resource.
-Also note that the customary way of allowing user mounts and unmounts is
+Also note that the customary way of allowing user mounts and unmounts is
(instead of using mount.cifs and unmount.cifs as suid) to add a line
to the file /etc/fstab for each //server/share you wish to mount, but
this can become unwieldy when potential mount targets include many
or unpredictable UNC names.
-Samba Considerations
+Samba Considerations
====================
+
Most current servers support SMB2.1 and SMB3 which are more secure,
but there are useful protocol extensions for the older less secure CIFS
dialect, so to get the maximum benefit if mounting using the older dialect
(CIFS/SMB1), we recommend using a server that supports the SNIA CIFS
Unix Extensions standard (e.g. almost any version of Samba ie version
2.2.5 or later) but the CIFS vfs works fine with a wide variety of CIFS servers.
-Note that uid, gid and file permissions will display default values if you do
-not have a server that supports the Unix extensions for CIFS (such as Samba
-2.2.5 or later). To enable the Unix CIFS Extensions in the Samba server, add
-the line:
+Note that uid, gid and file permissions will display default values if you do
+not have a server that supports the Unix extensions for CIFS (such as Samba
+2.2.5 or later). To enable the Unix CIFS Extensions in the Samba server, add
+the line::
unix extensions = yes
-
-to your smb.conf file on the server. Note that the following smb.conf settings
-are also useful (on the Samba server) when the majority of clients are Unix or
-Linux:
+
+to your smb.conf file on the server. Note that the following smb.conf settings
+are also useful (on the Samba server) when the majority of clients are Unix or
+Linux::
case sensitive = yes
- delete readonly = yes
+ delete readonly = yes
ea support = yes
Note that server ea support is required for supporting xattrs from the Linux
-cifs client, and that EA support is present in later versions of Samba (e.g.
+cifs client, and that EA support is present in later versions of Samba (e.g.
3.0.6 and later (also EA support works in all versions of Windows, at least to
shares on NTFS filesystems). Extended Attribute (xattr) support is an optional
feature of most Linux filesystems which may require enabling via
make menuconfig. Client support for extended attributes (user xattr) can be
-disabled on a per-mount basis by specifying "nouser_xattr" on mount.
+disabled on a per-mount basis by specifying ``nouser_xattr`` on mount.
The CIFS client can get and set POSIX ACLs (getfacl, setfacl) to Samba servers
-version 3.10 and later. Setting POSIX ACLs requires enabling both XATTR and
+version 3.10 and later. Setting POSIX ACLs requires enabling both XATTR and
then POSIX support in the CIFS configuration options when building the cifs
module. POSIX ACL support can be disabled on a per mount basic by specifying
-"noacl" on mount.
-
-Some administrators may want to change Samba's smb.conf "map archive" and
-"create mask" parameters from the default. Unless the create mask is changed
+``noacl`` on mount.
+
+Some administrators may want to change Samba's smb.conf ``map archive`` and
+``create mask`` parameters from the default. Unless the create mask is changed
newly created files can end up with an unnecessarily restrictive default mode,
which may not be what you want, although if the CIFS Unix extensions are
enabled on the server and client, subsequent setattr calls (e.g. chmod) can
-fix the mode. Note that creating special devices (mknod) remotely
-may require specifying a mkdev function to Samba if you are not using
+fix the mode. Note that creating special devices (mknod) remotely
+may require specifying a mkdev function to Samba if you are not using
Samba 3.0.6 or later. For more information on these see the manual pages
-("man smb.conf") on the Samba server system. Note that the cifs vfs,
-unlike the smbfs vfs, does not read the smb.conf on the client system
-(the few optional settings are passed in on mount via -o parameters instead).
+(``man smb.conf``) on the Samba server system. Note that the cifs vfs,
+unlike the smbfs vfs, does not read the smb.conf on the client system
+(the few optional settings are passed in on mount via -o parameters instead).
Note that Samba 2.2.7 or later includes a fix that allows the CIFS VFS to delete
-open files (required for strict POSIX compliance). Windows Servers already
+open files (required for strict POSIX compliance). Windows Servers already
supported this feature. Samba server does not allow symlinks that refer to files
outside of the share, so in Samba versions prior to 3.0.6, most symlinks to
-files with absolute paths (ie beginning with slash) such as:
+files with absolute paths (ie beginning with slash) such as::
+
ln -s /mnt/foo bar
-would be forbidden. Samba 3.0.6 server or later includes the ability to create
-such symlinks safely by converting unsafe symlinks (ie symlinks to server
+
+would be forbidden. Samba 3.0.6 server or later includes the ability to create
+such symlinks safely by converting unsafe symlinks (ie symlinks to server
files that are outside of the share) to a samba specific format on the server
that is ignored by local server applications and non-cifs clients and that will
not be traversed by the Samba server). This is opaque to the Linux client
application using the cifs vfs. Absolute symlinks will work to Samba 3.0.5 or
later, but only for remote clients using the CIFS Unix extensions, and will
be invisbile to Windows clients and typically will not affect local
-applications running on the same server as Samba.
+applications running on the same server as Samba.
-Use instructions:
+Use instructions
================
-Once the CIFS VFS support is built into the kernel or installed as a module
+
+Once the CIFS VFS support is built into the kernel or installed as a module
(cifs.ko), you can use mount syntax like the following to access Samba or
-Mac or Windows servers:
+Mac or Windows servers::
mount -t cifs //9.53.216.11/e$ /mnt -o username=myname,password=mypassword
Before -o the option -v may be specified to make the mount.cifs
-mount helper display the mount steps more verbosely.
+mount helper display the mount steps more verbosely.
After -o the following commonly used cifs vfs specific options
-are supported:
+are supported::
username=<username>
password=<password>
domain=<domain name>
-
+
Other cifs mount options are described below. Use of TCP names (in addition to
ip addresses) is available if the mount helper (mount.cifs) is installed. If
you do not trust the server to which are mounted, or if you do not have
cifs signing enabled (and the physical network is insecure), consider use
-of the standard mount options "noexec" and "nosuid" to reduce the risk of
+of the standard mount options ``noexec`` and ``nosuid`` to reduce the risk of
running an altered binary on your local system (downloaded from a hostile server
or altered by a hostile router).
Although mounting using format corresponding to the CIFS URL specification is
not possible in mount.cifs yet, it is possible to use an alternate format
for the server and sharename (which is somewhat similar to NFS style mount
-syntax) instead of the more widely used UNC format (i.e. \\server\share):
+syntax) instead of the more widely used UNC format (i.e. \\server\share)::
+
mount -t cifs tcp_name_of_server:share_name /mnt -o user=myname,pass=mypasswd
When using the mount helper mount.cifs, passwords may be specified via alternate
-mechanisms, instead of specifying it after -o using the normal "pass=" syntax
+mechanisms, instead of specifying it after -o using the normal ``pass=`` syntax
on the command line:
1) By including it in a credential file. Specify credentials=filename as one
-of the mount options. Credential files contain two lines
- username=someuser
- password=your_password
+of the mount options. Credential files contain two lines::
+
+ username=someuser
+ password=your_password
+
2) By specifying the password in the PASSWD environment variable (similarly
-the user name can be taken from the USER environment variable).
+ the user name can be taken from the USER environment variable).
3) By specifying the password in a file by name via PASSWD_FILE
4) By specifying the password in a file by file descriptor via PASSWD_FD
@@ -229,39 +252,47 @@ If no password is provided, mount.cifs will prompt for password entry
Restrictions
============
-Servers must support either "pure-TCP" (port 445 TCP/IP CIFS connections) or RFC
-1001/1002 support for "Netbios-Over-TCP/IP." This is not likely to be a
+
+Servers must support either "pure-TCP" (port 445 TCP/IP CIFS connections) or RFC
+1001/1002 support for "Netbios-Over-TCP/IP." This is not likely to be a
problem as most servers support this.
Valid filenames differ between Windows and Linux. Windows typically restricts
-filenames which contain certain reserved characters (e.g.the character :
+filenames which contain certain reserved characters (e.g.the character :
which is used to delimit the beginning of a stream name by Windows), while
Linux allows a slightly wider set of valid characters in filenames. Windows
servers can remap such characters when an explicit mapping is specified in
-the Server's registry. Samba starting with version 3.10 will allow such
+the Server's registry. Samba starting with version 3.10 will allow such
filenames (ie those which contain valid Linux characters, which normally
would be forbidden for Windows/CIFS semantics) as long as the server is
configured for Unix Extensions (and the client has not disabled
/proc/fs/cifs/LinuxExtensionsEnabled). In addition the mount option
-"mapposix" can be used on CIFS (vers=1.0) to force the mapping of
+``mapposix`` can be used on CIFS (vers=1.0) to force the mapping of
illegal Windows/NTFS/SMB characters to a remap range (this mount parm
-is the default for SMB3). This remap ("mapposix") range is also
+is the default for SMB3). This remap (``mapposix``) range is also
compatible with Mac (and "Services for Mac" on some older Windows).
CIFS VFS Mount Options
======================
A partial list of the supported mount options follows:
- username The user name to use when trying to establish
+
+ username
+ The user name to use when trying to establish
the CIFS session.
- password The user password. If the mount helper is
+ password
+ The user password. If the mount helper is
installed, the user will be prompted for password
if not supplied.
- ip The ip address of the target server
- unc The target server Universal Network Name (export) to
- mount.
- domain Set the SMB/CIFS workgroup name prepended to the
+ ip
+ The ip address of the target server
+ unc
+ The target server Universal Network Name (export) to
+ mount.
+ domain
+ Set the SMB/CIFS workgroup name prepended to the
username during CIFS session establishment
- forceuid Set the default uid for inodes to the uid
+ forceuid
+ Set the default uid for inodes to the uid
passed in on mount. For mounts to servers
which do support the CIFS Unix extensions, such as a
properly configured Samba server, the server provides
@@ -276,32 +307,39 @@ A partial list of the supported mount options follows:
extensions, the default uid (and gid) returned on lookup
of existing files will be the uid (gid) of the person
who executed the mount (root, except when mount.cifs
- is configured setuid for user mounts) unless the "uid="
+ is configured setuid for user mounts) unless the ``uid=``
(gid) mount option is specified. Also note that permission
checks (authorization checks) on accesses to a file occur
at the server, but there are cases in which an administrator
may want to restrict at the client as well. For those
servers which do not report a uid/gid owner
(such as Windows), permissions can also be checked at the
- client, and a crude form of client side permission checking
- can be enabled by specifying file_mode and dir_mode on
+ client, and a crude form of client side permission checking
+ can be enabled by specifying file_mode and dir_mode on
the client. (default)
- forcegid (similar to above but for the groupid instead of uid) (default)
- noforceuid Fill in file owner information (uid) by requesting it from
+ forcegid
+ (similar to above but for the groupid instead of uid) (default)
+ noforceuid
+ Fill in file owner information (uid) by requesting it from
the server if possible. With this option, the value given in
the uid= option (on mount) will only be used if the server
can not support returning uids on inodes.
- noforcegid (similar to above but for the group owner, gid, instead of uid)
- uid Set the default uid for inodes, and indicate to the
+ noforcegid
+ (similar to above but for the group owner, gid, instead of uid)
+ uid
+ Set the default uid for inodes, and indicate to the
cifs kernel driver which local user mounted. If the server
supports the unix extensions the default uid is
not used to fill in the owner fields of inodes (files)
- unless the "forceuid" parameter is specified.
- gid Set the default gid for inodes (similar to above).
- file_mode If CIFS Unix extensions are not supported by the server
+ unless the ``forceuid`` parameter is specified.
+ gid
+ Set the default gid for inodes (similar to above).
+ file_mode
+ If CIFS Unix extensions are not supported by the server
this overrides the default mode for file inodes.
- fsc Enable local disk caching using FS-Cache (off by default). This
- option could be useful to improve performance on a slow link,
+ fsc
+ Enable local disk caching using FS-Cache (off by default). This
+ option could be useful to improve performance on a slow link,
heavily loaded server and/or network where reading from the
disk is faster than reading from the server (over the network).
This could also impact scalability positively as the
@@ -310,18 +348,22 @@ A partial list of the supported mount options follows:
type workloads. So, you need to consider carefully your
workload/scenario before using this option. Currently, local
disk caching is functional for CIFS files opened as read-only.
- dir_mode If CIFS Unix extensions are not supported by the server
+ dir_mode
+ If CIFS Unix extensions are not supported by the server
this overrides the default mode for directory inodes.
- port attempt to contact the server on this tcp port, before
+ port
+ attempt to contact the server on this tcp port, before
trying the usual ports (port 445, then 139).
- iocharset Codepage used to convert local path names to and from
+ iocharset
+ Codepage used to convert local path names to and from
Unicode. Unicode is used by default for network path
names if the server supports it. If iocharset is
not specified then the nls_default specified
during the local client kernel build will be used.
If server does not support Unicode, this parameter is
unused.
- rsize default read size (usually 16K). The client currently
+ rsize
+ default read size (usually 16K). The client currently
can not use rsize larger than CIFSMaxBufSize. CIFSMaxBufSize
defaults to 16K and may be changed (from 8K to the maximum
kmalloc size allowed by your kernel) at module install time
@@ -333,10 +375,12 @@ A partial list of the supported mount options follows:
newer servers (e.g. Samba 3.0.26 or later) do. rsize can be
set from a minimum of 2048 to a maximum of 130048 (127K or
CIFSMaxBufSize, whichever is smaller)
- wsize default write size (default 57344)
+ wsize
+ default write size (default 57344)
maximum wsize currently allowed by CIFS is 57344 (fourteen
4096 byte pages)
- actimeo=n attribute cache timeout in seconds (default 1 second).
+ actimeo=n
+ attribute cache timeout in seconds (default 1 second).
After this timeout, the cifs client requests fresh attribute
information from the server. This option allows to tune the
attribute cache timeout to suit the workload needs. Shorter
@@ -345,49 +389,67 @@ A partial list of the supported mount options follows:
of calls to the server at the expense of less stricter cache
coherency checks (i.e. incorrect attribute cache for a short
period of time).
- rw mount the network share read-write (note that the
+ rw
+ mount the network share read-write (note that the
server may still consider the share read-only)
- ro mount network share read-only
- version used to distinguish different versions of the
+ ro
+ mount network share read-only
+ version
+ used to distinguish different versions of the
mount helper utility (not typically needed)
- sep if first mount option (after the -o), overrides
+ sep
+ if first mount option (after the -o), overrides
the comma as the separator between the mount
- parms. e.g.
+ parms. e.g.::
+
-o user=myname,password=mypassword,domain=mydom
- could be passed instead with period as the separator by
+
+ could be passed instead with period as the separator by::
+
-o sep=.user=myname.password=mypassword.domain=mydom
+
this might be useful when comma is contained within username
or password or domain. This option is less important
when the cifs mount helper cifs.mount (version 1.1 or later)
is used.
- nosuid Do not allow remote executables with the suid bit
+ nosuid
+ Do not allow remote executables with the suid bit
program to be executed. This is only meaningful for mounts
to servers such as Samba which support the CIFS Unix Extensions.
If you do not trust the servers in your network (your mount
targets) it is recommended that you specify this option for
greater security.
- exec Permit execution of binaries on the mount.
- noexec Do not permit execution of binaries on the mount.
- dev Recognize block devices on the remote mount.
- nodev Do not recognize devices on the remote mount.
- suid Allow remote files on this mountpoint with suid enabled to
+ exec
+ Permit execution of binaries on the mount.
+ noexec
+ Do not permit execution of binaries on the mount.
+ dev
+ Recognize block devices on the remote mount.
+ nodev
+ Do not recognize devices on the remote mount.
+ suid
+ Allow remote files on this mountpoint with suid enabled to
be executed (default for mounts when executed as root,
nosuid is default for user mounts).
- credentials Although ignored by the cifs kernel component, it is used by
+ credentials
+ Although ignored by the cifs kernel component, it is used by
the mount helper, mount.cifs. When mount.cifs is installed it
- opens and reads the credential file specified in order
+ opens and reads the credential file specified in order
to obtain the userid and password arguments which are passed to
the cifs vfs.
- guest Although ignored by the kernel component, the mount.cifs
+ guest
+ Although ignored by the kernel component, the mount.cifs
mount helper will not prompt the user for a password
if guest is specified on the mount options. If no
password is specified a null password will be used.
- perm Client does permission checks (vfs_permission check of uid
+ perm
+ Client does permission checks (vfs_permission check of uid
and gid of the file against the mode and desired operation),
Note that this is in addition to the normal ACL check on the
- target machine done by the server software.
+ target machine done by the server software.
Client permission checking is enabled by default.
- noperm Client does not do permission checks. This can expose
+ noperm
+ Client does not do permission checks. This can expose
files on this mount to access by other users on the local
client system. It is typically only needed when the server
supports the CIFS Unix Extensions but the UIDs/GIDs on the
@@ -399,7 +461,8 @@ A partial list of the supported mount options follows:
Note that this does not affect the normal ACL check on the
target machine done by the server software (of the server
ACL against the user name provided at mount time).
- serverino Use server's inode numbers instead of generating automatically
+ serverino
+ Use server's inode numbers instead of generating automatically
incrementing inode numbers on the client. Although this will
make it easier to spot hardlinked files (as they will have
the same inode numbers) and inode numbers may be persistent,
@@ -412,14 +475,16 @@ A partial list of the supported mount options follows:
or the CIFS Unix Extensions equivalent and for those
this mount option will have no effect. Exporting cifs mounts
under nfsd requires this mount option on the cifs mount.
- This is now the default if server supports the
+ This is now the default if server supports the
required network operation.
- noserverino Client generates inode numbers (rather than using the actual one
+ noserverino
+ Client generates inode numbers (rather than using the actual one
from the server). These inode numbers will vary after
unmount or reboot which can confuse some applications,
but not all server filesystems support unique inode
numbers.
- setuids If the CIFS Unix extensions are negotiated with the server
+ setuids
+ If the CIFS Unix extensions are negotiated with the server
the client will attempt to set the effective uid and gid of
the local process on newly created files, directories, and
devices (create, mkdir, mknod). If the CIFS Unix Extensions
@@ -427,9 +492,10 @@ A partial list of the supported mount options follows:
instead of using the default uid and gid specified on
the mount, cache the new file's uid and gid locally which means
that the uid for the file can change when the inode is
- reloaded (or the user remounts the share).
- nosetuids The client will not attempt to set the uid and gid on
- on newly created files, directories, and devices (create,
+ reloaded (or the user remounts the share).
+ nosetuids
+ The client will not attempt to set the uid and gid on
+ on newly created files, directories, and devices (create,
mkdir, mknod) which will result in the server setting the
uid and gid to the default (usually the server uid of the
user who mounted the share). Letting the server (rather than
@@ -437,38 +503,49 @@ A partial list of the supported mount options follows:
Unix Extensions are not negotiated then the uid and gid for
new files will appear to be the uid (gid) of the mounter or the
uid (gid) parameter specified on the mount.
- netbiosname When mounting to servers via port 139, specifies the RFC1001
- source name to use to represent the client netbios machine
+ netbiosname
+ When mounting to servers via port 139, specifies the RFC1001
+ source name to use to represent the client netbios machine
name when doing the RFC1001 netbios session initialize.
- direct Do not do inode data caching on files opened on this mount.
+ direct
+ Do not do inode data caching on files opened on this mount.
This precludes mmapping files on this mount. In some cases
with fast networks and little or no caching benefits on the
client (e.g. when the application is doing large sequential
- reads bigger than page size without rereading the same data)
+ reads bigger than page size without rereading the same data)
this can provide better performance than the default
- behavior which caches reads (readahead) and writes
- (writebehind) through the local Linux client pagecache
+ behavior which caches reads (readahead) and writes
+ (writebehind) through the local Linux client pagecache
if oplock (caching token) is granted and held. Note that
direct allows write operations larger than page size
to be sent to the server.
- strictcache Use for switching on strict cache mode. In this mode the
+ strictcache
+ Use for switching on strict cache mode. In this mode the
client read from the cache all the time it has Oplock Level II,
otherwise - read from the server. All written data are stored
in the cache, but if the client doesn't have Exclusive Oplock,
it writes the data to the server.
- rwpidforward Forward pid of a process who opened a file to any read or write
+ rwpidforward
+ Forward pid of a process who opened a file to any read or write
operation on that file. This prevent applications like WINE
from failing on read and write if we use mandatory brlock style.
- acl Allow setfacl and getfacl to manage posix ACLs if server
+ acl
+ Allow setfacl and getfacl to manage posix ACLs if server
supports them. (default)
- noacl Do not allow setfacl and getfacl calls on this mount
- user_xattr Allow getting and setting user xattrs (those attributes whose
- name begins with "user." or "os2.") as OS/2 EAs (extended
+ noacl
+ Do not allow setfacl and getfacl calls on this mount
+ user_xattr
+ Allow getting and setting user xattrs (those attributes whose
+ name begins with ``user.`` or ``os2.``) as OS/2 EAs (extended
attributes) to the server. This allows support of the
setfattr and getfattr utilities. (default)
- nouser_xattr Do not allow getfattr/setfattr to get/set/list xattrs
- mapchars Translate six of the seven reserved characters (not backslash)
+ nouser_xattr
+ Do not allow getfattr/setfattr to get/set/list xattrs
+ mapchars
+ Translate six of the seven reserved characters (not backslash)::
+
*?<>|:
+
to the remap range (above 0xF000), which also
allows the CIFS client to recognize files created with
such characters by Windows's POSIX emulation. This can
@@ -477,39 +554,47 @@ A partial list of the supported mount options follows:
whose names contain any of these seven characters).
This has no effect if the server does not support
Unicode on the wire.
- nomapchars Do not translate any of these seven characters (default).
- nocase Request case insensitive path name matching (case
+ nomapchars
+ Do not translate any of these seven characters (default).
+ nocase
+ Request case insensitive path name matching (case
sensitive is the default if the server supports it).
- (mount option "ignorecase" is identical to "nocase")
- posixpaths If CIFS Unix extensions are supported, attempt to
+ (mount option ``ignorecase`` is identical to ``nocase``)
+ posixpaths
+ If CIFS Unix extensions are supported, attempt to
negotiate posix path name support which allows certain
characters forbidden in typical CIFS filenames, without
requiring remapping. (default)
- noposixpaths If CIFS Unix extensions are supported, do not request
+ noposixpaths
+ If CIFS Unix extensions are supported, do not request
posix path name support (this may cause servers to
reject creatingfile with certain reserved characters).
- nounix Disable the CIFS Unix Extensions for this mount (tree
+ nounix
+ Disable the CIFS Unix Extensions for this mount (tree
connection). This is rarely needed, but it may be useful
in order to turn off multiple settings all at once (ie
posix acls, posix locks, posix paths, symlink support
and retrieving uids/gids/mode from the server) or to
work around a bug in server which implement the Unix
Extensions.
- nobrl Do not send byte range lock requests to the server.
+ nobrl
+ Do not send byte range lock requests to the server.
This is necessary for certain applications that break
with cifs style mandatory byte range locks (and most
cifs servers do not yet support requesting advisory
byte range locks).
- forcemandatorylock Even if the server supports posix (advisory) byte range
+ forcemandatorylock
+ Even if the server supports posix (advisory) byte range
locking, send only mandatory lock requests. For some
(presumably rare) applications, originally coded for
DOS/Windows, which require Windows style mandatory byte range
locking, they may be able to take advantage of this option,
forcing the cifs client to only send mandatory locks
even if the cifs server would support posix advisory locks.
- "forcemand" is accepted as a shorter form of this mount
+ ``forcemand`` is accepted as a shorter form of this mount
option.
- nostrictsync If this mount option is set, when an application does an
+ nostrictsync
+ If this mount option is set, when an application does an
fsync call then the cifs client does not send an SMB Flush
to the server (to force the server to write all dirty data
for this file immediately to disk), although cifs still sends
@@ -522,41 +607,50 @@ A partial list of the supported mount options follows:
crash. If this mount option is not set, by default cifs will
send an SMB flush request (and wait for a response) on every
fsync call.
- nodfs Disable DFS (global name space support) even if the
+ nodfs
+ Disable DFS (global name space support) even if the
server claims to support it. This can help work around
a problem with parsing of DFS paths with Samba server
versions 3.0.24 and 3.0.25.
- remount remount the share (often used to change from ro to rw mounts
- or vice versa)
- cifsacl Report mode bits (e.g. on stat) based on the Windows ACL for
- the file. (EXPERIMENTAL)
- servern Specify the server 's netbios name (RFC1001 name) to use
- when attempting to setup a session to the server.
+ remount
+ remount the share (often used to change from ro to rw mounts
+ or vice versa)
+ cifsacl
+ Report mode bits (e.g. on stat) based on the Windows ACL for
+ the file. (EXPERIMENTAL)
+ servern
+ Specify the server 's netbios name (RFC1001 name) to use
+ when attempting to setup a session to the server.
This is needed for mounting to some older servers (such
as OS/2 or Windows 98 and Windows ME) since they do not
support a default server name. A server name can be up
to 15 characters long and is usually uppercased.
- sfu When the CIFS Unix Extensions are not negotiated, attempt to
+ sfu
+ When the CIFS Unix Extensions are not negotiated, attempt to
create device files and fifos in a format compatible with
Services for Unix (SFU). In addition retrieve bits 10-12
of the mode via the SETFILEBITS extended attribute (as
SFU does). In the future the bottom 9 bits of the
mode also will be emulated using queries of the security
descriptor (ACL).
- mfsymlinks Enable support for Minshall+French symlinks
+ mfsymlinks
+ Enable support for Minshall+French symlinks
(see http://wiki.samba.org/index.php/UNIX_Extensions#Minshall.2BFrench_symlinks)
This option is ignored when specified together with the
'sfu' option. Minshall+French symlinks are used even if
the server supports the CIFS Unix Extensions.
- sign Must use packet signing (helps avoid unwanted data modification
+ sign
+ Must use packet signing (helps avoid unwanted data modification
by intermediate systems in the route). Note that signing
does not work with lanman or plaintext authentication.
- seal Must seal (encrypt) all data on this mounted share before
+ seal
+ Must seal (encrypt) all data on this mounted share before
sending on the network. Requires support for Unix Extensions.
Note that this differs from the sign mount option in that it
causes encryption of data sent over this mounted share but other
shares mounted to the same server are unaffected.
- locallease This option is rarely needed. Fcntl F_SETLEASE is
+ locallease
+ This option is rarely needed. Fcntl F_SETLEASE is
used by some applications such as Samba and NFSv4 server to
check to see whether a file is cacheable. CIFS has no way
to explicitly request a lease, but can check whether a file
@@ -569,51 +663,73 @@ A partial list of the supported mount options follows:
will allow the cifs client to check for leases (only) locally
for files which are not oplocked instead of denying leases
in that case. (EXPERIMENTAL)
- sec Security mode. Allowed values are:
- none attempt to connection as a null user (no name)
- krb5 Use Kerberos version 5 authentication
- krb5i Use Kerberos authentication and packet signing
- ntlm Use NTLM password hashing (default)
- ntlmi Use NTLM password hashing with signing (if
+ sec
+ Security mode. Allowed values are:
+
+ none
+ attempt to connection as a null user (no name)
+ krb5
+ Use Kerberos version 5 authentication
+ krb5i
+ Use Kerberos authentication and packet signing
+ ntlm
+ Use NTLM password hashing (default)
+ ntlmi
+ Use NTLM password hashing with signing (if
/proc/fs/cifs/PacketSigningEnabled on or if
- server requires signing also can be the default)
- ntlmv2 Use NTLMv2 password hashing
- ntlmv2i Use NTLMv2 password hashing with packet signing
- lanman (if configured in kernel config) use older
+ server requires signing also can be the default)
+ ntlmv2
+ Use NTLMv2 password hashing
+ ntlmv2i
+ Use NTLMv2 password hashing with packet signing
+ lanman
+ (if configured in kernel config) use older
lanman hash
-hard Retry file operations if server is not responding
-soft Limit retries to unresponsive servers (usually only
+ hard
+ Retry file operations if server is not responding
+ soft
+ Limit retries to unresponsive servers (usually only
one retry) before returning an error. (default)
The mount.cifs mount helper also accepts a few mount options before -o
including:
+=============== ===============================================================
-S take password from stdin (equivalent to setting the environment
- variable "PASSWD_FD=0"
+ variable ``PASSWD_FD=0``
-V print mount.cifs version
-? display simple usage information
+=============== ===============================================================
With most 2.6 kernel versions of modutils, the version of the cifs kernel
module can be displayed via modinfo.
Misc /proc/fs/cifs Flags and Debug Info
=======================================
+
Informational pseudo-files:
+
+======================= =======================================================
DebugData Displays information about active CIFS sessions and
shares, features enabled as well as the cifs.ko
version.
Stats Lists summary resource usage information as well as per
share statistics.
+======================= =======================================================
Configuration pseudo-files:
+
+======================= =======================================================
SecurityFlags Flags which control security negotiation and
also packet signing. Authentication (may/must)
flags (e.g. for NTLM and/or NTLMv2) may be combined with
the signing flags. Specifying two different password
- hashing mechanisms (as "must use") on the other hand
- does not make much sense. Default flags are
- 0x07007
- (NTLM, NTLMv2 and packet signing allowed). The maximum
+ hashing mechanisms (as "must use") on the other hand
+ does not make much sense. Default flags are::
+
+ 0x07007
+
+ (NTLM, NTLMv2 and packet signing allowed). The maximum
allowable flags if you want to allow mounts to servers
using weaker password hashes is 0x37037 (lanman,
plaintext, ntlm, ntlmv2, signing allowed). Some
@@ -626,21 +742,21 @@ SecurityFlags Flags which control security negotiation and
laintext passwords using the older lanman dialect
form of the session setup SMB. (e.g. for authentication
using plain text passwords, set the SecurityFlags
- to 0x30030):
-
- may use packet signing 0x00001
- must use packet signing 0x01001
- may use NTLM (most common password hash) 0x00002
- must use NTLM 0x02002
- may use NTLMv2 0x00004
- must use NTLMv2 0x04004
- may use Kerberos security 0x00008
- must use Kerberos 0x08008
- may use lanman (weak) password hash 0x00010
- must use lanman password hash 0x10010
- may use plaintext passwords 0x00020
- must use plaintext passwords 0x20020
- (reserved for future packet encryption) 0x00040
+ to 0x30030)::
+
+ may use packet signing 0x00001
+ must use packet signing 0x01001
+ may use NTLM (most common password hash) 0x00002
+ must use NTLM 0x02002
+ may use NTLMv2 0x00004
+ must use NTLMv2 0x04004
+ may use Kerberos security 0x00008
+ must use Kerberos 0x08008
+ may use lanman (weak) password hash 0x00010
+ must use lanman password hash 0x10010
+ may use plaintext passwords 0x00020
+ must use plaintext passwords 0x20020
+ (reserved for future packet encryption) 0x00040
cifsFYI If set to non-zero value, additional debug information
will be logged to the system error log. This field
@@ -650,14 +766,19 @@ cifsFYI If set to non-zero value, additional debug information
Some debugging statements are not compiled into the
cifs kernel unless CONFIG_CIFS_DEBUG2 is enabled in the
kernel configuration. cifsFYI may be set to one or
- nore of the following flags (7 sets them all):
-
- log cifs informational messages 0x01
- log return codes from cifs entry points 0x02
- log slow responses (ie which take longer than 1 second)
- CONFIG_CIFS_STATS2 must be enabled in .config 0x04
-
-
+ nore of the following flags (7 sets them all)::
+
+ +-----------------------------------------------+------+
+ | log cifs informational messages | 0x01 |
+ +-----------------------------------------------+------+
+ | log return codes from cifs entry points | 0x02 |
+ +-----------------------------------------------+------+
+ | log slow responses | 0x04 |
+ | (ie which take longer than 1 second) | |
+ | | |
+ | CONFIG_CIFS_STATS2 must be enabled in .config | |
+ +-----------------------------------------------+------+
+
traceSMB If set to one, debug information is logged to the
system error log with the start of smb requests
and responses (default 0)
@@ -671,24 +792,25 @@ LinuxExtensionsEnabled If set to one then the client will attempt to
as support symbolic links. If you use servers
such as Samba that support the CIFS Unix
extensions but do not want to use symbolic link
- support and want to map the uid and gid fields
- to values supplied at mount (rather than the
+ support and want to map the uid and gid fields
+ to values supplied at mount (rather than the
actual values, then set this to zero. (default 1)
+======================= =======================================================
-These experimental features and tracing can be enabled by changing flags in
-/proc/fs/cifs (after the cifs module has been installed or built into the
-kernel, e.g. insmod cifs). To enable a feature set it to 1 e.g. to enable
-tracing to the kernel message log type:
+These experimental features and tracing can be enabled by changing flags in
+/proc/fs/cifs (after the cifs module has been installed or built into the
+kernel, e.g. insmod cifs). To enable a feature set it to 1 e.g. to enable
+tracing to the kernel message log type::
echo 7 > /proc/fs/cifs/cifsFYI
-
+
cifsFYI functions as a bit mask. Setting it to 1 enables additional kernel
logging of various informational messages. 2 enables logging of non-zero
SMB return codes while 4 enables logging of requests that take longer
-than one second to complete (except for byte range lock requests).
+than one second to complete (except for byte range lock requests).
Setting it to 4 requires CONFIG_CIFS_STATS2 to be set in kernel configuration
(.config). Setting it to seven enables all three. Finally, tracing
-the start of smb requests and responses can be enabled via:
+the start of smb requests and responses can be enabled via::
echo 1 > /proc/fs/cifs/traceSMB
@@ -700,10 +822,10 @@ server) SMB3 (or cifs) requests grouped by request type (read, write, close etc.
Also recorded is the total bytes read and bytes written to the server for
that share. Note that due to client caching effects this can be less than the
number of bytes read and written by the application running on the client.
-Statistics can be reset to zero by "echo 0 > /proc/fs/cifs/Stats" which may be
+Statistics can be reset to zero by ``echo 0 > /proc/fs/cifs/Stats`` which may be
useful if comparing performance of two different scenarios.
-
-Also note that "cat /proc/fs/cifs/DebugData" will display information about
+
+Also note that ``cat /proc/fs/cifs/DebugData`` will display information about
the active sessions and the shares that are mounted.
Enabling Kerberos (extended security) works but requires version 1.2 or later
@@ -725,19 +847,23 @@ space to ease network configuration and improve reliability.
To use cifs Kerberos and DFS support, the Linux keyutils package should be
installed and something like the following lines should be added to the
-/etc/request-key.conf file:
+/etc/request-key.conf file::
-create cifs.spnego * * /usr/local/sbin/cifs.upcall %k
-create dns_resolver * * /usr/local/sbin/cifs.upcall %k
+ create cifs.spnego * * /usr/local/sbin/cifs.upcall %k
+ create dns_resolver * * /usr/local/sbin/cifs.upcall %k
CIFS kernel module parameters
=============================
These module parameters can be specified or modified either during the time of
-module loading or during the runtime by using the interface
+module loading or during the runtime by using the interface::
+
/proc/module/cifs/parameters/<param>
-i.e. echo "value" > /sys/module/cifs/parameters/<param>
+i.e.::
-1. enable_oplocks - Enable or disable oplocks. Oplocks are enabled by default.
- [Y/y/1]. To disable use any of [N/n/0].
+ echo "value" > /sys/module/cifs/parameters/<param>
+================= ==========================================================
+1. enable_oplocks Enable or disable oplocks. Oplocks are enabled by default.
+ [Y/y/1]. To disable use any of [N/n/0].
+================= ==========================================================
diff --git a/Documentation/filesystems/cifs/winucase_convert.pl b/Documentation/admin-guide/cifs/winucase_convert.pl
index 322a9c833f23..322a9c833f23 100755
--- a/Documentation/filesystems/cifs/winucase_convert.pl
+++ b/Documentation/admin-guide/cifs/winucase_convert.pl
diff --git a/Documentation/clearing-warn-once.txt b/Documentation/admin-guide/clearing-warn-once.rst
index 211fd926cf00..211fd926cf00 100644
--- a/Documentation/clearing-warn-once.txt
+++ b/Documentation/admin-guide/clearing-warn-once.rst
diff --git a/Documentation/admin-guide/conf.py b/Documentation/admin-guide/conf.py
deleted file mode 100644
index 86f738953799..000000000000
--- a/Documentation/admin-guide/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = 'Linux Kernel User Documentation'
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'linux-user.tex', 'Linux Kernel User Documentation',
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/cpu-load.txt b/Documentation/admin-guide/cpu-load.rst
index 2d01ce43d2a2..2d01ce43d2a2 100644
--- a/Documentation/cpu-load.txt
+++ b/Documentation/admin-guide/cpu-load.rst
diff --git a/Documentation/cputopology.txt b/Documentation/admin-guide/cputopology.rst
index cb61277e2308..b90dafcc8237 100644
--- a/Documentation/cputopology.txt
+++ b/Documentation/admin-guide/cputopology.rst
@@ -12,6 +12,12 @@ physical_package_id:
socket number, but the actual value is architecture and platform
dependent.
+die_id:
+
+ the CPU die ID of cpuX. Typically it is the hardware platform's
+ identifier (rather than the kernel's). The actual value is
+ architecture and platform dependent.
+
core_id:
the CPU core ID of cpuX. Typically it is the hardware platform's
@@ -30,25 +36,33 @@ drawer_id:
identifier (rather than the kernel's). The actual value is
architecture and platform dependent.
-thread_siblings:
+core_cpus:
- internal kernel map of cpuX's hardware threads within the same
- core as cpuX.
+ internal kernel map of CPUs within the same core.
+ (deprecated name: "thread_siblings")
-thread_siblings_list:
+core_cpus_list:
- human-readable list of cpuX's hardware threads within the same
- core as cpuX.
+ human-readable list of CPUs within the same core.
+ (deprecated name: "thread_siblings_list");
-core_siblings:
+package_cpus:
- internal kernel map of cpuX's hardware threads within the same
- physical_package_id.
+ internal kernel map of the CPUs sharing the same physical_package_id.
+ (deprecated name: "core_siblings")
-core_siblings_list:
+package_cpus_list:
- human-readable list of cpuX's hardware threads within the same
- physical_package_id.
+ human-readable list of CPUs sharing the same physical_package_id.
+ (deprecated name: "core_siblings_list")
+
+die_cpus:
+
+ internal kernel map of CPUs within the same die.
+
+die_cpus_list:
+
+ human-readable list of CPUs within the same die.
book_siblings:
@@ -81,11 +95,13 @@ For an architecture to support this feature, it must define some of
these macros in include/asm-XXX/topology.h::
#define topology_physical_package_id(cpu)
+ #define topology_die_id(cpu)
#define topology_core_id(cpu)
#define topology_book_id(cpu)
#define topology_drawer_id(cpu)
#define topology_sibling_cpumask(cpu)
#define topology_core_cpumask(cpu)
+ #define topology_die_cpumask(cpu)
#define topology_book_cpumask(cpu)
#define topology_drawer_cpumask(cpu)
@@ -99,9 +115,11 @@ provides default definitions for any of the above macros that are
not defined by include/asm-XXX/topology.h:
1) topology_physical_package_id: -1
-2) topology_core_id: 0
-3) topology_sibling_cpumask: just the given CPU
-4) topology_core_cpumask: just the given CPU
+2) topology_die_id: -1
+3) topology_core_id: 0
+4) topology_sibling_cpumask: just the given CPU
+5) topology_core_cpumask: just the given CPU
+6) topology_die_cpumask: just the given CPU
For architectures that don't support books (CONFIG_SCHED_BOOK) there are no
default definitions for topology_book_id() and topology_book_cpumask().
diff --git a/Documentation/device-mapper/cache-policies.txt b/Documentation/admin-guide/device-mapper/cache-policies.rst
index 86786d87d9a8..b17fe352fc41 100644
--- a/Documentation/device-mapper/cache-policies.txt
+++ b/Documentation/admin-guide/device-mapper/cache-policies.rst
@@ -1,3 +1,4 @@
+=============================
Guidance for writing policies
=============================
@@ -30,7 +31,7 @@ multiqueue (mq)
This policy is now an alias for smq (see below).
-The following tunables are accepted, but have no effect:
+The following tunables are accepted, but have no effect::
'sequential_threshold <#nr_sequential_ios>'
'random_threshold <#nr_random_ios>'
@@ -56,7 +57,9 @@ mq policy's hints to be dropped. Also, performance of the cache may
degrade slightly until smq recalculates the origin device's hotspots
that should be cached.
-Memory usage:
+Memory usage
+^^^^^^^^^^^^
+
The mq policy used a lot of memory; 88 bytes per cache block on a 64
bit machine.
@@ -69,7 +72,9 @@ cache block).
All this means smq uses ~25bytes per cache block. Still a lot of
memory, but a substantial improvement nontheless.
-Level balancing:
+Level balancing
+^^^^^^^^^^^^^^^
+
mq placed entries in different levels of the multiqueue structures
based on their hit count (~ln(hit count)). This meant the bottom
levels generally had the most entries, and the top ones had very
@@ -94,7 +99,9 @@ is used to decide which blocks to promote. If the hotspot queue is
performing badly then it starts moving entries more quickly between
levels. This lets it adapt to new IO patterns very quickly.
-Performance:
+Performance
+^^^^^^^^^^^
+
Testing smq shows substantially better performance than mq.
cleaner
@@ -105,16 +112,19 @@ The cleaner writes back all dirty blocks in a cache to decommission it.
Examples
========
-The syntax for a table is:
+The syntax for a table is::
+
cache <metadata dev> <cache dev> <origin dev> <block size>
<#feature_args> [<feature arg>]*
<policy> <#policy_args> [<policy arg>]*
-The syntax to send a message using the dmsetup command is:
+The syntax to send a message using the dmsetup command is::
+
dmsetup message <mapped device> 0 sequential_threshold 1024
dmsetup message <mapped device> 0 random_threshold 8
-Using dmsetup:
+Using dmsetup::
+
dmsetup create blah --table "0 268435456 cache /dev/sdb /dev/sdc \
/dev/sdd 512 0 mq 4 sequential_threshold 1024 random_threshold 8"
creates a 128GB large mapped device named 'blah' with the
diff --git a/Documentation/device-mapper/cache.txt b/Documentation/admin-guide/device-mapper/cache.rst
index 8ae1cf8e94da..f15e5254d05b 100644
--- a/Documentation/device-mapper/cache.txt
+++ b/Documentation/admin-guide/device-mapper/cache.rst
@@ -1,3 +1,7 @@
+=====
+Cache
+=====
+
Introduction
============
@@ -24,10 +28,13 @@ scenarios (eg. a vm image server).
Glossary
========
- Migration - Movement of the primary copy of a logical block from one
+ Migration
+ Movement of the primary copy of a logical block from one
device to the other.
- Promotion - Migration from slow device to fast device.
- Demotion - Migration from fast device to slow device.
+ Promotion
+ Migration from slow device to fast device.
+ Demotion
+ Migration from fast device to slow device.
The origin device always contains a copy of the logical block, which
may be out of date or kept in sync with the copy on the cache device
@@ -169,45 +176,53 @@ Target interface
Constructor
-----------
- cache <metadata dev> <cache dev> <origin dev> <block size>
- <#feature args> [<feature arg>]*
- <policy> <#policy args> [policy args]*
+ ::
+
+ cache <metadata dev> <cache dev> <origin dev> <block size>
+ <#feature args> [<feature arg>]*
+ <policy> <#policy args> [policy args]*
- metadata dev : fast device holding the persistent metadata
- cache dev : fast device holding cached data blocks
- origin dev : slow device holding original data blocks
- block size : cache unit size in sectors
+ ================ =======================================================
+ metadata dev fast device holding the persistent metadata
+ cache dev fast device holding cached data blocks
+ origin dev slow device holding original data blocks
+ block size cache unit size in sectors
- #feature args : number of feature arguments passed
- feature args : writethrough or passthrough (The default is writeback.)
+ #feature args number of feature arguments passed
+ feature args writethrough or passthrough (The default is writeback.)
- policy : the replacement policy to use
- #policy args : an even number of arguments corresponding to
- key/value pairs passed to the policy
- policy args : key/value pairs passed to the policy
- E.g. 'sequential_threshold 1024'
- See cache-policies.txt for details.
+ policy the replacement policy to use
+ #policy args an even number of arguments corresponding to
+ key/value pairs passed to the policy
+ policy args key/value pairs passed to the policy
+ E.g. 'sequential_threshold 1024'
+ See cache-policies.txt for details.
+ ================ =======================================================
Optional feature arguments are:
- writethrough : write through caching that prohibits cache block
- content from being different from origin block content.
- Without this argument, the default behaviour is to write
- back cache block contents later for performance reasons,
- so they may differ from the corresponding origin blocks.
-
- passthrough : a degraded mode useful for various cache coherency
- situations (e.g., rolling back snapshots of
- underlying storage). Reads and writes always go to
- the origin. If a write goes to a cached origin
- block, then the cache block is invalidated.
- To enable passthrough mode the cache must be clean.
-
- metadata2 : use version 2 of the metadata. This stores the dirty bits
- in a separate btree, which improves speed of shutting
- down the cache.
-
- no_discard_passdown : disable passing down discards from the cache
- to the origin's data device.
+
+
+ ==================== ========================================================
+ writethrough write through caching that prohibits cache block
+ content from being different from origin block content.
+ Without this argument, the default behaviour is to write
+ back cache block contents later for performance reasons,
+ so they may differ from the corresponding origin blocks.
+
+ passthrough a degraded mode useful for various cache coherency
+ situations (e.g., rolling back snapshots of
+ underlying storage). Reads and writes always go to
+ the origin. If a write goes to a cached origin
+ block, then the cache block is invalidated.
+ To enable passthrough mode the cache must be clean.
+
+ metadata2 use version 2 of the metadata. This stores the dirty
+ bits in a separate btree, which improves speed of
+ shutting down the cache.
+
+ no_discard_passdown disable passing down discards from the cache
+ to the origin's data device.
+ ==================== ========================================================
A policy called 'default' is always registered. This is an alias for
the policy we currently think is giving best all round performance.
@@ -218,54 +233,61 @@ the characteristics of a specific policy, always request it by name.
Status
------
-<metadata block size> <#used metadata blocks>/<#total metadata blocks>
-<cache block size> <#used cache blocks>/<#total cache blocks>
-<#read hits> <#read misses> <#write hits> <#write misses>
-<#demotions> <#promotions> <#dirty> <#features> <features>*
-<#core args> <core args>* <policy name> <#policy args> <policy args>*
-<cache metadata mode>
-
-metadata block size : Fixed block size for each metadata block in
- sectors
-#used metadata blocks : Number of metadata blocks used
-#total metadata blocks : Total number of metadata blocks
-cache block size : Configurable block size for the cache device
- in sectors
-#used cache blocks : Number of blocks resident in the cache
-#total cache blocks : Total number of cache blocks
-#read hits : Number of times a READ bio has been mapped
- to the cache
-#read misses : Number of times a READ bio has been mapped
- to the origin
-#write hits : Number of times a WRITE bio has been mapped
- to the cache
-#write misses : Number of times a WRITE bio has been
- mapped to the origin
-#demotions : Number of times a block has been removed
- from the cache
-#promotions : Number of times a block has been moved to
- the cache
-#dirty : Number of blocks in the cache that differ
- from the origin
-#feature args : Number of feature args to follow
-feature args : 'writethrough' (optional)
-#core args : Number of core arguments (must be even)
-core args : Key/value pairs for tuning the core
- e.g. migration_threshold
-policy name : Name of the policy
-#policy args : Number of policy arguments to follow (must be even)
-policy args : Key/value pairs e.g. sequential_threshold
-cache metadata mode : ro if read-only, rw if read-write
- In serious cases where even a read-only mode is deemed unsafe
- no further I/O will be permitted and the status will just
- contain the string 'Fail'. The userspace recovery tools
- should then be used.
-needs_check : 'needs_check' if set, '-' if not set
- A metadata operation has failed, resulting in the needs_check
- flag being set in the metadata's superblock. The metadata
- device must be deactivated and checked/repaired before the
- cache can be made fully operational again. '-' indicates
- needs_check is not set.
+::
+
+ <metadata block size> <#used metadata blocks>/<#total metadata blocks>
+ <cache block size> <#used cache blocks>/<#total cache blocks>
+ <#read hits> <#read misses> <#write hits> <#write misses>
+ <#demotions> <#promotions> <#dirty> <#features> <features>*
+ <#core args> <core args>* <policy name> <#policy args> <policy args>*
+ <cache metadata mode>
+
+
+========================= =====================================================
+metadata block size Fixed block size for each metadata block in
+ sectors
+#used metadata blocks Number of metadata blocks used
+#total metadata blocks Total number of metadata blocks
+cache block size Configurable block size for the cache device
+ in sectors
+#used cache blocks Number of blocks resident in the cache
+#total cache blocks Total number of cache blocks
+#read hits Number of times a READ bio has been mapped
+ to the cache
+#read misses Number of times a READ bio has been mapped
+ to the origin
+#write hits Number of times a WRITE bio has been mapped
+ to the cache
+#write misses Number of times a WRITE bio has been
+ mapped to the origin
+#demotions Number of times a block has been removed
+ from the cache
+#promotions Number of times a block has been moved to
+ the cache
+#dirty Number of blocks in the cache that differ
+ from the origin
+#feature args Number of feature args to follow
+feature args 'writethrough' (optional)
+#core args Number of core arguments (must be even)
+core args Key/value pairs for tuning the core
+ e.g. migration_threshold
+policy name Name of the policy
+#policy args Number of policy arguments to follow (must be even)
+policy args Key/value pairs e.g. sequential_threshold
+cache metadata mode ro if read-only, rw if read-write
+
+ In serious cases where even a read-only mode is
+ deemed unsafe no further I/O will be permitted and
+ the status will just contain the string 'Fail'.
+ The userspace recovery tools should then be used.
+needs_check 'needs_check' if set, '-' if not set
+ A metadata operation has failed, resulting in the
+ needs_check flag being set in the metadata's
+ superblock. The metadata device must be
+ deactivated and checked/repaired before the
+ cache can be made fully operational again.
+ '-' indicates needs_check is not set.
+========================= =====================================================
Messages
--------
@@ -274,11 +296,12 @@ Policies will have different tunables, specific to each one, so we
need a generic way of getting and setting these. Device-mapper
messages are used. (A sysfs interface would also be possible.)
-The message format is:
+The message format is::
<key> <value>
-E.g.
+E.g.::
+
dmsetup message my_cache 0 sequential_threshold 1024
@@ -290,11 +313,12 @@ of values from 5 to 9. Each cblock must be expressed as a decimal
value, in the future a variant message that takes cblock ranges
expressed in hexadecimal may be needed to better support efficient
invalidation of larger caches. The cache must be in passthrough mode
-when invalidate_cblocks is used.
+when invalidate_cblocks is used::
invalidate_cblocks [<cblock>|<cblock begin>-<cblock end>]*
-E.g.
+E.g.::
+
dmsetup message my_cache 0 invalidate_cblocks 2345 3456-4567 5678-6789
Examples
@@ -304,8 +328,10 @@ The test suite can be found here:
https://github.com/jthornber/device-mapper-test-suite
-dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
- /dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0'
-dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
- /dev/mapper/ssd /dev/mapper/origin 1024 1 writeback \
- mq 4 sequential_threshold 1024 random_threshold 8'
+::
+
+ dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
+ /dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0'
+ dmsetup create my_cache --table '0 41943040 cache /dev/mapper/metadata \
+ /dev/mapper/ssd /dev/mapper/origin 1024 1 writeback \
+ mq 4 sequential_threshold 1024 random_threshold 8'
diff --git a/Documentation/device-mapper/delay.txt b/Documentation/admin-guide/device-mapper/delay.rst
index 6426c45273cb..917ba8c33359 100644
--- a/Documentation/device-mapper/delay.txt
+++ b/Documentation/admin-guide/device-mapper/delay.rst
@@ -1,10 +1,12 @@
+========
dm-delay
========
Device-Mapper's "delay" target delays reads and/or writes
and maps them to different devices.
-Parameters:
+Parameters::
+
<device> <offset> <delay> [<write_device> <write_offset> <write_delay>
[<flush_device> <flush_offset> <flush_delay>]]
@@ -14,15 +16,16 @@ Delays are specified in milliseconds.
Example scripts
===============
-[[
-#!/bin/sh
-# Create device delaying rw operation for 500ms
-echo "0 `blockdev --getsz $1` delay $1 0 500" | dmsetup create delayed
-]]
-
-[[
-#!/bin/sh
-# Create device delaying only write operation for 500ms and
-# splitting reads and writes to different devices $1 $2
-echo "0 `blockdev --getsz $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
-]]
+
+::
+
+ #!/bin/sh
+ # Create device delaying rw operation for 500ms
+ echo "0 `blockdev --getsz $1` delay $1 0 500" | dmsetup create delayed
+
+::
+
+ #!/bin/sh
+ # Create device delaying only write operation for 500ms and
+ # splitting reads and writes to different devices $1 $2
+ echo "0 `blockdev --getsz $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
diff --git a/Documentation/admin-guide/device-mapper/dm-clone.rst b/Documentation/admin-guide/device-mapper/dm-clone.rst
new file mode 100644
index 000000000000..b43a34c1430a
--- /dev/null
+++ b/Documentation/admin-guide/device-mapper/dm-clone.rst
@@ -0,0 +1,333 @@
+.. SPDX-License-Identifier: GPL-2.0-only
+
+========
+dm-clone
+========
+
+Introduction
+============
+
+dm-clone is a device mapper target which produces a one-to-one copy of an
+existing, read-only source device into a writable destination device: It
+presents a virtual block device which makes all data appear immediately, and
+redirects reads and writes accordingly.
+
+The main use case of dm-clone is to clone a potentially remote, high-latency,
+read-only, archival-type block device into a writable, fast, primary-type device
+for fast, low-latency I/O. The cloned device is visible/mountable immediately
+and the copy of the source device to the destination device happens in the
+background, in parallel with user I/O.
+
+For example, one could restore an application backup from a read-only copy,
+accessible through a network storage protocol (NBD, Fibre Channel, iSCSI, AoE,
+etc.), into a local SSD or NVMe device, and start using the device immediately,
+without waiting for the restore to complete.
+
+When the cloning completes, the dm-clone table can be removed altogether and be
+replaced, e.g., by a linear table, mapping directly to the destination device.
+
+The dm-clone target reuses the metadata library used by the thin-provisioning
+target.
+
+Glossary
+========
+
+ Hydration
+ The process of filling a region of the destination device with data from
+ the same region of the source device, i.e., copying the region from the
+ source to the destination device.
+
+Once a region gets hydrated we redirect all I/O regarding it to the destination
+device.
+
+Design
+======
+
+Sub-devices
+-----------
+
+The target is constructed by passing three devices to it (along with other
+parameters detailed later):
+
+1. A source device - the read-only device that gets cloned and source of the
+ hydration.
+
+2. A destination device - the destination of the hydration, which will become a
+ clone of the source device.
+
+3. A small metadata device - it records which regions are already valid in the
+ destination device, i.e., which regions have already been hydrated, or have
+ been written to directly, via user I/O.
+
+The size of the destination device must be at least equal to the size of the
+source device.
+
+Regions
+-------
+
+dm-clone divides the source and destination devices in fixed sized regions.
+Regions are the unit of hydration, i.e., the minimum amount of data copied from
+the source to the destination device.
+
+The region size is configurable when you first create the dm-clone device. The
+recommended region size is the same as the file system block size, which usually
+is 4KB. The region size must be between 8 sectors (4KB) and 2097152 sectors
+(1GB) and a power of two.
+
+Reads and writes from/to hydrated regions are serviced from the destination
+device.
+
+A read to a not yet hydrated region is serviced directly from the source device.
+
+A write to a not yet hydrated region will be delayed until the corresponding
+region has been hydrated and the hydration of the region starts immediately.
+
+Note that a write request with size equal to region size will skip copying of
+the corresponding region from the source device and overwrite the region of the
+destination device directly.
+
+Discards
+--------
+
+dm-clone interprets a discard request to a range that hasn't been hydrated yet
+as a hint to skip hydration of the regions covered by the request, i.e., it
+skips copying the region's data from the source to the destination device, and
+only updates its metadata.
+
+If the destination device supports discards, then by default dm-clone will pass
+down discard requests to it.
+
+Background Hydration
+--------------------
+
+dm-clone copies continuously from the source to the destination device, until
+all of the device has been copied.
+
+Copying data from the source to the destination device uses bandwidth. The user
+can set a throttle to prevent more than a certain amount of copying occurring at
+any one time. Moreover, dm-clone takes into account user I/O traffic going to
+the devices and pauses the background hydration when there is I/O in-flight.
+
+A message `hydration_threshold <#regions>` can be used to set the maximum number
+of regions being copied, the default being 1 region.
+
+dm-clone employs dm-kcopyd for copying portions of the source device to the
+destination device. By default, we issue copy requests of size equal to the
+region size. A message `hydration_batch_size <#regions>` can be used to tune the
+size of these copy requests. Increasing the hydration batch size results in
+dm-clone trying to batch together contiguous regions, so we copy the data in
+batches of this many regions.
+
+When the hydration of the destination device finishes, a dm event will be sent
+to user space.
+
+Updating on-disk metadata
+-------------------------
+
+On-disk metadata is committed every time a FLUSH or FUA bio is written. If no
+such requests are made then commits will occur every second. This means the
+dm-clone device behaves like a physical disk that has a volatile write cache. If
+power is lost you may lose some recent writes. The metadata should always be
+consistent in spite of any crash.
+
+Target Interface
+================
+
+Constructor
+-----------
+
+ ::
+
+ clone <metadata dev> <destination dev> <source dev> <region size>
+ [<#feature args> [<feature arg>]* [<#core args> [<core arg>]*]]
+
+ ================ ==============================================================
+ metadata dev Fast device holding the persistent metadata
+ destination dev The destination device, where the source will be cloned
+ source dev Read only device containing the data that gets cloned
+ region size The size of a region in sectors
+
+ #feature args Number of feature arguments passed
+ feature args no_hydration or no_discard_passdown
+
+ #core args An even number of arguments corresponding to key/value pairs
+ passed to dm-clone
+ core args Key/value pairs passed to dm-clone, e.g. `hydration_threshold
+ 256`
+ ================ ==============================================================
+
+Optional feature arguments are:
+
+ ==================== =========================================================
+ no_hydration Create a dm-clone instance with background hydration
+ disabled
+ no_discard_passdown Disable passing down discards to the destination device
+ ==================== =========================================================
+
+Optional core arguments are:
+
+ ================================ ==============================================
+ hydration_threshold <#regions> Maximum number of regions being copied from
+ the source to the destination device at any
+ one time, during background hydration.
+ hydration_batch_size <#regions> During background hydration, try to batch
+ together contiguous regions, so we copy data
+ from the source to the destination device in
+ batches of this many regions.
+ ================================ ==============================================
+
+Status
+------
+
+ ::
+
+ <metadata block size> <#used metadata blocks>/<#total metadata blocks>
+ <region size> <#hydrated regions>/<#total regions> <#hydrating regions>
+ <#feature args> <feature args>* <#core args> <core args>*
+ <clone metadata mode>
+
+ ======================= =======================================================
+ metadata block size Fixed block size for each metadata block in sectors
+ #used metadata blocks Number of metadata blocks used
+ #total metadata blocks Total number of metadata blocks
+ region size Configurable region size for the device in sectors
+ #hydrated regions Number of regions that have finished hydrating
+ #total regions Total number of regions to hydrate
+ #hydrating regions Number of regions currently hydrating
+ #feature args Number of feature arguments to follow
+ feature args Feature arguments, e.g. `no_hydration`
+ #core args Even number of core arguments to follow
+ core args Key/value pairs for tuning the core, e.g.
+ `hydration_threshold 256`
+ clone metadata mode ro if read-only, rw if read-write
+
+ In serious cases where even a read-only mode is deemed
+ unsafe no further I/O will be permitted and the status
+ will just contain the string 'Fail'. If the metadata
+ mode changes, a dm event will be sent to user space.
+ ======================= =======================================================
+
+Messages
+--------
+
+ `disable_hydration`
+ Disable the background hydration of the destination device.
+
+ `enable_hydration`
+ Enable the background hydration of the destination device.
+
+ `hydration_threshold <#regions>`
+ Set background hydration threshold.
+
+ `hydration_batch_size <#regions>`
+ Set background hydration batch size.
+
+Examples
+========
+
+Clone a device containing a file system
+---------------------------------------
+
+1. Create the dm-clone device.
+
+ ::
+
+ dmsetup create clone --table "0 1048576000 clone $metadata_dev $dest_dev \
+ $source_dev 8 1 no_hydration"
+
+2. Mount the device and trim the file system. dm-clone interprets the discards
+ sent by the file system and it will not hydrate the unused space.
+
+ ::
+
+ mount /dev/mapper/clone /mnt/cloned-fs
+ fstrim /mnt/cloned-fs
+
+3. Enable background hydration of the destination device.
+
+ ::
+
+ dmsetup message clone 0 enable_hydration
+
+4. When the hydration finishes, we can replace the dm-clone table with a linear
+ table.
+
+ ::
+
+ dmsetup suspend clone
+ dmsetup load clone --table "0 1048576000 linear $dest_dev 0"
+ dmsetup resume clone
+
+ The metadata device is no longer needed and can be safely discarded or reused
+ for other purposes.
+
+Known issues
+============
+
+1. We redirect reads, to not-yet-hydrated regions, to the source device. If
+ reading the source device has high latency and the user repeatedly reads from
+ the same regions, this behaviour could degrade performance. We should use
+ these reads as hints to hydrate the relevant regions sooner. Currently, we
+ rely on the page cache to cache these regions, so we hopefully don't end up
+ reading them multiple times from the source device.
+
+2. Release in-core resources, i.e., the bitmaps tracking which regions are
+ hydrated, after the hydration has finished.
+
+3. During background hydration, if we fail to read the source or write to the
+ destination device, we print an error message, but the hydration process
+ continues indefinitely, until it succeeds. We should stop the background
+ hydration after a number of failures and emit a dm event for user space to
+ notice.
+
+Why not...?
+===========
+
+We explored the following alternatives before implementing dm-clone:
+
+1. Use dm-cache with cache size equal to the source device and implement a new
+ cloning policy:
+
+ * The resulting cache device is not a one-to-one mirror of the source device
+ and thus we cannot remove the cache device once cloning completes.
+
+ * dm-cache writes to the source device, which violates our requirement that
+ the source device must be treated as read-only.
+
+ * Caching is semantically different from cloning.
+
+2. Use dm-snapshot with a COW device equal to the source device:
+
+ * dm-snapshot stores its metadata in the COW device, so the resulting device
+ is not a one-to-one mirror of the source device.
+
+ * No background copying mechanism.
+
+ * dm-snapshot needs to commit its metadata whenever a pending exception
+ completes, to ensure snapshot consistency. In the case of cloning, we don't
+ need to be so strict and can rely on committing metadata every time a FLUSH
+ or FUA bio is written, or periodically, like dm-thin and dm-cache do. This
+ improves the performance significantly.
+
+3. Use dm-mirror: The mirror target has a background copying/mirroring
+ mechanism, but it writes to all mirrors, thus violating our requirement that
+ the source device must be treated as read-only.
+
+4. Use dm-thin's external snapshot functionality. This approach is the most
+ promising among all alternatives, as the thinly-provisioned volume is a
+ one-to-one mirror of the source device and handles reads and writes to
+ un-provisioned/not-yet-cloned areas the same way as dm-clone does.
+
+ Still:
+
+ * There is no background copying mechanism, though one could be implemented.
+
+ * Most importantly, we want to support arbitrary block devices as the
+ destination of the cloning process and not restrict ourselves to
+ thinly-provisioned volumes. Thin-provisioning has an inherent metadata
+ overhead, for maintaining the thin volume mappings, which significantly
+ degrades performance.
+
+ Moreover, cloning a device shouldn't force the use of thin-provisioning. On
+ the other hand, if we wish to use thin provisioning, we can just use a thin
+ LV as dm-clone's destination device.
diff --git a/Documentation/device-mapper/dm-crypt.txt b/Documentation/admin-guide/device-mapper/dm-crypt.rst
index 3b3e1de21c9c..8f4a3f889d43 100644
--- a/Documentation/device-mapper/dm-crypt.txt
+++ b/Documentation/admin-guide/device-mapper/dm-crypt.rst
@@ -1,5 +1,6 @@
+========
dm-crypt
-=========
+========
Device-Mapper's "crypt" target provides transparent encryption of block devices
using the kernel crypto API.
@@ -7,15 +8,20 @@ using the kernel crypto API.
For a more detailed description of supported parameters see:
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
-Parameters: <cipher> <key> <iv_offset> <device path> \
+Parameters::
+
+ <cipher> <key> <iv_offset> <device path> \
<offset> [<#opt_params> <opt_params>]
<cipher>
Encryption cipher, encryption mode and Initial Vector (IV) generator.
- The cipher specifications format is:
+ The cipher specifications format is::
+
cipher[:keycount]-chainmode-ivmode[:ivopts]
- Examples:
+
+ Examples::
+
aes-cbc-essiv:sha256
aes-xts-plain64
serpent-xts-plain64
@@ -25,12 +31,17 @@ Parameters: <cipher> <key> <iv_offset> <device path> \
as for the first format type.
This format is mainly used for specification of authenticated modes.
- The crypto API cipher specifications format is:
+ The crypto API cipher specifications format is::
+
capi:cipher_api_spec-ivmode[:ivopts]
- Examples:
+
+ Examples::
+
capi:cbc(aes)-essiv:sha256
capi:xts(aes)-plain64
- Examples of authenticated modes:
+
+ Examples of authenticated modes::
+
capi:gcm(aes)-random
capi:authenc(hmac(sha256),xts(aes))-random
capi:rfc7539(chacha20,poly1305)-random
@@ -142,21 +153,21 @@ LUKS (Linux Unified Key Setup) is now the preferred way to set up disk
encryption with dm-crypt using the 'cryptsetup' utility, see
https://gitlab.com/cryptsetup/cryptsetup
-[[
-#!/bin/sh
-# Create a crypt device using dmsetup
-dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
-]]
-
-[[
-#!/bin/sh
-# Create a crypt device using dmsetup when encryption key is stored in keyring service
-dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0"
-]]
-
-[[
-#!/bin/sh
-# Create a crypt device using cryptsetup and LUKS header with default cipher
-cryptsetup luksFormat $1
-cryptsetup luksOpen $1 crypt1
-]]
+::
+
+ #!/bin/sh
+ # Create a crypt device using dmsetup
+ dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
+
+::
+
+ #!/bin/sh
+ # Create a crypt device using dmsetup when encryption key is stored in keyring service
+ dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0"
+
+::
+
+ #!/bin/sh
+ # Create a crypt device using cryptsetup and LUKS header with default cipher
+ cryptsetup luksFormat $1
+ cryptsetup luksOpen $1 crypt1
diff --git a/Documentation/device-mapper/dm-dust.txt b/Documentation/admin-guide/device-mapper/dm-dust.txt
index 954d402a1f6a..954d402a1f6a 100644
--- a/Documentation/device-mapper/dm-dust.txt
+++ b/Documentation/admin-guide/device-mapper/dm-dust.txt
diff --git a/Documentation/device-mapper/dm-flakey.txt b/Documentation/admin-guide/device-mapper/dm-flakey.rst
index 9f0e247d0877..86138735879d 100644
--- a/Documentation/device-mapper/dm-flakey.txt
+++ b/Documentation/admin-guide/device-mapper/dm-flakey.rst
@@ -1,3 +1,4 @@
+=========
dm-flakey
=========
@@ -15,17 +16,26 @@ underlying devices.
Table parameters
----------------
+
+::
+
<dev path> <offset> <up interval> <down interval> \
[<num_features> [<feature arguments>]]
Mandatory parameters:
- <dev path>: Full pathname to the underlying block-device, or a
- "major:minor" device-number.
- <offset>: Starting sector within the device.
- <up interval>: Number of seconds device is available.
- <down interval>: Number of seconds device returns errors.
+
+ <dev path>:
+ Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>:
+ Starting sector within the device.
+ <up interval>:
+ Number of seconds device is available.
+ <down interval>:
+ Number of seconds device returns errors.
Optional feature parameters:
+
If no feature parameters are present, during the periods of
unreliability, all I/O returns errors.
@@ -41,17 +51,24 @@ Optional feature parameters:
During <down interval>, replace <Nth_byte> of the data of
each matching bio with <value>.
- <Nth_byte>: The offset of the byte to replace.
- Counting starts at 1, to replace the first byte.
- <direction>: Either 'r' to corrupt reads or 'w' to corrupt writes.
- 'w' is incompatible with drop_writes.
- <value>: The value (from 0-255) to write.
- <flags>: Perform the replacement only if bio->bi_opf has all the
- selected flags set.
+ <Nth_byte>:
+ The offset of the byte to replace.
+ Counting starts at 1, to replace the first byte.
+ <direction>:
+ Either 'r' to corrupt reads or 'w' to corrupt writes.
+ 'w' is incompatible with drop_writes.
+ <value>:
+ The value (from 0-255) to write.
+ <flags>:
+ Perform the replacement only if bio->bi_opf has all the
+ selected flags set.
Examples:
+
+Replaces the 32nd byte of READ bios with the value 1::
+
corrupt_bio_byte 32 r 1 0
- - replaces the 32nd byte of READ bios with the value 1
+
+Replaces the 224th byte of REQ_META (=32) bios with the value 0::
corrupt_bio_byte 224 w 0 32
- - replaces the 224th byte of REQ_META (=32) bios with the value 0
diff --git a/Documentation/device-mapper/dm-init.txt b/Documentation/admin-guide/device-mapper/dm-init.rst
index 8464ee7c01b8..e5242ff17e9b 100644
--- a/Documentation/device-mapper/dm-init.txt
+++ b/Documentation/admin-guide/device-mapper/dm-init.rst
@@ -1,5 +1,6 @@
+================================
Early creation of mapped devices
-====================================
+================================
It is possible to configure a device-mapper device to act as the root device for
your system in two ways.
@@ -12,15 +13,17 @@ The second is to create one or more device-mappers using the module parameter
The format is specified as a string of data separated by commas and optionally
semi-colons, where:
+
- a comma is used to separate fields like name, uuid, flags and table
(specifies one device)
- a semi-colon is used to separate devices.
-So the format will look like this:
+So the format will look like this::
dm-mod.create=<name>,<uuid>,<minor>,<flags>,<table>[,<table>+][;<name>,<uuid>,<minor>,<flags>,<table>[,<table>+]+]
-Where,
+Where::
+
<name> ::= The device name.
<uuid> ::= xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx | ""
<minor> ::= The device minor number | ""
@@ -29,7 +32,7 @@ Where,
<target_type> ::= "verity" | "linear" | ... (see list below)
The dm line should be equivalent to the one used by the dmsetup tool with the
---concise argument.
+`--concise` argument.
Target types
============
@@ -38,32 +41,34 @@ Not all target types are available as there are serious risks in allowing
activation of certain DM targets without first using userspace tools to check
the validity of associated metadata.
- "cache": constrained, userspace should verify cache device
- "crypt": allowed
- "delay": allowed
- "era": constrained, userspace should verify metadata device
- "flakey": constrained, meant for test
- "linear": allowed
- "log-writes": constrained, userspace should verify metadata device
- "mirror": constrained, userspace should verify main/mirror device
- "raid": constrained, userspace should verify metadata device
- "snapshot": constrained, userspace should verify src/dst device
- "snapshot-origin": allowed
- "snapshot-merge": constrained, userspace should verify src/dst device
- "striped": allowed
- "switch": constrained, userspace should verify dev path
- "thin": constrained, requires dm target message from userspace
- "thin-pool": constrained, requires dm target message from userspace
- "verity": allowed
- "writecache": constrained, userspace should verify cache device
- "zero": constrained, not meant for rootfs
+======================= =======================================================
+`cache` constrained, userspace should verify cache device
+`crypt` allowed
+`delay` allowed
+`era` constrained, userspace should verify metadata device
+`flakey` constrained, meant for test
+`linear` allowed
+`log-writes` constrained, userspace should verify metadata device
+`mirror` constrained, userspace should verify main/mirror device
+`raid` constrained, userspace should verify metadata device
+`snapshot` constrained, userspace should verify src/dst device
+`snapshot-origin` allowed
+`snapshot-merge` constrained, userspace should verify src/dst device
+`striped` allowed
+`switch` constrained, userspace should verify dev path
+`thin` constrained, requires dm target message from userspace
+`thin-pool` constrained, requires dm target message from userspace
+`verity` allowed
+`writecache` constrained, userspace should verify cache device
+`zero` constrained, not meant for rootfs
+======================= =======================================================
If the target is not listed above, it is constrained by default (not tested).
Examples
========
An example of booting to a linear array made up of user-mode linux block
-devices:
+devices::
dm-mod.create="lroot,,,rw, 0 4096 linear 98:16 0, 4096 4096 linear 98:32 0" root=/dev/dm-0
@@ -71,43 +76,49 @@ This will boot to a rw dm-linear target of 8192 sectors split across two block
devices identified by their major:minor numbers. After boot, udev will rename
this target to /dev/mapper/lroot (depending on the rules). No uuid was assigned.
-An example of multiple device-mappers, with the dm-mod.create="..." contents is shown here
-split on multiple lines for readability:
+An example of multiple device-mappers, with the dm-mod.create="..." contents
+is shown here split on multiple lines for readability::
- vroot,,,ro,
- 0 1740800 verity 254:0 254:0 1740800 sha1
- 76e9be054b15884a9fa85973e9cb274c93afadb6
- 5b3549d54d6c7a3837b9b81ed72e49463a64c03680c47835bef94d768e5646fe;
- vram,,,rw,
- 0 32768 linear 1:0 0,
- 32768 32768 linear 1:1 0
+ dm-linear,,1,rw,
+ 0 32768 linear 8:1 0,
+ 32768 1024000 linear 8:2 0;
+ dm-verity,,3,ro,
+ 0 1638400 verity 1 /dev/sdc1 /dev/sdc2 4096 4096 204800 1 sha256
+ ac87db56303c9c1da433d7209b5a6ef3e4779df141200cbd7c157dcb8dd89c42
+ 5ebfe87f7df3235b80a117ebc4078e44f55045487ad4a96581d1adb564615b51
Other examples (per target):
-"crypt":
+"crypt"::
+
dm-crypt,,8,ro,
0 1048576 crypt aes-xts-plain64
babebabebabebabebabebabebabebabebabebabebabebabebabebabebabebabe 0
/dev/sda 0 1 allow_discards
-"delay":
+"delay"::
+
dm-delay,,4,ro,0 409600 delay /dev/sda1 0 500
-"linear":
+"linear"::
+
dm-linear,,,rw,
0 32768 linear /dev/sda1 0,
32768 1024000 linear /dev/sda2 0,
1056768 204800 linear /dev/sda3 0,
1261568 512000 linear /dev/sda4 0
-"snapshot-origin":
+"snapshot-origin"::
+
dm-snap-orig,,4,ro,0 409600 snapshot-origin 8:2
-"striped":
+"striped"::
+
dm-striped,,4,ro,0 1638400 striped 4 4096
/dev/sda1 0 /dev/sda2 0 /dev/sda3 0 /dev/sda4 0
-"verity":
+"verity"::
+
dm-verity,,4,ro,
0 1638400 verity 1 8:1 8:2 4096 4096 204800 1 sha256
fb1a5a0f00deb908d8b53cb270858975e76cf64105d412ce764225d53b8f3cfd
diff --git a/Documentation/device-mapper/dm-integrity.txt b/Documentation/admin-guide/device-mapper/dm-integrity.rst
index d63d78ffeb73..a30aa91b5fbe 100644
--- a/Documentation/device-mapper/dm-integrity.txt
+++ b/Documentation/admin-guide/device-mapper/dm-integrity.rst
@@ -1,3 +1,7 @@
+============
+dm-integrity
+============
+
The dm-integrity target emulates a block device that has additional
per-sector tags that can be used for storing integrity information.
@@ -35,15 +39,16 @@ zeroes. If the superblock is neither valid nor zeroed, the dm-integrity
target can't be loaded.
To use the target for the first time:
+
1. overwrite the superblock with zeroes
2. load the dm-integrity target with one-sector size, the kernel driver
- will format the device
+ will format the device
3. unload the dm-integrity target
4. read the "provided_data_sectors" value from the superblock
5. load the dm-integrity target with the the target size
- "provided_data_sectors"
+ "provided_data_sectors"
6. if you want to use dm-integrity with dm-crypt, load the dm-crypt target
- with the size "provided_data_sectors"
+ with the size "provided_data_sectors"
Target arguments:
@@ -51,17 +56,20 @@ Target arguments:
1. the underlying block device
2. the number of reserved sector at the beginning of the device - the
- dm-integrity won't read of write these sectors
+ dm-integrity won't read of write these sectors
3. the size of the integrity tag (if "-" is used, the size is taken from
- the internal-hash algorithm)
+ the internal-hash algorithm)
4. mode:
- D - direct writes (without journal) - in this mode, journaling is
+
+ D - direct writes (without journal)
+ in this mode, journaling is
not used and data sectors and integrity tags are written
separately. In case of crash, it is possible that the data
and integrity tag doesn't match.
- J - journaled writes - data and integrity tags are written to the
+ J - journaled writes
+ data and integrity tags are written to the
journal and atomicity is guaranteed. In case of crash,
either both data and tag or none of them are written. The
journaled mode degrades write throughput twice because the
@@ -178,9 +186,12 @@ and the reloaded target would be non-functional.
The layout of the formatted block device:
-* reserved sectors (they are not used by this target, they can be used for
- storing LUKS metadata or for other purpose), the size of the reserved
- area is specified in the target arguments
+
+* reserved sectors
+ (they are not used by this target, they can be used for
+ storing LUKS metadata or for other purpose), the size of the reserved
+ area is specified in the target arguments
+
* superblock (4kiB)
* magic string - identifies that the device was formatted
* version
@@ -192,40 +203,55 @@ The layout of the formatted block device:
metadata and padding). The user of this target should not send
bios that access data beyond the "provided data sectors" limit.
* flags
- SB_FLAG_HAVE_JOURNAL_MAC - a flag is set if journal_mac is used
- SB_FLAG_RECALCULATING - recalculating is in progress
- SB_FLAG_DIRTY_BITMAP - journal area contains the bitmap of dirty
- blocks
+ SB_FLAG_HAVE_JOURNAL_MAC
+ - a flag is set if journal_mac is used
+ SB_FLAG_RECALCULATING
+ - recalculating is in progress
+ SB_FLAG_DIRTY_BITMAP
+ - journal area contains the bitmap of dirty
+ blocks
* log2(sectors per block)
* a position where recalculating finished
* journal
The journal is divided into sections, each section contains:
+
* metadata area (4kiB), it contains journal entries
- every journal entry contains:
+
+ - every journal entry contains:
+
* logical sector (specifies where the data and tag should
be written)
* last 8 bytes of data
* integrity tag (the size is specified in the superblock)
- every metadata sector ends with
+
+ - every metadata sector ends with
+
* mac (8-bytes), all the macs in 8 metadata sectors form a
64-byte value. It is used to store hmac of sector
numbers in the journal section, to protect against a
possibility that the attacker tampers with sector
numbers in the journal.
* commit id
+
* data area (the size is variable; it depends on how many journal
entries fit into the metadata area)
- every sector in the data area contains:
+
+ - every sector in the data area contains:
+
* data (504 bytes of data, the last 8 bytes are stored in
the journal entry)
* commit id
+
To test if the whole journal section was written correctly, every
512-byte sector of the journal ends with 8-byte commit id. If the
commit id matches on all sectors in a journal section, then it is
assumed that the section was written correctly. If the commit id
doesn't match, the section was written partially and it should not
be replayed.
-* one or more runs of interleaved tags and data. Each run contains:
+
+* one or more runs of interleaved tags and data.
+ Each run contains:
+
* tag area - it contains integrity tags. There is one tag for each
sector in the data area
* data area - it contains data sectors. The number of data sectors
diff --git a/Documentation/device-mapper/dm-io.txt b/Documentation/admin-guide/device-mapper/dm-io.rst
index 3b5d9a52cdcf..d2492917a1f5 100644
--- a/Documentation/device-mapper/dm-io.txt
+++ b/Documentation/admin-guide/device-mapper/dm-io.rst
@@ -1,3 +1,4 @@
+=====
dm-io
=====
@@ -7,7 +8,7 @@ version.
The user must set up an io_region structure to describe the desired location
of the I/O. Each io_region indicates a block-device along with the starting
-sector and size of the region.
+sector and size of the region::
struct io_region {
struct block_device *bdev;
@@ -19,7 +20,7 @@ Dm-io can read from one io_region or write to one or more io_regions. Writes
to multiple regions are specified by an array of io_region structures.
The first I/O service type takes a list of memory pages as the data buffer for
-the I/O, along with an offset into the first page.
+the I/O, along with an offset into the first page::
struct page_list {
struct page_list *next;
@@ -35,7 +36,7 @@ the I/O, along with an offset into the first page.
The second I/O service type takes an array of bio vectors as the data buffer
for the I/O. This service can be handy if the caller has a pre-assembled bio,
-but wants to direct different portions of the bio to different devices.
+but wants to direct different portions of the bio to different devices::
int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where,
int rw, struct bio_vec *bvec,
@@ -47,7 +48,7 @@ but wants to direct different portions of the bio to different devices.
The third I/O service type takes a pointer to a vmalloc'd memory buffer as the
data buffer for the I/O. This service can be handy if the caller needs to do
I/O to a large region but doesn't want to allocate a large number of individual
-memory pages.
+memory pages::
int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw,
void *data, unsigned long *error_bits);
@@ -55,11 +56,11 @@ memory pages.
void *data, io_notify_fn fn, void *context);
Callers of the asynchronous I/O services must include the name of a completion
-callback routine and a pointer to some context data for the I/O.
+callback routine and a pointer to some context data for the I/O::
typedef void (*io_notify_fn)(unsigned long error, void *context);
-The "error" parameter in this callback, as well as the "*error" parameter in
+The "error" parameter in this callback, as well as the `*error` parameter in
all of the synchronous versions, is a bitset (instead of a simple error value).
In the case of an write-I/O to multiple regions, this bitset allows dm-io to
indicate success or failure on each individual region.
@@ -72,4 +73,3 @@ always available in order to avoid unnecessary waiting while performing I/O.
When the user is finished using the dm-io services, they should call
dm_io_put() and specify the same number of pages that were given on the
dm_io_get() call.
-
diff --git a/Documentation/device-mapper/dm-log.txt b/Documentation/admin-guide/device-mapper/dm-log.rst
index c155ac569c44..ba4fce39bc27 100644
--- a/Documentation/device-mapper/dm-log.txt
+++ b/Documentation/admin-guide/device-mapper/dm-log.rst
@@ -1,3 +1,4 @@
+=====================
Device-Mapper Logging
=====================
The device-mapper logging code is used by some of the device-mapper
@@ -16,11 +17,13 @@ dm_dirty_log_type in include/linux/dm-dirty-log.h). Various different
logging implementations are available and provide different
capabilities. The list includes:
+============== ==============================================================
Type Files
-==== =====
+============== ==============================================================
disk drivers/md/dm-log.c
core drivers/md/dm-log.c
userspace drivers/md/dm-log-userspace* include/linux/dm-log-userspace.h
+============== ==============================================================
The "disk" log type
-------------------
diff --git a/Documentation/device-mapper/dm-queue-length.txt b/Documentation/admin-guide/device-mapper/dm-queue-length.rst
index f4db2562175c..d8e381c1cb02 100644
--- a/Documentation/device-mapper/dm-queue-length.txt
+++ b/Documentation/admin-guide/device-mapper/dm-queue-length.rst
@@ -1,3 +1,4 @@
+===============
dm-queue-length
===============
@@ -6,12 +7,18 @@ which selects a path with the least number of in-flight I/Os.
The path selector name is 'queue-length'.
Table parameters for each path: [<repeat_count>]
+
+::
+
<repeat_count>: The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
Status for each path: <status> <fail-count> <in-flight>
+
+::
+
<status>: 'A' if the path is active, 'F' if the path is failed.
<fail-count>: The number of path failures.
<in-flight>: The number of in-flight I/Os on the path.
@@ -29,11 +36,13 @@ Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128.
-# echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
- dmsetup create test
-#
-# dmsetup table
-test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
-#
-# dmsetup status
-test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0
+::
+
+ # echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
+ dmsetup create test
+ #
+ # dmsetup table
+ test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
+ #
+ # dmsetup status
+ test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0
diff --git a/Documentation/device-mapper/dm-raid.txt b/Documentation/admin-guide/device-mapper/dm-raid.rst
index 2355bef14653..2fe255b130fb 100644
--- a/Documentation/device-mapper/dm-raid.txt
+++ b/Documentation/admin-guide/device-mapper/dm-raid.rst
@@ -1,3 +1,4 @@
+=======
dm-raid
=======
@@ -8,49 +9,66 @@ interface.
Mapping Table Interface
-----------------------
-The target is named "raid" and it accepts the following parameters:
+The target is named "raid" and it accepts the following parameters::
<raid_type> <#raid_params> <raid_params> \
<#raid_devs> <metadata_dev0> <dev0> [.. <metadata_devN> <devN>]
<raid_type>:
+
+ ============= ===============================================================
raid0 RAID0 striping (no resilience)
raid1 RAID1 mirroring
raid4 RAID4 with dedicated last parity disk
raid5_n RAID5 with dedicated last parity disk supporting takeover
Same as raid4
- -Transitory layout
+
+ - Transitory layout
raid5_la RAID5 left asymmetric
+
- rotating parity 0 with data continuation
raid5_ra RAID5 right asymmetric
+
- rotating parity N with data continuation
raid5_ls RAID5 left symmetric
+
- rotating parity 0 with data restart
raid5_rs RAID5 right symmetric
+
- rotating parity N with data restart
raid6_zr RAID6 zero restart
+
- rotating parity zero (left-to-right) with data restart
raid6_nr RAID6 N restart
+
- rotating parity N (right-to-left) with data restart
raid6_nc RAID6 N continue
+
- rotating parity N (right-to-left) with data continuation
raid6_n_6 RAID6 with dedicate parity disks
+
- parity and Q-syndrome on the last 2 disks;
layout for takeover from/to raid4/raid5_n
raid6_la_6 Same as "raid_la" plus dedicated last Q-syndrome disk
+
- layout for takeover from raid5_la from/to raid6
raid6_ra_6 Same as "raid5_ra" dedicated last Q-syndrome disk
+
- layout for takeover from raid5_ra from/to raid6
raid6_ls_6 Same as "raid5_ls" dedicated last Q-syndrome disk
+
- layout for takeover from raid5_ls from/to raid6
raid6_rs_6 Same as "raid5_rs" dedicated last Q-syndrome disk
+
- layout for takeover from raid5_rs from/to raid6
raid10 Various RAID10 inspired algorithms chosen by additional params
(see raid10_format and raid10_copies below)
+
- RAID10: Striped Mirrors (aka 'Striping on top of mirrors')
- RAID1E: Integrated Adjacent Stripe Mirroring
- RAID1E: Integrated Offset Stripe Mirroring
- - and other similar RAID10 variants
+ - and other similar RAID10 variants
+ ============= ===============================================================
Reference: Chapter 4 of
http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf
@@ -58,33 +76,41 @@ The target is named "raid" and it accepts the following parameters:
<#raid_params>: The number of parameters that follow.
<raid_params> consists of
+
Mandatory parameters:
- <chunk_size>: Chunk size in sectors. This parameter is often known as
+ <chunk_size>:
+ Chunk size in sectors. This parameter is often known as
"stripe size". It is the only mandatory parameter and
is placed first.
followed by optional parameters (in any order):
- [sync|nosync] Force or prevent RAID initialization.
+ [sync|nosync]
+ Force or prevent RAID initialization.
- [rebuild <idx>] Rebuild drive number 'idx' (first drive is 0).
+ [rebuild <idx>]
+ Rebuild drive number 'idx' (first drive is 0).
[daemon_sleep <ms>]
Interval between runs of the bitmap daemon that
clear bits. A longer interval means less bitmap I/O but
resyncing after a failure is likely to take longer.
- [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
- [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
- [write_mostly <idx>] Mark drive index 'idx' write-mostly.
- [max_write_behind <sectors>] See '--write-behind=' (man mdadm)
- [stripe_cache <sectors>] Stripe cache size (RAID 4/5/6 only)
+ [min_recovery_rate <kB/sec/disk>]
+ Throttle RAID initialization
+ [max_recovery_rate <kB/sec/disk>]
+ Throttle RAID initialization
+ [write_mostly <idx>]
+ Mark drive index 'idx' write-mostly.
+ [max_write_behind <sectors>]
+ See '--write-behind=' (man mdadm)
+ [stripe_cache <sectors>]
+ Stripe cache size (RAID 4/5/6 only)
[region_size <sectors>]
The region_size multiplied by the number of regions is the
logical size of the array. The bitmap records the device
synchronisation state for each region.
- [raid10_copies <# copies>]
- [raid10_format <near|far|offset>]
+ [raid10_copies <# copies>], [raid10_format <near|far|offset>]
These two options are used to alter the default layout of
a RAID10 configuration. The number of copies is can be
specified, but the default is 2. There are also three
@@ -93,13 +119,17 @@ The target is named "raid" and it accepts the following parameters:
respect to mirroring. If these options are left unspecified,
or 'raid10_copies 2' and/or 'raid10_format near' are given,
then the layouts for 2, 3 and 4 devices are:
+
+ ======== ========== ==============
2 drives 3 drives 4 drives
- -------- ---------- --------------
+ ======== ========== ==============
A1 A1 A1 A1 A2 A1 A1 A2 A2
A2 A2 A2 A3 A3 A3 A3 A4 A4
A3 A3 A4 A4 A5 A5 A5 A6 A6
A4 A4 A5 A6 A6 A7 A7 A8 A8
.. .. .. .. .. .. .. .. ..
+ ======== ========== ==============
+
The 2-device layout is equivalent 2-way RAID1. The 4-device
layout is what a traditional RAID10 would look like. The
3-device layout is what might be called a 'RAID1E - Integrated
@@ -107,8 +137,10 @@ The target is named "raid" and it accepts the following parameters:
If 'raid10_copies 2' and 'raid10_format far', then the layouts
for 2, 3 and 4 devices are:
+
+ ======== ============ ===================
2 drives 3 drives 4 drives
- -------- -------------- --------------------
+ ======== ============ ===================
A1 A2 A1 A2 A3 A1 A2 A3 A4
A3 A4 A4 A5 A6 A5 A6 A7 A8
A5 A6 A7 A8 A9 A9 A10 A11 A12
@@ -117,11 +149,14 @@ The target is named "raid" and it accepts the following parameters:
A4 A3 A6 A4 A5 A6 A5 A8 A7
A6 A5 A9 A7 A8 A10 A9 A12 A11
.. .. .. .. .. .. .. .. ..
+ ======== ============ ===================
If 'raid10_copies 2' and 'raid10_format offset', then the
layouts for 2, 3 and 4 devices are:
+
+ ======== ========== ================
2 drives 3 drives 4 drives
- -------- ------------ -----------------
+ ======== ========== ================
A1 A2 A1 A2 A3 A1 A2 A3 A4
A2 A1 A3 A1 A2 A2 A1 A4 A3
A3 A4 A4 A5 A6 A5 A6 A7 A8
@@ -129,6 +164,8 @@ The target is named "raid" and it accepts the following parameters:
A5 A6 A7 A8 A9 A9 A10 A11 A12
A6 A5 A9 A7 A8 A10 A9 A12 A11
.. .. .. .. .. .. .. .. ..
+ ======== ========== ================
+
Here we see layouts closely akin to 'RAID1E - Integrated
Offset Stripe Mirroring'.
@@ -190,22 +227,25 @@ The target is named "raid" and it accepts the following parameters:
Example Tables
--------------
-# RAID4 - 4 data drives, 1 parity (no metadata devices)
-# No metadata devices specified to hold superblock/bitmap info
-# Chunk size of 1MiB
-# (Lines separated for easy reading)
-0 1960893648 raid \
- raid4 1 2048 \
- 5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
+::
-# RAID4 - 4 data drives, 1 parity (with metadata devices)
-# Chunk size of 1MiB, force RAID initialization,
-# min recovery rate at 20 kiB/sec/disk
+ # RAID4 - 4 data drives, 1 parity (no metadata devices)
+ # No metadata devices specified to hold superblock/bitmap info
+ # Chunk size of 1MiB
+ # (Lines separated for easy reading)
-0 1960893648 raid \
- raid4 4 2048 sync min_recovery_rate 20 \
- 5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82
+ 0 1960893648 raid \
+ raid4 1 2048 \
+ 5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
+
+ # RAID4 - 4 data drives, 1 parity (with metadata devices)
+ # Chunk size of 1MiB, force RAID initialization,
+ # min recovery rate at 20 kiB/sec/disk
+
+ 0 1960893648 raid \
+ raid4 4 2048 sync min_recovery_rate 20 \
+ 5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82
Status Output
@@ -219,41 +259,58 @@ Arguments that can be repeated are ordered by value.
'dmsetup status' yields information on the state and health of the array.
The output is as follows (normally a single line, but expanded here for
-clarity):
-1: <s> <l> raid \
-2: <raid_type> <#devices> <health_chars> \
-3: <sync_ratio> <sync_action> <mismatch_cnt>
+clarity)::
+
+ 1: <s> <l> raid \
+ 2: <raid_type> <#devices> <health_chars> \
+ 3: <sync_ratio> <sync_action> <mismatch_cnt>
Line 1 is the standard output produced by device-mapper.
-Line 2 & 3 are produced by the raid target and are best explained by example:
+
+Line 2 & 3 are produced by the raid target and are best explained by example::
+
0 1960893648 raid raid4 5 AAAAA 2/490221568 init 0
+
Here we can see the RAID type is raid4, there are 5 devices - all of
which are 'A'live, and the array is 2/490221568 complete with its initial
recovery. Here is a fuller description of the individual fields:
+
+ =============== =========================================================
<raid_type> Same as the <raid_type> used to create the array.
- <health_chars> One char for each device, indicating: 'A' = alive and
- in-sync, 'a' = alive but not in-sync, 'D' = dead/failed.
+ <health_chars> One char for each device, indicating:
+
+ - 'A' = alive and in-sync
+ - 'a' = alive but not in-sync
+ - 'D' = dead/failed.
<sync_ratio> The ratio indicating how much of the array has undergone
the process described by 'sync_action'. If the
'sync_action' is "check" or "repair", then the process
of "resync" or "recover" can be considered complete.
<sync_action> One of the following possible states:
- idle - No synchronization action is being performed.
- frozen - The current action has been halted.
- resync - Array is undergoing its initial synchronization
+
+ idle
+ - No synchronization action is being performed.
+ frozen
+ - The current action has been halted.
+ resync
+ - Array is undergoing its initial synchronization
or is resynchronizing after an unclean shutdown
(possibly aided by a bitmap).
- recover - A device in the array is being rebuilt or
+ recover
+ - A device in the array is being rebuilt or
replaced.
- check - A user-initiated full check of the array is
+ check
+ - A user-initiated full check of the array is
being performed. All blocks are read and
checked for consistency. The number of
discrepancies found are recorded in
<mismatch_cnt>. No changes are made to the
array by this action.
- repair - The same as "check", but discrepancies are
+ repair
+ - The same as "check", but discrepancies are
corrected.
- reshape - The array is undergoing a reshape.
+ reshape
+ - The array is undergoing a reshape.
<mismatch_cnt> The number of discrepancies found between mirror copies
in RAID1/10 or wrong parity values found in RAID4/5/6.
This value is valid only after a "check" of the array
@@ -261,10 +318,11 @@ recovery. Here is a fuller description of the individual fields:
<data_offset> The current data offset to the start of the user data on
each component device of a raid set (see the respective
raid parameter to support out-of-place reshaping).
- <journal_char> 'A' - active write-through journal device.
- 'a' - active write-back journal device.
- 'D' - dead journal device.
- '-' - no journal device.
+ <journal_char> - 'A' - active write-through journal device.
+ - 'a' - active write-back journal device.
+ - 'D' - dead journal device.
+ - '-' - no journal device.
+ =============== =========================================================
Message Interface
@@ -272,12 +330,15 @@ Message Interface
The dm-raid target will accept certain actions through the 'message' interface.
('man dmsetup' for more information on the message interface.) These actions
include:
- "idle" - Halt the current sync action.
- "frozen" - Freeze the current sync action.
- "resync" - Initiate/continue a resync.
- "recover"- Initiate/continue a recover process.
- "check" - Initiate a check (i.e. a "scrub") of the array.
- "repair" - Initiate a repair of the array.
+
+ ========= ================================================
+ "idle" Halt the current sync action.
+ "frozen" Freeze the current sync action.
+ "resync" Initiate/continue a resync.
+ "recover" Initiate/continue a recover process.
+ "check" Initiate a check (i.e. a "scrub") of the array.
+ "repair" Initiate a repair of the array.
+ ========= ================================================
Discard Support
@@ -307,48 +368,52 @@ increasingly whitelisted in the kernel and can thus be trusted.
For trusted devices, the following dm-raid module parameter can be set
to safely enable discard support for RAID 4/5/6:
+
'devices_handle_discards_safely'
Version History
---------------
-1.0.0 Initial version. Support for RAID 4/5/6
-1.1.0 Added support for RAID 1
-1.2.0 Handle creation of arrays that contain failed devices.
-1.3.0 Added support for RAID 10
-1.3.1 Allow device replacement/rebuild for RAID 10
-1.3.2 Fix/improve redundancy checking for RAID10
-1.4.0 Non-functional change. Removes arg from mapping function.
-1.4.1 RAID10 fix redundancy validation checks (commit 55ebbb5).
-1.4.2 Add RAID10 "far" and "offset" algorithm support.
-1.5.0 Add message interface to allow manipulation of the sync_action.
+
+::
+
+ 1.0.0 Initial version. Support for RAID 4/5/6
+ 1.1.0 Added support for RAID 1
+ 1.2.0 Handle creation of arrays that contain failed devices.
+ 1.3.0 Added support for RAID 10
+ 1.3.1 Allow device replacement/rebuild for RAID 10
+ 1.3.2 Fix/improve redundancy checking for RAID10
+ 1.4.0 Non-functional change. Removes arg from mapping function.
+ 1.4.1 RAID10 fix redundancy validation checks (commit 55ebbb5).
+ 1.4.2 Add RAID10 "far" and "offset" algorithm support.
+ 1.5.0 Add message interface to allow manipulation of the sync_action.
New status (STATUSTYPE_INFO) fields: sync_action and mismatch_cnt.
-1.5.1 Add ability to restore transiently failed devices on resume.
-1.5.2 'mismatch_cnt' is zero unless [last_]sync_action is "check".
-1.6.0 Add discard support (and devices_handle_discard_safely module param).
-1.7.0 Add support for MD RAID0 mappings.
-1.8.0 Explicitly check for compatible flags in the superblock metadata
+ 1.5.1 Add ability to restore transiently failed devices on resume.
+ 1.5.2 'mismatch_cnt' is zero unless [last_]sync_action is "check".
+ 1.6.0 Add discard support (and devices_handle_discard_safely module param).
+ 1.7.0 Add support for MD RAID0 mappings.
+ 1.8.0 Explicitly check for compatible flags in the superblock metadata
and reject to start the raid set if any are set by a newer
target version, thus avoiding data corruption on a raid set
with a reshape in progress.
-1.9.0 Add support for RAID level takeover/reshape/region size
+ 1.9.0 Add support for RAID level takeover/reshape/region size
and set size reduction.
-1.9.1 Fix activation of existing RAID 4/10 mapped devices
-1.9.2 Don't emit '- -' on the status table line in case the constructor
+ 1.9.1 Fix activation of existing RAID 4/10 mapped devices
+ 1.9.2 Don't emit '- -' on the status table line in case the constructor
fails reading a superblock. Correctly emit 'maj:min1 maj:min2' and
'D' on the status line. If '- -' is passed into the constructor, emit
'- -' on the table line and '-' as the status line health character.
-1.10.0 Add support for raid4/5/6 journal device
-1.10.1 Fix data corruption on reshape request
-1.11.0 Fix table line argument order
+ 1.10.0 Add support for raid4/5/6 journal device
+ 1.10.1 Fix data corruption on reshape request
+ 1.11.0 Fix table line argument order
(wrong raid10_copies/raid10_format sequence)
-1.11.1 Add raid4/5/6 journal write-back support via journal_mode option
-1.12.1 Fix for MD deadlock between mddev_suspend() and md_write_start() available
-1.13.0 Fix dev_health status at end of "recover" (was 'a', now 'A')
-1.13.1 Fix deadlock caused by early md_stop_writes(). Also fix size an
+ 1.11.1 Add raid4/5/6 journal write-back support via journal_mode option
+ 1.12.1 Fix for MD deadlock between mddev_suspend() and md_write_start() available
+ 1.13.0 Fix dev_health status at end of "recover" (was 'a', now 'A')
+ 1.13.1 Fix deadlock caused by early md_stop_writes(). Also fix size an
state races.
-1.13.2 Fix raid redundancy validation and avoid keeping raid set frozen
-1.14.0 Fix reshape race on small devices. Fix stripe adding reshape
+ 1.13.2 Fix raid redundancy validation and avoid keeping raid set frozen
+ 1.14.0 Fix reshape race on small devices. Fix stripe adding reshape
deadlock/potential data corruption. Update superblock when
specific devices are requested via rebuild. Fix RAID leg
rebuild errors.
diff --git a/Documentation/device-mapper/dm-service-time.txt b/Documentation/admin-guide/device-mapper/dm-service-time.rst
index fb1d4a0cf122..facf277fc13c 100644
--- a/Documentation/device-mapper/dm-service-time.txt
+++ b/Documentation/admin-guide/device-mapper/dm-service-time.rst
@@ -1,3 +1,4 @@
+===============
dm-service-time
===============
@@ -12,25 +13,34 @@ in a path-group, and it can be specified as a table argument.
The path selector name is 'service-time'.
-Table parameters for each path: [<repeat_count> [<relative_throughput>]]
- <repeat_count>: The number of I/Os to dispatch using the selected
+Table parameters for each path:
+
+ [<repeat_count> [<relative_throughput>]]
+ <repeat_count>:
+ The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
- <relative_throughput>: The relative throughput value of the path
+ <relative_throughput>:
+ The relative throughput value of the path
among all paths in the path-group.
The valid range is 0-100.
If not given, minimum value '1' is used.
If '0' is given, the path isn't selected while
other paths having a positive value are available.
-Status for each path: <status> <fail-count> <in-flight-size> \
- <relative_throughput>
- <status>: 'A' if the path is active, 'F' if the path is failed.
- <fail-count>: The number of path failures.
- <in-flight-size>: The size of in-flight I/Os on the path.
- <relative_throughput>: The relative throughput value of the path
- among all paths in the path-group.
+Status for each path:
+
+ <status> <fail-count> <in-flight-size> <relative_throughput>
+ <status>:
+ 'A' if the path is active, 'F' if the path is failed.
+ <fail-count>:
+ The number of path failures.
+ <in-flight-size>:
+ The size of in-flight I/Os on the path.
+ <relative_throughput>:
+ The relative throughput value of the path
+ among all paths in the path-group.
Algorithm
@@ -39,7 +49,7 @@ Algorithm
dm-service-time adds the I/O size to 'in-flight-size' when the I/O is
dispatched and subtracts when completed.
Basically, dm-service-time selects a path having minimum service time
-which is calculated by:
+which is calculated by::
('in-flight-size' + 'size-of-incoming-io') / 'relative_throughput'
@@ -67,25 +77,25 @@ Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128
and sda has an average throughput 1GB/s and sdb has 4GB/s,
-'relative_throughput' value may be '1' for sda and '4' for sdb.
-
-# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
- dmsetup create test
-#
-# dmsetup table
-test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
-#
-# dmsetup status
-test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
-
-
-Or '2' for sda and '8' for sdb would be also true.
-
-# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
- dmsetup create test
-#
-# dmsetup table
-test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
-#
-# dmsetup status
-test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
+'relative_throughput' value may be '1' for sda and '4' for sdb::
+
+ # echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
+ dmsetup create test
+ #
+ # dmsetup table
+ test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
+ #
+ # dmsetup status
+ test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
+
+
+Or '2' for sda and '8' for sdb would be also true::
+
+ # echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
+ dmsetup create test
+ #
+ # dmsetup table
+ test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
+ #
+ # dmsetup status
+ test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
diff --git a/Documentation/admin-guide/device-mapper/dm-uevent.rst b/Documentation/admin-guide/device-mapper/dm-uevent.rst
new file mode 100644
index 000000000000..4a8ee8d069c9
--- /dev/null
+++ b/Documentation/admin-guide/device-mapper/dm-uevent.rst
@@ -0,0 +1,110 @@
+====================
+device-mapper uevent
+====================
+
+The device-mapper uevent code adds the capability to device-mapper to create
+and send kobject uevents (uevents). Previously device-mapper events were only
+available through the ioctl interface. The advantage of the uevents interface
+is the event contains environment attributes providing increased context for
+the event avoiding the need to query the state of the device-mapper device after
+the event is received.
+
+There are two functions currently for device-mapper events. The first function
+listed creates the event and the second function sends the event(s)::
+
+ void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
+ const char *path, unsigned nr_valid_paths)
+
+ void dm_send_uevents(struct list_head *events, struct kobject *kobj)
+
+
+The variables added to the uevent environment are:
+
+Variable Name: DM_TARGET
+------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description:
+:Value: Name of device-mapper target that generated the event.
+
+Variable Name: DM_ACTION
+------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description:
+:Value: Device-mapper specific action that caused the uevent action.
+ PATH_FAILED - A path has failed;
+ PATH_REINSTATED - A path has been reinstated.
+
+Variable Name: DM_SEQNUM
+------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: unsigned integer
+:Description: A sequence number for this specific device-mapper device.
+:Value: Valid unsigned integer range.
+
+Variable Name: DM_PATH
+----------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description: Major and minor number of the path device pertaining to this
+ event.
+:Value: Path name in the form of "Major:Minor"
+
+Variable Name: DM_NR_VALID_PATHS
+--------------------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: unsigned integer
+:Description:
+:Value: Valid unsigned integer range.
+
+Variable Name: DM_NAME
+----------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description: Name of the device-mapper device.
+:Value: Name
+
+Variable Name: DM_UUID
+----------------------
+:Uevent Action(s): KOBJ_CHANGE
+:Type: string
+:Description: UUID of the device-mapper device.
+:Value: UUID. (Empty string if there isn't one.)
+
+An example of the uevents generated as captured by udevmonitor is shown
+below
+
+1.) Path failure::
+
+ UEVENT[1192521009.711215] change@/block/dm-3
+ ACTION=change
+ DEVPATH=/block/dm-3
+ SUBSYSTEM=block
+ DM_TARGET=multipath
+ DM_ACTION=PATH_FAILED
+ DM_SEQNUM=1
+ DM_PATH=8:32
+ DM_NR_VALID_PATHS=0
+ DM_NAME=mpath2
+ DM_UUID=mpath-35333333000002328
+ MINOR=3
+ MAJOR=253
+ SEQNUM=1130
+
+2.) Path reinstate::
+
+ UEVENT[1192521132.989927] change@/block/dm-3
+ ACTION=change
+ DEVPATH=/block/dm-3
+ SUBSYSTEM=block
+ DM_TARGET=multipath
+ DM_ACTION=PATH_REINSTATED
+ DM_SEQNUM=2
+ DM_PATH=8:32
+ DM_NR_VALID_PATHS=1
+ DM_NAME=mpath2
+ DM_UUID=mpath-35333333000002328
+ MINOR=3
+ MAJOR=253
+ SEQNUM=1131
diff --git a/Documentation/device-mapper/dm-zoned.txt b/Documentation/admin-guide/device-mapper/dm-zoned.rst
index 736fcc78d193..07f56ebc1730 100644
--- a/Documentation/device-mapper/dm-zoned.txt
+++ b/Documentation/admin-guide/device-mapper/dm-zoned.rst
@@ -1,3 +1,4 @@
+========
dm-zoned
========
@@ -133,12 +134,13 @@ A zoned block device must first be formatted using the dmzadm tool. This
will analyze the device zone configuration, determine where to place the
metadata sets on the device and initialize the metadata sets.
-Ex:
+Ex::
-dmzadm --format /dev/sdxx
+ dmzadm --format /dev/sdxx
For a formatted device, the target can be created normally with the
dmsetup utility. The only parameter that dm-zoned requires is the
-underlying zoned block device name. Ex:
+underlying zoned block device name. Ex::
-echo "0 `blockdev --getsize ${dev}` zoned ${dev}" | dmsetup create dmz-`basename ${dev}`
+ echo "0 `blockdev --getsize ${dev}` zoned ${dev}" | \
+ dmsetup create dmz-`basename ${dev}`
diff --git a/Documentation/device-mapper/era.txt b/Documentation/admin-guide/device-mapper/era.rst
index 3c6d01be3560..90dd5c670b9f 100644
--- a/Documentation/device-mapper/era.txt
+++ b/Documentation/admin-guide/device-mapper/era.rst
@@ -1,3 +1,7 @@
+======
+dm-era
+======
+
Introduction
============
@@ -14,12 +18,14 @@ coherency after rolling back a vendor snapshot.
Constructor
===========
- era <metadata dev> <origin dev> <block size>
+era <metadata dev> <origin dev> <block size>
- metadata dev : fast device holding the persistent metadata
- origin dev : device holding data blocks that may change
- block size : block size of origin data device, granularity that is
- tracked by the target
+ ================ ======================================================
+ metadata dev fast device holding the persistent metadata
+ origin dev device holding data blocks that may change
+ block size block size of origin data device, granularity that is
+ tracked by the target
+ ================ ======================================================
Messages
========
@@ -49,14 +55,16 @@ Status
<metadata block size> <#used metadata blocks>/<#total metadata blocks>
<current era> <held metadata root | '-'>
-metadata block size : Fixed block size for each metadata block in
- sectors
-#used metadata blocks : Number of metadata blocks used
-#total metadata blocks : Total number of metadata blocks
-current era : The current era
-held metadata root : The location, in blocks, of the metadata root
- that has been 'held' for userspace read
- access. '-' indicates there is no held root
+========================= ==============================================
+metadata block size Fixed block size for each metadata block in
+ sectors
+#used metadata blocks Number of metadata blocks used
+#total metadata blocks Total number of metadata blocks
+current era The current era
+held metadata root The location, in blocks, of the metadata root
+ that has been 'held' for userspace read
+ access. '-' indicates there is no held root
+========================= ==============================================
Detailed use case
=================
@@ -88,7 +96,7 @@ Memory usage
The target uses a bitset to record writes in the current era. It also
has a spare bitset ready for switching over to a new era. Other than
-that it uses a few 4k blocks for updating metadata.
+that it uses a few 4k blocks for updating metadata::
(4 * nr_blocks) bytes + buffers
diff --git a/Documentation/admin-guide/device-mapper/index.rst b/Documentation/admin-guide/device-mapper/index.rst
new file mode 100644
index 000000000000..c77c58b8f67b
--- /dev/null
+++ b/Documentation/admin-guide/device-mapper/index.rst
@@ -0,0 +1,42 @@
+=============
+Device Mapper
+=============
+
+.. toctree::
+ :maxdepth: 1
+
+ cache-policies
+ cache
+ delay
+ dm-crypt
+ dm-flakey
+ dm-init
+ dm-integrity
+ dm-io
+ dm-log
+ dm-queue-length
+ dm-raid
+ dm-service-time
+ dm-uevent
+ dm-zoned
+ era
+ kcopyd
+ linear
+ log-writes
+ persistent-data
+ snapshot
+ statistics
+ striped
+ switch
+ thin-provisioning
+ unstriped
+ verity
+ writecache
+ zero
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/device-mapper/kcopyd.txt b/Documentation/admin-guide/device-mapper/kcopyd.rst
index 820382c4cecf..7651d395127f 100644
--- a/Documentation/device-mapper/kcopyd.txt
+++ b/Documentation/admin-guide/device-mapper/kcopyd.rst
@@ -1,3 +1,4 @@
+======
kcopyd
======
@@ -7,7 +8,7 @@ notification. It is used by dm-snapshot and dm-mirror.
Users of kcopyd must first create a client and indicate how many memory pages
to set aside for their copy jobs. This is done with a call to
-kcopyd_client_create().
+kcopyd_client_create()::
int kcopyd_client_create(unsigned int num_pages,
struct kcopyd_client **result);
@@ -16,7 +17,7 @@ To start a copy job, the user must set up io_region structures to describe
the source and destinations of the copy. Each io_region indicates a
block-device along with the starting sector and size of the region. The source
of the copy is given as one io_region structure, and the destinations of the
-copy are given as an array of io_region structures.
+copy are given as an array of io_region structures::
struct io_region {
struct block_device *bdev;
@@ -26,7 +27,7 @@ copy are given as an array of io_region structures.
To start the copy, the user calls kcopyd_copy(), passing in the client
pointer, pointers to the source and destination io_regions, the name of a
-completion callback routine, and a pointer to some context data for the copy.
+completion callback routine, and a pointer to some context data for the copy::
int kcopyd_copy(struct kcopyd_client *kc, struct io_region *from,
unsigned int num_dests, struct io_region *dests,
@@ -41,7 +42,6 @@ write error occurred during the copy.
When a user is done with all their copy jobs, they should call
kcopyd_client_destroy() to delete the kcopyd client, which will release the
-associated memory pages.
+associated memory pages::
void kcopyd_client_destroy(struct kcopyd_client *kc);
-
diff --git a/Documentation/admin-guide/device-mapper/linear.rst b/Documentation/admin-guide/device-mapper/linear.rst
new file mode 100644
index 000000000000..9d17fc6e64a9
--- /dev/null
+++ b/Documentation/admin-guide/device-mapper/linear.rst
@@ -0,0 +1,63 @@
+=========
+dm-linear
+=========
+
+Device-Mapper's "linear" target maps a linear range of the Device-Mapper
+device onto a linear range of another device. This is the basic building
+block of logical volume managers.
+
+Parameters: <dev path> <offset>
+ <dev path>:
+ Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>:
+ Starting sector within the device.
+
+
+Example scripts
+===============
+
+::
+
+ #!/bin/sh
+ # Create an identity mapping for a device
+ echo "0 `blockdev --getsz $1` linear $1 0" | dmsetup create identity
+
+::
+
+ #!/bin/sh
+ # Join 2 devices together
+ size1=`blockdev --getsz $1`
+ size2=`blockdev --getsz $2`
+ echo "0 $size1 linear $1 0
+ $size1 $size2 linear $2 0" | dmsetup create joined
+
+::
+
+ #!/usr/bin/perl -w
+ # Split a device into 4M chunks and then join them together in reverse order.
+
+ my $name = "reverse";
+ my $extent_size = 4 * 1024 * 2;
+ my $dev = $ARGV[0];
+ my $table = "";
+ my $count = 0;
+
+ if (!defined($dev)) {
+ die("Please specify a device.\n");
+ }
+
+ my $dev_size = `blockdev --getsz $dev`;
+ my $extents = int($dev_size / $extent_size) -
+ (($dev_size % $extent_size) ? 1 : 0);
+
+ while ($extents > 0) {
+ my $this_start = $count * $extent_size;
+ $extents--;
+ $count++;
+ my $this_offset = $extents * $extent_size;
+
+ $table .= "$this_start $extent_size linear $dev $this_offset\n";
+ }
+
+ `echo \"$table\" | dmsetup create $name`;
diff --git a/Documentation/device-mapper/log-writes.txt b/Documentation/admin-guide/device-mapper/log-writes.rst
index b638d124be6a..23141f2ffb7c 100644
--- a/Documentation/device-mapper/log-writes.txt
+++ b/Documentation/admin-guide/device-mapper/log-writes.rst
@@ -1,3 +1,4 @@
+=============
dm-log-writes
=============
@@ -25,11 +26,11 @@ completed WRITEs, at the time the REQ_PREFLUSH is issued, are added in order to
simulate the worst case scenario with regard to power failures. Consider the
following example (W means write, C means complete):
-W1,W2,W3,C3,C2,Wflush,C1,Cflush
+ W1,W2,W3,C3,C2,Wflush,C1,Cflush
-The log would show the following
+The log would show the following:
-W3,W2,flush,W1....
+ W3,W2,flush,W1....
Again this is to simulate what is actually on disk, this allows us to detect
cases where a power failure at a particular point in time would create an
@@ -42,11 +43,11 @@ Any REQ_OP_DISCARD requests are treated like WRITE requests. Otherwise we would
have all the DISCARD requests, and then the WRITE requests and then the FLUSH
request. Consider the following example:
-WRITE block 1, DISCARD block 1, FLUSH
+ WRITE block 1, DISCARD block 1, FLUSH
-If we logged DISCARD when it completed, the replay would look like this
+If we logged DISCARD when it completed, the replay would look like this:
-DISCARD 1, WRITE 1, FLUSH
+ DISCARD 1, WRITE 1, FLUSH
which isn't quite what happened and wouldn't be caught during the log replay.
@@ -57,15 +58,19 @@ i) Constructor
log-writes <dev_path> <log_dev_path>
- dev_path : Device that all of the IO will go to normally.
- log_dev_path : Device where the log entries are written to.
+ ============= ==============================================
+ dev_path Device that all of the IO will go to normally.
+ log_dev_path Device where the log entries are written to.
+ ============= ==============================================
ii) Status
<#logged entries> <highest allocated sector>
- #logged entries : Number of logged entries
- highest allocated sector : Highest allocated sector
+ =========================== ========================
+ #logged entries Number of logged entries
+ highest allocated sector Highest allocated sector
+ =========================== ========================
iii) Messages
@@ -75,15 +80,15 @@ iii) Messages
For example say you want to fsck a file system after every
write, but first you need to replay up to the mkfs to make sure
we're fsck'ing something reasonable, you would do something like
- this:
+ this::
mkfs.btrfs -f /dev/mapper/log
dmsetup message log 0 mark mkfs
<run test>
- This would allow you to replay the log up to the mkfs mark and
- then replay from that point on doing the fsck check in the
- interval that you want.
+ This would allow you to replay the log up to the mkfs mark and
+ then replay from that point on doing the fsck check in the
+ interval that you want.
Every log has a mark at the end labeled "dm-log-writes-end".
@@ -97,42 +102,42 @@ Example usage
=============
Say you want to test fsync on your file system. You would do something like
-this:
-
-TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
-dmsetup create log --table "$TABLE"
-mkfs.btrfs -f /dev/mapper/log
-dmsetup message log 0 mark mkfs
-
-mount /dev/mapper/log /mnt/btrfs-test
-<some test that does fsync at the end>
-dmsetup message log 0 mark fsync
-md5sum /mnt/btrfs-test/foo
-umount /mnt/btrfs-test
-
-dmsetup remove log
-replay-log --log /dev/sdc --replay /dev/sdb --end-mark fsync
-mount /dev/sdb /mnt/btrfs-test
-md5sum /mnt/btrfs-test/foo
-<verify md5sum's are correct>
-
-Another option is to do a complicated file system operation and verify the file
-system is consistent during the entire operation. You could do this with:
-
-TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
-dmsetup create log --table "$TABLE"
-mkfs.btrfs -f /dev/mapper/log
-dmsetup message log 0 mark mkfs
-
-mount /dev/mapper/log /mnt/btrfs-test
-<fsstress to dirty the fs>
-btrfs filesystem balance /mnt/btrfs-test
-umount /mnt/btrfs-test
-dmsetup remove log
-
-replay-log --log /dev/sdc --replay /dev/sdb --end-mark mkfs
-btrfsck /dev/sdb
-replay-log --log /dev/sdc --replay /dev/sdb --start-mark mkfs \
+this::
+
+ TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
+ dmsetup create log --table "$TABLE"
+ mkfs.btrfs -f /dev/mapper/log
+ dmsetup message log 0 mark mkfs
+
+ mount /dev/mapper/log /mnt/btrfs-test
+ <some test that does fsync at the end>
+ dmsetup message log 0 mark fsync
+ md5sum /mnt/btrfs-test/foo
+ umount /mnt/btrfs-test
+
+ dmsetup remove log
+ replay-log --log /dev/sdc --replay /dev/sdb --end-mark fsync
+ mount /dev/sdb /mnt/btrfs-test
+ md5sum /mnt/btrfs-test/foo
+ <verify md5sum's are correct>
+
+ Another option is to do a complicated file system operation and verify the file
+ system is consistent during the entire operation. You could do this with:
+
+ TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
+ dmsetup create log --table "$TABLE"
+ mkfs.btrfs -f /dev/mapper/log
+ dmsetup message log 0 mark mkfs
+
+ mount /dev/mapper/log /mnt/btrfs-test
+ <fsstress to dirty the fs>
+ btrfs filesystem balance /mnt/btrfs-test
+ umount /mnt/btrfs-test
+ dmsetup remove log
+
+ replay-log --log /dev/sdc --replay /dev/sdb --end-mark mkfs
+ btrfsck /dev/sdb
+ replay-log --log /dev/sdc --replay /dev/sdb --start-mark mkfs \
--fsck "btrfsck /dev/sdb" --check fua
And that will replay the log until it sees a FUA request, run the fsck command
diff --git a/Documentation/device-mapper/persistent-data.txt b/Documentation/admin-guide/device-mapper/persistent-data.rst
index a333bcb3a6c2..2065c3c5a091 100644
--- a/Documentation/device-mapper/persistent-data.txt
+++ b/Documentation/admin-guide/device-mapper/persistent-data.rst
@@ -1,3 +1,7 @@
+===============
+Persistent data
+===============
+
Introduction
============
diff --git a/Documentation/device-mapper/snapshot.txt b/Documentation/admin-guide/device-mapper/snapshot.rst
index b8bbb516f989..ccdd8b587a74 100644
--- a/Documentation/device-mapper/snapshot.txt
+++ b/Documentation/admin-guide/device-mapper/snapshot.rst
@@ -1,15 +1,16 @@
+==============================
Device-mapper snapshot support
==============================
Device-mapper allows you, without massive data copying:
-*) To create snapshots of any block device i.e. mountable, saved states of
-the block device which are also writable without interfering with the
-original content;
-*) To create device "forks", i.e. multiple different versions of the
-same data stream.
-*) To merge a snapshot of a block device back into the snapshot's origin
-device.
+- To create snapshots of any block device i.e. mountable, saved states of
+ the block device which are also writable without interfering with the
+ original content;
+- To create device "forks", i.e. multiple different versions of the
+ same data stream.
+- To merge a snapshot of a block device back into the snapshot's origin
+ device.
In the first two cases, dm copies only the chunks of data that get
changed and uses a separate copy-on-write (COW) block device for
@@ -22,7 +23,7 @@ the origin device.
There are three dm targets available:
snapshot, snapshot-origin, and snapshot-merge.
-*) snapshot-origin <origin>
+- snapshot-origin <origin>
which will normally have one or more snapshots based on it.
Reads will be mapped directly to the backing device. For each write, the
@@ -30,7 +31,8 @@ original data will be saved in the <COW device> of each snapshot to keep
its visible content unchanged, at least until the <COW device> fills up.
-*) snapshot <origin> <COW device> <persistent?> <chunksize>
+- snapshot <origin> <COW device> <persistent?> <chunksize>
+ [<# feature args> [<arg>]*]
A snapshot of the <origin> block device is created. Changed chunks of
<chunksize> sectors will be stored on the <COW device>. Writes will
@@ -53,8 +55,23 @@ When loading or unloading the snapshot target, the corresponding
snapshot-origin or snapshot-merge target must be suspended. A failure to
suspend the origin target could result in data corruption.
+Optional features:
+
+ discard_zeroes_cow - a discard issued to the snapshot device that
+ maps to entire chunks to will zero the corresponding exception(s) in
+ the snapshot's exception store.
+
+ discard_passdown_origin - a discard to the snapshot device is passed
+ down to the snapshot-origin's underlying device. This doesn't cause
+ copy-out to the snapshot exception store because the snapshot-origin
+ target is bypassed.
+
+ The discard_passdown_origin feature depends on the discard_zeroes_cow
+ feature being enabled.
-* snapshot-merge <origin> <COW device> <persistent> <chunksize>
+
+- snapshot-merge <origin> <COW device> <persistent> <chunksize>
+ [<# feature args> [<arg>]*]
takes the same table arguments as the snapshot target except it only
works with persistent snapshots. This target assumes the role of the
@@ -83,25 +100,25 @@ When you create the first LVM2 snapshot of a volume, four dm devices are used:
source volume), whose table is replaced by a "snapshot-origin" mapping
from device #1.
-A fixed naming scheme is used, so with the following commands:
+A fixed naming scheme is used, so with the following commands::
-lvcreate -L 1G -n base volumeGroup
-lvcreate -L 100M --snapshot -n snap volumeGroup/base
+ lvcreate -L 1G -n base volumeGroup
+ lvcreate -L 100M --snapshot -n snap volumeGroup/base
-we'll have this situation (with volumes in above order):
+we'll have this situation (with volumes in above order)::
-# dmsetup table|grep volumeGroup
+ # dmsetup table|grep volumeGroup
-volumeGroup-base-real: 0 2097152 linear 8:19 384
-volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
-volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
-volumeGroup-base: 0 2097152 snapshot-origin 254:11
+ volumeGroup-base-real: 0 2097152 linear 8:19 384
+ volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
+ volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
+ volumeGroup-base: 0 2097152 snapshot-origin 254:11
-# ls -lL /dev/mapper/volumeGroup-*
-brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
-brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
-brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
-brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
+ # ls -lL /dev/mapper/volumeGroup-*
+ brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
+ brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
+ brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
+ brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
How snapshot-merge is used by LVM2
@@ -114,27 +131,28 @@ merging snapshot after it completes. The "snapshot" that hands over its
COW device to the "snapshot-merge" is deactivated (unless using lvchange
--refresh); but if it is left active it will simply return I/O errors.
-A snapshot will merge into its origin with the following command:
+A snapshot will merge into its origin with the following command::
-lvconvert --merge volumeGroup/snap
+ lvconvert --merge volumeGroup/snap
-we'll now have this situation:
+we'll now have this situation::
-# dmsetup table|grep volumeGroup
+ # dmsetup table|grep volumeGroup
-volumeGroup-base-real: 0 2097152 linear 8:19 384
-volumeGroup-base-cow: 0 204800 linear 8:19 2097536
-volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
+ volumeGroup-base-real: 0 2097152 linear 8:19 384
+ volumeGroup-base-cow: 0 204800 linear 8:19 2097536
+ volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
-# ls -lL /dev/mapper/volumeGroup-*
-brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
-brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
-brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
+ # ls -lL /dev/mapper/volumeGroup-*
+ brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
+ brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
+ brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
How to determine when a merging is complete
===========================================
The snapshot-merge and snapshot status lines end with:
+
<sectors_allocated>/<total_sectors> <metadata_sectors>
Both <sectors_allocated> and <total_sectors> include both data and metadata.
@@ -142,35 +160,37 @@ During merging, the number of sectors allocated gets smaller and
smaller. Merging has finished when the number of sectors holding data
is zero, in other words <sectors_allocated> == <metadata_sectors>.
-Here is a practical example (using a hybrid of lvm and dmsetup commands):
+Here is a practical example (using a hybrid of lvm and dmsetup commands)::
-# lvs
- LV VG Attr LSize Origin Snap% Move Log Copy% Convert
- base volumeGroup owi-a- 4.00g
- snap volumeGroup swi-a- 1.00g base 18.97
+ # lvs
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup owi-a- 4.00g
+ snap volumeGroup swi-a- 1.00g base 18.97
-# dmsetup status volumeGroup-snap
-0 8388608 snapshot 397896/2097152 1560
- ^^^^ metadata sectors
+ # dmsetup status volumeGroup-snap
+ 0 8388608 snapshot 397896/2097152 1560
+ ^^^^ metadata sectors
-# lvconvert --merge -b volumeGroup/snap
- Merging of volume snap started.
+ # lvconvert --merge -b volumeGroup/snap
+ Merging of volume snap started.
-# lvs volumeGroup/snap
- LV VG Attr LSize Origin Snap% Move Log Copy% Convert
- base volumeGroup Owi-a- 4.00g 17.23
+ # lvs volumeGroup/snap
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup Owi-a- 4.00g 17.23
-# dmsetup status volumeGroup-base
-0 8388608 snapshot-merge 281688/2097152 1104
+ # dmsetup status volumeGroup-base
+ 0 8388608 snapshot-merge 281688/2097152 1104
-# dmsetup status volumeGroup-base
-0 8388608 snapshot-merge 180480/2097152 712
+ # dmsetup status volumeGroup-base
+ 0 8388608 snapshot-merge 180480/2097152 712
-# dmsetup status volumeGroup-base
-0 8388608 snapshot-merge 16/2097152 16
+ # dmsetup status volumeGroup-base
+ 0 8388608 snapshot-merge 16/2097152 16
Merging has finished.
-# lvs
- LV VG Attr LSize Origin Snap% Move Log Copy% Convert
- base volumeGroup owi-a- 4.00g
+::
+
+ # lvs
+ LV VG Attr LSize Origin Snap% Move Log Copy% Convert
+ base volumeGroup owi-a- 4.00g
diff --git a/Documentation/device-mapper/statistics.txt b/Documentation/admin-guide/device-mapper/statistics.rst
index 170ac02a1f50..41ded0bc5933 100644
--- a/Documentation/device-mapper/statistics.txt
+++ b/Documentation/admin-guide/device-mapper/statistics.rst
@@ -1,3 +1,4 @@
+=============
DM statistics
=============
@@ -11,8 +12,8 @@ Individual statistics will be collected for each step-sized area within
the range specified.
The I/O statistics counters for each step-sized area of a region are
-in the same format as /sys/block/*/stat or /proc/diskstats (see:
-Documentation/iostats.txt). But two extra counters (12 and 13) are
+in the same format as `/sys/block/*/stat` or `/proc/diskstats` (see:
+Documentation/admin-guide/iostats.rst). But two extra counters (12 and 13) are
provided: total time spent reading and writing. When the histogram
argument is used, the 14th parameter is reported that represents the
histogram of latencies. All these counters may be accessed by sending
@@ -32,40 +33,45 @@ on each other's data.
The creation of DM statistics will allocate memory via kmalloc or
fallback to using vmalloc space. At most, 1/4 of the overall system
memory may be allocated by DM statistics. The admin can see how much
-memory is used by reading
-/sys/module/dm_mod/parameters/stats_current_allocated_bytes
+memory is used by reading:
+
+ /sys/module/dm_mod/parameters/stats_current_allocated_bytes
Messages
========
- @stats_create <range> <step>
- [<number_of_optional_arguments> <optional_arguments>...]
- [<program_id> [<aux_data>]]
-
+ @stats_create <range> <step> [<number_of_optional_arguments> <optional_arguments>...] [<program_id> [<aux_data>]]
Create a new region and return the region_id.
<range>
- "-" - whole device
- "<start_sector>+<length>" - a range of <length> 512-byte sectors
- starting with <start_sector>.
+ "-"
+ whole device
+ "<start_sector>+<length>"
+ a range of <length> 512-byte sectors
+ starting with <start_sector>.
<step>
- "<area_size>" - the range is subdivided into areas each containing
- <area_size> sectors.
- "/<number_of_areas>" - the range is subdivided into the specified
- number of areas.
+ "<area_size>"
+ the range is subdivided into areas each containing
+ <area_size> sectors.
+ "/<number_of_areas>"
+ the range is subdivided into the specified
+ number of areas.
<number_of_optional_arguments>
The number of optional arguments
<optional_arguments>
- The following optional arguments are supported
- precise_timestamps - use precise timer with nanosecond resolution
+ The following optional arguments are supported:
+
+ precise_timestamps
+ use precise timer with nanosecond resolution
instead of the "jiffies" variable. When this argument is
used, the resulting times are in nanoseconds instead of
milliseconds. Precise timestamps are a little bit slower
to obtain than jiffies-based timestamps.
- histogram:n1,n2,n3,n4,... - collect histogram of latencies. The
+ histogram:n1,n2,n3,n4,...
+ collect histogram of latencies. The
numbers n1, n2, etc are times that represent the boundaries
of the histogram. If precise_timestamps is not used, the
times are in milliseconds, otherwise they are in
@@ -96,21 +102,18 @@ Messages
@stats_list message, but it doesn't use this value for anything.
@stats_delete <region_id>
-
Delete the region with the specified id.
<region_id>
region_id returned from @stats_create
@stats_clear <region_id>
-
Clear all the counters except the in-flight i/o counters.
<region_id>
region_id returned from @stats_create
@stats_list [<program_id>]
-
List all regions registered with @stats_create.
<program_id>
@@ -127,7 +130,6 @@ Messages
if they were specified when creating the region.
@stats_print <region_id> [<starting_line> <number_of_lines>]
-
Print counters for each step-sized area of a region.
<region_id>
@@ -143,12 +145,13 @@ Messages
Output format for each step-sized area of a region:
- <start_sector>+<length> counters
+ <start_sector>+<length>
+ counters
The first 11 counters have the same meaning as
- /sys/block/*/stat or /proc/diskstats.
+ `/sys/block/*/stat or /proc/diskstats`.
- Please refer to Documentation/iostats.txt for details.
+ Please refer to Documentation/admin-guide/iostats.rst for details.
1. the number of reads completed
2. the number of reads merged
@@ -163,11 +166,11 @@ Messages
11. the weighted number of milliseconds spent doing I/Os
Additional counters:
+
12. the total time spent reading in milliseconds
13. the total time spent writing in milliseconds
@stats_print_clear <region_id> [<starting_line> <number_of_lines>]
-
Atomically print and then clear all the counters except the
in-flight i/o counters. Useful when the client consuming the
statistics does not want to lose any statistics (those updated
@@ -185,7 +188,6 @@ Messages
If omitted, all lines are printed and then cleared.
@stats_set_aux <region_id> <aux_data>
-
Store auxiliary data aux_data for the specified region.
<region_id>
@@ -201,23 +203,23 @@ Examples
========
Subdivide the DM device 'vol' into 100 pieces and start collecting
-statistics on them:
+statistics on them::
dmsetup message vol 0 @stats_create - /100
Set the auxiliary data string to "foo bar baz" (the escape for each
-space must also be escaped, otherwise the shell will consume them):
+space must also be escaped, otherwise the shell will consume them)::
dmsetup message vol 0 @stats_set_aux 0 foo\\ bar\\ baz
-List the statistics:
+List the statistics::
dmsetup message vol 0 @stats_list
-Print the statistics:
+Print the statistics::
dmsetup message vol 0 @stats_print 0
-Delete the statistics:
+Delete the statistics::
dmsetup message vol 0 @stats_delete 0
diff --git a/Documentation/admin-guide/device-mapper/striped.rst b/Documentation/admin-guide/device-mapper/striped.rst
new file mode 100644
index 000000000000..e9a8da192ae1
--- /dev/null
+++ b/Documentation/admin-guide/device-mapper/striped.rst
@@ -0,0 +1,61 @@
+=========
+dm-stripe
+=========
+
+Device-Mapper's "striped" target is used to create a striped (i.e. RAID-0)
+device across one or more underlying devices. Data is written in "chunks",
+with consecutive chunks rotating among the underlying devices. This can
+potentially provide improved I/O throughput by utilizing several physical
+devices in parallel.
+
+Parameters: <num devs> <chunk size> [<dev path> <offset>]+
+ <num devs>:
+ Number of underlying devices.
+ <chunk size>:
+ Size of each chunk of data. Must be at least as
+ large as the system's PAGE_SIZE.
+ <dev path>:
+ Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>:
+ Starting sector within the device.
+
+One or more underlying devices can be specified. The striped device size must
+be a multiple of the chunk size multiplied by the number of underlying devices.
+
+
+Example scripts
+===============
+
+::
+
+ #!/usr/bin/perl -w
+ # Create a striped device across any number of underlying devices. The device
+ # will be called "stripe_dev" and have a chunk-size of 128k.
+
+ my $chunk_size = 128 * 2;
+ my $dev_name = "stripe_dev";
+ my $num_devs = @ARGV;
+ my @devs = @ARGV;
+ my ($min_dev_size, $stripe_dev_size, $i);
+
+ if (!$num_devs) {
+ die("Specify at least one device\n");
+ }
+
+ $min_dev_size = `blockdev --getsz $devs[0]`;
+ for ($i = 1; $i < $num_devs; $i++) {
+ my $this_size = `blockdev --getsz $devs[$i]`;
+ $min_dev_size = ($min_dev_size < $this_size) ?
+ $min_dev_size : $this_size;
+ }
+
+ $stripe_dev_size = $min_dev_size * $num_devs;
+ $stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
+
+ $table = "0 $stripe_dev_size striped $num_devs $chunk_size";
+ for ($i = 0; $i < $num_devs; $i++) {
+ $table .= " $devs[$i] 0";
+ }
+
+ `echo $table | dmsetup create $dev_name`;
diff --git a/Documentation/device-mapper/switch.txt b/Documentation/admin-guide/device-mapper/switch.rst
index 5bd4831db4a8..7dde06be1a4f 100644
--- a/Documentation/device-mapper/switch.txt
+++ b/Documentation/admin-guide/device-mapper/switch.rst
@@ -1,3 +1,4 @@
+=========
dm-switch
=========
@@ -67,27 +68,25 @@ b-tree can achieve.
Construction Parameters
=======================
- <num_paths> <region_size> <num_optional_args> [<optional_args>...]
- [<dev_path> <offset>]+
-
-<num_paths>
- The number of paths across which to distribute the I/O.
+ <num_paths> <region_size> <num_optional_args> [<optional_args>...] [<dev_path> <offset>]+
+ <num_paths>
+ The number of paths across which to distribute the I/O.
-<region_size>
- The number of 512-byte sectors in a region. Each region can be redirected
- to any of the available paths.
+ <region_size>
+ The number of 512-byte sectors in a region. Each region can be redirected
+ to any of the available paths.
-<num_optional_args>
- The number of optional arguments. Currently, no optional arguments
- are supported and so this must be zero.
+ <num_optional_args>
+ The number of optional arguments. Currently, no optional arguments
+ are supported and so this must be zero.
-<dev_path>
- The block device that represents a specific path to the device.
+ <dev_path>
+ The block device that represents a specific path to the device.
-<offset>
- The offset of the start of data on the specific <dev_path> (in units
- of 512-byte sectors). This number is added to the sector number when
- forwarding the request to the specific path. Typically it is zero.
+ <offset>
+ The offset of the start of data on the specific <dev_path> (in units
+ of 512-byte sectors). This number is added to the sector number when
+ forwarding the request to the specific path. Typically it is zero.
Messages
========
@@ -122,17 +121,21 @@ Example
Assume that you have volumes vg1/switch0 vg1/switch1 vg1/switch2 with
the same size.
-Create a switch device with 64kB region size:
+Create a switch device with 64kB region size::
+
dmsetup create switch --table "0 `blockdev --getsz /dev/vg1/switch0`
switch 3 128 0 /dev/vg1/switch0 0 /dev/vg1/switch1 0 /dev/vg1/switch2 0"
Set mappings for the first 7 entries to point to devices switch0, switch1,
-switch2, switch0, switch1, switch2, switch1:
+switch2, switch0, switch1, switch2, switch1::
+
dmsetup message switch 0 set_region_mappings 0:0 :1 :2 :0 :1 :2 :1
-Set repetitive mapping. This command:
+Set repetitive mapping. This command::
+
dmsetup message switch 0 set_region_mappings 1000:1 :2 R2,10
-is equivalent to:
+
+is equivalent to::
+
dmsetup message switch 0 set_region_mappings 1000:1 :2 :1 :2 :1 :2 :1 :2 \
:1 :2 :1 :2 :1 :2 :1 :2 :1 :2
-
diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/admin-guide/device-mapper/thin-provisioning.rst
index 883e7ca5f745..bafebf79da4b 100644
--- a/Documentation/device-mapper/thin-provisioning.txt
+++ b/Documentation/admin-guide/device-mapper/thin-provisioning.rst
@@ -1,3 +1,7 @@
+=================
+Thin provisioning
+=================
+
Introduction
============
@@ -95,6 +99,8 @@ previously.)
Using an existing pool device
-----------------------------
+::
+
dmsetup create pool \
--table "0 20971520 thin-pool $metadata_dev $data_dev \
$data_block_size $low_water_mark"
@@ -154,7 +160,7 @@ Thin provisioning
i) Creating a new thinly-provisioned volume.
To create a new thinly- provisioned volume you must send a message to an
- active pool device, /dev/mapper/pool in this example.
+ active pool device, /dev/mapper/pool in this example::
dmsetup message /dev/mapper/pool 0 "create_thin 0"
@@ -164,7 +170,7 @@ i) Creating a new thinly-provisioned volume.
ii) Using a thinly-provisioned volume.
- Thinly-provisioned volumes are activated using the 'thin' target:
+ Thinly-provisioned volumes are activated using the 'thin' target::
dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0"
@@ -181,6 +187,8 @@ i) Creating an internal snapshot.
must suspend it before creating the snapshot to avoid corruption.
This is NOT enforced at the moment, so please be careful!
+ ::
+
dmsetup suspend /dev/mapper/thin
dmsetup message /dev/mapper/pool 0 "create_snap 1 0"
dmsetup resume /dev/mapper/thin
@@ -198,14 +206,14 @@ ii) Using an internal snapshot.
activating or removing them both. (This differs from conventional
device-mapper snapshots.)
- Activate it exactly the same way as any other thinly-provisioned volume:
+ Activate it exactly the same way as any other thinly-provisioned volume::
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 1"
External snapshots
------------------
-You can use an external _read only_ device as an origin for a
+You can use an external **read only** device as an origin for a
thinly-provisioned volume. Any read to an unprovisioned area of the
thin device will be passed through to the origin. Writes trigger
the allocation of new blocks as usual.
@@ -223,11 +231,13 @@ i) Creating a snapshot of an external device
This is the same as creating a thin device.
You don't mention the origin at this stage.
+ ::
+
dmsetup message /dev/mapper/pool 0 "create_thin 0"
ii) Using a snapshot of an external device.
- Append an extra parameter to the thin target specifying the origin:
+ Append an extra parameter to the thin target specifying the origin::
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 0 /dev/image"
@@ -240,6 +250,8 @@ Deactivation
All devices using a pool must be deactivated before the pool itself
can be.
+::
+
dmsetup remove thin
dmsetup remove snap
dmsetup remove pool
@@ -252,25 +264,32 @@ Reference
i) Constructor
- thin-pool <metadata dev> <data dev> <data block size (sectors)> \
- <low water mark (blocks)> [<number of feature args> [<arg>]*]
+ ::
+
+ thin-pool <metadata dev> <data dev> <data block size (sectors)> \
+ <low water mark (blocks)> [<number of feature args> [<arg>]*]
Optional feature arguments:
- skip_block_zeroing: Skip the zeroing of newly-provisioned blocks.
+ skip_block_zeroing:
+ Skip the zeroing of newly-provisioned blocks.
- ignore_discard: Disable discard support.
+ ignore_discard:
+ Disable discard support.
- no_discard_passdown: Don't pass discards down to the underlying
- data device, but just remove the mapping.
+ no_discard_passdown:
+ Don't pass discards down to the underlying
+ data device, but just remove the mapping.
- read_only: Don't allow any changes to be made to the pool
+ read_only:
+ Don't allow any changes to be made to the pool
metadata. This mode is only available after the
thin-pool has been created and first used in full
read/write mode. It cannot be specified on initial
thin-pool creation.
- error_if_no_space: Error IOs, instead of queueing, if no space.
+ error_if_no_space:
+ Error IOs, instead of queueing, if no space.
Data block size must be between 64KB (128 sectors) and 1GB
(2097152 sectors) inclusive.
@@ -278,10 +297,12 @@ i) Constructor
ii) Status
- <transaction id> <used metadata blocks>/<total metadata blocks>
- <used data blocks>/<total data blocks> <held metadata root>
- ro|rw|out_of_data_space [no_]discard_passdown [error|queue]_if_no_space
- needs_check|- metadata_low_watermark
+ ::
+
+ <transaction id> <used metadata blocks>/<total metadata blocks>
+ <used data blocks>/<total data blocks> <held metadata root>
+ ro|rw|out_of_data_space [no_]discard_passdown [error|queue]_if_no_space
+ needs_check|- metadata_low_watermark
transaction id:
A 64-bit number used by userspace to help synchronise with metadata
@@ -336,13 +357,11 @@ ii) Status
iii) Messages
create_thin <dev id>
-
Create a new thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
create_snap <dev id> <origin id>
-
Create a new snapshot of another thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
@@ -350,11 +369,9 @@ iii) Messages
of which the new device will be a snapshot.
delete <dev id>
-
Deletes a thin device. Irreversible.
set_transaction_id <current id> <new id>
-
Userland volume managers, such as LVM, need a way to
synchronise their external metadata with the internal metadata of the
pool target. The thin-pool target offers to store an
@@ -364,14 +381,12 @@ iii) Messages
compare-and-swap message.
reserve_metadata_snap
-
Reserve a copy of the data mapping btree for use by userland.
This allows userland to inspect the mappings as they were when
this message was executed. Use the pool's status command to
get the root block associated with the metadata snapshot.
release_metadata_snap
-
Release a previously reserved copy of the data mapping btree.
'thin' target
@@ -379,7 +394,9 @@ iii) Messages
i) Constructor
- thin <pool dev> <dev id> [<external origin dev>]
+ ::
+
+ thin <pool dev> <dev id> [<external origin dev>]
pool dev:
the thin-pool device, e.g. /dev/mapper/my_pool or 253:0
@@ -401,8 +418,7 @@ provisioned as and when needed.
ii) Status
- <nr mapped sectors> <highest mapped sector>
-
+ <nr mapped sectors> <highest mapped sector>
If the pool has encountered device errors and failed, the status
will just contain the string 'Fail'. The userspace recovery
tools should then be used.
diff --git a/Documentation/device-mapper/unstriped.txt b/Documentation/admin-guide/device-mapper/unstriped.rst
index 0b2a306c54ee..0a8d3eb3f072 100644
--- a/Documentation/device-mapper/unstriped.txt
+++ b/Documentation/admin-guide/device-mapper/unstriped.rst
@@ -1,3 +1,7 @@
+================================
+Device-mapper "unstriped" target
+================================
+
Introduction
============
@@ -34,46 +38,46 @@ striped target to combine the 4 devices into one. It then will use
the unstriped target ontop of the striped device to access the
individual backing loop devices. We write data to the newly exposed
unstriped devices and verify the data written matches the correct
-underlying device on the striped array.
+underlying device on the striped array::
-#!/bin/bash
+ #!/bin/bash
-MEMBER_SIZE=$((128 * 1024 * 1024))
-NUM=4
-SEQ_END=$((${NUM}-1))
-CHUNK=256
-BS=4096
+ MEMBER_SIZE=$((128 * 1024 * 1024))
+ NUM=4
+ SEQ_END=$((${NUM}-1))
+ CHUNK=256
+ BS=4096
-RAID_SIZE=$((${MEMBER_SIZE}*${NUM}/512))
-DM_PARMS="0 ${RAID_SIZE} striped ${NUM} ${CHUNK}"
-COUNT=$((${MEMBER_SIZE} / ${BS}))
+ RAID_SIZE=$((${MEMBER_SIZE}*${NUM}/512))
+ DM_PARMS="0 ${RAID_SIZE} striped ${NUM} ${CHUNK}"
+ COUNT=$((${MEMBER_SIZE} / ${BS}))
-for i in $(seq 0 ${SEQ_END}); do
- dd if=/dev/zero of=member-${i} bs=${MEMBER_SIZE} count=1 oflag=direct
- losetup /dev/loop${i} member-${i}
- DM_PARMS+=" /dev/loop${i} 0"
-done
+ for i in $(seq 0 ${SEQ_END}); do
+ dd if=/dev/zero of=member-${i} bs=${MEMBER_SIZE} count=1 oflag=direct
+ losetup /dev/loop${i} member-${i}
+ DM_PARMS+=" /dev/loop${i} 0"
+ done
-echo $DM_PARMS | dmsetup create raid0
-for i in $(seq 0 ${SEQ_END}); do
- echo "0 1 unstriped ${NUM} ${CHUNK} ${i} /dev/mapper/raid0 0" | dmsetup create set-${i}
-done;
+ echo $DM_PARMS | dmsetup create raid0
+ for i in $(seq 0 ${SEQ_END}); do
+ echo "0 1 unstriped ${NUM} ${CHUNK} ${i} /dev/mapper/raid0 0" | dmsetup create set-${i}
+ done;
-for i in $(seq 0 ${SEQ_END}); do
- dd if=/dev/urandom of=/dev/mapper/set-${i} bs=${BS} count=${COUNT} oflag=direct
- diff /dev/mapper/set-${i} member-${i}
-done;
+ for i in $(seq 0 ${SEQ_END}); do
+ dd if=/dev/urandom of=/dev/mapper/set-${i} bs=${BS} count=${COUNT} oflag=direct
+ diff /dev/mapper/set-${i} member-${i}
+ done;
-for i in $(seq 0 ${SEQ_END}); do
- dmsetup remove set-${i}
-done
+ for i in $(seq 0 ${SEQ_END}); do
+ dmsetup remove set-${i}
+ done
-dmsetup remove raid0
+ dmsetup remove raid0
-for i in $(seq 0 ${SEQ_END}); do
- losetup -d /dev/loop${i}
- rm -f member-${i}
-done
+ for i in $(seq 0 ${SEQ_END}); do
+ losetup -d /dev/loop${i}
+ rm -f member-${i}
+ done
Another example
---------------
@@ -81,7 +85,7 @@ Another example
Intel NVMe drives contain two cores on the physical device.
Each core of the drive has segregated access to its LBA range.
The current LBA model has a RAID 0 128k chunk on each core, resulting
-in a 256k stripe across the two cores:
+in a 256k stripe across the two cores::
Core 0: Core 1:
__________ __________
@@ -108,17 +112,24 @@ Example dmsetup usage
unstriped ontop of Intel NVMe device that has 2 cores
-----------------------------------------------------
-dmsetup create nvmset0 --table '0 512 unstriped 2 256 0 /dev/nvme0n1 0'
-dmsetup create nvmset1 --table '0 512 unstriped 2 256 1 /dev/nvme0n1 0'
+
+::
+
+ dmsetup create nvmset0 --table '0 512 unstriped 2 256 0 /dev/nvme0n1 0'
+ dmsetup create nvmset1 --table '0 512 unstriped 2 256 1 /dev/nvme0n1 0'
There will now be two devices that expose Intel NVMe core 0 and 1
-respectively:
-/dev/mapper/nvmset0
-/dev/mapper/nvmset1
+respectively::
+
+ /dev/mapper/nvmset0
+ /dev/mapper/nvmset1
unstriped ontop of striped with 4 drives using 128K chunk size
--------------------------------------------------------------
-dmsetup create raid_disk0 --table '0 512 unstriped 4 256 0 /dev/mapper/striped 0'
-dmsetup create raid_disk1 --table '0 512 unstriped 4 256 1 /dev/mapper/striped 0'
-dmsetup create raid_disk2 --table '0 512 unstriped 4 256 2 /dev/mapper/striped 0'
-dmsetup create raid_disk3 --table '0 512 unstriped 4 256 3 /dev/mapper/striped 0'
+
+::
+
+ dmsetup create raid_disk0 --table '0 512 unstriped 4 256 0 /dev/mapper/striped 0'
+ dmsetup create raid_disk1 --table '0 512 unstriped 4 256 1 /dev/mapper/striped 0'
+ dmsetup create raid_disk2 --table '0 512 unstriped 4 256 2 /dev/mapper/striped 0'
+ dmsetup create raid_disk3 --table '0 512 unstriped 4 256 3 /dev/mapper/striped 0'
diff --git a/Documentation/device-mapper/verity.txt b/Documentation/admin-guide/device-mapper/verity.rst
index b3d2e4a42255..bb02caa45289 100644
--- a/Documentation/device-mapper/verity.txt
+++ b/Documentation/admin-guide/device-mapper/verity.rst
@@ -1,5 +1,6 @@
+=========
dm-verity
-==========
+=========
Device-Mapper's "verity" target provides transparent integrity checking of
block devices using a cryptographic digest provided by the kernel crypto API.
@@ -7,6 +8,9 @@ This target is read-only.
Construction Parameters
=======================
+
+::
+
<version> <dev> <hash_dev>
<data_block_size> <hash_block_size>
<num_data_blocks> <hash_start_block>
@@ -121,6 +125,13 @@ check_at_most_once
blocks, and a hash block will not be verified any more after all the data
blocks it covers have been verified anyway.
+root_hash_sig_key_desc <key_description>
+ This is the description of the USER_KEY that the kernel will lookup to get
+ the pkcs7 signature of the roothash. The pkcs7 signature is used to validate
+ the root hash during the creation of the device mapper block device.
+ Verification of roothash depends on the config DM_VERITY_VERIFY_ROOTHASH_SIG
+ being set in the kernel.
+
Theory of operation
===================
@@ -160,7 +171,9 @@ calculating the parent node.
The tree looks something like:
-alg = sha256, num_blocks = 32768, block_size = 4096
+ alg = sha256, num_blocks = 32768, block_size = 4096
+
+::
[ root ]
/ . . . \
@@ -189,6 +202,7 @@ block boundary) are the hash blocks which are stored a depth at a time
The full specification of kernel parameters and on-disk metadata format
is available at the cryptsetup project's wiki page
+
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
Status
@@ -198,7 +212,8 @@ If any check failed, C (for Corruption) is returned.
Example
=======
-Set up a device:
+Set up a device::
+
# dmsetup create vroot --readonly --table \
"0 2097152 verity 1 /dev/sda1 /dev/sda2 4096 4096 262144 1 sha256 "\
"4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
@@ -209,11 +224,13 @@ the hash tree or activate the kernel device. This is available from
the cryptsetup upstream repository https://gitlab.com/cryptsetup/cryptsetup/
(as a libcryptsetup extension).
-Create hash on the device:
+Create hash on the device::
+
# veritysetup format /dev/sda1 /dev/sda2
...
Root hash: 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
-Activate the device:
+Activate the device::
+
# veritysetup create vroot /dev/sda1 /dev/sda2 \
4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
diff --git a/Documentation/device-mapper/writecache.txt b/Documentation/admin-guide/device-mapper/writecache.rst
index 01532b3008ae..d3d7690f5e8d 100644
--- a/Documentation/device-mapper/writecache.txt
+++ b/Documentation/admin-guide/device-mapper/writecache.rst
@@ -1,3 +1,7 @@
+=================
+Writecache target
+=================
+
The writecache target caches writes on persistent memory or on SSD. It
doesn't cache reads because reads are supposed to be cached in page cache
in normal RAM.
@@ -6,15 +10,18 @@ When the device is constructed, the first sector should be zeroed or the
first sector should contain valid superblock from previous invocation.
Constructor parameters:
+
1. type of the cache device - "p" or "s"
- p - persistent memory
- s - SSD
+
+ - p - persistent memory
+ - s - SSD
2. the underlying device that will be cached
3. the cache device
4. block size (4096 is recommended; the maximum block size is the page
size)
5. the number of optional parameters (the parameters with an argument
count as two)
+
start_sector n (default: 0)
offset from the start of cache device in 512-byte sectors
high_watermark n (default: 50)
@@ -43,6 +50,7 @@ Constructor parameters:
applicable only to persistent memory - don't use the FUA
flag when writing back data and send the FLUSH request
afterwards
+
- some underlying devices perform better with fua, some
with nofua. The user should test it
@@ -60,6 +68,7 @@ Messages:
flush the cache device on next suspend. Use this message
when you are going to remove the cache device. The proper
sequence for removing the cache device is:
+
1. send the "flush_on_suspend" message
2. load an inactive table with a linear target that maps
to the underlying device
diff --git a/Documentation/device-mapper/zero.txt b/Documentation/admin-guide/device-mapper/zero.rst
index 20fb38e7fa7e..11fb5cf4597c 100644
--- a/Documentation/device-mapper/zero.txt
+++ b/Documentation/admin-guide/device-mapper/zero.rst
@@ -1,3 +1,4 @@
+=======
dm-zero
=======
@@ -18,20 +19,19 @@ filesystem limitations.
To create a sparse device, start by creating a dm-zero device that's the
desired size of the sparse device. For this example, we'll assume a 10TB
-sparse device.
+sparse device::
-TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
-echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
+ TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
+ echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
Then create a snapshot of the zero device, using any available block-device as
the COW device. The size of the COW device will determine the amount of real
space available to the sparse device. For this example, we'll assume /dev/sdb1
-is an available 10GB partition.
+is an available 10GB partition::
-echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
- dmsetup create sparse1
+ echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
+ dmsetup create sparse1
This will create a 10TB sparse device called /dev/mapper/sparse1 that has
10GB of actual storage space available. If more than 10GB of data is written
to this device, it will start returning I/O errors.
-
diff --git a/Documentation/admin-guide/devices.txt b/Documentation/admin-guide/devices.txt
index 1649117e6087..1c5d2281efc9 100644
--- a/Documentation/admin-guide/devices.txt
+++ b/Documentation/admin-guide/devices.txt
@@ -1647,8 +1647,17 @@
0 = /dev/comedi0 First comedi device
1 = /dev/comedi1 Second comedi device
...
+ 47 = /dev/comedi47 48th comedi device
- See http://stm.lbl.gov/comedi.
+ Minors 48 to 255 are reserved for comedi subdevices with
+ pathnames of the form "/dev/comediX_subdY", where "X" is the
+ minor number of the associated comedi device and "Y" is the
+ subdevice number. These subdevice minors are assigned
+ dynamically, so there is no fixed mapping from subdevice
+ pathnames to minor numbers.
+
+ See http://www.comedi.org/ for information about the Comedi
+ project.
98 block User-mode virtual block device
0 = /dev/ubda First user-mode block device
@@ -2693,8 +2702,8 @@
41 = /dev/ttySMX0 Motorola i.MX - port 0
42 = /dev/ttySMX1 Motorola i.MX - port 1
43 = /dev/ttySMX2 Motorola i.MX - port 2
- 44 = /dev/ttyMM0 Marvell MPSC - port 0
- 45 = /dev/ttyMM1 Marvell MPSC - port 1
+ 44 = /dev/ttyMM0 Marvell MPSC - port 0 (obsolete unused)
+ 45 = /dev/ttyMM1 Marvell MPSC - port 1 (obsolete unused)
46 = /dev/ttyCPM0 PPC CPM (SCC or SMC) - port 0
...
47 = /dev/ttyCPM5 PPC CPM (SCC or SMC) - port 5
diff --git a/Documentation/efi-stub.txt b/Documentation/admin-guide/efi-stub.rst
index 833edb0d0bc4..833edb0d0bc4 100644
--- a/Documentation/efi-stub.txt
+++ b/Documentation/admin-guide/efi-stub.rst
diff --git a/Documentation/gpio/index.rst b/Documentation/admin-guide/gpio/index.rst
index 09a4a553f434..a244ba4e87d5 100644
--- a/Documentation/gpio/index.rst
+++ b/Documentation/admin-guide/gpio/index.rst
@@ -1,4 +1,4 @@
-:orphan:
+.. SPDX-License-Identifier: GPL-2.0
====
gpio
diff --git a/Documentation/gpio/sysfs.rst b/Documentation/admin-guide/gpio/sysfs.rst
index ec09ffd983e7..ec09ffd983e7 100644
--- a/Documentation/gpio/sysfs.rst
+++ b/Documentation/admin-guide/gpio/sysfs.rst
diff --git a/Documentation/highuid.txt b/Documentation/admin-guide/highuid.rst
index 6ee70465c0ea..6ee70465c0ea 100644
--- a/Documentation/highuid.txt
+++ b/Documentation/admin-guide/highuid.rst
diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst
index ffc064c1ec68..49311f3da6f2 100644
--- a/Documentation/admin-guide/hw-vuln/index.rst
+++ b/Documentation/admin-guide/hw-vuln/index.rst
@@ -9,5 +9,6 @@ are configurable at compile, boot or run time.
.. toctree::
:maxdepth: 1
+ spectre
l1tf
mds
diff --git a/Documentation/admin-guide/hw-vuln/l1tf.rst b/Documentation/admin-guide/hw-vuln/l1tf.rst
index 31653a9f0e1b..f83212fae4d5 100644
--- a/Documentation/admin-guide/hw-vuln/l1tf.rst
+++ b/Documentation/admin-guide/hw-vuln/l1tf.rst
@@ -241,7 +241,7 @@ Guest mitigation mechanisms
For further information about confining guests to a single or to a group
of cores consult the cpusets documentation:
- https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
+ https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v1/cpusets.rst
.. _interrupt_isolation:
diff --git a/Documentation/admin-guide/hw-vuln/spectre.rst b/Documentation/admin-guide/hw-vuln/spectre.rst
new file mode 100644
index 000000000000..e05e581af5cf
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/spectre.rst
@@ -0,0 +1,769 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Spectre Side Channels
+=====================
+
+Spectre is a class of side channel attacks that exploit branch prediction
+and speculative execution on modern CPUs to read memory, possibly
+bypassing access controls. Speculative execution side channel exploits
+do not modify memory but attempt to infer privileged data in the memory.
+
+This document covers Spectre variant 1 and Spectre variant 2.
+
+Affected processors
+-------------------
+
+Speculative execution side channel methods affect a wide range of modern
+high performance processors, since most modern high speed processors
+use branch prediction and speculative execution.
+
+The following CPUs are vulnerable:
+
+ - Intel Core, Atom, Pentium, and Xeon processors
+
+ - AMD Phenom, EPYC, and Zen processors
+
+ - IBM POWER and zSeries processors
+
+ - Higher end ARM processors
+
+ - Apple CPUs
+
+ - Higher end MIPS CPUs
+
+ - Likely most other high performance CPUs. Contact your CPU vendor for details.
+
+Whether a processor is affected or not can be read out from the Spectre
+vulnerability files in sysfs. See :ref:`spectre_sys_info`.
+
+Related CVEs
+------------
+
+The following CVE entries describe Spectre variants:
+
+ ============= ======================= ==========================
+ CVE-2017-5753 Bounds check bypass Spectre variant 1
+ CVE-2017-5715 Branch target injection Spectre variant 2
+ CVE-2019-1125 Spectre v1 swapgs Spectre variant 1 (swapgs)
+ ============= ======================= ==========================
+
+Problem
+-------
+
+CPUs use speculative operations to improve performance. That may leave
+traces of memory accesses or computations in the processor's caches,
+buffers, and branch predictors. Malicious software may be able to
+influence the speculative execution paths, and then use the side effects
+of the speculative execution in the CPUs' caches and buffers to infer
+privileged data touched during the speculative execution.
+
+Spectre variant 1 attacks take advantage of speculative execution of
+conditional branches, while Spectre variant 2 attacks use speculative
+execution of indirect branches to leak privileged memory.
+See :ref:`[1] <spec_ref1>` :ref:`[5] <spec_ref5>` :ref:`[7] <spec_ref7>`
+:ref:`[10] <spec_ref10>` :ref:`[11] <spec_ref11>`.
+
+Spectre variant 1 (Bounds Check Bypass)
+---------------------------------------
+
+The bounds check bypass attack :ref:`[2] <spec_ref2>` takes advantage
+of speculative execution that bypasses conditional branch instructions
+used for memory access bounds check (e.g. checking if the index of an
+array results in memory access within a valid range). This results in
+memory accesses to invalid memory (with out-of-bound index) that are
+done speculatively before validation checks resolve. Such speculative
+memory accesses can leave side effects, creating side channels which
+leak information to the attacker.
+
+There are some extensions of Spectre variant 1 attacks for reading data
+over the network, see :ref:`[12] <spec_ref12>`. However such attacks
+are difficult, low bandwidth, fragile, and are considered low risk.
+
+Note that, despite "Bounds Check Bypass" name, Spectre variant 1 is not
+only about user-controlled array bounds checks. It can affect any
+conditional checks. The kernel entry code interrupt, exception, and NMI
+handlers all have conditional swapgs checks. Those may be problematic
+in the context of Spectre v1, as kernel code can speculatively run with
+a user GS.
+
+Spectre variant 2 (Branch Target Injection)
+-------------------------------------------
+
+The branch target injection attack takes advantage of speculative
+execution of indirect branches :ref:`[3] <spec_ref3>`. The indirect
+branch predictors inside the processor used to guess the target of
+indirect branches can be influenced by an attacker, causing gadget code
+to be speculatively executed, thus exposing sensitive data touched by
+the victim. The side effects left in the CPU's caches during speculative
+execution can be measured to infer data values.
+
+.. _poison_btb:
+
+In Spectre variant 2 attacks, the attacker can steer speculative indirect
+branches in the victim to gadget code by poisoning the branch target
+buffer of a CPU used for predicting indirect branch addresses. Such
+poisoning could be done by indirect branching into existing code,
+with the address offset of the indirect branch under the attacker's
+control. Since the branch prediction on impacted hardware does not
+fully disambiguate branch address and uses the offset for prediction,
+this could cause privileged code's indirect branch to jump to a gadget
+code with the same offset.
+
+The most useful gadgets take an attacker-controlled input parameter (such
+as a register value) so that the memory read can be controlled. Gadgets
+without input parameters might be possible, but the attacker would have
+very little control over what memory can be read, reducing the risk of
+the attack revealing useful data.
+
+One other variant 2 attack vector is for the attacker to poison the
+return stack buffer (RSB) :ref:`[13] <spec_ref13>` to cause speculative
+subroutine return instruction execution to go to a gadget. An attacker's
+imbalanced subroutine call instructions might "poison" entries in the
+return stack buffer which are later consumed by a victim's subroutine
+return instructions. This attack can be mitigated by flushing the return
+stack buffer on context switch, or virtual machine (VM) exit.
+
+On systems with simultaneous multi-threading (SMT), attacks are possible
+from the sibling thread, as level 1 cache and branch target buffer
+(BTB) may be shared between hardware threads in a CPU core. A malicious
+program running on the sibling thread may influence its peer's BTB to
+steer its indirect branch speculations to gadget code, and measure the
+speculative execution's side effects left in level 1 cache to infer the
+victim's data.
+
+Attack scenarios
+----------------
+
+The following list of attack scenarios have been anticipated, but may
+not cover all possible attack vectors.
+
+1. A user process attacking the kernel
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Spectre variant 1
+~~~~~~~~~~~~~~~~~
+
+ The attacker passes a parameter to the kernel via a register or
+ via a known address in memory during a syscall. Such parameter may
+ be used later by the kernel as an index to an array or to derive
+ a pointer for a Spectre variant 1 attack. The index or pointer
+ is invalid, but bound checks are bypassed in the code branch taken
+ for speculative execution. This could cause privileged memory to be
+ accessed and leaked.
+
+ For kernel code that has been identified where data pointers could
+ potentially be influenced for Spectre attacks, new "nospec" accessor
+ macros are used to prevent speculative loading of data.
+
+Spectre variant 1 (swapgs)
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ An attacker can train the branch predictor to speculatively skip the
+ swapgs path for an interrupt or exception. If they initialize
+ the GS register to a user-space value, if the swapgs is speculatively
+ skipped, subsequent GS-related percpu accesses in the speculation
+ window will be done with the attacker-controlled GS value. This
+ could cause privileged memory to be accessed and leaked.
+
+ For example:
+
+ ::
+
+ if (coming from user space)
+ swapgs
+ mov %gs:<percpu_offset>, %reg
+ mov (%reg), %reg1
+
+ When coming from user space, the CPU can speculatively skip the
+ swapgs, and then do a speculative percpu load using the user GS
+ value. So the user can speculatively force a read of any kernel
+ value. If a gadget exists which uses the percpu value as an address
+ in another load/store, then the contents of the kernel value may
+ become visible via an L1 side channel attack.
+
+ A similar attack exists when coming from kernel space. The CPU can
+ speculatively do the swapgs, causing the user GS to get used for the
+ rest of the speculative window.
+
+Spectre variant 2
+~~~~~~~~~~~~~~~~~
+
+ A spectre variant 2 attacker can :ref:`poison <poison_btb>` the branch
+ target buffer (BTB) before issuing syscall to launch an attack.
+ After entering the kernel, the kernel could use the poisoned branch
+ target buffer on indirect jump and jump to gadget code in speculative
+ execution.
+
+ If an attacker tries to control the memory addresses leaked during
+ speculative execution, he would also need to pass a parameter to the
+ gadget, either through a register or a known address in memory. After
+ the gadget has executed, he can measure the side effect.
+
+ The kernel can protect itself against consuming poisoned branch
+ target buffer entries by using return trampolines (also known as
+ "retpoline") :ref:`[3] <spec_ref3>` :ref:`[9] <spec_ref9>` for all
+ indirect branches. Return trampolines trap speculative execution paths
+ to prevent jumping to gadget code during speculative execution.
+ x86 CPUs with Enhanced Indirect Branch Restricted Speculation
+ (Enhanced IBRS) available in hardware should use the feature to
+ mitigate Spectre variant 2 instead of retpoline. Enhanced IBRS is
+ more efficient than retpoline.
+
+ There may be gadget code in firmware which could be exploited with
+ Spectre variant 2 attack by a rogue user process. To mitigate such
+ attacks on x86, Indirect Branch Restricted Speculation (IBRS) feature
+ is turned on before the kernel invokes any firmware code.
+
+2. A user process attacking another user process
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ A malicious user process can try to attack another user process,
+ either via a context switch on the same hardware thread, or from the
+ sibling hyperthread sharing a physical processor core on simultaneous
+ multi-threading (SMT) system.
+
+ Spectre variant 1 attacks generally require passing parameters
+ between the processes, which needs a data passing relationship, such
+ as remote procedure calls (RPC). Those parameters are used in gadget
+ code to derive invalid data pointers accessing privileged memory in
+ the attacked process.
+
+ Spectre variant 2 attacks can be launched from a rogue process by
+ :ref:`poisoning <poison_btb>` the branch target buffer. This can
+ influence the indirect branch targets for a victim process that either
+ runs later on the same hardware thread, or running concurrently on
+ a sibling hardware thread sharing the same physical core.
+
+ A user process can protect itself against Spectre variant 2 attacks
+ by using the prctl() syscall to disable indirect branch speculation
+ for itself. An administrator can also cordon off an unsafe process
+ from polluting the branch target buffer by disabling the process's
+ indirect branch speculation. This comes with a performance cost
+ from not using indirect branch speculation and clearing the branch
+ target buffer. When SMT is enabled on x86, for a process that has
+ indirect branch speculation disabled, Single Threaded Indirect Branch
+ Predictors (STIBP) :ref:`[4] <spec_ref4>` are turned on to prevent the
+ sibling thread from controlling branch target buffer. In addition,
+ the Indirect Branch Prediction Barrier (IBPB) is issued to clear the
+ branch target buffer when context switching to and from such process.
+
+ On x86, the return stack buffer is stuffed on context switch.
+ This prevents the branch target buffer from being used for branch
+ prediction when the return stack buffer underflows while switching to
+ a deeper call stack. Any poisoned entries in the return stack buffer
+ left by the previous process will also be cleared.
+
+ User programs should use address space randomization to make attacks
+ more difficult (Set /proc/sys/kernel/randomize_va_space = 1 or 2).
+
+3. A virtualized guest attacking the host
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ The attack mechanism is similar to how user processes attack the
+ kernel. The kernel is entered via hyper-calls or other virtualization
+ exit paths.
+
+ For Spectre variant 1 attacks, rogue guests can pass parameters
+ (e.g. in registers) via hyper-calls to derive invalid pointers to
+ speculate into privileged memory after entering the kernel. For places
+ where such kernel code has been identified, nospec accessor macros
+ are used to stop speculative memory access.
+
+ For Spectre variant 2 attacks, rogue guests can :ref:`poison
+ <poison_btb>` the branch target buffer or return stack buffer, causing
+ the kernel to jump to gadget code in the speculative execution paths.
+
+ To mitigate variant 2, the host kernel can use return trampolines
+ for indirect branches to bypass the poisoned branch target buffer,
+ and flushing the return stack buffer on VM exit. This prevents rogue
+ guests from affecting indirect branching in the host kernel.
+
+ To protect host processes from rogue guests, host processes can have
+ indirect branch speculation disabled via prctl(). The branch target
+ buffer is cleared before context switching to such processes.
+
+4. A virtualized guest attacking other guest
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ A rogue guest may attack another guest to get data accessible by the
+ other guest.
+
+ Spectre variant 1 attacks are possible if parameters can be passed
+ between guests. This may be done via mechanisms such as shared memory
+ or message passing. Such parameters could be used to derive data
+ pointers to privileged data in guest. The privileged data could be
+ accessed by gadget code in the victim's speculation paths.
+
+ Spectre variant 2 attacks can be launched from a rogue guest by
+ :ref:`poisoning <poison_btb>` the branch target buffer or the return
+ stack buffer. Such poisoned entries could be used to influence
+ speculation execution paths in the victim guest.
+
+ Linux kernel mitigates attacks to other guests running in the same
+ CPU hardware thread by flushing the return stack buffer on VM exit,
+ and clearing the branch target buffer before switching to a new guest.
+
+ If SMT is used, Spectre variant 2 attacks from an untrusted guest
+ in the sibling hyperthread can be mitigated by the administrator,
+ by turning off the unsafe guest's indirect branch speculation via
+ prctl(). A guest can also protect itself by turning on microcode
+ based mitigations (such as IBPB or STIBP on x86) within the guest.
+
+.. _spectre_sys_info:
+
+Spectre system information
+--------------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current
+mitigation status of the system for Spectre: whether the system is
+vulnerable, and which mitigations are active.
+
+The sysfs file showing Spectre variant 1 mitigation status is:
+
+ /sys/devices/system/cpu/vulnerabilities/spectre_v1
+
+The possible values in this file are:
+
+ .. list-table::
+
+ * - 'Not affected'
+ - The processor is not vulnerable.
+ * - 'Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers'
+ - The swapgs protections are disabled; otherwise it has
+ protection in the kernel on a case by case base with explicit
+ pointer sanitation and usercopy LFENCE barriers.
+ * - 'Mitigation: usercopy/swapgs barriers and __user pointer sanitization'
+ - Protection in the kernel on a case by case base with explicit
+ pointer sanitation, usercopy LFENCE barriers, and swapgs LFENCE
+ barriers.
+
+However, the protections are put in place on a case by case basis,
+and there is no guarantee that all possible attack vectors for Spectre
+variant 1 are covered.
+
+The spectre_v2 kernel file reports if the kernel has been compiled with
+retpoline mitigation or if the CPU has hardware mitigation, and if the
+CPU has support for additional process-specific mitigation.
+
+This file also reports CPU features enabled by microcode to mitigate
+attack between user processes:
+
+1. Indirect Branch Prediction Barrier (IBPB) to add additional
+ isolation between processes of different users.
+2. Single Thread Indirect Branch Predictors (STIBP) to add additional
+ isolation between CPU threads running on the same core.
+
+These CPU features may impact performance when used and can be enabled
+per process on a case-by-case base.
+
+The sysfs file showing Spectre variant 2 mitigation status is:
+
+ /sys/devices/system/cpu/vulnerabilities/spectre_v2
+
+The possible values in this file are:
+
+ - Kernel status:
+
+ ==================================== =================================
+ 'Not affected' The processor is not vulnerable
+ 'Vulnerable' Vulnerable, no mitigation
+ 'Mitigation: Full generic retpoline' Software-focused mitigation
+ 'Mitigation: Full AMD retpoline' AMD-specific software mitigation
+ 'Mitigation: Enhanced IBRS' Hardware-focused mitigation
+ ==================================== =================================
+
+ - Firmware status: Show if Indirect Branch Restricted Speculation (IBRS) is
+ used to protect against Spectre variant 2 attacks when calling firmware (x86 only).
+
+ ========== =============================================================
+ 'IBRS_FW' Protection against user program attacks when calling firmware
+ ========== =============================================================
+
+ - Indirect branch prediction barrier (IBPB) status for protection between
+ processes of different users. This feature can be controlled through
+ prctl() per process, or through kernel command line options. This is
+ an x86 only feature. For more details see below.
+
+ =================== ========================================================
+ 'IBPB: disabled' IBPB unused
+ 'IBPB: always-on' Use IBPB on all tasks
+ 'IBPB: conditional' Use IBPB on SECCOMP or indirect branch restricted tasks
+ =================== ========================================================
+
+ - Single threaded indirect branch prediction (STIBP) status for protection
+ between different hyper threads. This feature can be controlled through
+ prctl per process, or through kernel command line options. This is x86
+ only feature. For more details see below.
+
+ ==================== ========================================================
+ 'STIBP: disabled' STIBP unused
+ 'STIBP: forced' Use STIBP on all tasks
+ 'STIBP: conditional' Use STIBP on SECCOMP or indirect branch restricted tasks
+ ==================== ========================================================
+
+ - Return stack buffer (RSB) protection status:
+
+ ============= ===========================================
+ 'RSB filling' Protection of RSB on context switch enabled
+ ============= ===========================================
+
+Full mitigation might require a microcode update from the CPU
+vendor. When the necessary microcode is not available, the kernel will
+report vulnerability.
+
+Turning on mitigation for Spectre variant 1 and Spectre variant 2
+-----------------------------------------------------------------
+
+1. Kernel mitigation
+^^^^^^^^^^^^^^^^^^^^
+
+Spectre variant 1
+~~~~~~~~~~~~~~~~~
+
+ For the Spectre variant 1, vulnerable kernel code (as determined
+ by code audit or scanning tools) is annotated on a case by case
+ basis to use nospec accessor macros for bounds clipping :ref:`[2]
+ <spec_ref2>` to avoid any usable disclosure gadgets. However, it may
+ not cover all attack vectors for Spectre variant 1.
+
+ Copy-from-user code has an LFENCE barrier to prevent the access_ok()
+ check from being mis-speculated. The barrier is done by the
+ barrier_nospec() macro.
+
+ For the swapgs variant of Spectre variant 1, LFENCE barriers are
+ added to interrupt, exception and NMI entry where needed. These
+ barriers are done by the FENCE_SWAPGS_KERNEL_ENTRY and
+ FENCE_SWAPGS_USER_ENTRY macros.
+
+Spectre variant 2
+~~~~~~~~~~~~~~~~~
+
+ For Spectre variant 2 mitigation, the compiler turns indirect calls or
+ jumps in the kernel into equivalent return trampolines (retpolines)
+ :ref:`[3] <spec_ref3>` :ref:`[9] <spec_ref9>` to go to the target
+ addresses. Speculative execution paths under retpolines are trapped
+ in an infinite loop to prevent any speculative execution jumping to
+ a gadget.
+
+ To turn on retpoline mitigation on a vulnerable CPU, the kernel
+ needs to be compiled with a gcc compiler that supports the
+ -mindirect-branch=thunk-extern -mindirect-branch-register options.
+ If the kernel is compiled with a Clang compiler, the compiler needs
+ to support -mretpoline-external-thunk option. The kernel config
+ CONFIG_RETPOLINE needs to be turned on, and the CPU needs to run with
+ the latest updated microcode.
+
+ On Intel Skylake-era systems the mitigation covers most, but not all,
+ cases. See :ref:`[3] <spec_ref3>` for more details.
+
+ On CPUs with hardware mitigation for Spectre variant 2 (e.g. Enhanced
+ IBRS on x86), retpoline is automatically disabled at run time.
+
+ The retpoline mitigation is turned on by default on vulnerable
+ CPUs. It can be forced on or off by the administrator
+ via the kernel command line and sysfs control files. See
+ :ref:`spectre_mitigation_control_command_line`.
+
+ On x86, indirect branch restricted speculation is turned on by default
+ before invoking any firmware code to prevent Spectre variant 2 exploits
+ using the firmware.
+
+ Using kernel address space randomization (CONFIG_RANDOMIZE_SLAB=y
+ and CONFIG_SLAB_FREELIST_RANDOM=y in the kernel configuration) makes
+ attacks on the kernel generally more difficult.
+
+2. User program mitigation
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ User programs can mitigate Spectre variant 1 using LFENCE or "bounds
+ clipping". For more details see :ref:`[2] <spec_ref2>`.
+
+ For Spectre variant 2 mitigation, individual user programs
+ can be compiled with return trampolines for indirect branches.
+ This protects them from consuming poisoned entries in the branch
+ target buffer left by malicious software. Alternatively, the
+ programs can disable their indirect branch speculation via prctl()
+ (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+ On x86, this will turn on STIBP to guard against attacks from the
+ sibling thread when the user program is running, and use IBPB to
+ flush the branch target buffer when switching to/from the program.
+
+ Restricting indirect branch speculation on a user program will
+ also prevent the program from launching a variant 2 attack
+ on x86. All sand-boxed SECCOMP programs have indirect branch
+ speculation restricted by default. Administrators can change
+ that behavior via the kernel command line and sysfs control files.
+ See :ref:`spectre_mitigation_control_command_line`.
+
+ Programs that disable their indirect branch speculation will have
+ more overhead and run slower.
+
+ User programs should use address space randomization
+ (/proc/sys/kernel/randomize_va_space = 1 or 2) to make attacks more
+ difficult.
+
+3. VM mitigation
+^^^^^^^^^^^^^^^^
+
+ Within the kernel, Spectre variant 1 attacks from rogue guests are
+ mitigated on a case by case basis in VM exit paths. Vulnerable code
+ uses nospec accessor macros for "bounds clipping", to avoid any
+ usable disclosure gadgets. However, this may not cover all variant
+ 1 attack vectors.
+
+ For Spectre variant 2 attacks from rogue guests to the kernel, the
+ Linux kernel uses retpoline or Enhanced IBRS to prevent consumption of
+ poisoned entries in branch target buffer left by rogue guests. It also
+ flushes the return stack buffer on every VM exit to prevent a return
+ stack buffer underflow so poisoned branch target buffer could be used,
+ or attacker guests leaving poisoned entries in the return stack buffer.
+
+ To mitigate guest-to-guest attacks in the same CPU hardware thread,
+ the branch target buffer is sanitized by flushing before switching
+ to a new guest on a CPU.
+
+ The above mitigations are turned on by default on vulnerable CPUs.
+
+ To mitigate guest-to-guest attacks from sibling thread when SMT is
+ in use, an untrusted guest running in the sibling thread can have
+ its indirect branch speculation disabled by administrator via prctl().
+
+ The kernel also allows guests to use any microcode based mitigation
+ they choose to use (such as IBPB or STIBP on x86) to protect themselves.
+
+.. _spectre_mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+Spectre variant 2 mitigation can be disabled or force enabled at the
+kernel command line.
+
+ nospectre_v1
+
+ [X86,PPC] Disable mitigations for Spectre Variant 1
+ (bounds check bypass). With this option data leaks are
+ possible in the system.
+
+ nospectre_v2
+
+ [X86] Disable all mitigations for the Spectre variant 2
+ (indirect branch prediction) vulnerability. System may
+ allow data leaks with this option, which is equivalent
+ to spectre_v2=off.
+
+
+ spectre_v2=
+
+ [X86] Control mitigation of Spectre variant 2
+ (indirect branch speculation) vulnerability.
+ The default operation protects the kernel from
+ user space attacks.
+
+ on
+ unconditionally enable, implies
+ spectre_v2_user=on
+ off
+ unconditionally disable, implies
+ spectre_v2_user=off
+ auto
+ kernel detects whether your CPU model is
+ vulnerable
+
+ Selecting 'on' will, and 'auto' may, choose a
+ mitigation method at run time according to the
+ CPU, the available microcode, the setting of the
+ CONFIG_RETPOLINE configuration option, and the
+ compiler with which the kernel was built.
+
+ Selecting 'on' will also enable the mitigation
+ against user space to user space task attacks.
+
+ Selecting 'off' will disable both the kernel and
+ the user space protections.
+
+ Specific mitigations can also be selected manually:
+
+ retpoline
+ replace indirect branches
+ retpoline,generic
+ google's original retpoline
+ retpoline,amd
+ AMD-specific minimal thunk
+
+ Not specifying this option is equivalent to
+ spectre_v2=auto.
+
+For user space mitigation:
+
+ spectre_v2_user=
+
+ [X86] Control mitigation of Spectre variant 2
+ (indirect branch speculation) vulnerability between
+ user space tasks
+
+ on
+ Unconditionally enable mitigations. Is
+ enforced by spectre_v2=on
+
+ off
+ Unconditionally disable mitigations. Is
+ enforced by spectre_v2=off
+
+ prctl
+ Indirect branch speculation is enabled,
+ but mitigation can be enabled via prctl
+ per thread. The mitigation control state
+ is inherited on fork.
+
+ prctl,ibpb
+ Like "prctl" above, but only STIBP is
+ controlled per thread. IBPB is issued
+ always when switching between different user
+ space processes.
+
+ seccomp
+ Same as "prctl" above, but all seccomp
+ threads will enable the mitigation unless
+ they explicitly opt out.
+
+ seccomp,ibpb
+ Like "seccomp" above, but only STIBP is
+ controlled per thread. IBPB is issued
+ always when switching between different
+ user space processes.
+
+ auto
+ Kernel selects the mitigation depending on
+ the available CPU features and vulnerability.
+
+ Default mitigation:
+ If CONFIG_SECCOMP=y then "seccomp", otherwise "prctl"
+
+ Not specifying this option is equivalent to
+ spectre_v2_user=auto.
+
+ In general the kernel by default selects
+ reasonable mitigations for the current CPU. To
+ disable Spectre variant 2 mitigations, boot with
+ spectre_v2=off. Spectre variant 1 mitigations
+ cannot be disabled.
+
+Mitigation selection guide
+--------------------------
+
+1. Trusted userspace
+^^^^^^^^^^^^^^^^^^^^
+
+ If all userspace applications are from trusted sources and do not
+ execute externally supplied untrusted code, then the mitigations can
+ be disabled.
+
+2. Protect sensitive programs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ For security-sensitive programs that have secrets (e.g. crypto
+ keys), protection against Spectre variant 2 can be put in place by
+ disabling indirect branch speculation when the program is running
+ (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+
+3. Sandbox untrusted programs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+ Untrusted programs that could be a source of attacks can be cordoned
+ off by disabling their indirect branch speculation when they are run
+ (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+ This prevents untrusted programs from polluting the branch target
+ buffer. All programs running in SECCOMP sandboxes have indirect
+ branch speculation restricted by default. This behavior can be
+ changed via the kernel command line and sysfs control files. See
+ :ref:`spectre_mitigation_control_command_line`.
+
+3. High security mode
+^^^^^^^^^^^^^^^^^^^^^
+
+ All Spectre variant 2 mitigations can be forced on
+ at boot time for all programs (See the "on" option in
+ :ref:`spectre_mitigation_control_command_line`). This will add
+ overhead as indirect branch speculations for all programs will be
+ restricted.
+
+ On x86, branch target buffer will be flushed with IBPB when switching
+ to a new program. STIBP is left on all the time to protect programs
+ against variant 2 attacks originating from programs running on
+ sibling threads.
+
+ Alternatively, STIBP can be used only when running programs
+ whose indirect branch speculation is explicitly disabled,
+ while IBPB is still used all the time when switching to a new
+ program to clear the branch target buffer (See "ibpb" option in
+ :ref:`spectre_mitigation_control_command_line`). This "ibpb" option
+ has less performance cost than the "on" option, which leaves STIBP
+ on all the time.
+
+References on Spectre
+---------------------
+
+Intel white papers:
+
+.. _spec_ref1:
+
+[1] `Intel analysis of speculative execution side channels <https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf>`_.
+
+.. _spec_ref2:
+
+[2] `Bounds check bypass <https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass>`_.
+
+.. _spec_ref3:
+
+[3] `Deep dive: Retpoline: A branch target injection mitigation <https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation>`_.
+
+.. _spec_ref4:
+
+[4] `Deep Dive: Single Thread Indirect Branch Predictors <https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors>`_.
+
+AMD white papers:
+
+.. _spec_ref5:
+
+[5] `AMD64 technology indirect branch control extension <https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf>`_.
+
+.. _spec_ref6:
+
+[6] `Software techniques for managing speculation on AMD processors <https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf>`_.
+
+ARM white papers:
+
+.. _spec_ref7:
+
+[7] `Cache speculation side-channels <https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper>`_.
+
+.. _spec_ref8:
+
+[8] `Cache speculation issues update <https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/latest-updates/cache-speculation-issues-update>`_.
+
+Google white paper:
+
+.. _spec_ref9:
+
+[9] `Retpoline: a software construct for preventing branch-target-injection <https://support.google.com/faqs/answer/7625886>`_.
+
+MIPS white paper:
+
+.. _spec_ref10:
+
+[10] `MIPS: response on speculative execution and side channel vulnerabilities <https://www.mips.com/blog/mips-response-on-speculative-execution-and-side-channel-vulnerabilities/>`_.
+
+Academic papers:
+
+.. _spec_ref11:
+
+[11] `Spectre Attacks: Exploiting Speculative Execution <https://spectreattack.com/spectre.pdf>`_.
+
+.. _spec_ref12:
+
+[12] `NetSpectre: Read Arbitrary Memory over Network <https://arxiv.org/abs/1807.10535>`_.
+
+.. _spec_ref13:
+
+[13] `Spectre Returns! Speculation Attacks using the Return Stack Buffer <https://www.usenix.org/system/files/conference/woot18/woot18-paper-koruyeh.pdf>`_.
diff --git a/Documentation/hw_random.txt b/Documentation/admin-guide/hw_random.rst
index 121de96e395e..121de96e395e 100644
--- a/Documentation/hw_random.txt
+++ b/Documentation/admin-guide/hw_random.rst
diff --git a/Documentation/admin-guide/index.rst b/Documentation/admin-guide/index.rst
index 8001917ee012..34cc20ee7f3a 100644
--- a/Documentation/admin-guide/index.rst
+++ b/Documentation/admin-guide/index.rst
@@ -16,6 +16,7 @@ etc.
README
kernel-parameters
devices
+ sysctl/index
This section describes CPU vulnerabilities and their mitigations.
@@ -38,6 +39,8 @@ problems and bugs in particular.
ramoops
dynamic-debug-howto
init
+ kdump/index
+ perf/index
This is the beginning of a section with information of interest to
application developers. Documents covering various aspects of the kernel
@@ -56,11 +59,13 @@ configure specific aspects of kernel behavior to your liking.
initrd
cgroup-v2
+ cgroup-v1/index
serial-console
braille-console
parport
md
module-signing
+ rapidio
sysrq
unicode
vga-softcursor
@@ -69,13 +74,43 @@ configure specific aspects of kernel behavior to your liking.
java
ras
bcache
+ blockdev/index
ext4
+ binderfs
+ cifs/index
+ xfs
+ jfs
+ ufs
pm/index
thunderbolt
LSM/index
mm/index
+ namespaces/index
perf-security
acpi/index
+ aoe/index
+ btmrvl
+ clearing-warn-once
+ cpu-load
+ cputopology
+ device-mapper/index
+ efi-stub
+ gpio/index
+ highuid
+ hw_random
+ iostats
+ kernel-per-CPU-kthreads
+ laptops/index
+ auxdisplay/index
+ lcd-panel-cgram
+ ldm
+ lockup-watchdogs
+ numastat
+ pnp
+ rtc
+ svga
+ wimax/index
+ video-output
.. only:: subproject and html
diff --git a/Documentation/iostats.txt b/Documentation/admin-guide/iostats.rst
index 49df45f90e8a..5d63b18bd6d1 100644
--- a/Documentation/iostats.txt
+++ b/Documentation/admin-guide/iostats.rst
@@ -97,6 +97,10 @@ Field 9 -- # of I/Os currently in progress
Field 10 -- # of milliseconds spent doing I/Os
This field increases so long as field 9 is nonzero.
+ Since 5.0 this field counts jiffies when at least one request was
+ started or completed. If request runs more than 2 jiffies then some
+ I/O time will not be accounted unless there are other requests.
+
Field 11 -- weighted # of milliseconds spent doing I/Os
This field is incremented at each I/O start, I/O completion, I/O
merge, or read of these stats by the number of I/Os in progress
diff --git a/Documentation/filesystems/jfs.txt b/Documentation/admin-guide/jfs.rst
index 41fd757997b3..9e12d936bc90 100644
--- a/Documentation/filesystems/jfs.txt
+++ b/Documentation/admin-guide/jfs.rst
@@ -1,45 +1,59 @@
+===========================================
IBM's Journaled File System (JFS) for Linux
+===========================================
JFS Homepage: http://jfs.sourceforge.net/
The following mount options are supported:
+
(*) == default
-iocharset=name Character set to use for converting from Unicode to
+iocharset=name
+ Character set to use for converting from Unicode to
ASCII. The default is to do no conversion. Use
iocharset=utf8 for UTF-8 translations. This requires
CONFIG_NLS_UTF8 to be set in the kernel .config file.
iocharset=none specifies the default behavior explicitly.
-resize=value Resize the volume to <value> blocks. JFS only supports
+resize=value
+ Resize the volume to <value> blocks. JFS only supports
growing a volume, not shrinking it. This option is only
valid during a remount, when the volume is mounted
read-write. The resize keyword with no value will grow
the volume to the full size of the partition.
-nointegrity Do not write to the journal. The primary use of this option
+nointegrity
+ Do not write to the journal. The primary use of this option
is to allow for higher performance when restoring a volume
from backup media. The integrity of the volume is not
guaranteed if the system abnormally abends.
-integrity(*) Commit metadata changes to the journal. Use this option to
+integrity(*)
+ Commit metadata changes to the journal. Use this option to
remount a volume where the nointegrity option was
previously specified in order to restore normal behavior.
-errors=continue Keep going on a filesystem error.
-errors=remount-ro(*) Remount the filesystem read-only on an error.
-errors=panic Panic and halt the machine if an error occurs.
+errors=continue
+ Keep going on a filesystem error.
+errors=remount-ro(*)
+ Remount the filesystem read-only on an error.
+errors=panic
+ Panic and halt the machine if an error occurs.
-uid=value Override on-disk uid with specified value
-gid=value Override on-disk gid with specified value
-umask=value Override on-disk umask with specified octal value. For
- directories, the execute bit will be set if the corresponding
+uid=value
+ Override on-disk uid with specified value
+gid=value
+ Override on-disk gid with specified value
+umask=value
+ Override on-disk umask with specified octal value. For
+ directories, the execute bit will be set if the corresponding
read bit is set.
-discard=minlen This enables/disables the use of discard/TRIM commands.
-discard The discard/TRIM commands are sent to the underlying
-nodiscard(*) block device when blocks are freed. This is useful for SSD
- devices and sparse/thinly-provisioned LUNs. The FITRIM ioctl
+discard=minlen, discard/nodiscard(*)
+ This enables/disables the use of discard/TRIM commands.
+ The discard/TRIM commands are sent to the underlying
+ block device when blocks are freed. This is useful for SSD
+ devices and sparse/thinly-provisioned LUNs. The FITRIM ioctl
command is also available together with the nodiscard option.
The value of minlen specifies the minimum blockcount, when
a TRIM command to the block device is considered useful.
diff --git a/Documentation/kdump/gdbmacros.txt b/Documentation/admin-guide/kdump/gdbmacros.txt
index 220d0a80ca2c..220d0a80ca2c 100644
--- a/Documentation/kdump/gdbmacros.txt
+++ b/Documentation/admin-guide/kdump/gdbmacros.txt
diff --git a/Documentation/admin-guide/kdump/index.rst b/Documentation/admin-guide/kdump/index.rst
new file mode 100644
index 000000000000..8e2ebd0383cd
--- /dev/null
+++ b/Documentation/admin-guide/kdump/index.rst
@@ -0,0 +1,20 @@
+
+================================================================
+Documentation for Kdump - The kexec-based Crash Dumping Solution
+================================================================
+
+This document includes overview, setup and installation, and analysis
+information.
+
+.. toctree::
+ :maxdepth: 1
+
+ kdump
+ vmcoreinfo
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/kdump/kdump.txt b/Documentation/admin-guide/kdump/kdump.rst
index 3162eeb8c262..ac7e131d2935 100644
--- a/Documentation/kdump/kdump.txt
+++ b/Documentation/admin-guide/kdump/kdump.rst
@@ -71,9 +71,8 @@ This is a symlink to the latest version.
The latest kexec-tools git tree is available at:
-git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
-and
-http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
+- git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
+- http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
There is also a gitweb interface available at
http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git
@@ -81,25 +80,25 @@ http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git
More information about kexec-tools can be found at
http://horms.net/projects/kexec/
-3) Unpack the tarball with the tar command, as follows:
+3) Unpack the tarball with the tar command, as follows::
- tar xvpzf kexec-tools.tar.gz
+ tar xvpzf kexec-tools.tar.gz
-4) Change to the kexec-tools directory, as follows:
+4) Change to the kexec-tools directory, as follows::
- cd kexec-tools-VERSION
+ cd kexec-tools-VERSION
-5) Configure the package, as follows:
+5) Configure the package, as follows::
- ./configure
+ ./configure
-6) Compile the package, as follows:
+6) Compile the package, as follows::
- make
+ make
-7) Install the package, as follows:
+7) Install the package, as follows::
- make install
+ make install
Build the system and dump-capture kernels
@@ -126,25 +125,25 @@ dump-capture kernels for enabling kdump support.
System kernel config options
----------------------------
-1) Enable "kexec system call" in "Processor type and features."
+1) Enable "kexec system call" in "Processor type and features."::
- CONFIG_KEXEC=y
+ CONFIG_KEXEC=y
2) Enable "sysfs file system support" in "Filesystem" -> "Pseudo
- filesystems." This is usually enabled by default.
+ filesystems." This is usually enabled by default::
- CONFIG_SYSFS=y
+ CONFIG_SYSFS=y
Note that "sysfs file system support" might not appear in the "Pseudo
filesystems" menu if "Configure standard kernel features (for small
systems)" is not enabled in "General Setup." In this case, check the
- .config file itself to ensure that sysfs is turned on, as follows:
+ .config file itself to ensure that sysfs is turned on, as follows::
- grep 'CONFIG_SYSFS' .config
+ grep 'CONFIG_SYSFS' .config
-3) Enable "Compile the kernel with debug info" in "Kernel hacking."
+3) Enable "Compile the kernel with debug info" in "Kernel hacking."::
- CONFIG_DEBUG_INFO=Y
+ CONFIG_DEBUG_INFO=Y
This causes the kernel to be built with debug symbols. The dump
analysis tools require a vmlinux with debug symbols in order to read
@@ -154,29 +153,32 @@ Dump-capture kernel config options (Arch Independent)
-----------------------------------------------------
1) Enable "kernel crash dumps" support under "Processor type and
- features":
+ features"::
- CONFIG_CRASH_DUMP=y
+ CONFIG_CRASH_DUMP=y
-2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems".
+2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems"::
+
+ CONFIG_PROC_VMCORE=y
- CONFIG_PROC_VMCORE=y
(CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.)
Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
--------------------------------------------------------------------
1) On i386, enable high memory support under "Processor type and
- features":
+ features"::
+
+ CONFIG_HIGHMEM64G=y
+
+ or::
- CONFIG_HIGHMEM64G=y
- or
- CONFIG_HIGHMEM4G
+ CONFIG_HIGHMEM4G
2) On i386 and x86_64, disable symmetric multi-processing support
- under "Processor type and features":
+ under "Processor type and features"::
- CONFIG_SMP=n
+ CONFIG_SMP=n
(If CONFIG_SMP=y, then specify maxcpus=1 on the kernel command line
when loading the dump-capture kernel, see section "Load the Dump-capture
@@ -184,9 +186,9 @@ Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
3) If one wants to build and use a relocatable kernel,
Enable "Build a relocatable kernel" support under "Processor type and
- features"
+ features"::
- CONFIG_RELOCATABLE=y
+ CONFIG_RELOCATABLE=y
4) Use a suitable value for "Physical address where the kernel is
loaded" (under "Processor type and features"). This only appears when
@@ -211,13 +213,13 @@ Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
Dump-capture kernel config options (Arch Dependent, ppc64)
----------------------------------------------------------
-1) Enable "Build a kdump crash kernel" support under "Kernel" options:
+1) Enable "Build a kdump crash kernel" support under "Kernel" options::
- CONFIG_CRASH_DUMP=y
+ CONFIG_CRASH_DUMP=y
-2) Enable "Build a relocatable kernel" support
+2) Enable "Build a relocatable kernel" support::
- CONFIG_RELOCATABLE=y
+ CONFIG_RELOCATABLE=y
Make and install the kernel and its modules.
@@ -231,11 +233,13 @@ Dump-capture kernel config options (Arch Dependent, ia64)
The crashkernel region can be automatically placed by the system
kernel at run time. This is done by specifying the base address as 0,
- or omitting it all together.
+ or omitting it all together::
- crashkernel=256M@0
- or
- crashkernel=256M
+ crashkernel=256M@0
+
+ or::
+
+ crashkernel=256M
If the start address is specified, note that the start address of the
kernel will be aligned to 64Mb, so if the start address is not then
@@ -245,9 +249,9 @@ Dump-capture kernel config options (Arch Dependent, arm)
----------------------------------------------------------
- To use a relocatable kernel,
- Enable "AUTO_ZRELADDR" support under "Boot" options:
+ Enable "AUTO_ZRELADDR" support under "Boot" options::
- AUTO_ZRELADDR=y
+ AUTO_ZRELADDR=y
Dump-capture kernel config options (Arch Dependent, arm64)
----------------------------------------------------------
@@ -265,12 +269,12 @@ on the value of System RAM -- that's mostly for distributors that pre-setup
the kernel command line to avoid a unbootable system after some memory has
been removed from the machine.
-The syntax is:
+The syntax is::
crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset]
range=start-[end]
-For example:
+For example::
crashkernel=512M-2G:64M,2G-:128M
@@ -326,35 +330,46 @@ can choose to load the uncompressed vmlinux or compressed bzImage/vmlinuz
of dump-capture kernel. Following is the summary.
For i386 and x86_64:
+
- Use vmlinux if kernel is not relocatable.
- Use bzImage/vmlinuz if kernel is relocatable.
+
For ppc64:
+
- Use vmlinux
+
For ia64:
+
- Use vmlinux or vmlinuz.gz
+
For s390x:
+
- Use image or bzImage
+
For arm:
+
- Use zImage
+
For arm64:
+
- Use vmlinux or Image
If you are using an uncompressed vmlinux image then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-vmlinux-image> \
--initrd=<initrd-for-dump-capture-kernel> --args-linux \
--append="root=<root-dev> <arch-specific-options>"
If you are using a compressed bzImage/vmlinuz, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-bzImage> \
--initrd=<initrd-for-dump-capture-kernel> \
--append="root=<root-dev> <arch-specific-options>"
If you are using a compressed zImage, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec --type zImage -p <dump-capture-kernel-bzImage> \
--initrd=<initrd-for-dump-capture-kernel> \
@@ -362,7 +377,7 @@ to load dump-capture kernel.
--append="root=<root-dev> <arch-specific-options>"
If you are using an uncompressed Image, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-Image> \
--initrd=<initrd-for-dump-capture-kernel> \
@@ -376,18 +391,23 @@ Following are the arch specific command line options to be used while
loading dump-capture kernel.
For i386, x86_64 and ia64:
+
"1 irqpoll maxcpus=1 reset_devices"
For ppc64:
+
"1 maxcpus=1 noirqdistrib reset_devices"
For s390x:
+
"1 maxcpus=1 cgroup_disable=memory"
For arm:
+
"1 maxcpus=1 reset_devices"
For arm64:
+
"1 maxcpus=1 reset_devices"
Notes on loading the dump-capture kernel:
@@ -464,7 +484,7 @@ Write Out the Dump File
=======================
After the dump-capture kernel is booted, write out the dump file with
-the following command:
+the following command::
cp /proc/vmcore <dump-file>
@@ -476,7 +496,7 @@ Before analyzing the dump image, you should reboot into a stable kernel.
You can do limited analysis using GDB on the dump file copied out of
/proc/vmcore. Use the debug vmlinux built with -g and run the following
-command:
+command::
gdb vmlinux <dump-file>
@@ -504,6 +524,11 @@ to achieve the same behaviour.
Contact
=======
-Vivek Goyal (vgoyal@redhat.com)
-Maneesh Soni (maneesh@in.ibm.com)
+- Vivek Goyal (vgoyal@redhat.com)
+- Maneesh Soni (maneesh@in.ibm.com)
+
+GDB macros
+==========
+.. include:: gdbmacros.txt
+ :literal:
diff --git a/Documentation/kdump/vmcoreinfo.txt b/Documentation/admin-guide/kdump/vmcoreinfo.rst
index bb94a4bd597a..007a6b86e0ee 100644
--- a/Documentation/kdump/vmcoreinfo.txt
+++ b/Documentation/admin-guide/kdump/vmcoreinfo.rst
@@ -1,8 +1,7 @@
-================================================================
- VMCOREINFO
-================================================================
+==========
+VMCOREINFO
+==========
-===========
What is it?
===========
@@ -12,7 +11,6 @@ values, field offsets, etc. These data are packed into an ELF note
section and used by user-space tools like crash and makedumpfile to
analyze a kernel's memory layout.
-================
Common variables
================
@@ -49,7 +47,7 @@ in a system, one bit position per node number. Used to keep track of
which nodes are in the system and online.
swapper_pg_dir
--------------
+--------------
The global page directory pointer of the kernel. Used to translate
virtual to physical addresses.
@@ -132,16 +130,14 @@ nodemask_t
The size of a nodemask_t type. Used to compute the number of online
nodes.
-(page, flags|_refcount|mapping|lru|_mapcount|private|compound_dtor|
- compound_order|compound_head)
--------------------------------------------------------------------
+(page, flags|_refcount|mapping|lru|_mapcount|private|compound_dtor|compound_order|compound_head)
+-------------------------------------------------------------------------------------------------
User-space tools compute their values based on the offset of these
variables. The variables are used when excluding unnecessary pages.
-(pglist_data, node_zones|nr_zones|node_mem_map|node_start_pfn|node_
- spanned_pages|node_id)
--------------------------------------------------------------------
+(pglist_data, node_zones|nr_zones|node_mem_map|node_start_pfn|node_spanned_pages|node_id)
+-----------------------------------------------------------------------------------------
On NUMA machines, each NUMA node has a pg_data_t to describe its memory
layout. On UMA machines there is a single pglist_data which describes the
@@ -245,21 +241,25 @@ NR_FREE_PAGES
On linux-2.6.21 or later, the number of free pages is in
vm_stat[NR_FREE_PAGES]. Used to get the number of free pages.
-PG_lru|PG_private|PG_swapcache|PG_swapbacked|PG_slab|PG_hwpoision
-|PG_head_mask|PAGE_BUDDY_MAPCOUNT_VALUE(~PG_buddy)
-|PAGE_OFFLINE_MAPCOUNT_VALUE(~PG_offline)
------------------------------------------------------------------
+PG_lru|PG_private|PG_swapcache|PG_swapbacked|PG_slab|PG_hwpoision|PG_head_mask
+------------------------------------------------------------------------------
Page attributes. These flags are used to filter various unnecessary for
dumping pages.
+PAGE_BUDDY_MAPCOUNT_VALUE(~PG_buddy)|PAGE_OFFLINE_MAPCOUNT_VALUE(~PG_offline)
+-----------------------------------------------------------------------------
+
+More page attributes. These flags are used to filter various unnecessary for
+dumping pages.
+
+
HUGETLB_PAGE_DTOR
-----------------
The HUGETLB_PAGE_DTOR flag denotes hugetlbfs pages. Makedumpfile
excludes these pages.
-======
x86_64
======
@@ -318,12 +318,12 @@ address.
Currently, sme_mask stores the value of the C-bit position. If needed,
additional SME-relevant info can be placed in that variable.
-For example:
-[ misc ][ enc bit ][ other misc SME info ]
-0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_..._0000
-63 59 55 51 47 43 39 35 31 27 ... 3
+For example::
+
+ [ misc ][ enc bit ][ other misc SME info ]
+ 0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_..._0000
+ 63 59 55 51 47 43 39 35 31 27 ... 3
-======
x86_32
======
@@ -335,7 +335,6 @@ of a higher page table lookup overhead, and also consumes more page
table space per process. Used to check whether PAE was enabled in the
crash kernel when converting virtual addresses to physical addresses.
-====
ia64
====
@@ -366,7 +365,6 @@ PGTABLE_3|PGTABLE_4
User-space tools need to know whether the crash kernel was in 3-level or
4-level paging mode. Used to distinguish the page table.
-=====
ARM64
=====
@@ -395,9 +393,8 @@ KERNELOFFSET
The kernel randomization offset. Used to compute the page offset. If
KASLR is disabled, this value is zero.
-====
arm
-====
+===
ARM_LPAE
--------
@@ -405,12 +402,11 @@ ARM_LPAE
It indicates whether the crash kernel supports large physical address
extensions. Used to translate virtual to physical addresses.
-====
s390
====
lowcore_ptr
-----------
+-----------
An array with a pointer to the lowcore of every CPU. Used to print the
psw and all registers information.
@@ -425,7 +421,6 @@ Used to get the vmalloc_start address from the high_memory symbol.
The maximum number of CPUs.
-=======
powerpc
=======
@@ -460,9 +455,8 @@ Page size definitions, i.e. 4k, 64k, or 16M.
Used to make vtop translations.
-vmemmap_backing|(vmemmap_backing, list)|(vmemmap_backing, phys)|
-(vmemmap_backing, virt_addr)
-----------------------------------------------------------------
+vmemmap_backing|(vmemmap_backing, list)|(vmemmap_backing, phys)|(vmemmap_backing, virt_addr)
+--------------------------------------------------------------------------------------------
The vmemmap virtual address space management does not have a traditional
page table to track which virtual struct pages are backed by a physical
@@ -480,7 +474,6 @@ member.
Used in vtop translations.
-==
sh
==
diff --git a/Documentation/admin-guide/kernel-parameters.rst b/Documentation/admin-guide/kernel-parameters.rst
index 0124980dca2d..d05d531b4ec9 100644
--- a/Documentation/admin-guide/kernel-parameters.rst
+++ b/Documentation/admin-guide/kernel-parameters.rst
@@ -9,11 +9,11 @@ and sorted into English Dictionary order (defined as ignoring all
punctuation and sorting digits before letters in a case insensitive
manner), and with descriptions where known.
-The kernel parses parameters from the kernel command line up to "--";
+The kernel parses parameters from the kernel command line up to "``--``";
if it doesn't recognize a parameter and it doesn't contain a '.', the
parameter gets passed to init: parameters with '=' go into init's
environment, others are passed as command line arguments to init.
-Everything after "--" is passed as an argument to init.
+Everything after "``--``" is passed as an argument to init.
Module parameters can be specified in two ways: via the kernel command
line with a module name prefix, or via modprobe, e.g.::
@@ -118,7 +118,7 @@ parameter is applicable::
LOOP Loopback device support is enabled.
M68k M68k architecture is enabled.
These options have more detailed description inside of
- Documentation/m68k/kernel-options.txt.
+ Documentation/m68k/kernel-options.rst.
MDA MDA console support is enabled.
MIPS MIPS architecture is enabled.
MOUSE Appropriate mouse support is enabled.
@@ -167,7 +167,7 @@ parameter is applicable::
X86-32 X86-32, aka i386 architecture is enabled.
X86-64 X86-64 architecture is enabled.
More X86-64 boot options can be found in
- Documentation/x86/x86_64/boot-options.txt .
+ Documentation/x86/x86_64/boot-options.rst.
X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
X86_UV SGI UV support is enabled.
XEN Xen support is enabled
@@ -181,10 +181,10 @@ In addition, the following text indicates that the option::
Parameters denoted with BOOT are actually interpreted by the boot
loader, and have no meaning to the kernel directly.
Do not modify the syntax of boot loader parameters without extreme
-need or coordination with <Documentation/x86/boot.txt>.
+need or coordination with <Documentation/x86/boot.rst>.
There are also arch-specific kernel-parameters not documented here.
-See for example <Documentation/x86/x86_64/boot-options.txt>.
+See for example <Documentation/x86/x86_64/boot-options.rst>.
Note that ALL kernel parameters listed below are CASE SENSITIVE, and that
a trailing = on the name of any parameter states that that parameter will
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 0f28350f1ee6..c7ac2f3ac99f 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -13,7 +13,7 @@
For ARM64, ONLY "acpi=off", "acpi=on" or "acpi=force"
are available
- See also Documentation/power/runtime_pm.txt, pci=noacpi
+ See also Documentation/power/runtime_pm.rst, pci=noacpi
acpi_apic_instance= [ACPI, IOAPIC]
Format: <int>
@@ -53,7 +53,7 @@
ACPI_DEBUG_PRINT statements, e.g.,
ACPI_DEBUG_PRINT((ACPI_DB_INFO, ...
The debug_level mask defaults to "info". See
- Documentation/acpi/debug.txt for more information about
+ Documentation/firmware-guide/acpi/debug.rst for more information about
debug layers and levels.
Enable processor driver info messages:
@@ -223,7 +223,7 @@
acpi_sleep= [HW,ACPI] Sleep options
Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig,
old_ordering, nonvs, sci_force_enable, nobl }
- See Documentation/power/video.txt for information on
+ See Documentation/power/video.rst for information on
s3_bios and s3_mode.
s3_beep is for debugging; it makes the PC's speaker beep
as soon as the kernel's real-mode entry point is called.
@@ -430,7 +430,7 @@
blkdevparts= Manual partition parsing of block device(s) for
embedded devices based on command line input.
- See Documentation/block/cmdline-partition.txt
+ See Documentation/block/cmdline-partition.rst
boot_delay= Milliseconds to delay each printk during boot.
Values larger than 10 seconds (10000) are changed to
@@ -478,7 +478,7 @@
others).
ccw_timeout_log [S390]
- See Documentation/s390/CommonIO for details.
+ See Documentation/s390/common_io.rst for details.
cgroup_disable= [KNL] Disable a particular controller
Format: {name of the controller(s) to disable}
@@ -516,7 +516,7 @@
/selinux/checkreqprot.
cio_ignore= [S390]
- See Documentation/s390/CommonIO for details.
+ See Documentation/s390/common_io.rst for details.
clk_ignore_unused
[CLK]
Prevents the clock framework from automatically gating
@@ -708,14 +708,14 @@
[KNL, x86_64] select a region under 4G first, and
fall back to reserve region above 4G when '@offset'
hasn't been specified.
- See Documentation/kdump/kdump.txt for further details.
+ See Documentation/admin-guide/kdump/kdump.rst for further details.
crashkernel=range1:size1[,range2:size2,...][@offset]
[KNL] Same as above, but depends on the memory
in the running system. The syntax of range is
start-[end] where start and end are both
a memory unit (amount[KMG]). See also
- Documentation/kdump/kdump.txt for an example.
+ Documentation/admin-guide/kdump/kdump.rst for an example.
crashkernel=size[KMG],high
[KNL, x86_64] range could be above 4G. Allow kernel
@@ -805,12 +805,12 @@
tracking down these problems.
debug_pagealloc=
- [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this
- parameter enables the feature at boot time. In
- default, it is disabled. We can avoid allocating huge
- chunk of memory for debug pagealloc if we don't enable
- it at boot time and the system will work mostly same
- with the kernel built without CONFIG_DEBUG_PAGEALLOC.
+ [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this parameter
+ enables the feature at boot time. By default, it is
+ disabled and the system will work mostly the same as a
+ kernel built without CONFIG_DEBUG_PAGEALLOC.
+ Note: to get most of debug_pagealloc error reports, it's
+ useful to also enable the page_owner functionality.
on: enable the feature
debugpat [X86] Enable PAT debugging
@@ -862,6 +862,10 @@
disable_radix [PPC]
Disable RADIX MMU mode on POWER9
+ disable_tlbie [PPC]
+ Disable TLBIE instruction. Currently does not work
+ with KVM, with HASH MMU, or with coherent accelerators.
+
disable_cpu_apicid= [X86,APIC,SMP]
Format: <int>
The number of initial APIC ID for the
@@ -932,7 +936,7 @@
edid/1680x1050.bin, or edid/1920x1080.bin is given
and no file with the same name exists. Details and
instructions how to build your own EDID data are
- available in Documentation/EDID/HOWTO.txt. An EDID
+ available in Documentation/driver-api/edid.rst. An EDID
data set will only be used for a particular connector,
if its name and a colon are prepended to the EDID
name. Each connector may use a unique EDID data
@@ -963,7 +967,7 @@
for details.
nompx [X86] Disables Intel Memory Protection Extensions.
- See Documentation/x86/intel_mpx.txt for more
+ See Documentation/x86/intel_mpx.rst for more
information about the feature.
nopku [X86] Disable Memory Protection Keys CPU feature found
@@ -1046,6 +1050,10 @@
specified address. The serial port must already be
setup and configured. Options are not yet supported.
+ sbi
+ Use RISC-V SBI (Supervisor Binary Interface) for early
+ console.
+
smh Use ARM semihosting calls for early console.
s3c2410,<addr>
@@ -1092,6 +1100,12 @@
the framebuffer, pass the 'ram' option so that it is
mapped with the correct attributes.
+ linflex,<addr>
+ Use early console provided by Freescale LinFlex UART
+ serial driver for NXP S32V234 SoCs. A valid base
+ address must be provided, and the serial port must
+ already be setup and configured.
+
earlyprintk= [X86,SH,ARM,M68k,S390]
earlyprintk=vga
earlyprintk=sclp
@@ -1189,7 +1203,7 @@
that is to be dynamically loaded by Linux. If there are
multiple variables with the same name but with different
vendor GUIDs, all of them will be loaded. See
- Documentation/acpi/ssdt-overlays.txt for details.
+ Documentation/admin-guide/acpi/ssdt-overlays.rst for details.
eisa_irq_edge= [PARISC,HW]
@@ -1199,17 +1213,11 @@
See comment before function elanfreq_setup() in
arch/x86/kernel/cpu/cpufreq/elanfreq.c.
- elevator= [IOSCHED]
- Format: { "mq-deadline" | "kyber" | "bfq" }
- See Documentation/block/deadline-iosched.txt,
- Documentation/block/kyber-iosched.txt and
- Documentation/block/bfq-iosched.txt for details.
-
elfcorehdr=[size[KMG]@]offset[KMG] [IA64,PPC,SH,X86,S390]
Specifies physical address of start of kernel core
image elf header and optionally the size. Generally
kexec loader will pass this option to capture kernel.
- See Documentation/kdump/kdump.txt for details.
+ See Documentation/admin-guide/kdump/kdump.rst for details.
enable_mtrr_cleanup [X86]
The kernel tries to adjust MTRR layout from continuous
@@ -1251,7 +1259,7 @@
See also Documentation/fault-injection/.
floppy= [HW]
- See Documentation/blockdev/floppy.txt.
+ See Documentation/admin-guide/blockdev/floppy.rst.
force_pal_cache_flush
[IA-64] Avoid check_sal_cache_flush which may hang on
@@ -1388,9 +1396,6 @@
Valid parameters: "on", "off"
Default: "on"
- hisax= [HW,ISDN]
- See Documentation/isdn/README.HiSax.
-
hlt [BUGS=ARM,SH]
hpet= [X86-32,HPET] option to control HPET usage
@@ -1507,7 +1512,7 @@
Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
.vlb_clock .pci_clock .noflush .nohpa .noprobe .nowerr
.cdrom .chs .ignore_cable are additional options
- See Documentation/ide/ide.txt.
+ See Documentation/ide/ide.rst.
ide-generic.probe-mask= [HW] (E)IDE subsystem
Format: <int>
@@ -1673,6 +1678,15 @@
initrd= [BOOT] Specify the location of the initial ramdisk
+ init_on_alloc= [MM] Fill newly allocated pages and heap objects with
+ zeroes.
+ Format: 0 | 1
+ Default set by CONFIG_INIT_ON_ALLOC_DEFAULT_ON.
+
+ init_on_free= [MM] Fill freed pages and heap objects with zeroes.
+ Format: 0 | 1
+ Default set by CONFIG_INIT_ON_FREE_DEFAULT_ON.
+
init_pkru= [x86] Specify the default memory protection keys rights
register contents for all processes. 0x55555554 by
default (disallow access to all but pkey 0). Can
@@ -1728,6 +1742,11 @@
Note that using this option lowers the security
provided by tboot because it makes the system
vulnerable to DMA attacks.
+ nobounce [Default off]
+ Disable bounce buffer for unstrusted devices such as
+ the Thunderbolt devices. This will treat the untrusted
+ devices as the trusted ones, hence might expose security
+ risks of DMA attacks.
intel_idle.max_cstate= [KNL,HW,ACPI,X86]
0 disables intel_idle and fall back on acpi_idle.
@@ -1807,7 +1826,7 @@
synchronously.
iommu.passthrough=
- [ARM64] Configure DMA to bypass the IOMMU by default.
+ [ARM64, X86] Configure DMA to bypass the IOMMU by default.
Format: { "0" | "1" }
0 - Use IOMMU translation for DMA.
1 - Bypass the IOMMU for DMA.
@@ -2007,6 +2026,19 @@
Built with CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y,
the default is off.
+ kprobe_event=[probe-list]
+ [FTRACE] Add kprobe events and enable at boot time.
+ The probe-list is a semicolon delimited list of probe
+ definitions. Each definition is same as kprobe_events
+ interface, but the parameters are comma delimited.
+ For example, to add a kprobe event on vfs_read with
+ arg1 and arg2, add to the command line;
+
+ kprobe_event=p,vfs_read,$arg1,$arg2
+
+ See also Documentation/trace/kprobetrace.rst "Kernel
+ Boot Parameter" section.
+
kpti= [ARM64] Control page table isolation of user
and kernel address spaces.
Default: enabled on cores which need mitigation.
@@ -2230,7 +2262,7 @@
memblock=debug [KNL] Enable memblock debug messages.
load_ramdisk= [RAM] List of ramdisks to load from floppy
- See Documentation/blockdev/ramdisk.txt.
+ See Documentation/admin-guide/blockdev/ramdisk.rst.
lockd.nlm_grace_period=P [NFS] Assign grace period.
Format: <integer>
@@ -2365,7 +2397,7 @@
machvec= [IA-64] Force the use of a particular machine-vector
(machvec) in a generic kernel.
- Example: machvec=hpzx1_swiotlb
+ Example: machvec=hpzx1
machtype= [Loongson] Share the same kernel image file between different
yeeloong laptop.
@@ -2392,7 +2424,7 @@
mce [X86-32] Machine Check Exception
- mce=option [X86-64] See Documentation/x86/x86_64/boot-options.txt
+ mce=option [X86-64] See Documentation/x86/x86_64/boot-options.rst
md= [HW] RAID subsystems devices and level
See Documentation/admin-guide/md.rst.
@@ -2448,7 +2480,7 @@
set according to the
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel config
option.
- See Documentation/memory-hotplug.txt.
+ See Documentation/admin-guide/mm/memory-hotplug.rst.
memmap=exactmap [KNL,X86] Enable setting of an exact
E820 memory map, as specified by the user.
@@ -2537,7 +2569,7 @@
mem_encrypt=on: Activate SME
mem_encrypt=off: Do not activate SME
- Refer to Documentation/x86/amd-memory-encryption.txt
+ Refer to Documentation/virt/kvm/amd-memory-encryption.rst
for details on when memory encryption can be activated.
mem_sleep_default= [SUSPEND] Default system suspend mode:
@@ -2596,7 +2628,7 @@
expose users to several CPU vulnerabilities.
Equivalent to: nopti [X86,PPC]
kpti=0 [ARM64]
- nospectre_v1 [PPC]
+ nospectre_v1 [X86,PPC]
nobp=0 [S390]
nospectre_v2 [X86,PPC,S390,ARM64]
spectre_v2_user=off [X86]
@@ -2845,8 +2877,9 @@
0 - turn hardlockup detector in nmi_watchdog off
1 - turn hardlockup detector in nmi_watchdog on
When panic is specified, panic when an NMI watchdog
- timeout occurs (or 'nopanic' to override the opposite
- default). To disable both hard and soft lockup detectors,
+ timeout occurs (or 'nopanic' to not panic on an NMI
+ watchdog, if CONFIG_BOOTPARAM_HARDLOCKUP_PANIC is set)
+ To disable both hard and soft lockup detectors,
please see 'nowatchdog'.
This is useful when you use a panic=... timeout and
need the box quickly up again.
@@ -2881,6 +2914,17 @@
/sys/module/printk/parameters/console_suspend) to
turn on/off it dynamically.
+ novmcoredd [KNL,KDUMP]
+ Disable device dump. Device dump allows drivers to
+ append dump data to vmcore so you can collect driver
+ specified debug info. Drivers can append the data
+ without any limit and this data is stored in memory,
+ so this may cause significant memory stress. Disabling
+ device dump can help save memory but the driver debug
+ data will be no longer available. This parameter
+ is only available when CONFIG_PROC_VMCORE_DEVICE_DUMP
+ is set.
+
noaliencache [MM, NUMA, SLAB] Disables the allocation of alien
caches in the slab allocator. Saves per-node memory,
but will impact performance.
@@ -2936,7 +2980,7 @@
register save and restore. The kernel will only save
legacy floating-point registers on task switch.
- nohugeiomap [KNL,x86] Disable kernel huge I/O mappings.
+ nohugeiomap [KNL,x86,PPC] Disable kernel huge I/O mappings.
nosmt [KNL,S390] Disable symmetric multithreading (SMT).
Equivalent to smt=1.
@@ -2945,9 +2989,9 @@
nosmt=force: Force disable SMT, cannot be undone
via the sysfs control file.
- nospectre_v1 [PPC] Disable mitigations for Spectre Variant 1 (bounds
- check bypass). With this option data leaks are possible
- in the system.
+ nospectre_v1 [X86,PPC] Disable mitigations for Spectre Variant 1
+ (bounds check bypass). With this option data leaks are
+ possible in the system.
nospectre_v2 [X86,PPC_FSL_BOOK3E,ARM64] Disable all mitigations for
the Spectre variant 2 (indirect branch prediction)
@@ -3148,7 +3192,7 @@
numa_zonelist_order= [KNL, BOOT] Select zonelist order for NUMA.
'node', 'default' can be specified
This can be set from sysctl after boot.
- See Documentation/sysctl/vm.txt for details.
+ See Documentation/admin-guide/sysctl/vm.rst for details.
ohci1394_dma=early [HW] enable debugging via the ohci1394 driver.
See Documentation/debugging-via-ohci1394.txt for more
@@ -3272,7 +3316,7 @@
pcd. [PARIDE]
See header of drivers/block/paride/pcd.c.
- See also Documentation/blockdev/paride.txt.
+ See also Documentation/admin-guide/blockdev/paride.rst.
pci=option[,option...] [PCI] various PCI subsystem options.
@@ -3432,12 +3476,13 @@
specify the device is described above.
If <order of align> is not specified,
PAGE_SIZE is used as alignment.
- PCI-PCI bridge can be specified, if resource
+ A PCI-PCI bridge can be specified if resource
windows need to be expanded.
To specify the alignment for several
instances of a device, the PCI vendor,
device, subvendor, and subdevice may be
- specified, e.g., 4096@pci:8086:9c22:103c:198f
+ specified, e.g., 12@pci:8086:9c22:103c:198f
+ for 4096-byte alignment.
ecrc= Enable/disable PCIe ECRC (transaction layer
end-to-end CRC checking).
bios: Use BIOS/firmware settings. This is the
@@ -3516,7 +3561,7 @@
needed on a platform with proper driver support.
pd. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/admin-guide/blockdev/paride.rst.
pdcchassis= [PARISC,HW] Disable/Enable PDC Chassis Status codes at
boot time.
@@ -3531,13 +3576,13 @@
and performance comparison.
pf. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/admin-guide/blockdev/paride.rst.
pg. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/admin-guide/blockdev/paride.rst.
pirq= [SMP,APIC] Manual mp-table setup
- See Documentation/x86/i386/IO-APIC.txt.
+ See Documentation/x86/i386/IO-APIC.rst.
plip= [PPT,NET] Parallel port network link
Format: { parport<nr> | timid | 0 }
@@ -3646,7 +3691,7 @@
prompt_ramdisk= [RAM] List of RAM disks to prompt for floppy disk
before loading.
- See Documentation/blockdev/ramdisk.txt.
+ See Documentation/admin-guide/blockdev/ramdisk.rst.
psi= [KNL] Enable or disable pressure stall information
tracking.
@@ -3668,7 +3713,7 @@
pstore.backend= Specify the name of the pstore backend to use
pt. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/admin-guide/blockdev/paride.rst.
pti= [X86_64] Control Page Table Isolation of user and
kernel address spaces. Disabling this feature
@@ -3697,7 +3742,7 @@
See Documentation/admin-guide/md.rst.
ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
- See Documentation/blockdev/ramdisk.txt.
+ See Documentation/admin-guide/blockdev/ramdisk.rst.
random.trust_cpu={on,off}
[KNL] Enable or disable trusting the use of the
@@ -3761,6 +3806,12 @@
the propagation of recent CPU-hotplug changes up
the rcu_node combining tree.
+ rcutree.use_softirq= [KNL]
+ If set to zero, move all RCU_SOFTIRQ processing to
+ per-CPU rcuc kthreads. Defaults to a non-zero
+ value, meaning that RCU_SOFTIRQ is used by default.
+ Specify rcutree.use_softirq=0 to use rcuc kthreads.
+
rcutree.rcu_fanout_exact= [KNL]
Disable autobalancing of the rcu_node combining
tree. This is used by rcutorture, and might
@@ -3811,12 +3862,13 @@
RCU_BOOST is not set, valid values are 0-99 and
the default is zero (non-realtime operation).
- rcutree.rcu_nocb_leader_stride= [KNL]
- Set the number of NOCB kthread groups, which
- defaults to the square root of the number of
- CPUs. Larger numbers reduces the wakeup overhead
- on the per-CPU grace-period kthreads, but increases
- that same overhead on each group's leader.
+ rcutree.rcu_nocb_gp_stride= [KNL]
+ Set the number of NOCB callback kthreads in
+ each group, which defaults to the square root
+ of the number of CPUs. Larger numbers reduce
+ the wakeup overhead on the global grace-period
+ kthread, but increases that same overhead on
+ each group's NOCB grace-period kthread.
rcutree.qhimark= [KNL]
Set threshold of queued RCU callbacks beyond which
@@ -4021,6 +4073,10 @@
rcutorture.verbose= [KNL]
Enable additional printk() statements.
+ rcupdate.rcu_cpu_stall_ftrace_dump= [KNL]
+ Dump ftrace buffer after reporting RCU CPU
+ stall warning.
+
rcupdate.rcu_cpu_stall_suppress= [KNL]
Suppress RCU CPU stall warning messages.
@@ -4064,6 +4120,13 @@
Run specified binary instead of /init from the ramdisk,
used for early userspace startup. See initrd.
+ rdrand= [X86]
+ force - Override the decision by the kernel to hide the
+ advertisement of RDRAND support (this affects
+ certain AMD processors because of buggy BIOS
+ support, specifically around the suspend/resume
+ path).
+
rdt= [HW,X86,RDT]
Turn on/off individual RDT features. List is:
cmt, mbmtotal, mbmlocal, l3cat, l3cdp, l2cat, l2cdp,
@@ -4087,7 +4150,7 @@
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
- See Documentation/cgroup-v1/cpusets.txt.
+ See Documentation/admin-guide/cgroup-v1/cpusets.rst.
reserve= [KNL,BUGS] Force kernel to ignore I/O ports or memory
Format: <base1>,<size1>[,<base2>,<size2>,...]
@@ -4117,7 +4180,7 @@
Specify the offset from the beginning of the partition
given by "resume=" at which the swap header is located,
in <PAGE_SIZE> units (needed only for swap files).
- See Documentation/power/swsusp-and-swap-files.txt
+ See Documentation/power/swsusp-and-swap-files.rst
resumedelay= [HIBERNATION] Delay (in seconds) to pause before attempting to
read the resume files
@@ -4345,7 +4408,7 @@
Format: <integer>
sonypi.*= [HW] Sony Programmable I/O Control Device driver
- See Documentation/laptops/sonypi.txt
+ See Documentation/admin-guide/laptops/sonypi.rst
spectre_v2= [X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability.
@@ -4594,10 +4657,15 @@
/sys/power/pm_test). Only available when CONFIG_PM_DEBUG
is set. Default value is 5.
+ svm= [PPC]
+ Format: { on | off | y | n | 1 | 0 }
+ This parameter controls use of the Protected
+ Execution Facility on pSeries.
+
swapaccount=[0|1]
[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
- it if 0 is given (See Documentation/cgroup-v1/memory.txt)
+ it if 0 is given (See Documentation/admin-guide/cgroup-v1/memory.rst)
swiotlb= [ARM,IA-64,PPC,MIPS,X86]
Format: { <int> | force | noforce }
@@ -4672,27 +4740,6 @@
Force threading of all interrupt handlers except those
marked explicitly IRQF_NO_THREAD.
- tmem [KNL,XEN]
- Enable the Transcendent memory driver if built-in.
-
- tmem.cleancache=0|1 [KNL, XEN]
- Default is on (1). Disable the usage of the cleancache
- API to send anonymous pages to the hypervisor.
-
- tmem.frontswap=0|1 [KNL, XEN]
- Default is on (1). Disable the usage of the frontswap
- API to send swap pages to the hypervisor. If disabled
- the selfballooning and selfshrinking are force disabled.
-
- tmem.selfballooning=0|1 [KNL, XEN]
- Default is on (1). Disable the driving of swap pages
- to the hypervisor.
-
- tmem.selfshrinking=0|1 [KNL, XEN]
- Default is on (1). Partial swapoff that immediately
- transfers pages from Xen hypervisor back to the
- kernel based on different criteria.
-
topology= [S390]
Format: {off | on}
Specify if the kernel should make use of the cpu
@@ -5035,7 +5082,7 @@
vector=percpu: enable percpu vector domain
video= [FB] Frame buffer configuration
- See Documentation/fb/modedb.txt.
+ See Documentation/fb/modedb.rst.
video.brightness_switch_enabled= [0,1]
If set to 1, on receiving an ACPI notify event
@@ -5063,8 +5110,8 @@
Can be used multiple times for multiple devices.
vga= [BOOT,X86-32] Select a particular video mode
- See Documentation/x86/boot.txt and
- Documentation/svga.txt.
+ See Documentation/x86/boot.rst and
+ Documentation/admin-guide/svga.rst.
Use vga=ask for menu.
This is actually a boot loader parameter; the value is
passed to the kernel using a special protocol.
@@ -5109,13 +5156,12 @@
targets for exploits that can control RIP.
emulate [default] Vsyscalls turn into traps and are
- emulated reasonably safely.
+ emulated reasonably safely. The vsyscall
+ page is readable.
- native Vsyscalls are native syscall instructions.
- This is a little bit faster than trapping
- and makes a few dynamic recompilers work
- better than they would in emulation mode.
- It also makes exploits much easier to write.
+ xonly Vsyscalls turn into traps and are
+ emulated reasonably safely. The vsyscall
+ page is not readable.
none Vsyscalls don't work at all. This makes
them quite hard to use for exploits but
@@ -5171,7 +5217,7 @@
Default: 3 = cyan.
watchdog timers [HW,WDT] For information on watchdog timers,
- see Documentation/watchdog/watchdog-parameters.txt
+ see Documentation/watchdog/watchdog-parameters.rst
or other driver-specific files in the
Documentation/watchdog/ directory.
@@ -5263,6 +5309,8 @@
xen_nopv [X86]
Disables the PV optimizations forcing the HVM guest to
run as generic HVM guest with no PV drivers.
+ This option is obsoleted by the "nopv" option, which
+ has equivalent effect for XEN platform.
xen_scrub_pages= [XEN]
Boolean option to control scrubbing pages before giving them back
@@ -5277,11 +5325,44 @@
improve timer resolution at the expense of processing
more timer interrupts.
+ nopv= [X86,XEN,KVM,HYPER_V,VMWARE]
+ Disables the PV optimizations forcing the guest to run
+ as generic guest with no PV drivers. Currently support
+ XEN HVM, KVM, HYPER_V and VMWARE guest.
+
xirc2ps_cs= [NET,PCMCIA]
Format:
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]
+ xive= [PPC]
+ By default on POWER9 and above, the kernel will
+ natively use the XIVE interrupt controller. This option
+ allows the fallback firmware mode to be used:
+
+ off Fallback to firmware control of XIVE interrupt
+ controller on both pseries and powernv
+ platforms. Only useful on POWER9 and above.
+
xhci-hcd.quirks [USB,KNL]
A hex value specifying bitmask with supplemental xhci
host controller quirks. Meaning of each bit can be
consulted in header drivers/usb/host/xhci.h.
+
+ xmon [PPC]
+ Format: { early | on | rw | ro | off }
+ Controls if xmon debugger is enabled. Default is off.
+ Passing only "xmon" is equivalent to "xmon=early".
+ early Call xmon as early as possible on boot; xmon
+ debugger is called from setup_arch().
+ on xmon debugger hooks will be installed so xmon
+ is only called on a kernel crash. Default mode,
+ i.e. either "ro" or "rw" mode, is controlled
+ with CONFIG_XMON_DEFAULT_RO_MODE.
+ rw xmon debugger hooks will be installed so xmon
+ is called only on a kernel crash, mode is write,
+ meaning SPR registers, memory and, other data
+ can be written using xmon commands.
+ ro same as "rw" option above but SPR registers,
+ memory, and other data can't be written using
+ xmon commands.
+ off xmon is disabled.
diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
index 23b0c8b20cd1..baeeba8762ae 100644
--- a/Documentation/kernel-per-CPU-kthreads.txt
+++ b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
@@ -12,7 +12,7 @@ References
- Documentation/IRQ-affinity.txt: Binding interrupts to sets of CPUs.
-- Documentation/cgroup-v1: Using cgroups to bind tasks to sets of CPUs.
+- Documentation/admin-guide/cgroup-v1: Using cgroups to bind tasks to sets of CPUs.
- man taskset: Using the taskset command to bind tasks to sets
of CPUs.
@@ -274,9 +274,7 @@ To reduce its OS jitter, do any of the following:
(based on an earlier one from Gilad Ben-Yossef) that
reduces or even eliminates vmstat overhead for some
workloads at https://lkml.org/lkml/2013/9/4/379.
- e. Boot with "elevator=noop" to avoid workqueue use by
- the block layer.
- f. If running on high-end powerpc servers, build with
+ e. If running on high-end powerpc servers, build with
CONFIG_PPC_RTAS_DAEMON=n. This prevents the RTAS
daemon from running on each CPU every second or so.
(This will require editing Kconfig files and will defeat
@@ -284,12 +282,12 @@ To reduce its OS jitter, do any of the following:
due to the rtas_event_scan() function.
WARNING: Please check your CPU specifications to
make sure that this is safe on your particular system.
- g. If running on Cell Processor, build your kernel with
+ f. If running on Cell Processor, build your kernel with
CBE_CPUFREQ_SPU_GOVERNOR=n to avoid OS jitter from
spu_gov_work().
WARNING: Please check your CPU specifications to
make sure that this is safe on your particular system.
- h. If running on PowerMAC, build your kernel with
+ g. If running on PowerMAC, build your kernel with
CONFIG_PMAC_RACKMETER=n to disable the CPU-meter,
avoiding OS jitter from rackmeter_do_timer().
@@ -348,7 +346,7 @@ To reduce its OS jitter, do at least one of the following:
2. Boot with "nosoftlockup=0", which will also prevent these kthreads
from being created. Other related watchdog and softlockup boot
parameters may be found in Documentation/admin-guide/kernel-parameters.rst
- and Documentation/watchdog/watchdog-parameters.txt.
+ and Documentation/watchdog/watchdog-parameters.rst.
3. Echo a zero to /proc/sys/kernel/watchdog to disable the
watchdog timer.
4. Echo a large number of /proc/sys/kernel/watchdog_thresh in
diff --git a/Documentation/laptops/asus-laptop.txt b/Documentation/admin-guide/laptops/asus-laptop.rst
index 5f2858712aa0..95176321a25a 100644
--- a/Documentation/laptops/asus-laptop.txt
+++ b/Documentation/admin-guide/laptops/asus-laptop.rst
@@ -1,6 +1,9 @@
+==================
Asus Laptop Extras
+==================
Version 0.1
+
August 6, 2009
Corentin Chary <corentincj@iksaif.net>
@@ -10,11 +13,12 @@ http://acpi4asus.sf.net/
It may also support some MEDION, JVC or VICTOR laptops (such as MEDION 9675 or
VICTOR XP7210 for example). It makes all the extra buttons generate input
events (like keyboards).
+
On some models adds support for changing the display brightness and output,
switching the LCD backlight on and off, and most importantly, allows you to
blink those fancy LEDs intended for reporting mail and wireless status.
-This driver supercedes the old asus_acpi driver.
+This driver supersedes the old asus_acpi driver.
Requirements
------------
@@ -49,7 +53,7 @@ Usage
see some lines like this :
Asus Laptop Extras version 0.42
- L2D model detected.
+ - L2D model detected.
If it is not the output you have on your laptop, send it (and the laptop's
DSDT) to me.
@@ -68,9 +72,12 @@ Usage
LEDs
----
- You can modify LEDs be echoing values to /sys/class/leds/asus::*/brightness :
+ You can modify LEDs be echoing values to `/sys/class/leds/asus/*/brightness`::
+
echo 1 > /sys/class/leds/asus::mail/brightness
+
will switch the mail LED on.
+
You can also know if they are on/off by reading their content and use
kernel triggers like disk-activity or heartbeat.
@@ -81,7 +88,7 @@ Backlight
/sys/class/backlight/asus-laptop/. Brightness Values are between 0 and 15.
Wireless devices
----------------
+----------------
You can turn the internal Bluetooth adapter on/off with the bluetooth entry
(only on models with Bluetooth). This usually controls the associated LED.
@@ -93,18 +100,20 @@ Display switching
Note: the display switching code is currently considered EXPERIMENTAL.
Switching works for the following models:
- L3800C
- A2500H
- L5800C
- M5200N
- W1000N (albeit with some glitches)
- M6700R
- A6JC
- F3J
+
+ - L3800C
+ - A2500H
+ - L5800C
+ - M5200N
+ - W1000N (albeit with some glitches)
+ - M6700R
+ - A6JC
+ - F3J
Switching doesn't work for the following:
- M3700N
- L2X00D (locks the laptop under certain conditions)
+
+ - M3700N
+ - L2X00D (locks the laptop under certain conditions)
To switch the displays, echo values from 0 to 15 to
/sys/devices/platform/asus-laptop/display. The significance of those values
@@ -113,48 +122,51 @@ Display switching
+-------+-----+-----+-----+-----+-----+
| Bin | Val | DVI | TV | CRT | LCD |
+-------+-----+-----+-----+-----+-----+
- + 0000 + 0 + + + + +
+ | 0000 | 0 | | | | |
+-------+-----+-----+-----+-----+-----+
- + 0001 + 1 + + + + X +
+ | 0001 | 1 | | | | X |
+-------+-----+-----+-----+-----+-----+
- + 0010 + 2 + + + X + +
+ | 0010 | 2 | | | X | |
+-------+-----+-----+-----+-----+-----+
- + 0011 + 3 + + + X + X +
+ | 0011 | 3 | | | X | X |
+-------+-----+-----+-----+-----+-----+
- + 0100 + 4 + + X + + +
+ | 0100 | 4 | | X | | |
+-------+-----+-----+-----+-----+-----+
- + 0101 + 5 + + X + + X +
+ | 0101 | 5 | | X | | X |
+-------+-----+-----+-----+-----+-----+
- + 0110 + 6 + + X + X + +
+ | 0110 | 6 | | X | X | |
+-------+-----+-----+-----+-----+-----+
- + 0111 + 7 + + X + X + X +
+ | 0111 | 7 | | X | X | X |
+-------+-----+-----+-----+-----+-----+
- + 1000 + 8 + X + + + +
+ | 1000 | 8 | X | | | |
+-------+-----+-----+-----+-----+-----+
- + 1001 + 9 + X + + + X +
+ | 1001 | 9 | X | | | X |
+-------+-----+-----+-----+-----+-----+
- + 1010 + 10 + X + + X + +
+ | 1010 | 10 | X | | X | |
+-------+-----+-----+-----+-----+-----+
- + 1011 + 11 + X + + X + X +
+ | 1011 | 11 | X | | X | X |
+-------+-----+-----+-----+-----+-----+
- + 1100 + 12 + X + X + + +
+ | 1100 | 12 | X | X | | |
+-------+-----+-----+-----+-----+-----+
- + 1101 + 13 + X + X + + X +
+ | 1101 | 13 | X | X | | X |
+-------+-----+-----+-----+-----+-----+
- + 1110 + 14 + X + X + X + +
+ | 1110 | 14 | X | X | X | |
+-------+-----+-----+-----+-----+-----+
- + 1111 + 15 + X + X + X + X +
+ | 1111 | 15 | X | X | X | X |
+-------+-----+-----+-----+-----+-----+
In most cases, the appropriate displays must be plugged in for the above
combinations to work. TV-Out may need to be initialized at boot time.
Debugging:
+
1) Check whether the Fn+F8 key:
+
a) does not lock the laptop (try a boot with noapic / nolapic if it does)
b) generates events (0x6n, where n is the value corresponding to the
configuration above)
c) actually works
+
Record the disp value at every configuration.
2) Echo values from 0 to 15 to /sys/devices/platform/asus-laptop/display.
Record its value, note any change. If nothing changes, try a broader range,
@@ -164,7 +176,7 @@ Display switching
Note: on some machines (e.g. L3C), after the module has been loaded, only 0x6n
events are generated and no actual switching occurs. In such a case, a line
- like:
+ like::
echo $((10#$arg-60)) > /sys/devices/platform/asus-laptop/display
@@ -180,15 +192,16 @@ LED display
several items of information.
LED display works for the following models:
- W1000N
- W1J
- To control the LED display, use the following :
+ - W1000N
+ - W1J
+
+ To control the LED display, use the following::
echo 0x0T000DDD > /sys/devices/platform/asus-laptop/
where T control the 3 letters display, and DDD the 3 digits display,
- according to the tables below.
+ according to the tables below::
DDD (digits)
000 to 999 = display digits
@@ -208,8 +221,8 @@ LED display
For example "echo 0x01000001 >/sys/devices/platform/asus-laptop/ledd"
would display "DVD001".
-Driver options:
----------------
+Driver options
+--------------
Options can be passed to the asus-laptop driver using the standard
module argument syntax (<param>=<value> when passing the option to the
@@ -219,6 +232,7 @@ Driver options:
wapf: WAPF defines the behavior of the Fn+Fx wlan key
The significance of values is yet to be found, but
most of the time:
+
- 0x0 should do nothing
- 0x1 should allow to control the device with Fn+Fx key.
- 0x4 should send an ACPI event (0x88) while pressing the Fn+Fx key
@@ -237,7 +251,7 @@ Unsupported models
- ASUS L7300G
- ASUS L8400
-Patches, Errors, Questions:
+Patches, Errors, Questions
--------------------------
I appreciate any success or failure
@@ -253,5 +267,5 @@ Patches, Errors, Questions:
Any other comments or patches are also more than welcome.
acpi4asus-user@lists.sourceforge.net
- http://sourceforge.net/projects/acpi4asus
+ http://sourceforge.net/projects/acpi4asus
diff --git a/Documentation/laptops/disk-shock-protection.txt b/Documentation/admin-guide/laptops/disk-shock-protection.rst
index 0e6ba2663834..e97c5f78d8c3 100644
--- a/Documentation/laptops/disk-shock-protection.txt
+++ b/Documentation/admin-guide/laptops/disk-shock-protection.rst
@@ -1,17 +1,18 @@
+==========================
Hard disk shock protection
==========================
Author: Elias Oltmanns <eo@nebensachen.de>
+
Last modified: 2008-10-03
-0. Contents
------------
+.. 0. Contents
-1. Intro
-2. The interface
-3. References
-4. CREDITS
+ 1. Intro
+ 2. The interface
+ 3. References
+ 4. CREDITS
1. Intro
@@ -36,8 +37,8 @@ that).
----------------
For each ATA device, the kernel exports the file
-block/*/device/unload_heads in sysfs (here assumed to be mounted under
-/sys). Access to /sys/block/*/device/unload_heads is denied with
+`block/*/device/unload_heads` in sysfs (here assumed to be mounted under
+/sys). Access to `/sys/block/*/device/unload_heads` is denied with
-EOPNOTSUPP if the device does not support the unload feature.
Otherwise, writing an integer value to this file will take the heads
of the respective drive off the platter and block all I/O operations
@@ -54,18 +55,18 @@ cancel a previously set timeout and resume normal operation
immediately by specifying a timeout of 0. Values below -2 are rejected
with -EINVAL (see below for the special meaning of -1 and -2). If the
timeout specified for a recent head park request has not yet expired,
-reading from /sys/block/*/device/unload_heads will report the number
+reading from `/sys/block/*/device/unload_heads` will report the number
of milliseconds remaining until normal operation will be resumed;
otherwise, reading the unload_heads attribute will return 0.
For example, do the following in order to park the heads of drive
-/dev/sda and stop all I/O operations for five seconds:
+/dev/sda and stop all I/O operations for five seconds::
-# echo 5000 > /sys/block/sda/device/unload_heads
+ # echo 5000 > /sys/block/sda/device/unload_heads
-A simple
+A simple::
-# cat /sys/block/sda/device/unload_heads
+ # cat /sys/block/sda/device/unload_heads
will show you how many milliseconds are left before normal operation
will be resumed.
@@ -112,9 +113,9 @@ unload_heads attribute. If you know that your device really does
support the unload feature (for instance, because the vendor of your
laptop or the hard drive itself told you so), then you can tell the
kernel to enable the usage of this feature for that drive by writing
-the special value -1 to the unload_heads attribute:
+the special value -1 to the unload_heads attribute::
-# echo -1 > /sys/block/sda/device/unload_heads
+ # echo -1 > /sys/block/sda/device/unload_heads
will enable the feature for /dev/sda, and giving -2 instead of -1 will
disable it again.
@@ -135,6 +136,7 @@ for use. Please feel free to add projects that have been the victims
of my ignorance.
- http://www.thinkwiki.org/wiki/HDAPS
+
See this page for information about Linux support of the hard disk
active protection system as implemented in IBM/Lenovo Thinkpads.
diff --git a/Documentation/admin-guide/laptops/index.rst b/Documentation/admin-guide/laptops/index.rst
new file mode 100644
index 000000000000..cd9a1c2695fd
--- /dev/null
+++ b/Documentation/admin-guide/laptops/index.rst
@@ -0,0 +1,17 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============
+Laptop Drivers
+==============
+
+.. toctree::
+ :maxdepth: 1
+
+ asus-laptop
+ disk-shock-protection
+ laptop-mode
+ lg-laptop
+ sony-laptop
+ sonypi
+ thinkpad-acpi
+ toshiba_haps
diff --git a/Documentation/laptops/laptop-mode.txt b/Documentation/admin-guide/laptops/laptop-mode.rst
index 1c707fc9b141..c984c4262f2e 100644
--- a/Documentation/laptops/laptop-mode.txt
+++ b/Documentation/admin-guide/laptops/laptop-mode.rst
@@ -1,8 +1,11 @@
+===============================================
How to conserve battery power using laptop-mode
------------------------------------------------
+===============================================
Document Author: Bart Samwel (bart@samwel.tk)
+
Date created: January 2, 2004
+
Last modified: December 06, 2004
Introduction
@@ -12,17 +15,16 @@ Laptop mode is used to minimize the time that the hard disk needs to be spun up,
to conserve battery power on laptops. It has been reported to cause significant
power savings.
-Contents
---------
+.. Contents
-* Introduction
-* Installation
-* Caveats
-* The Details
-* Tips & Tricks
-* Control script
-* ACPI integration
-* Monitoring tool
+ * Introduction
+ * Installation
+ * Caveats
+ * The Details
+ * Tips & Tricks
+ * Control script
+ * ACPI integration
+ * Monitoring tool
Installation
@@ -33,7 +35,7 @@ or anything. Simply install all the files included in this document, and
laptop mode will automatically be started when you're on battery. For
your convenience, a tarball containing an installer can be downloaded at:
-http://www.samwel.tk/laptop_mode/laptop_mode/
+ http://www.samwel.tk/laptop_mode/laptop_mode/
To configure laptop mode, you need to edit the configuration file, which is
located in /etc/default/laptop-mode on Debian-based systems, or in
@@ -209,7 +211,7 @@ Tips & Tricks
this on powerbooks too. I hope that this is a piece of information that
might be useful to the Laptop Mode patch or its users."
-* In syslog.conf, you can prefix entries with a dash ``-'' to omit syncing the
+* In syslog.conf, you can prefix entries with a dash `-` to omit syncing the
file after every logging. When you're using laptop-mode and your disk doesn't
spin down, this is a likely culprit.
@@ -233,83 +235,82 @@ configuration file
It should be installed as /etc/default/laptop-mode on Debian, and as
/etc/sysconfig/laptop-mode on Red Hat, SUSE, Mandrake, and other work-alikes.
---------------------CONFIG FILE BEGIN-------------------------------------------
-# Maximum time, in seconds, of hard drive spindown time that you are
-# comfortable with. Worst case, it's possible that you could lose this
-# amount of work if your battery fails you while in laptop mode.
-#MAX_AGE=600
-
-# Automatically disable laptop mode when the number of minutes of battery
-# that you have left goes below this threshold.
-MINIMUM_BATTERY_MINUTES=10
-
-# Read-ahead, in 512-byte sectors. You can spin down the disk while playing MP3/OGG
-# by setting the disk readahead to 8MB (READAHEAD=16384). Effectively, the disk
-# will read a complete MP3 at once, and will then spin down while the MP3/OGG is
-# playing.
-#READAHEAD=4096
-
-# Shall we remount journaled fs. with appropriate commit interval? (1=yes)
-#DO_REMOUNTS=1
-
-# And shall we add the "noatime" option to that as well? (1=yes)
-#DO_REMOUNT_NOATIME=1
-
-# Dirty synchronous ratio. At this percentage of dirty pages the process
-# which
-# calls write() does its own writeback
-#DIRTY_RATIO=40
-
-#
-# Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
-# exceeded, the kernel will wake flusher threads which will then reduce the
-# amount of dirty memory to dirty_background_ratio. Set this nice and low,
-# so once some writeout has commenced, we do a lot of it.
-#
-#DIRTY_BACKGROUND_RATIO=5
-
-# kernel default dirty buffer age
-#DEF_AGE=30
-#DEF_UPDATE=5
-#DEF_DIRTY_BACKGROUND_RATIO=10
-#DEF_DIRTY_RATIO=40
-#DEF_XFS_AGE_BUFFER=15
-#DEF_XFS_SYNC_INTERVAL=30
-#DEF_XFS_BUFD_INTERVAL=1
-
-# This must be adjusted manually to the value of HZ in the running kernel
-# on 2.4, until the XFS people change their 2.4 external interfaces to work in
-# centisecs. This can be automated, but it's a work in progress that still
-# needs# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for
-# external interfaces, and that is currently always set to 100. So you don't
-# need to change this on 2.6.
-#XFS_HZ=100
-
-# Should the maximum CPU frequency be adjusted down while on battery?
-# Requires CPUFreq to be setup.
-# See Documentation/admin-guide/pm/cpufreq.rst for more info
-#DO_CPU=0
-
-# When on battery what is the maximum CPU speed that the system should
-# use? Legal values are "slowest" for the slowest speed that your
-# CPU is able to operate at, or a value listed in:
-# /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
-# Only applicable if DO_CPU=1.
-#CPU_MAXFREQ=slowest
-
-# Idle timeout for your hard drive (man hdparm for valid values, -S option)
-# Default is 2 hours on AC (AC_HD=244) and 20 seconds for battery (BATT_HD=4).
-#AC_HD=244
-#BATT_HD=4
-
-# The drives for which to adjust the idle timeout. Separate them by a space,
-# e.g. HD="/dev/hda /dev/hdb".
-#HD="/dev/hda"
-
-# Set the spindown timeout on a hard drive?
-#DO_HD=1
-
---------------------CONFIG FILE END---------------------------------------------
+Config file::
+
+ # Maximum time, in seconds, of hard drive spindown time that you are
+ # comfortable with. Worst case, it's possible that you could lose this
+ # amount of work if your battery fails you while in laptop mode.
+ #MAX_AGE=600
+
+ # Automatically disable laptop mode when the number of minutes of battery
+ # that you have left goes below this threshold.
+ MINIMUM_BATTERY_MINUTES=10
+
+ # Read-ahead, in 512-byte sectors. You can spin down the disk while playing MP3/OGG
+ # by setting the disk readahead to 8MB (READAHEAD=16384). Effectively, the disk
+ # will read a complete MP3 at once, and will then spin down while the MP3/OGG is
+ # playing.
+ #READAHEAD=4096
+
+ # Shall we remount journaled fs. with appropriate commit interval? (1=yes)
+ #DO_REMOUNTS=1
+
+ # And shall we add the "noatime" option to that as well? (1=yes)
+ #DO_REMOUNT_NOATIME=1
+
+ # Dirty synchronous ratio. At this percentage of dirty pages the process
+ # which
+ # calls write() does its own writeback
+ #DIRTY_RATIO=40
+
+ #
+ # Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
+ # exceeded, the kernel will wake flusher threads which will then reduce the
+ # amount of dirty memory to dirty_background_ratio. Set this nice and low,
+ # so once some writeout has commenced, we do a lot of it.
+ #
+ #DIRTY_BACKGROUND_RATIO=5
+
+ # kernel default dirty buffer age
+ #DEF_AGE=30
+ #DEF_UPDATE=5
+ #DEF_DIRTY_BACKGROUND_RATIO=10
+ #DEF_DIRTY_RATIO=40
+ #DEF_XFS_AGE_BUFFER=15
+ #DEF_XFS_SYNC_INTERVAL=30
+ #DEF_XFS_BUFD_INTERVAL=1
+
+ # This must be adjusted manually to the value of HZ in the running kernel
+ # on 2.4, until the XFS people change their 2.4 external interfaces to work in
+ # centisecs. This can be automated, but it's a work in progress that still
+ # needs# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for
+ # external interfaces, and that is currently always set to 100. So you don't
+ # need to change this on 2.6.
+ #XFS_HZ=100
+
+ # Should the maximum CPU frequency be adjusted down while on battery?
+ # Requires CPUFreq to be setup.
+ # See Documentation/admin-guide/pm/cpufreq.rst for more info
+ #DO_CPU=0
+
+ # When on battery what is the maximum CPU speed that the system should
+ # use? Legal values are "slowest" for the slowest speed that your
+ # CPU is able to operate at, or a value listed in:
+ # /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
+ # Only applicable if DO_CPU=1.
+ #CPU_MAXFREQ=slowest
+
+ # Idle timeout for your hard drive (man hdparm for valid values, -S option)
+ # Default is 2 hours on AC (AC_HD=244) and 20 seconds for battery (BATT_HD=4).
+ #AC_HD=244
+ #BATT_HD=4
+
+ # The drives for which to adjust the idle timeout. Separate them by a space,
+ # e.g. HD="/dev/hda /dev/hdb".
+ #HD="/dev/hda"
+
+ # Set the spindown timeout on a hard drive?
+ #DO_HD=1
Control script
@@ -318,125 +319,126 @@ Control script
Please note that this control script works for the Linux 2.4 and 2.6 series (thanks
to Kiko Piris).
---------------------CONTROL SCRIPT BEGIN----------------------------------------
-#!/bin/bash
-
-# start or stop laptop_mode, best run by a power management daemon when
-# ac gets connected/disconnected from a laptop
-#
-# install as /sbin/laptop_mode
-#
-# Contributors to this script: Kiko Piris
-# Bart Samwel
-# Micha Feigin
-# Andrew Morton
-# Herve Eychenne
-# Dax Kelson
-#
-# Original Linux 2.4 version by: Jens Axboe
-
-#############################################################################
-
-# Source config
-if [ -f /etc/default/laptop-mode ] ; then
+Control script::
+
+ #!/bin/bash
+
+ # start or stop laptop_mode, best run by a power management daemon when
+ # ac gets connected/disconnected from a laptop
+ #
+ # install as /sbin/laptop_mode
+ #
+ # Contributors to this script: Kiko Piris
+ # Bart Samwel
+ # Micha Feigin
+ # Andrew Morton
+ # Herve Eychenne
+ # Dax Kelson
+ #
+ # Original Linux 2.4 version by: Jens Axboe
+
+ #############################################################################
+
+ # Source config
+ if [ -f /etc/default/laptop-mode ] ; then
# Debian
. /etc/default/laptop-mode
-elif [ -f /etc/sysconfig/laptop-mode ] ; then
+ elif [ -f /etc/sysconfig/laptop-mode ] ; then
# Others
- . /etc/sysconfig/laptop-mode
-fi
-
-# Don't raise an error if the config file is incomplete
-# set defaults instead:
-
-# Maximum time, in seconds, of hard drive spindown time that you are
-# comfortable with. Worst case, it's possible that you could lose this
-# amount of work if your battery fails you while in laptop mode.
-MAX_AGE=${MAX_AGE:-'600'}
-
-# Read-ahead, in kilobytes
-READAHEAD=${READAHEAD:-'4096'}
-
-# Shall we remount journaled fs. with appropriate commit interval? (1=yes)
-DO_REMOUNTS=${DO_REMOUNTS:-'1'}
-
-# And shall we add the "noatime" option to that as well? (1=yes)
-DO_REMOUNT_NOATIME=${DO_REMOUNT_NOATIME:-'1'}
-
-# Shall we adjust the idle timeout on a hard drive?
-DO_HD=${DO_HD:-'1'}
-
-# Adjust idle timeout on which hard drive?
-HD="${HD:-'/dev/hda'}"
-
-# spindown time for HD (hdparm -S values)
-AC_HD=${AC_HD:-'244'}
-BATT_HD=${BATT_HD:-'4'}
-
-# Dirty synchronous ratio. At this percentage of dirty pages the process which
-# calls write() does its own writeback
-DIRTY_RATIO=${DIRTY_RATIO:-'40'}
-
-# cpu frequency scaling
-# See Documentation/admin-guide/pm/cpufreq.rst for more info
-DO_CPU=${CPU_MANAGE:-'0'}
-CPU_MAXFREQ=${CPU_MAXFREQ:-'slowest'}
-
-#
-# Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
-# exceeded, the kernel will wake flusher threads which will then reduce the
-# amount of dirty memory to dirty_background_ratio. Set this nice and low,
-# so once some writeout has commenced, we do a lot of it.
-#
-DIRTY_BACKGROUND_RATIO=${DIRTY_BACKGROUND_RATIO:-'5'}
-
-# kernel default dirty buffer age
-DEF_AGE=${DEF_AGE:-'30'}
-DEF_UPDATE=${DEF_UPDATE:-'5'}
-DEF_DIRTY_BACKGROUND_RATIO=${DEF_DIRTY_BACKGROUND_RATIO:-'10'}
-DEF_DIRTY_RATIO=${DEF_DIRTY_RATIO:-'40'}
-DEF_XFS_AGE_BUFFER=${DEF_XFS_AGE_BUFFER:-'15'}
-DEF_XFS_SYNC_INTERVAL=${DEF_XFS_SYNC_INTERVAL:-'30'}
-DEF_XFS_BUFD_INTERVAL=${DEF_XFS_BUFD_INTERVAL:-'1'}
-
-# This must be adjusted manually to the value of HZ in the running kernel
-# on 2.4, until the XFS people change their 2.4 external interfaces to work in
-# centisecs. This can be automated, but it's a work in progress that still needs
-# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for external
-# interfaces, and that is currently always set to 100. So you don't need to
-# change this on 2.6.
-XFS_HZ=${XFS_HZ:-'100'}
-
-#############################################################################
-
-KLEVEL="$(uname -r |
- {
+ . /etc/sysconfig/laptop-mode
+ fi
+
+ # Don't raise an error if the config file is incomplete
+ # set defaults instead:
+
+ # Maximum time, in seconds, of hard drive spindown time that you are
+ # comfortable with. Worst case, it's possible that you could lose this
+ # amount of work if your battery fails you while in laptop mode.
+ MAX_AGE=${MAX_AGE:-'600'}
+
+ # Read-ahead, in kilobytes
+ READAHEAD=${READAHEAD:-'4096'}
+
+ # Shall we remount journaled fs. with appropriate commit interval? (1=yes)
+ DO_REMOUNTS=${DO_REMOUNTS:-'1'}
+
+ # And shall we add the "noatime" option to that as well? (1=yes)
+ DO_REMOUNT_NOATIME=${DO_REMOUNT_NOATIME:-'1'}
+
+ # Shall we adjust the idle timeout on a hard drive?
+ DO_HD=${DO_HD:-'1'}
+
+ # Adjust idle timeout on which hard drive?
+ HD="${HD:-'/dev/hda'}"
+
+ # spindown time for HD (hdparm -S values)
+ AC_HD=${AC_HD:-'244'}
+ BATT_HD=${BATT_HD:-'4'}
+
+ # Dirty synchronous ratio. At this percentage of dirty pages the process which
+ # calls write() does its own writeback
+ DIRTY_RATIO=${DIRTY_RATIO:-'40'}
+
+ # cpu frequency scaling
+ # See Documentation/admin-guide/pm/cpufreq.rst for more info
+ DO_CPU=${CPU_MANAGE:-'0'}
+ CPU_MAXFREQ=${CPU_MAXFREQ:-'slowest'}
+
+ #
+ # Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
+ # exceeded, the kernel will wake flusher threads which will then reduce the
+ # amount of dirty memory to dirty_background_ratio. Set this nice and low,
+ # so once some writeout has commenced, we do a lot of it.
+ #
+ DIRTY_BACKGROUND_RATIO=${DIRTY_BACKGROUND_RATIO:-'5'}
+
+ # kernel default dirty buffer age
+ DEF_AGE=${DEF_AGE:-'30'}
+ DEF_UPDATE=${DEF_UPDATE:-'5'}
+ DEF_DIRTY_BACKGROUND_RATIO=${DEF_DIRTY_BACKGROUND_RATIO:-'10'}
+ DEF_DIRTY_RATIO=${DEF_DIRTY_RATIO:-'40'}
+ DEF_XFS_AGE_BUFFER=${DEF_XFS_AGE_BUFFER:-'15'}
+ DEF_XFS_SYNC_INTERVAL=${DEF_XFS_SYNC_INTERVAL:-'30'}
+ DEF_XFS_BUFD_INTERVAL=${DEF_XFS_BUFD_INTERVAL:-'1'}
+
+ # This must be adjusted manually to the value of HZ in the running kernel
+ # on 2.4, until the XFS people change their 2.4 external interfaces to work in
+ # centisecs. This can be automated, but it's a work in progress that still needs
+ # some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for external
+ # interfaces, and that is currently always set to 100. So you don't need to
+ # change this on 2.6.
+ XFS_HZ=${XFS_HZ:-'100'}
+
+ #############################################################################
+
+ KLEVEL="$(uname -r |
+ {
IFS='.' read a b c
echo $a.$b
}
-)"
-case "$KLEVEL" in
+ )"
+ case "$KLEVEL" in
"2.4"|"2.6")
;;
*)
echo "Unhandled kernel version: $KLEVEL ('uname -r' = '$(uname -r)')" >&2
exit 1
;;
-esac
+ esac
-if [ ! -e /proc/sys/vm/laptop_mode ] ; then
+ if [ ! -e /proc/sys/vm/laptop_mode ] ; then
echo "Kernel is not patched with laptop_mode patch." >&2
exit 1
-fi
+ fi
-if [ ! -w /proc/sys/vm/laptop_mode ] ; then
+ if [ ! -w /proc/sys/vm/laptop_mode ] ; then
echo "You do not have enough privileges to enable laptop_mode." >&2
exit 1
-fi
+ fi
-# Remove an option (the first parameter) of the form option=<number> from
-# a mount options string (the rest of the parameters).
-parse_mount_opts () {
+ # Remove an option (the first parameter) of the form option=<number> from
+ # a mount options string (the rest of the parameters).
+ parse_mount_opts () {
OPT="$1"
shift
echo ",$*," | sed \
@@ -444,11 +446,11 @@ parse_mount_opts () {
-e 's/,,*/,/g' \
-e 's/^,//' \
-e 's/,$//'
-}
+ }
-# Remove an option (the first parameter) without any arguments from
-# a mount option string (the rest of the parameters).
-parse_nonumber_mount_opts () {
+ # Remove an option (the first parameter) without any arguments from
+ # a mount option string (the rest of the parameters).
+ parse_nonumber_mount_opts () {
OPT="$1"
shift
echo ",$*," | sed \
@@ -456,20 +458,20 @@ parse_nonumber_mount_opts () {
-e 's/,,*/,/g' \
-e 's/^,//' \
-e 's/,$//'
-}
-
-# Find out the state of a yes/no option (e.g. "atime"/"noatime") in
-# fstab for a given filesystem, and use this state to replace the
-# value of the option in another mount options string. The device
-# is the first argument, the option name the second, and the default
-# value the third. The remainder is the mount options string.
-#
-# Example:
-# parse_yesno_opts_wfstab /dev/hda1 atime atime defaults,noatime
-#
-# If fstab contains, say, "rw" for this filesystem, then the result
-# will be "defaults,atime".
-parse_yesno_opts_wfstab () {
+ }
+
+ # Find out the state of a yes/no option (e.g. "atime"/"noatime") in
+ # fstab for a given filesystem, and use this state to replace the
+ # value of the option in another mount options string. The device
+ # is the first argument, the option name the second, and the default
+ # value the third. The remainder is the mount options string.
+ #
+ # Example:
+ # parse_yesno_opts_wfstab /dev/hda1 atime atime defaults,noatime
+ #
+ # If fstab contains, say, "rw" for this filesystem, then the result
+ # will be "defaults,atime".
+ parse_yesno_opts_wfstab () {
L_DEV="$1"
OPT="$2"
DEF_OPT="$3"
@@ -491,21 +493,21 @@ parse_yesno_opts_wfstab () {
# option not specified in fstab -- choose the default.
echo "$PARSEDOPTS1,$DEF_OPT"
fi
-}
-
-# Find out the state of a numbered option (e.g. "commit=NNN") in
-# fstab for a given filesystem, and use this state to replace the
-# value of the option in another mount options string. The device
-# is the first argument, and the option name the second. The
-# remainder is the mount options string in which the replacement
-# must be done.
-#
-# Example:
-# parse_mount_opts_wfstab /dev/hda1 commit defaults,commit=7
-#
-# If fstab contains, say, "commit=3,rw" for this filesystem, then the
-# result will be "rw,commit=3".
-parse_mount_opts_wfstab () {
+ }
+
+ # Find out the state of a numbered option (e.g. "commit=NNN") in
+ # fstab for a given filesystem, and use this state to replace the
+ # value of the option in another mount options string. The device
+ # is the first argument, and the option name the second. The
+ # remainder is the mount options string in which the replacement
+ # must be done.
+ #
+ # Example:
+ # parse_mount_opts_wfstab /dev/hda1 commit defaults,commit=7
+ #
+ # If fstab contains, say, "commit=3,rw" for this filesystem, then the
+ # result will be "rw,commit=3".
+ parse_mount_opts_wfstab () {
L_DEV="$1"
OPT="$2"
shift 2
@@ -523,9 +525,9 @@ parse_mount_opts_wfstab () {
# option not specified in fstab: set it to 0
echo "$PARSEDOPTS1,$OPT=0"
fi
-}
+ }
-deduce_fstype () {
+ deduce_fstype () {
MP="$1"
# My root filesystem unfortunately has
# type "unknown" in /etc/mtab. If we encounter
@@ -538,13 +540,13 @@ deduce_fstype () {
exit 0
fi
done
-}
+ }
-if [ $DO_REMOUNT_NOATIME -eq 1 ] ; then
+ if [ $DO_REMOUNT_NOATIME -eq 1 ] ; then
NOATIME_OPT=",noatime"
-fi
+ fi
-case "$1" in
+ case "$1" in
start)
AGE=$((100*$MAX_AGE))
XFS_AGE=$(($XFS_HZ*$MAX_AGE))
@@ -687,10 +689,9 @@ case "$1" in
exit 1
;;
-esac
+ esac
-exit 0
---------------------CONTROL SCRIPT END------------------------------------------
+ exit 0
ACPI integration
@@ -701,78 +702,76 @@ kick off the laptop_mode script and run hdparm. The part that
automatically disables laptop mode when the battery is low was
written by Jan Topinski.
------------------/etc/acpi/events/ac_adapter BEGIN------------------------------
-event=ac_adapter
-action=/etc/acpi/actions/ac.sh %e
-----------------/etc/acpi/events/ac_adapter END---------------------------------
+/etc/acpi/events/ac_adapter::
+
+ event=ac_adapter
+ action=/etc/acpi/actions/ac.sh %e
+
+/etc/acpi/events/battery::
+ event=battery.*
+ action=/etc/acpi/actions/battery.sh %e
------------------/etc/acpi/events/battery BEGIN---------------------------------
-event=battery.*
-action=/etc/acpi/actions/battery.sh %e
-----------------/etc/acpi/events/battery END------------------------------------
+/etc/acpi/actions/ac.sh::
+ #!/bin/bash
-----------------/etc/acpi/actions/ac.sh BEGIN-----------------------------------
-#!/bin/bash
+ # ac on/offline event handler
-# ac on/offline event handler
+ status=`awk '/^state: / { print $2 }' /proc/acpi/ac_adapter/$2/state`
-status=`awk '/^state: / { print $2 }' /proc/acpi/ac_adapter/$2/state`
+ case $status in
+ "on-line")
+ /sbin/laptop_mode stop
+ exit 0
+ ;;
+ "off-line")
+ /sbin/laptop_mode start
+ exit 0
+ ;;
+ esac
-case $status in
- "on-line")
- /sbin/laptop_mode stop
- exit 0
- ;;
- "off-line")
- /sbin/laptop_mode start
- exit 0
- ;;
-esac
----------------------------/etc/acpi/actions/ac.sh END--------------------------
+/etc/acpi/actions/battery.sh::
----------------------------/etc/acpi/actions/battery.sh BEGIN-------------------
-#! /bin/bash
+ #! /bin/bash
-# Automatically disable laptop mode when the battery almost runs out.
+ # Automatically disable laptop mode when the battery almost runs out.
-BATT_INFO=/proc/acpi/battery/$2/state
+ BATT_INFO=/proc/acpi/battery/$2/state
-if [[ -f /proc/sys/vm/laptop_mode ]]
-then
- LM=`cat /proc/sys/vm/laptop_mode`
- if [[ $LM -gt 0 ]]
- then
- if [[ -f $BATT_INFO ]]
+ if [[ -f /proc/sys/vm/laptop_mode ]]
+ then
+ LM=`cat /proc/sys/vm/laptop_mode`
+ if [[ $LM -gt 0 ]]
then
- # Source the config file only now that we know we need
- if [ -f /etc/default/laptop-mode ] ; then
- # Debian
- . /etc/default/laptop-mode
- elif [ -f /etc/sysconfig/laptop-mode ] ; then
- # Others
- . /etc/sysconfig/laptop-mode
- fi
- MINIMUM_BATTERY_MINUTES=${MINIMUM_BATTERY_MINUTES:-'10'}
-
- ACTION="`cat $BATT_INFO | grep charging | cut -c 26-`"
- if [[ ACTION -eq "discharging" ]]
- then
- PRESENT_RATE=`cat $BATT_INFO | grep "present rate:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
- REMAINING=`cat $BATT_INFO | grep "remaining capacity:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
- fi
- if (($REMAINING * 60 / $PRESENT_RATE < $MINIMUM_BATTERY_MINUTES))
- then
- /sbin/laptop_mode stop
- fi
- else
- logger -p daemon.warning "You are using laptop mode and your battery interface $BATT_INFO is missing. This may lead to loss of data when the battery runs out. Check kernel ACPI support and /proc/acpi/battery folder, and edit /etc/acpi/battery.sh to set BATT_INFO to the correct path."
+ if [[ -f $BATT_INFO ]]
+ then
+ # Source the config file only now that we know we need
+ if [ -f /etc/default/laptop-mode ] ; then
+ # Debian
+ . /etc/default/laptop-mode
+ elif [ -f /etc/sysconfig/laptop-mode ] ; then
+ # Others
+ . /etc/sysconfig/laptop-mode
+ fi
+ MINIMUM_BATTERY_MINUTES=${MINIMUM_BATTERY_MINUTES:-'10'}
+
+ ACTION="`cat $BATT_INFO | grep charging | cut -c 26-`"
+ if [[ ACTION -eq "discharging" ]]
+ then
+ PRESENT_RATE=`cat $BATT_INFO | grep "present rate:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
+ REMAINING=`cat $BATT_INFO | grep "remaining capacity:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
+ fi
+ if (($REMAINING * 60 / $PRESENT_RATE < $MINIMUM_BATTERY_MINUTES))
+ then
+ /sbin/laptop_mode stop
+ fi
+ else
+ logger -p daemon.warning "You are using laptop mode and your battery interface $BATT_INFO is missing. This may lead to loss of data when the battery runs out. Check kernel ACPI support and /proc/acpi/battery folder, and edit /etc/acpi/battery.sh to set BATT_INFO to the correct path."
+ fi
fi
- fi
-fi
----------------------------/etc/acpi/actions/battery.sh END--------------------
+ fi
Monitoring tool
diff --git a/Documentation/laptops/lg-laptop.rst b/Documentation/admin-guide/laptops/lg-laptop.rst
index aa503ee9b3bc..ce9b14671cb9 100644
--- a/Documentation/laptops/lg-laptop.rst
+++ b/Documentation/admin-guide/laptops/lg-laptop.rst
@@ -1,5 +1,6 @@
.. SPDX-License-Identifier: GPL-2.0+
+
LG Gram laptop extra features
=============================
diff --git a/Documentation/laptops/sony-laptop.txt b/Documentation/admin-guide/laptops/sony-laptop.rst
index 978b1e615155..9edcc7f6612f 100644
--- a/Documentation/laptops/sony-laptop.txt
+++ b/Documentation/admin-guide/laptops/sony-laptop.rst
@@ -1,7 +1,9 @@
+=========================================
Sony Notebook Control Driver (SNC) Readme
------------------------------------------
- Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
- Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
+=========================================
+
+ - Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
+ - Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
This mini-driver drives the SNC and SPIC device present in the ACPI BIOS of the
Sony Vaio laptops. This driver mixes both devices functions under the same
@@ -10,6 +12,7 @@ obsoleted by sony-laptop now.
Fn keys (hotkeys):
------------------
+
Some models report hotkeys through the SNC or SPIC devices, such events are
reported both through the ACPI subsystem as acpi events and through the INPUT
subsystem. See the logs of /proc/bus/input/devices to find out what those
@@ -28,11 +31,14 @@ If your laptop model supports it, you will find sysfs files in the
/sys/class/backlight/sony/
directory. You will be able to query and set the current screen
brightness:
+
+ ====================== =========================================
brightness get/set screen brightness (an integer
between 0 and 7)
actual_brightness reading from this file will query the HW
to get real brightness value
max_brightness the maximum brightness value
+ ====================== =========================================
Platform specific:
@@ -45,6 +51,8 @@ You then read/write integer values from/to those files by using
standard UNIX tools.
The files are:
+
+ ====================== ==========================================
brightness_default screen brightness which will be set
when the laptop will be rebooted
cdpower power on/off the internal CD drive
@@ -53,21 +61,39 @@ The files are:
(only in debug mode)
bluetoothpower power on/off the internal bluetooth device
fanspeed get/set the fan speed
+ ====================== ==========================================
Note that some files may be missing if they are not supported
by your particular laptop model.
-Example usage:
+Example usage::
+
# echo "1" > /sys/devices/platform/sony-laptop/brightness_default
-sets the lowest screen brightness for the next and later reboots,
+
+sets the lowest screen brightness for the next and later reboots
+
+::
+
# echo "8" > /sys/devices/platform/sony-laptop/brightness_default
-sets the highest screen brightness for the next and later reboots,
+
+sets the highest screen brightness for the next and later reboots
+
+::
+
# cat /sys/devices/platform/sony-laptop/brightness_default
-retrieves the value.
+
+retrieves the value
+
+::
# echo "0" > /sys/devices/platform/sony-laptop/audiopower
-powers off the sound card,
+
+powers off the sound card
+
+::
+
# echo "1" > /sys/devices/platform/sony-laptop/audiopower
+
powers on the sound card.
@@ -76,7 +102,8 @@ RFkill control:
More recent Vaio models expose a consistent set of ACPI methods to
control radio frequency emitting devices. If you are a lucky owner of
such a laptop you will find the necessary rfkill devices under
-/sys/class/rfkill. Check those starting with sony-* in
+/sys/class/rfkill. Check those starting with sony-* in::
+
# grep . /sys/class/rfkill/*/{state,name}
@@ -88,26 +115,29 @@ you are not afraid of any side effects doing strange things with
your ACPI BIOS could have on your laptop), load the driver and
pass the option 'debug=1'.
-REPEAT: DON'T DO THIS IF YOU DON'T LIKE RISKY BUSINESS.
+REPEAT:
+ **DON'T DO THIS IF YOU DON'T LIKE RISKY BUSINESS.**
In your kernel logs you will find the list of all ACPI methods
the SNC device has on your laptop.
* For new models you will see a long list of meaningless method names,
-reading the DSDT table source should reveal that:
+ reading the DSDT table source should reveal that:
+
(1) the SNC device uses an internal capability lookup table
(2) SN00 is used to find values in the lookup table
(3) SN06 and SN07 are used to call into the real methods based on
offsets you can obtain iterating the table using SN00
(4) SN02 used to enable events.
+
Some values in the capability lookup table are more or less known, see
the code for all sony_call_snc_handle calls, others are more obscure.
* For old models you can see the GCDP/GCDP methods used to pwer on/off
-the CD drive, but there are others and they are usually different from
-model to model.
+ the CD drive, but there are others and they are usually different from
+ model to model.
-I HAVE NO IDEA WHAT THOSE METHODS DO.
+**I HAVE NO IDEA WHAT THOSE METHODS DO.**
The sony-laptop driver creates, for some of those methods (the most
current ones found on several Vaio models), an entry under
diff --git a/Documentation/laptops/sonypi.txt b/Documentation/admin-guide/laptops/sonypi.rst
index 606bdb9ce036..c6eaaf48f7c1 100644
--- a/Documentation/laptops/sonypi.txt
+++ b/Documentation/admin-guide/laptops/sonypi.rst
@@ -1,11 +1,13 @@
+==================================================
Sony Programmable I/O Control Device Driver Readme
---------------------------------------------------
- Copyright (C) 2001-2004 Stelian Pop <stelian@popies.net>
- Copyright (C) 2001-2002 Alcôve <www.alcove.com>
- Copyright (C) 2001 Michael Ashley <m.ashley@unsw.edu.au>
- Copyright (C) 2001 Junichi Morita <jun1m@mars.dti.ne.jp>
- Copyright (C) 2000 Takaya Kinjo <t-kinjo@tc4.so-net.ne.jp>
- Copyright (C) 2000 Andrew Tridgell <tridge@samba.org>
+==================================================
+
+ - Copyright (C) 2001-2004 Stelian Pop <stelian@popies.net>
+ - Copyright (C) 2001-2002 Alcôve <www.alcove.com>
+ - Copyright (C) 2001 Michael Ashley <m.ashley@unsw.edu.au>
+ - Copyright (C) 2001 Junichi Morita <jun1m@mars.dti.ne.jp>
+ - Copyright (C) 2000 Takaya Kinjo <t-kinjo@tc4.so-net.ne.jp>
+ - Copyright (C) 2000 Andrew Tridgell <tridge@samba.org>
This driver enables access to the Sony Programmable I/O Control Device which
can be found in many Sony Vaio laptops. Some newer Sony laptops (seems to be
@@ -14,6 +16,7 @@ sonypi device and are not supported at all by this driver.
It will give access (through a user space utility) to some events those laptops
generate, like:
+
- jogdial events (the small wheel on the side of Vaios)
- capture button events (only on Vaio Picturebook series)
- Fn keys
@@ -49,7 +52,8 @@ module argument syntax (<param>=<value> when passing the option to the
module or sonypi.<param>=<value> on the kernel boot line when sonypi is
statically linked into the kernel). Those options are:
- minor: minor number of the misc device /dev/sonypi,
+ =============== =======================================================
+ minor: minor number of the misc device /dev/sonypi,
default is -1 (automatic allocation, see /proc/misc
or kernel logs)
@@ -85,17 +89,18 @@ statically linked into the kernel). Those options are:
set to 0xffffffff, meaning that all possible events
will be tried. You can use the following bits to
construct your own event mask (from
- drivers/char/sonypi.h):
- SONYPI_JOGGER_MASK 0x0001
- SONYPI_CAPTURE_MASK 0x0002
- SONYPI_FNKEY_MASK 0x0004
- SONYPI_BLUETOOTH_MASK 0x0008
- SONYPI_PKEY_MASK 0x0010
- SONYPI_BACK_MASK 0x0020
- SONYPI_HELP_MASK 0x0040
- SONYPI_LID_MASK 0x0080
- SONYPI_ZOOM_MASK 0x0100
- SONYPI_THUMBPHRASE_MASK 0x0200
+ drivers/char/sonypi.h)::
+
+ SONYPI_JOGGER_MASK 0x0001
+ SONYPI_CAPTURE_MASK 0x0002
+ SONYPI_FNKEY_MASK 0x0004
+ SONYPI_BLUETOOTH_MASK 0x0008
+ SONYPI_PKEY_MASK 0x0010
+ SONYPI_BACK_MASK 0x0020
+ SONYPI_HELP_MASK 0x0040
+ SONYPI_LID_MASK 0x0080
+ SONYPI_ZOOM_MASK 0x0100
+ SONYPI_THUMBPHRASE_MASK 0x0200
SONYPI_MEYE_MASK 0x0400
SONYPI_MEMORYSTICK_MASK 0x0800
SONYPI_BATTERY_MASK 0x1000
@@ -105,17 +110,18 @@ statically linked into the kernel). Those options are:
created, one which interprets the jogdial events as
mouse events, the other one which acts like a
keyboard reporting the pressing of the special keys.
+ =============== =======================================================
Module use:
-----------
In order to automatically load the sonypi module on use, you can put those
-lines a configuration file in /etc/modprobe.d/:
+lines a configuration file in /etc/modprobe.d/::
alias char-major-10-250 sonypi
options sonypi minor=250
-This supposes the use of minor 250 for the sonypi device:
+This supposes the use of minor 250 for the sonypi device::
# mknod /dev/sonypi c 10 250
@@ -148,5 +154,5 @@ Bugs:
http://www.acc.umu.se/~erikw/program/smartdimmer-0.1.tar.bz2
- since all development was done by reverse engineering, there is
- _absolutely no guarantee_ that this driver will not crash your
+ *absolutely no guarantee* that this driver will not crash your
laptop. Permanently.
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/admin-guide/laptops/thinkpad-acpi.rst
index 6cced88de6da..822907dcc845 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/admin-guide/laptops/thinkpad-acpi.rst
@@ -1,12 +1,15 @@
- ThinkPad ACPI Extras Driver
+===========================
+ThinkPad ACPI Extras Driver
+===========================
- Version 0.25
- October 16th, 2013
+Version 0.25
- Borislav Deianov <borislav@users.sf.net>
- Henrique de Moraes Holschuh <hmh@hmh.eng.br>
- http://ibm-acpi.sf.net/
+October 16th, 2013
+- Borislav Deianov <borislav@users.sf.net>
+- Henrique de Moraes Holschuh <hmh@hmh.eng.br>
+
+http://ibm-acpi.sf.net/
This is a Linux driver for the IBM and Lenovo ThinkPad laptops. It
supports various features of these laptops which are accessible
@@ -46,6 +49,7 @@ detailed description):
- Fan control and monitoring: fan speed, fan enable/disable
- WAN enable and disable
- UWB enable and disable
+ - LCD Shadow (PrivacyGuard) enable and disable
A compatibility table by model and feature is maintained on the web
site, http://ibm-acpi.sf.net/. I appreciate any success or failure
@@ -91,7 +95,8 @@ yet ready or stabilized, it is expected that this interface will change,
and any and all userspace programs must deal with it.
-Notes about the sysfs interface:
+Notes about the sysfs interface
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Unlike what was done with the procfs interface, correctness when talking
to the sysfs interfaces will be enforced, as will correctness in the
@@ -129,6 +134,7 @@ Driver version
--------------
procfs: /proc/acpi/ibm/driver
+
sysfs driver attribute: version
The driver name and version. No commands can be written to this file.
@@ -141,9 +147,13 @@ sysfs driver attribute: interface_version
Version of the thinkpad-acpi sysfs interface, as an unsigned long
(output in hex format: 0xAAAABBCC), where:
- AAAA - major revision
- BB - minor revision
- CC - bugfix revision
+
+ AAAA
+ - major revision
+ BB
+ - minor revision
+ CC
+ - bugfix revision
The sysfs interface version changelog for the driver can be found at the
end of this document. Changes to the sysfs interface done by the kernel
@@ -170,6 +180,7 @@ Hot keys
--------
procfs: /proc/acpi/ibm/hotkey
+
sysfs device attribute: hotkey_*
In a ThinkPad, the ACPI HKEY handler is responsible for communicating
@@ -181,7 +192,7 @@ firmware will behave in many situations.
The driver enables the HKEY ("hot key") event reporting automatically
when loaded, and disables it when it is removed.
-The driver will report HKEY events in the following format:
+The driver will report HKEY events in the following format::
ibm/hotkey HKEY 00000080 0000xxxx
@@ -217,9 +228,10 @@ ThinkPads, it is still possible to support some extra hotkeys by
polling the "CMOS NVRAM" at least 10 times per second. The driver
attempts to enables this functionality automatically when required.
-procfs notes:
+procfs notes
+^^^^^^^^^^^^
-The following commands can be written to the /proc/acpi/ibm/hotkey file:
+The following commands can be written to the /proc/acpi/ibm/hotkey file::
echo 0xffffffff > /proc/acpi/ibm/hotkey -- enable all hot keys
echo 0 > /proc/acpi/ibm/hotkey -- disable all possible hot keys
@@ -227,7 +239,7 @@ The following commands can be written to the /proc/acpi/ibm/hotkey file:
echo reset > /proc/acpi/ibm/hotkey -- restore the recommended mask
The following commands have been deprecated and will cause the kernel
-to log a warning:
+to log a warning::
echo enable > /proc/acpi/ibm/hotkey -- does nothing
echo disable > /proc/acpi/ibm/hotkey -- returns an error
@@ -237,7 +249,8 @@ maintain maximum bug-to-bug compatibility, it does not report any masks,
nor does it allow one to manipulate the hot key mask when the firmware
does not support masks at all, even if NVRAM polling is in use.
-sysfs notes:
+sysfs notes
+^^^^^^^^^^^
hotkey_bios_enabled:
DEPRECATED, WILL BE REMOVED SOON.
@@ -349,7 +362,8 @@ sysfs notes:
This attribute has poll()/select() support.
-input layer notes:
+input layer notes
+^^^^^^^^^^^^^^^^^
A Hot key is mapped to a single input layer EV_KEY event, possibly
followed by an EV_MSC MSC_SCAN event that shall contain that key's scan
@@ -362,11 +376,13 @@ remapping KEY_UNKNOWN keys.
The events are available in an input device, with the following id:
- Bus: BUS_HOST
- vendor: 0x1014 (PCI_VENDOR_ID_IBM) or
+ ============== ==============================
+ Bus BUS_HOST
+ vendor 0x1014 (PCI_VENDOR_ID_IBM) or
0x17aa (PCI_VENDOR_ID_LENOVO)
- product: 0x5054 ("TP")
- version: 0x4101
+ product 0x5054 ("TP")
+ version 0x4101
+ ============== ==============================
The version will have its LSB incremented if the keymap changes in a
backwards-compatible way. The MSB shall always be 0x41 for this input
@@ -380,9 +396,10 @@ backwards-compatible change for this input device.
Thinkpad-acpi Hot Key event map (version 0x4101):
+======= ======= ============== ==============================================
ACPI Scan
event code Key Notes
-
+======= ======= ============== ==============================================
0x1001 0x00 FN+F1 -
0x1002 0x01 FN+F2 IBM: battery (rare)
@@ -426,7 +443,9 @@ event code Key Notes
or toggle screen expand
0x1009 0x08 FN+F9 -
- .. .. ..
+
+... ... ... ...
+
0x100B 0x0A FN+F11 -
0x100C 0x0B FN+F12 Sleep to disk. You are always
@@ -480,8 +499,11 @@ event code Key Notes
0x1018 0x17 THINKPAD ThinkPad/Access IBM/Lenovo key
0x1019 0x18 unknown
-.. .. ..
+
+... ... ...
+
0x1020 0x1F unknown
+======= ======= ============== ==============================================
The ThinkPad firmware does not allow one to differentiate when most hot
keys are pressed or released (either that, or we don't know how to, yet).
@@ -499,14 +521,17 @@ generate input device EV_KEY events.
In addition to the EV_KEY events, thinkpad-acpi may also issue EV_SW
events for switches:
+============== ==============================================
SW_RFKILL_ALL T60 and later hardware rfkill rocker switch
SW_TABLET_MODE Tablet ThinkPads HKEY events 0x5009 and 0x500A
+============== ==============================================
-Non hotkey ACPI HKEY event map:
--------------------------------
+Non hotkey ACPI HKEY event map
+------------------------------
Events that are never propagated by the driver:
+====== ==================================================
0x2304 System is waking up from suspend to undock
0x2305 System is waking up from suspend to eject bay
0x2404 System is waking up from hibernation to undock
@@ -519,10 +544,12 @@ Events that are never propagated by the driver:
0x6000 KEYBOARD: Numlock key pressed
0x6005 KEYBOARD: Fn key pressed (TO BE VERIFIED)
0x7000 Radio Switch may have changed state
+====== ==================================================
Events that are propagated by the driver to userspace:
+====== =====================================================
0x2313 ALARM: System is waking up from suspend because
the battery is nearly empty
0x2413 ALARM: System is waking up from hibernation because
@@ -544,6 +571,7 @@ Events that are propagated by the driver to userspace:
0x6040 Nvidia Optimus/AC adapter related (TO BE VERIFIED)
0x60C0 X1 Yoga 2016, Tablet mode status changed
0x60F0 Thermal Transformation changed (GMTS, Windows)
+====== =====================================================
Battery nearly empty alarms are a last resort attempt to get the
operating system to hibernate or shutdown cleanly (0x2313), or shutdown
@@ -562,7 +590,8 @@ cycle, or a system shutdown. Obviously, something is very wrong if this
happens.
-Brightness hotkey notes:
+Brightness hotkey notes
+^^^^^^^^^^^^^^^^^^^^^^^
Don't mess with the brightness hotkeys in a Thinkpad. If you want
notifications for OSD, use the sysfs backlight class event support.
@@ -579,7 +608,9 @@ Bluetooth
---------
procfs: /proc/acpi/ibm/bluetooth
+
sysfs device attribute: bluetooth_enable (deprecated)
+
sysfs rfkill class: switch "tpacpi_bluetooth_sw"
This feature shows the presence and current state of a ThinkPad
@@ -588,36 +619,39 @@ Bluetooth device in the internal ThinkPad CDC slot.
If the ThinkPad supports it, the Bluetooth state is stored in NVRAM,
so it is kept across reboots and power-off.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
-If Bluetooth is installed, the following commands can be used:
+If Bluetooth is installed, the following commands can be used::
echo enable > /proc/acpi/ibm/bluetooth
echo disable > /proc/acpi/ibm/bluetooth
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
If the Bluetooth CDC card is installed, it can be enabled /
disabled through the "bluetooth_enable" thinkpad-acpi device
attribute, and its current status can also be queried.
enable:
- 0: disables Bluetooth / Bluetooth is disabled
- 1: enables Bluetooth / Bluetooth is enabled.
+
+ - 0: disables Bluetooth / Bluetooth is disabled
+ - 1: enables Bluetooth / Bluetooth is enabled.
Note: this interface has been superseded by the generic rfkill
class. It has been deprecated, and it will be removed in year
2010.
rfkill controller switch "tpacpi_bluetooth_sw": refer to
- Documentation/rfkill.txt for details.
+ Documentation/driver-api/rfkill.rst for details.
Video output control -- /proc/acpi/ibm/video
--------------------------------------------
This feature allows control over the devices used for video output -
-LCD, CRT or DVI (if available). The following commands are available:
+LCD, CRT or DVI (if available). The following commands are available::
echo lcd_enable > /proc/acpi/ibm/video
echo lcd_disable > /proc/acpi/ibm/video
@@ -630,9 +664,10 @@ LCD, CRT or DVI (if available). The following commands are available:
echo expand_toggle > /proc/acpi/ibm/video
echo video_switch > /proc/acpi/ibm/video
-NOTE: Access to this feature is restricted to processes owning the
-CAP_SYS_ADMIN capability for safety reasons, as it can interact badly
-enough with some versions of X.org to crash it.
+NOTE:
+ Access to this feature is restricted to processes owning the
+ CAP_SYS_ADMIN capability for safety reasons, as it can interact badly
+ enough with some versions of X.org to crash it.
Each video output device can be enabled or disabled individually.
Reading /proc/acpi/ibm/video shows the status of each device.
@@ -665,21 +700,24 @@ ThinkLight control
------------------
procfs: /proc/acpi/ibm/light
+
sysfs attributes: as per LED class, for the "tpacpi::thinklight" LED
-procfs notes:
+procfs notes
+^^^^^^^^^^^^
The ThinkLight status can be read and set through the procfs interface. A
few models which do not make the status available will show the ThinkLight
-status as "unknown". The available commands are:
+status as "unknown". The available commands are::
echo on > /proc/acpi/ibm/light
echo off > /proc/acpi/ibm/light
-sysfs notes:
+sysfs notes
+^^^^^^^^^^^
The ThinkLight sysfs interface is documented by the LED class
-documentation, in Documentation/leds/leds-class.txt. The ThinkLight LED name
+documentation, in Documentation/leds/leds-class.rst. The ThinkLight LED name
is "tpacpi::thinklight".
Due to limitations in the sysfs LED class, if the status of the ThinkLight
@@ -691,6 +729,7 @@ CMOS/UCMS control
-----------------
procfs: /proc/acpi/ibm/cmos
+
sysfs device attribute: cmos_command
This feature is mostly used internally by the ACPI firmware to keep the legacy
@@ -707,16 +746,16 @@ The range of valid cmos command numbers is 0 to 21, but not all have an
effect and the behavior varies from model to model. Here is the behavior
on the X40 (tpb is the ThinkPad Buttons utility):
- 0 - Related to "Volume down" key press
- 1 - Related to "Volume up" key press
- 2 - Related to "Mute on" key press
- 3 - Related to "Access IBM" key press
- 4 - Related to "LCD brightness up" key press
- 5 - Related to "LCD brightness down" key press
- 11 - Related to "toggle screen expansion" key press/function
- 12 - Related to "ThinkLight on"
- 13 - Related to "ThinkLight off"
- 14 - Related to "ThinkLight" key press (toggle ThinkLight)
+ - 0 - Related to "Volume down" key press
+ - 1 - Related to "Volume up" key press
+ - 2 - Related to "Mute on" key press
+ - 3 - Related to "Access IBM" key press
+ - 4 - Related to "LCD brightness up" key press
+ - 5 - Related to "LCD brightness down" key press
+ - 11 - Related to "toggle screen expansion" key press/function
+ - 12 - Related to "ThinkLight on"
+ - 13 - Related to "ThinkLight off"
+ - 14 - Related to "ThinkLight" key press (toggle ThinkLight)
The cmos command interface is prone to firmware split-brain problems, as
in newer ThinkPads it is just a compatibility layer. Do not use it, it is
@@ -748,9 +787,10 @@ are aware of the consequences are welcome to enabling it.
Audio mute and microphone mute LEDs are supported, but currently not
visible to userspace. They are used by the snd-hda-intel audio driver.
-procfs notes:
+procfs notes
+^^^^^^^^^^^^
-The available commands are:
+The available commands are::
echo '<LED number> on' >/proc/acpi/ibm/led
echo '<LED number> off' >/proc/acpi/ibm/led
@@ -760,26 +800,27 @@ The <LED number> range is 0 to 15. The set of LEDs that can be
controlled varies from model to model. Here is the common ThinkPad
mapping:
- 0 - power
- 1 - battery (orange)
- 2 - battery (green)
- 3 - UltraBase/dock
- 4 - UltraBay
- 5 - UltraBase battery slot
- 6 - (unknown)
- 7 - standby
- 8 - dock status 1
- 9 - dock status 2
- 10, 11 - (unknown)
- 12 - thinkvantage
- 13, 14, 15 - (unknown)
+ - 0 - power
+ - 1 - battery (orange)
+ - 2 - battery (green)
+ - 3 - UltraBase/dock
+ - 4 - UltraBay
+ - 5 - UltraBase battery slot
+ - 6 - (unknown)
+ - 7 - standby
+ - 8 - dock status 1
+ - 9 - dock status 2
+ - 10, 11 - (unknown)
+ - 12 - thinkvantage
+ - 13, 14, 15 - (unknown)
All of the above can be turned on and off and can be made to blink.
-sysfs notes:
+sysfs notes
+^^^^^^^^^^^
The ThinkPad LED sysfs interface is described in detail by the LED class
-documentation, in Documentation/leds/leds-class.txt.
+documentation, in Documentation/leds/leds-class.rst.
The LEDs are named (in LED ID order, from 0 to 12):
"tpacpi::power", "tpacpi:orange:batt", "tpacpi:green:batt",
@@ -815,7 +856,7 @@ The BEEP method is used internally by the ACPI firmware to provide
audible alerts in various situations. This feature allows the same
sounds to be triggered manually.
-The commands are non-negative integer numbers:
+The commands are non-negative integer numbers::
echo <number> >/proc/acpi/ibm/beep
@@ -823,25 +864,26 @@ The valid <number> range is 0 to 17. Not all numbers trigger sounds
and the sounds vary from model to model. Here is the behavior on the
X40:
- 0 - stop a sound in progress (but use 17 to stop 16)
- 2 - two beeps, pause, third beep ("low battery")
- 3 - single beep
- 4 - high, followed by low-pitched beep ("unable")
- 5 - single beep
- 6 - very high, followed by high-pitched beep ("AC/DC")
- 7 - high-pitched beep
- 9 - three short beeps
- 10 - very long beep
- 12 - low-pitched beep
- 15 - three high-pitched beeps repeating constantly, stop with 0
- 16 - one medium-pitched beep repeating constantly, stop with 17
- 17 - stop 16
+ - 0 - stop a sound in progress (but use 17 to stop 16)
+ - 2 - two beeps, pause, third beep ("low battery")
+ - 3 - single beep
+ - 4 - high, followed by low-pitched beep ("unable")
+ - 5 - single beep
+ - 6 - very high, followed by high-pitched beep ("AC/DC")
+ - 7 - high-pitched beep
+ - 9 - three short beeps
+ - 10 - very long beep
+ - 12 - low-pitched beep
+ - 15 - three high-pitched beeps repeating constantly, stop with 0
+ - 16 - one medium-pitched beep repeating constantly, stop with 17
+ - 17 - stop 16
Temperature sensors
-------------------
procfs: /proc/acpi/ibm/thermal
+
sysfs device attributes: (hwmon "thinkpad") temp*_input
Most ThinkPads include six or more separate temperature sensors but only
@@ -850,10 +892,14 @@ feature shows readings from up to eight different sensors on older
ThinkPads, and up to sixteen different sensors on newer ThinkPads.
For example, on the X40, a typical output may be:
-temperatures: 42 42 45 41 36 -128 33 -128
+
+temperatures:
+ 42 42 45 41 36 -128 33 -128
On the T43/p, a typical output may be:
-temperatures: 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
+
+temperatures:
+ 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
The mapping of thermal sensors to physical locations varies depending on
system-board model (and thus, on ThinkPad model).
@@ -863,46 +909,53 @@ tries to track down these locations for various models.
Most (newer?) models seem to follow this pattern:
-1: CPU
-2: (depends on model)
-3: (depends on model)
-4: GPU
-5: Main battery: main sensor
-6: Bay battery: main sensor
-7: Main battery: secondary sensor
-8: Bay battery: secondary sensor
-9-15: (depends on model)
+- 1: CPU
+- 2: (depends on model)
+- 3: (depends on model)
+- 4: GPU
+- 5: Main battery: main sensor
+- 6: Bay battery: main sensor
+- 7: Main battery: secondary sensor
+- 8: Bay battery: secondary sensor
+- 9-15: (depends on model)
For the R51 (source: Thomas Gruber):
-2: Mini-PCI
-3: Internal HDD
+
+- 2: Mini-PCI
+- 3: Internal HDD
For the T43, T43/p (source: Shmidoax/Thinkwiki.org)
http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_T43.2C_T43p
-2: System board, left side (near PCMCIA slot), reported as HDAPS temp
-3: PCMCIA slot
-9: MCH (northbridge) to DRAM Bus
-10: Clock-generator, mini-pci card and ICH (southbridge), under Mini-PCI
- card, under touchpad
-11: Power regulator, underside of system board, below F2 key
+
+- 2: System board, left side (near PCMCIA slot), reported as HDAPS temp
+- 3: PCMCIA slot
+- 9: MCH (northbridge) to DRAM Bus
+- 10: Clock-generator, mini-pci card and ICH (southbridge), under Mini-PCI
+ card, under touchpad
+- 11: Power regulator, underside of system board, below F2 key
The A31 has a very atypical layout for the thermal sensors
(source: Milos Popovic, http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_A31)
-1: CPU
-2: Main Battery: main sensor
-3: Power Converter
-4: Bay Battery: main sensor
-5: MCH (northbridge)
-6: PCMCIA/ambient
-7: Main Battery: secondary sensor
-8: Bay Battery: secondary sensor
+- 1: CPU
+- 2: Main Battery: main sensor
+- 3: Power Converter
+- 4: Bay Battery: main sensor
+- 5: MCH (northbridge)
+- 6: PCMCIA/ambient
+- 7: Main Battery: secondary sensor
+- 8: Bay Battery: secondary sensor
+
+
+Procfs notes
+^^^^^^^^^^^^
-Procfs notes:
Readings from sensors that are not available return -128.
No commands can be written to this file.
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
+
Sensors that are not available return the ENXIO error. This
status may change at runtime, as there are hotplug thermal
sensors, like those inside the batteries and docks.
@@ -921,6 +974,7 @@ ftp://ftp.suse.com/pub/people/trenn/sources/ec
Use it to determine the register holding the fan
speed on some models. To do that, do the following:
+
- make sure the battery is fully charged
- make sure the fan is running
- use above mentioned tool to read out the EC
@@ -941,6 +995,7 @@ LCD brightness control
----------------------
procfs: /proc/acpi/ibm/brightness
+
sysfs backlight device "thinkpad_screen"
This feature allows software control of the LCD brightness on ThinkPad
@@ -985,15 +1040,17 @@ brightness_enable=0 forces it to be disabled. brightness_enable=1
forces it to be enabled when available, even if the standard ACPI
interface is also available.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
- The available commands are:
+The available commands are::
echo up >/proc/acpi/ibm/brightness
echo down >/proc/acpi/ibm/brightness
echo 'level <level>' >/proc/acpi/ibm/brightness
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
The interface is implemented through the backlight sysfs class, which is
poorly documented at this time.
@@ -1038,6 +1095,7 @@ Volume control (Console Audio control)
--------------------------------------
procfs: /proc/acpi/ibm/volume
+
ALSA: "ThinkPad Console Audio Control", default ID: "ThinkPadEC"
NOTE: by default, the volume control interface operates in read-only
@@ -1053,7 +1111,8 @@ Software volume control should be done only in the main AC97/HDA
mixer.
-About the ThinkPad Console Audio control:
+About the ThinkPad Console Audio control
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ThinkPads have a built-in amplifier and muting circuit that drives the
console headphone and speakers. This circuit is after the main AC97
@@ -1092,13 +1151,14 @@ normal key presses to the operating system (thinkpad-acpi is not
involved).
-The ThinkPad-ACPI volume control:
+The ThinkPad-ACPI volume control
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The preferred way to interact with the Console Audio control is the
ALSA interface.
The legacy procfs interface allows one to read the current state,
-and if volume control is enabled, accepts the following commands:
+and if volume control is enabled, accepts the following commands::
echo up >/proc/acpi/ibm/volume
echo down >/proc/acpi/ibm/volume
@@ -1137,13 +1197,15 @@ Fan control and monitoring: fan speed, fan enable/disable
---------------------------------------------------------
procfs: /proc/acpi/ibm/fan
-sysfs device attributes: (hwmon "thinkpad") fan1_input, pwm1,
- pwm1_enable, fan2_input
+
+sysfs device attributes: (hwmon "thinkpad") fan1_input, pwm1, pwm1_enable, fan2_input
+
sysfs hwmon driver attributes: fan_watchdog
-NOTE NOTE NOTE: fan control operations are disabled by default for
-safety reasons. To enable them, the module parameter "fan_control=1"
-must be given to thinkpad-acpi.
+NOTE NOTE NOTE:
+ fan control operations are disabled by default for
+ safety reasons. To enable them, the module parameter "fan_control=1"
+ must be given to thinkpad-acpi.
This feature attempts to show the current fan speed, control mode and
other fan data that might be available. The speed is read directly
@@ -1154,7 +1216,8 @@ value on other models.
Some Lenovo ThinkPads support a secondary fan. This fan cannot be
controlled separately, it shares the main fan control.
-Fan levels:
+Fan levels
+^^^^^^^^^^
Most ThinkPad fans work in "levels" at the firmware interface. Level 0
stops the fan. The higher the level, the higher the fan speed, although
@@ -1209,9 +1272,10 @@ therefore, not suitable to protect against fan mode changes made through
means other than the "enable", "disable", and "level" procfs fan
commands, or the hwmon fan control sysfs interface.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
-The fan may be enabled or disabled with the following commands:
+The fan may be enabled or disabled with the following commands::
echo enable >/proc/acpi/ibm/fan
echo disable >/proc/acpi/ibm/fan
@@ -1219,7 +1283,7 @@ The fan may be enabled or disabled with the following commands:
Placing a fan on level 0 is the same as disabling it. Enabling a fan
will try to place it in a safe level if it is too slow or disabled.
-The fan level can be controlled with the command:
+The fan level can be controlled with the command::
echo 'level <level>' > /proc/acpi/ibm/fan
@@ -1231,7 +1295,7 @@ compatibility.
On the X31 and X40 (and ONLY on those models), the fan speed can be
controlled to a certain degree. Once the fan is running, it can be
-forced to run faster or slower with the following command:
+forced to run faster or slower with the following command::
echo 'speed <speed>' > /proc/acpi/ibm/fan
@@ -1241,13 +1305,14 @@ effect or the fan speed eventually settles somewhere in that range. The
fan cannot be stopped or started with this command. This functionality
is incomplete, and not available through the sysfs interface.
-To program the safety watchdog, use the "watchdog" command.
+To program the safety watchdog, use the "watchdog" command::
echo 'watchdog <interval in seconds>' > /proc/acpi/ibm/fan
If you want to disable the watchdog, use 0 as the interval.
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
The sysfs interface follows the hwmon subsystem guidelines for the most
part, and the exception is the fan safety watchdog.
@@ -1261,10 +1326,10 @@ to the firmware).
Features not yet implemented by the driver return ENOSYS.
hwmon device attribute pwm1_enable:
- 0: PWM offline (fan is set to full-speed mode)
- 1: Manual PWM control (use pwm1 to set fan level)
- 2: Hardware PWM control (EC "auto" mode)
- 3: reserved (Software PWM control, not implemented yet)
+ - 0: PWM offline (fan is set to full-speed mode)
+ - 1: Manual PWM control (use pwm1 to set fan level)
+ - 2: Hardware PWM control (EC "auto" mode)
+ - 3: reserved (Software PWM control, not implemented yet)
Modes 0 and 2 are not supported by all ThinkPads, and the
driver is not always able to detect this. If it does know a
@@ -1304,7 +1369,9 @@ WAN
---
procfs: /proc/acpi/ibm/wan
+
sysfs device attribute: wwan_enable (deprecated)
+
sysfs rfkill class: switch "tpacpi_wwan_sw"
This feature shows the presence and current state of the built-in
@@ -1316,29 +1383,53 @@ so it is kept across reboots and power-off.
It was tested on a Lenovo ThinkPad X60. It should probably work on other
ThinkPad models which come with this module installed.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
-If the W-WAN card is installed, the following commands can be used:
+If the W-WAN card is installed, the following commands can be used::
echo enable > /proc/acpi/ibm/wan
echo disable > /proc/acpi/ibm/wan
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
If the W-WAN card is installed, it can be enabled /
disabled through the "wwan_enable" thinkpad-acpi device
attribute, and its current status can also be queried.
enable:
- 0: disables WWAN card / WWAN card is disabled
- 1: enables WWAN card / WWAN card is enabled.
+ - 0: disables WWAN card / WWAN card is disabled
+ - 1: enables WWAN card / WWAN card is enabled.
Note: this interface has been superseded by the generic rfkill
class. It has been deprecated, and it will be removed in year
2010.
rfkill controller switch "tpacpi_wwan_sw": refer to
- Documentation/rfkill.txt for details.
+ Documentation/driver-api/rfkill.rst for details.
+
+
+LCD Shadow control
+------------------
+
+procfs: /proc/acpi/ibm/lcdshadow
+
+Some newer T480s and T490s ThinkPads provide a feature called
+PrivacyGuard. By turning this feature on, the usable vertical and
+horizontal viewing angles of the LCD can be limited (as if some privacy
+screen was applied manually in front of the display).
+
+procfs notes
+^^^^^^^^^^^^
+
+The available commands are::
+
+ echo '0' >/proc/acpi/ibm/lcdshadow
+ echo '1' >/proc/acpi/ibm/lcdshadow
+
+The first command ensures the best viewing angle and the latter one turns
+on the feature, restricting the viewing angles.
EXPERIMENTAL: UWB
@@ -1354,10 +1445,11 @@ sysfs rfkill class: switch "tpacpi_uwb_sw"
This feature exports an rfkill controller for the UWB device, if one is
present and enabled in the BIOS.
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
rfkill controller switch "tpacpi_uwb_sw": refer to
- Documentation/rfkill.txt for details.
+ Documentation/driver-api/rfkill.rst for details.
Adaptive keyboard
-----------------
@@ -1368,11 +1460,11 @@ This sysfs attribute controls the keyboard "face" that will be shown on the
Lenovo X1 Carbon 2nd gen (2014)'s adaptive keyboard. The value can be read
and set.
-1 = Home mode
-2 = Web-browser mode
-3 = Web-conference mode
-4 = Function mode
-5 = Layflat mode
+- 1 = Home mode
+- 2 = Web-browser mode
+- 3 = Web-conference mode
+- 4 = Function mode
+- 5 = Layflat mode
For more details about which buttons will appear depending on the mode, please
review the laptop's user guide:
@@ -1382,13 +1474,13 @@ Multiple Commands, Module Parameters
------------------------------------
Multiple commands can be written to the proc files in one shot by
-separating them with commas, for example:
+separating them with commas, for example::
echo enable,0xffff > /proc/acpi/ibm/hotkey
echo lcd_disable,crt_enable > /proc/acpi/ibm/video
Commands can also be specified when loading the thinkpad-acpi module,
-for example:
+for example::
modprobe thinkpad_acpi hotkey=enable,0xffff video=auto_disable
@@ -1397,14 +1489,16 @@ Enabling debugging output
-------------------------
The module takes a debug parameter which can be used to selectively
-enable various classes of debugging output, for example:
+enable various classes of debugging output, for example::
modprobe thinkpad_acpi debug=0xffff
will enable all debugging output classes. It takes a bitmask, so
to enable more than one output class, just add their values.
+ ============= ======================================
Debug bitmask Description
+ ============= ======================================
0x8000 Disclose PID of userspace programs
accessing some functions of the driver
0x0001 Initialization and probing
@@ -1415,6 +1509,7 @@ to enable more than one output class, just add their values.
0x0010 Fan control
0x0020 Backlight brightness
0x0040 Audio mixer/volume control
+ ============= ======================================
There is also a kernel build option to enable more debugging
information, which may be necessary to debug driver problems.
@@ -1432,8 +1527,10 @@ the module parameter force_load=1. Regardless of whether this works or
not, please contact ibm-acpi-devel@lists.sourceforge.net with a report.
-Sysfs interface changelog:
+Sysfs interface changelog
+^^^^^^^^^^^^^^^^^^^^^^^^^
+========= ===============================================================
0x000100: Initial sysfs support, as a single platform driver and
device.
0x000200: Hot key support for 32 hot keys, and radio slider switch
@@ -1485,3 +1582,4 @@ Sysfs interface changelog:
0x030000: Thermal and fan sysfs attributes were moved to the hwmon
device instead of being attached to the backing platform
device.
+========= ===============================================================
diff --git a/Documentation/laptops/toshiba_haps.txt b/Documentation/admin-guide/laptops/toshiba_haps.rst
index 0c1d88dedbde..d28b6c3f2849 100644
--- a/Documentation/laptops/toshiba_haps.txt
+++ b/Documentation/admin-guide/laptops/toshiba_haps.rst
@@ -1,18 +1,19 @@
-Kernel driver toshiba_haps
+====================================
Toshiba HDD Active Protection Sensor
====================================
+Kernel driver: toshiba_haps
+
Author: Azael Avalos <coproscefalo@gmail.com>
-0. Contents
------------
+.. 0. Contents
-1. Description
-2. Interface
-3. Accelerometer axes
-4. Supported devices
-5. Usage
+ 1. Description
+ 2. Interface
+ 3. Accelerometer axes
+ 4. Supported devices
+ 5. Usage
1. Description
@@ -32,17 +33,20 @@ file to set the desired protection level or sensor sensibility.
------------
This device comes with 3 methods:
-_STA - Checks existence of the device, returning Zero if the device does not
+
+==== =====================================================================
+_STA Checks existence of the device, returning Zero if the device does not
exists or is not supported.
-PTLV - Sets the desired protection level.
-RSSS - Shuts down the HDD protection interface for a few seconds,
+PTLV Sets the desired protection level.
+RSSS Shuts down the HDD protection interface for a few seconds,
then restores normal operation.
+==== =====================================================================
Note:
-The presence of Solid State Drives (SSD) can make this driver to fail loading,
-given the fact that such drives have no movable parts, and thus, not requiring
-any "protection" as well as failing during the evaluation of the _STA method
-found under this device.
+ The presence of Solid State Drives (SSD) can make this driver to fail loading,
+ given the fact that such drives have no movable parts, and thus, not requiring
+ any "protection" as well as failing during the evaluation of the _STA method
+ found under this device.
3. Accelerometer axes
@@ -66,11 +70,18 @@ conventional HDD and not only SSD, or a combination of both HDD and SSD.
--------
The sysfs files under /sys/devices/LNXSYSTM:00/LNXSYBUS:00/TOS620A:00/ are:
-protection_level - The protection_level is readable and writeable, and
+
+================ ============================================================
+protection_level The protection_level is readable and writeable, and
provides a way to let userspace query the current protection
level, as well as set the desired protection level, the
- available protection levels are:
- 0 - Disabled | 1 - Low | 2 - Medium | 3 - High
-reset_protection - The reset_protection entry is writeable only, being "1"
+ available protection levels are::
+
+ ============ ======= ========== ========
+ 0 - Disabled 1 - Low 2 - Medium 3 - High
+ ============ ======= ========== ========
+
+reset_protection The reset_protection entry is writeable only, being "1"
the only parameter it accepts, it is used to trigger
a reset of the protection interface.
+================ ============================================================
diff --git a/Documentation/auxdisplay/lcd-panel-cgram.txt b/Documentation/admin-guide/lcd-panel-cgram.rst
index 7f82c905763d..a3eb00c62f53 100644
--- a/Documentation/auxdisplay/lcd-panel-cgram.txt
+++ b/Documentation/admin-guide/lcd-panel-cgram.rst
@@ -1,3 +1,7 @@
+======================================
+Parallel port LCD/Keypad Panel support
+======================================
+
Some LCDs allow you to define up to 8 characters, mapped to ASCII
characters 0 to 7. The escape code to define a new character is
'\e[LG' followed by one digit from 0 to 7, representing the character
@@ -7,7 +11,7 @@ illuminated pixel with LSB on the right. Lines are numbered from the
top of the character to the bottom. On a 5x7 matrix, only the 5 lower
bits of the 7 first bytes are used for each character. If the string
is incomplete, only complete lines will be redefined. Here are some
-examples :
+examples::
printf "\e[LG0010101050D1F0C04;" => 0 = [enter]
printf "\e[LG1040E1F0000000000;" => 1 = [up]
@@ -21,4 +25,3 @@ examples :
printf "\e[LG00002061E1E060200;" => small speaker
Willy
-
diff --git a/Documentation/ldm.txt b/Documentation/admin-guide/ldm.rst
index 12c571368e73..12c571368e73 100644
--- a/Documentation/ldm.txt
+++ b/Documentation/admin-guide/ldm.rst
diff --git a/Documentation/lockup-watchdogs.txt b/Documentation/admin-guide/lockup-watchdogs.rst
index 290840c160af..290840c160af 100644
--- a/Documentation/lockup-watchdogs.txt
+++ b/Documentation/admin-guide/lockup-watchdogs.rst
diff --git a/Documentation/cma/debugfs.txt b/Documentation/admin-guide/mm/cma_debugfs.rst
index 6cef20a8cedc..4e06ffabd78a 100644
--- a/Documentation/cma/debugfs.txt
+++ b/Documentation/admin-guide/mm/cma_debugfs.rst
@@ -1,3 +1,7 @@
+=====================
+CMA Debugfs Interface
+=====================
+
The CMA debugfs interface is useful to retrieve basic information out of the
different CMA areas and to test allocation/release in each of the areas.
@@ -12,7 +16,7 @@ The structure of the files created under that directory is as follows:
- [RO] count: Amount of memory in the CMA area.
- [RO] order_per_bit: Order of pages represented by one bit.
- [RO] bitmap: The bitmap of page states in the zone.
- - [WO] alloc: Allocate N pages from that CMA area. For example:
+ - [WO] alloc: Allocate N pages from that CMA area. For example::
echo 5 > <debugfs>/cma/cma-2/alloc
diff --git a/Documentation/admin-guide/mm/index.rst b/Documentation/admin-guide/mm/index.rst
index ddf8d8d33377..11db46448354 100644
--- a/Documentation/admin-guide/mm/index.rst
+++ b/Documentation/admin-guide/mm/index.rst
@@ -11,7 +11,7 @@ processes address space and many other cool things.
Linux memory management is a complex system with many configurable
settings. Most of these settings are available via ``/proc``
filesystem and can be quired and adjusted using ``sysctl``. These APIs
-are described in Documentation/sysctl/vm.txt and in `man 5 proc`_.
+are described in Documentation/admin-guide/sysctl/vm.rst and in `man 5 proc`_.
.. _man 5 proc: http://man7.org/linux/man-pages/man5/proc.5.html
@@ -26,6 +26,7 @@ the Linux memory management.
:maxdepth: 1
concepts
+ cma_debugfs
hugetlbpage
idle_page_tracking
ksm
diff --git a/Documentation/admin-guide/mm/ksm.rst b/Documentation/admin-guide/mm/ksm.rst
index 9303786632d1..874eb0c77d34 100644
--- a/Documentation/admin-guide/mm/ksm.rst
+++ b/Documentation/admin-guide/mm/ksm.rst
@@ -59,7 +59,7 @@ MADV_UNMERGEABLE is applied to a range which was never MADV_MERGEABLE.
If a region of memory must be split into at least one new MADV_MERGEABLE
or MADV_UNMERGEABLE region, the madvise may return ENOMEM if the process
-will exceed ``vm.max_map_count`` (see Documentation/sysctl/vm.txt).
+will exceed ``vm.max_map_count`` (see Documentation/admin-guide/sysctl/vm.rst).
Like other madvise calls, they are intended for use on mapped areas of
the user address space: they will report ENOMEM if the specified range
diff --git a/Documentation/admin-guide/mm/numa_memory_policy.rst b/Documentation/admin-guide/mm/numa_memory_policy.rst
index d78c5b315f72..8463f5538fda 100644
--- a/Documentation/admin-guide/mm/numa_memory_policy.rst
+++ b/Documentation/admin-guide/mm/numa_memory_policy.rst
@@ -15,7 +15,7 @@ document attempts to describe the concepts and APIs of the 2.6 memory policy
support.
Memory policies should not be confused with cpusets
-(``Documentation/cgroup-v1/cpusets.txt``)
+(``Documentation/admin-guide/cgroup-v1/cpusets.rst``)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
diff --git a/Documentation/admin-guide/mm/numaperf.rst b/Documentation/admin-guide/mm/numaperf.rst
index c067ed145158..a80c3c37226e 100644
--- a/Documentation/admin-guide/mm/numaperf.rst
+++ b/Documentation/admin-guide/mm/numaperf.rst
@@ -165,5 +165,6 @@ write-through caching.
========
See Also
========
-.. [1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
- Section 5.2.27
+
+[1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
+- Section 5.2.27
diff --git a/Documentation/admin-guide/mm/transhuge.rst b/Documentation/admin-guide/mm/transhuge.rst
index 7ab93a8404b9..bd5714547cee 100644
--- a/Documentation/admin-guide/mm/transhuge.rst
+++ b/Documentation/admin-guide/mm/transhuge.rst
@@ -53,7 +53,7 @@ disabled, there is ``khugepaged`` daemon that scans memory and
collapses sequences of basic pages into huge pages.
The THP behaviour is controlled via :ref:`sysfs <thp_sysfs>`
-interface and using madivse(2) and prctl(2) system calls.
+interface and using madvise(2) and prctl(2) system calls.
Transparent Hugepage Support maximizes the usefulness of free memory
if compared to the reservation approach of hugetlbfs by allowing all
diff --git a/Documentation/namespaces/compatibility-list.txt b/Documentation/admin-guide/namespaces/compatibility-list.rst
index defc5589bfcd..318800b2a943 100644
--- a/Documentation/namespaces/compatibility-list.txt
+++ b/Documentation/admin-guide/namespaces/compatibility-list.rst
@@ -1,4 +1,6 @@
- Namespaces compatibility list
+=============================
+Namespaces compatibility list
+=============================
This document contains the information about the problems user
may have when creating tasks living in different namespaces.
@@ -7,13 +9,16 @@ Here's the summary. This matrix shows the known problems, that
occur when tasks share some namespace (the columns) while living
in different other namespaces (the rows):
- UTS IPC VFS PID User Net
+==== === === === === ==== ===
+- UTS IPC VFS PID User Net
+==== === === === === ==== ===
UTS X
IPC X 1
VFS X
PID 1 1 X
User 2 2 X
Net X
+==== === === === === ==== ===
1. Both the IPC and the PID namespaces provide IDs to address
object inside the kernel. E.g. semaphore with IPCID or
@@ -36,4 +41,3 @@ Net X
even having equal UIDs.
But currently this is not so.
-
diff --git a/Documentation/admin-guide/namespaces/index.rst b/Documentation/admin-guide/namespaces/index.rst
new file mode 100644
index 000000000000..384f2e0f33d2
--- /dev/null
+++ b/Documentation/admin-guide/namespaces/index.rst
@@ -0,0 +1,11 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========
+Namespaces
+==========
+
+.. toctree::
+ :maxdepth: 1
+
+ compatibility-list
+ resource-control
diff --git a/Documentation/namespaces/resource-control.txt b/Documentation/admin-guide/namespaces/resource-control.rst
index abc13c394738..369556e00f0c 100644
--- a/Documentation/namespaces/resource-control.txt
+++ b/Documentation/admin-guide/namespaces/resource-control.rst
@@ -1,3 +1,7 @@
+===========================
+Namespaces research control
+===========================
+
There are a lot of kinds of objects in the kernel that don't have
individual limits or that have limits that are ineffective when a set
of processes is allowed to switch user ids. With user namespaces
diff --git a/Documentation/numastat.txt b/Documentation/admin-guide/numastat.rst
index aaf1667489f8..aaf1667489f8 100644
--- a/Documentation/numastat.txt
+++ b/Documentation/admin-guide/numastat.rst
diff --git a/Documentation/perf/arm-ccn.txt b/Documentation/admin-guide/perf/arm-ccn.rst
index 15cdb7bc57c3..832b0c64023a 100644
--- a/Documentation/perf/arm-ccn.txt
+++ b/Documentation/admin-guide/perf/arm-ccn.rst
@@ -1,3 +1,4 @@
+==========================
ARM Cache Coherent Network
==========================
@@ -29,6 +30,7 @@ Crosspoint watchpoint-based events (special "event" value 0xfe)
require "xp" and "vc" as as above plus "port" (device port index),
"dir" (transmit/receive direction), comparator values ("cmp_l"
and "cmp_h") and "mask", being index of the comparator mask.
+
Masks are defined separately from the event description
(due to limited number of the config values) in the "cmp_mask"
directory, with first 8 configurable by user and additional
@@ -44,16 +46,16 @@ request the events on this processor (if not, the perf_event->cpu value
will be overwritten anyway). In case of this processor being offlined,
the events are migrated to another one and the attribute is updated.
-Example of perf tool use:
+Example of perf tool use::
-/ # perf list | grep ccn
- ccn/cycles/ [Kernel PMU event]
-<...>
- ccn/xp_valid_flit,xp=?,port=?,vc=?,dir=?/ [Kernel PMU event]
-<...>
+ / # perf list | grep ccn
+ ccn/cycles/ [Kernel PMU event]
+ <...>
+ ccn/xp_valid_flit,xp=?,port=?,vc=?,dir=?/ [Kernel PMU event]
+ <...>
-/ # perf stat -a -e ccn/cycles/,ccn/xp_valid_flit,xp=1,port=0,vc=1,dir=1/ \
- sleep 1
+ / # perf stat -a -e ccn/cycles/,ccn/xp_valid_flit,xp=1,port=0,vc=1,dir=1/ \
+ sleep 1
The driver does not support sampling, therefore "perf record" will
not work. Per-task (without "-a") perf sessions are not supported.
diff --git a/Documentation/perf/arm_dsu_pmu.txt b/Documentation/admin-guide/perf/arm_dsu_pmu.rst
index d611e15f5add..7fd34db75d13 100644
--- a/Documentation/perf/arm_dsu_pmu.txt
+++ b/Documentation/admin-guide/perf/arm_dsu_pmu.rst
@@ -1,3 +1,4 @@
+==================================
ARM DynamIQ Shared Unit (DSU) PMU
==================================
@@ -13,7 +14,7 @@ PMU doesn't support process specific events and cannot be used in sampling mode.
The DSU provides a bitmap for a subset of implemented events via hardware
registers. There is no way for the driver to determine if the other events
are available or not. Hence the driver exposes only those events advertised
-by the DSU, in "events" directory under :
+by the DSU, in "events" directory under::
/sys/bus/event_sources/devices/arm_dsu_<N>/
@@ -23,6 +24,6 @@ and use the raw event code for the unlisted events.
The driver also exposes the CPUs connected to the DSU instance in "associated_cpus".
-e.g usage :
+e.g usage::
perf stat -a -e arm_dsu_0/cycles/
diff --git a/Documentation/perf/hisi-pmu.txt b/Documentation/admin-guide/perf/hisi-pmu.rst
index 267a028b2741..404a5c3d9d00 100644
--- a/Documentation/perf/hisi-pmu.txt
+++ b/Documentation/admin-guide/perf/hisi-pmu.rst
@@ -1,5 +1,7 @@
+======================================================
HiSilicon SoC uncore Performance Monitoring Unit (PMU)
======================================================
+
The HiSilicon SoC chip includes various independent system device PMUs
such as L3 cache (L3C), Hydra Home Agent (HHA) and DDRC. These PMUs are
independent and have hardware logic to gather statistics and performance
@@ -11,11 +13,13 @@ called Super CPU cluster (SCCL) and is made up of 6 CCLs. Each SCCL has
two HHAs (0 - 1) and four DDRCs (0 - 3), respectively.
HiSilicon SoC uncore PMU driver
----------------------------------------
+-------------------------------
+
Each device PMU has separate registers for event counting, control and
interrupt, and the PMU driver shall register perf PMU drivers like L3C,
HHA and DDRC etc. The available events and configuration options shall
-be described in the sysfs, see :
+be described in the sysfs, see:
+
/sys/devices/hisi_sccl{X}_<l3c{Y}/hha{Y}/ddrc{Y}>/, or
/sys/bus/event_source/devices/hisi_sccl{X}_<l3c{Y}/hha{Y}/ddrc{Y}>.
The "perf list" command shall list the available events from sysfs.
@@ -24,27 +28,30 @@ Each L3C, HHA and DDRC is registered as a separate PMU with perf. The PMU
name will appear in event listing as hisi_sccl<sccl-id>_module<index-id>.
where "sccl-id" is the identifier of the SCCL and "index-id" is the index of
module.
+
e.g. hisi_sccl3_l3c0/rd_hit_cpipe is READ_HIT_CPIPE event of L3C index #0 in
SCCL ID #3.
+
e.g. hisi_sccl1_hha0/rx_operations is RX_OPERATIONS event of HHA index #0 in
SCCL ID #1.
The driver also provides a "cpumask" sysfs attribute, which shows the CPU core
ID used to count the uncore PMU event.
-Example usage of perf:
-$# perf list
-hisi_sccl3_l3c0/rd_hit_cpipe/ [kernel PMU event]
-------------------------------------------
-hisi_sccl3_l3c0/wr_hit_cpipe/ [kernel PMU event]
-------------------------------------------
-hisi_sccl1_l3c0/rd_hit_cpipe/ [kernel PMU event]
-------------------------------------------
-hisi_sccl1_l3c0/wr_hit_cpipe/ [kernel PMU event]
-------------------------------------------
-
-$# perf stat -a -e hisi_sccl3_l3c0/rd_hit_cpipe/ sleep 5
-$# perf stat -a -e hisi_sccl3_l3c0/config=0x02/ sleep 5
+Example usage of perf::
+
+ $# perf list
+ hisi_sccl3_l3c0/rd_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+ hisi_sccl3_l3c0/wr_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+ hisi_sccl1_l3c0/rd_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+ hisi_sccl1_l3c0/wr_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+
+ $# perf stat -a -e hisi_sccl3_l3c0/rd_hit_cpipe/ sleep 5
+ $# perf stat -a -e hisi_sccl3_l3c0/config=0x02/ sleep 5
The current driver does not support sampling. So "perf record" is unsupported.
Also attach to a task is unsupported as the events are all uncore.
diff --git a/Documentation/admin-guide/perf/imx-ddr.rst b/Documentation/admin-guide/perf/imx-ddr.rst
new file mode 100644
index 000000000000..517a205abad6
--- /dev/null
+++ b/Documentation/admin-guide/perf/imx-ddr.rst
@@ -0,0 +1,52 @@
+=====================================================
+Freescale i.MX8 DDR Performance Monitoring Unit (PMU)
+=====================================================
+
+There are no performance counters inside the DRAM controller, so performance
+signals are brought out to the edge of the controller where a set of 4 x 32 bit
+counters is implemented. This is controlled by the CSV modes programed in counter
+control register which causes a large number of PERF signals to be generated.
+
+Selection of the value for each counter is done via the config registers. There
+is one register for each counter. Counter 0 is special in that it always counts
+“time” and when expired causes a lock on itself and the other counters and an
+interrupt is raised. If any other counter overflows, it continues counting, and
+no interrupt is raised.
+
+The "format" directory describes format of the config (event ID) and config1
+(AXI filtering) fields of the perf_event_attr structure, see /sys/bus/event_source/
+devices/imx8_ddr0/format/. The "events" directory describes the events types
+hardware supported that can be used with perf tool, see /sys/bus/event_source/
+devices/imx8_ddr0/events/.
+ e.g.::
+ perf stat -a -e imx8_ddr0/cycles/ cmd
+ perf stat -a -e imx8_ddr0/read/,imx8_ddr0/write/ cmd
+
+AXI filtering is only used by CSV modes 0x41 (axid-read) and 0x42 (axid-write)
+to count reading or writing matches filter setting. Filter setting is various
+from different DRAM controller implementations, which is distinguished by quirks
+in the driver.
+
+* With DDR_CAP_AXI_ID_FILTER quirk.
+ Filter is defined with two configuration parts:
+ --AXI_ID defines AxID matching value.
+ --AXI_MASKING defines which bits of AxID are meaningful for the matching.
+ 0:corresponding bit is masked.
+ 1: corresponding bit is not masked, i.e. used to do the matching.
+
+ AXI_ID and AXI_MASKING are mapped on DPCR1 register in performance counter.
+ When non-masked bits are matching corresponding AXI_ID bits then counter is
+ incremented. Perf counter is incremented if
+ AxID && AXI_MASKING == AXI_ID && AXI_MASKING
+
+ This filter doesn't support filter different AXI ID for axid-read and axid-write
+ event at the same time as this filter is shared between counters.
+ e.g.::
+ perf stat -a -e imx8_ddr0/axid-read,axi_mask=0xMMMM,axi_id=0xDDDD/ cmd
+ perf stat -a -e imx8_ddr0/axid-write,axi_mask=0xMMMM,axi_id=0xDDDD/ cmd
+
+ NOTE: axi_mask is inverted in userspace(i.e. set bits are bits to mask), and
+ it will be reverted in driver automatically. so that the user can just specify
+ axi_id to monitor a specific id, rather than having to specify axi_mask.
+ e.g.::
+ perf stat -a -e imx8_ddr0/axid-read,axi_id=0x12/ cmd, which will monitor ARID=0x12
diff --git a/Documentation/admin-guide/perf/index.rst b/Documentation/admin-guide/perf/index.rst
new file mode 100644
index 000000000000..ee4bfd2a740f
--- /dev/null
+++ b/Documentation/admin-guide/perf/index.rst
@@ -0,0 +1,16 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========================
+Performance monitor support
+===========================
+
+.. toctree::
+ :maxdepth: 1
+
+ hisi-pmu
+ qcom_l2_pmu
+ qcom_l3_pmu
+ arm-ccn
+ xgene-pmu
+ arm_dsu_pmu
+ thunderx2-pmu
diff --git a/Documentation/perf/qcom_l2_pmu.txt b/Documentation/admin-guide/perf/qcom_l2_pmu.rst
index b25b97659ab9..c130178a4a55 100644
--- a/Documentation/perf/qcom_l2_pmu.txt
+++ b/Documentation/admin-guide/perf/qcom_l2_pmu.rst
@@ -1,3 +1,4 @@
+=====================================================================
Qualcomm Technologies Level-2 Cache Performance Monitoring Unit (PMU)
=====================================================================
@@ -28,7 +29,7 @@ The driver provides a "cpumask" sysfs attribute which contains a mask
consisting of one CPU per cluster which will be used to handle all the PMU
events on that cluster.
-Examples for use with perf:
+Examples for use with perf::
perf stat -e l2cache_0/config=0x001/,l2cache_0/config=0x042/ -a sleep 1
diff --git a/Documentation/perf/qcom_l3_pmu.txt b/Documentation/admin-guide/perf/qcom_l3_pmu.rst
index 96b3a9444a0d..a3d014a46bfd 100644
--- a/Documentation/perf/qcom_l3_pmu.txt
+++ b/Documentation/admin-guide/perf/qcom_l3_pmu.rst
@@ -1,3 +1,4 @@
+===========================================================================
Qualcomm Datacenter Technologies L3 Cache Performance Monitoring Unit (PMU)
===========================================================================
@@ -17,7 +18,7 @@ The hardware implements 32bit event counters and has a flat 8bit event space
exposed via the "event" format attribute. In addition to the 32bit physical
counters the driver supports virtual 64bit hardware counters by using hardware
counter chaining. This feature is exposed via the "lc" (long counter) format
-flag. E.g.:
+flag. E.g.::
perf stat -e l3cache_0_0/read-miss,lc/
diff --git a/Documentation/perf/thunderx2-pmu.txt b/Documentation/admin-guide/perf/thunderx2-pmu.rst
index dffc57143736..08e33675853a 100644
--- a/Documentation/perf/thunderx2-pmu.txt
+++ b/Documentation/admin-guide/perf/thunderx2-pmu.rst
@@ -1,3 +1,4 @@
+=============================================================
Cavium ThunderX2 SoC Performance Monitoring Unit (PMU UNCORE)
=============================================================
@@ -24,18 +25,18 @@ and configuration options under sysfs, see
The driver does not support sampling, therefore "perf record" will not
work. Per-task perf sessions are also not supported.
-Examples:
+Examples::
-# perf stat -a -e uncore_dmc_0/cnt_cycles/ sleep 1
+ # perf stat -a -e uncore_dmc_0/cnt_cycles/ sleep 1
-# perf stat -a -e \
-uncore_dmc_0/cnt_cycles/,\
-uncore_dmc_0/data_transfers/,\
-uncore_dmc_0/read_txns/,\
-uncore_dmc_0/write_txns/ sleep 1
+ # perf stat -a -e \
+ uncore_dmc_0/cnt_cycles/,\
+ uncore_dmc_0/data_transfers/,\
+ uncore_dmc_0/read_txns/,\
+ uncore_dmc_0/write_txns/ sleep 1
-# perf stat -a -e \
-uncore_l3c_0/read_request/,\
-uncore_l3c_0/read_hit/,\
-uncore_l3c_0/inv_request/,\
-uncore_l3c_0/inv_hit/ sleep 1
+ # perf stat -a -e \
+ uncore_l3c_0/read_request/,\
+ uncore_l3c_0/read_hit/,\
+ uncore_l3c_0/inv_request/,\
+ uncore_l3c_0/inv_hit/ sleep 1
diff --git a/Documentation/perf/xgene-pmu.txt b/Documentation/admin-guide/perf/xgene-pmu.rst
index d7cff4454e5b..644f8ed89152 100644
--- a/Documentation/perf/xgene-pmu.txt
+++ b/Documentation/admin-guide/perf/xgene-pmu.rst
@@ -1,3 +1,4 @@
+================================================
APM X-Gene SoC Performance Monitoring Unit (PMU)
================================================
@@ -33,7 +34,7 @@ each PMU, please refer to APM X-Gene User Manual.
Each perf driver also provides a "cpumask" sysfs attribute, which contains a
single CPU ID of the processor which will be used to handle all the PMU events.
-Example for perf tool use:
+Example for perf tool use::
/ # perf list | grep -e l3c -e iob -e mcb -e mc
l3c0/ackq-full/ [Kernel PMU event]
diff --git a/Documentation/pnp.txt b/Documentation/admin-guide/pnp.rst
index bab2d10631f0..bab2d10631f0 100644
--- a/Documentation/pnp.txt
+++ b/Documentation/admin-guide/pnp.rst
diff --git a/Documentation/driver-api/rapidio.rst b/Documentation/admin-guide/rapidio.rst
index 71ff658ab78e..71ff658ab78e 100644
--- a/Documentation/driver-api/rapidio.rst
+++ b/Documentation/admin-guide/rapidio.rst
diff --git a/Documentation/admin-guide/ras.rst b/Documentation/admin-guide/ras.rst
index c7495e42e6f4..2b20f5f7380d 100644
--- a/Documentation/admin-guide/ras.rst
+++ b/Documentation/admin-guide/ras.rst
@@ -199,7 +199,7 @@ Architecture (MCA)\ [#f3]_.
mode).
.. [#f3] For more details about the Machine Check Architecture (MCA),
- please read Documentation/x86/x86_64/machinecheck at the Kernel tree.
+ please read Documentation/x86/x86_64/machinecheck.rst at the Kernel tree.
EDAC - Error Detection And Correction
*************************************
diff --git a/Documentation/rtc.txt b/Documentation/admin-guide/rtc.rst
index 688c95b11919..688c95b11919 100644
--- a/Documentation/rtc.txt
+++ b/Documentation/admin-guide/rtc.rst
diff --git a/Documentation/svga.txt b/Documentation/admin-guide/svga.rst
index b6c2f9acca92..b6c2f9acca92 100644
--- a/Documentation/svga.txt
+++ b/Documentation/admin-guide/svga.rst
diff --git a/Documentation/admin-guide/sysctl/abi.rst b/Documentation/admin-guide/sysctl/abi.rst
new file mode 100644
index 000000000000..599bcde7f0b7
--- /dev/null
+++ b/Documentation/admin-guide/sysctl/abi.rst
@@ -0,0 +1,67 @@
+================================
+Documentation for /proc/sys/abi/
+================================
+
+kernel version 2.6.0.test2
+
+Copyright (c) 2003, Fabian Frederick <ffrederick@users.sourceforge.net>
+
+For general info: index.rst.
+
+------------------------------------------------------------------------------
+
+This path is binary emulation relevant aka personality types aka abi.
+When a process is executed, it's linked to an exec_domain whose
+personality is defined using values available from /proc/sys/abi.
+You can find further details about abi in include/linux/personality.h.
+
+Here are the files featuring in 2.6 kernel:
+
+- defhandler_coff
+- defhandler_elf
+- defhandler_lcall7
+- defhandler_libcso
+- fake_utsname
+- trace
+
+defhandler_coff
+---------------
+
+defined value:
+ PER_SCOSVR3::
+
+ 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE
+
+defhandler_elf
+--------------
+
+defined value:
+ PER_LINUX::
+
+ 0
+
+defhandler_lcall7
+-----------------
+
+defined value :
+ PER_SVR4::
+
+ 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
+
+defhandler_libsco
+-----------------
+
+defined value:
+ PER_SVR4::
+
+ 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
+
+fake_utsname
+------------
+
+Unused
+
+trace
+-----
+
+Unused
diff --git a/Documentation/sysctl/fs.txt b/Documentation/admin-guide/sysctl/fs.rst
index ebc679bcb2dc..2a45119e3331 100644
--- a/Documentation/sysctl/fs.txt
+++ b/Documentation/admin-guide/sysctl/fs.rst
@@ -1,10 +1,16 @@
-Documentation for /proc/sys/fs/* kernel version 2.2.10
- (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
- (c) 2009, Shen Feng<shen@cn.fujitsu.com>
+===============================
+Documentation for /proc/sys/fs/
+===============================
-For general info and legal blurb, please look in README.
+kernel version 2.2.10
-==============================================================
+Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
+
+Copyright (c) 2009, Shen Feng<shen@cn.fujitsu.com>
+
+For general info and legal blurb, please look in intro.rst.
+
+------------------------------------------------------------------------------
This file contains documentation for the sysctl files in
/proc/sys/fs/ and is valid for Linux kernel version 2.2.
@@ -16,9 +22,10 @@ system, it is advisable to read both documentation and source
before actually making adjustments.
1. /proc/sys/fs
-----------------------------------------------------------
+===============
Currently, these files are in /proc/sys/fs:
+
- aio-max-nr
- aio-nr
- dentry-state
@@ -42,9 +49,9 @@ Currently, these files are in /proc/sys/fs:
- super-max
- super-nr
-==============================================================
-aio-nr & aio-max-nr:
+aio-nr & aio-max-nr
+-------------------
aio-nr is the running total of the number of events specified on the
io_setup system call for all currently active aio contexts. If aio-nr
@@ -52,21 +59,20 @@ reaches aio-max-nr then io_setup will fail with EAGAIN. Note that
raising aio-max-nr does not result in the pre-allocation or re-sizing
of any kernel data structures.
-==============================================================
-dentry-state:
+dentry-state
+------------
-From linux/include/linux/dcache.h:
---------------------------------------------------------------
-struct dentry_stat_t dentry_stat {
+From linux/include/linux/dcache.h::
+
+ struct dentry_stat_t dentry_stat {
int nr_dentry;
int nr_unused;
int age_limit; /* age in seconds */
int want_pages; /* pages requested by system */
int nr_negative; /* # of unused negative dentries */
int dummy; /* Reserved for future use */
-};
---------------------------------------------------------------
+ };
Dentries are dynamically allocated and deallocated.
@@ -84,9 +90,9 @@ negative dentries which do not map to any files. Instead,
they help speeding up rejection of non-existing files provided
by the users.
-==============================================================
-dquot-max & dquot-nr:
+dquot-max & dquot-nr
+--------------------
The file dquot-max shows the maximum number of cached disk
quota entries.
@@ -98,9 +104,9 @@ If the number of free cached disk quotas is very low and
you have some awesome number of simultaneous system users,
you might want to raise the limit.
-==============================================================
-file-max & file-nr:
+file-max & file-nr
+------------------
The value in file-max denotes the maximum number of file-
handles that the Linux kernel will allocate. When you get lots
@@ -119,18 +125,19 @@ used file handles.
Attempts to allocate more file descriptors than file-max are
reported with printk, look for "VFS: file-max limit <number>
reached".
-==============================================================
-nr_open:
+
+nr_open
+-------
This denotes the maximum number of file-handles a process can
allocate. Default value is 1024*1024 (1048576) which should be
enough for most machines. Actual limit depends on RLIMIT_NOFILE
resource limit.
-==============================================================
-inode-max, inode-nr & inode-state:
+inode-max, inode-nr & inode-state
+---------------------------------
As with file handles, the kernel allocates the inode structures
dynamically, but can't free them yet.
@@ -157,9 +164,9 @@ preshrink is nonzero when the nr_inodes > inode-max and the
system needs to prune the inode list instead of allocating
more.
-==============================================================
-overflowgid & overflowuid:
+overflowgid & overflowuid
+-------------------------
Some filesystems only support 16-bit UIDs and GIDs, although in Linux
UIDs and GIDs are 32 bits. When one of these filesystems is mounted
@@ -169,18 +176,18 @@ to a fixed value before being written to disk.
These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.
-==============================================================
-pipe-user-pages-hard:
+pipe-user-pages-hard
+--------------------
Maximum total number of pages a non-privileged user may allocate for pipes.
Once this limit is reached, no new pipes may be allocated until usage goes
below the limit again. When set to 0, no limit is applied, which is the default
setting.
-==============================================================
-pipe-user-pages-soft:
+pipe-user-pages-soft
+--------------------
Maximum total number of pages a non-privileged user may allocate for pipes
before the pipe size gets limited to a single page. Once this limit is reached,
@@ -190,9 +197,9 @@ denied until usage goes below the limit again. The default value allows to
allocate up to 1024 pipes at their default size. When set to 0, no limit is
applied.
-==============================================================
-protected_fifos:
+protected_fifos
+---------------
The intent of this protection is to avoid unintentional writes to
an attacker-controlled FIFO, where a program expected to create a regular
@@ -208,9 +215,9 @@ When set to "2" it also applies to group writable sticky directories.
This protection is based on the restrictions in Openwall.
-==============================================================
-protected_hardlinks:
+protected_hardlinks
+--------------------
A long-standing class of security issues is the hardlink-based
time-of-check-time-of-use race, most commonly seen in world-writable
@@ -228,9 +235,9 @@ already own the source file, or do not have read/write access to it.
This protection is based on the restrictions in Openwall and grsecurity.
-==============================================================
-protected_regular:
+protected_regular
+-----------------
This protection is similar to protected_fifos, but it
avoids writes to an attacker-controlled regular file, where a program
@@ -244,9 +251,9 @@ owned by the owner of the directory.
When set to "2" it also applies to group writable sticky directories.
-==============================================================
-protected_symlinks:
+protected_symlinks
+------------------
A long-standing class of security issues is the symlink-based
time-of-check-time-of-use race, most commonly seen in world-writable
@@ -264,34 +271,38 @@ follower match, or when the directory owner matches the symlink's owner.
This protection is based on the restrictions in Openwall and grsecurity.
-==============================================================
suid_dumpable:
+--------------
This value can be used to query and set the core dump mode for setuid
or otherwise protected/tainted binaries. The modes are
-0 - (default) - traditional behaviour. Any process which has changed
- privilege levels or is execute only will not be dumped.
-1 - (debug) - all processes dump core when possible. The core dump is
- owned by the current user and no security is applied. This is
- intended for system debugging situations only. Ptrace is unchecked.
- This is insecure as it allows regular users to examine the memory
- contents of privileged processes.
-2 - (suidsafe) - any binary which normally would not be dumped is dumped
- anyway, but only if the "core_pattern" kernel sysctl is set to
- either a pipe handler or a fully qualified path. (For more details
- on this limitation, see CVE-2006-2451.) This mode is appropriate
- when administrators are attempting to debug problems in a normal
- environment, and either have a core dump pipe handler that knows
- to treat privileged core dumps with care, or specific directory
- defined for catching core dumps. If a core dump happens without
- a pipe handler or fully qualifid path, a message will be emitted
- to syslog warning about the lack of a correct setting.
-
-==============================================================
-
-super-max & super-nr:
+= ========== ===============================================================
+0 (default) traditional behaviour. Any process which has changed
+ privilege levels or is execute only will not be dumped.
+1 (debug) all processes dump core when possible. The core dump is
+ owned by the current user and no security is applied. This is
+ intended for system debugging situations only.
+ Ptrace is unchecked.
+ This is insecure as it allows regular users to examine the
+ memory contents of privileged processes.
+2 (suidsafe) any binary which normally would not be dumped is dumped
+ anyway, but only if the "core_pattern" kernel sysctl is set to
+ either a pipe handler or a fully qualified path. (For more
+ details on this limitation, see CVE-2006-2451.) This mode is
+ appropriate when administrators are attempting to debug
+ problems in a normal environment, and either have a core dump
+ pipe handler that knows to treat privileged core dumps with
+ care, or specific directory defined for catching core dumps.
+ If a core dump happens without a pipe handler or fully
+ qualified path, a message will be emitted to syslog warning
+ about the lack of a correct setting.
+= ========== ===============================================================
+
+
+super-max & super-nr
+--------------------
These numbers control the maximum number of superblocks, and
thus the maximum number of mounted filesystems the kernel
@@ -299,33 +310,33 @@ can have. You only need to increase super-max if you need to
mount more filesystems than the current value in super-max
allows you to.
-==============================================================
-aio-nr & aio-max-nr:
+aio-nr & aio-max-nr
+-------------------
aio-nr shows the current system-wide number of asynchronous io
requests. aio-max-nr allows you to change the maximum value
aio-nr can grow to.
-==============================================================
-mount-max:
+mount-max
+---------
This denotes the maximum number of mounts that may exist
in a mount namespace.
-==============================================================
2. /proc/sys/fs/binfmt_misc
-----------------------------------------------------------
+===========================
Documentation for the files in /proc/sys/fs/binfmt_misc is
in Documentation/admin-guide/binfmt-misc.rst.
3. /proc/sys/fs/mqueue - POSIX message queues filesystem
-----------------------------------------------------------
+========================================================
+
The "mqueue" filesystem provides the necessary kernel features to enable the
creation of a user space library that implements the POSIX message queues
@@ -356,7 +367,7 @@ the default message size value if attr parameter of mq_open(2) is NULL. If it
exceed msgsize_max, the default value is initialized msgsize_max.
4. /proc/sys/fs/epoll - Configuration options for the epoll interface
---------------------------------------------------------
+=====================================================================
This directory contains configuration options for the epoll(7) interface.
@@ -371,4 +382,3 @@ Each "watch" costs roughly 90 bytes on a 32bit kernel, and roughly 160 bytes
on a 64bit one.
The current default value for max_user_watches is the 1/32 of the available
low memory, divided for the "watch" cost in bytes.
-
diff --git a/Documentation/sysctl/README b/Documentation/admin-guide/sysctl/index.rst
index d5f24ab0ecc3..03346f98c7b9 100644
--- a/Documentation/sysctl/README
+++ b/Documentation/admin-guide/sysctl/index.rst
@@ -1,5 +1,10 @@
-Documentation for /proc/sys/ kernel version 2.2.10
- (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
+===========================
+Documentation for /proc/sys
+===========================
+
+Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
+
+------------------------------------------------------------------------------
'Why', I hear you ask, 'would anyone even _want_ documentation
for them sysctl files? If anybody really needs it, it's all in
@@ -12,11 +17,12 @@ have the time or knowledge to read the source code.
Furthermore, the programmers who built sysctl have built it to
be actually used, not just for the fun of programming it :-)
-==============================================================
+------------------------------------------------------------------------------
Legal blurb:
As usual, there are two main things to consider:
+
1. you get what you pay for
2. it's free
@@ -35,15 +41,17 @@ stories to: <riel@nl.linux.org>
Rik van Riel.
-==============================================================
+--------------------------------------------------------------
-Introduction:
+Introduction
+============
Sysctl is a means of configuring certain aspects of the kernel
at run-time, and the /proc/sys/ directory is there so that you
don't even need special tools to do it!
In fact, there are only four things needed to use these config
facilities:
+
- a running Linux system
- root access
- common sense (this is especially hard to come by these days)
@@ -54,7 +62,9 @@ several (arch-dependent?) subdirs. Each subdir is mainly about
one part of the kernel, so you can do configuration on a piece
by piece basis, or just some 'thematic frobbing'.
-The subdirs are about:
+This documentation is about:
+
+=============== ===============================================================
abi/ execution domains & personalities
debug/ <empty>
dev/ device specific information (eg dev/cdrom/info)
@@ -70,7 +80,19 @@ sunrpc/ SUN Remote Procedure Call (NFS)
vm/ memory management tuning
buffer and cache management
user/ Per user per user namespace limits
+=============== ===============================================================
These are the subdirs I have on my system. There might be more
or other subdirs in another setup. If you see another dir, I'd
really like to hear about it :-)
+
+.. toctree::
+ :maxdepth: 1
+
+ abi
+ fs
+ kernel
+ net
+ sunrpc
+ user
+ vm
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/admin-guide/sysctl/kernel.rst
index f0c86fbb3b48..032c7cd3cede 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -1,10 +1,16 @@
-Documentation for /proc/sys/kernel/* kernel version 2.2.10
- (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
- (c) 2009, Shen Feng<shen@cn.fujitsu.com>
+===================================
+Documentation for /proc/sys/kernel/
+===================================
-For general info and legal blurb, please look in README.
+kernel version 2.2.10
-==============================================================
+Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
+
+Copyright (c) 2009, Shen Feng<shen@cn.fujitsu.com>
+
+For general info and legal blurb, please look in index.rst.
+
+------------------------------------------------------------------------------
This file contains documentation for the sysctl files in
/proc/sys/kernel/ and is valid for Linux kernel version 2.2.
@@ -23,7 +29,6 @@ show up in /proc/sys/kernel:
- auto_msgmni
- bootloader_type [ X86 only ]
- bootloader_version [ X86 only ]
-- callhome [ S390 only ]
- cap_last_cap
- core_pattern
- core_pipe_limit
@@ -102,9 +107,9 @@ show up in /proc/sys/kernel:
- watchdog_thresh
- version
-==============================================================
acct:
+=====
highwater lowwater frequency
@@ -119,18 +124,18 @@ That is, suspend accounting if there left <= 2% free; resume it
if we got >=4%; consider information about amount of free space
valid for 30 seconds.
-==============================================================
acpi_video_flags:
+=================
flags
See Doc*/kernel/power/video.txt, it allows mode of video boot to be
set during run time.
-==============================================================
auto_msgmni:
+============
This variable has no effect and may be removed in future kernel
releases. Reading it always returns 0.
@@ -140,9 +145,8 @@ Echoing "1" into this file enabled msgmni automatic recomputing.
Echoing "0" turned it off. auto_msgmni default value was 1.
-==============================================================
-
bootloader_type:
+================
x86 bootloader identification
@@ -155,11 +159,11 @@ is 0x15 and the full version number is 0x234, this file will contain
the value 340 = 0x154.
See the type_of_loader and ext_loader_type fields in
-Documentation/x86/boot.txt for additional information.
+Documentation/x86/boot.rst for additional information.
-==============================================================
bootloader_version:
+===================
x86 bootloader version
@@ -167,44 +171,33 @@ The complete bootloader version number. In the example above, this
file will contain the value 564 = 0x234.
See the type_of_loader and ext_loader_ver fields in
-Documentation/x86/boot.txt for additional information.
-
-==============================================================
-
-callhome:
-
-Controls the kernel's callhome behavior in case of a kernel panic.
+Documentation/x86/boot.rst for additional information.
-The s390 hardware allows an operating system to send a notification
-to a service organization (callhome) in case of an operating system panic.
-When the value in this file is 0 (which is the default behavior)
-nothing happens in case of a kernel panic. If this value is set to "1"
-the complete kernel oops message is send to the IBM customer service
-organization in case the mainframe the Linux operating system is running
-on has a service contract with IBM.
-
-==============================================================
-
-cap_last_cap
+cap_last_cap:
+=============
Highest valid capability of the running kernel. Exports
CAP_LAST_CAP from the kernel.
-==============================================================
core_pattern:
+=============
core_pattern is used to specify a core dumpfile pattern name.
-. max length 127 characters; default value is "core"
-. core_pattern is used as a pattern template for the output filename;
+
+* max length 127 characters; default value is "core"
+* core_pattern is used as a pattern template for the output filename;
certain string patterns (beginning with '%') are substituted with
their actual values.
-. backward compatibility with core_uses_pid:
+* backward compatibility with core_uses_pid:
+
If core_pattern does not include "%p" (default does not)
and core_uses_pid is set, then .PID will be appended to
the filename.
-. corename format specifiers:
+
+* corename format specifiers::
+
%<NUL> '%' is dropped
%% output one '%'
%p pid
@@ -221,13 +214,14 @@ core_pattern is used to specify a core dumpfile pattern name.
%e executable filename (may be shortened)
%E executable path
%<OTHER> both are dropped
-. If the first character of the pattern is a '|', the kernel will treat
+
+* If the first character of the pattern is a '|', the kernel will treat
the rest of the pattern as a command to run. The core dump will be
written to the standard input of that program instead of to a file.
-==============================================================
core_pipe_limit:
+================
This sysctl is only applicable when core_pattern is configured to pipe
core files to a user space helper (when the first character of
@@ -248,9 +242,9 @@ parallel, but that no waiting will take place (i.e. the collecting
process is not guaranteed access to /proc/<crashing pid>/). This
value defaults to 0.
-==============================================================
core_uses_pid:
+==============
The default coredump filename is "core". By setting
core_uses_pid to 1, the coredump filename becomes core.PID.
@@ -258,9 +252,9 @@ If core_pattern does not include "%p" (default does not)
and core_uses_pid is set, then .PID will be appended to
the filename.
-==============================================================
ctrl-alt-del:
+=============
When the value in this file is 0, ctrl-alt-del is trapped and
sent to the init(1) program to handle a graceful restart.
@@ -268,14 +262,15 @@ When, however, the value is > 0, Linux's reaction to a Vulcan
Nerve Pinch (tm) will be an immediate reboot, without even
syncing its dirty buffers.
-Note: when a program (like dosemu) has the keyboard in 'raw'
-mode, the ctrl-alt-del is intercepted by the program before it
-ever reaches the kernel tty layer, and it's up to the program
-to decide what to do with it.
+Note:
+ when a program (like dosemu) has the keyboard in 'raw'
+ mode, the ctrl-alt-del is intercepted by the program before it
+ ever reaches the kernel tty layer, and it's up to the program
+ to decide what to do with it.
-==============================================================
dmesg_restrict:
+===============
This toggle indicates whether unprivileged users are prevented
from using dmesg(8) to view messages from the kernel's log buffer.
@@ -286,18 +281,21 @@ dmesg(8).
The kernel config option CONFIG_SECURITY_DMESG_RESTRICT sets the
default value of dmesg_restrict.
-==============================================================
domainname & hostname:
+======================
These files can be used to set the NIS/YP domainname and the
hostname of your box in exactly the same way as the commands
-domainname and hostname, i.e.:
-# echo "darkstar" > /proc/sys/kernel/hostname
-# echo "mydomain" > /proc/sys/kernel/domainname
-has the same effect as
-# hostname "darkstar"
-# domainname "mydomain"
+domainname and hostname, i.e.::
+
+ # echo "darkstar" > /proc/sys/kernel/hostname
+ # echo "mydomain" > /proc/sys/kernel/domainname
+
+has the same effect as::
+
+ # hostname "darkstar"
+ # domainname "mydomain"
Note, however, that the classic darkstar.frop.org has the
hostname "darkstar" and DNS (Internet Domain Name Server)
@@ -306,8 +304,9 @@ Information Service) or YP (Yellow Pages) domainname. These two
domain names are in general different. For a detailed discussion
see the hostname(1) man page.
-==============================================================
+
hardlockup_all_cpu_backtrace:
+=============================
This value controls the hard lockup detector behavior when a hard
lockup condition is detected as to whether or not to gather further
@@ -317,9 +316,10 @@ will be initiated.
0: do nothing. This is the default behavior.
1: on detection capture more debug information.
-==============================================================
+
hardlockup_panic:
+=================
This parameter can be used to control whether the kernel panics
when a hard lockup is detected.
@@ -327,19 +327,19 @@ when a hard lockup is detected.
0 - don't panic on hard lockup
1 - panic on hard lockup
-See Documentation/lockup-watchdogs.txt for more information. This can
+See Documentation/admin-guide/lockup-watchdogs.rst for more information. This can
also be set using the nmi_watchdog kernel parameter.
-==============================================================
hotplug:
+========
Path for the hotplug policy agent.
Default value is "/sbin/hotplug".
-==============================================================
hung_task_panic:
+================
Controls the kernel's behavior when a hung task is detected.
This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
@@ -348,27 +348,28 @@ This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
1: panic immediately.
-==============================================================
hung_task_check_count:
+======================
The upper bound on the number of tasks that are checked.
This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-==============================================================
hung_task_timeout_secs:
+=======================
When a task in D state did not get scheduled
for more than this value report a warning.
This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
0: means infinite timeout - no checking done.
+
Possible values to set are in range {0..LONG_MAX/HZ}.
-==============================================================
hung_task_check_interval_secs:
+==============================
Hung task check interval. If hung task checking is enabled
(see hung_task_timeout_secs), the check is done every
@@ -378,9 +379,9 @@ This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
0 (default): means use hung_task_timeout_secs as checking interval.
Possible values to set are in range {0..LONG_MAX/HZ}.
-==============================================================
hung_task_warnings:
+===================
The maximum number of warnings to report. During a check interval
if a hung task is detected, this value is decreased by 1.
@@ -389,9 +390,9 @@ This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-1: report an infinite number of warnings.
-==============================================================
hyperv_record_panic_msg:
+========================
Controls whether the panic kmsg data should be reported to Hyper-V.
@@ -399,9 +400,9 @@ Controls whether the panic kmsg data should be reported to Hyper-V.
1: report the panic kmsg data. This is the default behavior.
-==============================================================
kexec_load_disabled:
+====================
A toggle indicating if the kexec_load syscall has been disabled. This
value defaults to 0 (false: kexec_load enabled), but can be set to 1
@@ -411,9 +412,9 @@ loaded before disabling the syscall, allowing a system to set up (and
later use) an image without it being altered. Generally used together
with the "modules_disabled" sysctl.
-==============================================================
kptr_restrict:
+==============
This toggle indicates whether restrictions are placed on
exposing kernel addresses via /proc and other interfaces.
@@ -436,16 +437,16 @@ values to unprivileged users is a concern.
When kptr_restrict is set to (2), kernel pointers printed using
%pK will be replaced with 0's regardless of privileges.
-==============================================================
l2cr: (PPC only)
+================
This flag controls the L2 cache of G3 processor boards. If
0, the cache is disabled. Enabled if nonzero.
-==============================================================
modules_disabled:
+=================
A toggle value indicating if modules are allowed to be loaded
in an otherwise modular kernel. This toggle defaults to off
@@ -453,9 +454,9 @@ in an otherwise modular kernel. This toggle defaults to off
neither loaded nor unloaded, and the toggle cannot be set back
to false. Generally used with the "kexec_load_disabled" toggle.
-==============================================================
msg_next_id, sem_next_id, and shm_next_id:
+==========================================
These three toggles allows to specify desired id for next allocated IPC
object: message, semaphore or shared memory respectively.
@@ -464,21 +465,22 @@ By default they are equal to -1, which means generic allocation logic.
Possible values to set are in range {0..INT_MAX}.
Notes:
-1) kernel doesn't guarantee, that new object will have desired id. So,
-it's up to userspace, how to handle an object with "wrong" id.
-2) Toggle with non-default value will be set back to -1 by kernel after
-successful IPC object allocation. If an IPC object allocation syscall
-fails, it is undefined if the value remains unmodified or is reset to -1.
+ 1) kernel doesn't guarantee, that new object will have desired id. So,
+ it's up to userspace, how to handle an object with "wrong" id.
+ 2) Toggle with non-default value will be set back to -1 by kernel after
+ successful IPC object allocation. If an IPC object allocation syscall
+ fails, it is undefined if the value remains unmodified or is reset to -1.
-==============================================================
nmi_watchdog:
+=============
This parameter can be used to control the NMI watchdog
(i.e. the hard lockup detector) on x86 systems.
- 0 - disable the hard lockup detector
- 1 - enable the hard lockup detector
+0 - disable the hard lockup detector
+
+1 - enable the hard lockup detector
The hard lockup detector monitors each CPU for its ability to respond to
timer interrupts. The mechanism utilizes CPU performance counter registers
@@ -486,15 +488,15 @@ that are programmed to generate Non-Maskable Interrupts (NMIs) periodically
while a CPU is busy. Hence, the alternative name 'NMI watchdog'.
The NMI watchdog is disabled by default if the kernel is running as a guest
-in a KVM virtual machine. This default can be overridden by adding
+in a KVM virtual machine. This default can be overridden by adding::
nmi_watchdog=1
to the guest kernel command line (see Documentation/admin-guide/kernel-parameters.rst).
-==============================================================
-numa_balancing
+numa_balancing:
+===============
Enables/disables automatic page fault based NUMA memory
balancing. Memory is moved automatically to nodes
@@ -516,10 +518,9 @@ faults may be controlled by the numa_balancing_scan_period_min_ms,
numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
numa_balancing_scan_size_mb, and numa_balancing_settle_count sysctls.
-==============================================================
+numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
+===============================================================================================================================
-numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms,
-numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
Automatic NUMA balancing scans tasks address space and unmaps pages to
detect if pages are properly placed or if the data should be migrated to a
@@ -555,16 +556,18 @@ rate for each task.
numa_balancing_scan_size_mb is how many megabytes worth of pages are
scanned for a given scan.
-==============================================================
osrelease, ostype & version:
+============================
+
+::
-# cat osrelease
-2.1.88
-# cat ostype
-Linux
-# cat version
-#5 Wed Feb 25 21:49:24 MET 1998
+ # cat osrelease
+ 2.1.88
+ # cat ostype
+ Linux
+ # cat version
+ #5 Wed Feb 25 21:49:24 MET 1998
The files osrelease and ostype should be clear enough. Version
needs a little more clarification however. The '#5' means that
@@ -572,9 +575,9 @@ this is the fifth kernel built from this source base and the
date behind it indicates the time the kernel was built.
The only way to tune these values is to rebuild the kernel :-)
-==============================================================
overflowgid & overflowuid:
+==========================
if your architecture did not always support 32-bit UIDs (i.e. arm,
i386, m68k, sh, and sparc32), a fixed UID and GID will be returned to
@@ -584,17 +587,17 @@ actual UID or GID would exceed 65535.
These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.
-==============================================================
panic:
+======
The value in this file represents the number of seconds the kernel
waits before rebooting on a panic. When you use the software watchdog,
the recommended setting is 60.
-==============================================================
panic_on_io_nmi:
+================
Controls the kernel's behavior when a CPU receives an NMI caused by
an IO error.
@@ -607,20 +610,20 @@ an IO error.
servers issue this sort of NMI when the dump button is pushed,
and you can use this option to take a crash dump.
-==============================================================
panic_on_oops:
+==============
Controls the kernel's behaviour when an oops or BUG is encountered.
0: try to continue operation
-1: panic immediately. If the `panic' sysctl is also non-zero then the
+1: panic immediately. If the `panic` sysctl is also non-zero then the
machine will be rebooted.
-==============================================================
panic_on_stackoverflow:
+=======================
Controls the kernel's behavior when detecting the overflows of
kernel, IRQ and exception stacks except a user stack.
@@ -630,9 +633,9 @@ This file shows up if CONFIG_DEBUG_STACKOVERFLOW is enabled.
1: panic immediately.
-==============================================================
panic_on_unrecovered_nmi:
+=========================
The default Linux behaviour on an NMI of either memory or unknown is
to continue operation. For many environments such as scientific
@@ -643,9 +646,9 @@ A small number of systems do generate NMI's for bizarre random reasons
such as power management so the default is off. That sysctl works like
the existing panic controls already in that directory.
-==============================================================
panic_on_warn:
+==============
Calls panic() in the WARN() path when set to 1. This is useful to avoid
a kernel rebuild when attempting to kdump at the location of a WARN().
@@ -654,25 +657,28 @@ a kernel rebuild when attempting to kdump at the location of a WARN().
1: call panic() after printing out WARN() location.
-==============================================================
panic_print:
+============
Bitmask for printing system info when panic happens. User can chose
combination of the following bits:
-bit 0: print all tasks info
-bit 1: print system memory info
-bit 2: print timer info
-bit 3: print locks info if CONFIG_LOCKDEP is on
-bit 4: print ftrace buffer
+===== ========================================
+bit 0 print all tasks info
+bit 1 print system memory info
+bit 2 print timer info
+bit 3 print locks info if CONFIG_LOCKDEP is on
+bit 4 print ftrace buffer
+===== ========================================
+
+So for example to print tasks and memory info on panic, user can::
-So for example to print tasks and memory info on panic, user can:
echo 3 > /proc/sys/kernel/panic_print
-==============================================================
panic_on_rcu_stall:
+===================
When set to 1, calls panic() after RCU stall detection messages. This
is useful to define the root cause of RCU stalls using a vmcore.
@@ -681,9 +687,9 @@ is useful to define the root cause of RCU stalls using a vmcore.
1: panic() after printing RCU stall messages.
-==============================================================
perf_cpu_time_max_percent:
+==========================
Hints to the kernel how much CPU time it should be allowed to
use to handle perf sampling events. If the perf subsystem
@@ -696,10 +702,12 @@ unexpectedly take too long to execute, the NMIs can become
stacked up next to each other so much that nothing else is
allowed to execute.
-0: disable the mechanism. Do not monitor or correct perf's
+0:
+ disable the mechanism. Do not monitor or correct perf's
sampling rate no matter how CPU time it takes.
-1-100: attempt to throttle perf's sample rate to this
+1-100:
+ attempt to throttle perf's sample rate to this
percentage of CPU. Note: the kernel calculates an
"expected" length of each sample event. 100 here means
100% of that expected length. Even if this is set to
@@ -707,23 +715,30 @@ allowed to execute.
length is exceeded. Set to 0 if you truly do not care
how much CPU is consumed.
-==============================================================
perf_event_paranoid:
+====================
Controls use of the performance events system by unprivileged
users (without CAP_SYS_ADMIN). The default value is 2.
- -1: Allow use of (almost) all events by all users
+=== ==================================================================
+ -1 Allow use of (almost) all events by all users
+
Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK
->=0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN
+
+>=0 Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN
+
Disallow raw tracepoint access by users without CAP_SYS_ADMIN
->=1: Disallow CPU event access by users without CAP_SYS_ADMIN
->=2: Disallow kernel profiling by users without CAP_SYS_ADMIN
-==============================================================
+>=1 Disallow CPU event access by users without CAP_SYS_ADMIN
+
+>=2 Disallow kernel profiling by users without CAP_SYS_ADMIN
+=== ==================================================================
+
perf_event_max_stack:
+=====================
Controls maximum number of stack frames to copy for (attr.sample_type &
PERF_SAMPLE_CALLCHAIN) configured events, for instance, when using
@@ -734,17 +749,17 @@ enabled, otherwise writing to this file will return -EBUSY.
The default value is 127.
-==============================================================
perf_event_mlock_kb:
+====================
Control size of per-cpu ring buffer not counted agains mlock limit.
The default value is 512 + 1 page
-==============================================================
perf_event_max_contexts_per_stack:
+==================================
Controls maximum number of stack frame context entries for
(attr.sample_type & PERF_SAMPLE_CALLCHAIN) configured events, for
@@ -755,25 +770,25 @@ enabled, otherwise writing to this file will return -EBUSY.
The default value is 8.
-==============================================================
pid_max:
+========
PID allocation wrap value. When the kernel's next PID value
reaches this value, it wraps back to a minimum PID value.
PIDs of value pid_max or larger are not allocated.
-==============================================================
ns_last_pid:
+============
The last pid allocated in the current (the one task using this sysctl
lives in) pid namespace. When selecting a pid for a next task on fork
kernel tries to allocate a number starting from this one.
-==============================================================
powersave-nap: (PPC only)
+=========================
If set, Linux-PPC will use the 'nap' mode of powersaving,
otherwise the 'doze' mode will be used.
@@ -781,6 +796,7 @@ otherwise the 'doze' mode will be used.
==============================================================
printk:
+=======
The four values in printk denote: console_loglevel,
default_message_loglevel, minimum_console_loglevel and
@@ -790,25 +806,29 @@ These values influence printk() behavior when printing or
logging error messages. See 'man 2 syslog' for more info on
the different loglevels.
-- console_loglevel: messages with a higher priority than
- this will be printed to the console
-- default_message_loglevel: messages without an explicit priority
- will be printed with this priority
-- minimum_console_loglevel: minimum (highest) value to which
- console_loglevel can be set
-- default_console_loglevel: default value for console_loglevel
+- console_loglevel:
+ messages with a higher priority than
+ this will be printed to the console
+- default_message_loglevel:
+ messages without an explicit priority
+ will be printed with this priority
+- minimum_console_loglevel:
+ minimum (highest) value to which
+ console_loglevel can be set
+- default_console_loglevel:
+ default value for console_loglevel
-==============================================================
printk_delay:
+=============
Delay each printk message in printk_delay milliseconds
Value from 0 - 10000 is allowed.
-==============================================================
printk_ratelimit:
+=================
Some warning messages are rate limited. printk_ratelimit specifies
the minimum length of time between these messages (in jiffies), by
@@ -816,48 +836,52 @@ default we allow one every 5 seconds.
A value of 0 will disable rate limiting.
-==============================================================
printk_ratelimit_burst:
+=======================
While long term we enforce one message per printk_ratelimit
seconds, we do allow a burst of messages to pass through.
printk_ratelimit_burst specifies the number of messages we can
send before ratelimiting kicks in.
-==============================================================
printk_devkmsg:
+===============
Control the logging to /dev/kmsg from userspace:
-ratelimit: default, ratelimited
+ratelimit:
+ default, ratelimited
+
on: unlimited logging to /dev/kmsg from userspace
+
off: logging to /dev/kmsg disabled
The kernel command line parameter printk.devkmsg= overrides this and is
a one-time setting until next reboot: once set, it cannot be changed by
this sysctl interface anymore.
-==============================================================
randomize_va_space:
+===================
This option can be used to select the type of process address
space randomization that is used in the system, for architectures
that support this feature.
-0 - Turn the process address space randomization off. This is the
+== ===========================================================================
+0 Turn the process address space randomization off. This is the
default for architectures that do not support this feature anyways,
and kernels that are booted with the "norandmaps" parameter.
-1 - Make the addresses of mmap base, stack and VDSO page randomized.
+1 Make the addresses of mmap base, stack and VDSO page randomized.
This, among other things, implies that shared libraries will be
loaded to random addresses. Also for PIE-linked binaries, the
location of code start is randomized. This is the default if the
CONFIG_COMPAT_BRK option is enabled.
-2 - Additionally enable heap randomization. This is the default if
+2 Additionally enable heap randomization. This is the default if
CONFIG_COMPAT_BRK is disabled.
There are a few legacy applications out there (such as some ancient
@@ -870,18 +894,19 @@ that support this feature.
Systems with ancient and/or broken binaries should be configured
with CONFIG_COMPAT_BRK enabled, which excludes the heap from process
address space randomization.
+== ===========================================================================
-==============================================================
reboot-cmd: (Sparc only)
+========================
??? This seems to be a way to give an argument to the Sparc
ROM/Flash boot loader. Maybe to tell it what to do after
rebooting. ???
-==============================================================
rtsig-max & rtsig-nr:
+=====================
The file rtsig-max can be used to tune the maximum number
of POSIX realtime (queued) signals that can be outstanding
@@ -889,9 +914,9 @@ in the system.
rtsig-nr shows the number of RT signals currently queued.
-==============================================================
sched_energy_aware:
+===================
Enables/disables Energy Aware Scheduling (EAS). EAS starts
automatically on platforms where it can run (that is,
@@ -900,17 +925,17 @@ Model available). If your platform happens to meet the
requirements for EAS but you do not want to use it, change
this value to 0.
-==============================================================
sched_schedstats:
+=================
Enables/disables scheduler statistics. Enabling this feature
incurs a small amount of overhead in the scheduler but is
useful for debugging and performance tuning.
-==============================================================
sg-big-buff:
+============
This file shows the size of the generic SCSI (sg) buffer.
You can't tune it just yet, but you could change it on
@@ -921,9 +946,9 @@ There shouldn't be any reason to change this value. If
you can come up with one, you probably know what you
are doing anyway :)
-==============================================================
shmall:
+=======
This parameter sets the total amount of shared memory pages that
can be used system wide. Hence, SHMALL should always be at least
@@ -932,20 +957,20 @@ ceil(shmmax/PAGE_SIZE).
If you are not sure what the default PAGE_SIZE is on your Linux
system, you can run the following command:
-# getconf PAGE_SIZE
+ # getconf PAGE_SIZE
-==============================================================
shmmax:
+=======
This value can be used to query and set the run time limit
on the maximum shared memory segment size that can be created.
Shared memory segments up to 1Gb are now supported in the
kernel. This value defaults to SHMMAX.
-==============================================================
shm_rmid_forced:
+================
Linux lets you set resource limits, including how much memory one
process can consume, via setrlimit(2). Unfortunately, shared memory
@@ -964,28 +989,30 @@ need this.
Note that if you change this from 0 to 1, already created segments
without users and with a dead originative process will be destroyed.
-==============================================================
sysctl_writes_strict:
+=====================
Control how file position affects the behavior of updating sysctl values
via the /proc/sys interface:
- -1 - Legacy per-write sysctl value handling, with no printk warnings.
+ == ======================================================================
+ -1 Legacy per-write sysctl value handling, with no printk warnings.
Each write syscall must fully contain the sysctl value to be
written, and multiple writes on the same sysctl file descriptor
will rewrite the sysctl value, regardless of file position.
- 0 - Same behavior as above, but warn about processes that perform writes
+ 0 Same behavior as above, but warn about processes that perform writes
to a sysctl file descriptor when the file position is not 0.
- 1 - (default) Respect file position when writing sysctl strings. Multiple
+ 1 (default) Respect file position when writing sysctl strings. Multiple
writes will append to the sysctl value buffer. Anything past the max
length of the sysctl value buffer will be ignored. Writes to numeric
sysctl entries must always be at file position 0 and the value must
be fully contained in the buffer sent in the write syscall.
+ == ======================================================================
-==============================================================
softlockup_all_cpu_backtrace:
+=============================
This value controls the soft lockup detector thread's behavior
when a soft lockup condition is detected as to whether or not
@@ -999,13 +1026,14 @@ NMI.
1: on detection capture more debug information.
-==============================================================
-soft_watchdog
+soft_watchdog:
+==============
This parameter can be used to control the soft lockup detector.
0 - disable the soft lockup detector
+
1 - enable the soft lockup detector
The soft lockup detector monitors CPUs for threads that are hogging the CPUs
@@ -1015,9 +1043,9 @@ interrupts which are needed for the 'watchdog/N' threads to be woken up by
the watchdog timer function, otherwise the NMI watchdog - if enabled - can
detect a hard lockup condition.
-==============================================================
-stack_erasing
+stack_erasing:
+==============
This parameter can be used to control kernel stack erasing at the end
of syscalls for kernels built with CONFIG_GCC_PLUGIN_STACKLEAK.
@@ -1031,37 +1059,40 @@ compilation sees a 1% slowdown, other systems and workloads may vary.
1: kernel stack erasing is enabled (default), it is performed before
returning to the userspace at the end of syscalls.
-==============================================================
+
tainted
+=======
Non-zero if the kernel has been tainted. Numeric values, which can be
ORed together. The letters are seen in "Tainted" line of Oops reports.
- 1 (P): proprietary module was loaded
- 2 (F): module was force loaded
- 4 (S): SMP kernel oops on an officially SMP incapable processor
- 8 (R): module was force unloaded
- 16 (M): processor reported a Machine Check Exception (MCE)
- 32 (B): bad page referenced or some unexpected page flags
- 64 (U): taint requested by userspace application
- 128 (D): kernel died recently, i.e. there was an OOPS or BUG
- 256 (A): an ACPI table was overridden by user
- 512 (W): kernel issued warning
- 1024 (C): staging driver was loaded
- 2048 (I): workaround for bug in platform firmware applied
- 4096 (O): externally-built ("out-of-tree") module was loaded
- 8192 (E): unsigned module was loaded
- 16384 (L): soft lockup occurred
- 32768 (K): kernel has been live patched
- 65536 (X): Auxiliary taint, defined and used by for distros
-131072 (T): The kernel was built with the struct randomization plugin
+====== ===== ==============================================================
+ 1 `(P)` proprietary module was loaded
+ 2 `(F)` module was force loaded
+ 4 `(S)` SMP kernel oops on an officially SMP incapable processor
+ 8 `(R)` module was force unloaded
+ 16 `(M)` processor reported a Machine Check Exception (MCE)
+ 32 `(B)` bad page referenced or some unexpected page flags
+ 64 `(U)` taint requested by userspace application
+ 128 `(D)` kernel died recently, i.e. there was an OOPS or BUG
+ 256 `(A)` an ACPI table was overridden by user
+ 512 `(W)` kernel issued warning
+ 1024 `(C)` staging driver was loaded
+ 2048 `(I)` workaround for bug in platform firmware applied
+ 4096 `(O)` externally-built ("out-of-tree") module was loaded
+ 8192 `(E)` unsigned module was loaded
+ 16384 `(L)` soft lockup occurred
+ 32768 `(K)` kernel has been live patched
+ 65536 `(X)` Auxiliary taint, defined and used by for distros
+131072 `(T)` The kernel was built with the struct randomization plugin
+====== ===== ==============================================================
See Documentation/admin-guide/tainted-kernels.rst for more information.
-==============================================================
-threads-max
+threads-max:
+============
This value controls the maximum number of threads that can be created
using fork().
@@ -1071,8 +1102,10 @@ maximum number of threads is created, the thread structures occupy only
a part (1/8th) of the available RAM pages.
The minimum value that can be written to threads-max is 20.
+
The maximum value that can be written to threads-max is given by the
constant FUTEX_TID_MASK (0x3fffffff).
+
If a value outside of this range is written to threads-max an error
EINVAL occurs.
@@ -1080,9 +1113,9 @@ The value written is checked against the available RAM pages. If the
thread structures would occupy too much (more than 1/8th) of the
available RAM pages threads-max is reduced accordingly.
-==============================================================
unknown_nmi_panic:
+==================
The value in this file affects behavior of handling NMI. When the
value is non-zero, unknown NMI is trapped and then panic occurs. At
@@ -1091,28 +1124,29 @@ that time, kernel debugging information is displayed on console.
NMI switch that most IA32 servers have fires unknown NMI up, for
example. If a system hangs up, try pressing the NMI switch.
-==============================================================
watchdog:
+=========
This parameter can be used to disable or enable the soft lockup detector
_and_ the NMI watchdog (i.e. the hard lockup detector) at the same time.
0 - disable both lockup detectors
+
1 - enable both lockup detectors
The soft lockup detector and the NMI watchdog can also be disabled or
enabled individually, using the soft_watchdog and nmi_watchdog parameters.
-If the watchdog parameter is read, for example by executing
+If the watchdog parameter is read, for example by executing::
cat /proc/sys/kernel/watchdog
the output of this command (0 or 1) shows the logical OR of soft_watchdog
and nmi_watchdog.
-==============================================================
watchdog_cpumask:
+=================
This value can be used to control on which cpus the watchdog may run.
The default cpumask is all possible cores, but if NO_HZ_FULL is
@@ -1127,13 +1161,13 @@ if a kernel lockup was suspected on those cores.
The argument value is the standard cpulist format for cpumasks,
so for example to enable the watchdog on cores 0, 2, 3, and 4 you
-might say:
+might say::
echo 0,2-4 > /proc/sys/kernel/watchdog_cpumask
-==============================================================
watchdog_thresh:
+================
This value can be used to control the frequency of hrtimer and NMI
events and the soft and hard lockup thresholds. The default threshold
@@ -1141,5 +1175,3 @@ is 10 seconds.
The softlockup threshold is (2 * watchdog_thresh). Setting this
tunable to zero will disable lockup detection altogether.
-
-==============================================================
diff --git a/Documentation/sysctl/net.txt b/Documentation/admin-guide/sysctl/net.rst
index 2ae91d3873bb..287b98708a40 100644
--- a/Documentation/sysctl/net.txt
+++ b/Documentation/admin-guide/sysctl/net.rst
@@ -1,12 +1,25 @@
-Documentation for /proc/sys/net/*
- (c) 1999 Terrehon Bowden <terrehon@pacbell.net>
- Bodo Bauer <bb@ricochet.net>
- (c) 2000 Jorge Nerin <comandante@zaralinux.com>
- (c) 2009 Shen Feng <shen@cn.fujitsu.com>
+================================
+Documentation for /proc/sys/net/
+================================
-For general info and legal blurb, please look in README.
+Copyright
-==============================================================
+Copyright (c) 1999
+
+ - Terrehon Bowden <terrehon@pacbell.net>
+ - Bodo Bauer <bb@ricochet.net>
+
+Copyright (c) 2000
+
+ - Jorge Nerin <comandante@zaralinux.com>
+
+Copyright (c) 2009
+
+ - Shen Feng <shen@cn.fujitsu.com>
+
+For general info and legal blurb, please look in index.rst.
+
+------------------------------------------------------------------------------
This file contains the documentation for the sysctl files in
/proc/sys/net
@@ -17,20 +30,21 @@ see only some of them, depending on your kernel's configuration.
Table : Subdirectories in /proc/sys/net
-..............................................................................
- Directory Content Directory Content
- core General parameter appletalk Appletalk protocol
- unix Unix domain sockets netrom NET/ROM
- 802 E802 protocol ax25 AX25
- ethernet Ethernet protocol rose X.25 PLP layer
- ipv4 IP version 4 x25 X.25 protocol
- ipx IPX token-ring IBM token ring
- bridge Bridging decnet DEC net
- ipv6 IP version 6 tipc TIPC
-..............................................................................
+
+ ========= =================== = ========== ==================
+ Directory Content Directory Content
+ ========= =================== = ========== ==================
+ core General parameter appletalk Appletalk protocol
+ unix Unix domain sockets netrom NET/ROM
+ 802 E802 protocol ax25 AX25
+ ethernet Ethernet protocol rose X.25 PLP layer
+ ipv4 IP version 4 x25 X.25 protocol
+ bridge Bridging decnet DEC net
+ ipv6 IP version 6 tipc TIPC
+ ========= =================== = ========== ==================
1. /proc/sys/net/core - Network core options
--------------------------------------------------------
+============================================
bpf_jit_enable
--------------
@@ -44,6 +58,7 @@ restricted C into a sequence of BPF instructions. After program load
through bpf(2) and passing a verifier in the kernel, a JIT will then
translate these BPF proglets into native CPU instructions. There are
two flavors of JITs, the newer eBPF JIT currently supported on:
+
- x86_64
- x86_32
- arm64
@@ -55,6 +70,7 @@ two flavors of JITs, the newer eBPF JIT currently supported on:
- riscv
And the older cBPF JIT supported on the following archs:
+
- mips
- ppc
- sparc
@@ -65,10 +81,11 @@ compile them transparently. Older cBPF JITs can only translate
tcpdump filters, seccomp rules, etc, but not mentioned eBPF
programs loaded through bpf(2).
-Values :
- 0 - disable the JIT (default value)
- 1 - enable the JIT
- 2 - enable the JIT and ask the compiler to emit traces on kernel log.
+Values:
+
+ - 0 - disable the JIT (default value)
+ - 1 - enable the JIT
+ - 2 - enable the JIT and ask the compiler to emit traces on kernel log.
bpf_jit_harden
--------------
@@ -76,10 +93,12 @@ bpf_jit_harden
This enables hardening for the BPF JIT compiler. Supported are eBPF
JIT backends. Enabling hardening trades off performance, but can
mitigate JIT spraying.
-Values :
- 0 - disable JIT hardening (default value)
- 1 - enable JIT hardening for unprivileged users only
- 2 - enable JIT hardening for all users
+
+Values:
+
+ - 0 - disable JIT hardening (default value)
+ - 1 - enable JIT hardening for unprivileged users only
+ - 2 - enable JIT hardening for all users
bpf_jit_kallsyms
----------------
@@ -89,9 +108,11 @@ addresses to the kernel, meaning they neither show up in traces nor
in /proc/kallsyms. This enables export of these addresses, which can
be used for debugging/tracing. If bpf_jit_harden is enabled, this
feature is disabled.
+
Values :
- 0 - disable JIT kallsyms export (default value)
- 1 - enable JIT kallsyms export for privileged users only
+
+ - 0 - disable JIT kallsyms export (default value)
+ - 1 - enable JIT kallsyms export for privileged users only
bpf_jit_limit
-------------
@@ -102,7 +123,7 @@ been surpassed. bpf_jit_limit contains the value of the global limit
in bytes.
dev_weight
---------------
+----------
The maximum number of packets that kernel can handle on a NAPI interrupt,
it's a Per-CPU variable. For drivers that support LRO or GRO_HW, a hardware
@@ -111,7 +132,7 @@ aggregated packet is counted as one packet in this context.
Default: 64
dev_weight_rx_bias
---------------
+------------------
RPS (e.g. RFS, aRFS) processing is competing with the registered NAPI poll function
of the driver for the per softirq cycle netdev_budget. This parameter influences
@@ -120,19 +141,22 @@ processing during RX softirq cycles. It is further meant for making current
dev_weight adaptable for asymmetric CPU needs on RX/TX side of the network stack.
(see dev_weight_tx_bias) It is effective on a per CPU basis. Determination is based
on dev_weight and is calculated multiplicative (dev_weight * dev_weight_rx_bias).
+
Default: 1
dev_weight_tx_bias
---------------
+------------------
Scales the maximum number of packets that can be processed during a TX softirq cycle.
Effective on a per CPU basis. Allows scaling of current dev_weight for asymmetric
net stack processing needs. Be careful to avoid making TX softirq processing a CPU hog.
+
Calculation is based on dev_weight (dev_weight * dev_weight_tx_bias).
+
Default: 1
default_qdisc
---------------
+-------------
The default queuing discipline to use for network devices. This allows
overriding the default of pfifo_fast with an alternative. Since the default
@@ -144,17 +168,21 @@ which require setting up classes and bandwidths. Note that physical multiqueue
interfaces still use mq as root qdisc, which in turn uses this default for its
leaves. Virtual devices (like e.g. lo or veth) ignore this setting and instead
default to noqueue.
+
Default: pfifo_fast
busy_read
-----------------
+---------
+
Low latency busy poll timeout for socket reads. (needs CONFIG_NET_RX_BUSY_POLL)
Approximate time in us to busy loop waiting for packets on the device queue.
This sets the default value of the SO_BUSY_POLL socket option.
Can be set or overridden per socket by setting socket option SO_BUSY_POLL,
which is the preferred method of enabling. If you need to enable the feature
globally via sysctl, a value of 50 is recommended.
+
Will increase power usage.
+
Default: 0 (off)
busy_poll
@@ -167,7 +195,9 @@ For more than that you probably want to use epoll.
Note that only sockets with SO_BUSY_POLL set will be busy polled,
so you want to either selectively set SO_BUSY_POLL on those sockets or set
sysctl.net.busy_read globally.
+
Will increase power usage.
+
Default: 0 (off)
rmem_default
@@ -185,6 +215,7 @@ tstamp_allow_data
Allow processes to receive tx timestamps looped together with the original
packet contents. If disabled, transmit timestamp requests from unprivileged
processes are dropped unless socket option SOF_TIMESTAMPING_OPT_TSONLY is set.
+
Default: 1 (on)
@@ -250,19 +281,24 @@ randomly generated.
Some user space might need to gather its content even if drivers do not
provide ethtool -x support yet.
-myhost:~# cat /proc/sys/net/core/netdev_rss_key
-84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8: ... (52 bytes total)
+::
+
+ myhost:~# cat /proc/sys/net/core/netdev_rss_key
+ 84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8: ... (52 bytes total)
File contains nul bytes if no driver ever called netdev_rss_key_fill() function.
+
Note:
-/proc/sys/net/core/netdev_rss_key contains 52 bytes of key,
-but most drivers only use 40 bytes of it.
+ /proc/sys/net/core/netdev_rss_key contains 52 bytes of key,
+ but most drivers only use 40 bytes of it.
+
+::
-myhost:~# ethtool -x eth0
-RX flow hash indirection table for eth0 with 8 RX ring(s):
- 0: 0 1 2 3 4 5 6 7
-RSS hash key:
-84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8:43:e3:c9:0c:fd:17:55:c2:3a:4d:69:ed:f1:42:89
+ myhost:~# ethtool -x eth0
+ RX flow hash indirection table for eth0 with 8 RX ring(s):
+ 0: 0 1 2 3 4 5 6 7
+ RSS hash key:
+ 84:50:f4:00:a8:15:d1:a7:e9:7f:1d:60:35:c7:47:25:42:97:74:ca:56:bb:b6:a1:d8:43:e3:c9:0c:fd:17:55:c2:3a:4d:69:ed:f1:42:89
netdev_tstamp_prequeue
----------------------
@@ -293,7 +329,7 @@ user space is responsible for creating them if needed.
Default : 0 (for compatibility reasons)
devconf_inherit_init_net
-----------------------------
+------------------------
Controls if a new network namespace should inherit all current
settings under /proc/sys/net/{ipv4,ipv6}/conf/{all,default}/. By
@@ -307,7 +343,7 @@ forced to reset to their default values.
Default : 0 (for compatibility reasons)
2. /proc/sys/net/unix - Parameters for Unix domain sockets
--------------------------------------------------------
+----------------------------------------------------------
There is only one file in this directory.
unix_dgram_qlen limits the max number of datagrams queued in Unix domain
@@ -315,13 +351,13 @@ socket's buffer. It will not take effect unless PF_UNIX flag is specified.
3. /proc/sys/net/ipv4 - IPV4 settings
--------------------------------------------------------
+-------------------------------------
Please see: Documentation/networking/ip-sysctl.txt and ipvs-sysctl.txt for
descriptions of these entries.
4. Appletalk
--------------------------------------------------------
+------------
The /proc/sys/net/appletalk directory holds the Appletalk configuration data
when Appletalk is loaded. The configurable parameters are:
@@ -364,41 +400,17 @@ interface.
(network) that the route leads to, the router (may be directly connected), the
route flags, and the device the route is using.
-
-5. IPX
--------------------------------------------------------
-
-The IPX protocol has no tunable values in proc/sys/net.
-
-The IPX protocol does, however, provide proc/net/ipx. This lists each IPX
-socket giving the local and remote addresses in Novell format (that is
-network:node:port). In accordance with the strange Novell tradition,
-everything but the port is in hex. Not_Connected is displayed for sockets that
-are not tied to a specific remote address. The Tx and Rx queue sizes indicate
-the number of bytes pending for transmission and reception. The state
-indicates the state the socket is in and the uid is the owning uid of the
-socket.
-
-The /proc/net/ipx_interface file lists all IPX interfaces. For each interface
-it gives the network number, the node number, and indicates if the network is
-the primary network. It also indicates which device it is bound to (or
-Internal for internal networks) and the Frame Type if appropriate. Linux
-supports 802.3, 802.2, 802.2 SNAP and DIX (Blue Book) ethernet framing for
-IPX.
-
-The /proc/net/ipx_route table holds a list of IPX routes. For each route it
-gives the destination network, the router node (or Directly) and the network
-address of the router (or Connected) for internal networks.
-
-6. TIPC
--------------------------------------------------------
+5. TIPC
+-------
tipc_rmem
-----------
+---------
The TIPC protocol now has a tunable for the receive memory, similar to the
tcp_rmem - i.e. a vector of 3 INTEGERs: (min, default, max)
+::
+
# cat /proc/sys/net/tipc/tipc_rmem
4252725 34021800 68043600
#
@@ -409,7 +421,7 @@ is not at this point in time used in any meaningful way, but the triplet is
preserved in order to be consistent with things like tcp_rmem.
named_timeout
---------------
+-------------
TIPC name table updates are distributed asynchronously in a cluster, without
any form of transaction handling. This means that different race scenarios are
diff --git a/Documentation/sysctl/sunrpc.txt b/Documentation/admin-guide/sysctl/sunrpc.rst
index ae1ecac6f85a..09780a682afd 100644
--- a/Documentation/sysctl/sunrpc.txt
+++ b/Documentation/admin-guide/sysctl/sunrpc.rst
@@ -1,9 +1,14 @@
-Documentation for /proc/sys/sunrpc/* kernel version 2.2.10
- (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
+===================================
+Documentation for /proc/sys/sunrpc/
+===================================
-For general info and legal blurb, please look in README.
+kernel version 2.2.10
-==============================================================
+Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
+
+For general info and legal blurb, please look in index.rst.
+
+------------------------------------------------------------------------------
This file contains the documentation for the sysctl files in
/proc/sys/sunrpc and is valid for Linux kernel version 2.2.
diff --git a/Documentation/sysctl/user.txt b/Documentation/admin-guide/sysctl/user.rst
index a5882865836e..650eaa03f15e 100644
--- a/Documentation/sysctl/user.txt
+++ b/Documentation/admin-guide/sysctl/user.rst
@@ -1,7 +1,12 @@
-Documentation for /proc/sys/user/* kernel version 4.9.0
- (c) 2016 Eric Biederman <ebiederm@xmission.com>
+=================================
+Documentation for /proc/sys/user/
+=================================
-==============================================================
+kernel version 4.9.0
+
+Copyright (c) 2016 Eric Biederman <ebiederm@xmission.com>
+
+------------------------------------------------------------------------------
This file contains the documentation for the sysctl files in
/proc/sys/user.
@@ -30,37 +35,44 @@ user namespace does not allow a user to escape their current limits.
Currently, these files are in /proc/sys/user:
-- max_cgroup_namespaces
+max_cgroup_namespaces
+=====================
The maximum number of cgroup namespaces that any user in the current
user namespace may create.
-- max_ipc_namespaces
+max_ipc_namespaces
+==================
The maximum number of ipc namespaces that any user in the current
user namespace may create.
-- max_mnt_namespaces
+max_mnt_namespaces
+==================
The maximum number of mount namespaces that any user in the current
user namespace may create.
-- max_net_namespaces
+max_net_namespaces
+==================
The maximum number of network namespaces that any user in the
current user namespace may create.
-- max_pid_namespaces
+max_pid_namespaces
+==================
The maximum number of pid namespaces that any user in the current
user namespace may create.
-- max_user_namespaces
+max_user_namespaces
+===================
The maximum number of user namespaces that any user in the current
user namespace may create.
-- max_uts_namespaces
+max_uts_namespaces
+==================
The maximum number of user namespaces that any user in the current
user namespace may create.
diff --git a/Documentation/sysctl/vm.txt b/Documentation/admin-guide/sysctl/vm.rst
index 749322060f10..64aeee1009ca 100644
--- a/Documentation/sysctl/vm.txt
+++ b/Documentation/admin-guide/sysctl/vm.rst
@@ -1,10 +1,16 @@
-Documentation for /proc/sys/vm/* kernel version 2.6.29
- (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
- (c) 2008 Peter W. Morreale <pmorreale@novell.com>
+===============================
+Documentation for /proc/sys/vm/
+===============================
-For general info and legal blurb, please look in README.
+kernel version 2.6.29
-==============================================================
+Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
+
+Copyright (c) 2008 Peter W. Morreale <pmorreale@novell.com>
+
+For general info and legal blurb, please look in index.rst.
+
+------------------------------------------------------------------------------
This file contains the documentation for the sysctl files in
/proc/sys/vm and is valid for Linux kernel version 2.6.29.
@@ -68,9 +74,9 @@ Currently, these files are in /proc/sys/vm:
- watermark_scale_factor
- zone_reclaim_mode
-==============================================================
admin_reserve_kbytes
+====================
The amount of free memory in the system that should be reserved for users
with the capability cap_sys_admin.
@@ -97,25 +103,25 @@ On x86_64 this is about 128MB.
Changing this takes effect whenever an application requests memory.
-==============================================================
block_dump
+==========
block_dump enables block I/O debugging when set to a nonzero value. More
-information on block I/O debugging is in Documentation/laptops/laptop-mode.txt.
+information on block I/O debugging is in Documentation/admin-guide/laptops/laptop-mode.rst.
-==============================================================
compact_memory
+==============
Available only when CONFIG_COMPACTION is set. When 1 is written to the file,
all zones are compacted such that free memory is available in contiguous
blocks where possible. This can be important for example in the allocation of
huge pages although processes will also directly compact memory as required.
-==============================================================
compact_unevictable_allowed
+===========================
Available only when CONFIG_COMPACTION is set. When set to 1, compaction is
allowed to examine the unevictable lru (mlocked pages) for pages to compact.
@@ -123,21 +129,22 @@ This should be used on systems where stalls for minor page faults are an
acceptable trade for large contiguous free memory. Set to 0 to prevent
compaction from moving pages that are unevictable. Default value is 1.
-==============================================================
dirty_background_bytes
+======================
Contains the amount of dirty memory at which the background kernel
flusher threads will start writeback.
-Note: dirty_background_bytes is the counterpart of dirty_background_ratio. Only
-one of them may be specified at a time. When one sysctl is written it is
-immediately taken into account to evaluate the dirty memory limits and the
-other appears as 0 when read.
+Note:
+ dirty_background_bytes is the counterpart of dirty_background_ratio. Only
+ one of them may be specified at a time. When one sysctl is written it is
+ immediately taken into account to evaluate the dirty memory limits and the
+ other appears as 0 when read.
-==============================================================
dirty_background_ratio
+======================
Contains, as a percentage of total available memory that contains free pages
and reclaimable pages, the number of pages at which the background kernel
@@ -145,9 +152,9 @@ flusher threads will start writing out dirty data.
The total available memory is not equal to total system memory.
-==============================================================
dirty_bytes
+===========
Contains the amount of dirty memory at which a process generating disk writes
will itself start writeback.
@@ -161,18 +168,18 @@ Note: the minimum value allowed for dirty_bytes is two pages (in bytes); any
value lower than this limit will be ignored and the old configuration will be
retained.
-==============================================================
dirty_expire_centisecs
+======================
This tunable is used to define when dirty data is old enough to be eligible
for writeout by the kernel flusher threads. It is expressed in 100'ths
of a second. Data which has been dirty in-memory for longer than this
interval will be written out next time a flusher thread wakes up.
-==============================================================
dirty_ratio
+===========
Contains, as a percentage of total available memory that contains free pages
and reclaimable pages, the number of pages at which a process which is
@@ -180,9 +187,9 @@ generating disk writes will itself start writing out dirty data.
The total available memory is not equal to total system memory.
-==============================================================
dirtytime_expire_seconds
+========================
When a lazytime inode is constantly having its pages dirtied, the inode with
an updated timestamp will never get chance to be written out. And, if the
@@ -192,34 +199,39 @@ eventually gets pushed out to disk. This tunable is used to define when dirty
inode is old enough to be eligible for writeback by the kernel flusher threads.
And, it is also used as the interval to wakeup dirtytime_writeback thread.
-==============================================================
dirty_writeback_centisecs
+=========================
-The kernel flusher threads will periodically wake up and write `old' data
+The kernel flusher threads will periodically wake up and write `old` data
out to disk. This tunable expresses the interval between those wakeups, in
100'ths of a second.
Setting this to zero disables periodic writeback altogether.
-==============================================================
drop_caches
+===========
Writing to this will cause the kernel to drop clean caches, as well as
reclaimable slab objects like dentries and inodes. Once dropped, their
memory becomes free.
-To free pagecache:
+To free pagecache::
+
echo 1 > /proc/sys/vm/drop_caches
-To free reclaimable slab objects (includes dentries and inodes):
+
+To free reclaimable slab objects (includes dentries and inodes)::
+
echo 2 > /proc/sys/vm/drop_caches
-To free slab objects and pagecache:
+
+To free slab objects and pagecache::
+
echo 3 > /proc/sys/vm/drop_caches
This is a non-destructive operation and will not free any dirty objects.
To increase the number of objects freed by this operation, the user may run
-`sync' prior to writing to /proc/sys/vm/drop_caches. This will minimize the
+`sync` prior to writing to /proc/sys/vm/drop_caches. This will minimize the
number of dirty objects on the system and create more candidates to be
dropped.
@@ -233,16 +245,16 @@ dropped objects, especially if they were under heavy use. Because of this,
use outside of a testing or debugging environment is not recommended.
You may see informational messages in your kernel log when this file is
-used:
+used::
cat (1234): drop_caches: 3
These are informational only. They do not mean that anything is wrong
with your system. To disable them, echo 4 (bit 2) into drop_caches.
-==============================================================
extfrag_threshold
+=================
This parameter affects whether the kernel will compact memory or direct
reclaim to satisfy a high-order allocation. The extfrag/extfrag_index file in
@@ -254,9 +266,9 @@ implies that the allocation will succeed as long as watermarks are met.
The kernel will not compact memory in a zone if the
fragmentation index is <= extfrag_threshold. The default value is 500.
-==============================================================
highmem_is_dirtyable
+====================
Available only for systems with CONFIG_HIGHMEM enabled (32b systems).
@@ -274,30 +286,30 @@ OOM killer because some writers (e.g. direct block device writes) can
only use the low memory and they can fill it up with dirty data without
any throttling.
-==============================================================
hugetlb_shm_group
+=================
hugetlb_shm_group contains group id that is allowed to create SysV
shared memory segment using hugetlb page.
-==============================================================
laptop_mode
+===========
laptop_mode is a knob that controls "laptop mode". All the things that are
-controlled by this knob are discussed in Documentation/laptops/laptop-mode.txt.
+controlled by this knob are discussed in Documentation/admin-guide/laptops/laptop-mode.rst.
-==============================================================
legacy_va_layout
+================
If non-zero, this sysctl disables the new 32-bit mmap layout - the kernel
will use the legacy (2.4) layout for all processes.
-==============================================================
lowmem_reserve_ratio
+====================
For some specialised workloads on highmem machines it is dangerous for
the kernel to allow process memory to be allocated from the "lowmem"
@@ -308,7 +320,7 @@ And on large highmem machines this lack of reclaimable lowmem memory
can be fatal.
So the Linux page allocator has a mechanism which prevents allocations
-which _could_ use highmem from using too much lowmem. This means that
+which *could* use highmem from using too much lowmem. This means that
a certain amount of lowmem is defended from the possibility of being
captured into pinned user memory.
@@ -316,39 +328,37 @@ captured into pinned user memory.
mechanism will also defend that region from allocations which could use
highmem or lowmem).
-The `lowmem_reserve_ratio' tunable determines how aggressive the kernel is
+The `lowmem_reserve_ratio` tunable determines how aggressive the kernel is
in defending these lower zones.
If you have a machine which uses highmem or ISA DMA and your
applications are using mlock(), or if you are running with no swap then
you probably should change the lowmem_reserve_ratio setting.
-The lowmem_reserve_ratio is an array. You can see them by reading this file.
--
-% cat /proc/sys/vm/lowmem_reserve_ratio
-256 256 32
--
+The lowmem_reserve_ratio is an array. You can see them by reading this file::
+
+ % cat /proc/sys/vm/lowmem_reserve_ratio
+ 256 256 32
But, these values are not used directly. The kernel calculates # of protection
pages for each zones from them. These are shown as array of protection pages
in /proc/zoneinfo like followings. (This is an example of x86-64 box).
-Each zone has an array of protection pages like this.
-
--
-Node 0, zone DMA
- pages free 1355
- min 3
- low 3
- high 4
+Each zone has an array of protection pages like this::
+
+ Node 0, zone DMA
+ pages free 1355
+ min 3
+ low 3
+ high 4
:
:
- numa_other 0
- protection: (0, 2004, 2004, 2004)
+ numa_other 0
+ protection: (0, 2004, 2004, 2004)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- pagesets
- cpu: 0 pcp: 0
- :
--
+ pagesets
+ cpu: 0 pcp: 0
+ :
+
These protections are added to score to judge whether this zone should be used
for page allocation or should be reclaimed.
@@ -359,20 +369,24 @@ not be used because pages_free(1355) is smaller than watermark + protection[2]
normal page requirement. If requirement is DMA zone(index=0), protection[0]
(=0) is used.
-zone[i]'s protection[j] is calculated by following expression.
+zone[i]'s protection[j] is calculated by following expression::
-(i < j):
- zone[i]->protection[j]
- = (total sums of managed_pages from zone[i+1] to zone[j] on the node)
- / lowmem_reserve_ratio[i];
-(i = j):
- (should not be protected. = 0;
-(i > j):
- (not necessary, but looks 0)
+ (i < j):
+ zone[i]->protection[j]
+ = (total sums of managed_pages from zone[i+1] to zone[j] on the node)
+ / lowmem_reserve_ratio[i];
+ (i = j):
+ (should not be protected. = 0;
+ (i > j):
+ (not necessary, but looks 0)
The default values of lowmem_reserve_ratio[i] are
+
+ === ====================================
256 (if zone[i] means DMA or DMA32 zone)
- 32 (others).
+ 32 (others)
+ === ====================================
+
As above expression, they are reciprocal number of ratio.
256 means 1/256. # of protection pages becomes about "0.39%" of total managed
pages of higher zones on the node.
@@ -381,9 +395,9 @@ If you would like to protect more pages, smaller values are effective.
The minimum value is 1 (1/1 -> 100%). The value less than 1 completely
disables protection of the pages.
-==============================================================
max_map_count:
+==============
This file contains the maximum number of memory map areas a process
may have. Memory map areas are used as a side-effect of calling
@@ -396,9 +410,9 @@ e.g., up to one or two maps per allocation.
The default value is 65536.
-=============================================================
memory_failure_early_kill:
+==========================
Control how to kill processes when uncorrected memory error (typically
a 2bit error in a memory module) is detected in the background by hardware
@@ -424,9 +438,9 @@ check handling and depends on the hardware capabilities.
Applications can override this setting individually with the PR_MCE_KILL prctl
-==============================================================
memory_failure_recovery
+=======================
Enable memory failure recovery (when supported by the platform)
@@ -434,9 +448,9 @@ Enable memory failure recovery (when supported by the platform)
0: Always panic on a memory failure.
-==============================================================
-min_free_kbytes:
+min_free_kbytes
+===============
This is used to force the Linux VM to keep a minimum number
of kilobytes free. The VM uses this number to compute a
@@ -450,9 +464,9 @@ become subtly broken, and prone to deadlock under high loads.
Setting this too high will OOM your machine instantly.
-=============================================================
-min_slab_ratio:
+min_slab_ratio
+==============
This is available only on NUMA kernels.
@@ -468,9 +482,9 @@ Note that slab reclaim is triggered in a per zone / node fashion.
The process of reclaiming slab memory is currently not node specific
and may not be fast.
-=============================================================
-min_unmapped_ratio:
+min_unmapped_ratio
+==================
This is available only on NUMA kernels.
@@ -485,9 +499,9 @@ files and similar are considered.
The default is 1 percent.
-==============================================================
mmap_min_addr
+=============
This file indicates the amount of address space which a user process will
be restricted from mmapping. Since kernel null dereference bugs could
@@ -498,9 +512,9 @@ security module. Setting this value to something like 64k will allow the
vast majority of applications to work correctly and provide defense in depth
against future potential kernel bugs.
-==============================================================
-mmap_rnd_bits:
+mmap_rnd_bits
+=============
This value can be used to select the number of bits to use to
determine the random offset to the base address of vma regions
@@ -511,9 +525,9 @@ by the architecture's minimum and maximum supported values.
This value can be changed after boot using the
/proc/sys/vm/mmap_rnd_bits tunable
-==============================================================
-mmap_rnd_compat_bits:
+mmap_rnd_compat_bits
+====================
This value can be used to select the number of bits to use to
determine the random offset to the base address of vma regions
@@ -525,35 +539,35 @@ architecture's minimum and maximum supported values.
This value can be changed after boot using the
/proc/sys/vm/mmap_rnd_compat_bits tunable
-==============================================================
nr_hugepages
+============
Change the minimum size of the hugepage pool.
See Documentation/admin-guide/mm/hugetlbpage.rst
-==============================================================
nr_hugepages_mempolicy
+======================
Change the size of the hugepage pool at run-time on a specific
set of NUMA nodes.
See Documentation/admin-guide/mm/hugetlbpage.rst
-==============================================================
nr_overcommit_hugepages
+=======================
Change the maximum size of the hugepage pool. The maximum is
nr_hugepages + nr_overcommit_hugepages.
See Documentation/admin-guide/mm/hugetlbpage.rst
-==============================================================
nr_trim_pages
+=============
This is available only on NOMMU kernels.
@@ -568,16 +582,17 @@ The default value is 1.
See Documentation/nommu-mmap.txt for more information.
-==============================================================
numa_zonelist_order
+===================
This sysctl is only for NUMA and it is deprecated. Anything but
Node order will fail!
'where the memory is allocated from' is controlled by zonelists.
+
(This documentation ignores ZONE_HIGHMEM/ZONE_DMA32 for simple explanation.
- you may be able to read ZONE_DMA as ZONE_DMA32...)
+you may be able to read ZONE_DMA as ZONE_DMA32...)
In non-NUMA case, a zonelist for GFP_KERNEL is ordered as following.
ZONE_NORMAL -> ZONE_DMA
@@ -585,10 +600,10 @@ This means that a memory allocation request for GFP_KERNEL will
get memory from ZONE_DMA only when ZONE_NORMAL is not available.
In NUMA case, you can think of following 2 types of order.
-Assume 2 node NUMA and below is zonelist of Node(0)'s GFP_KERNEL
+Assume 2 node NUMA and below is zonelist of Node(0)'s GFP_KERNEL::
-(A) Node(0) ZONE_NORMAL -> Node(0) ZONE_DMA -> Node(1) ZONE_NORMAL
-(B) Node(0) ZONE_NORMAL -> Node(1) ZONE_NORMAL -> Node(0) ZONE_DMA.
+ (A) Node(0) ZONE_NORMAL -> Node(0) ZONE_DMA -> Node(1) ZONE_NORMAL
+ (B) Node(0) ZONE_NORMAL -> Node(1) ZONE_NORMAL -> Node(0) ZONE_DMA.
Type(A) offers the best locality for processes on Node(0), but ZONE_DMA
will be used before ZONE_NORMAL exhaustion. This increases possibility of
@@ -616,9 +631,9 @@ order will be selected.
Default order is recommended unless this is causing problems for your
system/application.
-==============================================================
oom_dump_tasks
+==============
Enables a system-wide task dump (excluding kernel threads) to be produced
when the kernel performs an OOM-killing and includes such information as
@@ -638,9 +653,9 @@ OOM killer actually kills a memory-hogging task.
The default value is 1 (enabled).
-==============================================================
oom_kill_allocating_task
+========================
This enables or disables killing the OOM-triggering task in
out-of-memory situations.
@@ -659,9 +674,9 @@ is used in oom_kill_allocating_task.
The default value is 0.
-==============================================================
-overcommit_kbytes:
+overcommit_kbytes
+=================
When overcommit_memory is set to 2, the committed address space is not
permitted to exceed swap plus this amount of physical RAM. See below.
@@ -670,9 +685,9 @@ Note: overcommit_kbytes is the counterpart of overcommit_ratio. Only one
of them may be specified at a time. Setting one disables the other (which
then appears as 0 when read).
-==============================================================
-overcommit_memory:
+overcommit_memory
+=================
This value contains a flag that enables memory overcommitment.
@@ -695,17 +710,17 @@ The default value is 0.
See Documentation/vm/overcommit-accounting.rst and
mm/util.c::__vm_enough_memory() for more information.
-==============================================================
-overcommit_ratio:
+overcommit_ratio
+================
When overcommit_memory is set to 2, the committed address
space is not permitted to exceed swap plus this percentage
of physical RAM. See above.
-==============================================================
page-cluster
+============
page-cluster controls the number of pages up to which consecutive pages
are read in from swap in a single attempt. This is the swap counterpart
@@ -725,9 +740,9 @@ Lower values mean lower latencies for initial faults, but at the same time
extra faults and I/O delays for following faults if they would have been part of
that consecutive pages readahead would have brought in.
-=============================================================
panic_on_oom
+============
This enables or disables panic on out-of-memory feature.
@@ -747,14 +762,16 @@ above-mentioned. Even oom happens under memory cgroup, the whole
system panics.
The default value is 0.
+
1 and 2 are for failover of clustering. Please select either
according to your policy of failover.
+
panic_on_oom=2+kdump gives you very strong tool to investigate
why oom happens. You can get snapshot.
-=============================================================
percpu_pagelist_fraction
+========================
This is the fraction of pages at most (high mark pcp->high) in each zone that
are allocated for each per cpu page list. The min value for this is 8. It
@@ -770,16 +787,16 @@ The initial value is zero. Kernel does not use this value at boot time to set
the high water marks for each per cpu page list. If the user writes '0' to this
sysctl, it will revert to this default behavior.
-==============================================================
stat_interval
+=============
The time interval between which vm statistics are updated. The default
is 1 second.
-==============================================================
stat_refresh
+============
Any read or write (by root only) flushes all the per-cpu vm statistics
into their global totals, for more accurate reports when testing
@@ -790,24 +807,26 @@ as 0) and "fails" with EINVAL if any are found, with a warning in dmesg.
(At time of writing, a few stats are known sometimes to be found negative,
with no ill effects: errors and warnings on these stats are suppressed.)
-==============================================================
numa_stat
+=========
This interface allows runtime configuration of numa statistics.
When page allocation performance becomes a bottleneck and you can tolerate
some possible tool breakage and decreased numa counter precision, you can
-do:
+do::
+
echo 0 > /proc/sys/vm/numa_stat
When page allocation performance is not a bottleneck and you want all
-tooling to work, you can do:
+tooling to work, you can do::
+
echo 1 > /proc/sys/vm/numa_stat
-==============================================================
swappiness
+==========
This control is used to define how aggressive the kernel will swap
memory pages. Higher values will increase aggressiveness, lower values
@@ -817,9 +836,9 @@ than the high water mark in a zone.
The default value is 60.
-==============================================================
unprivileged_userfaultfd
+========================
This flag controls whether unprivileged users can use the userfaultfd
system calls. Set this to 1 to allow unprivileged users to use the
@@ -828,9 +847,9 @@ privileged users (with SYS_CAP_PTRACE capability).
The default value is 1.
-==============================================================
-- user_reserve_kbytes
+user_reserve_kbytes
+===================
When overcommit_memory is set to 2, "never overcommit" mode, reserve
min(3% of current process size, user_reserve_kbytes) of free memory.
@@ -846,10 +865,9 @@ Any subsequent attempts to execute a command will result in
Changing this takes effect whenever an application requests memory.
-==============================================================
vfs_cache_pressure
-------------------
+==================
This percentage value controls the tendency of the kernel to reclaim
the memory which is used for caching of directory and inode objects.
@@ -867,9 +885,9 @@ performance impact. Reclaim code needs to take various locks to find freeable
directory and inode objects. With vfs_cache_pressure=1000, it will look for
ten times more freeable objects than there are.
-=============================================================
-watermark_boost_factor:
+watermark_boost_factor
+======================
This factor controls the level of reclaim when memory is being fragmented.
It defines the percentage of the high watermark of a zone that will be
@@ -887,9 +905,9 @@ fragmentation events that occurred in the recent past. If this value is
smaller than a pageblock then a pageblocks worth of pages will be reclaimed
(e.g. 2MB on 64-bit x86). A boost factor of 0 will disable the feature.
-=============================================================
-watermark_scale_factor:
+watermark_scale_factor
+======================
This factor controls the aggressiveness of kswapd. It defines the
amount of memory left in a node/system before kswapd is woken up and
@@ -905,20 +923,22 @@ that the number of free pages kswapd maintains for latency reasons is
too small for the allocation bursts occurring in the system. This knob
can then be used to tune kswapd aggressiveness accordingly.
-==============================================================
-zone_reclaim_mode:
+zone_reclaim_mode
+=================
Zone_reclaim_mode allows someone to set more or less aggressive approaches to
reclaim memory when a zone runs out of memory. If it is set to zero then no
zone reclaim occurs. Allocations will be satisfied from other zones / nodes
in the system.
-This is value ORed together of
+This is value OR'ed together of
-1 = Zone reclaim on
-2 = Zone reclaim writes dirty pages out
-4 = Zone reclaim swaps pages
+= ===================================
+1 Zone reclaim on
+2 Zone reclaim writes dirty pages out
+4 Zone reclaim swaps pages
+= ===================================
zone_reclaim_mode is disabled by default. For file servers or workloads
that benefit from having their data cached, zone_reclaim_mode should be
@@ -942,5 +962,3 @@ of other processes running on other nodes will not be affected.
Allowing regular swap effectively restricts allocations to the local
node unless explicitly overridden by memory policies or cpuset
configurations.
-
-============ End of Document =================================
diff --git a/Documentation/admin-guide/sysrq.rst b/Documentation/admin-guide/sysrq.rst
index 7b9035c01a2e..72b2cfb066f4 100644
--- a/Documentation/admin-guide/sysrq.rst
+++ b/Documentation/admin-guide/sysrq.rst
@@ -171,22 +171,20 @@ It seems others find it useful as (System Attention Key) which is
useful when you want to exit a program that will not let you switch consoles.
(For example, X or a svgalib program.)
-``reboot(b)`` is good when you're unable to shut down. But you should also
-``sync(s)`` and ``umount(u)`` first.
+``reboot(b)`` is good when you're unable to shut down, it is an equivalent
+of pressing the "reset" button.
``crash(c)`` can be used to manually trigger a crashdump when the system is hung.
Note that this just triggers a crash if there is no dump mechanism available.
-``sync(s)`` is great when your system is locked up, it allows you to sync your
-disks and will certainly lessen the chance of data loss and fscking. Note
-that the sync hasn't taken place until you see the "OK" and "Done" appear
-on the screen. (If the kernel is really in strife, you may not ever get the
-OK or Done message...)
+``sync(s)`` is handy before yanking removable medium or after using a rescue
+shell that provides no graceful shutdown -- it will ensure your data is
+safely written to the disk. Note that the sync hasn't taken place until you see
+the "OK" and "Done" appear on the screen.
-``umount(u)`` is basically useful in the same ways as ``sync(s)``. I generally
-``sync(s)``, ``umount(u)``, then ``reboot(b)`` when my system locks. It's saved
-me many a fsck. Again, the unmount (remount read-only) hasn't taken place until
-you see the "OK" and "Done" message appear on the screen.
+``umount(u)`` can be used to mark filesystems as properly unmounted. From the
+running system's point of view, they will be remounted read-only. The remount
+isn't complete until you see the "OK" and "Done" message appear on the screen.
The loglevels ``0``-``9`` are useful when your console is being flooded with
kernel messages you do not want to see. Selecting ``0`` will prevent all but
diff --git a/Documentation/filesystems/ufs.txt b/Documentation/admin-guide/ufs.rst
index 7a602adeca2b..55d15297f8d7 100644
--- a/Documentation/filesystems/ufs.txt
+++ b/Documentation/admin-guide/ufs.rst
@@ -1,37 +1,45 @@
-USING UFS
+=========
+Using UFS
=========
mount -t ufs -o ufstype=type_of_ufs device dir
-UFS OPTIONS
+UFS Options
===========
ufstype=type_of_ufs
UFS is a file system widely used in different operating systems.
The problem are differences among implementations. Features of
some implementations are undocumented, so its hard to recognize
- type of ufs automatically. That's why user must specify type of
+ type of ufs automatically. That's why user must specify type of
ufs manually by mount option ufstype. Possible values are:
- old old format of ufs
+ old
+ old format of ufs
default value, supported as read-only
- 44bsd used in FreeBSD, NetBSD, OpenBSD
+ 44bsd
+ used in FreeBSD, NetBSD, OpenBSD
supported as read-write
- ufs2 used in FreeBSD 5.x
+ ufs2
+ used in FreeBSD 5.x
supported as read-write
- 5xbsd synonym for ufs2
+ 5xbsd
+ synonym for ufs2
- sun used in SunOS (Solaris)
+ sun
+ used in SunOS (Solaris)
supported as read-write
- sunx86 used in SunOS for Intel (Solarisx86)
+ sunx86
+ used in SunOS for Intel (Solarisx86)
supported as read-write
- hp used in HP-UX
+ hp
+ used in HP-UX
supported as read-only
nextstep
@@ -47,14 +55,14 @@ ufstype=type_of_ufs
supported as read-only
-POSSIBLE PROBLEMS
-=================
+Possible Problems
+-----------------
See next section, if you have any.
-BUG REPORTS
-===========
+Bug Reports
+-----------
Any ufs bug report you can send to daniel.pirkl@email.cz or
to dushistov@mail.ru (do not send partition tables bug reports).
diff --git a/Documentation/video-output.txt b/Documentation/admin-guide/video-output.rst
index 56d6fa2e2368..56d6fa2e2368 100644
--- a/Documentation/video-output.txt
+++ b/Documentation/admin-guide/video-output.rst
diff --git a/Documentation/wimax/README.i2400m b/Documentation/admin-guide/wimax/i2400m.rst
index 7dffd8919cb0..194388c0c351 100644
--- a/Documentation/wimax/README.i2400m
+++ b/Documentation/admin-guide/wimax/i2400m.rst
@@ -1,18 +1,23 @@
+.. include:: <isonum.txt>
- Driver for the Intel Wireless Wimax Connection 2400m
+====================================================
+Driver for the Intel Wireless Wimax Connection 2400m
+====================================================
- (C) 2008 Intel Corporation < linux-wimax@intel.com >
+:Copyright: |copy| 2008 Intel Corporation < linux-wimax@intel.com >
This provides a driver for the Intel Wireless WiMAX Connection 2400m
and a basic Linux kernel WiMAX stack.
1. Requirements
+===============
* Linux installation with Linux kernel 2.6.22 or newer (if building
from a separate tree)
* Intel i2400m Echo Peak or Baxter Peak; this includes the Intel
Wireless WiMAX/WiFi Link 5x50 series.
* build tools:
+
+ Linux kernel development package for the target kernel; to
build against your currently running kernel, you need to have
the kernel development package corresponding to the running
@@ -22,8 +27,10 @@
+ GNU C Compiler, make
2. Compilation and installation
+===============================
2.1. Compilation of the drivers included in the kernel
+------------------------------------------------------
Configure the kernel; to enable the WiMAX drivers select Drivers >
Networking Drivers > WiMAX device support. Enable all of them as
@@ -36,37 +43,39 @@
Compile and install your kernel as usual.
2.2. Compilation of the drivers distributed as an standalone module
+-------------------------------------------------------------------
- To compile
+ To compile::
-$ cd source/directory
-$ make
+ $ cd source/directory
+ $ make
Once built you can load and unload using the provided load.sh script;
load.sh will load the modules, load.sh u will unload them.
To install in the default kernel directories (and enable auto loading
- when the device is plugged):
+ when the device is plugged)::
-$ make install
-$ depmod -a
+ $ make install
+ $ depmod -a
If your kernel development files are located in a non standard
directory or if you want to build for a kernel that is not the
- currently running one, set KDIR to the right location:
+ currently running one, set KDIR to the right location::
-$ make KDIR=/path/to/kernel/dev/tree
+ $ make KDIR=/path/to/kernel/dev/tree
For more information, please contact linux-wimax@intel.com.
3. Installing the firmware
+--------------------------
The firmware can be obtained from http://linuxwimax.org or might have
been supplied with your hardware.
- It has to be installed in the target system:
- *
-$ cp FIRMWAREFILE.sbcf /lib/firmware/i2400m-fw-BUSTYPE-1.3.sbcf
+ It has to be installed in the target system::
+
+ $ cp FIRMWAREFILE.sbcf /lib/firmware/i2400m-fw-BUSTYPE-1.3.sbcf
* NOTE: if your firmware came in an .rpm or .deb file, just install
it as normal, with the rpm (rpm -i FIRMWARE.rpm) or dpkg
@@ -76,6 +85,7 @@ $ cp FIRMWAREFILE.sbcf /lib/firmware/i2400m-fw-BUSTYPE-1.3.sbcf
with other types.
4. Design
+=========
This package contains two major parts: a WiMAX kernel stack and a
driver for the Intel i2400m.
@@ -102,16 +112,17 @@ $ cp FIRMWAREFILE.sbcf /lib/firmware/i2400m-fw-BUSTYPE-1.3.sbcf
API calls should be replaced with the target OS's.
5. Usage
+========
To load the driver, follow the instructions in the install section;
once the driver is loaded, plug in the device (unless it is permanently
plugged in). The driver will enumerate the device, upload the firmware
and output messages in the kernel log (dmesg, /var/log/messages or
- /var/log/kern.log) such as:
+ /var/log/kern.log) such as::
-...
-i2400m_usb 5-4:1.0: firmware interface version 8.0.0
-i2400m_usb 5-4:1.0: WiMAX interface wmx0 (00:1d:e1:01:94:2c) ready
+ ...
+ i2400m_usb 5-4:1.0: firmware interface version 8.0.0
+ i2400m_usb 5-4:1.0: WiMAX interface wmx0 (00:1d:e1:01:94:2c) ready
At this point the device is ready to work.
@@ -120,38 +131,42 @@ i2400m_usb 5-4:1.0: WiMAX interface wmx0 (00:1d:e1:01:94:2c) ready
on how to scan, connect and disconnect.
5.1. Module parameters
+----------------------
Module parameters can be set at kernel or module load time or by
- echoing values:
+ echoing values::
-$ echo VALUE > /sys/module/MODULENAME/parameters/PARAMETERNAME
+ $ echo VALUE > /sys/module/MODULENAME/parameters/PARAMETERNAME
To make changes permanent, for example, for the i2400m module, you can
- also create a file named /etc/modprobe.d/i2400m containing:
+ also create a file named /etc/modprobe.d/i2400m containing::
-options i2400m idle_mode_disabled=1
+ options i2400m idle_mode_disabled=1
- To find which parameters are supported by a module, run:
+ To find which parameters are supported by a module, run::
-$ modinfo path/to/module.ko
+ $ modinfo path/to/module.ko
During kernel bootup (if the driver is linked in the kernel), specify
- the following to the kernel command line:
+ the following to the kernel command line::
-i2400m.PARAMETER=VALUE
+ i2400m.PARAMETER=VALUE
5.1.1. i2400m: idle_mode_disabled
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The i2400m module supports a parameter to disable idle mode. This
parameter, once set, will take effect only when the device is
reinitialized by the driver (eg: following a reset or a reconnect).
5.2. Debug operations: debugfs entries
+--------------------------------------
The driver will register debugfs entries that allow the user to tweak
debug settings. There are three main container directories where
entries are placed, which correspond to the three blocks a i2400m WiMAX
driver has:
+
* /sys/kernel/debug/wimax:DEVNAME/ for the generic WiMAX stack
controls
* /sys/kernel/debug/wimax:DEVNAME/i2400m for the i2400m generic
@@ -163,52 +178,55 @@ i2400m.PARAMETER=VALUE
/sys/kernel/debug, those paths will change.
5.2.1. Increasing debug output
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The files named *dl_* indicate knobs for controlling the debug output
- of different submodules:
- *
-# find /sys/kernel/debug/wimax\:wmx0 -name \*dl_\*
-/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_tx
-/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_rx
-/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_notif
-/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_fw
-/sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_usb
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_tx
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_rx
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_rfkill
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_netdev
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_fw
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_debugfs
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_driver
-/sys/kernel/debug/wimax:wmx0/i2400m/dl_control
-/sys/kernel/debug/wimax:wmx0/wimax_dl_stack
-/sys/kernel/debug/wimax:wmx0/wimax_dl_op_rfkill
-/sys/kernel/debug/wimax:wmx0/wimax_dl_op_reset
-/sys/kernel/debug/wimax:wmx0/wimax_dl_op_msg
-/sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
-/sys/kernel/debug/wimax:wmx0/wimax_dl_debugfs
+ of different submodules::
+
+ # find /sys/kernel/debug/wimax\:wmx0 -name \*dl_\*
+ /sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_tx
+ /sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_rx
+ /sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_notif
+ /sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_fw
+ /sys/kernel/debug/wimax:wmx0/i2400m-usb/dl_usb
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_tx
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_rx
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_rfkill
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_netdev
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_fw
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_debugfs
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_driver
+ /sys/kernel/debug/wimax:wmx0/i2400m/dl_control
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_stack
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_op_rfkill
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_op_reset
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_op_msg
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_debugfs
By reading the file you can obtain the current value of said debug
level; by writing to it, you can set it.
To increase the debug level of, for example, the i2400m's generic TX
- engine, just write:
+ engine, just write::
-$ echo 3 > /sys/kernel/debug/wimax:wmx0/i2400m/dl_tx
+ $ echo 3 > /sys/kernel/debug/wimax:wmx0/i2400m/dl_tx
Increasing numbers yield increasing debug information; for details of
what is printed and the available levels, check the source. The code
uses 0 for disabled and increasing values until 8.
5.2.2. RX and TX statistics
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
The i2400m/rx_stats and i2400m/tx_stats provide statistics about the
- data reception/delivery from the device:
+ data reception/delivery from the device::
-$ cat /sys/kernel/debug/wimax:wmx0/i2400m/rx_stats
-45 1 3 34 3104 48 480
+ $ cat /sys/kernel/debug/wimax:wmx0/i2400m/rx_stats
+ 45 1 3 34 3104 48 480
+
+ The numbers reported are:
- The numbers reported are
* packets/RX-buffer: total, min, max
* RX-buffers: total RX buffers received, accumulated RX buffer size
in bytes, min size received, max size received
@@ -216,9 +234,9 @@ $ cat /sys/kernel/debug/wimax:wmx0/i2400m/rx_stats
Thus, to find the average buffer size received, divide accumulated
RX-buffer / total RX-buffers.
- To clear the statistics back to 0, write anything to the rx_stats file:
+ To clear the statistics back to 0, write anything to the rx_stats file::
-$ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m_rx_stats
+ $ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m_rx_stats
Likewise for TX.
@@ -227,14 +245,16 @@ $ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m_rx_stats
to the host. See drivers/net/wimax/i2400m/tx.c.
5.2.3. Tracing messages received from user space
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
To echo messages received from user space into the trace pipe that the
i2400m driver creates, set the debug file i2400m/trace_msg_from_user to
- 1:
- *
-$ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m/trace_msg_from_user
+ 1::
+
+ $ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m/trace_msg_from_user
5.2.4. Performing a device reset
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By writing a 0, a 1 or a 2 to the file
/sys/kernel/debug/wimax:wmx0/reset, the driver performs a warm (without
@@ -242,18 +262,21 @@ $ echo 1 > /sys/kernel/debug/wimax:wmx0/i2400m/trace_msg_from_user
(bus specific) reset on the device.
5.2.5. Asking the device to enter power saving mode
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By writing any value to the /sys/kernel/debug/wimax:wmx0 file, the
device will attempt to enter power saving mode.
6. Troubleshooting
+==================
-6.1. Driver complains about 'i2400m-fw-usb-1.2.sbcf: request failed'
+6.1. Driver complains about ``i2400m-fw-usb-1.2.sbcf: request failed``
+----------------------------------------------------------------------
If upon connecting the device, the following is output in the kernel
- log:
+ log::
-i2400m_usb 5-4:1.0: fw i2400m-fw-usb-1.3.sbcf: request failed: -2
+ i2400m_usb 5-4:1.0: fw i2400m-fw-usb-1.3.sbcf: request failed: -2
This means that the driver cannot locate the firmware file named
/lib/firmware/i2400m-fw-usb-1.2.sbcf. Check that the file is present in
diff --git a/Documentation/admin-guide/wimax/index.rst b/Documentation/admin-guide/wimax/index.rst
new file mode 100644
index 000000000000..fdf7c1f99ff5
--- /dev/null
+++ b/Documentation/admin-guide/wimax/index.rst
@@ -0,0 +1,19 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+WiMAX subsystem
+===============
+
+.. toctree::
+ :maxdepth: 2
+
+ wimax
+
+ i2400m
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/wimax/README.wimax b/Documentation/admin-guide/wimax/wimax.rst
index b78c4378084e..817ee8ba2732 100644
--- a/Documentation/wimax/README.wimax
+++ b/Documentation/admin-guide/wimax/wimax.rst
@@ -1,12 +1,16 @@
+.. include:: <isonum.txt>
- Linux kernel WiMAX stack
+========================
+Linux kernel WiMAX stack
+========================
- (C) 2008 Intel Corporation < linux-wimax@intel.com >
+:Copyright: |copy| 2008 Intel Corporation < linux-wimax@intel.com >
This provides a basic Linux kernel WiMAX stack to provide a common
control API for WiMAX devices, usable from kernel and user space.
1. Design
+=========
The WiMAX stack is designed to provide for common WiMAX control
services to current and future WiMAX devices from any vendor.
@@ -31,6 +35,7 @@
include/linux/wimax.h.
2. Usage
+========
For usage in a driver (registration, API, etc) please refer to the
instructions in the header file include/linux/wimax.h.
@@ -40,6 +45,7 @@
control.
2.1. Obtaining debug information: debugfs entries
+-------------------------------------------------
The WiMAX stack is compiled, by default, with debug messages that can
be used to diagnose issues. By default, said messages are disabled.
@@ -52,20 +58,22 @@
create more subentries below it.
2.1.1. Increasing debug output
+------------------------------
The files named *dl_* indicate knobs for controlling the debug output
- of different submodules of the WiMAX stack:
- *
-# find /sys/kernel/debug/wimax\:wmx0 -name \*dl_\*
-/sys/kernel/debug/wimax:wmx0/wimax_dl_stack
-/sys/kernel/debug/wimax:wmx0/wimax_dl_op_rfkill
-/sys/kernel/debug/wimax:wmx0/wimax_dl_op_reset
-/sys/kernel/debug/wimax:wmx0/wimax_dl_op_msg
-/sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
-/sys/kernel/debug/wimax:wmx0/wimax_dl_debugfs
-/sys/kernel/debug/wimax:wmx0/.... # other driver specific files
-
- NOTE: Of course, if debugfs is mounted in a directory other than
+ of different submodules of the WiMAX stack::
+
+ # find /sys/kernel/debug/wimax\:wmx0 -name \*dl_\*
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_stack
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_op_rfkill
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_op_reset
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_op_msg
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
+ /sys/kernel/debug/wimax:wmx0/wimax_dl_debugfs
+ /sys/kernel/debug/wimax:wmx0/.... # other driver specific files
+
+ NOTE:
+ Of course, if debugfs is mounted in a directory other than
/sys/kernel/debug, those paths will change.
By reading the file you can obtain the current value of said debug
@@ -74,7 +82,7 @@
To increase the debug level of, for example, the id-table submodule,
just write:
-$ echo 3 > /sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
+ $ echo 3 > /sys/kernel/debug/wimax:wmx0/wimax_dl_id_table
Increasing numbers yield increasing debug information; for details of
what is printed and the available levels, check the source. The code
diff --git a/Documentation/filesystems/xfs.txt b/Documentation/admin-guide/xfs.rst
index a5cbb5e0e3db..fb5b39f73059 100644
--- a/Documentation/filesystems/xfs.txt
+++ b/Documentation/admin-guide/xfs.rst
@@ -1,4 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+======================
The SGI XFS Filesystem
======================
@@ -18,8 +20,6 @@ Mount Options
=============
When mounting an XFS filesystem, the following options are accepted.
-For boolean mount options, the names with the (*) suffix is the
-default behaviour.
allocsize=size
Sets the buffered I/O end-of-file preallocation size when
@@ -31,46 +31,43 @@ default behaviour.
preallocation size, which uses a set of heuristics to
optimise the preallocation size based on the current
allocation patterns within the file and the access patterns
- to the file. Specifying a fixed allocsize value turns off
+ to the file. Specifying a fixed ``allocsize`` value turns off
the dynamic behaviour.
- attr2
- noattr2
+ attr2 or noattr2
The options enable/disable an "opportunistic" improvement to
be made in the way inline extended attributes are stored
on-disk. When the new form is used for the first time when
- attr2 is selected (either when setting or removing extended
+ ``attr2`` is selected (either when setting or removing extended
attributes) the on-disk superblock feature bit field will be
updated to reflect this format being in use.
The default behaviour is determined by the on-disk feature
- bit indicating that attr2 behaviour is active. If either
- mount option it set, then that becomes the new default used
+ bit indicating that ``attr2`` behaviour is active. If either
+ mount option is set, then that becomes the new default used
by the filesystem.
- CRC enabled filesystems always use the attr2 format, and so
- will reject the noattr2 mount option if it is set.
+ CRC enabled filesystems always use the ``attr2`` format, and so
+ will reject the ``noattr2`` mount option if it is set.
- discard
- nodiscard (*)
+ discard or nodiscard (default)
Enable/disable the issuing of commands to let the block
device reclaim space freed by the filesystem. This is
useful for SSD devices, thinly provisioned LUNs and virtual
machine images, but may have a performance impact.
- Note: It is currently recommended that you use the fstrim
- application to discard unused blocks rather than the discard
+ Note: It is currently recommended that you use the ``fstrim``
+ application to ``discard`` unused blocks rather than the ``discard``
mount option because the performance impact of this option
is quite severe.
- grpid/bsdgroups
- nogrpid/sysvgroups (*)
+ grpid/bsdgroups or nogrpid/sysvgroups (default)
These options define what group ID a newly created file
- gets. When grpid is set, it takes the group ID of the
+ gets. When ``grpid`` is set, it takes the group ID of the
directory in which it is created; otherwise it takes the
- fsgid of the current process, unless the directory has the
- setgid bit set, in which case it takes the gid from the
- parent directory, and also gets the setgid bit set if it is
+ ``fsgid`` of the current process, unless the directory has the
+ ``setgid`` bit set, in which case it takes the ``gid`` from the
+ parent directory, and also gets the ``setgid`` bit set if it is
a directory itself.
filestreams
@@ -78,46 +75,42 @@ default behaviour.
across the entire filesystem rather than just on directories
configured to use it.
- ikeep
- noikeep (*)
- When ikeep is specified, XFS does not delete empty inode
- clusters and keeps them around on disk. When noikeep is
+ ikeep or noikeep (default)
+ When ``ikeep`` is specified, XFS does not delete empty inode
+ clusters and keeps them around on disk. When ``noikeep`` is
specified, empty inode clusters are returned to the free
space pool.
- inode32
- inode64 (*)
- When inode32 is specified, it indicates that XFS limits
+ inode32 or inode64 (default)
+ When ``inode32`` is specified, it indicates that XFS limits
inode creation to locations which will not result in inode
numbers with more than 32 bits of significance.
- When inode64 is specified, it indicates that XFS is allowed
+ When ``inode64`` is specified, it indicates that XFS is allowed
to create inodes at any location in the filesystem,
including those which will result in inode numbers occupying
- more than 32 bits of significance.
+ more than 32 bits of significance.
- inode32 is provided for backwards compatibility with older
+ ``inode32`` is provided for backwards compatibility with older
systems and applications, since 64 bits inode numbers might
cause problems for some applications that cannot handle
large inode numbers. If applications are in use which do
- not handle inode numbers bigger than 32 bits, the inode32
+ not handle inode numbers bigger than 32 bits, the ``inode32``
option should be specified.
-
- largeio
- nolargeio (*)
- If "nolargeio" is specified, the optimal I/O reported in
- st_blksize by stat(2) will be as small as possible to allow
+ largeio or nolargeio (default)
+ If ``nolargeio`` is specified, the optimal I/O reported in
+ ``st_blksize`` by **stat(2)** will be as small as possible to allow
user applications to avoid inefficient read/modify/write
I/O. This is typically the page size of the machine, as
this is the granularity of the page cache.
- If "largeio" specified, a filesystem that was created with a
- "swidth" specified will return the "swidth" value (in bytes)
- in st_blksize. If the filesystem does not have a "swidth"
- specified but does specify an "allocsize" then "allocsize"
+ If ``largeio`` is specified, a filesystem that was created with a
+ ``swidth`` specified will return the ``swidth`` value (in bytes)
+ in ``st_blksize``. If the filesystem does not have a ``swidth``
+ specified but does specify an ``allocsize`` then ``allocsize``
(in bytes) will be returned instead. Otherwise the behaviour
- is the same as if "nolargeio" was specified.
+ is the same as if ``nolargeio`` was specified.
logbufs=value
Set the number of in-memory log buffers. Valid numbers
@@ -127,7 +120,7 @@ default behaviour.
If the memory cost of 8 log buffers is too high on small
systems, then it may be reduced at some cost to performance
- on metadata intensive workloads. The logbsize option below
+ on metadata intensive workloads. The ``logbsize`` option below
controls the size of each buffer and so is also relevant to
this case.
@@ -138,7 +131,7 @@ default behaviour.
and 32768 (32k). Valid sizes for version 2 logs also
include 65536 (64k), 131072 (128k) and 262144 (256k). The
logbsize must be an integer multiple of the log
- stripe unit configured at mkfs time.
+ stripe unit configured at **mkfs(8)** time.
The default value for for version 1 logs is 32768, while the
default value for version 2 logs is MAX(32768, log_sunit).
@@ -153,21 +146,21 @@ default behaviour.
noalign
Data allocations will not be aligned at stripe unit
boundaries. This is only relevant to filesystems created
- with non-zero data alignment parameters (sunit, swidth) by
- mkfs.
+ with non-zero data alignment parameters (``sunit``, ``swidth``) by
+ **mkfs(8)**.
norecovery
The filesystem will be mounted without running log recovery.
If the filesystem was not cleanly unmounted, it is likely to
- be inconsistent when mounted in "norecovery" mode.
+ be inconsistent when mounted in ``norecovery`` mode.
Some files or directories may not be accessible because of this.
- Filesystems mounted "norecovery" must be mounted read-only or
+ Filesystems mounted ``norecovery`` must be mounted read-only or
the mount will fail.
nouuid
Don't check for double mounted file systems using the file
- system uuid. This is useful to mount LVM snapshot volumes,
- and often used in combination with "norecovery" for mounting
+ system ``uuid``. This is useful to mount LVM snapshot volumes,
+ and often used in combination with ``norecovery`` for mounting
read-only snapshots.
noquota
@@ -176,15 +169,15 @@ default behaviour.
uquota/usrquota/uqnoenforce/quota
User disk quota accounting enabled, and limits (optionally)
- enforced. Refer to xfs_quota(8) for further details.
+ enforced. Refer to **xfs_quota(8)** for further details.
gquota/grpquota/gqnoenforce
Group disk quota accounting enabled and limits (optionally)
- enforced. Refer to xfs_quota(8) for further details.
+ enforced. Refer to **xfs_quota(8)** for further details.
pquota/prjquota/pqnoenforce
Project disk quota accounting enabled and limits (optionally)
- enforced. Refer to xfs_quota(8) for further details.
+ enforced. Refer to **xfs_quota(8)** for further details.
sunit=value and swidth=value
Used to specify the stripe unit and width for a RAID device
@@ -192,11 +185,11 @@ default behaviour.
block units. These options are only relevant to filesystems
that were created with non-zero data alignment parameters.
- The sunit and swidth parameters specified must be compatible
+ The ``sunit`` and ``swidth`` parameters specified must be compatible
with the existing filesystem alignment characteristics. In
- general, that means the only valid changes to sunit are
- increasing it by a power-of-2 multiple. Valid swidth values
- are any integer multiple of a valid sunit value.
+ general, that means the only valid changes to ``sunit`` are
+ increasing it by a power-of-2 multiple. Valid ``swidth`` values
+ are any integer multiple of a valid ``sunit`` value.
Typically the only time these mount options are necessary if
after an underlying RAID device has had it's geometry
@@ -221,22 +214,25 @@ default behaviour.
Deprecated Mount Options
========================
+=========================== ================
Name Removal Schedule
- ---- ----------------
+=========================== ================
+=========================== ================
Removed Mount Options
=====================
+=========================== =======
Name Removed
- ---- -------
+=========================== =======
delaylog/nodelaylog v4.0
ihashsize v4.0
irixsgid v4.0
osyncisdsync/osyncisosync v4.0
barrier v4.19
nobarrier v4.19
-
+=========================== =======
sysctls
=======
@@ -302,27 +298,27 @@ The following sysctls are available for the XFS filesystem:
fs.xfs.inherit_sync (Min: 0 Default: 1 Max: 1)
Setting this to "1" will cause the "sync" flag set
- by the xfs_io(8) chattr command on a directory to be
+ by the **xfs_io(8)** chattr command on a directory to be
inherited by files in that directory.
fs.xfs.inherit_nodump (Min: 0 Default: 1 Max: 1)
Setting this to "1" will cause the "nodump" flag set
- by the xfs_io(8) chattr command on a directory to be
+ by the **xfs_io(8)** chattr command on a directory to be
inherited by files in that directory.
fs.xfs.inherit_noatime (Min: 0 Default: 1 Max: 1)
Setting this to "1" will cause the "noatime" flag set
- by the xfs_io(8) chattr command on a directory to be
+ by the **xfs_io(8)** chattr command on a directory to be
inherited by files in that directory.
fs.xfs.inherit_nosymlinks (Min: 0 Default: 1 Max: 1)
Setting this to "1" will cause the "nosymlinks" flag set
- by the xfs_io(8) chattr command on a directory to be
+ by the **xfs_io(8)** chattr command on a directory to be
inherited by files in that directory.
fs.xfs.inherit_nodefrag (Min: 0 Default: 1 Max: 1)
Setting this to "1" will cause the "nodefrag" flag set
- by the xfs_io(8) chattr command on a directory to be
+ by the **xfs_io(8)** chattr command on a directory to be
inherited by files in that directory.
fs.xfs.rotorstep (Min: 1 Default: 1 Max: 256)
@@ -341,11 +337,12 @@ None at present.
Removed Sysctls
===============
+============================= =======
Name Removed
- ---- -------
+============================= =======
fs.xfs.xfsbufd_centisec v4.0
fs.xfs.age_buffer_centisecs v4.0
-
+============================= =======
Error handling
==============
@@ -368,7 +365,7 @@ handler:
-error handlers:
Defines the behavior for a specific error.
-The filesystem behavior during an error can be set via sysfs files. Each
+The filesystem behavior during an error can be set via ``sysfs`` files. Each
error handler works independently - the first condition met by an error handler
for a specific class will cause the error to be propagated rather than reset and
retried.
@@ -419,7 +416,7 @@ level directory:
handler configurations.
Note: there is no guarantee that fail_at_unmount can be set while an
- unmount is in progress. It is possible that the sysfs entries are
+ unmount is in progress. It is possible that the ``sysfs`` entries are
removed by the unmounting filesystem before a "retry forever" error
handler configuration causes unmount to hang, and hence the filesystem
must be configured appropriately before unmount begins to prevent
@@ -428,7 +425,7 @@ level directory:
Each filesystem has specific error class handlers that define the error
propagation behaviour for specific errors. There is also a "default" error
handler defined, which defines the behaviour for all errors that don't have
-specific handlers defined. Where multiple retry constraints are configuredi for
+specific handlers defined. Where multiple retry constraints are configured for
a single error, the first retry configuration that expires will cause the error
to be propagated. The handler configurations are found in the directory:
@@ -463,7 +460,7 @@ to be propagated. The handler configurations are found in the directory:
Setting the value to "N" (where 0 < N < Max) will allow XFS to retry the
operation for up to "N" seconds before propagating the error.
-Note: The default behaviour for a specific error handler is dependent on both
+**Note:** The default behaviour for a specific error handler is dependent on both
the class and error context. For example, the default values for
"metadata/ENODEV" are "0" rather than "-1" so that this error handler defaults
to "fail immediately" behaviour. This is done because ENODEV is a fatal,
diff --git a/Documentation/arm/Marvell/README b/Documentation/arm/Marvell/README
deleted file mode 100644
index 56ada27c53be..000000000000
--- a/Documentation/arm/Marvell/README
+++ /dev/null
@@ -1,395 +0,0 @@
-ARM Marvell SoCs
-================
-
-This document lists all the ARM Marvell SoCs that are currently
-supported in mainline by the Linux kernel. As the Marvell families of
-SoCs are large and complex, it is hard to understand where the support
-for a particular SoC is available in the Linux kernel. This document
-tries to help in understanding where those SoCs are supported, and to
-match them with their corresponding public datasheet, when available.
-
-Orion family
-------------
-
- Flavors:
- 88F5082
- 88F5181
- 88F5181L
- 88F5182
- Datasheet : http://www.embeddedarm.com/documentation/third-party/MV88F5182-datasheet.pdf
- Programmer's User Guide : http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf
- User Manual : http://www.embeddedarm.com/documentation/third-party/MV88F5182-usermanual.pdf
- 88F5281
- Datasheet : http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf
- 88F6183
- Core: Feroceon 88fr331 (88f51xx) or 88fr531-vd (88f52xx) ARMv5 compatible
- Linux kernel mach directory: arch/arm/mach-orion5x
- Linux kernel plat directory: arch/arm/plat-orion
-
-Kirkwood family
----------------
-
- Flavors:
- 88F6282 a.k.a Armada 300
- Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
- 88F6283 a.k.a Armada 310
- Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
- 88F6190
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- 88F6192
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- 88F6182
- 88F6180
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- 88F6281
- Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
- Homepage: http://www.marvell.com/embedded-processors/kirkwood/
- Core: Feroceon 88fr131 ARMv5 compatible
- Linux kernel mach directory: arch/arm/mach-mvebu
- Linux kernel plat directory: none
-
-Discovery family
-----------------
-
- Flavors:
- MV78100
- Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
- MV78200
- Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf
- Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
- MV76100
- Not supported by the Linux kernel.
-
- Core: Feroceon 88fr571-vd ARMv5 compatible
-
- Linux kernel mach directory: arch/arm/mach-mv78xx0
- Linux kernel plat directory: arch/arm/plat-orion
-
-EBU Armada family
------------------
-
- Armada 370 Flavors:
- 88F6710
- 88F6707
- 88F6W11
- Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf
- Hardware Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
- Core: Sheeva ARMv7 compatible PJ4B
-
- Armada 375 Flavors:
- 88F6720
- Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf
- Core: ARM Cortex-A9
-
- Armada 38x Flavors:
- 88F6810 Armada 380
- 88F6820 Armada 385
- 88F6828 Armada 388
- Product infos: http://www.marvell.com/embedded-processors/armada-38x/
- Functional Spec: https://marvellcorp.wufoo.com/forms/marvell-armada-38x-functional-specifications/
- Core: ARM Cortex-A9
-
- Armada 39x Flavors:
- 88F6920 Armada 390
- 88F6928 Armada 398
- Product infos: http://www.marvell.com/embedded-processors/armada-39x/
- Core: ARM Cortex-A9
-
- Armada XP Flavors:
- MV78230
- MV78260
- MV78460
- NOTE: not to be confused with the non-SMP 78xx0 SoCs
- Product Brief: http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
- Functional Spec: http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
- Hardware Specs:
- http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF
- http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF
- http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF
- Core: Sheeva ARMv7 compatible Dual-core or Quad-core PJ4B-MP
-
- Linux kernel mach directory: arch/arm/mach-mvebu
- Linux kernel plat directory: none
-
-EBU Armada family ARMv8
------------------------
-
- Armada 3710/3720 Flavors:
- 88F3710
- 88F3720
- Core: ARM Cortex A53 (ARMv8)
-
- Homepage: http://www.marvell.com/embedded-processors/armada-3700/
- Product Brief: http://www.marvell.com/embedded-processors/assets/PB-88F3700-FNL.pdf
- Device tree files: arch/arm64/boot/dts/marvell/armada-37*
-
- Armada 7K Flavors:
- 88F7020 (AP806 Dual + one CP110)
- 88F7040 (AP806 Quad + one CP110)
- Core: ARM Cortex A72
-
- Homepage: http://www.marvell.com/embedded-processors/armada-70xx/
- Product Brief: http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf
- http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf
- Device tree files: arch/arm64/boot/dts/marvell/armada-70*
-
- Armada 8K Flavors:
- 88F8020 (AP806 Dual + two CP110)
- 88F8040 (AP806 Quad + two CP110)
- Core: ARM Cortex A72
-
- Homepage: http://www.marvell.com/embedded-processors/armada-80xx/
- Product Brief: http://www.marvell.com/embedded-processors/assets/Armada8020PB-Jan2016.pdf
- http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf
- Device tree files: arch/arm64/boot/dts/marvell/armada-80*
-
-Avanta family
--------------
-
- Flavors:
- 88F6510
- 88F6530P
- 88F6550
- 88F6560
- Homepage : http://www.marvell.com/broadband/
- Product Brief: http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf
- No public datasheet available.
-
- Core: ARMv5 compatible
-
- Linux kernel mach directory: no code in mainline yet, planned for the future
- Linux kernel plat directory: no code in mainline yet, planned for the future
-
-Storage family
---------------
-
- Armada SP:
- 88RC1580
- Product infos: http://www.marvell.com/storage/armada-sp/
- Core: Sheeva ARMv7 comatible Quad-core PJ4C
- (not supported in upstream Linux kernel)
-
-Dove family (application processor)
------------------------------------
-
- Flavors:
- 88AP510 a.k.a Armada 510
- Product Brief : http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf
- Hardware Spec : http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf
- Functional Spec : http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
- Homepage: http://www.marvell.com/application-processors/armada-500/
- Core: ARMv7 compatible
-
- Directory: arch/arm/mach-mvebu (DT enabled platforms)
- arch/arm/mach-dove (non-DT enabled platforms)
-
-PXA 2xx/3xx/93x/95x family
---------------------------
-
- Flavors:
- PXA21x, PXA25x, PXA26x
- Application processor only
- Core: ARMv5 XScale1 core
- PXA270, PXA271, PXA272
- Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf
- Design guide : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf
- Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf
- Specification : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
- Specification update : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf
- Application processor only
- Core: ARMv5 XScale2 core
- PXA300, PXA310, PXA320
- PXA 300 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf
- PXA 310 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf
- PXA 320 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf
- Design guide : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf
- Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip
- Specifications : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf
- Specification Update : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip
- Reference Manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf
- Application processor only
- Core: ARMv5 XScale3 core
- PXA930, PXA935
- Application processor with Communication processor
- Core: ARMv5 XScale3 core
- PXA955
- Application processor with Communication processor
- Core: ARMv7 compatible Sheeva PJ4 core
-
- Comments:
-
- * This line of SoCs originates from the XScale family developed by
- Intel and acquired by Marvell in ~2006. The PXA21x, PXA25x,
- PXA26x, PXA27x, PXA3xx and PXA93x were developed by Intel, while
- the later PXA95x were developed by Marvell.
-
- * Due to their XScale origin, these SoCs have virtually nothing in
- common with the other (Kirkwood, Dove, etc.) families of Marvell
- SoCs, except with the MMP/MMP2 family of SoCs.
-
- Linux kernel mach directory: arch/arm/mach-pxa
- Linux kernel plat directory: arch/arm/plat-pxa
-
-MMP/MMP2/MMP3 family (communication processor)
------------------------------------------
-
- Flavors:
- PXA168, a.k.a Armada 168
- Homepage : http://www.marvell.com/application-processors/armada-100/armada-168.jsp
- Product brief : http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf
- Hardware manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf
- Software manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf
- Specification update : http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf
- Boot ROM manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf
- App node package : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf
- Application processor only
- Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)
- PXA910/PXA920
- Homepage : http://www.marvell.com/communication-processors/pxa910/
- Product Brief : http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf
- Application processor with Communication processor
- Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)
- PXA688, a.k.a. MMP2, a.k.a Armada 610
- Product Brief : http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf
- Application processor only
- Core: ARMv7 compatible Sheeva PJ4 88sv581x core
- PXA2128, a.k.a. MMP3 (OLPC XO4, Linux support not upstream)
- Product Brief : http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf
- Application processor only
- Core: Dual-core ARMv7 compatible Sheeva PJ4C core
- PXA960/PXA968/PXA978 (Linux support not upstream)
- Application processor with Communication Processor
- Core: ARMv7 compatible Sheeva PJ4 core
- PXA986/PXA988 (Linux support not upstream)
- Application processor with Communication Processor
- Core: Dual-core ARMv7 compatible Sheeva PJ4B-MP core
- PXA1088/PXA1920 (Linux support not upstream)
- Application processor with Communication Processor
- Core: quad-core ARMv7 Cortex-A7
- PXA1908/PXA1928/PXA1936
- Application processor with Communication Processor
- Core: multi-core ARMv8 Cortex-A53
-
- Comments:
-
- * This line of SoCs originates from the XScale family developed by
- Intel and acquired by Marvell in ~2006. All the processors of
- this MMP/MMP2 family were developed by Marvell.
-
- * Due to their XScale origin, these SoCs have virtually nothing in
- common with the other (Kirkwood, Dove, etc.) families of Marvell
- SoCs, except with the PXA family of SoCs listed above.
-
- Linux kernel mach directory: arch/arm/mach-mmp
- Linux kernel plat directory: arch/arm/plat-pxa
-
-Berlin family (Multimedia Solutions)
--------------------------------------
-
- Flavors:
- 88DE3010, Armada 1000 (no Linux support)
- Core: Marvell PJ1 (ARMv5TE), Dual-core
- Product Brief: http://www.marvell.com.cn/digital-entertainment/assets/armada_1000_pb.pdf
- 88DE3005, Armada 1500 Mini
- Design name: BG2CD
- Core: ARM Cortex-A9, PL310 L2CC
- 88DE3006, Armada 1500 Mini Plus
- Design name: BG2CDP
- Core: Dual Core ARM Cortex-A7
- 88DE3100, Armada 1500
- Design name: BG2
- Core: Marvell PJ4B-MP (ARMv7), Tauros3 L2CC
- 88DE3114, Armada 1500 Pro
- Design name: BG2Q
- Core: Quad Core ARM Cortex-A9, PL310 L2CC
- 88DE3214, Armada 1500 Pro 4K
- Design name: BG3
- Core: ARM Cortex-A15, CA15 integrated L2CC
- 88DE3218, ARMADA 1500 Ultra
- Core: ARM Cortex-A53
-
- Homepage: https://www.synaptics.com/products/multimedia-solutions
- Directory: arch/arm/mach-berlin
-
- Comments:
-
- * This line of SoCs is based on Marvell Sheeva or ARM Cortex CPUs
- with Synopsys DesignWare (IRQ, GPIO, Timers, ...) and PXA IP (SDHCI, USB, ETH, ...).
-
- * The Berlin family was acquired by Synaptics from Marvell in 2017.
-
-CPU Cores
----------
-
-The XScale cores were designed by Intel, and shipped by Marvell in the older
-PXA processors. Feroceon is a Marvell designed core that developed in-house,
-and that evolved into Sheeva. The XScale and Feroceon cores were phased out
-over time and replaced with Sheeva cores in later products, which subsequently
-got replaced with licensed ARM Cortex-A cores.
-
- XScale 1
- CPUID 0x69052xxx
- ARMv5, iWMMXt
- XScale 2
- CPUID 0x69054xxx
- ARMv5, iWMMXt
- XScale 3
- CPUID 0x69056xxx or 0x69056xxx
- ARMv5, iWMMXt
- Feroceon-1850 88fr331 "Mohawk"
- CPUID 0x5615331x or 0x41xx926x
- ARMv5TE, single issue
- Feroceon-2850 88fr531-vd "Jolteon"
- CPUID 0x5605531x or 0x41xx926x
- ARMv5TE, VFP, dual-issue
- Feroceon 88fr571-vd "Jolteon"
- CPUID 0x5615571x
- ARMv5TE, VFP, dual-issue
- Feroceon 88fr131 "Mohawk-D"
- CPUID 0x5625131x
- ARMv5TE, single-issue in-order
- Sheeva PJ1 88sv331 "Mohawk"
- CPUID 0x561584xx
- ARMv5, single-issue iWMMXt v2
- Sheeva PJ4 88sv581x "Flareon"
- CPUID 0x560f581x
- ARMv7, idivt, optional iWMMXt v2
- Sheeva PJ4B 88sv581x
- CPUID 0x561f581x
- ARMv7, idivt, optional iWMMXt v2
- Sheeva PJ4B-MP / PJ4C
- CPUID 0x562f584x
- ARMv7, idivt/idiva, LPAE, optional iWMMXt v2 and/or NEON
-
-Long-term plans
----------------
-
- * Unify the mach-dove/, mach-mv78xx0/, mach-orion5x/ into the
- mach-mvebu/ to support all SoCs from the Marvell EBU (Engineering
- Business Unit) in a single mach-<foo> directory. The plat-orion/
- would therefore disappear.
-
- * Unify the mach-mmp/ and mach-pxa/ into the same mach-pxa
- directory. The plat-pxa/ would therefore disappear.
-
-Credits
--------
-
- Maen Suleiman <maen@marvell.com>
- Lior Amsalem <alior@marvell.com>
- Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
- Andrew Lunn <andrew@lunn.ch>
- Nicolas Pitre <nico@fluxnic.net>
- Eric Miao <eric.y.miao@gmail.com>
diff --git a/Documentation/arm/Netwinder b/Documentation/arm/Netwinder
deleted file mode 100644
index f1b457fbd3de..000000000000
--- a/Documentation/arm/Netwinder
+++ /dev/null
@@ -1,78 +0,0 @@
-NetWinder specific documentation
-================================
-
-The NetWinder is a small low-power computer, primarily designed
-to run Linux. It is based around the StrongARM RISC processor,
-DC21285 PCI bridge, with PC-type hardware glued around it.
-
-Port usage
-==========
-
-Min - Max Description
----------------------------
-0x0000 - 0x000f DMA1
-0x0020 - 0x0021 PIC1
-0x0060 - 0x006f Keyboard
-0x0070 - 0x007f RTC
-0x0080 - 0x0087 DMA1
-0x0088 - 0x008f DMA2
-0x00a0 - 0x00a3 PIC2
-0x00c0 - 0x00df DMA2
-0x0180 - 0x0187 IRDA
-0x01f0 - 0x01f6 ide0
-0x0201 Game port
-0x0203 RWA010 configuration read
-0x0220 - ? SoundBlaster
-0x0250 - ? WaveArtist
-0x0279 RWA010 configuration index
-0x02f8 - 0x02ff Serial ttyS1
-0x0300 - 0x031f Ether10
-0x0338 GPIO1
-0x033a GPIO2
-0x0370 - 0x0371 W83977F configuration registers
-0x0388 - ? AdLib
-0x03c0 - 0x03df VGA
-0x03f6 ide0
-0x03f8 - 0x03ff Serial ttyS0
-0x0400 - 0x0408 DC21143
-0x0480 - 0x0487 DMA1
-0x0488 - 0x048f DMA2
-0x0a79 RWA010 configuration write
-0xe800 - 0xe80f ide0/ide1 BM DMA
-
-
-Interrupt usage
-===============
-
-IRQ type Description
----------------------------
- 0 ISA 100Hz timer
- 1 ISA Keyboard
- 2 ISA cascade
- 3 ISA Serial ttyS1
- 4 ISA Serial ttyS0
- 5 ISA PS/2 mouse
- 6 ISA IRDA
- 7 ISA Printer
- 8 ISA RTC alarm
- 9 ISA
-10 ISA GP10 (Orange reset button)
-11 ISA
-12 ISA WaveArtist
-13 ISA
-14 ISA hda1
-15 ISA
-
-DMA usage
-=========
-
-DMA type Description
----------------------------
- 0 ISA IRDA
- 1 ISA
- 2 ISA cascade
- 3 ISA WaveArtist
- 4 ISA
- 5 ISA
- 6 ISA
- 7 ISA WaveArtist
diff --git a/Documentation/arm/SA1100/ADSBitsy b/Documentation/arm/SA1100/ADSBitsy
deleted file mode 100644
index f9f62e8c0719..000000000000
--- a/Documentation/arm/SA1100/ADSBitsy
+++ /dev/null
@@ -1,43 +0,0 @@
-ADS Bitsy Single Board Computer
-(It is different from Bitsy(iPAQ) of Compaq)
-
-For more details, contact Applied Data Systems or see
-http://www.applieddata.net/products.html
-
-The Linux support for this product has been provided by
-Woojung Huh <whuh@applieddata.net>
-
-Use 'make adsbitsy_config' before any 'make config'.
-This will set up defaults for ADS Bitsy support.
-
-The kernel zImage is linked to be loaded and executed at 0xc0400000.
-
-Linux can be used with the ADS BootLoader that ships with the
-newer rev boards. See their documentation on how to load Linux.
-
-Supported peripherals:
-- SA1100 LCD frame buffer (8/16bpp...sort of)
-- SA1111 USB Master
-- SA1100 serial port
-- pcmcia, compact flash
-- touchscreen(ucb1200)
-- console on LCD screen
-- serial ports (ttyS[0-2])
- - ttyS0 is default for serial console
-
-To do:
-- everything else! :-)
-
-Notes:
-
-- The flash on board is divided into 3 partitions.
- You should be careful to use flash on board.
- Its partition is different from GraphicsClient Plus and GraphicsMaster
-
-- 16bpp mode requires a different cable than what ships with the board.
- Contact ADS or look through the manual to wire your own. Currently,
- if you compile with 16bit mode support and switch into a lower bpp
- mode, the timing is off so the image is corrupted. This will be
- fixed soon.
-
-Any contribution can be sent to nico@fluxnic.net and will be greatly welcome!
diff --git a/Documentation/arm/SA1100/Brutus b/Documentation/arm/SA1100/Brutus
deleted file mode 100644
index 6a3aa95e9bfd..000000000000
--- a/Documentation/arm/SA1100/Brutus
+++ /dev/null
@@ -1,66 +0,0 @@
-Brutus is an evaluation platform for the SA1100 manufactured by Intel.
-For more details, see:
-
-http://developer.intel.com
-
-To compile for Brutus, you must issue the following commands:
-
- make brutus_config
- make config
- [accept all the defaults]
- make zImage
-
-The resulting kernel will end up in linux/arch/arm/boot/zImage. This file
-must be loaded at 0xc0008000 in Brutus's memory and execution started at
-0xc0008000 as well with the value of registers r0 = 0 and r1 = 16 upon
-entry.
-
-But prior to execute the kernel, a ramdisk image must also be loaded in
-memory. Use memory address 0xd8000000 for this. Note that the file
-containing the (compressed) ramdisk image must not exceed 4 MB.
-
-Typically, you'll need angelboot to load the kernel.
-The following angelboot.opt file should be used:
-
------ begin angelboot.opt -----
-base 0xc0008000
-entry 0xc0008000
-r0 0x00000000
-r1 0x00000010
-device /dev/ttyS0
-options "9600 8N1"
-baud 115200
-otherfile ramdisk_img.gz
-otherbase 0xd8000000
------ end angelboot.opt -----
-
-Then load the kernel and ramdisk with:
-
- angelboot -f angelboot.opt zImage
-
-The first Brutus serial port (assumed to be linked to /dev/ttyS0 on your
-host PC) is used by angel to load the kernel and ramdisk image. The serial
-console is provided through the second Brutus serial port. To access it,
-you may use minicom configured with /dev/ttyS1, 9600 baud, 8N1, no flow
-control.
-
-Currently supported:
- - RS232 serial ports
- - audio output
- - LCD screen
- - keyboard
-
-The actual Brutus support may not be complete without extra patches.
-If such patches exist, they should be found from
-ftp.netwinder.org/users/n/nico.
-
-A full PCMCIA support is still missing, although it's possible to hack
-some drivers in order to drive already inserted cards at boot time with
-little modifications.
-
-Any contribution is welcome.
-
-Please send patches to nico@fluxnic.net
-
-Have Fun !
-
diff --git a/Documentation/arm/SA1100/FreeBird b/Documentation/arm/SA1100/FreeBird
deleted file mode 100644
index ab9193663b2b..000000000000
--- a/Documentation/arm/SA1100/FreeBird
+++ /dev/null
@@ -1,21 +0,0 @@
-Freebird-1.1 is produced by Legend(C), Inc.
-http://web.archive.org/web/*/http://www.legend.com.cn
-and software/linux maintained by Coventive(C), Inc.
-(http://www.coventive.com)
-
-Based on the Nicolas's strongarm kernel tree.
-
-===============================================================
-Maintainer:
-
-Chester Kuo <chester@coventive.com>
- <chester@linux.org.tw>
-
-Author :
-Tim wu <timwu@coventive.com>
-CIH <cih@coventive.com>
-Eric Peng <ericpeng@coventive.com>
-Jeff Lee <jeff_lee@coventive.com>
-Allen Cheng
-Tony Liu <tonyliu@coventive.com>
-
diff --git a/Documentation/arm/SA1100/GraphicsClient b/Documentation/arm/SA1100/GraphicsClient
deleted file mode 100644
index 867bb35943af..000000000000
--- a/Documentation/arm/SA1100/GraphicsClient
+++ /dev/null
@@ -1,98 +0,0 @@
-ADS GraphicsClient Plus Single Board Computer
-
-For more details, contact Applied Data Systems or see
-http://www.applieddata.net/products.html
-
-The original Linux support for this product has been provided by
-Nicolas Pitre <nico@fluxnic.net>. Continued development work by
-Woojung Huh <whuh@applieddata.net>
-
-It's currently possible to mount a root filesystem via NFS providing a
-complete Linux environment. Otherwise a ramdisk image may be used. The
-board supports MTD/JFFS, so you could also mount something on there.
-
-Use 'make graphicsclient_config' before any 'make config'. This will set up
-defaults for GraphicsClient Plus support.
-
-The kernel zImage is linked to be loaded and executed at 0xc0200000.
-Also the following registers should have the specified values upon entry:
-
- r0 = 0
- r1 = 29 (this is the GraphicsClient architecture number)
-
-Linux can be used with the ADS BootLoader that ships with the
-newer rev boards. See their documentation on how to load Linux.
-Angel is not available for the GraphicsClient Plus AFAIK.
-
-There is a board known as just the GraphicsClient that ADS used to
-produce but has end of lifed. This code will not work on the older
-board with the ADS bootloader, but should still work with Angel,
-as outlined below. In any case, if you're planning on deploying
-something en masse, you should probably get the newer board.
-
-If using Angel on the older boards, here is a typical angel.opt option file
-if the kernel is loaded through the Angel Debug Monitor:
-
------ begin angelboot.opt -----
-base 0xc0200000
-entry 0xc0200000
-r0 0x00000000
-r1 0x0000001d
-device /dev/ttyS1
-options "38400 8N1"
-baud 115200
-#otherfile ramdisk.gz
-#otherbase 0xc0800000
-exec minicom
------ end angelboot.opt -----
-
-Then the kernel (and ramdisk if otherfile/otherbase lines above are
-uncommented) would be loaded with:
-
- angelboot -f angelboot.opt zImage
-
-Here it is assumed that the board is connected to ttyS1 on your PC
-and that minicom is preconfigured with /dev/ttyS1, 38400 baud, 8N1, no flow
-control by default.
-
-If any other bootloader is used, ensure it accomplish the same, especially
-for r0/r1 register values before jumping into the kernel.
-
-
-Supported peripherals:
-- SA1100 LCD frame buffer (8/16bpp...sort of)
-- on-board SMC 92C96 ethernet NIC
-- SA1100 serial port
-- flash memory access (MTD/JFFS)
-- pcmcia
-- touchscreen(ucb1200)
-- ps/2 keyboard
-- console on LCD screen
-- serial ports (ttyS[0-2])
- - ttyS0 is default for serial console
-- Smart I/O (ADC, keypad, digital inputs, etc)
- See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation
- and example user space code. ps/2 keybd is multiplexed through this driver
-
-To do:
-- UCB1200 audio with new ucb_generic layer
-- everything else! :-)
-
-Notes:
-
-- The flash on board is divided into 3 partitions. mtd0 is where
- the ADS boot ROM and zImage is stored. It's been marked as
- read-only to keep you from blasting over the bootloader. :) mtd1 is
- for the ramdisk.gz image. mtd2 is user flash space and can be
- utilized for either JFFS or if you're feeling crazy, running ext2
- on top of it. If you're not using the ADS bootloader, you're
- welcome to blast over the mtd1 partition also.
-
-- 16bpp mode requires a different cable than what ships with the board.
- Contact ADS or look through the manual to wire your own. Currently,
- if you compile with 16bit mode support and switch into a lower bpp
- mode, the timing is off so the image is corrupted. This will be
- fixed soon.
-
-Any contribution can be sent to nico@fluxnic.net and will be greatly welcome!
-
diff --git a/Documentation/arm/SA1100/GraphicsMaster b/Documentation/arm/SA1100/GraphicsMaster
deleted file mode 100644
index 9145088a0ba2..000000000000
--- a/Documentation/arm/SA1100/GraphicsMaster
+++ /dev/null
@@ -1,53 +0,0 @@
-ADS GraphicsMaster Single Board Computer
-
-For more details, contact Applied Data Systems or see
-http://www.applieddata.net/products.html
-
-The original Linux support for this product has been provided by
-Nicolas Pitre <nico@fluxnic.net>. Continued development work by
-Woojung Huh <whuh@applieddata.net>
-
-Use 'make graphicsmaster_config' before any 'make config'.
-This will set up defaults for GraphicsMaster support.
-
-The kernel zImage is linked to be loaded and executed at 0xc0400000.
-
-Linux can be used with the ADS BootLoader that ships with the
-newer rev boards. See their documentation on how to load Linux.
-
-Supported peripherals:
-- SA1100 LCD frame buffer (8/16bpp...sort of)
-- SA1111 USB Master
-- on-board SMC 92C96 ethernet NIC
-- SA1100 serial port
-- flash memory access (MTD/JFFS)
-- pcmcia, compact flash
-- touchscreen(ucb1200)
-- ps/2 keyboard
-- console on LCD screen
-- serial ports (ttyS[0-2])
- - ttyS0 is default for serial console
-- Smart I/O (ADC, keypad, digital inputs, etc)
- See http://www.eurotech-inc.com/linux-sbc.asp for IOCTL documentation
- and example user space code. ps/2 keybd is multiplexed through this driver
-
-To do:
-- everything else! :-)
-
-Notes:
-
-- The flash on board is divided into 3 partitions. mtd0 is where
- the zImage is stored. It's been marked as read-only to keep you
- from blasting over the bootloader. :) mtd1 is
- for the ramdisk.gz image. mtd2 is user flash space and can be
- utilized for either JFFS or if you're feeling crazy, running ext2
- on top of it. If you're not using the ADS bootloader, you're
- welcome to blast over the mtd1 partition also.
-
-- 16bpp mode requires a different cable than what ships with the board.
- Contact ADS or look through the manual to wire your own. Currently,
- if you compile with 16bit mode support and switch into a lower bpp
- mode, the timing is off so the image is corrupted. This will be
- fixed soon.
-
-Any contribution can be sent to nico@fluxnic.net and will be greatly welcome!
diff --git a/Documentation/arm/SA1100/HUW_WEBPANEL b/Documentation/arm/SA1100/HUW_WEBPANEL
deleted file mode 100644
index fd56b48d4833..000000000000
--- a/Documentation/arm/SA1100/HUW_WEBPANEL
+++ /dev/null
@@ -1,17 +0,0 @@
-The HUW_WEBPANEL is a product of the german company Hoeft & Wessel AG
-
-If you want more information, please visit
-http://www.hoeft-wessel.de
-
-To build the kernel:
- make huw_webpanel_config
- make oldconfig
- [accept all defaults]
- make zImage
-
-Mostly of the work is done by:
-Roman Jordan jor@hoeft-wessel.de
-Christoph Schulz schu@hoeft-wessel.de
-
-2000/12/18/
-
diff --git a/Documentation/arm/SA1100/Itsy b/Documentation/arm/SA1100/Itsy
deleted file mode 100644
index 44b94997fa0d..000000000000
--- a/Documentation/arm/SA1100/Itsy
+++ /dev/null
@@ -1,39 +0,0 @@
-Itsy is a research project done by the Western Research Lab, and Systems
-Research Center in Palo Alto, CA. The Itsy project is one of several
-research projects at Compaq that are related to pocket computing.
-
-For more information, see:
-
- http://www.hpl.hp.com/downloads/crl/itsy/
-
-Notes on initial 2.4 Itsy support (8/27/2000) :
-The port was done on an Itsy version 1.5 machine with a daughtercard with
-64 Meg of DRAM and 32 Meg of Flash. The initial work includes support for
-serial console (to see what you're doing). No other devices have been
-enabled.
-
-To build, do a "make menuconfig" (or xmenuconfig) and select Itsy support.
-Disable Flash and LCD support. and then do a make zImage.
-Finally, you will need to cd to arch/arm/boot/tools and execute a make there
-to build the params-itsy program used to boot the kernel.
-
-In order to install the port of 2.4 to the itsy, You will need to set the
-configuration parameters in the monitor as follows:
-Arg 1:0x08340000, Arg2: 0xC0000000, Arg3:18 (0x12), Arg4:0
-Make sure the start-routine address is set to 0x00060000.
-
-Next, flash the params-itsy program to 0x00060000 ("p 1 0x00060000" in the
-flash menu) Flash the kernel in arch/arm/boot/zImage into 0x08340000
-("p 1 0x00340000"). Finally flash an initial ramdisk into 0xC8000000
-("p 2 0x0") We used ramdisk-2-30.gz from the 0.11 version directory on
-handhelds.org.
-
-The serial connection we established was at:
- 8-bit data, no parity, 1 stop bit(s), 115200.00 b/s. in the monitor, in the
-params-itsy program, and in the kernel itself. This can be changed, but
-not easily. The monitor parameters are easily changed, the params program
-setup is assembly outl's, and the kernel is a configuration item specific to
-the itsy. (i.e. grep for CONFIG_SA1100_ITSY and you'll find where it is.)
-
-
-This should get you a properly booting 2.4 kernel on the itsy.
diff --git a/Documentation/arm/SA1100/PLEB b/Documentation/arm/SA1100/PLEB
deleted file mode 100644
index b9c8a631a351..000000000000
--- a/Documentation/arm/SA1100/PLEB
+++ /dev/null
@@ -1,11 +0,0 @@
-The PLEB project was started as a student initiative at the School of
-Computer Science and Engineering, University of New South Wales to make a
-pocket computer capable of running the Linux Kernel.
-
-PLEB support has yet to be fully integrated.
-
-For more information, see:
-
- http://www.cse.unsw.edu.au
-
-
diff --git a/Documentation/arm/SA1100/Pangolin b/Documentation/arm/SA1100/Pangolin
deleted file mode 100644
index 077a6120e129..000000000000
--- a/Documentation/arm/SA1100/Pangolin
+++ /dev/null
@@ -1,23 +0,0 @@
-Pangolin is a StrongARM 1110-based evaluation platform produced
-by Dialogue Technology (http://www.dialogue.com.tw/).
-It has EISA slots for ease of configuration with SDRAM/Flash
-memory card, USB/Serial/Audio card, Compact Flash card,
-PCMCIA/IDE card and TFT-LCD card.
-
-To compile for Pangolin, you must issue the following commands:
-
- make pangolin_config
- make oldconfig
- make zImage
-
-Supported peripherals:
-- SA1110 serial port (UART1/UART2/UART3)
-- flash memory access
-- compact flash driver
-- UDA1341 sound driver
-- SA1100 LCD controller for 800x600 16bpp TFT-LCD
-- MQ-200 driver for 800x600 16bpp TFT-LCD
-- Penmount(touch panel) driver
-- PCMCIA driver
-- SMC91C94 LAN driver
-- IDE driver (experimental)
diff --git a/Documentation/arm/SA1100/Tifon b/Documentation/arm/SA1100/Tifon
deleted file mode 100644
index dd1934d9c851..000000000000
--- a/Documentation/arm/SA1100/Tifon
+++ /dev/null
@@ -1,7 +0,0 @@
-Tifon
------
-
-More info has to come...
-
-Contact: Peter Danielsson <peter.danielsson@era-t.ericsson.se>
-
diff --git a/Documentation/arm/SA1100/Yopy b/Documentation/arm/SA1100/Yopy
deleted file mode 100644
index e14f16d836ac..000000000000
--- a/Documentation/arm/SA1100/Yopy
+++ /dev/null
@@ -1,2 +0,0 @@
-See http://www.yopydeveloper.org for more.
-
diff --git a/Documentation/arm/SA1100/empeg b/Documentation/arm/SA1100/empeg
deleted file mode 100644
index 4ece4849a42c..000000000000
--- a/Documentation/arm/SA1100/empeg
+++ /dev/null
@@ -1,2 +0,0 @@
-See ../empeg/README
-
diff --git a/Documentation/arm/SA1100/nanoEngine b/Documentation/arm/SA1100/nanoEngine
deleted file mode 100644
index 48a7934f95f6..000000000000
--- a/Documentation/arm/SA1100/nanoEngine
+++ /dev/null
@@ -1,11 +0,0 @@
-nanoEngine
-----------
-
-"nanoEngine" is a SA1110 based single board computer from
-Bright Star Engineering Inc. See www.brightstareng.com/arm
-for more info.
-(Ref: Stuart Adams <sja@brightstareng.com>)
-
-Also visit Larry Doolittle's "Linux for the nanoEngine" site:
-http://www.brightstareng.com/arm/nanoeng.htm
-
diff --git a/Documentation/arm/SA1100/serial_UART b/Documentation/arm/SA1100/serial_UART
deleted file mode 100644
index a63966f1d083..000000000000
--- a/Documentation/arm/SA1100/serial_UART
+++ /dev/null
@@ -1,47 +0,0 @@
-The SA1100 serial port had its major/minor numbers officially assigned:
-
-> Date: Sun, 24 Sep 2000 21:40:27 -0700
-> From: H. Peter Anvin <hpa@transmeta.com>
-> To: Nicolas Pitre <nico@CAM.ORG>
-> Cc: Device List Maintainer <device@lanana.org>
-> Subject: Re: device
->
-> Okay. Note that device numbers 204 and 205 are used for "low density
-> serial devices", so you will have a range of minors on those majors (the
-> tty device layer handles this just fine, so you don't have to worry about
-> doing anything special.)
->
-> So your assignments are:
->
-> 204 char Low-density serial ports
-> 5 = /dev/ttySA0 SA1100 builtin serial port 0
-> 6 = /dev/ttySA1 SA1100 builtin serial port 1
-> 7 = /dev/ttySA2 SA1100 builtin serial port 2
->
-> 205 char Low-density serial ports (alternate device)
-> 5 = /dev/cusa0 Callout device for ttySA0
-> 6 = /dev/cusa1 Callout device for ttySA1
-> 7 = /dev/cusa2 Callout device for ttySA2
->
-
-You must create those inodes in /dev on the root filesystem used
-by your SA1100-based device:
-
- mknod ttySA0 c 204 5
- mknod ttySA1 c 204 6
- mknod ttySA2 c 204 7
- mknod cusa0 c 205 5
- mknod cusa1 c 205 6
- mknod cusa2 c 205 7
-
-In addition to the creation of the appropriate device nodes above, you
-must ensure your user space applications make use of the correct device
-name. The classic example is the content of the /etc/inittab file where
-you might have a getty process started on ttyS0. In this case:
-
-- replace occurrences of ttyS0 with ttySA0, ttyS1 with ttySA1, etc.
-
-- don't forget to add 'ttySA0', 'console', or the appropriate tty name
- in /etc/securetty for root to be allowed to login as well.
-
-
diff --git a/Documentation/arm/SH-Mobile/.gitignore b/Documentation/arm/SH-Mobile/.gitignore
deleted file mode 100644
index c928dbf3cc88..000000000000
--- a/Documentation/arm/SH-Mobile/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-vrl4
diff --git a/Documentation/arm/README b/Documentation/arm/arm.rst
index 9d1e5b2c92e6..2edc509df92a 100644
--- a/Documentation/arm/README
+++ b/Documentation/arm/arm.rst
@@ -1,5 +1,6 @@
- ARM Linux 2.6
- =============
+=======================
+ARM Linux 2.6 and upper
+=======================
Please check <ftp://ftp.arm.linux.org.uk/pub/armlinux> for
updates.
@@ -18,22 +19,28 @@ Compilation of kernel
line as detailed below.
If you wish to cross-compile, then alter the following lines in the top
- level make file:
+ level make file::
ARCH = <whatever>
- with
+
+ with::
+
ARCH = arm
- and
+ and::
CROSS_COMPILE=
- to
+
+ to::
+
CROSS_COMPILE=<your-path-to-your-compiler-without-gcc>
- eg.
+
+ eg.::
+
CROSS_COMPILE=arm-linux-
- Do a 'make config', followed by 'make Image' to build the kernel
- (arch/arm/boot/Image). A compressed image can be built by doing a
+ Do a 'make config', followed by 'make Image' to build the kernel
+ (arch/arm/boot/Image). A compressed image can be built by doing a
'make zImage' instead of 'make Image'.
@@ -46,7 +53,7 @@ Bug reports etc
Bug reports should be sent to linux-arm-kernel@lists.arm.linux.org.uk,
or submitted through the web form at
- http://www.arm.linux.org.uk/developer/
+ http://www.arm.linux.org.uk/developer/
When sending bug reports, please ensure that they contain all relevant
information, eg. the kernel messages that were printed before/during
@@ -60,11 +67,13 @@ Include files
which are there to reduce the clutter in the top-level directory. These
directories, and their purpose is listed below:
- arch-* machine/platform specific header files
- hardware driver-internal ARM specific data structures/definitions
- mach descriptions of generic ARM to specific machine interfaces
- proc-* processor dependent header files (currently only two
+ ============= ==========================================================
+ `arch-*` machine/platform specific header files
+ `hardware` driver-internal ARM specific data structures/definitions
+ `mach` descriptions of generic ARM to specific machine interfaces
+ `proc-*` processor dependent header files (currently only two
categories)
+ ============= ==========================================================
Machine/Platform support
@@ -129,7 +138,7 @@ ST506 hard drives
HDC base to the source.
As of 31/3/96 it works with two drives (you should get the ADFS
- *configure harddrive set to 2). I've got an internal 20MB and a great
+ `*configure` harddrive set to 2). I've got an internal 20MB and a great
big external 5.25" FH 64MB drive (who could ever want more :-) ).
I've just got 240K/s off it (a dd with bs=128k); thats about half of what
@@ -149,13 +158,13 @@ ST506 hard drives
are welcome.
-CONFIG_MACH_ and CONFIG_ARCH_
------------------------------
+`CONFIG_MACH_` and `CONFIG_ARCH_`
+---------------------------------
A change was made in 2003 to the macro names for new machines.
- Historically, CONFIG_ARCH_ was used for the bonafide architecture,
+ Historically, `CONFIG_ARCH_` was used for the bonafide architecture,
e.g. SA1100, as well as implementations of the architecture,
e.g. Assabet. It was decided to change the implementation macros
- to read CONFIG_MACH_ for clarity. Moreover, a retroactive fixup has
+ to read `CONFIG_MACH_` for clarity. Moreover, a retroactive fixup has
not been made because it would complicate patching.
Previous registrations may be found online.
@@ -163,7 +172,7 @@ CONFIG_MACH_ and CONFIG_ARCH_
<http://www.arm.linux.org.uk/developer/machines/>
Kernel entry (head.S)
---------------------------
+---------------------
The initial entry into the kernel is via head.S, which uses machine
independent code. The machine is selected by the value of 'r1' on
entry, which must be kept unique.
@@ -201,4 +210,5 @@ Kernel entry (head.S)
platform is DT-only, you do not need a registered machine type.
---
+
Russell King (15/03/2004)
diff --git a/Documentation/arm/Booting b/Documentation/arm/booting.rst
index f1f965ce93d6..4babb6c6ae1e 100644
--- a/Documentation/arm/Booting
+++ b/Documentation/arm/booting.rst
@@ -1,7 +1,9 @@
- Booting ARM Linux
- =================
+=================
+Booting ARM Linux
+=================
Author: Russell King
+
Date : 18 May 2002
The following documentation is relevant to 2.4.18-rmk6 and beyond.
@@ -25,8 +27,10 @@ following:
1. Setup and initialise RAM
---------------------------
-Existing boot loaders: MANDATORY
-New boot loaders: MANDATORY
+Existing boot loaders:
+ MANDATORY
+New boot loaders:
+ MANDATORY
The boot loader is expected to find and initialise all RAM that the
kernel will use for volatile data storage in the system. It performs
@@ -39,8 +43,10 @@ sees fit.)
2. Initialise one serial port
-----------------------------
-Existing boot loaders: OPTIONAL, RECOMMENDED
-New boot loaders: OPTIONAL, RECOMMENDED
+Existing boot loaders:
+ OPTIONAL, RECOMMENDED
+New boot loaders:
+ OPTIONAL, RECOMMENDED
The boot loader should initialise and enable one serial port on the
target. This allows the kernel serial driver to automatically detect
@@ -57,8 +63,10 @@ serial format options as described in
3. Detect the machine type
--------------------------
-Existing boot loaders: OPTIONAL
-New boot loaders: MANDATORY except for DT-only platforms
+Existing boot loaders:
+ OPTIONAL
+New boot loaders:
+ MANDATORY except for DT-only platforms
The boot loader should detect the machine type its running on by some
method. Whether this is a hard coded value or some algorithm that
@@ -74,8 +82,10 @@ necessary, but assures that it will not match any existing types.
4. Setup boot data
------------------
-Existing boot loaders: OPTIONAL, HIGHLY RECOMMENDED
-New boot loaders: MANDATORY
+Existing boot loaders:
+ OPTIONAL, HIGHLY RECOMMENDED
+New boot loaders:
+ MANDATORY
The boot loader must provide either a tagged list or a dtb image for
passing configuration data to the kernel. The physical address of the
@@ -97,15 +107,15 @@ entirety; some tags behave as the former, others the latter.
The boot loader must pass at a minimum the size and location of
the system memory, and root filesystem location. Therefore, the
-minimum tagged list should look:
+minimum tagged list should look::
- +-----------+
-base -> | ATAG_CORE | |
- +-----------+ |
- | ATAG_MEM | | increasing address
- +-----------+ |
- | ATAG_NONE | |
- +-----------+ v
+ +-----------+
+ base -> | ATAG_CORE | |
+ +-----------+ |
+ | ATAG_MEM | | increasing address
+ +-----------+ |
+ | ATAG_NONE | |
+ +-----------+ v
The tagged list should be stored in system RAM.
@@ -134,8 +144,10 @@ A safe location is just above the 128MiB boundary from start of RAM.
5. Load initramfs.
------------------
-Existing boot loaders: OPTIONAL
-New boot loaders: OPTIONAL
+Existing boot loaders:
+ OPTIONAL
+New boot loaders:
+ OPTIONAL
If an initramfs is in use then, as with the dtb, it must be placed in
a region of memory where the kernel decompressor will not overwrite it
@@ -149,8 +161,10 @@ recommended above.
6. Calling the kernel image
---------------------------
-Existing boot loaders: MANDATORY
-New boot loaders: MANDATORY
+Existing boot loaders:
+ MANDATORY
+New boot loaders:
+ MANDATORY
There are two options for calling the kernel zImage. If the zImage
is stored in flash, and is linked correctly to be run from flash,
@@ -174,12 +188,14 @@ In any case, the following conditions must be met:
you many hours of debug.
- CPU register settings
- r0 = 0,
- r1 = machine type number discovered in (3) above.
- r2 = physical address of tagged list in system RAM, or
- physical address of device tree block (dtb) in system RAM
+
+ - r0 = 0,
+ - r1 = machine type number discovered in (3) above.
+ - r2 = physical address of tagged list in system RAM, or
+ physical address of device tree block (dtb) in system RAM
- CPU mode
+
All forms of interrupts must be disabled (IRQs and FIQs)
For CPUs which do not include the ARM virtualization extensions, the
@@ -195,8 +211,11 @@ In any case, the following conditions must be met:
entered in SVC mode.
- Caches, MMUs
+
The MMU must be off.
+
Instruction cache may be on or off.
+
Data cache must be off.
If the kernel is entered in HYP mode, the above requirements apply to
diff --git a/Documentation/arm/cluster-pm-race-avoidance.txt b/Documentation/arm/cluster-pm-race-avoidance.rst
index 750b6fc24af9..aa58603d3f28 100644
--- a/Documentation/arm/cluster-pm-race-avoidance.txt
+++ b/Documentation/arm/cluster-pm-race-avoidance.rst
@@ -1,3 +1,4 @@
+=========================================================
Cluster-wide Power-up/power-down race avoidance algorithm
=========================================================
@@ -46,10 +47,12 @@ Basic model
Each cluster and CPU is assigned a state, as follows:
- DOWN
- COMING_UP
- UP
- GOING_DOWN
+ - DOWN
+ - COMING_UP
+ - UP
+ - GOING_DOWN
+
+::
+---------> UP ----------+
| v
@@ -60,18 +63,22 @@ Each cluster and CPU is assigned a state, as follows:
+--------- DOWN <--------+
-DOWN: The CPU or cluster is not coherent, and is either powered off or
+DOWN:
+ The CPU or cluster is not coherent, and is either powered off or
suspended, or is ready to be powered off or suspended.
-COMING_UP: The CPU or cluster has committed to moving to the UP state.
+COMING_UP:
+ The CPU or cluster has committed to moving to the UP state.
It may be part way through the process of initialisation and
enabling coherency.
-UP: The CPU or cluster is active and coherent at the hardware
+UP:
+ The CPU or cluster is active and coherent at the hardware
level. A CPU in this state is not necessarily being used
actively by the kernel.
-GOING_DOWN: The CPU or cluster has committed to moving to the DOWN
+GOING_DOWN:
+ The CPU or cluster has committed to moving to the DOWN
state. It may be part way through the process of teardown and
coherency exit.
@@ -86,8 +93,8 @@ CPUs in the cluster simultaneously modifying the state. The cluster-
level states are described in the "Cluster state" section.
To help distinguish the CPU states from cluster states in this
-discussion, the state names are given a CPU_ prefix for the CPU states,
-and a CLUSTER_ or INBOUND_ prefix for the cluster states.
+discussion, the state names are given a `CPU_` prefix for the CPU states,
+and a `CLUSTER_` or `INBOUND_` prefix for the cluster states.
CPU state
@@ -101,10 +108,12 @@ This means that CPUs fit the basic model closely.
The algorithm defines the following states for each CPU in the system:
- CPU_DOWN
- CPU_COMING_UP
- CPU_UP
- CPU_GOING_DOWN
+ - CPU_DOWN
+ - CPU_COMING_UP
+ - CPU_UP
+ - CPU_GOING_DOWN
+
+::
cluster setup and
CPU setup complete policy decision
@@ -130,17 +139,17 @@ requirement for any external event to happen.
CPU_DOWN:
-
A CPU reaches the CPU_DOWN state when it is ready for
power-down. On reaching this state, the CPU will typically
power itself down or suspend itself, via a WFI instruction or a
firmware call.
- Next state: CPU_COMING_UP
- Conditions: none
+ Next state:
+ CPU_COMING_UP
+ Conditions:
+ none
Trigger events:
-
a) an explicit hardware power-up operation, resulting
from a policy decision on another CPU;
@@ -148,15 +157,17 @@ CPU_DOWN:
CPU_COMING_UP:
-
A CPU cannot start participating in hardware coherency until the
cluster is set up and coherent. If the cluster is not ready,
then the CPU will wait in the CPU_COMING_UP state until the
cluster has been set up.
- Next state: CPU_UP
- Conditions: The CPU's parent cluster must be in CLUSTER_UP.
- Trigger events: Transition of the parent cluster to CLUSTER_UP.
+ Next state:
+ CPU_UP
+ Conditions:
+ The CPU's parent cluster must be in CLUSTER_UP.
+ Trigger events:
+ Transition of the parent cluster to CLUSTER_UP.
Refer to the "Cluster state" section for a description of the
CLUSTER_UP state.
@@ -178,20 +189,25 @@ CPU_UP:
The CPU remains in this state until an explicit policy decision
is made to shut down or suspend the CPU.
- Next state: CPU_GOING_DOWN
- Conditions: none
- Trigger events: explicit policy decision
+ Next state:
+ CPU_GOING_DOWN
+ Conditions:
+ none
+ Trigger events:
+ explicit policy decision
CPU_GOING_DOWN:
-
While in this state, the CPU exits coherency, including any
operations required to achieve this (such as cleaning data
caches).
- Next state: CPU_DOWN
- Conditions: local CPU teardown complete
- Trigger events: (spontaneous)
+ Next state:
+ CPU_DOWN
+ Conditions:
+ local CPU teardown complete
+ Trigger events:
+ (spontaneous)
Cluster state
@@ -212,20 +228,20 @@ independently of the CPU which is tearing down the cluster. For this
reason, the cluster state is split into two parts:
"cluster" state: The global state of the cluster; or the state
- on the outbound side:
+ on the outbound side:
- CLUSTER_DOWN
- CLUSTER_UP
- CLUSTER_GOING_DOWN
+ - CLUSTER_DOWN
+ - CLUSTER_UP
+ - CLUSTER_GOING_DOWN
"inbound" state: The state of the cluster on the inbound side.
- INBOUND_NOT_COMING_UP
- INBOUND_COMING_UP
+ - INBOUND_NOT_COMING_UP
+ - INBOUND_COMING_UP
The different pairings of these states results in six possible
- states for the cluster as a whole:
+ states for the cluster as a whole::
CLUSTER_UP
+==========> INBOUND_NOT_COMING_UP -------------+
@@ -284,11 +300,12 @@ reason, the cluster state is split into two parts:
CLUSTER_DOWN/INBOUND_NOT_COMING_UP:
+ Next state:
+ CLUSTER_DOWN/INBOUND_COMING_UP (inbound)
+ Conditions:
+ none
- Next state: CLUSTER_DOWN/INBOUND_COMING_UP (inbound)
- Conditions: none
Trigger events:
-
a) an explicit hardware power-up operation, resulting
from a policy decision on another CPU;
@@ -306,9 +323,12 @@ CLUSTER_DOWN/INBOUND_COMING_UP:
setup to enable other CPUs in the cluster to enter coherency
safely.
- Next state: CLUSTER_UP/INBOUND_COMING_UP (inbound)
- Conditions: cluster-level setup and hardware coherency complete
- Trigger events: (spontaneous)
+ Next state:
+ CLUSTER_UP/INBOUND_COMING_UP (inbound)
+ Conditions:
+ cluster-level setup and hardware coherency complete
+ Trigger events:
+ (spontaneous)
CLUSTER_UP/INBOUND_COMING_UP:
@@ -321,9 +341,12 @@ CLUSTER_UP/INBOUND_COMING_UP:
CLUSTER_UP/INBOUND_NOT_COMING_UP. All other CPUs on the cluster
should consider treat these two states as equivalent.
- Next state: CLUSTER_UP/INBOUND_NOT_COMING_UP (inbound)
- Conditions: none
- Trigger events: (spontaneous)
+ Next state:
+ CLUSTER_UP/INBOUND_NOT_COMING_UP (inbound)
+ Conditions:
+ none
+ Trigger events:
+ (spontaneous)
CLUSTER_UP/INBOUND_NOT_COMING_UP:
@@ -335,9 +358,12 @@ CLUSTER_UP/INBOUND_NOT_COMING_UP:
The cluster will remain in this state until a policy decision is
made to power the cluster down.
- Next state: CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP (outbound)
- Conditions: none
- Trigger events: policy decision to power down the cluster
+ Next state:
+ CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP (outbound)
+ Conditions:
+ none
+ Trigger events:
+ policy decision to power down the cluster
CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP:
@@ -359,13 +385,16 @@ CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP:
Next states:
CLUSTER_DOWN/INBOUND_NOT_COMING_UP (outbound)
- Conditions: cluster torn down and ready to power off
- Trigger events: (spontaneous)
+ Conditions:
+ cluster torn down and ready to power off
+ Trigger events:
+ (spontaneous)
CLUSTER_GOING_DOWN/INBOUND_COMING_UP (inbound)
- Conditions: none
- Trigger events:
+ Conditions:
+ none
+ Trigger events:
a) an explicit hardware power-up operation,
resulting from a policy decision on another
CPU;
@@ -396,13 +425,19 @@ CLUSTER_GOING_DOWN/INBOUND_COMING_UP:
Next states:
CLUSTER_UP/INBOUND_COMING_UP (outbound)
- Conditions: cluster-level setup and hardware
+ Conditions:
+ cluster-level setup and hardware
coherency complete
- Trigger events: (spontaneous)
+
+ Trigger events:
+ (spontaneous)
CLUSTER_DOWN/INBOUND_COMING_UP (outbound)
- Conditions: cluster torn down and ready to power off
- Trigger events: (spontaneous)
+ Conditions:
+ cluster torn down and ready to power off
+
+ Trigger events:
+ (spontaneous)
Last man and First man selection
@@ -452,30 +487,30 @@ Implementation:
arch/arm/common/mcpm_entry.c (everything else):
__mcpm_cpu_going_down() signals the transition of a CPU to the
- CPU_GOING_DOWN state.
+ CPU_GOING_DOWN state.
__mcpm_cpu_down() signals the transition of a CPU to the CPU_DOWN
- state.
+ state.
A CPU transitions to CPU_COMING_UP and then to CPU_UP via the
- low-level power-up code in mcpm_head.S. This could
- involve CPU-specific setup code, but in the current
- implementation it does not.
+ low-level power-up code in mcpm_head.S. This could
+ involve CPU-specific setup code, but in the current
+ implementation it does not.
__mcpm_outbound_enter_critical() and __mcpm_outbound_leave_critical()
- handle transitions from CLUSTER_UP to CLUSTER_GOING_DOWN
- and from there to CLUSTER_DOWN or back to CLUSTER_UP (in
- the case of an aborted cluster power-down).
+ handle transitions from CLUSTER_UP to CLUSTER_GOING_DOWN
+ and from there to CLUSTER_DOWN or back to CLUSTER_UP (in
+ the case of an aborted cluster power-down).
- These functions are more complex than the __mcpm_cpu_*()
- functions due to the extra inter-CPU coordination which
- is needed for safe transitions at the cluster level.
+ These functions are more complex than the __mcpm_cpu_*()
+ functions due to the extra inter-CPU coordination which
+ is needed for safe transitions at the cluster level.
A cluster transitions from CLUSTER_DOWN back to CLUSTER_UP via
- the low-level power-up code in mcpm_head.S. This
- typically involves platform-specific setup code,
- provided by the platform-specific power_up_setup
- function registered via mcpm_sync_init.
+ the low-level power-up code in mcpm_head.S. This
+ typically involves platform-specific setup code,
+ provided by the platform-specific power_up_setup
+ function registered via mcpm_sync_init.
Deep topologies:
diff --git a/Documentation/arm/firmware.txt b/Documentation/arm/firmware.rst
index 7f175dbb427e..efd844baec1d 100644
--- a/Documentation/arm/firmware.txt
+++ b/Documentation/arm/firmware.rst
@@ -1,5 +1,7 @@
-Interface for registering and calling firmware-specific operations for ARM.
-----
+==========================================================================
+Interface for registering and calling firmware-specific operations for ARM
+==========================================================================
+
Written by Tomasz Figa <t.figa@samsung.com>
Some boards are running with secure firmware running in TrustZone secure
@@ -9,7 +11,7 @@ operations and call them when needed.
Firmware operations can be specified by filling in a struct firmware_ops
with appropriate callbacks and then registering it with register_firmware_ops()
-function.
+function::
void register_firmware_ops(const struct firmware_ops *ops)
@@ -19,7 +21,7 @@ and its members can be found in arch/arm/include/asm/firmware.h header.
There is a default, empty set of operations provided, so there is no need to
set anything if platform does not require firmware operations.
-To call a firmware operation, a helper macro is provided
+To call a firmware operation, a helper macro is provided::
#define call_firmware_op(op, ...) \
((firmware_ops->op) ? firmware_ops->op(__VA_ARGS__) : (-ENOSYS))
@@ -28,7 +30,7 @@ the macro checks if the operation is provided and calls it or otherwise returns
-ENOSYS to signal that given operation is not available (for example, to allow
fallback to legacy operation).
-Example of registering firmware operations:
+Example of registering firmware operations::
/* board file */
@@ -56,7 +58,7 @@ Example of registering firmware operations:
register_firmware_ops(&platformX_firmware_ops);
}
-Example of using a firmware operation:
+Example of using a firmware operation::
/* some platform code, e.g. SMP initialization */
diff --git a/Documentation/arm/index.rst b/Documentation/arm/index.rst
new file mode 100644
index 000000000000..5fc072dd0c5e
--- /dev/null
+++ b/Documentation/arm/index.rst
@@ -0,0 +1,80 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================
+ARM Architecture
+================
+
+.. toctree::
+ :maxdepth: 1
+
+ arm
+ booting
+ cluster-pm-race-avoidance
+ firmware
+ interrupts
+ kernel_mode_neon
+ kernel_user_helpers
+ memory
+ mem_alignment
+ tcm
+ setup
+ swp_emulation
+ uefi
+ vlocks
+ porting
+
+SoC-specific documents
+======================
+
+.. toctree::
+ :maxdepth: 1
+
+ ixp4xx
+
+ marvel
+ microchip
+
+ netwinder
+ nwfpe/index
+
+ keystone/overview
+ keystone/knav-qmss
+
+ omap/index
+
+ pxa/mfp
+
+
+ sa1100/index
+
+ stm32/stm32f746-overview
+ stm32/overview
+ stm32/stm32h743-overview
+ stm32/stm32f769-overview
+ stm32/stm32f429-overview
+ stm32/stm32mp157-overview
+
+ sunxi
+
+ samsung/index
+ samsung-s3c24xx/index
+
+ sunxi/clocks
+
+ spear/overview
+
+ sti/stih416-overview
+ sti/stih407-overview
+ sti/stih418-overview
+ sti/overview
+ sti/stih415-overview
+
+ vfp/release-notes
+
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/arm/Interrupts b/Documentation/arm/interrupts.rst
index f09ab1b90ef1..2ae70e0e9732 100644
--- a/Documentation/arm/Interrupts
+++ b/Documentation/arm/interrupts.rst
@@ -1,8 +1,10 @@
-2.5.2-rmk5
-----------
+==========
+Interrupts
+==========
-This is the first kernel that contains a major shake up of some of the
-major architecture-specific subsystems.
+2.5.2-rmk5:
+ This is the first kernel that contains a major shake up of some of the
+ major architecture-specific subsystems.
Firstly, it contains some pretty major changes to the way we handle the
MMU TLB. Each MMU TLB variant is now handled completely separately -
@@ -18,7 +20,7 @@ Unfortunately, this means that machine types that touch the irq_desc[]
array (basically all machine types) will break, and this means every
machine type that we currently have.
-Lets take an example. On the Assabet with Neponset, we have:
+Lets take an example. On the Assabet with Neponset, we have::
GPIO25 IRR:2
SA1100 ------------> Neponset -----------> SA1111
@@ -48,42 +50,47 @@ the irqdesc array). This doesn't have to be a real "IC"; indeed the
SA11x0 IRQs are handled by two separate "chip" structures, one for
GPIO0-10, and another for all the rest. It is just a container for
the various operations (maybe this'll change to a better name).
-This structure has the following operations:
-
-struct irqchip {
- /*
- * Acknowledge the IRQ.
- * If this is a level-based IRQ, then it is expected to mask the IRQ
- * as well.
- */
- void (*ack)(unsigned int irq);
- /*
- * Mask the IRQ in hardware.
- */
- void (*mask)(unsigned int irq);
- /*
- * Unmask the IRQ in hardware.
- */
- void (*unmask)(unsigned int irq);
- /*
- * Re-run the IRQ
- */
- void (*rerun)(unsigned int irq);
- /*
- * Set the type of the IRQ.
- */
- int (*type)(unsigned int irq, unsigned int, type);
-};
-
-ack - required. May be the same function as mask for IRQs
+This structure has the following operations::
+
+ struct irqchip {
+ /*
+ * Acknowledge the IRQ.
+ * If this is a level-based IRQ, then it is expected to mask the IRQ
+ * as well.
+ */
+ void (*ack)(unsigned int irq);
+ /*
+ * Mask the IRQ in hardware.
+ */
+ void (*mask)(unsigned int irq);
+ /*
+ * Unmask the IRQ in hardware.
+ */
+ void (*unmask)(unsigned int irq);
+ /*
+ * Re-run the IRQ
+ */
+ void (*rerun)(unsigned int irq);
+ /*
+ * Set the type of the IRQ.
+ */
+ int (*type)(unsigned int irq, unsigned int, type);
+ };
+
+ack
+ - required. May be the same function as mask for IRQs
handled by do_level_IRQ.
-mask - required.
-unmask - required.
-rerun - optional. Not required if you're using do_level_IRQ for all
+mask
+ - required.
+unmask
+ - required.
+rerun
+ - optional. Not required if you're using do_level_IRQ for all
IRQs that use this 'irqchip'. Generally expected to re-trigger
the hardware IRQ if possible. If not, may call the handler
directly.
-type - optional. If you don't support changing the type of an IRQ,
+type
+ - optional. If you don't support changing the type of an IRQ,
it should be null so people can detect if they are unable to
set the IRQ type.
@@ -109,6 +116,7 @@ manipulation, nor state tracking. This is useful for things like the
SMC9196 and USAR above.
So, what's changed?
+===================
1. Machine implementations must not write to the irqdesc array.
@@ -118,24 +126,19 @@ So, what's changed?
absolutely necessary.
set_irq_chip(irq,chip)
-
Set the mask/unmask methods for handling this IRQ
set_irq_handler(irq,handler)
-
Set the handler for this IRQ (level, edge, simple)
set_irq_chained_handler(irq,handler)
-
Set a "chained" handler for this IRQ - automatically
enables this IRQ (eg, Neponset and SA1111 handlers).
set_irq_flags(irq,flags)
-
Set the valid/probe/noautoenable flags.
set_irq_type(irq,type)
-
Set active the IRQ edge(s)/level. This replaces the
SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge()
function. Type should be one of IRQ_TYPE_xxx defined in
@@ -158,10 +161,9 @@ So, what's changed?
be re-checked for pending events. (see the Neponset IRQ handler for
details).
-7. fixup_irq() is gone, as is arch/arm/mach-*/include/mach/irq.h
+7. fixup_irq() is gone, as is `arch/arm/mach-*/include/mach/irq.h`
Please note that this will not solve all problems - some of them are
hardware based. Mixing level-based and edge-based IRQs on the same
parent signal (eg neponset) is one such area where a software based
solution can't provide the full answer to low IRQ latency.
-
diff --git a/Documentation/arm/IXP4xx b/Documentation/arm/ixp4xx.rst
index e48b74de6ac0..a57235616294 100644
--- a/Documentation/arm/IXP4xx
+++ b/Documentation/arm/ixp4xx.rst
@@ -1,6 +1,6 @@
-
--------------------------------------------------------------------------
+===========================================================
Release Notes for Linux on Intel's IXP4xx Network Processor
+===========================================================
Maintained by Deepak Saxena <dsaxena@plexity.net>
-------------------------------------------------------------------------
@@ -8,7 +8,7 @@ Maintained by Deepak Saxena <dsaxena@plexity.net>
1. Overview
Intel's IXP4xx network processor is a highly integrated SOC that
-is targeted for network applications, though it has become popular
+is targeted for network applications, though it has become popular
in industrial control and other areas due to low cost and power
consumption. The IXP4xx family currently consists of several processors
that support different network offload functions such as encryption,
@@ -20,7 +20,7 @@ For more information on the various versions of the CPU, see:
http://developer.intel.com/design/network/products/npfamily/ixp4xx.htm
-Intel also made the IXCP1100 CPU for sometime which is an IXP4xx
+Intel also made the IXCP1100 CPU for sometime which is an IXP4xx
stripped of much of the network intelligence.
2. Linux Support
@@ -31,7 +31,7 @@ Linux currently supports the following features on the IXP4xx chips:
- PCI interface
- Flash access (MTD/JFFS)
- I2C through GPIO on IXP42x
-- GPIO for input/output/interrupts
+- GPIO for input/output/interrupts
See arch/arm/mach-ixp4xx/include/mach/platform.h for access functions.
- Timers (watchdog, OS)
@@ -45,7 +45,7 @@ require the use of Intel's proprietary CSR software:
If you need to use any of the above, you need to download Intel's
software from:
- http://developer.intel.com/design/network/products/npfamily/ixp425.htm
+ http://developer.intel.com/design/network/products/npfamily/ixp425.htm
DO NOT POST QUESTIONS TO THE LINUX MAILING LISTS REGARDING THE PROPRIETARY
SOFTWARE.
@@ -53,14 +53,14 @@ SOFTWARE.
There are several websites that provide directions/pointers on using
Intel's software:
- http://sourceforge.net/projects/ixp4xx-osdg/
- Open Source Developer's Guide for using uClinux and the Intel libraries
+ - http://sourceforge.net/projects/ixp4xx-osdg/
+ Open Source Developer's Guide for using uClinux and the Intel libraries
-http://gatewaymaker.sourceforge.net/
- Simple one page summary of building a gateway using an IXP425 and Linux
+ - http://gatewaymaker.sourceforge.net/
+ Simple one page summary of building a gateway using an IXP425 and Linux
-http://ixp425.sourceforge.net/
- ATM device driver for IXP425 that relies on Intel's libraries
+ - http://ixp425.sourceforge.net/
+ ATM device driver for IXP425 that relies on Intel's libraries
3. Known Issues/Limitations
@@ -70,7 +70,7 @@ The IXP4xx family allows for up to 256MB of memory but the PCI interface
can only expose 64MB of that memory to the PCI bus. This means that if
you are running with > 64MB, all PCI buffers outside of the accessible
range will be bounced using the routines in arch/arm/common/dmabounce.c.
-
+
3b. Limited outbound PCI window
IXP4xx provides two methods of accessing PCI memory space:
@@ -79,15 +79,15 @@ IXP4xx provides two methods of accessing PCI memory space:
To access PCI via this space, we simply ioremap() the BAR
into the kernel and we can use the standard read[bwl]/write[bwl]
macros. This is the preffered method due to speed but it
- limits the system to just 64MB of PCI memory. This can be
+ limits the system to just 64MB of PCI memory. This can be
problamatic if using video cards and other memory-heavy devices.
-
-2) If > 64MB of memory space is required, the IXP4xx can be
- configured to use indirect registers to access PCI This allows
- for up to 128MB (0x48000000 to 0x4fffffff) of memory on the bus.
- The disadvantage of this is that every PCI access requires
- three local register accesses plus a spinlock, but in some
- cases the performance hit is acceptable. In addition, you cannot
+
+2) If > 64MB of memory space is required, the IXP4xx can be
+ configured to use indirect registers to access PCI This allows
+ for up to 128MB (0x48000000 to 0x4fffffff) of memory on the bus.
+ The disadvantage of this is that every PCI access requires
+ three local register accesses plus a spinlock, but in some
+ cases the performance hit is acceptable. In addition, you cannot
mmap() PCI devices in this case due to the indirect nature
of the PCI window.
@@ -96,14 +96,14 @@ you need more PCI memory, enable the IXP4XX_INDIRECT_PCI config option.
3c. GPIO as Interrupts
-Currently the code only handles level-sensitive GPIO interrupts
+Currently the code only handles level-sensitive GPIO interrupts
4. Supported platforms
ADI Engineering Coyote Gateway Reference Platform
http://www.adiengineering.com/productsCoyote.html
- The ADI Coyote platform is reference design for those building
+ The ADI Coyote platform is reference design for those building
small residential/office gateways. One NPE is connected to a 10/100
interface, one to 4-port 10/100 switch, and the third to and ADSL
interface. In addition, it also supports to POTs interfaces connected
@@ -119,9 +119,9 @@ http://www.gateworks.com/support/overview.php
the expansion bus.
Intel IXDP425 Development Platform
-http://www.intel.com/design/network/products/npfamily/ixdpg425.htm
+http://www.intel.com/design/network/products/npfamily/ixdpg425.htm
- This is Intel's standard reference platform for the IXDP425 and is
+ This is Intel's standard reference platform for the IXDP425 and is
also known as the Richfield board. It contains 4 PCI slots, 16MB
of flash, two 10/100 ports and one ADSL port.
@@ -161,11 +161,12 @@ The IXP4xx work has been funded by Intel Corp. and MontaVista Software, Inc.
The following people have contributed patches/comments/etc:
-Lennerty Buytenhek
-Lutz Jaenicke
-Justin Mayfield
-Robert E. Ranslam
-[I know I've forgotten others, please email me to be added]
+- Lennerty Buytenhek
+- Lutz Jaenicke
+- Justin Mayfield
+- Robert E. Ranslam
+
+[I know I've forgotten others, please email me to be added]
-------------------------------------------------------------------------
diff --git a/Documentation/arm/kernel_mode_neon.txt b/Documentation/arm/kernel_mode_neon.rst
index b9e060c5b61e..9bfb71a2a9b9 100644
--- a/Documentation/arm/kernel_mode_neon.txt
+++ b/Documentation/arm/kernel_mode_neon.rst
@@ -1,3 +1,4 @@
+================
Kernel mode NEON
================
@@ -86,6 +87,7 @@ instructions appearing in unexpected places if no special care is taken.
Therefore, the recommended and only supported way of using NEON/VFP in the
kernel is by adhering to the following rules:
+
* isolate the NEON code in a separate compilation unit and compile it with
'-march=armv7-a -mfpu=neon -mfloat-abi=softfp';
* issue the calls to kernel_neon_begin(), kernel_neon_end() as well as the calls
@@ -115,6 +117,7 @@ NEON intrinsics
NEON intrinsics are also supported. However, as code using NEON intrinsics
relies on the GCC header <arm_neon.h>, (which #includes <stdint.h>), you should
observe the following in addition to the rules above:
+
* Compile the unit containing the NEON intrinsics with '-ffreestanding' so GCC
uses its builtin version of <stdint.h> (this is a C99 header which the kernel
does not supply);
diff --git a/Documentation/arm/kernel_user_helpers.txt b/Documentation/arm/kernel_user_helpers.rst
index 5673594717cf..eb6f3d916622 100644
--- a/Documentation/arm/kernel_user_helpers.txt
+++ b/Documentation/arm/kernel_user_helpers.rst
@@ -1,3 +1,4 @@
+============================
Kernel-provided User Helpers
============================
@@ -43,7 +44,7 @@ kuser_helper_version
Location: 0xffff0ffc
-Reference declaration:
+Reference declaration::
extern int32_t __kuser_helper_version;
@@ -53,17 +54,17 @@ Definition:
running kernel. User space may read this to determine the availability
of a particular helper.
-Usage example:
+Usage example::
-#define __kuser_helper_version (*(int32_t *)0xffff0ffc)
+ #define __kuser_helper_version (*(int32_t *)0xffff0ffc)
-void check_kuser_version(void)
-{
+ void check_kuser_version(void)
+ {
if (__kuser_helper_version < 2) {
fprintf(stderr, "can't do atomic operations, kernel too old\n");
abort();
}
-}
+ }
Notes:
@@ -77,7 +78,7 @@ kuser_get_tls
Location: 0xffff0fe0
-Reference prototype:
+Reference prototype::
void * __kuser_get_tls(void);
@@ -97,16 +98,16 @@ Definition:
Get the TLS value as previously set via the __ARM_NR_set_tls syscall.
-Usage example:
+Usage example::
-typedef void * (__kuser_get_tls_t)(void);
-#define __kuser_get_tls (*(__kuser_get_tls_t *)0xffff0fe0)
+ typedef void * (__kuser_get_tls_t)(void);
+ #define __kuser_get_tls (*(__kuser_get_tls_t *)0xffff0fe0)
-void foo()
-{
+ void foo()
+ {
void *tls = __kuser_get_tls();
printf("TLS = %p\n", tls);
-}
+ }
Notes:
@@ -117,7 +118,7 @@ kuser_cmpxchg
Location: 0xffff0fc0
-Reference prototype:
+Reference prototype::
int __kuser_cmpxchg(int32_t oldval, int32_t newval, volatile int32_t *ptr);
@@ -139,18 +140,18 @@ Clobbered registers:
Definition:
- Atomically store newval in *ptr only if *ptr is equal to oldval.
- Return zero if *ptr was changed or non-zero if no exchange happened.
- The C flag is also set if *ptr was changed to allow for assembly
+ Atomically store newval in `*ptr` only if `*ptr` is equal to oldval.
+ Return zero if `*ptr` was changed or non-zero if no exchange happened.
+ The C flag is also set if `*ptr` was changed to allow for assembly
optimization in the calling code.
-Usage example:
+Usage example::
-typedef int (__kuser_cmpxchg_t)(int oldval, int newval, volatile int *ptr);
-#define __kuser_cmpxchg (*(__kuser_cmpxchg_t *)0xffff0fc0)
+ typedef int (__kuser_cmpxchg_t)(int oldval, int newval, volatile int *ptr);
+ #define __kuser_cmpxchg (*(__kuser_cmpxchg_t *)0xffff0fc0)
-int atomic_add(volatile int *ptr, int val)
-{
+ int atomic_add(volatile int *ptr, int val)
+ {
int old, new;
do {
@@ -159,7 +160,7 @@ int atomic_add(volatile int *ptr, int val)
} while(__kuser_cmpxchg(old, new, ptr));
return new;
-}
+ }
Notes:
@@ -172,7 +173,7 @@ kuser_memory_barrier
Location: 0xffff0fa0
-Reference prototype:
+Reference prototype::
void __kuser_memory_barrier(void);
@@ -193,10 +194,10 @@ Definition:
Apply any needed memory barrier to preserve consistency with data modified
manually and __kuser_cmpxchg usage.
-Usage example:
+Usage example::
-typedef void (__kuser_dmb_t)(void);
-#define __kuser_dmb (*(__kuser_dmb_t *)0xffff0fa0)
+ typedef void (__kuser_dmb_t)(void);
+ #define __kuser_dmb (*(__kuser_dmb_t *)0xffff0fa0)
Notes:
@@ -207,7 +208,7 @@ kuser_cmpxchg64
Location: 0xffff0f60
-Reference prototype:
+Reference prototype::
int __kuser_cmpxchg64(const int64_t *oldval,
const int64_t *newval,
@@ -231,22 +232,22 @@ Clobbered registers:
Definition:
- Atomically store the 64-bit value pointed by *newval in *ptr only if *ptr
- is equal to the 64-bit value pointed by *oldval. Return zero if *ptr was
+ Atomically store the 64-bit value pointed by `*newval` in `*ptr` only if `*ptr`
+ is equal to the 64-bit value pointed by `*oldval`. Return zero if `*ptr` was
changed or non-zero if no exchange happened.
- The C flag is also set if *ptr was changed to allow for assembly
+ The C flag is also set if `*ptr` was changed to allow for assembly
optimization in the calling code.
-Usage example:
+Usage example::
-typedef int (__kuser_cmpxchg64_t)(const int64_t *oldval,
- const int64_t *newval,
- volatile int64_t *ptr);
-#define __kuser_cmpxchg64 (*(__kuser_cmpxchg64_t *)0xffff0f60)
+ typedef int (__kuser_cmpxchg64_t)(const int64_t *oldval,
+ const int64_t *newval,
+ volatile int64_t *ptr);
+ #define __kuser_cmpxchg64 (*(__kuser_cmpxchg64_t *)0xffff0f60)
-int64_t atomic_add64(volatile int64_t *ptr, int64_t val)
-{
+ int64_t atomic_add64(volatile int64_t *ptr, int64_t val)
+ {
int64_t old, new;
do {
@@ -255,7 +256,7 @@ int64_t atomic_add64(volatile int64_t *ptr, int64_t val)
} while(__kuser_cmpxchg64(&old, &new, ptr));
return new;
-}
+ }
Notes:
diff --git a/Documentation/arm/keystone/knav-qmss.txt b/Documentation/arm/keystone/knav-qmss.rst
index fcdb9fd5f53a..7f7638d80b42 100644
--- a/Documentation/arm/keystone/knav-qmss.txt
+++ b/Documentation/arm/keystone/knav-qmss.rst
@@ -1,4 +1,6 @@
-* Texas Instruments Keystone Navigator Queue Management SubSystem driver
+======================================================================
+Texas Instruments Keystone Navigator Queue Management SubSystem driver
+======================================================================
Driver source code path
drivers/soc/ti/knav_qmss.c
@@ -34,11 +36,13 @@ driver that interface with the accumulator PDSP. This configures
accumulator channels defined in DTS (example in DT documentation) to monitor
1 or 32 queues per channel. More description on the firmware is available in
CPPI/QMSS Low Level Driver document (docs/CPPI_QMSS_LLD_SDS.pdf) at
+
git://git.ti.com/keystone-rtos/qmss-lld.git
k2_qmss_pdsp_acc48_k2_le_1_0_0_9.bin firmware supports upto 48 accumulator
channels. This firmware is available under ti-keystone folder of
firmware.git at
+
git://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git
To use copy the firmware image to lib/firmware folder of the initramfs or
diff --git a/Documentation/arm/keystone/Overview.txt b/Documentation/arm/keystone/overview.rst
index 400c0c270d2e..cd90298c493c 100644
--- a/Documentation/arm/keystone/Overview.txt
+++ b/Documentation/arm/keystone/overview.rst
@@ -1,5 +1,6 @@
- TI Keystone Linux Overview
- --------------------------
+==========================
+TI Keystone Linux Overview
+==========================
Introduction
------------
@@ -9,47 +10,65 @@ for users to run Linux on Keystone based EVMs from Texas Instruments.
Following SoCs & EVMs are currently supported:-
------------- K2HK SoC and EVM --------------------------------------------------
+K2HK SoC and EVM
+=================
a.k.a Keystone 2 Hawking/Kepler SoC
TCI6636K2H & TCI6636K2K: See documentation at
+
http://www.ti.com/product/tci6638k2k
http://www.ti.com/product/tci6638k2h
EVM:
-http://www.advantech.com/Support/TI-EVM/EVMK2HX_sd.aspx
+ http://www.advantech.com/Support/TI-EVM/EVMK2HX_sd.aspx
------------- K2E SoC and EVM ---------------------------------------------------
+K2E SoC and EVM
+===============
a.k.a Keystone 2 Edison SoC
-K2E - 66AK2E05: See documentation at
+
+K2E - 66AK2E05:
+
+See documentation at
+
http://www.ti.com/product/66AK2E05/technicaldocuments
EVM:
-https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html
+ https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html
------------- K2L SoC and EVM ---------------------------------------------------
+K2L SoC and EVM
+===============
a.k.a Keystone 2 Lamarr SoC
-K2L - TCI6630K2L: See documentation at
+
+K2L - TCI6630K2L:
+
+See documentation at
http://www.ti.com/product/TCI6630K2L/technicaldocuments
+
EVM:
-https://www.einfochips.com/index.php/partnerships/texas-instruments/k2l-evm.html
+ https://www.einfochips.com/index.php/partnerships/texas-instruments/k2l-evm.html
Configuration
-------------
All of the K2 SoCs/EVMs share a common defconfig, keystone_defconfig and same
image is used to boot on individual EVMs. The platform configuration is
-specified through DTS. Following are the DTS used:-
- K2HK EVM : k2hk-evm.dts
- K2E EVM : k2e-evm.dts
- K2L EVM : k2l-evm.dts
+specified through DTS. Following are the DTS used:
+
+ K2HK EVM:
+ k2hk-evm.dts
+ K2E EVM:
+ k2e-evm.dts
+ K2L EVM:
+ k2l-evm.dts
The device tree documentation for the keystone machines are located at
+
Documentation/devicetree/bindings/arm/keystone/keystone.txt
Document Author
---------------
Murali Karicheri <m-karicheri2@ti.com>
+
Copyright 2015 Texas Instruments
diff --git a/Documentation/arm/marvel.rst b/Documentation/arm/marvel.rst
new file mode 100644
index 000000000000..16ab2eb085b8
--- /dev/null
+++ b/Documentation/arm/marvel.rst
@@ -0,0 +1,488 @@
+================
+ARM Marvell SoCs
+================
+
+This document lists all the ARM Marvell SoCs that are currently
+supported in mainline by the Linux kernel. As the Marvell families of
+SoCs are large and complex, it is hard to understand where the support
+for a particular SoC is available in the Linux kernel. This document
+tries to help in understanding where those SoCs are supported, and to
+match them with their corresponding public datasheet, when available.
+
+Orion family
+------------
+
+ Flavors:
+ - 88F5082
+ - 88F5181
+ - 88F5181L
+ - 88F5182
+
+ - Datasheet: http://www.embeddedarm.com/documentation/third-party/MV88F5182-datasheet.pdf
+ - Programmer's User Guide: http://www.embeddedarm.com/documentation/third-party/MV88F5182-opensource-manual.pdf
+ - User Manual: http://www.embeddedarm.com/documentation/third-party/MV88F5182-usermanual.pdf
+ - 88F5281
+
+ - Datasheet: http://www.ocmodshop.com/images/reviews/networking/qnap_ts409u/marvel_88f5281_data_sheet.pdf
+ - 88F6183
+ Core:
+ Feroceon 88fr331 (88f51xx) or 88fr531-vd (88f52xx) ARMv5 compatible
+ Linux kernel mach directory:
+ arch/arm/mach-orion5x
+ Linux kernel plat directory:
+ arch/arm/plat-orion
+
+Kirkwood family
+---------------
+
+ Flavors:
+ - 88F6282 a.k.a Armada 300
+
+ - Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
+ - 88F6283 a.k.a Armada 310
+
+ - Product Brief : http://www.marvell.com/embedded-processors/armada-300/assets/armada_310.pdf
+ - 88F6190
+
+ - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6190-003_WEB.pdf
+ - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
+ - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
+ - 88F6192
+
+ - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6192-003_ver1.pdf
+ - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F619x_OpenSource.pdf
+ - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
+ - 88F6182
+ - 88F6180
+
+ - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6180-003_ver1.pdf
+ - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6180_OpenSource.pdf
+ - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
+ - 88F6281
+
+ - Product Brief : http://www.marvell.com/embedded-processors/kirkwood/assets/88F6281-004_ver1.pdf
+ - Hardware Spec : http://www.marvell.com/embedded-processors/kirkwood/assets/HW_88F6281_OpenSource.pdf
+ - Functional Spec: http://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
+ Homepage:
+ http://www.marvell.com/embedded-processors/kirkwood/
+ Core:
+ Feroceon 88fr131 ARMv5 compatible
+ Linux kernel mach directory:
+ arch/arm/mach-mvebu
+ Linux kernel plat directory:
+ none
+
+Discovery family
+----------------
+
+ Flavors:
+ - MV78100
+
+ - Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78100-003_WEB.pdf
+ - Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78100_OpenSource.pdf
+ - Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
+ - MV78200
+
+ - Product Brief : http://www.marvell.com/embedded-processors/discovery-innovation/assets/MV78200-002_WEB.pdf
+ - Hardware Spec : http://www.marvell.com/embedded-processors/discovery-innovation/assets/HW_MV78200_OpenSource.pdf
+ - Functional Spec: http://www.marvell.com/embedded-processors/discovery-innovation/assets/FS_MV76100_78100_78200_OpenSource.pdf
+ - MV76100
+
+ Not supported by the Linux kernel.
+
+ Core:
+ Feroceon 88fr571-vd ARMv5 compatible
+
+ Linux kernel mach directory:
+ arch/arm/mach-mv78xx0
+ Linux kernel plat directory:
+ arch/arm/plat-orion
+
+EBU Armada family
+-----------------
+
+ Armada 370 Flavors:
+ - 88F6710
+ - 88F6707
+ - 88F6W11
+
+ - Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/Marvell_ARMADA_370_SoC.pdf
+ - Hardware Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-datasheet.pdf
+ - Functional Spec: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
+
+ Core:
+ Sheeva ARMv7 compatible PJ4B
+
+ Armada 375 Flavors:
+ - 88F6720
+
+ - Product Brief: http://www.marvell.com/embedded-processors/armada-300/assets/ARMADA_375_SoC-01_product_brief.pdf
+
+ Core:
+ ARM Cortex-A9
+
+ Armada 38x Flavors:
+ - 88F6810 Armada 380
+ - 88F6820 Armada 385
+ - 88F6828 Armada 388
+
+ - Product infos: http://www.marvell.com/embedded-processors/armada-38x/
+ - Functional Spec: https://marvellcorp.wufoo.com/forms/marvell-armada-38x-functional-specifications/
+
+ Core:
+ ARM Cortex-A9
+
+ Armada 39x Flavors:
+ - 88F6920 Armada 390
+ - 88F6928 Armada 398
+
+ - Product infos: http://www.marvell.com/embedded-processors/armada-39x/
+
+ Core:
+ ARM Cortex-A9
+
+ Armada XP Flavors:
+ - MV78230
+ - MV78260
+ - MV78460
+
+ NOTE:
+ not to be confused with the non-SMP 78xx0 SoCs
+
+ Product Brief:
+ http://www.marvell.com/embedded-processors/armada-xp/assets/Marvell-ArmadaXP-SoC-product%20brief.pdf
+
+ Functional Spec:
+ http://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
+
+ - Hardware Specs:
+
+ - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78230_OS.PDF
+ - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78260_OS.PDF
+ - http://www.marvell.com/embedded-processors/armada-xp/assets/HW_MV78460_OS.PDF
+
+ Core:
+ Sheeva ARMv7 compatible Dual-core or Quad-core PJ4B-MP
+
+ Linux kernel mach directory:
+ arch/arm/mach-mvebu
+ Linux kernel plat directory:
+ none
+
+EBU Armada family ARMv8
+-----------------------
+
+ Armada 3710/3720 Flavors:
+ - 88F3710
+ - 88F3720
+
+ Core:
+ ARM Cortex A53 (ARMv8)
+
+ Homepage:
+ http://www.marvell.com/embedded-processors/armada-3700/
+
+ Product Brief:
+ http://www.marvell.com/embedded-processors/assets/PB-88F3700-FNL.pdf
+
+ Device tree files:
+ arch/arm64/boot/dts/marvell/armada-37*
+
+ Armada 7K Flavors:
+ - 88F7020 (AP806 Dual + one CP110)
+ - 88F7040 (AP806 Quad + one CP110)
+
+ Core: ARM Cortex A72
+
+ Homepage:
+ http://www.marvell.com/embedded-processors/armada-70xx/
+
+ Product Brief:
+ - http://www.marvell.com/embedded-processors/assets/Armada7020PB-Jan2016.pdf
+ - http://www.marvell.com/embedded-processors/assets/Armada7040PB-Jan2016.pdf
+
+ Device tree files:
+ arch/arm64/boot/dts/marvell/armada-70*
+
+ Armada 8K Flavors:
+ - 88F8020 (AP806 Dual + two CP110)
+ - 88F8040 (AP806 Quad + two CP110)
+ Core:
+ ARM Cortex A72
+
+ Homepage:
+ http://www.marvell.com/embedded-processors/armada-80xx/
+
+ Product Brief:
+ - http://www.marvell.com/embedded-processors/assets/Armada8020PB-Jan2016.pdf
+ - http://www.marvell.com/embedded-processors/assets/Armada8040PB-Jan2016.pdf
+
+ Device tree files:
+ arch/arm64/boot/dts/marvell/armada-80*
+
+Avanta family
+-------------
+
+ Flavors:
+ - 88F6510
+ - 88F6530P
+ - 88F6550
+ - 88F6560
+
+ Homepage:
+ http://www.marvell.com/broadband/
+
+ Product Brief:
+ http://www.marvell.com/broadband/assets/Marvell_Avanta_88F6510_305_060-001_product_brief.pdf
+
+ No public datasheet available.
+
+ Core:
+ ARMv5 compatible
+
+ Linux kernel mach directory:
+ no code in mainline yet, planned for the future
+ Linux kernel plat directory:
+ no code in mainline yet, planned for the future
+
+Storage family
+--------------
+
+ Armada SP:
+ - 88RC1580
+
+ Product infos:
+ http://www.marvell.com/storage/armada-sp/
+
+ Core:
+ Sheeva ARMv7 comatible Quad-core PJ4C
+
+ (not supported in upstream Linux kernel)
+
+Dove family (application processor)
+-----------------------------------
+
+ Flavors:
+ - 88AP510 a.k.a Armada 510
+
+ Product Brief:
+ http://www.marvell.com/application-processors/armada-500/assets/Marvell_Armada510_SoC.pdf
+
+ Hardware Spec:
+ http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Hardware-Spec.pdf
+
+ Functional Spec:
+ http://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
+
+ Homepage:
+ http://www.marvell.com/application-processors/armada-500/
+
+ Core:
+ ARMv7 compatible
+
+ Directory:
+ - arch/arm/mach-mvebu (DT enabled platforms)
+ - arch/arm/mach-dove (non-DT enabled platforms)
+
+PXA 2xx/3xx/93x/95x family
+--------------------------
+
+ Flavors:
+ - PXA21x, PXA25x, PXA26x
+ - Application processor only
+ - Core: ARMv5 XScale1 core
+ - PXA270, PXA271, PXA272
+ - Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_pb.pdf
+ - Design guide : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_design_guide.pdf
+ - Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_dev_man.pdf
+ - Specification : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_emts.pdf
+ - Specification update : http://www.marvell.com/application-processors/pxa-family/assets/pxa_27x_spec_update.pdf
+ - Application processor only
+ - Core: ARMv5 XScale2 core
+ - PXA300, PXA310, PXA320
+ - PXA 300 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA300_PB_R4.pdf
+ - PXA 310 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA310_PB_R4.pdf
+ - PXA 320 Product Brief : http://www.marvell.com/application-processors/pxa-family/assets/PXA320_PB_R4.pdf
+ - Design guide : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Design_Guide.pdf
+ - Developers manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Developers_Manual.zip
+ - Specifications : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_EMTS.pdf
+ - Specification Update : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_Spec_Update.zip
+ - Reference Manual : http://www.marvell.com/application-processors/pxa-family/assets/PXA3xx_TavorP_BootROM_Ref_Manual.pdf
+ - Application processor only
+ - Core: ARMv5 XScale3 core
+ - PXA930, PXA935
+ - Application processor with Communication processor
+ - Core: ARMv5 XScale3 core
+ - PXA955
+ - Application processor with Communication processor
+ - Core: ARMv7 compatible Sheeva PJ4 core
+
+ Comments:
+
+ * This line of SoCs originates from the XScale family developed by
+ Intel and acquired by Marvell in ~2006. The PXA21x, PXA25x,
+ PXA26x, PXA27x, PXA3xx and PXA93x were developed by Intel, while
+ the later PXA95x were developed by Marvell.
+
+ * Due to their XScale origin, these SoCs have virtually nothing in
+ common with the other (Kirkwood, Dove, etc.) families of Marvell
+ SoCs, except with the MMP/MMP2 family of SoCs.
+
+ Linux kernel mach directory:
+ arch/arm/mach-pxa
+ Linux kernel plat directory:
+ arch/arm/plat-pxa
+
+MMP/MMP2/MMP3 family (communication processor)
+----------------------------------------------
+
+ Flavors:
+ - PXA168, a.k.a Armada 168
+ - Homepage : http://www.marvell.com/application-processors/armada-100/armada-168.jsp
+ - Product brief : http://www.marvell.com/application-processors/armada-100/assets/pxa_168_pb.pdf
+ - Hardware manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_datasheet.pdf
+ - Software manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_software_manual.pdf
+ - Specification update : http://www.marvell.com/application-processors/armada-100/assets/ARMADA16x_Spec_update.pdf
+ - Boot ROM manual : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_ref_manual.pdf
+ - App node package : http://www.marvell.com/application-processors/armada-100/assets/armada_16x_app_note_package.pdf
+ - Application processor only
+ - Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)
+ - PXA910/PXA920
+ - Homepage : http://www.marvell.com/communication-processors/pxa910/
+ - Product Brief : http://www.marvell.com/communication-processors/pxa910/assets/Marvell_PXA910_Platform-001_PB_final.pdf
+ - Application processor with Communication processor
+ - Core: ARMv5 compatible Marvell PJ1 88sv331 (Mohawk)
+ - PXA688, a.k.a. MMP2, a.k.a Armada 610
+ - Product Brief : http://www.marvell.com/application-processors/armada-600/assets/armada610_pb.pdf
+ - Application processor only
+ - Core: ARMv7 compatible Sheeva PJ4 88sv581x core
+ - PXA2128, a.k.a. MMP3 (OLPC XO4, Linux support not upstream)
+ - Product Brief : http://www.marvell.com/application-processors/armada/pxa2128/assets/Marvell-ARMADA-PXA2128-SoC-PB.pdf
+ - Application processor only
+ - Core: Dual-core ARMv7 compatible Sheeva PJ4C core
+ - PXA960/PXA968/PXA978 (Linux support not upstream)
+ - Application processor with Communication Processor
+ - Core: ARMv7 compatible Sheeva PJ4 core
+ - PXA986/PXA988 (Linux support not upstream)
+ - Application processor with Communication Processor
+ - Core: Dual-core ARMv7 compatible Sheeva PJ4B-MP core
+ - PXA1088/PXA1920 (Linux support not upstream)
+ - Application processor with Communication Processor
+ - Core: quad-core ARMv7 Cortex-A7
+ - PXA1908/PXA1928/PXA1936
+ - Application processor with Communication Processor
+ - Core: multi-core ARMv8 Cortex-A53
+
+ Comments:
+
+ * This line of SoCs originates from the XScale family developed by
+ Intel and acquired by Marvell in ~2006. All the processors of
+ this MMP/MMP2 family were developed by Marvell.
+
+ * Due to their XScale origin, these SoCs have virtually nothing in
+ common with the other (Kirkwood, Dove, etc.) families of Marvell
+ SoCs, except with the PXA family of SoCs listed above.
+
+ Linux kernel mach directory:
+ arch/arm/mach-mmp
+ Linux kernel plat directory:
+ arch/arm/plat-pxa
+
+Berlin family (Multimedia Solutions)
+-------------------------------------
+
+ - Flavors:
+ - 88DE3010, Armada 1000 (no Linux support)
+ - Core: Marvell PJ1 (ARMv5TE), Dual-core
+ - Product Brief: http://www.marvell.com.cn/digital-entertainment/assets/armada_1000_pb.pdf
+ - 88DE3005, Armada 1500 Mini
+ - Design name: BG2CD
+ - Core: ARM Cortex-A9, PL310 L2CC
+ - 88DE3006, Armada 1500 Mini Plus
+ - Design name: BG2CDP
+ - Core: Dual Core ARM Cortex-A7
+ - 88DE3100, Armada 1500
+ - Design name: BG2
+ - Core: Marvell PJ4B-MP (ARMv7), Tauros3 L2CC
+ - 88DE3114, Armada 1500 Pro
+ - Design name: BG2Q
+ - Core: Quad Core ARM Cortex-A9, PL310 L2CC
+ - 88DE3214, Armada 1500 Pro 4K
+ - Design name: BG3
+ - Core: ARM Cortex-A15, CA15 integrated L2CC
+ - 88DE3218, ARMADA 1500 Ultra
+ - Core: ARM Cortex-A53
+
+ Homepage: https://www.synaptics.com/products/multimedia-solutions
+ Directory: arch/arm/mach-berlin
+
+ Comments:
+
+ * This line of SoCs is based on Marvell Sheeva or ARM Cortex CPUs
+ with Synopsys DesignWare (IRQ, GPIO, Timers, ...) and PXA IP (SDHCI, USB, ETH, ...).
+
+ * The Berlin family was acquired by Synaptics from Marvell in 2017.
+
+CPU Cores
+---------
+
+The XScale cores were designed by Intel, and shipped by Marvell in the older
+PXA processors. Feroceon is a Marvell designed core that developed in-house,
+and that evolved into Sheeva. The XScale and Feroceon cores were phased out
+over time and replaced with Sheeva cores in later products, which subsequently
+got replaced with licensed ARM Cortex-A cores.
+
+ XScale 1
+ CPUID 0x69052xxx
+ ARMv5, iWMMXt
+ XScale 2
+ CPUID 0x69054xxx
+ ARMv5, iWMMXt
+ XScale 3
+ CPUID 0x69056xxx or 0x69056xxx
+ ARMv5, iWMMXt
+ Feroceon-1850 88fr331 "Mohawk"
+ CPUID 0x5615331x or 0x41xx926x
+ ARMv5TE, single issue
+ Feroceon-2850 88fr531-vd "Jolteon"
+ CPUID 0x5605531x or 0x41xx926x
+ ARMv5TE, VFP, dual-issue
+ Feroceon 88fr571-vd "Jolteon"
+ CPUID 0x5615571x
+ ARMv5TE, VFP, dual-issue
+ Feroceon 88fr131 "Mohawk-D"
+ CPUID 0x5625131x
+ ARMv5TE, single-issue in-order
+ Sheeva PJ1 88sv331 "Mohawk"
+ CPUID 0x561584xx
+ ARMv5, single-issue iWMMXt v2
+ Sheeva PJ4 88sv581x "Flareon"
+ CPUID 0x560f581x
+ ARMv7, idivt, optional iWMMXt v2
+ Sheeva PJ4B 88sv581x
+ CPUID 0x561f581x
+ ARMv7, idivt, optional iWMMXt v2
+ Sheeva PJ4B-MP / PJ4C
+ CPUID 0x562f584x
+ ARMv7, idivt/idiva, LPAE, optional iWMMXt v2 and/or NEON
+
+Long-term plans
+---------------
+
+ * Unify the mach-dove/, mach-mv78xx0/, mach-orion5x/ into the
+ mach-mvebu/ to support all SoCs from the Marvell EBU (Engineering
+ Business Unit) in a single mach-<foo> directory. The plat-orion/
+ would therefore disappear.
+
+ * Unify the mach-mmp/ and mach-pxa/ into the same mach-pxa
+ directory. The plat-pxa/ would therefore disappear.
+
+Credits
+-------
+
+- Maen Suleiman <maen@marvell.com>
+- Lior Amsalem <alior@marvell.com>
+- Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
+- Andrew Lunn <andrew@lunn.ch>
+- Nicolas Pitre <nico@fluxnic.net>
+- Eric Miao <eric.y.miao@gmail.com>
diff --git a/Documentation/arm/mem_alignment b/Documentation/arm/mem_alignment.rst
index 6335fcacbba9..aa22893b62bc 100644
--- a/Documentation/arm/mem_alignment
+++ b/Documentation/arm/mem_alignment.rst
@@ -1,4 +1,8 @@
-Too many problems poped up because of unnoticed misaligned memory access in
+================
+Memory alignment
+================
+
+Too many problems popped up because of unnoticed misaligned memory access in
kernel code lately. Therefore the alignment fixup is now unconditionally
configured in for SA11x0 based targets. According to Alan Cox, this is a
bad idea to configure it out, but Russell King has some good reasons for
@@ -26,9 +30,9 @@ space, and might cause programs to fail unexpectedly.
To change the alignment trap behavior, simply echo a number into
/proc/cpu/alignment. The number is made up from various bits:
+=== ========================================================
bit behavior when set
---- -----------------
-
+=== ========================================================
0 A user process performing an unaligned memory access
will cause the kernel to print a message indicating
process name, pid, pc, instruction, address, and the
@@ -41,12 +45,13 @@ bit behavior when set
2 The kernel will send a SIGBUS signal to the user process
performing the unaligned access.
+=== ========================================================
Note that not all combinations are supported - only values 0 through 5.
(6 and 7 don't make sense).
For example, the following will turn on the warnings, but without
-fixing up or sending SIGBUS signals:
+fixing up or sending SIGBUS signals::
echo 1 > /proc/cpu/alignment
diff --git a/Documentation/arm/memory.txt b/Documentation/arm/memory.rst
index 546a39048eb0..0521b4ce5c96 100644
--- a/Documentation/arm/memory.txt
+++ b/Documentation/arm/memory.rst
@@ -1,6 +1,9 @@
- Kernel Memory Layout on ARM Linux
+=================================
+Kernel Memory Layout on ARM Linux
+=================================
Russell King <rmk@arm.linux.org.uk>
+
November 17, 2005 (2.6.15)
This document describes the virtual memory layout which the Linux
@@ -15,8 +18,9 @@ As the ARM architecture matures, it becomes necessary to reserve
certain regions of VM space for use for new facilities; therefore
this document may reserve more VM space over time.
+=============== =============== ===============================================
Start End Use
---------------------------------------------------------------------------
+=============== =============== ===============================================
ffff8000 ffffffff copy_user_page / clear_user_page use.
For SA11xx and Xscale, this is used to
setup a minicache mapping.
@@ -77,6 +81,7 @@ MODULES_VADDR MODULES_END-1 Kernel module space
place their vector page here. NULL pointer
dereferences by both the kernel and user
space are also caught via this mapping.
+=============== =============== ===============================================
Please note that mappings which collide with the above areas may result
in a non-bootable kernel, or may cause the kernel to (eventually) panic
diff --git a/Documentation/arm/Microchip/README b/Documentation/arm/microchip.rst
index a366f37d38f1..c9a44c98e868 100644
--- a/Documentation/arm/Microchip/README
+++ b/Documentation/arm/microchip.rst
@@ -1,3 +1,4 @@
+=============================
ARM Microchip SoCs (aka AT91)
=============================
@@ -22,32 +23,46 @@ the Microchip website: http://www.microchip.com.
Flavors:
* ARM 920 based SoC
- at91rm9200
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-1768-32-bit-ARM920T-Embedded-Microprocessor-AT91RM9200_Datasheet.pdf
* ARM 926 based SoCs
- at91sam9260
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6221-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9260_Datasheet.pdf
- at91sam9xe
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_Datasheet.pdf
- at91sam9261
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6062-ARM926EJ-S-Microprocessor-SAM9261_Datasheet.pdf
- at91sam9263
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6249-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9263_Datasheet.pdf
- at91sam9rl
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/doc6289.pdf
- at91sam9g20
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001516A.pdf
- at91sam9g45 family
@@ -55,7 +70,9 @@ the Microchip website: http://www.microchip.com.
- at91sam9g46
- at91sam9m10
- at91sam9m11 (device superset)
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_Datasheet.pdf
- at91sam9x5 family (aka "The 5 series")
@@ -64,33 +81,44 @@ the Microchip website: http://www.microchip.com.
- at91sam9g35
- at91sam9x25
- at91sam9x35
- + Datasheet (can be considered as covering the whole family)
+
+ * Datasheet (can be considered as covering the whole family)
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11055-32-bit-ARM926EJ-S-Microcontroller-SAM9X35_Datasheet.pdf
- at91sam9n12
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001517A.pdf
* ARM Cortex-A5 based SoCs
- sama5d3 family
+
- sama5d31
- sama5d33
- sama5d34
- sama5d35
- sama5d36 (device superset)
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet.pdf
* ARM Cortex-A5 + NEON based SoCs
- sama5d4 family
+
- sama5d41
- sama5d42
- sama5d43
- sama5d44 (device superset)
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/60001525A.pdf
- sama5d2 family
+
- sama5d21
- sama5d22
- sama5d23
@@ -98,11 +126,14 @@ the Microchip website: http://www.microchip.com.
- sama5d26
- sama5d27 (device superset)
- sama5d28 (device superset + environmental monitors)
- + Datasheet
+
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/DS60001476B.pdf
* ARM Cortex-M7 MCUs
- sams70 family
+
- sams70j19
- sams70j20
- sams70j21
@@ -114,6 +145,7 @@ the Microchip website: http://www.microchip.com.
- sams70q21
- samv70 family
+
- samv70j19
- samv70j20
- samv70n19
@@ -122,6 +154,7 @@ the Microchip website: http://www.microchip.com.
- samv70q20
- samv71 family
+
- samv71j19
- samv71j20
- samv71j21
@@ -132,7 +165,8 @@ the Microchip website: http://www.microchip.com.
- samv71q20
- samv71q21
- + Datasheet
+ * Datasheet
+
http://ww1.microchip.com/downloads/en/DeviceDoc/60001527A.pdf
@@ -157,6 +191,7 @@ definition of a "Stable" binding/ABI.
This statement will be removed by AT91 MAINTAINERS when appropriate.
Naming conventions and best practice:
+
- SoCs Device Tree Source Include files are named after the official name of
the product (at91sam9g20.dtsi or sama5d33.dtsi for instance).
- Device Tree Source Include files (.dtsi) are used to collect common nodes that can be
diff --git a/Documentation/arm/netwinder.rst b/Documentation/arm/netwinder.rst
new file mode 100644
index 000000000000..8eab66caa2ac
--- /dev/null
+++ b/Documentation/arm/netwinder.rst
@@ -0,0 +1,85 @@
+================================
+NetWinder specific documentation
+================================
+
+The NetWinder is a small low-power computer, primarily designed
+to run Linux. It is based around the StrongARM RISC processor,
+DC21285 PCI bridge, with PC-type hardware glued around it.
+
+Port usage
+==========
+
+======= ====== ===============================
+Min Max Description
+======= ====== ===============================
+0x0000 0x000f DMA1
+0x0020 0x0021 PIC1
+0x0060 0x006f Keyboard
+0x0070 0x007f RTC
+0x0080 0x0087 DMA1
+0x0088 0x008f DMA2
+0x00a0 0x00a3 PIC2
+0x00c0 0x00df DMA2
+0x0180 0x0187 IRDA
+0x01f0 0x01f6 ide0
+0x0201 Game port
+0x0203 RWA010 configuration read
+0x0220 ? SoundBlaster
+0x0250 ? WaveArtist
+0x0279 RWA010 configuration index
+0x02f8 0x02ff Serial ttyS1
+0x0300 0x031f Ether10
+0x0338 GPIO1
+0x033a GPIO2
+0x0370 0x0371 W83977F configuration registers
+0x0388 ? AdLib
+0x03c0 0x03df VGA
+0x03f6 ide0
+0x03f8 0x03ff Serial ttyS0
+0x0400 0x0408 DC21143
+0x0480 0x0487 DMA1
+0x0488 0x048f DMA2
+0x0a79 RWA010 configuration write
+0xe800 0xe80f ide0/ide1 BM DMA
+======= ====== ===============================
+
+
+Interrupt usage
+===============
+
+======= ======= ========================
+IRQ type Description
+======= ======= ========================
+ 0 ISA 100Hz timer
+ 1 ISA Keyboard
+ 2 ISA cascade
+ 3 ISA Serial ttyS1
+ 4 ISA Serial ttyS0
+ 5 ISA PS/2 mouse
+ 6 ISA IRDA
+ 7 ISA Printer
+ 8 ISA RTC alarm
+ 9 ISA
+10 ISA GP10 (Orange reset button)
+11 ISA
+12 ISA WaveArtist
+13 ISA
+14 ISA hda1
+15 ISA
+======= ======= ========================
+
+DMA usage
+=========
+
+======= ======= ===========
+DMA type Description
+======= ======= ===========
+ 0 ISA IRDA
+ 1 ISA
+ 2 ISA cascade
+ 3 ISA WaveArtist
+ 4 ISA
+ 5 ISA
+ 6 ISA
+ 7 ISA WaveArtist
+======= ======= ===========
diff --git a/Documentation/arm/nwfpe/index.rst b/Documentation/arm/nwfpe/index.rst
new file mode 100644
index 000000000000..3c4d2f9aa10e
--- /dev/null
+++ b/Documentation/arm/nwfpe/index.rst
@@ -0,0 +1,13 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================================
+NetWinder's floating point emulator
+===================================
+
+.. toctree::
+ :maxdepth: 1
+
+ nwfpe
+ netwinder-fpe
+ notes
+ todo
diff --git a/Documentation/arm/nwfpe/README.FPE b/Documentation/arm/nwfpe/netwinder-fpe.rst
index 26f5d7bb9a41..cbb320960fc4 100644
--- a/Documentation/arm/nwfpe/README.FPE
+++ b/Documentation/arm/nwfpe/netwinder-fpe.rst
@@ -1,12 +1,18 @@
+=============
+Current State
+=============
+
The following describes the current state of the NetWinder's floating point
emulator.
In the following nomenclature is used to describe the floating point
instructions. It follows the conventions in the ARM manual.
-<S|D|E> = <single|double|extended>, no default
-{P|M|Z} = {round to +infinity,round to -infinity,round to zero},
- default = round to nearest
+::
+
+ <S|D|E> = <single|double|extended>, no default
+ {P|M|Z} = {round to +infinity,round to -infinity,round to zero},
+ default = round to nearest
Note: items enclosed in {} are optional.
@@ -32,10 +38,10 @@ Form 2 syntax:
<LFM|SFM>{cond}<FD,EA> Fd, <count>, [Rn]{!}
These instructions are fully implemented. They store/load three words
-for each floating point register into the memory location given in the
+for each floating point register into the memory location given in the
instruction. The format in memory is unlikely to be compatible with
other implementations, in particular the actual hardware. Specific
-mention of this is made in the ARM manuals.
+mention of this is made in the ARM manuals.
Floating Point Coprocessor Register Transfer Instructions (CPRT)
----------------------------------------------------------------
@@ -123,7 +129,7 @@ RPW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse power
POL{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - polar angle (arctan2)
LOG{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base 10
-LGN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base e
+LGN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base e
EXP{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - exponent
SIN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - sine
COS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - cosine
@@ -134,7 +140,7 @@ ATN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arctangent
These are not implemented. They are not currently issued by the compiler,
and are handled by routines in libc. These are not implemented by the FPA11
-hardware, but are handled by the floating point support code. They should
+hardware, but are handled by the floating point support code. They should
be implemented in future versions.
Signalling:
@@ -147,10 +153,10 @@ current_set[0] correctly.
The kernel provided with this distribution (vmlinux-nwfpe-0.93) contains
a fix for this problem and also incorporates the current version of the
emulator directly. It is possible to run with no floating point module
-loaded with this kernel. It is provided as a demonstration of the
+loaded with this kernel. It is provided as a demonstration of the
technology and for those who want to do floating point work that depends
on signals. It is not strictly necessary to use the module.
-A module (either the one provided by Russell King, or the one in this
+A module (either the one provided by Russell King, or the one in this
distribution) can be loaded to replace the functionality of the emulator
built into the kernel.
diff --git a/Documentation/arm/nwfpe/NOTES b/Documentation/arm/nwfpe/notes.rst
index 40577b5a49d3..102e55af8439 100644
--- a/Documentation/arm/nwfpe/NOTES
+++ b/Documentation/arm/nwfpe/notes.rst
@@ -1,3 +1,6 @@
+Notes
+=====
+
There seems to be a problem with exp(double) and our emulator. I haven't
been able to track it down yet. This does not occur with the emulator
supplied by Russell King.
diff --git a/Documentation/arm/nwfpe/README b/Documentation/arm/nwfpe/nwfpe.rst
index 771871de0c8b..35cd90dacbff 100644
--- a/Documentation/arm/nwfpe/README
+++ b/Documentation/arm/nwfpe/nwfpe.rst
@@ -1,4 +1,7 @@
-This directory contains the version 0.92 test release of the NetWinder
+Introduction
+============
+
+This directory contains the version 0.92 test release of the NetWinder
Floating Point Emulator.
The majority of the code was written by me, Scott Bambrough It is
@@ -31,7 +34,7 @@ SoftFloat to the ARM was done by Phil Blundell, based on an earlier
port of SoftFloat version 1 by Neil Carson for NetBSD/arm32.
The file README.FPE contains a description of what has been implemented
-so far in the emulator. The file TODO contains a information on what
+so far in the emulator. The file TODO contains a information on what
remains to be done, and other ideas for the emulator.
Bug reports, comments, suggestions should be directed to me at
@@ -48,10 +51,11 @@ Legal Notices
The NetWinder Floating Point Emulator is free software. Everything Rebel.com
has written is provided under the GNU GPL. See the file COPYING for copying
-conditions. Excluded from the above is the SoftFloat code. John Hauser's
+conditions. Excluded from the above is the SoftFloat code. John Hauser's
legal notice for SoftFloat is included below.
-------------------------------------------------------------------------------
+
SoftFloat Legal Notice
SoftFloat was written by John R. Hauser. This work was made possible in
diff --git a/Documentation/arm/nwfpe/TODO b/Documentation/arm/nwfpe/todo.rst
index 8027061b60eb..393f11b14540 100644
--- a/Documentation/arm/nwfpe/TODO
+++ b/Documentation/arm/nwfpe/todo.rst
@@ -1,39 +1,42 @@
TODO LIST
----------
+=========
-POW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - power
-RPW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse power
-POL{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - polar angle (arctan2)
+::
-LOG{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base 10
-LGN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base e
-EXP{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - exponent
-SIN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - sine
-COS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - cosine
-TAN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - tangent
-ASN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arcsine
-ACS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arccosine
-ATN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arctangent
+ POW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - power
+ RPW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse power
+ POL{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - polar angle (arctan2)
+
+ LOG{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base 10
+ LGN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base e
+ EXP{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - exponent
+ SIN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - sine
+ COS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - cosine
+ TAN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - tangent
+ ASN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arcsine
+ ACS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arccosine
+ ATN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arctangent
These are not implemented. They are not currently issued by the compiler,
and are handled by routines in libc. These are not implemented by the FPA11
-hardware, but are handled by the floating point support code. They should
+hardware, but are handled by the floating point support code. They should
be implemented in future versions.
There are a couple of ways to approach the implementation of these. One
-method would be to use accurate table methods for these routines. I have
+method would be to use accurate table methods for these routines. I have
a couple of papers by S. Gal from IBM's research labs in Haifa, Israel that
seem to promise extreme accuracy (in the order of 99.8%) and reasonable speed.
These methods are used in GLIBC for some of the transcendental functions.
Another approach, which I know little about is CORDIC. This stands for
-Coordinate Rotation Digital Computer, and is a method of computing
+Coordinate Rotation Digital Computer, and is a method of computing
transcendental functions using mostly shifts and adds and a few
multiplications and divisions. The ARM excels at shifts and adds,
-so such a method could be promising, but requires more research to
+so such a method could be promising, but requires more research to
determine if it is feasible.
Rounding Methods
+----------------
The IEEE standard defines 4 rounding modes. Round to nearest is the
default, but rounding to + or - infinity or round to zero are also allowed.
@@ -42,8 +45,8 @@ in a control register. Not so with the ARM FPA11 architecture. To change
the rounding mode one must specify it with each instruction.
This has made porting some benchmarks difficult. It is possible to
-introduce such a capability into the emulator. The FPCR contains
-bits describing the rounding mode. The emulator could be altered to
+introduce such a capability into the emulator. The FPCR contains
+bits describing the rounding mode. The emulator could be altered to
examine a flag, which if set forced it to ignore the rounding mode in
the instruction, and use the mode specified in the bits in the FPCR.
@@ -52,7 +55,8 @@ in the FPCR. This requires a kernel call in ArmLinux, as WFC/RFC are
supervisor only instructions. If anyone has any ideas or comments I
would like to hear them.
-[NOTE: pulled out from some docs on ARM floating point, specifically
+NOTE:
+ pulled out from some docs on ARM floating point, specifically
for the Acorn FPE, but not limited to it:
The floating point control register (FPCR) may only be present in some
@@ -64,4 +68,5 @@ would like to hear them.
Hence, the answer is yes, you could do this, but then you will run a high
risk of becoming isolated if and when hardware FP emulation comes out
- -- Russell].
+
+ -- Russell.
diff --git a/Documentation/arm/OMAP/DSS b/Documentation/arm/omap/dss.rst
index 4484e021290e..a40c4d9c717a 100644
--- a/Documentation/arm/OMAP/DSS
+++ b/Documentation/arm/omap/dss.rst
@@ -1,5 +1,6 @@
+=========================
OMAP2/3 Display Subsystem
--------------------------
+=========================
This is an almost total rewrite of the OMAP FB driver in drivers/video/omap
(let's call it DSS1). The main differences between DSS1 and DSS2 are DSI,
@@ -190,6 +191,8 @@ trans_key_value transparency color key (RGB24)
default_color default background color (RGB24)
/sys/devices/platform/omapdss/display? directory:
+
+=============== =============================================================
ctrl_name Controller name
mirror 0=off, 1=on
update_mode 0=off, 1=auto, 2=manual
@@ -202,6 +205,7 @@ timings Display timings (pixclock,xres/hfp/hbp/hsw,yres/vfp/vbp/vsw)
panel_name
tear_elim Tearing elimination 0=off, 1=on
output_type Output type (video encoder only): "composite" or "svideo"
+=============== =============================================================
There are also some debugfs files at <debugfs>/omapdss/ which show information
about clocks and registers.
@@ -209,22 +213,22 @@ about clocks and registers.
Examples
--------
-The following definitions have been made for the examples below:
+The following definitions have been made for the examples below::
-ovl0=/sys/devices/platform/omapdss/overlay0
-ovl1=/sys/devices/platform/omapdss/overlay1
-ovl2=/sys/devices/platform/omapdss/overlay2
+ ovl0=/sys/devices/platform/omapdss/overlay0
+ ovl1=/sys/devices/platform/omapdss/overlay1
+ ovl2=/sys/devices/platform/omapdss/overlay2
-mgr0=/sys/devices/platform/omapdss/manager0
-mgr1=/sys/devices/platform/omapdss/manager1
+ mgr0=/sys/devices/platform/omapdss/manager0
+ mgr1=/sys/devices/platform/omapdss/manager1
-lcd=/sys/devices/platform/omapdss/display0
-dvi=/sys/devices/platform/omapdss/display1
-tv=/sys/devices/platform/omapdss/display2
+ lcd=/sys/devices/platform/omapdss/display0
+ dvi=/sys/devices/platform/omapdss/display1
+ tv=/sys/devices/platform/omapdss/display2
-fb0=/sys/class/graphics/fb0
-fb1=/sys/class/graphics/fb1
-fb2=/sys/class/graphics/fb2
+ fb0=/sys/class/graphics/fb0
+ fb1=/sys/class/graphics/fb1
+ fb2=/sys/class/graphics/fb2
Default setup on OMAP3 SDP
--------------------------
@@ -232,55 +236,59 @@ Default setup on OMAP3 SDP
Here's the default setup on OMAP3 SDP board. All planes go to LCD. DVI
and TV-out are not in use. The columns from left to right are:
framebuffers, overlays, overlay managers, displays. Framebuffers are
-handled by omapfb, and the rest by the DSS.
+handled by omapfb, and the rest by the DSS::
-FB0 --- GFX -\ DVI
-FB1 --- VID1 --+- LCD ---- LCD
-FB2 --- VID2 -/ TV ----- TV
+ FB0 --- GFX -\ DVI
+ FB1 --- VID1 --+- LCD ---- LCD
+ FB2 --- VID2 -/ TV ----- TV
Example: Switch from LCD to DVI
-----------------------
+-------------------------------
+
+::
-w=`cat $dvi/timings | cut -d "," -f 2 | cut -d "/" -f 1`
-h=`cat $dvi/timings | cut -d "," -f 3 | cut -d "/" -f 1`
+ w=`cat $dvi/timings | cut -d "," -f 2 | cut -d "/" -f 1`
+ h=`cat $dvi/timings | cut -d "," -f 3 | cut -d "/" -f 1`
-echo "0" > $lcd/enabled
-echo "" > $mgr0/display
-fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h
-# at this point you have to switch the dvi/lcd dip-switch from the omap board
-echo "dvi" > $mgr0/display
-echo "1" > $dvi/enabled
+ echo "0" > $lcd/enabled
+ echo "" > $mgr0/display
+ fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h
+ # at this point you have to switch the dvi/lcd dip-switch from the omap board
+ echo "dvi" > $mgr0/display
+ echo "1" > $dvi/enabled
-After this the configuration looks like:
+After this the configuration looks like:::
-FB0 --- GFX -\ -- DVI
-FB1 --- VID1 --+- LCD -/ LCD
-FB2 --- VID2 -/ TV ----- TV
+ FB0 --- GFX -\ -- DVI
+ FB1 --- VID1 --+- LCD -/ LCD
+ FB2 --- VID2 -/ TV ----- TV
Example: Clone GFX overlay to LCD and TV
--------------------------------
+----------------------------------------
+
+::
-w=`cat $tv/timings | cut -d "," -f 2 | cut -d "/" -f 1`
-h=`cat $tv/timings | cut -d "," -f 3 | cut -d "/" -f 1`
+ w=`cat $tv/timings | cut -d "," -f 2 | cut -d "/" -f 1`
+ h=`cat $tv/timings | cut -d "," -f 3 | cut -d "/" -f 1`
-echo "0" > $ovl0/enabled
-echo "0" > $ovl1/enabled
+ echo "0" > $ovl0/enabled
+ echo "0" > $ovl1/enabled
-echo "" > $fb1/overlays
-echo "0,1" > $fb0/overlays
+ echo "" > $fb1/overlays
+ echo "0,1" > $fb0/overlays
-echo "$w,$h" > $ovl1/output_size
-echo "tv" > $ovl1/manager
+ echo "$w,$h" > $ovl1/output_size
+ echo "tv" > $ovl1/manager
-echo "1" > $ovl0/enabled
-echo "1" > $ovl1/enabled
+ echo "1" > $ovl0/enabled
+ echo "1" > $ovl1/enabled
-echo "1" > $tv/enabled
+ echo "1" > $tv/enabled
-After this the configuration looks like (only relevant parts shown):
+After this the configuration looks like (only relevant parts shown)::
-FB0 +-- GFX ---- LCD ---- LCD
- \- VID1 ---- TV ---- TV
+ FB0 +-- GFX ---- LCD ---- LCD
+ \- VID1 ---- TV ---- TV
Misc notes
----------
@@ -351,12 +359,14 @@ TODO
DSS locking
Error checking
+
- Lots of checks are missing or implemented just as BUG()
System DMA update for DSI
+
- Can be used for RGB16 and RGB24P modes. Probably not for RGB24U (how
to skip the empty byte?)
OMAP1 support
-- Not sure if needed
+- Not sure if needed
diff --git a/Documentation/arm/omap/index.rst b/Documentation/arm/omap/index.rst
new file mode 100644
index 000000000000..8b365b212e49
--- /dev/null
+++ b/Documentation/arm/omap/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======
+TI OMAP
+=======
+
+.. toctree::
+ :maxdepth: 1
+
+ omap
+ omap_pm
+ dss
diff --git a/Documentation/arm/OMAP/README b/Documentation/arm/omap/omap.rst
index 90c6c57d61e8..f440c0f4613f 100644
--- a/Documentation/arm/OMAP/README
+++ b/Documentation/arm/omap/omap.rst
@@ -1,7 +1,13 @@
+============
+OMAP history
+============
+
This file contains documentation for running mainline
kernel on omaps.
+====== ======================================================
KERNEL NEW DEPENDENCIES
+====== ======================================================
v4.3+ Update is needed for custom .config files to make sure
CONFIG_REGULATOR_PBIAS is enabled for MMC1 to work
properly.
@@ -9,3 +15,4 @@ v4.3+ Update is needed for custom .config files to make sure
v4.18+ Update is needed for custom .config files to make sure
CONFIG_MMC_SDHCI_OMAP is enabled for all MMC instances
to work in DRA7 and K2G based boards.
+====== ======================================================
diff --git a/Documentation/arm/OMAP/omap_pm b/Documentation/arm/omap/omap_pm.rst
index 4ae915a9f899..a335e4c8ce2c 100644
--- a/Documentation/arm/OMAP/omap_pm
+++ b/Documentation/arm/omap/omap_pm.rst
@@ -1,4 +1,4 @@
-
+=====================
The OMAP PM interface
=====================
@@ -31,19 +31,24 @@ Drivers need to express PM parameters which:
This document proposes the OMAP PM interface, including the following
five power management functions for driver code:
-1. Set the maximum MPU wakeup latency:
+1. Set the maximum MPU wakeup latency::
+
(*pdata->set_max_mpu_wakeup_lat)(struct device *dev, unsigned long t)
-2. Set the maximum device wakeup latency:
+2. Set the maximum device wakeup latency::
+
(*pdata->set_max_dev_wakeup_lat)(struct device *dev, unsigned long t)
-3. Set the maximum system DMA transfer start latency (CORE pwrdm):
+3. Set the maximum system DMA transfer start latency (CORE pwrdm)::
+
(*pdata->set_max_sdma_lat)(struct device *dev, long t)
-4. Set the minimum bus throughput needed by a device:
+4. Set the minimum bus throughput needed by a device::
+
(*pdata->set_min_bus_tput)(struct device *dev, u8 agent_id, unsigned long r)
-5. Return the number of times the device has lost context
+5. Return the number of times the device has lost context::
+
(*pdata->get_dev_context_loss_count)(struct device *dev)
@@ -65,12 +70,13 @@ Driver usage of the OMAP PM functions
As the 'pdata' in the above examples indicates, these functions are
exposed to drivers through function pointers in driver .platform_data
-structures. The function pointers are initialized by the board-*.c
+structures. The function pointers are initialized by the `board-*.c`
files to point to the corresponding OMAP PM functions:
-.set_max_dev_wakeup_lat will point to
-omap_pm_set_max_dev_wakeup_lat(), etc. Other architectures which do
-not support these functions should leave these function pointers set
-to NULL. Drivers should use the following idiom:
+
+- set_max_dev_wakeup_lat will point to
+ omap_pm_set_max_dev_wakeup_lat(), etc. Other architectures which do
+ not support these functions should leave these function pointers set
+ to NULL. Drivers should use the following idiom::
if (pdata->set_max_dev_wakeup_lat)
(*pdata->set_max_dev_wakeup_lat)(dev, t);
@@ -81,7 +87,7 @@ becomes accessible. To accomplish this, driver writers should use the
set_max_mpu_wakeup_lat() function to constrain the MPU wakeup
latency, and the set_max_dev_wakeup_lat() function to constrain the
device wakeup latency (from clk_enable() to accessibility). For
-example,
+example::
/* Limit MPU wakeup latency */
if (pdata->set_max_mpu_wakeup_lat)
@@ -116,17 +122,17 @@ specialized cases to convert that input information (OPPs/MPU
frequency) into the form that the underlying power management
implementation needs:
-6. (*pdata->dsp_get_opp_table)(void)
+6. `(*pdata->dsp_get_opp_table)(void)`
-7. (*pdata->dsp_set_min_opp)(u8 opp_id)
+7. `(*pdata->dsp_set_min_opp)(u8 opp_id)`
-8. (*pdata->dsp_get_opp)(void)
+8. `(*pdata->dsp_get_opp)(void)`
-9. (*pdata->cpu_get_freq_table)(void)
+9. `(*pdata->cpu_get_freq_table)(void)`
-10. (*pdata->cpu_set_freq)(unsigned long f)
+10. `(*pdata->cpu_set_freq)(unsigned long f)`
-11. (*pdata->cpu_get_freq)(void)
+11. `(*pdata->cpu_get_freq)(void)`
Customizing OPP for platform
============================
@@ -134,12 +140,15 @@ Defining CONFIG_PM should enable OPP layer for the silicon
and the registration of OPP table should take place automatically.
However, in special cases, the default OPP table may need to be
tweaked, for e.g.:
+
* enable default OPPs which are disabled by default, but which
could be enabled on a platform
* Disable an unsupported OPP on the platform
* Define and add a custom opp table entry
-in these cases, the board file needs to do additional steps as follows:
-arch/arm/mach-omapx/board-xyz.c
+ in these cases, the board file needs to do additional steps as follows:
+
+arch/arm/mach-omapx/board-xyz.c::
+
#include "pm.h"
....
static void __init omap_xyz_init_irq(void)
@@ -150,5 +159,7 @@ arch/arm/mach-omapx/board-xyz.c
/* Do customization to the defaults */
....
}
-NOTE: omapx_opp_init will be omap3_opp_init or as required
-based on the omap family.
+
+NOTE:
+ omapx_opp_init will be omap3_opp_init or as required
+ based on the omap family.
diff --git a/Documentation/arm/Porting b/Documentation/arm/porting.rst
index a492233931b9..bd21958bdb2d 100644
--- a/Documentation/arm/Porting
+++ b/Documentation/arm/porting.rst
@@ -1,3 +1,7 @@
+=======
+Porting
+=======
+
Taken from list archive at http://lists.arm.linux.org.uk/pipermail/linux-arm-kernel/2001-July/004064.html
Initial definitions
@@ -89,8 +93,7 @@ DATAADDR
Virtual address for the kernel data segment. Must not be defined
when using the decompressor.
-VMALLOC_START
-VMALLOC_END
+VMALLOC_START / VMALLOC_END
Virtual addresses bounding the vmalloc() area. There must not be
any static mappings in this area; vmalloc will overwrite them.
The addresses must also be in the kernel segment (see above).
@@ -107,13 +110,13 @@ Architecture Specific Macros
----------------------------
BOOT_MEM(pram,pio,vio)
- `pram' specifies the physical start address of RAM. Must always
+ `pram` specifies the physical start address of RAM. Must always
be present, and should be the same as PHYS_OFFSET.
- `pio' is the physical address of an 8MB region containing IO for
+ `pio` is the physical address of an 8MB region containing IO for
use with the debugging macros in arch/arm/kernel/debug-armv.S.
- `vio' is the virtual address of the 8MB debugging region.
+ `vio` is the virtual address of the 8MB debugging region.
It is expected that the debugging region will be re-initialised
by the architecture specific code later in the code (via the
@@ -132,4 +135,3 @@ MAPIO(func)
INITIRQ(func)
Machine specific function to initialise interrupts.
-
diff --git a/Documentation/arm/pxa/mfp.txt b/Documentation/arm/pxa/mfp.rst
index 0b7cab978c02..ac34e5d7ee44 100644
--- a/Documentation/arm/pxa/mfp.txt
+++ b/Documentation/arm/pxa/mfp.rst
@@ -1,4 +1,6 @@
- MFP Configuration for PXA2xx/PXA3xx Processors
+==============================================
+MFP Configuration for PXA2xx/PXA3xx Processors
+==============================================
Eric Miao <eric.miao@marvell.com>
@@ -6,15 +8,15 @@ MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and
later PXA series processors. This document describes the existing MFP API,
and how board/platform driver authors could make use of it.
- Basic Concept
-===============
+Basic Concept
+=============
Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP
mechanism is introduced from PXA3xx to completely move the pin-mux functions
out of the GPIO controller. In addition to pin-mux configurations, the MFP
also controls the low power state, driving strength, pull-up/down and event
detection of each pin. Below is a diagram of internal connections between
-the MFP logic and the remaining SoC peripherals:
+the MFP logic and the remaining SoC peripherals::
+--------+
| |--(GPIO19)--+
@@ -69,8 +71,8 @@ NOTE: with such a clear separation of MFP and GPIO, by GPIO<xx> we normally
mean it is a GPIO signal, and by MFP<xxx> or pin xxx, we mean a physical
pad (or ball).
- MFP API Usage
-===============
+MFP API Usage
+=============
For board code writers, here are some guidelines:
@@ -94,9 +96,9 @@ For board code writers, here are some guidelines:
PXA310 supporting some additional ones), thus the difference is actually
covered in a single mfp-pxa300.h.
-2. prepare an array for the initial pin configurations, e.g.:
+2. prepare an array for the initial pin configurations, e.g.::
- static unsigned long mainstone_pin_config[] __initdata = {
+ static unsigned long mainstone_pin_config[] __initdata = {
/* Chip Select */
GPIO15_nCS_1,
@@ -116,7 +118,7 @@ For board code writers, here are some guidelines:
/* GPIO */
GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH,
- };
+ };
a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(),
and written to the actual registers, they are useless and may discard,
@@ -143,17 +145,17 @@ For board code writers, here are some guidelines:
d) although PXA3xx MFP supports edge detection on each pin, the
internal logic will only wakeup the system when those specific bits
in ADxER registers are set, which can be well mapped to the
- corresponding peripheral, thus set_irq_wake() can be called with
+ corresponding peripheral, thus set_irq_wake() can be called with
the peripheral IRQ to enable the wakeup.
- MFP on PXA3xx
-===============
+MFP on PXA3xx
+=============
Every external I/O pad on PXA3xx (excluding those for special purpose) has
one MFP logic associated, and is controlled by one MFP register (MFPR).
-The MFPR has the following bit definitions (for PXA300/PXA310/PXA320):
+The MFPR has the following bit definitions (for PXA300/PXA310/PXA320)::
31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
@@ -183,8 +185,8 @@ The MFPR has the following bit definitions (for PXA300/PXA310/PXA320):
0b006 - slow 10mA
0b007 - fast 10mA
- MFP Design for PXA2xx/PXA3xx
-==============================
+MFP Design for PXA2xx/PXA3xx
+============================
Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified
MFP API is introduced to cover both series of processors.
@@ -194,11 +196,11 @@ configurations, these definitions are processor and platform independent, and
the actual API invoked to convert these definitions into register settings and
make them effective there-after.
- Files Involved
- --------------
+Files Involved
+--------------
- arch/arm/mach-pxa/include/mach/mfp.h
-
+
for
1. Unified pin definitions - enum constants for all configurable pins
2. processor-neutral bit definitions for a possible MFP configuration
@@ -226,42 +228,42 @@ make them effective there-after.
for implementation of the pin configuration to take effect for the actual
processor.
- Pin Configuration
- -----------------
+Pin Configuration
+-----------------
The following comments are copied from mfp.h (see the actual source code
- for most updated info)
-
- /*
- * a possible MFP configuration is represented by a 32-bit integer
- *
- * bit 0.. 9 - MFP Pin Number (1024 Pins Maximum)
- * bit 10..12 - Alternate Function Selection
- * bit 13..15 - Drive Strength
- * bit 16..18 - Low Power Mode State
- * bit 19..20 - Low Power Mode Edge Detection
- * bit 21..22 - Run Mode Pull State
- *
- * to facilitate the definition, the following macros are provided
- *
- * MFP_CFG_DEFAULT - default MFP configuration value, with
- * alternate function = 0,
- * drive strength = fast 3mA (MFP_DS03X)
- * low power mode = default
- * edge detection = none
- *
- * MFP_CFG - default MFPR value with alternate function
- * MFP_CFG_DRV - default MFPR value with alternate function and
- * pin drive strength
- * MFP_CFG_LPM - default MFPR value with alternate function and
- * low power mode
- * MFP_CFG_X - default MFPR value with alternate function,
- * pin drive strength and low power mode
- */
-
- Examples of pin configurations are:
-
- #define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT)
+ for most updated info)::
+
+ /*
+ * a possible MFP configuration is represented by a 32-bit integer
+ *
+ * bit 0.. 9 - MFP Pin Number (1024 Pins Maximum)
+ * bit 10..12 - Alternate Function Selection
+ * bit 13..15 - Drive Strength
+ * bit 16..18 - Low Power Mode State
+ * bit 19..20 - Low Power Mode Edge Detection
+ * bit 21..22 - Run Mode Pull State
+ *
+ * to facilitate the definition, the following macros are provided
+ *
+ * MFP_CFG_DEFAULT - default MFP configuration value, with
+ * alternate function = 0,
+ * drive strength = fast 3mA (MFP_DS03X)
+ * low power mode = default
+ * edge detection = none
+ *
+ * MFP_CFG - default MFPR value with alternate function
+ * MFP_CFG_DRV - default MFPR value with alternate function and
+ * pin drive strength
+ * MFP_CFG_LPM - default MFPR value with alternate function and
+ * low power mode
+ * MFP_CFG_X - default MFPR value with alternate function,
+ * pin drive strength and low power mode
+ */
+
+ Examples of pin configurations are::
+
+ #define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT)
which reads GPIO94 can be configured as SSP3_RXD, with alternate function
selection of 1, driving strength of 0b101, and a float state in low power
@@ -272,8 +274,8 @@ make them effective there-after.
do so, simply because this default setting is usually carefully encoded,
and is supposed to work in most cases.
- Register Settings
- -----------------
+Register Settings
+-----------------
Register settings on PXA3xx for a pin configuration is actually very
straight-forward, most bits can be converted directly into MFPR value
diff --git a/Documentation/arm/SA1100/Assabet b/Documentation/arm/sa1100/assabet.rst
index e08a6739e72c..a761e128fb08 100644
--- a/Documentation/arm/SA1100/Assabet
+++ b/Documentation/arm/sa1100/assabet.rst
@@ -1,3 +1,4 @@
+============================================
The Intel Assabet (SA-1110 evaluation) board
============================================
@@ -11,9 +12,9 @@ http://www.cs.cmu.edu/~wearable/software/assabet.html
Building the kernel
-------------------
-To build the kernel with current defaults:
+To build the kernel with current defaults::
- make assabet_config
+ make assabet_defconfig
make oldconfig
make zImage
@@ -51,9 +52,9 @@ Brief examples on how to boot Linux with RedBoot are shown below. But first
you need to have RedBoot installed in your flash memory. A known to work
precompiled RedBoot binary is available from the following location:
-ftp://ftp.netwinder.org/users/n/nico/
-ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/
-ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/
+- ftp://ftp.netwinder.org/users/n/nico/
+- ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/
+- ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/
Look for redboot-assabet*.tgz. Some installation infos are provided in
redboot-assabet*.txt.
@@ -71,12 +72,12 @@ Socket Communications Inc.), you should strongly consider using it for TFTP
file transfers. You must insert it before RedBoot runs since it can't detect
it dynamically.
-To initialize the flash directory:
+To initialize the flash directory::
fis init -f
To initialize the non-volatile settings, like whether you want to use BOOTP or
-a static IP address, etc, use this command:
+a static IP address, etc, use this command::
fconfig -i
@@ -85,15 +86,15 @@ Writing a kernel image into flash
---------------------------------
First, the kernel image must be loaded into RAM. If you have the zImage file
-available on a TFTP server:
+available on a TFTP server::
load zImage -r -b 0x100000
-If you rather want to use Y-Modem upload over the serial port:
+If you rather want to use Y-Modem upload over the serial port::
load -m ymodem -r -b 0x100000
-To write it to flash:
+To write it to flash::
fis create "Linux kernel" -b 0x100000 -l 0xc0000
@@ -102,18 +103,18 @@ Booting the kernel
------------------
The kernel still requires a filesystem to boot. A ramdisk image can be loaded
-as follows:
+as follows::
load ramdisk_image.gz -r -b 0x800000
Again, Y-Modem upload can be used instead of TFTP by replacing the file name
by '-y ymodem'.
-Now the kernel can be retrieved from flash like this:
+Now the kernel can be retrieved from flash like this::
fis load "Linux kernel"
-or loaded as described previously. To boot the kernel:
+or loaded as described previously. To boot the kernel::
exec -b 0x100000 -l 0xc0000
@@ -134,35 +135,35 @@ creating JFFS/JFFS2 images is available from the same site.
For instance, a sample JFFS2 image can be retrieved from the same FTP sites
mentioned below for the precompiled RedBoot image.
-To load this file:
+To load this file::
load sample_img.jffs2 -r -b 0x100000
-The result should look like:
+The result should look like::
-RedBoot> load sample_img.jffs2 -r -b 0x100000
-Raw file loaded 0x00100000-0x00377424
+ RedBoot> load sample_img.jffs2 -r -b 0x100000
+ Raw file loaded 0x00100000-0x00377424
-Now we must know the size of the unallocated flash:
+Now we must know the size of the unallocated flash::
fis free
-Result:
+Result::
-RedBoot> fis free
- 0x500E0000 .. 0x503C0000
+ RedBoot> fis free
+ 0x500E0000 .. 0x503C0000
The values above may be different depending on the size of the filesystem and
the type of flash. See their usage below as an example and take care of
substituting yours appropriately.
-We must determine some values:
+We must determine some values::
-size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000
-size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424
+ size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000
+ size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424
We want to fit the filesystem image of course, but we also want to give it all
-the remaining flash space as well. To write it:
+the remaining flash space as well. To write it::
fis unlock -f 0x500E0000 -l 0x2e0000
fis erase -f 0x500E0000 -l 0x2e0000
@@ -171,32 +172,32 @@ the remaining flash space as well. To write it:
Now the filesystem is associated to a MTD "partition" once Linux has discovered
what they are in the boot process. From Redboot, the 'fis list' command
-displays them:
-
-RedBoot> fis list
-Name FLASH addr Mem addr Length Entry point
-RedBoot 0x50000000 0x50000000 0x00020000 0x00000000
-RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000
-FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000
-Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000
-JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000
-
-However Linux should display something like:
-
-SA1100 flash: probing 32-bit flash bus
-SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode
-Using RedBoot partition definition
-Creating 5 MTD partitions on "SA1100 flash":
-0x00000000-0x00020000 : "RedBoot"
-0x00020000-0x000e0000 : "Linux kernel"
-0x000e0000-0x003c0000 : "JFFS2"
-0x003c0000-0x003e0000 : "RedBoot config"
-0x003e0000-0x00400000 : "FIS directory"
+displays them::
+
+ RedBoot> fis list
+ Name FLASH addr Mem addr Length Entry point
+ RedBoot 0x50000000 0x50000000 0x00020000 0x00000000
+ RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000
+ FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000
+ Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000
+ JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000
+
+However Linux should display something like::
+
+ SA1100 flash: probing 32-bit flash bus
+ SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode
+ Using RedBoot partition definition
+ Creating 5 MTD partitions on "SA1100 flash":
+ 0x00000000-0x00020000 : "RedBoot"
+ 0x00020000-0x000e0000 : "Linux kernel"
+ 0x000e0000-0x003c0000 : "JFFS2"
+ 0x003c0000-0x003e0000 : "RedBoot config"
+ 0x003e0000-0x00400000 : "FIS directory"
What's important here is the position of the partition we are interested in,
which is the third one. Within Linux, this correspond to /dev/mtdblock2.
Therefore to boot Linux with the kernel and its root filesystem in flash, we
-need this RedBoot command:
+need this RedBoot command::
fis load "Linux kernel"
exec -b 0x100000 -l 0xc0000 -c "root=/dev/mtdblock2"
@@ -218,21 +219,21 @@ time the Assabet is rebooted. Therefore it's possible to automate the boot
process using RedBoot's scripting capability.
For example, I use this to boot Linux with both the kernel and the ramdisk
-images retrieved from a TFTP server on the network:
-
-RedBoot> fconfig
-Run script at boot: false true
-Boot script:
-Enter script, terminate with empty line
->> load zImage -r -b 0x100000
->> load ramdisk_ks.gz -r -b 0x800000
->> exec -b 0x100000 -l 0xc0000
->>
-Boot script timeout (1000ms resolution): 3
-Use BOOTP for network configuration: true
-GDB connection port: 9000
-Network debug at boot time: false
-Update RedBoot non-volatile configuration - are you sure (y/n)? y
+images retrieved from a TFTP server on the network::
+
+ RedBoot> fconfig
+ Run script at boot: false true
+ Boot script:
+ Enter script, terminate with empty line
+ >> load zImage -r -b 0x100000
+ >> load ramdisk_ks.gz -r -b 0x800000
+ >> exec -b 0x100000 -l 0xc0000
+ >>
+ Boot script timeout (1000ms resolution): 3
+ Use BOOTP for network configuration: true
+ GDB connection port: 9000
+ Network debug at boot time: false
+ Update RedBoot non-volatile configuration - are you sure (y/n)? y
Then, rebooting the Assabet is just a matter of waiting for the login prompt.
@@ -240,6 +241,7 @@ Then, rebooting the Assabet is just a matter of waiting for the login prompt.
Nicolas Pitre
nico@fluxnic.net
+
June 12, 2001
@@ -249,52 +251,51 @@ Status of peripherals in -rmk tree (updated 14/10/2001)
Assabet:
Serial ports:
Radio: TX, RX, CTS, DSR, DCD, RI
- PM: Not tested.
- COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM
- PM: Not tested.
- I2C: Implemented, not fully tested.
- L3: Fully tested, pass.
- PM: Not tested.
+ - PM: Not tested.
+ - COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM
+ - PM: Not tested.
+ - I2C: Implemented, not fully tested.
+ - L3: Fully tested, pass.
+ - PM: Not tested.
Video:
- LCD: Fully tested. PM
- (LCD doesn't like being blanked with
- neponset connected)
- Video out: Not fully
+ - LCD: Fully tested. PM
+
+ (LCD doesn't like being blanked with neponset connected)
+
+ - Video out: Not fully
Audio:
UDA1341:
- Playback: Fully tested, pass.
- Record: Implemented, not tested.
- PM: Not tested.
+ - Playback: Fully tested, pass.
+ - Record: Implemented, not tested.
+ - PM: Not tested.
UCB1200:
- Audio play: Implemented, not heavily tested.
- Audio rec: Implemented, not heavily tested.
- Telco audio play: Implemented, not heavily tested.
- Telco audio rec: Implemented, not heavily tested.
- POTS control: No
- Touchscreen: Yes
- PM: Not tested.
+ - Audio play: Implemented, not heavily tested.
+ - Audio rec: Implemented, not heavily tested.
+ - Telco audio play: Implemented, not heavily tested.
+ - Telco audio rec: Implemented, not heavily tested.
+ - POTS control: No
+ - Touchscreen: Yes
+ - PM: Not tested.
Other:
- PCMCIA:
- LPE: Fully tested, pass.
- USB: No
- IRDA:
- SIR: Fully tested, pass.
- FIR: Fully tested, pass.
- PM: Not tested.
+ - PCMCIA:
+ - LPE: Fully tested, pass.
+ - USB: No
+ - IRDA:
+ - SIR: Fully tested, pass.
+ - FIR: Fully tested, pass.
+ - PM: Not tested.
Neponset:
Serial ports:
- COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR
- PM: Not tested.
- USB: Implemented, not heavily tested.
- PCMCIA: Implemented, not heavily tested.
- PM: Not tested.
- CF: Implemented, not heavily tested.
- PM: Not tested.
+ - COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR
+ - PM: Not tested.
+ - USB: Implemented, not heavily tested.
+ - PCMCIA: Implemented, not heavily tested.
+ - CF: Implemented, not heavily tested.
+ - PM: Not tested.
More stuff can be found in the -np (Nicolas Pitre's) tree.
-
diff --git a/Documentation/arm/SA1100/CERF b/Documentation/arm/sa1100/cerf.rst
index b3d845301ef1..7fa71b609bf9 100644
--- a/Documentation/arm/SA1100/CERF
+++ b/Documentation/arm/sa1100/cerf.rst
@@ -1,3 +1,7 @@
+==============
+CerfBoard/Cube
+==============
+
*** The StrongARM version of the CerfBoard/Cube has been discontinued ***
The Intrinsyc CerfBoard is a StrongARM 1110-based computer on a board
@@ -9,7 +13,9 @@ Intrinsyc website, http://www.intrinsyc.com.
This document describes the support in the Linux kernel for the
Intrinsyc CerfBoard.
-Supported in this version:
+Supported in this version
+=========================
+
- CompactFlash+ slot (select PCMCIA in General Setup and any options
that may be required)
- Onboard Crystal CS8900 Ethernet controller (Cerf CS8900A support in
@@ -19,7 +25,7 @@ Supported in this version:
In order to get this kernel onto your Cerf, you need a server that runs
both BOOTP and TFTP. Detailed instructions should have come with your
evaluation kit on how to use the bootloader. This series of commands
-will suffice:
+will suffice::
make ARCH=arm CROSS_COMPILE=arm-linux- cerfcube_defconfig
make ARCH=arm CROSS_COMPILE=arm-linux- zImage
diff --git a/Documentation/arm/sa1100/index.rst b/Documentation/arm/sa1100/index.rst
new file mode 100644
index 000000000000..c9aed43280ff
--- /dev/null
+++ b/Documentation/arm/sa1100/index.rst
@@ -0,0 +1,13 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================
+Intel StrongARM 1100
+====================
+
+.. toctree::
+ :maxdepth: 1
+
+ assabet
+ cerf
+ lart
+ serial_uart
diff --git a/Documentation/arm/SA1100/LART b/Documentation/arm/sa1100/lart.rst
index 6d412b685598..94c0568d1095 100644
--- a/Documentation/arm/SA1100/LART
+++ b/Documentation/arm/sa1100/lart.rst
@@ -1,5 +1,6 @@
+====================================
Linux Advanced Radio Terminal (LART)
-------------------------------------
+====================================
The LART is a small (7.5 x 10cm) SA-1100 board, designed for embedded
applications. It has 32 MB DRAM, 4MB Flash ROM, double RS232 and all
diff --git a/Documentation/arm/sa1100/serial_uart.rst b/Documentation/arm/sa1100/serial_uart.rst
new file mode 100644
index 000000000000..ea983642b9be
--- /dev/null
+++ b/Documentation/arm/sa1100/serial_uart.rst
@@ -0,0 +1,51 @@
+==================
+SA1100 serial port
+==================
+
+The SA1100 serial port had its major/minor numbers officially assigned::
+
+ > Date: Sun, 24 Sep 2000 21:40:27 -0700
+ > From: H. Peter Anvin <hpa@transmeta.com>
+ > To: Nicolas Pitre <nico@CAM.ORG>
+ > Cc: Device List Maintainer <device@lanana.org>
+ > Subject: Re: device
+ >
+ > Okay. Note that device numbers 204 and 205 are used for "low density
+ > serial devices", so you will have a range of minors on those majors (the
+ > tty device layer handles this just fine, so you don't have to worry about
+ > doing anything special.)
+ >
+ > So your assignments are:
+ >
+ > 204 char Low-density serial ports
+ > 5 = /dev/ttySA0 SA1100 builtin serial port 0
+ > 6 = /dev/ttySA1 SA1100 builtin serial port 1
+ > 7 = /dev/ttySA2 SA1100 builtin serial port 2
+ >
+ > 205 char Low-density serial ports (alternate device)
+ > 5 = /dev/cusa0 Callout device for ttySA0
+ > 6 = /dev/cusa1 Callout device for ttySA1
+ > 7 = /dev/cusa2 Callout device for ttySA2
+ >
+
+You must create those inodes in /dev on the root filesystem used
+by your SA1100-based device::
+
+ mknod ttySA0 c 204 5
+ mknod ttySA1 c 204 6
+ mknod ttySA2 c 204 7
+ mknod cusa0 c 205 5
+ mknod cusa1 c 205 6
+ mknod cusa2 c 205 7
+
+In addition to the creation of the appropriate device nodes above, you
+must ensure your user space applications make use of the correct device
+name. The classic example is the content of the /etc/inittab file where
+you might have a getty process started on ttyS0.
+
+In this case:
+
+- replace occurrences of ttyS0 with ttySA0, ttyS1 with ttySA1, etc.
+
+- don't forget to add 'ttySA0', 'console', or the appropriate tty name
+ in /etc/securetty for root to be allowed to login as well.
diff --git a/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt b/Documentation/arm/samsung-s3c24xx/cpufreq.rst
index fa968aa99d67..2ddc26c03b1f 100644
--- a/Documentation/arm/Samsung-S3C24XX/CPUfreq.txt
+++ b/Documentation/arm/samsung-s3c24xx/cpufreq.rst
@@ -1,5 +1,6 @@
- S3C24XX CPUfreq support
- =======================
+=======================
+S3C24XX CPUfreq support
+=======================
Introduction
------------
diff --git a/Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt b/Documentation/arm/samsung-s3c24xx/eb2410itx.rst
index b87292e05f2f..7863c93652f8 100644
--- a/Documentation/arm/Samsung-S3C24XX/EB2410ITX.txt
+++ b/Documentation/arm/samsung-s3c24xx/eb2410itx.rst
@@ -1,5 +1,6 @@
- Simtec Electronics EB2410ITX (BAST)
- ===================================
+===================================
+Simtec Electronics EB2410ITX (BAST)
+===================================
http://www.simtec.co.uk/products/EB2410ITX/
diff --git a/Documentation/arm/Samsung-S3C24XX/GPIO.txt b/Documentation/arm/samsung-s3c24xx/gpio.rst
index e8f918b96123..f7c3d7d011a2 100644
--- a/Documentation/arm/Samsung-S3C24XX/GPIO.txt
+++ b/Documentation/arm/samsung-s3c24xx/gpio.rst
@@ -1,5 +1,6 @@
- S3C24XX GPIO Control
- ====================
+====================
+S3C24XX GPIO Control
+====================
Introduction
------------
@@ -12,7 +13,7 @@ Introduction
of the s3c2410 GPIO system, please read the Samsung provided
data-sheet/users manual to find out the complete list.
- See Documentation/arm/Samsung/GPIO.txt for the core implementation.
+ See Documentation/arm/samsung/gpio.rst for the core implementation.
GPIOLIB
@@ -26,16 +27,16 @@ GPIOLIB
listed below will be removed (they may be marked as __deprecated
in the near future).
- The following functions now either have a s3c_ specific variant
+ The following functions now either have a `s3c_` specific variant
or are merged into gpiolib. See the definitions in
arch/arm/plat-samsung/include/plat/gpio-cfg.h:
- s3c2410_gpio_setpin() gpio_set_value() or gpio_direction_output()
- s3c2410_gpio_getpin() gpio_get_value() or gpio_direction_input()
- s3c2410_gpio_getirq() gpio_to_irq()
- s3c2410_gpio_cfgpin() s3c_gpio_cfgpin()
- s3c2410_gpio_getcfg() s3c_gpio_getcfg()
- s3c2410_gpio_pullup() s3c_gpio_setpull()
+ - s3c2410_gpio_setpin() gpio_set_value() or gpio_direction_output()
+ - s3c2410_gpio_getpin() gpio_get_value() or gpio_direction_input()
+ - s3c2410_gpio_getirq() gpio_to_irq()
+ - s3c2410_gpio_cfgpin() s3c_gpio_cfgpin()
+ - s3c2410_gpio_getcfg() s3c_gpio_getcfg()
+ - s3c2410_gpio_pullup() s3c_gpio_setpull()
GPIOLIB conversion
@@ -77,7 +78,7 @@ out s3c2410 API, then here are some notes on the process.
6) s3c2410_gpio_getirq() should be directly replaceable with the
gpio_to_irq() call.
-The s3c2410_gpio and gpio_ calls have always operated on the same gpio
+The s3c2410_gpio and `gpio_` calls have always operated on the same gpio
numberspace, so there is no problem with converting the gpio numbering
between the calls.
diff --git a/Documentation/arm/Samsung-S3C24XX/H1940.txt b/Documentation/arm/samsung-s3c24xx/h1940.rst
index b738859b1fc0..62a562c178e3 100644
--- a/Documentation/arm/Samsung-S3C24XX/H1940.txt
+++ b/Documentation/arm/samsung-s3c24xx/h1940.rst
@@ -1,5 +1,6 @@
- HP IPAQ H1940
- =============
+=============
+HP IPAQ H1940
+=============
http://www.handhelds.org/projects/h1940.html
diff --git a/Documentation/arm/samsung-s3c24xx/index.rst b/Documentation/arm/samsung-s3c24xx/index.rst
new file mode 100644
index 000000000000..ccb951a0bedb
--- /dev/null
+++ b/Documentation/arm/samsung-s3c24xx/index.rst
@@ -0,0 +1,20 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================
+Samsung S3C24XX SoC Family
+==========================
+
+.. toctree::
+ :maxdepth: 1
+
+ h1940
+ gpio
+ cpufreq
+ suspend
+ usb-host
+ s3c2412
+ eb2410itx
+ nand
+ smdk2440
+ s3c2413
+ overview
diff --git a/Documentation/arm/Samsung-S3C24XX/NAND.txt b/Documentation/arm/samsung-s3c24xx/nand.rst
index bc478a3409b8..938995694ee7 100644
--- a/Documentation/arm/Samsung-S3C24XX/NAND.txt
+++ b/Documentation/arm/samsung-s3c24xx/nand.rst
@@ -1,5 +1,6 @@
- S3C24XX NAND Support
- ====================
+====================
+S3C24XX NAND Support
+====================
Introduction
------------
@@ -27,4 +28,3 @@ Document Author
---------------
Ben Dooks, Copyright 2007 Simtec Electronics
-
diff --git a/Documentation/arm/Samsung-S3C24XX/Overview.txt b/Documentation/arm/samsung-s3c24xx/overview.rst
index 00d3c3141e21..e9a1dc7276b5 100644
--- a/Documentation/arm/Samsung-S3C24XX/Overview.txt
+++ b/Documentation/arm/samsung-s3c24xx/overview.rst
@@ -1,5 +1,6 @@
- S3C24XX ARM Linux Overview
- ==========================
+==========================
+S3C24XX ARM Linux Overview
+==========================
@@ -182,7 +183,7 @@ NAND
controller. If there are any problems the latest linux-mtd
code can be found from http://www.linux-mtd.infradead.org/
- For more information see Documentation/arm/Samsung-S3C24XX/NAND.txt
+ For more information see Documentation/arm/samsung-s3c24xx/nand.rst
SD/MMC
@@ -221,8 +222,8 @@ GPIO
As of v2.6.34, the move towards using gpiolib support is almost
complete, and very little of the old calls are left.
- See Documentation/arm/Samsung-S3C24XX/GPIO.txt for the S3C24XX specific
- support and Documentation/arm/Samsung/GPIO.txt for the core Samsung
+ See Documentation/arm/samsung-s3c24xx/gpio.rst for the S3C24XX specific
+ support and Documentation/arm/samsung/gpio.rst for the core Samsung
implementation.
@@ -276,18 +277,18 @@ Platform Data
kmalloc()s an area of memory, and copies the __initdata
and then sets the relevant device's platform data. Making
the function `__init` takes care of ensuring it is discarded
- with the rest of the initialisation code
+ with the rest of the initialisation code::
- static __init void s3c24xx_xxx_set_platdata(struct xxx_data *pd)
- {
- struct s3c2410_xxx_mach_info *npd;
+ static __init void s3c24xx_xxx_set_platdata(struct xxx_data *pd)
+ {
+ struct s3c2410_xxx_mach_info *npd;
npd = kmalloc(sizeof(struct s3c2410_xxx_mach_info), GFP_KERNEL);
if (npd) {
memcpy(npd, pd, sizeof(struct s3c2410_xxx_mach_info));
s3c_device_xxx.dev.platform_data = npd;
} else {
- printk(KERN_ERR "no memory for xxx platform data\n");
+ printk(KERN_ERR "no memory for xxx platform data\n");
}
}
diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt b/Documentation/arm/samsung-s3c24xx/s3c2412.rst
index dc1fd362d3c1..68b985fc6bf4 100644
--- a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt
+++ b/Documentation/arm/samsung-s3c24xx/s3c2412.rst
@@ -1,5 +1,6 @@
- S3C2412 ARM Linux Overview
- ==========================
+==========================
+S3C2412 ARM Linux Overview
+==========================
Introduction
------------
diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2413.txt b/Documentation/arm/samsung-s3c24xx/s3c2413.rst
index 909bdc7dd7b5..1f51e207fc46 100644
--- a/Documentation/arm/Samsung-S3C24XX/S3C2413.txt
+++ b/Documentation/arm/samsung-s3c24xx/s3c2413.rst
@@ -1,5 +1,6 @@
- S3C2413 ARM Linux Overview
- ==========================
+==========================
+S3C2413 ARM Linux Overview
+==========================
Introduction
------------
@@ -10,7 +11,7 @@ Introduction
Camera Interface
----------------
+----------------
This block is currently not supported.
diff --git a/Documentation/arm/Samsung-S3C24XX/SMDK2440.txt b/Documentation/arm/samsung-s3c24xx/smdk2440.rst
index 429390bd4684..524fd0b4afaf 100644
--- a/Documentation/arm/Samsung-S3C24XX/SMDK2440.txt
+++ b/Documentation/arm/samsung-s3c24xx/smdk2440.rst
@@ -1,5 +1,6 @@
- Samsung/Meritech SMDK2440
- =========================
+=========================
+Samsung/Meritech SMDK2440
+=========================
Introduction
------------
diff --git a/Documentation/arm/Samsung-S3C24XX/Suspend.txt b/Documentation/arm/samsung-s3c24xx/suspend.rst
index cb4f0c0cdf9d..b4f3ae9fe76e 100644
--- a/Documentation/arm/Samsung-S3C24XX/Suspend.txt
+++ b/Documentation/arm/samsung-s3c24xx/suspend.rst
@@ -1,5 +1,6 @@
- S3C24XX Suspend Support
- =======================
+=======================
+S3C24XX Suspend Support
+=======================
Introduction
@@ -57,16 +58,16 @@ Machine Support
and will end up initialising all compiled machines' pm init!
The following is an example of code used for testing wakeup from
- an falling edge on IRQ_EINT0:
+ an falling edge on IRQ_EINT0::
-static irqreturn_t button_irq(int irq, void *pw)
-{
+ static irqreturn_t button_irq(int irq, void *pw)
+ {
return IRQ_HANDLED;
-}
+ }
-statuc void __init machine_init(void)
-{
+ statuc void __init machine_init(void)
+ {
...
request_irq(IRQ_EINT0, button_irq, IRQF_TRIGGER_FALLING,
@@ -75,7 +76,7 @@ statuc void __init machine_init(void)
enable_irq_wake(IRQ_EINT0);
s3c_pm_init();
-}
+ }
Debugging
@@ -134,4 +135,3 @@ Document Author
---------------
Ben Dooks, Copyright 2004 Simtec Electronics
-
diff --git a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt b/Documentation/arm/samsung-s3c24xx/usb-host.rst
index f82b1faefad5..c84268bd1884 100644
--- a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt
+++ b/Documentation/arm/samsung-s3c24xx/usb-host.rst
@@ -1,5 +1,6 @@
- S3C24XX USB Host support
- ========================
+========================
+S3C24XX USB Host support
+========================
@@ -13,7 +14,7 @@ Configuration
Enable at least the following kernel options:
- menuconfig:
+ menuconfig::
Device Drivers --->
USB support --->
@@ -22,8 +23,9 @@ Configuration
.config:
- CONFIG_USB
- CONFIG_USB_OHCI_HCD
+
+ - CONFIG_USB
+ - CONFIG_USB_OHCI_HCD
Once these options are configured, the standard set of USB device
@@ -60,17 +62,14 @@ Platform Data
The ports are numbered 0 and 1.
power_control:
-
Called to enable or disable the power on the port.
enable_oc:
-
Called to enable or disable the over-current monitoring.
This should claim or release the resources being used to
check the power condition on the port, such as an IRQ.
report_oc:
-
The OHCI driver fills this field in for the over-current code
to call when there is a change to the over-current state on
an port. The ports argument is a bitmask of 1 bit per port,
@@ -80,7 +79,6 @@ Platform Data
ensure this is called correctly.
port[x]:
-
This is struct describes each port, 0 or 1. The platform driver
should set the flags field of each port to S3C_HCDFLG_USED if
the port is enabled.
diff --git a/Documentation/arm/Samsung/Bootloader-interface.txt b/Documentation/arm/samsung/bootloader-interface.rst
index d17ed518a7ea..a56f325dae78 100644
--- a/Documentation/arm/Samsung/Bootloader-interface.txt
+++ b/Documentation/arm/samsung/bootloader-interface.rst
@@ -1,7 +1,9 @@
- Interface between kernel and boot loaders on Exynos boards
- ==========================================================
+==========================================================
+Interface between kernel and boot loaders on Exynos boards
+==========================================================
Author: Krzysztof Kozlowski
+
Date : 6 June 2015
The document tries to describe currently used interface between Linux kernel
@@ -17,8 +19,10 @@ executing kernel.
1. Non-Secure mode
Address: sysram_ns_base_addr
+
+============= ============================================ ==================
Offset Value Purpose
-=============================================================================
+============= ============================================ ==================
0x08 exynos_cpu_resume_ns, mcpm_entry_point System suspend
0x0c 0x00000bad (Magic cookie) System suspend
0x1c exynos4_secondary_startup Secondary CPU boot
@@ -27,22 +31,28 @@ Offset Value Purpose
0x24 exynos_cpu_resume_ns AFTR
0x28 + 4*cpu 0x8 (Magic cookie, Exynos3250) AFTR
0x28 0x0 or last value during resume (Exynos542x) System suspend
+============= ============================================ ==================
2. Secure mode
Address: sysram_base_addr
+
+============= ============================================ ==================
Offset Value Purpose
-=============================================================================
+============= ============================================ ==================
0x00 exynos4_secondary_startup Secondary CPU boot
0x04 exynos4_secondary_startup (Exynos542x) Secondary CPU boot
4*cpu exynos4_secondary_startup (Exynos4412) Secondary CPU boot
0x20 exynos_cpu_resume (Exynos4210 r1.0) AFTR
0x24 0xfcba0d10 (Magic cookie, Exynos4210 r1.0) AFTR
+============= ============================================ ==================
Address: pmu_base_addr
+
+============= ============================================ ==================
Offset Value Purpose
-=============================================================================
+============= ============================================ ==================
0x0800 exynos_cpu_resume AFTR, suspend
0x0800 mcpm_entry_point (Exynos542x with MCPM) AFTR, suspend
0x0804 0xfcba0d10 (Magic cookie) AFTR
@@ -50,15 +60,18 @@ Offset Value Purpose
0x0814 exynos4_secondary_startup (Exynos4210 r1.1) Secondary CPU boot
0x0818 0xfcba0d10 (Magic cookie, Exynos4210 r1.1) AFTR
0x081C exynos_cpu_resume (Exynos4210 r1.1) AFTR
-
+============= ============================================ ==================
3. Other (regardless of secure/non-secure mode)
Address: pmu_base_addr
+
+============= =============================== ===============================
Offset Value Purpose
-=============================================================================
+============= =============================== ===============================
0x0908 Non-zero Secondary CPU boot up indicator
on Exynos3250 and Exynos542x
+============= =============================== ===============================
4. Glossary
diff --git a/Documentation/arm/Samsung/clksrc-change-registers.awk b/Documentation/arm/samsung/clksrc-change-registers.awk
index 7be1b8aa7cd9..7be1b8aa7cd9 100755
--- a/Documentation/arm/Samsung/clksrc-change-registers.awk
+++ b/Documentation/arm/samsung/clksrc-change-registers.awk
diff --git a/Documentation/arm/Samsung/GPIO.txt b/Documentation/arm/samsung/gpio.rst
index 795adfd88081..5f7cadd7159e 100644
--- a/Documentation/arm/Samsung/GPIO.txt
+++ b/Documentation/arm/samsung/gpio.rst
@@ -1,5 +1,6 @@
- Samsung GPIO implementation
- ===========================
+===========================
+Samsung GPIO implementation
+===========================
Introduction
------------
@@ -11,7 +12,7 @@ specific calls provided alongside the drivers/gpio core.
S3C24XX (Legacy)
----------------
-See Documentation/arm/Samsung-S3C24XX/GPIO.txt for more information
+See Documentation/arm/samsung-s3c24xx/gpio.rst for more information
about these devices. Their implementation has been brought into line
with the core samsung implementation described in this document.
diff --git a/Documentation/arm/samsung/index.rst b/Documentation/arm/samsung/index.rst
new file mode 100644
index 000000000000..8142cce3d23e
--- /dev/null
+++ b/Documentation/arm/samsung/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========
+Samsung SoC
+===========
+
+.. toctree::
+ :maxdepth: 1
+
+ gpio
+ bootloader-interface
+ overview
diff --git a/Documentation/arm/Samsung/Overview.txt b/Documentation/arm/samsung/overview.rst
index 8f7309bad460..e74307897416 100644
--- a/Documentation/arm/Samsung/Overview.txt
+++ b/Documentation/arm/samsung/overview.rst
@@ -1,5 +1,6 @@
- Samsung ARM Linux Overview
- ==========================
+==========================
+Samsung ARM Linux Overview
+==========================
Introduction
------------
@@ -11,7 +12,7 @@ Introduction
The currently supported SoCs are:
- - S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list
+ - S3C24XX: See Documentation/arm/samsung-s3c24xx/overview.rst for full list
- S3C64XX: S3C6400 and S3C6410
- S5PC110 / S5PV210
@@ -22,7 +23,7 @@ S3C24XX Systems
There is still documentation in Documnetation/arm/Samsung-S3C24XX/ which
deals with the architecture and drivers specific to these devices.
- See Documentation/arm/Samsung-S3C24XX/Overview.txt for more information
+ See Documentation/arm/samsung-s3c24xx/overview.rst for more information
on the implementation details and specific support.
@@ -32,8 +33,10 @@ Configuration
A number of configurations are supplied, as there is no current way of
unifying all the SoCs into one kernel.
- s5pc110_defconfig - S5PC110 specific default configuration
- s5pv210_defconfig - S5PV210 specific default configuration
+ s5pc110_defconfig
+ - S5PC110 specific default configuration
+ s5pv210_defconfig
+ - S5PV210 specific default configuration
Layout
diff --git a/Documentation/arm/Setup b/Documentation/arm/setup.rst
index 0cb1e64bde80..8e12ef3fb9a7 100644
--- a/Documentation/arm/Setup
+++ b/Documentation/arm/setup.rst
@@ -1,5 +1,6 @@
+=============================================
Kernel initialisation parameters on ARM Linux
----------------------------------------------
+=============================================
The following document describes the kernel initialisation parameter
structure, otherwise known as 'struct param_struct' which is used
@@ -14,12 +15,10 @@ There are a lot of parameters listed in there, and they are described
below:
page_size
-
This parameter must be set to the page size of the machine, and
will be checked by the kernel.
nr_pages
-
This is the total number of pages of memory in the system. If
the memory is banked, then this should contain the total number
of pages in the system.
@@ -28,24 +27,22 @@ below:
include this information.
ramdisk_size
-
This is now obsolete, and should not be used.
flags
-
Various kernel flags, including:
- bit 0 - 1 = mount root read only
- bit 1 - unused
- bit 2 - 0 = load ramdisk
- bit 3 - 0 = prompt for ramdisk
- rootdev
+ ===== ========================
+ bit 0 1 = mount root read only
+ bit 1 unused
+ bit 2 0 = load ramdisk
+ bit 3 0 = prompt for ramdisk
+ ===== ========================
+ rootdev
major/minor number pair of device to mount as the root filesystem.
- video_num_cols
- video_num_rows
-
+ video_num_cols / video_num_rows
These two together describe the character size of the dummy console,
or VGA console character size. They should not be used for any other
purpose.
@@ -54,66 +51,50 @@ below:
the equivalent character size of your fbcon display. This then allows
all the bootup messages to be displayed correctly.
- video_x
- video_y
-
+ video_x / video_y
This describes the character position of cursor on VGA console, and
is otherwise unused. (should not be used for other console types, and
should not be used for other purposes).
memc_control_reg
-
MEMC chip control register for Acorn Archimedes and Acorn A5000
based machines. May be used differently by different architectures.
sounddefault
-
Default sound setting on Acorn machines. May be used differently by
different architectures.
adfsdrives
-
Number of ADFS/MFM disks. May be used differently by different
architectures.
- bytes_per_char_h
- bytes_per_char_v
-
+ bytes_per_char_h / bytes_per_char_v
These are now obsolete, and should not be used.
pages_in_bank[4]
-
Number of pages in each bank of the systems memory (used for RiscPC).
This is intended to be used on systems where the physical memory
is non-contiguous from the processors point of view.
pages_in_vram
-
Number of pages in VRAM (used on Acorn RiscPC). This value may also
be used by loaders if the size of the video RAM can't be obtained
from the hardware.
- initrd_start
- initrd_size
-
+ initrd_start / initrd_size
This describes the kernel virtual start address and size of the
initial ramdisk.
rd_start
-
Start address in sectors of the ramdisk image on a floppy disk.
system_rev
-
system revision number.
- system_serial_low
- system_serial_high
-
+ system_serial_low / system_serial_high
system 64-bit serial number
mem_fclk_21285
-
The speed of the external oscillator to the 21285 (footbridge),
which control's the speed of the memory bus, timer & serial port.
Depending upon the speed of the cpu its value can be between
@@ -121,9 +102,7 @@ below:
then a value of 50 Mhz is the default on 21285 architectures.
paths[8][128]
-
These are now obsolete, and should not be used.
commandline
-
Kernel command line parameters. Details can be found elsewhere.
diff --git a/Documentation/arm/SPEAr/overview.txt b/Documentation/arm/spear/overview.rst
index 1b049be6c84f..1a77f6b213b6 100644
--- a/Documentation/arm/SPEAr/overview.txt
+++ b/Documentation/arm/spear/overview.rst
@@ -1,5 +1,6 @@
- SPEAr ARM Linux Overview
- ==========================
+========================
+SPEAr ARM Linux Overview
+========================
Introduction
------------
@@ -14,6 +15,7 @@ Introduction
Hierarchy in SPEAr is as follows:
SPEAr (Platform)
+
- SPEAr3XX (3XX SOC series, based on ARM9)
- SPEAr300 (SOC)
- SPEAr300 Evaluation Board
@@ -30,17 +32,18 @@ Introduction
- SPEAr1340 (SOC)
- SPEAr1340 Evaluation Board
- Configuration
- -------------
+Configuration
+-------------
A generic configuration is provided for each machine, and can be used as the
- default by
+ default by::
+
make spear13xx_defconfig
make spear3xx_defconfig
make spear6xx_defconfig
- Layout
- ------
+Layout
+------
The common files for multiple machine families (SPEAr3xx, SPEAr6xx and
SPEAr13xx) are located in the platform code contained in arch/arm/plat-spear
@@ -57,7 +60,7 @@ Introduction
support Flattened Device Tree.
- Document Author
- ---------------
+Document Author
+---------------
Viresh Kumar <vireshk@kernel.org>, (c) 2010-2012 ST Microelectronics
diff --git a/Documentation/arm/sti/overview.txt b/Documentation/arm/sti/overview.rst
index 1a4e93d6027f..70743617a74f 100644
--- a/Documentation/arm/sti/overview.txt
+++ b/Documentation/arm/sti/overview.rst
@@ -1,5 +1,6 @@
- STi ARM Linux Overview
- ==========================
+======================
+STi ARM Linux Overview
+======================
Introduction
------------
@@ -10,15 +11,17 @@ Introduction
B2000 and B2020 Reference boards.
- configuration
- -------------
+configuration
+-------------
A generic configuration is provided for both STiH415/416, and can be used as the
- default by
+ default by::
+
make stih41x_defconfig
- Layout
- ------
+Layout
+------
+
All the files for multiple machine families (STiH415, STiH416, and STiG125)
are located in the platform code contained in arch/arm/mach-sti
@@ -27,7 +30,7 @@ Introduction
Device Trees.
- Document Author
- ---------------
+Document Author
+---------------
Srinivas Kandagatla <srinivas.kandagatla@st.com>, (c) 2013 ST Microelectronics
diff --git a/Documentation/arm/sti/stih407-overview.txt b/Documentation/arm/sti/stih407-overview.rst
index 3343f32f58bc..027e75bc7b7c 100644
--- a/Documentation/arm/sti/stih407-overview.txt
+++ b/Documentation/arm/sti/stih407-overview.rst
@@ -1,5 +1,6 @@
- STiH407 Overview
- ================
+================
+STiH407 Overview
+================
Introduction
------------
@@ -12,7 +13,7 @@ Introduction
- ARM Cortex-A9 1.5 GHz dual core CPU (28nm)
- SATA2, USB 3.0, PCIe, Gbit Ethernet
- Document Author
- ---------------
+Document Author
+---------------
Maxime Coquelin <maxime.coquelin@st.com>, (c) 2014 ST Microelectronics
diff --git a/Documentation/arm/sti/stih415-overview.txt b/Documentation/arm/sti/stih415-overview.rst
index 1383e33f265d..b67452d610c4 100644
--- a/Documentation/arm/sti/stih415-overview.txt
+++ b/Documentation/arm/sti/stih415-overview.rst
@@ -1,5 +1,6 @@
- STiH415 Overview
- ================
+================
+STiH415 Overview
+================
Introduction
------------
@@ -7,6 +8,7 @@ Introduction
The STiH415 is the next generation of HD, AVC set-top box processors
for satellite, cable, terrestrial and IP-STB markets.
- Features
+ Features:
+
- ARM Cortex-A9 1.0 GHz, dual-core CPU
- SATA2x2,USB 2.0x3, PCIe, Gbit Ethernet MACx2
diff --git a/Documentation/arm/sti/stih416-overview.txt b/Documentation/arm/sti/stih416-overview.rst
index 558444c201c6..93f17d74d8db 100644
--- a/Documentation/arm/sti/stih416-overview.txt
+++ b/Documentation/arm/sti/stih416-overview.rst
@@ -1,5 +1,6 @@
- STiH416 Overview
- ================
+================
+STiH416 Overview
+================
Introduction
------------
diff --git a/Documentation/arm/sti/stih418-overview.txt b/Documentation/arm/sti/stih418-overview.rst
index 1cd8fc80646d..b563c1f4fe5a 100644
--- a/Documentation/arm/sti/stih418-overview.txt
+++ b/Documentation/arm/sti/stih418-overview.rst
@@ -1,5 +1,6 @@
- STiH418 Overview
- ================
+================
+STiH418 Overview
+================
Introduction
------------
@@ -14,7 +15,7 @@ Introduction
- HEVC L5.1 Main 10
- VP9
- Document Author
- ---------------
+Document Author
+---------------
Maxime Coquelin <maxime.coquelin@st.com>, (c) 2015 ST Microelectronics
diff --git a/Documentation/arm/stm32/stm32f429-overview.rst b/Documentation/arm/stm32/stm32f429-overview.rst
index 18feda97f483..a7ebe8ea6697 100644
--- a/Documentation/arm/stm32/stm32f429-overview.rst
+++ b/Documentation/arm/stm32/stm32f429-overview.rst
@@ -1,3 +1,4 @@
+==================
STM32F429 Overview
==================
@@ -21,6 +22,4 @@ Datasheet and reference manual are publicly available on ST website (STM32F429_)
.. _STM32F429: http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN1806?ecmp=stm32f429-439_pron_pr-ces2014_nov2013
-:Authors:
-
-Maxime Coquelin <mcoquelin.stm32@gmail.com>
+:Authors: Maxime Coquelin <mcoquelin.stm32@gmail.com>
diff --git a/Documentation/arm/stm32/stm32f746-overview.rst b/Documentation/arm/stm32/stm32f746-overview.rst
index b5f4b6ce7656..78befddc7740 100644
--- a/Documentation/arm/stm32/stm32f746-overview.rst
+++ b/Documentation/arm/stm32/stm32f746-overview.rst
@@ -1,3 +1,4 @@
+==================
STM32F746 Overview
==================
@@ -28,6 +29,4 @@ Datasheet and reference manual are publicly available on ST website (STM32F746_)
.. _STM32F746: http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f7-series/stm32f7x6/stm32f746ng.html
-:Authors:
-
-Alexandre Torgue <alexandre.torgue@st.com>
+:Authors: Alexandre Torgue <alexandre.torgue@st.com>
diff --git a/Documentation/arm/stm32/stm32f769-overview.rst b/Documentation/arm/stm32/stm32f769-overview.rst
index 228656ced2fe..e482980ddf21 100644
--- a/Documentation/arm/stm32/stm32f769-overview.rst
+++ b/Documentation/arm/stm32/stm32f769-overview.rst
@@ -1,3 +1,4 @@
+==================
STM32F769 Overview
==================
@@ -30,6 +31,4 @@ Datasheet and reference manual are publicly available on ST website (STM32F769_)
.. _STM32F769: http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f7-series/stm32f7x9/stm32f769ni.html
-:Authors:
-
-Alexandre Torgue <alexandre.torgue@st.com>
+:Authors: Alexandre Torgue <alexandre.torgue@st.com>
diff --git a/Documentation/arm/stm32/stm32h743-overview.rst b/Documentation/arm/stm32/stm32h743-overview.rst
index 3458dc00095d..4e15f1a42730 100644
--- a/Documentation/arm/stm32/stm32h743-overview.rst
+++ b/Documentation/arm/stm32/stm32h743-overview.rst
@@ -1,3 +1,4 @@
+==================
STM32H743 Overview
==================
@@ -29,6 +30,4 @@ Datasheet and reference manual are publicly available on ST website (STM32H743_)
.. _STM32H743: http://www.st.com/en/microcontrollers/stm32h7x3.html?querycriteria=productId=LN2033
-:Authors:
-
-Alexandre Torgue <alexandre.torgue@st.com>
+:Authors: Alexandre Torgue <alexandre.torgue@st.com>
diff --git a/Documentation/arm/stm32/stm32mp157-overview.rst b/Documentation/arm/stm32/stm32mp157-overview.rst
index 62e176d47ca7..f62fdc8e7d8d 100644
--- a/Documentation/arm/stm32/stm32mp157-overview.rst
+++ b/Documentation/arm/stm32/stm32mp157-overview.rst
@@ -1,3 +1,4 @@
+===================
STM32MP157 Overview
===================
diff --git a/Documentation/arm/sunxi/README b/Documentation/arm/sunxi.rst
index f8efc21998bf..b037428aee98 100644
--- a/Documentation/arm/sunxi/README
+++ b/Documentation/arm/sunxi.rst
@@ -1,3 +1,4 @@
+==================
ARM Allwinner SoCs
==================
@@ -10,93 +11,140 @@ SunXi family
Linux kernel mach directory: arch/arm/mach-sunxi
Flavors:
+
* ARM926 based SoCs
- Allwinner F20 (sun3i)
- + Not Supported
+
+ * Not Supported
* ARM Cortex-A8 based SoCs
- Allwinner A10 (sun4i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A10/A10%20Datasheet%20-%20v1.21%20%282012-04-06%29.pdf
- + User Manual
+ * User Manual
+
http://dl.linux-sunxi.org/A10/A10%20User%20Manual%20-%20v1.20%20%282012-04-09%2c%20DECRYPTED%29.pdf
- Allwinner A10s (sun5i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A10s/A10s%20Datasheet%20-%20v1.20%20%282012-03-27%29.pdf
- Allwinner A13 / R8 (sun5i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A13/A13%20Datasheet%20-%20v1.12%20%282012-03-29%29.pdf
- + User Manual
+ * User Manual
+
http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-01-08%29.pdf
- Next Thing Co GR8 (sun5i)
* Single ARM Cortex-A7 based SoCs
- Allwinner V3s (sun8i)
- + Datasheet
+
+ * Datasheet
+
http://linux-sunxi.org/File:Allwinner_V3s_Datasheet_V1.0.pdf
* Dual ARM Cortex-A7 based SoCs
- Allwinner A20 (sun7i)
- + User Manual
+
+ * User Manual
+
http://dl.linux-sunxi.org/A20/A20%20User%20Manual%202013-03-22.pdf
- Allwinner A23 (sun8i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A23/A23%20Datasheet%20V1.0%2020130830.pdf
- + User Manual
+
+ * User Manual
+
http://dl.linux-sunxi.org/A23/A23%20User%20Manual%20V1.0%2020130830.pdf
* Quad ARM Cortex-A7 based SoCs
- Allwinner A31 (sun6i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20datasheet%20V1.3%2020131106.pdf
- + User Manual
+
+ * User Manual
+
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf
- Allwinner A31s (sun6i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf
- + User Manual
+
+ * User Manual
+
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20User%20Manual%20%20V1.0%2020130322.pdf
- Allwinner A33 (sun8i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A33/A33%20Datasheet%20release%201.1.pdf
- + User Manual
+
+ * User Manual
+
http://dl.linux-sunxi.org/A33/A33%20user%20manual%20release%201.1.pdf
- Allwinner H2+ (sun8i)
- + No document available now, but is known to be working properly with
+
+ * No document available now, but is known to be working properly with
H3 drivers and memory map.
- Allwinner H3 (sun8i)
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/H3/Allwinner_H3_Datasheet_V1.0.pdf
- Allwinner R40 (sun8i)
- + Datasheet
+
+ * Datasheet
+
https://github.com/tinalinux/docs/raw/r40-v1.y/R40_Datasheet_V1.0.pdf
- + User Manual
+
+ * User Manual
+
https://github.com/tinalinux/docs/raw/r40-v1.y/Allwinner_R40_User_Manual_V1.0.pdf
* Quad ARM Cortex-A15, Quad ARM Cortex-A7 based SoCs
- Allwinner A80
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A80/A80_Datasheet_Revision_1.0_0404.pdf
* Octa ARM Cortex-A7 based SoCs
- Allwinner A83T
- + Datasheet
+
+ * Datasheet
+
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_Datasheet_v1.3_20150510.pdf
- + User Manual
+
+ * User Manual
+
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_User_Manual_v1.5.1_20150513.pdf
* Quad ARM Cortex-A53 based SoCs
- Allwinner A64
- + Datasheet
+
+ * Datasheet
+
http://dl.linux-sunxi.org/A64/A64_Datasheet_V1.1.pdf
- + User Manual
+
+ * User Manual
+
http://dl.linux-sunxi.org/A64/Allwinner%20A64%20User%20Manual%20v1.0.pdf
diff --git a/Documentation/arm/sunxi/clocks.txt b/Documentation/arm/sunxi/clocks.rst
index e09a88aa3136..23bd03f3e21f 100644
--- a/Documentation/arm/sunxi/clocks.txt
+++ b/Documentation/arm/sunxi/clocks.rst
@@ -1,3 +1,4 @@
+=======================================================
Frequently asked questions about the sunxi clock system
=======================================================
@@ -12,7 +13,7 @@ A: The 24MHz oscillator allows gating to save power. Indeed, if gated
steps, one can gate it and keep the system running. Consider this
simplified suspend example:
- While the system is operational, you would see something like
+ While the system is operational, you would see something like::
24MHz 32kHz
|
@@ -23,7 +24,7 @@ A: The 24MHz oscillator allows gating to save power. Indeed, if gated
[CPU]
When you are about to suspend, you switch the CPU Mux to the 32kHz
- oscillator:
+ oscillator::
24Mhz 32kHz
| |
@@ -33,7 +34,7 @@ A: The 24MHz oscillator allows gating to save power. Indeed, if gated
|
[CPU]
- Finally you can gate the main oscillator
+ Finally you can gate the main oscillator::
32kHz
|
diff --git a/Documentation/arm/swp_emulation b/Documentation/arm/swp_emulation.rst
index af903d22fd93..6a608a9c3715 100644
--- a/Documentation/arm/swp_emulation
+++ b/Documentation/arm/swp_emulation.rst
@@ -11,17 +11,17 @@ sequence. If a memory access fault (an abort) occurs, a segmentation fault is
signalled to the triggering process.
/proc/cpu/swp_emulation holds some statistics/information, including the PID of
-the last process to trigger the emulation to be invocated. For example:
----
-Emulated SWP: 12
-Emulated SWPB: 0
-Aborted SWP{B}: 1
-Last process: 314
----
+the last process to trigger the emulation to be invocated. For example::
-NOTE: when accessing uncached shared regions, LDREX/STREX rely on an external
-transaction monitoring block called a global monitor to maintain update
-atomicity. If your system does not implement a global monitor, this option can
-cause programs that perform SWP operations to uncached memory to deadlock, as
-the STREX operation will always fail.
+ Emulated SWP: 12
+ Emulated SWPB: 0
+ Aborted SWP{B}: 1
+ Last process: 314
+
+NOTE:
+ when accessing uncached shared regions, LDREX/STREX rely on an external
+ transaction monitoring block called a global monitor to maintain update
+ atomicity. If your system does not implement a global monitor, this option can
+ cause programs that perform SWP operations to uncached memory to deadlock, as
+ the STREX operation will always fail.
diff --git a/Documentation/arm/tcm.txt b/Documentation/arm/tcm.rst
index 7c15871c1885..effd9c7bc968 100644
--- a/Documentation/arm/tcm.txt
+++ b/Documentation/arm/tcm.rst
@@ -1,5 +1,7 @@
+==================================================
ARM TCM (Tightly-Coupled Memory) handling in Linux
-----
+==================================================
+
Written by Linus Walleij <linus.walleij@stericsson.com>
Some ARM SoC:s have a so-called TCM (Tightly-Coupled Memory).
@@ -85,46 +87,50 @@ to have functions called locally inside the TCM without
wasting space, there is also the __tcmlocalfunc prefix that
will make the call relative.
-Variables to go into dtcm can be tagged like this:
-int __tcmdata foo;
+Variables to go into dtcm can be tagged like this::
+
+ int __tcmdata foo;
+
+Constants can be tagged like this::
-Constants can be tagged like this:
-int __tcmconst foo;
+ int __tcmconst foo;
+
+To put assembler into TCM just use::
+
+ .section ".tcm.text" or .section ".tcm.data"
-To put assembler into TCM just use
-.section ".tcm.text" or .section ".tcm.data"
respectively.
-Example code:
+Example code::
-#include <asm/tcm.h>
+ #include <asm/tcm.h>
-/* Uninitialized data */
-static u32 __tcmdata tcmvar;
-/* Initialized data */
-static u32 __tcmdata tcmassigned = 0x2BADBABEU;
-/* Constant */
-static const u32 __tcmconst tcmconst = 0xCAFEBABEU;
+ /* Uninitialized data */
+ static u32 __tcmdata tcmvar;
+ /* Initialized data */
+ static u32 __tcmdata tcmassigned = 0x2BADBABEU;
+ /* Constant */
+ static const u32 __tcmconst tcmconst = 0xCAFEBABEU;
-static void __tcmlocalfunc tcm_to_tcm(void)
-{
+ static void __tcmlocalfunc tcm_to_tcm(void)
+ {
int i;
for (i = 0; i < 100; i++)
tcmvar ++;
-}
+ }
-static void __tcmfunc hello_tcm(void)
-{
+ static void __tcmfunc hello_tcm(void)
+ {
/* Some abstract code that runs in ITCM */
int i;
for (i = 0; i < 100; i++) {
tcmvar ++;
}
tcm_to_tcm();
-}
+ }
-static void __init test_tcm(void)
-{
+ static void __init test_tcm(void)
+ {
u32 *tcmem;
int i;
@@ -152,4 +158,4 @@ static void __init test_tcm(void)
printk("TCM tcmem[%d] = %08x\n", i, tcmem[i]);
tcm_free(tcmem, 20);
}
-}
+ }
diff --git a/Documentation/arm/uefi.txt b/Documentation/arm/uefi.rst
index 6543a0adea8a..f868330df6be 100644
--- a/Documentation/arm/uefi.txt
+++ b/Documentation/arm/uefi.rst
@@ -1,3 +1,7 @@
+================================================
+The Unified Extensible Firmware Interface (UEFI)
+================================================
+
UEFI, the Unified Extensible Firmware Interface, is a specification
governing the behaviours of compatible firmware interfaces. It is
maintained by the UEFI Forum - http://www.uefi.org/.
@@ -11,11 +15,13 @@ UEFI support in Linux
=====================
Booting on a platform with firmware compliant with the UEFI specification
makes it possible for the kernel to support additional features:
+
- UEFI Runtime Services
- Retrieving various configuration information through the standardised
interface of UEFI configuration tables. (ACPI, SMBIOS, ...)
For actually enabling [U]EFI support, enable:
+
- CONFIG_EFI=y
- CONFIG_EFI_VARS=y or m
@@ -42,19 +48,20 @@ Instead, the kernel reads the UEFI memory map.
The stub populates the FDT /chosen node with (and the kernel scans for) the
following parameters:
-________________________________________________________________________________
-Name | Size | Description
-================================================================================
-linux,uefi-system-table | 64-bit | Physical address of the UEFI System Table.
---------------------------------------------------------------------------------
-linux,uefi-mmap-start | 64-bit | Physical address of the UEFI memory map,
- | | populated by the UEFI GetMemoryMap() call.
---------------------------------------------------------------------------------
-linux,uefi-mmap-size | 32-bit | Size in bytes of the UEFI memory map
- | | pointed to in previous entry.
---------------------------------------------------------------------------------
-linux,uefi-mmap-desc-size | 32-bit | Size in bytes of each entry in the UEFI
- | | memory map.
---------------------------------------------------------------------------------
-linux,uefi-mmap-desc-ver | 32-bit | Version of the mmap descriptor format.
---------------------------------------------------------------------------------
+
+========================== ====== ===========================================
+Name Size Description
+========================== ====== ===========================================
+linux,uefi-system-table 64-bit Physical address of the UEFI System Table.
+
+linux,uefi-mmap-start 64-bit Physical address of the UEFI memory map,
+ populated by the UEFI GetMemoryMap() call.
+
+linux,uefi-mmap-size 32-bit Size in bytes of the UEFI memory map
+ pointed to in previous entry.
+
+linux,uefi-mmap-desc-size 32-bit Size in bytes of each entry in the UEFI
+ memory map.
+
+linux,uefi-mmap-desc-ver 32-bit Version of the mmap descriptor format.
+========================== ====== ===========================================
diff --git a/Documentation/arm/VFP/release-notes.txt b/Documentation/arm/vfp/release-notes.rst
index 28a2795705ca..c6b04937cee3 100644
--- a/Documentation/arm/VFP/release-notes.txt
+++ b/Documentation/arm/vfp/release-notes.rst
@@ -1,7 +1,9 @@
+===============================================
Release notes for Linux Kernel VFP support code
------------------------------------------------
+===============================================
Date: 20 May 2004
+
Author: Russell King
This is the first release of the Linux Kernel VFP support code. It
diff --git a/Documentation/arm/vlocks.txt b/Documentation/arm/vlocks.rst
index 45731672c564..a40a1742110b 100644
--- a/Documentation/arm/vlocks.txt
+++ b/Documentation/arm/vlocks.rst
@@ -1,3 +1,4 @@
+======================================
vlocks for Bare-Metal Mutual Exclusion
======================================
@@ -26,7 +27,7 @@ started yet.
Algorithm
---------
-The easiest way to explain the vlocks algorithm is with some pseudo-code:
+The easiest way to explain the vlocks algorithm is with some pseudo-code::
int currently_voting[NR_CPUS] = { 0, };
@@ -93,7 +94,7 @@ Features and limitations
number of CPUs.
vlocks can be cascaded in a voting hierarchy to permit better scaling
- if necessary, as in the following hypothetical example for 4096 CPUs:
+ if necessary, as in the following hypothetical example for 4096 CPUs::
/* first level: local election */
my_town = towns[(this_cpu >> 4) & 0xf];
@@ -127,12 +128,12 @@ the basic algorithm:
reduces the number of round-trips required to external memory.
In the ARM implementation, this means that we can use a single load
- and comparison:
+ and comparison::
LDR Rt, [Rn]
CMP Rt, #0
- ...in place of code equivalent to:
+ ...in place of code equivalent to::
LDRB Rt, [Rn]
CMP Rt, #0
diff --git a/Documentation/arm64/acpi_object_usage.txt b/Documentation/arm64/acpi_object_usage.rst
index c77010c5c1f0..d51b69dc624d 100644
--- a/Documentation/arm64/acpi_object_usage.txt
+++ b/Documentation/arm64/acpi_object_usage.rst
@@ -1,5 +1,7 @@
+===========
ACPI Tables
------------
+===========
+
The expectations of individual ACPI tables are discussed in the list that
follows.
@@ -11,54 +13,71 @@ outside of the UEFI Forum (see Section 5.2.6 of the specification).
For ACPI on arm64, tables also fall into the following categories:
- -- Required: DSDT, FADT, GTDT, MADT, MCFG, RSDP, SPCR, XSDT
+ - Required: DSDT, FADT, GTDT, MADT, MCFG, RSDP, SPCR, XSDT
- -- Recommended: BERT, EINJ, ERST, HEST, PCCT, SSDT
+ - Recommended: BERT, EINJ, ERST, HEST, PCCT, SSDT
- -- Optional: BGRT, CPEP, CSRT, DBG2, DRTM, ECDT, FACS, FPDT, IORT,
+ - Optional: BGRT, CPEP, CSRT, DBG2, DRTM, ECDT, FACS, FPDT, IORT,
MCHI, MPST, MSCT, NFIT, PMTT, RASF, SBST, SLIT, SPMI, SRAT, STAO,
TCPA, TPM2, UEFI, XENV
- -- Not supported: BOOT, DBGP, DMAR, ETDT, HPET, IBFT, IVRS, LPIT,
+ - Not supported: BOOT, DBGP, DMAR, ETDT, HPET, IBFT, IVRS, LPIT,
MSDM, OEMx, PSDT, RSDT, SLIC, WAET, WDAT, WDRT, WPBT
+====== ========================================================================
Table Usage for ARMv8 Linux
------ ----------------------------------------------------------------
+====== ========================================================================
BERT Section 18.3 (signature == "BERT")
- == Boot Error Record Table ==
+
+ **Boot Error Record Table**
+
Must be supplied if RAS support is provided by the platform. It
is recommended this table be supplied.
BOOT Signature Reserved (signature == "BOOT")
- == simple BOOT flag table ==
+
+ **simple BOOT flag table**
+
Microsoft only table, will not be supported.
BGRT Section 5.2.22 (signature == "BGRT")
- == Boot Graphics Resource Table ==
+
+ **Boot Graphics Resource Table**
+
Optional, not currently supported, with no real use-case for an
ARM server.
CPEP Section 5.2.18 (signature == "CPEP")
- == Corrected Platform Error Polling table ==
+
+ **Corrected Platform Error Polling table**
+
Optional, not currently supported, and not recommended until such
time as ARM-compatible hardware is available, and the specification
suitably modified.
CSRT Signature Reserved (signature == "CSRT")
- == Core System Resources Table ==
+
+ **Core System Resources Table**
+
Optional, not currently supported.
DBG2 Signature Reserved (signature == "DBG2")
- == DeBuG port table 2 ==
+
+ **DeBuG port table 2**
+
License has changed and should be usable. Optional if used instead
of earlycon=<device> on the command line.
DBGP Signature Reserved (signature == "DBGP")
- == DeBuG Port table ==
+
+ **DeBuG Port table**
+
Microsoft only table, will not be supported.
DSDT Section 5.2.11.1 (signature == "DSDT")
- == Differentiated System Description Table ==
+
+ **Differentiated System Description Table**
+
A DSDT is required; see also SSDT.
ACPI tables contain only one DSDT but can contain one or more SSDTs,
@@ -66,22 +85,30 @@ DSDT Section 5.2.11.1 (signature == "DSDT")
but cannot modify or replace anything in the DSDT.
DMAR Signature Reserved (signature == "DMAR")
- == DMA Remapping table ==
+
+ **DMA Remapping table**
+
x86 only table, will not be supported.
DRTM Signature Reserved (signature == "DRTM")
- == Dynamic Root of Trust for Measurement table ==
+
+ **Dynamic Root of Trust for Measurement table**
+
Optional, not currently supported.
ECDT Section 5.2.16 (signature == "ECDT")
- == Embedded Controller Description Table ==
+
+ **Embedded Controller Description Table**
+
Optional, not currently supported, but could be used on ARM if and
only if one uses the GPE_BIT field to represent an IRQ number, since
there are no GPE blocks defined in hardware reduced mode. This would
need to be modified in the ACPI specification.
EINJ Section 18.6 (signature == "EINJ")
- == Error Injection table ==
+
+ **Error Injection table**
+
This table is very useful for testing platform response to error
conditions; it allows one to inject an error into the system as
if it had actually occurred. However, this table should not be
@@ -89,27 +116,35 @@ EINJ Section 18.6 (signature == "EINJ")
and executed with the ACPICA tools only during testing.
ERST Section 18.5 (signature == "ERST")
- == Error Record Serialization Table ==
+
+ **Error Record Serialization Table**
+
On a platform supports RAS, this table must be supplied if it is not
UEFI-based; if it is UEFI-based, this table may be supplied. When this
table is not present, UEFI run time service will be utilized to save
and retrieve hardware error information to and from a persistent store.
ETDT Signature Reserved (signature == "ETDT")
- == Event Timer Description Table ==
+
+ **Event Timer Description Table**
+
Obsolete table, will not be supported.
FACS Section 5.2.10 (signature == "FACS")
- == Firmware ACPI Control Structure ==
+
+ **Firmware ACPI Control Structure**
+
It is unlikely that this table will be terribly useful. If it is
provided, the Global Lock will NOT be used since it is not part of
the hardware reduced profile, and only 64-bit address fields will
be considered valid.
FADT Section 5.2.9 (signature == "FACP")
- == Fixed ACPI Description Table ==
+
+ **Fixed ACPI Description Table**
Required for arm64.
+
The HW_REDUCED_ACPI flag must be set. All of the fields that are
to be ignored when HW_REDUCED_ACPI is set are expected to be set to
zero.
@@ -118,22 +153,28 @@ FADT Section 5.2.9 (signature == "FACP")
used, not FIRMWARE_CTRL.
If PSCI is used (as is recommended), make sure that ARM_BOOT_ARCH is
- filled in properly -- that the PSCI_COMPLIANT flag is set and that
+ filled in properly - that the PSCI_COMPLIANT flag is set and that
PSCI_USE_HVC is set or unset as needed (see table 5-37).
For the DSDT that is also required, the X_DSDT field is to be used,
not the DSDT field.
FPDT Section 5.2.23 (signature == "FPDT")
- == Firmware Performance Data Table ==
+
+ **Firmware Performance Data Table**
+
Optional, not currently supported.
GTDT Section 5.2.24 (signature == "GTDT")
- == Generic Timer Description Table ==
+
+ **Generic Timer Description Table**
+
Required for arm64.
HEST Section 18.3.2 (signature == "HEST")
- == Hardware Error Source Table ==
+
+ **Hardware Error Source Table**
+
ARM-specific error sources have been defined; please use those or the
PCI types such as type 6 (AER Root Port), 7 (AER Endpoint), or 8 (AER
Bridge), or use type 9 (Generic Hardware Error Source). Firmware first
@@ -144,122 +185,174 @@ HEST Section 18.3.2 (signature == "HEST")
is recommended this table be supplied.
HPET Signature Reserved (signature == "HPET")
- == High Precision Event timer Table ==
+
+ **High Precision Event timer Table**
+
x86 only table, will not be supported.
IBFT Signature Reserved (signature == "IBFT")
- == iSCSI Boot Firmware Table ==
+
+ **iSCSI Boot Firmware Table**
+
Microsoft defined table, support TBD.
IORT Signature Reserved (signature == "IORT")
- == Input Output Remapping Table ==
+
+ **Input Output Remapping Table**
+
arm64 only table, required in order to describe IO topology, SMMUs,
and GIC ITSs, and how those various components are connected together,
such as identifying which components are behind which SMMUs/ITSs.
This table will only be required on certain SBSA platforms (e.g.,
- when using GICv3-ITS and an SMMU); on SBSA Level 0 platforms, it
+ when using GICv3-ITS and an SMMU); on SBSA Level 0 platforms, it
remains optional.
IVRS Signature Reserved (signature == "IVRS")
- == I/O Virtualization Reporting Structure ==
+
+ **I/O Virtualization Reporting Structure**
+
x86_64 (AMD) only table, will not be supported.
LPIT Signature Reserved (signature == "LPIT")
- == Low Power Idle Table ==
+
+ **Low Power Idle Table**
+
x86 only table as of ACPI 5.1; starting with ACPI 6.0, processor
descriptions and power states on ARM platforms should use the DSDT
and define processor container devices (_HID ACPI0010, Section 8.4,
and more specifically 8.4.3 and and 8.4.4).
MADT Section 5.2.12 (signature == "APIC")
- == Multiple APIC Description Table ==
+
+ **Multiple APIC Description Table**
+
Required for arm64. Only the GIC interrupt controller structures
should be used (types 0xA - 0xF).
MCFG Signature Reserved (signature == "MCFG")
- == Memory-mapped ConFiGuration space ==
+
+ **Memory-mapped ConFiGuration space**
+
If the platform supports PCI/PCIe, an MCFG table is required.
MCHI Signature Reserved (signature == "MCHI")
- == Management Controller Host Interface table ==
+
+ **Management Controller Host Interface table**
+
Optional, not currently supported.
MPST Section 5.2.21 (signature == "MPST")
- == Memory Power State Table ==
+
+ **Memory Power State Table**
+
Optional, not currently supported.
MSCT Section 5.2.19 (signature == "MSCT")
- == Maximum System Characteristic Table ==
+
+ **Maximum System Characteristic Table**
+
Optional, not currently supported.
MSDM Signature Reserved (signature == "MSDM")
- == Microsoft Data Management table ==
+
+ **Microsoft Data Management table**
+
Microsoft only table, will not be supported.
NFIT Section 5.2.25 (signature == "NFIT")
- == NVDIMM Firmware Interface Table ==
+
+ **NVDIMM Firmware Interface Table**
+
Optional, not currently supported.
OEMx Signature of "OEMx" only
- == OEM Specific Tables ==
+
+ **OEM Specific Tables**
+
All tables starting with a signature of "OEM" are reserved for OEM
use. Since these are not meant to be of general use but are limited
to very specific end users, they are not recommended for use and are
not supported by the kernel for arm64.
PCCT Section 14.1 (signature == "PCCT)
- == Platform Communications Channel Table ==
+
+ **Platform Communications Channel Table**
+
Recommend for use on arm64; use of PCC is recommended when using CPPC
to control performance and power for platform processors.
PMTT Section 5.2.21.12 (signature == "PMTT")
- == Platform Memory Topology Table ==
+
+ **Platform Memory Topology Table**
+
Optional, not currently supported.
PSDT Section 5.2.11.3 (signature == "PSDT")
- == Persistent System Description Table ==
+
+ **Persistent System Description Table**
+
Obsolete table, will not be supported.
RASF Section 5.2.20 (signature == "RASF")
- == RAS Feature table ==
+
+ **RAS Feature table**
+
Optional, not currently supported.
RSDP Section 5.2.5 (signature == "RSD PTR")
- == Root System Description PoinTeR ==
+
+ **Root System Description PoinTeR**
+
Required for arm64.
RSDT Section 5.2.7 (signature == "RSDT")
- == Root System Description Table ==
+
+ **Root System Description Table**
+
Since this table can only provide 32-bit addresses, it is deprecated
on arm64, and will not be used. If provided, it will be ignored.
SBST Section 5.2.14 (signature == "SBST")
- == Smart Battery Subsystem Table ==
+
+ **Smart Battery Subsystem Table**
+
Optional, not currently supported.
SLIC Signature Reserved (signature == "SLIC")
- == Software LIcensing table ==
+
+ **Software LIcensing table**
+
Microsoft only table, will not be supported.
SLIT Section 5.2.17 (signature == "SLIT")
- == System Locality distance Information Table ==
+
+ **System Locality distance Information Table**
+
Optional in general, but required for NUMA systems.
SPCR Signature Reserved (signature == "SPCR")
- == Serial Port Console Redirection table ==
+
+ **Serial Port Console Redirection table**
+
Required for arm64.
SPMI Signature Reserved (signature == "SPMI")
- == Server Platform Management Interface table ==
+
+ **Server Platform Management Interface table**
+
Optional, not currently supported.
SRAT Section 5.2.16 (signature == "SRAT")
- == System Resource Affinity Table ==
+
+ **System Resource Affinity Table**
+
Optional, but if used, only the GICC Affinity structures are read.
To support arm64 NUMA, this table is required.
SSDT Section 5.2.11.2 (signature == "SSDT")
- == Secondary System Description Table ==
+
+ **Secondary System Description Table**
+
These tables are a continuation of the DSDT; these are recommended
for use with devices that can be added to a running system, but can
also serve the purpose of dividing up device descriptions into more
@@ -272,49 +365,69 @@ SSDT Section 5.2.11.2 (signature == "SSDT")
one DSDT but can contain many SSDTs.
STAO Signature Reserved (signature == "STAO")
- == _STA Override table ==
+
+ **_STA Override table**
+
Optional, but only necessary in virtualized environments in order to
hide devices from guest OSs.
TCPA Signature Reserved (signature == "TCPA")
- == Trusted Computing Platform Alliance table ==
+
+ **Trusted Computing Platform Alliance table**
+
Optional, not currently supported, and may need changes to fully
interoperate with arm64.
TPM2 Signature Reserved (signature == "TPM2")
- == Trusted Platform Module 2 table ==
+
+ **Trusted Platform Module 2 table**
+
Optional, not currently supported, and may need changes to fully
interoperate with arm64.
UEFI Signature Reserved (signature == "UEFI")
- == UEFI ACPI data table ==
+
+ **UEFI ACPI data table**
+
Optional, not currently supported. No known use case for arm64,
at present.
WAET Signature Reserved (signature == "WAET")
- == Windows ACPI Emulated devices Table ==
+
+ **Windows ACPI Emulated devices Table**
+
Microsoft only table, will not be supported.
WDAT Signature Reserved (signature == "WDAT")
- == Watch Dog Action Table ==
+
+ **Watch Dog Action Table**
+
Microsoft only table, will not be supported.
WDRT Signature Reserved (signature == "WDRT")
- == Watch Dog Resource Table ==
+
+ **Watch Dog Resource Table**
+
Microsoft only table, will not be supported.
WPBT Signature Reserved (signature == "WPBT")
- == Windows Platform Binary Table ==
+
+ **Windows Platform Binary Table**
+
Microsoft only table, will not be supported.
XENV Signature Reserved (signature == "XENV")
- == Xen project table ==
+
+ **Xen project table**
+
Optional, used only by Xen at present.
XSDT Section 5.2.8 (signature == "XSDT")
- == eXtended System Description Table ==
- Required for arm64.
+ **eXtended System Description Table**
+
+ Required for arm64.
+====== ========================================================================
ACPI Objects
------------
@@ -323,10 +436,11 @@ shown in the list that follows; any object not explicitly mentioned below
should be used as needed for a particular platform or particular subsystem,
such as power management or PCI.
+===== ================ ========================================================
Name Section Usage for ARMv8 Linux
----- ------------ -------------------------------------------------
+===== ================ ========================================================
_CCA 6.2.17 This method must be defined for all bus masters
- on arm64 -- there are no assumptions made about
+ on arm64 - there are no assumptions made about
whether such devices are cache coherent or not.
The _CCA value is inherited by all descendants of
these devices so it does not need to be repeated.
@@ -422,8 +536,8 @@ _OSC 6.2.11 This method can be a global method in ACPI (i.e.,
by the kernel community, then register it with the
UEFI Forum.
-\_OSI 5.7.2 Deprecated on ARM64. As far as ACPI firmware is
- concerned, _OSI is not to be used to determine what
+\_OSI 5.7.2 Deprecated on ARM64. As far as ACPI firmware is
+ concerned, _OSI is not to be used to determine what
sort of system is being used or what functionality
is provided. The _OSC method is to be used instead.
@@ -447,7 +561,7 @@ _PSx 7.3.2-5 Use as needed; power management specific. If _PS0 is
usage, change them in these methods.
_RDI 8.4.4.4 Recommended for use with processor definitions (_HID
- ACPI0010) on arm64. This should only be used in
+ ACPI0010) on arm64. This should only be used in
conjunction with _LPI.
\_REV 5.7.4 Always returns the latest version of ACPI supported.
@@ -476,6 +590,7 @@ _SWS 7.4.3 Use as needed; power management specific; this may
_UID 6.1.12 Recommended for distinguishing devices of the same
class; define it if at all possible.
+===== ================ ========================================================
@@ -488,7 +603,7 @@ platforms, ACPI events must be signaled differently.
There are two options: GPIO-signaled interrupts (Section 5.6.5), and
interrupt-signaled events (Section 5.6.9). Interrupt-signaled events are a
-new feature in the ACPI 6.1 specification. Either -- or both -- can be used
+new feature in the ACPI 6.1 specification. Either - or both - can be used
on a given platform, and which to use may be dependent of limitations in any
given SoC. If possible, interrupt-signaled events are recommended.
@@ -564,39 +679,40 @@ supported.
The following classes of objects are not supported:
- -- Section 9.2: ambient light sensor devices
+ - Section 9.2: ambient light sensor devices
- -- Section 9.3: battery devices
+ - Section 9.3: battery devices
- -- Section 9.4: lids (e.g., laptop lids)
+ - Section 9.4: lids (e.g., laptop lids)
- -- Section 9.8.2: IDE controllers
+ - Section 9.8.2: IDE controllers
- -- Section 9.9: floppy controllers
+ - Section 9.9: floppy controllers
- -- Section 9.10: GPE block devices
+ - Section 9.10: GPE block devices
- -- Section 9.15: PC/AT RTC/CMOS devices
+ - Section 9.15: PC/AT RTC/CMOS devices
- -- Section 9.16: user presence detection devices
+ - Section 9.16: user presence detection devices
- -- Section 9.17: I/O APIC devices; all GICs must be enumerable via MADT
+ - Section 9.17: I/O APIC devices; all GICs must be enumerable via MADT
- -- Section 9.18: time and alarm devices (see 9.15)
+ - Section 9.18: time and alarm devices (see 9.15)
- -- Section 10: power source and power meter devices
+ - Section 10: power source and power meter devices
- -- Section 11: thermal management
+ - Section 11: thermal management
- -- Section 12: embedded controllers interface
+ - Section 12: embedded controllers interface
- -- Section 13: SMBus interfaces
+ - Section 13: SMBus interfaces
This also means that there is no support for the following objects:
+==== =========================== ==== ==========
Name Section Name Section
----- ------------ ---- ------------
+==== =========================== ==== ==========
_ALC 9.3.4 _FDM 9.10.3
_ALI 9.3.2 _FIX 6.2.7
_ALP 9.3.6 _GAI 10.4.5
@@ -619,4 +735,4 @@ _DCK 6.5.2 _UPD 9.16.1
_EC 12.12 _UPP 9.16.2
_FDE 9.10.1 _WPC 10.5.2
_FDI 9.10.2 _WPP 10.5.3
-
+==== =========================== ==== ==========
diff --git a/Documentation/arm64/arm-acpi.txt b/Documentation/arm64/arm-acpi.rst
index 1a74a041a443..872dbbc73d4a 100644
--- a/Documentation/arm64/arm-acpi.txt
+++ b/Documentation/arm64/arm-acpi.rst
@@ -1,5 +1,7 @@
+=====================
ACPI on ARMv8 Servers
----------------------
+=====================
+
ACPI can be used for ARMv8 general purpose servers designed to follow
the ARM SBSA (Server Base System Architecture) [0] and SBBR (Server
Base Boot Requirements) [1] specifications. Please note that the SBBR
@@ -34,28 +36,28 @@ of the summary text almost directly, to be honest.
The short form of the rationale for ACPI on ARM is:
--- ACPI’s byte code (AML) allows the platform to encode hardware behavior,
+- ACPI’s byte code (AML) allows the platform to encode hardware behavior,
while DT explicitly does not support this. For hardware vendors, being
able to encode behavior is a key tool used in supporting operating
system releases on new hardware.
--- ACPI’s OSPM defines a power management model that constrains what the
+- ACPI’s OSPM defines a power management model that constrains what the
platform is allowed to do into a specific model, while still providing
flexibility in hardware design.
--- In the enterprise server environment, ACPI has established bindings (such
+- In the enterprise server environment, ACPI has established bindings (such
as for RAS) which are currently used in production systems. DT does not.
Such bindings could be defined in DT at some point, but doing so means ARM
and x86 would end up using completely different code paths in both firmware
and the kernel.
--- Choosing a single interface to describe the abstraction between a platform
+- Choosing a single interface to describe the abstraction between a platform
and an OS is important. Hardware vendors would not be required to implement
both DT and ACPI if they want to support multiple operating systems. And,
agreeing on a single interface instead of being fragmented into per OS
interfaces makes for better interoperability overall.
--- The new ACPI governance process works well and Linux is now at the same
+- The new ACPI governance process works well and Linux is now at the same
table as hardware vendors and other OS vendors. In fact, there is no
longer any reason to feel that ACPI only belongs to Windows or that
Linux is in any way secondary to Microsoft in this arena. The move of
@@ -169,31 +171,31 @@ For the ACPI core to operate properly, and in turn provide the information
the kernel needs to configure devices, it expects to find the following
tables (all section numbers refer to the ACPI 6.1 specification):
- -- RSDP (Root System Description Pointer), section 5.2.5
+ - RSDP (Root System Description Pointer), section 5.2.5
- -- XSDT (eXtended System Description Table), section 5.2.8
+ - XSDT (eXtended System Description Table), section 5.2.8
- -- FADT (Fixed ACPI Description Table), section 5.2.9
+ - FADT (Fixed ACPI Description Table), section 5.2.9
- -- DSDT (Differentiated System Description Table), section
+ - DSDT (Differentiated System Description Table), section
5.2.11.1
- -- MADT (Multiple APIC Description Table), section 5.2.12
+ - MADT (Multiple APIC Description Table), section 5.2.12
- -- GTDT (Generic Timer Description Table), section 5.2.24
+ - GTDT (Generic Timer Description Table), section 5.2.24
- -- If PCI is supported, the MCFG (Memory mapped ConFiGuration
+ - If PCI is supported, the MCFG (Memory mapped ConFiGuration
Table), section 5.2.6, specifically Table 5-31.
- -- If booting without a console=<device> kernel parameter is
+ - If booting without a console=<device> kernel parameter is
supported, the SPCR (Serial Port Console Redirection table),
section 5.2.6, specifically Table 5-31.
- -- If necessary to describe the I/O topology, SMMUs and GIC ITSs,
+ - If necessary to describe the I/O topology, SMMUs and GIC ITSs,
the IORT (Input Output Remapping Table, section 5.2.6, specifically
Table 5-31).
- -- If NUMA is supported, the SRAT (System Resource Affinity Table)
+ - If NUMA is supported, the SRAT (System Resource Affinity Table)
and SLIT (System Locality distance Information Table), sections
5.2.16 and 5.2.17, respectively.
@@ -269,9 +271,9 @@ describes how to define the structure of an object returned via _DSD, and
how specific data structures are defined by specific UUIDs. Linux should
only use the _DSD Device Properties UUID [5]:
- -- UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301
+ - UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301
- -- http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
+ - http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
The UEFI Forum provides a mechanism for registering device properties [4]
so that they may be used across all operating systems supporting ACPI.
@@ -327,10 +329,10 @@ turning a device full off.
There are two options for using those Power Resources. They can:
- -- be managed in a _PSx method which gets called on entry to power
+ - be managed in a _PSx method which gets called on entry to power
state Dx.
- -- be declared separately as power resources with their own _ON and _OFF
+ - be declared separately as power resources with their own _ON and _OFF
methods. They are then tied back to D-states for a particular device
via _PRx which specifies which power resources a device needs to be on
while in Dx. Kernel then tracks number of devices using a power resource
@@ -339,16 +341,16 @@ There are two options for using those Power Resources. They can:
The kernel ACPI code will also assume that the _PSx methods follow the normal
ACPI rules for such methods:
- -- If either _PS0 or _PS3 is implemented, then the other method must also
+ - If either _PS0 or _PS3 is implemented, then the other method must also
be implemented.
- -- If a device requires usage or setup of a power resource when on, the ASL
+ - If a device requires usage or setup of a power resource when on, the ASL
should organize that it is allocated/enabled using the _PS0 method.
- -- Resources allocated or enabled in the _PS0 method should be disabled
+ - Resources allocated or enabled in the _PS0 method should be disabled
or de-allocated in the _PS3 method.
- -- Firmware will leave the resources in a reasonable state before handing
+ - Firmware will leave the resources in a reasonable state before handing
over control to the kernel.
Such code in _PSx methods will of course be very platform specific. But,
@@ -394,52 +396,52 @@ else must be discovered by the driver probe function. Then, have the rest
of the driver operate off of the contents of that struct. Doing so should
allow most divergence between ACPI and DT functionality to be kept local to
the probe function instead of being scattered throughout the driver. For
-example:
-
-static int device_probe_dt(struct platform_device *pdev)
-{
- /* DT specific functionality */
- ...
-}
-
-static int device_probe_acpi(struct platform_device *pdev)
-{
- /* ACPI specific functionality */
- ...
-}
-
-static int device_probe(struct platform_device *pdev)
-{
- ...
- struct device_node node = pdev->dev.of_node;
- ...
-
- if (node)
- ret = device_probe_dt(pdev);
- else if (ACPI_HANDLE(&pdev->dev))
- ret = device_probe_acpi(pdev);
- else
- /* other initialization */
- ...
- /* Continue with any generic probe operations */
- ...
-}
+example::
+
+ static int device_probe_dt(struct platform_device *pdev)
+ {
+ /* DT specific functionality */
+ ...
+ }
+
+ static int device_probe_acpi(struct platform_device *pdev)
+ {
+ /* ACPI specific functionality */
+ ...
+ }
+
+ static int device_probe(struct platform_device *pdev)
+ {
+ ...
+ struct device_node node = pdev->dev.of_node;
+ ...
+
+ if (node)
+ ret = device_probe_dt(pdev);
+ else if (ACPI_HANDLE(&pdev->dev))
+ ret = device_probe_acpi(pdev);
+ else
+ /* other initialization */
+ ...
+ /* Continue with any generic probe operations */
+ ...
+ }
DO keep the MODULE_DEVICE_TABLE entries together in the driver to make it
clear the different names the driver is probed for, both from DT and from
-ACPI:
+ACPI::
-static struct of_device_id virtio_mmio_match[] = {
- { .compatible = "virtio,mmio", },
- { }
-};
-MODULE_DEVICE_TABLE(of, virtio_mmio_match);
+ static struct of_device_id virtio_mmio_match[] = {
+ { .compatible = "virtio,mmio", },
+ { }
+ };
+ MODULE_DEVICE_TABLE(of, virtio_mmio_match);
-static const struct acpi_device_id virtio_mmio_acpi_match[] = {
- { "LNRO0005", },
- { }
-};
-MODULE_DEVICE_TABLE(acpi, virtio_mmio_acpi_match);
+ static const struct acpi_device_id virtio_mmio_acpi_match[] = {
+ { "LNRO0005", },
+ { }
+ };
+ MODULE_DEVICE_TABLE(acpi, virtio_mmio_acpi_match);
ASWG
@@ -471,7 +473,8 @@ Linux Code
Individual items specific to Linux on ARM, contained in the the Linux
source code, are in the list that follows:
-ACPI_OS_NAME This macro defines the string to be returned when
+ACPI_OS_NAME
+ This macro defines the string to be returned when
an ACPI method invokes the _OS method. On ARM64
systems, this macro will be "Linux" by default.
The command line parameter acpi_os=<string>
@@ -482,38 +485,44 @@ ACPI_OS_NAME This macro defines the string to be returned when
ACPI Objects
------------
Detailed expectations for ACPI tables and object are listed in the file
-Documentation/arm64/acpi_object_usage.txt.
+Documentation/arm64/acpi_object_usage.rst.
References
----------
-[0] http://silver.arm.com -- document ARM-DEN-0029, or newer
+[0] http://silver.arm.com
+ document ARM-DEN-0029, or newer:
"Server Base System Architecture", version 2.3, dated 27 Mar 2014
[1] http://infocenter.arm.com/help/topic/com.arm.doc.den0044a/Server_Base_Boot_Requirements.pdf
Document ARM-DEN-0044A, or newer: "Server Base Boot Requirements, System
Software on ARM Platforms", dated 16 Aug 2014
-[2] http://www.secretlab.ca/archives/151, 10 Jan 2015, Copyright (c) 2015,
+[2] http://www.secretlab.ca/archives/151,
+ 10 Jan 2015, Copyright (c) 2015,
Linaro Ltd., written by Grant Likely.
-[3] AMD ACPI for Seattle platform documentation:
+[3] AMD ACPI for Seattle platform documentation
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Seattle_ACPI_Guide.pdf
-[4] http://www.uefi.org/acpi -- please see the link for the "ACPI _DSD Device
+
+[4] http://www.uefi.org/acpi
+ please see the link for the "ACPI _DSD Device
Property Registry Instructions"
-[5] http://www.uefi.org/acpi -- please see the link for the "_DSD (Device
+[5] http://www.uefi.org/acpi
+ please see the link for the "_DSD (Device
Specific Data) Implementation Guide"
-[6] Kernel code for the unified device property interface can be found in
+[6] Kernel code for the unified device
+ property interface can be found in
include/linux/property.h and drivers/base/property.c.
Authors
-------
-Al Stone <al.stone@linaro.org>
-Graeme Gregory <graeme.gregory@linaro.org>
-Hanjun Guo <hanjun.guo@linaro.org>
+- Al Stone <al.stone@linaro.org>
+- Graeme Gregory <graeme.gregory@linaro.org>
+- Hanjun Guo <hanjun.guo@linaro.org>
-Grant Likely <grant.likely@linaro.org>, for the "Why ACPI on ARM?" section
+- Grant Likely <grant.likely@linaro.org>, for the "Why ACPI on ARM?" section
diff --git a/Documentation/arm64/booting.txt b/Documentation/arm64/booting.rst
index fbab7e21d116..d3f3a60fbf25 100644
--- a/Documentation/arm64/booting.txt
+++ b/Documentation/arm64/booting.rst
@@ -1,7 +1,9 @@
- Booting AArch64 Linux
- =====================
+=====================
+Booting AArch64 Linux
+=====================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 07 September 2012
This document is based on the ARM booting document by Russell King and
@@ -12,7 +14,7 @@ The AArch64 exception model is made up of a number of exception levels
counterpart. EL2 is the hypervisor level and exists only in non-secure
mode. EL3 is the highest priority level and exists only in secure mode.
-For the purposes of this document, we will use the term `boot loader'
+For the purposes of this document, we will use the term `boot loader`
simply to define all software that executes on the CPU(s) before control
is passed to the Linux kernel. This may include secure monitor and
hypervisor code, or it may just be a handful of instructions for
@@ -70,7 +72,7 @@ Image target is available instead.
Requirement: MANDATORY
-The decompressed kernel image contains a 64-byte header as follows:
+The decompressed kernel image contains a 64-byte header as follows::
u32 code0; /* Executable code */
u32 code1; /* Executable code */
@@ -103,19 +105,26 @@ Header notes:
- The flags field (introduced in v3.17) is a little-endian 64-bit field
composed as follows:
- Bit 0: Kernel endianness. 1 if BE, 0 if LE.
- Bit 1-2: Kernel Page size.
- 0 - Unspecified.
- 1 - 4K
- 2 - 16K
- 3 - 64K
- Bit 3: Kernel physical placement
- 0 - 2MB aligned base should be as close as possible
- to the base of DRAM, since memory below it is not
- accessible via the linear mapping
- 1 - 2MB aligned base may be anywhere in physical
- memory
- Bits 4-63: Reserved.
+
+ ============= ===============================================================
+ Bit 0 Kernel endianness. 1 if BE, 0 if LE.
+ Bit 1-2 Kernel Page size.
+
+ * 0 - Unspecified.
+ * 1 - 4K
+ * 2 - 16K
+ * 3 - 64K
+ Bit 3 Kernel physical placement
+
+ 0
+ 2MB aligned base should be as close as possible
+ to the base of DRAM, since memory below it is not
+ accessible via the linear mapping
+ 1
+ 2MB aligned base may be anywhere in physical
+ memory
+ Bits 4-63 Reserved.
+ ============= ===============================================================
- When image_size is zero, a bootloader should attempt to keep as much
memory as possible free for use by the kernel immediately after the
@@ -147,19 +156,22 @@ Before jumping into the kernel, the following conditions must be met:
corrupted by bogus network packets or disk data. This will save
you many hours of debug.
-- Primary CPU general-purpose register settings
- x0 = physical address of device tree blob (dtb) in system RAM.
- x1 = 0 (reserved for future use)
- x2 = 0 (reserved for future use)
- x3 = 0 (reserved for future use)
+- Primary CPU general-purpose register settings:
+
+ - x0 = physical address of device tree blob (dtb) in system RAM.
+ - x1 = 0 (reserved for future use)
+ - x2 = 0 (reserved for future use)
+ - x3 = 0 (reserved for future use)
- CPU mode
+
All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError,
IRQ and FIQ).
The CPU must be in either EL2 (RECOMMENDED in order to have access to
the virtualisation extensions) or non-secure EL1.
- Caches, MMUs
+
The MMU must be off.
Instruction cache may be on or off.
The address range corresponding to the loaded kernel image must be
@@ -172,18 +184,21 @@ Before jumping into the kernel, the following conditions must be met:
operations (not recommended) must be configured and disabled.
- Architected timers
+
CNTFRQ must be programmed with the timer frequency and CNTVOFF must
be programmed with a consistent value on all CPUs. If entering the
kernel at EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0) set where
available.
- Coherency
+
All CPUs to be booted by the kernel must be part of the same coherency
domain on entry to the kernel. This may require IMPLEMENTATION DEFINED
initialisation to enable the receiving of maintenance operations on
each CPU.
- System registers
+
All writable architected system registers at the exception level where
the kernel image will be entered must be initialised by software at a
higher exception level to prevent execution in an UNKNOWN state.
@@ -195,28 +210,40 @@ Before jumping into the kernel, the following conditions must be met:
For systems with a GICv3 interrupt controller to be used in v3 mode:
- If EL3 is present:
- ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
- ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
+
+ - ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
+ - ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
+
- If the kernel is entered at EL1:
- ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1
- ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.
+
+ - ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1
+ - ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.
+
- The DT or ACPI tables must describe a GICv3 interrupt controller.
For systems with a GICv3 interrupt controller to be used in
compatibility (v2) mode:
+
- If EL3 is present:
- ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0.
+
+ ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0.
+
- If the kernel is entered at EL1:
- ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0.
+
+ ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0.
+
- The DT or ACPI tables must describe a GICv2 interrupt controller.
For CPUs with pointer authentication functionality:
- If EL3 is present:
- SCR_EL3.APK (bit 16) must be initialised to 0b1
- SCR_EL3.API (bit 17) must be initialised to 0b1
+
+ - SCR_EL3.APK (bit 16) must be initialised to 0b1
+ - SCR_EL3.API (bit 17) must be initialised to 0b1
+
- If the kernel is entered at EL1:
- HCR_EL2.APK (bit 40) must be initialised to 0b1
- HCR_EL2.API (bit 41) must be initialised to 0b1
+
+ - HCR_EL2.APK (bit 40) must be initialised to 0b1
+ - HCR_EL2.API (bit 41) must be initialised to 0b1
The requirements described above for CPU mode, caches, MMUs, architected
timers, coherency and system registers apply to all CPUs. All CPUs must
@@ -257,7 +284,7 @@ following manner:
processors") to bring CPUs into the kernel.
The device tree should contain a 'psci' node, as described in
- Documentation/devicetree/bindings/arm/psci.txt.
+ Documentation/devicetree/bindings/arm/psci.yaml.
- Secondary CPU general-purpose register settings
x0 = 0 (reserved for future use)
diff --git a/Documentation/arm64/cpu-feature-registers.txt b/Documentation/arm64/cpu-feature-registers.rst
index 684a0da39378..2955287e9acc 100644
--- a/Documentation/arm64/cpu-feature-registers.txt
+++ b/Documentation/arm64/cpu-feature-registers.rst
@@ -1,5 +1,6 @@
- ARM64 CPU Feature Registers
- ===========================
+===========================
+ARM64 CPU Feature Registers
+===========================
Author: Suzuki K Poulose <suzuki.poulose@arm.com>
@@ -9,7 +10,7 @@ registers to userspace. The availability of this ABI is advertised
via the HWCAP_CPUID in HWCAPs.
1. Motivation
----------------
+-------------
The ARM architecture defines a set of feature registers, which describe
the capabilities of the CPU/system. Access to these system registers is
@@ -33,9 +34,10 @@ there are some issues with their usage.
2. Requirements
------------------
+---------------
+
+ a) Safety:
- a) Safety :
Applications should be able to use the information provided by the
infrastructure to run safely across the system. This has greater
implications on a system with heterogeneous CPUs.
@@ -47,7 +49,8 @@ there are some issues with their usage.
Otherwise an application could crash when scheduled on the CPU
which doesn't support CRC32.
- b) Security :
+ b) Security:
+
Applications should only be able to receive information that is
relevant to the normal operation in userspace. Hence, some of the
fields are masked out(i.e, made invisible) and their values are set to
@@ -58,10 +61,12 @@ there are some issues with their usage.
(even when the CPU provides it).
c) Implementation Defined Features
+
The infrastructure doesn't expose any register which is
IMPLEMENTATION DEFINED as per ARMv8-A Architecture.
- d) CPU Identification :
+ d) CPU Identification:
+
MIDR_EL1 is exposed to help identify the processor. On a
heterogeneous system, this could be racy (just like getcpu()). The
process could be migrated to another CPU by the time it uses the
@@ -70,7 +75,7 @@ there are some issues with their usage.
currently executing on. The REVIDR is not exposed due to this
constraint, as REVIDR makes sense only in conjunction with the
MIDR. Alternately, MIDR_EL1 and REVIDR_EL1 are exposed via sysfs
- at:
+ at::
/sys/devices/system/cpu/cpu$ID/regs/identification/
\- midr
@@ -85,7 +90,8 @@ exception and ends up in SIGILL being delivered to the process.
The infrastructure hooks into the exception handler and emulates the
operation if the source belongs to the supported system register space.
-The infrastructure emulates only the following system register space:
+The infrastructure emulates only the following system register space::
+
Op0=3, Op1=0, CRn=0, CRm=0,4,5,6,7
(See Table C5-6 'System instruction encodings for non-Debug System
@@ -107,73 +113,76 @@ infrastructure:
-------------------------------------------
1) ID_AA64ISAR0_EL1 - Instruction Set Attribute Register 0
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| TS | [55-52] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FHM | [51-48] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DP | [47-44] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM4 | [43-40] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM3 | [39-36] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA3 | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| RDM | [31-28] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| ATOMICS | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| CRC32 | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA2 | [15-12] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA1 | [11-8] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AES | [7-4] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
2) ID_AA64PFR0_EL1 - Processor Feature Register 0
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DIT | [51-48] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SVE | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GIC | [27-24] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AdvSIMD | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FP | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL3 | [15-12] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL2 | [11-8] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL1 | [7-4] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL0 | [3-0] | n |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
3) MIDR_EL1 - Main ID Register
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Implementer | [31-24] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Variant | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Architecture | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| PartNum | [15-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Revision | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
NOTE: The 'visible' fields of MIDR_EL1 will contain the value
as available on the CPU where it is fetched and is not a system
@@ -181,90 +190,92 @@ infrastructure:
4) ID_AA64ISAR1_EL1 - Instruction set attribute register 1
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GPI | [31-28] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GPA | [27-24] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| LRCPC | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FCMA | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| JSCVT | [15-12] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| API | [11-8] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| APA | [7-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DPB | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
5) ID_AA64MMFR2_EL1 - Memory model feature register 2
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AT | [35-32] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
6) ID_AA64ZFR0_EL1 - SVE feature ID register 0
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM4 | [43-40] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA3 | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| BitPerm | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AES | [7-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SVEVer | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
Appendix I: Example
----------------------------
-
-/*
- * Sample program to demonstrate the MRS emulation ABI.
- *
- * Copyright (C) 2015-2016, ARM Ltd
- *
- * Author: Suzuki K Poulose <suzuki.poulose@arm.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
-
-#include <asm/hwcap.h>
-#include <stdio.h>
-#include <sys/auxv.h>
-
-#define get_cpu_ftr(id) ({ \
+-------------------
+
+::
+
+ /*
+ * Sample program to demonstrate the MRS emulation ABI.
+ *
+ * Copyright (C) 2015-2016, ARM Ltd
+ *
+ * Author: Suzuki K Poulose <suzuki.poulose@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+ #include <asm/hwcap.h>
+ #include <stdio.h>
+ #include <sys/auxv.h>
+
+ #define get_cpu_ftr(id) ({ \
unsigned long __val; \
asm("mrs %0, "#id : "=r" (__val)); \
printf("%-20s: 0x%016lx\n", #id, __val); \
})
-int main(void)
-{
+ int main(void)
+ {
if (!(getauxval(AT_HWCAP) & HWCAP_CPUID)) {
fputs("CPUID registers unavailable\n", stderr);
@@ -284,13 +295,10 @@ int main(void)
get_cpu_ftr(MPIDR_EL1);
get_cpu_ftr(REVIDR_EL1);
-#if 0
+ #if 0
/* Unexposed register access causes SIGILL */
get_cpu_ftr(ID_MMFR0_EL1);
-#endif
+ #endif
return 0;
-}
-
-
-
+ }
diff --git a/Documentation/arm64/elf_hwcaps.txt b/Documentation/arm64/elf_hwcaps.rst
index b73a2519ecf2..91f79529c58c 100644
--- a/Documentation/arm64/elf_hwcaps.txt
+++ b/Documentation/arm64/elf_hwcaps.rst
@@ -1,3 +1,4 @@
+================
ARM64 ELF hwcaps
================
@@ -15,16 +16,16 @@ of flags called hwcaps, exposed in the auxilliary vector.
Userspace software can test for features by acquiring the AT_HWCAP or
AT_HWCAP2 entry of the auxiliary vector, and testing whether the relevant
-flags are set, e.g.
+flags are set, e.g.::
-bool floating_point_is_present(void)
-{
- unsigned long hwcaps = getauxval(AT_HWCAP);
- if (hwcaps & HWCAP_FP)
- return true;
+ bool floating_point_is_present(void)
+ {
+ unsigned long hwcaps = getauxval(AT_HWCAP);
+ if (hwcaps & HWCAP_FP)
+ return true;
- return false;
-}
+ return false;
+ }
Where software relies on a feature described by a hwcap, it should check
the relevant hwcap flag to verify that the feature is present before
@@ -45,7 +46,7 @@ userspace code at EL0. These hwcaps are defined in terms of ID register
fields, and should be interpreted with reference to the definition of
these fields in the ARM Architecture Reference Manual (ARM ARM).
-Such hwcaps are described below in the form:
+Such hwcaps are described below in the form::
Functionality implied by idreg.field == val.
@@ -64,75 +65,58 @@ reference to ID registers, and may refer to other documentation.
---------------------------------
HWCAP_FP
-
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0000.
HWCAP_ASIMD
-
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0000.
HWCAP_EVTSTRM
-
The generic timer is configured to generate events at a frequency of
approximately 100KHz.
HWCAP_AES
-
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0001.
HWCAP_PMULL
-
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0010.
HWCAP_SHA1
-
Functionality implied by ID_AA64ISAR0_EL1.SHA1 == 0b0001.
HWCAP_SHA2
-
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0001.
HWCAP_CRC32
-
Functionality implied by ID_AA64ISAR0_EL1.CRC32 == 0b0001.
HWCAP_ATOMICS
-
Functionality implied by ID_AA64ISAR0_EL1.Atomic == 0b0010.
HWCAP_FPHP
-
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0001.
HWCAP_ASIMDHP
-
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0001.
HWCAP_CPUID
-
EL0 access to certain ID registers is available, to the extent
- described by Documentation/arm64/cpu-feature-registers.txt.
+ described by Documentation/arm64/cpu-feature-registers.rst.
These ID registers may imply the availability of features.
HWCAP_ASIMDRDM
-
Functionality implied by ID_AA64ISAR0_EL1.RDM == 0b0001.
HWCAP_JSCVT
-
Functionality implied by ID_AA64ISAR1_EL1.JSCVT == 0b0001.
HWCAP_FCMA
-
Functionality implied by ID_AA64ISAR1_EL1.FCMA == 0b0001.
HWCAP_LRCPC
-
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0001.
HWCAP_DCPOP
-
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001.
HWCAP2_DCPODP
@@ -140,27 +124,21 @@ HWCAP2_DCPODP
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0010.
HWCAP_SHA3
-
Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001.
HWCAP_SM3
-
Functionality implied by ID_AA64ISAR0_EL1.SM3 == 0b0001.
HWCAP_SM4
-
Functionality implied by ID_AA64ISAR0_EL1.SM4 == 0b0001.
HWCAP_ASIMDDP
-
Functionality implied by ID_AA64ISAR0_EL1.DP == 0b0001.
HWCAP_SHA512
-
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0010.
HWCAP_SVE
-
Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001.
HWCAP2_SVE2
@@ -188,40 +166,40 @@ HWCAP2_SVESM4
Functionality implied by ID_AA64ZFR0_EL1.SM4 == 0b0001.
HWCAP_ASIMDFHM
-
Functionality implied by ID_AA64ISAR0_EL1.FHM == 0b0001.
HWCAP_DIT
-
Functionality implied by ID_AA64PFR0_EL1.DIT == 0b0001.
HWCAP_USCAT
-
Functionality implied by ID_AA64MMFR2_EL1.AT == 0b0001.
HWCAP_ILRCPC
-
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0010.
HWCAP_FLAGM
-
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
-HWCAP_SSBS
+HWCAP2_FLAGM2
+ Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0010.
+
+HWCAP_SSBS
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.
HWCAP_PACA
-
Functionality implied by ID_AA64ISAR1_EL1.APA == 0b0001 or
ID_AA64ISAR1_EL1.API == 0b0001, as described by
- Documentation/arm64/pointer-authentication.txt.
+ Documentation/arm64/pointer-authentication.rst.
HWCAP_PACG
-
Functionality implied by ID_AA64ISAR1_EL1.GPA == 0b0001 or
ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
- Documentation/arm64/pointer-authentication.txt.
+ Documentation/arm64/pointer-authentication.rst.
+
+HWCAP2_FRINT
+
+ Functionality implied by ID_AA64ISAR1_EL1.FRINTTS == 0b0001.
4. Unused AT_HWCAP bits
diff --git a/Documentation/arm64/hugetlbpage.txt b/Documentation/arm64/hugetlbpage.rst
index cfae87dc653b..b44f939e5210 100644
--- a/Documentation/arm64/hugetlbpage.txt
+++ b/Documentation/arm64/hugetlbpage.rst
@@ -1,3 +1,4 @@
+====================
HugeTLBpage on ARM64
====================
@@ -31,8 +32,10 @@ and level of the page table.
The following hugepage sizes are supported -
- CONT PTE PMD CONT PMD PUD
- -------- --- -------- ---
+ ====== ======== ==== ======== ===
+ - CONT PTE PMD CONT PMD PUD
+ ====== ======== ==== ======== ===
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
+ ====== ======== ==== ======== ===
diff --git a/Documentation/arm64/index.rst b/Documentation/arm64/index.rst
new file mode 100644
index 000000000000..5c0c69dc58aa
--- /dev/null
+++ b/Documentation/arm64/index.rst
@@ -0,0 +1,27 @@
+==================
+ARM64 Architecture
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ acpi_object_usage
+ arm-acpi
+ booting
+ cpu-feature-registers
+ elf_hwcaps
+ hugetlbpage
+ legacy_instructions
+ memory
+ pointer-authentication
+ silicon-errata
+ sve
+ tagged-address-abi
+ tagged-pointers
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/arm64/kasan-offsets.sh b/Documentation/arm64/kasan-offsets.sh
new file mode 100644
index 000000000000..2b7a021db363
--- /dev/null
+++ b/Documentation/arm64/kasan-offsets.sh
@@ -0,0 +1,27 @@
+#!/bin/sh
+
+# Print out the KASAN_SHADOW_OFFSETS required to place the KASAN SHADOW
+# start address at the mid-point of the kernel VA space
+
+print_kasan_offset () {
+ printf "%02d\t" $1
+ printf "0x%08x00000000\n" $(( (0xffffffff & (-1 << ($1 - 1 - 32))) \
+ + (1 << ($1 - 32 - $2)) \
+ - (1 << (64 - 32 - $2)) ))
+}
+
+echo KASAN_SHADOW_SCALE_SHIFT = 3
+printf "VABITS\tKASAN_SHADOW_OFFSET\n"
+print_kasan_offset 48 3
+print_kasan_offset 47 3
+print_kasan_offset 42 3
+print_kasan_offset 39 3
+print_kasan_offset 36 3
+echo
+echo KASAN_SHADOW_SCALE_SHIFT = 4
+printf "VABITS\tKASAN_SHADOW_OFFSET\n"
+print_kasan_offset 48 4
+print_kasan_offset 47 4
+print_kasan_offset 42 4
+print_kasan_offset 39 4
+print_kasan_offset 36 4
diff --git a/Documentation/arm64/legacy_instructions.txt b/Documentation/arm64/legacy_instructions.rst
index 01bf3d9fac85..54401b22cb8f 100644
--- a/Documentation/arm64/legacy_instructions.txt
+++ b/Documentation/arm64/legacy_instructions.rst
@@ -1,3 +1,7 @@
+===================
+Legacy instructions
+===================
+
The arm64 port of the Linux kernel provides infrastructure to support
emulation of instructions which have been deprecated, or obsoleted in
the architecture. The infrastructure code uses undefined instruction
@@ -9,19 +13,22 @@ The emulation mode can be controlled by writing to sysctl nodes
behaviours and the corresponding values of the sysctl nodes -
* Undef
- Value: 0
+ Value: 0
+
Generates undefined instruction abort. Default for instructions that
have been obsoleted in the architecture, e.g., SWP
* Emulate
- Value: 1
+ Value: 1
+
Uses software emulation. To aid migration of software, in this mode
usage of emulated instruction is traced as well as rate limited
warnings are issued. This is the default for deprecated
instructions, .e.g., CP15 barriers
* Hardware Execution
- Value: 2
+ Value: 2
+
Although marked as deprecated, some implementations may support the
enabling/disabling of hardware support for the execution of these
instructions. Using hardware execution generally provides better
@@ -38,20 +45,24 @@ individual instruction notes for further information.
Supported legacy instructions
-----------------------------
* SWP{B}
-Node: /proc/sys/abi/swp
-Status: Obsolete
-Default: Undef (0)
+
+:Node: /proc/sys/abi/swp
+:Status: Obsolete
+:Default: Undef (0)
* CP15 Barriers
-Node: /proc/sys/abi/cp15_barrier
-Status: Deprecated
-Default: Emulate (1)
+
+:Node: /proc/sys/abi/cp15_barrier
+:Status: Deprecated
+:Default: Emulate (1)
* SETEND
-Node: /proc/sys/abi/setend
-Status: Deprecated
-Default: Emulate (1)*
-Note: All the cpus on the system must have mixed endian support at EL0
-for this feature to be enabled. If a new CPU - which doesn't support mixed
-endian - is hotplugged in after this feature has been enabled, there could
-be unexpected results in the application.
+
+:Node: /proc/sys/abi/setend
+:Status: Deprecated
+:Default: Emulate (1)*
+
+ Note: All the cpus on the system must have mixed endian support at EL0
+ for this feature to be enabled. If a new CPU - which doesn't support mixed
+ endian - is hotplugged in after this feature has been enabled, there could
+ be unexpected results in the application.
diff --git a/Documentation/arm64/memory.rst b/Documentation/arm64/memory.rst
new file mode 100644
index 000000000000..b040909e45f8
--- /dev/null
+++ b/Documentation/arm64/memory.rst
@@ -0,0 +1,165 @@
+==============================
+Memory Layout on AArch64 Linux
+==============================
+
+Author: Catalin Marinas <catalin.marinas@arm.com>
+
+This document describes the virtual memory layout used by the AArch64
+Linux kernel. The architecture allows up to 4 levels of translation
+tables with a 4KB page size and up to 3 levels with a 64KB page size.
+
+AArch64 Linux uses either 3 levels or 4 levels of translation tables
+with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
+(256TB) virtual addresses, respectively, for both user and kernel. With
+64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
+virtual address, are used but the memory layout is the same.
+
+ARMv8.2 adds optional support for Large Virtual Address space. This is
+only available when running with a 64KB page size and expands the
+number of descriptors in the first level of translation.
+
+User addresses have bits 63:48 set to 0 while the kernel addresses have
+the same bits set to 1. TTBRx selection is given by bit 63 of the
+virtual address. The swapper_pg_dir contains only kernel (global)
+mappings while the user pgd contains only user (non-global) mappings.
+The swapper_pg_dir address is written to TTBR1 and never written to
+TTBR0.
+
+
+AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit)::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 0000ffffffffffff 256TB user
+ ffff000000000000 ffff7fffffffffff 128TB kernel logical memory map
+ ffff800000000000 ffff9fffffffffff 32TB kasan shadow region
+ ffffa00000000000 ffffa00007ffffff 128MB bpf jit region
+ ffffa00008000000 ffffa0000fffffff 128MB modules
+ ffffa00010000000 fffffdffbffeffff ~93TB vmalloc
+ fffffdffbfff0000 fffffdfffe5f8fff ~998MB [guard region]
+ fffffdfffe5f9000 fffffdfffe9fffff 4124KB fixed mappings
+ fffffdfffea00000 fffffdfffebfffff 2MB [guard region]
+ fffffdfffec00000 fffffdffffbfffff 16MB PCI I/O space
+ fffffdffffc00000 fffffdffffdfffff 2MB [guard region]
+ fffffdffffe00000 ffffffffffdfffff 2TB vmemmap
+ ffffffffffe00000 ffffffffffffffff 2MB [guard region]
+
+
+AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support)::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 000fffffffffffff 4PB user
+ fff0000000000000 fff7ffffffffffff 2PB kernel logical memory map
+ fff8000000000000 fffd9fffffffffff 1440TB [gap]
+ fffda00000000000 ffff9fffffffffff 512TB kasan shadow region
+ ffffa00000000000 ffffa00007ffffff 128MB bpf jit region
+ ffffa00008000000 ffffa0000fffffff 128MB modules
+ ffffa00010000000 fffff81ffffeffff ~88TB vmalloc
+ fffff81fffff0000 fffffc1ffe58ffff ~3TB [guard region]
+ fffffc1ffe590000 fffffc1ffe9fffff 4544KB fixed mappings
+ fffffc1ffea00000 fffffc1ffebfffff 2MB [guard region]
+ fffffc1ffec00000 fffffc1fffbfffff 16MB PCI I/O space
+ fffffc1fffc00000 fffffc1fffdfffff 2MB [guard region]
+ fffffc1fffe00000 ffffffffffdfffff 3968GB vmemmap
+ ffffffffffe00000 ffffffffffffffff 2MB [guard region]
+
+
+Translation table lookup with 4KB pages::
+
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ | | | | | |
+ | | | | | v
+ | | | | | [11:0] in-page offset
+ | | | | +-> [20:12] L3 index
+ | | | +-----------> [29:21] L2 index
+ | | +---------------------> [38:30] L1 index
+ | +-------------------------------> [47:39] L0 index
+ +-------------------------------------------------> [63] TTBR0/1
+
+
+Translation table lookup with 64KB pages::
+
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ | | | | |
+ | | | | v
+ | | | | [15:0] in-page offset
+ | | | +----------> [28:16] L3 index
+ | | +--------------------------> [41:29] L2 index
+ | +-------------------------------> [47:42] L1 index (48-bit)
+ | [51:42] L1 index (52-bit)
+ +-------------------------------------------------> [63] TTBR0/1
+
+
+When using KVM without the Virtualization Host Extensions, the
+hypervisor maps kernel pages in EL2 at a fixed (and potentially
+random) offset from the linear mapping. See the kern_hyp_va macro and
+kvm_update_va_mask function for more details. MMIO devices such as
+GICv2 gets mapped next to the HYP idmap page, as do vectors when
+ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
+
+When using KVM with the Virtualization Host Extensions, no additional
+mappings are created, since the host kernel runs directly in EL2.
+
+52-bit VA support in the kernel
+-------------------------------
+If the ARMv8.2-LVA optional feature is present, and we are running
+with a 64KB page size; then it is possible to use 52-bits of address
+space for both userspace and kernel addresses. However, any kernel
+binary that supports 52-bit must also be able to fall back to 48-bit
+at early boot time if the hardware feature is not present.
+
+This fallback mechanism necessitates the kernel .text to be in the
+higher addresses such that they are invariant to 48/52-bit VAs. Due
+to the kasan shadow being a fraction of the entire kernel VA space,
+the end of the kasan shadow must also be in the higher half of the
+kernel VA space for both 48/52-bit. (Switching from 48-bit to 52-bit,
+the end of the kasan shadow is invariant and dependent on ~0UL,
+whilst the start address will "grow" towards the lower addresses).
+
+In order to optimise phys_to_virt and virt_to_phys, the PAGE_OFFSET
+is kept constant at 0xFFF0000000000000 (corresponding to 52-bit),
+this obviates the need for an extra variable read. The physvirt
+offset and vmemmap offsets are computed at early boot to enable
+this logic.
+
+As a single binary will need to support both 48-bit and 52-bit VA
+spaces, the VMEMMAP must be sized large enough for 52-bit VAs and
+also must be sized large enought to accommodate a fixed PAGE_OFFSET.
+
+Most code in the kernel should not need to consider the VA_BITS, for
+code that does need to know the VA size the variables are
+defined as follows:
+
+VA_BITS constant the *maximum* VA space size
+
+VA_BITS_MIN constant the *minimum* VA space size
+
+vabits_actual variable the *actual* VA space size
+
+
+Maximum and minimum sizes can be useful to ensure that buffers are
+sized large enough or that addresses are positioned close enough for
+the "worst" case.
+
+52-bit userspace VAs
+--------------------
+To maintain compatibility with software that relies on the ARMv8.0
+VA space maximum size of 48-bits, the kernel will, by default,
+return virtual addresses to userspace from a 48-bit range.
+
+Software can "opt-in" to receiving VAs from a 52-bit space by
+specifying an mmap hint parameter that is larger than 48-bit.
+For example:
+ maybe_high_address = mmap(~0UL, size, prot, flags,...);
+
+It is also possible to build a debug kernel that returns addresses
+from a 52-bit space by enabling the following kernel config options:
+ CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y
+
+Note that this option is only intended for debugging applications
+and should not be used in production.
diff --git a/Documentation/arm64/memory.txt b/Documentation/arm64/memory.txt
deleted file mode 100644
index c5dab30d3389..000000000000
--- a/Documentation/arm64/memory.txt
+++ /dev/null
@@ -1,97 +0,0 @@
- Memory Layout on AArch64 Linux
- ==============================
-
-Author: Catalin Marinas <catalin.marinas@arm.com>
-
-This document describes the virtual memory layout used by the AArch64
-Linux kernel. The architecture allows up to 4 levels of translation
-tables with a 4KB page size and up to 3 levels with a 64KB page size.
-
-AArch64 Linux uses either 3 levels or 4 levels of translation tables
-with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
-(256TB) virtual addresses, respectively, for both user and kernel. With
-64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
-virtual address, are used but the memory layout is the same.
-
-User addresses have bits 63:48 set to 0 while the kernel addresses have
-the same bits set to 1. TTBRx selection is given by bit 63 of the
-virtual address. The swapper_pg_dir contains only kernel (global)
-mappings while the user pgd contains only user (non-global) mappings.
-The swapper_pg_dir address is written to TTBR1 and never written to
-TTBR0.
-
-
-AArch64 Linux memory layout with 4KB pages + 3 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000007fffffffff 512GB user
-ffffff8000000000 ffffffffffffffff 512GB kernel
-
-
-AArch64 Linux memory layout with 4KB pages + 4 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000ffffffffffff 256TB user
-ffff000000000000 ffffffffffffffff 256TB kernel
-
-
-AArch64 Linux memory layout with 64KB pages + 2 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 000003ffffffffff 4TB user
-fffffc0000000000 ffffffffffffffff 4TB kernel
-
-
-AArch64 Linux memory layout with 64KB pages + 3 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000ffffffffffff 256TB user
-ffff000000000000 ffffffffffffffff 256TB kernel
-
-
-For details of the virtual kernel memory layout please see the kernel
-booting log.
-
-
-Translation table lookup with 4KB pages:
-
-+--------+--------+--------+--------+--------+--------+--------+--------+
-|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
-+--------+--------+--------+--------+--------+--------+--------+--------+
- | | | | | |
- | | | | | v
- | | | | | [11:0] in-page offset
- | | | | +-> [20:12] L3 index
- | | | +-----------> [29:21] L2 index
- | | +---------------------> [38:30] L1 index
- | +-------------------------------> [47:39] L0 index
- +-------------------------------------------------> [63] TTBR0/1
-
-
-Translation table lookup with 64KB pages:
-
-+--------+--------+--------+--------+--------+--------+--------+--------+
-|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
-+--------+--------+--------+--------+--------+--------+--------+--------+
- | | | | |
- | | | | v
- | | | | [15:0] in-page offset
- | | | +----------> [28:16] L3 index
- | | +--------------------------> [41:29] L2 index
- | +-------------------------------> [47:42] L1 index
- +-------------------------------------------------> [63] TTBR0/1
-
-
-When using KVM without the Virtualization Host Extensions, the
-hypervisor maps kernel pages in EL2 at a fixed (and potentially
-random) offset from the linear mapping. See the kern_hyp_va macro and
-kvm_update_va_mask function for more details. MMIO devices such as
-GICv2 gets mapped next to the HYP idmap page, as do vectors when
-ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
-
-When using KVM with the Virtualization Host Extensions, no additional
-mappings are created, since the host kernel runs directly in EL2.
diff --git a/Documentation/arm64/pointer-authentication.txt b/Documentation/arm64/pointer-authentication.rst
index fc71b33de87e..30b2ab06526b 100644
--- a/Documentation/arm64/pointer-authentication.txt
+++ b/Documentation/arm64/pointer-authentication.rst
@@ -1,7 +1,9 @@
+=======================================
Pointer authentication in AArch64 Linux
=======================================
Author: Mark Rutland <mark.rutland@arm.com>
+
Date: 2017-07-19
This document briefly describes the provision of pointer authentication
diff --git a/Documentation/arm64/silicon-errata.txt b/Documentation/arm64/silicon-errata.rst
index 2735462d5958..17ea3fecddaa 100644
--- a/Documentation/arm64/silicon-errata.txt
+++ b/Documentation/arm64/silicon-errata.rst
@@ -1,7 +1,9 @@
- Silicon Errata and Software Workarounds
- =======================================
+=======================================
+Silicon Errata and Software Workarounds
+=======================================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 27 November 2015
It is an unfortunate fact of life that hardware is often produced with
@@ -9,11 +11,13 @@ so-called "errata", which can cause it to deviate from the architecture
under specific circumstances. For hardware produced by ARM, these
errata are broadly classified into the following categories:
- Category A: A critical error without a viable workaround.
- Category B: A significant or critical error with an acceptable
+ ========== ========================================================
+ Category A A critical error without a viable workaround.
+ Category B A significant or critical error with an acceptable
workaround.
- Category C: A minor error that is not expected to occur under normal
+ Category C A minor error that is not expected to occur under normal
operation.
+ ========== ========================================================
For more information, consult one of the "Software Developers Errata
Notice" documents available on infocenter.arm.com (registration
@@ -42,47 +46,90 @@ file acts as a registry of software workarounds in the Linux Kernel and
will be updated when new workarounds are committed and backported to
stable kernels.
-| Implementor | Component | Erratum ID | Kconfig |
+----------------+-----------------+-----------------+-----------------------------+
+| Implementor | Component | Erratum ID | Kconfig |
++================+=================+=================+=============================+
| Allwinner | A64/R18 | UNKNOWN1 | SUN50I_ERRATUM_UNKNOWN1 |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #826319 | ARM64_ERRATUM_826319 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #827319 | ARM64_ERRATUM_827319 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #824069 | ARM64_ERRATUM_824069 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #819472 | ARM64_ERRATUM_819472 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #845719 | ARM64_ERRATUM_845719 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #843419 | ARM64_ERRATUM_843419 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #832075 | ARM64_ERRATUM_832075 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #852523 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A72 | #853709 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1188873,1418040| ARM64_ERRATUM_1418040 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1165522 | ARM64_ERRATUM_1165522 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1286807 | ARM64_ERRATUM_1286807 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1463225 | ARM64_ERRATUM_1463225 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-N1 | #1188873,1418040| ARM64_ERRATUM_1418040 |
++----------------+-----------------+-----------------+-----------------------------+
+| ARM | Neoverse-N1 | #1349291 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | MMU-500 | #841119,826419 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX ITS | #22375,24313 | CAVIUM_ERRATUM_22375 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX ITS | #23144 | CAVIUM_ERRATUM_23144 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX Core | #27456 | CAVIUM_ERRATUM_27456 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX Core | #30115 | CAVIUM_ERRATUM_30115 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX SMMUv2 | #27704 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX2 SMMUv3| #74 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX2 SMMUv3| #126 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Freescale/NXP | LS2080A/LS1043A | A-008585 | FSL_ERRATUM_A008585 |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip0{5,6,7} | #161010101 | HISILICON_ERRATUM_161010101 |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip0{6,7} | #161010701 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
+| Hisilicon | Hip0{6,7} | #161010803 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip07 | #161600802 | HISILICON_ERRATUM_161600802 |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip08 SMMU PMCG | #162001800 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Kryo/Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Falkor v{1,2} | E1041 | QCOM_FALKOR_ERRATUM_1041 |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Fujitsu | A64FX | E#010001 | FUJITSU_ERRATUM_010001 |
++----------------+-----------------+-----------------+-----------------------------+
diff --git a/Documentation/arm64/sve.txt b/Documentation/arm64/sve.rst
index 5689fc9a976a..5689c74c8082 100644
--- a/Documentation/arm64/sve.txt
+++ b/Documentation/arm64/sve.rst
@@ -1,7 +1,9 @@
- Scalable Vector Extension support for AArch64 Linux
- ===================================================
+===================================================
+Scalable Vector Extension support for AArch64 Linux
+===================================================
Author: Dave Martin <Dave.Martin@arm.com>
+
Date: 4 August 2017
This document outlines briefly the interface provided to userspace by Linux in
@@ -442,7 +444,7 @@ In A64 state, SVE adds the following:
* FPSR and FPCR are retained from ARMv8-A, and interact with SVE floating-point
operations in a similar way to the way in which they interact with ARMv8
- floating-point operations.
+ floating-point operations::
8VL-1 128 0 bit index
+---- //// -----------------+
@@ -499,6 +501,8 @@ ARMv8-A defines the following floating-point / SIMD register state:
* 32 128-bit vector registers V0..V31
* 2 32-bit status/control registers FPSR, FPCR
+::
+
127 0 bit index
+---------------+
V0 | |
@@ -533,7 +537,7 @@ References
[2] arch/arm64/include/uapi/asm/ptrace.h
AArch64 Linux ptrace ABI definitions
-[3] Documentation/arm64/cpu-feature-registers.txt
+[3] Documentation/arm64/cpu-feature-registers.rst
[4] ARM IHI0055C
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055c/IHI0055C_beta_aapcs64.pdf
diff --git a/Documentation/arm64/tagged-address-abi.rst b/Documentation/arm64/tagged-address-abi.rst
new file mode 100644
index 000000000000..d4a85d535bf9
--- /dev/null
+++ b/Documentation/arm64/tagged-address-abi.rst
@@ -0,0 +1,156 @@
+==========================
+AArch64 TAGGED ADDRESS ABI
+==========================
+
+Authors: Vincenzo Frascino <vincenzo.frascino@arm.com>
+ Catalin Marinas <catalin.marinas@arm.com>
+
+Date: 21 August 2019
+
+This document describes the usage and semantics of the Tagged Address
+ABI on AArch64 Linux.
+
+1. Introduction
+---------------
+
+On AArch64 the ``TCR_EL1.TBI0`` bit is set by default, allowing
+userspace (EL0) to perform memory accesses through 64-bit pointers with
+a non-zero top byte. This document describes the relaxation of the
+syscall ABI that allows userspace to pass certain tagged pointers to
+kernel syscalls.
+
+2. AArch64 Tagged Address ABI
+-----------------------------
+
+From the kernel syscall interface perspective and for the purposes of
+this document, a "valid tagged pointer" is a pointer with a potentially
+non-zero top-byte that references an address in the user process address
+space obtained in one of the following ways:
+
+- ``mmap()`` syscall where either:
+
+ - flags have the ``MAP_ANONYMOUS`` bit set or
+ - the file descriptor refers to a regular file (including those
+ returned by ``memfd_create()``) or ``/dev/zero``
+
+- ``brk()`` syscall (i.e. the heap area between the initial location of
+ the program break at process creation and its current location).
+
+- any memory mapped by the kernel in the address space of the process
+ during creation and with the same restrictions as for ``mmap()`` above
+ (e.g. data, bss, stack).
+
+The AArch64 Tagged Address ABI has two stages of relaxation depending
+how the user addresses are used by the kernel:
+
+1. User addresses not accessed by the kernel but used for address space
+ management (e.g. ``mmap()``, ``mprotect()``, ``madvise()``). The use
+ of valid tagged pointers in this context is always allowed.
+
+2. User addresses accessed by the kernel (e.g. ``write()``). This ABI
+ relaxation is disabled by default and the application thread needs to
+ explicitly enable it via ``prctl()`` as follows:
+
+ - ``PR_SET_TAGGED_ADDR_CTRL``: enable or disable the AArch64 Tagged
+ Address ABI for the calling thread.
+
+ The ``(unsigned int) arg2`` argument is a bit mask describing the
+ control mode used:
+
+ - ``PR_TAGGED_ADDR_ENABLE``: enable AArch64 Tagged Address ABI.
+ Default status is disabled.
+
+ Arguments ``arg3``, ``arg4``, and ``arg5`` must be 0.
+
+ - ``PR_GET_TAGGED_ADDR_CTRL``: get the status of the AArch64 Tagged
+ Address ABI for the calling thread.
+
+ Arguments ``arg2``, ``arg3``, ``arg4``, and ``arg5`` must be 0.
+
+ The ABI properties described above are thread-scoped, inherited on
+ clone() and fork() and cleared on exec().
+
+ Calling ``prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0, 0, 0)``
+ returns ``-EINVAL`` if the AArch64 Tagged Address ABI is globally
+ disabled by ``sysctl abi.tagged_addr_disabled=1``. The default
+ ``sysctl abi.tagged_addr_disabled`` configuration is 0.
+
+When the AArch64 Tagged Address ABI is enabled for a thread, the
+following behaviours are guaranteed:
+
+- All syscalls except the cases mentioned in section 3 can accept any
+ valid tagged pointer.
+
+- The syscall behaviour is undefined for invalid tagged pointers: it may
+ result in an error code being returned, a (fatal) signal being raised,
+ or other modes of failure.
+
+- The syscall behaviour for a valid tagged pointer is the same as for
+ the corresponding untagged pointer.
+
+
+A definition of the meaning of tagged pointers on AArch64 can be found
+in Documentation/arm64/tagged-pointers.rst.
+
+3. AArch64 Tagged Address ABI Exceptions
+-----------------------------------------
+
+The following system call parameters must be untagged regardless of the
+ABI relaxation:
+
+- ``prctl()`` other than pointers to user data either passed directly or
+ indirectly as arguments to be accessed by the kernel.
+
+- ``ioctl()`` other than pointers to user data either passed directly or
+ indirectly as arguments to be accessed by the kernel.
+
+- ``shmat()`` and ``shmdt()``.
+
+Any attempt to use non-zero tagged pointers may result in an error code
+being returned, a (fatal) signal being raised, or other modes of
+failure.
+
+4. Example of correct usage
+---------------------------
+.. code-block:: c
+
+ #include <stdlib.h>
+ #include <string.h>
+ #include <unistd.h>
+ #include <sys/mman.h>
+ #include <sys/prctl.h>
+
+ #define PR_SET_TAGGED_ADDR_CTRL 55
+ #define PR_TAGGED_ADDR_ENABLE (1UL << 0)
+
+ #define TAG_SHIFT 56
+
+ int main(void)
+ {
+ int tbi_enabled = 0;
+ unsigned long tag = 0;
+ char *ptr;
+
+ /* check/enable the tagged address ABI */
+ if (!prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0, 0, 0))
+ tbi_enabled = 1;
+
+ /* memory allocation */
+ ptr = mmap(NULL, sysconf(_SC_PAGE_SIZE), PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (ptr == MAP_FAILED)
+ return 1;
+
+ /* set a non-zero tag if the ABI is available */
+ if (tbi_enabled)
+ tag = rand() & 0xff;
+ ptr = (char *)((unsigned long)ptr | (tag << TAG_SHIFT));
+
+ /* memory access to a tagged address */
+ strcpy(ptr, "tagged pointer\n");
+
+ /* syscall with a tagged pointer */
+ write(1, ptr, strlen(ptr));
+
+ return 0;
+ }
diff --git a/Documentation/arm64/tagged-pointers.txt b/Documentation/arm64/tagged-pointers.rst
index a25a99e82bb1..eab4323609b9 100644
--- a/Documentation/arm64/tagged-pointers.txt
+++ b/Documentation/arm64/tagged-pointers.rst
@@ -1,7 +1,9 @@
- Tagged virtual addresses in AArch64 Linux
- =========================================
+=========================================
+Tagged virtual addresses in AArch64 Linux
+=========================================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 12 June 2013
This document briefly describes the provision of tagged virtual
@@ -18,7 +20,9 @@ Passing tagged addresses to the kernel
--------------------------------------
All interpretation of userspace memory addresses by the kernel assumes
-an address tag of 0x00.
+an address tag of 0x00, unless the application enables the AArch64
+Tagged Address ABI explicitly
+(Documentation/arm64/tagged-address-abi.rst).
This includes, but is not limited to, addresses found in:
@@ -31,13 +35,15 @@ This includes, but is not limited to, addresses found in:
- the frame pointer (x29) and frame records, e.g. when interpreting
them to generate a backtrace or call graph.
-Using non-zero address tags in any of these locations may result in an
-error code being returned, a (fatal) signal being raised, or other modes
-of failure.
+Using non-zero address tags in any of these locations when the
+userspace application did not enable the AArch64 Tagged Address ABI may
+result in an error code being returned, a (fatal) signal being raised,
+or other modes of failure.
-For these reasons, passing non-zero address tags to the kernel via
-system calls is forbidden, and using a non-zero address tag for sp is
-strongly discouraged.
+For these reasons, when the AArch64 Tagged Address ABI is disabled,
+passing non-zero address tags to the kernel via system calls is
+forbidden, and using a non-zero address tag for sp is strongly
+discouraged.
Programs maintaining a frame pointer and frame records that use non-zero
address tags may suffer impaired or inaccurate debug and profiling
@@ -57,6 +63,9 @@ be preserved.
The architecture prevents the use of a tagged PC, so the upper byte will
be set to a sign-extension of bit 55 on exception return.
+This behaviour is maintained when the AArch64 Tagged Address ABI is
+enabled.
+
Other considerations
--------------------
diff --git a/Documentation/atomic_t.txt b/Documentation/atomic_t.txt
index dca3fb0554db..0ab747e0d5ac 100644
--- a/Documentation/atomic_t.txt
+++ b/Documentation/atomic_t.txt
@@ -81,9 +81,11 @@ Non-RMW ops:
The non-RMW ops are (typically) regular LOADs and STOREs and are canonically
implemented using READ_ONCE(), WRITE_ONCE(), smp_load_acquire() and
-smp_store_release() respectively.
+smp_store_release() respectively. Therefore, if you find yourself only using
+the Non-RMW operations of atomic_t, you do not in fact need atomic_t at all
+and are doing it wrong.
-The one detail to this is that atomic_set{}() should be observable to the RMW
+A subtle detail of atomic_set{}() is that it should be observable to the RMW
ops. That is:
C atomic-set
@@ -187,13 +189,22 @@ The barriers:
smp_mb__{before,after}_atomic()
-only apply to the RMW ops and can be used to augment/upgrade the ordering
-inherent to the used atomic op. These barriers provide a full smp_mb().
+only apply to the RMW atomic ops and can be used to augment/upgrade the
+ordering inherent to the op. These barriers act almost like a full smp_mb():
+smp_mb__before_atomic() orders all earlier accesses against the RMW op
+itself and all accesses following it, and smp_mb__after_atomic() orders all
+later accesses against the RMW op and all accesses preceding it. However,
+accesses between the smp_mb__{before,after}_atomic() and the RMW op are not
+ordered, so it is advisable to place the barrier right next to the RMW atomic
+op whenever possible.
These helper barriers exist because architectures have varying implicit
ordering on their SMP atomic primitives. For example our TSO architectures
provide full ordered atomics and these barriers are no-ops.
+NOTE: when the atomic RmW ops are fully ordered, they should also imply a
+compiler barrier.
+
Thus:
atomic_fetch_add();
@@ -212,7 +223,9 @@ Further, while something like:
atomic_dec(&X);
is a 'typical' RELEASE pattern, the barrier is strictly stronger than
-a RELEASE. Similarly for something like:
+a RELEASE because it orders preceding instructions against both the read
+and write parts of the atomic_dec(), and against all following instructions
+as well. Similarly, something like:
atomic_inc(&X);
smp_mb__after_atomic();
@@ -244,7 +257,8 @@ strictly stronger than ACQUIRE. As illustrated:
This should not happen; but a hypothetical atomic_inc_acquire() --
(void)atomic_fetch_inc_acquire() for instance -- would allow the outcome,
-since then:
+because it would not order the W part of the RMW against the following
+WRITE_ONCE. Thus:
P1 P2
diff --git a/Documentation/auxdisplay/cfag12864b b/Documentation/auxdisplay/cfag12864b
deleted file mode 100644
index 12fd51b8de75..000000000000
--- a/Documentation/auxdisplay/cfag12864b
+++ /dev/null
@@ -1,105 +0,0 @@
- ===================================
- cfag12864b LCD Driver Documentation
- ===================================
-
-License: GPLv2
-Author & Maintainer: Miguel Ojeda Sandonis
-Date: 2006-10-27
-
-
-
---------
-0. INDEX
---------
-
- 1. DRIVER INFORMATION
- 2. DEVICE INFORMATION
- 3. WIRING
- 4. USERSPACE PROGRAMMING
-
-
----------------------
-1. DRIVER INFORMATION
----------------------
-
-This driver supports a cfag12864b LCD.
-
-
----------------------
-2. DEVICE INFORMATION
----------------------
-
-Manufacturer: Crystalfontz
-Device Name: Crystalfontz 12864b LCD Series
-Device Code: cfag12864b
-Webpage: http://www.crystalfontz.com
-Device Webpage: http://www.crystalfontz.com/products/12864b/
-Type: LCD (Liquid Crystal Display)
-Width: 128
-Height: 64
-Colors: 2 (B/N)
-Controller: ks0108
-Controllers: 2
-Pages: 8 each controller
-Addresses: 64 each page
-Data size: 1 byte each address
-Memory size: 2 * 8 * 64 * 1 = 1024 bytes = 1 Kbyte
-
-
----------
-3. WIRING
----------
-
-The cfag12864b LCD Series don't have official wiring.
-
-The common wiring is done to the parallel port as shown:
-
-Parallel Port cfag12864b
-
- Name Pin# Pin# Name
-
-Strobe ( 1)------------------------------(17) Enable
-Data 0 ( 2)------------------------------( 4) Data 0
-Data 1 ( 3)------------------------------( 5) Data 1
-Data 2 ( 4)------------------------------( 6) Data 2
-Data 3 ( 5)------------------------------( 7) Data 3
-Data 4 ( 6)------------------------------( 8) Data 4
-Data 5 ( 7)------------------------------( 9) Data 5
-Data 6 ( 8)------------------------------(10) Data 6
-Data 7 ( 9)------------------------------(11) Data 7
- (10) [+5v]---( 1) Vdd
- (11) [GND]---( 2) Ground
- (12) [+5v]---(14) Reset
- (13) [GND]---(15) Read / Write
- Line (14)------------------------------(13) Controller Select 1
- (15)
- Init (16)------------------------------(12) Controller Select 2
-Select (17)------------------------------(16) Data / Instruction
-Ground (18)---[GND] [+5v]---(19) LED +
-Ground (19)---[GND]
-Ground (20)---[GND] E A Values:
-Ground (21)---[GND] [GND]---[P1]---(18) Vee - R = Resistor = 22 ohm
-Ground (22)---[GND] | - P1 = Preset = 10 Kohm
-Ground (23)---[GND] ---- S ------( 3) V0 - P2 = Preset = 1 Kohm
-Ground (24)---[GND] | |
-Ground (25)---[GND] [GND]---[P2]---[R]---(20) LED -
-
-
-------------------------
-4. USERSPACE PROGRAMMING
-------------------------
-
-The cfag12864bfb describes a framebuffer device (/dev/fbX).
-
-It has a size of 1024 bytes = 1 Kbyte.
-Each bit represents one pixel. If the bit is high, the pixel will
-turn on. If the pixel is low, the pixel will turn off.
-
-You can use the framebuffer as a file: fopen, fwrite, fclose...
-Although the LCD won't get updated until the next refresh time arrives.
-
-Also, you can mmap the framebuffer: open & mmap, munmap & close...
-which is the best option for most uses.
-
-Check samples/auxdisplay/cfag12864b-example.c
-for a real working userspace complete program with usage examples.
diff --git a/Documentation/auxdisplay/ks0108 b/Documentation/auxdisplay/ks0108
deleted file mode 100644
index 8ddda0c8ceef..000000000000
--- a/Documentation/auxdisplay/ks0108
+++ /dev/null
@@ -1,55 +0,0 @@
- ==========================================
- ks0108 LCD Controller Driver Documentation
- ==========================================
-
-License: GPLv2
-Author & Maintainer: Miguel Ojeda Sandonis
-Date: 2006-10-27
-
-
-
---------
-0. INDEX
---------
-
- 1. DRIVER INFORMATION
- 2. DEVICE INFORMATION
- 3. WIRING
-
-
----------------------
-1. DRIVER INFORMATION
----------------------
-
-This driver supports the ks0108 LCD controller.
-
-
----------------------
-2. DEVICE INFORMATION
----------------------
-
-Manufacturer: Samsung
-Device Name: KS0108 LCD Controller
-Device Code: ks0108
-Webpage: -
-Device Webpage: -
-Type: LCD Controller (Liquid Crystal Display Controller)
-Width: 64
-Height: 64
-Colors: 2 (B/N)
-Pages: 8
-Addresses: 64 each page
-Data size: 1 byte each address
-Memory size: 8 * 64 * 1 = 512 bytes
-
-
----------
-3. WIRING
----------
-
-The driver supports data parallel port wiring.
-
-If you aren't building LCD related hardware, you should check
-your LCD specific wiring information in the same folder.
-
-For example, check Documentation/auxdisplay/cfag12864b.
diff --git a/Documentation/backlight/lp855x-driver.txt b/Documentation/backlight/lp855x-driver.txt
deleted file mode 100644
index 01bce243d3d7..000000000000
--- a/Documentation/backlight/lp855x-driver.txt
+++ /dev/null
@@ -1,66 +0,0 @@
-Kernel driver lp855x
-====================
-
-Backlight driver for LP855x ICs
-
-Supported chips:
- Texas Instruments LP8550, LP8551, LP8552, LP8553, LP8555, LP8556 and
- LP8557
-
-Author: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
------------
-
-* Brightness control
-
-Brightness can be controlled by the pwm input or the i2c command.
-The lp855x driver supports both cases.
-
-* Device attributes
-
-1) bl_ctl_mode
-Backlight control mode.
-Value : pwm based or register based
-
-2) chip_id
-The lp855x chip id.
-Value : lp8550/lp8551/lp8552/lp8553/lp8555/lp8556/lp8557
-
-Platform data for lp855x
-------------------------
-
-For supporting platform specific data, the lp855x platform data can be used.
-
-* name : Backlight driver name. If it is not defined, default name is set.
-* device_control : Value of DEVICE CONTROL register.
-* initial_brightness : Initial value of backlight brightness.
-* period_ns : Platform specific PWM period value. unit is nano.
- Only valid when brightness is pwm input mode.
-* size_program : Total size of lp855x_rom_data.
-* rom_data : List of new eeprom/eprom registers.
-
-example 1) lp8552 platform data : i2c register mode with new eeprom data
-
-#define EEPROM_A5_ADDR 0xA5
-#define EEPROM_A5_VAL 0x4f /* EN_VSYNC=0 */
-
-static struct lp855x_rom_data lp8552_eeprom_arr[] = {
- {EEPROM_A5_ADDR, EEPROM_A5_VAL},
-};
-
-static struct lp855x_platform_data lp8552_pdata = {
- .name = "lcd-bl",
- .device_control = I2C_CONFIG(LP8552),
- .initial_brightness = INITIAL_BRT,
- .size_program = ARRAY_SIZE(lp8552_eeprom_arr),
- .rom_data = lp8552_eeprom_arr,
-};
-
-example 2) lp8556 platform data : pwm input mode with default rom data
-
-static struct lp855x_platform_data lp8556_pdata = {
- .device_control = PWM_CONFIG(LP8556),
- .initial_brightness = INITIAL_BRT,
- .period_ns = 1000000,
-};
diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.rst
index 1a0f2ac02eb6..0d237d402860 100644
--- a/Documentation/block/bfq-iosched.txt
+++ b/Documentation/block/bfq-iosched.rst
@@ -1,9 +1,11 @@
+==========================
BFQ (Budget Fair Queueing)
==========================
BFQ is a proportional-share I/O scheduler, with some extra
low-latency capabilities. In addition to cgroups support (blkio or io
controllers), BFQ's main features are:
+
- BFQ guarantees a high system and application responsiveness, and a
low latency for time-sensitive applications, such as audio or video
players;
@@ -38,13 +40,13 @@ stack). To give an idea of the limits with BFQ, on slow or average
CPUs, here are, first, the limits of BFQ for three different CPUs, on,
respectively, an average laptop, an old desktop, and a cheap embedded
system, in case full hierarchical support is enabled (i.e.,
-CONFIG_BFQ_GROUP_IOSCHED is set), but CONFIG_DEBUG_BLK_CGROUP is not
+CONFIG_BFQ_GROUP_IOSCHED is set), but CONFIG_BFQ_CGROUP_DEBUG is not
set (Section 4-2):
- Intel i7-4850HQ: 400 KIOPS
- AMD A8-3850: 250 KIOPS
- ARM CortexTM-A53 Octa-core: 80 KIOPS
-If CONFIG_DEBUG_BLK_CGROUP is set (and of course full hierarchical
+If CONFIG_BFQ_CGROUP_DEBUG is set (and of course full hierarchical
support is enabled), then the sustainable throughput with BFQ
decreases, because all blkio.bfq* statistics are created and updated
(Section 4-2). For BFQ, this leads to the following maximum
@@ -55,18 +57,18 @@ sustainable throughputs, on the same systems as above:
BFQ works for multi-queue devices too.
-The table of contents follow. Impatients can just jump to Section 3.
+.. The table of contents follow. Impatients can just jump to Section 3.
-CONTENTS
+.. CONTENTS
-1. When may BFQ be useful?
- 1-1 Personal systems
- 1-2 Server systems
-2. How does BFQ work?
-3. What are BFQ's tunables and how to properly configure BFQ?
-4. BFQ group scheduling
- 4-1 Service guarantees provided
- 4-2 Interface
+ 1. When may BFQ be useful?
+ 1-1 Personal systems
+ 1-2 Server systems
+ 2. How does BFQ work?
+ 3. What are BFQ's tunables and how to properly configure BFQ?
+ 4. BFQ group scheduling
+ 4-1 Service guarantees provided
+ 4-2 Interface
1. When may BFQ be useful?
==========================
@@ -77,17 +79,20 @@ BFQ provides the following benefits on personal and server systems.
--------------------
Low latency for interactive applications
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Regardless of the actual background workload, BFQ guarantees that, for
interactive tasks, the storage device is virtually as responsive as if
it was idle. For example, even if one or more of the following
background workloads are being executed:
+
- one or more large files are being read, written or copied,
- a tree of source files is being compiled,
- one or more virtual machines are performing I/O,
- a software update is in progress,
- indexing daemons are scanning filesystems and updating their
databases,
+
starting an application or loading a file from within an application
takes about the same time as if the storage device was idle. As a
comparison, with CFQ, NOOP or DEADLINE, and in the same conditions,
@@ -95,13 +100,14 @@ applications experience high latencies, or even become unresponsive
until the background workload terminates (also on SSDs).
Low latency for soft real-time applications
-
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Also soft real-time applications, such as audio and video
players/streamers, enjoy a low latency and a low drop rate, regardless
of the background I/O workload. As a consequence, these applications
do not suffer from almost any glitch due to the background workload.
Higher speed for code-development tasks
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If some additional workload happens to be executed in parallel, then
BFQ executes the I/O-related components of typical code-development
@@ -109,6 +115,7 @@ tasks (compilation, checkout, merge, ...) much more quickly than CFQ,
NOOP or DEADLINE.
High throughput
+^^^^^^^^^^^^^^^
On hard disks, BFQ achieves up to 30% higher throughput than CFQ, and
up to 150% higher throughput than DEADLINE and NOOP, with all the
@@ -117,6 +124,7 @@ and with all the workloads on flash-based devices, BFQ achieves,
instead, about the same throughput as the other schedulers.
Strong fairness, bandwidth and delay guarantees
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
BFQ distributes the device throughput, and not just the device time,
among I/O-bound applications in proportion their weights, with any
@@ -133,15 +141,15 @@ Most benefits for server systems follow from the same service
properties as above. In particular, regardless of whether additional,
possibly heavy workloads are being served, BFQ guarantees:
-. audio and video-streaming with zero or very low jitter and drop
+* audio and video-streaming with zero or very low jitter and drop
rate;
-. fast retrieval of WEB pages and embedded objects;
+* fast retrieval of WEB pages and embedded objects;
-. real-time recording of data in live-dumping applications (e.g.,
+* real-time recording of data in live-dumping applications (e.g.,
packet logging);
-. responsiveness in local and remote access to a server.
+* responsiveness in local and remote access to a server.
2. How does BFQ work?
@@ -151,7 +159,7 @@ BFQ is a proportional-share I/O scheduler, whose general structure,
plus a lot of code, are borrowed from CFQ.
- Each process doing I/O on a device is associated with a weight and a
- (bfq_)queue.
+ `(bfq_)queue`.
- BFQ grants exclusive access to the device, for a while, to one queue
(process) at a time, and implements this service model by
@@ -537,19 +545,20 @@ or io.bfq.weight.
As for cgroups-v1 (blkio controller), the exact set of stat files
created, and kept up-to-date by bfq, depends on whether
-CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
+CONFIG_BFQ_CGROUP_DEBUG is set. If it is set, then bfq creates all
the stat files documented in
-Documentation/cgroup-v1/blkio-controller.txt. If, instead,
-CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
-blkio.bfq.io_service_bytes
-blkio.bfq.io_service_bytes_recursive
-blkio.bfq.io_serviced
-blkio.bfq.io_serviced_recursive
-
-The value of CONFIG_DEBUG_BLK_CGROUP greatly influences the maximum
+Documentation/admin-guide/cgroup-v1/blkio-controller.rst. If, instead,
+CONFIG_BFQ_CGROUP_DEBUG is not set, then bfq creates only the files::
+
+ blkio.bfq.io_service_bytes
+ blkio.bfq.io_service_bytes_recursive
+ blkio.bfq.io_serviced
+ blkio.bfq.io_serviced_recursive
+
+The value of CONFIG_BFQ_CGROUP_DEBUG greatly influences the maximum
throughput sustainable with bfq, because updating the blkio.bfq.*
stats is rather costly, especially for some of the stats enabled by
-CONFIG_DEBUG_BLK_CGROUP.
+CONFIG_BFQ_CGROUP_DEBUG.
Parameters to set
-----------------
@@ -567,17 +576,22 @@ weight of the queues associated with interactive and soft real-time
applications. Unset this tunable if you need/want to control weights.
-[1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
+[1]
+ P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
Scheduler", Proceedings of the First Workshop on Mobile System
Technologies (MST-2015), May 2015.
+
http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
-[2] P. Valente and M. Andreolini, "Improving Application
+[2]
+ P. Valente and M. Andreolini, "Improving Application
Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
the 5th Annual International Systems and Storage Conference
(SYSTOR '12), June 2012.
+
Slightly extended version:
- http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
- results.pdf
-[3] https://github.com/Algodev-github/S
+ http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-results.pdf
+
+[3]
+ https://github.com/Algodev-github/S
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.rst
index ac18b488cb5e..b964796ec9c7 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.rst
@@ -1,15 +1,25 @@
- Notes on the Generic Block Layer Rewrite in Linux 2.5
- =====================================================
+=====================================================
+Notes on the Generic Block Layer Rewrite in Linux 2.5
+=====================================================
+
+.. note::
+
+ It seems that there are lot of outdated stuff here. This seems
+ to be written somewhat as a task list. Yet, eventually, something
+ here might still be useful.
Notes Written on Jan 15, 2002:
- Jens Axboe <jens.axboe@oracle.com>
- Suparna Bhattacharya <suparna@in.ibm.com>
+
+ - Jens Axboe <jens.axboe@oracle.com>
+ - Suparna Bhattacharya <suparna@in.ibm.com>
Last Updated May 2, 2002
+
September 2003: Updated I/O Scheduler portions
- Nick Piggin <npiggin@kernel.dk>
+ - Nick Piggin <npiggin@kernel.dk>
-Introduction:
+Introduction
+============
These are some notes describing some aspects of the 2.5 block layer in the
context of the bio rewrite. The idea is to bring out some of the key
@@ -17,11 +27,11 @@ changes and a glimpse of the rationale behind those changes.
Please mail corrections & suggestions to suparna@in.ibm.com.
-Credits:
----------
+Credits
+=======
2.5 bio rewrite:
- Jens Axboe <jens.axboe@oracle.com>
+ - Jens Axboe <jens.axboe@oracle.com>
Many aspects of the generic block layer redesign were driven by and evolved
over discussions, prior patches and the collective experience of several
@@ -29,62 +39,63 @@ people. See sections 8 and 9 for a list of some related references.
The following people helped with review comments and inputs for this
document:
- Christoph Hellwig <hch@infradead.org>
- Arjan van de Ven <arjanv@redhat.com>
- Randy Dunlap <rdunlap@xenotime.net>
- Andre Hedrick <andre@linux-ide.org>
+
+ - Christoph Hellwig <hch@infradead.org>
+ - Arjan van de Ven <arjanv@redhat.com>
+ - Randy Dunlap <rdunlap@xenotime.net>
+ - Andre Hedrick <andre@linux-ide.org>
The following people helped with fixes/contributions to the bio patches
while it was still work-in-progress:
- David S. Miller <davem@redhat.com>
+ - David S. Miller <davem@redhat.com>
-Description of Contents:
-------------------------
-1. Scope for tuning of logic to various needs
- 1.1 Tuning based on device or low level driver capabilities
+.. Description of Contents:
+
+ 1. Scope for tuning of logic to various needs
+ 1.1 Tuning based on device or low level driver capabilities
- Per-queue parameters
- Highmem I/O support
- I/O scheduler modularization
- 1.2 Tuning based on high level requirements/capabilities
+ 1.2 Tuning based on high level requirements/capabilities
1.2.1 Request Priority/Latency
- 1.3 Direct access/bypass to lower layers for diagnostics and special
- device operations
+ 1.3 Direct access/bypass to lower layers for diagnostics and special
+ device operations
1.3.1 Pre-built commands
-2. New flexible and generic but minimalist i/o structure or descriptor
- (instead of using buffer heads at the i/o layer)
- 2.1 Requirements/Goals addressed
- 2.2 The bio struct in detail (multi-page io unit)
- 2.3 Changes in the request structure
-3. Using bios
- 3.1 Setup/teardown (allocation, splitting)
- 3.2 Generic bio helper routines
- 3.2.1 Traversing segments and completion units in a request
- 3.2.2 Setting up DMA scatterlists
- 3.2.3 I/O completion
- 3.2.4 Implications for drivers that do not interpret bios (don't handle
- multiple segments)
- 3.3 I/O submission
-4. The I/O scheduler
-5. Scalability related changes
- 5.1 Granular locking: Removal of io_request_lock
- 5.2 Prepare for transition to 64 bit sector_t
-6. Other Changes/Implications
- 6.1 Partition re-mapping handled by the generic block layer
-7. A few tips on migration of older drivers
-8. A list of prior/related/impacted patches/ideas
-9. Other References/Discussion Threads
+ 2. New flexible and generic but minimalist i/o structure or descriptor
+ (instead of using buffer heads at the i/o layer)
+ 2.1 Requirements/Goals addressed
+ 2.2 The bio struct in detail (multi-page io unit)
+ 2.3 Changes in the request structure
+ 3. Using bios
+ 3.1 Setup/teardown (allocation, splitting)
+ 3.2 Generic bio helper routines
+ 3.2.1 Traversing segments and completion units in a request
+ 3.2.2 Setting up DMA scatterlists
+ 3.2.3 I/O completion
+ 3.2.4 Implications for drivers that do not interpret bios (don't handle
+ multiple segments)
+ 3.3 I/O submission
+ 4. The I/O scheduler
+ 5. Scalability related changes
+ 5.1 Granular locking: Removal of io_request_lock
+ 5.2 Prepare for transition to 64 bit sector_t
+ 6. Other Changes/Implications
+ 6.1 Partition re-mapping handled by the generic block layer
+ 7. A few tips on migration of older drivers
+ 8. A list of prior/related/impacted patches/ideas
+ 9. Other References/Discussion Threads
----------------------------------------------------------------------------
Bio Notes
---------
+=========
Let us discuss the changes in the context of how some overall goals for the
block layer are addressed.
1. Scope for tuning the generic logic to satisfy various requirements
+=====================================================================
The block layer design supports adaptable abstractions to handle common
processing with the ability to tune the logic to an appropriate extent
@@ -97,6 +108,7 @@ and application/middleware software designed to take advantage of these
capabilities.
1.1 Tuning based on low level device / driver capabilities
+----------------------------------------------------------
Sophisticated devices with large built-in caches, intelligent i/o scheduling
optimizations, high memory DMA support, etc may find some of the
@@ -133,12 +145,12 @@ Some new queue property settings:
Sets two variables that limit the size of the request.
- The request queue's max_sectors, which is a soft size in
- units of 512 byte sectors, and could be dynamically varied
- by the core kernel.
+ units of 512 byte sectors, and could be dynamically varied
+ by the core kernel.
- The request queue's max_hw_sectors, which is a hard limit
- and reflects the maximum size request a driver can handle
- in units of 512 byte sectors.
+ and reflects the maximum size request a driver can handle
+ in units of 512 byte sectors.
The default for both max_sectors and max_hw_sectors is
255. The upper limit of max_sectors is 1024.
@@ -161,8 +173,8 @@ Some new queue property settings:
New queue flags:
- QUEUE_FLAG_CLUSTER (see 3.2.2)
- QUEUE_FLAG_QUEUED (see 3.2.4)
+ - QUEUE_FLAG_CLUSTER (see 3.2.2)
+ - QUEUE_FLAG_QUEUED (see 3.2.4)
ii. High-mem i/o capabilities are now considered the default
@@ -234,6 +246,7 @@ I/O scheduler wrappers are to be used instead of accessing the queue directly.
See section 4. The I/O scheduler for details.
1.2 Tuning Based on High level code capabilities
+------------------------------------------------
i. Application capabilities for raw i/o
@@ -258,9 +271,11 @@ would need an additional mechanism either via open flags or ioctls, or some
other upper level mechanism to communicate such settings to block.
1.2.1 Request Priority/Latency
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Todo/Under discussion:
-Arjan's proposed request priority scheme allows higher levels some broad
+Todo/Under discussion::
+
+ Arjan's proposed request priority scheme allows higher levels some broad
control (high/med/low) over the priority of an i/o request vs other pending
requests in the queue. For example it allows reads for bringing in an
executable page on demand to be given a higher priority over pending write
@@ -272,7 +287,9 @@ Arjan's proposed request priority scheme allows higher levels some broad
1.3 Direct Access to Low level Device/Driver Capabilities (Bypass mode)
- (e.g Diagnostics, Systems Management)
+-----------------------------------------------------------------------
+
+(e.g Diagnostics, Systems Management)
There are situations where high-level code needs to have direct access to
the low level device capabilities or requires the ability to issue commands
@@ -308,28 +325,32 @@ involved. In the latter case, the driver would modify and manage the
request->buffer, request->sector and request->nr_sectors or
request->current_nr_sectors fields itself rather than using the block layer
end_request or end_that_request_first completion interfaces.
-(See 2.3 or Documentation/block/request.txt for a brief explanation of
+(See 2.3 or Documentation/block/request.rst for a brief explanation of
the request structure fields)
-[TBD: end_that_request_last should be usable even in this case;
-Perhaps an end_that_direct_request_first routine could be implemented to make
-handling direct requests easier for such drivers; Also for drivers that
-expect bios, a helper function could be provided for setting up a bio
-corresponding to a data buffer]
-
-<JENS: I dont understand the above, why is end_that_request_first() not
-usable? Or _last for that matter. I must be missing something>
-<SUP: What I meant here was that if the request doesn't have a bio, then
- end_that_request_first doesn't modify nr_sectors or current_nr_sectors,
- and hence can't be used for advancing request state settings on the
- completion of partial transfers. The driver has to modify these fields
- directly by hand.
- This is because end_that_request_first only iterates over the bio list,
- and always returns 0 if there are none associated with the request.
- _last works OK in this case, and is not a problem, as I mentioned earlier
->
+::
+
+ [TBD: end_that_request_last should be usable even in this case;
+ Perhaps an end_that_direct_request_first routine could be implemented to make
+ handling direct requests easier for such drivers; Also for drivers that
+ expect bios, a helper function could be provided for setting up a bio
+ corresponding to a data buffer]
+
+ <JENS: I dont understand the above, why is end_that_request_first() not
+ usable? Or _last for that matter. I must be missing something>
+
+ <SUP: What I meant here was that if the request doesn't have a bio, then
+ end_that_request_first doesn't modify nr_sectors or current_nr_sectors,
+ and hence can't be used for advancing request state settings on the
+ completion of partial transfers. The driver has to modify these fields
+ directly by hand.
+ This is because end_that_request_first only iterates over the bio list,
+ and always returns 0 if there are none associated with the request.
+ _last works OK in this case, and is not a problem, as I mentioned earlier
+ >
1.3.1 Pre-built Commands
+^^^^^^^^^^^^^^^^^^^^^^^^
A request can be created with a pre-built custom command to be sent directly
to the device. The cmd block in the request structure has room for filling
@@ -360,9 +381,11 @@ Aside:
the pre-builder hook can be invoked there.
-2. Flexible and generic but minimalist i/o structure/descriptor.
+2. Flexible and generic but minimalist i/o structure/descriptor
+===============================================================
2.1 Reason for a new structure and requirements addressed
+---------------------------------------------------------
Prior to 2.5, buffer heads were used as the unit of i/o at the generic block
layer, and the low level request structure was associated with a chain of
@@ -378,26 +401,26 @@ which were generated for each such chunk.
The following were some of the goals and expectations considered in the
redesign of the block i/o data structure in 2.5.
-i. Should be appropriate as a descriptor for both raw and buffered i/o -
+1. Should be appropriate as a descriptor for both raw and buffered i/o -
avoid cache related fields which are irrelevant in the direct/page i/o path,
or filesystem block size alignment restrictions which may not be relevant
for raw i/o.
-ii. Ability to represent high-memory buffers (which do not have a virtual
+2. Ability to represent high-memory buffers (which do not have a virtual
address mapping in kernel address space).
-iii.Ability to represent large i/os w/o unnecessarily breaking them up (i.e
+3. Ability to represent large i/os w/o unnecessarily breaking them up (i.e
greater than PAGE_SIZE chunks in one shot)
-iv. At the same time, ability to retain independent identity of i/os from
+4. At the same time, ability to retain independent identity of i/os from
different sources or i/o units requiring individual completion (e.g. for
latency reasons)
-v. Ability to represent an i/o involving multiple physical memory segments
+5. Ability to represent an i/o involving multiple physical memory segments
(including non-page aligned page fragments, as specified via readv/writev)
without unnecessarily breaking it up, if the underlying device is capable of
handling it.
-vi. Preferably should be based on a memory descriptor structure that can be
+6. Preferably should be based on a memory descriptor structure that can be
passed around different types of subsystems or layers, maybe even
networking, without duplication or extra copies of data/descriptor fields
themselves in the process
-vii.Ability to handle the possibility of splits/merges as the structure passes
+7. Ability to handle the possibility of splits/merges as the structure passes
through layered drivers (lvm, md, evms), with minimal overhead.
The solution was to define a new structure (bio) for the block layer,
@@ -408,6 +431,7 @@ bh structure for buffered i/o, and in the case of raw/direct i/o kiobufs are
mapped to bio structures.
2.2 The bio struct
+------------------
The bio structure uses a vector representation pointing to an array of tuples
of <page, offset, len> to describe the i/o buffer, and has various other
@@ -417,16 +441,18 @@ performing the i/o.
Notice that this representation means that a bio has no virtual address
mapping at all (unlike buffer heads).
-struct bio_vec {
+::
+
+ struct bio_vec {
struct page *bv_page;
unsigned short bv_len;
unsigned short bv_offset;
-};
+ };
-/*
- * main unit of I/O for the block layer and lower layers (ie drivers)
- */
-struct bio {
+ /*
+ * main unit of I/O for the block layer and lower layers (ie drivers)
+ */
+ struct bio {
struct bio *bi_next; /* request queue link */
struct block_device *bi_bdev; /* target device */
unsigned long bi_flags; /* status, command, etc */
@@ -436,7 +462,6 @@ struct bio {
struct bvec_iter bi_iter; /* current index into bio_vec array */
unsigned int bi_size; /* total size in bytes */
- unsigned short bi_phys_segments; /* segments after physaddr coalesce*/
unsigned short bi_hw_segments; /* segments after DMA remapping */
unsigned int bi_max; /* max bio_vecs we can hold
used as index into pool */
@@ -444,7 +469,7 @@ struct bio {
bio_end_io_t *bi_end_io; /* bi_end_io (bio) */
atomic_t bi_cnt; /* pin count: free when it hits zero */
void *bi_private;
-};
+ };
With this multipage bio design:
@@ -454,7 +479,7 @@ With this multipage bio design:
- Splitting of an i/o request across multiple devices (as in the case of
lvm or raid) is achieved by cloning the bio (where the clone points to
the same bi_io_vec array, but with the index and size accordingly modified)
-- A linked list of bios is used as before for unrelated merges (*) - this
+- A linked list of bios is used as before for unrelated merges [#]_ - this
avoids reallocs and makes independent completions easier to handle.
- Code that traverses the req list can find all the segments of a bio
by using rq_for_each_segment. This handles the fact that a request
@@ -463,10 +488,12 @@ With this multipage bio design:
field to keep track of the next bio_vec entry to process.
(e.g a 1MB bio_vec needs to be handled in max 128kB chunks for IDE)
[TBD: Should preferably also have a bi_voffset and bi_vlen to avoid modifying
- bi_offset an len fields]
+ bi_offset an len fields]
-(*) unrelated merges -- a request ends up containing two or more bios that
- didn't originate from the same place.
+.. [#]
+
+ unrelated merges -- a request ends up containing two or more bios that
+ didn't originate from the same place.
bi_end_io() i/o callback gets called on i/o completion of the entire bio.
@@ -484,10 +511,11 @@ which in turn means that only raw I/O uses it (direct i/o may not work
right now). The intent however is to enable clustering of pages etc to
become possible. The pagebuf abstraction layer from SGI also uses multi-page
bios, but that is currently not included in the stock development kernels.
-The same is true of Andrew Morton's work-in-progress multipage bio writeout
+The same is true of Andrew Morton's work-in-progress multipage bio writeout
and readahead patches.
2.3 Changes in the Request Structure
+------------------------------------
The request structure is the structure that gets passed down to low level
drivers. The block layer make_request function builds up a request structure,
@@ -500,11 +528,11 @@ request structure.
Only some relevant fields (mainly those which changed or may be referred
to in some of the discussion here) are listed below, not necessarily in
the order in which they occur in the structure (see include/linux/blkdev.h)
-Refer to Documentation/block/request.txt for details about all the request
+Refer to Documentation/block/request.rst for details about all the request
structure fields and a quick reference about the layers which are
-supposed to use or modify those fields.
+supposed to use or modify those fields::
-struct request {
+ struct request {
struct list_head queuelist; /* Not meant to be directly accessed by
the driver.
Used by q->elv_next_request_fn
@@ -549,11 +577,11 @@ struct request {
.
struct bio *bio, *biotail; /* bio list instead of bh */
struct request_list *rl;
-}
-
+ }
+
See the req_ops and req_flag_bits definitions for an explanation of the various
flags available. Some bits are used by the block layer or i/o scheduler.
-
+
The behaviour of the various sector counts are almost the same as before,
except that since we have multi-segment bios, current_nr_sectors refers
to the numbers of sectors in the current segment being processed which could
@@ -579,8 +607,10 @@ a driver needs to be careful about interoperation with the block layer helper
functions which the driver uses. (Section 1.3)
3. Using bios
+=============
3.1 Setup/Teardown
+------------------
There are routines for managing the allocation, and reference counting, and
freeing of bios (bio_alloc, bio_get, bio_put).
@@ -607,10 +637,13 @@ case of bio, these routines make use of the standard slab allocator.
The caller of bio_alloc is expected to taken certain steps to avoid
deadlocks, e.g. avoid trying to allocate more memory from the pool while
already holding memory obtained from the pool.
-[TBD: This is a potential issue, though a rare possibility
- in the bounce bio allocation that happens in the current code, since
- it ends up allocating a second bio from the same pool while
- holding the original bio ]
+
+::
+
+ [TBD: This is a potential issue, though a rare possibility
+ in the bounce bio allocation that happens in the current code, since
+ it ends up allocating a second bio from the same pool while
+ holding the original bio ]
Memory allocated from the pool should be released back within a limited
amount of time (in the case of bio, that would be after the i/o is completed).
@@ -636,14 +669,18 @@ same bio_vec_list). This would typically be used for splitting i/o requests
in lvm or md.
3.2 Generic bio helper Routines
+-------------------------------
3.2.1 Traversing segments and completion units in a request
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The macro rq_for_each_segment() should be used for traversing the bios
in the request list (drivers should avoid directly trying to do it
themselves). Using these helpers should also make it easier to cope
with block changes in the future.
+::
+
struct req_iterator iter;
rq_for_each_segment(bio_vec, rq, iter)
/* bio_vec is now current segment */
@@ -654,6 +691,7 @@ which don't make a distinction between segments and completion units would
need to be reorganized to support multi-segment bios.
3.2.2 Setting up DMA scatterlists
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The blk_rq_map_sg() helper routine would be used for setting up scatter
gather lists from a request, so a driver need not do it on its own.
@@ -684,6 +722,7 @@ of physical data segments in a request (i.e. the largest sized scatter list
a driver could handle)
3.2.3 I/O completion
+^^^^^^^^^^^^^^^^^^^^
The existing generic block layer helper routines end_request,
end_that_request_first and end_that_request_last can be used for i/o
@@ -692,8 +731,10 @@ request can be kicked of) as before. With the introduction of multi-page
bio support, end_that_request_first requires an additional argument indicating
the number of sectors completed.
-3.2.4 Implications for drivers that do not interpret bios (don't handle
- multiple segments)
+3.2.4 Implications for drivers that do not interpret bios
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+(don't handle multiple segments)
Drivers that do not interpret bios e.g those which do not handle multiple
segments and do not support i/o into high memory addresses (require bounce
@@ -708,15 +749,18 @@ be used if only if the request has come down from block/bio path, not for
direct access requests which only specify rq->buffer without a valid rq->bio)
3.3 I/O Submission
+------------------
The routine submit_bio() is used to submit a single io. Higher level i/o
routines make use of this:
(a) Buffered i/o:
+
The routine submit_bh() invokes submit_bio() on a bio corresponding to the
bh, allocating the bio if required. ll_rw_block() uses submit_bh() as before.
(b) Kiobuf i/o (for raw/direct i/o):
+
The ll_rw_kio() routine breaks up the kiobuf into page sized chunks and
maps the array to one or more multi-page bios, issuing submit_bio() to
perform the i/o on each of these.
@@ -739,6 +783,7 @@ Todo/Observation:
(c) Page i/o:
+
Todo/Under discussion:
Andrew Morton's multi-page bio patches attempt to issue multi-page
@@ -754,6 +799,7 @@ Todo/Under discussion:
abstraction, but intended to be as lightweight as possible).
(d) Direct access i/o:
+
Direct access requests that do not contain bios would be submitted differently
as discussed earlier in section 1.3.
@@ -781,11 +827,13 @@ Aside:
4. The I/O scheduler
+====================
+
I/O scheduler, a.k.a. elevator, is implemented in two layers. Generic dispatch
queue and specific I/O schedulers. Unless stated otherwise, elevator is used
to refer to both parts and I/O scheduler to specific I/O schedulers.
-Block layer implements generic dispatch queue in block/*.c.
+Block layer implements generic dispatch queue in `block/*.c`.
The generic dispatch queue is responsible for requeueing, handling non-fs
requests and all other subtleties.
@@ -803,8 +851,11 @@ doesn't implement a function, the switch does nothing or some minimal house
keeping work.
4.1. I/O scheduler API
+----------------------
The functions an elevator may implement are: (* are mandatory)
+
+=============================== ================================================
elevator_merge_fn called to query requests for merge with a bio
elevator_merge_req_fn called when two requests get merged. the one
@@ -844,11 +895,6 @@ elevator_latter_req_fn These return the request before or after the
elevator_completed_req_fn called when a request is completed.
-elevator_may_queue_fn returns true if the scheduler wants to allow the
- current context to queue a new request even if
- it is over the queue limit. This must be used
- very carefully!!
-
elevator_set_req_fn
elevator_put_req_fn Must be used to allocate and free any elevator
specific storage for a request.
@@ -863,8 +909,11 @@ elevator_deactivate_req_fn Called when device driver decides to delay
elevator_init_fn*
elevator_exit_fn Allocate and free any elevator specific storage
for a queue.
+=============================== ================================================
4.2 Request flows seen by I/O schedulers
+----------------------------------------
+
All requests seen by I/O schedulers strictly follow one of the following three
flows.
@@ -878,9 +927,12 @@ flows.
-> put_req_fn
4.3 I/O scheduler implementation
+--------------------------------
+
The generic i/o scheduler algorithm attempts to sort/merge/batch requests for
optimal disk scan and request servicing performance (based on generic
principles and device capabilities), optimized for:
+
i. improved throughput
ii. improved latency
iii. better utilization of h/w & CPU time
@@ -934,15 +986,19 @@ Aside:
a big request from the broken up pieces coming by.
4.4 I/O contexts
+----------------
+
I/O contexts provide a dynamically allocated per process data area. They may
be used in I/O schedulers, and in the block layer (could be used for IO statis,
-priorities for example). See *io_context in block/ll_rw_blk.c, and as-iosched.c
+priorities for example). See `*io_context` in block/ll_rw_blk.c, and as-iosched.c
for an example of usage in an i/o scheduler.
5. Scalability related changes
+==============================
5.1 Granular Locking: io_request_lock replaced by a per-queue lock
+------------------------------------------------------------------
The global io_request_lock has been removed as of 2.5, to avoid
the scalability bottleneck it was causing, and has been replaced by more
@@ -957,20 +1013,23 @@ request_fn execution which it means that lots of older drivers
should still be SMP safe. Drivers are free to drop the queue
lock themselves, if required. Drivers that explicitly used the
io_request_lock for serialization need to be modified accordingly.
-Usually it's as easy as adding a global lock:
+Usually it's as easy as adding a global lock::
static DEFINE_SPINLOCK(my_driver_lock);
and passing the address to that lock to blk_init_queue().
5.2 64 bit sector numbers (sector_t prepares for 64 bit support)
+----------------------------------------------------------------
The sector number used in the bio structure has been changed to sector_t,
which could be defined as 64 bit in preparation for 64 bit sector support.
6. Other Changes/Implications
+=============================
6.1 Partition re-mapping handled by the generic block layer
+-----------------------------------------------------------
In 2.5 some of the gendisk/partition related code has been reorganized.
Now the generic block layer performs partition-remapping early and thus
@@ -985,6 +1044,7 @@ sent are offset from the beginning of the device.
7. A Few Tips on Migration of older drivers
+===========================================
Old-style drivers that just use CURRENT and ignores clustered requests,
may not need much change. The generic layer will automatically handle
@@ -1018,12 +1078,12 @@ blk_init_queue time.
Drivers no longer have to map a {partition, sector offset} into the
correct absolute location anymore, this is done by the block layer, so
-where a driver received a request ala this before:
+where a driver received a request ala this before::
rq->rq_dev = mk_kdev(3, 5); /* /dev/hda5 */
rq->sector = 0; /* first sector on hda5 */
- it will now see
+it will now see::
rq->rq_dev = mk_kdev(3, 0); /* /dev/hda */
rq->sector = 123128; /* offset from start of disk */
@@ -1040,38 +1100,65 @@ a bio into the virtual address space.
8. Prior/Related/Impacted patches
+=================================
8.1. Earlier kiobuf patches (sct/axboe/chait/hch/mkp)
+-----------------------------------------------------
+
- orig kiobuf & raw i/o patches (now in 2.4 tree)
- direct kiobuf based i/o to devices (no intermediate bh's)
- page i/o using kiobuf
- kiobuf splitting for lvm (mkp)
- elevator support for kiobuf request merging (axboe)
+
8.2. Zero-copy networking (Dave Miller)
+---------------------------------------
+
8.3. SGI XFS - pagebuf patches - use of kiobufs
+-----------------------------------------------
8.4. Multi-page pioent patch for bio (Christoph Hellwig)
+--------------------------------------------------------
8.5. Direct i/o implementation (Andrea Arcangeli) since 2.4.10-pre11
+--------------------------------------------------------------------
8.6. Async i/o implementation patch (Ben LaHaise)
+-------------------------------------------------
8.7. EVMS layering design (IBM EVMS team)
-8.8. Larger page cache size patch (Ben LaHaise) and
- Large page size (Daniel Phillips)
+-----------------------------------------
+8.8. Larger page cache size patch (Ben LaHaise) and Large page size (Daniel Phillips)
+-------------------------------------------------------------------------------------
+
=> larger contiguous physical memory buffers
+
8.9. VM reservations patch (Ben LaHaise)
+----------------------------------------
8.10. Write clustering patches ? (Marcelo/Quintela/Riel ?)
+----------------------------------------------------------
8.11. Block device in page cache patch (Andrea Archangeli) - now in 2.4.10+
-8.12. Multiple block-size transfers for faster raw i/o (Shailabh Nagar,
- Badari)
+---------------------------------------------------------------------------
+8.12. Multiple block-size transfers for faster raw i/o (Shailabh Nagar, Badari)
+-------------------------------------------------------------------------------
8.13 Priority based i/o scheduler - prepatches (Arjan van de Ven)
+------------------------------------------------------------------
8.14 IDE Taskfile i/o patch (Andre Hedrick)
+--------------------------------------------
8.15 Multi-page writeout and readahead patches (Andrew Morton)
+---------------------------------------------------------------
8.16 Direct i/o patches for 2.5 using kvec and bio (Badari Pulavarthy)
+-----------------------------------------------------------------------
-9. Other References:
+9. Other References
+===================
-9.1 The Splice I/O Model - Larry McVoy (and subsequent discussions on lkml,
-and Linus' comments - Jan 2001)
-9.2 Discussions about kiobuf and bh design on lkml between sct, linus, alan
-et al - Feb-March 2001 (many of the initial thoughts that led to bio were
-brought up in this discussion thread)
-9.3 Discussions on mempool on lkml - Dec 2001.
+9.1 The Splice I/O Model
+------------------------
+
+Larry McVoy (and subsequent discussions on lkml, and Linus' comments - Jan 2001
+9.2 Discussions about kiobuf and bh design
+------------------------------------------
+
+On lkml between sct, linus, alan et al - Feb-March 2001 (many of the
+initial thoughts that led to bio were brought up in this discussion thread)
+
+9.3 Discussions on mempool on lkml - Dec 2001.
+----------------------------------------------
diff --git a/Documentation/block/biovecs.txt b/Documentation/block/biovecs.rst
index ce6eccaf5df7..86fa66c87172 100644
--- a/Documentation/block/biovecs.txt
+++ b/Documentation/block/biovecs.rst
@@ -1,6 +1,6 @@
-
-Immutable biovecs and biovec iterators:
-=======================================
+======================================
+Immutable biovecs and biovec iterators
+======================================
Kent Overstreet <kmo@daterainc.com>
@@ -121,10 +121,12 @@ Other implications:
Usage of helpers:
=================
-* The following helpers whose names have the suffix of "_all" can only be used
-on non-BIO_CLONED bio. They are usually used by filesystem code. Drivers
-shouldn't use them because the bio may have been split before it reached the
-driver.
+* The following helpers whose names have the suffix of `_all` can only be used
+ on non-BIO_CLONED bio. They are usually used by filesystem code. Drivers
+ shouldn't use them because the bio may have been split before it reached the
+ driver.
+
+::
bio_for_each_segment_all()
bio_first_bvec_all()
@@ -132,13 +134,13 @@ driver.
bio_last_bvec_all()
* The following helpers iterate over single-page segment. The passed 'struct
-bio_vec' will contain a single-page IO vector during the iteration
+ bio_vec' will contain a single-page IO vector during the iteration::
bio_for_each_segment()
bio_for_each_segment_all()
* The following helpers iterate over multi-page bvec. The passed 'struct
-bio_vec' will contain a multi-page IO vector during the iteration
+ bio_vec' will contain a multi-page IO vector during the iteration::
bio_for_each_bvec()
rq_for_each_bvec()
diff --git a/Documentation/block/capability.rst b/Documentation/block/capability.rst
new file mode 100644
index 000000000000..2cf258d64bbe
--- /dev/null
+++ b/Documentation/block/capability.rst
@@ -0,0 +1,18 @@
+===============================
+Generic Block Device Capability
+===============================
+
+This file documents the sysfs file block/<disk>/capability
+
+capability is a hex word indicating which capabilities a specific disk
+supports. For more information on bits not listed here, see
+include/linux/genhd.h
+
+GENHD_FL_MEDIA_CHANGE_NOTIFY
+----------------------------
+
+Value: 4
+
+When this bit is set, the disk supports Asynchronous Notification
+of media change events. These events will be broadcast to user
+space via kernel uevent.
diff --git a/Documentation/block/capability.txt b/Documentation/block/capability.txt
deleted file mode 100644
index 2f1729424ef4..000000000000
--- a/Documentation/block/capability.txt
+++ /dev/null
@@ -1,15 +0,0 @@
-Generic Block Device Capability
-===============================================================================
-This file documents the sysfs file block/<disk>/capability
-
-capability is a hex word indicating which capabilities a specific disk
-supports. For more information on bits not listed here, see
-include/linux/genhd.h
-
-Capability Value
--------------------------------------------------------------------------------
-GENHD_FL_MEDIA_CHANGE_NOTIFY 4
- When this bit is set, the disk supports Asynchronous Notification
- of media change events. These events will be broadcast to user
- space via kernel uevent.
-
diff --git a/Documentation/block/cmdline-partition.txt b/Documentation/block/cmdline-partition.rst
index 760a3f7c3ed4..530bedff548a 100644
--- a/Documentation/block/cmdline-partition.txt
+++ b/Documentation/block/cmdline-partition.rst
@@ -1,5 +1,6 @@
+==============================================
Embedded device command line partition parsing
-=====================================================================
+==============================================
The "blkdevparts" command line option adds support for reading the
block device partition table from the kernel command line.
@@ -22,12 +23,15 @@ blkdevparts=<blkdev-def>[;<blkdev-def>]
<size>
partition size, in bytes, such as: 512, 1m, 1G.
size may contain an optional suffix of (upper or lower case):
+
K, M, G, T, P, E.
+
"-" is used to denote all remaining space.
<offset>
partition start address, in bytes.
offset may contain an optional suffix of (upper or lower case):
+
K, M, G, T, P, E.
(part-name)
@@ -36,11 +40,14 @@ blkdevparts=<blkdev-def>[;<blkdev-def>]
User space application can access partition by partition name.
Example:
+
eMMC disk names are "mmcblk0" and "mmcblk0boot0".
- bootargs:
+ bootargs::
+
'blkdevparts=mmcblk0:1G(data0),1G(data1),-;mmcblk0boot0:1m(boot),-(kernel)'
- dmesg:
+ dmesg::
+
mmcblk0: p1(data0) p2(data1) p3()
mmcblk0boot0: p1(boot) p2(kernel)
diff --git a/Documentation/block/data-integrity.txt b/Documentation/block/data-integrity.rst
index 934c44ea0c57..4f2452a95c43 100644
--- a/Documentation/block/data-integrity.txt
+++ b/Documentation/block/data-integrity.rst
@@ -1,5 +1,9 @@
-----------------------------------------------------------------------
-1. INTRODUCTION
+==============
+Data Integrity
+==============
+
+1. Introduction
+===============
Modern filesystems feature checksumming of data and metadata to
protect against data corruption. However, the detection of the
@@ -28,8 +32,8 @@ integrity of the I/O and reject it if corruption is detected. This
allows not only corruption prevention but also isolation of the point
of failure.
-----------------------------------------------------------------------
-2. THE DATA INTEGRITY EXTENSIONS
+2. The Data Integrity Extensions
+================================
As written, the protocol extensions only protect the path between
controller and storage device. However, many controllers actually
@@ -75,8 +79,8 @@ Extensions. As these extensions are outside the scope of the protocol
bodies (T10, T13), Oracle and its partners are trying to standardize
them within the Storage Networking Industry Association.
-----------------------------------------------------------------------
-3. KERNEL CHANGES
+3. Kernel Changes
+=================
The data integrity framework in Linux enables protection information
to be pinned to I/Os and sent to/received from controllers that
@@ -123,10 +127,11 @@ access to manipulate the tags from user space. A passthrough
interface for this is being worked on.
-----------------------------------------------------------------------
-4. BLOCK LAYER IMPLEMENTATION DETAILS
+4. Block Layer Implementation Details
+=====================================
-4.1 BIO
+4.1 Bio
+-------
The data integrity patches add a new field to struct bio when
CONFIG_BLK_DEV_INTEGRITY is enabled. bio_integrity(bio) returns a
@@ -145,7 +150,8 @@ attached using bio_integrity_add_page().
bio_free() will automatically free the bip.
-4.2 BLOCK DEVICE
+4.2 Block Device
+----------------
Because the format of the protection data is tied to the physical
disk, each block device has been extended with a block integrity
@@ -163,10 +169,11 @@ and MD linear, RAID0 and RAID1 are currently supported. RAID4/5/6
will require extra work due to the application tag.
-----------------------------------------------------------------------
-5.0 BLOCK LAYER INTEGRITY API
+5.0 Block Layer Integrity API
+=============================
-5.1 NORMAL FILESYSTEM
+5.1 Normal Filesystem
+---------------------
The normal filesystem is unaware that the underlying block device
is capable of sending/receiving integrity metadata. The IMD will
@@ -174,25 +181,26 @@ will require extra work due to the application tag.
in case of a WRITE. A READ request will cause the I/O integrity
to be verified upon completion.
- IMD generation and verification can be toggled using the
+ IMD generation and verification can be toggled using the::
/sys/block/<bdev>/integrity/write_generate
- and
+ and::
/sys/block/<bdev>/integrity/read_verify
flags.
-5.2 INTEGRITY-AWARE FILESYSTEM
+5.2 Integrity-Aware Filesystem
+------------------------------
A filesystem that is integrity-aware can prepare I/Os with IMD
attached. It can also use the application tag space if this is
supported by the block device.
- bool bio_integrity_prep(bio);
+ `bool bio_integrity_prep(bio);`
To generate IMD for WRITE and to set up buffers for READ, the
filesystem must call bio_integrity_prep(bio).
@@ -204,14 +212,15 @@ will require extra work due to the application tag.
Complete bio with error if prepare failed for some reson.
-5.3 PASSING EXISTING INTEGRITY METADATA
+5.3 Passing Existing Integrity Metadata
+---------------------------------------
Filesystems that either generate their own integrity metadata or
are capable of transferring IMD from user space can use the
following calls:
- struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages);
+ `struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages);`
Allocates the bio integrity payload and hangs it off of the bio.
nr_pages indicate how many pages of protection data need to be
@@ -220,7 +229,7 @@ will require extra work due to the application tag.
The integrity payload will be freed at bio_free() time.
- int bio_integrity_add_page(bio, page, len, offset);
+ `int bio_integrity_add_page(bio, page, len, offset);`
Attaches a page containing integrity metadata to an existing
bio. The bio must have an existing bip,
@@ -241,21 +250,21 @@ will require extra work due to the application tag.
integrity upon completion.
-5.4 REGISTERING A BLOCK DEVICE AS CAPABLE OF EXCHANGING INTEGRITY
- METADATA
+5.4 Registering A Block Device As Capable Of Exchanging Integrity Metadata
+--------------------------------------------------------------------------
To enable integrity exchange on a block device the gendisk must be
registered as capable:
- int blk_integrity_register(gendisk, blk_integrity);
+ `int blk_integrity_register(gendisk, blk_integrity);`
The blk_integrity struct is a template and should contain the
- following:
+ following::
static struct blk_integrity my_profile = {
.name = "STANDARDSBODY-TYPE-VARIANT-CSUM",
.generate_fn = my_generate_fn,
- .verify_fn = my_verify_fn,
+ .verify_fn = my_verify_fn,
.tuple_size = sizeof(struct my_tuple_size),
.tag_size = <tag bytes per hw sector>,
};
@@ -278,4 +287,5 @@ will require extra work due to the application tag.
0 depending on the value of the Control Mode Page ATO bit.
----------------------------------------------------------------------
+
2007-12-24 Martin K. Petersen <martin.petersen@oracle.com>
diff --git a/Documentation/block/deadline-iosched.txt b/Documentation/block/deadline-iosched.rst
index 2d82c80322cb..9f5c5a4c370e 100644
--- a/Documentation/block/deadline-iosched.txt
+++ b/Documentation/block/deadline-iosched.rst
@@ -1,3 +1,4 @@
+==============================
Deadline IO scheduler tunables
==============================
@@ -7,15 +8,13 @@ of interest to power users.
Selecting IO schedulers
-----------------------
-Refer to Documentation/block/switching-sched.txt for information on
+Refer to Documentation/block/switching-sched.rst for information on
selecting an io scheduler on a per-device basis.
-
-********************************************************************************
-
+------------------------------------------------------------------------------
read_expire (in ms)
------------
+-----------------------
The goal of the deadline io scheduler is to attempt to guarantee a start
service time for a request. As we focus mainly on read latencies, this is
@@ -25,15 +24,15 @@ milliseconds.
write_expire (in ms)
------------
+-----------------------
Similar to read_expire mentioned above, but for writes.
fifo_batch (number of requests)
-----------
+------------------------------------
-Requests are grouped into ``batches'' of a particular data direction (read or
+Requests are grouped into ``batches`` of a particular data direction (read or
write) which are serviced in increasing sector order. To limit extra seeking,
deadline expiries are only checked between batches. fifo_batch controls the
maximum number of requests per batch.
@@ -45,7 +44,7 @@ generally improves throughput, at the cost of latency variation.
writes_starved (number of dispatches)
---------------
+--------------------------------------
When we have to move requests from the io scheduler queue to the block
device dispatch queue, we always give a preference to reads. However, we
@@ -56,7 +55,7 @@ same criteria as reads.
front_merges (bool)
-------------
+----------------------
Sometimes it happens that a request enters the io scheduler that is contiguous
with a request that is already on the queue. Either it fits in the back of that
@@ -71,5 +70,3 @@ rbtree front sector lookup when the io scheduler merge function is called.
Nov 11 2002, Jens Axboe <jens.axboe@oracle.com>
-
-
diff --git a/Documentation/block/index.rst b/Documentation/block/index.rst
new file mode 100644
index 000000000000..3fa7a52fafa4
--- /dev/null
+++ b/Documentation/block/index.rst
@@ -0,0 +1,25 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====
+Block
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ bfq-iosched
+ biodoc
+ biovecs
+ capability
+ cmdline-partition
+ data-integrity
+ deadline-iosched
+ ioprio
+ kyber-iosched
+ null_blk
+ pr
+ queue-sysfs
+ request
+ stat
+ switching-sched
+ writeback_cache_control
diff --git a/Documentation/block/ioprio.txt b/Documentation/block/ioprio.rst
index 8ed8c59380b4..f72b0de65af7 100644
--- a/Documentation/block/ioprio.txt
+++ b/Documentation/block/ioprio.rst
@@ -1,3 +1,4 @@
+===================
Block io priorities
===================
@@ -40,81 +41,81 @@ class data, since it doesn't really apply here.
Tools
-----
-See below for a sample ionice tool. Usage:
+See below for a sample ionice tool. Usage::
-# ionice -c<class> -n<level> -p<pid>
+ # ionice -c<class> -n<level> -p<pid>
If pid isn't given, the current process is assumed. IO priority settings
are inherited on fork, so you can use ionice to start the process at a given
-level:
+level::
-# ionice -c2 -n0 /bin/ls
+ # ionice -c2 -n0 /bin/ls
will run ls at the best-effort scheduling class at the highest priority.
-For a running process, you can give the pid instead:
+For a running process, you can give the pid instead::
-# ionice -c1 -n2 -p100
+ # ionice -c1 -n2 -p100
will change pid 100 to run at the realtime scheduling class, at priority 2.
----> snip ionice.c tool <---
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <errno.h>
-#include <getopt.h>
-#include <unistd.h>
-#include <sys/ptrace.h>
-#include <asm/unistd.h>
-
-extern int sys_ioprio_set(int, int, int);
-extern int sys_ioprio_get(int, int);
-
-#if defined(__i386__)
-#define __NR_ioprio_set 289
-#define __NR_ioprio_get 290
-#elif defined(__ppc__)
-#define __NR_ioprio_set 273
-#define __NR_ioprio_get 274
-#elif defined(__x86_64__)
-#define __NR_ioprio_set 251
-#define __NR_ioprio_get 252
-#elif defined(__ia64__)
-#define __NR_ioprio_set 1274
-#define __NR_ioprio_get 1275
-#else
-#error "Unsupported arch"
-#endif
-
-static inline int ioprio_set(int which, int who, int ioprio)
-{
+ionice.c tool::
+
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <errno.h>
+ #include <getopt.h>
+ #include <unistd.h>
+ #include <sys/ptrace.h>
+ #include <asm/unistd.h>
+
+ extern int sys_ioprio_set(int, int, int);
+ extern int sys_ioprio_get(int, int);
+
+ #if defined(__i386__)
+ #define __NR_ioprio_set 289
+ #define __NR_ioprio_get 290
+ #elif defined(__ppc__)
+ #define __NR_ioprio_set 273
+ #define __NR_ioprio_get 274
+ #elif defined(__x86_64__)
+ #define __NR_ioprio_set 251
+ #define __NR_ioprio_get 252
+ #elif defined(__ia64__)
+ #define __NR_ioprio_set 1274
+ #define __NR_ioprio_get 1275
+ #else
+ #error "Unsupported arch"
+ #endif
+
+ static inline int ioprio_set(int which, int who, int ioprio)
+ {
return syscall(__NR_ioprio_set, which, who, ioprio);
-}
+ }
-static inline int ioprio_get(int which, int who)
-{
+ static inline int ioprio_get(int which, int who)
+ {
return syscall(__NR_ioprio_get, which, who);
-}
+ }
-enum {
+ enum {
IOPRIO_CLASS_NONE,
IOPRIO_CLASS_RT,
IOPRIO_CLASS_BE,
IOPRIO_CLASS_IDLE,
-};
+ };
-enum {
+ enum {
IOPRIO_WHO_PROCESS = 1,
IOPRIO_WHO_PGRP,
IOPRIO_WHO_USER,
-};
+ };
-#define IOPRIO_CLASS_SHIFT 13
+ #define IOPRIO_CLASS_SHIFT 13
-const char *to_prio[] = { "none", "realtime", "best-effort", "idle", };
+ const char *to_prio[] = { "none", "realtime", "best-effort", "idle", };
-int main(int argc, char *argv[])
-{
+ int main(int argc, char *argv[])
+ {
int ioprio = 4, set = 0, ioprio_class = IOPRIO_CLASS_BE;
int c, pid = 0;
@@ -175,9 +176,7 @@ int main(int argc, char *argv[])
}
return 0;
-}
-
----> snip ionice.c tool <---
+ }
March 11 2005, Jens Axboe <jens.axboe@oracle.com>
diff --git a/Documentation/block/kyber-iosched.txt b/Documentation/block/kyber-iosched.rst
index e94feacd7edc..3e164dd0617c 100644
--- a/Documentation/block/kyber-iosched.txt
+++ b/Documentation/block/kyber-iosched.rst
@@ -1,5 +1,6 @@
+============================
Kyber I/O scheduler tunables
-===========================
+============================
The only two tunables for the Kyber scheduler are the target latencies for
reads and synchronous writes. Kyber will throttle requests in order to meet
diff --git a/Documentation/block/null_blk.txt b/Documentation/block/null_blk.rst
index 41f0a3d33bbd..edbbab2f12f8 100644
--- a/Documentation/block/null_blk.txt
+++ b/Documentation/block/null_blk.rst
@@ -1,33 +1,40 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========================
Null block device driver
-================================================================================
+========================
-I. Overview
+Overview
+========
-The null block device (/dev/nullb*) is used for benchmarking the various
+The null block device (``/dev/nullb*``) is used for benchmarking the various
block-layer implementations. It emulates a block device of X gigabytes in size.
-The following instances are possible:
+It does not execute any read/write operation, just mark them as complete in
+the request queue. The following instances are possible:
- Single-queue block-layer
- - Request-based.
- - Single submission queue per device.
- - Implements IO scheduling algorithms (CFQ, Deadline, noop).
Multi-queue block-layer
+
- Request-based.
- Configurable submission queues per device.
+
No block-layer (Known as bio-based)
+
- Bio-based. IO requests are submitted directly to the device driver.
- Directly accepts bio data structure and returns them.
All of them have a completion queue for each core in the system.
-II. Module parameters applicable for all instances:
+Module parameters
+=================
queue_mode=[0-2]: Default: 2-Multi-queue
Selects which block-layer the module should instantiate with.
- 0: Bio-based.
- 1: Single-queue.
- 2: Multi-queue.
+ = ============
+ 0 Bio-based
+ 1 Single-queue (deprecated)
+ 2 Multi-queue
+ = ============
home_node=[0--nr_nodes]: Default: NUMA_NO_NODE
Selects what CPU node the data structures are allocated from.
@@ -45,17 +52,19 @@ nr_devices=[Number of devices]: Default: 1
irqmode=[0-2]: Default: 1-Soft-irq
The completion mode used for completing IOs to the block-layer.
- 0: None.
- 1: Soft-irq. Uses IPI to complete IOs across CPU nodes. Simulates the overhead
+ = ===========================================================================
+ 0 None.
+ 1 Soft-irq. Uses IPI to complete IOs across CPU nodes. Simulates the overhead
when IOs are issued from another CPU node than the home the device is
connected to.
- 2: Timer: Waits a specific period (completion_nsec) for each IO before
+ 2 Timer: Waits a specific period (completion_nsec) for each IO before
completion.
+ = ===========================================================================
completion_nsec=[ns]: Default: 10,000ns
Combined with irqmode=2 (timer). The time each completion event must wait.
-submit_queues=[1..nr_cpus]:
+submit_queues=[1..nr_cpus]: Default: 1
The number of submission queues attached to the device driver. If unset, it
defaults to 1. For multi-queue, it is ignored when use_per_node_hctx module
parameter is 1.
@@ -63,33 +72,54 @@ submit_queues=[1..nr_cpus]:
hw_queue_depth=[0..qdepth]: Default: 64
The hardware queue depth of the device.
-III: Multi-queue specific parameters
+Multi-queue specific parameters
+-------------------------------
use_per_node_hctx=[0/1]: Default: 0
- 0: The number of submit queues are set to the value of the submit_queues
+ Number of hardware context queues.
+
+ = =====================================================================
+ 0 The number of submit queues are set to the value of the submit_queues
parameter.
- 1: The multi-queue block layer is instantiated with a hardware dispatch
+ 1 The multi-queue block layer is instantiated with a hardware dispatch
queue for each CPU node in the system.
+ = =====================================================================
no_sched=[0/1]: Default: 0
- 0: nullb* use default blk-mq io scheduler.
- 1: nullb* doesn't use io scheduler.
+ Enable/disable the io scheduler.
+
+ = ======================================
+ 0 nullb* use default blk-mq io scheduler
+ 1 nullb* doesn't use io scheduler
+ = ======================================
blocking=[0/1]: Default: 0
- 0: Register as a non-blocking blk-mq driver device.
- 1: Register as a blocking blk-mq driver device, null_blk will set
+ Blocking behavior of the request queue.
+
+ = ===============================================================
+ 0 Register as a non-blocking blk-mq driver device.
+ 1 Register as a blocking blk-mq driver device, null_blk will set
the BLK_MQ_F_BLOCKING flag, indicating that it sometimes/always
needs to block in its ->queue_rq() function.
+ = ===============================================================
shared_tags=[0/1]: Default: 0
- 0: Tag set is not shared.
- 1: Tag set shared between devices for blk-mq. Only makes sense with
+ Sharing tags between devices.
+
+ = ================================================================
+ 0 Tag set is not shared.
+ 1 Tag set shared between devices for blk-mq. Only makes sense with
nr_devices > 1, otherwise there's no tag set to share.
+ = ================================================================
zoned=[0/1]: Default: 0
- 0: Block device is exposed as a random-access block device.
- 1: Block device is exposed as a host-managed zoned block device. Requires
+ Device is a random-access or a zoned block device.
+
+ = ======================================================================
+ 0 Block device is exposed as a random-access block device.
+ 1 Block device is exposed as a host-managed zoned block device. Requires
CONFIG_BLK_DEV_ZONED.
+ = ======================================================================
zone_size=[MB]: Default: 256
Per zone size when exposed as a zoned block device. Must be a power of two.
diff --git a/Documentation/block/pr.txt b/Documentation/block/pr.rst
index ac9b8e70e64b..30ea1c2e39eb 100644
--- a/Documentation/block/pr.txt
+++ b/Documentation/block/pr.rst
@@ -1,4 +1,4 @@
-
+===============================================
Block layer support for Persistent Reservations
===============================================
@@ -23,22 +23,18 @@ The following types of reservations are supported:
--------------------------------------------------
- PR_WRITE_EXCLUSIVE
-
Only the initiator that owns the reservation can write to the
device. Any initiator can read from the device.
- PR_EXCLUSIVE_ACCESS
-
Only the initiator that owns the reservation can access the
device.
- PR_WRITE_EXCLUSIVE_REG_ONLY
-
Only initiators with a registered key can write to the device,
Any initiator can read from the device.
- PR_EXCLUSIVE_ACCESS_REG_ONLY
-
Only initiators with a registered key can access the device.
- PR_WRITE_EXCLUSIVE_ALL_REGS
@@ -48,21 +44,21 @@ The following types of reservations are supported:
All initiators with a registered key are considered reservation
holders.
Please reference the SPC spec on the meaning of a reservation
- holder if you want to use this type.
+ holder if you want to use this type.
- PR_EXCLUSIVE_ACCESS_ALL_REGS
-
Only initiators with a registered key can access the device.
All initiators with a registered key are considered reservation
holders.
Please reference the SPC spec on the meaning of a reservation
- holder if you want to use this type.
+ holder if you want to use this type.
The following ioctl are supported:
----------------------------------
1. IOC_PR_REGISTER
+^^^^^^^^^^^^^^^^^^
This ioctl command registers a new reservation if the new_key argument
is non-null. If no existing reservation exists old_key must be zero,
@@ -74,6 +70,7 @@ in old_key.
2. IOC_PR_RESERVE
+^^^^^^^^^^^^^^^^^
This ioctl command reserves the device and thus restricts access for other
devices based on the type argument. The key argument must be the existing
@@ -82,12 +79,14 @@ IOC_PR_REGISTER_IGNORE, IOC_PR_PREEMPT or IOC_PR_PREEMPT_ABORT commands.
3. IOC_PR_RELEASE
+^^^^^^^^^^^^^^^^^
This ioctl command releases the reservation specified by key and flags
and thus removes any access restriction implied by it.
4. IOC_PR_PREEMPT
+^^^^^^^^^^^^^^^^^
This ioctl command releases the existing reservation referred to by
old_key and replaces it with a new reservation of type for the
@@ -95,11 +94,13 @@ reservation key new_key.
5. IOC_PR_PREEMPT_ABORT
+^^^^^^^^^^^^^^^^^^^^^^^
This ioctl command works like IOC_PR_PREEMPT except that it also aborts
any outstanding command sent over a connection identified by old_key.
6. IOC_PR_CLEAR
+^^^^^^^^^^^^^^^
This ioctl command unregisters both key and any other reservation key
registered with the device and drops any existing reservation.
@@ -111,7 +112,6 @@ Flags
All the ioctls have a flag field. Currently only one flag is supported:
- PR_FL_IGNORE_KEY
-
Ignore the existing reservation key. This is commonly supported for
IOC_PR_REGISTER, and some implementation may support the flag for
IOC_PR_RESERVE.
diff --git a/Documentation/block/queue-sysfs.txt b/Documentation/block/queue-sysfs.rst
index 83b457e24bba..6a8513af9201 100644
--- a/Documentation/block/queue-sysfs.txt
+++ b/Documentation/block/queue-sysfs.rst
@@ -1,3 +1,4 @@
+=================
Queue sysfs files
=================
@@ -10,10 +11,19 @@ Files denoted with a RO postfix are readonly and the RW postfix means
read-write.
add_random (RW)
-----------------
+---------------
This file allows to turn off the disk entropy contribution. Default
value of this file is '1'(on).
+chunk_sectors (RO)
+------------------
+This has different meaning depending on the type of the block device.
+For a RAID device (dm-raid), chunk_sectors indicates the size in 512B sectors
+of the RAID volume stripe segment. For a zoned block device, either host-aware
+or host-managed, chunk_sectors indicates the size in 512B sectors of the zones
+of the device, with the eventual exception of the last zone of the device which
+may be smaller.
+
dax (RO)
--------
This file indicates whether the device supports Direct Access (DAX),
@@ -21,13 +31,13 @@ used by CPU-addressable storage to bypass the pagecache. It shows '1'
if true, '0' if not.
discard_granularity (RO)
------------------------
+------------------------
This shows the size of internal allocation of the device in bytes, if
reported by the device. A value of '0' means device does not support
the discard functionality.
discard_max_hw_bytes (RO)
-----------------------
+-------------------------
Devices that support discard functionality may have internal limits on
the number of bytes that can be trimmed or unmapped in a single operation.
The discard_max_bytes parameter is set by the device driver to the maximum
@@ -43,6 +53,16 @@ large discards are issued, setting this value lower will make Linux issue
smaller discards and potentially help reduce latencies induced by large
discard operations.
+discard_zeroes_data (RO)
+------------------------
+Obsolete. Always zero.
+
+fua (RO)
+--------
+Whether or not the block driver supports the FUA flag for write requests.
+FUA stands for Force Unit Access. If the FUA flag is set that means that
+write requests must bypass the volatile cache of the storage device.
+
hw_sector_size (RO)
-------------------
This is the hardware sector size of the device, in bytes.
@@ -83,14 +103,19 @@ logical_block_size (RO)
-----------------------
This is the logical block size of the device, in bytes.
+max_discard_segments (RO)
+-------------------------
+The maximum number of DMA scatter/gather entries in a discard request.
+
max_hw_sectors_kb (RO)
----------------------
This is the maximum number of kilobytes supported in a single data transfer.
max_integrity_segments (RO)
---------------------------
-When read, this file shows the max limit of integrity segments as
-set by block layer which a hardware controller can handle.
+Maximum number of elements in a DMA scatter/gather list with integrity
+data that will be submitted by the block layer core to the associated
+block driver.
max_sectors_kb (RW)
-------------------
@@ -100,11 +125,12 @@ size allowed by the hardware.
max_segments (RO)
-----------------
-Maximum number of segments of the device.
+Maximum number of elements in a DMA scatter/gather list that is submitted
+to the associated block driver.
max_segment_size (RO)
---------------------
-Maximum segment size of the device.
+Maximum size in bytes of a single element in a DMA scatter/gather list.
minimum_io_size (RO)
--------------------
@@ -132,6 +158,12 @@ per-block-cgroup request pool. IOW, if there are N block cgroups,
each request queue may have up to N request pools, each independently
regulated by nr_requests.
+nr_zones (RO)
+-------------
+For zoned block devices (zoned attribute indicating "host-managed" or
+"host-aware"), this indicates the total number of zones of the device.
+This is always 0 for regular block devices.
+
optimal_io_size (RO)
--------------------
This is the optimal IO size reported by the device.
@@ -185,8 +217,8 @@ This is the number of bytes the device can write in a single write-same
command. A value of '0' means write-same is not supported by this
device.
-wb_lat_usec (RW)
-----------------
+wbt_lat_usec (RW)
+-----------------
If the device is registered for writeback throttling, then this file shows
the target minimum read latency. If this latency is exceeded in a given
window of time (see wb_window_usec), then the writeback throttling will start
@@ -201,6 +233,12 @@ blk-throttle makes decision based on the samplings. Lower time means cgroups
have more smooth throughput, but higher CPU overhead. This exists only when
CONFIG_BLK_DEV_THROTTLING_LOW is enabled.
+write_zeroes_max_bytes (RO)
+---------------------------
+For block drivers that support REQ_OP_WRITE_ZEROES, the maximum number of
+bytes that can be zeroed at once. The value 0 means that REQ_OP_WRITE_ZEROES
+is not supported.
+
zoned (RO)
----------
This indicates if the device is a zoned block device and the zone model of the
@@ -213,19 +251,4 @@ devices are described in the ZBC (Zoned Block Commands) and ZAC
do not support zone commands, they will be treated as regular block devices
and zoned will report "none".
-nr_zones (RO)
--------------
-For zoned block devices (zoned attribute indicating "host-managed" or
-"host-aware"), this indicates the total number of zones of the device.
-This is always 0 for regular block devices.
-
-chunk_sectors (RO)
-------------------
-This has different meaning depending on the type of the block device.
-For a RAID device (dm-raid), chunk_sectors indicates the size in 512B sectors
-of the RAID volume stripe segment. For a zoned block device, either host-aware
-or host-managed, chunk_sectors indicates the size in 512B sectors of the zones
-of the device, with the eventual exception of the last zone of the device which
-may be smaller.
-
Jens Axboe <jens.axboe@oracle.com>, February 2009
diff --git a/Documentation/block/request.txt b/Documentation/block/request.rst
index 754e104ed369..747021e1ffdb 100644
--- a/Documentation/block/request.txt
+++ b/Documentation/block/request.rst
@@ -1,26 +1,37 @@
-
+============================
struct request documentation
+============================
Jens Axboe <jens.axboe@oracle.com> 27/05/02
-1.0
-Index
-2.0 Struct request members classification
+.. FIXME:
+ No idea about what does mean - seems just some noise, so comment it
+
+ 1.0
+ Index
+
+ 2.0 Struct request members classification
+
+ 2.1 struct request members explanation
- 2.1 struct request members explanation
+ 3.0
+
+
+ 2.0
-3.0
-2.0
Short explanation of request members
+====================================
Classification flags:
+ = ====================
D driver member
B block layer member
I I/O scheduler member
+ = ====================
Unless an entry contains a D classification, a device driver must not access
this member. Some members may contain D classifications, but should only be
@@ -28,14 +39,13 @@ access through certain macros or functions (eg ->flags).
<linux/blkdev.h>
-2.1
+=============================== ======= =======================================
Member Flag Comment
------- ---- -------
-
+=============================== ======= =======================================
struct list_head queuelist BI Organization on various internal
queues
-void *elevator_private I I/O scheduler private data
+``void *elevator_private`` I I/O scheduler private data
unsigned char cmd[16] D Driver can use this for setting up
a cdb before execution, see
@@ -71,18 +81,19 @@ unsigned int hard_cur_sectors B Used to keep current_nr_sectors sane
int tag DB TCQ tag, if assigned
-void *special D Free to be used by driver
+``void *special`` D Free to be used by driver
-char *buffer D Map of first segment, also see
+``char *buffer`` D Map of first segment, also see
section on bouncing SECTION
-struct completion *waiting D Can be used by driver to get signalled
+``struct completion *waiting`` D Can be used by driver to get signalled
on request completion
-struct bio *bio DBI First bio in request
+``struct bio *bio`` DBI First bio in request
-struct bio *biotail DBI Last bio in request
+``struct bio *biotail`` DBI Last bio in request
-struct request_queue *q DB Request queue this request belongs to
+``struct request_queue *q`` DB Request queue this request belongs to
-struct request_list *rl B Request list this request came from
+``struct request_list *rl`` B Request list this request came from
+=============================== ======= =======================================
diff --git a/Documentation/block/stat.txt b/Documentation/block/stat.rst
index 0aace9cc536c..9c07bc22b0bc 100644
--- a/Documentation/block/stat.txt
+++ b/Documentation/block/stat.rst
@@ -1,3 +1,4 @@
+===============================================
Block layer statistics in /sys/block/<dev>/stat
===============================================
@@ -6,9 +7,12 @@ This file documents the contents of the /sys/block/<dev>/stat file.
The stat file provides several statistics about the state of block
device <dev>.
-Q. Why are there multiple statistics in a single file? Doesn't sysfs
+Q.
+ Why are there multiple statistics in a single file? Doesn't sysfs
normally contain a single value per file?
-A. By having a single file, the kernel can guarantee that the statistics
+
+A.
+ By having a single file, the kernel can guarantee that the statistics
represent a consistent snapshot of the state of the device. If the
statistics were exported as multiple files containing one statistic
each, it would be impossible to guarantee that a set of readings
@@ -18,8 +22,10 @@ The stat file consists of a single line of text containing 11 decimal
values separated by whitespace. The fields are summarized in the
following table, and described in more detail below.
+
+=============== ============= =================================================
Name units description
----- ----- -----------
+=============== ============= =================================================
read I/Os requests number of read I/Os processed
read merges requests number of read I/Os merged with in-queue I/O
read sectors sectors number of sectors read
@@ -35,6 +41,7 @@ discard I/Os requests number of discard I/Os processed
discard merges requests number of discard I/Os merged with in-queue I/O
discard sectors sectors number of sectors discarded
discard ticks milliseconds total wait time for discard requests
+=============== ============= =================================================
read I/Os, write I/Os, discard I/0s
===================================
diff --git a/Documentation/block/switching-sched.txt b/Documentation/block/switching-sched.rst
index 7977f6fb8b20..520f6b857544 100644
--- a/Documentation/block/switching-sched.txt
+++ b/Documentation/block/switching-sched.rst
@@ -1,35 +1,35 @@
-To choose IO schedulers at boot time, use the argument 'elevator=deadline'.
-'noop' and 'cfq' (the default) are also available. IO schedulers are assigned
-globally at boot time only presently.
+===================
+Switching Scheduler
+===================
Each io queue has a set of io scheduler tunables associated with it. These
tunables control how the io scheduler works. You can find these entries
-in:
+in::
-/sys/block/<device>/queue/iosched
+ /sys/block/<device>/queue/iosched
assuming that you have sysfs mounted on /sys. If you don't have sysfs mounted,
-you can do so by typing:
+you can do so by typing::
-# mount none /sys -t sysfs
+ # mount none /sys -t sysfs
It is possible to change the IO scheduler for a given block device on
the fly to select one of mq-deadline, none, bfq, or kyber schedulers -
which can improve that device's throughput.
-To set a specific scheduler, simply do this:
+To set a specific scheduler, simply do this::
-echo SCHEDNAME > /sys/block/DEV/queue/scheduler
+ echo SCHEDNAME > /sys/block/DEV/queue/scheduler
where SCHEDNAME is the name of a defined IO scheduler, and DEV is the
device name (hda, hdb, sga, or whatever you happen to have).
The list of defined schedulers can be found by simply doing
a "cat /sys/block/DEV/queue/scheduler" - the list of valid names
-will be displayed, with the currently selected scheduler in brackets:
+will be displayed, with the currently selected scheduler in brackets::
-# cat /sys/block/sda/queue/scheduler
-[mq-deadline] kyber bfq none
-# echo none >/sys/block/sda/queue/scheduler
-# cat /sys/block/sda/queue/scheduler
-[none] mq-deadline kyber bfq
+ # cat /sys/block/sda/queue/scheduler
+ [mq-deadline] kyber bfq none
+ # echo none >/sys/block/sda/queue/scheduler
+ # cat /sys/block/sda/queue/scheduler
+ [none] mq-deadline kyber bfq
diff --git a/Documentation/block/writeback_cache_control.txt b/Documentation/block/writeback_cache_control.rst
index 8a6bdada5f6b..2c752c57c14c 100644
--- a/Documentation/block/writeback_cache_control.txt
+++ b/Documentation/block/writeback_cache_control.rst
@@ -1,6 +1,6 @@
-
+==========================================
Explicit volatile write back cache control
-=====================================
+==========================================
Introduction
------------
@@ -31,7 +31,7 @@ the blkdev_issue_flush() helper for a pure cache flush.
Forced Unit Access
------------------
+------------------
The REQ_FUA flag can be OR ed into the r/w flags of a bio submitted from the
filesystem and will make sure that I/O completion for this request is only
@@ -62,14 +62,14 @@ flags themselves without any help from the block layer.
Implementation details for request_fn based block drivers
---------------------------------------------------------------
+---------------------------------------------------------
For devices that do not support volatile write caches there is no driver
support required, the block layer completes empty REQ_PREFLUSH requests before
entering the driver and strips off the REQ_PREFLUSH and REQ_FUA bits from
requests that have a payload. For devices with volatile write caches the
driver needs to tell the block layer that it supports flushing caches by
-doing:
+doing::
blk_queue_write_cache(sdkp->disk->queue, true, false);
@@ -77,7 +77,7 @@ and handle empty REQ_OP_FLUSH requests in its prep_fn/request_fn. Note that
REQ_PREFLUSH requests with a payload are automatically turned into a sequence
of an empty REQ_OP_FLUSH request followed by the actual write by the block
layer. For devices that also support the FUA bit the block layer needs
-to be told to pass through the REQ_FUA bit using:
+to be told to pass through the REQ_FUA bit using::
blk_queue_write_cache(sdkp->disk->queue, true, true);
diff --git a/Documentation/bpf/bpf_design_QA.rst b/Documentation/bpf/bpf_design_QA.rst
index cb402c59eca5..12a246fcf6cb 100644
--- a/Documentation/bpf/bpf_design_QA.rst
+++ b/Documentation/bpf/bpf_design_QA.rst
@@ -172,11 +172,31 @@ registers which makes BPF inefficient virtual machine for 32-bit
CPU architectures and 32-bit HW accelerators. Can true 32-bit registers
be added to BPF in the future?
-A: NO. The first thing to improve performance on 32-bit archs is to teach
-LLVM to generate code that uses 32-bit subregisters. Then second step
-is to teach verifier to mark operations where zero-ing upper bits
-is unnecessary. Then JITs can take advantage of those markings and
-drastically reduce size of generated code and improve performance.
+A: NO.
+
+But some optimizations on zero-ing the upper 32 bits for BPF registers are
+available, and can be leveraged to improve the performance of JITed BPF
+programs for 32-bit architectures.
+
+Starting with version 7, LLVM is able to generate instructions that operate
+on 32-bit subregisters, provided the option -mattr=+alu32 is passed for
+compiling a program. Furthermore, the verifier can now mark the
+instructions for which zero-ing the upper bits of the destination register
+is required, and insert an explicit zero-extension (zext) instruction
+(a mov32 variant). This means that for architectures without zext hardware
+support, the JIT back-ends do not need to clear the upper bits for
+subregisters written by alu32 instructions or narrow loads. Instead, the
+back-ends simply need to support code generation for that mov32 variant,
+and to overwrite bpf_jit_needs_zext() to make it return "true" (in order to
+enable zext insertion in the verifier).
+
+Note that it is possible for a JIT back-end to have partial hardware
+support for zext. In that case, if verifier zext insertion is enabled,
+it could lead to the insertion of unnecessary zext instructions. Such
+instructions could be removed by creating a simple peephole inside the JIT
+back-end: if one instruction has hardware support for zext and if the next
+instruction is an explicit zext, then the latter can be skipped when doing
+the code generation.
Q: Does BPF have a stable ABI?
------------------------------
diff --git a/Documentation/bpf/btf.rst b/Documentation/bpf/btf.rst
index 35d83e24dbdb..4d565d202ce3 100644
--- a/Documentation/bpf/btf.rst
+++ b/Documentation/bpf/btf.rst
@@ -151,6 +151,7 @@ for the type. The maximum value of ``BTF_INT_BITS()`` is 128.
The ``BTF_INT_OFFSET()`` specifies the starting bit offset to calculate values
for this int. For example, a bitfield struct member has:
+
* btf member bit offset 100 from the start of the structure,
* btf member pointing to an int type,
* the int type has ``BTF_INT_OFFSET() = 2`` and ``BTF_INT_BITS() = 4``
@@ -160,6 +161,7 @@ from bits ``100 + 2 = 102``.
Alternatively, the bitfield struct member can be the following to access the
same bits as the above:
+
* btf member bit offset 102,
* btf member pointing to an int type,
* the int type has ``BTF_INT_OFFSET() = 0`` and ``BTF_INT_BITS() = 4``
diff --git a/Documentation/bpf/index.rst b/Documentation/bpf/index.rst
index d3fe4cac0c90..801a6ed3f2e5 100644
--- a/Documentation/bpf/index.rst
+++ b/Documentation/bpf/index.rst
@@ -42,6 +42,7 @@ Program types
.. toctree::
:maxdepth: 1
+ prog_cgroup_sockopt
prog_cgroup_sysctl
prog_flow_dissector
diff --git a/Documentation/bpf/prog_cgroup_sockopt.rst b/Documentation/bpf/prog_cgroup_sockopt.rst
new file mode 100644
index 000000000000..c47d974629ae
--- /dev/null
+++ b/Documentation/bpf/prog_cgroup_sockopt.rst
@@ -0,0 +1,93 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============================
+BPF_PROG_TYPE_CGROUP_SOCKOPT
+============================
+
+``BPF_PROG_TYPE_CGROUP_SOCKOPT`` program type can be attached to two
+cgroup hooks:
+
+* ``BPF_CGROUP_GETSOCKOPT`` - called every time process executes ``getsockopt``
+ system call.
+* ``BPF_CGROUP_SETSOCKOPT`` - called every time process executes ``setsockopt``
+ system call.
+
+The context (``struct bpf_sockopt``) has associated socket (``sk``) and
+all input arguments: ``level``, ``optname``, ``optval`` and ``optlen``.
+
+BPF_CGROUP_SETSOCKOPT
+=====================
+
+``BPF_CGROUP_SETSOCKOPT`` is triggered *before* the kernel handling of
+sockopt and it has writable context: it can modify the supplied arguments
+before passing them down to the kernel. This hook has access to the cgroup
+and socket local storage.
+
+If BPF program sets ``optlen`` to -1, the control will be returned
+back to the userspace after all other BPF programs in the cgroup
+chain finish (i.e. kernel ``setsockopt`` handling will *not* be executed).
+
+Note, that ``optlen`` can not be increased beyond the user-supplied
+value. It can only be decreased or set to -1. Any other value will
+trigger ``EFAULT``.
+
+Return Type
+-----------
+
+* ``0`` - reject the syscall, ``EPERM`` will be returned to the userspace.
+* ``1`` - success, continue with next BPF program in the cgroup chain.
+
+BPF_CGROUP_GETSOCKOPT
+=====================
+
+``BPF_CGROUP_GETSOCKOPT`` is triggered *after* the kernel handing of
+sockopt. The BPF hook can observe ``optval``, ``optlen`` and ``retval``
+if it's interested in whatever kernel has returned. BPF hook can override
+the values above, adjust ``optlen`` and reset ``retval`` to 0. If ``optlen``
+has been increased above initial ``getsockopt`` value (i.e. userspace
+buffer is too small), ``EFAULT`` is returned.
+
+This hook has access to the cgroup and socket local storage.
+
+Note, that the only acceptable value to set to ``retval`` is 0 and the
+original value that the kernel returned. Any other value will trigger
+``EFAULT``.
+
+Return Type
+-----------
+
+* ``0`` - reject the syscall, ``EPERM`` will be returned to the userspace.
+* ``1`` - success: copy ``optval`` and ``optlen`` to userspace, return
+ ``retval`` from the syscall (note that this can be overwritten by
+ the BPF program from the parent cgroup).
+
+Cgroup Inheritance
+==================
+
+Suppose, there is the following cgroup hierarchy where each cgroup
+has ``BPF_CGROUP_GETSOCKOPT`` attached at each level with
+``BPF_F_ALLOW_MULTI`` flag::
+
+ A (root, parent)
+ \
+ B (child)
+
+When the application calls ``getsockopt`` syscall from the cgroup B,
+the programs are executed from the bottom up: B, A. First program
+(B) sees the result of kernel's ``getsockopt``. It can optionally
+adjust ``optval``, ``optlen`` and reset ``retval`` to 0. After that
+control will be passed to the second (A) program which will see the
+same context as B including any potential modifications.
+
+Same for ``BPF_CGROUP_SETSOCKOPT``: if the program is attached to
+A and B, the trigger order is B, then A. If B does any changes
+to the input arguments (``level``, ``optname``, ``optval``, ``optlen``),
+then the next program in the chain (A) will see those changes,
+*not* the original input ``setsockopt`` arguments. The potentially
+modified values will be then passed down to the kernel.
+
+Example
+=======
+
+See ``tools/testing/selftests/bpf/progs/sockopt_sk.c`` for an example
+of BPF program that handles socket options.
diff --git a/Documentation/bpf/prog_flow_dissector.rst b/Documentation/bpf/prog_flow_dissector.rst
index ed343abe541e..a78bf036cadd 100644
--- a/Documentation/bpf/prog_flow_dissector.rst
+++ b/Documentation/bpf/prog_flow_dissector.rst
@@ -26,6 +26,7 @@ The inputs are:
* ``nhoff`` - initial offset of the networking header
* ``thoff`` - initial offset of the transport header, initialized to nhoff
* ``n_proto`` - L3 protocol type, parsed out of L2 header
+ * ``flags`` - optional flags
Flow dissector BPF program should fill out the rest of the ``struct
bpf_flow_keys`` fields. Input arguments ``nhoff/thoff/n_proto`` should be
@@ -101,6 +102,23 @@ can be called for both cases and would have to be written carefully to
handle both cases.
+Flags
+=====
+
+``flow_keys->flags`` might contain optional input flags that work as follows:
+
+* ``BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG`` - tells BPF flow dissector to
+ continue parsing first fragment; the default expected behavior is that
+ flow dissector returns as soon as it finds out that the packet is fragmented;
+ used by ``eth_get_headlen`` to estimate length of all headers for GRO.
+* ``BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL`` - tells BPF flow dissector to
+ stop parsing as soon as it reaches IPv6 flow label; used by
+ ``___skb_get_hash`` and ``__skb_get_hash_symmetric`` to get flow hash.
+* ``BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP`` - tells BPF flow dissector to stop
+ parsing as soon as it reaches encapsulated headers; used by routing
+ infrastructure.
+
+
Reference Implementation
========================
diff --git a/Documentation/cdrom/Makefile b/Documentation/cdrom/Makefile
deleted file mode 100644
index a19e321928e1..000000000000
--- a/Documentation/cdrom/Makefile
+++ /dev/null
@@ -1,21 +0,0 @@
-LATEXFILE = cdrom-standard
-
-all:
- make clean
- latex $(LATEXFILE)
- latex $(LATEXFILE)
- @if [ -x `which gv` ]; then \
- `dvips -q -t letter -o $(LATEXFILE).ps $(LATEXFILE).dvi` ;\
- `gv -antialias -media letter -nocenter $(LATEXFILE).ps` ;\
- else \
- `xdvi $(LATEXFILE).dvi &` ;\
- fi
- make sortofclean
-
-clean:
- rm -f $(LATEXFILE).ps $(LATEXFILE).dvi $(LATEXFILE).aux $(LATEXFILE).log
-
-sortofclean:
- rm -f $(LATEXFILE).aux $(LATEXFILE).log
-
-
diff --git a/Documentation/cdrom/cdrom-standard.rst b/Documentation/cdrom/cdrom-standard.rst
new file mode 100644
index 000000000000..dde4f7f7fdbf
--- /dev/null
+++ b/Documentation/cdrom/cdrom-standard.rst
@@ -0,0 +1,1063 @@
+=======================
+A Linux CD-ROM standard
+=======================
+
+:Author: David van Leeuwen <david@ElseWare.cistron.nl>
+:Date: 12 March 1999
+:Updated by: Erik Andersen (andersee@debian.org)
+:Updated by: Jens Axboe (axboe@image.dk)
+
+
+Introduction
+============
+
+Linux is probably the Unix-like operating system that supports
+the widest variety of hardware devices. The reasons for this are
+presumably
+
+- The large list of hardware devices available for the many platforms
+ that Linux now supports (i.e., i386-PCs, Sparc Suns, etc.)
+- The open design of the operating system, such that anybody can write a
+ driver for Linux.
+- There is plenty of source code around as examples of how to write a driver.
+
+The openness of Linux, and the many different types of available
+hardware has allowed Linux to support many different hardware devices.
+Unfortunately, the very openness that has allowed Linux to support
+all these different devices has also allowed the behavior of each
+device driver to differ significantly from one device to another.
+This divergence of behavior has been very significant for CD-ROM
+devices; the way a particular drive reacts to a `standard` *ioctl()*
+call varies greatly from one device driver to another. To avoid making
+their drivers totally inconsistent, the writers of Linux CD-ROM
+drivers generally created new device drivers by understanding, copying,
+and then changing an existing one. Unfortunately, this practice did not
+maintain uniform behavior across all the Linux CD-ROM drivers.
+
+This document describes an effort to establish Uniform behavior across
+all the different CD-ROM device drivers for Linux. This document also
+defines the various *ioctl()'s*, and how the low-level CD-ROM device
+drivers should implement them. Currently (as of the Linux 2.1.\ *x*
+development kernels) several low-level CD-ROM device drivers, including
+both IDE/ATAPI and SCSI, now use this Uniform interface.
+
+When the CD-ROM was developed, the interface between the CD-ROM drive
+and the computer was not specified in the standards. As a result, many
+different CD-ROM interfaces were developed. Some of them had their
+own proprietary design (Sony, Mitsumi, Panasonic, Philips), other
+manufacturers adopted an existing electrical interface and changed
+the functionality (CreativeLabs/SoundBlaster, Teac, Funai) or simply
+adapted their drives to one or more of the already existing electrical
+interfaces (Aztech, Sanyo, Funai, Vertos, Longshine, Optics Storage and
+most of the `NoName` manufacturers). In cases where a new drive really
+brought its own interface or used its own command set and flow control
+scheme, either a separate driver had to be written, or an existing
+driver had to be enhanced. History has delivered us CD-ROM support for
+many of these different interfaces. Nowadays, almost all new CD-ROM
+drives are either IDE/ATAPI or SCSI, and it is very unlikely that any
+manufacturer will create a new interface. Even finding drives for the
+old proprietary interfaces is getting difficult.
+
+When (in the 1.3.70's) I looked at the existing software interface,
+which was expressed through `cdrom.h`, it appeared to be a rather wild
+set of commands and data formats [#f1]_. It seemed that many
+features of the software interface had been added to accommodate the
+capabilities of a particular drive, in an *ad hoc* manner. More
+importantly, it appeared that the behavior of the `standard` commands
+was different for most of the different drivers: e. g., some drivers
+close the tray if an *open()* call occurs when the tray is open, while
+others do not. Some drivers lock the door upon opening the device, to
+prevent an incoherent file system, but others don't, to allow software
+ejection. Undoubtedly, the capabilities of the different drives vary,
+but even when two drives have the same capability their drivers'
+behavior was usually different.
+
+.. [#f1]
+ I cannot recollect what kernel version I looked at, then,
+ presumably 1.2.13 and 1.3.34 --- the latest kernel that I was
+ indirectly involved in.
+
+I decided to start a discussion on how to make all the Linux CD-ROM
+drivers behave more uniformly. I began by contacting the developers of
+the many CD-ROM drivers found in the Linux kernel. Their reactions
+encouraged me to write the Uniform CD-ROM Driver which this document is
+intended to describe. The implementation of the Uniform CD-ROM Driver is
+in the file `cdrom.c`. This driver is intended to be an additional software
+layer that sits on top of the low-level device drivers for each CD-ROM drive.
+By adding this additional layer, it is possible to have all the different
+CD-ROM devices behave **exactly** the same (insofar as the underlying
+hardware will allow).
+
+The goal of the Uniform CD-ROM Driver is **not** to alienate driver developers
+whohave not yet taken steps to support this effort. The goal of Uniform CD-ROM
+Driver is simply to give people writing application programs for CD-ROM drives
+**one** Linux CD-ROM interface with consistent behavior for all
+CD-ROM devices. In addition, this also provides a consistent interface
+between the low-level device driver code and the Linux kernel. Care
+is taken that 100% compatibility exists with the data structures and
+programmer's interface defined in `cdrom.h`. This guide was written to
+help CD-ROM driver developers adapt their code to use the Uniform CD-ROM
+Driver code defined in `cdrom.c`.
+
+Personally, I think that the most important hardware interfaces are
+the IDE/ATAPI drives and, of course, the SCSI drives, but as prices
+of hardware drop continuously, it is also likely that people may have
+more than one CD-ROM drive, possibly of mixed types. It is important
+that these drives behave in the same way. In December 1994, one of the
+cheapest CD-ROM drives was a Philips cm206, a double-speed proprietary
+drive. In the months that I was busy writing a Linux driver for it,
+proprietary drives became obsolete and IDE/ATAPI drives became the
+standard. At the time of the last update to this document (November
+1997) it is becoming difficult to even **find** anything less than a
+16 speed CD-ROM drive, and 24 speed drives are common.
+
+.. _cdrom_api:
+
+Standardizing through another software level
+============================================
+
+At the time this document was conceived, all drivers directly
+implemented the CD-ROM *ioctl()* calls through their own routines. This
+led to the danger of different drivers forgetting to do important things
+like checking that the user was giving the driver valid data. More
+importantly, this led to the divergence of behavior, which has already
+been discussed.
+
+For this reason, the Uniform CD-ROM Driver was created to enforce consistent
+CD-ROM drive behavior, and to provide a common set of services to the various
+low-level CD-ROM device drivers. The Uniform CD-ROM Driver now provides another
+software-level, that separates the *ioctl()* and *open()* implementation
+from the actual hardware implementation. Note that this effort has
+made few changes which will affect a user's application programs. The
+greatest change involved moving the contents of the various low-level
+CD-ROM drivers\' header files to the kernel's cdrom directory. This was
+done to help ensure that the user is only presented with only one cdrom
+interface, the interface defined in `cdrom.h`.
+
+CD-ROM drives are specific enough (i. e., different from other
+block-devices such as floppy or hard disc drives), to define a set
+of common **CD-ROM device operations**, *<cdrom-device>_dops*.
+These operations are different from the classical block-device file
+operations, *<block-device>_fops*.
+
+The routines for the Uniform CD-ROM Driver interface level are implemented
+in the file `cdrom.c`. In this file, the Uniform CD-ROM Driver interfaces
+with the kernel as a block device by registering the following general
+*struct file_operations*::
+
+ struct file_operations cdrom_fops = {
+ NULL, /∗ lseek ∗/
+ block _read , /∗ read—general block-dev read ∗/
+ block _write, /∗ write—general block-dev write ∗/
+ NULL, /∗ readdir ∗/
+ NULL, /∗ select ∗/
+ cdrom_ioctl, /∗ ioctl ∗/
+ NULL, /∗ mmap ∗/
+ cdrom_open, /∗ open ∗/
+ cdrom_release, /∗ release ∗/
+ NULL, /∗ fsync ∗/
+ NULL, /∗ fasync ∗/
+ cdrom_media_changed, /∗ media change ∗/
+ NULL /∗ revalidate ∗/
+ };
+
+Every active CD-ROM device shares this *struct*. The routines
+declared above are all implemented in `cdrom.c`, since this file is the
+place where the behavior of all CD-ROM-devices is defined and
+standardized. The actual interface to the various types of CD-ROM
+hardware is still performed by various low-level CD-ROM-device
+drivers. These routines simply implement certain **capabilities**
+that are common to all CD-ROM (and really, all removable-media
+devices).
+
+Registration of a low-level CD-ROM device driver is now done through
+the general routines in `cdrom.c`, not through the Virtual File System
+(VFS) any more. The interface implemented in `cdrom.c` is carried out
+through two general structures that contain information about the
+capabilities of the driver, and the specific drives on which the
+driver operates. The structures are:
+
+cdrom_device_ops
+ This structure contains information about the low-level driver for a
+ CD-ROM device. This structure is conceptually connected to the major
+ number of the device (although some drivers may have different
+ major numbers, as is the case for the IDE driver).
+
+cdrom_device_info
+ This structure contains information about a particular CD-ROM drive,
+ such as its device name, speed, etc. This structure is conceptually
+ connected to the minor number of the device.
+
+Registering a particular CD-ROM drive with the Uniform CD-ROM Driver
+is done by the low-level device driver though a call to::
+
+ register_cdrom(struct cdrom_device_info * <device>_info)
+
+The device information structure, *<device>_info*, contains all the
+information needed for the kernel to interface with the low-level
+CD-ROM device driver. One of the most important entries in this
+structure is a pointer to the *cdrom_device_ops* structure of the
+low-level driver.
+
+The device operations structure, *cdrom_device_ops*, contains a list
+of pointers to the functions which are implemented in the low-level
+device driver. When `cdrom.c` accesses a CD-ROM device, it does it
+through the functions in this structure. It is impossible to know all
+the capabilities of future CD-ROM drives, so it is expected that this
+list may need to be expanded from time to time as new technologies are
+developed. For example, CD-R and CD-R/W drives are beginning to become
+popular, and support will soon need to be added for them. For now, the
+current *struct* is::
+
+ struct cdrom_device_ops {
+ int (*open)(struct cdrom_device_info *, int)
+ void (*release)(struct cdrom_device_info *);
+ int (*drive_status)(struct cdrom_device_info *, int);
+ unsigned int (*check_events)(struct cdrom_device_info *,
+ unsigned int, int);
+ int (*media_changed)(struct cdrom_device_info *, int);
+ int (*tray_move)(struct cdrom_device_info *, int);
+ int (*lock_door)(struct cdrom_device_info *, int);
+ int (*select_speed)(struct cdrom_device_info *, int);
+ int (*select_disc)(struct cdrom_device_info *, int);
+ int (*get_last_session) (struct cdrom_device_info *,
+ struct cdrom_multisession *);
+ int (*get_mcn)(struct cdrom_device_info *, struct cdrom_mcn *);
+ int (*reset)(struct cdrom_device_info *);
+ int (*audio_ioctl)(struct cdrom_device_info *,
+ unsigned int, void *);
+ const int capability; /* capability flags */
+ int (*generic_packet)(struct cdrom_device_info *,
+ struct packet_command *);
+ };
+
+When a low-level device driver implements one of these capabilities,
+it should add a function pointer to this *struct*. When a particular
+function is not implemented, however, this *struct* should contain a
+NULL instead. The *capability* flags specify the capabilities of the
+CD-ROM hardware and/or low-level CD-ROM driver when a CD-ROM drive
+is registered with the Uniform CD-ROM Driver.
+
+Note that most functions have fewer parameters than their
+*blkdev_fops* counterparts. This is because very little of the
+information in the structures *inode* and *file* is used. For most
+drivers, the main parameter is the *struct* *cdrom_device_info*, from
+which the major and minor number can be extracted. (Most low-level
+CD-ROM drivers don't even look at the major and minor number though,
+since many of them only support one device.) This will be available
+through *dev* in *cdrom_device_info* described below.
+
+The drive-specific, minor-like information that is registered with
+`cdrom.c`, currently contains the following fields::
+
+ struct cdrom_device_info {
+ const struct cdrom_device_ops * ops; /* device operations for this major */
+ struct list_head list; /* linked list of all device_info */
+ struct gendisk * disk; /* matching block layer disk */
+ void * handle; /* driver-dependent data */
+
+ int mask; /* mask of capability: disables them */
+ int speed; /* maximum speed for reading data */
+ int capacity; /* number of discs in a jukebox */
+
+ unsigned int options:30; /* options flags */
+ unsigned mc_flags:2; /* media-change buffer flags */
+ unsigned int vfs_events; /* cached events for vfs path */
+ unsigned int ioctl_events; /* cached events for ioctl path */
+ int use_count; /* number of times device is opened */
+ char name[20]; /* name of the device type */
+
+ __u8 sanyo_slot : 2; /* Sanyo 3-CD changer support */
+ __u8 keeplocked : 1; /* CDROM_LOCKDOOR status */
+ __u8 reserved : 5; /* not used yet */
+ int cdda_method; /* see CDDA_* flags */
+ __u8 last_sense; /* saves last sense key */
+ __u8 media_written; /* dirty flag, DVD+RW bookkeeping */
+ unsigned short mmc3_profile; /* current MMC3 profile */
+ int for_data; /* unknown:TBD */
+ int (*exit)(struct cdrom_device_info *);/* unknown:TBD */
+ int mrw_mode_page; /* which MRW mode page is in use */
+ };
+
+Using this *struct*, a linked list of the registered minor devices is
+built, using the *next* field. The device number, the device operations
+struct and specifications of properties of the drive are stored in this
+structure.
+
+The *mask* flags can be used to mask out some of the capabilities listed
+in *ops->capability*, if a specific drive doesn't support a feature
+of the driver. The value *speed* specifies the maximum head-rate of the
+drive, measured in units of normal audio speed (176kB/sec raw data or
+150kB/sec file system data). The parameters are declared *const*
+because they describe properties of the drive, which don't change after
+registration.
+
+A few registers contain variables local to the CD-ROM drive. The
+flags *options* are used to specify how the general CD-ROM routines
+should behave. These various flags registers should provide enough
+flexibility to adapt to the different users' wishes (and **not** the
+`arbitrary` wishes of the author of the low-level device driver, as is
+the case in the old scheme). The register *mc_flags* is used to buffer
+the information from *media_changed()* to two separate queues. Other
+data that is specific to a minor drive, can be accessed through *handle*,
+which can point to a data structure specific to the low-level driver.
+The fields *use_count*, *next*, *options* and *mc_flags* need not be
+initialized.
+
+The intermediate software layer that `cdrom.c` forms will perform some
+additional bookkeeping. The use count of the device (the number of
+processes that have the device opened) is registered in *use_count*. The
+function *cdrom_ioctl()* will verify the appropriate user-memory regions
+for read and write, and in case a location on the CD is transferred,
+it will `sanitize` the format by making requests to the low-level
+drivers in a standard format, and translating all formats between the
+user-software and low level drivers. This relieves much of the drivers'
+memory checking and format checking and translation. Also, the necessary
+structures will be declared on the program stack.
+
+The implementation of the functions should be as defined in the
+following sections. Two functions **must** be implemented, namely
+*open()* and *release()*. Other functions may be omitted, their
+corresponding capability flags will be cleared upon registration.
+Generally, a function returns zero on success and negative on error. A
+function call should return only after the command has completed, but of
+course waiting for the device should not use processor time.
+
+::
+
+ int open(struct cdrom_device_info *cdi, int purpose)
+
+*Open()* should try to open the device for a specific *purpose*, which
+can be either:
+
+- Open for reading data, as done by `mount()` (2), or the
+ user commands `dd` or `cat`.
+- Open for *ioctl* commands, as done by audio-CD playing programs.
+
+Notice that any strategic code (closing tray upon *open()*, etc.) is
+done by the calling routine in `cdrom.c`, so the low-level routine
+should only be concerned with proper initialization, such as spinning
+up the disc, etc.
+
+::
+
+ void release(struct cdrom_device_info *cdi)
+
+Device-specific actions should be taken such as spinning down the device.
+However, strategic actions such as ejection of the tray, or unlocking
+the door, should be left over to the general routine *cdrom_release()*.
+This is the only function returning type *void*.
+
+.. _cdrom_drive_status:
+
+::
+
+ int drive_status(struct cdrom_device_info *cdi, int slot_nr)
+
+The function *drive_status*, if implemented, should provide
+information on the status of the drive (not the status of the disc,
+which may or may not be in the drive). If the drive is not a changer,
+*slot_nr* should be ignored. In `cdrom.h` the possibilities are listed::
+
+
+ CDS_NO_INFO /* no information available */
+ CDS_NO_DISC /* no disc is inserted, tray is closed */
+ CDS_TRAY_OPEN /* tray is opened */
+ CDS_DRIVE_NOT_READY /* something is wrong, tray is moving? */
+ CDS_DISC_OK /* a disc is loaded and everything is fine */
+
+::
+
+ int media_changed(struct cdrom_device_info *cdi, int disc_nr)
+
+This function is very similar to the original function in $struct
+file_operations*. It returns 1 if the medium of the device *cdi->dev*
+has changed since the last call, and 0 otherwise. The parameter
+*disc_nr* identifies a specific slot in a juke-box, it should be
+ignored for single-disc drives. Note that by `re-routing` this
+function through *cdrom_media_changed()*, we can implement separate
+queues for the VFS and a new *ioctl()* function that can report device
+changes to software (e. g., an auto-mounting daemon).
+
+::
+
+ int tray_move(struct cdrom_device_info *cdi, int position)
+
+This function, if implemented, should control the tray movement. (No
+other function should control this.) The parameter *position* controls
+the desired direction of movement:
+
+- 0 Close tray
+- 1 Open tray
+
+This function returns 0 upon success, and a non-zero value upon
+error. Note that if the tray is already in the desired position, no
+action need be taken, and the return value should be 0.
+
+::
+
+ int lock_door(struct cdrom_device_info *cdi, int lock)
+
+This function (and no other code) controls locking of the door, if the
+drive allows this. The value of *lock* controls the desired locking
+state:
+
+- 0 Unlock door, manual opening is allowed
+- 1 Lock door, tray cannot be ejected manually
+
+This function returns 0 upon success, and a non-zero value upon
+error. Note that if the door is already in the requested state, no
+action need be taken, and the return value should be 0.
+
+::
+
+ int select_speed(struct cdrom_device_info *cdi, int speed)
+
+Some CD-ROM drives are capable of changing their head-speed. There
+are several reasons for changing the speed of a CD-ROM drive. Badly
+pressed CD-ROM s may benefit from less-than-maximum head rate. Modern
+CD-ROM drives can obtain very high head rates (up to *24x* is
+common). It has been reported that these drives can make reading
+errors at these high speeds, reducing the speed can prevent data loss
+in these circumstances. Finally, some of these drives can
+make an annoyingly loud noise, which a lower speed may reduce.
+
+This function specifies the speed at which data is read or audio is
+played back. The value of *speed* specifies the head-speed of the
+drive, measured in units of standard cdrom speed (176kB/sec raw data
+or 150kB/sec file system data). So to request that a CD-ROM drive
+operate at 300kB/sec you would call the CDROM_SELECT_SPEED *ioctl*
+with *speed=2*. The special value `0` means `auto-selection`, i. e.,
+maximum data-rate or real-time audio rate. If the drive doesn't have
+this `auto-selection` capability, the decision should be made on the
+current disc loaded and the return value should be positive. A negative
+return value indicates an error.
+
+::
+
+ int select_disc(struct cdrom_device_info *cdi, int number)
+
+If the drive can store multiple discs (a juke-box) this function
+will perform disc selection. It should return the number of the
+selected disc on success, a negative value on error. Currently, only
+the ide-cd driver supports this functionality.
+
+::
+
+ int get_last_session(struct cdrom_device_info *cdi,
+ struct cdrom_multisession *ms_info)
+
+This function should implement the old corresponding *ioctl()*. For
+device *cdi->dev*, the start of the last session of the current disc
+should be returned in the pointer argument *ms_info*. Note that
+routines in `cdrom.c` have sanitized this argument: its requested
+format will **always** be of the type *CDROM_LBA* (linear block
+addressing mode), whatever the calling software requested. But
+sanitization goes even further: the low-level implementation may
+return the requested information in *CDROM_MSF* format if it wishes so
+(setting the *ms_info->addr_format* field appropriately, of
+course) and the routines in `cdrom.c` will make the transformation if
+necessary. The return value is 0 upon success.
+
+::
+
+ int get_mcn(struct cdrom_device_info *cdi,
+ struct cdrom_mcn *mcn)
+
+Some discs carry a `Media Catalog Number` (MCN), also called
+`Universal Product Code` (UPC). This number should reflect the number
+that is generally found in the bar-code on the product. Unfortunately,
+the few discs that carry such a number on the disc don't even use the
+same format. The return argument to this function is a pointer to a
+pre-declared memory region of type *struct cdrom_mcn*. The MCN is
+expected as a 13-character string, terminated by a null-character.
+
+::
+
+ int reset(struct cdrom_device_info *cdi)
+
+This call should perform a hard-reset on the drive (although in
+circumstances that a hard-reset is necessary, a drive may very well not
+listen to commands anymore). Preferably, control is returned to the
+caller only after the drive has finished resetting. If the drive is no
+longer listening, it may be wise for the underlying low-level cdrom
+driver to time out.
+
+::
+
+ int audio_ioctl(struct cdrom_device_info *cdi,
+ unsigned int cmd, void *arg)
+
+Some of the CD-ROM-\ *ioctl()*\ 's defined in `cdrom.h` can be
+implemented by the routines described above, and hence the function
+*cdrom_ioctl* will use those. However, most *ioctl()*\ 's deal with
+audio-control. We have decided to leave these to be accessed through a
+single function, repeating the arguments *cmd* and *arg*. Note that
+the latter is of type *void*, rather than *unsigned long int*.
+The routine *cdrom_ioctl()* does do some useful things,
+though. It sanitizes the address format type to *CDROM_MSF* (Minutes,
+Seconds, Frames) for all audio calls. It also verifies the memory
+location of *arg*, and reserves stack-memory for the argument. This
+makes implementation of the *audio_ioctl()* much simpler than in the
+old driver scheme. For example, you may look up the function
+*cm206_audio_ioctl()* `cm206.c` that should be updated with
+this documentation.
+
+An unimplemented ioctl should return *-ENOSYS*, but a harmless request
+(e. g., *CDROMSTART*) may be ignored by returning 0 (success). Other
+errors should be according to the standards, whatever they are. When
+an error is returned by the low-level driver, the Uniform CD-ROM Driver
+tries whenever possible to return the error code to the calling program.
+(We may decide to sanitize the return value in *cdrom_ioctl()* though, in
+order to guarantee a uniform interface to the audio-player software.)
+
+::
+
+ int dev_ioctl(struct cdrom_device_info *cdi,
+ unsigned int cmd, unsigned long arg)
+
+Some *ioctl()'s* seem to be specific to certain CD-ROM drives. That is,
+they are introduced to service some capabilities of certain drives. In
+fact, there are 6 different *ioctl()'s* for reading data, either in some
+particular kind of format, or audio data. Not many drives support
+reading audio tracks as data, I believe this is because of protection
+of copyrights of artists. Moreover, I think that if audio-tracks are
+supported, it should be done through the VFS and not via *ioctl()'s*. A
+problem here could be the fact that audio-frames are 2352 bytes long,
+so either the audio-file-system should ask for 75264 bytes at once
+(the least common multiple of 512 and 2352), or the drivers should
+bend their backs to cope with this incoherence (to which I would be
+opposed). Furthermore, it is very difficult for the hardware to find
+the exact frame boundaries, since there are no synchronization headers
+in audio frames. Once these issues are resolved, this code should be
+standardized in `cdrom.c`.
+
+Because there are so many *ioctl()'s* that seem to be introduced to
+satisfy certain drivers [#f2]_, any non-standard *ioctl()*\ s
+are routed through the call *dev_ioctl()*. In principle, `private`
+*ioctl()*\ 's should be numbered after the device's major number, and not
+the general CD-ROM *ioctl* number, `0x53`. Currently the
+non-supported *ioctl()'s* are:
+
+ CDROMREADMODE1, CDROMREADMODE2, CDROMREADAUDIO, CDROMREADRAW,
+ CDROMREADCOOKED, CDROMSEEK, CDROMPLAY-BLK and CDROM-READALL
+
+.. [#f2]
+
+ Is there software around that actually uses these? I'd be interested!
+
+.. _cdrom_capabilities:
+
+CD-ROM capabilities
+-------------------
+
+Instead of just implementing some *ioctl* calls, the interface in
+`cdrom.c` supplies the possibility to indicate the **capabilities**
+of a CD-ROM drive. This can be done by ORing any number of
+capability-constants that are defined in `cdrom.h` at the registration
+phase. Currently, the capabilities are any of::
+
+ CDC_CLOSE_TRAY /* can close tray by software control */
+ CDC_OPEN_TRAY /* can open tray */
+ CDC_LOCK /* can lock and unlock the door */
+ CDC_SELECT_SPEED /* can select speed, in units of * sim*150 ,kB/s */
+ CDC_SELECT_DISC /* drive is juke-box */
+ CDC_MULTI_SESSION /* can read sessions *> rm1* */
+ CDC_MCN /* can read Media Catalog Number */
+ CDC_MEDIA_CHANGED /* can report if disc has changed */
+ CDC_PLAY_AUDIO /* can perform audio-functions (play, pause, etc) */
+ CDC_RESET /* hard reset device */
+ CDC_IOCTLS /* driver has non-standard ioctls */
+ CDC_DRIVE_STATUS /* driver implements drive status */
+
+The capability flag is declared *const*, to prevent drivers from
+accidentally tampering with the contents. The capability fags actually
+inform `cdrom.c` of what the driver can do. If the drive found
+by the driver does not have the capability, is can be masked out by
+the *cdrom_device_info* variable *mask*. For instance, the SCSI CD-ROM
+driver has implemented the code for loading and ejecting CD-ROM's, and
+hence its corresponding flags in *capability* will be set. But a SCSI
+CD-ROM drive might be a caddy system, which can't load the tray, and
+hence for this drive the *cdrom_device_info* struct will have set
+the *CDC_CLOSE_TRAY* bit in *mask*.
+
+In the file `cdrom.c` you will encounter many constructions of the type::
+
+ if (cdo->capability & ∼cdi->mask & CDC _⟨capability⟩) ...
+
+There is no *ioctl* to set the mask... The reason is that
+I think it is better to control the **behavior** rather than the
+**capabilities**.
+
+Options
+-------
+
+A final flag register controls the **behavior** of the CD-ROM
+drives, in order to satisfy different users' wishes, hopefully
+independently of the ideas of the respective author who happened to
+have made the drive's support available to the Linux community. The
+current behavior options are::
+
+ CDO_AUTO_CLOSE /* try to close tray upon device open() */
+ CDO_AUTO_EJECT /* try to open tray on last device close() */
+ CDO_USE_FFLAGS /* use file_pointer->f_flags to indicate purpose for open() */
+ CDO_LOCK /* try to lock door if device is opened */
+ CDO_CHECK_TYPE /* ensure disc type is data if opened for data */
+
+The initial value of this register is
+`CDO_AUTO_CLOSE | CDO_USE_FFLAGS | CDO_LOCK`, reflecting my own view on user
+interface and software standards. Before you protest, there are two
+new *ioctl()'s* implemented in `cdrom.c`, that allow you to control the
+behavior by software. These are::
+
+ CDROM_SET_OPTIONS /* set options specified in (int)arg */
+ CDROM_CLEAR_OPTIONS /* clear options specified in (int)arg */
+
+One option needs some more explanation: *CDO_USE_FFLAGS*. In the next
+newsection we explain what the need for this option is.
+
+A software package `setcd`, available from the Debian distribution
+and `sunsite.unc.edu`, allows user level control of these flags.
+
+
+The need to know the purpose of opening the CD-ROM device
+=========================================================
+
+Traditionally, Unix devices can be used in two different `modes`,
+either by reading/writing to the device file, or by issuing
+controlling commands to the device, by the device's *ioctl()*
+call. The problem with CD-ROM drives, is that they can be used for
+two entirely different purposes. One is to mount removable
+file systems, CD-ROM's, the other is to play audio CD's. Audio commands
+are implemented entirely through *ioctl()\'s*, presumably because the
+first implementation (SUN?) has been such. In principle there is
+nothing wrong with this, but a good control of the `CD player` demands
+that the device can **always** be opened in order to give the
+*ioctl* commands, regardless of the state the drive is in.
+
+On the other hand, when used as a removable-media disc drive (what the
+original purpose of CD-ROM s is) we would like to make sure that the
+disc drive is ready for operation upon opening the device. In the old
+scheme, some CD-ROM drivers don't do any integrity checking, resulting
+in a number of i/o errors reported by the VFS to the kernel when an
+attempt for mounting a CD-ROM on an empty drive occurs. This is not a
+particularly elegant way to find out that there is no CD-ROM inserted;
+it more-or-less looks like the old IBM-PC trying to read an empty floppy
+drive for a couple of seconds, after which the system complains it
+can't read from it. Nowadays we can **sense** the existence of a
+removable medium in a drive, and we believe we should exploit that
+fact. An integrity check on opening of the device, that verifies the
+availability of a CD-ROM and its correct type (data), would be
+desirable.
+
+These two ways of using a CD-ROM drive, principally for data and
+secondarily for playing audio discs, have different demands for the
+behavior of the *open()* call. Audio use simply wants to open the
+device in order to get a file handle which is needed for issuing
+*ioctl* commands, while data use wants to open for correct and
+reliable data transfer. The only way user programs can indicate what
+their *purpose* of opening the device is, is through the *flags*
+parameter (see `open(2)`). For CD-ROM devices, these flags aren't
+implemented (some drivers implement checking for write-related flags,
+but this is not strictly necessary if the device file has correct
+permission flags). Most option flags simply don't make sense to
+CD-ROM devices: *O_CREAT*, *O_NOCTTY*, *O_TRUNC*, *O_APPEND*, and
+*O_SYNC* have no meaning to a CD-ROM.
+
+We therefore propose to use the flag *O_NONBLOCK* to indicate
+that the device is opened just for issuing *ioctl*
+commands. Strictly, the meaning of *O_NONBLOCK* is that opening and
+subsequent calls to the device don't cause the calling process to
+wait. We could interpret this as don't wait until someone has
+inserted some valid data-CD-ROM. Thus, our proposal of the
+implementation for the *open()* call for CD-ROM s is:
+
+- If no other flags are set than *O_RDONLY*, the device is opened
+ for data transfer, and the return value will be 0 only upon successful
+ initialization of the transfer. The call may even induce some actions
+ on the CD-ROM, such as closing the tray.
+- If the option flag *O_NONBLOCK* is set, opening will always be
+ successful, unless the whole device doesn't exist. The drive will take
+ no actions whatsoever.
+
+And what about standards?
+-------------------------
+
+You might hesitate to accept this proposal as it comes from the
+Linux community, and not from some standardizing institute. What
+about SUN, SGI, HP and all those other Unix and hardware vendors?
+Well, these companies are in the lucky position that they generally
+control both the hardware and software of their supported products,
+and are large enough to set their own standard. They do not have to
+deal with a dozen or more different, competing hardware
+configurations\ [#f3]_.
+
+.. [#f3]
+
+ Incidentally, I think that SUN's approach to mounting CD-ROM s is very
+ good in origin: under Solaris a volume-daemon automatically mounts a
+ newly inserted CD-ROM under `/cdrom/*<volume-name>*`.
+
+ In my opinion they should have pushed this
+ further and have **every** CD-ROM on the local area network be
+ mounted at the similar location, i. e., no matter in which particular
+ machine you insert a CD-ROM, it will always appear at the same
+ position in the directory tree, on every system. When I wanted to
+ implement such a user-program for Linux, I came across the
+ differences in behavior of the various drivers, and the need for an
+ *ioctl* informing about media changes.
+
+We believe that using *O_NONBLOCK* to indicate that a device is being opened
+for *ioctl* commands only can be easily introduced in the Linux
+community. All the CD-player authors will have to be informed, we can
+even send in our own patches to the programs. The use of *O_NONBLOCK*
+has most likely no influence on the behavior of the CD-players on
+other operating systems than Linux. Finally, a user can always revert
+to old behavior by a call to
+*ioctl(file_descriptor, CDROM_CLEAR_OPTIONS, CDO_USE_FFLAGS)*.
+
+The preferred strategy of *open()*
+----------------------------------
+
+The routines in `cdrom.c` are designed in such a way that run-time
+configuration of the behavior of CD-ROM devices (of **any** type)
+can be carried out, by the *CDROM_SET/CLEAR_OPTIONS* *ioctls*. Thus, various
+modes of operation can be set:
+
+`CDO_AUTO_CLOSE | CDO_USE_FFLAGS | CDO_LOCK`
+ This is the default setting. (With *CDO_CHECK_TYPE* it will be better, in
+ the future.) If the device is not yet opened by any other process, and if
+ the device is being opened for data (*O_NONBLOCK* is not set) and the
+ tray is found to be open, an attempt to close the tray is made. Then,
+ it is verified that a disc is in the drive and, if *CDO_CHECK_TYPE* is
+ set, that it contains tracks of type `data mode 1`. Only if all tests
+ are passed is the return value zero. The door is locked to prevent file
+ system corruption. If the drive is opened for audio (*O_NONBLOCK* is
+ set), no actions are taken and a value of 0 will be returned.
+
+`CDO_AUTO_CLOSE | CDO_AUTO_EJECT | CDO_LOCK`
+ This mimics the behavior of the current sbpcd-driver. The option flags are
+ ignored, the tray is closed on the first open, if necessary. Similarly,
+ the tray is opened on the last release, i. e., if a CD-ROM is unmounted,
+ it is automatically ejected, such that the user can replace it.
+
+We hope that these option can convince everybody (both driver
+maintainers and user program developers) to adopt the new CD-ROM
+driver scheme and option flag interpretation.
+
+Description of routines in `cdrom.c`
+====================================
+
+Only a few routines in `cdrom.c` are exported to the drivers. In this
+new section we will discuss these, as well as the functions that `take
+over' the CD-ROM interface to the kernel. The header file belonging
+to `cdrom.c` is called `cdrom.h`. Formerly, some of the contents of this
+file were placed in the file `ucdrom.h`, but this file has now been
+merged back into `cdrom.h`.
+
+::
+
+ struct file_operations cdrom_fops
+
+The contents of this structure were described in cdrom_api_.
+A pointer to this structure is assigned to the *fops* field
+of the *struct gendisk*.
+
+::
+
+ int register_cdrom(struct cdrom_device_info *cdi)
+
+This function is used in about the same way one registers *cdrom_fops*
+with the kernel, the device operations and information structures,
+as described in cdrom_api_, should be registered with the
+Uniform CD-ROM Driver::
+
+ register_cdrom(&<device>_info);
+
+
+This function returns zero upon success, and non-zero upon
+failure. The structure *<device>_info* should have a pointer to the
+driver's *<device>_dops*, as in::
+
+ struct cdrom_device_info <device>_info = {
+ <device>_dops;
+ ...
+ }
+
+Note that a driver must have one static structure, *<device>_dops*, while
+it may have as many structures *<device>_info* as there are minor devices
+active. *Register_cdrom()* builds a linked list from these.
+
+
+::
+
+ void unregister_cdrom(struct cdrom_device_info *cdi)
+
+Unregistering device *cdi* with minor number *MINOR(cdi->dev)* removes
+the minor device from the list. If it was the last registered minor for
+the low-level driver, this disconnects the registered device-operation
+routines from the CD-ROM interface. This function returns zero upon
+success, and non-zero upon failure.
+
+::
+
+ int cdrom_open(struct inode * ip, struct file * fp)
+
+This function is not called directly by the low-level drivers, it is
+listed in the standard *cdrom_fops*. If the VFS opens a file, this
+function becomes active. A strategy is implemented in this routine,
+taking care of all capabilities and options that are set in the
+*cdrom_device_ops* connected to the device. Then, the program flow is
+transferred to the device_dependent *open()* call.
+
+::
+
+ void cdrom_release(struct inode *ip, struct file *fp)
+
+This function implements the reverse-logic of *cdrom_open()*, and then
+calls the device-dependent *release()* routine. When the use-count has
+reached 0, the allocated buffers are flushed by calls to *sync_dev(dev)*
+and *invalidate_buffers(dev)*.
+
+
+.. _cdrom_ioctl:
+
+::
+
+ int cdrom_ioctl(struct inode *ip, struct file *fp,
+ unsigned int cmd, unsigned long arg)
+
+This function handles all the standard *ioctl* requests for CD-ROM
+devices in a uniform way. The different calls fall into three
+categories: *ioctl()'s* that can be directly implemented by device
+operations, ones that are routed through the call *audio_ioctl()*, and
+the remaining ones, that are presumable device-dependent. Generally, a
+negative return value indicates an error.
+
+Directly implemented *ioctl()'s*
+--------------------------------
+
+The following `old` CD-ROM *ioctl()*\ 's are implemented by directly
+calling device-operations in *cdrom_device_ops*, if implemented and
+not masked:
+
+`CDROMMULTISESSION`
+ Requests the last session on a CD-ROM.
+`CDROMEJECT`
+ Open tray.
+`CDROMCLOSETRAY`
+ Close tray.
+`CDROMEJECT_SW`
+ If *arg\not=0*, set behavior to auto-close (close
+ tray on first open) and auto-eject (eject on last release), otherwise
+ set behavior to non-moving on *open()* and *release()* calls.
+`CDROM_GET_MCN`
+ Get the Media Catalog Number from a CD.
+
+*Ioctl*s routed through *audio_ioctl()*
+---------------------------------------
+
+The following set of *ioctl()'s* are all implemented through a call to
+the *cdrom_fops* function *audio_ioctl()*. Memory checks and
+allocation are performed in *cdrom_ioctl()*, and also sanitization of
+address format (*CDROM_LBA*/*CDROM_MSF*) is done.
+
+`CDROMSUBCHNL`
+ Get sub-channel data in argument *arg* of type
+ `struct cdrom_subchnl *`.
+`CDROMREADTOCHDR`
+ Read Table of Contents header, in *arg* of type
+ `struct cdrom_tochdr *`.
+`CDROMREADTOCENTRY`
+ Read a Table of Contents entry in *arg* and specified by *arg*
+ of type `struct cdrom_tocentry *`.
+`CDROMPLAYMSF`
+ Play audio fragment specified in Minute, Second, Frame format,
+ delimited by *arg* of type `struct cdrom_msf *`.
+`CDROMPLAYTRKIND`
+ Play audio fragment in track-index format delimited by *arg*
+ of type `struct cdrom_ti *`.
+`CDROMVOLCTRL`
+ Set volume specified by *arg* of type `struct cdrom_volctrl *`.
+`CDROMVOLREAD`
+ Read volume into by *arg* of type `struct cdrom_volctrl *`.
+`CDROMSTART`
+ Spin up disc.
+`CDROMSTOP`
+ Stop playback of audio fragment.
+`CDROMPAUSE`
+ Pause playback of audio fragment.
+`CDROMRESUME`
+ Resume playing.
+
+New *ioctl()'s* in `cdrom.c`
+----------------------------
+
+The following *ioctl()'s* have been introduced to allow user programs to
+control the behavior of individual CD-ROM devices. New *ioctl*
+commands can be identified by the underscores in their names.
+
+`CDROM_SET_OPTIONS`
+ Set options specified by *arg*. Returns the option flag register
+ after modification. Use *arg = \rm0* for reading the current flags.
+`CDROM_CLEAR_OPTIONS`
+ Clear options specified by *arg*. Returns the option flag register
+ after modification.
+`CDROM_SELECT_SPEED`
+ Select head-rate speed of disc specified as by *arg* in units
+ of standard cdrom speed (176\,kB/sec raw data or
+ 150kB/sec file system data). The value 0 means `auto-select`,
+ i. e., play audio discs at real time and data discs at maximum speed.
+ The value *arg* is checked against the maximum head rate of the
+ drive found in the *cdrom_dops*.
+`CDROM_SELECT_DISC`
+ Select disc numbered *arg* from a juke-box.
+
+ First disc is numbered 0. The number *arg* is checked against the
+ maximum number of discs in the juke-box found in the *cdrom_dops*.
+`CDROM_MEDIA_CHANGED`
+ Returns 1 if a disc has been changed since the last call.
+ Note that calls to *cdrom_media_changed* by the VFS are treated
+ by an independent queue, so both mechanisms will detect a
+ media change once. For juke-boxes, an extra argument *arg*
+ specifies the slot for which the information is given. The special
+ value *CDSL_CURRENT* requests that information about the currently
+ selected slot be returned.
+`CDROM_DRIVE_STATUS`
+ Returns the status of the drive by a call to
+ *drive_status()*. Return values are defined in cdrom_drive_status_.
+ Note that this call doesn't return information on the
+ current playing activity of the drive; this can be polled through
+ an *ioctl* call to *CDROMSUBCHNL*. For juke-boxes, an extra argument
+ *arg* specifies the slot for which (possibly limited) information is
+ given. The special value *CDSL_CURRENT* requests that information
+ about the currently selected slot be returned.
+`CDROM_DISC_STATUS`
+ Returns the type of the disc currently in the drive.
+ It should be viewed as a complement to *CDROM_DRIVE_STATUS*.
+ This *ioctl* can provide *some* information about the current
+ disc that is inserted in the drive. This functionality used to be
+ implemented in the low level drivers, but is now carried out
+ entirely in Uniform CD-ROM Driver.
+
+ The history of development of the CD's use as a carrier medium for
+ various digital information has lead to many different disc types.
+ This *ioctl* is useful only in the case that CDs have \emph {only
+ one} type of data on them. While this is often the case, it is
+ also very common for CDs to have some tracks with data, and some
+ tracks with audio. Because this is an existing interface, rather
+ than fixing this interface by changing the assumptions it was made
+ under, thereby breaking all user applications that use this
+ function, the Uniform CD-ROM Driver implements this *ioctl* as
+ follows: If the CD in question has audio tracks on it, and it has
+ absolutely no CD-I, XA, or data tracks on it, it will be reported
+ as *CDS_AUDIO*. If it has both audio and data tracks, it will
+ return *CDS_MIXED*. If there are no audio tracks on the disc, and
+ if the CD in question has any CD-I tracks on it, it will be
+ reported as *CDS_XA_2_2*. Failing that, if the CD in question
+ has any XA tracks on it, it will be reported as *CDS_XA_2_1*.
+ Finally, if the CD in question has any data tracks on it,
+ it will be reported as a data CD (*CDS_DATA_1*).
+
+ This *ioctl* can return::
+
+ CDS_NO_INFO /* no information available */
+ CDS_NO_DISC /* no disc is inserted, or tray is opened */
+ CDS_AUDIO /* Audio disc (2352 audio bytes/frame) */
+ CDS_DATA_1 /* data disc, mode 1 (2048 user bytes/frame) */
+ CDS_XA_2_1 /* mixed data (XA), mode 2, form 1 (2048 user bytes) */
+ CDS_XA_2_2 /* mixed data (XA), mode 2, form 1 (2324 user bytes) */
+ CDS_MIXED /* mixed audio/data disc */
+
+ For some information concerning frame layout of the various disc
+ types, see a recent version of `cdrom.h`.
+
+`CDROM_CHANGER_NSLOTS`
+ Returns the number of slots in a juke-box.
+`CDROMRESET`
+ Reset the drive.
+`CDROM_GET_CAPABILITY`
+ Returns the *capability* flags for the drive. Refer to section
+ cdrom_capabilities_ for more information on these flags.
+`CDROM_LOCKDOOR`
+ Locks the door of the drive. `arg == 0` unlocks the door,
+ any other value locks it.
+`CDROM_DEBUG`
+ Turns on debugging info. Only root is allowed to do this.
+ Same semantics as CDROM_LOCKDOOR.
+
+
+Device dependent *ioctl()'s*
+----------------------------
+
+Finally, all other *ioctl()'s* are passed to the function *dev_ioctl()*,
+if implemented. No memory allocation or verification is carried out.
+
+How to update your driver
+=========================
+
+- Make a backup of your current driver.
+- Get hold of the files `cdrom.c` and `cdrom.h`, they should be in
+ the directory tree that came with this documentation.
+- Make sure you include `cdrom.h`.
+- Change the 3rd argument of *register_blkdev* from `&<your-drive>_fops`
+ to `&cdrom_fops`.
+- Just after that line, add the following to register with the Uniform
+ CD-ROM Driver::
+
+ register_cdrom(&<your-drive>_info);*
+
+ Similarly, add a call to *unregister_cdrom()* at the appropriate place.
+- Copy an example of the device-operations *struct* to your
+ source, e. g., from `cm206.c` *cm206_dops*, and change all
+ entries to names corresponding to your driver, or names you just
+ happen to like. If your driver doesn't support a certain function,
+ make the entry *NULL*. At the entry *capability* you should list all
+ capabilities your driver currently supports. If your driver
+ has a capability that is not listed, please send me a message.
+- Copy the *cdrom_device_info* declaration from the same example
+ driver, and modify the entries according to your needs. If your
+ driver dynamically determines the capabilities of the hardware, this
+ structure should also be declared dynamically.
+- Implement all functions in your `<device>_dops` structure,
+ according to prototypes listed in `cdrom.h`, and specifications given
+ in cdrom_api_. Most likely you have already implemented
+ the code in a large part, and you will almost certainly need to adapt the
+ prototype and return values.
+- Rename your `<device>_ioctl()` function to *audio_ioctl* and
+ change the prototype a little. Remove entries listed in the first
+ part in cdrom_ioctl_, if your code was OK, these are
+ just calls to the routines you adapted in the previous step.
+- You may remove all remaining memory checking code in the
+ *audio_ioctl()* function that deals with audio commands (these are
+ listed in the second part of cdrom_ioctl_. There is no
+ need for memory allocation either, so most *case*s in the *switch*
+ statement look similar to::
+
+ case CDROMREADTOCENTRY:
+ get_toc_entry\bigl((struct cdrom_tocentry *) arg);
+
+- All remaining *ioctl* cases must be moved to a separate
+ function, *<device>_ioctl*, the device-dependent *ioctl()'s*. Note that
+ memory checking and allocation must be kept in this code!
+- Change the prototypes of *<device>_open()* and
+ *<device>_release()*, and remove any strategic code (i. e., tray
+ movement, door locking, etc.).
+- Try to recompile the drivers. We advise you to use modules, both
+ for `cdrom.o` and your driver, as debugging is much easier this
+ way.
+
+Thanks
+======
+
+Thanks to all the people involved. First, Erik Andersen, who has
+taken over the torch in maintaining `cdrom.c` and integrating much
+CD-ROM-related code in the 2.1-kernel. Thanks to Scott Snyder and
+Gerd Knorr, who were the first to implement this interface for SCSI
+and IDE-CD drivers and added many ideas for extension of the data
+structures relative to kernel~2.0. Further thanks to Heiko Eißfeldt,
+Thomas Quinot, Jon Tombs, Ken Pizzini, Eberhard Mönkeberg and Andrew Kroll,
+the Linux CD-ROM device driver developers who were kind
+enough to give suggestions and criticisms during the writing. Finally
+of course, I want to thank Linus Torvalds for making this possible in
+the first place.
diff --git a/Documentation/cdrom/cdrom-standard.tex b/Documentation/cdrom/cdrom-standard.tex
deleted file mode 100644
index f7cd455973f7..000000000000
--- a/Documentation/cdrom/cdrom-standard.tex
+++ /dev/null
@@ -1,1026 +0,0 @@
-\documentclass{article}
-\def\version{$Id: cdrom-standard.tex,v 1.9 1997/12/28 15:42:49 david Exp $}
-\newcommand{\newsection}[1]{\newpage\section{#1}}
-
-\evensidemargin=0pt
-\oddsidemargin=0pt
-\topmargin=-\headheight \advance\topmargin by -\headsep
-\textwidth=15.99cm \textheight=24.62cm % normal A4, 1'' margin
-
-\def\linux{{\sc Linux}}
-\def\cdrom{{\sc cd-rom}}
-\def\UCD{{\sc Uniform cd-rom Driver}}
-\def\cdromc{{\tt {cdrom.c}}}
-\def\cdromh{{\tt {cdrom.h}}}
-\def\fo{\sl} % foreign words
-\def\ie{{\fo i.e.}}
-\def\eg{{\fo e.g.}}
-
-\everymath{\it} \everydisplay{\it}
-\catcode `\_=\active \def_{\_\penalty100 }
-\catcode`\<=\active \def<#1>{{\langle\hbox{\rm#1}\rangle}}
-
-\begin{document}
-\title{A \linux\ \cdrom\ standard}
-\author{David van Leeuwen\\{\normalsize\tt david@ElseWare.cistron.nl}
-\\{\footnotesize updated by Erik Andersen {\tt(andersee@debian.org)}}
-\\{\footnotesize updated by Jens Axboe {\tt(axboe@image.dk)}}}
-\date{12 March 1999}
-
-\maketitle
-
-\newsection{Introduction}
-
-\linux\ is probably the Unix-like operating system that supports
-the widest variety of hardware devices. The reasons for this are
-presumably
-\begin{itemize}
-\item
- The large list of hardware devices available for the many platforms
- that \linux\ now supports (\ie, i386-PCs, Sparc Suns, etc.)
-\item
- The open design of the operating system, such that anybody can write a
- driver for \linux.
-\item
- There is plenty of source code around as examples of how to write a driver.
-\end{itemize}
-The openness of \linux, and the many different types of available
-hardware has allowed \linux\ to support many different hardware devices.
-Unfortunately, the very openness that has allowed \linux\ to support
-all these different devices has also allowed the behavior of each
-device driver to differ significantly from one device to another.
-This divergence of behavior has been very significant for \cdrom\
-devices; the way a particular drive reacts to a `standard' $ioctl()$
-call varies greatly from one device driver to another. To avoid making
-their drivers totally inconsistent, the writers of \linux\ \cdrom\
-drivers generally created new device drivers by understanding, copying,
-and then changing an existing one. Unfortunately, this practice did not
-maintain uniform behavior across all the \linux\ \cdrom\ drivers.
-
-This document describes an effort to establish Uniform behavior across
-all the different \cdrom\ device drivers for \linux. This document also
-defines the various $ioctl$s, and how the low-level \cdrom\ device
-drivers should implement them. Currently (as of the \linux\ 2.1.$x$
-development kernels) several low-level \cdrom\ device drivers, including
-both IDE/ATAPI and SCSI, now use this Uniform interface.
-
-When the \cdrom\ was developed, the interface between the \cdrom\ drive
-and the computer was not specified in the standards. As a result, many
-different \cdrom\ interfaces were developed. Some of them had their
-own proprietary design (Sony, Mitsumi, Panasonic, Philips), other
-manufacturers adopted an existing electrical interface and changed
-the functionality (CreativeLabs/SoundBlaster, Teac, Funai) or simply
-adapted their drives to one or more of the already existing electrical
-interfaces (Aztech, Sanyo, Funai, Vertos, Longshine, Optics Storage and
-most of the `NoName' manufacturers). In cases where a new drive really
-brought its own interface or used its own command set and flow control
-scheme, either a separate driver had to be written, or an existing
-driver had to be enhanced. History has delivered us \cdrom\ support for
-many of these different interfaces. Nowadays, almost all new \cdrom\
-drives are either IDE/ATAPI or SCSI, and it is very unlikely that any
-manufacturer will create a new interface. Even finding drives for the
-old proprietary interfaces is getting difficult.
-
-When (in the 1.3.70's) I looked at the existing software interface,
-which was expressed through \cdromh, it appeared to be a rather wild
-set of commands and data formats.\footnote{I cannot recollect what
-kernel version I looked at, then, presumably 1.2.13 and 1.3.34---the
-latest kernel that I was indirectly involved in.} It seemed that many
-features of the software interface had been added to accommodate the
-capabilities of a particular drive, in an {\fo ad hoc\/} manner. More
-importantly, it appeared that the behavior of the `standard' commands
-was different for most of the different drivers: \eg, some drivers
-close the tray if an $open()$ call occurs when the tray is open, while
-others do not. Some drivers lock the door upon opening the device, to
-prevent an incoherent file system, but others don't, to allow software
-ejection. Undoubtedly, the capabilities of the different drives vary,
-but even when two drives have the same capability their drivers'
-behavior was usually different.
-
-I decided to start a discussion on how to make all the \linux\ \cdrom\
-drivers behave more uniformly. I began by contacting the developers of
-the many \cdrom\ drivers found in the \linux\ kernel. Their reactions
-encouraged me to write the \UCD\ which this document is intended to
-describe. The implementation of the \UCD\ is in the file \cdromc. This
-driver is intended to be an additional software layer that sits on top
-of the low-level device drivers for each \cdrom\ drive. By adding this
-additional layer, it is possible to have all the different \cdrom\
-devices behave {\em exactly\/} the same (insofar as the underlying
-hardware will allow).
-
-The goal of the \UCD\ is {\em not\/} to alienate driver developers who
-have not yet taken steps to support this effort. The goal of \UCD\ is
-simply to give people writing application programs for \cdrom\ drives
-{\em one\/} \linux\ \cdrom\ interface with consistent behavior for all
-\cdrom\ devices. In addition, this also provides a consistent interface
-between the low-level device driver code and the \linux\ kernel. Care
-is taken that 100\,\% compatibility exists with the data structures and
-programmer's interface defined in \cdromh. This guide was written to
-help \cdrom\ driver developers adapt their code to use the \UCD\ code
-defined in \cdromc.
-
-Personally, I think that the most important hardware interfaces are
-the IDE/ATAPI drives and, of course, the SCSI drives, but as prices
-of hardware drop continuously, it is also likely that people may have
-more than one \cdrom\ drive, possibly of mixed types. It is important
-that these drives behave in the same way. In December 1994, one of the
-cheapest \cdrom\ drives was a Philips cm206, a double-speed proprietary
-drive. In the months that I was busy writing a \linux\ driver for it,
-proprietary drives became obsolete and IDE/ATAPI drives became the
-standard. At the time of the last update to this document (November
-1997) it is becoming difficult to even {\em find} anything less than a
-16 speed \cdrom\ drive, and 24 speed drives are common.
-
-\newsection{Standardizing through another software level}
-\label{cdrom.c}
-
-At the time this document was conceived, all drivers directly
-implemented the \cdrom\ $ioctl()$ calls through their own routines. This
-led to the danger of different drivers forgetting to do important things
-like checking that the user was giving the driver valid data. More
-importantly, this led to the divergence of behavior, which has already
-been discussed.
-
-For this reason, the \UCD\ was created to enforce consistent \cdrom\
-drive behavior, and to provide a common set of services to the various
-low-level \cdrom\ device drivers. The \UCD\ now provides another
-software-level, that separates the $ioctl()$ and $open()$ implementation
-from the actual hardware implementation. Note that this effort has
-made few changes which will affect a user's application programs. The
-greatest change involved moving the contents of the various low-level
-\cdrom\ drivers' header files to the kernel's cdrom directory. This was
-done to help ensure that the user is only presented with only one cdrom
-interface, the interface defined in \cdromh.
-
-\cdrom\ drives are specific enough (\ie, different from other
-block-devices such as floppy or hard disc drives), to define a set
-of common {\em \cdrom\ device operations}, $<cdrom-device>_dops$.
-These operations are different from the classical block-device file
-operations, $<block-device>_fops$.
-
-The routines for the \UCD\ interface level are implemented in the file
-\cdromc. In this file, the \UCD\ interfaces with the kernel as a block
-device by registering the following general $struct\ file_operations$:
-$$
-\halign{$#$\ \hfil&$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-struct& file_operations\ cdrom_fops = \{\hidewidth\cr
- &NULL, & lseek \cr
- &block_read, & read---general block-dev read \cr
- &block_write, & write---general block-dev write \cr
- &NULL, & readdir \cr
- &NULL, & select \cr
- &cdrom_ioctl, & ioctl \cr
- &NULL, & mmap \cr
- &cdrom_open, & open \cr
- &cdrom_release, & release \cr
- &NULL, & fsync \cr
- &NULL, & fasync \cr
- &cdrom_media_changed, & media change \cr
- &NULL & revalidate \cr
-\};\cr
-}
-$$
-
-Every active \cdrom\ device shares this $struct$. The routines
-declared above are all implemented in \cdromc, since this file is the
-place where the behavior of all \cdrom-devices is defined and
-standardized. The actual interface to the various types of \cdrom\
-hardware is still performed by various low-level \cdrom-device
-drivers. These routines simply implement certain {\em capabilities\/}
-that are common to all \cdrom\ (and really, all removable-media
-devices).
-
-Registration of a low-level \cdrom\ device driver is now done through
-the general routines in \cdromc, not through the Virtual File System
-(VFS) any more. The interface implemented in \cdromc\ is carried out
-through two general structures that contain information about the
-capabilities of the driver, and the specific drives on which the
-driver operates. The structures are:
-\begin{description}
-\item[$cdrom_device_ops$]
- This structure contains information about the low-level driver for a
- \cdrom\ device. This structure is conceptually connected to the major
- number of the device (although some drivers may have different
- major numbers, as is the case for the IDE driver).
-\item[$cdrom_device_info$]
- This structure contains information about a particular \cdrom\ drive,
- such as its device name, speed, etc. This structure is conceptually
- connected to the minor number of the device.
-\end{description}
-
-Registering a particular \cdrom\ drive with the \UCD\ is done by the
-low-level device driver though a call to:
-$$register_cdrom(struct\ cdrom_device_info * <device>_info)
-$$
-The device information structure, $<device>_info$, contains all the
-information needed for the kernel to interface with the low-level
-\cdrom\ device driver. One of the most important entries in this
-structure is a pointer to the $cdrom_device_ops$ structure of the
-low-level driver.
-
-The device operations structure, $cdrom_device_ops$, contains a list
-of pointers to the functions which are implemented in the low-level
-device driver. When \cdromc\ accesses a \cdrom\ device, it does it
-through the functions in this structure. It is impossible to know all
-the capabilities of future \cdrom\ drives, so it is expected that this
-list may need to be expanded from time to time as new technologies are
-developed. For example, CD-R and CD-R/W drives are beginning to become
-popular, and support will soon need to be added for them. For now, the
-current $struct$ is:
-$$
-\halign{$#$\ \hfil&$#$\ \hfil&\hbox to 10em{$#$\hss}&
- $/*$ \rm# $*/$\hfil\cr
-struct& cdrom_device_ops\ \{ \hidewidth\cr
- &int& (* open)(struct\ cdrom_device_info *, int)\cr
- &void& (* release)(struct\ cdrom_device_info *);\cr
- &int& (* drive_status)(struct\ cdrom_device_info *, int);\cr
- &unsigned\ int& (* check_events)(struct\ cdrom_device_info *, unsigned\ int, int);\cr
- &int& (* media_changed)(struct\ cdrom_device_info *, int);\cr
- &int& (* tray_move)(struct\ cdrom_device_info *, int);\cr
- &int& (* lock_door)(struct\ cdrom_device_info *, int);\cr
- &int& (* select_speed)(struct\ cdrom_device_info *, int);\cr
- &int& (* select_disc)(struct\ cdrom_device_info *, int);\cr
- &int& (* get_last_session) (struct\ cdrom_device_info *,
- struct\ cdrom_multisession *{});\cr
- &int& (* get_mcn)(struct\ cdrom_device_info *, struct\ cdrom_mcn *{});\cr
- &int& (* reset)(struct\ cdrom_device_info *);\cr
- &int& (* audio_ioctl)(struct\ cdrom_device_info *, unsigned\ int,
- void *{});\cr
-\noalign{\medskip}
- &const\ int& capability;& capability flags \cr
- &int& (* generic_packet)(struct\ cdrom_device_info *, struct\ packet_command *{});\cr
-\};\cr
-}
-$$
-When a low-level device driver implements one of these capabilities,
-it should add a function pointer to this $struct$. When a particular
-function is not implemented, however, this $struct$ should contain a
-NULL instead. The $capability$ flags specify the capabilities of the
-\cdrom\ hardware and/or low-level \cdrom\ driver when a \cdrom\ drive
-is registered with the \UCD.
-
-Note that most functions have fewer parameters than their
-$blkdev_fops$ counterparts. This is because very little of the
-information in the structures $inode$ and $file$ is used. For most
-drivers, the main parameter is the $struct$ $cdrom_device_info$, from
-which the major and minor number can be extracted. (Most low-level
-\cdrom\ drivers don't even look at the major and minor number though,
-since many of them only support one device.) This will be available
-through $dev$ in $cdrom_device_info$ described below.
-
-The drive-specific, minor-like information that is registered with
-\cdromc, currently contains the following fields:
-$$
-\halign{$#$\ \hfil&$#$\ \hfil&\hbox to 10em{$#$\hss}&
- $/*$ \rm# $*/$\hfil\cr
-struct& cdrom_device_info\ \{ \hidewidth\cr
- & const\ struct\ cdrom_device_ops *& ops;& device operations for this major\cr
- & struct\ list_head& list;& linked list of all device_info\cr
- & struct\ gendisk *& disk;& matching block layer disk\cr
- & void *& handle;& driver-dependent data\cr
-\noalign{\medskip}
- & int& mask;& mask of capability: disables them \cr
- & int& speed;& maximum speed for reading data \cr
- & int& capacity;& number of discs in a jukebox \cr
-\noalign{\medskip}
- &unsigned\ int& options : 30;& options flags \cr
- &unsigned& mc_flags : 2;& media-change buffer flags \cr
- &unsigned\ int& vfs_events;& cached events for vfs path\cr
- &unsigned\ int& ioctl_events;& cached events for ioctl path\cr
- & int& use_count;& number of times device is opened\cr
- & char& name[20];& name of the device type\cr
-\noalign{\medskip}
- &__u8& sanyo_slot : 2;& Sanyo 3-CD changer support\cr
- &__u8& keeplocked : 1;& CDROM_LOCKDOOR status\cr
- &__u8& reserved : 5;& not used yet\cr
- & int& cdda_method;& see CDDA_* flags\cr
- &__u8& last_sense;& saves last sense key\cr
- &__u8& media_written;& dirty flag, DVD+RW bookkeeping\cr
- &unsigned\ short& mmc3_profile;& current MMC3 profile\cr
- & int& for_data;& unknown:TBD\cr
- & int\ (* exit)\ (struct\ cdrom_device_info *);&& unknown:TBD\cr
- & int& mrw_mode_page;& which MRW mode page is in use\cr
-\}\cr
-}$$
-Using this $struct$, a linked list of the registered minor devices is
-built, using the $next$ field. The device number, the device operations
-struct and specifications of properties of the drive are stored in this
-structure.
-
-The $mask$ flags can be used to mask out some of the capabilities listed
-in $ops\to capability$, if a specific drive doesn't support a feature
-of the driver. The value $speed$ specifies the maximum head-rate of the
-drive, measured in units of normal audio speed (176\,kB/sec raw data or
-150\,kB/sec file system data). The parameters are declared $const$
-because they describe properties of the drive, which don't change after
-registration.
-
-A few registers contain variables local to the \cdrom\ drive. The
-flags $options$ are used to specify how the general \cdrom\ routines
-should behave. These various flags registers should provide enough
-flexibility to adapt to the different users' wishes (and {\em not\/} the
-`arbitrary' wishes of the author of the low-level device driver, as is
-the case in the old scheme). The register $mc_flags$ is used to buffer
-the information from $media_changed()$ to two separate queues. Other
-data that is specific to a minor drive, can be accessed through $handle$,
-which can point to a data structure specific to the low-level driver.
-The fields $use_count$, $next$, $options$ and $mc_flags$ need not be
-initialized.
-
-The intermediate software layer that \cdromc\ forms will perform some
-additional bookkeeping. The use count of the device (the number of
-processes that have the device opened) is registered in $use_count$. The
-function $cdrom_ioctl()$ will verify the appropriate user-memory regions
-for read and write, and in case a location on the CD is transferred,
-it will `sanitize' the format by making requests to the low-level
-drivers in a standard format, and translating all formats between the
-user-software and low level drivers. This relieves much of the drivers'
-memory checking and format checking and translation. Also, the necessary
-structures will be declared on the program stack.
-
-The implementation of the functions should be as defined in the
-following sections. Two functions {\em must\/} be implemented, namely
-$open()$ and $release()$. Other functions may be omitted, their
-corresponding capability flags will be cleared upon registration.
-Generally, a function returns zero on success and negative on error. A
-function call should return only after the command has completed, but of
-course waiting for the device should not use processor time.
-
-\subsection{$Int\ open(struct\ cdrom_device_info * cdi, int\ purpose)$}
-
-$Open()$ should try to open the device for a specific $purpose$, which
-can be either:
-\begin{itemize}
-\item[0] Open for reading data, as done by {\tt {mount()}} (2), or the
-user commands {\tt {dd}} or {\tt {cat}}.
-\item[1] Open for $ioctl$ commands, as done by audio-CD playing
-programs.
-\end{itemize}
-Notice that any strategic code (closing tray upon $open()$, etc.)\ is
-done by the calling routine in \cdromc, so the low-level routine
-should only be concerned with proper initialization, such as spinning
-up the disc, etc. % and device-use count
-
-
-\subsection{$Void\ release(struct\ cdrom_device_info * cdi)$}
-
-
-Device-specific actions should be taken such as spinning down the device.
-However, strategic actions such as ejection of the tray, or unlocking
-the door, should be left over to the general routine $cdrom_release()$.
-This is the only function returning type $void$.
-
-\subsection{$Int\ drive_status(struct\ cdrom_device_info * cdi, int\ slot_nr)$}
-\label{drive status}
-
-The function $drive_status$, if implemented, should provide
-information on the status of the drive (not the status of the disc,
-which may or may not be in the drive). If the drive is not a changer,
-$slot_nr$ should be ignored. In \cdromh\ the possibilities are listed:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDS_NO_INFO& no information available\cr
-CDS_NO_DISC& no disc is inserted, tray is closed\cr
-CDS_TRAY_OPEN& tray is opened\cr
-CDS_DRIVE_NOT_READY& something is wrong, tray is moving?\cr
-CDS_DISC_OK& a disc is loaded and everything is fine\cr
-}
-$$
-
-\subsection{$Int\ media_changed(struct\ cdrom_device_info * cdi, int\ disc_nr)$}
-
-This function is very similar to the original function in $struct\
-file_operations$. It returns 1 if the medium of the device $cdi\to
-dev$ has changed since the last call, and 0 otherwise. The parameter
-$disc_nr$ identifies a specific slot in a juke-box, it should be
-ignored for single-disc drives. Note that by `re-routing' this
-function through $cdrom_media_changed()$, we can implement separate
-queues for the VFS and a new $ioctl()$ function that can report device
-changes to software (\eg, an auto-mounting daemon).
-
-\subsection{$Int\ tray_move(struct\ cdrom_device_info * cdi, int\ position)$}
-
-This function, if implemented, should control the tray movement. (No
-other function should control this.) The parameter $position$ controls
-the desired direction of movement:
-\begin{itemize}
-\item[0] Close tray
-\item[1] Open tray
-\end{itemize}
-This function returns 0 upon success, and a non-zero value upon
-error. Note that if the tray is already in the desired position, no
-action need be taken, and the return value should be 0.
-
-\subsection{$Int\ lock_door(struct\ cdrom_device_info * cdi, int\ lock)$}
-
-This function (and no other code) controls locking of the door, if the
-drive allows this. The value of $lock$ controls the desired locking
-state:
-\begin{itemize}
-\item[0] Unlock door, manual opening is allowed
-\item[1] Lock door, tray cannot be ejected manually
-\end{itemize}
-This function returns 0 upon success, and a non-zero value upon
-error. Note that if the door is already in the requested state, no
-action need be taken, and the return value should be 0.
-
-\subsection{$Int\ select_speed(struct\ cdrom_device_info * cdi, int\ speed)$}
-
-Some \cdrom\ drives are capable of changing their head-speed. There
-are several reasons for changing the speed of a \cdrom\ drive. Badly
-pressed \cdrom s may benefit from less-than-maximum head rate. Modern
-\cdrom\ drives can obtain very high head rates (up to $24\times$ is
-common). It has been reported that these drives can make reading
-errors at these high speeds, reducing the speed can prevent data loss
-in these circumstances. Finally, some of these drives can
-make an annoyingly loud noise, which a lower speed may reduce. %Finally,
-%although the audio-low-pass filters probably aren't designed for it,
-%more than real-time playback of audio might be used for high-speed
-%copying of audio tracks.
-
-This function specifies the speed at which data is read or audio is
-played back. The value of $speed$ specifies the head-speed of the
-drive, measured in units of standard cdrom speed (176\,kB/sec raw data
-or 150\,kB/sec file system data). So to request that a \cdrom\ drive
-operate at 300\,kB/sec you would call the CDROM_SELECT_SPEED $ioctl$
-with $speed=2$. The special value `0' means `auto-selection', \ie,
-maximum data-rate or real-time audio rate. If the drive doesn't have
-this `auto-selection' capability, the decision should be made on the
-current disc loaded and the return value should be positive. A negative
-return value indicates an error.
-
-\subsection{$Int\ select_disc(struct\ cdrom_device_info * cdi, int\ number)$}
-
-If the drive can store multiple discs (a juke-box) this function
-will perform disc selection. It should return the number of the
-selected disc on success, a negative value on error. Currently, only
-the ide-cd driver supports this functionality.
-
-\subsection{$Int\ get_last_session(struct\ cdrom_device_info * cdi, struct\
- cdrom_multisession * ms_info)$}
-
-This function should implement the old corresponding $ioctl()$. For
-device $cdi\to dev$, the start of the last session of the current disc
-should be returned in the pointer argument $ms_info$. Note that
-routines in \cdromc\ have sanitized this argument: its requested
-format will {\em always\/} be of the type $CDROM_LBA$ (linear block
-addressing mode), whatever the calling software requested. But
-sanitization goes even further: the low-level implementation may
-return the requested information in $CDROM_MSF$ format if it wishes so
-(setting the $ms_info\rightarrow addr_format$ field appropriately, of
-course) and the routines in \cdromc\ will make the transformation if
-necessary. The return value is 0 upon success.
-
-\subsection{$Int\ get_mcn(struct\ cdrom_device_info * cdi, struct\
- cdrom_mcn * mcn)$}
-
-Some discs carry a `Media Catalog Number' (MCN), also called
-`Universal Product Code' (UPC). This number should reflect the number
-that is generally found in the bar-code on the product. Unfortunately,
-the few discs that carry such a number on the disc don't even use the
-same format. The return argument to this function is a pointer to a
-pre-declared memory region of type $struct\ cdrom_mcn$. The MCN is
-expected as a 13-character string, terminated by a null-character.
-
-\subsection{$Int\ reset(struct\ cdrom_device_info * cdi)$}
-
-This call should perform a hard-reset on the drive (although in
-circumstances that a hard-reset is necessary, a drive may very well not
-listen to commands anymore). Preferably, control is returned to the
-caller only after the drive has finished resetting. If the drive is no
-longer listening, it may be wise for the underlying low-level cdrom
-driver to time out.
-
-\subsection{$Int\ audio_ioctl(struct\ cdrom_device_info * cdi, unsigned\
- int\ cmd, void * arg)$}
-
-Some of the \cdrom-$ioctl$s defined in \cdromh\ can be
-implemented by the routines described above, and hence the function
-$cdrom_ioctl$ will use those. However, most $ioctl$s deal with
-audio-control. We have decided to leave these to be accessed through a
-single function, repeating the arguments $cmd$ and $arg$. Note that
-the latter is of type $void*{}$, rather than $unsigned\ long\
-int$. The routine $cdrom_ioctl()$ does do some useful things,
-though. It sanitizes the address format type to $CDROM_MSF$ (Minutes,
-Seconds, Frames) for all audio calls. It also verifies the memory
-location of $arg$, and reserves stack-memory for the argument. This
-makes implementation of the $audio_ioctl()$ much simpler than in the
-old driver scheme. For example, you may look up the function
-$cm206_audio_ioctl()$ in {\tt {cm206.c}} that should be updated with
-this documentation.
-
-An unimplemented ioctl should return $-ENOSYS$, but a harmless request
-(\eg, $CDROMSTART$) may be ignored by returning 0 (success). Other
-errors should be according to the standards, whatever they are. When
-an error is returned by the low-level driver, the \UCD\ tries whenever
-possible to return the error code to the calling program. (We may decide
-to sanitize the return value in $cdrom_ioctl()$ though, in order to
-guarantee a uniform interface to the audio-player software.)
-
-\subsection{$Int\ dev_ioctl(struct\ cdrom_device_info * cdi, unsigned\ int\
- cmd, unsigned\ long\ arg)$}
-
-Some $ioctl$s seem to be specific to certain \cdrom\ drives. That is,
-they are introduced to service some capabilities of certain drives. In
-fact, there are 6 different $ioctl$s for reading data, either in some
-particular kind of format, or audio data. Not many drives support
-reading audio tracks as data, I believe this is because of protection
-of copyrights of artists. Moreover, I think that if audio-tracks are
-supported, it should be done through the VFS and not via $ioctl$s. A
-problem here could be the fact that audio-frames are 2352 bytes long,
-so either the audio-file-system should ask for 75264 bytes at once
-(the least common multiple of 512 and 2352), or the drivers should
-bend their backs to cope with this incoherence (to which I would be
-opposed). Furthermore, it is very difficult for the hardware to find
-the exact frame boundaries, since there are no synchronization headers
-in audio frames. Once these issues are resolved, this code should be
-standardized in \cdromc.
-
-Because there are so many $ioctl$s that seem to be introduced to
-satisfy certain drivers,\footnote{Is there software around that
- actually uses these? I'd be interested!} any `non-standard' $ioctl$s
-are routed through the call $dev_ioctl()$. In principle, `private'
-$ioctl$s should be numbered after the device's major number, and not
-the general \cdrom\ $ioctl$ number, {\tt {0x53}}. Currently the
-non-supported $ioctl$s are: {\it CDROMREADMODE1, CDROMREADMODE2,
- CDROMREADAUDIO, CDROMREADRAW, CDROMREADCOOKED, CDROMSEEK,
- CDROMPLAY\-BLK and CDROM\-READALL}.
-
-
-\subsection{\cdrom\ capabilities}
-\label{capability}
-
-Instead of just implementing some $ioctl$ calls, the interface in
-\cdromc\ supplies the possibility to indicate the {\em capabilities\/}
-of a \cdrom\ drive. This can be done by ORing any number of
-capability-constants that are defined in \cdromh\ at the registration
-phase. Currently, the capabilities are any of:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDC_CLOSE_TRAY& can close tray by software control\cr
-CDC_OPEN_TRAY& can open tray\cr
-CDC_LOCK& can lock and unlock the door\cr
-CDC_SELECT_SPEED& can select speed, in units of $\sim$150\,kB/s\cr
-CDC_SELECT_DISC& drive is juke-box\cr
-CDC_MULTI_SESSION& can read sessions $>\rm1$\cr
-CDC_MCN& can read Media Catalog Number\cr
-CDC_MEDIA_CHANGED& can report if disc has changed\cr
-CDC_PLAY_AUDIO& can perform audio-functions (play, pause, etc)\cr
-CDC_RESET& hard reset device\cr
-CDC_IOCTLS& driver has non-standard ioctls\cr
-CDC_DRIVE_STATUS& driver implements drive status\cr
-}
-$$
-The capability flag is declared $const$, to prevent drivers from
-accidentally tampering with the contents. The capability fags actually
-inform \cdromc\ of what the driver can do. If the drive found
-by the driver does not have the capability, is can be masked out by
-the $cdrom_device_info$ variable $mask$. For instance, the SCSI \cdrom\
-driver has implemented the code for loading and ejecting \cdrom's, and
-hence its corresponding flags in $capability$ will be set. But a SCSI
-\cdrom\ drive might be a caddy system, which can't load the tray, and
-hence for this drive the $cdrom_device_info$ struct will have set
-the $CDC_CLOSE_TRAY$ bit in $mask$.
-
-In the file \cdromc\ you will encounter many constructions of the type
-$$\it
-if\ (cdo\rightarrow capability \mathrel\& \mathord{\sim} cdi\rightarrow mask
- \mathrel{\&} CDC_<capability>) \ldots
-$$
-There is no $ioctl$ to set the mask\dots The reason is that
-I think it is better to control the {\em behavior\/} rather than the
-{\em capabilities}.
-
-\subsection{Options}
-
-A final flag register controls the {\em behavior\/} of the \cdrom\
-drives, in order to satisfy different users' wishes, hopefully
-independently of the ideas of the respective author who happened to
-have made the drive's support available to the \linux\ community. The
-current behavior options are:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDO_AUTO_CLOSE& try to close tray upon device $open()$\cr
-CDO_AUTO_EJECT& try to open tray on last device $close()$\cr
-CDO_USE_FFLAGS& use $file_pointer\rightarrow f_flags$ to indicate
- purpose for $open()$\cr
-CDO_LOCK& try to lock door if device is opened\cr
-CDO_CHECK_TYPE& ensure disc type is data if opened for data\cr
-}
-$$
-
-The initial value of this register is $CDO_AUTO_CLOSE \mathrel|
-CDO_USE_FFLAGS \mathrel| CDO_LOCK$, reflecting my own view on user
-interface and software standards. Before you protest, there are two
-new $ioctl$s implemented in \cdromc, that allow you to control the
-behavior by software. These are:
-$$
-\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
-CDROM_SET_OPTIONS& set options specified in $(int)\ arg$\cr
-CDROM_CLEAR_OPTIONS& clear options specified in $(int)\ arg$\cr
-}
-$$
-One option needs some more explanation: $CDO_USE_FFLAGS$. In the next
-newsection we explain what the need for this option is.
-
-A software package {\tt setcd}, available from the Debian distribution
-and {\tt sunsite.unc.edu}, allows user level control of these flags.
-
-\newsection{The need to know the purpose of opening the \cdrom\ device}
-
-Traditionally, Unix devices can be used in two different `modes',
-either by reading/writing to the device file, or by issuing
-controlling commands to the device, by the device's $ioctl()$
-call. The problem with \cdrom\ drives, is that they can be used for
-two entirely different purposes. One is to mount removable
-file systems, \cdrom s, the other is to play audio CD's. Audio commands
-are implemented entirely through $ioctl$s, presumably because the
-first implementation (SUN?) has been such. In principle there is
-nothing wrong with this, but a good control of the `CD player' demands
-that the device can {\em always\/} be opened in order to give the
-$ioctl$ commands, regardless of the state the drive is in.
-
-On the other hand, when used as a removable-media disc drive (what the
-original purpose of \cdrom s is) we would like to make sure that the
-disc drive is ready for operation upon opening the device. In the old
-scheme, some \cdrom\ drivers don't do any integrity checking, resulting
-in a number of i/o errors reported by the VFS to the kernel when an
-attempt for mounting a \cdrom\ on an empty drive occurs. This is not a
-particularly elegant way to find out that there is no \cdrom\ inserted;
-it more-or-less looks like the old IBM-PC trying to read an empty floppy
-drive for a couple of seconds, after which the system complains it
-can't read from it. Nowadays we can {\em sense\/} the existence of a
-removable medium in a drive, and we believe we should exploit that
-fact. An integrity check on opening of the device, that verifies the
-availability of a \cdrom\ and its correct type (data), would be
-desirable.
-
-These two ways of using a \cdrom\ drive, principally for data and
-secondarily for playing audio discs, have different demands for the
-behavior of the $open()$ call. Audio use simply wants to open the
-device in order to get a file handle which is needed for issuing
-$ioctl$ commands, while data use wants to open for correct and
-reliable data transfer. The only way user programs can indicate what
-their {\em purpose\/} of opening the device is, is through the $flags$
-parameter (see {\tt {open(2)}}). For \cdrom\ devices, these flags aren't
-implemented (some drivers implement checking for write-related flags,
-but this is not strictly necessary if the device file has correct
-permission flags). Most option flags simply don't make sense to
-\cdrom\ devices: $O_CREAT$, $O_NOCTTY$, $O_TRUNC$, $O_APPEND$, and
-$O_SYNC$ have no meaning to a \cdrom.
-
-We therefore propose to use the flag $O_NONBLOCK$ to indicate
-that the device is opened just for issuing $ioctl$
-commands. Strictly, the meaning of $O_NONBLOCK$ is that opening and
-subsequent calls to the device don't cause the calling process to
-wait. We could interpret this as ``don't wait until someone has
-inserted some valid data-\cdrom.'' Thus, our proposal of the
-implementation for the $open()$ call for \cdrom s is:
-\begin{itemize}
-\item If no other flags are set than $O_RDONLY$, the device is opened
-for data transfer, and the return value will be 0 only upon successful
-initialization of the transfer. The call may even induce some actions
-on the \cdrom, such as closing the tray.
-\item If the option flag $O_NONBLOCK$ is set, opening will always be
-successful, unless the whole device doesn't exist. The drive will take
-no actions whatsoever.
-\end{itemize}
-
-\subsection{And what about standards?}
-
-You might hesitate to accept this proposal as it comes from the
-\linux\ community, and not from some standardizing institute. What
-about SUN, SGI, HP and all those other Unix and hardware vendors?
-Well, these companies are in the lucky position that they generally
-control both the hardware and software of their supported products,
-and are large enough to set their own standard. They do not have to
-deal with a dozen or more different, competing hardware
-configurations.\footnote{Incidentally, I think that SUN's approach to
-mounting \cdrom s is very good in origin: under Solaris a
-volume-daemon automatically mounts a newly inserted \cdrom\ under {\tt
-{/cdrom/$<volume-name>$/}}. In my opinion they should have pushed this
-further and have {\em every\/} \cdrom\ on the local area network be
-mounted at the similar location, \ie, no matter in which particular
-machine you insert a \cdrom, it will always appear at the same
-position in the directory tree, on every system. When I wanted to
-implement such a user-program for \linux, I came across the
-differences in behavior of the various drivers, and the need for an
-$ioctl$ informing about media changes.}
-
-We believe that using $O_NONBLOCK$ to indicate that a device is being opened
-for $ioctl$ commands only can be easily introduced in the \linux\
-community. All the CD-player authors will have to be informed, we can
-even send in our own patches to the programs. The use of $O_NONBLOCK$
-has most likely no influence on the behavior of the CD-players on
-other operating systems than \linux. Finally, a user can always revert
-to old behavior by a call to $ioctl(file_descriptor, CDROM_CLEAR_OPTIONS,
-CDO_USE_FFLAGS)$.
-
-\subsection{The preferred strategy of $open()$}
-
-The routines in \cdromc\ are designed in such a way that run-time
-configuration of the behavior of \cdrom\ devices (of {\em any\/} type)
-can be carried out, by the $CDROM_SET/CLEAR_OPTIONS$ $ioctls$. Thus, various
-modes of operation can be set:
-\begin{description}
-\item[$CDO_AUTO_CLOSE \mathrel| CDO_USE_FFLAGS \mathrel| CDO_LOCK$] This
-is the default setting. (With $CDO_CHECK_TYPE$ it will be better, in the
-future.) If the device is not yet opened by any other process, and if
-the device is being opened for data ($O_NONBLOCK$ is not set) and the
-tray is found to be open, an attempt to close the tray is made. Then,
-it is verified that a disc is in the drive and, if $CDO_CHECK_TYPE$ is
-set, that it contains tracks of type `data mode 1.' Only if all tests
-are passed is the return value zero. The door is locked to prevent file
-system corruption. If the drive is opened for audio ($O_NONBLOCK$ is
-set), no actions are taken and a value of 0 will be returned.
-\item[$CDO_AUTO_CLOSE \mathrel| CDO_AUTO_EJECT \mathrel| CDO_LOCK$] This
-mimics the behavior of the current sbpcd-driver. The option flags are
-ignored, the tray is closed on the first open, if necessary. Similarly,
-the tray is opened on the last release, \ie, if a \cdrom\ is unmounted,
-it is automatically ejected, such that the user can replace it.
-\end{description}
-We hope that these option can convince everybody (both driver
-maintainers and user program developers) to adopt the new \cdrom\
-driver scheme and option flag interpretation.
-
-\newsection{Description of routines in \cdromc}
-
-Only a few routines in \cdromc\ are exported to the drivers. In this
-new section we will discuss these, as well as the functions that `take
-over' the \cdrom\ interface to the kernel. The header file belonging
-to \cdromc\ is called \cdromh. Formerly, some of the contents of this
-file were placed in the file {\tt {ucdrom.h}}, but this file has now been
-merged back into \cdromh.
-
-\subsection{$Struct\ file_operations\ cdrom_fops$}
-
-The contents of this structure were described in section~\ref{cdrom.c}.
-A pointer to this structure is assigned to the $fops$ field
-of the $struct gendisk$.
-
-\subsection{$Int\ register_cdrom( struct\ cdrom_device_info\ * cdi)$}
-
-This function is used in about the same way one registers $cdrom_fops$
-with the kernel, the device operations and information structures,
-as described in section~\ref{cdrom.c}, should be registered with the
-\UCD:
-$$
-register_cdrom(\&<device>_info));
-$$
-This function returns zero upon success, and non-zero upon
-failure. The structure $<device>_info$ should have a pointer to the
-driver's $<device>_dops$, as in
-$$
-\vbox{\halign{&$#$\hfil\cr
-struct\ &cdrom_device_info\ <device>_info = \{\cr
-& <device>_dops;\cr
-&\ldots\cr
-\}\cr
-}}$$
-Note that a driver must have one static structure, $<device>_dops$, while
-it may have as many structures $<device>_info$ as there are minor devices
-active. $Register_cdrom()$ builds a linked list from these.
-
-\subsection{$Void\ unregister_cdrom(struct\ cdrom_device_info * cdi)$}
-
-Unregistering device $cdi$ with minor number $MINOR(cdi\to dev)$ removes
-the minor device from the list. If it was the last registered minor for
-the low-level driver, this disconnects the registered device-operation
-routines from the \cdrom\ interface. This function returns zero upon
-success, and non-zero upon failure.
-
-\subsection{$Int\ cdrom_open(struct\ inode * ip, struct\ file * fp)$}
-
-This function is not called directly by the low-level drivers, it is
-listed in the standard $cdrom_fops$. If the VFS opens a file, this
-function becomes active. A strategy is implemented in this routine,
-taking care of all capabilities and options that are set in the
-$cdrom_device_ops$ connected to the device. Then, the program flow is
-transferred to the device_dependent $open()$ call.
-
-\subsection{$Void\ cdrom_release(struct\ inode *ip, struct\ file
-*fp)$}
-
-This function implements the reverse-logic of $cdrom_open()$, and then
-calls the device-dependent $release()$ routine. When the use-count has
-reached 0, the allocated buffers are flushed by calls to $sync_dev(dev)$
-and $invalidate_buffers(dev)$.
-
-
-\subsection{$Int\ cdrom_ioctl(struct\ inode *ip, struct\ file *fp,
-unsigned\ int\ cmd, unsigned\ long\ arg)$}
-\label{cdrom-ioctl}
-
-This function handles all the standard $ioctl$ requests for \cdrom\
-devices in a uniform way. The different calls fall into three
-categories: $ioctl$s that can be directly implemented by device
-operations, ones that are routed through the call $audio_ioctl()$, and
-the remaining ones, that are presumable device-dependent. Generally, a
-negative return value indicates an error.
-
-\subsubsection{Directly implemented $ioctl$s}
-\label{ioctl-direct}
-
-The following `old' \cdrom-$ioctl$s are implemented by directly
-calling device-operations in $cdrom_device_ops$, if implemented and
-not masked:
-\begin{description}
-\item[CDROMMULTISESSION] Requests the last session on a \cdrom.
-\item[CDROMEJECT] Open tray.
-\item[CDROMCLOSETRAY] Close tray.
-\item[CDROMEJECT_SW] If $arg\not=0$, set behavior to auto-close (close
-tray on first open) and auto-eject (eject on last release), otherwise
-set behavior to non-moving on $open()$ and $release()$ calls.
-\item[CDROM_GET_MCN] Get the Media Catalog Number from a CD.
-\end{description}
-
-\subsubsection{$Ioctl$s routed through $audio_ioctl()$}
-\label{ioctl-audio}
-
-The following set of $ioctl$s are all implemented through a call to
-the $cdrom_fops$ function $audio_ioctl()$. Memory checks and
-allocation are performed in $cdrom_ioctl()$, and also sanitization of
-address format ($CDROM_LBA$/$CDROM_MSF$) is done.
-\begin{description}
-\item[CDROMSUBCHNL] Get sub-channel data in argument $arg$ of type $struct\
-cdrom_subchnl *{}$.
-\item[CDROMREADTOCHDR] Read Table of Contents header, in $arg$ of type
-$struct\ cdrom_tochdr *{}$.
-\item[CDROMREADTOCENTRY] Read a Table of Contents entry in $arg$ and
-specified by $arg$ of type $struct\ cdrom_tocentry *{}$.
-\item[CDROMPLAYMSF] Play audio fragment specified in Minute, Second,
-Frame format, delimited by $arg$ of type $struct\ cdrom_msf *{}$.
-\item[CDROMPLAYTRKIND] Play audio fragment in track-index format
-delimited by $arg$ of type $struct\ \penalty-1000 cdrom_ti *{}$.
-\item[CDROMVOLCTRL] Set volume specified by $arg$ of type $struct\
-cdrom_volctrl *{}$.
-\item[CDROMVOLREAD] Read volume into by $arg$ of type $struct\
-cdrom_volctrl *{}$.
-\item[CDROMSTART] Spin up disc.
-\item[CDROMSTOP] Stop playback of audio fragment.
-\item[CDROMPAUSE] Pause playback of audio fragment.
-\item[CDROMRESUME] Resume playing.
-\end{description}
-
-\subsubsection{New $ioctl$s in \cdromc}
-
-The following $ioctl$s have been introduced to allow user programs to
-control the behavior of individual \cdrom\ devices. New $ioctl$
-commands can be identified by the underscores in their names.
-\begin{description}
-\item[CDROM_SET_OPTIONS] Set options specified by $arg$. Returns the
-option flag register after modification. Use $arg = \rm0$ for reading
-the current flags.
-\item[CDROM_CLEAR_OPTIONS] Clear options specified by $arg$. Returns
- the option flag register after modification.
-\item[CDROM_SELECT_SPEED] Select head-rate speed of disc specified as
- by $arg$ in units of standard cdrom speed (176\,kB/sec raw data or
- 150\,kB/sec file system data). The value 0 means `auto-select', \ie,
- play audio discs at real time and data discs at maximum speed. The value
- $arg$ is checked against the maximum head rate of the drive found in the
- $cdrom_dops$.
-\item[CDROM_SELECT_DISC] Select disc numbered $arg$ from a juke-box.
- First disc is numbered 0. The number $arg$ is checked against the
- maximum number of discs in the juke-box found in the $cdrom_dops$.
-\item[CDROM_MEDIA_CHANGED] Returns 1 if a disc has been changed since
- the last call. Note that calls to $cdrom_media_changed$ by the VFS
- are treated by an independent queue, so both mechanisms will detect
- a media change once. For juke-boxes, an extra argument $arg$
- specifies the slot for which the information is given. The special
- value $CDSL_CURRENT$ requests that information about the currently
- selected slot be returned.
-\item[CDROM_DRIVE_STATUS] Returns the status of the drive by a call to
- $drive_status()$. Return values are defined in section~\ref{drive
- status}. Note that this call doesn't return information on the
- current playing activity of the drive; this can be polled through an
- $ioctl$ call to $CDROMSUBCHNL$. For juke-boxes, an extra argument
- $arg$ specifies the slot for which (possibly limited) information is
- given. The special value $CDSL_CURRENT$ requests that information
- about the currently selected slot be returned.
-\item[CDROM_DISC_STATUS] Returns the type of the disc currently in the
- drive. It should be viewed as a complement to $CDROM_DRIVE_STATUS$.
- This $ioctl$ can provide \emph {some} information about the current
- disc that is inserted in the drive. This functionality used to be
- implemented in the low level drivers, but is now carried out
- entirely in \UCD.
-
- The history of development of the CD's use as a carrier medium for
- various digital information has lead to many different disc types.
- This $ioctl$ is useful only in the case that CDs have \emph {only
- one} type of data on them. While this is often the case, it is
- also very common for CDs to have some tracks with data, and some
- tracks with audio. Because this is an existing interface, rather
- than fixing this interface by changing the assumptions it was made
- under, thereby breaking all user applications that use this
- function, the \UCD\ implements this $ioctl$ as follows: If the CD in
- question has audio tracks on it, and it has absolutely no CD-I, XA,
- or data tracks on it, it will be reported as $CDS_AUDIO$. If it has
- both audio and data tracks, it will return $CDS_MIXED$. If there
- are no audio tracks on the disc, and if the CD in question has any
- CD-I tracks on it, it will be reported as $CDS_XA_2_2$. Failing
- that, if the CD in question has any XA tracks on it, it will be
- reported as $CDS_XA_2_1$. Finally, if the CD in question has any
- data tracks on it, it will be reported as a data CD ($CDS_DATA_1$).
-
- This $ioctl$ can return:
- $$
- \halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
- CDS_NO_INFO& no information available\cr
- CDS_NO_DISC& no disc is inserted, or tray is opened\cr
- CDS_AUDIO& Audio disc (2352 audio bytes/frame)\cr
- CDS_DATA_1& data disc, mode 1 (2048 user bytes/frame)\cr
- CDS_XA_2_1& mixed data (XA), mode 2, form 1 (2048 user bytes)\cr
- CDS_XA_2_2& mixed data (XA), mode 2, form 1 (2324 user bytes)\cr
- CDS_MIXED& mixed audio/data disc\cr
- }
- $$
- For some information concerning frame layout of the various disc
- types, see a recent version of \cdromh.
-
-\item[CDROM_CHANGER_NSLOTS] Returns the number of slots in a
- juke-box.
-\item[CDROMRESET] Reset the drive.
-\item[CDROM_GET_CAPABILITY] Returns the $capability$ flags for the
- drive. Refer to section \ref{capability} for more information on
- these flags.
-\item[CDROM_LOCKDOOR] Locks the door of the drive. $arg == \rm0$
- unlocks the door, any other value locks it.
-\item[CDROM_DEBUG] Turns on debugging info. Only root is allowed
- to do this. Same semantics as CDROM_LOCKDOOR.
-\end{description}
-
-\subsubsection{Device dependent $ioctl$s}
-
-Finally, all other $ioctl$s are passed to the function $dev_ioctl()$,
-if implemented. No memory allocation or verification is carried out.
-
-\newsection{How to update your driver}
-
-\begin{enumerate}
-\item Make a backup of your current driver.
-\item Get hold of the files \cdromc\ and \cdromh, they should be in
- the directory tree that came with this documentation.
-\item Make sure you include \cdromh.
-\item Change the 3rd argument of $register_blkdev$ from
-$\&<your-drive>_fops$ to $\&cdrom_fops$.
-\item Just after that line, add the following to register with the \UCD:
- $$register_cdrom(\&<your-drive>_info);$$
- Similarly, add a call to $unregister_cdrom()$ at the appropriate place.
-\item Copy an example of the device-operations $struct$ to your
- source, \eg, from {\tt {cm206.c}} $cm206_dops$, and change all
- entries to names corresponding to your driver, or names you just
- happen to like. If your driver doesn't support a certain function,
- make the entry $NULL$. At the entry $capability$ you should list all
- capabilities your driver currently supports. If your driver
- has a capability that is not listed, please send me a message.
-\item Copy the $cdrom_device_info$ declaration from the same example
- driver, and modify the entries according to your needs. If your
- driver dynamically determines the capabilities of the hardware, this
- structure should also be declared dynamically.
-\item Implement all functions in your $<device>_dops$ structure,
- according to prototypes listed in \cdromh, and specifications given
- in section~\ref{cdrom.c}. Most likely you have already implemented
- the code in a large part, and you will almost certainly need to adapt the
- prototype and return values.
-\item Rename your $<device>_ioctl()$ function to $audio_ioctl$ and
- change the prototype a little. Remove entries listed in the first
- part in section~\ref{cdrom-ioctl}, if your code was OK, these are
- just calls to the routines you adapted in the previous step.
-\item You may remove all remaining memory checking code in the
- $audio_ioctl()$ function that deals with audio commands (these are
- listed in the second part of section~\ref{cdrom-ioctl}). There is no
- need for memory allocation either, so most $case$s in the $switch$
- statement look similar to:
- $$
- case\ CDROMREADTOCENTRY\colon get_toc_entry\bigl((struct\
- cdrom_tocentry *{})\ arg\bigr);
- $$
-\item All remaining $ioctl$ cases must be moved to a separate
- function, $<device>_ioctl$, the device-dependent $ioctl$s. Note that
- memory checking and allocation must be kept in this code!
-\item Change the prototypes of $<device>_open()$ and
- $<device>_release()$, and remove any strategic code (\ie, tray
- movement, door locking, etc.).
-\item Try to recompile the drivers. We advise you to use modules, both
- for {\tt {cdrom.o}} and your driver, as debugging is much easier this
- way.
-\end{enumerate}
-
-\newsection{Thanks}
-
-Thanks to all the people involved. First, Erik Andersen, who has
-taken over the torch in maintaining \cdromc\ and integrating much
-\cdrom-related code in the 2.1-kernel. Thanks to Scott Snyder and
-Gerd Knorr, who were the first to implement this interface for SCSI
-and IDE-CD drivers and added many ideas for extension of the data
-structures relative to kernel~2.0. Further thanks to Heiko Ei{\ss}feldt,
-Thomas Quinot, Jon Tombs, Ken Pizzini, Eberhard M\"onkeberg and Andrew
-Kroll, the \linux\ \cdrom\ device driver developers who were kind
-enough to give suggestions and criticisms during the writing. Finally
-of course, I want to thank Linus Torvalds for making this possible in
-the first place.
-
-\vfill
-$ \version\ $
-\eject
-\end{document}
diff --git a/Documentation/cdrom/ide-cd b/Documentation/cdrom/ide-cd.rst
index a5f2a7f1ff46..bdccb74fc92d 100644
--- a/Documentation/cdrom/ide-cd
+++ b/Documentation/cdrom/ide-cd.rst
@@ -1,18 +1,20 @@
IDE-CD driver documentation
-Originally by scott snyder <snyder@fnald0.fnal.gov> (19 May 1996)
-Carrying on the torch is: Erik Andersen <andersee@debian.org>
-New maintainers (19 Oct 1998): Jens Axboe <axboe@image.dk>
+===========================
+
+:Originally by: scott snyder <snyder@fnald0.fnal.gov> (19 May 1996)
+:Carrying on the torch is: Erik Andersen <andersee@debian.org>
+:New maintainers (19 Oct 1998): Jens Axboe <axboe@image.dk>
1. Introduction
---------------
-The ide-cd driver should work with all ATAPI ver 1.2 to ATAPI 2.6 compliant
+The ide-cd driver should work with all ATAPI ver 1.2 to ATAPI 2.6 compliant
CDROM drives which attach to an IDE interface. Note that some CDROM vendors
(including Mitsumi, Sony, Creative, Aztech, and Goldstar) have made
both ATAPI-compliant drives and drives which use a proprietary
interface. If your drive uses one of those proprietary interfaces,
this driver will not work with it (but one of the other CDROM drivers
-probably will). This driver will not work with `ATAPI' drives which
+probably will). This driver will not work with `ATAPI` drives which
attach to the parallel port. In addition, there is at least one drive
(CyCDROM CR520ie) which attaches to the IDE port but is not ATAPI;
this driver will not work with drives like that either (but see the
@@ -31,7 +33,7 @@ This driver provides the following features:
from audio tracks. The program cdda2wav can be used for this.
Note, however, that only some drives actually support this.
- - There is now support for CDROM changers which comply with the
+ - There is now support for CDROM changers which comply with the
ATAPI 2.6 draft standard (such as the NEC CDR-251). This additional
functionality includes a function call to query which slot is the
currently selected slot, a function call to query which slots contain
@@ -45,22 +47,22 @@ This driver provides the following features:
---------------
0. The ide-cd relies on the ide disk driver. See
- Documentation/ide/ide.txt for up-to-date information on the ide
+ Documentation/ide/ide.rst for up-to-date information on the ide
driver.
1. Make sure that the ide and ide-cd drivers are compiled into the
- kernel you're using. When configuring the kernel, in the section
- entitled "Floppy, IDE, and other block devices", say either `Y'
- (which will compile the support directly into the kernel) or `M'
+ kernel you're using. When configuring the kernel, in the section
+ entitled "Floppy, IDE, and other block devices", say either `Y`
+ (which will compile the support directly into the kernel) or `M`
(to compile support as a module which can be loaded and unloaded)
- to the options:
+ to the options::
ATA/ATAPI/MFM/RLL support
Include IDE/ATAPI CDROM support
Depending on what type of IDE interface you have, you may need to
specify additional configuration options. See
- Documentation/ide/ide.txt.
+ Documentation/ide/ide.rst.
2. You should also ensure that the iso9660 filesystem is either
compiled into the kernel or available as a loadable module. You
@@ -72,35 +74,35 @@ This driver provides the following features:
address and an IRQ number, the standard assignments being
0x1f0 and 14 for the primary interface and 0x170 and 15 for the
secondary interface. Each interface can control up to two devices,
- where each device can be a hard drive, a CDROM drive, a floppy drive,
- or a tape drive. The two devices on an interface are called `master'
- and `slave'; this is usually selectable via a jumper on the drive.
+ where each device can be a hard drive, a CDROM drive, a floppy drive,
+ or a tape drive. The two devices on an interface are called `master`
+ and `slave`; this is usually selectable via a jumper on the drive.
Linux names these devices as follows. The master and slave devices
- on the primary IDE interface are called `hda' and `hdb',
+ on the primary IDE interface are called `hda` and `hdb`,
respectively. The drives on the secondary interface are called
- `hdc' and `hdd'. (Interfaces at other locations get other letters
- in the third position; see Documentation/ide/ide.txt.)
+ `hdc` and `hdd`. (Interfaces at other locations get other letters
+ in the third position; see Documentation/ide/ide.rst.)
If you want your CDROM drive to be found automatically by the
driver, you should make sure your IDE interface uses either the
primary or secondary addresses mentioned above. In addition, if
the CDROM drive is the only device on the IDE interface, it should
- be jumpered as `master'. (If for some reason you cannot configure
+ be jumpered as `master`. (If for some reason you cannot configure
your system in this manner, you can probably still use the driver.
You may have to pass extra configuration information to the kernel
- when you boot, however. See Documentation/ide/ide.txt for more
+ when you boot, however. See Documentation/ide/ide.rst for more
information.)
4. Boot the system. If the drive is recognized, you should see a
- message which looks like
+ message which looks like::
hdb: NEC CD-ROM DRIVE:260, ATAPI CDROM drive
If you do not see this, see section 5 below.
5. You may want to create a symbolic link /dev/cdrom pointing to the
- actual device. You can do this with the command
+ actual device. You can do this with the command::
ln -s /dev/hdX /dev/cdrom
@@ -108,14 +110,14 @@ This driver provides the following features:
drive is installed.
6. You should be able to see any error messages from the driver with
- the `dmesg' command.
+ the `dmesg` command.
3. Basic usage
--------------
-An ISO 9660 CDROM can be mounted by putting the disc in the drive and
-typing (as root)
+An ISO 9660 CDROM can be mounted by putting the disc in the drive and
+typing (as root)::
mount -t iso9660 /dev/cdrom /mnt/cdrom
@@ -123,7 +125,7 @@ where it is assumed that /dev/cdrom is a link pointing to the actual
device (as described in step 5 of the last section) and /mnt/cdrom is
an empty directory. You should now be able to see the contents of the
CDROM under the /mnt/cdrom directory. If you want to eject the CDROM,
-you must first dismount it with a command like
+you must first dismount it with a command like::
umount /mnt/cdrom
@@ -148,7 +150,7 @@ such as cdda2wav. The only types of drive which I've heard support
this are Sony and Toshiba drives. You will get errors if you try to
use this function on a drive which does not support it.
-For supported changers, you can use the `cdchange' program (appended to
+For supported changers, you can use the `cdchange` program (appended to
the end of this file) to switch between changer slots. Note that the
drive should be unmounted before attempting this. The program takes
two arguments: the CDROM device, and the slot number to which you wish
@@ -161,17 +163,17 @@ to change. If the slot number is -1, the drive is unloaded.
This section discusses some common problems encountered when trying to
use the driver, and some possible solutions. Note that if you are
experiencing problems, you should probably also review
-Documentation/ide/ide.txt for current information about the underlying
+Documentation/ide/ide.rst for current information about the underlying
IDE support code. Some of these items apply only to earlier versions
of the driver, but are mentioned here for completeness.
-In most cases, you should probably check with `dmesg' for any errors
+In most cases, you should probably check with `dmesg` for any errors
from the driver.
a. Drive is not detected during booting.
- Review the configuration instructions above and in
- Documentation/ide/ide.txt, and check how your hardware is
+ Documentation/ide/ide.rst, and check how your hardware is
configured.
- If your drive is the only device on an IDE interface, it should
@@ -179,14 +181,14 @@ a. Drive is not detected during booting.
- If your IDE interface is not at the standard addresses of 0x170
or 0x1f0, you'll need to explicitly inform the driver using a
- lilo option. See Documentation/ide/ide.txt. (This feature was
+ lilo option. See Documentation/ide/ide.rst. (This feature was
added around kernel version 1.3.30.)
- If the autoprobing is not finding your drive, you can tell the
driver to assume that one exists by using a lilo option of the
- form `hdX=cdrom', where X is the drive letter corresponding to
- where your drive is installed. Note that if you do this and you
- see a boot message like
+ form `hdX=cdrom`, where X is the drive letter corresponding to
+ where your drive is installed. Note that if you do this and you
+ see a boot message like::
hdX: ATAPI cdrom (?)
@@ -205,7 +207,7 @@ a. Drive is not detected during booting.
Support for some interfaces needing extra initialization is
provided in later 1.3.x kernels. You may need to turn on
additional kernel configuration options to get them to work;
- see Documentation/ide/ide.txt.
+ see Documentation/ide/ide.rst.
Even if support is not available for your interface, you may be
able to get it to work with the following procedure. First boot
@@ -220,7 +222,7 @@ b. Timeout/IRQ errors.
probably not making it to the host.
- IRQ problems may also be indicated by the message
- `IRQ probe failed (<n>)' while booting. If <n> is zero, that
+ `IRQ probe failed (<n>)` while booting. If <n> is zero, that
means that the system did not see an interrupt from the drive when
it was expecting one (on any feasible IRQ). If <n> is negative,
that means the system saw interrupts on multiple IRQ lines, when
@@ -240,27 +242,27 @@ b. Timeout/IRQ errors.
there are hardware problems with the interrupt setup; they
apparently don't use interrupts.
- - If you own a Pioneer DR-A24X, you _will_ get nasty error messages
+ - If you own a Pioneer DR-A24X, you _will_ get nasty error messages
on boot such as "irq timeout: status=0x50 { DriveReady SeekComplete }"
The Pioneer DR-A24X CDROM drives are fairly popular these days.
Unfortunately, these drives seem to become very confused when we perform
the standard Linux ATA disk drive probe. If you own one of these drives,
- you can bypass the ATA probing which confuses these CDROM drives, by
- adding `append="hdX=noprobe hdX=cdrom"' to your lilo.conf file and running
- lilo (again where X is the drive letter corresponding to where your drive
+ you can bypass the ATA probing which confuses these CDROM drives, by
+ adding `append="hdX=noprobe hdX=cdrom"` to your lilo.conf file and running
+ lilo (again where X is the drive letter corresponding to where your drive
is installed.)
-
+
c. System hangups.
- If the system locks up when you try to access the CDROM, the most
likely cause is that you have a buggy IDE adapter which doesn't
properly handle simultaneous transactions on multiple interfaces.
The most notorious of these is the CMD640B chip. This problem can
- be worked around by specifying the `serialize' option when
+ be worked around by specifying the `serialize` option when
booting. Recent kernels should be able to detect the need for
this automatically in most cases, but the detection is not
- foolproof. See Documentation/ide/ide.txt for more information
- about the `serialize' option and the CMD640B.
+ foolproof. See Documentation/ide/ide.rst for more information
+ about the `serialize` option and the CMD640B.
- Note that many MS-DOS CDROM drivers will work with such buggy
hardware, apparently because they never attempt to overlap CDROM
@@ -269,14 +271,14 @@ c. System hangups.
d. Can't mount a CDROM.
- - If you get errors from mount, it may help to check `dmesg' to see
+ - If you get errors from mount, it may help to check `dmesg` to see
if there are any more specific errors from the driver or from the
filesystem.
- Make sure there's a CDROM loaded in the drive, and that's it's an
ISO 9660 disc. You can't mount an audio CD.
- - With the CDROM in the drive and unmounted, try something like
+ - With the CDROM in the drive and unmounted, try something like::
cat /dev/cdrom | od | more
@@ -284,9 +286,9 @@ d. Can't mount a CDROM.
OK, and the problem is at the filesystem level (i.e., the CDROM is
not ISO 9660 or has errors in the filesystem structure).
- - If you see `not a block device' errors, check that the definitions
+ - If you see `not a block device` errors, check that the definitions
of the device special files are correct. They should be as
- follows:
+ follows::
brw-rw---- 1 root disk 3, 0 Nov 11 18:48 /dev/hda
brw-rw---- 1 root disk 3, 64 Nov 11 18:48 /dev/hdb
@@ -301,7 +303,7 @@ d. Can't mount a CDROM.
If you have a /dev/cdrom symbolic link, check that it is pointing
to the correct device file.
- If you hear people talking of the devices `hd1a' and `hd1b', these
+ If you hear people talking of the devices `hd1a` and `hd1b`, these
were old names for what are now called hdc and hdd. Those names
should be considered obsolete.
@@ -311,8 +313,8 @@ d. Can't mount a CDROM.
always give meaningful error messages.
-e. Directory listings are unpredictably truncated, and `dmesg' shows
- `buffer botch' error messages from the driver.
+e. Directory listings are unpredictably truncated, and `dmesg` shows
+ `buffer botch` error messages from the driver.
- There was a bug in the version of the driver in 1.2.x kernels
which could cause this. It was fixed in 1.3.0. If you can't
@@ -335,34 +337,36 @@ f. Data corruption.
5. cdchange.c
-------------
-/*
- * cdchange.c [-v] <device> [<slot>]
- *
- * This loads a CDROM from a specified slot in a changer, and displays
- * information about the changer status. The drive should be unmounted before
- * using this program.
- *
- * Changer information is displayed if either the -v flag is specified
- * or no slot was specified.
- *
- * Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
- * Changer status information, and rewrite for the new Uniform CDROM driver
- * interface by Erik Andersen <andersee@debian.org>.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <errno.h>
-#include <string.h>
-#include <unistd.h>
-#include <fcntl.h>
-#include <sys/ioctl.h>
-#include <linux/cdrom.h>
-
-
-int
-main (int argc, char **argv)
-{
+::
+
+ /*
+ * cdchange.c [-v] <device> [<slot>]
+ *
+ * This loads a CDROM from a specified slot in a changer, and displays
+ * information about the changer status. The drive should be unmounted before
+ * using this program.
+ *
+ * Changer information is displayed if either the -v flag is specified
+ * or no slot was specified.
+ *
+ * Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
+ * Changer status information, and rewrite for the new Uniform CDROM driver
+ * interface by Erik Andersen <andersee@debian.org>.
+ */
+
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <errno.h>
+ #include <string.h>
+ #include <unistd.h>
+ #include <fcntl.h>
+ #include <sys/ioctl.h>
+ #include <linux/cdrom.h>
+
+
+ int
+ main (int argc, char **argv)
+ {
char *program;
char *device;
int fd; /* file descriptor for CD-ROM device */
@@ -382,30 +386,30 @@ main (int argc, char **argv)
fprintf (stderr, " Slots are numbered 1 -- n.\n");
exit (1);
}
-
+
if (strcmp (argv[0], "-v") == 0) {
verbose = 1;
++argv;
--argc;
}
-
+
device = argv[0];
-
+
if (argc == 2)
slot = atoi (argv[1]) - 1;
- /* open device */
+ /* open device */
fd = open(device, O_RDONLY | O_NONBLOCK);
if (fd < 0) {
- fprintf (stderr, "%s: open failed for `%s': %s\n",
+ fprintf (stderr, "%s: open failed for `%s`: %s\n",
program, device, strerror (errno));
exit (1);
}
- /* Check CD player status */
+ /* Check CD player status */
total_slots_available = ioctl (fd, CDROM_CHANGER_NSLOTS);
if (total_slots_available <= 1 ) {
- fprintf (stderr, "%s: Device `%s' is not an ATAPI "
+ fprintf (stderr, "%s: Device `%s` is not an ATAPI "
"compliant CD changer.\n", program, device);
exit (1);
}
@@ -418,7 +422,7 @@ main (int argc, char **argv)
exit (1);
}
- /* load */
+ /* load */
slot=ioctl (fd, CDROM_SELECT_DISC, slot);
if (slot<0) {
fflush(stdout);
@@ -462,14 +466,14 @@ main (int argc, char **argv)
for (x_slot=0; x_slot<total_slots_available; x_slot++) {
printf ("Slot %2d: ", x_slot+1);
- status = ioctl (fd, CDROM_DRIVE_STATUS, x_slot);
- if (status<0) {
- perror(" CDROM_DRIVE_STATUS");
- } else switch(status) {
+ status = ioctl (fd, CDROM_DRIVE_STATUS, x_slot);
+ if (status<0) {
+ perror(" CDROM_DRIVE_STATUS");
+ } else switch(status) {
case CDS_DISC_OK:
printf ("Disc present.");
break;
- case CDS_NO_DISC:
+ case CDS_NO_DISC:
printf ("Empty slot.");
break;
case CDS_TRAY_OPEN:
@@ -507,11 +511,11 @@ main (int argc, char **argv)
break;
}
}
- status = ioctl (fd, CDROM_MEDIA_CHANGED, x_slot);
- if (status<0) {
+ status = ioctl (fd, CDROM_MEDIA_CHANGED, x_slot);
+ if (status<0) {
perror(" CDROM_MEDIA_CHANGED");
- }
- switch (status) {
+ }
+ switch (status) {
case 1:
printf ("Changed.\n");
break;
@@ -525,10 +529,10 @@ main (int argc, char **argv)
/* close device */
status = close (fd);
if (status != 0) {
- fprintf (stderr, "%s: close failed for `%s': %s\n",
+ fprintf (stderr, "%s: close failed for `%s`: %s\n",
program, device, strerror (errno));
exit (1);
}
-
+
exit (0);
-}
+ }
diff --git a/Documentation/cdrom/index.rst b/Documentation/cdrom/index.rst
new file mode 100644
index 000000000000..338ad5f94e7c
--- /dev/null
+++ b/Documentation/cdrom/index.rst
@@ -0,0 +1,19 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====
+cdrom
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ cdrom-standard
+ ide-cd
+ packet-writing
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/cdrom/packet-writing.txt b/Documentation/cdrom/packet-writing.rst
index 2834170d821e..c5c957195a5a 100644
--- a/Documentation/cdrom/packet-writing.txt
+++ b/Documentation/cdrom/packet-writing.rst
@@ -1,3 +1,7 @@
+==============
+Packet writing
+==============
+
Getting started quick
---------------------
@@ -10,13 +14,16 @@ Getting started quick
Download from http://sourceforge.net/projects/linux-udf/
- Grab a new CD-RW disc and format it (assuming CD-RW is hdc, substitute
- as appropriate):
+ as appropriate)::
+
# cdrwtool -d /dev/hdc -q
-- Setup your writer
+- Setup your writer::
+
# pktsetup dev_name /dev/hdc
-- Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy!
+- Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy::
+
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
@@ -25,11 +32,11 @@ Packet writing for DVD-RW media
DVD-RW discs can be written to much like CD-RW discs if they are in
the so called "restricted overwrite" mode. To put a disc in restricted
-overwrite mode, run:
+overwrite mode, run::
# dvd+rw-format /dev/hdc
-You can then use the disc the same way you would use a CD-RW disc:
+You can then use the disc the same way you would use a CD-RW disc::
# pktsetup dev_name /dev/hdc
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
@@ -41,7 +48,7 @@ Packet writing for DVD+RW media
According to the DVD+RW specification, a drive supporting DVD+RW discs
shall implement "true random writes with 2KB granularity", which means
that it should be possible to put any filesystem with a block size >=
-2KB on such a disc. For example, it should be possible to do:
+2KB on such a disc. For example, it should be possible to do::
# dvd+rw-format /dev/hdc (only needed if the disc has never
been formatted)
@@ -54,7 +61,7 @@ follow the specification, but suffer bad performance problems if the
writes are not 32KB aligned.
Both problems can be solved by using the pktcdvd driver, which always
-generates aligned writes.
+generates aligned writes::
# dvd+rw-format /dev/hdc
# pktsetup dev_name /dev/hdc
@@ -83,7 +90,7 @@ Notes
- Since the pktcdvd driver makes the disc appear as a regular block
device with a 2KB block size, you can put any filesystem you like on
- the disc. For example, run:
+ the disc. For example, run::
# /sbin/mke2fs /dev/pktcdvd/dev_name
@@ -97,7 +104,7 @@ Since Linux 2.6.20, the pktcdvd module has a sysfs interface
and can be controlled by it. For example the "pktcdvd" tool uses
this interface. (see http://tom.ist-im-web.de/download/pktcdvd )
-"pktcdvd" works similar to "pktsetup", e.g.:
+"pktcdvd" works similar to "pktsetup", e.g.::
# pktcdvd -a dev_name /dev/hdc
# mkudffs /dev/pktcdvd/dev_name
@@ -115,7 +122,7 @@ For a description of the sysfs interface look into the file:
Using the pktcdvd debugfs interface
-----------------------------------
-To read pktcdvd device infos in human readable form, do:
+To read pktcdvd device infos in human readable form, do::
# cat /sys/kernel/debug/pktcdvd/pktcdvd[0-7]/info
diff --git a/Documentation/conf.py b/Documentation/conf.py
index 7ace3f8852bd..a8fe845832bc 100644
--- a/Documentation/conf.py
+++ b/Documentation/conf.py
@@ -16,6 +16,8 @@ import sys
import os
import sphinx
+from subprocess import check_output
+
# Get Sphinx version
major, minor, patch = sphinx.version_info[:3]
@@ -34,7 +36,8 @@ needs_sphinx = '1.3'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
-extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain', 'kfigure', 'sphinx.ext.ifconfig']
+extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain',
+ 'kfigure', 'sphinx.ext.ifconfig', 'automarkup']
# The name of the math extension changed on Sphinx 1.4
if (major == 1 and minor > 3) or (major > 1):
@@ -200,7 +203,7 @@ html_context = {
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
-#html_use_smartypants = True
+html_use_smartypants = False
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
@@ -275,10 +278,21 @@ latex_elements = {
\\setsansfont{DejaVu Sans}
\\setromanfont{DejaVu Serif}
\\setmonofont{DejaVu Sans Mono}
-
'''
}
+# At least one book (translations) may have Asian characters
+# with are only displayed if xeCJK is used
+
+cjk_cmd = check_output(['fc-list', '--format="%{family[0]}\n"']).decode('utf-8', 'ignore')
+if cjk_cmd.find("Noto Sans CJK SC") >= 0:
+ print ("enabling CJK for LaTeX builder")
+ latex_elements['preamble'] += '''
+ % This is needed for translations
+ \\usepackage{xeCJK}
+ \\setCJKmainfont{Noto Sans CJK SC}
+ '''
+
# Fix reference escape troubles with Sphinx 1.4.x
if major == 1 and minor > 3:
latex_elements['preamble'] += '\\renewcommand*{\\DUrole}[2]{ #2 }\n'
@@ -409,6 +423,21 @@ latex_documents = [
'The kernel development community', 'manual'),
]
+# Add all other index files from Documentation/ subdirectories
+for fn in os.listdir('.'):
+ doc = os.path.join(fn, "index")
+ if os.path.exists(doc + ".rst"):
+ has = False
+ for l in latex_documents:
+ if l[0] == doc:
+ has = True
+ break
+ if not has:
+ latex_documents.append((doc, fn + '.tex',
+ 'Linux %s Documentation' % fn.capitalize(),
+ 'The kernel development community',
+ 'manual'))
+
# The name of an image file (relative to this directory) to place at the top of
# the title page.
#latex_logo = None
diff --git a/Documentation/core-api/circular-buffers.rst b/Documentation/core-api/circular-buffers.rst
index 53e51caa3347..50966f66e398 100644
--- a/Documentation/core-api/circular-buffers.rst
+++ b/Documentation/core-api/circular-buffers.rst
@@ -3,7 +3,7 @@ Circular Buffers
================
:Author: David Howells <dhowells@redhat.com>
-:Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+:Author: Paul E. McKenney <paulmck@linux.ibm.com>
Linux provides a number of features that can be used to implement circular
diff --git a/Documentation/core-api/conf.py b/Documentation/core-api/conf.py
deleted file mode 100644
index db1f7659f3da..000000000000
--- a/Documentation/core-api/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Core-API Documentation"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'core-api.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/gcc-plugins.txt b/Documentation/core-api/gcc-plugins.rst
index 8502f24396fb..8502f24396fb 100644
--- a/Documentation/gcc-plugins.txt
+++ b/Documentation/core-api/gcc-plugins.rst
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst
index ee1bb8983a88..fa16a0538dcb 100644
--- a/Documentation/core-api/index.rst
+++ b/Documentation/core-api/index.rst
@@ -25,6 +25,7 @@ Core utilities
librs
genalloc
errseq
+ packing
printk-formats
circular-buffers
generic-radix-tree
@@ -34,6 +35,9 @@ Core utilities
timekeeping
boot-time-mm
memory-hotplug
+ protection-keys
+ ../RCU/index
+ gcc-plugins
Interfaces for kernel debugging
@@ -45,7 +49,7 @@ Interfaces for kernel debugging
debug-objects
tracepoint
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/core-api/kernel-api.rst b/Documentation/core-api/kernel-api.rst
index a29c99d13331..f77de49b1d51 100644
--- a/Documentation/core-api/kernel-api.rst
+++ b/Documentation/core-api/kernel-api.rst
@@ -33,12 +33,18 @@ String Conversions
.. kernel-doc:: lib/kstrtox.c
:export:
+.. kernel-doc:: lib/string_helpers.c
+ :export:
+
String Manipulation
-------------------
.. kernel-doc:: lib/string.c
:export:
+.. kernel-doc:: include/linux/string.h
+ :internal:
+
.. kernel-doc:: mm/util.c
:functions: kstrdup kstrdup_const kstrndup kmemdup kmemdup_nul memdup_user
vmemdup_user strndup_user memdup_user_nul
@@ -51,7 +57,7 @@ The Linux kernel provides more basic utility functions.
Bit Operations
--------------
-.. kernel-doc:: arch/x86/include/asm/bitops.h
+.. kernel-doc:: include/asm-generic/bitops-instrumented.h
:internal:
Bitmap Operations
@@ -138,6 +144,15 @@ Base 2 log and power Functions
.. kernel-doc:: include/linux/log2.h
:internal:
+Integer power Functions
+-----------------------
+
+.. kernel-doc:: lib/math/int_pow.c
+ :export:
+
+.. kernel-doc:: lib/math/int_sqrt.c
+ :export:
+
Division Functions
------------------
@@ -358,8 +373,6 @@ Read-Copy Update (RCU)
.. kernel-doc:: kernel/rcu/tree.c
-.. kernel-doc:: kernel/rcu/tree_plugin.h
-
.. kernel-doc:: kernel/rcu/tree_exp.h
.. kernel-doc:: kernel/rcu/update.c
diff --git a/Documentation/packing.txt b/Documentation/core-api/packing.rst
index f830c98645f1..d8c341fe383e 100644
--- a/Documentation/packing.txt
+++ b/Documentation/core-api/packing.rst
@@ -30,6 +30,7 @@ The solution
------------
This API deals with 2 basic operations:
+
- Packing a CPU-usable number into a memory buffer (with hardware
constraints/quirks)
- Unpacking a memory buffer (which has hardware constraints/quirks)
@@ -49,10 +50,12 @@ What the examples show is where the logical bytes and bits sit.
1. Normally (no quirks), we would do it like this:
-63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
-7 6 5 4
-31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
-3 2 1 0
+::
+
+ 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
+ 7 6 5 4
+ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ 3 2 1 0
That is, the MSByte (7) of the CPU-usable u64 sits at memory offset 0, and the
LSByte (0) of the u64 sits at memory offset 7.
@@ -63,10 +66,12 @@ comments as "logical" notation.
2. If QUIRK_MSB_ON_THE_RIGHT is set, we do it like this:
-56 57 58 59 60 61 62 63 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47 32 33 34 35 36 37 38 39
-7 6 5 4
-24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
-3 2 1 0
+::
+
+ 56 57 58 59 60 61 62 63 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47 32 33 34 35 36 37 38 39
+ 7 6 5 4
+ 24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
+ 3 2 1 0
That is, QUIRK_MSB_ON_THE_RIGHT does not affect byte positioning, but
inverts bit offsets inside a byte.
@@ -74,10 +79,12 @@ inverts bit offsets inside a byte.
3. If QUIRK_LITTLE_ENDIAN is set, we do it like this:
-39 38 37 36 35 34 33 32 47 46 45 44 43 42 41 40 55 54 53 52 51 50 49 48 63 62 61 60 59 58 57 56
-4 5 6 7
-7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
-0 1 2 3
+::
+
+ 39 38 37 36 35 34 33 32 47 46 45 44 43 42 41 40 55 54 53 52 51 50 49 48 63 62 61 60 59 58 57 56
+ 4 5 6 7
+ 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
+ 0 1 2 3
Therefore, QUIRK_LITTLE_ENDIAN means that inside the memory region, every
byte from each 4-byte word is placed at its mirrored position compared to
@@ -86,18 +93,22 @@ the boundary of that word.
4. If QUIRK_MSB_ON_THE_RIGHT and QUIRK_LITTLE_ENDIAN are both set, we do it
like this:
-32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
-4 5 6 7
-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-0 1 2 3
+::
+
+ 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
+ 4 5 6 7
+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+ 0 1 2 3
5. If just QUIRK_LSW32_IS_FIRST is set, we do it like this:
-31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
-3 2 1 0
-63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
-7 6 5 4
+::
+
+ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ 3 2 1 0
+ 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
+ 7 6 5 4
In this case the 8 byte memory region is interpreted as follows: first
4 bytes correspond to the least significant 4-byte word, next 4 bytes to
@@ -107,28 +118,34 @@ the more significant 4-byte word.
6. If QUIRK_LSW32_IS_FIRST and QUIRK_MSB_ON_THE_RIGHT are set, we do it like
this:
-24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
-3 2 1 0
-56 57 58 59 60 61 62 63 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47 32 33 34 35 36 37 38 39
-7 6 5 4
+::
+
+ 24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
+ 3 2 1 0
+ 56 57 58 59 60 61 62 63 48 49 50 51 52 53 54 55 40 41 42 43 44 45 46 47 32 33 34 35 36 37 38 39
+ 7 6 5 4
7. If QUIRK_LSW32_IS_FIRST and QUIRK_LITTLE_ENDIAN are set, it looks like
this:
-7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
-0 1 2 3
-39 38 37 36 35 34 33 32 47 46 45 44 43 42 41 40 55 54 53 52 51 50 49 48 63 62 61 60 59 58 57 56
-4 5 6 7
+::
+
+ 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
+ 0 1 2 3
+ 39 38 37 36 35 34 33 32 47 46 45 44 43 42 41 40 55 54 53 52 51 50 49 48 63 62 61 60 59 58 57 56
+ 4 5 6 7
8. If QUIRK_LSW32_IS_FIRST, QUIRK_LITTLE_ENDIAN and QUIRK_MSB_ON_THE_RIGHT
are set, it looks like this:
-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
-0 1 2 3
-32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
-4 5 6 7
+::
+
+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+ 0 1 2 3
+ 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
+ 4 5 6 7
We always think of our offsets as if there were no quirk, and we translate
diff --git a/Documentation/core-api/printk-formats.rst b/Documentation/core-api/printk-formats.rst
index 75d2bbe9813f..ecbebf4ca8e7 100644
--- a/Documentation/core-api/printk-formats.rst
+++ b/Documentation/core-api/printk-formats.rst
@@ -13,10 +13,10 @@ Integer types
If variable is of Type, use printk format specifier:
------------------------------------------------------------
- char %hhd or %hhx
- unsigned char %hhu or %hhx
- short int %hd or %hx
- unsigned short int %hu or %hx
+ char %d or %x
+ unsigned char %u or %x
+ short int %d or %x
+ unsigned short int %u or %x
int %d or %x
unsigned int %u or %x
long %ld or %lx
@@ -25,10 +25,10 @@ Integer types
unsigned long long %llu or %llx
size_t %zu or %zx
ssize_t %zd or %zx
- s8 %hhd or %hhx
- u8 %hhu or %hhx
- s16 %hd or %hx
- u16 %hu or %hx
+ s8 %d or %x
+ u8 %u or %x
+ s16 %d or %x
+ u16 %u or %x
s32 %d or %x
u32 %u or %x
s64 %lld or %llx
@@ -119,7 +119,7 @@ Kernel Pointers
For printing kernel pointers which should be hidden from unprivileged
users. The behaviour of %pK depends on the kptr_restrict sysctl - see
-Documentation/sysctl/kernel.txt for more details.
+Documentation/admin-guide/sysctl/kernel.rst for more details.
Unmodified Addresses
--------------------
diff --git a/Documentation/x86/protection-keys.rst b/Documentation/core-api/protection-keys.rst
index 49d9833af871..49d9833af871 100644
--- a/Documentation/x86/protection-keys.rst
+++ b/Documentation/core-api/protection-keys.rst
diff --git a/Documentation/core-api/timekeeping.rst b/Documentation/core-api/timekeeping.rst
index 93cbeb9daec0..c0ffa30c7c37 100644
--- a/Documentation/core-api/timekeeping.rst
+++ b/Documentation/core-api/timekeeping.rst
@@ -65,7 +65,7 @@ different format depending on what is required by the user:
.. c:function:: u64 ktime_get_ns( void )
u64 ktime_get_boottime_ns( void )
u64 ktime_get_real_ns( void )
- u64 ktime_get_tai_ns( void )
+ u64 ktime_get_clocktai_ns( void )
u64 ktime_get_raw_ns( void )
Same as the plain ktime_get functions, but returning a u64 number
@@ -99,19 +99,23 @@ Coarse and fast_ns access
Some additional variants exist for more specialized cases:
-.. c:function:: ktime_t ktime_get_coarse_boottime( void )
+.. c:function:: ktime_t ktime_get_coarse( void )
+ ktime_t ktime_get_coarse_boottime( void )
ktime_t ktime_get_coarse_real( void )
ktime_t ktime_get_coarse_clocktai( void )
- ktime_t ktime_get_coarse_raw( void )
+
+.. c:function:: u64 ktime_get_coarse_ns( void )
+ u64 ktime_get_coarse_boottime_ns( void )
+ u64 ktime_get_coarse_real_ns( void )
+ u64 ktime_get_coarse_clocktai_ns( void )
.. c:function:: void ktime_get_coarse_ts64( struct timespec64 * )
void ktime_get_coarse_boottime_ts64( struct timespec64 * )
void ktime_get_coarse_real_ts64( struct timespec64 * )
void ktime_get_coarse_clocktai_ts64( struct timespec64 * )
- void ktime_get_coarse_raw_ts64( struct timespec64 * )
These are quicker than the non-coarse versions, but less accurate,
- corresponding to CLOCK_MONONOTNIC_COARSE and CLOCK_REALTIME_COARSE
+ corresponding to CLOCK_MONOTONIC_COARSE and CLOCK_REALTIME_COARSE
in user space, along with the equivalent boottime/tai/raw
timebase not available in user space.
diff --git a/Documentation/core-api/xarray.rst b/Documentation/core-api/xarray.rst
index ef6f9f98f595..fcedc5349ace 100644
--- a/Documentation/core-api/xarray.rst
+++ b/Documentation/core-api/xarray.rst
@@ -30,27 +30,27 @@ it called marks. Each mark may be set or cleared independently of
the others. You can iterate over entries which are marked.
Normal pointers may be stored in the XArray directly. They must be 4-byte
-aligned, which is true for any pointer returned from :c:func:`kmalloc` and
-:c:func:`alloc_page`. It isn't true for arbitrary user-space pointers,
+aligned, which is true for any pointer returned from kmalloc() and
+alloc_page(). It isn't true for arbitrary user-space pointers,
nor for function pointers. You can store pointers to statically allocated
objects, as long as those objects have an alignment of at least 4.
You can also store integers between 0 and ``LONG_MAX`` in the XArray.
-You must first convert it into an entry using :c:func:`xa_mk_value`.
+You must first convert it into an entry using xa_mk_value().
When you retrieve an entry from the XArray, you can check whether it is
-a value entry by calling :c:func:`xa_is_value`, and convert it back to
-an integer by calling :c:func:`xa_to_value`.
+a value entry by calling xa_is_value(), and convert it back to
+an integer by calling xa_to_value().
Some users want to store tagged pointers instead of using the marks
-described above. They can call :c:func:`xa_tag_pointer` to create an
-entry with a tag, :c:func:`xa_untag_pointer` to turn a tagged entry
-back into an untagged pointer and :c:func:`xa_pointer_tag` to retrieve
+described above. They can call xa_tag_pointer() to create an
+entry with a tag, xa_untag_pointer() to turn a tagged entry
+back into an untagged pointer and xa_pointer_tag() to retrieve
the tag of an entry. Tagged pointers use the same bits that are used
to distinguish value entries from normal pointers, so each user must
decide whether they want to store value entries or tagged pointers in
any particular XArray.
-The XArray does not support storing :c:func:`IS_ERR` pointers as some
+The XArray does not support storing IS_ERR() pointers as some
conflict with value entries or internal entries.
An unusual feature of the XArray is the ability to create entries which
@@ -64,89 +64,89 @@ entry will cause the XArray to forget about the range.
Normal API
==========
-Start by initialising an XArray, either with :c:func:`DEFINE_XARRAY`
-for statically allocated XArrays or :c:func:`xa_init` for dynamically
+Start by initialising an XArray, either with DEFINE_XARRAY()
+for statically allocated XArrays or xa_init() for dynamically
allocated ones. A freshly-initialised XArray contains a ``NULL``
pointer at every index.
-You can then set entries using :c:func:`xa_store` and get entries
-using :c:func:`xa_load`. xa_store will overwrite any entry with the
+You can then set entries using xa_store() and get entries
+using xa_load(). xa_store will overwrite any entry with the
new entry and return the previous entry stored at that index. You can
-use :c:func:`xa_erase` instead of calling :c:func:`xa_store` with a
+use xa_erase() instead of calling xa_store() with a
``NULL`` entry. There is no difference between an entry that has never
been stored to, one that has been erased and one that has most recently
had ``NULL`` stored to it.
You can conditionally replace an entry at an index by using
-:c:func:`xa_cmpxchg`. Like :c:func:`cmpxchg`, it will only succeed if
+xa_cmpxchg(). Like cmpxchg(), it will only succeed if
the entry at that index has the 'old' value. It also returns the entry
which was at that index; if it returns the same entry which was passed as
-'old', then :c:func:`xa_cmpxchg` succeeded.
+'old', then xa_cmpxchg() succeeded.
If you want to only store a new entry to an index if the current entry
-at that index is ``NULL``, you can use :c:func:`xa_insert` which
+at that index is ``NULL``, you can use xa_insert() which
returns ``-EBUSY`` if the entry is not empty.
You can enquire whether a mark is set on an entry by using
-:c:func:`xa_get_mark`. If the entry is not ``NULL``, you can set a mark
-on it by using :c:func:`xa_set_mark` and remove the mark from an entry by
-calling :c:func:`xa_clear_mark`. You can ask whether any entry in the
-XArray has a particular mark set by calling :c:func:`xa_marked`.
+xa_get_mark(). If the entry is not ``NULL``, you can set a mark
+on it by using xa_set_mark() and remove the mark from an entry by
+calling xa_clear_mark(). You can ask whether any entry in the
+XArray has a particular mark set by calling xa_marked().
You can copy entries out of the XArray into a plain array by calling
-:c:func:`xa_extract`. Or you can iterate over the present entries in
-the XArray by calling :c:func:`xa_for_each`. You may prefer to use
-:c:func:`xa_find` or :c:func:`xa_find_after` to move to the next present
+xa_extract(). Or you can iterate over the present entries in
+the XArray by calling xa_for_each(). You may prefer to use
+xa_find() or xa_find_after() to move to the next present
entry in the XArray.
-Calling :c:func:`xa_store_range` stores the same entry in a range
+Calling xa_store_range() stores the same entry in a range
of indices. If you do this, some of the other operations will behave
in a slightly odd way. For example, marking the entry at one index
may result in the entry being marked at some, but not all of the other
indices. Storing into one index may result in the entry retrieved by
some, but not all of the other indices changing.
-Sometimes you need to ensure that a subsequent call to :c:func:`xa_store`
-will not need to allocate memory. The :c:func:`xa_reserve` function
+Sometimes you need to ensure that a subsequent call to xa_store()
+will not need to allocate memory. The xa_reserve() function
will store a reserved entry at the indicated index. Users of the
normal API will see this entry as containing ``NULL``. If you do
-not need to use the reserved entry, you can call :c:func:`xa_release`
+not need to use the reserved entry, you can call xa_release()
to remove the unused entry. If another user has stored to the entry
-in the meantime, :c:func:`xa_release` will do nothing; if instead you
-want the entry to become ``NULL``, you should use :c:func:`xa_erase`.
-Using :c:func:`xa_insert` on a reserved entry will fail.
+in the meantime, xa_release() will do nothing; if instead you
+want the entry to become ``NULL``, you should use xa_erase().
+Using xa_insert() on a reserved entry will fail.
-If all entries in the array are ``NULL``, the :c:func:`xa_empty` function
+If all entries in the array are ``NULL``, the xa_empty() function
will return ``true``.
Finally, you can remove all entries from an XArray by calling
-:c:func:`xa_destroy`. If the XArray entries are pointers, you may wish
+xa_destroy(). If the XArray entries are pointers, you may wish
to free the entries first. You can do this by iterating over all present
-entries in the XArray using the :c:func:`xa_for_each` iterator.
+entries in the XArray using the xa_for_each() iterator.
Allocating XArrays
------------------
-If you use :c:func:`DEFINE_XARRAY_ALLOC` to define the XArray, or
-initialise it by passing ``XA_FLAGS_ALLOC`` to :c:func:`xa_init_flags`,
+If you use DEFINE_XARRAY_ALLOC() to define the XArray, or
+initialise it by passing ``XA_FLAGS_ALLOC`` to xa_init_flags(),
the XArray changes to track whether entries are in use or not.
-You can call :c:func:`xa_alloc` to store the entry at an unused index
+You can call xa_alloc() to store the entry at an unused index
in the XArray. If you need to modify the array from interrupt context,
-you can use :c:func:`xa_alloc_bh` or :c:func:`xa_alloc_irq` to disable
+you can use xa_alloc_bh() or xa_alloc_irq() to disable
interrupts while allocating the ID.
-Using :c:func:`xa_store`, :c:func:`xa_cmpxchg` or :c:func:`xa_insert` will
+Using xa_store(), xa_cmpxchg() or xa_insert() will
also mark the entry as being allocated. Unlike a normal XArray, storing
-``NULL`` will mark the entry as being in use, like :c:func:`xa_reserve`.
-To free an entry, use :c:func:`xa_erase` (or :c:func:`xa_release` if
+``NULL`` will mark the entry as being in use, like xa_reserve().
+To free an entry, use xa_erase() (or xa_release() if
you only want to free the entry if it's ``NULL``).
By default, the lowest free entry is allocated starting from 0. If you
want to allocate entries starting at 1, it is more efficient to use
-:c:func:`DEFINE_XARRAY_ALLOC1` or ``XA_FLAGS_ALLOC1``. If you want to
+DEFINE_XARRAY_ALLOC1() or ``XA_FLAGS_ALLOC1``. If you want to
allocate IDs up to a maximum, then wrap back around to the lowest free
-ID, you can use :c:func:`xa_alloc_cyclic`.
+ID, you can use xa_alloc_cyclic().
You cannot use ``XA_MARK_0`` with an allocating XArray as this mark
is used to track whether an entry is free or not. The other marks are
@@ -155,17 +155,17 @@ available for your use.
Memory allocation
-----------------
-The :c:func:`xa_store`, :c:func:`xa_cmpxchg`, :c:func:`xa_alloc`,
-:c:func:`xa_reserve` and :c:func:`xa_insert` functions take a gfp_t
+The xa_store(), xa_cmpxchg(), xa_alloc(),
+xa_reserve() and xa_insert() functions take a gfp_t
parameter in case the XArray needs to allocate memory to store this entry.
If the entry is being deleted, no memory allocation needs to be performed,
and the GFP flags specified will be ignored.
It is possible for no memory to be allocatable, particularly if you pass
a restrictive set of GFP flags. In that case, the functions return a
-special value which can be turned into an errno using :c:func:`xa_err`.
+special value which can be turned into an errno using xa_err().
If you don't need to know exactly which error occurred, using
-:c:func:`xa_is_err` is slightly more efficient.
+xa_is_err() is slightly more efficient.
Locking
-------
@@ -174,54 +174,54 @@ When using the Normal API, you do not have to worry about locking.
The XArray uses RCU and an internal spinlock to synchronise access:
No lock needed:
- * :c:func:`xa_empty`
- * :c:func:`xa_marked`
+ * xa_empty()
+ * xa_marked()
Takes RCU read lock:
- * :c:func:`xa_load`
- * :c:func:`xa_for_each`
- * :c:func:`xa_find`
- * :c:func:`xa_find_after`
- * :c:func:`xa_extract`
- * :c:func:`xa_get_mark`
+ * xa_load()
+ * xa_for_each()
+ * xa_find()
+ * xa_find_after()
+ * xa_extract()
+ * xa_get_mark()
Takes xa_lock internally:
- * :c:func:`xa_store`
- * :c:func:`xa_store_bh`
- * :c:func:`xa_store_irq`
- * :c:func:`xa_insert`
- * :c:func:`xa_insert_bh`
- * :c:func:`xa_insert_irq`
- * :c:func:`xa_erase`
- * :c:func:`xa_erase_bh`
- * :c:func:`xa_erase_irq`
- * :c:func:`xa_cmpxchg`
- * :c:func:`xa_cmpxchg_bh`
- * :c:func:`xa_cmpxchg_irq`
- * :c:func:`xa_store_range`
- * :c:func:`xa_alloc`
- * :c:func:`xa_alloc_bh`
- * :c:func:`xa_alloc_irq`
- * :c:func:`xa_reserve`
- * :c:func:`xa_reserve_bh`
- * :c:func:`xa_reserve_irq`
- * :c:func:`xa_destroy`
- * :c:func:`xa_set_mark`
- * :c:func:`xa_clear_mark`
+ * xa_store()
+ * xa_store_bh()
+ * xa_store_irq()
+ * xa_insert()
+ * xa_insert_bh()
+ * xa_insert_irq()
+ * xa_erase()
+ * xa_erase_bh()
+ * xa_erase_irq()
+ * xa_cmpxchg()
+ * xa_cmpxchg_bh()
+ * xa_cmpxchg_irq()
+ * xa_store_range()
+ * xa_alloc()
+ * xa_alloc_bh()
+ * xa_alloc_irq()
+ * xa_reserve()
+ * xa_reserve_bh()
+ * xa_reserve_irq()
+ * xa_destroy()
+ * xa_set_mark()
+ * xa_clear_mark()
Assumes xa_lock held on entry:
- * :c:func:`__xa_store`
- * :c:func:`__xa_insert`
- * :c:func:`__xa_erase`
- * :c:func:`__xa_cmpxchg`
- * :c:func:`__xa_alloc`
- * :c:func:`__xa_set_mark`
- * :c:func:`__xa_clear_mark`
+ * __xa_store()
+ * __xa_insert()
+ * __xa_erase()
+ * __xa_cmpxchg()
+ * __xa_alloc()
+ * __xa_set_mark()
+ * __xa_clear_mark()
If you want to take advantage of the lock to protect the data structures
-that you are storing in the XArray, you can call :c:func:`xa_lock`
-before calling :c:func:`xa_load`, then take a reference count on the
-object you have found before calling :c:func:`xa_unlock`. This will
+that you are storing in the XArray, you can call xa_lock()
+before calling xa_load(), then take a reference count on the
+object you have found before calling xa_unlock(). This will
prevent stores from removing the object from the array between looking
up the object and incrementing the refcount. You can also use RCU to
avoid dereferencing freed memory, but an explanation of that is beyond
@@ -261,7 +261,7 @@ context and then erase them in softirq context, you can do that this way::
}
If you are going to modify the XArray from interrupt or softirq context,
-you need to initialise the array using :c:func:`xa_init_flags`, passing
+you need to initialise the array using xa_init_flags(), passing
``XA_FLAGS_LOCK_IRQ`` or ``XA_FLAGS_LOCK_BH``.
The above example also shows a common pattern of wanting to extend the
@@ -269,20 +269,20 @@ coverage of the xa_lock on the store side to protect some statistics
associated with the array.
Sharing the XArray with interrupt context is also possible, either
-using :c:func:`xa_lock_irqsave` in both the interrupt handler and process
-context, or :c:func:`xa_lock_irq` in process context and :c:func:`xa_lock`
+using xa_lock_irqsave() in both the interrupt handler and process
+context, or xa_lock_irq() in process context and xa_lock()
in the interrupt handler. Some of the more common patterns have helper
-functions such as :c:func:`xa_store_bh`, :c:func:`xa_store_irq`,
-:c:func:`xa_erase_bh`, :c:func:`xa_erase_irq`, :c:func:`xa_cmpxchg_bh`
-and :c:func:`xa_cmpxchg_irq`.
+functions such as xa_store_bh(), xa_store_irq(),
+xa_erase_bh(), xa_erase_irq(), xa_cmpxchg_bh()
+and xa_cmpxchg_irq().
Sometimes you need to protect access to the XArray with a mutex because
that lock sits above another mutex in the locking hierarchy. That does
-not entitle you to use functions like :c:func:`__xa_erase` without taking
+not entitle you to use functions like __xa_erase() without taking
the xa_lock; the xa_lock is used for lockdep validation and will be used
for other purposes in the future.
-The :c:func:`__xa_set_mark` and :c:func:`__xa_clear_mark` functions are also
+The __xa_set_mark() and __xa_clear_mark() functions are also
available for situations where you look up an entry and want to atomically
set or clear a mark. It may be more efficient to use the advanced API
in this case, as it will save you from walking the tree twice.
@@ -300,27 +300,27 @@ indeed the normal API is implemented in terms of the advanced API. The
advanced API is only available to modules with a GPL-compatible license.
The advanced API is based around the xa_state. This is an opaque data
-structure which you declare on the stack using the :c:func:`XA_STATE`
+structure which you declare on the stack using the XA_STATE()
macro. This macro initialises the xa_state ready to start walking
around the XArray. It is used as a cursor to maintain the position
in the XArray and let you compose various operations together without
having to restart from the top every time.
The xa_state is also used to store errors. You can call
-:c:func:`xas_error` to retrieve the error. All operations check whether
+xas_error() to retrieve the error. All operations check whether
the xa_state is in an error state before proceeding, so there's no need
for you to check for an error after each call; you can make multiple
calls in succession and only check at a convenient point. The only
errors currently generated by the XArray code itself are ``ENOMEM`` and
``EINVAL``, but it supports arbitrary errors in case you want to call
-:c:func:`xas_set_err` yourself.
+xas_set_err() yourself.
-If the xa_state is holding an ``ENOMEM`` error, calling :c:func:`xas_nomem`
+If the xa_state is holding an ``ENOMEM`` error, calling xas_nomem()
will attempt to allocate more memory using the specified gfp flags and
cache it in the xa_state for the next attempt. The idea is that you take
the xa_lock, attempt the operation and drop the lock. The operation
attempts to allocate memory while holding the lock, but it is more
-likely to fail. Once you have dropped the lock, :c:func:`xas_nomem`
+likely to fail. Once you have dropped the lock, xas_nomem()
can try harder to allocate more memory. It will return ``true`` if it
is worth retrying the operation (i.e. that there was a memory error *and*
more memory was allocated). If it has previously allocated memory, and
@@ -333,7 +333,7 @@ Internal Entries
The XArray reserves some entries for its own purposes. These are never
exposed through the normal API, but when using the advanced API, it's
possible to see them. Usually the best way to handle them is to pass them
-to :c:func:`xas_retry`, and retry the operation if it returns ``true``.
+to xas_retry(), and retry the operation if it returns ``true``.
.. flat-table::
:widths: 1 1 6
@@ -343,89 +343,89 @@ to :c:func:`xas_retry`, and retry the operation if it returns ``true``.
- Usage
* - Node
- - :c:func:`xa_is_node`
+ - xa_is_node()
- An XArray node. May be visible when using a multi-index xa_state.
* - Sibling
- - :c:func:`xa_is_sibling`
+ - xa_is_sibling()
- A non-canonical entry for a multi-index entry. The value indicates
which slot in this node has the canonical entry.
* - Retry
- - :c:func:`xa_is_retry`
+ - xa_is_retry()
- This entry is currently being modified by a thread which has the
xa_lock. The node containing this entry may be freed at the end
of this RCU period. You should restart the lookup from the head
of the array.
* - Zero
- - :c:func:`xa_is_zero`
+ - xa_is_zero()
- Zero entries appear as ``NULL`` through the Normal API, but occupy
an entry in the XArray which can be used to reserve the index for
future use. This is used by allocating XArrays for allocated entries
which are ``NULL``.
Other internal entries may be added in the future. As far as possible, they
-will be handled by :c:func:`xas_retry`.
+will be handled by xas_retry().
Additional functionality
------------------------
-The :c:func:`xas_create_range` function allocates all the necessary memory
+The xas_create_range() function allocates all the necessary memory
to store every entry in a range. It will set ENOMEM in the xa_state if
it cannot allocate memory.
-You can use :c:func:`xas_init_marks` to reset the marks on an entry
+You can use xas_init_marks() to reset the marks on an entry
to their default state. This is usually all marks clear, unless the
XArray is marked with ``XA_FLAGS_TRACK_FREE``, in which case mark 0 is set
and all other marks are clear. Replacing one entry with another using
-:c:func:`xas_store` will not reset the marks on that entry; if you want
+xas_store() will not reset the marks on that entry; if you want
the marks reset, you should do that explicitly.
-The :c:func:`xas_load` will walk the xa_state as close to the entry
+The xas_load() will walk the xa_state as close to the entry
as it can. If you know the xa_state has already been walked to the
entry and need to check that the entry hasn't changed, you can use
-:c:func:`xas_reload` to save a function call.
+xas_reload() to save a function call.
If you need to move to a different index in the XArray, call
-:c:func:`xas_set`. This resets the cursor to the top of the tree, which
+xas_set(). This resets the cursor to the top of the tree, which
will generally make the next operation walk the cursor to the desired
spot in the tree. If you want to move to the next or previous index,
-call :c:func:`xas_next` or :c:func:`xas_prev`. Setting the index does
+call xas_next() or xas_prev(). Setting the index does
not walk the cursor around the array so does not require a lock to be
held, while moving to the next or previous index does.
-You can search for the next present entry using :c:func:`xas_find`. This
-is the equivalent of both :c:func:`xa_find` and :c:func:`xa_find_after`;
+You can search for the next present entry using xas_find(). This
+is the equivalent of both xa_find() and xa_find_after();
if the cursor has been walked to an entry, then it will find the next
entry after the one currently referenced. If not, it will return the
-entry at the index of the xa_state. Using :c:func:`xas_next_entry` to
-move to the next present entry instead of :c:func:`xas_find` will save
+entry at the index of the xa_state. Using xas_next_entry() to
+move to the next present entry instead of xas_find() will save
a function call in the majority of cases at the expense of emitting more
inline code.
-The :c:func:`xas_find_marked` function is similar. If the xa_state has
+The xas_find_marked() function is similar. If the xa_state has
not been walked, it will return the entry at the index of the xa_state,
if it is marked. Otherwise, it will return the first marked entry after
-the entry referenced by the xa_state. The :c:func:`xas_next_marked`
-function is the equivalent of :c:func:`xas_next_entry`.
+the entry referenced by the xa_state. The xas_next_marked()
+function is the equivalent of xas_next_entry().
-When iterating over a range of the XArray using :c:func:`xas_for_each`
-or :c:func:`xas_for_each_marked`, it may be necessary to temporarily stop
-the iteration. The :c:func:`xas_pause` function exists for this purpose.
+When iterating over a range of the XArray using xas_for_each()
+or xas_for_each_marked(), it may be necessary to temporarily stop
+the iteration. The xas_pause() function exists for this purpose.
After you have done the necessary work and wish to resume, the xa_state
is in an appropriate state to continue the iteration after the entry
you last processed. If you have interrupts disabled while iterating,
then it is good manners to pause the iteration and reenable interrupts
every ``XA_CHECK_SCHED`` entries.
-The :c:func:`xas_get_mark`, :c:func:`xas_set_mark` and
-:c:func:`xas_clear_mark` functions require the xa_state cursor to have
+The xas_get_mark(), xas_set_mark() and
+xas_clear_mark() functions require the xa_state cursor to have
been moved to the appropriate location in the xarray; they will do
-nothing if you have called :c:func:`xas_pause` or :c:func:`xas_set`
+nothing if you have called xas_pause() or xas_set()
immediately before.
-You can call :c:func:`xas_set_update` to have a callback function
+You can call xas_set_update() to have a callback function
called each time the XArray updates a node. This is used by the page
cache workingset code to maintain its list of nodes which contain only
shadow entries.
@@ -443,25 +443,25 @@ eg indices 64-127 may be tied together, but 2-6 may not be. This may
save substantial quantities of memory; for example tying 512 entries
together will save over 4kB.
-You can create a multi-index entry by using :c:func:`XA_STATE_ORDER`
-or :c:func:`xas_set_order` followed by a call to :c:func:`xas_store`.
-Calling :c:func:`xas_load` with a multi-index xa_state will walk the
+You can create a multi-index entry by using XA_STATE_ORDER()
+or xas_set_order() followed by a call to xas_store().
+Calling xas_load() with a multi-index xa_state will walk the
xa_state to the right location in the tree, but the return value is not
meaningful, potentially being an internal entry or ``NULL`` even when there
-is an entry stored within the range. Calling :c:func:`xas_find_conflict`
+is an entry stored within the range. Calling xas_find_conflict()
will return the first entry within the range or ``NULL`` if there are no
-entries in the range. The :c:func:`xas_for_each_conflict` iterator will
+entries in the range. The xas_for_each_conflict() iterator will
iterate over every entry which overlaps the specified range.
-If :c:func:`xas_load` encounters a multi-index entry, the xa_index
+If xas_load() encounters a multi-index entry, the xa_index
in the xa_state will not be changed. When iterating over an XArray
-or calling :c:func:`xas_find`, if the initial index is in the middle
+or calling xas_find(), if the initial index is in the middle
of a multi-index entry, it will not be altered. Subsequent calls
or iterations will move the index to the first index in the range.
Each entry will only be returned once, no matter how many indices it
occupies.
-Using :c:func:`xas_next` or :c:func:`xas_prev` with a multi-index xa_state
+Using xas_next() or xas_prev() with a multi-index xa_state
is not supported. Using either of these functions on a multi-index entry
will reveal sibling entries; these should be skipped over by the caller.
diff --git a/Documentation/cpu-freq/core.txt b/Documentation/cpu-freq/core.txt
index 073f128af5a7..ed577d9c154b 100644
--- a/Documentation/cpu-freq/core.txt
+++ b/Documentation/cpu-freq/core.txt
@@ -57,19 +57,11 @@ transition notifiers.
2.1 CPUFreq policy notifiers
----------------------------
-These are notified when a new policy is intended to be set. Each
-CPUFreq policy notifier is called twice for a policy transition:
+These are notified when a new policy is created or removed.
-1.) During CPUFREQ_ADJUST all CPUFreq notifiers may change the limit if
- they see a need for this - may it be thermal considerations or
- hardware limitations.
-
-2.) And during CPUFREQ_NOTIFY all notifiers are informed of the new policy
- - if two hardware drivers failed to agree on a new policy before this
- stage, the incompatible hardware shall be shut down, and the user
- informed of this.
-
-The phase is specified in the second argument to the notifier.
+The phase is specified in the second argument to the notifier. The phase is
+CPUFREQ_CREATE_POLICY when the policy is first created and it is
+CPUFREQ_REMOVE_POLICY when the policy is removed.
The third argument, a void *pointer, points to a struct cpufreq_policy
consisting of several values, including min, max (the lower and upper
@@ -95,7 +87,7 @@ flags - flags of the cpufreq driver
3. CPUFreq Table Generation with Operating Performance Point (OPP)
==================================================================
-For details about OPP, see Documentation/power/opp.txt
+For details about OPP, see Documentation/power/opp.rst
dev_pm_opp_init_cpufreq_table -
This function provides a ready to use conversion routine to translate
diff --git a/Documentation/crypto/api-samples.rst b/Documentation/crypto/api-samples.rst
index f14afaaf2f32..e923f17bc2bd 100644
--- a/Documentation/crypto/api-samples.rst
+++ b/Documentation/crypto/api-samples.rst
@@ -4,111 +4,89 @@ Code Examples
Code Example For Symmetric Key Cipher Operation
-----------------------------------------------
-::
-
-
- /* tie all data structures together */
- struct skcipher_def {
- struct scatterlist sg;
- struct crypto_skcipher *tfm;
- struct skcipher_request *req;
- struct crypto_wait wait;
- };
-
- /* Perform cipher operation */
- static unsigned int test_skcipher_encdec(struct skcipher_def *sk,
- int enc)
- {
- int rc;
-
- if (enc)
- rc = crypto_wait_req(crypto_skcipher_encrypt(sk->req), &sk->wait);
- else
- rc = crypto_wait_req(crypto_skcipher_decrypt(sk->req), &sk->wait);
-
- if (rc)
- pr_info("skcipher encrypt returned with result %d\n", rc);
+This code encrypts some data with AES-256-XTS. For sake of example,
+all inputs are random bytes, the encryption is done in-place, and it's
+assumed the code is running in a context where it can sleep.
- return rc;
- }
+::
- /* Initialize and trigger cipher operation */
static int test_skcipher(void)
{
- struct skcipher_def sk;
- struct crypto_skcipher *skcipher = NULL;
- struct skcipher_request *req = NULL;
- char *scratchpad = NULL;
- char *ivdata = NULL;
- unsigned char key[32];
- int ret = -EFAULT;
-
- skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0);
- if (IS_ERR(skcipher)) {
- pr_info("could not allocate skcipher handle\n");
- return PTR_ERR(skcipher);
- }
-
- req = skcipher_request_alloc(skcipher, GFP_KERNEL);
- if (!req) {
- pr_info("could not allocate skcipher request\n");
- ret = -ENOMEM;
- goto out;
- }
-
- skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done,
- &sk.wait);
-
- /* AES 256 with random key */
- get_random_bytes(&key, 32);
- if (crypto_skcipher_setkey(skcipher, key, 32)) {
- pr_info("key could not be set\n");
- ret = -EAGAIN;
- goto out;
- }
-
- /* IV will be random */
- ivdata = kmalloc(16, GFP_KERNEL);
- if (!ivdata) {
- pr_info("could not allocate ivdata\n");
- goto out;
- }
- get_random_bytes(ivdata, 16);
-
- /* Input data will be random */
- scratchpad = kmalloc(16, GFP_KERNEL);
- if (!scratchpad) {
- pr_info("could not allocate scratchpad\n");
- goto out;
- }
- get_random_bytes(scratchpad, 16);
-
- sk.tfm = skcipher;
- sk.req = req;
-
- /* We encrypt one block */
- sg_init_one(&sk.sg, scratchpad, 16);
- skcipher_request_set_crypt(req, &sk.sg, &sk.sg, 16, ivdata);
- crypto_init_wait(&sk.wait);
-
- /* encrypt data */
- ret = test_skcipher_encdec(&sk, 1);
- if (ret)
- goto out;
-
- pr_info("Encryption triggered successfully\n");
-
+ struct crypto_skcipher *tfm = NULL;
+ struct skcipher_request *req = NULL;
+ u8 *data = NULL;
+ const size_t datasize = 512; /* data size in bytes */
+ struct scatterlist sg;
+ DECLARE_CRYPTO_WAIT(wait);
+ u8 iv[16]; /* AES-256-XTS takes a 16-byte IV */
+ u8 key[64]; /* AES-256-XTS takes a 64-byte key */
+ int err;
+
+ /*
+ * Allocate a tfm (a transformation object) and set the key.
+ *
+ * In real-world use, a tfm and key are typically used for many
+ * encryption/decryption operations. But in this example, we'll just do a
+ * single encryption operation with it (which is not very efficient).
+ */
+
+ tfm = crypto_alloc_skcipher("xts(aes)", 0, 0);
+ if (IS_ERR(tfm)) {
+ pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm));
+ return PTR_ERR(tfm);
+ }
+
+ get_random_bytes(key, sizeof(key));
+ err = crypto_skcipher_setkey(tfm, key, sizeof(key));
+ if (err) {
+ pr_err("Error setting key: %d\n", err);
+ goto out;
+ }
+
+ /* Allocate a request object */
+ req = skcipher_request_alloc(tfm, GFP_KERNEL);
+ if (!req) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* Prepare the input data */
+ data = kmalloc(datasize, GFP_KERNEL);
+ if (!data) {
+ err = -ENOMEM;
+ goto out;
+ }
+ get_random_bytes(data, datasize);
+
+ /* Initialize the IV */
+ get_random_bytes(iv, sizeof(iv));
+
+ /*
+ * Encrypt the data in-place.
+ *
+ * For simplicity, in this example we wait for the request to complete
+ * before proceeding, even if the underlying implementation is asynchronous.
+ *
+ * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to
+ * crypto_skcipher_decrypt().
+ */
+ sg_init_one(&sg, data, datasize);
+ skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
+ CRYPTO_TFM_REQ_MAY_SLEEP,
+ crypto_req_done, &wait);
+ skcipher_request_set_crypt(req, &sg, &sg, datasize, iv);
+ err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ if (err) {
+ pr_err("Error encrypting data: %d\n", err);
+ goto out;
+ }
+
+ pr_debug("Encryption was successful\n");
out:
- if (skcipher)
- crypto_free_skcipher(skcipher);
- if (req)
+ crypto_free_skcipher(tfm);
skcipher_request_free(req);
- if (ivdata)
- kfree(ivdata);
- if (scratchpad)
- kfree(scratchpad);
- return ret;
+ kfree(data);
+ return err;
}
diff --git a/Documentation/crypto/api-skcipher.rst b/Documentation/crypto/api-skcipher.rst
index 4eec4a93f7e3..20ba08dddf2e 100644
--- a/Documentation/crypto/api-skcipher.rst
+++ b/Documentation/crypto/api-skcipher.rst
@@ -5,7 +5,7 @@ Block Cipher Algorithm Definitions
:doc: Block Cipher Algorithm Definitions
.. kernel-doc:: include/linux/crypto.h
- :functions: crypto_alg ablkcipher_alg blkcipher_alg cipher_alg
+ :functions: crypto_alg ablkcipher_alg blkcipher_alg cipher_alg compress_alg
Symmetric Key Cipher API
------------------------
diff --git a/Documentation/crypto/architecture.rst b/Documentation/crypto/architecture.rst
index ee8ff0762d7f..3eae1ae7f798 100644
--- a/Documentation/crypto/architecture.rst
+++ b/Documentation/crypto/architecture.rst
@@ -208,9 +208,7 @@ the aforementioned cipher types:
- CRYPTO_ALG_TYPE_KPP Key-agreement Protocol Primitive (KPP) such as
an ECDH or DH implementation
-- CRYPTO_ALG_TYPE_DIGEST Raw message digest
-
-- CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST
+- CRYPTO_ALG_TYPE_HASH Raw message digest
- CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash
diff --git a/Documentation/crypto/conf.py b/Documentation/crypto/conf.py
deleted file mode 100644
index 4335d251ddf3..000000000000
--- a/Documentation/crypto/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = 'Linux Kernel Crypto API'
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'crypto-api.tex', 'Linux Kernel Crypto API manual',
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/crypto/crypto_engine.rst b/Documentation/crypto/crypto_engine.rst
index 1d56221dfe35..3baa23c2cd08 100644
--- a/Documentation/crypto/crypto_engine.rst
+++ b/Documentation/crypto/crypto_engine.rst
@@ -1,50 +1,86 @@
-=============
-CRYPTO ENGINE
+.. SPDX-License-Identifier: GPL-2.0
+
+Crypto Engine
=============
Overview
--------
-The crypto engine API (CE), is a crypto queue manager.
+The crypto engine (CE) API is a crypto queue manager.
Requirement
-----------
-You have to put at start of your tfm_ctx the struct crypto_engine_ctx::
+You must put, at the start of your transform context your_tfm_ctx, the structure
+crypto_engine:
+
+::
- struct your_tfm_ctx {
- struct crypto_engine_ctx enginectx;
- ...
- };
+ struct your_tfm_ctx {
+ struct crypto_engine engine;
+ ...
+ };
-Why: Since CE manage only crypto_async_request, it cannot know the underlying
-request_type and so have access only on the TFM.
-So using container_of for accessing __ctx is impossible.
-Furthermore, the crypto engine cannot know the "struct your_tfm_ctx",
-so it must assume that crypto_engine_ctx is at start of it.
+The crypto engine only manages asynchronous requests in the form of
+crypto_async_request. It cannot know the underlying request type and thus only
+has access to the transform structure. It is not possible to access the context
+using container_of. In addition, the engine knows nothing about your
+structure "``struct your_tfm_ctx``". The engine assumes (requires) the placement
+of the known member ``struct crypto_engine`` at the beginning.
Order of operations
-------------------
-You have to obtain a struct crypto_engine via crypto_engine_alloc_init().
-And start it via crypto_engine_start().
-
-Before transferring any request, you have to fill the enginectx.
-- prepare_request: (taking a function pointer) If you need to do some processing before doing the request
-- unprepare_request: (taking a function pointer) Undoing what's done in prepare_request
-- do_one_request: (taking a function pointer) Do encryption for current request
-
-Note: that those three functions get the crypto_async_request associated with the received request.
-So your need to get the original request via container_of(areq, struct yourrequesttype_request, base);
-
-When your driver receive a crypto_request, you have to transfer it to
-the cryptoengine via one of:
-- crypto_transfer_ablkcipher_request_to_engine()
-- crypto_transfer_aead_request_to_engine()
-- crypto_transfer_akcipher_request_to_engine()
-- crypto_transfer_hash_request_to_engine()
-- crypto_transfer_skcipher_request_to_engine()
-
-At the end of the request process, a call to one of the following function is needed:
-- crypto_finalize_ablkcipher_request
-- crypto_finalize_aead_request
-- crypto_finalize_akcipher_request
-- crypto_finalize_hash_request
-- crypto_finalize_skcipher_request
+You are required to obtain a struct crypto_engine via ``crypto_engine_alloc_init()``.
+Start it via ``crypto_engine_start()``. When finished with your work, shut down the
+engine using ``crypto_engine_stop()`` and destroy the engine with
+``crypto_engine_exit()``.
+
+Before transferring any request, you have to fill the context enginectx by
+providing functions for the following:
+
+* ``prepare_crypt_hardware``: Called once before any prepare functions are
+ called.
+
+* ``unprepare_crypt_hardware``: Called once after all unprepare functions have
+ been called.
+
+* ``prepare_cipher_request``/``prepare_hash_request``: Called before each
+ corresponding request is performed. If some processing or other preparatory
+ work is required, do it here.
+
+* ``unprepare_cipher_request``/``unprepare_hash_request``: Called after each
+ request is handled. Clean up / undo what was done in the prepare function.
+
+* ``cipher_one_request``/``hash_one_request``: Handle the current request by
+ performing the operation.
+
+Note that these functions access the crypto_async_request structure
+associated with the received request. You are able to retrieve the original
+request by using:
+
+::
+
+ container_of(areq, struct yourrequesttype_request, base);
+
+When your driver receives a crypto_request, you must to transfer it to
+the crypto engine via one of:
+
+* crypto_transfer_ablkcipher_request_to_engine()
+
+* crypto_transfer_aead_request_to_engine()
+
+* crypto_transfer_akcipher_request_to_engine()
+
+* crypto_transfer_hash_request_to_engine()
+
+* crypto_transfer_skcipher_request_to_engine()
+
+At the end of the request process, a call to one of the following functions is needed:
+
+* crypto_finalize_ablkcipher_request()
+
+* crypto_finalize_aead_request()
+
+* crypto_finalize_akcipher_request()
+
+* crypto_finalize_hash_request()
+
+* crypto_finalize_skcipher_request()
diff --git a/Documentation/dev-tools/conf.py b/Documentation/dev-tools/conf.py
deleted file mode 100644
index 7faafa3f7888..000000000000
--- a/Documentation/dev-tools/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Development tools for the kernel"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'dev-tools.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst
index e6f51260ff32..3621cd5e1eef 100644
--- a/Documentation/dev-tools/kmemleak.rst
+++ b/Documentation/dev-tools/kmemleak.rst
@@ -2,8 +2,8 @@ Kernel Memory Leak Detector
===========================
Kmemleak provides a way of detecting possible kernel memory leaks in a
-way similar to a tracing garbage collector
-(https://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors),
+way similar to a `tracing garbage collector
+<https://en.wikipedia.org/wiki/Tracing_garbage_collection>`_,
with the difference that the orphan objects are not freed but only
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in
@@ -15,10 +15,13 @@ Usage
CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel
thread scans the memory every 10 minutes (by default) and prints the
-number of new unreferenced objects found. To display the details of all
-the possible memory leaks::
+number of new unreferenced objects found. If the ``debugfs`` isn't already
+mounted, mount with::
# mount -t debugfs nodev /sys/kernel/debug/
+
+To display the details of all the possible scanned memory leaks::
+
# cat /sys/kernel/debug/kmemleak
To trigger an intermediate memory scan::
@@ -72,6 +75,9 @@ If CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF are enabled, the kmemleak is
disabled by default. Passing ``kmemleak=on`` on the kernel command
line enables the function.
+If you are getting errors like "Error while writing to stdout" or "write_loop:
+Invalid argument", make sure kmemleak is properly enabled.
+
Basic Algorithm
---------------
@@ -218,3 +224,37 @@ the pointer is calculated by other methods than the usual container_of
macro or the pointer is stored in a location not scanned by kmemleak.
Page allocations and ioremap are not tracked.
+
+Testing with kmemleak-test
+--------------------------
+
+To check if you have all set up to use kmemleak, you can use the kmemleak-test
+module, a module that deliberately leaks memory. Set CONFIG_DEBUG_KMEMLEAK_TEST
+as module (it can't be used as bult-in) and boot the kernel with kmemleak
+enabled. Load the module and perform a scan with::
+
+ # modprobe kmemleak-test
+ # echo scan > /sys/kernel/debug/kmemleak
+
+Note that the you may not get results instantly or on the first scanning. When
+kmemleak gets results, it'll log ``kmemleak: <count of leaks> new suspected
+memory leaks``. Then read the file to see then::
+
+ # cat /sys/kernel/debug/kmemleak
+ unreferenced object 0xffff89862ca702e8 (size 32):
+ comm "modprobe", pid 2088, jiffies 4294680594 (age 375.486s)
+ hex dump (first 32 bytes):
+ 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
+ 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk.
+ backtrace:
+ [<00000000e0a73ec7>] 0xffffffffc01d2036
+ [<000000000c5d2a46>] do_one_initcall+0x41/0x1df
+ [<0000000046db7e0a>] do_init_module+0x55/0x200
+ [<00000000542b9814>] load_module+0x203c/0x2480
+ [<00000000c2850256>] __do_sys_finit_module+0xba/0xe0
+ [<000000006564e7ef>] do_syscall_64+0x43/0x110
+ [<000000007c873fa6>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
+ ...
+
+Removing the module with ``rmmod kmemleak_test`` should also trigger some
+kmemleak results.
diff --git a/Documentation/dev-tools/sparse.rst b/Documentation/dev-tools/sparse.rst
index c401c952a340..6f4870528226 100644
--- a/Documentation/dev-tools/sparse.rst
+++ b/Documentation/dev-tools/sparse.rst
@@ -81,11 +81,6 @@ of sparse using git to clone::
git://git.kernel.org/pub/scm/devel/sparse/sparse.git
-DaveJ has hourly generated tarballs of the git tree available at::
-
- http://www.codemonkey.org.uk/projects/git-snapshots/sparse/
-
-
Once you have it, just do::
make
diff --git a/Documentation/device-mapper/dm-uevent.txt b/Documentation/device-mapper/dm-uevent.txt
deleted file mode 100644
index 07edbd85c714..000000000000
--- a/Documentation/device-mapper/dm-uevent.txt
+++ /dev/null
@@ -1,97 +0,0 @@
-The device-mapper uevent code adds the capability to device-mapper to create
-and send kobject uevents (uevents). Previously device-mapper events were only
-available through the ioctl interface. The advantage of the uevents interface
-is the event contains environment attributes providing increased context for
-the event avoiding the need to query the state of the device-mapper device after
-the event is received.
-
-There are two functions currently for device-mapper events. The first function
-listed creates the event and the second function sends the event(s).
-
-void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
- const char *path, unsigned nr_valid_paths)
-
-void dm_send_uevents(struct list_head *events, struct kobject *kobj)
-
-
-The variables added to the uevent environment are:
-
-Variable Name: DM_TARGET
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description:
-Value: Name of device-mapper target that generated the event.
-
-Variable Name: DM_ACTION
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description:
-Value: Device-mapper specific action that caused the uevent action.
- PATH_FAILED - A path has failed.
- PATH_REINSTATED - A path has been reinstated.
-
-Variable Name: DM_SEQNUM
-Uevent Action(s): KOBJ_CHANGE
-Type: unsigned integer
-Description: A sequence number for this specific device-mapper device.
-Value: Valid unsigned integer range.
-
-Variable Name: DM_PATH
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description: Major and minor number of the path device pertaining to this
-event.
-Value: Path name in the form of "Major:Minor"
-
-Variable Name: DM_NR_VALID_PATHS
-Uevent Action(s): KOBJ_CHANGE
-Type: unsigned integer
-Description:
-Value: Valid unsigned integer range.
-
-Variable Name: DM_NAME
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description: Name of the device-mapper device.
-Value: Name
-
-Variable Name: DM_UUID
-Uevent Action(s): KOBJ_CHANGE
-Type: string
-Description: UUID of the device-mapper device.
-Value: UUID. (Empty string if there isn't one.)
-
-An example of the uevents generated as captured by udevmonitor is shown
-below.
-
-1.) Path failure.
-UEVENT[1192521009.711215] change@/block/dm-3
-ACTION=change
-DEVPATH=/block/dm-3
-SUBSYSTEM=block
-DM_TARGET=multipath
-DM_ACTION=PATH_FAILED
-DM_SEQNUM=1
-DM_PATH=8:32
-DM_NR_VALID_PATHS=0
-DM_NAME=mpath2
-DM_UUID=mpath-35333333000002328
-MINOR=3
-MAJOR=253
-SEQNUM=1130
-
-2.) Path reinstate.
-UEVENT[1192521132.989927] change@/block/dm-3
-ACTION=change
-DEVPATH=/block/dm-3
-SUBSYSTEM=block
-DM_TARGET=multipath
-DM_ACTION=PATH_REINSTATED
-DM_SEQNUM=2
-DM_PATH=8:32
-DM_NR_VALID_PATHS=1
-DM_NAME=mpath2
-DM_UUID=mpath-35333333000002328
-MINOR=3
-MAJOR=253
-SEQNUM=1131
diff --git a/Documentation/device-mapper/linear.txt b/Documentation/device-mapper/linear.txt
deleted file mode 100644
index 7cb98d89d3f8..000000000000
--- a/Documentation/device-mapper/linear.txt
+++ /dev/null
@@ -1,61 +0,0 @@
-dm-linear
-=========
-
-Device-Mapper's "linear" target maps a linear range of the Device-Mapper
-device onto a linear range of another device. This is the basic building
-block of logical volume managers.
-
-Parameters: <dev path> <offset>
- <dev path>: Full pathname to the underlying block-device, or a
- "major:minor" device-number.
- <offset>: Starting sector within the device.
-
-
-Example scripts
-===============
-[[
-#!/bin/sh
-# Create an identity mapping for a device
-echo "0 `blockdev --getsz $1` linear $1 0" | dmsetup create identity
-]]
-
-
-[[
-#!/bin/sh
-# Join 2 devices together
-size1=`blockdev --getsz $1`
-size2=`blockdev --getsz $2`
-echo "0 $size1 linear $1 0
-$size1 $size2 linear $2 0" | dmsetup create joined
-]]
-
-
-[[
-#!/usr/bin/perl -w
-# Split a device into 4M chunks and then join them together in reverse order.
-
-my $name = "reverse";
-my $extent_size = 4 * 1024 * 2;
-my $dev = $ARGV[0];
-my $table = "";
-my $count = 0;
-
-if (!defined($dev)) {
- die("Please specify a device.\n");
-}
-
-my $dev_size = `blockdev --getsz $dev`;
-my $extents = int($dev_size / $extent_size) -
- (($dev_size % $extent_size) ? 1 : 0);
-
-while ($extents > 0) {
- my $this_start = $count * $extent_size;
- $extents--;
- $count++;
- my $this_offset = $extents * $extent_size;
-
- $table .= "$this_start $extent_size linear $dev $this_offset\n";
-}
-
-`echo \"$table\" | dmsetup create $name`;
-]]
diff --git a/Documentation/device-mapper/striped.txt b/Documentation/device-mapper/striped.txt
deleted file mode 100644
index 07ec492cceee..000000000000
--- a/Documentation/device-mapper/striped.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-dm-stripe
-=========
-
-Device-Mapper's "striped" target is used to create a striped (i.e. RAID-0)
-device across one or more underlying devices. Data is written in "chunks",
-with consecutive chunks rotating among the underlying devices. This can
-potentially provide improved I/O throughput by utilizing several physical
-devices in parallel.
-
-Parameters: <num devs> <chunk size> [<dev path> <offset>]+
- <num devs>: Number of underlying devices.
- <chunk size>: Size of each chunk of data. Must be at least as
- large as the system's PAGE_SIZE.
- <dev path>: Full pathname to the underlying block-device, or a
- "major:minor" device-number.
- <offset>: Starting sector within the device.
-
-One or more underlying devices can be specified. The striped device size must
-be a multiple of the chunk size multiplied by the number of underlying devices.
-
-
-Example scripts
-===============
-
-[[
-#!/usr/bin/perl -w
-# Create a striped device across any number of underlying devices. The device
-# will be called "stripe_dev" and have a chunk-size of 128k.
-
-my $chunk_size = 128 * 2;
-my $dev_name = "stripe_dev";
-my $num_devs = @ARGV;
-my @devs = @ARGV;
-my ($min_dev_size, $stripe_dev_size, $i);
-
-if (!$num_devs) {
- die("Specify at least one device\n");
-}
-
-$min_dev_size = `blockdev --getsz $devs[0]`;
-for ($i = 1; $i < $num_devs; $i++) {
- my $this_size = `blockdev --getsz $devs[$i]`;
- $min_dev_size = ($min_dev_size < $this_size) ?
- $min_dev_size : $this_size;
-}
-
-$stripe_dev_size = $min_dev_size * $num_devs;
-$stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
-
-$table = "0 $stripe_dev_size striped $num_devs $chunk_size";
-for ($i = 0; $i < $num_devs; $i++) {
- $table .= " $devs[$i] 0";
-}
-
-`echo $table | dmsetup create $dev_name`;
-]]
-
diff --git a/Documentation/devicetree/bindings/Makefile b/Documentation/devicetree/bindings/Makefile
index 8a2774b5834b..5138a2f6232a 100644
--- a/Documentation/devicetree/bindings/Makefile
+++ b/Documentation/devicetree/bindings/Makefile
@@ -19,13 +19,15 @@ quiet_cmd_mk_schema = SCHEMA $@
DT_DOCS = $(shell \
cd $(srctree)/$(src) && \
- find * \( -name '*.yaml' ! -name $(DT_TMP_SCHEMA) \) \
+ find * \( -name '*.yaml' ! \
+ -name $(DT_TMP_SCHEMA) ! \
+ -name '*.example.dt.yaml' \) \
)
DT_SCHEMA_FILES ?= $(addprefix $(src)/,$(DT_DOCS))
extra-y += $(patsubst $(src)/%.yaml,%.example.dts, $(DT_SCHEMA_FILES))
-extra-y += $(patsubst $(src)/%.yaml,%.example.dtb, $(DT_SCHEMA_FILES))
+extra-y += $(patsubst $(src)/%.yaml,%.example.dt.yaml, $(DT_SCHEMA_FILES))
$(obj)/$(DT_TMP_SCHEMA): $(DT_SCHEMA_FILES) FORCE
$(call if_changed,mk_schema)
diff --git a/Documentation/devicetree/bindings/arm/actions.txt b/Documentation/devicetree/bindings/arm/actions.txt
deleted file mode 100644
index d54f33c4e0da..000000000000
--- a/Documentation/devicetree/bindings/arm/actions.txt
+++ /dev/null
@@ -1,56 +0,0 @@
-Actions Semi platforms device tree bindings
--------------------------------------------
-
-
-S500 SoC
-========
-
-Required root node properties:
-
- - compatible : must contain "actions,s500"
-
-
-Modules:
-
-Root node property compatible must contain, depending on module:
-
- - LeMaker Guitar: "lemaker,guitar"
-
-
-Boards:
-
-Root node property compatible must contain, depending on board:
-
- - Allo.com Sparky: "allo,sparky"
- - Cubietech CubieBoard6: "cubietech,cubieboard6"
- - LeMaker Guitar Base Board rev. B: "lemaker,guitar-bb-rev-b", "lemaker,guitar"
-
-
-S700 SoC
-========
-
-Required root node properties:
-
-- compatible : must contain "actions,s700"
-
-
-Boards:
-
-Root node property compatible must contain, depending on board:
-
- - Cubietech CubieBoard7: "cubietech,cubieboard7"
-
-
-S900 SoC
-========
-
-Required root node properties:
-
-- compatible : must contain "actions,s900"
-
-
-Boards:
-
-Root node property compatible must contain, depending on board:
-
- - uCRobotics Bubblegum-96: "ucrobotics,bubblegum-96"
diff --git a/Documentation/devicetree/bindings/arm/actions.yaml b/Documentation/devicetree/bindings/arm/actions.yaml
new file mode 100644
index 000000000000..ace3fdaa8396
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/actions.yaml
@@ -0,0 +1,38 @@
+# SPDX-License-Identifier: GPL-2.0-or-later OR BSD-2-Clause
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/actions.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Actions Semi platforms device tree bindings
+
+maintainers:
+ - Andreas Färber <afaerber@suse.de>
+ - Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
+
+properties:
+ compatible:
+ oneOf:
+ # The Actions Semi S500 is a quad-core ARM Cortex-A9 SoC.
+ - items:
+ - enum:
+ - allo,sparky # Allo.com Sparky
+ - cubietech,cubieboard6 # Cubietech CubieBoard6
+ - const: actions,s500
+ - items:
+ - enum:
+ - lemaker,guitar-bb-rev-b # LeMaker Guitar Base Board rev. B
+ - const: lemaker,guitar
+ - const: actions,s500
+
+ # The Actions Semi S700 is a quad-core ARM Cortex-A53 SoC.
+ - items:
+ - enum:
+ - cubietech,cubieboard7 # Cubietech CubieBoard7
+ - const: actions,s700
+
+ # The Actions Semi S900 is a quad-core ARM Cortex-A53 SoC.
+ - items:
+ - enum:
+ - ucrobotics,bubblegum-96 # uCRobotics Bubblegum-96
+ - const: actions,s900
diff --git a/Documentation/devicetree/bindings/arm/al,alpine.txt b/Documentation/devicetree/bindings/arm/al,alpine.txt
deleted file mode 100644
index d00debe2e86f..000000000000
--- a/Documentation/devicetree/bindings/arm/al,alpine.txt
+++ /dev/null
@@ -1,16 +0,0 @@
-Annapurna Labs Alpine Platform Device Tree Bindings
----------------------------------------------------------------
-
-Boards in the Alpine family shall have the following properties:
-
-* Required root node properties:
-compatible: must contain "al,alpine"
-
-* Example:
-
-/ {
- model = "Annapurna Labs Alpine Dev Board";
- compatible = "al,alpine";
-
- ...
-}
diff --git a/Documentation/devicetree/bindings/arm/al,alpine.yaml b/Documentation/devicetree/bindings/arm/al,alpine.yaml
new file mode 100644
index 000000000000..a70dff277e05
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/al,alpine.yaml
@@ -0,0 +1,21 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/al,alpine.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Annapurna Labs Alpine Platform Device Tree Bindings
+
+maintainers:
+ - Tsahee Zidenberg <tsahee@annapurnalabs.com>
+ - Antoine Tenart <antoine.tenart@bootlin.com>
+
+properties:
+ compatible:
+ items:
+ - const: al,alpine
+ model:
+ items:
+ - const: "Annapurna Labs Alpine Dev Board"
+
+...
diff --git a/Documentation/devicetree/bindings/arm/amlogic.txt b/Documentation/devicetree/bindings/arm/amlogic.txt
deleted file mode 100644
index 061f7b98a07f..000000000000
--- a/Documentation/devicetree/bindings/arm/amlogic.txt
+++ /dev/null
@@ -1,142 +0,0 @@
-Amlogic MesonX device tree bindings
--------------------------------------------
-
-Work in progress statement:
-
-Device tree files and bindings applying to Amlogic SoCs and boards are
-considered "unstable". Any Amlogic device tree binding may change at
-any time. Be sure to use a device tree binary and a kernel image
-generated from the same source tree.
-
-Please refer to Documentation/devicetree/bindings/ABI.txt for a definition of a
-stable binding/ABI.
-
----------------------------------------------------------------
-
-Boards with the Amlogic Meson6 SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,meson6"
-
-Boards with the Amlogic Meson8 SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,meson8";
-
-Boards with the Amlogic Meson8b SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,meson8b";
-
-Boards with the Amlogic Meson8m2 SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,meson8m2";
-
-Boards with the Amlogic Meson GXBaby SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,meson-gxbb";
-
-Boards with the Amlogic Meson GXL S905X SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,s905x", "amlogic,meson-gxl";
-
-Boards with the Amlogic Meson GXL S905D SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,s905d", "amlogic,meson-gxl";
-
-Boards with the Amlogic Meson GXL S805X SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,s805x", "amlogic,meson-gxl";
-
-Boards with the Amlogic Meson GXL S905W SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,s905w", "amlogic,meson-gxl";
-
-Boards with the Amlogic Meson GXM S912 SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,s912", "amlogic,meson-gxm";
-
-Boards with the Amlogic Meson AXG A113D SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,a113d", "amlogic,meson-axg";
-
-Boards with the Amlogic Meson G12A S905D2 SoC shall have the following properties:
- Required root node property:
- compatible: "amlogic,g12a";
-
-Board compatible values (alphabetically, grouped by SoC):
-
- - "geniatech,atv1200" (Meson6)
-
- - "minix,neo-x8" (Meson8)
-
- - "endless,ec100" (Meson8b)
- - "hardkernel,odroid-c1" (Meson8b)
- - "tronfy,mxq" (Meson8b)
-
- - "tronsmart,mxiii-plus" (Meson8m2)
-
- - "amlogic,p200" (Meson gxbb)
- - "amlogic,p201" (Meson gxbb)
- - "friendlyarm,nanopi-k2" (Meson gxbb)
- - "hardkernel,odroid-c2" (Meson gxbb)
- - "nexbox,a95x" (Meson gxbb or Meson gxl s905x)
- - "tronsmart,vega-s95-pro", "tronsmart,vega-s95" (Meson gxbb)
- - "tronsmart,vega-s95-meta", "tronsmart,vega-s95" (Meson gxbb)
- - "tronsmart,vega-s95-telos", "tronsmart,vega-s95" (Meson gxbb)
- - "wetek,hub" (Meson gxbb)
- - "wetek,play2" (Meson gxbb)
-
- - "amlogic,p212" (Meson gxl s905x)
- - "hwacom,amazetv" (Meson gxl s905x)
- - "khadas,vim" (Meson gxl s905x)
- - "libretech,cc" (Meson gxl s905x)
-
- - "amlogic,p230" (Meson gxl s905d)
- - "amlogic,p231" (Meson gxl s905d)
- - "phicomm,n1" (Meson gxl s905d)
-
- - "amlogic,p241" (Meson gxl s805x)
- - "libretech,aml-s805x-ac" (Meson gxl s805x)
-
- - "amlogic,p281" (Meson gxl s905w)
- - "oranth,tx3-mini" (Meson gxl s905w)
-
- - "amlogic,q200" (Meson gxm s912)
- - "amlogic,q201" (Meson gxm s912)
- - "khadas,vim2" (Meson gxm s912)
- - "kingnovel,r-box-pro" (Meson gxm S912)
- - "nexbox,a1" (Meson gxm s912)
- - "tronsmart,vega-s96" (Meson gxm s912)
-
- - "amlogic,s400" (Meson axg a113d)
-
- - "amlogic,u200" (Meson g12a s905d2)
- - "amediatech,x96-max" (Meson g12a s905x2)
- - "seirobotics,sei510" (Meson g12a s905x2)
-
-Amlogic Meson Firmware registers Interface
-------------------------------------------
-
-The Meson SoCs have a register bank with status and data shared with the
-secure firmware.
-
-Required properties:
- - compatible: For Meson GX SoCs, must be "amlogic,meson-gx-ao-secure", "syscon"
-
-Properties should indentify components of this register interface :
-
-Meson GX SoC Information
-------------------------
-A firmware register encodes the SoC type, package and revision information on
-the Meson GX SoCs.
-If present, the following property should be added :
-
-Optional properties:
- - amlogic,has-chip-id: If present, the interface gives the current SoC version.
-
-Example
--------
-
-ao-secure@140 {
- compatible = "amlogic,meson-gx-ao-secure", "syscon";
- reg = <0x0 0x140 0x0 0x140>;
- amlogic,has-chip-id;
-};
diff --git a/Documentation/devicetree/bindings/arm/amlogic.yaml b/Documentation/devicetree/bindings/arm/amlogic.yaml
new file mode 100644
index 000000000000..99015cef8bb1
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/amlogic.yaml
@@ -0,0 +1,159 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/amlogic.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Amlogic MesonX device tree bindings
+
+maintainers:
+ - Kevin Hilman <khilman@baylibre.com>
+
+description: |+
+ Work in progress statement:
+
+ Device tree files and bindings applying to Amlogic SoCs and boards are
+ considered "unstable". Any Amlogic device tree binding may change at
+ any time. Be sure to use a device tree binary and a kernel image
+ generated from the same source tree.
+
+ Please refer to Documentation/devicetree/bindings/ABI.txt for a definition of a
+ stable binding/ABI.
+
+properties:
+ $nodename:
+ const: '/'
+ compatible:
+ oneOf:
+ - description: Boards with the Amlogic Meson6 SoC
+ items:
+ - enum:
+ - geniatech,atv1200
+ - const: amlogic,meson6
+
+ - description: Boards with the Amlogic Meson8 SoC
+ items:
+ - enum:
+ - minix,neo-x8
+ - const: amlogic,meson8
+
+ - description: Boards with the Amlogic Meson8m2 SoC
+ items:
+ - enum:
+ - tronsmart,mxiii-plus
+ - const: amlogic,meson8m2
+
+ - description: Boards with the Amlogic Meson8b SoC
+ items:
+ - enum:
+ - endless,ec100
+ - hardkernel,odroid-c1
+ - tronfy,mxq
+ - const: amlogic,meson8b
+
+ - description: Boards with the Amlogic Meson GXBaby SoC
+ items:
+ - enum:
+ - amlogic,p200
+ - amlogic,p201
+ - friendlyarm,nanopi-k2
+ - hardkernel,odroid-c2
+ - nexbox,a95x
+ - wetek,hub
+ - wetek,play2
+ - const: amlogic,meson-gxbb
+
+ - description: Tronsmart Vega S95 devices
+ items:
+ - enum:
+ - tronsmart,vega-s95-pro
+ - tronsmart,vega-s95-meta
+ - tronsmart,vega-s95-telos
+ - const: tronsmart,vega-s95
+ - const: amlogic,meson-gxbb
+
+ - description: Boards with the Amlogic Meson GXL S805X SoC
+ items:
+ - enum:
+ - amlogic,p241
+ - libretech,aml-s805x-ac
+ - const: amlogic,s805x
+ - const: amlogic,meson-gxl
+
+ - description: Boards with the Amlogic Meson GXL S905W SoC
+ items:
+ - enum:
+ - amlogic,p281
+ - oranth,tx3-mini
+ - const: amlogic,s905w
+ - const: amlogic,meson-gxl
+
+ - description: Boards with the Amlogic Meson GXL S905X SoC
+ items:
+ - enum:
+ - amlogic,p212
+ - hwacom,amazetv
+ - khadas,vim
+ - libretech,cc
+ - nexbox,a95x
+ - const: amlogic,s905x
+ - const: amlogic,meson-gxl
+
+ - description: Boards with the Amlogic Meson GXL S905D SoC
+ items:
+ - enum:
+ - amlogic,p230
+ - amlogic,p231
+ - phicomm,n1
+ - const: amlogic,s905d
+ - const: amlogic,meson-gxl
+
+ - description: Boards with the Amlogic Meson GXM S912 SoC
+ items:
+ - enum:
+ - amlogic,q200
+ - amlogic,q201
+ - khadas,vim2
+ - kingnovel,r-box-pro
+ - nexbox,a1
+ - tronsmart,vega-s96
+ - const: amlogic,s912
+ - const: amlogic,meson-gxm
+
+ - description: Boards with the Amlogic Meson AXG A113D SoC
+ items:
+ - enum:
+ - amlogic,s400
+ - const: amlogic,a113d
+ - const: amlogic,meson-axg
+
+ - description: Boards with the Amlogic Meson G12A S905D2/X2/Y2 SoC
+ items:
+ - enum:
+ - amediatech,x96-max
+ - amlogic,u200
+ - seirobotics,sei510
+ - const: amlogic,g12a
+
+ - description: Boards with the Amlogic Meson G12B A311D SoC
+ items:
+ - enum:
+ - khadas,vim3
+ - const: amlogic,a311d
+ - const: amlogic,g12b
+
+ - description: Boards with the Amlogic Meson G12B S922X SoC
+ items:
+ - enum:
+ - hardkernel,odroid-n2
+ - khadas,vim3
+ - const: amlogic,s922x
+ - const: amlogic,g12b
+
+ - description: Boards with the Amlogic Meson SM1 S905X3/D3/Y3 SoC
+ items:
+ - enum:
+ - seirobotics,sei610
+ - khadas,vim3l
+ - const: amlogic,sm1
+...
diff --git a/Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-gx-ao-secure.yaml b/Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-gx-ao-secure.yaml
new file mode 100644
index 000000000000..853d7d2b56f5
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-gx-ao-secure.yaml
@@ -0,0 +1,52 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/arm/amlogic/amlogic,meson-gx-ao-secure.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson Firmware registers Interface
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+description: |
+ The Meson SoCs have a register bank with status and data shared with the
+ secure firmware.
+
+# We need a select here so we don't match all nodes with 'syscon'
+select:
+ properties:
+ compatible:
+ contains:
+ const: amlogic,meson-gx-ao-secure
+ required:
+ - compatible
+
+properties:
+ compatible:
+ items:
+ - const: amlogic,meson-gx-ao-secure
+ - const: syscon
+
+ reg:
+ maxItems: 1
+
+ amlogic,has-chip-id:
+ description: |
+ A firmware register encodes the SoC type, package and revision
+ information on the Meson GX SoCs. If present, the interface gives
+ the current SoC version.
+ type: boolean
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ ao-secure@140 {
+ compatible = "amlogic,meson-gx-ao-secure", "syscon";
+ reg = <0x140 0x140>;
+ amlogic,has-chip-id;
+ };
diff --git a/Documentation/devicetree/bindings/arm/arm,scmi.txt b/Documentation/devicetree/bindings/arm/arm,scmi.txt
index 5f3719ab7075..083dbf96ee00 100644
--- a/Documentation/devicetree/bindings/arm/arm,scmi.txt
+++ b/Documentation/devicetree/bindings/arm/arm,scmi.txt
@@ -6,7 +6,7 @@ that are provided by the hardware platform it is running on, including power
and performance functions.
This binding is intended to define the interface the firmware implementing
-the SCMI as described in ARM document number ARM DUI 0922B ("ARM System Control
+the SCMI as described in ARM document number ARM DEN 0056A ("ARM System Control
and Management Interface Platform Design Document")[0] provide for OSPM in
the device tree.
@@ -73,6 +73,16 @@ Required properties:
as used by the firmware. Refer to platform details
for your implementation for the IDs to use.
+Reset signal bindings for the reset domains based on SCMI Message Protocol
+------------------------------------------------------------
+
+This binding for the SCMI reset domain providers uses the generic reset
+signal binding[5].
+
+Required properties:
+ - #reset-cells : Should be 1. Contains the reset domain ID value used
+ by SCMI commands.
+
SRAM and Shared Memory for SCMI
-------------------------------
@@ -93,6 +103,7 @@ Required sub-node properties:
[2] Documentation/devicetree/bindings/power/power_domain.txt
[3] Documentation/devicetree/bindings/thermal/thermal.txt
[4] Documentation/devicetree/bindings/sram/sram.txt
+[5] Documentation/devicetree/bindings/reset/reset.txt
Example:
@@ -152,6 +163,11 @@ firmware {
reg = <0x15>;
#thermal-sensor-cells = <1>;
};
+
+ scmi_reset: protocol@16 {
+ reg = <0x16>;
+ #reset-cells = <1>;
+ };
};
};
@@ -166,6 +182,7 @@ hdlcd@7ff60000 {
reg = <0 0x7ff60000 0 0x1000>;
clocks = <&scmi_clk 4>;
power-domains = <&scmi_devpd 1>;
+ resets = <&scmi_reset 10>;
};
thermal-zones {
diff --git a/Documentation/devicetree/bindings/arm/arm-boards b/Documentation/devicetree/bindings/arm/arm-boards
index abff8d834a6a..b2a9f9f8430b 100644
--- a/Documentation/devicetree/bindings/arm/arm-boards
+++ b/Documentation/devicetree/bindings/arm/arm-boards
@@ -197,9 +197,9 @@ Required nodes:
The description for the board must include:
- a "psci" node describing the boot method used for the secondary CPUs.
A detailed description of the bindings used for "psci" nodes is present
- in the psci.txt file.
+ in the psci.yaml file.
- a "cpus" node describing the available cores and their associated
- "enable-method"s. For more details see cpus.txt file.
+ "enable-method"s. For more details see cpus.yaml file.
Example:
diff --git a/Documentation/devicetree/bindings/arm/atmel-at91.txt b/Documentation/devicetree/bindings/arm/atmel-at91.txt
deleted file mode 100644
index 99dee23c74a4..000000000000
--- a/Documentation/devicetree/bindings/arm/atmel-at91.txt
+++ /dev/null
@@ -1,73 +0,0 @@
-Atmel AT91 device tree bindings.
-================================
-
-Boards with a SoC of the Atmel AT91 or SMART family shall have the following
-properties:
-
-Required root node properties:
-compatible: must be one of:
- * "atmel,at91rm9200"
-
- * "atmel,at91sam9" for SoCs using an ARM926EJ-S core, shall be extended with
- the specific SoC family or compatible:
- o "atmel,at91sam9260"
- o "atmel,at91sam9261"
- o "atmel,at91sam9263"
- o "atmel,at91sam9x5" for the 5 series, shall be extended with the specific
- SoC compatible:
- - "atmel,at91sam9g15"
- - "atmel,at91sam9g25"
- - "atmel,at91sam9g35"
- - "atmel,at91sam9x25"
- - "atmel,at91sam9x35"
- o "atmel,at91sam9g20"
- o "atmel,at91sam9g45"
- o "atmel,at91sam9n12"
- o "atmel,at91sam9rl"
- o "atmel,at91sam9xe"
- o "microchip,sam9x60"
- * "atmel,sama5" for SoCs using a Cortex-A5, shall be extended with the specific
- SoC family:
- o "atmel,sama5d2" shall be extended with the specific SoC compatible:
- - "atmel,sama5d27"
- o "atmel,sama5d3" shall be extended with the specific SoC compatible:
- - "atmel,sama5d31"
- - "atmel,sama5d33"
- - "atmel,sama5d34"
- - "atmel,sama5d35"
- - "atmel,sama5d36"
- o "atmel,sama5d4" shall be extended with the specific SoC compatible:
- - "atmel,sama5d41"
- - "atmel,sama5d42"
- - "atmel,sama5d43"
- - "atmel,sama5d44"
-
- * "atmel,samv7" for MCUs using a Cortex-M7, shall be extended with the specific
- SoC family:
- o "atmel,sams70" shall be extended with the specific MCU compatible:
- - "atmel,sams70j19"
- - "atmel,sams70j20"
- - "atmel,sams70j21"
- - "atmel,sams70n19"
- - "atmel,sams70n20"
- - "atmel,sams70n21"
- - "atmel,sams70q19"
- - "atmel,sams70q20"
- - "atmel,sams70q21"
- o "atmel,samv70" shall be extended with the specific MCU compatible:
- - "atmel,samv70j19"
- - "atmel,samv70j20"
- - "atmel,samv70n19"
- - "atmel,samv70n20"
- - "atmel,samv70q19"
- - "atmel,samv70q20"
- o "atmel,samv71" shall be extended with the specific MCU compatible:
- - "atmel,samv71j19"
- - "atmel,samv71j20"
- - "atmel,samv71j21"
- - "atmel,samv71n19"
- - "atmel,samv71n20"
- - "atmel,samv71n21"
- - "atmel,samv71q19"
- - "atmel,samv71q20"
- - "atmel,samv71q21"
diff --git a/Documentation/devicetree/bindings/arm/atmel-at91.yaml b/Documentation/devicetree/bindings/arm/atmel-at91.yaml
new file mode 100644
index 000000000000..6e168abcd4d1
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/atmel-at91.yaml
@@ -0,0 +1,134 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/atmel-at91.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Atmel AT91 device tree bindings.
+
+maintainers:
+ - Alexandre Belloni <alexandre.belloni@bootlin.com>
+ - Ludovic Desroches <ludovic.desroches@microchip.com>
+
+description: |
+ Boards with a SoC of the Atmel AT91 or SMART family shall have the following
+
+properties:
+ $nodename:
+ const: '/'
+ compatible:
+ oneOf:
+ - items:
+ - const: atmel,at91rm9200
+ - items:
+ - enum:
+ - olimex,sam9-l9260
+ - enum:
+ - atmel,at91sam9260
+ - atmel,at91sam9261
+ - atmel,at91sam9263
+ - atmel,at91sam9g20
+ - atmel,at91sam9g45
+ - atmel,at91sam9n12
+ - atmel,at91sam9rl
+ - atmel,at91sam9xe
+ - atmel,at91sam9x60
+ - const: atmel,at91sam9
+
+ - items:
+ - enum:
+ - atmel,at91sam9g15
+ - atmel,at91sam9g25
+ - atmel,at91sam9g35
+ - atmel,at91sam9x25
+ - atmel,at91sam9x35
+ - const: atmel,at91sam9x5
+ - const: atmel,at91sam9
+
+ - items:
+ - const: atmel,sama5d27
+ - const: atmel,sama5d2
+ - const: atmel,sama5
+
+ - description: Nattis v2 board with Natte v2 power board
+ items:
+ - const: axentia,nattis-2
+ - const: axentia,natte-2
+ - const: axentia,linea
+ - const: atmel,sama5d31
+ - const: atmel,sama5d3
+ - const: atmel,sama5
+
+ - description: TSE-850 v3 board
+ items:
+ - const: axentia,tse850v3
+ - const: axentia,linea
+ - const: atmel,sama5d31
+ - const: atmel,sama5d3
+ - const: atmel,sama5
+
+ - items:
+ - const: axentia,linea
+ - const: atmel,sama5d31
+ - const: atmel,sama5d3
+ - const: atmel,sama5
+
+ - items:
+ - enum:
+ - atmel,sama5d31
+ - atmel,sama5d33
+ - atmel,sama5d34
+ - atmel,sama5d35
+ - atmel,sama5d36
+ - const: atmel,sama5d3
+ - const: atmel,sama5
+
+ - items:
+ - enum:
+ - atmel,sama5d41
+ - atmel,sama5d42
+ - atmel,sama5d43
+ - atmel,sama5d44
+ - const: atmel,sama5d4
+ - const: atmel,sama5
+
+ - items:
+ - enum:
+ - atmel,sams70j19
+ - atmel,sams70j20
+ - atmel,sams70j21
+ - atmel,sams70n19
+ - atmel,sams70n20
+ - atmel,sams70n21
+ - atmel,sams70q19
+ - atmel,sams70q20
+ - atmel,sams70q21
+ - const: atmel,sams70
+ - const: atmel,samv7
+
+ - items:
+ - enum:
+ - atmel,samv70j19
+ - atmel,samv70j20
+ - atmel,samv70n19
+ - atmel,samv70n20
+ - atmel,samv70q19
+ - atmel,samv70q20
+ - const: atmel,samv70
+ - const: atmel,samv7
+
+ - items:
+ - enum:
+ - atmel,samv71j19
+ - atmel,samv71j20
+ - atmel,samv71j21
+ - atmel,samv71n19
+ - atmel,samv71n20
+ - atmel,samv71n21
+ - atmel,samv71q19
+ - atmel,samv71q20
+ - atmel,samv71q21
+ - const: atmel,samv71
+ - const: atmel,samv7
+
+...
diff --git a/Documentation/devicetree/bindings/arm/axxia.txt b/Documentation/devicetree/bindings/arm/axxia.txt
deleted file mode 100644
index 7b4ef9c07696..000000000000
--- a/Documentation/devicetree/bindings/arm/axxia.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-Axxia AXM55xx device tree bindings
-
-Boards using the AXM55xx SoC need to have the following properties:
-
-Required root node property:
-
- - compatible = "lsi,axm5516"
-
-Boards:
-
- LSI AXM5516 Validation board (Amarillo)
- compatible = "lsi,axm5516-amarillo", "lsi,axm5516"
diff --git a/Documentation/devicetree/bindings/arm/axxia.yaml b/Documentation/devicetree/bindings/arm/axxia.yaml
new file mode 100644
index 000000000000..98780a569f22
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/axxia.yaml
@@ -0,0 +1,19 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/axxia.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Axxia AXM55xx device tree bindings
+
+maintainers:
+ - Anders Berg <anders.berg@lsi.com>
+
+properties:
+ compatible:
+ description: LSI AXM5516 Validation board (Amarillo)
+ items:
+ - const: lsi,axm5516-amarillo
+ - const: lsi,axm5516
+
+...
diff --git a/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt b/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt
index 298291211ea4..f1de3247c1b7 100644
--- a/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt
+++ b/Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt
@@ -26,8 +26,8 @@ Required properties:
processor core is clocked by the internal CPU clock, so it
is enabled with CPU clock by default.
-- cpu : the CPU phandle the debug module is affined to. When omitted
- the module is considered to belong to CPU0.
+- cpu : the CPU phandle the debug module is affined to. Do not assume it
+ to default to CPU0 if omitted.
Optional properties:
diff --git a/Documentation/devicetree/bindings/arm/coresight.txt b/Documentation/devicetree/bindings/arm/coresight.txt
index 8a88ddebc1a2..fcc3bacfd8bc 100644
--- a/Documentation/devicetree/bindings/arm/coresight.txt
+++ b/Documentation/devicetree/bindings/arm/coresight.txt
@@ -59,6 +59,11 @@ its hardware characteristcs.
* port or ports: see "Graph bindings for Coresight" below.
+* Additional required property for Embedded Trace Macrocell (version 3.x and
+ version 4.x):
+ * cpu: the cpu phandle this ETM/PTM is affined to. Do not
+ assume it to default to CPU0 if omitted.
+
* Additional required properties for System Trace Macrocells (STM):
* reg: along with the physical base address and length of the register
set as described above, another entry is required to describe the
@@ -87,9 +92,6 @@ its hardware characteristcs.
* arm,cp14: must be present if the system accesses ETM/PTM management
registers via co-processor 14.
- * cpu: the cpu phandle this ETM/PTM is affined to. When omitted the
- source is considered to belong to CPU0.
-
* Optional property for TMC:
* arm,buffer-size: size of contiguous buffer space for TMC ETR
diff --git a/Documentation/devicetree/bindings/arm/cpus.yaml b/Documentation/devicetree/bindings/arm/cpus.yaml
index 591bbd012d63..cb30895e3b67 100644
--- a/Documentation/devicetree/bindings/arm/cpus.yaml
+++ b/Documentation/devicetree/bindings/arm/cpus.yaml
@@ -39,281 +39,245 @@ description: |+
described below.
properties:
- $nodename:
- const: cpus
- description: Container of cpu nodes
-
- '#address-cells':
- enum: [1, 2]
+ reg:
+ maxItems: 1
description: |
- Definition depends on ARM architecture version and configuration:
+ Usage and definition depend on ARM architecture version and
+ configuration:
On uniprocessor ARM architectures previous to v7
- value must be 1, to enable a simple enumeration
- scheme for processors that do not have a HW CPU
- identification register.
- On 32-bit ARM 11 MPcore, ARM v7 or later systems
- value must be 1, that corresponds to CPUID/MPIDR
- registers sizes.
- On ARM v8 64-bit systems value should be set to 2,
- that corresponds to the MPIDR_EL1 register size.
- If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
- in the system, #address-cells can be set to 1, since
- MPIDR_EL1[63:32] bits are not used for CPUs
- identification.
-
- '#size-cells':
- const: 0
-
-patternProperties:
- '^cpu@[0-9a-f]+$':
- type: object
- properties:
- device_type:
- const: cpu
-
- reg:
- maxItems: 1
- description: |
- Usage and definition depend on ARM architecture version and
- configuration:
-
- On uniprocessor ARM architectures previous to v7
- this property is required and must be set to 0.
-
- On ARM 11 MPcore based systems this property is
- required and matches the CPUID[11:0] register bits.
-
- Bits [11:0] in the reg cell must be set to
- bits [11:0] in CPU ID register.
-
- All other bits in the reg cell must be set to 0.
-
- On 32-bit ARM v7 or later systems this property is
- required and matches the CPU MPIDR[23:0] register
- bits.
-
- Bits [23:0] in the reg cell must be set to
- bits [23:0] in MPIDR.
-
- All other bits in the reg cell must be set to 0.
-
- On ARM v8 64-bit systems this property is required
- and matches the MPIDR_EL1 register affinity bits.
+ this property is required and must be set to 0.
+
+ On ARM 11 MPcore based systems this property is
+ required and matches the CPUID[11:0] register bits.
+
+ Bits [11:0] in the reg cell must be set to
+ bits [11:0] in CPU ID register.
+
+ All other bits in the reg cell must be set to 0.
+
+ On 32-bit ARM v7 or later systems this property is
+ required and matches the CPU MPIDR[23:0] register
+ bits.
+
+ Bits [23:0] in the reg cell must be set to
+ bits [23:0] in MPIDR.
+
+ All other bits in the reg cell must be set to 0.
+
+ On ARM v8 64-bit systems this property is required
+ and matches the MPIDR_EL1 register affinity bits.
+
+ * If cpus node's #address-cells property is set to 2
+
+ The first reg cell bits [7:0] must be set to
+ bits [39:32] of MPIDR_EL1.
+
+ The second reg cell bits [23:0] must be set to
+ bits [23:0] of MPIDR_EL1.
+
+ * If cpus node's #address-cells property is set to 1
+
+ The reg cell bits [23:0] must be set to bits [23:0]
+ of MPIDR_EL1.
+
+ All other bits in the reg cells must be set to 0.
+
+ compatible:
+ enum:
+ - arm,arm710t
+ - arm,arm720t
+ - arm,arm740t
+ - arm,arm7ej-s
+ - arm,arm7tdmi
+ - arm,arm7tdmi-s
+ - arm,arm9es
+ - arm,arm9ej-s
+ - arm,arm920t
+ - arm,arm922t
+ - arm,arm925
+ - arm,arm926e-s
+ - arm,arm926ej-s
+ - arm,arm940t
+ - arm,arm946e-s
+ - arm,arm966e-s
+ - arm,arm968e-s
+ - arm,arm9tdmi
+ - arm,arm1020e
+ - arm,arm1020t
+ - arm,arm1022e
+ - arm,arm1026ej-s
+ - arm,arm1136j-s
+ - arm,arm1136jf-s
+ - arm,arm1156t2-s
+ - arm,arm1156t2f-s
+ - arm,arm1176jzf
+ - arm,arm1176jz-s
+ - arm,arm1176jzf-s
+ - arm,arm11mpcore
+ - arm,armv8 # Only for s/w models
+ - arm,cortex-a5
+ - arm,cortex-a7
+ - arm,cortex-a8
+ - arm,cortex-a9
+ - arm,cortex-a12
+ - arm,cortex-a15
+ - arm,cortex-a17
+ - arm,cortex-a53
+ - arm,cortex-a55
+ - arm,cortex-a57
+ - arm,cortex-a72
+ - arm,cortex-a73
+ - arm,cortex-m0
+ - arm,cortex-m0+
+ - arm,cortex-m1
+ - arm,cortex-m3
+ - arm,cortex-m4
+ - arm,cortex-r4
+ - arm,cortex-r5
+ - arm,cortex-r7
+ - brcm,brahma-b15
+ - brcm,brahma-b53
+ - brcm,vulcan
+ - cavium,thunder
+ - cavium,thunder2
+ - faraday,fa526
+ - intel,sa110
+ - intel,sa1100
+ - marvell,feroceon
+ - marvell,mohawk
+ - marvell,pj4a
+ - marvell,pj4b
+ - marvell,sheeva-v5
+ - marvell,sheeva-v7
+ - nvidia,tegra132-denver
+ - nvidia,tegra186-denver
+ - nvidia,tegra194-carmel
+ - qcom,krait
+ - qcom,kryo
+ - qcom,kryo385
+ - qcom,kryo485
+ - qcom,scorpion
+
+ enable-method:
+ allOf:
+ - $ref: '/schemas/types.yaml#/definitions/string'
+ - oneOf:
+ # On ARM v8 64-bit this property is required
+ - enum:
+ - psci
+ - spin-table
+ # On ARM 32-bit systems this property is optional
+ - enum:
+ - actions,s500-smp
+ - allwinner,sun6i-a31
+ - allwinner,sun8i-a23
+ - allwinner,sun9i-a80-smp
+ - allwinner,sun8i-a83t-smp
+ - amlogic,meson8-smp
+ - amlogic,meson8b-smp
+ - arm,realview-smp
+ - aspeed,ast2600-smp
+ - brcm,bcm11351-cpu-method
+ - brcm,bcm23550
+ - brcm,bcm2836-smp
+ - brcm,bcm63138
+ - brcm,bcm-nsp-smp
+ - brcm,brahma-b15
+ - marvell,armada-375-smp
+ - marvell,armada-380-smp
+ - marvell,armada-390-smp
+ - marvell,armada-xp-smp
+ - marvell,98dx3236-smp
+ - mediatek,mt6589-smp
+ - mediatek,mt81xx-tz-smp
+ - qcom,gcc-msm8660
+ - qcom,kpss-acc-v1
+ - qcom,kpss-acc-v2
+ - renesas,apmu
+ - renesas,r9a06g032-smp
+ - rockchip,rk3036-smp
+ - rockchip,rk3066-smp
+ - socionext,milbeaut-m10v-smp
+ - ste,dbx500-smp
+
+ cpu-release-addr:
+ $ref: '/schemas/types.yaml#/definitions/uint64'
+
+ description:
+ Required for systems that have an "enable-method"
+ property value of "spin-table".
+ On ARM v8 64-bit systems must be a two cell
+ property identifying a 64-bit zero-initialised
+ memory location.
+
+ cpu-idle-states:
+ $ref: '/schemas/types.yaml#/definitions/phandle-array'
+ description: |
+ List of phandles to idle state nodes supported
+ by this cpu (see ./idle-states.txt).
+
+ capacity-dmips-mhz:
+ $ref: '/schemas/types.yaml#/definitions/uint32'
+ description:
+ u32 value representing CPU capacity (see ./cpu-capacity.txt) in
+ DMIPS/MHz, relative to highest capacity-dmips-mhz
+ in the system.
+
+ dynamic-power-coefficient:
+ $ref: '/schemas/types.yaml#/definitions/uint32'
+ description:
+ A u32 value that represents the running time dynamic
+ power coefficient in units of uW/MHz/V^2. The
+ coefficient can either be calculated from power
+ measurements or derived by analysis.
+
+ The dynamic power consumption of the CPU is
+ proportional to the square of the Voltage (V) and
+ the clock frequency (f). The coefficient is used to
+ calculate the dynamic power as below -
+
+ Pdyn = dynamic-power-coefficient * V^2 * f
+
+ where voltage is in V, frequency is in MHz.
+
+ qcom,saw:
+ $ref: '/schemas/types.yaml#/definitions/phandle'
+ description: |
+ Specifies the SAW* node associated with this CPU.
- * If cpus node's #address-cells property is set to 2
+ Required for systems that have an "enable-method" property
+ value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
- The first reg cell bits [7:0] must be set to
- bits [39:32] of MPIDR_EL1.
+ * arm/msm/qcom,saw2.txt
- The second reg cell bits [23:0] must be set to
- bits [23:0] of MPIDR_EL1.
+ qcom,acc:
+ $ref: '/schemas/types.yaml#/definitions/phandle'
+ description: |
+ Specifies the ACC* node associated with this CPU.
- * If cpus node's #address-cells property is set to 1
+ Required for systems that have an "enable-method" property
+ value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
- The reg cell bits [23:0] must be set to bits [23:0]
- of MPIDR_EL1.
+ * arm/msm/qcom,kpss-acc.txt
- All other bits in the reg cells must be set to 0.
+ rockchip,pmu:
+ $ref: '/schemas/types.yaml#/definitions/phandle'
+ description: |
+ Specifies the syscon node controlling the cpu core power domains.
- compatible:
- items:
- - enum:
- - arm,arm710t
- - arm,arm720t
- - arm,arm740t
- - arm,arm7ej-s
- - arm,arm7tdmi
- - arm,arm7tdmi-s
- - arm,arm9es
- - arm,arm9ej-s
- - arm,arm920t
- - arm,arm922t
- - arm,arm925
- - arm,arm926e-s
- - arm,arm926ej-s
- - arm,arm940t
- - arm,arm946e-s
- - arm,arm966e-s
- - arm,arm968e-s
- - arm,arm9tdmi
- - arm,arm1020e
- - arm,arm1020t
- - arm,arm1022e
- - arm,arm1026ej-s
- - arm,arm1136j-s
- - arm,arm1136jf-s
- - arm,arm1156t2-s
- - arm,arm1156t2f-s
- - arm,arm1176jzf
- - arm,arm1176jz-s
- - arm,arm1176jzf-s
- - arm,arm11mpcore
- - arm,armv8 # Only for s/w models
- - arm,cortex-a5
- - arm,cortex-a7
- - arm,cortex-a8
- - arm,cortex-a9
- - arm,cortex-a12
- - arm,cortex-a15
- - arm,cortex-a17
- - arm,cortex-a53
- - arm,cortex-a57
- - arm,cortex-a72
- - arm,cortex-a73
- - arm,cortex-m0
- - arm,cortex-m0+
- - arm,cortex-m1
- - arm,cortex-m3
- - arm,cortex-m4
- - arm,cortex-r4
- - arm,cortex-r5
- - arm,cortex-r7
- - brcm,brahma-b15
- - brcm,brahma-b53
- - brcm,vulcan
- - cavium,thunder
- - cavium,thunder2
- - faraday,fa526
- - intel,sa110
- - intel,sa1100
- - marvell,feroceon
- - marvell,mohawk
- - marvell,pj4a
- - marvell,pj4b
- - marvell,sheeva-v5
- - marvell,sheeva-v7
- - nvidia,tegra132-denver
- - nvidia,tegra186-denver
- - nvidia,tegra194-carmel
- - qcom,krait
- - qcom,kryo
- - qcom,kryo385
- - qcom,scorpion
-
- enable-method:
- allOf:
- - $ref: '/schemas/types.yaml#/definitions/string'
- - oneOf:
- # On ARM v8 64-bit this property is required
- - enum:
- - psci
- - spin-table
- # On ARM 32-bit systems this property is optional
- - enum:
- - actions,s500-smp
- - allwinner,sun6i-a31
- - allwinner,sun8i-a23
- - allwinner,sun9i-a80-smp
- - allwinner,sun8i-a83t-smp
- - amlogic,meson8-smp
- - amlogic,meson8b-smp
- - arm,realview-smp
- - brcm,bcm11351-cpu-method
- - brcm,bcm23550
- - brcm,bcm2836-smp
- - brcm,bcm63138
- - brcm,bcm-nsp-smp
- - brcm,brahma-b15
- - marvell,armada-375-smp
- - marvell,armada-380-smp
- - marvell,armada-390-smp
- - marvell,armada-xp-smp
- - marvell,98dx3236-smp
- - mediatek,mt6589-smp
- - mediatek,mt81xx-tz-smp
- - qcom,gcc-msm8660
- - qcom,kpss-acc-v1
- - qcom,kpss-acc-v2
- - renesas,apmu
- - renesas,r9a06g032-smp
- - rockchip,rk3036-smp
- - rockchip,rk3066-smp
- - socionext,milbeaut-m10v-smp
- - ste,dbx500-smp
-
- cpu-release-addr:
- $ref: '/schemas/types.yaml#/definitions/uint64'
-
- description:
- Required for systems that have an "enable-method"
- property value of "spin-table".
- On ARM v8 64-bit systems must be a two cell
- property identifying a 64-bit zero-initialised
- memory location.
-
- cpu-idle-states:
- $ref: '/schemas/types.yaml#/definitions/phandle-array'
- description: |
- List of phandles to idle state nodes supported
- by this cpu (see ./idle-states.txt).
-
- capacity-dmips-mhz:
- $ref: '/schemas/types.yaml#/definitions/uint32'
- description:
- u32 value representing CPU capacity (see ./cpu-capacity.txt) in
- DMIPS/MHz, relative to highest capacity-dmips-mhz
- in the system.
-
- dynamic-power-coefficient:
- $ref: '/schemas/types.yaml#/definitions/uint32'
- description:
- A u32 value that represents the running time dynamic
- power coefficient in units of uW/MHz/V^2. The
- coefficient can either be calculated from power
- measurements or derived by analysis.
-
- The dynamic power consumption of the CPU is
- proportional to the square of the Voltage (V) and
- the clock frequency (f). The coefficient is used to
- calculate the dynamic power as below -
-
- Pdyn = dynamic-power-coefficient * V^2 * f
-
- where voltage is in V, frequency is in MHz.
-
- qcom,saw:
- $ref: '/schemas/types.yaml#/definitions/phandle'
- description: |
- Specifies the SAW* node associated with this CPU.
-
- Required for systems that have an "enable-method" property
- value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
-
- * arm/msm/qcom,saw2.txt
-
- qcom,acc:
- $ref: '/schemas/types.yaml#/definitions/phandle'
- description: |
- Specifies the ACC* node associated with this CPU.
-
- Required for systems that have an "enable-method" property
- value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
-
- * arm/msm/qcom,kpss-acc.txt
-
- rockchip,pmu:
- $ref: '/schemas/types.yaml#/definitions/phandle'
- description: |
- Specifies the syscon node controlling the cpu core power domains.
-
- Optional for systems that have an "enable-method"
- property value of "rockchip,rk3066-smp"
- While optional, it is the preferred way to get access to
- the cpu-core power-domains.
-
- required:
- - device_type
- - reg
- - compatible
-
- dependencies:
- cpu-release-addr: [enable-method]
- rockchip,pmu: [enable-method]
+ Optional for systems that have an "enable-method"
+ property value of "rockchip,rk3066-smp"
+ While optional, it is the preferred way to get access to
+ the cpu-core power-domains.
required:
- - '#address-cells'
- - '#size-cells'
+ - device_type
+ - reg
+ - compatible
+
+dependencies:
+ rockchip,pmu: [enable-method]
examples:
- |
diff --git a/Documentation/devicetree/bindings/arm/digicolor.txt b/Documentation/devicetree/bindings/arm/digicolor.txt
deleted file mode 100644
index 658553f40b23..000000000000
--- a/Documentation/devicetree/bindings/arm/digicolor.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-Conexant Digicolor Platforms Device Tree Bindings
-
-Each device tree must specify which Conexant Digicolor SoC it uses.
-Must be the following compatible string:
-
- cnxt,cx92755
diff --git a/Documentation/devicetree/bindings/arm/digicolor.yaml b/Documentation/devicetree/bindings/arm/digicolor.yaml
new file mode 100644
index 000000000000..d9c80b827e9b
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/digicolor.yaml
@@ -0,0 +1,16 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/digicolor.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Conexant Digicolor Platforms Device Tree Bindings
+
+maintainers:
+ - Baruch Siach <baruch@tkos.co.il>
+
+properties:
+ compatible:
+ const: cnxt,cx92755
+
+...
diff --git a/Documentation/devicetree/bindings/arm/emtrion.txt b/Documentation/devicetree/bindings/arm/emtrion.txt
deleted file mode 100644
index 83329aefc483..000000000000
--- a/Documentation/devicetree/bindings/arm/emtrion.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-Emtrion Devicetree Bindings
-===========================
-
-emCON Series:
--------------
-
-Required root node properties
- - compatible:
- - "emtrion,emcon-mx6", "fsl,imx6q"; : emCON-MX6D or emCON-MX6Q SoM
- - "emtrion,emcon-mx6-avari", "fsl,imx6q"; : emCON-MX6D or emCON-MX6Q SoM on Avari Base
- - "emtrion,emcon-mx6", "fsl,imx6dl"; : emCON-MX6S or emCON-MX6DL SoM
- - "emtrion,emcon-mx6-avari", "fsl,imx6dl"; : emCON-MX6S or emCON-MX6DL SoM on Avari Base
diff --git a/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt b/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt
index 5d7dbabbb784..c149fadc6f47 100644
--- a/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt
+++ b/Documentation/devicetree/bindings/arm/freescale/fsl,scu.txt
@@ -133,6 +133,30 @@ RTC bindings based on SCU Message Protocol
Required properties:
- compatible: should be "fsl,imx8qxp-sc-rtc";
+OCOTP bindings based on SCU Message Protocol
+------------------------------------------------------------
+Required properties:
+- compatible: Should be one of:
+ "fsl,imx8qm-scu-ocotp",
+ "fsl,imx8qxp-scu-ocotp".
+- #address-cells: Must be 1. Contains byte index
+- #size-cells: Must be 1. Contains byte length
+
+Optional Child nodes:
+
+- Data cells of ocotp:
+ Detailed bindings are described in bindings/nvmem/nvmem.txt
+
+Watchdog bindings based on SCU Message Protocol
+------------------------------------------------------------
+
+Required properties:
+- compatible: should be:
+ "fsl,imx8qxp-sc-wdt"
+ followed by "fsl,imx-sc-wdt";
+Optional properties:
+- timeout-sec: contains the watchdog timeout in seconds.
+
Example (imx8qxp):
-------------
aliases {
@@ -177,6 +201,16 @@ firmware {
...
};
+ ocotp: imx8qx-ocotp {
+ compatible = "fsl,imx8qxp-scu-ocotp";
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ fec_mac0: mac@2c4 {
+ reg = <0x2c4 8>;
+ };
+ };
+
pd: imx8qx-pd {
compatible = "fsl,imx8qxp-scu-pd", "fsl,scu-pd";
#power-domain-cells = <1>;
@@ -185,6 +219,11 @@ firmware {
rtc: rtc {
compatible = "fsl,imx8qxp-sc-rtc";
};
+
+ watchdog {
+ compatible = "fsl,imx8qxp-sc-wdt", "fsl,imx-sc-wdt";
+ timeout-sec = <60>;
+ };
};
};
diff --git a/Documentation/devicetree/bindings/arm/fsl.yaml b/Documentation/devicetree/bindings/arm/fsl.yaml
index 407138ebc0d0..1b4b4e6573b5 100644
--- a/Documentation/devicetree/bindings/arm/fsl.yaml
+++ b/Documentation/devicetree/bindings/arm/fsl.yaml
@@ -15,6 +15,13 @@ properties:
const: '/'
compatible:
oneOf:
+ - description: i.MX1 based Boards
+ items:
+ - enum:
+ - armadeus,imx1-apf9328
+ - fsl,imx1ads
+ - const: fsl,imx1
+
- description: i.MX23 based Boards
items:
- enum:
@@ -51,6 +58,25 @@ properties:
- const: i2se,duckbill-2
- const: fsl,imx28
+ - description: i.MX31 based Boards
+ items:
+ - enum:
+ - buglabs,imx31-bug
+ - logicpd,imx31-lite
+ - const: fsl,imx31
+
+ - description: i.MX35 based Boards
+ items:
+ - enum:
+ - fsl,imx35-pdk
+ - const: fsl,imx35
+
+ - description: i.MX35 Eukrea CPUIMX35 Board
+ items:
+ - const: eukrea,mbimxsd35-baseboard
+ - const: eukrea,cpuimx35
+ - const: fsl,imx35
+
- description: i.MX50 based Boards
items:
- enum:
@@ -80,6 +106,8 @@ properties:
- description: i.MX6Q based Boards
items:
- enum:
+ - emtrion,emcon-mx6 # emCON-MX6D or emCON-MX6Q SoM
+ - emtrion,emcon-mx6-avari # emCON-MX6D or emCON-MX6Q SoM on Avari Base
- fsl,imx6q-arm2
- fsl,imx6q-sabreauto
- fsl,imx6q-sabrelite
@@ -99,6 +127,8 @@ properties:
items:
- enum:
- eckelmann,imx6dl-ci4x10
+ - emtrion,emcon-mx6 # emCON-MX6S or emCON-MX6DL SoM
+ - emtrion,emcon-mx6-avari # emCON-MX6S or emCON-MX6DL SoM on Avari Base
- fsl,imx6dl-sabreauto # i.MX6 DualLite/Solo SABRE Automotive Board
- fsl,imx6dl-sabresd # i.MX6 DualLite SABRE Smart Device Board
- technologic,imx6dl-ts4900
@@ -131,6 +161,20 @@ properties:
items:
- enum:
- fsl,imx6ul-14x14-evk # i.MX6 UltraLite 14x14 EVK Board
+ - kontron,imx6ul-n6310-som # Kontron N6310 SOM
+ - const: fsl,imx6ul
+
+ - description: Kontron N6310 S Board
+ items:
+ - const: kontron,imx6ul-n6310-s
+ - const: kontron,imx6ul-n6310-som
+ - const: fsl,imx6ul
+
+ - description: Kontron N6310 S 43 Board
+ items:
+ - const: kontron,imx6ul-n6310-s-43
+ - const: kontron,imx6ul-n6310-s
+ - const: kontron,imx6ul-n6310-som
- const: fsl,imx6ul
- description: i.MX6ULL based Boards
@@ -156,7 +200,9 @@ properties:
items:
- enum:
- fsl,imx7d-sdb # i.MX7 SabreSD Board
+ - novtech,imx7d-meerkat96 # i.MX7 Meerkat96 Board
- tq,imx7d-mba7 # i.MX7D TQ MBa7 with TQMa7D SoM
+ - zii,imx7d-rmu2 # ZII RMU2 Board
- zii,imx7d-rpu2 # ZII RPU2 Board
- const: fsl,imx7d
@@ -171,15 +217,38 @@ properties:
- const: compulab,cl-som-imx7
- const: fsl,imx7d
+ - description: i.MX7ULP based Boards
+ items:
+ - enum:
+ - fsl,imx7ulp-evk # i.MX7ULP Evaluation Kit
+ - const: fsl,imx7ulp
+
- description: i.MX8MM based Boards
items:
- enum:
- fsl,imx8mm-evk # i.MX8MM EVK Board
- const: fsl,imx8mm
+ - description: i.MX8MN based Boards
+ items:
+ - enum:
+ - fsl,imx8mn-ddr4-evk # i.MX8MN DDR4 EVK Board
+ - const: fsl,imx8mn
+
+ - description: i.MX8MQ based Boards
+ items:
+ - enum:
+ - boundary,imx8mq-nitrogen8m # i.MX8MQ NITROGEN Board
+ - fsl,imx8mq-evk # i.MX8MQ EVK Board
+ - purism,librem5-devkit # Purism Librem5 devkit
+ - solidrun,hummingboard-pulse # SolidRun Hummingboard Pulse
+ - technexion,pico-pi-imx8m # TechNexion PICO-PI-8M evk
+ - const: fsl,imx8mq
+
- description: i.MX8QXP based Boards
items:
- enum:
+ - einfochips,imx8qxp-ai_ml # i.MX8QXP AI_ML Board
- fsl,imx8qxp-mek # i.MX8QXP MEK Board
- const: fsl,imx8qxp
@@ -239,6 +308,7 @@ properties:
- description: LS1046A based Boards
items:
- enum:
+ - fsl,ls1046a-frwy
- fsl,ls1046a-qds
- fsl,ls1046a-rdb
- const: fsl,ls1046a
diff --git a/Documentation/devicetree/bindings/arm/idle-states.txt b/Documentation/devicetree/bindings/arm/idle-states.txt
index 45730ba60af5..771f5d20ae18 100644
--- a/Documentation/devicetree/bindings/arm/idle-states.txt
+++ b/Documentation/devicetree/bindings/arm/idle-states.txt
@@ -28,7 +28,7 @@ PM implementation to put the processor in different idle states (which include
states listed above; "off" state is not an idle state since it does not have
wake-up capabilities, hence it is not considered in this document).
-Idle state parameters (eg entry latency) are platform specific and need to be
+Idle state parameters (e.g. entry latency) are platform specific and need to be
characterized with bindings that provide the required information to OS PM
code so that it can build the required tables and use them at runtime.
@@ -90,24 +90,24 @@ These timing parameters can be used by an OS in different circumstances.
An idle CPU requires the expected min-residency time to select the most
appropriate idle state based on the expected expiry time of the next IRQ
-(ie wake-up) that causes the CPU to return to the EXEC phase.
+(i.e. wake-up) that causes the CPU to return to the EXEC phase.
An operating system scheduler may need to compute the shortest wake-up delay
for CPUs in the system by detecting how long will it take to get a CPU out
-of an idle state, eg:
+of an idle state, e.g.:
wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0)
In other words, the scheduler can make its scheduling decision by selecting
-(eg waking-up) the CPU with the shortest wake-up latency.
-The wake-up latency must take into account the entry latency if that period
+(e.g. waking-up) the CPU with the shortest wake-up delay.
+The wake-up delay must take into account the entry latency if that period
has not expired. The abortable nature of the PREP period can be ignored
if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than
-the worst case since it depends on the CPU operating conditions, ie caches
+the worst case since it depends on the CPU operating conditions, i.e. caches
state).
An OS has to reliably probe the wakeup-latency since some devices can enforce
-latency constraints guarantees to work properly, so the OS has to detect the
+latency constraint guarantees to work properly, so the OS has to detect the
worst case wake-up latency it can incur if a CPU is allowed to enter an
idle state, and possibly to prevent that to guarantee reliable device
functioning.
@@ -183,15 +183,15 @@ and IDLE2:
Graph 2: idle states min-residency example
In graph 2 above, that takes into account idle states entry/exit energy
-costs, it is clear that if the idle state residency time (ie time till next
+costs, it is clear that if the idle state residency time (i.e. time till next
wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state
choice energywise.
This is mainly down to the fact that IDLE1 entry/exit energy costs are lower
than IDLE2.
-However, the lower power consumption (ie shallower energy curve slope) of idle
-state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
+However, the lower power consumption (i.e. shallower energy curve slope) of
+idle state IDLE2 implies that after a suitable time, IDLE2 becomes more energy
efficient.
The time at which IDLE2 becomes more energy efficient than IDLE1 (and other
@@ -214,8 +214,8 @@ processor idle states, defined as device tree nodes, are listed.
Usage: Optional - On ARM systems, it is a container of processor idle
states nodes. If the system does not provide CPU
- power management capabilities or the processor just
- supports idle_standby an idle-states node is not
+ power management capabilities, or the processor just
+ supports idle_standby, an idle-states node is not
required.
Description: idle-states node is a container node, where its
@@ -241,9 +241,13 @@ processor idle states, defined as device tree nodes, are listed.
- "psci"
# On ARM 32-bit systems this property is optional
-The nodes describing the idle states (state) can only be defined within the
-idle-states node, any other configuration is considered invalid and therefore
-must be ignored.
+This assumes that the "enable-method" property is set to "psci" in the cpu
+node[6] that is responsible for setting up CPU idle management in the OS
+implementation.
+
+The nodes describing the idle states (state) can only be defined
+within the idle-states node, any other configuration is considered invalid
+and therefore must be ignored.
===========================================
4 - state node
@@ -283,14 +287,14 @@ follows:
Value type: <prop-encoded-array>
Definition: u32 value representing worst case latency in
microseconds required to enter the idle state.
- The exit-latency-us duration may be guaranteed
- only after entry-latency-us has passed.
- exit-latency-us
Usage: Required
Value type: <prop-encoded-array>
Definition: u32 value representing worst case latency
in microseconds required to exit the idle state.
+ The exit-latency-us duration may be guaranteed
+ only after entry-latency-us has passed.
- min-residency-us
Usage: Required
@@ -338,8 +342,8 @@ follows:
state.
In addition to the properties listed above, a state node may require
- additional properties specifics to the entry-method defined in the
- idle-states node, please refer to the entry-method bindings
+ additional properties specific to the entry-method defined in the
+ idle-states node. Please refer to the entry-method bindings
documentation for properties definitions.
===========================================
@@ -687,7 +691,7 @@ cpus {
Documentation/devicetree/bindings/arm/cpus.yaml
[2] ARM Linux Kernel documentation - PSCI bindings
- Documentation/devicetree/bindings/arm/psci.txt
+ Documentation/devicetree/bindings/arm/psci.yaml
[3] ARM Server Base System Architecture (SBSA)
http://infocenter.arm.com/help/index.jsp
@@ -697,3 +701,6 @@ cpus {
[5] Devicetree Specification
https://www.devicetree.org/specifications/
+
+[6] ARM Linux Kernel documentation - Booting AArch64 Linux
+ Documentation/arm64/booting.rst
diff --git a/Documentation/devicetree/bindings/arm/l2c2x0.yaml b/Documentation/devicetree/bindings/arm/l2c2x0.yaml
index bfc5c185561c..913a8cd8b2c0 100644
--- a/Documentation/devicetree/bindings/arm/l2c2x0.yaml
+++ b/Documentation/devicetree/bindings/arm/l2c2x0.yaml
@@ -176,6 +176,10 @@ properties:
description: disable parity checking on the L2 cache (L220 or PL310).
type: boolean
+ marvell,ecc-enable:
+ description: enable ECC protection on the L2 cache
+ type: boolean
+
arm,outer-sync-disable:
description: disable the outer sync operation on the L2 cache.
Some core tiles, especially ARM PB11MPCore have a faulty L220 cache that
diff --git a/Documentation/devicetree/bindings/arm/marvell/ap806-system-controller.txt b/Documentation/devicetree/bindings/arm/marvell/ap806-system-controller.txt
index 7b8b8eb0191f..26410fbb85be 100644
--- a/Documentation/devicetree/bindings/arm/marvell/ap806-system-controller.txt
+++ b/Documentation/devicetree/bindings/arm/marvell/ap806-system-controller.txt
@@ -18,17 +18,19 @@ Clocks:
-------
-The Device Tree node representing the AP806 system controller provides
-a number of clocks:
+The Device Tree node representing the AP806/AP807 system controller
+provides a number of clocks:
- - 0: clock of CPU cluster 0
- - 1: clock of CPU cluster 1
+ - 0: reference clock of CPU cluster 0
+ - 1: reference clock of CPU cluster 1
- 2: fixed PLL at 1200 Mhz
- 3: MSS clock, derived from the fixed PLL
Required properties:
- - compatible: must be: "marvell,ap806-clock"
+ - compatible: must be one of:
+ * "marvell,ap806-clock"
+ * "marvell,ap807-clock"
- #clock-cells: must be set to 1
Pinctrl:
@@ -143,3 +145,33 @@ ap_syscon1: system-controller@6f8000 {
#thermal-sensor-cells = <1>;
};
};
+
+Cluster clocks:
+---------------
+
+Device Tree Clock bindings for cluster clock of Marvell
+AP806/AP807. Each cluster contain up to 2 CPUs running at the same
+frequency.
+
+Required properties:
+ - compatible: must be one of:
+ * "marvell,ap806-cpu-clock"
+ * "marvell,ap807-cpu-clock"
+- #clock-cells : should be set to 1.
+
+- clocks : shall be the input parent clock(s) phandle for the clock
+ (one per cluster)
+
+- reg: register range associated with the cluster clocks
+
+ap_syscon1: system-controller@6f8000 {
+ compatible = "marvell,armada-ap806-syscon1", "syscon", "simple-mfd";
+ reg = <0x6f8000 0x1000>;
+
+ cpu_clk: clock-cpu@278 {
+ compatible = "marvell,ap806-cpu-clock";
+ clocks = <&ap_clk 0>, <&ap_clk 1>;
+ #clock-cells = <1>;
+ reg = <0x278 0xa30>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/arm/marvell/armada-37xx.txt b/Documentation/devicetree/bindings/arm/marvell/armada-37xx.txt
index eddde4faef01..f6d6642d81c0 100644
--- a/Documentation/devicetree/bindings/arm/marvell/armada-37xx.txt
+++ b/Documentation/devicetree/bindings/arm/marvell/armada-37xx.txt
@@ -48,3 +48,11 @@ avs: avs@11500 {
compatible = "marvell,armada-3700-avs", "syscon";
reg = <0x11500 0x40>;
}
+
+
+CZ.NIC's Turris Mox SOHO router Device Tree Bindings
+----------------------------------------------------
+
+Required root node property:
+
+ - compatible: must contain "cznic,turris-mox"
diff --git a/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller.txt b/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller.txt
index 4db4119a6d19..f982a8ed9396 100644
--- a/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller.txt
+++ b/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller.txt
@@ -78,8 +78,8 @@ Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt.
Required properties:
-- compatible: "marvell,armada-7k-pinctrl",
- "marvell,armada-8k-cpm-pinctrl" or "marvell,armada-8k-cps-pinctrl"
+- compatible: "marvell,armada-7k-pinctrl", "marvell,armada-8k-cpm-pinctrl",
+ "marvell,armada-8k-cps-pinctrl" or "marvell,cp115-standalone-pinctrl"
depending on the specific variant of the SoC being used.
Available mpp pins/groups and functions:
diff --git a/Documentation/devicetree/bindings/arm/mediatek.txt b/Documentation/devicetree/bindings/arm/mediatek.txt
deleted file mode 100644
index 56ac7896d6d8..000000000000
--- a/Documentation/devicetree/bindings/arm/mediatek.txt
+++ /dev/null
@@ -1,89 +0,0 @@
-MediaTek SoC based Platforms Device Tree Bindings
-
-Boards with a MediaTek SoC shall have the following property:
-
-Required root node property:
-
-compatible: Must contain one of
- "mediatek,mt2701"
- "mediatek,mt2712"
- "mediatek,mt6580"
- "mediatek,mt6589"
- "mediatek,mt6592"
- "mediatek,mt6755"
- "mediatek,mt6765"
- "mediatek,mt6795"
- "mediatek,mt6797"
- "mediatek,mt7622"
- "mediatek,mt7623"
- "mediatek,mt7629"
- "mediatek,mt8127"
- "mediatek,mt8135"
- "mediatek,mt8173"
- "mediatek,mt8183"
-
-
-Supported boards:
-
-- Evaluation board for MT2701:
- Required root node properties:
- - compatible = "mediatek,mt2701-evb", "mediatek,mt2701";
-- Evaluation board for MT2712:
- Required root node properties:
- - compatible = "mediatek,mt2712-evb", "mediatek,mt2712";
-- Evaluation board for MT6580:
- Required root node properties:
- - compatible = "mediatek,mt6580-evbp1", "mediatek,mt6580";
-- bq Aquaris5 smart phone:
- Required root node properties:
- - compatible = "mundoreader,bq-aquaris5", "mediatek,mt6589";
-- Evaluation board for MT6592:
- Required root node properties:
- - compatible = "mediatek,mt6592-evb", "mediatek,mt6592";
-- Evaluation phone for MT6755(Helio P10):
- Required root node properties:
- - compatible = "mediatek,mt6755-evb", "mediatek,mt6755";
-- Evaluation board for MT6765(Helio P22):
- Required root node properties:
- - compatible = "mediatek,mt6765-evb", "mediatek,mt6765";
-- Evaluation board for MT6795(Helio X10):
- Required root node properties:
- - compatible = "mediatek,mt6795-evb", "mediatek,mt6795";
-- Evaluation board for MT6797(Helio X20):
- Required root node properties:
- - compatible = "mediatek,mt6797-evb", "mediatek,mt6797";
-- Mediatek X20 Development Board:
- Required root node properties:
- - compatible = "archermind,mt6797-x20-dev", "mediatek,mt6797";
-- Reference board variant 1 for MT7622:
- Required root node properties:
- - compatible = "mediatek,mt7622-rfb1", "mediatek,mt7622";
-- Bananapi BPI-R64 for MT7622:
- Required root node properties:
- - compatible = "bananapi,bpi-r64", "mediatek,mt7622";
-- Reference board for MT7623a with eMMC:
- Required root node properties:
- - compatible = "mediatek,mt7623a-rfb-emmc", "mediatek,mt7623";
-- Reference board for MT7623a with NAND:
- Required root node properties:
- - compatible = "mediatek,mt7623a-rfb-nand", "mediatek,mt7623";
-- Reference board for MT7623n with eMMC:
- Required root node properties:
- - compatible = "mediatek,mt7623n-rfb-emmc", "mediatek,mt7623";
-- Bananapi BPI-R2 board:
- - compatible = "bananapi,bpi-r2", "mediatek,mt7623";
-- Reference board for MT7629:
- Required root node properties:
- - compatible = "mediatek,mt7629-rfb", "mediatek,mt7629";
-- MTK mt8127 tablet moose EVB:
- Required root node properties:
- - compatible = "mediatek,mt8127-moose", "mediatek,mt8127";
-- MTK mt8135 tablet EVB:
- Required root node properties:
- - compatible = "mediatek,mt8135-evbp1", "mediatek,mt8135";
-- MTK mt8173 tablet EVB:
- Required root node properties:
- - compatible = "mediatek,mt8173-evb", "mediatek,mt8173";
-- Evaluation board for MT8183:
- Required root node properties:
- - compatible = "mediatek,mt8183-evb", "mediatek,mt8183";
diff --git a/Documentation/devicetree/bindings/arm/mediatek.yaml b/Documentation/devicetree/bindings/arm/mediatek.yaml
new file mode 100644
index 000000000000..4043c5046441
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/mediatek.yaml
@@ -0,0 +1,95 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/mediatek.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MediaTek SoC based Platforms Device Tree Bindings
+
+maintainers:
+ - Sean Wang <sean.wang@mediatek.com>
+ - Matthias Brugger <matthias.bgg@gmail.com>
+description: |
+ Boards with a MediaTek SoC shall have the following properties.
+
+properties:
+ $nodename:
+ const: '/'
+ compatible:
+ oneOf:
+ - items:
+ - enum:
+ - mediatek,mt2701-evb
+ - const: mediatek,mt2701
+
+ - items:
+ - enum:
+ - mediatek,mt2712-evb
+ - const: mediatek,mt2712
+ - items:
+ - enum:
+ - mediatek,mt6580-evbp1
+ - const: mediatek,mt6580
+ - items:
+ - enum:
+ - mundoreader,bq-aquaris5
+ - const: mediatek,mt6589
+ - items:
+ - enum:
+ - mediatek,mt6592-evb
+ - const: mediatek,mt6592
+ - items:
+ - enum:
+ - mediatek,mt6755-evb
+ - const: mediatek,mt6755
+ - items:
+ - enum:
+ - mediatek,mt6765-evb
+ - const: mediatek,mt6765
+ - items:
+ - enum:
+ - mediatek,mt6779-evb
+ - const: mediatek,mt6779
+ - items:
+ - enum:
+ - mediatek,mt6795-evb
+ - const: mediatek,mt6795
+ - items:
+ - enum:
+ - archermind,mt6797-x20-dev
+ - mediatek,mt6797-evb
+ - const: mediatek,mt6797
+ - items:
+ - enum:
+ - bananapi,bpi-r64
+ - mediatek,mt7622-rfb1
+ - const: mediatek,mt7622
+ - items:
+ - enum:
+ - mediatek,mt7623a-rfb-emmc
+ - mediatek,mt7623a-rfb-nand
+ - mediatek,mt7623n-rfb-emmc
+ - bananapi,bpi-r2
+ - const: mediatek,mt7623
+
+ - items:
+ - enum:
+ - mediatek,mt7629-rfb
+ - const: mediatek,mt7629
+ - items:
+ - enum:
+ - mediatek,mt8127-moose
+ - const: mediatek,mt8127
+ - items:
+ - enum:
+ - mediatek,mt8135-evbp1
+ - const: mediatek,mt8135
+ - items:
+ - enum:
+ - mediatek,mt8173-evb
+ - const: mediatek,mt8173
+ - items:
+ - enum:
+ - mediatek,mt8183-evb
+ - const: mediatek,mt8183
+...
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,apmixedsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,apmixedsys.txt
index 161e63a6c254..ff000ccade78 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,apmixedsys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,apmixedsys.txt
@@ -8,6 +8,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-apmixedsys"
- "mediatek,mt2712-apmixedsys", "syscon"
+ - "mediatek,mt6779-apmixedsys", "syscon"
- "mediatek,mt6797-apmixedsys"
- "mediatek,mt7622-apmixedsys"
- "mediatek,mt7623-apmixedsys", "mediatek,mt2701-apmixedsys"
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,audsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,audsys.txt
index f3cef1a6d95c..e4ca7b703123 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,audsys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,audsys.txt
@@ -7,9 +7,11 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-audsys", "syscon"
+ - "mediatek,mt6779-audio", "syscon"
- "mediatek,mt7622-audsys", "syscon"
- "mediatek,mt7623-audsys", "mediatek,mt2701-audsys", "syscon"
- "mediatek,mt8183-audiosys", "syscon"
+ - "mediatek,mt8516-audsys", "syscon"
- #clock-cells: Must be 1
The AUDSYS controller uses the common clk binding from
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,camsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,camsys.txt
index d8930f64aa98..1f4aaa15a37e 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,camsys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,camsys.txt
@@ -6,6 +6,7 @@ The MediaTek camsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be one of:
+ - "mediatek,mt6779-camsys", "syscon"
- "mediatek,mt8183-camsys", "syscon"
- #clock-cells: Must be 1
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,imgsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,imgsys.txt
index e3bc4a1e7a6e..2b693e343c56 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,imgsys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,imgsys.txt
@@ -8,6 +8,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-imgsys", "syscon"
- "mediatek,mt2712-imgsys", "syscon"
+ - "mediatek,mt6779-imgsys", "syscon"
- "mediatek,mt6797-imgsys", "syscon"
- "mediatek,mt7623-imgsys", "mediatek,mt2701-imgsys", "syscon"
- "mediatek,mt8173-imgsys", "syscon"
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,infracfg.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,infracfg.txt
index a90913988d7e..db2f4fd754e7 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,infracfg.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,infracfg.txt
@@ -9,6 +9,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-infracfg", "syscon"
- "mediatek,mt2712-infracfg", "syscon"
+ - "mediatek,mt6779-infracfg_ao", "syscon"
- "mediatek,mt6797-infracfg", "syscon"
- "mediatek,mt7622-infracfg", "syscon"
- "mediatek,mt7623-infracfg", "mediatek,mt2701-infracfg", "syscon"
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,ipesys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,ipesys.txt
new file mode 100644
index 000000000000..2ce889b023d9
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,ipesys.txt
@@ -0,0 +1,22 @@
+Mediatek ipesys controller
+============================
+
+The Mediatek ipesys controller provides various clocks to the system.
+
+Required Properties:
+
+- compatible: Should be one of:
+ - "mediatek,mt6779-ipesys", "syscon"
+- #clock-cells: Must be 1
+
+The ipesys controller uses the common clk binding from
+Documentation/devicetree/bindings/clock/clock-bindings.txt
+The available clocks are defined in dt-bindings/clock/mt*-clk.h.
+
+Example:
+
+ipesys: clock-controller@1b000000 {
+ compatible = "mediatek,mt6779-ipesys", "syscon";
+ reg = <0 0x1b000000 0 0x1000>;
+ #clock-cells = <1>;
+};
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,mfgcfg.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,mfgcfg.txt
index 72787e7dd227..ad5f9d2f6818 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,mfgcfg.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,mfgcfg.txt
@@ -7,6 +7,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2712-mfgcfg", "syscon"
+ - "mediatek,mt6779-mfgcfg", "syscon"
- "mediatek,mt8183-mfgcfg", "syscon"
- #clock-cells: Must be 1
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,mmsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,mmsys.txt
index 545eab717c96..301eefbe1618 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,mmsys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,mmsys.txt
@@ -8,6 +8,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-mmsys", "syscon"
- "mediatek,mt2712-mmsys", "syscon"
+ - "mediatek,mt6779-mmsys", "syscon"
- "mediatek,mt6797-mmsys", "syscon"
- "mediatek,mt7623-mmsys", "mediatek,mt2701-mmsys", "syscon"
- "mediatek,mt8173-mmsys", "syscon"
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,pericfg.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,pericfg.txt
index 4c7e478117a0..ecf027a9003a 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,pericfg.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,pericfg.txt
@@ -14,6 +14,7 @@ Required Properties:
- "mediatek,mt7629-pericfg", "syscon"
- "mediatek,mt8135-pericfg", "syscon"
- "mediatek,mt8173-pericfg", "syscon"
+ - "mediatek,mt8183-pericfg", "syscon"
- #clock-cells: Must be 1
- #reset-cells: Must be 1
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,topckgen.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,topckgen.txt
index a023b8338960..0293d693ce0c 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,topckgen.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,topckgen.txt
@@ -8,6 +8,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-topckgen"
- "mediatek,mt2712-topckgen", "syscon"
+ - "mediatek,mt6779-topckgen", "syscon"
- "mediatek,mt6797-topckgen"
- "mediatek,mt7622-topckgen"
- "mediatek,mt7623-topckgen", "mediatek,mt2701-topckgen"
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,vdecsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,vdecsys.txt
index 57176bb8dbb5..7894558b7a1c 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,vdecsys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,vdecsys.txt
@@ -8,6 +8,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2701-vdecsys", "syscon"
- "mediatek,mt2712-vdecsys", "syscon"
+ - "mediatek,mt6779-vdecsys", "syscon"
- "mediatek,mt6797-vdecsys", "syscon"
- "mediatek,mt7623-vdecsys", "mediatek,mt2701-vdecsys", "syscon"
- "mediatek,mt8173-vdecsys", "syscon"
diff --git a/Documentation/devicetree/bindings/arm/mediatek/mediatek,vencsys.txt b/Documentation/devicetree/bindings/arm/mediatek/mediatek,vencsys.txt
index c9faa6269087..6a6a14e15cd7 100644
--- a/Documentation/devicetree/bindings/arm/mediatek/mediatek,vencsys.txt
+++ b/Documentation/devicetree/bindings/arm/mediatek/mediatek,vencsys.txt
@@ -7,6 +7,7 @@ Required Properties:
- compatible: Should be one of:
- "mediatek,mt2712-vencsys", "syscon"
+ - "mediatek,mt6779-vencsys", "syscon"
- "mediatek,mt6797-vencsys", "syscon"
- "mediatek,mt8173-vencsys", "syscon"
- "mediatek,mt8183-vencsys", "syscon"
diff --git a/Documentation/devicetree/bindings/arm/moxart.txt b/Documentation/devicetree/bindings/arm/moxart.txt
deleted file mode 100644
index 11087edb0658..000000000000
--- a/Documentation/devicetree/bindings/arm/moxart.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-MOXA ART device tree bindings
-
-Boards with the MOXA ART SoC shall have the following properties:
-
-Required root node property:
-
-compatible = "moxa,moxart";
-
-Boards:
-
-- UC-7112-LX: embedded computer
- compatible = "moxa,moxart-uc-7112-lx", "moxa,moxart"
diff --git a/Documentation/devicetree/bindings/arm/moxart.yaml b/Documentation/devicetree/bindings/arm/moxart.yaml
new file mode 100644
index 000000000000..c068df59fad2
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/moxart.yaml
@@ -0,0 +1,19 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/moxart.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MOXA ART device tree bindings
+
+maintainers:
+ - Jonas Jensen <jonas.jensen@gmail.com>
+
+properties:
+ compatible:
+ description: UC-7112-LX embedded computer
+ items:
+ - const: moxa,moxart-uc-7112-lx
+ - const: moxa,moxart
+
+...
diff --git a/Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt b/Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt
deleted file mode 100644
index 56ec8ddc4a3b..000000000000
--- a/Documentation/devicetree/bindings/arm/nxp/lpc32xx.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-NXP LPC32xx Platforms Device Tree Bindings
-------------------------------------------
-
-Boards with the NXP LPC32xx SoC shall have the following properties:
-
-Required root node property:
-
-compatible: must be "nxp,lpc3220", "nxp,lpc3230", "nxp,lpc3240" or "nxp,lpc3250"
diff --git a/Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml b/Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml
new file mode 100644
index 000000000000..07f39d3eee7e
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/nxp/lpc32xx.yaml
@@ -0,0 +1,25 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/nxp/lpc32xx.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NXP LPC32xx Platforms Device Tree Bindings
+
+maintainers:
+ - Roland Stigge <stigge@antcom.de>
+
+properties:
+ compatible:
+ oneOf:
+ - enum:
+ - nxp,lpc3220
+ - nxp,lpc3230
+ - nxp,lpc3240
+ - items:
+ - enum:
+ - ea,ea3250
+ - phytec,phy3250
+ - const: nxp,lpc3250
+
+...
diff --git a/Documentation/devicetree/bindings/arm/omap/omap.txt b/Documentation/devicetree/bindings/arm/omap/omap.txt
index 1c1e48fd94b5..b301f753ed2c 100644
--- a/Documentation/devicetree/bindings/arm/omap/omap.txt
+++ b/Documentation/devicetree/bindings/arm/omap/omap.txt
@@ -160,6 +160,9 @@ Boards:
- AM335X phyCORE-AM335x: Development kit
compatible = "phytec,am335x-pcm-953", "phytec,am335x-phycore-som", "ti,am33xx"
+- AM335x phyBOARD-REGOR: Single Board Computer
+ compatible = "phytec,am335x-regor", "phytec,am335x-phycore-som", "ti,am33xx"
+
- AM335X UC-8100-ME-T: Communication-centric industrial computing platform
compatible = "moxa,uc-8100-me-t", "ti,am33xx";
diff --git a/Documentation/devicetree/bindings/arm/psci.txt b/Documentation/devicetree/bindings/arm/psci.txt
deleted file mode 100644
index a2c4f1d52492..000000000000
--- a/Documentation/devicetree/bindings/arm/psci.txt
+++ /dev/null
@@ -1,111 +0,0 @@
-* Power State Coordination Interface (PSCI)
-
-Firmware implementing the PSCI functions described in ARM document number
-ARM DEN 0022A ("Power State Coordination Interface System Software on ARM
-processors") can be used by Linux to initiate various CPU-centric power
-operations.
-
-Issue A of the specification describes functions for CPU suspend, hotplug
-and migration of secure software.
-
-Functions are invoked by trapping to the privilege level of the PSCI
-firmware (specified as part of the binding below) and passing arguments
-in a manner similar to that specified by AAPCS:
-
- r0 => 32-bit Function ID / return value
- {r1 - r3} => Parameters
-
-Note that the immediate field of the trapping instruction must be set
-to #0.
-
-
-Main node required properties:
-
- - compatible : should contain at least one of:
-
- * "arm,psci" : For implementations complying to PSCI versions prior
- to 0.2.
- For these cases function IDs must be provided.
-
- * "arm,psci-0.2" : For implementations complying to PSCI 0.2.
- Function IDs are not required and should be ignored by
- an OS with PSCI 0.2 support, but are permitted to be
- present for compatibility with existing software when
- "arm,psci" is later in the compatible list.
-
- * "arm,psci-1.0" : For implementations complying to PSCI 1.0.
- PSCI 1.0 is backward compatible with PSCI 0.2 with
- minor specification updates, as defined in the PSCI
- specification[2].
-
- - method : The method of calling the PSCI firmware. Permitted
- values are:
-
- "smc" : SMC #0, with the register assignments specified
- in this binding.
-
- "hvc" : HVC #0, with the register assignments specified
- in this binding.
-
-Main node optional properties:
-
- - cpu_suspend : Function ID for CPU_SUSPEND operation
-
- - cpu_off : Function ID for CPU_OFF operation
-
- - cpu_on : Function ID for CPU_ON operation
-
- - migrate : Function ID for MIGRATE operation
-
-Device tree nodes that require usage of PSCI CPU_SUSPEND function (ie idle
-state nodes, as per bindings in [1]) must specify the following properties:
-
-- arm,psci-suspend-param
- Usage: Required for state nodes[1] if the corresponding
- idle-states node entry-method property is set
- to "psci".
- Value type: <u32>
- Definition: power_state parameter to pass to the PSCI
- suspend call.
-
-Example:
-
-Case 1: PSCI v0.1 only.
-
- psci {
- compatible = "arm,psci";
- method = "smc";
- cpu_suspend = <0x95c10000>;
- cpu_off = <0x95c10001>;
- cpu_on = <0x95c10002>;
- migrate = <0x95c10003>;
- };
-
-Case 2: PSCI v0.2 only
-
- psci {
- compatible = "arm,psci-0.2";
- method = "smc";
- };
-
-Case 3: PSCI v0.2 and PSCI v0.1.
-
- A DTB may provide IDs for use by kernels without PSCI 0.2 support,
- enabling firmware and hypervisors to support existing and new kernels.
- These IDs will be ignored by kernels with PSCI 0.2 support, which will
- use the standard PSCI 0.2 IDs exclusively.
-
- psci {
- compatible = "arm,psci-0.2", "arm,psci";
- method = "hvc";
-
- cpu_on = < arbitrary value >;
- cpu_off = < arbitrary value >;
-
- ...
- };
-
-[1] Kernel documentation - ARM idle states bindings
- Documentation/devicetree/bindings/arm/idle-states.txt
-[2] Power State Coordination Interface (PSCI) specification
- http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
diff --git a/Documentation/devicetree/bindings/arm/psci.yaml b/Documentation/devicetree/bindings/arm/psci.yaml
new file mode 100644
index 000000000000..7abdf58b335e
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/psci.yaml
@@ -0,0 +1,163 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/psci.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Power State Coordination Interface (PSCI)
+
+maintainers:
+ - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
+
+description: |+
+ Firmware implementing the PSCI functions described in ARM document number
+ ARM DEN 0022A ("Power State Coordination Interface System Software on ARM
+ processors") can be used by Linux to initiate various CPU-centric power
+ operations.
+
+ Issue A of the specification describes functions for CPU suspend, hotplug
+ and migration of secure software.
+
+ Functions are invoked by trapping to the privilege level of the PSCI
+ firmware (specified as part of the binding below) and passing arguments
+ in a manner similar to that specified by AAPCS:
+
+ r0 => 32-bit Function ID / return value
+ {r1 - r3} => Parameters
+
+ Note that the immediate field of the trapping instruction must be set
+ to #0.
+
+ [2] Power State Coordination Interface (PSCI) specification
+ http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
+
+properties:
+ compatible:
+ oneOf:
+ - description:
+ For implementations complying to PSCI versions prior to 0.2.
+ const: arm,psci
+
+ - description:
+ For implementations complying to PSCI 0.2.
+ const: arm,psci-0.2
+
+ - description:
+ For implementations complying to PSCI 0.2.
+ Function IDs are not required and should be ignored by an OS with
+ PSCI 0.2 support, but are permitted to be present for compatibility
+ with existing software when "arm,psci" is later in the compatible
+ list.
+ items:
+ - const: arm,psci-0.2
+ - const: arm,psci
+
+ - description:
+ For implementations complying to PSCI 1.0.
+ const: arm,psci-1.0
+
+ - description:
+ For implementations complying to PSCI 1.0.
+ PSCI 1.0 is backward compatible with PSCI 0.2 with minor
+ specification updates, as defined in the PSCI specification[2].
+ items:
+ - const: arm,psci-1.0
+ - const: arm,psci-0.2
+
+ method:
+ description: The method of calling the PSCI firmware.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/string-array
+ - enum:
+ # SMC #0, with the register assignments specified in this binding.
+ - smc
+ # HVC #0, with the register assignments specified in this binding.
+ - hvc
+
+ cpu_suspend:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for CPU_SUSPEND operation
+
+ cpu_off:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for CPU_OFF operation
+
+ cpu_on:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for CPU_ON operation
+
+ migrate:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Function ID for MIGRATE operation
+
+ arm,psci-suspend-param:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: |
+ power_state parameter to pass to the PSCI suspend call.
+
+ Device tree nodes that require usage of PSCI CPU_SUSPEND function (ie
+ idle state nodes with entry-method property is set to "psci", as per
+ bindings in [1]) must specify this property.
+
+ [1] Kernel documentation - ARM idle states bindings
+ Documentation/devicetree/bindings/arm/idle-states.txt
+
+
+required:
+ - compatible
+ - method
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: arm,psci
+ then:
+ required:
+ - cpu_off
+ - cpu_on
+
+examples:
+ - |+
+
+ // Case 1: PSCI v0.1 only.
+
+ psci {
+ compatible = "arm,psci";
+ method = "smc";
+ cpu_suspend = <0x95c10000>;
+ cpu_off = <0x95c10001>;
+ cpu_on = <0x95c10002>;
+ migrate = <0x95c10003>;
+ };
+
+ - |+
+
+ // Case 2: PSCI v0.2 only
+
+ psci {
+ compatible = "arm,psci-0.2";
+ method = "smc";
+ };
+
+
+ - |+
+
+ // Case 3: PSCI v0.2 and PSCI v0.1.
+
+ /*
+ * A DTB may provide IDs for use by kernels without PSCI 0.2 support,
+ * enabling firmware and hypervisors to support existing and new kernels.
+ * These IDs will be ignored by kernels with PSCI 0.2 support, which will
+ * use the standard PSCI 0.2 IDs exclusively.
+ */
+
+ psci {
+ compatible = "arm,psci-0.2", "arm,psci";
+ method = "hvc";
+
+ cpu_on = <0x95c10002>;
+ cpu_off = <0x95c10001>;
+ };
+...
diff --git a/Documentation/devicetree/bindings/arm/qcom.yaml b/Documentation/devicetree/bindings/arm/qcom.yaml
index f6316ab66385..e39d8f02e33c 100644
--- a/Documentation/devicetree/bindings/arm/qcom.yaml
+++ b/Documentation/devicetree/bindings/arm/qcom.yaml
@@ -45,6 +45,7 @@ description: |
mtp
sbc
hk01
+ qrd
The 'soc_version' and 'board_version' elements take the form of v<Major>.<Minor>
where the minor number may be omitted when it's zero, i.e. v1.0 is the same
@@ -102,14 +103,35 @@ properties:
- const: qcom,msm8960
- items:
+ - enum:
+ - fairphone,fp2
+ - lge,hammerhead
+ - sony,xperia-amami
+ - sony,xperia-castor
+ - sony,xperia-honami
+ - const: qcom,msm8974
+
+ - items:
- const: qcom,msm8916-mtp/1
- const: qcom,msm8916-mtp
- const: qcom,msm8916
- items:
+ - enum:
+ - longcheer,l8150
+ - samsung,a3u-eur
+ - samsung,a5u-eur
+ - const: qcom,msm8916
+
+ - items:
- const: qcom,msm8996-mtp
- items:
+ - enum:
+ - qcom,ipq4019-ap-dk04.1-c3
+ - qcom,ipq4019-ap-dk07.1-c1
+ - qcom,ipq4019-ap-dk07.1-c2
+ - qcom,ipq4019-dk04.1-c1
- const: qcom,ipq4019
- items:
diff --git a/Documentation/devicetree/bindings/arm/rda.txt b/Documentation/devicetree/bindings/arm/rda.txt
deleted file mode 100644
index 43c80762c428..000000000000
--- a/Documentation/devicetree/bindings/arm/rda.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-RDA Micro platforms device tree bindings
-----------------------------------------
-
-RDA8810PL SoC
-=============
-
-Required root node properties:
-
- - compatible : must contain "rda,8810pl"
-
-
-Boards:
-
-Root node property compatible must contain, depending on board:
-
- - Orange Pi 2G-IoT: "xunlong,orangepi-2g-iot"
- - Orange Pi i96: "xunlong,orangepi-i96"
diff --git a/Documentation/devicetree/bindings/arm/rda.yaml b/Documentation/devicetree/bindings/arm/rda.yaml
new file mode 100644
index 000000000000..51cec2b63b04
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/rda.yaml
@@ -0,0 +1,20 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/rda.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: RDA Micro platforms device tree bindings
+
+maintainers:
+ - Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
+
+properties:
+ compatible:
+ items:
+ - enum:
+ - xunlong,orangepi-2g-iot # Orange Pi 2G-IoT
+ - xunlong,orangepi-i96 # Orange Pi i96
+ - const: rda,8810pl
+
+...
diff --git a/Documentation/devicetree/bindings/arm/realtek.txt b/Documentation/devicetree/bindings/arm/realtek.txt
deleted file mode 100644
index 95839e19ae92..000000000000
--- a/Documentation/devicetree/bindings/arm/realtek.txt
+++ /dev/null
@@ -1,22 +0,0 @@
-Realtek platforms device tree bindings
---------------------------------------
-
-
-RTD1295 SoC
-===========
-
-Required root node properties:
-
- - compatible : must contain "realtek,rtd1295"
-
-
-Root node property compatible must contain, depending on board:
-
- - MeLE V9: "mele,v9"
- - ProBox2 AVA: "probox2,ava"
- - Zidoo X9S: "zidoo,x9s"
-
-
-Example:
-
- compatible = "zidoo,x9s", "realtek,rtd1295";
diff --git a/Documentation/devicetree/bindings/arm/realtek.yaml b/Documentation/devicetree/bindings/arm/realtek.yaml
new file mode 100644
index 000000000000..3528b61963b4
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/realtek.yaml
@@ -0,0 +1,23 @@
+# SPDX-License-Identifier: GPL-2.0-or-later OR BSD-2-Clause
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/realtek.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Realtek platforms device tree bindings
+
+maintainers:
+ - Andreas Färber <afaerber@suse.de>
+
+properties:
+ $nodename:
+ const: '/'
+ compatible:
+ # RTD1295 SoC based boards
+ items:
+ - enum:
+ - mele,v9
+ - probox2,ava
+ - zidoo,x9s
+ - const: realtek,rtd1295
+...
diff --git a/Documentation/devicetree/bindings/arm/renesas.yaml b/Documentation/devicetree/bindings/arm/renesas.yaml
index 19f379863d50..28eb458f761a 100644
--- a/Documentation/devicetree/bindings/arm/renesas.yaml
+++ b/Documentation/devicetree/bindings/arm/renesas.yaml
@@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
-$id: http://devicetree.org/schemas/arm/shmobile.yaml#
+$id: http://devicetree.org/schemas/arm/renesas.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Renesas SH-Mobile, R-Mobile, and R-Car Platform Device Tree Bindings
@@ -106,6 +106,14 @@ properties:
- description: RZ/G2M (R8A774A1)
items:
+ - enum:
+ - hoperun,hihope-rzg2m # HopeRun HiHope RZ/G2M platform
+ - const: renesas,r8a774a1
+
+ - items:
+ - enum:
+ - hoperun,hihope-rzg2-ex # HopeRun expansion board for HiHope RZ/G2 platforms
+ - const: hoperun,hihope-rzg2m
- const: renesas,r8a774a1
- description: RZ/G2E (R8A774C0)
diff --git a/Documentation/devicetree/bindings/arm/rockchip.yaml b/Documentation/devicetree/bindings/arm/rockchip.yaml
index 5c6bbf10abc9..c82c5e57d44c 100644
--- a/Documentation/devicetree/bindings/arm/rockchip.yaml
+++ b/Documentation/devicetree/bindings/arm/rockchip.yaml
@@ -128,6 +128,21 @@ properties:
- const: google,veyron
- const: rockchip,rk3288
+ - description: Google Fievel (AOPEN Chromebox Mini)
+ items:
+ - const: google,veyron-fievel-rev8
+ - const: google,veyron-fievel-rev7
+ - const: google,veyron-fievel-rev6
+ - const: google,veyron-fievel-rev5
+ - const: google,veyron-fievel-rev4
+ - const: google,veyron-fievel-rev3
+ - const: google,veyron-fievel-rev2
+ - const: google,veyron-fievel-rev1
+ - const: google,veyron-fievel-rev0
+ - const: google,veyron-fievel
+ - const: google,veyron
+ - const: rockchip,rk3288
+
- description: Google Gru (dev-board)
items:
- const: google,gru-rev15
@@ -311,11 +326,49 @@ properties:
- const: google,veyron
- const: rockchip,rk3288
+ - description: Google Tiger (AOpen Chromebase Mini)
+ items:
+ - const: google,veyron-tiger-rev8
+ - const: google,veyron-tiger-rev7
+ - const: google,veyron-tiger-rev6
+ - const: google,veyron-tiger-rev5
+ - const: google,veyron-tiger-rev4
+ - const: google,veyron-tiger-rev3
+ - const: google,veyron-tiger-rev2
+ - const: google,veyron-tiger-rev1
+ - const: google,veyron-tiger-rev0
+ - const: google,veyron-tiger
+ - const: google,veyron
+ - const: rockchip,rk3288
+
- description: Haoyu MarsBoard RK3066
items:
- const: haoyu,marsboard-rk3066
- const: rockchip,rk3066a
+ - description: Hugsun X99 TV Box
+ items:
+ - const: hugsun,x99
+ - const: rockchip,rk3399
+
+ - description: Khadas Edge series boards
+ items:
+ - enum:
+ - khadas,edge
+ - khadas,edge-captain
+ - khadas,edge-v
+ - const: rockchip,rk3399
+
+ - description: Mecer Xtreme Mini S6
+ items:
+ - const: mecer,xms6
+ - const: rockchip,rk3229
+
+ - description: Leez RK3399 P710
+ items:
+ - const: leez,p710
+ - const: rockchip,rk3399
+
- description: mqmaker MiQi
items:
- const: mqmaker,miqi
@@ -411,11 +464,6 @@ properties:
- rockchip,rk3288-evb-rk808
- const: rockchip,rk3288
- - description: Rockchip RK3288 Fennec
- items:
- - const: rockchip,rk3288-fennec
- - const: rockchip,rk3288
-
- description: Rockchip RK3328 Evaluation board
items:
- const: rockchip,rk3328-evb
diff --git a/Documentation/devicetree/bindings/arm/socionext/milbeaut.yaml b/Documentation/devicetree/bindings/arm/socionext/milbeaut.yaml
index aae53fc3cb1e..2bd519d2e855 100644
--- a/Documentation/devicetree/bindings/arm/socionext/milbeaut.yaml
+++ b/Documentation/devicetree/bindings/arm/socionext/milbeaut.yaml
@@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
-$id: http://devicetree.org/schemas/arm/milbeaut.yaml#
+$id: http://devicetree.org/schemas/arm/socionext/milbeaut.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Milbeaut platforms device tree bindings
diff --git a/Documentation/devicetree/bindings/arm/stm32/mlahb.txt b/Documentation/devicetree/bindings/arm/stm32/mlahb.txt
new file mode 100644
index 000000000000..25307aa1eb9b
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/stm32/mlahb.txt
@@ -0,0 +1,37 @@
+ML-AHB interconnect bindings
+
+These bindings describe the STM32 SoCs ML-AHB interconnect bus which connects
+a Cortex-M subsystem with dedicated memories.
+The MCU SRAM and RETRAM memory parts can be accessed through different addresses
+(see "RAM aliases" in [1]) using different buses (see [2]) : balancing the
+Cortex-M firmware accesses among those ports allows to tune the system
+performance.
+
+[1]: https://www.st.com/resource/en/reference_manual/dm00327659.pdf
+[2]: https://wiki.st.com/stm32mpu/wiki/STM32MP15_RAM_mapping
+
+Required properties:
+- compatible: should be "simple-bus"
+- dma-ranges: describes memory addresses translation between the local CPU and
+ the remote Cortex-M processor. Each memory region, is declared with
+ 3 parameters:
+ - param 1: device base address (Cortex-M processor address)
+ - param 2: physical base address (local CPU address)
+ - param 3: size of the memory region.
+
+The Cortex-M remote processor accessed via the mlahb interconnect is described
+by a child node.
+
+Example:
+mlahb {
+ compatible = "simple-bus";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ dma-ranges = <0x00000000 0x38000000 0x10000>,
+ <0x10000000 0x10000000 0x60000>,
+ <0x30000000 0x30000000 0x60000>;
+
+ m4_rproc: m4@10000000 {
+ ...
+ };
+};
diff --git a/Documentation/devicetree/bindings/arm/stm32/stm32.txt b/Documentation/devicetree/bindings/arm/stm32/stm32.txt
deleted file mode 100644
index 6808ed9ddfd5..000000000000
--- a/Documentation/devicetree/bindings/arm/stm32/stm32.txt
+++ /dev/null
@@ -1,10 +0,0 @@
-STMicroelectronics STM32 Platforms Device Tree Bindings
-
-Each device tree must specify which STM32 SoC it uses,
-using one of the following compatible strings:
-
- st,stm32f429
- st,stm32f469
- st,stm32f746
- st,stm32h743
- st,stm32mp157
diff --git a/Documentation/devicetree/bindings/arm/stm32/stm32.yaml b/Documentation/devicetree/bindings/arm/stm32/stm32.yaml
new file mode 100644
index 000000000000..4d194f1eb03a
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/stm32/stm32.yaml
@@ -0,0 +1,31 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/stm32/stm32.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: STMicroelectronics STM32 Platforms Device Tree Bindings
+
+maintainers:
+ - Alexandre Torgue <alexandre.torgue@st.com>
+
+properties:
+ compatible:
+ oneOf:
+ - items:
+ - const: st,stm32f429
+
+ - items:
+ - const: st,stm32f469
+
+ - items:
+ - const: st,stm32f746
+
+ - items:
+ - const: st,stm32h743
+
+ - items:
+ - enum:
+ - arrow,stm32mp157a-avenger96 # Avenger96
+ - const: st,stm32mp157
+...
diff --git a/Documentation/devicetree/bindings/arm/sunxi.yaml b/Documentation/devicetree/bindings/arm/sunxi.yaml
index 285f4fc8519d..972b1e9ee804 100644
--- a/Documentation/devicetree/bindings/arm/sunxi.yaml
+++ b/Documentation/devicetree/bindings/arm/sunxi.yaml
@@ -263,7 +263,7 @@ properties:
- description: ICNova A20 SWAC
items:
- - const: swac,icnova-a20-swac
+ - const: incircuit,icnova-a20-swac
- const: incircuit,icnova-a20
- const: allwinner,sun7i-a20
@@ -353,6 +353,12 @@ properties:
- const: licheepi,licheepi-zero
- const: allwinner,sun8i-v3s
+ - description: Lichee Zero Plus (with S3, without eMMC/SPI Flash)
+ items:
+ - const: sipeed,lichee-zero-plus
+ - const: sochip,s3
+ - const: allwinner,sun8i-v3
+
- description: Linksprite PCDuino
items:
- const: linksprite,a10-pcduino
@@ -568,6 +574,11 @@ properties:
- const: olimex,a64-olinuxino
- const: allwinner,sun50i-a64
+ - description: Olimex A64-OlinuXino (with eMMC)
+ items:
+ - const: olimex,a64-olinuxino-emmc
+ - const: allwinner,sun50i-a64
+
- description: Olimex A64 Teres-I
items:
- const: olimex,a64-teres-i
@@ -671,6 +682,11 @@ properties:
- const: sinlinx,sina33
- const: allwinner,sun8i-a33
+ - description: Tanix TX6
+ items:
+ - const: oranth,tanix-tx6
+ - const: allwinner,sun50i-h6
+
- description: TBS A711 Tablet
items:
- const: tbs-biometrics,a711
diff --git a/Documentation/devicetree/bindings/arm/ti/k3.txt b/Documentation/devicetree/bindings/arm/ti/k3.txt
index 6a059cabb2da..333e7256126a 100644
--- a/Documentation/devicetree/bindings/arm/ti/k3.txt
+++ b/Documentation/devicetree/bindings/arm/ti/k3.txt
@@ -13,6 +13,9 @@ architecture it uses, using one of the following compatible values:
- AM654
compatible = "ti,am654";
+- J721E
+ compatible = "ti,j721e";
+
Boards
------
diff --git a/Documentation/devicetree/bindings/arm/ti/ti,davinci.yaml b/Documentation/devicetree/bindings/arm/ti/ti,davinci.yaml
index 4326d2cfa15d..a8765ba29476 100644
--- a/Documentation/devicetree/bindings/arm/ti/ti,davinci.yaml
+++ b/Documentation/devicetree/bindings/arm/ti/ti,davinci.yaml
@@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
-$id: http://devicetree.org/schemas/arm/ti/davinci.yaml#
+$id: http://devicetree.org/schemas/arm/ti/ti,davinci.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Texas Instruments DaVinci Platforms Device Tree Bindings
diff --git a/Documentation/devicetree/bindings/arm/xen.txt b/Documentation/devicetree/bindings/arm/xen.txt
index c9b9321434ea..db5c56db30ec 100644
--- a/Documentation/devicetree/bindings/arm/xen.txt
+++ b/Documentation/devicetree/bindings/arm/xen.txt
@@ -54,7 +54,7 @@ hypervisor {
};
The format and meaning of the "xen,uefi-*" parameters are similar to those in
-Documentation/arm/uefi.txt, which are provided by the regular UEFI stub. However
+Documentation/arm/uefi.rst, which are provided by the regular UEFI stub. However
they differ because they are provided by the Xen hypervisor, together with a set
of UEFI runtime services implemented via hypercalls, see
http://xenbits.xen.org/docs/unstable/hypercall/x86_64/include,public,platform.h.html.
diff --git a/Documentation/devicetree/bindings/ata/ahci-platform.txt b/Documentation/devicetree/bindings/ata/ahci-platform.txt
index e30fd106df4f..55c6fab1b373 100644
--- a/Documentation/devicetree/bindings/ata/ahci-platform.txt
+++ b/Documentation/devicetree/bindings/ata/ahci-platform.txt
@@ -45,7 +45,7 @@ Required properties when using sub-nodes:
- #address-cells : number of cells to encode an address
- #size-cells : number of cells representing the size of an address
-For allwinner,sun8i-r40-ahci, the reset propertie must be present.
+For allwinner,sun8i-r40-ahci, the reset property must be present.
Sub-nodes required properties:
- reg : the port number
diff --git a/Documentation/devicetree/bindings/bus/allwinner,sun50i-a64-de2.yaml b/Documentation/devicetree/bindings/bus/allwinner,sun50i-a64-de2.yaml
new file mode 100644
index 000000000000..d2a872286437
--- /dev/null
+++ b/Documentation/devicetree/bindings/bus/allwinner,sun50i-a64-de2.yaml
@@ -0,0 +1,85 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bus/allwinner,sun50i-a64-de2.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A64 Display Engine Bus Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ $nodename:
+ pattern: "^bus(@[0-9a-f]+)?$"
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 1
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun50i-a64-de2
+ - items:
+ - const: allwinner,sun50i-h6-de3
+ - const: allwinner,sun50i-a64-de2
+
+ reg:
+ maxItems: 1
+
+ allwinner,sram:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/phandle-array
+ - maxItems: 1
+ description:
+ The SRAM that needs to be claimed to access the display engine
+ bus.
+
+ ranges: true
+
+patternProperties:
+ # All other properties should be child nodes with unit-address and 'reg'
+ "^[a-zA-Z][a-zA-Z0-9,+\\-._]{0,63}@[0-9a-fA-F]+$":
+ type: object
+ properties:
+ reg:
+ maxItems: 1
+
+ required:
+ - reg
+
+required:
+ - compatible
+ - reg
+ - "#address-cells"
+ - "#size-cells"
+ - ranges
+ - allwinner,sram
+
+additionalProperties: false
+
+examples:
+ - |
+ bus@1000000 {
+ compatible = "allwinner,sun50i-a64-de2";
+ reg = <0x1000000 0x400000>;
+ allwinner,sram = <&de2_sram 1>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0 0x1000000 0x400000>;
+
+ display_clocks: clock@0 {
+ compatible = "allwinner,sun50i-a64-de2-clk";
+ reg = <0x0 0x100000>;
+ clocks = <&ccu 52>, <&ccu 99>;
+ clock-names = "bus", "mod";
+ resets = <&ccu 30>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml b/Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml
new file mode 100644
index 000000000000..be32f087c529
--- /dev/null
+++ b/Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml
@@ -0,0 +1,80 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bus/allwinner,sun8i-a23-rsb.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A23 RSB Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun8i-a23-rsb
+ - items:
+ - const: allwinner,sun8i-a83t-rsb
+ - const: allwinner,sun8i-a23-rsb
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ clock-frequency:
+ minimum: 1
+ maximum: 20000000
+
+patternProperties:
+ "^.*@[0-9a-fA-F]+$":
+ type: object
+ properties:
+ reg:
+ maxItems: 1
+
+ required:
+ - reg
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - resets
+
+examples:
+ - |
+ rsb@1f03400 {
+ compatible = "allwinner,sun8i-a23-rsb";
+ reg = <0x01f03400 0x400>;
+ interrupts = <0 39 4>;
+ clocks = <&apb0_gates 3>;
+ clock-frequency = <3000000>;
+ resets = <&apb0_rst 3>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ pmic@3e3 {
+ compatible = "...";
+ reg = <0x3e3>;
+
+ /* ... */
+ };
+ };
+
+additionalProperties: false
diff --git a/Documentation/devicetree/bindings/bus/imx-weim.txt b/Documentation/devicetree/bindings/bus/imx-weim.txt
index dda7d6d66479..1b1d1c5c21ea 100644
--- a/Documentation/devicetree/bindings/bus/imx-weim.txt
+++ b/Documentation/devicetree/bindings/bus/imx-weim.txt
@@ -44,6 +44,10 @@ Optional properties:
what bootloader sets up in IOMUXC_GPR1[11:0] will be
used.
+ - fsl,burst-clk-enable For "fsl,imx50-weim" and "fsl,imx6q-weim" type of
+ devices, the presence of this property indicates that
+ the weim bus should operate in Burst Clock Mode.
+
Timing property for child nodes. It is mandatory, not optional.
- fsl,weim-cs-timing: The timing array, contains timing values for the
diff --git a/Documentation/devicetree/bindings/bus/moxtet.txt b/Documentation/devicetree/bindings/bus/moxtet.txt
new file mode 100644
index 000000000000..fb50fc865336
--- /dev/null
+++ b/Documentation/devicetree/bindings/bus/moxtet.txt
@@ -0,0 +1,46 @@
+Turris Mox module status and configuration bus (over SPI)
+
+Required properties:
+ - compatible : Should be "cznic,moxtet"
+ - #address-cells : Has to be 1
+ - #size-cells : Has to be 0
+ - spi-cpol : Required inverted clock polarity
+ - spi-cpha : Required shifted clock phase
+ - interrupts : Must contain reference to the shared interrupt line
+ - interrupt-controller : Required
+ - #interrupt-cells : Has to be 1
+
+For other required and optional properties of SPI slave nodes please refer to
+../spi/spi-bus.txt.
+
+Required properties of subnodes:
+ - reg : Should be position on the Moxtet bus (how many Moxtet
+ modules are between this module and CPU module, so
+ either 0 or a positive integer)
+
+The driver finds the devices connected to the bus by itself, but it may be
+needed to reference some of them from other parts of the device tree. In that
+case the devices can be defined as subnodes of the moxtet node.
+
+Example:
+
+ moxtet@1 {
+ compatible = "cznic,moxtet";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <1>;
+ spi-max-frequency = <10000000>;
+ spi-cpol;
+ spi-cpha;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ interrupt-parent = <&gpiosb>;
+ interrupts = <5 IRQ_TYPE_EDGE_FALLING>;
+
+ moxtet_sfp: gpio@0 {
+ compatible = "cznic,moxtet-gpio";
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0>;
+ }
+ };
diff --git a/Documentation/devicetree/bindings/bus/qcom,ebi2.txt b/Documentation/devicetree/bindings/bus/qcom,ebi2.txt
index 5a7d567f6833..5058aa2c63b2 100644
--- a/Documentation/devicetree/bindings/bus/qcom,ebi2.txt
+++ b/Documentation/devicetree/bindings/bus/qcom,ebi2.txt
@@ -71,7 +71,7 @@ Optional subnodes:
The following optional properties are properties that can be tagged onto
any device subnode. We are assuming that there can be only ONE device per
-chipselect subnode, else the properties will become ambigous.
+chipselect subnode, else the properties will become ambiguous.
Optional properties arrays for SLOW chip selects:
- qcom,xmem-recovery-cycles: recovery cycles is the time the memory continues to
diff --git a/Documentation/devicetree/bindings/bus/sun50i-de2-bus.txt b/Documentation/devicetree/bindings/bus/sun50i-de2-bus.txt
deleted file mode 100644
index b9d533717dff..000000000000
--- a/Documentation/devicetree/bindings/bus/sun50i-de2-bus.txt
+++ /dev/null
@@ -1,40 +0,0 @@
-Device tree bindings for Allwinner DE2/3 bus
-
-The Allwinner A64 DE2 is on a special bus, which needs a SRAM region (SRAM C)
-to be claimed for enabling the access. The DE3 on Allwinner H6 is at the same
-situation, and the binding also applies.
-
-Required properties:
-
- - compatible: Should be one of:
- - "allwinner,sun50i-a64-de2"
- - "allwinner,sun50i-h6-de3", "allwinner,sun50i-a64-de2"
- - reg: A resource specifier for the register space
- - #address-cells: Must be set to 1
- - #size-cells: Must be set to 1
- - ranges: Must be set up to map the address space inside the
- DE2, for the sub-blocks of DE2.
- - allwinner,sram: the SRAM that needs to be claimed
-
-Example:
-
- de2@1000000 {
- compatible = "allwinner,sun50i-a64-de2";
- reg = <0x1000000 0x400000>;
- allwinner,sram = <&de2_sram 1>;
- #address-cells = <1>;
- #size-cells = <1>;
- ranges = <0 0x1000000 0x400000>;
-
- display_clocks: clock@0 {
- compatible = "allwinner,sun50i-a64-de2-clk";
- reg = <0x0 0x100000>;
- clocks = <&ccu CLK_DE>,
- <&ccu CLK_BUS_DE>;
- clock-names = "mod",
- "bus";
- resets = <&ccu RST_BUS_DE>;
- #clock-cells = <1>;
- #reset-cells = <1>;
- };
- };
diff --git a/Documentation/devicetree/bindings/bus/sunxi-rsb.txt b/Documentation/devicetree/bindings/bus/sunxi-rsb.txt
deleted file mode 100644
index eb3ed628c6f1..000000000000
--- a/Documentation/devicetree/bindings/bus/sunxi-rsb.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Allwinner Reduced Serial Bus (RSB) controller
-
-The RSB controller found on later Allwinner SoCs is an SMBus like 2 wire
-serial bus with 1 master and up to 15 slaves. It is represented by a node
-for the controller itself, and child nodes representing the slave devices.
-
-Required properties :
-
- - reg : Offset and length of the register set for the controller.
- - compatible : Shall be "allwinner,sun8i-a23-rsb".
- - interrupts : The interrupt line associated to the RSB controller.
- - clocks : The gate clk associated to the RSB controller.
- - resets : The reset line associated to the RSB controller.
- - #address-cells : shall be 1
- - #size-cells : shall be 0
-
-Optional properties :
-
- - clock-frequency : Desired RSB bus clock frequency in Hz. Maximum is 20MHz.
- If not set this defaults to 3MHz.
-
-Child nodes:
-
-An RSB controller node can contain zero or more child nodes representing
-slave devices on the bus. Child 'reg' properties should contain the slave
-device's hardware address. The hardware address is hardwired in the device,
-which can normally be found in the datasheet.
-
-Example:
-
- rsb@1f03400 {
- compatible = "allwinner,sun8i-a23-rsb";
- reg = <0x01f03400 0x400>;
- interrupts = <0 39 4>;
- clocks = <&apb0_gates 3>;
- clock-frequency = <3000000>;
- resets = <&apb0_rst 3>;
- #address-cells = <1>;
- #size-cells = <0>;
-
- pmic@3e3 {
- compatible = "...";
- reg = <0x3e3>;
-
- /* ... */
- };
- };
diff --git a/Documentation/devicetree/bindings/clock/allwinner,sun4i-a10-ccu.yaml b/Documentation/devicetree/bindings/clock/allwinner,sun4i-a10-ccu.yaml
new file mode 100644
index 000000000000..64938fdaea55
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/allwinner,sun4i-a10-ccu.yaml
@@ -0,0 +1,142 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/clock/allwinner,sun4i-a10-ccu.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner Clock Control Unit Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#clock-cells":
+ const: 1
+
+ "#reset-cells":
+ const: 1
+
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-ccu
+ - allwinner,sun5i-a10s-ccu
+ - allwinner,sun5i-a13-ccu
+ - allwinner,sun6i-a31-ccu
+ - allwinner,sun7i-a20-ccu
+ - allwinner,sun8i-a23-ccu
+ - allwinner,sun8i-a33-ccu
+ - allwinner,sun8i-a83t-ccu
+ - allwinner,sun8i-a83t-r-ccu
+ - allwinner,sun8i-h3-ccu
+ - allwinner,sun8i-h3-r-ccu
+ - allwinner,sun8i-r40-ccu
+ - allwinner,sun8i-v3-ccu
+ - allwinner,sun8i-v3s-ccu
+ - allwinner,sun9i-a80-ccu
+ - allwinner,sun50i-a64-ccu
+ - allwinner,sun50i-a64-r-ccu
+ - allwinner,sun50i-h5-ccu
+ - allwinner,sun50i-h6-ccu
+ - allwinner,sun50i-h6-r-ccu
+ - allwinner,suniv-f1c100s-ccu
+ - nextthing,gr8-ccu
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ minItems: 2
+ maxItems: 4
+ items:
+ - description: High Frequency Oscillator (usually at 24MHz)
+ - description: Low Frequency Oscillator (usually at 32kHz)
+ - description: Internal Oscillator
+ - description: Peripherals PLL
+
+ clock-names:
+ minItems: 2
+ maxItems: 4
+ items:
+ - const: hosc
+ - const: losc
+ - const: iosc
+ - const: pll-periph
+
+required:
+ - "#clock-cells"
+ - "#reset-cells"
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+
+if:
+ properties:
+ compatible:
+ enum:
+ - allwinner,sun8i-a83t-r-ccu
+ - allwinner,sun8i-h3-r-ccu
+ - allwinner,sun50i-a64-r-ccu
+ - allwinner,sun50i-h6-r-ccu
+
+then:
+ properties:
+ clocks:
+ minItems: 4
+ maxItems: 4
+
+ clock-names:
+ minItems: 4
+ maxItems: 4
+
+else:
+ if:
+ properties:
+ compatible:
+ const: allwinner,sun50i-h6-ccu
+
+ then:
+ properties:
+ clocks:
+ minItems: 3
+ maxItems: 3
+
+ clock-names:
+ minItems: 3
+ maxItems: 3
+
+ else:
+ properties:
+ clocks:
+ minItems: 2
+ maxItems: 2
+
+ clock-names:
+ minItems: 2
+ maxItems: 2
+
+additionalProperties: false
+
+examples:
+ - |
+ ccu: clock@1c20000 {
+ compatible = "allwinner,sun8i-h3-ccu";
+ reg = <0x01c20000 0x400>;
+ clocks = <&osc24M>, <&osc32k>;
+ clock-names = "hosc", "losc";
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ };
+
+ - |
+ r_ccu: clock@1f01400 {
+ compatible = "allwinner,sun50i-a64-r-ccu";
+ reg = <0x01f01400 0x100>;
+ clocks = <&osc24M>, <&osc32k>, <&iosc>, <&ccu 11>;
+ clock-names = "hosc", "losc", "iosc", "pll-periph";
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/clock/amlogic,axg-audio-clkc.txt b/Documentation/devicetree/bindings/clock/amlogic,axg-audio-clkc.txt
index 0f777749f4f1..b3957d10d241 100644
--- a/Documentation/devicetree/bindings/clock/amlogic,axg-audio-clkc.txt
+++ b/Documentation/devicetree/bindings/clock/amlogic,axg-audio-clkc.txt
@@ -22,6 +22,7 @@ Required Properties:
components.
- resets : phandle of the internal reset line
- #clock-cells : should be 1.
+- #reset-cells : should be 1 on the g12a (and following) soc family
Each clock is assigned an identifier and client nodes can use this identifier
to specify the clock which they consume. All available clocks are defined as
diff --git a/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt b/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt
index 5c8b105be4d6..7ccecd5c02c1 100644
--- a/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt
+++ b/Documentation/devicetree/bindings/clock/amlogic,gxbb-clkc.txt
@@ -10,6 +10,8 @@ Required Properties:
"amlogic,gxl-clkc" for GXL and GXM SoC,
"amlogic,axg-clkc" for AXG SoC.
"amlogic,g12a-clkc" for G12A SoC.
+ "amlogic,g12b-clkc" for G12B SoC.
+ "amlogic,sm1-clkc" for SM1 SoC.
- clocks : list of clock phandle, one for each entry clock-names.
- clock-names : should contain the following:
* "xtal": the platform xtal
diff --git a/Documentation/devicetree/bindings/clock/at91-clock.txt b/Documentation/devicetree/bindings/clock/at91-clock.txt
index b520280e33ff..13f45db3b66d 100644
--- a/Documentation/devicetree/bindings/clock/at91-clock.txt
+++ b/Documentation/devicetree/bindings/clock/at91-clock.txt
@@ -9,10 +9,11 @@ Slow Clock controller:
Required properties:
- compatible : shall be one of the following:
"atmel,at91sam9x5-sckc",
- "atmel,sama5d3-sckc" or
- "atmel,sama5d4-sckc":
+ "atmel,sama5d3-sckc",
+ "atmel,sama5d4-sckc" or
+ "microchip,sam9x60-sckc":
at91 SCKC (Slow Clock Controller)
-- #clock-cells : shall be 0.
+- #clock-cells : shall be 1 for "microchip,sam9x60-sckc" otherwise shall be 0.
- clocks : shall be the input parent clock phandle for the clock.
Optional properties:
diff --git a/Documentation/devicetree/bindings/clock/brcm,bcm2835-cprman.txt b/Documentation/devicetree/bindings/clock/brcm,bcm2835-cprman.txt
index dd906db34b32..9e0b03a6519b 100644
--- a/Documentation/devicetree/bindings/clock/brcm,bcm2835-cprman.txt
+++ b/Documentation/devicetree/bindings/clock/brcm,bcm2835-cprman.txt
@@ -12,7 +12,9 @@ clock generators, but a few (like the ARM or HDMI) will source from
the PLL dividers directly.
Required properties:
-- compatible: Should be "brcm,bcm2835-cprman"
+- compatible: should be one of the following,
+ "brcm,bcm2711-cprman"
+ "brcm,bcm2835-cprman"
- #clock-cells: Should be <1>. The permitted clock-specifier values can be
found in include/dt-bindings/clock/bcm2835.h
- reg: Specifies base physical address and size of the registers
diff --git a/Documentation/devicetree/bindings/clock/brcm,bcm63xx-clocks.txt b/Documentation/devicetree/bindings/clock/brcm,bcm63xx-clocks.txt
new file mode 100644
index 000000000000..3041657e2f96
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/brcm,bcm63xx-clocks.txt
@@ -0,0 +1,22 @@
+Gated Clock Controller Bindings for MIPS based BCM63XX SoCs
+
+Required properties:
+- compatible: must be one of:
+ "brcm,bcm3368-clocks"
+ "brcm,bcm6328-clocks"
+ "brcm,bcm6358-clocks"
+ "brcm,bcm6362-clocks"
+ "brcm,bcm6368-clocks"
+ "brcm,bcm63268-clocks"
+
+- reg: Address and length of the register set
+- #clock-cells: must be <1>
+
+
+Example:
+
+clkctl: clock-controller@10000004 {
+ compatible = "brcm,bcm6328-clocks";
+ reg = <0x10000004 0x4>;
+ #clock-cells = <1>;
+};
diff --git a/Documentation/devicetree/bindings/clock/cirrus,lochnagar.txt b/Documentation/devicetree/bindings/clock/cirrus,lochnagar.txt
index b8d8ef3bdc5f..52a064c789ee 100644
--- a/Documentation/devicetree/bindings/clock/cirrus,lochnagar.txt
+++ b/Documentation/devicetree/bindings/clock/cirrus,lochnagar.txt
@@ -40,6 +40,7 @@ Optional properties:
input audio clocks from host system.
- ln-psia1-mclk, ln-psia2-mclk : Optional input audio clocks from
external connector.
+ - ln-spdif-mclk : Optional input audio clock from SPDIF.
- ln-spdif-clkout : Optional input audio clock from SPDIF.
- ln-adat-mclk : Optional input audio clock from ADAT.
- ln-pmic-32k : On board fixed clock.
diff --git a/Documentation/devicetree/bindings/clock/imx8mn-clock.yaml b/Documentation/devicetree/bindings/clock/imx8mn-clock.yaml
new file mode 100644
index 000000000000..622f3658bd9f
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/imx8mn-clock.yaml
@@ -0,0 +1,112 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bindings/clock/imx8mn-clock.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NXP i.MX8M Nano Clock Control Module Binding
+
+maintainers:
+ - Anson Huang <Anson.Huang@nxp.com>
+
+description: |
+ NXP i.MX8M Nano clock control module is an integrated clock controller, which
+ generates and supplies to all modules.
+
+properties:
+ compatible:
+ const: fsl,imx8mn-ccm
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: 32k osc
+ - description: 24m osc
+ - description: ext1 clock input
+ - description: ext2 clock input
+ - description: ext3 clock input
+ - description: ext4 clock input
+
+ clock-names:
+ items:
+ - const: osc_32k
+ - const: osc_24m
+ - const: clk_ext1
+ - const: clk_ext2
+ - const: clk_ext3
+ - const: clk_ext4
+
+ '#clock-cells':
+ const: 1
+ description: |
+ The clock consumer should specify the desired clock by having the clock
+ ID in its "clocks" phandle cell. See include/dt-bindings/clock/imx8mn-clock.h
+ for the full list of i.MX8M Nano clock IDs.
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - '#clock-cells'
+
+examples:
+ # Clock Control Module node:
+ - |
+ clk: clock-controller@30380000 {
+ compatible = "fsl,imx8mn-ccm";
+ reg = <0x0 0x30380000 0x0 0x10000>;
+ #clock-cells = <1>;
+ clocks = <&osc_32k>, <&osc_24m>, <&clk_ext1>,
+ <&clk_ext2>, <&clk_ext3>, <&clk_ext4>;
+ clock-names = "osc_32k", "osc_24m", "clk_ext1",
+ "clk_ext2", "clk_ext3", "clk_ext4";
+ };
+
+ # Required external clocks for Clock Control Module node:
+ - |
+ osc_32k: clock-osc-32k {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <32768>;
+ clock-output-names = "osc_32k";
+ };
+
+ osc_24m: clock-osc-24m {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <24000000>;
+ clock-output-names = "osc_24m";
+ };
+
+ clk_ext1: clock-ext1 {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <133000000>;
+ clock-output-names = "clk_ext1";
+ };
+
+ clk_ext2: clock-ext2 {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <133000000>;
+ clock-output-names = "clk_ext2";
+ };
+
+ clk_ext3: clock-ext3 {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <133000000>;
+ clock-output-names = "clk_ext3";
+ };
+
+ clk_ext4: clock-ext4 {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency= <133000000>;
+ clock-output-names = "clk_ext4";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt b/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
index 796c260c183d..d8f5c490f893 100644
--- a/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
+++ b/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
@@ -59,6 +59,7 @@ Required properties:
"marvell,dove-core-clock" - for Dove SoC core clocks
"marvell,kirkwood-core-clock" - for Kirkwood SoC (except mv88f6180)
"marvell,mv88f6180-core-clock" - for Kirkwood MV88f6180 SoC
+ "marvell,mv98dx1135-core-clock" - for Kirkwood 98dx1135 SoC
"marvell,mv88f5181-core-clock" - for Orion MV88F5181 SoC
"marvell,mv88f5182-core-clock" - for Orion MV88F5182 SoC
"marvell,mv88f5281-core-clock" - for Orion MV88F5281 SoC
diff --git a/Documentation/devicetree/bindings/clock/qcom,gcc.txt b/Documentation/devicetree/bindings/clock/qcom,gcc.txt
index 8661c3cd3ccf..d14362ad4132 100644
--- a/Documentation/devicetree/bindings/clock/qcom,gcc.txt
+++ b/Documentation/devicetree/bindings/clock/qcom,gcc.txt
@@ -23,6 +23,7 @@ Required properties :
"qcom,gcc-sdm630"
"qcom,gcc-sdm660"
"qcom,gcc-sdm845"
+ "qcom,gcc-sm8150"
- reg : shall contain base register location and length
- #clock-cells : shall contain 1
@@ -38,6 +39,13 @@ Documentation/devicetree/bindings/thermal/qcom-tsens.txt
- protected-clocks : Protected clock specifier list as per common clock
binding.
+For SM8150 only:
+ - clocks: a list of phandles and clock-specifier pairs,
+ one for each entry in clock-names.
+ - clock-names: "bi_tcxo" (required)
+ "sleep_clk" (optional)
+ "aud_ref_clock" (optional)
+
Example:
clock-controller@900000 {
compatible = "qcom,gcc-msm8960";
@@ -71,3 +79,16 @@ Example of GCC with protected-clocks properties:
<GCC_LPASS_Q6_AXI_CLK>,
<GCC_LPASS_SWAY_CLK>;
};
+
+Example of GCC with clocks
+ gcc: clock-controller@100000 {
+ compatible = "qcom,gcc-sm8150";
+ reg = <0x00100000 0x1f0000>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ #power-domain-cells = <1>;
+ clock-names = "bi_tcxo",
+ "sleep_clk";
+ clocks = <&rpmcc RPM_SMD_XO_CLK_SRC>,
+ <&sleep_clk>;
+ };
diff --git a/Documentation/devicetree/bindings/clock/qcom,gpucc.txt b/Documentation/devicetree/bindings/clock/qcom,gpucc.txt
index 4e5215ef1acd..269afe8a757e 100644
--- a/Documentation/devicetree/bindings/clock/qcom,gpucc.txt
+++ b/Documentation/devicetree/bindings/clock/qcom,gpucc.txt
@@ -2,13 +2,15 @@ Qualcomm Graphics Clock & Reset Controller Binding
--------------------------------------------------
Required properties :
-- compatible : shall contain "qcom,sdm845-gpucc"
+- compatible : shall contain "qcom,sdm845-gpucc" or "qcom,msm8998-gpucc"
- reg : shall contain base register location and length
- #clock-cells : from common clock binding, shall contain 1
- #reset-cells : from common reset binding, shall contain 1
- #power-domain-cells : from generic power domain binding, shall contain 1
- clocks : shall contain the XO clock
+ shall contain the gpll0 out main clock (msm8998)
- clock-names : shall be "xo"
+ shall be "gpll0" (msm8998)
Example:
gpucc: clock-controller@5090000 {
diff --git a/Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt b/Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt
index 3c007653da31..365bbde599b1 100644
--- a/Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt
+++ b/Documentation/devicetree/bindings/clock/qcom,rpmh-clk.txt
@@ -6,9 +6,14 @@ some Qualcomm Technologies Inc. SoCs. It accepts clock requests from
other hardware subsystems via RSC to control clocks.
Required properties :
-- compatible : shall contain "qcom,sdm845-rpmh-clk"
+- compatible : must be one of:
+ "qcom,sdm845-rpmh-clk"
+ "qcom,sm8150-rpmh-clk"
- #clock-cells : must contain 1
+- clocks: a list of phandles and clock-specifier pairs,
+ one for each entry in clock-names.
+- clock-names: Parent board clock: "xo".
Example :
diff --git a/Documentation/devicetree/bindings/clock/emev2-clock.txt b/Documentation/devicetree/bindings/clock/renesas,emev2-smu.txt
index 268ca615459e..268ca615459e 100644
--- a/Documentation/devicetree/bindings/clock/emev2-clock.txt
+++ b/Documentation/devicetree/bindings/clock/renesas,emev2-smu.txt
diff --git a/Documentation/devicetree/bindings/clock/renesas,r9a06g032-sysctrl.txt b/Documentation/devicetree/bindings/clock/renesas,r9a06g032-sysctrl.txt
index d60b99756bb9..aed713cf0831 100644
--- a/Documentation/devicetree/bindings/clock/renesas,r9a06g032-sysctrl.txt
+++ b/Documentation/devicetree/bindings/clock/renesas,r9a06g032-sysctrl.txt
@@ -13,6 +13,7 @@ Required Properties:
- external (optional) RGMII_REFCLK
- clock-names: Must be:
clock-names = "mclk", "rtc", "jtag", "rgmii_ref_ext";
+ - #power-domain-cells: Must be 0
Examples
--------
@@ -27,6 +28,7 @@ Examples
clocks = <&ext_mclk>, <&ext_rtc_clk>,
<&ext_jtag_clk>, <&ext_rgmii_ref>;
clock-names = "mclk", "rtc", "jtag", "rgmii_ref_ext";
+ #power-domain-cells = <0>;
};
- Other nodes can use the clocks provided by SYSCTRL as in:
@@ -38,6 +40,7 @@ Examples
interrupts = <GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
- clocks = <&sysctrl R9A06G032_CLK_UART0>;
- clock-names = "baudclk";
+ clocks = <&sysctrl R9A06G032_CLK_UART0>, <&sysctrl R9A06G032_HCLK_UART0>;
+ clock-names = "baudclk", "apb_pclk";
+ power-domains = <&sysctrl>;
};
diff --git a/Documentation/devicetree/bindings/clock/rockchip,rk3308-cru.txt b/Documentation/devicetree/bindings/clock/rockchip,rk3308-cru.txt
new file mode 100644
index 000000000000..9b151c5b0c90
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/rockchip,rk3308-cru.txt
@@ -0,0 +1,60 @@
+* Rockchip RK3308 Clock and Reset Unit
+
+The RK3308 clock controller generates and supplies clock to various
+controllers within the SoC and also implements a reset controller for SoC
+peripherals.
+
+Required Properties:
+
+- compatible: CRU should be "rockchip,rk3308-cru"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- #clock-cells: should be 1.
+- #reset-cells: should be 1.
+
+Optional Properties:
+
+- rockchip,grf: phandle to the syscon managing the "general register files"
+ If missing, pll rates are not changeable, due to the missing pll lock status.
+
+Each clock is assigned an identifier and client nodes can use this identifier
+to specify the clock which they consume. All available clocks are defined as
+preprocessor macros in the dt-bindings/clock/rk3308-cru.h headers and can be
+used in device tree sources. Similar macros exist for the reset sources in
+these files.
+
+External clocks:
+
+There are several clocks that are generated outside the SoC. It is expected
+that they are defined using standard clock bindings with following
+clock-output-names:
+ - "xin24m" - crystal input - required,
+ - "xin32k" - rtc clock - optional,
+ - "mclk_i2s0_8ch_in", "mclk_i2s1_8ch_in", "mclk_i2s2_8ch_in",
+ "mclk_i2s3_8ch_in", "mclk_i2s0_2ch_in",
+ "mclk_i2s1_2ch_in" - external I2S or SPDIF clock - optional,
+ - "mac_clkin" - external MAC clock - optional
+
+Example: Clock controller node:
+
+ cru: clock-controller@ff500000 {
+ compatible = "rockchip,rk3308-cru";
+ reg = <0x0 0xff500000 0x0 0x1000>;
+ rockchip,grf = <&grf>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+ };
+
+Example: UART controller node that consumes the clock generated by the clock
+ controller:
+
+ uart0: serial@ff0a0000 {
+ compatible = "rockchip,rk3308-uart", "snps,dw-apb-uart";
+ reg = <0x0 0xff0a0000 0x0 0x100>;
+ interrupts = <GIC_SPI 18 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cru SCLK_UART0>, <&cru PCLK_UART0>;
+ clock-names = "baudclk", "apb_pclk";
+ reg-shift = <2>;
+ reg-io-width = <4>;
+ status = "disabled";
+ };
diff --git a/Documentation/devicetree/bindings/clock/silabs,si5341.txt b/Documentation/devicetree/bindings/clock/silabs,si5341.txt
new file mode 100644
index 000000000000..a70c333e4cd4
--- /dev/null
+++ b/Documentation/devicetree/bindings/clock/silabs,si5341.txt
@@ -0,0 +1,162 @@
+Binding for Silicon Labs Si5341 and Si5340 programmable i2c clock generator.
+
+Reference
+[1] Si5341 Data Sheet
+ https://www.silabs.com/documents/public/data-sheets/Si5341-40-D-DataSheet.pdf
+[2] Si5341 Reference Manual
+ https://www.silabs.com/documents/public/reference-manuals/Si5341-40-D-RM.pdf
+
+The Si5341 and Si5340 are programmable i2c clock generators with up to 10 output
+clocks. The chip contains a PLL that sources 5 (or 4) multisynth clocks, which
+in turn can be directed to any of the 10 (or 4) outputs through a divider.
+The internal structure of the clock generators can be found in [2].
+
+The driver can be used in "as is" mode, reading the current settings from the
+chip at boot, in case you have a (pre-)programmed device. If the PLL is not
+configured when the driver probes, it assumes the driver must fully initialize
+it.
+
+The device type, speed grade and revision are determined runtime by probing.
+
+The driver currently only supports XTAL input mode, and does not support any
+fancy input configurations. They can still be programmed into the chip and
+the driver will leave them "as is".
+
+==I2C device node==
+
+Required properties:
+- compatible: shall be one of the following:
+ "silabs,si5340" - Si5340 A/B/C/D
+ "silabs,si5341" - Si5341 A/B/C/D
+- reg: i2c device address, usually 0x74
+- #clock-cells: from common clock binding; shall be set to 2.
+ The first value is "0" for outputs, "1" for synthesizers.
+ The second value is the output or synthesizer index.
+- clocks: from common clock binding; list of parent clock handles,
+ corresponding to inputs. Use a fixed clock for the "xtal" input.
+ At least one must be present.
+- clock-names: One of: "xtal", "in0", "in1", "in2"
+- vdd-supply: Regulator node for VDD
+
+Optional properties:
+- vdda-supply: Regulator node for VDDA
+- vdds-supply: Regulator node for VDDS
+- silabs,pll-m-num, silabs,pll-m-den: Numerator and denominator for PLL
+ feedback divider. Must be such that the PLL output is in the valid range. For
+ example, to create 14GHz from a 48MHz xtal, use m-num=14000 and m-den=48. Only
+ the fraction matters, using 3500 and 12 will deliver the exact same result.
+ If these are not specified, and the PLL is not yet programmed when the driver
+ probes, the PLL will be set to 14GHz.
+- silabs,reprogram: When present, the driver will always assume the device must
+ be initialized, and always performs the soft-reset routine. Since this will
+ temporarily stop all output clocks, don't do this if the chip is generating
+ the CPU clock for example.
+- interrupts: Interrupt for INTRb pin.
+- #address-cells: shall be set to 1.
+- #size-cells: shall be set to 0.
+
+
+== Child nodes: Outputs ==
+
+The child nodes list the output clocks.
+
+Each of the clock outputs can be overwritten individually by using a child node.
+If a child node for a clock output is not set, the configuration remains
+unchanged.
+
+Required child node properties:
+- reg: number of clock output.
+
+Optional child node properties:
+- vdd-supply: Regulator node for VDD for this output. The driver selects default
+ values for common-mode and amplitude based on the voltage.
+- silabs,format: Output format, one of:
+ 1 = differential (defaults to LVDS levels)
+ 2 = low-power (defaults to HCSL levels)
+ 4 = LVCMOS
+- silabs,common-mode: Manually override output common mode, see [2] for values
+- silabs,amplitude: Manually override output amplitude, see [2] for values
+- silabs,synth-master: boolean. If present, this output is allowed to change the
+ multisynth frequency dynamically.
+- silabs,silabs,disable-high: boolean. If set, the clock output is driven HIGH
+ when disabled, otherwise it's driven LOW.
+
+==Example==
+
+/* 48MHz reference crystal */
+ref48: ref48M {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <48000000>;
+};
+
+i2c-master-node {
+ /* Programmable clock (for logic) */
+ si5341: clock-generator@74 {
+ reg = <0x74>;
+ compatible = "silabs,si5341";
+ #clock-cells = <2>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ clocks = <&ref48>;
+ clock-names = "xtal";
+
+ silabs,pll-m-num = <14000>; /* PLL at 14.0 GHz */
+ silabs,pll-m-den = <48>;
+ silabs,reprogram; /* Chips are not programmed, always reset */
+
+ out@0 {
+ reg = <0>;
+ silabs,format = <1>; /* LVDS 3v3 */
+ silabs,common-mode = <3>;
+ silabs,amplitude = <3>;
+ silabs,synth-master;
+ };
+
+ /*
+ * Output 6 configuration:
+ * LVDS 1v8
+ */
+ out@6 {
+ reg = <6>;
+ silabs,format = <1>; /* LVDS 1v8 */
+ silabs,common-mode = <13>;
+ silabs,amplitude = <3>;
+ };
+
+ /*
+ * Output 8 configuration:
+ * HCSL 3v3
+ */
+ out@8 {
+ reg = <8>;
+ silabs,format = <2>;
+ silabs,common-mode = <11>;
+ silabs,amplitude = <3>;
+ };
+ };
+};
+
+some-video-node {
+ /* Standard clock bindings */
+ clock-names = "pixel";
+ clocks = <&si5341 0 7>; /* Output 7 */
+
+ /* Set output 7 to use syntesizer 3 as its parent */
+ assigned-clocks = <&si5341 0 7>, <&si5341 1 3>;
+ assigned-clock-parents = <&si5341 1 3>;
+ /* Set output 7 to 148.5 MHz using a synth frequency of 594 MHz */
+ assigned-clock-rates = <148500000>, <594000000>;
+};
+
+some-audio-node {
+ clock-names = "i2s-clk";
+ clocks = <&si5341 0 0>;
+ /*
+ * since output 0 is a synth-master, the synth will be automatically set
+ * to an appropriate frequency when the audio driver requests another
+ * frequency. We give control over synth 2 to this output here.
+ */
+ assigned-clocks = <&si5341 0 0>;
+ assigned-clock-parents = <&si5341 1 2>;
+};
diff --git a/Documentation/devicetree/bindings/clock/sunxi-ccu.txt b/Documentation/devicetree/bindings/clock/sunxi-ccu.txt
deleted file mode 100644
index e3bd88ae456b..000000000000
--- a/Documentation/devicetree/bindings/clock/sunxi-ccu.txt
+++ /dev/null
@@ -1,62 +0,0 @@
-Allwinner Clock Control Unit Binding
-------------------------------------
-
-Required properties :
-- compatible: must contain one of the following compatibles:
- - "allwinner,sun4i-a10-ccu"
- - "allwinner,sun5i-a10s-ccu"
- - "allwinner,sun5i-a13-ccu"
- - "allwinner,sun6i-a31-ccu"
- - "allwinner,sun7i-a20-ccu"
- - "allwinner,sun8i-a23-ccu"
- - "allwinner,sun8i-a33-ccu"
- - "allwinner,sun8i-a83t-ccu"
- - "allwinner,sun8i-a83t-r-ccu"
- - "allwinner,sun8i-h3-ccu"
- - "allwinner,sun8i-h3-r-ccu"
-+ - "allwinner,sun8i-r40-ccu"
- - "allwinner,sun8i-v3s-ccu"
- - "allwinner,sun9i-a80-ccu"
- - "allwinner,sun50i-a64-ccu"
- - "allwinner,sun50i-a64-r-ccu"
- - "allwinner,sun50i-h5-ccu"
- - "allwinner,sun50i-h6-ccu"
- - "allwinner,sun50i-h6-r-ccu"
- - "allwinner,suniv-f1c100s-ccu"
- - "nextthing,gr8-ccu"
-
-- reg: Must contain the registers base address and length
-- clocks: phandle to the oscillators feeding the CCU. Two are needed:
- - "hosc": the high frequency oscillator (usually at 24MHz)
- - "losc": the low frequency oscillator (usually at 32kHz)
- On the A83T, this is the internal 16MHz oscillator divided by 512
-- clock-names: Must contain the clock names described just above
-- #clock-cells : must contain 1
-- #reset-cells : must contain 1
-
-For the main CCU on H6, one more clock is needed:
-- "iosc": the SoC's internal frequency oscillator
-
-For the PRCM CCUs on A83T/H3/A64/H6, two more clocks are needed:
-- "pll-periph": the SoC's peripheral PLL from the main CCU
-- "iosc": the SoC's internal frequency oscillator
-
-Example for generic CCU:
-ccu: clock@1c20000 {
- compatible = "allwinner,sun8i-h3-ccu";
- reg = <0x01c20000 0x400>;
- clocks = <&osc24M>, <&osc32k>;
- clock-names = "hosc", "losc";
- #clock-cells = <1>;
- #reset-cells = <1>;
-};
-
-Example for PRCM CCU:
-r_ccu: clock@1f01400 {
- compatible = "allwinner,sun50i-a64-r-ccu";
- reg = <0x01f01400 0x100>;
- clocks = <&osc24M>, <&osc32k>, <&iosc>, <&ccu CLK_PLL_PERIPH0>;
- clock-names = "hosc", "losc", "iosc", "pll-periph";
- #clock-cells = <1>;
- #reset-cells = <1>;
-};
diff --git a/Documentation/devicetree/bindings/clock/ti,cdce925.txt b/Documentation/devicetree/bindings/clock/ti,cdce925.txt
index 0d01f2d5cc36..26544c85202a 100644
--- a/Documentation/devicetree/bindings/clock/ti,cdce925.txt
+++ b/Documentation/devicetree/bindings/clock/ti,cdce925.txt
@@ -24,6 +24,8 @@ Required properties:
Optional properties:
- xtal-load-pf: Crystal load-capacitor value to fine-tune performance on a
board, or to compensate for external influences.
+- vdd-supply: A regulator node for Vdd
+- vddout-supply: A regulator node for Vddout
For all PLL1, PLL2, ... an optional child node can be used to specify spread
spectrum clocking parameters for a board.
@@ -41,6 +43,8 @@ Example:
clocks = <&xtal_27Mhz>;
#clock-cells = <1>;
xtal-load-pf = <5>;
+ vdd-supply = <&1v8-reg>;
+ vddout-supply = <&3v3-reg>;
/* PLL options to get SSC 1% centered */
PLL2 {
spread-spectrum = <4>;
diff --git a/Documentation/devicetree/bindings/common-properties.txt b/Documentation/devicetree/bindings/common-properties.txt
index a3448bfa1c82..98a28130e100 100644
--- a/Documentation/devicetree/bindings/common-properties.txt
+++ b/Documentation/devicetree/bindings/common-properties.txt
@@ -5,30 +5,29 @@ Endianness
----------
The Devicetree Specification does not define any properties related to hardware
-byteswapping, but endianness issues show up frequently in porting Linux to
+byte swapping, but endianness issues show up frequently in porting drivers to
different machine types. This document attempts to provide a consistent
-way of handling byteswapping across drivers.
+way of handling byte swapping across drivers.
Optional properties:
- big-endian: Boolean; force big endian register accesses
unconditionally (e.g. ioread32be/iowrite32be). Use this if you
- know the peripheral always needs to be accessed in BE mode.
+ know the peripheral always needs to be accessed in big endian (BE) mode.
- little-endian: Boolean; force little endian register accesses
unconditionally (e.g. readl/writel). Use this if you know the
- peripheral always needs to be accessed in LE mode.
+ peripheral always needs to be accessed in little endian (LE) mode.
- native-endian: Boolean; always use register accesses matched to the
endianness of the kernel binary (e.g. LE vmlinux -> readl/writel,
- BE vmlinux -> ioread32be/iowrite32be). In this case no byteswaps
+ BE vmlinux -> ioread32be/iowrite32be). In this case no byte swaps
will ever be performed. Use this if the hardware "self-adjusts"
register endianness based on the CPU's configured endianness.
If a binding supports these properties, then the binding should also
specify the default behavior if none of these properties are present.
In such cases, little-endian is the preferred default, but it is not
-a requirement. The of_device_is_big_endian() and of_fdt_is_big_endian()
-helper functions do assume that little-endian is the default, because
-most existing (PCI-based) drivers implicitly default to LE by using
-readl/writel for MMIO accesses.
+a requirement. Some implementations assume that little-endian is
+the default, because most existing (PCI-based) drivers implicitly
+default to LE for their MMIO accesses.
Examples:
Scenario 1 : CPU in LE mode & device in LE mode.
diff --git a/Documentation/devicetree/bindings/connector/usb-connector.txt b/Documentation/devicetree/bindings/connector/usb-connector.txt
index cef556d4e5ee..d357987181ee 100644
--- a/Documentation/devicetree/bindings/connector/usb-connector.txt
+++ b/Documentation/devicetree/bindings/connector/usb-connector.txt
@@ -17,6 +17,20 @@ Optional properties:
- self-powered: Set this property if the usb device that has its own power
source.
+Optional properties for usb-b-connector:
+- id-gpios: an input gpio for USB ID pin.
+- vbus-gpios: an input gpio for USB VBUS pin, used to detect presence of
+ VBUS 5V.
+ see gpio/gpio.txt.
+- vbus-supply: a phandle to the regulator for USB VBUS if needed when host
+ mode or dual role mode is supported.
+ Particularly, if use an output GPIO to control a VBUS regulator, should
+ model it as a regulator.
+ see regulator/fixed-regulator.yaml
+- pinctrl-names : a pinctrl state named "default" is optional
+- pinctrl-0 : pin control group
+ see pinctrl/pinctrl-bindings.txt
+
Optional properties for usb-c-connector:
- power-role: should be one of "source", "sink" or "dual"(DRP) if typec
connector has power support.
diff --git a/Documentation/devicetree/bindings/arm/topology.txt b/Documentation/devicetree/bindings/cpu/cpu-topology.txt
index b0d80c0fb265..99918189403c 100644
--- a/Documentation/devicetree/bindings/arm/topology.txt
+++ b/Documentation/devicetree/bindings/cpu/cpu-topology.txt
@@ -1,21 +1,19 @@
===========================================
-ARM topology binding description
+CPU topology binding description
===========================================
===========================================
1 - Introduction
===========================================
-In an ARM system, the hierarchy of CPUs is defined through three entities that
+In a SMP system, the hierarchy of CPUs is defined through three entities that
are used to describe the layout of physical CPUs in the system:
+- socket
- cluster
- core
- thread
-The cpu nodes (bindings defined in [1]) represent the devices that
-correspond to physical CPUs and are to be mapped to the hierarchy levels.
-
The bottom hierarchy level sits at core or thread level depending on whether
symmetric multi-threading (SMT) is supported or not.
@@ -24,33 +22,31 @@ threads existing in the system and map to the hierarchy level "thread" above.
In systems where SMT is not supported "cpu" nodes represent all cores present
in the system and map to the hierarchy level "core" above.
-ARM topology bindings allow one to associate cpu nodes with hierarchical groups
+CPU topology bindings allow one to associate cpu nodes with hierarchical groups
corresponding to the system hierarchy; syntactically they are defined as device
tree nodes.
-The remainder of this document provides the topology bindings for ARM, based
-on the Devicetree Specification, available from:
+Currently, only ARM/RISC-V intend to use this cpu topology binding but it may be
+used for any other architecture as well.
-https://www.devicetree.org/specifications/
+The cpu nodes, as per bindings defined in [4], represent the devices that
+correspond to physical CPUs and are to be mapped to the hierarchy levels.
-If not stated otherwise, whenever a reference to a cpu node phandle is made its
-value must point to a cpu node compliant with the cpu node bindings as
-documented in [1].
A topology description containing phandles to cpu nodes that are not compliant
-with bindings standardized in [1] is therefore considered invalid.
+with bindings standardized in [4] is therefore considered invalid.
===========================================
2 - cpu-map node
===========================================
-The ARM CPU topology is defined within the cpu-map node, which is a direct
+The ARM/RISC-V CPU topology is defined within the cpu-map node, which is a direct
child of the cpus node and provides a container where the actual topology
nodes are listed.
- cpu-map node
- Usage: Optional - On ARM SMP systems provide CPUs topology to the OS.
- ARM uniprocessor systems do not require a topology
+ Usage: Optional - On SMP systems provide CPUs topology to the OS.
+ Uniprocessor systems do not require a topology
description and therefore should not define a
cpu-map node.
@@ -63,21 +59,23 @@ nodes are listed.
The cpu-map node's child nodes can be:
- - one or more cluster nodes
+ - one or more cluster nodes or
+ - one or more socket nodes in a multi-socket system
Any other configuration is considered invalid.
-The cpu-map node can only contain three types of child nodes:
+The cpu-map node can only contain 4 types of child nodes:
+- socket node
- cluster node
- core node
- thread node
whose bindings are described in paragraph 3.
-The nodes describing the CPU topology (cluster/core/thread) can only
-be defined within the cpu-map node and every core/thread in the system
-must be defined within the topology. Any other configuration is
+The nodes describing the CPU topology (socket/cluster/core/thread) can
+only be defined within the cpu-map node and every core/thread in the
+system must be defined within the topology. Any other configuration is
invalid and therefore must be ignored.
===========================================
@@ -85,26 +83,44 @@ invalid and therefore must be ignored.
===========================================
cpu-map child nodes must follow a naming convention where the node name
-must be "clusterN", "coreN", "threadN" depending on the node type (ie
-cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes which
-are siblings within a single common parent node must be given a unique and
+must be "socketN", "clusterN", "coreN", "threadN" depending on the node type
+(ie socket/cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes
+which are siblings within a single common parent node must be given a unique and
sequential N value, starting from 0).
cpu-map child nodes which do not share a common parent node can have the same
name (ie same number N as other cpu-map child nodes at different device tree
levels) since name uniqueness will be guaranteed by the device tree hierarchy.
===========================================
-3 - cluster/core/thread node bindings
+3 - socket/cluster/core/thread node bindings
===========================================
-Bindings for cluster/cpu/thread nodes are defined as follows:
+Bindings for socket/cluster/cpu/thread nodes are defined as follows:
+
+- socket node
+
+ Description: must be declared within a cpu-map node, one node
+ per physical socket in the system. A system can
+ contain single or multiple physical socket.
+ The association of sockets and NUMA nodes is beyond
+ the scope of this bindings, please refer [2] for
+ NUMA bindings.
+
+ This node is optional for a single socket system.
+
+ The socket node name must be "socketN" as described in 2.1 above.
+ A socket node can not be a leaf node.
+
+ A socket node's child nodes must be one or more cluster nodes.
+
+ Any other configuration is considered invalid.
- cluster node
Description: must be declared within a cpu-map node, one node
per cluster. A system can contain several layers of
- clustering and cluster nodes can be contained in parent
- cluster nodes.
+ clustering within a single physical socket and cluster
+ nodes can be contained in parent cluster nodes.
The cluster node name must be "clusterN" as described in 2.1 above.
A cluster node can not be a leaf node.
@@ -164,90 +180,93 @@ Bindings for cluster/cpu/thread nodes are defined as follows:
4 - Example dts
===========================================
-Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters):
+Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters in a single
+physical socket):
cpus {
#size-cells = <0>;
#address-cells = <2>;
cpu-map {
- cluster0 {
+ socket0 {
cluster0 {
- core0 {
- thread0 {
- cpu = <&CPU0>;
+ cluster0 {
+ core0 {
+ thread0 {
+ cpu = <&CPU0>;
+ };
+ thread1 {
+ cpu = <&CPU1>;
+ };
};
- thread1 {
- cpu = <&CPU1>;
- };
- };
- core1 {
- thread0 {
- cpu = <&CPU2>;
- };
- thread1 {
- cpu = <&CPU3>;
+ core1 {
+ thread0 {
+ cpu = <&CPU2>;
+ };
+ thread1 {
+ cpu = <&CPU3>;
+ };
};
};
- };
- cluster1 {
- core0 {
- thread0 {
- cpu = <&CPU4>;
- };
- thread1 {
- cpu = <&CPU5>;
+ cluster1 {
+ core0 {
+ thread0 {
+ cpu = <&CPU4>;
+ };
+ thread1 {
+ cpu = <&CPU5>;
+ };
};
- };
- core1 {
- thread0 {
- cpu = <&CPU6>;
- };
- thread1 {
- cpu = <&CPU7>;
- };
- };
- };
- };
-
- cluster1 {
- cluster0 {
- core0 {
- thread0 {
- cpu = <&CPU8>;
- };
- thread1 {
- cpu = <&CPU9>;
- };
- };
- core1 {
- thread0 {
- cpu = <&CPU10>;
- };
- thread1 {
- cpu = <&CPU11>;
+ core1 {
+ thread0 {
+ cpu = <&CPU6>;
+ };
+ thread1 {
+ cpu = <&CPU7>;
+ };
};
};
};
cluster1 {
- core0 {
- thread0 {
- cpu = <&CPU12>;
+ cluster0 {
+ core0 {
+ thread0 {
+ cpu = <&CPU8>;
+ };
+ thread1 {
+ cpu = <&CPU9>;
+ };
};
- thread1 {
- cpu = <&CPU13>;
+ core1 {
+ thread0 {
+ cpu = <&CPU10>;
+ };
+ thread1 {
+ cpu = <&CPU11>;
+ };
};
};
- core1 {
- thread0 {
- cpu = <&CPU14>;
+
+ cluster1 {
+ core0 {
+ thread0 {
+ cpu = <&CPU12>;
+ };
+ thread1 {
+ cpu = <&CPU13>;
+ };
};
- thread1 {
- cpu = <&CPU15>;
+ core1 {
+ thread0 {
+ cpu = <&CPU14>;
+ };
+ thread1 {
+ cpu = <&CPU15>;
+ };
};
};
};
@@ -470,6 +489,65 @@ cpus {
};
};
+Example 3: HiFive Unleashed (RISC-V 64 bit, 4 core system)
+
+{
+ #address-cells = <2>;
+ #size-cells = <2>;
+ compatible = "sifive,fu540g", "sifive,fu500";
+ model = "sifive,hifive-unleashed-a00";
+
+ ...
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ cpu-map {
+ socket0 {
+ cluster0 {
+ core0 {
+ cpu = <&CPU1>;
+ };
+ core1 {
+ cpu = <&CPU2>;
+ };
+ core2 {
+ cpu0 = <&CPU2>;
+ };
+ core3 {
+ cpu0 = <&CPU3>;
+ };
+ };
+ };
+ };
+
+ CPU1: cpu@1 {
+ device_type = "cpu";
+ compatible = "sifive,rocket0", "riscv";
+ reg = <0x1>;
+ }
+
+ CPU2: cpu@2 {
+ device_type = "cpu";
+ compatible = "sifive,rocket0", "riscv";
+ reg = <0x2>;
+ }
+ CPU3: cpu@3 {
+ device_type = "cpu";
+ compatible = "sifive,rocket0", "riscv";
+ reg = <0x3>;
+ }
+ CPU4: cpu@4 {
+ device_type = "cpu";
+ compatible = "sifive,rocket0", "riscv";
+ reg = <0x4>;
+ }
+ }
+};
===============================================================================
[1] ARM Linux kernel documentation
Documentation/devicetree/bindings/arm/cpus.yaml
+[2] Devicetree NUMA binding description
+ Documentation/devicetree/bindings/numa.txt
+[3] RISC-V Linux kernel documentation
+ Documentation/devicetree/bindings/riscv/cpus.txt
+[4] https://www.devicetree.org/specifications/
diff --git a/Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt b/Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt
new file mode 100644
index 000000000000..87bff5add3f9
--- /dev/null
+++ b/Documentation/devicetree/bindings/cpufreq/imx-cpufreq-dt.txt
@@ -0,0 +1,37 @@
+i.MX CPUFreq-DT OPP bindings
+================================
+
+Certain i.MX SoCs support different OPPs depending on the "market segment" and
+"speed grading" value which are written in fuses. These bits are combined with
+the opp-supported-hw values for each OPP to check if the OPP is allowed.
+
+Required properties:
+--------------------
+
+For each opp entry in 'operating-points-v2' table:
+- opp-supported-hw: Two bitmaps indicating:
+ - Supported speed grade mask
+ - Supported market segment mask
+ 0: Consumer
+ 1: Extended Consumer
+ 2: Industrial
+ 3: Automotive
+
+Example:
+--------
+
+opp_table {
+ compatible = "operating-points-v2";
+ opp-1000000000 {
+ opp-hz = /bits/ 64 <1000000000>;
+ /* grade >= 0, consumer only */
+ opp-supported-hw = <0xf>, <0x3>;
+ };
+
+ opp-1300000000 {
+ opp-hz = /bits/ 64 <1300000000>;
+ opp-microvolt = <1000000>;
+ /* grade >= 1, all segments */
+ opp-supported-hw = <0xe>, <0x7>;
+ };
+}
diff --git a/Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml b/Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml
new file mode 100644
index 000000000000..80b3e7350a73
--- /dev/null
+++ b/Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml
@@ -0,0 +1,79 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/crypto/allwinner,sun4i-a10-crypto.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Security System Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-crypto
+ - items:
+ - const: allwinner,sun5i-a13-crypto
+ - const: allwinner,sun4i-a10-crypto
+ - items:
+ - const: allwinner,sun6i-a31-crypto
+ - const: allwinner,sun4i-a10-crypto
+ - items:
+ - const: allwinner,sun7i-a20-crypto
+ - const: allwinner,sun4i-a10-crypto
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: ahb
+ - const: mod
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ const: ahb
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun6i-a31-crypto
+
+then:
+ required:
+ - resets
+ - reset-names
+
+additionalProperties: false
+
+examples:
+ - |
+ crypto: crypto-engine@1c15000 {
+ compatible = "allwinner,sun4i-a10-crypto";
+ reg = <0x01c15000 0x1000>;
+ interrupts = <86>;
+ clocks = <&ahb_gates 5>, <&ss_clk>;
+ clock-names = "ahb", "mod";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/crypto/atmel-crypto.txt b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
index 6b458bb2440d..f2aab3dc2b52 100644
--- a/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
+++ b/Documentation/devicetree/bindings/crypto/atmel-crypto.txt
@@ -66,16 +66,3 @@ sha@f8034000 {
dmas = <&dma1 2 17>;
dma-names = "tx";
};
-
-* Eliptic Curve Cryptography (I2C)
-
-Required properties:
-- compatible : must be "atmel,atecc508a".
-- reg: I2C bus address of the device.
-- clock-frequency: must be present in the i2c controller node.
-
-Example:
-atecc508a@c0 {
- compatible = "atmel,atecc508a";
- reg = <0xC0>;
-};
diff --git a/Documentation/devicetree/bindings/crypto/sun4i-ss.txt b/Documentation/devicetree/bindings/crypto/sun4i-ss.txt
deleted file mode 100644
index f2dc3d9bca92..000000000000
--- a/Documentation/devicetree/bindings/crypto/sun4i-ss.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-* Allwinner Security System found on A20 SoC
-
-Required properties:
-- compatible : Should be "allwinner,sun4i-a10-crypto".
-- reg: Should contain the Security System register location and length.
-- interrupts: Should contain the IRQ line for the Security System.
-- clocks : List of clock specifiers, corresponding to ahb and ss.
-- clock-names : Name of the functional clock, should be
- * "ahb" : AHB gating clock
- * "mod" : SS controller clock
-
-Optional properties:
- - resets : phandle + reset specifier pair
- - reset-names : must contain "ahb"
-
-Example:
- crypto: crypto-engine@1c15000 {
- compatible = "allwinner,sun4i-a10-crypto";
- reg = <0x01c15000 0x1000>;
- interrupts = <GIC_SPI 86 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&ahb_gates 5>, <&ss_clk>;
- clock-names = "ahb", "mod";
- };
diff --git a/Documentation/devicetree/bindings/csky/pmu.txt b/Documentation/devicetree/bindings/csky/pmu.txt
new file mode 100644
index 000000000000..728d05ca6a1c
--- /dev/null
+++ b/Documentation/devicetree/bindings/csky/pmu.txt
@@ -0,0 +1,38 @@
+===============================
+C-SKY Performance Monitor Units
+===============================
+
+C-SKY Performance Monitor is designed for ck807/ck810/ck860 SMP soc and
+it could count cpu's events for helping analysis performance issues.
+
+============================
+PMU node bindings definition
+============================
+
+ Description: Describes PMU
+
+ PROPERTIES
+
+ - compatible
+ Usage: required
+ Value type: <string>
+ Definition: must be "csky,csky-pmu"
+ - interrupts
+ Usage: required
+ Value type: <u32 IRQ_TYPE_XXX>
+ Definition: must be pmu irq num defined by soc
+ - count-width
+ Usage: optional
+ Value type: <u32>
+ Definition: the width of pmu counter
+
+Examples:
+---------
+#include <dt-bindings/interrupt-controller/irq.h>
+
+ pmu: performace-monitor {
+ compatible = "csky,csky-pmu";
+ interrupts = <23 IRQ_TYPE_EDGE_RISING>;
+ interrupt-parent = <&intc>;
+ count-width = <48>;
+ };
diff --git a/Documentation/devicetree/bindings/display/allwinner,sun6i-a31-mipi-dsi.yaml b/Documentation/devicetree/bindings/display/allwinner,sun6i-a31-mipi-dsi.yaml
new file mode 100644
index 000000000000..47950fced28d
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/allwinner,sun6i-a31-mipi-dsi.yaml
@@ -0,0 +1,100 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/allwinner,sun6i-a31-mipi-dsi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 MIPI-DSI Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells": true
+ "#size-cells": true
+
+ compatible:
+ const: allwinner,sun6i-a31-mipi-dsi
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: bus
+ - const: mod
+
+ resets:
+ maxItems: 1
+
+ phys:
+ maxItems: 1
+
+ phy-names:
+ const: dphy
+
+ port:
+ type: object
+ description:
+ A port node with endpoint definitions as defined in
+ Documentation/devicetree/bindings/media/video-interfaces.txt. That
+ port should be the input endpoint, usually coming from the
+ associated TCON.
+
+patternProperties:
+ "^panel@[0-9]+$": true
+
+required:
+ - "#address-cells"
+ - "#size-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+ - phys
+ - phy-names
+ - resets
+ - port
+
+additionalProperties: false
+
+examples:
+ - |
+ dsi0: dsi@1ca0000 {
+ compatible = "allwinner,sun6i-a31-mipi-dsi";
+ reg = <0x01ca0000 0x1000>;
+ interrupts = <0 89 4>;
+ clocks = <&ccu 23>, <&ccu 96>;
+ clock-names = "bus", "mod";
+ resets = <&ccu 4>;
+ phys = <&dphy0>;
+ phy-names = "dphy";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ panel@0 {
+ compatible = "bananapi,lhr050h41", "ilitek,ili9881c";
+ reg = <0>;
+ power-gpios = <&pio 1 7 0>; /* PB07 */
+ reset-gpios = <&r_pio 0 5 1>; /* PL05 */
+ backlight = <&pwm_bl>;
+ };
+
+ port {
+ dsi0_in_tcon0: endpoint {
+ remote-endpoint = <&tcon0_out_dsi0>;
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.txt b/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.txt
deleted file mode 100644
index 3a50a7862cf3..000000000000
--- a/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.txt
+++ /dev/null
@@ -1,119 +0,0 @@
-Amlogic specific extensions to the Synopsys Designware HDMI Controller
-======================================================================
-
-The Amlogic Meson Synopsys Designware Integration is composed of :
-- A Synopsys DesignWare HDMI Controller IP
-- A TOP control block controlling the Clocks and PHY
-- A custom HDMI PHY in order to convert video to TMDS signal
- ___________________________________
-| HDMI TOP |<= HPD
-|___________________________________|
-| | |
-| Synopsys HDMI | HDMI PHY |=> TMDS
-| Controller |________________|
-|___________________________________|<=> DDC
-
-The HDMI TOP block only supports HPD sensing.
-The Synopsys HDMI Controller interrupt is routed through the
-TOP Block interrupt.
-Communication to the TOP Block and the Synopsys HDMI Controller is done
-via a pair of dedicated addr+read/write registers.
-The HDMI PHY is configured by registers in the HHI register block.
-
-Pixel data arrives in 4:4:4 format from the VENC block and the VPU HDMI mux
-selects either the ENCI encoder for the 576i or 480i formats or the ENCP
-encoder for all the other formats including interlaced HD formats.
-
-The VENC uses a DVI encoder on top of the ENCI or ENCP encoders to generate
-DVI timings for the HDMI controller.
-
-Amlogic Meson GXBB, GXL and GXM SoCs families embeds the Synopsys DesignWare
-HDMI TX IP version 2.01a with HDCP and I2C & S/PDIF
-audio source interfaces.
-
-Required properties:
-- compatible: value should be different for each SoC family as :
- - GXBB (S905) : "amlogic,meson-gxbb-dw-hdmi"
- - GXL (S905X, S905D) : "amlogic,meson-gxl-dw-hdmi"
- - GXM (S912) : "amlogic,meson-gxm-dw-hdmi"
- followed by the common "amlogic,meson-gx-dw-hdmi"
- - G12A (S905X2, S905Y2, S905D2) : "amlogic,meson-g12a-dw-hdmi"
-- reg: Physical base address and length of the controller's registers.
-- interrupts: The HDMI interrupt number
-- clocks, clock-names : must have the phandles to the HDMI iahb and isfr clocks,
- and the Amlogic Meson venci clocks as described in
- Documentation/devicetree/bindings/clock/clock-bindings.txt,
- the clocks are soc specific, the clock-names should be "iahb", "isfr", "venci"
-- resets, resets-names: must have the phandles to the HDMI apb, glue and phy
- resets as described in :
- Documentation/devicetree/bindings/reset/reset.txt,
- the reset-names should be "hdmitx_apb", "hdmitx", "hdmitx_phy"
-
-Optional properties:
-- hdmi-supply: Optional phandle to an external 5V regulator to power the HDMI
- logic, as described in the file ../regulator/regulator.txt
-
-Required nodes:
-
-The connections to the HDMI ports are modeled using the OF graph
-bindings specified in Documentation/devicetree/bindings/graph.txt.
-
-The following table lists for each supported model the port number
-corresponding to each HDMI output and input.
-
- Port 0 Port 1
------------------------------------------
- S905 (GXBB) VENC Input TMDS Output
- S905X (GXL) VENC Input TMDS Output
- S905D (GXL) VENC Input TMDS Output
- S912 (GXM) VENC Input TMDS Output
- S905X2 (G12A) VENC Input TMDS Output
- S905Y2 (G12A) VENC Input TMDS Output
- S905D2 (G12A) VENC Input TMDS Output
-
-Example:
-
-hdmi-connector {
- compatible = "hdmi-connector";
- type = "a";
-
- port {
- hdmi_connector_in: endpoint {
- remote-endpoint = <&hdmi_tx_tmds_out>;
- };
- };
-};
-
-hdmi_tx: hdmi-tx@c883a000 {
- compatible = "amlogic,meson-gxbb-dw-hdmi", "amlogic,meson-gx-dw-hdmi";
- reg = <0x0 0xc883a000 0x0 0x1c>;
- interrupts = <GIC_SPI 57 IRQ_TYPE_EDGE_RISING>;
- resets = <&reset RESET_HDMITX_CAPB3>,
- <&reset RESET_HDMI_SYSTEM_RESET>,
- <&reset RESET_HDMI_TX>;
- reset-names = "hdmitx_apb", "hdmitx", "hdmitx_phy";
- clocks = <&clkc CLKID_HDMI_PCLK>,
- <&clkc CLKID_CLK81>,
- <&clkc CLKID_GCLK_VENCI_INT0>;
- clock-names = "isfr", "iahb", "venci";
- #address-cells = <1>;
- #size-cells = <0>;
-
- /* VPU VENC Input */
- hdmi_tx_venc_port: port@0 {
- reg = <0>;
-
- hdmi_tx_in: endpoint {
- remote-endpoint = <&hdmi_tx_out>;
- };
- };
-
- /* TMDS Output */
- hdmi_tx_tmds_port: port@1 {
- reg = <1>;
-
- hdmi_tx_tmds_out: endpoint {
- remote-endpoint = <&hdmi_connector_in>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.yaml b/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.yaml
new file mode 100644
index 000000000000..fb747682006d
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.yaml
@@ -0,0 +1,150 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/display/amlogic,meson-dw-hdmi.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic specific extensions to the Synopsys Designware HDMI Controller
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+description: |
+ The Amlogic Meson Synopsys Designware Integration is composed of
+ - A Synopsys DesignWare HDMI Controller IP
+ - A TOP control block controlling the Clocks and PHY
+ - A custom HDMI PHY in order to convert video to TMDS signal
+ ___________________________________
+ | HDMI TOP |<= HPD
+ |___________________________________|
+ | | |
+ | Synopsys HDMI | HDMI PHY |=> TMDS
+ | Controller |________________|
+ |___________________________________|<=> DDC
+
+ The HDMI TOP block only supports HPD sensing.
+ The Synopsys HDMI Controller interrupt is routed through the
+ TOP Block interrupt.
+ Communication to the TOP Block and the Synopsys HDMI Controller is done
+ via a pair of dedicated addr+read/write registers.
+ The HDMI PHY is configured by registers in the HHI register block.
+
+ Pixel data arrives in "4:4:4" format from the VENC block and the VPU HDMI mux
+ selects either the ENCI encoder for the 576i or 480i formats or the ENCP
+ encoder for all the other formats including interlaced HD formats.
+
+ The VENC uses a DVI encoder on top of the ENCI or ENCP encoders to generate
+ DVI timings for the HDMI controller.
+
+ Amlogic Meson GXBB, GXL and GXM SoCs families embeds the Synopsys DesignWare
+ HDMI TX IP version 2.01a with HDCP and I2C & S/PDIF
+ audio source interfaces.
+
+properties:
+ compatible:
+ oneOf:
+ - items:
+ - enum:
+ - amlogic,meson-gxbb-dw-hdmi # GXBB (S905)
+ - amlogic,meson-gxl-dw-hdmi # GXL (S905X, S905D)
+ - amlogic,meson-gxm-dw-hdmi # GXM (S912)
+ - const: amlogic,meson-gx-dw-hdmi
+ - enum:
+ - amlogic,meson-g12a-dw-hdmi # G12A (S905X2, S905Y2, S905D2)
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ minItems: 3
+
+ clock-names:
+ items:
+ - const: isfr
+ - const: iahb
+ - const: venci
+
+ resets:
+ minItems: 3
+
+ reset-names:
+ items:
+ - const: hdmitx_apb
+ - const: hdmitx
+ - const: hdmitx_phy
+
+ hdmi-supply:
+ description: phandle to an external 5V regulator to power the HDMI logic
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/phandle
+
+ port@0:
+ type: object
+ description:
+ A port node pointing to the VENC Input port node.
+
+ port@1:
+ type: object
+ description:
+ A port node pointing to the TMDS Output port node.
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ "#sound-dai-cells":
+ const: 0
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - port@0
+ - port@1
+ - "#address-cells"
+ - "#size-cells"
+
+additionalProperties: false
+
+examples:
+ - |
+ hdmi_tx: hdmi-tx@c883a000 {
+ compatible = "amlogic,meson-gxbb-dw-hdmi", "amlogic,meson-gx-dw-hdmi";
+ reg = <0xc883a000 0x1c>;
+ interrupts = <57>;
+ resets = <&reset_apb>, <&reset_hdmitx>, <&reset_hdmitx_phy>;
+ reset-names = "hdmitx_apb", "hdmitx", "hdmitx_phy";
+ clocks = <&clk_isfr>, <&clk_iahb>, <&clk_venci>;
+ clock-names = "isfr", "iahb", "venci";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* VPU VENC Input */
+ hdmi_tx_venc_port: port@0 {
+ reg = <0>;
+
+ hdmi_tx_in: endpoint {
+ remote-endpoint = <&hdmi_tx_out>;
+ };
+ };
+
+ /* TMDS Output */
+ hdmi_tx_tmds_port: port@1 {
+ reg = <1>;
+
+ hdmi_tx_tmds_out: endpoint {
+ remote-endpoint = <&hdmi_connector_in>;
+ };
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/display/amlogic,meson-vpu.txt b/Documentation/devicetree/bindings/display/amlogic,meson-vpu.txt
deleted file mode 100644
index be40a780501c..000000000000
--- a/Documentation/devicetree/bindings/display/amlogic,meson-vpu.txt
+++ /dev/null
@@ -1,121 +0,0 @@
-Amlogic Meson Display Controller
-================================
-
-The Amlogic Meson Display controller is composed of several components
-that are going to be documented below:
-
-DMC|---------------VPU (Video Processing Unit)----------------|------HHI------|
- | vd1 _______ _____________ _________________ | |
-D |-------| |----| | | | | HDMI PLL |
-D | vd2 | VIU | | Video Post | | Video Encoders |<---|-----VCLK |
-R |-------| |----| Processing | | | | |
- | osd2 | | | |---| Enci ----------|----|-----VDAC------|
-R |-------| CSC |----| Scalers | | Encp ----------|----|----HDMI-TX----|
-A | osd1 | | | Blenders | | Encl ----------|----|---------------|
-M |-------|______|----|____________| |________________| | |
-___|__________________________________________________________|_______________|
-
-
-VIU: Video Input Unit
----------------------
-
-The Video Input Unit is in charge of the pixel scanout from the DDR memory.
-It fetches the frames addresses, stride and parameters from the "Canvas" memory.
-This part is also in charge of the CSC (Colorspace Conversion).
-It can handle 2 OSD Planes and 2 Video Planes.
-
-VPP: Video Post Processing
---------------------------
-
-The Video Post Processing is in charge of the scaling and blending of the
-various planes into a single pixel stream.
-There is a special "pre-blending" used by the video planes with a dedicated
-scaler and a "post-blending" to merge with the OSD Planes.
-The OSD planes also have a dedicated scaler for one of the OSD.
-
-VENC: Video Encoders
---------------------
-
-The VENC is composed of the multiple pixel encoders :
- - ENCI : Interlace Video encoder for CVBS and Interlace HDMI
- - ENCP : Progressive Video Encoder for HDMI
- - ENCL : LCD LVDS Encoder
-The VENC Unit gets a Pixel Clocks (VCLK) from a dedicated HDMI PLL and clock
-tree and provides the scanout clock to the VPP and VIU.
-The ENCI is connected to a single VDAC for Composite Output.
-The ENCI and ENCP are connected to an on-chip HDMI Transceiver.
-
-Device Tree Bindings:
----------------------
-
-VPU: Video Processing Unit
---------------------------
-
-Required properties:
-- compatible: value should be different for each SoC family as :
- - GXBB (S905) : "amlogic,meson-gxbb-vpu"
- - GXL (S905X, S905D) : "amlogic,meson-gxl-vpu"
- - GXM (S912) : "amlogic,meson-gxm-vpu"
- followed by the common "amlogic,meson-gx-vpu"
- - G12A (S905X2, S905Y2, S905D2) : "amlogic,meson-g12a-vpu"
-- reg: base address and size of he following memory-mapped regions :
- - vpu
- - hhi
-- reg-names: should contain the names of the previous memory regions
-- interrupts: should contain the VENC Vsync interrupt number
-- amlogic,canvas: phandle to canvas provider node as described in the file
- ../soc/amlogic/amlogic,canvas.txt
-
-Optional properties:
-- power-domains: Optional phandle to associated power domain as described in
- the file ../power/power_domain.txt
-
-Required nodes:
-
-The connections to the VPU output video ports are modeled using the OF graph
-bindings specified in Documentation/devicetree/bindings/graph.txt.
-
-The following table lists for each supported model the port number
-corresponding to each VPU output.
-
- Port 0 Port 1
------------------------------------------
- S905 (GXBB) CVBS VDAC HDMI-TX
- S905X (GXL) CVBS VDAC HDMI-TX
- S905D (GXL) CVBS VDAC HDMI-TX
- S912 (GXM) CVBS VDAC HDMI-TX
- S905X2 (G12A) CVBS VDAC HDMI-TX
- S905Y2 (G12A) CVBS VDAC HDMI-TX
- S905D2 (G12A) CVBS VDAC HDMI-TX
-
-Example:
-
-tv-connector {
- compatible = "composite-video-connector";
-
- port {
- tv_connector_in: endpoint {
- remote-endpoint = <&cvbs_vdac_out>;
- };
- };
-};
-
-vpu: vpu@d0100000 {
- compatible = "amlogic,meson-gxbb-vpu";
- reg = <0x0 0xd0100000 0x0 0x100000>,
- <0x0 0xc883c000 0x0 0x1000>,
- <0x0 0xc8838000 0x0 0x1000>;
- reg-names = "vpu", "hhi", "dmc";
- interrupts = <GIC_SPI 3 IRQ_TYPE_EDGE_RISING>;
- #address-cells = <1>;
- #size-cells = <0>;
-
- /* CVBS VDAC output port */
- port@0 {
- reg = <0>;
-
- cvbs_vdac_out: endpoint {
- remote-endpoint = <&tv_connector_in>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/amlogic,meson-vpu.yaml b/Documentation/devicetree/bindings/display/amlogic,meson-vpu.yaml
new file mode 100644
index 000000000000..d1205a6697a0
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/amlogic,meson-vpu.yaml
@@ -0,0 +1,137 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/display/amlogic,meson-vpu.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson Display Controller
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+description: |
+ The Amlogic Meson Display controller is composed of several components
+ that are going to be documented below
+
+ DMC|---------------VPU (Video Processing Unit)----------------|------HHI------|
+ | vd1 _______ _____________ _________________ | |
+ D |-------| |----| | | | | HDMI PLL |
+ D | vd2 | VIU | | Video Post | | Video Encoders |<---|-----VCLK |
+ R |-------| |----| Processing | | | | |
+ | osd2 | | | |---| Enci ----------|----|-----VDAC------|
+ R |-------| CSC |----| Scalers | | Encp ----------|----|----HDMI-TX----|
+ A | osd1 | | | Blenders | | Encl ----------|----|---------------|
+ M |-------|______|----|____________| |________________| | |
+ ___|__________________________________________________________|_______________|
+
+
+ VIU: Video Input Unit
+ ---------------------
+
+ The Video Input Unit is in charge of the pixel scanout from the DDR memory.
+ It fetches the frames addresses, stride and parameters from the "Canvas" memory.
+ This part is also in charge of the CSC (Colorspace Conversion).
+ It can handle 2 OSD Planes and 2 Video Planes.
+
+ VPP: Video Post Processing
+ --------------------------
+
+ The Video Post Processing is in charge of the scaling and blending of the
+ various planes into a single pixel stream.
+ There is a special "pre-blending" used by the video planes with a dedicated
+ scaler and a "post-blending" to merge with the OSD Planes.
+ The OSD planes also have a dedicated scaler for one of the OSD.
+
+ VENC: Video Encoders
+ --------------------
+
+ The VENC is composed of the multiple pixel encoders
+ - ENCI : Interlace Video encoder for CVBS and Interlace HDMI
+ - ENCP : Progressive Video Encoder for HDMI
+ - ENCL : LCD LVDS Encoder
+ The VENC Unit gets a Pixel Clocks (VCLK) from a dedicated HDMI PLL and clock
+ tree and provides the scanout clock to the VPP and VIU.
+ The ENCI is connected to a single VDAC for Composite Output.
+ The ENCI and ENCP are connected to an on-chip HDMI Transceiver.
+
+properties:
+ compatible:
+ oneOf:
+ - items:
+ - enum:
+ - amlogic,meson-gxbb-vpu # GXBB (S905)
+ - amlogic,meson-gxl-vpu # GXL (S905X, S905D)
+ - amlogic,meson-gxm-vpu # GXM (S912)
+ - const: amlogic,meson-gx-vpu
+ - enum:
+ - amlogic,meson-g12a-vpu # G12A (S905X2, S905Y2, S905D2)
+
+ reg:
+ maxItems: 2
+
+ reg-names:
+ items:
+ - const: vpu
+ - const: hhi
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ maxItems: 1
+ description: phandle to the associated power domain
+
+ port@0:
+ type: object
+ description:
+ A port node pointing to the CVBS VDAC port node.
+
+ port@1:
+ type: object
+ description:
+ A port node pointing to the HDMI-TX port node.
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - port@0
+ - port@1
+ - "#address-cells"
+ - "#size-cells"
+
+examples:
+ - |
+ vpu: vpu@d0100000 {
+ compatible = "amlogic,meson-gxbb-vpu", "amlogic,meson-gx-vpu";
+ reg = <0xd0100000 0x100000>, <0xc883c000 0x1000>;
+ reg-names = "vpu", "hhi";
+ interrupts = <3>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* CVBS VDAC output port */
+ port@0 {
+ reg = <0>;
+
+ cvbs_vdac_out: endpoint {
+ remote-endpoint = <&tv_connector_in>;
+ };
+ };
+
+ /* HDMI TX output port */
+ port@1 {
+ reg = <1>;
+
+ hdmi_tx_out: endpoint {
+ remote-endpoint = <&hdmi_tx_in>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/arm,komeda.txt b/Documentation/devicetree/bindings/display/arm,komeda.txt
index 02b226532ebd..8513695ee47f 100644
--- a/Documentation/devicetree/bindings/display/arm,komeda.txt
+++ b/Documentation/devicetree/bindings/display/arm,komeda.txt
@@ -7,10 +7,13 @@ Required properties:
- clocks: A list of phandle + clock-specifier pairs, one for each entry
in 'clock-names'
- clock-names: A list of clock names. It should contain:
- - "mclk": for the main processor clock
- - "pclk": for the APB interface clock
+ - "aclk": for the main processor clock
- #address-cells: Must be 1
- #size-cells: Must be 0
+- iommus: configure the stream id to IOMMU, Must be configured if want to
+ enable iommu in display. for how to configure this node please reference
+ devicetree/bindings/iommu/arm,smmu-v3.txt,
+ devicetree/bindings/iommu/iommu.txt
Required properties for sub-node: pipeline@nq
Each device contains one or two pipeline sub-nodes (at least one), each
@@ -20,7 +23,6 @@ pipeline node should provide properties:
in 'clock-names'
- clock-names: should contain:
- "pxclk": pixel clock
- - "aclk": AXI interface clock
- port: each pipeline connect to an encoder input port. The connection is
modeled using the OF graph bindings specified in
@@ -42,12 +44,15 @@ Example:
compatible = "arm,mali-d71";
reg = <0xc00000 0x20000>;
interrupts = <0 168 4>;
- clocks = <&dpu_mclk>, <&dpu_aclk>;
- clock-names = "mclk", "pclk";
+ clocks = <&dpu_aclk>;
+ clock-names = "aclk";
+ iommus = <&smmu 0>, <&smmu 1>, <&smmu 2>, <&smmu 3>,
+ <&smmu 4>, <&smmu 5>, <&smmu 6>, <&smmu 7>,
+ <&smmu 8>, <&smmu 9>;
dp0_pipe0: pipeline@0 {
- clocks = <&fpgaosc2>, <&dpu_aclk>;
- clock-names = "pxclk", "aclk";
+ clocks = <&fpgaosc2>;
+ clock-names = "pxclk";
reg = <0>;
port {
@@ -58,8 +63,8 @@ Example:
};
dp0_pipe1: pipeline@1 {
- clocks = <&fpgaosc2>, <&dpu_aclk>;
- clock-names = "pxclk", "aclk";
+ clocks = <&fpgaosc2>;
+ clock-names = "pxclk";
reg = <1>;
port {
diff --git a/Documentation/devicetree/bindings/display/arm,pl11x.txt b/Documentation/devicetree/bindings/display/arm,pl11x.txt
index 572fa2773ec4..3f977e72a200 100644
--- a/Documentation/devicetree/bindings/display/arm,pl11x.txt
+++ b/Documentation/devicetree/bindings/display/arm,pl11x.txt
@@ -39,9 +39,11 @@ Required sub-nodes:
- port: describes LCD panel signals, following the common binding
for video transmitter interfaces; see
- Documentation/devicetree/bindings/media/video-interfaces.txt;
- when it is a TFT panel, the port's endpoint must define the
- following property:
+ Documentation/devicetree/bindings/media/video-interfaces.txt
+
+Deprecated properties:
+ The port's endbpoint subnode had this, now deprecated property
+ in the past. Drivers should be able to survive without it:
- arm,pl11x,tft-r0g0b0-pads: an array of three 32-bit values,
defining the way CLD pads are wired up; first value
@@ -80,7 +82,6 @@ Example:
port {
clcd_pads: endpoint {
remote-endpoint = <&clcd_panel>;
- arm,pl11x,tft-r0g0b0-pads = <0 8 16>;
};
};
diff --git a/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt b/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt
index a41d280c3f9f..db680413e89c 100644
--- a/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt
+++ b/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt
@@ -12,10 +12,12 @@ following device-specific properties.
Required properties:
- compatible : Shall contain one or more of
+ - "renesas,r8a774a1-hdmi" for R8A774A1 (RZ/G2M) compatible HDMI TX
- "renesas,r8a7795-hdmi" for R8A7795 (R-Car H3) compatible HDMI TX
- "renesas,r8a7796-hdmi" for R8A7796 (R-Car M3-W) compatible HDMI TX
- "renesas,r8a77965-hdmi" for R8A77965 (R-Car M3-N) compatible HDMI TX
- - "renesas,rcar-gen3-hdmi" for the generic R-Car Gen3 compatible HDMI TX
+ - "renesas,rcar-gen3-hdmi" for the generic R-Car Gen3 and RZ/G2 compatible
+ HDMI TX
When compatible with generic versions, nodes must list the SoC-specific
version corresponding to the platform first, followed by the
diff --git a/Documentation/devicetree/bindings/display/bridge/renesas,lvds.txt b/Documentation/devicetree/bindings/display/bridge/renesas,lvds.txt
index 900a884ad9f5..c6a196d0b075 100644
--- a/Documentation/devicetree/bindings/display/bridge/renesas,lvds.txt
+++ b/Documentation/devicetree/bindings/display/bridge/renesas,lvds.txt
@@ -9,6 +9,7 @@ Required properties:
- compatible : Shall contain one of
- "renesas,r8a7743-lvds" for R8A7743 (RZ/G1M) compatible LVDS encoders
- "renesas,r8a7744-lvds" for R8A7744 (RZ/G1N) compatible LVDS encoders
+ - "renesas,r8a774a1-lvds" for R8A774A1 (RZ/G2M) compatible LVDS encoders
- "renesas,r8a774c0-lvds" for R8A774C0 (RZ/G2E) compatible LVDS encoders
- "renesas,r8a7790-lvds" for R8A7790 (R-Car H2) compatible LVDS encoders
- "renesas,r8a7791-lvds" for R8A7791 (R-Car M2-W) compatible LVDS encoders
@@ -45,14 +46,24 @@ OF graph bindings specified in Documentation/devicetree/bindings/graph.txt.
Each port shall have a single endpoint.
+Optional properties:
+
+- renesas,companion : phandle to the companion LVDS encoder. This property is
+ mandatory for the first LVDS encoder on D3 and E3 SoCs, and shall point to
+ the second encoder to be used as a companion in dual-link mode. It shall not
+ be set for any other LVDS encoder.
+
Example:
lvds0: lvds@feb90000 {
- compatible = "renesas,r8a7790-lvds";
- reg = <0 0xfeb90000 0 0x1c>;
- clocks = <&cpg CPG_MOD 726>;
- resets = <&cpg 726>;
+ compatible = "renesas,r8a77990-lvds";
+ reg = <0 0xfeb90000 0 0x20>;
+ clocks = <&cpg CPG_MOD 727>;
+ power-domains = <&sysc R8A77990_PD_ALWAYS_ON>;
+ resets = <&cpg 727>;
+
+ renesas,companion = <&lvds1>;
ports {
#address-cells = <1>;
diff --git a/Documentation/devicetree/bindings/display/bridge/sii902x.txt b/Documentation/devicetree/bindings/display/bridge/sii902x.txt
index 72d2dc6c3e6b..6e14e087c0d0 100644
--- a/Documentation/devicetree/bindings/display/bridge/sii902x.txt
+++ b/Documentation/devicetree/bindings/display/bridge/sii902x.txt
@@ -5,10 +5,43 @@ Required properties:
- reg: i2c address of the bridge
Optional properties:
- - interrupts: describe the interrupt line used to inform the host
+ - interrupts: describe the interrupt line used to inform the host
about hotplug events.
- reset-gpios: OF device-tree gpio specification for RST_N pin.
+ HDMI audio properties:
+ - #sound-dai-cells: <0> or <1>. <0> if only i2s or spdif pin
+ is wired, <1> if the both are wired. HDMI audio is
+ configured only if this property is found.
+ - sil,i2s-data-lanes: Array of up to 4 integers with values of 0-3
+ Each integer indicates which i2s pin is connected to which
+ audio fifo. The first integer selects i2s audio pin for the
+ first audio fifo#0 (HDMI channels 1&2), second for fifo#1
+ (HDMI channels 3&4), and so on. There is 4 fifos and 4 i2s
+ pins (SD0 - SD3). Any i2s pin can be connected to any fifo,
+ but there can be no gaps. E.g. an i2s pin must be mapped to
+ fifo#0 and fifo#1 before mapping a channel to fifo#2. Default
+ value is <0>, describing SD0 pin beiging routed to hdmi audio
+ fifo #0.
+ - clocks: phandle and clock specifier for each clock listed in
+ the clock-names property
+ - clock-names: "mclk"
+ Describes SII902x MCLK input. MCLK can be used to produce
+ HDMI audio CTS values. This property follows
+ Documentation/devicetree/bindings/clock/clock-bindings.txt
+ consumer binding.
+
+ If HDMI audio is configured the sii902x device becomes an I2S
+ and/or spdif audio codec component (e.g a digital audio sink),
+ that can be used in configuring a full audio devices with
+ simple-card or audio-graph-card binding. See their binding
+ documents on how to describe the way the sii902x device is
+ connected to the rest of the audio system:
+ Documentation/devicetree/bindings/sound/simple-card.txt
+ Documentation/devicetree/bindings/sound/audio-graph-card.txt
+ Note: In case of the audio-graph-card binding the used port
+ index should be 3.
+
Optional subnodes:
- video input: this subnode can contain a video input port node
to connect the bridge to a display controller output (See this
@@ -21,6 +54,12 @@ Example:
compatible = "sil,sii9022";
reg = <0x39>;
reset-gpios = <&pioA 1 0>;
+
+ #sound-dai-cells = <0>;
+ sil,i2s-data-lanes = < 0 1 2 >;
+ clocks = <&mclk>;
+ clock-names = "mclk";
+
ports {
#address-cells = <1>;
#size-cells = <0>;
diff --git a/Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt b/Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt
index 37f0c04d5a28..d17d1e5820d7 100644
--- a/Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt
+++ b/Documentation/devicetree/bindings/display/bridge/thine,thc63lvd1024.txt
@@ -28,6 +28,12 @@ Optional video port nodes:
- port@1: Second LVDS input port
- port@3: Second digital CMOS/TTL parallel output
+The device can operate in single-link mode or dual-link mode. In single-link
+mode, all pixels are received on port@0, and port@1 shall not contain any
+endpoint. In dual-link mode, even-numbered pixels are received on port@0 and
+odd-numbered pixels on port@1, and both port@0 and port@1 shall contain
+endpoints.
+
Example:
--------
diff --git a/Documentation/devicetree/bindings/display/bridge/toshiba,tc358767.txt b/Documentation/devicetree/bindings/display/bridge/toshiba,tc358767.txt
index e3f6aa6a214d..583c5e9dbe6b 100644
--- a/Documentation/devicetree/bindings/display/bridge/toshiba,tc358767.txt
+++ b/Documentation/devicetree/bindings/display/bridge/toshiba,tc358767.txt
@@ -12,6 +12,7 @@ Optional properties:
(active high shutdown input)
- reset-gpios: OF device-tree gpio specification for RSTX pin
(active low system reset)
+ - toshiba,hpd-pin: TC358767 GPIO pin number to which HPD is connected to (0 or 1)
- ports: the ports node can contain video interface port nodes to connect
to a DPI/DSI source and to an eDP/DP sink according to [1][2]:
- port@0: DSI input port
diff --git a/Documentation/devicetree/bindings/display/connector/hdmi-connector.txt b/Documentation/devicetree/bindings/display/connector/hdmi-connector.txt
index 508aee461e0d..aeb07c4bd703 100644
--- a/Documentation/devicetree/bindings/display/connector/hdmi-connector.txt
+++ b/Documentation/devicetree/bindings/display/connector/hdmi-connector.txt
@@ -9,6 +9,7 @@ Optional properties:
- label: a symbolic name for the connector
- hpd-gpios: HPD GPIO number
- ddc-i2c-bus: phandle link to the I2C controller used for DDC EDID probing
+- ddc-en-gpios: signal to enable DDC bus
Required nodes:
- Video port for HDMI input
diff --git a/Documentation/devicetree/bindings/display/ingenic,lcd.txt b/Documentation/devicetree/bindings/display/ingenic,lcd.txt
new file mode 100644
index 000000000000..7b536c8c6dde
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/ingenic,lcd.txt
@@ -0,0 +1,44 @@
+Ingenic JZ47xx LCD driver
+
+Required properties:
+- compatible: one of:
+ * ingenic,jz4740-lcd
+ * ingenic,jz4725b-lcd
+- reg: LCD registers location and length
+- clocks: LCD pixclock and device clock specifiers.
+ The device clock is only required on the JZ4740.
+- clock-names: "lcd_pclk" and "lcd"
+- interrupts: Specifies the interrupt line the LCD controller is connected to.
+
+Example:
+
+panel {
+ compatible = "sharp,ls020b1dd01d";
+
+ backlight = <&backlight>;
+ power-supply = <&vcc>;
+
+ port {
+ panel_input: endpoint {
+ remote-endpoint = <&panel_output>;
+ };
+ };
+};
+
+
+lcd: lcd-controller@13050000 {
+ compatible = "ingenic,jz4725b-lcd";
+ reg = <0x13050000 0x1000>;
+
+ interrupt-parent = <&intc>;
+ interrupts = <31>;
+
+ clocks = <&cgu JZ4725B_CLK_LCD>;
+ clock-names = "lcd";
+
+ port {
+ panel_output: endpoint {
+ remote-endpoint = <&panel_input>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/display/msm/dpu.txt b/Documentation/devicetree/bindings/display/msm/dpu.txt
index ad2e8830324e..a61dd40f3792 100644
--- a/Documentation/devicetree/bindings/display/msm/dpu.txt
+++ b/Documentation/devicetree/bindings/display/msm/dpu.txt
@@ -28,6 +28,11 @@ Required properties:
- #address-cells: number of address cells for the MDSS children. Should be 1.
- #size-cells: Should be 1.
- ranges: parent bus address space is the same as the child bus address space.
+- interconnects : interconnect path specifier for MDSS according to
+ Documentation/devicetree/bindings/interconnect/interconnect.txt. Should be
+ 2 paths corresponding to 2 AXI ports.
+- interconnect-names : MDSS will have 2 port names to differentiate between the
+ 2 interconnect paths defined with interconnect specifier.
Optional properties:
- assigned-clocks: list of clock specifiers for clocks needing rate assignment
@@ -86,6 +91,11 @@ Example:
interrupt-controller;
#interrupt-cells = <1>;
+ interconnects = <&rsc_hlos MASTER_MDP0 &rsc_hlos SLAVE_EBI1>,
+ <&rsc_hlos MASTER_MDP1 &rsc_hlos SLAVE_EBI1>;
+
+ interconnect-names = "mdp0-mem", "mdp1-mem";
+
iommus = <&apps_iommu 0>;
#address-cells = <2>;
diff --git a/Documentation/devicetree/bindings/display/msm/dsi.txt b/Documentation/devicetree/bindings/display/msm/dsi.txt
index 9ae946942720..af95586c898f 100644
--- a/Documentation/devicetree/bindings/display/msm/dsi.txt
+++ b/Documentation/devicetree/bindings/display/msm/dsi.txt
@@ -88,6 +88,7 @@ Required properties:
* "qcom,dsi-phy-28nm-8960"
* "qcom,dsi-phy-14nm"
* "qcom,dsi-phy-10nm"
+ * "qcom,dsi-phy-10nm-8998"
- reg: Physical base address and length of the registers of PLL, PHY. Some
revisions require the PHY regulator base address, whereas others require the
PHY lane base address. See below for each PHY revision.
diff --git a/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.txt b/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.txt
deleted file mode 100644
index 6812280cb109..000000000000
--- a/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.txt
+++ /dev/null
@@ -1,26 +0,0 @@
-Ampire AM-480272H3TMQW-T01H 4.3" WQVGA TFT LCD panel
-
-This binding is compatible with the simple-panel binding, which is specified
-in simple-panel.txt in this directory.
-
-Required properties:
-- compatible: should be "ampire,am-480272h3tmqw-t01h"
-
-Optional properties:
-- power-supply: regulator to provide the supply voltage
-- enable-gpios: GPIO pin to enable or disable the panel
-- backlight: phandle of the backlight device attached to the panel
-
-Optional nodes:
-- Video port for RGB input.
-
-Example:
- panel_rgb: panel-rgb {
- compatible = "ampire,am-480272h3tmqw-t01h";
- enable-gpios = <&gpioa 8 1>;
- port {
- panel_in_rgb: endpoint {
- remote-endpoint = <&controller_out_rgb>;
- };
- };
- };
diff --git a/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.yaml b/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.yaml
new file mode 100644
index 000000000000..c6e33e7f36d0
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.yaml
@@ -0,0 +1,42 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/ampire,am-480272h3tmqw-t01h.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Ampire AM-480272H3TMQW-T01H 4.3" WQVGA TFT LCD panel
+
+maintainers:
+ - Yannick Fertre <yannick.fertre@st.com>
+ - Thierry Reding <treding@nvidia.com>
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ const: ampire,am-480272h3tmqw-t01h
+
+ power-supply: true
+ enable-gpios: true
+ backlight: true
+ port: true
+
+required:
+ - compatible
+
+additionalProperties: false
+
+examples:
+ - |
+ panel_rgb: panel {
+ compatible = "ampire,am-480272h3tmqw-t01h";
+ enable-gpios = <&gpioa 8 1>;
+ port {
+ panel_in_rgb: endpoint {
+ remote-endpoint = <&controller_out_rgb>;
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/arm,versatile-tft-panel.txt b/Documentation/devicetree/bindings/display/panel/arm,versatile-tft-panel.txt
index 248141c3c7e3..0601a9e34703 100644
--- a/Documentation/devicetree/bindings/display/panel/arm,versatile-tft-panel.txt
+++ b/Documentation/devicetree/bindings/display/panel/arm,versatile-tft-panel.txt
@@ -10,7 +10,7 @@ Required properties:
- compatible: should be "arm,versatile-tft-panel"
Required subnodes:
-- port: see display/panel/panel-common.txt, graph.txt
+- port: see display/panel/panel-common.yaml, graph.txt
Example:
diff --git a/Documentation/devicetree/bindings/display/panel/armadeus,st0700-adapt.yaml b/Documentation/devicetree/bindings/display/panel/armadeus,st0700-adapt.yaml
new file mode 100644
index 000000000000..a6ade47066b3
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/armadeus,st0700-adapt.yaml
@@ -0,0 +1,33 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/armadeus,st0700-adapt.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Armadeus ST0700 Adapter
+
+description:
+ A Santek ST0700I5Y-RBSLW 7.0" WVGA (800x480) TFT with an adapter board.
+
+maintainers:
+ - '"Sébastien Szymanski" <sebastien.szymanski@armadeus.com>'
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ const: armadeus,st0700-adapt
+
+ power-supply: true
+ backlight: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+ - power-supply
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.txt b/Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.txt
deleted file mode 100644
index 35bc0c839f49..000000000000
--- a/Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-Banana Pi 7" (S070WV20-CT16) TFT LCD Panel
-
-Required properties:
-- compatible: should be "bananapi,s070wv20-ct16"
-- power-supply: see ./panel-common.txt
-
-Optional properties:
-- enable-gpios: see ./simple-panel.txt
-- backlight: see ./simple-panel.txt
-
-This binding is compatible with the simple-panel binding, which is specified
-in ./simple-panel.txt.
diff --git a/Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.yaml b/Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.yaml
new file mode 100644
index 000000000000..bbf127fb28f7
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/bananapi,s070wv20-ct16.yaml
@@ -0,0 +1,31 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/bananapi,s070wv20-ct16.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Banana Pi 7" (S070WV20-CT16) TFT LCD Panel
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ const: bananapi,s070wv20-ct16
+
+ power-supply: true
+ backlight: true
+ enable-gpios: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+ - power-supply
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/boe,himax8279d.txt b/Documentation/devicetree/bindings/display/panel/boe,himax8279d.txt
new file mode 100644
index 000000000000..3caea2172b1b
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/boe,himax8279d.txt
@@ -0,0 +1,24 @@
+Boe Himax8279d 1200x1920 TFT LCD panel
+
+Required properties:
+- compatible: should be "boe,himax8279d8p" and one of: "boe,himax8279d10p"
+- reg: DSI virtual channel of the peripheral
+- enable-gpios: panel enable gpio
+- pp33-gpios: a GPIO phandle for the 3.3v pin that provides the supply voltage
+- pp18-gpios: a GPIO phandle for the 1.8v pin that provides the supply voltage
+
+Optional properties:
+- backlight: phandle of the backlight device attached to the panel
+
+Example:
+
+ &mipi_dsi {
+ panel {
+ compatible = "boe,himax8279d8p", "boe,himax8279d10p";
+ reg = <0>;
+ backlight = <&backlight>;
+ enable-gpios = <&gpio 45 GPIO_ACTIVE_HIGH>;
+ pp33-gpios = <&gpio 35 GPIO_ACTIVE_HIGH>;
+ pp18-gpios = <&gpio 36 GPIO_ACTIVE_HIGH>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/panel/dlc,dlc0700yzg-1.yaml b/Documentation/devicetree/bindings/display/panel/dlc,dlc0700yzg-1.yaml
new file mode 100644
index 000000000000..287e2feb6533
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/dlc,dlc0700yzg-1.yaml
@@ -0,0 +1,31 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/dlc,dlc0700yzg-1.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: DLC Display Co. DLC0700YZG-1 7.0" WSVGA TFT LCD panel
+
+maintainers:
+ - Philipp Zabel <p.zabel@pengutronix.de>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ const: dlc,dlc0700yzg-1
+
+ reset-gpios: true
+ enable-gpios: true
+ backlight: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+ - power-supply
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/edt,et-series.txt b/Documentation/devicetree/bindings/display/panel/edt,et-series.txt
index f56b99ebd9be..b7ac1c725f97 100644
--- a/Documentation/devicetree/bindings/display/panel/edt,et-series.txt
+++ b/Documentation/devicetree/bindings/display/panel/edt,et-series.txt
@@ -6,6 +6,22 @@ Display bindings for EDT Display Technology Corp. Displays which are
compatible with the simple-panel binding, which is specified in
simple-panel.txt
+3,5" QVGA TFT Panels
+--------------------
++-----------------+---------------------+-------------------------------------+
+| Identifier | compatbile | description |
++=================+=====================+=====================================+
+| ET035012DM6 | edt,et035012dm6 | 3.5" QVGA TFT LCD panel |
++-----------------+---------------------+-------------------------------------+
+
+4,3" WVGA TFT Panels
+--------------------
+
++-----------------+---------------------+-------------------------------------+
+| Identifier | compatbile | description |
++=================+=====================+=====================================+
+| ETM0430G0DH6 | edt,etm0430g0dh6 | 480x272 TFT Display |
++-----------------+---------------------+-------------------------------------+
5,7" WVGA TFT Panels
--------------------
@@ -24,7 +40,7 @@ simple-panel.txt
| Identifier | compatbile | description |
+=================+=====================+=====================================+
| ETM0700G0DH6 | edt,etm070080dh6 | WVGA TFT Display with capacitive |
-| | | Touchscreen |
+| | edt,etm0700g0dh6 | Touchscreen |
+-----------------+---------------------+-------------------------------------+
| ETM0700G0BDH6 | edt,etm070080bdh6 | Same as ETM0700G0DH6 but with |
| | | inverted pixel clock. |
diff --git a/Documentation/devicetree/bindings/display/panel/dlc,dlc0700yzg-1.txt b/Documentation/devicetree/bindings/display/panel/evervision,vgg804821.txt
index bf06bb025b08..82d22e191ac3 100644
--- a/Documentation/devicetree/bindings/display/panel/dlc,dlc0700yzg-1.txt
+++ b/Documentation/devicetree/bindings/display/panel/evervision,vgg804821.txt
@@ -1,13 +1,12 @@
-DLC Display Co. DLC0700YZG-1 7.0" WSVGA TFT LCD panel
+Evervision Electronics Co. Ltd. VGG804821 5.0" WVGA TFT LCD Panel
Required properties:
-- compatible: should be "dlc,dlc0700yzg-1"
+- compatible: should be "evervision,vgg804821"
- power-supply: See simple-panel.txt
Optional properties:
-- reset-gpios: See panel-common.txt
-- enable-gpios: See simple-panel.txt
- backlight: See simple-panel.txt
+- enable-gpios: See simple-panel.txt
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/friendlyarm,hd702e.txt b/Documentation/devicetree/bindings/display/panel/friendlyarm,hd702e.txt
new file mode 100644
index 000000000000..6c9156fc3478
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/friendlyarm,hd702e.txt
@@ -0,0 +1,32 @@
+FriendlyELEC HD702E 800x1280 LCD panel
+
+HD702E lcd is FriendlyELEC developed eDP LCD panel with 800x1280
+resolution. It has built in Goodix, GT9271 captive touchscreen
+with backlight adjustable via PWM.
+
+Required properties:
+- compatible: should be "friendlyarm,hd702e"
+- power-supply: regulator to provide the supply voltage
+
+Optional properties:
+- backlight: phandle of the backlight device attached to the panel
+
+Optional nodes:
+- Video port for LCD panel input.
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
+
+Example:
+
+ panel {
+ compatible ="friendlyarm,hd702e", "simple-panel";
+ backlight = <&backlight>;
+ power-supply = <&vcc3v3_sys>;
+
+ port {
+ panel_in_edp: endpoint {
+ remote-endpoint = <&edp_out_panel>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/panel/giantplus,gpm940b0.txt b/Documentation/devicetree/bindings/display/panel/giantplus,gpm940b0.txt
new file mode 100644
index 000000000000..3dab52f92c26
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/giantplus,gpm940b0.txt
@@ -0,0 +1,12 @@
+GiantPlus 3.0" (320x240 pixels) 24-bit TFT LCD panel
+
+Required properties:
+- compatible: should be "giantplus,gpm940b0"
+- power-supply: as specified in the base binding
+
+Optional properties:
+- backlight: as specified in the base binding
+- enable-gpios: as specified in the base binding
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.txt b/Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.txt
deleted file mode 100644
index e5ca4ccd55ed..000000000000
--- a/Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-Innolux Corporation 10.1" EE101IA-01D WXGA (1280x800) LVDS panel
-
-Required properties:
-- compatible: should be "innolux,ee101ia-01d"
-
-This binding is compatible with the lvds-panel binding, which is specified
-in panel-lvds.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.yaml b/Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.yaml
new file mode 100644
index 000000000000..a69681e724cb
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/innolux,ee101ia-01d.yaml
@@ -0,0 +1,31 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/innolux,ee101ia-01d.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Innolux Corporation 10.1" EE101IA-01D WXGA (1280x800) LVDS panel
+
+maintainers:
+ - Heiko Stuebner <heiko.stuebner@bq.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: lvds.yaml#
+
+properties:
+ compatible:
+ items:
+ - const: innolux,ee101ia-01d
+ - {} # panel-lvds, but not listed here to avoid false select
+
+ backlight: true
+ enable-gpios: true
+ power-supply: true
+ width-mm: true
+ height-mm: true
+ panel-timing: true
+ port: true
+
+additionalProperties: false
+...
diff --git a/Documentation/devicetree/bindings/display/panel/kingdisplay,kd035g6-54nt.txt b/Documentation/devicetree/bindings/display/panel/kingdisplay,kd035g6-54nt.txt
new file mode 100644
index 000000000000..fa9596082e44
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/kingdisplay,kd035g6-54nt.txt
@@ -0,0 +1,42 @@
+King Display KD035G6-54NT 3.5" (320x240 pixels) 24-bit TFT LCD panel
+
+Required properties:
+- compatible: should be "kingdisplay,kd035g6-54nt"
+- power-supply: See panel-common.txt
+- reset-gpios: See panel-common.txt
+
+Optional properties:
+- backlight: see panel-common.txt
+
+The generic bindings for the SPI slaves documented in [1] also apply.
+
+The device node can contain one 'port' child node with one child
+'endpoint' node, according to the bindings defined in [2]. This
+node should describe panel's video bus.
+
+[1]: Documentation/devicetree/bindings/spi/spi-bus.txt
+[2]: Documentation/devicetree/bindings/graph.txt
+
+Example:
+
+&spi {
+ panel@0 {
+ compatible = "kingdisplay,kd035g6-54nt";
+ reg = <0>;
+
+ spi-max-frequency = <3125000>;
+ spi-3wire;
+ spi-cs-high;
+
+ reset-gpios = <&gpe 2 GPIO_ACTIVE_LOW>;
+
+ backlight = <&backlight>;
+ power-supply = <&ldo6>;
+
+ port {
+ panel_input: endpoint {
+ remote-endpoint = <&panel_output>;
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/display/panel/koe,tx14d24vm1bpa.txt b/Documentation/devicetree/bindings/display/panel/koe,tx14d24vm1bpa.txt
new file mode 100644
index 000000000000..be7ac666807b
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/koe,tx14d24vm1bpa.txt
@@ -0,0 +1,42 @@
+Kaohsiung Opto-Electronics Inc. 5.7" QVGA (320 x 240) TFT LCD panel
+
+Required properties:
+- compatible: should be "koe,tx14d24vm1bpa"
+- backlight: phandle of the backlight device attached to the panel
+- power-supply: single regulator to provide the supply voltage
+
+Required nodes:
+- port: Parallel port mapping to connect this display
+
+This panel needs single power supply voltage. Its backlight is conntrolled
+via PWM signal.
+
+Example:
+--------
+
+Example device-tree definition when connected to iMX53 based board
+
+ lcd_panel: lcd-panel {
+ compatible = "koe,tx14d24vm1bpa";
+ backlight = <&backlight_lcd>;
+ power-supply = <&reg_3v3>;
+
+ port {
+ lcd_panel_in: endpoint {
+ remote-endpoint = <&lcd_display_out>;
+ };
+ };
+ };
+
+Then one needs to extend the dispX node:
+
+ lcd_display: disp1 {
+
+ port@1 {
+ reg = <1>;
+
+ lcd_display_out: endpoint {
+ remote-endpoint = <&lcd_panel_in>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/panel/lvds.yaml b/Documentation/devicetree/bindings/display/panel/lvds.yaml
new file mode 100644
index 000000000000..d0083301acbe
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/lvds.yaml
@@ -0,0 +1,107 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/lvds.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: LVDS Display Panel
+
+maintainers:
+ - Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+description: |+
+ LVDS is a physical layer specification defined in ANSI/TIA/EIA-644-A. Multiple
+ incompatible data link layers have been used over time to transmit image data
+ to LVDS panels. This bindings supports display panels compatible with the
+ following specifications.
+
+ [JEIDA] "Digital Interface Standards for Monitor", JEIDA-59-1999, February
+ 1999 (Version 1.0), Japan Electronic Industry Development Association (JEIDA)
+ [LDI] "Open LVDS Display Interface", May 1999 (Version 0.95), National
+ Semiconductor
+ [VESA] "VESA Notebook Panel Standard", October 2007 (Version 1.0), Video
+ Electronics Standards Association (VESA)
+
+ Device compatible with those specifications have been marketed under the
+ FPD-Link and FlatLink brands.
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ contains:
+ const: panel-lvds
+ description:
+ Shall contain "panel-lvds" in addition to a mandatory panel-specific
+ compatible string defined in individual panel bindings. The "panel-lvds"
+ value shall never be used on its own.
+
+ data-mapping:
+ enum:
+ - jeida-18
+ - jeida-24
+ - vesa-24
+ description: |
+ The color signals mapping order.
+
+ LVDS data mappings are defined as follows.
+
+ - "jeida-18" - 18-bit data mapping compatible with the [JEIDA], [LDI] and
+ [VESA] specifications. Data are transferred as follows on 3 LVDS lanes.
+
+ Slot 0 1 2 3 4 5 6
+ ________________ _________________
+ Clock \_______________________/
+ ______ ______ ______ ______ ______ ______ ______
+ DATA0 ><__G0__><__R5__><__R4__><__R3__><__R2__><__R1__><__R0__><
+ DATA1 ><__B1__><__B0__><__G5__><__G4__><__G3__><__G2__><__G1__><
+ DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B5__><__B4__><__B3__><__B2__><
+
+ - "jeida-24" - 24-bit data mapping compatible with the [DSIM] and [LDI]
+ specifications. Data are transferred as follows on 4 LVDS lanes.
+
+ Slot 0 1 2 3 4 5 6
+ ________________ _________________
+ Clock \_______________________/
+ ______ ______ ______ ______ ______ ______ ______
+ DATA0 ><__G2__><__R7__><__R6__><__R5__><__R4__><__R3__><__R2__><
+ DATA1 ><__B3__><__B2__><__G7__><__G6__><__G5__><__G4__><__G3__><
+ DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B7__><__B6__><__B5__><__B4__><
+ DATA3 ><_CTL3_><__B1__><__B0__><__G1__><__G0__><__R1__><__R0__><
+
+ - "vesa-24" - 24-bit data mapping compatible with the [VESA] specification.
+ Data are transferred as follows on 4 LVDS lanes.
+
+ Slot 0 1 2 3 4 5 6
+ ________________ _________________
+ Clock \_______________________/
+ ______ ______ ______ ______ ______ ______ ______
+ DATA0 ><__G0__><__R5__><__R4__><__R3__><__R2__><__R1__><__R0__><
+ DATA1 ><__B1__><__B0__><__G5__><__G4__><__G3__><__G2__><__G1__><
+ DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B5__><__B4__><__B3__><__B2__><
+ DATA3 ><_CTL3_><__B7__><__B6__><__G7__><__G6__><__R7__><__R6__><
+
+ Control signals are mapped as follows.
+
+ CTL0: HSync
+ CTL1: VSync
+ CTL2: Data Enable
+ CTL3: 0
+
+ data-mirror:
+ type: boolean
+ description:
+ If set, reverse the bit order described in the data mappings below on all
+ data lanes, transmitting bits for slots 6 to 0 instead of 0 to 6.
+
+required:
+ - compatible
+ - data-mapping
+ - width-mm
+ - height-mm
+ - panel-timing
+ - port
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.txt b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.txt
deleted file mode 100644
index ced0121aed7d..000000000000
--- a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Mitsubishi AA204XD12 LVDS Display Panel
-=======================================
-
-The AA104XD12 is a 10.4" XGA TFT-LCD display panel.
-
-These DT bindings follow the LVDS panel bindings defined in panel-lvds.txt
-with the following device-specific properties.
-
-
-Required properties:
-
-- compatible: Shall contain "mitsubishi,aa121td01" and "panel-lvds", in that
- order.
-- vcc-supply: Reference to the regulator powering the panel VCC pins.
-
-
-Example
--------
-
-panel {
- compatible = "mitsubishi,aa104xd12", "panel-lvds";
- vcc-supply = <&vcc_3v3>;
-
- width-mm = <210>;
- height-mm = <158>;
-
- data-mapping = "jeida-24";
-
- panel-timing {
- /* 1024x768 @65Hz */
- clock-frequency = <65000000>;
- hactive = <1024>;
- vactive = <768>;
- hsync-len = <136>;
- hfront-porch = <20>;
- hback-porch = <160>;
- vfront-porch = <3>;
- vback-porch = <29>;
- vsync-len = <6>;
- };
-
- port {
- panel_in: endpoint {
- remote-endpoint = <&lvds_encoder>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.yaml b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.yaml
new file mode 100644
index 000000000000..b5e7ee230fa6
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.yaml
@@ -0,0 +1,75 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/mitsubishi,aa104xd12.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Mitsubishi AA104XD12 10.4" XGA LVDS Display Panel
+
+maintainers:
+ - Laurent Pinchart <laurent.pinchart@ideasonboard.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: lvds.yaml#
+
+properties:
+ compatible:
+ items:
+ - const: mitsubishi,aa104xd12
+ - {} # panel-lvds, but not listed here to avoid false select
+
+ vcc-supply:
+ description: Reference to the regulator powering the panel VCC pins.
+
+ data-mapping:
+ const: jeida-24
+
+ width-mm:
+ const: 210
+
+ height-mm:
+ const: 158
+
+ panel-timing: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+ - vcc-supply
+
+examples:
+ - |+
+
+ panel {
+ compatible = "mitsubishi,aa104xd12", "panel-lvds";
+ vcc-supply = <&vcc_3v3>;
+
+ width-mm = <210>;
+ height-mm = <158>;
+
+ data-mapping = "jeida-24";
+
+ panel-timing {
+ /* 1024x768 @65Hz */
+ clock-frequency = <65000000>;
+ hactive = <1024>;
+ vactive = <768>;
+ hsync-len = <136>;
+ hfront-porch = <20>;
+ hback-porch = <160>;
+ vfront-porch = <3>;
+ vback-porch = <29>;
+ vsync-len = <6>;
+ };
+
+ port {
+ panel_in: endpoint {
+ remote-endpoint = <&lvds_encoder>;
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.txt b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.txt
deleted file mode 100644
index d6e1097504fe..000000000000
--- a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Mitsubishi AA121TD01 LVDS Display Panel
-=======================================
-
-The AA121TD01 is a 12.1" WXGA TFT-LCD display panel.
-
-These DT bindings follow the LVDS panel bindings defined in panel-lvds.txt
-with the following device-specific properties.
-
-
-Required properties:
-
-- compatible: Shall contain "mitsubishi,aa121td01" and "panel-lvds", in that
- order.
-- vcc-supply: Reference to the regulator powering the panel VCC pins.
-
-
-Example
--------
-
-panel {
- compatible = "mitsubishi,aa121td01", "panel-lvds";
- vcc-supply = <&vcc_3v3>;
-
- width-mm = <261>;
- height-mm = <163>;
-
- data-mapping = "jeida-24";
-
- panel-timing {
- /* 1280x800 @60Hz */
- clock-frequency = <71000000>;
- hactive = <1280>;
- vactive = <800>;
- hsync-len = <70>;
- hfront-porch = <20>;
- hback-porch = <70>;
- vsync-len = <5>;
- vfront-porch = <3>;
- vback-porch = <15>;
- };
-
- port {
- panel_in: endpoint {
- remote-endpoint = <&lvds_encoder>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.yaml b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.yaml
new file mode 100644
index 000000000000..977c50a85b67
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.yaml
@@ -0,0 +1,74 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/mitsubishi,aa121td01.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Mitsubishi AA121TD01 12.1" WXGA LVDS Display Panel
+
+maintainers:
+ - Laurent Pinchart <laurent.pinchart@ideasonboard.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: lvds.yaml#
+
+properties:
+ compatible:
+ items:
+ - const: mitsubishi,aa121td01
+ - {} # panel-lvds, but not listed here to avoid false select
+
+ vcc-supply:
+ description: Reference to the regulator powering the panel VCC pins.
+
+ data-mapping:
+ const: jeida-24
+
+ width-mm:
+ const: 261
+
+ height-mm:
+ const: 163
+
+ panel-timing: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+ - vcc-supply
+
+examples:
+ - |+
+ panel {
+ compatible = "mitsubishi,aa121td01", "panel-lvds";
+ vcc-supply = <&vcc_3v3>;
+
+ width-mm = <261>;
+ height-mm = <163>;
+
+ data-mapping = "jeida-24";
+
+ panel-timing {
+ /* 1280x800 @60Hz */
+ clock-frequency = <71000000>;
+ hactive = <1280>;
+ vactive = <800>;
+ hsync-len = <70>;
+ hfront-porch = <20>;
+ hback-porch = <70>;
+ vsync-len = <5>;
+ vfront-porch = <3>;
+ vback-porch = <15>;
+ };
+
+ port {
+ panel_in: endpoint {
+ remote-endpoint = <&lvds_encoder>;
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/nec,nl8048hl11.yaml b/Documentation/devicetree/bindings/display/panel/nec,nl8048hl11.yaml
new file mode 100644
index 000000000000..aa788eaa2f71
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/nec,nl8048hl11.yaml
@@ -0,0 +1,62 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/nec,nl8048hl11.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NEC NL8048HL11 4.1" WVGA TFT LCD panel
+
+description:
+ The NEC NL8048HL11 is a 4.1" WVGA TFT LCD panel with a 24-bit RGB parallel
+ data interface and an SPI control interface.
+
+maintainers:
+ - Laurent Pinchart <laurent.pinchart@ideasonboard.com>
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ const: nec,nl8048hl11
+
+ label: true
+ port: true
+ reg: true
+ reset-gpios: true
+
+ spi-max-frequency:
+ maximum: 10000000
+
+required:
+ - compatible
+ - reg
+ - reset-gpios
+ - port
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ lcd_panel: panel@0 {
+ compatible = "nec,nl8048hl11";
+ reg = <0>;
+ spi-max-frequency = <10000000>;
+
+ reset-gpios = <&gpio7 7 GPIO_ACTIVE_LOW>;
+
+ port {
+ lcd_in: endpoint {
+ remote-endpoint = <&dpi_out>;
+ };
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/ortustech,com37h3m05dtc.txt b/Documentation/devicetree/bindings/display/panel/ortustech,com37h3m05dtc.txt
new file mode 100644
index 000000000000..c16907c02f80
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/ortustech,com37h3m05dtc.txt
@@ -0,0 +1,12 @@
+OrtusTech COM37H3M05DTC Blanview 3.7" VGA portrait TFT-LCD panel
+
+Required properties:
+- compatible: should be "ortustech,com37h3m05dtc"
+
+Optional properties:
+- enable-gpios: GPIO pin to enable or disable the panel
+- backlight: phandle of the backlight device attached to the panel
+- power-supply: phandle of the regulator that provides the supply voltage
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/ortustech,com37h3m99dtc.txt b/Documentation/devicetree/bindings/display/panel/ortustech,com37h3m99dtc.txt
new file mode 100644
index 000000000000..06a73c3f46b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/ortustech,com37h3m99dtc.txt
@@ -0,0 +1,12 @@
+OrtusTech COM37H3M99DTC Blanview 3.7" VGA portrait TFT-LCD panel
+
+Required properties:
+- compatible: should be "ortustech,com37h3m99dtc"
+
+Optional properties:
+- enable-gpios: GPIO pin to enable or disable the panel
+- backlight: phandle of the backlight device attached to the panel
+- power-supply: phandle of the regulator that provides the supply voltage
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2045-53ts.txt b/Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2045-53ts.txt
new file mode 100644
index 000000000000..85c0b2cacfda
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2045-53ts.txt
@@ -0,0 +1,11 @@
+One Stop Displays OSD101T2045-53TS 10.1" 1920x1200 panel
+
+Required properties:
+- compatible: should be "osddisplays,osd101t2045-53ts"
+- power-supply: as specified in the base binding
+
+Optional properties:
+- backlight: as specified in the base binding
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2587-53ts.txt b/Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2587-53ts.txt
new file mode 100644
index 000000000000..9d88e96003fc
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/osddisplays,osd101t2587-53ts.txt
@@ -0,0 +1,14 @@
+One Stop Displays OSD101T2587-53TS 10.1" 1920x1200 panel
+
+The panel is similar to OSD101T2045-53TS, but it needs additional
+MIPI_DSI_TURN_ON_PERIPHERAL message from the host.
+
+Required properties:
+- compatible: should be "osddisplays,osd101t2587-53ts"
+- power-supply: as specified in the base binding
+
+Optional properties:
+- backlight: as specified in the base binding
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/panel-common.txt b/Documentation/devicetree/bindings/display/panel/panel-common.txt
deleted file mode 100644
index 5d2519af4bb5..000000000000
--- a/Documentation/devicetree/bindings/display/panel/panel-common.txt
+++ /dev/null
@@ -1,101 +0,0 @@
-Common Properties for Display Panel
-===================================
-
-This document defines device tree properties common to several classes of
-display panels. It doesn't constitue a device tree binding specification by
-itself but is meant to be referenced by device tree bindings.
-
-When referenced from panel device tree bindings the properties defined in this
-document are defined as follows. The panel device tree bindings are
-responsible for defining whether each property is required or optional.
-
-
-Descriptive Properties
-----------------------
-
-- width-mm,
-- height-mm: The width-mm and height-mm specify the width and height of the
- physical area where images are displayed. These properties are expressed in
- millimeters and rounded to the closest unit.
-
-- label: The label property specifies a symbolic name for the panel as a
- string suitable for use by humans. It typically contains a name inscribed on
- the system (e.g. as an affixed label) or specified in the system's
- documentation (e.g. in the user's manual).
-
- If no such name exists, and unless the property is mandatory according to
- device tree bindings, it shall rather be omitted than constructed of
- non-descriptive information. For instance an LCD panel in a system that
- contains a single panel shall not be labelled "LCD" if that name is not
- inscribed on the system or used in a descriptive fashion in system
- documentation.
-
-
-Display Timings
----------------
-
-- panel-timing: Most display panels are restricted to a single resolution and
- require specific display timings. The panel-timing subnode expresses those
- timings as specified in the timing subnode section of the display timing
- bindings defined in
- Documentation/devicetree/bindings/display/panel/display-timing.txt.
-
-
-Connectivity
-------------
-
-- ports: Panels receive video data through one or multiple connections. While
- the nature of those connections is specific to the panel type, the
- connectivity is expressed in a standard fashion using ports as specified in
- the device graph bindings defined in
- Documentation/devicetree/bindings/graph.txt.
-
-- ddc-i2c-bus: Some panels expose EDID information through an I2C-compatible
- bus such as DDC2 or E-DDC. For such panels the ddc-i2c-bus contains a
- phandle to the system I2C controller connected to that bus.
-
-
-Control I/Os
-------------
-
-Many display panels can be controlled through pins driven by GPIOs. The nature
-and timing of those control signals are device-specific and left for panel
-device tree bindings to specify. The following GPIO specifiers can however be
-used for panels that implement compatible control signals.
-
-- enable-gpios: Specifier for a GPIO connected to the panel enable control
- signal. The enable signal is active high and enables operation of the panel.
- This property can also be used for panels implementing an active low power
- down signal, which is a negated version of the enable signal. Active low
- enable signals (or active high power down signals) can be supported by
- inverting the GPIO specifier polarity flag.
-
- Note that the enable signal control panel operation only and must not be
- confused with a backlight enable signal.
-
-- reset-gpios: Specifier for a GPIO coonnected to the panel reset control
- signal. The reset signal is active low and resets the panel internal logic
- while active. Active high reset signals can be supported by inverting the
- GPIO specifier polarity flag.
-
-Power
------
-
-- power-supply: display panels require power to be supplied. While several
- panels need more than one power supply with panel-specific constraints
- governing the order and timings of the power supplies, in many cases a single
- power supply is sufficient, either because the panel has a single power rail,
- or because all its power rails can be driven by the same supply. In that case
- the power-supply property specifies the supply powering the panel as a phandle
- to a regulator.
-
-Backlight
----------
-
-Most display panels include a backlight. Some of them also include a backlight
-controller exposed through a control bus such as I2C or DSI. Others expose
-backlight control through GPIO, PWM or other signals connected to an external
-backlight controller.
-
-- backlight: For panels whose backlight is controlled by an external backlight
- controller, this property contains a phandle that references the controller.
diff --git a/Documentation/devicetree/bindings/display/panel/panel-common.yaml b/Documentation/devicetree/bindings/display/panel/panel-common.yaml
new file mode 100644
index 000000000000..ef8d8cdfcede
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/panel-common.yaml
@@ -0,0 +1,149 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/panel-common.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Common Properties for Display Panels
+
+maintainers:
+ - Thierry Reding <thierry.reding@gmail.com>
+ - Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
+
+description: |
+ This document defines device tree properties common to several classes of
+ display panels. It doesn't constitue a device tree binding specification by
+ itself but is meant to be referenced by device tree bindings.
+
+ When referenced from panel device tree bindings the properties defined in this
+ document are defined as follows. The panel device tree bindings are
+ responsible for defining whether each property is required or optional.
+
+properties:
+ # Descriptive Properties
+ width-mm:
+ description:
+ Specifies the width of the physical area where images are displayed. This
+ property is expressed in millimeters and rounded to the closest unit.
+
+ height-mm:
+ description:
+ Specifies the height of the physical area where images are displayed. This
+ property is expressed in millimeters and rounded to the closest unit.
+
+ label:
+ description: |
+ The label property specifies a symbolic name for the panel as a
+ string suitable for use by humans. It typically contains a name inscribed
+ on the system (e.g. as an affixed label) or specified in the system's
+ documentation (e.g. in the user's manual).
+
+ If no such name exists, and unless the property is mandatory according to
+ device tree bindings, it shall rather be omitted than constructed of
+ non-descriptive information. For instance an LCD panel in a system that
+ contains a single panel shall not be labelled "LCD" if that name is not
+ inscribed on the system or used in a descriptive fashion in system
+ documentation.
+
+ rotation:
+ description:
+ Display rotation in degrees counter clockwise (0,90,180,270)
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [ 0, 90, 180, 270 ]
+
+ # Display Timings
+ panel-timing:
+ type: object
+ description:
+ Most display panels are restricted to a single resolution and
+ require specific display timings. The panel-timing subnode expresses those
+ timings as specified in the timing subnode section of the display timing
+ bindings defined in
+ Documentation/devicetree/bindings/display/panel/display-timing.txt.
+
+ # Connectivity
+ port:
+ type: object
+
+ ports:
+ type: object
+ description:
+ Panels receive video data through one or multiple connections. While
+ the nature of those connections is specific to the panel type, the
+ connectivity is expressed in a standard fashion using ports as specified
+ in the device graph bindings defined in
+ Documentation/devicetree/bindings/graph.txt.
+
+ ddc-i2c-bus:
+ $ref: /schemas/types.yaml#/definitions/phandle
+ description:
+ Some panels expose EDID information through an I2C-compatible
+ bus such as DDC2 or E-DDC. For such panels the ddc-i2c-bus contains a
+ phandle to the system I2C controller connected to that bus.
+
+ no-hpd:
+ type: boolean
+ description:
+ This panel is supposed to communicate that it's ready via HPD
+ (hot plug detect) signal, but the signal isn't hooked up so we should
+ hardcode the max delay from the panel spec when powering up the panel.
+
+ # Control I/Os
+
+ # Many display panels can be controlled through pins driven by GPIOs. The nature
+ # and timing of those control signals are device-specific and left for panel
+ # device tree bindings to specify. The following GPIO specifiers can however be
+ # used for panels that implement compatible control signals.
+
+ enable-gpios:
+ maxItems: 1
+ description: |
+ Specifier for a GPIO connected to the panel enable control signal. The
+ enable signal is active high and enables operation of the panel. This
+ property can also be used for panels implementing an active low power down
+ signal, which is a negated version of the enable signal. Active low enable
+ signals (or active high power down signals) can be supported by inverting
+ the GPIO specifier polarity flag.
+
+ Note that the enable signal control panel operation only and must not be
+ confused with a backlight enable signal.
+
+ reset-gpios:
+ maxItems: 1
+ description:
+ Specifier for a GPIO connected to the panel reset control signal.
+ The reset signal is active low and resets the panel internal logic
+ while active. Active high reset signals can be supported by inverting the
+ GPIO specifier polarity flag.
+
+ # Power
+ power-supply:
+ description:
+ Display panels require power to be supplied. While several panels need
+ more than one power supply with panel-specific constraints governing the
+ order and timings of the power supplies, in many cases a single power
+ supply is sufficient, either because the panel has a single power rail, or
+ because all its power rails can be driven by the same supply. In that case
+ the power-supply property specifies the supply powering the panel as a
+ phandle to a regulator.
+
+ # Backlight
+
+ # Most display panels include a backlight. Some of them also include a backlight
+ # controller exposed through a control bus such as I2C or DSI. Others expose
+ # backlight control through GPIO, PWM or other signals connected to an external
+ # backlight controller.
+
+ backlight:
+ $ref: /schemas/types.yaml#/definitions/phandle
+ description:
+ For panels whose backlight is controlled by an external backlight
+ controller, this property contains a phandle that references the
+ controller.
+
+dependencies:
+ width-mm: [ height-mm ]
+ height-mm: [ width-mm ]
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/panel-lvds.txt b/Documentation/devicetree/bindings/display/panel/panel-lvds.txt
deleted file mode 100644
index 250850a2150b..000000000000
--- a/Documentation/devicetree/bindings/display/panel/panel-lvds.txt
+++ /dev/null
@@ -1,121 +0,0 @@
-LVDS Display Panel
-==================
-
-LVDS is a physical layer specification defined in ANSI/TIA/EIA-644-A. Multiple
-incompatible data link layers have been used over time to transmit image data
-to LVDS panels. This bindings supports display panels compatible with the
-following specifications.
-
-[JEIDA] "Digital Interface Standards for Monitor", JEIDA-59-1999, February
-1999 (Version 1.0), Japan Electronic Industry Development Association (JEIDA)
-[LDI] "Open LVDS Display Interface", May 1999 (Version 0.95), National
-Semiconductor
-[VESA] "VESA Notebook Panel Standard", October 2007 (Version 1.0), Video
-Electronics Standards Association (VESA)
-
-Device compatible with those specifications have been marketed under the
-FPD-Link and FlatLink brands.
-
-
-Required properties:
-
-- compatible: Shall contain "panel-lvds" in addition to a mandatory
- panel-specific compatible string defined in individual panel bindings. The
- "panel-lvds" value shall never be used on its own.
-- width-mm: See panel-common.txt.
-- height-mm: See panel-common.txt.
-- data-mapping: The color signals mapping order, "jeida-18", "jeida-24"
- or "vesa-24".
-
-Optional properties:
-
-- label: See panel-common.txt.
-- gpios: See panel-common.txt.
-- backlight: See panel-common.txt.
-- power-supply: See panel-common.txt.
-- data-mirror: If set, reverse the bit order described in the data mappings
- below on all data lanes, transmitting bits for slots 6 to 0 instead of
- 0 to 6.
-
-Required nodes:
-
-- panel-timing: See panel-common.txt.
-- ports: See panel-common.txt. These bindings require a single port subnode
- corresponding to the panel LVDS input.
-
-
-LVDS data mappings are defined as follows.
-
-- "jeida-18" - 18-bit data mapping compatible with the [JEIDA], [LDI] and
- [VESA] specifications. Data are transferred as follows on 3 LVDS lanes.
-
-Slot 0 1 2 3 4 5 6
- ________________ _________________
-Clock \_______________________/
- ______ ______ ______ ______ ______ ______ ______
-DATA0 ><__G0__><__R5__><__R4__><__R3__><__R2__><__R1__><__R0__><
-DATA1 ><__B1__><__B0__><__G5__><__G4__><__G3__><__G2__><__G1__><
-DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B5__><__B4__><__B3__><__B2__><
-
-- "jeida-24" - 24-bit data mapping compatible with the [DSIM] and [LDI]
- specifications. Data are transferred as follows on 4 LVDS lanes.
-
-Slot 0 1 2 3 4 5 6
- ________________ _________________
-Clock \_______________________/
- ______ ______ ______ ______ ______ ______ ______
-DATA0 ><__G2__><__R7__><__R6__><__R5__><__R4__><__R3__><__R2__><
-DATA1 ><__B3__><__B2__><__G7__><__G6__><__G5__><__G4__><__G3__><
-DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B7__><__B6__><__B5__><__B4__><
-DATA3 ><_CTL3_><__B1__><__B0__><__G1__><__G0__><__R1__><__R0__><
-
-- "vesa-24" - 24-bit data mapping compatible with the [VESA] specification.
- Data are transferred as follows on 4 LVDS lanes.
-
-Slot 0 1 2 3 4 5 6
- ________________ _________________
-Clock \_______________________/
- ______ ______ ______ ______ ______ ______ ______
-DATA0 ><__G0__><__R5__><__R4__><__R3__><__R2__><__R1__><__R0__><
-DATA1 ><__B1__><__B0__><__G5__><__G4__><__G3__><__G2__><__G1__><
-DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B5__><__B4__><__B3__><__B2__><
-DATA3 ><_CTL3_><__B7__><__B6__><__G7__><__G6__><__R7__><__R6__><
-
-Control signals are mapped as follows.
-
-CTL0: HSync
-CTL1: VSync
-CTL2: Data Enable
-CTL3: 0
-
-
-Example
--------
-
-panel {
- compatible = "mitsubishi,aa121td01", "panel-lvds";
-
- width-mm = <261>;
- height-mm = <163>;
-
- data-mapping = "jeida-24";
-
- panel-timing {
- /* 1280x800 @60Hz */
- clock-frequency = <71000000>;
- hactive = <1280>;
- vactive = <800>;
- hsync-len = <70>;
- hfront-porch = <20>;
- hback-porch = <70>;
- vsync-len = <5>;
- vfront-porch = <3>;
- vback-porch = <15>;
- };
-
- port {
- panel_in: endpoint {
- remote-endpoint = <&lvds_encoder>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/panel/panel.txt b/Documentation/devicetree/bindings/display/panel/panel.txt
deleted file mode 100644
index e2e6867852b8..000000000000
--- a/Documentation/devicetree/bindings/display/panel/panel.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-Common display properties
--------------------------
-
-- rotation: Display rotation in degrees counter clockwise (0,90,180,270)
diff --git a/Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.txt b/Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.txt
deleted file mode 100644
index 1639fb17a9f0..000000000000
--- a/Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.txt
+++ /dev/null
@@ -1,14 +0,0 @@
-PDA 91-00156-A0 5.0" WVGA TFT LCD panel
-
-Required properties:
-- compatible: should be "pda,91-00156-a0"
-- power-supply: this panel requires a single power supply. A phandle to a
-regulator needs to be specified here. Compatible with panel-common binding which
-is specified in the panel-common.txt in this directory.
-- backlight: this panel's backlight is controlled by an external backlight
-controller. A phandle to this controller needs to be specified here.
-Compatible with panel-common binding which is specified in the panel-common.txt
-in this directory.
-
-This binding is compatible with the simple-panel binding, which is specified
-in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.yaml b/Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.yaml
new file mode 100644
index 000000000000..ccd3623b4955
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/pda,91-00156-a0.yaml
@@ -0,0 +1,31 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/pda,91-00156-a0.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: PDA 91-00156-A0 5.0" WVGA TFT LCD panel
+
+maintainers:
+ - Cristian Birsan <cristian.birsan@microchip.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ const: pda,91-00156-a0
+
+ power-supply: true
+ backlight: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+ - power-supply
+ - backlight
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.txt b/Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.txt
deleted file mode 100644
index e9e19c059260..000000000000
--- a/Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.txt
+++ /dev/null
@@ -1,49 +0,0 @@
-This binding covers the official 7" (800x480) Raspberry Pi touchscreen
-panel.
-
-This DSI panel contains:
-
-- TC358762 DSI->DPI bridge
-- Atmel microcontroller on I2C for power sequencing the DSI bridge and
- controlling backlight
-- Touchscreen controller on I2C for touch input
-
-and this binding covers the DSI display parts but not its touch input.
-
-Required properties:
-- compatible: Must be "raspberrypi,7inch-touchscreen-panel"
-- reg: Must be "45"
-- port: See panel-common.txt
-
-Example:
-
-dsi1: dsi@7e700000 {
- #address-cells = <1>;
- #size-cells = <0>;
- <...>
-
- port {
- dsi_out_port: endpoint {
- remote-endpoint = <&panel_dsi_port>;
- };
- };
-};
-
-i2c_dsi: i2c {
- compatible = "i2c-gpio";
- #address-cells = <1>;
- #size-cells = <0>;
- gpios = <&gpio 28 0
- &gpio 29 0>;
-
- lcd@45 {
- compatible = "raspberrypi,7inch-touchscreen-panel";
- reg = <0x45>;
-
- port {
- panel_dsi_port: endpoint {
- remote-endpoint = <&dsi_out_port>;
- };
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.yaml b/Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.yaml
new file mode 100644
index 000000000000..22a083f7bc8e
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/raspberrypi,7inch-touchscreen.yaml
@@ -0,0 +1,71 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/raspberrypi,7inch-touchscreen.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: The official 7" (800x480) Raspberry Pi touchscreen
+
+maintainers:
+ - Eric Anholt <eric@anholt.net>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+description: |+
+ This DSI panel contains:
+
+ - TC358762 DSI->DPI bridge
+ - Atmel microcontroller on I2C for power sequencing the DSI bridge and
+ controlling backlight
+ - Touchscreen controller on I2C for touch input
+
+ and this binding covers the DSI display parts but not its touch input.
+
+properties:
+ compatible:
+ const: raspberrypi,7inch-touchscreen-panel
+
+ reg:
+ const: 0x45
+
+ port: true
+
+required:
+ - compatible
+ - reg
+ - port
+
+additionalProperties: false
+
+examples:
+ - |+
+ dsi1: dsi {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port {
+ dsi_out_port: endpoint {
+ remote-endpoint = <&panel_dsi_port>;
+ };
+ };
+ };
+
+ i2c_dsi: i2c {
+ compatible = "i2c-gpio";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ scl-gpios = <&gpio 28 0>;
+ sda-gpios = <&gpio 29 0>;
+
+ lcd@45 {
+ compatible = "raspberrypi,7inch-touchscreen-panel";
+ reg = <0x45>;
+
+ port {
+ panel_dsi_port: endpoint {
+ remote-endpoint = <&dsi_out_port>;
+ };
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/raydium,rm67191.txt b/Documentation/devicetree/bindings/display/panel/raydium,rm67191.txt
new file mode 100644
index 000000000000..10424695aa02
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/raydium,rm67191.txt
@@ -0,0 +1,41 @@
+Raydium RM67171 OLED LCD panel with MIPI-DSI protocol
+
+Required properties:
+- compatible: "raydium,rm67191"
+- reg: virtual channel for MIPI-DSI protocol
+ must be <0>
+- dsi-lanes: number of DSI lanes to be used
+ must be <3> or <4>
+- port: input port node with endpoint definition as
+ defined in Documentation/devicetree/bindings/graph.txt;
+ the input port should be connected to a MIPI-DSI device
+ driver
+
+Optional properties:
+- reset-gpios: a GPIO spec for the RST_B GPIO pin
+- v3p3-supply: phandle to 3.3V regulator that powers the VDD_3V3 pin
+- v1p8-supply: phandle to 1.8V regulator that powers the VDD_1V8 pin
+- width-mm: see panel-common.txt
+- height-mm: see panel-common.txt
+- video-mode: 0 - burst-mode
+ 1 - non-burst with sync event
+ 2 - non-burst with sync pulse
+
+Example:
+
+ panel@0 {
+ compatible = "raydium,rm67191";
+ reg = <0>;
+ pinctrl-0 = <&pinctrl_mipi_dsi_0_1_en>;
+ pinctrl-names = "default";
+ reset-gpios = <&gpio1 7 GPIO_ACTIVE_LOW>;
+ dsi-lanes = <4>;
+ width-mm = <68>;
+ height-mm = <121>;
+
+ port {
+ panel_in: endpoint {
+ remote-endpoint = <&mipi_out>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/panel/rocktech,jh057n00900.txt b/Documentation/devicetree/bindings/display/panel/rocktech,jh057n00900.txt
index 1b5763200cf6..a372c5d84695 100644
--- a/Documentation/devicetree/bindings/display/panel/rocktech,jh057n00900.txt
+++ b/Documentation/devicetree/bindings/display/panel/rocktech,jh057n00900.txt
@@ -5,6 +5,9 @@ Required properties:
- reg: DSI virtual channel of the peripheral
- reset-gpios: panel reset gpio
- backlight: phandle of the backlight device attached to the panel
+- vcc-supply: phandle of the regulator that provides the vcc supply voltage.
+- iovcc-supply: phandle of the regulator that provides the iovcc supply
+ voltage.
Example:
@@ -14,5 +17,7 @@ Example:
reg = <0>;
backlight = <&backlight>;
reset-gpios = <&gpio3 13 GPIO_ACTIVE_LOW>;
+ vcc-supply = <&reg_2v8_p>;
+ iovcc-supply = <&reg_1v8_p>;
};
};
diff --git a/Documentation/devicetree/bindings/display/panel/samsung,s6e63m0.txt b/Documentation/devicetree/bindings/display/panel/samsung,s6e63m0.txt
new file mode 100644
index 000000000000..9fb9ebeef8e4
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/samsung,s6e63m0.txt
@@ -0,0 +1,33 @@
+Samsung s6e63m0 AMOLED LCD panel
+
+Required properties:
+ - compatible: "samsung,s6e63m0"
+ - reset-gpios: GPIO spec for reset pin
+ - vdd3-supply: VDD regulator
+ - vci-supply: VCI regulator
+
+The panel must obey rules for SPI slave device specified in document [1].
+
+The device node can contain one 'port' child node with one child
+'endpoint' node, according to the bindings defined in [2]. This
+node should describe panel's video bus.
+
+[1]: Documentation/devicetree/bindings/spi/spi-bus.txt
+[2]: Documentation/devicetree/bindings/media/video-interfaces.txt
+
+Example:
+
+ s6e63m0: display@0 {
+ compatible = "samsung,s6e63m0";
+ reg = <0>;
+ reset-gpio = <&mp05 5 1>;
+ vdd3-supply = <&ldo12_reg>;
+ vci-supply = <&ldo11_reg>;
+ spi-max-frequency = <1200000>;
+
+ port {
+ lcd_ep: endpoint {
+ remote-endpoint = <&fimd_ep>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.txt b/Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.txt
deleted file mode 100644
index d06644b555bd..000000000000
--- a/Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.txt
+++ /dev/null
@@ -1,41 +0,0 @@
-Solomon Goldentek Display GKTW70SDAE4SE LVDS Display Panel
-==========================================================
-
-The GKTW70SDAE4SE is a 7" WVGA TFT-LCD display panel.
-
-These DT bindings follow the LVDS panel bindings defined in panel-lvds.txt
-with the following device-specific properties.
-
-Required properties:
-
-- compatible: Shall contain "sgd,gktw70sdae4se" and "panel-lvds", in that order.
-
-Example
--------
-
-panel {
- compatible = "sgd,gktw70sdae4se", "panel-lvds";
-
- width-mm = <153>;
- height-mm = <86>;
-
- data-mapping = "jeida-18";
-
- panel-timing {
- clock-frequency = <32000000>;
- hactive = <800>;
- vactive = <480>;
- hback-porch = <39>;
- hfront-porch = <39>;
- vback-porch = <29>;
- vfront-porch = <13>;
- hsync-len = <47>;
- vsync-len = <2>;
- };
-
- port {
- panel_in: endpoint {
- remote-endpoint = <&lvds_encoder>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.yaml b/Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.yaml
new file mode 100644
index 000000000000..e63a570ae59d
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/sgd,gktw70sdae4se.yaml
@@ -0,0 +1,68 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/sgd,gktw70sdae4se.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Solomon Goldentek Display GKTW70SDAE4SE 7" WVGA LVDS Display Panel
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+allOf:
+ - $ref: lvds.yaml#
+
+properties:
+ compatible:
+ items:
+ - const: sgd,gktw70sdae4se
+ - {} # panel-lvds, but not listed here to avoid false select
+
+ data-mapping:
+ const: jeida-18
+
+ width-mm:
+ const: 153
+
+ height-mm:
+ const: 86
+
+ panel-timing: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+
+examples:
+ - |+
+ panel {
+ compatible = "sgd,gktw70sdae4se", "panel-lvds";
+
+ width-mm = <153>;
+ height-mm = <86>;
+
+ data-mapping = "jeida-18";
+
+ panel-timing {
+ clock-frequency = <32000000>;
+ hactive = <800>;
+ vactive = <480>;
+ hback-porch = <39>;
+ hfront-porch = <39>;
+ vback-porch = <29>;
+ vfront-porch = <13>;
+ hsync-len = <47>;
+ vsync-len = <2>;
+ };
+
+ port {
+ panel_in: endpoint {
+ remote-endpoint = <&lvds_encoder>;
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/sharp,ld-d5116z01b.txt b/Documentation/devicetree/bindings/display/panel/sharp,ld-d5116z01b.txt
new file mode 100644
index 000000000000..fd9cf39bde77
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/sharp,ld-d5116z01b.txt
@@ -0,0 +1,26 @@
+Sharp LD-D5116Z01B 12.3" WUXGA+ eDP panel
+
+Required properties:
+- compatible: should be "sharp,ld-d5116z01b"
+- power-supply: regulator to provide the VCC supply voltage (3.3 volts)
+
+This binding is compatible with the simple-panel binding.
+
+The device node can contain one 'port' child node with one child
+'endpoint' node, according to the bindings defined in [1]. This
+node should describe panel's video bus.
+
+[1]: Documentation/devicetree/bindings/media/video-interfaces.txt
+
+Example:
+
+ panel: panel {
+ compatible = "sharp,ld-d5116z01b";
+ power-supply = <&vlcd_3v3>;
+
+ port {
+ panel_ep: endpoint {
+ remote-endpoint = <&bridge_out_ep>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/panel/sharp,lq070y3dg3b.txt b/Documentation/devicetree/bindings/display/panel/sharp,lq070y3dg3b.txt
new file mode 100644
index 000000000000..95534b55ee5f
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/sharp,lq070y3dg3b.txt
@@ -0,0 +1,12 @@
+Sharp LQ070Y3DG3B 7.0" WVGA landscape TFT LCD panel
+
+Required properties:
+- compatible: should be "sharp,lq070y3dg3b"
+
+Optional properties:
+- enable-gpios: GPIO pin to enable or disable the panel
+- backlight: phandle of the backlight device attached to the panel
+- power-supply: phandle of the regulator that provides the supply voltage
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/sharp,ls020b1dd01d.txt b/Documentation/devicetree/bindings/display/panel/sharp,ls020b1dd01d.txt
new file mode 100644
index 000000000000..e45edbc565a3
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/sharp,ls020b1dd01d.txt
@@ -0,0 +1,12 @@
+Sharp 2.0" (240x160 pixels) 16-bit TFT LCD panel
+
+Required properties:
+- compatible: should be "sharp,ls020b1dd01d"
+- power-supply: as specified in the base binding
+
+Optional properties:
+- backlight: as specified in the base binding
+- enable-gpios: as specified in the base binding
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/simple-panel.txt b/Documentation/devicetree/bindings/display/panel/simple-panel.txt
index b2b872c710f2..e11208fb7da8 100644
--- a/Documentation/devicetree/bindings/display/panel/simple-panel.txt
+++ b/Documentation/devicetree/bindings/display/panel/simple-panel.txt
@@ -1,28 +1 @@
-Simple display panel
-====================
-
-panel node
-----------
-
-Required properties:
-- power-supply: See panel-common.txt
-
-Optional properties:
-- ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
-- enable-gpios: GPIO pin to enable or disable the panel
-- backlight: phandle of the backlight device attached to the panel
-- no-hpd: This panel is supposed to communicate that it's ready via HPD
- (hot plug detect) signal, but the signal isn't hooked up so we should
- hardcode the max delay from the panel spec when powering up the panel.
-
-Example:
-
- panel: panel {
- compatible = "cptt,claa101wb01";
- ddc-i2c-bus = <&panelddc>;
-
- power-supply = <&vdd_pnl_reg>;
- enable-gpios = <&gpio 90 0>;
-
- backlight = <&backlight>;
- };
+See panel-common.yaml in this directory.
diff --git a/Documentation/devicetree/bindings/display/panel/tfc,s9700rtwv43tr-01b.yaml b/Documentation/devicetree/bindings/display/panel/tfc,s9700rtwv43tr-01b.yaml
new file mode 100644
index 000000000000..9e5994417c12
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/tfc,s9700rtwv43tr-01b.yaml
@@ -0,0 +1,33 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/tfc,s9700rtwv43tr-01b.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: TFC S9700RTWV43TR-01B 7" Three Five Corp 800x480 LCD panel with resistive touch
+
+maintainers:
+ - Jyri Sarha <jsarha@ti.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+description: |+
+ The panel is found on TI AM335x-evm.
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ const: tfc,s9700rtwv43tr-01b
+
+ enable-gpios: true
+ backlight: true
+ port: true
+
+additionalProperties: false
+
+required:
+ - compatible
+ - power-supply
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/ti,nspire.yaml b/Documentation/devicetree/bindings/display/panel/ti,nspire.yaml
new file mode 100644
index 000000000000..5c5a3b519e31
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/ti,nspire.yaml
@@ -0,0 +1,36 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/ti,nspire.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Texas Instruments NSPIRE Display Panels
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ enum:
+ - ti,nspire-cx-lcd-panel
+ - ti,nspire-classic-lcd-panel
+ port: true
+
+required:
+ - compatible
+
+additionalProperties: false
+
+examples:
+ - |
+ panel {
+ compatible = "ti,nspire-cx-lcd-panel";
+ port {
+ panel_in: endpoint {
+ remote-endpoint = <&pads>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/panel/tpo,tpg110.txt b/Documentation/devicetree/bindings/display/panel/tpo,tpg110.txt
deleted file mode 100644
index 40f3d7c713bb..000000000000
--- a/Documentation/devicetree/bindings/display/panel/tpo,tpg110.txt
+++ /dev/null
@@ -1,70 +0,0 @@
-TPO TPG110 Panel
-================
-
-This panel driver is a component that acts as an intermediary
-between an RGB output and a variety of panels. The panel
-driver is strapped up in electronics to the desired resolution
-and other properties, and has a control interface over 3WIRE
-SPI. By talking to the TPG110 over SPI, the strapped properties
-can be discovered and the hardware is therefore mostly
-self-describing.
-
- +--------+
-SPI -> | TPO | -> physical display
-RGB -> | TPG110 |
- +--------+
-
-If some electrical strap or alternate resolution is desired,
-this can be set up by taking software control of the display
-over the SPI interface. The interface can also adjust
-for properties of the display such as gamma correction and
-certain electrical driving levels.
-
-The TPG110 does not know the physical dimensions of the panel
-connected, so this needs to be specified in the device tree.
-
-It requires a GPIO line for control of its reset line.
-
-The serial protocol has line names that resemble I2C but the
-protocol is not I2C but 3WIRE SPI.
-
-Required properties:
-- compatible : one of:
- "ste,nomadik-nhk15-display", "tpo,tpg110"
- "tpo,tpg110"
-- grestb-gpios : panel reset GPIO
-- width-mm : see display/panel/panel-common.txt
-- height-mm : see display/panel/panel-common.txt
-
-The device needs to be a child of an SPI bus, see
-spi/spi-bus.txt. The SPI child must set the following
-properties:
-- spi-3wire
-- spi-max-frequency = <3000000>;
-as these are characteristics of this device.
-
-The device node can contain one 'port' child node with one child
-'endpoint' node, according to the bindings defined in
-media/video-interfaces.txt. This node should describe panel's video bus.
-
-Example
--------
-
-panel: display@0 {
- compatible = "tpo,tpg110";
- reg = <0>;
- spi-3wire;
- /* 320 ns min period ~= 3 MHz */
- spi-max-frequency = <3000000>;
- /* Width and height from data sheet */
- width-mm = <116>;
- height-mm = <87>;
- grestb-gpios = <&foo_gpio 5 GPIO_ACTIVE_LOW>;
- backlight = <&bl>;
-
- port {
- nomadik_clcd_panel: endpoint {
- remote-endpoint = <&foo>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/display/panel/tpo,tpg110.yaml b/Documentation/devicetree/bindings/display/panel/tpo,tpg110.yaml
new file mode 100644
index 000000000000..a51660b73f28
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/tpo,tpg110.yaml
@@ -0,0 +1,101 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/display/panel/tpo,tpg110.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: TPO TPG110 Panel
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+description: |+
+ This panel driver is a component that acts as an intermediary
+ between an RGB output and a variety of panels. The panel
+ driver is strapped up in electronics to the desired resolution
+ and other properties, and has a control interface over 3WIRE
+ SPI. By talking to the TPG110 over SPI, the strapped properties
+ can be discovered and the hardware is therefore mostly
+ self-describing.
+
+ +--------+
+ SPI -> | TPO | -> physical display
+ RGB -> | TPG110 |
+ +--------+
+
+ If some electrical strap or alternate resolution is desired,
+ this can be set up by taking software control of the display
+ over the SPI interface. The interface can also adjust
+ for properties of the display such as gamma correction and
+ certain electrical driving levels.
+
+ The TPG110 does not know the physical dimensions of the panel
+ connected, so this needs to be specified in the device tree.
+
+ It requires a GPIO line for control of its reset line.
+
+ The serial protocol has line names that resemble I2C but the
+ protocol is not I2C but 3WIRE SPI.
+
+
+allOf:
+ - $ref: panel-common.yaml#
+
+properties:
+ compatible:
+ oneOf:
+ - items:
+ - enum:
+ - ste,nomadik-nhk15-display
+ - const: tpo,tpg110
+ - const: tpo,tpg110
+
+ reg: true
+
+ grestb-gpios:
+ maxItems: 1
+ description: panel reset GPIO
+
+ spi-3wire: true
+
+ spi-max-frequency:
+ const: 3000000
+
+required:
+ - compatible
+ - reg
+ - grestb-gpios
+ - width-mm
+ - height-mm
+ - spi-3wire
+ - spi-max-frequency
+ - port
+
+examples:
+ - |+
+ spi {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ panel: display@0 {
+ compatible = "tpo,tpg110";
+ reg = <0>;
+ spi-3wire;
+ /* 320 ns min period ~= 3 MHz */
+ spi-max-frequency = <3000000>;
+ /* Width and height from data sheet */
+ width-mm = <116>;
+ height-mm = <87>;
+ grestb-gpios = <&foo_gpio 5 1>;
+ backlight = <&bl>;
+
+ port {
+ nomadik_clcd_panel: endpoint {
+ remote-endpoint = <&foo>;
+ };
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/display/panel/vl050_8048nt_c01.txt b/Documentation/devicetree/bindings/display/panel/vl050_8048nt_c01.txt
new file mode 100644
index 000000000000..b42bf06bbd99
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/panel/vl050_8048nt_c01.txt
@@ -0,0 +1,12 @@
+VXT 800x480 color TFT LCD panel
+
+Required properties:
+- compatible: should be "vxt,vl050-8048nt-c01"
+- power-supply: as specified in the base binding
+
+Optional properties:
+- backlight: as specified in the base binding
+- enable-gpios: as specified in the base binding
+
+This binding is compatible with the simple-panel binding, which is specified
+in simple-panel.txt in this directory.
diff --git a/Documentation/devicetree/bindings/display/renesas,du.txt b/Documentation/devicetree/bindings/display/renesas,du.txt
index aedb22b4d161..c97dfacad281 100644
--- a/Documentation/devicetree/bindings/display/renesas,du.txt
+++ b/Documentation/devicetree/bindings/display/renesas,du.txt
@@ -7,6 +7,7 @@ Required Properties:
- "renesas,du-r8a7744" for R8A7744 (RZ/G1N) compatible DU
- "renesas,du-r8a7745" for R8A7745 (RZ/G1E) compatible DU
- "renesas,du-r8a77470" for R8A77470 (RZ/G1C) compatible DU
+ - "renesas,du-r8a774a1" for R8A774A1 (RZ/G2M) compatible DU
- "renesas,du-r8a774c0" for R8A774C0 (RZ/G2E) compatible DU
- "renesas,du-r8a7779" for R8A7779 (R-Car H1) compatible DU
- "renesas,du-r8a7790" for R8A7790 (R-Car H2) compatible DU
@@ -58,6 +59,7 @@ corresponding to each DU output.
R8A7744 (RZ/G1N) DPAD 0 LVDS 0 - -
R8A7745 (RZ/G1E) DPAD 0 DPAD 1 - -
R8A77470 (RZ/G1C) DPAD 0 DPAD 1 LVDS 0 -
+ R8A774A1 (RZ/G2M) DPAD 0 HDMI 0 LVDS 0 -
R8A774C0 (RZ/G2E) DPAD 0 LVDS 0 LVDS 1 -
R8A7779 (R-Car H1) DPAD 0 DPAD 1 - -
R8A7790 (R-Car H2) DPAD 0 LVDS 0 LVDS 1 -
diff --git a/Documentation/devicetree/bindings/display/rockchip/dw_hdmi-rockchip.txt b/Documentation/devicetree/bindings/display/rockchip/dw_hdmi-rockchip.txt
index 39143424a474..3d32ce137e7f 100644
--- a/Documentation/devicetree/bindings/display/rockchip/dw_hdmi-rockchip.txt
+++ b/Documentation/devicetree/bindings/display/rockchip/dw_hdmi-rockchip.txt
@@ -12,6 +12,7 @@ following device-specific properties.
Required properties:
- compatible: should be one of the following:
+ "rockchip,rk3228-dw-hdmi"
"rockchip,rk3288-dw-hdmi"
"rockchip,rk3328-dw-hdmi"
"rockchip,rk3399-dw-hdmi"
@@ -38,6 +39,13 @@ Optional properties
- phys: from general PHY binding: the phandle for the PHY device.
- phy-names: Should be "hdmi" if phys references an external phy.
+Optional pinctrl entry:
+- If you have both a "unwedge" and "default" pinctrl entry, dw_hdmi
+ will switch to the unwedge pinctrl state for 10ms if it ever gets an
+ i2c timeout. It's intended that this unwedge pinctrl entry will
+ cause the SDA line to be driven low to work around a hardware
+ errata.
+
Example:
hdmi: hdmi@ff980000 {
diff --git a/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt b/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt
index 6bb59ab39f2f..ce4c1fc9116c 100644
--- a/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt
+++ b/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt
@@ -14,6 +14,8 @@ Required properties:
- rockchip,grf: this soc should set GRF regs to mux vopl/vopb.
- ports: contain a port node with endpoint definitions as defined in [2].
For vopb,set the reg = <0> and set the reg = <1> for vopl.
+- video port 0 for the VOP input, the remote endpoint maybe vopb or vopl
+- video port 1 for either a panel or subsequent encoder
Optional properties:
- power-domains: a phandle to mipi dsi power domain node.
@@ -40,11 +42,12 @@ Example:
ports {
#address-cells = <1>;
#size-cells = <0>;
- reg = <1>;
- mipi_in: port {
+ mipi_in: port@0 {
+ reg = <0>;
#address-cells = <1>;
#size-cells = <0>;
+
mipi_in_vopb: endpoint@0 {
reg = <0>;
remote-endpoint = <&vopb_out_mipi>;
@@ -54,6 +57,16 @@ Example:
remote-endpoint = <&vopl_out_mipi>;
};
};
+
+ mipi_out: port@1 {
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ mipi_out_panel: endpoint {
+ remote-endpoint = <&panel_in_mipi>;
+ };
+ };
};
panel {
@@ -64,5 +77,11 @@ Example:
pinctrl-names = "default";
pinctrl-0 = <&lcd_en>;
backlight = <&backlight>;
+
+ port {
+ panel_in_mipi: endpoint {
+ remote-endpoint = <&mipi_out_panel>;
+ };
+ };
};
};
diff --git a/Documentation/devicetree/bindings/display/rockchip/rockchip-lvds.txt b/Documentation/devicetree/bindings/display/rockchip/rockchip-lvds.txt
index da6939efdb43..7849ff039229 100644
--- a/Documentation/devicetree/bindings/display/rockchip/rockchip-lvds.txt
+++ b/Documentation/devicetree/bindings/display/rockchip/rockchip-lvds.txt
@@ -32,17 +32,6 @@ Their connections are modeled using the OF graph bindings specified in
- video port 0 for the VOP input, the remote endpoint maybe vopb or vopl
- video port 1 for either a panel or subsequent encoder
-the lvds panel described by
- Documentation/devicetree/bindings/display/panel/simple-panel.txt
-
-Panel required properties:
-- ports for remote LVDS output
-
-Panel optional properties:
-- data-mapping: should be "vesa-24","jeida-24" or "jeida-18".
-This describes decribed by:
- Documentation/devicetree/bindings/display/panel/panel-lvds.txt
-
Example:
lvds_panel: lvds-panel {
diff --git a/Documentation/devicetree/bindings/display/simple-framebuffer.yaml b/Documentation/devicetree/bindings/display/simple-framebuffer.yaml
index b052d76cf8b6..678776b6012a 100644
--- a/Documentation/devicetree/bindings/display/simple-framebuffer.yaml
+++ b/Documentation/devicetree/bindings/display/simple-framebuffer.yaml
@@ -126,6 +126,28 @@ required:
# but usually they will be filled by the bootloader.
- compatible
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,simple-framebuffer
+
+ then:
+ required:
+ - allwinner,pipeline
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: amlogic,simple-framebuffer
+
+ then:
+ required:
+ - amlogic,pipeline
+
+
additionalProperties: false
examples:
@@ -139,7 +161,8 @@ examples:
#size-cells = <1>;
stdout-path = "display0";
framebuffer0: framebuffer@1d385000 {
- compatible = "simple-framebuffer";
+ compatible = "allwinner,simple-framebuffer", "simple-framebuffer";
+ allwinner,pipeline = "de_be0-lcd0";
reg = <0x1d385000 3840000>;
width = <1600>;
height = <1200>;
diff --git a/Documentation/devicetree/bindings/display/ssd1307fb.txt b/Documentation/devicetree/bindings/display/ssd1307fb.txt
index b67f8caa212c..27333b9551b3 100644
--- a/Documentation/devicetree/bindings/display/ssd1307fb.txt
+++ b/Documentation/devicetree/bindings/display/ssd1307fb.txt
@@ -27,6 +27,15 @@ Optional properties:
- solomon,prechargep2: Length of precharge period (phase 2) in clock cycles.
This needs to be the higher, the higher the capacitance
of the OLED's pixels is
+ - solomon,dclk-div: Clock divisor 1 to 16
+ - solomon,dclk-frq: Clock frequency 0 to 15, higher value means higher
+ frequency
+ - solomon,lookup-table: 8 bit value array of current drive pulse widths for
+ BANK0, and colors A, B, and C. Each value in range
+ of 31 to 63 for pulse widths of 32 to 64. Color D
+ is always width 64.
+ - solomon,area-color-enable: Display uses color mode
+ - solomon,low-power. Display runs in low power mode
[0]: Documentation/devicetree/bindings/pwm/pwm.txt
@@ -46,4 +55,5 @@ ssd1306: oled@3c {
solomon,com-lrremap;
solomon,com-invdir;
solomon,com-offset = <32>;
+ solomon,lookup-table = /bits/ 8 <0x3f 0x3f 0x3f 0x3f>;
};
diff --git a/Documentation/devicetree/bindings/display/st,stm32-ltdc.txt b/Documentation/devicetree/bindings/display/st,stm32-ltdc.txt
index 3eb1b48b47dd..60c54da4e526 100644
--- a/Documentation/devicetree/bindings/display/st,stm32-ltdc.txt
+++ b/Documentation/devicetree/bindings/display/st,stm32-ltdc.txt
@@ -40,6 +40,8 @@ Mandatory nodes specific to STM32 DSI:
- panel or bridge node: A node containing the panel or bridge description as
documented in [6].
- port: panel or bridge port node, connected to the DSI output port (port@1).
+Optional properties:
+- phy-dsi-supply: phandle of the regulator that provides the supply voltage.
Note: You can find more documentation in the following references
[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
@@ -101,6 +103,7 @@ Example 2: DSI panel
clock-names = "pclk", "ref";
resets = <&rcc STM32F4_APB2_RESET(DSI)>;
reset-names = "apb";
+ phy-dsi-supply = <&reg18>;
ports {
#address-cells = <1>;
diff --git a/Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt b/Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt
deleted file mode 100644
index 6a6cf5de08b0..000000000000
--- a/Documentation/devicetree/bindings/display/sunxi/sun6i-dsi.txt
+++ /dev/null
@@ -1,93 +0,0 @@
-Allwinner A31 DSI Encoder
-=========================
-
-The DSI pipeline consists of two separate blocks: the DSI controller
-itself, and its associated D-PHY.
-
-DSI Encoder
------------
-
-The DSI Encoder generates the DSI signal from the TCON's.
-
-Required properties:
- - compatible: value must be one of:
- * allwinner,sun6i-a31-mipi-dsi
- - reg: base address and size of memory-mapped region
- - interrupts: interrupt associated to this IP
- - clocks: phandles to the clocks feeding the DSI encoder
- * bus: the DSI interface clock
- * mod: the DSI module clock
- - clock-names: the clock names mentioned above
- - phys: phandle to the D-PHY
- - phy-names: must be "dphy"
- - resets: phandle to the reset controller driving the encoder
-
- - ports: A ports node with endpoint definitions as defined in
- Documentation/devicetree/bindings/media/video-interfaces.txt. The
- first port should be the input endpoint, usually coming from the
- associated TCON.
-
-Any MIPI-DSI device attached to this should be described according to
-the bindings defined in ../mipi-dsi-bus.txt
-
-D-PHY
------
-
-Required properties:
- - compatible: value must be one of:
- * allwinner,sun6i-a31-mipi-dphy
- - reg: base address and size of memory-mapped region
- - clocks: phandles to the clocks feeding the DSI encoder
- * bus: the DSI interface clock
- * mod: the DSI module clock
- - clock-names: the clock names mentioned above
- - resets: phandle to the reset controller driving the encoder
-
-Example:
-
-dsi0: dsi@1ca0000 {
- compatible = "allwinner,sun6i-a31-mipi-dsi";
- reg = <0x01ca0000 0x1000>;
- interrupts = <GIC_SPI 89 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&ccu CLK_BUS_MIPI_DSI>,
- <&ccu CLK_DSI_SCLK>;
- clock-names = "bus", "mod";
- resets = <&ccu RST_BUS_MIPI_DSI>;
- phys = <&dphy0>;
- phy-names = "dphy";
- #address-cells = <1>;
- #size-cells = <0>;
-
- panel@0 {
- compatible = "bananapi,lhr050h41", "ilitek,ili9881c";
- reg = <0>;
- power-gpios = <&pio 1 7 GPIO_ACTIVE_HIGH>; /* PB07 */
- reset-gpios = <&r_pio 0 5 GPIO_ACTIVE_LOW>; /* PL05 */
- backlight = <&pwm_bl>;
- };
-
- ports {
- #address-cells = <1>;
- #size-cells = <0>;
-
- port@0 {
- #address-cells = <1>;
- #size-cells = <0>;
- reg = <0>;
-
- dsi0_in_tcon0: endpoint {
- remote-endpoint = <&tcon0_out_dsi0>;
- };
- };
- };
-};
-
-dphy0: d-phy@1ca1000 {
- compatible = "allwinner,sun6i-a31-mipi-dphy";
- reg = <0x01ca1000 0x1000>;
- clocks = <&ccu CLK_BUS_MIPI_DSI>,
- <&ccu CLK_DSI_DPHY>;
- clock-names = "bus", "mod";
- resets = <&ccu RST_BUS_MIPI_DSI>;
- #phy-cells = <0>;
-};
diff --git a/Documentation/devicetree/bindings/dma/8250_mtk_dma.txt b/Documentation/devicetree/bindings/dma/8250_mtk_dma.txt
deleted file mode 100644
index 3fe0961bcf64..000000000000
--- a/Documentation/devicetree/bindings/dma/8250_mtk_dma.txt
+++ /dev/null
@@ -1,33 +0,0 @@
-* Mediatek UART APDMA Controller
-
-Required properties:
-- compatible should contain:
- * "mediatek,mt2712-uart-dma" for MT2712 compatible APDMA
- * "mediatek,mt6577-uart-dma" for MT6577 and all of the above
-
-- reg: The base address of the APDMA register bank.
-
-- interrupts: A single interrupt specifier.
-
-- clocks : Must contain an entry for each entry in clock-names.
- See ../clocks/clock-bindings.txt for details.
-- clock-names: The APDMA clock for register accesses
-
-Examples:
-
- apdma: dma-controller@11000380 {
- compatible = "mediatek,mt2712-uart-dma";
- reg = <0 0x11000380 0 0x400>;
- interrupts = <GIC_SPI 63 IRQ_TYPE_LEVEL_LOW>,
- <GIC_SPI 64 IRQ_TYPE_LEVEL_LOW>,
- <GIC_SPI 65 IRQ_TYPE_LEVEL_LOW>,
- <GIC_SPI 66 IRQ_TYPE_LEVEL_LOW>,
- <GIC_SPI 67 IRQ_TYPE_LEVEL_LOW>,
- <GIC_SPI 68 IRQ_TYPE_LEVEL_LOW>,
- <GIC_SPI 69 IRQ_TYPE_LEVEL_LOW>,
- <GIC_SPI 70 IRQ_TYPE_LEVEL_LOW>;
- clocks = <&pericfg CLK_PERI_AP_DMA>;
- clock-names = "apdma";
- #dma-cells = <1>;
- };
-
diff --git a/Documentation/devicetree/bindings/dma/allwinner,sun4i-a10-dma.yaml b/Documentation/devicetree/bindings/dma/allwinner,sun4i-a10-dma.yaml
new file mode 100644
index 000000000000..15abc0f9429f
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/allwinner,sun4i-a10-dma.yaml
@@ -0,0 +1,55 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/dma/allwinner,sun4i-a10-dma.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 DMA Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "dma-controller.yaml#"
+
+properties:
+ "#dma-cells":
+ const: 2
+ description:
+ The first cell is either 0 or 1, the former to use the normal
+ DMA, 1 for dedicated DMA. The second cell is the request line
+ number.
+
+ compatible:
+ const: allwinner,sun4i-a10-dma
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+required:
+ - "#dma-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+
+additionalProperties: false
+
+examples:
+ - |
+ dma: dma-controller@1c02000 {
+ compatible = "allwinner,sun4i-a10-dma";
+ reg = <0x01c02000 0x1000>;
+ interrupts = <27>;
+ clocks = <&ahb_gates 6>;
+ #dma-cells = <2>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml b/Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml
new file mode 100644
index 000000000000..4cb9d6b93138
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml
@@ -0,0 +1,88 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/dma/allwinner,sun50i-a64-dma.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A64 DMA Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "dma-controller.yaml#"
+
+properties:
+ "#dma-cells":
+ const: 1
+ description: The cell is the request line number.
+
+ compatible:
+ enum:
+ - allwinner,sun50i-a64-dma
+ - allwinner,sun50i-h6-dma
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ minItems: 1
+ maxItems: 2
+
+ clock-names:
+ items:
+ - const: bus
+ - const: mbus
+
+ resets:
+ maxItems: 1
+
+required:
+ - "#dma-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - resets
+ - dma-channels
+
+if:
+ properties:
+ compatible:
+ const: allwinner,sun50i-h6-dma
+
+then:
+ properties:
+ clocks:
+ maxItems: 2
+
+ required:
+ - clock-names
+
+else:
+ properties:
+ clocks:
+ maxItems: 1
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+examples:
+ - |
+ dma: dma-controller@1c02000 {
+ compatible = "allwinner,sun50i-a64-dma";
+ reg = <0x01c02000 0x1000>;
+ interrupts = <0 50 4>;
+ clocks = <&ccu 30>;
+ dma-channels = <8>;
+ dma-requests = <27>;
+ resets = <&ccu 7>;
+ #dma-cells = <1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/dma/allwinner,sun6i-a31-dma.yaml b/Documentation/devicetree/bindings/dma/allwinner,sun6i-a31-dma.yaml
new file mode 100644
index 000000000000..740b7f9b535b
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/allwinner,sun6i-a31-dma.yaml
@@ -0,0 +1,62 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/dma/allwinner,sun6i-a31-dma.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 DMA Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "dma-controller.yaml#"
+
+properties:
+ "#dma-cells":
+ const: 1
+ description: The cell is the request line number.
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun6i-a31-dma
+ - const: allwinner,sun8i-a23-dma
+ - const: allwinner,sun8i-a83t-dma
+ - const: allwinner,sun8i-h3-dma
+ - const: allwinner,sun8i-v3s-dma
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+required:
+ - "#dma-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - resets
+
+additionalProperties: false
+
+examples:
+ - |
+ dma: dma-controller@1c02000 {
+ compatible = "allwinner,sun6i-a31-dma";
+ reg = <0x01c02000 0x1000>;
+ interrupts = <0 50 4>;
+ clocks = <&ahb1_gates 6>;
+ resets = <&ahb1_rst 6>;
+ #dma-cells = <1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/dma/arm-pl330.txt b/Documentation/devicetree/bindings/dma/arm-pl330.txt
index db7e2260f9c5..2c7fd1941abb 100644
--- a/Documentation/devicetree/bindings/dma/arm-pl330.txt
+++ b/Documentation/devicetree/bindings/dma/arm-pl330.txt
@@ -16,6 +16,9 @@ Optional properties:
- dma-channels: contains the total number of DMA channels supported by the DMAC
- dma-requests: contains the total number of DMA requests supported by the DMAC
- arm,pl330-broken-no-flushp: quirk for avoiding to execute DMAFLUSHP
+ - resets: contains an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+ - reset-names: must contain at least "dma", and optional is "dma-ocp".
Example:
diff --git a/Documentation/devicetree/bindings/dma/dma-common.yaml b/Documentation/devicetree/bindings/dma/dma-common.yaml
new file mode 100644
index 000000000000..ed0a49a6f020
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/dma-common.yaml
@@ -0,0 +1,45 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/dma/dma-common.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: DMA Engine Generic Binding
+
+maintainers:
+ - Vinod Koul <vkoul@kernel.org>
+
+description:
+ Generic binding to provide a way for a driver using DMA Engine to
+ retrieve the DMA request or channel information that goes from a
+ hardware device to a DMA controller.
+
+select: false
+
+properties:
+ "#dma-cells":
+ minimum: 1
+ # Should be enough
+ maximum: 255
+ description:
+ Used to provide DMA controller specific information.
+
+ dma-channel-mask:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Bitmask of available DMA channels in ascending order that are
+ not reserved by firmware and are available to the
+ kernel. i.e. first channel corresponds to LSB.
+
+ dma-channels:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Number of DMA channels supported by the controller.
+
+ dma-requests:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Number of DMA request signals supported by the controller.
+
+required:
+ - "#dma-cells"
diff --git a/Documentation/devicetree/bindings/dma/dma-controller.yaml b/Documentation/devicetree/bindings/dma/dma-controller.yaml
new file mode 100644
index 000000000000..c39f6de76670
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/dma-controller.yaml
@@ -0,0 +1,35 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/dma/dma-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: DMA Controller Generic Binding
+
+maintainers:
+ - Vinod Koul <vkoul@kernel.org>
+
+allOf:
+ - $ref: "dma-common.yaml#"
+
+# Everything else is described in the common file
+properties:
+ $nodename:
+ pattern: "^dma-controller(@.*)?$"
+
+examples:
+ - |
+ dma: dma-controller@48000000 {
+ compatible = "ti,omap-sdma";
+ reg = <0x48000000 0x1000>;
+ interrupts = <0 12 0x4
+ 0 13 0x4
+ 0 14 0x4
+ 0 15 0x4>;
+ #dma-cells = <1>;
+ dma-channels = <32>;
+ dma-requests = <127>;
+ dma-channel-mask = <0xfffe>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/dma/dma-router.yaml b/Documentation/devicetree/bindings/dma/dma-router.yaml
new file mode 100644
index 000000000000..5b5f07393135
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/dma-router.yaml
@@ -0,0 +1,50 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/dma/dma-router.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: DMA Router Generic Binding
+
+maintainers:
+ - Vinod Koul <vkoul@kernel.org>
+
+allOf:
+ - $ref: "dma-common.yaml#"
+
+description:
+ DMA routers are transparent IP blocks used to route DMA request
+ lines from devices to the DMA controller. Some SoCs (like TI DRA7x)
+ have more peripherals integrated with DMA requests than what the DMA
+ controller can handle directly.
+
+properties:
+ $nodename:
+ pattern: "^dma-router(@.*)?$"
+
+ dma-masters:
+ $ref: /schemas/types.yaml#definitions/phandle-array
+ description:
+ Array of phandles to the DMA controllers the router can direct
+ the signal to.
+
+ dma-requests:
+ description:
+ Number of incoming request lines the router can handle.
+
+required:
+ - "#dma-cells"
+ - dma-masters
+
+examples:
+ - |
+ sdma_xbar: dma-router@4a002b78 {
+ compatible = "ti,dra7-dma-crossbar";
+ reg = <0x4a002b78 0xfc>;
+ #dma-cells = <1>;
+ dma-requests = <205>;
+ ti,dma-safe-map = <0>;
+ dma-masters = <&sdma>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/dma/dma.txt b/Documentation/devicetree/bindings/dma/dma.txt
index eeb4e4d1771e..90a67a016a48 100644
--- a/Documentation/devicetree/bindings/dma/dma.txt
+++ b/Documentation/devicetree/bindings/dma/dma.txt
@@ -1,113 +1 @@
-* Generic DMA Controller and DMA request bindings
-
-Generic binding to provide a way for a driver using DMA Engine to retrieve the
-DMA request or channel information that goes from a hardware device to a DMA
-controller.
-
-
-* DMA controller
-
-Required property:
-- #dma-cells: Must be at least 1. Used to provide DMA controller
- specific information. See DMA client binding below for
- more details.
-
-Optional properties:
-- dma-channels: Number of DMA channels supported by the controller.
-- dma-requests: Number of DMA request signals supported by the
- controller.
-- dma-channel-mask: Bitmask of available DMA channels in ascending order
- that are not reserved by firmware and are available to
- the kernel. i.e. first channel corresponds to LSB.
-
-Example:
-
- dma: dma@48000000 {
- compatible = "ti,omap-sdma";
- reg = <0x48000000 0x1000>;
- interrupts = <0 12 0x4
- 0 13 0x4
- 0 14 0x4
- 0 15 0x4>;
- #dma-cells = <1>;
- dma-channels = <32>;
- dma-requests = <127>;
- dma-channel-mask = <0xfffe>
- };
-
-* DMA router
-
-DMA routers are transparent IP blocks used to route DMA request lines from
-devices to the DMA controller. Some SoCs (like TI DRA7x) have more peripherals
-integrated with DMA requests than what the DMA controller can handle directly.
-
-Required property:
-- dma-masters: phandle of the DMA controller or list of phandles for
- the DMA controllers the router can direct the signal to.
-- #dma-cells: Must be at least 1. Used to provide DMA router specific
- information. See DMA client binding below for more
- details.
-
-Optional properties:
-- dma-requests: Number of incoming request lines the router can handle.
-- In the node pointed by the dma-masters:
- - dma-requests: The router driver might need to look for this in order
- to configure the routing.
-
-Example:
- sdma_xbar: dma-router@4a002b78 {
- compatible = "ti,dra7-dma-crossbar";
- reg = <0x4a002b78 0xfc>;
- #dma-cells = <1>;
- dma-requests = <205>;
- ti,dma-safe-map = <0>;
- dma-masters = <&sdma>;
- };
-
-* DMA client
-
-Client drivers should specify the DMA property using a phandle to the controller
-followed by DMA controller specific data.
-
-Required property:
-- dmas: List of one or more DMA specifiers, each consisting of
- - A phandle pointing to DMA controller node
- - A number of integer cells, as determined by the
- #dma-cells property in the node referenced by phandle
- containing DMA controller specific information. This
- typically contains a DMA request line number or a
- channel number, but can contain any data that is
- required for configuring a channel.
-- dma-names: Contains one identifier string for each DMA specifier in
- the dmas property. The specific strings that can be used
- are defined in the binding of the DMA client device.
- Multiple DMA specifiers can be used to represent
- alternatives and in this case the dma-names for those
- DMA specifiers must be identical (see examples).
-
-Examples:
-
-1. A device with one DMA read channel, one DMA write channel:
-
- i2c1: i2c@1 {
- ...
- dmas = <&dma 2 /* read channel */
- &dma 3>; /* write channel */
- dma-names = "rx", "tx";
- ...
- };
-
-2. A single read-write channel with three alternative DMA controllers:
-
- dmas = <&dma1 5
- &dma2 7
- &dma3 2>;
- dma-names = "rx-tx", "rx-tx", "rx-tx";
-
-3. A device with three channels, one of which has two alternatives:
-
- dmas = <&dma1 2 /* read channel */
- &dma1 3 /* write channel */
- &dma2 0 /* error read */
- &dma3 0>; /* alternative error read */
- dma-names = "rx", "tx", "error", "error";
+This file has been moved to dma-controller.yaml.
diff --git a/Documentation/devicetree/bindings/dma/fsl-edma.txt b/Documentation/devicetree/bindings/dma/fsl-edma.txt
index 97e213e07660..29dd3ccb1235 100644
--- a/Documentation/devicetree/bindings/dma/fsl-edma.txt
+++ b/Documentation/devicetree/bindings/dma/fsl-edma.txt
@@ -9,15 +9,16 @@ group, DMAMUX0 or DMAMUX1, but not both.
Required properties:
- compatible :
- "fsl,vf610-edma" for eDMA used similar to that on Vybrid vf610 SoC
+ - "fsl,imx7ulp-edma" for eDMA2 used similar to that on i.mx7ulp
- reg : Specifies base physical address(s) and size of the eDMA registers.
The 1st region is eDMA control register's address and size.
The 2nd and the 3rd regions are programmable channel multiplexing
control register's address and size.
- interrupts : A list of interrupt-specifiers, one for each entry in
- interrupt-names.
-- interrupt-names : Should contain:
- "edma-tx" - the transmission interrupt
- "edma-err" - the error interrupt
+ interrupt-names on vf610 similar SoC. But for i.mx7ulp per channel
+ per transmission interrupt, total 16 channel interrupt and 1
+ error interrupt(located in the last), no interrupt-names list on
+ i.mx7ulp for clean on dts.
- #dma-cells : Must be <2>.
The 1st cell specifies the DMAMUX(0 for DMAMUX0 and 1 for DMAMUX1).
Specific request source can only be multiplexed by specific channels
@@ -28,6 +29,7 @@ Required properties:
- clock-names : A list of channel group clock names. Should contain:
"dmamux0" - clock name of mux0 group
"dmamux1" - clock name of mux1 group
+ Note: No dmamux0 on i.mx7ulp, but another 'dma' clk added on i.mx7ulp.
- clocks : A list of phandle and clock-specifier pairs, one for each entry in
clock-names.
@@ -35,6 +37,10 @@ Optional properties:
- big-endian: If present registers and hardware scatter/gather descriptors
of the eDMA are implemented in big endian mode, otherwise in little
mode.
+- interrupt-names : Should contain the below on vf610 similar SoC but not used
+ on i.mx7ulp similar SoC:
+ "edma-tx" - the transmission interrupt
+ "edma-err" - the error interrupt
Examples:
@@ -52,8 +58,36 @@ edma0: dma-controller@40018000 {
clock-names = "dmamux0", "dmamux1";
clocks = <&clks VF610_CLK_DMAMUX0>,
<&clks VF610_CLK_DMAMUX1>;
-};
+}; /* vf610 */
+edma1: dma-controller@40080000 {
+ #dma-cells = <2>;
+ compatible = "fsl,imx7ulp-edma";
+ reg = <0x40080000 0x2000>,
+ <0x40210000 0x1000>;
+ dma-channels = <32>;
+ interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 5 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 10 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 11 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 12 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 13 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 14 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 15 IRQ_TYPE_LEVEL_HIGH>,
+ /* last is eDMA2-ERR interrupt */
+ <GIC_SPI 16 IRQ_TYPE_LEVEL_HIGH>;
+ clock-names = "dma", "dmamux0";
+ clocks = <&pcc2 IMX7ULP_CLK_DMA1>,
+ <&pcc2 IMX7ULP_CLK_DMA_MUX1>;
+}; /* i.mx7ulp */
* DMA clients
DMA client drivers that uses the DMA function must use the format described
diff --git a/Documentation/devicetree/bindings/dma/fsl-qdma.txt b/Documentation/devicetree/bindings/dma/fsl-qdma.txt
index 6a0ff9059e72..da371c4d406c 100644
--- a/Documentation/devicetree/bindings/dma/fsl-qdma.txt
+++ b/Documentation/devicetree/bindings/dma/fsl-qdma.txt
@@ -7,6 +7,7 @@ Required properties:
- compatible: Must be one of
"fsl,ls1021a-qdma": for LS1021A Board
+ "fsl,ls1028a-qdma": for LS1028A Board
"fsl,ls1043a-qdma": for ls1043A Board
"fsl,ls1046a-qdma": for ls1046A Board
- reg: Should contain the register's base address and length.
diff --git a/Documentation/devicetree/bindings/dma/mtk-uart-apdma.txt b/Documentation/devicetree/bindings/dma/mtk-uart-apdma.txt
new file mode 100644
index 000000000000..5d6f98c43e3d
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/mtk-uart-apdma.txt
@@ -0,0 +1,54 @@
+* Mediatek UART APDMA Controller
+
+Required properties:
+- compatible should contain:
+ * "mediatek,mt2712-uart-dma" for MT2712 compatible APDMA
+ * "mediatek,mt6577-uart-dma" for MT6577 and all of the above
+
+- reg: The base address of the APDMA register bank.
+
+- interrupts: A single interrupt specifier.
+ One interrupt per dma-requests, or 8 if no dma-requests property is present
+
+- dma-requests: The number of DMA channels
+
+- clocks : Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names: The APDMA clock for register accesses
+
+- mediatek,dma-33bits: Present if the DMA requires support
+
+Examples:
+
+ apdma: dma-controller@11000400 {
+ compatible = "mediatek,mt2712-uart-dma";
+ reg = <0 0x11000400 0 0x80>,
+ <0 0x11000480 0 0x80>,
+ <0 0x11000500 0 0x80>,
+ <0 0x11000580 0 0x80>,
+ <0 0x11000600 0 0x80>,
+ <0 0x11000680 0 0x80>,
+ <0 0x11000700 0 0x80>,
+ <0 0x11000780 0 0x80>,
+ <0 0x11000800 0 0x80>,
+ <0 0x11000880 0 0x80>,
+ <0 0x11000900 0 0x80>,
+ <0 0x11000980 0 0x80>;
+ interrupts = <GIC_SPI 103 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 104 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 105 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 106 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 107 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 108 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 109 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 110 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 111 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 112 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 113 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 114 IRQ_TYPE_LEVEL_LOW>;
+ dma-requests = <12>;
+ clocks = <&pericfg CLK_PERI_AP_DMA>;
+ clock-names = "apdma";
+ mediatek,dma-33bits;
+ #dma-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/dma/nbpfaxi.txt b/Documentation/devicetree/bindings/dma/renesas,nbpfaxi.txt
index d2e1e62e346a..d2e1e62e346a 100644
--- a/Documentation/devicetree/bindings/dma/nbpfaxi.txt
+++ b/Documentation/devicetree/bindings/dma/renesas,nbpfaxi.txt
diff --git a/Documentation/devicetree/bindings/dma/shdma.txt b/Documentation/devicetree/bindings/dma/renesas,shdma.txt
index a91920a49433..a91920a49433 100644
--- a/Documentation/devicetree/bindings/dma/shdma.txt
+++ b/Documentation/devicetree/bindings/dma/renesas,shdma.txt
diff --git a/Documentation/devicetree/bindings/dma/sun4i-dma.txt b/Documentation/devicetree/bindings/dma/sun4i-dma.txt
deleted file mode 100644
index 8ad556aca70b..000000000000
--- a/Documentation/devicetree/bindings/dma/sun4i-dma.txt
+++ /dev/null
@@ -1,45 +0,0 @@
-Allwinner A10 DMA Controller
-
-This driver follows the generic DMA bindings defined in dma.txt.
-
-Required properties:
-
-- compatible: Must be "allwinner,sun4i-a10-dma"
-- reg: Should contain the registers base address and length
-- interrupts: Should contain a reference to the interrupt used by this device
-- clocks: Should contain a reference to the parent AHB clock
-- #dma-cells : Should be 2, first cell denoting normal or dedicated dma,
- second cell holding the request line number.
-
-Example:
- dma: dma-controller@1c02000 {
- compatible = "allwinner,sun4i-a10-dma";
- reg = <0x01c02000 0x1000>;
- interrupts = <27>;
- clocks = <&ahb_gates 6>;
- #dma-cells = <2>;
- };
-
-Clients:
-
-DMA clients connected to the Allwinner A10 DMA controller must use the
-format described in the dma.txt file, using a three-cell specifier for
-each channel: a phandle plus two integer cells.
-The three cells in order are:
-
-1. A phandle pointing to the DMA controller.
-2. Whether it is using normal (0) or dedicated (1) channels
-3. The port ID as specified in the datasheet
-
-Example:
- spi2: spi@1c17000 {
- compatible = "allwinner,sun4i-a10-spi";
- reg = <0x01c17000 0x1000>;
- interrupts = <0 12 4>;
- clocks = <&ahb_gates 22>, <&spi2_clk>;
- clock-names = "ahb", "mod";
- dmas = <&dma 1 29>, <&dma 1 28>;
- dma-names = "rx", "tx";
- #address-cells = <1>;
- #size-cells = <0>;
- };
diff --git a/Documentation/devicetree/bindings/dma/sun6i-dma.txt b/Documentation/devicetree/bindings/dma/sun6i-dma.txt
deleted file mode 100644
index 7fccc20d8331..000000000000
--- a/Documentation/devicetree/bindings/dma/sun6i-dma.txt
+++ /dev/null
@@ -1,76 +0,0 @@
-Allwinner A31 DMA Controller
-
-This driver follows the generic DMA bindings defined in dma.txt.
-
-Required properties:
-
-- compatible: Must be one of
- "allwinner,sun6i-a31-dma"
- "allwinner,sun8i-a23-dma"
- "allwinner,sun8i-a83t-dma"
- "allwinner,sun8i-h3-dma"
- "allwinner,sun8i-v3s-dma"
-- reg: Should contain the registers base address and length
-- interrupts: Should contain a reference to the interrupt used by this device
-- clocks: Should contain a reference to the parent AHB clock
-- resets: Should contain a reference to the reset controller asserting
- this device in reset
-- #dma-cells : Should be 1, a single cell holding a line request number
-
-Example:
- dma: dma-controller@1c02000 {
- compatible = "allwinner,sun6i-a31-dma";
- reg = <0x01c02000 0x1000>;
- interrupts = <0 50 4>;
- clocks = <&ahb1_gates 6>;
- resets = <&ahb1_rst 6>;
- #dma-cells = <1>;
- };
-
-------------------------------------------------------------------------------
-For A64 DMA controller:
-
-Required properties:
-- compatible: "allwinner,sun50i-a64-dma"
-- dma-channels: Number of DMA channels supported by the controller.
- Refer to Documentation/devicetree/bindings/dma/dma.txt
-- all properties above, i.e. reg, interrupts, clocks, resets and #dma-cells
-
-Optional properties:
-- dma-requests: Number of DMA request signals supported by the controller.
- Refer to Documentation/devicetree/bindings/dma/dma.txt
-
-Example:
- dma: dma-controller@1c02000 {
- compatible = "allwinner,sun50i-a64-dma";
- reg = <0x01c02000 0x1000>;
- interrupts = <GIC_SPI 50 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&ccu CLK_BUS_DMA>;
- dma-channels = <8>;
- dma-requests = <27>;
- resets = <&ccu RST_BUS_DMA>;
- #dma-cells = <1>;
- };
-------------------------------------------------------------------------------
-
-Clients:
-
-DMA clients connected to the A31 DMA controller must use the format
-described in the dma.txt file, using a two-cell specifier for each
-channel: a phandle plus one integer cells.
-The two cells in order are:
-
-1. A phandle pointing to the DMA controller.
-2. The port ID as specified in the datasheet
-
-Example:
-spi2: spi@1c6a000 {
- compatible = "allwinner,sun6i-a31-spi";
- reg = <0x01c6a000 0x1000>;
- interrupts = <0 67 4>;
- clocks = <&ahb1_gates 22>, <&spi2_clk>;
- clock-names = "ahb", "mod";
- dmas = <&dma 25>, <&dma 25>;
- dma-names = "rx", "tx";
- resets = <&ahb1_rst 22>;
-};
diff --git a/Documentation/devicetree/bindings/dsp/fsl,dsp.yaml b/Documentation/devicetree/bindings/dsp/fsl,dsp.yaml
new file mode 100644
index 000000000000..3248595dc93c
--- /dev/null
+++ b/Documentation/devicetree/bindings/dsp/fsl,dsp.yaml
@@ -0,0 +1,88 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/dsp/fsl,dsp.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NXP i.MX8 DSP core
+
+maintainers:
+ - Daniel Baluta <daniel.baluta@nxp.com>
+
+description: |
+ Some boards from i.MX8 family contain a DSP core used for
+ advanced pre- and post- audio processing.
+
+properties:
+ compatible:
+ enum:
+ - fsl,imx8qxp-dsp
+
+ reg:
+ description: Should contain register location and length
+
+ clocks:
+ items:
+ - description: ipg clock
+ - description: ocram clock
+ - description: core clock
+
+ clock-names:
+ items:
+ - const: ipg
+ - const: ocram
+ - const: core
+
+ power-domains:
+ description:
+ List of phandle and PM domain specifier as documented in
+ Documentation/devicetree/bindings/power/power_domain.txt
+ maxItems: 4
+
+ mboxes:
+ description:
+ List of <&phandle type channel> - 2 channels for TXDB, 2 channels for RXDB
+ (see mailbox/fsl,mu.txt)
+ maxItems: 4
+
+ mbox-names:
+ items:
+ - const: txdb0
+ - const: txdb1
+ - const: rxdb0
+ - const: rxdb1
+
+ memory-region:
+ description:
+ phandle to a node describing reserved memory (System RAM memory)
+ used by DSP (see bindings/reserved-memory/reserved-memory.txt)
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - power-domains
+ - mboxes
+ - mbox-names
+ - memory-region
+
+examples:
+ - |
+ #include <dt-bindings/firmware/imx/rsrc.h>
+ #include <dt-bindings/clock/imx8-clock.h>
+ dsp@596e8000 {
+ compatible = "fsl,imx8qxp-dsp";
+ reg = <0x596e8000 0x88000>;
+ clocks = <&adma_lpcg IMX_ADMA_LPCG_DSP_IPG_CLK>,
+ <&adma_lpcg IMX_ADMA_LPCG_OCRAM_IPG_CLK>,
+ <&adma_lpcg IMX_ADMA_LPCG_DSP_CORE_CLK>;
+ clock-names = "ipg", "ocram", "core";
+ power-domains = <&pd IMX_SC_R_MU_13A>,
+ <&pd IMX_SC_R_MU_13B>,
+ <&pd IMX_SC_R_DSP>,
+ <&pd IMX_SC_R_DSP_RAM>;
+ mbox-names = "txdb0", "txdb1", "rxdb0", "rxdb1";
+ mboxes = <&lsio_mu13 2 0>, <&lsio_mu13 2 1>, <&lsio_mu13 3 0>, <&lsio_mu13 3 1>;
+ };
diff --git a/Documentation/devicetree/bindings/eeprom/at25.txt b/Documentation/devicetree/bindings/eeprom/at25.txt
index b3bde97dc199..42577dd113dd 100644
--- a/Documentation/devicetree/bindings/eeprom/at25.txt
+++ b/Documentation/devicetree/bindings/eeprom/at25.txt
@@ -3,6 +3,7 @@ EEPROMs (SPI) compatible with Atmel at25.
Required properties:
- compatible : Should be "<vendor>,<type>", and generic value "atmel,at25".
Example "<vendor>,<type>" values:
+ "anvo,anv32e61w"
"microchip,25lc040"
"st,m95m02"
"st,m95256"
diff --git a/Documentation/devicetree/bindings/example-schema.yaml b/Documentation/devicetree/bindings/example-schema.yaml
index 9175d67f355d..c43819c2783a 100644
--- a/Documentation/devicetree/bindings/example-schema.yaml
+++ b/Documentation/devicetree/bindings/example-schema.yaml
@@ -5,7 +5,7 @@
# All the top-level keys are standard json-schema keywords except for
# 'maintainers' and 'select'
-# $id is a unique idenifier based on the filename. There may or may not be a
+# $id is a unique identifier based on the filename. There may or may not be a
# file present at the URL.
$id: "http://devicetree.org/schemas/example-schema.yaml#"
# $schema is the meta-schema this schema should be validated with.
diff --git a/Documentation/devicetree/bindings/extcon/extcon-arizona.txt b/Documentation/devicetree/bindings/extcon/extcon-arizona.txt
index 7f3d94ae81ff..208daaff0be4 100644
--- a/Documentation/devicetree/bindings/extcon/extcon-arizona.txt
+++ b/Documentation/devicetree/bindings/extcon/extcon-arizona.txt
@@ -72,5 +72,5 @@ codec: wm8280@0 {
1 2 1 /* MICDET2 MICBIAS2 GPIO=high */
>;
- wlf,gpsw = <0>;
+ wlf,gpsw = <ARIZONA_GPSW_OPEN>;
};
diff --git a/Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt b/Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt
new file mode 100644
index 000000000000..624bd76f468e
--- /dev/null
+++ b/Documentation/devicetree/bindings/extcon/extcon-fsa9480.txt
@@ -0,0 +1,21 @@
+FAIRCHILD SEMICONDUCTOR FSA9480 MICROUSB SWITCH
+
+The FSA9480 is a USB port accessory detector and switch. The FSA9480 is fully
+controlled using I2C and enables USB data, stereo and mono audio, video,
+microphone, and UART data to use a common connector port.
+
+Required properties:
+ - compatible : Must be one of
+ "fcs,fsa9480"
+ "fcs,fsa880"
+ - reg : Specifies i2c slave address. Must be 0x25.
+ - interrupts : Should contain one entry specifying interrupt signal of
+ interrupt parent to which interrupt pin of the chip is connected.
+
+ Example:
+ musb@25 {
+ compatible = "fcs,fsa9480";
+ reg = <0x25>;
+ interrupt-parent = <&gph2>;
+ interrupts = <7 0>;
+ };
diff --git a/Documentation/devicetree/bindings/fieldbus/arcx,anybus-controller.txt b/Documentation/devicetree/bindings/fieldbus/arcx,anybus-controller.txt
deleted file mode 100644
index b1f9474f36d5..000000000000
--- a/Documentation/devicetree/bindings/fieldbus/arcx,anybus-controller.txt
+++ /dev/null
@@ -1,71 +0,0 @@
-* Arcx Anybus-S controller
-
-This chip communicates with the SoC over a parallel bus. It is
-expected that its Device Tree node is specified as the child of a node
-corresponding to the parallel bus used for communication.
-
-Required properties:
---------------------
-
- - compatible : The following chip-specific string:
- "arcx,anybus-controller"
-
- - reg : three areas:
- index 0: bus memory area where the cpld registers are located.
- index 1: bus memory area of the first host's dual-port ram.
- index 2: bus memory area of the second host's dual-port ram.
-
- - reset-gpios : the GPIO pin connected to the reset line of the controller.
-
- - interrupts : two interrupts:
- index 0: interrupt connected to the first host
- index 1: interrupt connected to the second host
- Generic interrupt client node bindings are described in
- interrupt-controller/interrupts.txt
-
-Optional: use of subnodes
--------------------------
-
-The card connected to a host may need additional properties. These can be
-specified in subnodes to the controller node.
-
-The subnodes are identified by the standard 'reg' property. Which information
-exactly can be specified depends on the bindings for the function driver
-for the subnode.
-
-Required controller node properties when using subnodes:
-- #address-cells: should be one.
-- #size-cells: should be zero.
-
-Required subnode properties:
-- reg: Must contain the host index of the card this subnode describes:
- <0> for the first host on the controller
- <1> for the second host on the controller
- Note that only a single card can be plugged into a host, so the host
- index uniquely describes the card location.
-
-Example of usage:
------------------
-
-This example places the bridge on top of the i.MX WEIM parallel bus, see:
-Documentation/devicetree/bindings/bus/imx-weim.txt
-
-&weim {
- controller@0,0 {
- compatible = "arcx,anybus-controller";
- reg = <0 0 0x100>, <0 0x400000 0x800>, <1 0x400000 0x800>;
- reset-gpios = <&gpio5 2 GPIO_ACTIVE_HIGH>;
- interrupt-parent = <&gpio1>;
- interrupts = <1 IRQ_TYPE_LEVEL_LOW>, <5 IRQ_TYPE_LEVEL_LOW>;
- /* fsl,weim-cs-timing is a i.MX WEIM bus specific property */
- fsl,weim-cs-timing = <0x024400b1 0x00001010 0x20081100
- 0x00000000 0xa0000240 0x00000000>;
- /* optional subnode for a card plugged into the first host */
- #address-cells = <1>;
- #size-cells = <0>;
- card@0 {
- reg = <0>;
- /* card specific properties go here */
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/firmware/cznic,turris-mox-rwtm.txt b/Documentation/devicetree/bindings/firmware/cznic,turris-mox-rwtm.txt
new file mode 100644
index 000000000000..338169dea7bb
--- /dev/null
+++ b/Documentation/devicetree/bindings/firmware/cznic,turris-mox-rwtm.txt
@@ -0,0 +1,19 @@
+Turris Mox rWTM firmware driver
+
+Required properties:
+ - compatible : Should be "cznic,turris-mox-rwtm"
+ - mboxes : Must contain a reference to associated mailbox
+
+This device tree node should be used on Turris Mox, or potentially another A3700
+compatible device running the Mox's rWTM firmware in the secure processor (for
+example it is possible to flash this firmware into EspressoBin).
+
+Example:
+
+ firmware {
+ turris-mox-rwtm {
+ compatible = "cznic,turris-mox-rwtm";
+ mboxes = <&rwtm 0>;
+ status = "okay";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/firmware/intel,ixp4xx-network-processing-engine.yaml b/Documentation/devicetree/bindings/firmware/intel,ixp4xx-network-processing-engine.yaml
index 8cb136c376fb..4f0db8ee226a 100644
--- a/Documentation/devicetree/bindings/firmware/intel,ixp4xx-network-processing-engine.yaml
+++ b/Documentation/devicetree/bindings/firmware/intel,ixp4xx-network-processing-engine.yaml
@@ -2,7 +2,7 @@
# Copyright 2019 Linaro Ltd.
%YAML 1.2
---
-$id: "http://devicetree.org/schemas/firmware/intel-ixp4xx-network-processing-engine.yaml#"
+$id: "http://devicetree.org/schemas/firmware/intel,ixp4xx-network-processing-engine.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Intel IXP4xx Network Processing Engine
diff --git a/Documentation/devicetree/bindings/firmware/qcom,scm.txt b/Documentation/devicetree/bindings/firmware/qcom,scm.txt
index 41f133a4e2fa..3f29ea04b5fe 100644
--- a/Documentation/devicetree/bindings/firmware/qcom,scm.txt
+++ b/Documentation/devicetree/bindings/firmware/qcom,scm.txt
@@ -9,14 +9,16 @@ Required properties:
- compatible: must contain one of the following:
* "qcom,scm-apq8064"
* "qcom,scm-apq8084"
+ * "qcom,scm-ipq4019"
* "qcom,scm-msm8660"
* "qcom,scm-msm8916"
* "qcom,scm-msm8960"
* "qcom,scm-msm8974"
* "qcom,scm-msm8996"
* "qcom,scm-msm8998"
- * "qcom,scm-ipq4019"
+ * "qcom,scm-sc7180"
* "qcom,scm-sdm845"
+ * "qcom,scm-sm8150"
and:
* "qcom,scm"
- clocks: Specifies clocks needed by the SCM interface, if any:
diff --git a/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt
index 817a8d4bf903..5dd0ff0f7b4e 100644
--- a/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt
+++ b/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt
@@ -3,10 +3,7 @@ Altera FPGA To SDRAM Bridge Driver
Required properties:
- compatible : Should contain "altr,socfpga-fpga2sdram-bridge"
-Optional properties:
-- bridge-enable : 0 if driver should disable bridge at startup
- 1 if driver should enable bridge at startup
- Default is to leave bridge in current state.
+See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
fpga_bridge3: fpga-bridge@ffc25080 {
diff --git a/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt
index f8e288c71b2d..8b26fbcff3c6 100644
--- a/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt
+++ b/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt
@@ -10,10 +10,7 @@ Required properties:
- compatible : Should contain "altr,freeze-bridge-controller"
- regs : base address and size for freeze bridge module
-Optional properties:
-- bridge-enable : 0 if driver should disable bridge at startup
- 1 if driver should enable bridge at startup
- Default is to leave bridge in current state.
+See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
freeze-controller@100000450 {
diff --git a/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt
index 6406f9337eeb..68cce3945b10 100644
--- a/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt
+++ b/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt
@@ -9,10 +9,7 @@ Required properties:
- resets : Phandle and reset specifier for this bridge's reset
- clocks : Clocks used by this module.
-Optional properties:
-- bridge-enable : 0 if driver should disable bridge at startup.
- 1 if driver should enable bridge at startup.
- Default is to leave bridge in its current state.
+See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
fpga_bridge0: fpga-bridge@ff400000 {
diff --git a/Documentation/devicetree/bindings/fpga/fpga-bridge.txt b/Documentation/devicetree/bindings/fpga/fpga-bridge.txt
new file mode 100644
index 000000000000..72e06917288a
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/fpga-bridge.txt
@@ -0,0 +1,13 @@
+FPGA Bridge Device Tree Binding
+
+Optional properties:
+- bridge-enable : 0 if driver should disable bridge at startup
+ 1 if driver should enable bridge at startup
+ Default is to leave bridge in current state.
+
+Example:
+ fpga_bridge3: fpga-bridge@ffc25080 {
+ compatible = "altr,socfpga-fpga2sdram-bridge";
+ reg = <0xffc25080 0x4>;
+ bridge-enable = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt b/Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt
index 8dcfba926bc7..4284d293fa61 100644
--- a/Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt
+++ b/Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt
@@ -18,12 +18,8 @@ Required properties:
- clocks : input clock to IP
- clock-names : should contain "aclk"
-Optional properties:
-- bridge-enable : 0 if driver should disable bridge at startup
- 1 if driver should enable bridge at startup
- Default is to leave bridge in current state.
-
-See Documentation/devicetree/bindings/fpga/fpga-region.txt for generic bindings.
+See Documentation/devicetree/bindings/fpga/fpga-region.txt and
+Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
fpga-bridge@100000450 {
diff --git a/Documentation/devicetree/bindings/gpio/gpio-aspeed.txt b/Documentation/devicetree/bindings/gpio/gpio-aspeed.txt
index 7e9b586770b0..b2033fc3a71a 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-aspeed.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-aspeed.txt
@@ -2,7 +2,8 @@ Aspeed GPIO controller Device Tree Bindings
-------------------------------------------
Required properties:
-- compatible : Either "aspeed,ast2400-gpio" or "aspeed,ast2500-gpio"
+- compatible : Either "aspeed,ast2400-gpio", "aspeed,ast2500-gpio",
+ or "aspeed,ast2600-gpio".
- #gpio-cells : Should be two
- First cell is the GPIO line number
@@ -17,7 +18,9 @@ Required properties:
Optional properties:
-- clocks : A phandle to the clock to use for debounce timings
+- clocks : A phandle to the clock to use for debounce timings
+- ngpios : Number of GPIOs controlled by this controller. Should be set
+ when there are multiple GPIO controllers on a SoC (ast2600).
The gpio and interrupt properties are further described in their respective
bindings documentation:
diff --git a/Documentation/devicetree/bindings/gpio/gpio-davinci.txt b/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
index 553b92a7e87b..cd91d61eac31 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-davinci.txt
@@ -5,6 +5,8 @@ Required Properties:
"ti,keystone-gpio": for Keystone 2 66AK2H/K, 66AK2L,
66AK2E SoCs
"ti,k2g-gpio", "ti,keystone-gpio": for 66AK2G
+ "ti,am654-gpio", "ti,keystone-gpio": for TI K3 AM654
+ "ti,j721e-gpio", "ti,keystone-gpio": for J721E SoCs
- reg: Physical base address of the controller and the size of memory mapped
registers.
@@ -145,3 +147,20 @@ gpio0: gpio@260bf00 {
ti,ngpio = <32>;
ti,davinci-gpio-unbanked = <32>;
};
+
+Example for K3 AM654:
+
+wkup_gpio0: wkup_gpio0@42110000 {
+ compatible = "ti,am654-gpio", "ti,keystone-gpio";
+ reg = <0x42110000 0x100>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-parent = <&intr_wkup_gpio>;
+ interrupts = <59 128>, <59 129>, <59 130>, <59 131>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ ti,ngpio = <56>;
+ ti,davinci-gpio-unbanked = <0>;
+ clocks = <&k3_clks 59 0>;
+ clock-names = "gpio";
+};
diff --git a/Documentation/devicetree/bindings/gpio/gpio-moxtet.txt b/Documentation/devicetree/bindings/gpio/gpio-moxtet.txt
new file mode 100644
index 000000000000..410759de9f09
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio-moxtet.txt
@@ -0,0 +1,18 @@
+Turris Mox Moxtet GPIO expander via Moxtet bus
+
+Required properties:
+ - compatible : Should be "cznic,moxtet-gpio".
+ - gpio-controller : Marks the device node as a GPIO controller.
+ - #gpio-cells : Should be two. For consumer use see gpio.txt.
+
+Other properties are required for a Moxtet bus device, please refer to
+Documentation/devicetree/bindings/bus/moxtet.txt.
+
+Example:
+
+ moxtet_sfp: gpio@0 {
+ compatible = "cznic,moxtet-gpio";
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0>;
+ }
diff --git a/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt b/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt
index 69d46162d0f5..cd28e932bf50 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt
@@ -4,7 +4,7 @@ Required properties:
- compatible : Should be "fsl,<soc>-gpio"
The following <soc>s are known to be supported:
mpc5121, mpc5125, mpc8349, mpc8572, mpc8610, pq3, qoriq,
- ls1021a, ls1043a, ls2080a.
+ ls1021a, ls1043a, ls2080a, ls1028a, ls1088a.
- reg : Address and length of the register set for the device
- interrupts : Should be the port interrupt shared by all 32 pins.
- #gpio-cells : Should be two. The first cell is the pin number and
@@ -37,3 +37,17 @@ gpio0: gpio@2300000 {
interrupt-controller;
#interrupt-cells = <2>;
};
+
+
+Example of gpio-controller node for a ls1028a/ls1088a SoC:
+
+gpio1: gpio@2300000 {
+ compatible = "fsl,ls1028a-gpio", "fsl,ls1088a-gpio", "fsl,qoriq-gpio";
+ reg = <0x0 0x2300000 0x0 0x10000>;
+ interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ little-endian;
+};
diff --git a/Documentation/devicetree/bindings/gpio/pl061-gpio.txt b/Documentation/devicetree/bindings/gpio/pl061-gpio.txt
deleted file mode 100644
index 89058d375b7c..000000000000
--- a/Documentation/devicetree/bindings/gpio/pl061-gpio.txt
+++ /dev/null
@@ -1,10 +0,0 @@
-ARM PL061 GPIO controller
-
-Required properties:
-- compatible : "arm,pl061", "arm,primecell"
-- #gpio-cells : Should be two. The first cell is the pin number and the
- second cell is used to specify optional parameters:
- - bit 0 specifies polarity (0 for normal, 1 for inverted)
-- gpio-controller : Marks the device node as a GPIO controller.
-- interrupts : Interrupt mapping for GPIO IRQ.
-- gpio-ranges : Interaction with the PINCTRL subsystem.
diff --git a/Documentation/devicetree/bindings/gpio/pl061-gpio.yaml b/Documentation/devicetree/bindings/gpio/pl061-gpio.yaml
new file mode 100644
index 000000000000..313b17229247
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/pl061-gpio.yaml
@@ -0,0 +1,69 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/gpio/pl061-gpio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM PL061 GPIO controller
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+ - Rob Herring <robh@kernel.org>
+
+# We need a select here so we don't match all nodes with 'arm,primecell'
+select:
+ properties:
+ compatible:
+ contains:
+ const: arm,pl061
+ required:
+ - compatible
+
+properties:
+ $nodename:
+ pattern: "^gpio@[0-9a-f]+$"
+
+ compatible:
+ items:
+ - const: arm,pl061
+ - const: arm,primecell
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ oneOf:
+ - maxItems: 1
+ - maxItems: 8
+
+ interrupt-controller: true
+
+ "#interrupt-cells":
+ const: 2
+
+ clocks:
+ maxItems: 1
+
+ clock-names: true
+
+ "#gpio-cells":
+ const: 2
+
+ gpio-controller: true
+
+ gpio-ranges:
+ maxItems: 8
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-controller
+ - "#interrupt-cells"
+ - clocks
+ - "#gpio-cells"
+ - gpio-controller
+
+additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/gpio/sgpio-aspeed.txt b/Documentation/devicetree/bindings/gpio/sgpio-aspeed.txt
new file mode 100644
index 000000000000..d4d83916c09d
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/sgpio-aspeed.txt
@@ -0,0 +1,45 @@
+Aspeed SGPIO controller Device Tree Bindings
+--------------------------------------------
+
+This SGPIO controller is for ASPEED AST2500 SoC, it supports up to 80 full
+featured Serial GPIOs. Each of the Serial GPIO pins can be programmed to
+support the following options:
+- Support interrupt option for each input port and various interrupt
+ sensitivity option (level-high, level-low, edge-high, edge-low)
+- Support reset tolerance option for each output port
+- Directly connected to APB bus and its shift clock is from APB bus clock
+ divided by a programmable value.
+- Co-work with external signal-chained TTL components (74LV165/74LV595)
+
+Required properties:
+
+- compatible : Should be one of
+ "aspeed,ast2400-sgpio", "aspeed,ast2500-sgpio"
+- #gpio-cells : Should be 2, see gpio.txt
+- reg : Address and length of the register set for the device
+- gpio-controller : Marks the device node as a GPIO controller
+- interrupts : Interrupt specifier, see interrupt-controller/interrupts.txt
+- interrupt-controller : Mark the GPIO controller as an interrupt-controller
+- ngpios : number of GPIO lines, see gpio.txt
+ (should be multiple of 8, up to 80 pins)
+- clocks : A phandle to the APB clock for SGPM clock division
+- bus-frequency : SGPM CLK frequency
+
+The sgpio and interrupt properties are further described in their respective
+bindings documentation:
+
+- Documentation/devicetree/bindings/gpio/gpio.txt
+- Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
+
+ Example:
+ sgpio: sgpio@1e780200 {
+ #gpio-cells = <2>;
+ compatible = "aspeed,ast2500-sgpio";
+ gpio-controller;
+ interrupts = <40>;
+ reg = <0x1e780200 0x0100>;
+ clocks = <&syscon ASPEED_CLK_APB>;
+ interrupt-controller;
+ ngpios = <8>;
+ bus-frequency = <12000000>;
+ };
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.txt b/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.txt
deleted file mode 100644
index b8be9dbc68b4..000000000000
--- a/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.txt
+++ /dev/null
@@ -1,92 +0,0 @@
-ARM Mali Bifrost GPU
-====================
-
-Required properties:
-
-- compatible :
- * Since Mali Bifrost GPU model/revision is fully discoverable by reading
- some determined registers, must contain the following:
- + "arm,mali-bifrost"
- * which must be preceded by one of the following vendor specifics:
- + "amlogic,meson-g12a-mali"
-
-- reg : Physical base address of the device and length of the register area.
-
-- interrupts : Contains the three IRQ lines required by Mali Bifrost devices,
- in the following defined order.
-
-- interrupt-names : Contains the names of IRQ resources in this exact defined
- order: "job", "mmu", "gpu".
-
-Optional properties:
-
-- clocks : Phandle to clock for the Mali Bifrost device.
-
-- mali-supply : Phandle to regulator for the Mali device. Refer to
- Documentation/devicetree/bindings/regulator/regulator.txt for details.
-
-- operating-points-v2 : Refer to Documentation/devicetree/bindings/opp/opp.txt
- for details.
-
-- resets : Phandle of the GPU reset line.
-
-Vendor-specific bindings
-------------------------
-
-The Mali GPU is integrated very differently from one SoC to
-another. In order to accommodate those differences, you have the option
-to specify one more vendor-specific compatible, among:
-
-- "amlogic,meson-g12a-mali"
- Required properties:
- - resets : Should contain phandles of :
- + GPU reset line
- + GPU APB glue reset line
-
-Example for a Mali-G31:
-
-gpu@ffa30000 {
- compatible = "amlogic,meson-g12a-mali", "arm,mali-bifrost";
- reg = <0xffe40000 0x10000>;
- interrupts = <GIC_SPI 160 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 161 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 162 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "job", "mmu", "gpu";
- clocks = <&clk CLKID_MALI>;
- mali-supply = <&vdd_gpu>;
- operating-points-v2 = <&gpu_opp_table>;
- resets = <&reset RESET_DVALIN_CAPB3>, <&reset RESET_DVALIN>;
-};
-
-gpu_opp_table: opp_table0 {
- compatible = "operating-points-v2";
-
- opp@533000000 {
- opp-hz = /bits/ 64 <533000000>;
- opp-microvolt = <1250000>;
- };
- opp@450000000 {
- opp-hz = /bits/ 64 <450000000>;
- opp-microvolt = <1150000>;
- };
- opp@400000000 {
- opp-hz = /bits/ 64 <400000000>;
- opp-microvolt = <1125000>;
- };
- opp@350000000 {
- opp-hz = /bits/ 64 <350000000>;
- opp-microvolt = <1075000>;
- };
- opp@266000000 {
- opp-hz = /bits/ 64 <266000000>;
- opp-microvolt = <1025000>;
- };
- opp@160000000 {
- opp-hz = /bits/ 64 <160000000>;
- opp-microvolt = <925000>;
- };
- opp@100000000 {
- opp-hz = /bits/ 64 <100000000>;
- opp-microvolt = <912500>;
- };
-};
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml b/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml
new file mode 100644
index 000000000000..5f1fd6d7ee0f
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpu/arm,mali-bifrost.yaml
@@ -0,0 +1,116 @@
+# SPDX-License-Identifier: GPL-2.0-only
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/gpu/arm,mali-bifrost.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM Mali Bifrost GPU
+
+maintainers:
+ - Rob Herring <robh@kernel.org>
+
+properties:
+ $nodename:
+ pattern: '^gpu@[a-f0-9]+$'
+
+ compatible:
+ items:
+ - enum:
+ - amlogic,meson-g12a-mali
+ - const: arm,mali-bifrost # Mali Bifrost GPU model/revision is fully discoverable
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ items:
+ - description: Job interrupt
+ - description: MMU interrupt
+ - description: GPU interrupt
+
+ interrupt-names:
+ items:
+ - const: job
+ - const: mmu
+ - const: gpu
+
+ clocks:
+ maxItems: 1
+
+ mali-supply:
+ maxItems: 1
+
+ operating-points-v2: true
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: amlogic,meson-g12a-mali
+ then:
+ properties:
+ resets:
+ minItems: 2
+ required:
+ - resets
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ gpu@ffe40000 {
+ compatible = "amlogic,meson-g12a-mali", "arm,mali-bifrost";
+ reg = <0xffe40000 0x10000>;
+ interrupts = <GIC_SPI 160 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 161 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 162 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "job", "mmu", "gpu";
+ clocks = <&clk 1>;
+ mali-supply = <&vdd_gpu>;
+ operating-points-v2 = <&gpu_opp_table>;
+ resets = <&reset 0>, <&reset 1>;
+ };
+
+ gpu_opp_table: opp_table0 {
+ compatible = "operating-points-v2";
+
+ opp@533000000 {
+ opp-hz = /bits/ 64 <533000000>;
+ opp-microvolt = <1250000>;
+ };
+ opp@450000000 {
+ opp-hz = /bits/ 64 <450000000>;
+ opp-microvolt = <1150000>;
+ };
+ opp@400000000 {
+ opp-hz = /bits/ 64 <400000000>;
+ opp-microvolt = <1125000>;
+ };
+ opp@350000000 {
+ opp-hz = /bits/ 64 <350000000>;
+ opp-microvolt = <1075000>;
+ };
+ opp@266000000 {
+ opp-hz = /bits/ 64 <266000000>;
+ opp-microvolt = <1025000>;
+ };
+ opp@160000000 {
+ opp-hz = /bits/ 64 <160000000>;
+ opp-microvolt = <925000>;
+ };
+ opp@100000000 {
+ opp-hz = /bits/ 64 <100000000>;
+ opp-microvolt = <912500>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-midgard.txt b/Documentation/devicetree/bindings/gpu/arm,mali-midgard.txt
deleted file mode 100644
index 1b1a74129141..000000000000
--- a/Documentation/devicetree/bindings/gpu/arm,mali-midgard.txt
+++ /dev/null
@@ -1,101 +0,0 @@
-ARM Mali Midgard GPU
-====================
-
-Required properties:
-
-- compatible :
- * Must contain one of the following:
- + "arm,mali-t604"
- + "arm,mali-t624"
- + "arm,mali-t628"
- + "arm,mali-t720"
- + "arm,mali-t760"
- + "arm,mali-t820"
- + "arm,mali-t830"
- + "arm,mali-t860"
- + "arm,mali-t880"
- * which must be preceded by one of the following vendor specifics:
- + "amlogic,meson-gxm-mali"
- + "rockchip,rk3288-mali"
- + "rockchip,rk3399-mali"
-
-- reg : Physical base address of the device and length of the register area.
-
-- interrupts : Contains the three IRQ lines required by Mali Midgard devices.
-
-- interrupt-names : Contains the names of IRQ resources in the order they were
- provided in the interrupts property. Must contain: "job", "mmu", "gpu".
-
-
-Optional properties:
-
-- clocks : Phandle to clock for the Mali Midgard device.
-
-- mali-supply : Phandle to regulator for the Mali device. Refer to
- Documentation/devicetree/bindings/regulator/regulator.txt for details.
-
-- operating-points-v2 : Refer to Documentation/devicetree/bindings/opp/opp.txt
- for details.
-
-- resets : Phandle of the GPU reset line.
-
-Vendor-specific bindings
-------------------------
-
-The Mali GPU is integrated very differently from one SoC to
-another. In order to accomodate those differences, you have the option
-to specify one more vendor-specific compatible, among:
-
-- "amlogic,meson-gxm-mali"
- Required properties:
- - resets : Should contain phandles of :
- + GPU reset line
- + GPU APB glue reset line
-
-Example for a Mali-T760:
-
-gpu@ffa30000 {
- compatible = "rockchip,rk3288-mali", "arm,mali-t760";
- reg = <0xffa30000 0x10000>;
- interrupts = <GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "job", "mmu", "gpu";
- clocks = <&cru ACLK_GPU>;
- mali-supply = <&vdd_gpu>;
- operating-points-v2 = <&gpu_opp_table>;
- power-domains = <&power RK3288_PD_GPU>;
-};
-
-gpu_opp_table: opp_table0 {
- compatible = "operating-points-v2";
-
- opp@533000000 {
- opp-hz = /bits/ 64 <533000000>;
- opp-microvolt = <1250000>;
- };
- opp@450000000 {
- opp-hz = /bits/ 64 <450000000>;
- opp-microvolt = <1150000>;
- };
- opp@400000000 {
- opp-hz = /bits/ 64 <400000000>;
- opp-microvolt = <1125000>;
- };
- opp@350000000 {
- opp-hz = /bits/ 64 <350000000>;
- opp-microvolt = <1075000>;
- };
- opp@266000000 {
- opp-hz = /bits/ 64 <266000000>;
- opp-microvolt = <1025000>;
- };
- opp@160000000 {
- opp-hz = /bits/ 64 <160000000>;
- opp-microvolt = <925000>;
- };
- opp@100000000 {
- opp-hz = /bits/ 64 <100000000>;
- opp-microvolt = <912500>;
- };
-};
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml b/Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml
new file mode 100644
index 000000000000..47bc1ac36426
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpu/arm,mali-midgard.yaml
@@ -0,0 +1,168 @@
+# SPDX-License-Identifier: GPL-2.0-only
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/gpu/arm,mali-midgard.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM Mali Midgard GPU
+
+maintainers:
+ - Rob Herring <robh@kernel.org>
+
+properties:
+ $nodename:
+ pattern: '^gpu@[a-f0-9]+$'
+ compatible:
+ oneOf:
+ - items:
+ - enum:
+ - allwinner,sun50i-h6-mali
+ - const: arm,mali-t720
+ - items:
+ - enum:
+ - amlogic,meson-gxm-mali
+ - const: arm,mali-t820
+ - items:
+ - enum:
+ - rockchip,rk3288-mali
+ - const: arm,mali-t760
+ - items:
+ - enum:
+ - rockchip,rk3399-mali
+ - const: arm,mali-t860
+ - items:
+ - enum:
+ - samsung,exynos5250-mali
+ - const: arm,mali-t604
+ - items:
+ - enum:
+ - samsung,exynos5433-mali
+ - const: arm,mali-t760
+
+ # "arm,mali-t624"
+ # "arm,mali-t628"
+ # "arm,mali-t830"
+ # "arm,mali-t880"
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ items:
+ - description: Job interrupt
+ - description: MMU interrupt
+ - description: GPU interrupt
+
+ interrupt-names:
+ items:
+ - const: job
+ - const: mmu
+ - const: gpu
+
+ clocks:
+ minItems: 1
+ maxItems: 2
+
+ clock-names:
+ minItems: 1
+ items:
+ - const: core
+ - const: bus
+
+ mali-supply:
+ maxItems: 1
+
+ resets:
+ minItems: 1
+ maxItems: 2
+
+ operating-points-v2: true
+
+ "#cooling-cells":
+ const: 2
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun50i-h6-mali
+ then:
+ properties:
+ clocks:
+ minItems: 2
+ required:
+ - clock-names
+ - resets
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: amlogic,meson-gxm-mali
+ then:
+ properties:
+ resets:
+ minItems: 2
+ required:
+ - resets
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ gpu@ffa30000 {
+ compatible = "rockchip,rk3288-mali", "arm,mali-t760";
+ reg = <0xffa30000 0x10000>;
+ interrupts = <GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "job", "mmu", "gpu";
+ clocks = <&cru 0>;
+ mali-supply = <&vdd_gpu>;
+ operating-points-v2 = <&gpu_opp_table>;
+ power-domains = <&power 0>;
+ #cooling-cells = <2>;
+ };
+
+ gpu_opp_table: opp_table0 {
+ compatible = "operating-points-v2";
+
+ opp@533000000 {
+ opp-hz = /bits/ 64 <533000000>;
+ opp-microvolt = <1250000>;
+ };
+ opp@450000000 {
+ opp-hz = /bits/ 64 <450000000>;
+ opp-microvolt = <1150000>;
+ };
+ opp@400000000 {
+ opp-hz = /bits/ 64 <400000000>;
+ opp-microvolt = <1125000>;
+ };
+ opp@350000000 {
+ opp-hz = /bits/ 64 <350000000>;
+ opp-microvolt = <1075000>;
+ };
+ opp@266000000 {
+ opp-hz = /bits/ 64 <266000000>;
+ opp-microvolt = <1025000>;
+ };
+ opp@160000000 {
+ opp-hz = /bits/ 64 <160000000>;
+ opp-microvolt = <925000>;
+ };
+ opp@100000000 {
+ opp-hz = /bits/ 64 <100000000>;
+ opp-microvolt = <912500>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-utgard.txt b/Documentation/devicetree/bindings/gpu/arm,mali-utgard.txt
deleted file mode 100644
index ae63f09fda7d..000000000000
--- a/Documentation/devicetree/bindings/gpu/arm,mali-utgard.txt
+++ /dev/null
@@ -1,123 +0,0 @@
-ARM Mali Utgard GPU
-===================
-
-Required properties:
- - compatible
- * Must be one of the following:
- + "arm,mali-300"
- + "arm,mali-400"
- + "arm,mali-450"
- * And, optionally, one of the vendor specific compatible:
- + allwinner,sun4i-a10-mali
- + allwinner,sun7i-a20-mali
- + allwinner,sun8i-h3-mali
- + allwinner,sun50i-a64-mali
- + allwinner,sun50i-h5-mali
- + amlogic,meson8-mali
- + amlogic,meson8b-mali
- + amlogic,meson-gxbb-mali
- + amlogic,meson-gxl-mali
- + rockchip,rk3036-mali
- + rockchip,rk3066-mali
- + rockchip,rk3188-mali
- + rockchip,rk3228-mali
- + rockchip,rk3328-mali
- + stericsson,db8500-mali
-
- - reg: Physical base address and length of the GPU registers
-
- - interrupts: an entry for each entry in interrupt-names.
- See ../interrupt-controller/interrupts.txt for details.
-
- - interrupt-names:
- * ppX: Pixel Processor X interrupt (X from 0 to 7)
- * ppmmuX: Pixel Processor X MMU interrupt (X from 0 to 7)
- * pp: Pixel Processor broadcast interrupt (mali-450 only)
- * gp: Geometry Processor interrupt
- * gpmmu: Geometry Processor MMU interrupt
-
- - clocks: an entry for each entry in clock-names
- - clock-names:
- * bus: bus clock for the GPU
- * core: clock driving the GPU itself
-
-Optional properties:
- - interrupt-names and interrupts:
- * pmu: Power Management Unit interrupt, if implemented in hardware
-
- - memory-region:
- Memory region to allocate from, as defined in
- Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
-
- - mali-supply:
- Phandle to regulator for the Mali device, as defined in
- Documentation/devicetree/bindings/regulator/regulator.txt for details.
-
- - operating-points-v2:
- Operating Points for the GPU, as defined in
- Documentation/devicetree/bindings/opp/opp.txt
-
- - power-domains:
- A power domain consumer specifier as defined in
- Documentation/devicetree/bindings/power/power_domain.txt
-
-Vendor-specific bindings
-------------------------
-
-The Mali GPU is integrated very differently from one SoC to
-another. In order to accomodate those differences, you have the option
-to specify one more vendor-specific compatible, among:
-
- - allwinner,sun4i-a10-mali
- Required properties:
- * resets: phandle to the reset line for the GPU
-
- - allwinner,sun7i-a20-mali
- Required properties:
- * resets: phandle to the reset line for the GPU
-
- - allwinner,sun50i-a64-mali
- Required properties:
- * resets: phandle to the reset line for the GPU
-
- - allwinner,sun50i-h5-mali
- Required properties:
- * resets: phandle to the reset line for the GPU
-
- - amlogic,meson8-mali and amlogic,meson8b-mali
- Required properties:
- * resets: phandle to the reset line for the GPU
-
- - Rockchip variants:
- Required properties:
- * resets: phandle to the reset line for the GPU
-
- - stericsson,db8500-mali
- Required properties:
- * interrupt-names and interrupts:
- + combined: combined interrupt of all of the above lines
-
-Example:
-
-mali: gpu@1c40000 {
- compatible = "allwinner,sun7i-a20-mali", "arm,mali-400";
- reg = <0x01c40000 0x10000>;
- interrupts = <GIC_SPI 97 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 98 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 99 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 100 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 102 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 103 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 101 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "gp",
- "gpmmu",
- "pp0",
- "ppmmu0",
- "pp1",
- "ppmmu1",
- "pmu";
- clocks = <&ccu CLK_BUS_GPU>, <&ccu CLK_GPU>;
- clock-names = "bus", "core";
- resets = <&ccu RST_BUS_GPU>;
-};
-
diff --git a/Documentation/devicetree/bindings/gpu/arm,mali-utgard.yaml b/Documentation/devicetree/bindings/gpu/arm,mali-utgard.yaml
new file mode 100644
index 000000000000..c5d93c5839d3
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpu/arm,mali-utgard.yaml
@@ -0,0 +1,168 @@
+# SPDX-License-Identifier: GPL-2.0-only
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/gpu/arm,mali-utgard.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM Mali Utgard GPU
+
+maintainers:
+ - Rob Herring <robh@kernel.org>
+ - Maxime Ripard <maxime.ripard@free-electrons.com>
+ - Heiko Stuebner <heiko@sntech.de>
+
+properties:
+ $nodename:
+ pattern: '^gpu@[a-f0-9]+$'
+ compatible:
+ oneOf:
+ - items:
+ - const: allwinner,sun8i-a23-mali
+ - const: allwinner,sun7i-a20-mali
+ - const: arm,mali-400
+ - items:
+ - enum:
+ - allwinner,sun4i-a10-mali
+ - allwinner,sun7i-a20-mali
+ - allwinner,sun8i-h3-mali
+ - allwinner,sun50i-a64-mali
+ - rockchip,rk3036-mali
+ - rockchip,rk3066-mali
+ - rockchip,rk3188-mali
+ - rockchip,rk3228-mali
+ - samsung,exynos4210-mali
+ - stericsson,db8500-mali
+ - const: arm,mali-400
+ - items:
+ - enum:
+ - allwinner,sun50i-h5-mali
+ - amlogic,meson8-mali
+ - amlogic,meson8b-mali
+ - amlogic,meson-gxbb-mali
+ - amlogic,meson-gxl-mali
+ - hisilicon,hi6220-mali
+ - rockchip,rk3328-mali
+ - const: arm,mali-450
+
+ # "arm,mali-300"
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ minItems: 4
+ maxItems: 20
+
+ interrupt-names:
+ allOf:
+ - additionalItems: true
+ minItems: 4
+ maxItems: 20
+ items:
+ # At least enforce the first 2 interrupts
+ - const: gp
+ - const: gpmmu
+ - items:
+ # Not ideal as any order and combination are allowed
+ enum:
+ - gp # Geometry Processor interrupt
+ - gpmmu # Geometry Processor MMU interrupt
+ - pp # Pixel Processor broadcast interrupt (mali-450 only)
+ - pp0 # Pixel Processor X interrupt (X from 0 to 7)
+ - ppmmu0 # Pixel Processor X MMU interrupt (X from 0 to 7)
+ - pp1
+ - ppmmu1
+ - pp2
+ - ppmmu2
+ - pp3
+ - ppmmu3
+ - pp4
+ - ppmmu4
+ - pp5
+ - ppmmu5
+ - pp6
+ - ppmmu6
+ - pp7
+ - ppmmu7
+ - pmu # Power Management Unit interrupt (optional)
+ - combined # stericsson,db8500-mali only
+
+ clocks:
+ maxItems: 2
+
+ clock-names:
+ items:
+ - const: bus
+ - const: core
+
+ memory-region: true
+
+ mali-supply:
+ maxItems: 1
+
+ power-domains:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ operating-points-v2: true
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+ - clock-names
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun4i-a10-mali
+ - allwinner,sun7i-a20-mali
+ - allwinner,sun50i-a64-mali
+ - allwinner,sun50i-h5-mali
+ - amlogic,meson8-mali
+ - amlogic,meson8b-mali
+ - hisilicon,hi6220-mali
+ - rockchip,rk3036-mali
+ - rockchip,rk3066-mali
+ - rockchip,rk3188-mali
+ - rockchip,rk3228-mali
+ - rockchip,rk3328-mali
+ then:
+ required:
+ - resets
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ mali: gpu@1c40000 {
+ compatible = "allwinner,sun7i-a20-mali", "arm,mali-400";
+ reg = <0x01c40000 0x10000>;
+ interrupts = <GIC_SPI 97 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 98 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 99 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 100 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 102 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 103 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 101 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "gp",
+ "gpmmu",
+ "pp0",
+ "ppmmu0",
+ "pp1",
+ "ppmmu1",
+ "pmu";
+ clocks = <&ccu 1>, <&ccu 2>;
+ clock-names = "bus", "core";
+ resets = <&ccu 1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/hwlock/omap-hwspinlock.txt b/Documentation/devicetree/bindings/hwlock/omap-hwspinlock.txt
index 2c9804f4f4ac..8d365f89694c 100644
--- a/Documentation/devicetree/bindings/hwlock/omap-hwspinlock.txt
+++ b/Documentation/devicetree/bindings/hwlock/omap-hwspinlock.txt
@@ -1,12 +1,16 @@
-OMAP4+ HwSpinlock Driver
-========================
+TI HwSpinlock for OMAP and K3 based SoCs
+=========================================
Required properties:
-- compatible: Should be "ti,omap4-hwspinlock" for
- OMAP44xx, OMAP54xx, AM33xx, AM43xx, DRA7xx SoCs
+- compatible: Should be one of the following,
+ "ti,omap4-hwspinlock" for
+ OMAP44xx, OMAP54xx, AM33xx, AM43xx, DRA7xx SoCs
+ "ti,am654-hwspinlock" for
+ K3 AM65x and J721E SoCs
- reg: Contains the hwspinlock module register address space
(base address and length)
- ti,hwmods: Name of the hwmod associated with the hwspinlock device
+ (for OMAP architecture based SoCs only)
- #hwlock-cells: Should be 1. The OMAP hwspinlock users will use a
0-indexed relative hwlock number as the argument
specifier value for requesting a specific hwspinlock
@@ -17,10 +21,21 @@ Please look at the generic hwlock binding for usage information for consumers,
Example:
-/* OMAP4 */
+1. OMAP4 SoCs
hwspinlock: spinlock@4a0f6000 {
compatible = "ti,omap4-hwspinlock";
reg = <0x4a0f6000 0x1000>;
ti,hwmods = "spinlock";
#hwlock-cells = <1>;
};
+
+2. AM65x SoCs and J721E SoCs
+&cbass_main {
+ cbass_main_navss: interconnect0 {
+ hwspinlock: spinlock@30e00000 {
+ compatible = "ti,am654-hwspinlock";
+ reg = <0x00 0x30e00000 0x00 0x1000>;
+ #hwlock-cells = <1>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/hwmon/as370.txt b/Documentation/devicetree/bindings/hwmon/as370.txt
new file mode 100644
index 000000000000..d102fe765124
--- /dev/null
+++ b/Documentation/devicetree/bindings/hwmon/as370.txt
@@ -0,0 +1,11 @@
+Bindings for Synaptics AS370 PVT sensors
+
+Required properties:
+- compatible : "syna,as370-hwmon"
+- reg : address and length of the register set.
+
+Example:
+ hwmon@ea0810 {
+ compatible = "syna,as370-hwmon";
+ reg = <0xea0810 0xc>;
+ };
diff --git a/Documentation/devicetree/bindings/hwmon/ibm,cffps1.txt b/Documentation/devicetree/bindings/hwmon/ibm,cffps1.txt
index f68a0a68fc52..1036f65fb778 100644
--- a/Documentation/devicetree/bindings/hwmon/ibm,cffps1.txt
+++ b/Documentation/devicetree/bindings/hwmon/ibm,cffps1.txt
@@ -1,8 +1,10 @@
-Device-tree bindings for IBM Common Form Factor Power Supply Version 1
-----------------------------------------------------------------------
+Device-tree bindings for IBM Common Form Factor Power Supply Versions 1 and 2
+-----------------------------------------------------------------------------
Required properties:
- - compatible = "ibm,cffps1";
+ - compatible : Must be one of the following:
+ "ibm,cffps1"
+ "ibm,cffps2"
- reg = < I2C bus address >; : Address of the power supply on the
I2C bus.
diff --git a/Documentation/devicetree/bindings/hwmon/lm75.txt b/Documentation/devicetree/bindings/hwmon/lm75.txt
index 586b5ed70be7..273616702c51 100644
--- a/Documentation/devicetree/bindings/hwmon/lm75.txt
+++ b/Documentation/devicetree/bindings/hwmon/lm75.txt
@@ -15,6 +15,7 @@ Required properties:
"maxim,max31725",
"maxim,max31726",
"maxim,mcp980x",
+ "nxp,pct2075",
"st,stds75",
"st,stlm75",
"microchip,tcn75",
diff --git a/Documentation/devicetree/bindings/i2c/allwinner,sun6i-a31-p2wi.yaml b/Documentation/devicetree/bindings/i2c/allwinner,sun6i-a31-p2wi.yaml
new file mode 100644
index 000000000000..f9d526b7da01
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/allwinner,sun6i-a31-p2wi.yaml
@@ -0,0 +1,65 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/i2c/allwinner,sun6i-a31-p2wi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 P2WI (Push/Pull 2 Wires Interface) Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: /schemas/i2c/i2c-controller.yaml#
+
+properties:
+ compatible:
+ const: allwinner,sun6i-a31-p2wi
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ clock-frequency:
+ minimum: 1
+ maximum: 6000000
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - resets
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+examples:
+ - |
+ i2c@1f03400 {
+ compatible = "allwinner,sun6i-a31-p2wi";
+ reg = <0x01f03400 0x400>;
+ interrupts = <0 39 4>;
+ clocks = <&apb0_gates 3>;
+ clock-frequency = <100000>;
+ resets = <&apb0_rst 3>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ axp221: pmic@68 {
+ compatible = "x-powers,axp221";
+ reg = <0x68>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt b/Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt
index e9de3756752b..c9a6587fe4bb 100644
--- a/Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt
+++ b/Documentation/devicetree/bindings/i2c/brcm,bcm2835-i2c.txt
@@ -1,7 +1,9 @@
Broadcom BCM2835 I2C controller
Required properties:
-- compatible : Should be "brcm,bcm2835-i2c".
+- compatible : Should be one of:
+ "brcm,bcm2711-i2c"
+ "brcm,bcm2835-i2c"
- reg: Should contain register location and length.
- interrupts: Should contain interrupt.
- clocks : The clock feeding the I2C controller.
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mt7621.txt b/Documentation/devicetree/bindings/i2c/i2c-mt7621.txt
new file mode 100644
index 000000000000..bc36f0eb94cd
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-mt7621.txt
@@ -0,0 +1,25 @@
+MediaTek MT7621/MT7628 I2C master controller
+
+Required properties:
+
+- compatible: Should be one of the following:
+ - "mediatek,mt7621-i2c": for MT7621/MT7628/MT7688 platforms
+- #address-cells: should be 1.
+- #size-cells: should be 0.
+- reg: Address and length of the register set for the device
+- resets: phandle to the reset controller asserting this device in
+ reset
+ See ../reset/reset.txt for details.
+
+Optional properties :
+
+Example:
+
+i2c: i2c@900 {
+ compatible = "mediatek,mt7621-i2c";
+ reg = <0x900 0x100>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ resets = <&rstctrl 16>;
+ reset-names = "i2c";
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mux-gpmux.txt b/Documentation/devicetree/bindings/i2c/i2c-mux-gpmux.txt
index 2907dab56298..8b444b94e92f 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-mux-gpmux.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-mux-gpmux.txt
@@ -42,7 +42,7 @@ Optional properties:
This means that no unrelated I2C transactions are allowed on the parent I2C
adapter for the complete multiplexed I2C transaction.
The properties of mux-locked and parent-locked multiplexers are discussed
- in more detail in Documentation/i2c/i2c-topology.
+ in more detail in Documentation/i2c/i2c-topology.rst.
For each i2c child node, an I2C child bus will be created. They will
be numbered based on their order in the device tree.
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt b/Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt
deleted file mode 100644
index 0ffe65a316ae..000000000000
--- a/Documentation/devicetree/bindings/i2c/i2c-mv64xxx.txt
+++ /dev/null
@@ -1,64 +0,0 @@
-
-* Marvell MV64XXX I2C controller
-
-Required properties :
-
- - reg : Offset and length of the register set for the device
- - compatible : Should be either:
- - "allwinner,sun4i-a10-i2c"
- - "allwinner,sun6i-a31-i2c"
- - "marvell,mv64xxx-i2c"
- - "marvell,mv78230-i2c"
- - "marvell,mv78230-a0-i2c"
- * Note: Only use "marvell,mv78230-a0-i2c" for a
- very rare, initial version of the SoC which
- had broken offload support. Linux
- auto-detects this and sets it appropriately.
- - interrupts : The interrupt number
-
-Optional properties :
-
- - clock-frequency : Desired I2C bus clock frequency in Hz. If not set the
-default frequency is 100kHz
-
- - resets : phandle to the parent reset controller. Mandatory
- whenever you're using the "allwinner,sun6i-a31-i2c"
- compatible.
-
- - clocks: : pointers to the reference clocks for this device, the
- first one is the one used for the clock on the i2c bus,
- the second one is the clock used to acces the registers
- of the controller
-
- - clock-names : names of used clocks, mandatory if the second clock is
- used, the name must be "core", and "reg" (the latter is
- only for Armada 7K/8K).
-
-Examples:
-
- i2c@11000 {
- compatible = "marvell,mv64xxx-i2c";
- reg = <0x11000 0x20>;
- interrupts = <29>;
- clock-frequency = <100000>;
- };
-
-For the Armada XP:
-
- i2c@11000 {
- compatible = "marvell,mv78230-i2c", "marvell,mv64xxx-i2c";
- reg = <0x11000 0x100>;
- interrupts = <29>;
- clock-frequency = <100000>;
- };
-
-For the Armada 7040:
-
- i2c@701000 {
- compatible = "marvell,mv78230-i2c";
- reg = <0x701000 0x20>;
- interrupts = <29>;
- clock-frequency = <100000>;
- clock-names = "core", "reg";
- clocks = <&core_clock>, <&reg_clock>;
- };
diff --git a/Documentation/devicetree/bindings/i2c/i2c-ocores.txt b/Documentation/devicetree/bindings/i2c/i2c-ocores.txt
index 17bef9a34e50..6b25a80ae8d3 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-ocores.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-ocores.txt
@@ -1,9 +1,13 @@
Device tree configuration for i2c-ocores
Required properties:
-- compatible : "opencores,i2c-ocores" or "aeroflexgaisler,i2cmst"
+- compatible : "opencores,i2c-ocores"
+ "aeroflexgaisler,i2cmst"
+ "sifive,fu540-c000-i2c", "sifive,i2c0"
+ For Opencore based I2C IP block reimplemented in
+ FU540-C000 SoC. Please refer to sifive-blocks-ip-versioning.txt
+ for additional details.
- reg : bus address start and address range size of device
-- interrupts : interrupt number
- clocks : handle to the controller clock; see the note below.
Mutually exclusive with opencores,ip-clock-frequency
- opencores,ip-clock-frequency: frequency of the controller clock in Hz;
@@ -12,6 +16,7 @@ Required properties:
- #size-cells : should be <0>
Optional properties:
+- interrupts : interrupt number.
- clock-frequency : frequency of bus clock in Hz; see the note below.
Defaults to 100 KHz when the property is not specified
- reg-shift : device register offsets are shifted by this value
diff --git a/Documentation/devicetree/bindings/i2c/i2c-omap.txt b/Documentation/devicetree/bindings/i2c/i2c-omap.txt
index 4b90ba9f31b7..a44573d7c118 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-omap.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-omap.txt
@@ -7,6 +7,7 @@ Required properties :
"ti,omap3-i2c" for OMAP3 SoCs
"ti,omap4-i2c" for OMAP4+ SoCs
"ti,am654-i2c", "ti,omap4-i2c" for AM654 SoCs
+ "ti,j721e-i2c", "ti,omap4-i2c" for J721E SoCs
- ti,hwmods : Must be "i2c<n>", n being the instance number (1-based)
- #address-cells = <1>;
- #size-cells = <0>;
diff --git a/Documentation/devicetree/bindings/i2c/i2c-stm32.txt b/Documentation/devicetree/bindings/i2c/i2c-stm32.txt
index f334738f7a35..ce3df2fff6c8 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-stm32.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-stm32.txt
@@ -21,6 +21,8 @@ Optional properties:
100000 and 400000.
For STM32F7, STM32H7 and STM32MP1 SoCs, Standard-mode, Fast-mode and Fast-mode
Plus are supported, possible values are 100000, 400000 and 1000000.
+- dmas: List of phandles to rx and tx DMA channels. Refer to stm32-dma.txt.
+- dma-names: List of dma names. Valid names are: "rx" and "tx".
- i2c-scl-rising-time-ns: I2C SCL Rising time for the board (default: 25)
For STM32F7, STM32H7 and STM32MP1 only.
- i2c-scl-falling-time-ns: I2C SCL Falling time for the board (default: 10)
diff --git a/Documentation/devicetree/bindings/i2c/i2c-sun6i-p2wi.txt b/Documentation/devicetree/bindings/i2c/i2c-sun6i-p2wi.txt
deleted file mode 100644
index 49df0053347a..000000000000
--- a/Documentation/devicetree/bindings/i2c/i2c-sun6i-p2wi.txt
+++ /dev/null
@@ -1,41 +0,0 @@
-
-* Allwinner P2WI (Push/Pull 2 Wire Interface) controller
-
-Required properties :
-
- - reg : Offset and length of the register set for the device.
- - compatible : Should one of the following:
- - "allwinner,sun6i-a31-p2wi"
- - interrupts : The interrupt line connected to the P2WI peripheral.
- - clocks : The gate clk connected to the P2WI peripheral.
- - resets : The reset line connected to the P2WI peripheral.
-
-Optional properties :
-
- - clock-frequency : Desired P2WI bus clock frequency in Hz. If not set the
-default frequency is 100kHz
-
-A P2WI may contain one child node encoding a P2WI slave device.
-
-Slave device properties:
- Required properties:
- - reg : the I2C slave address used during the initialization
- process to switch from I2C to P2WI mode
-
-Example:
-
- p2wi@1f03400 {
- compatible = "allwinner,sun6i-a31-p2wi";
- reg = <0x01f03400 0x400>;
- interrupts = <0 39 4>;
- clocks = <&apb0_gates 3>;
- clock-frequency = <6000000>;
- resets = <&apb0_rst 3>;
-
- axp221: pmic@68 {
- compatible = "x-powers,axp221";
- reg = <0x68>;
-
- /* ... */
- };
- };
diff --git a/Documentation/devicetree/bindings/i2c/marvell,mv64xxx-i2c.yaml b/Documentation/devicetree/bindings/i2c/marvell,mv64xxx-i2c.yaml
new file mode 100644
index 000000000000..c779000515d6
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/marvell,mv64xxx-i2c.yaml
@@ -0,0 +1,127 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/i2c/marvell,mv64xxx-i2c.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Marvell MV64XXX I2C Controller Device Tree Bindings
+
+maintainers:
+ - Gregory CLEMENT <gregory.clement@bootlin.com>
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-i2c
+ - items:
+ - const: allwinner,sun7i-a20-i2c
+ - const: allwinner,sun4i-a10-i2c
+ - const: allwinner,sun6i-a31-i2c
+ - items:
+ - const: allwinner,sun8i-a23-i2c
+ - const: allwinner,sun6i-a31-i2c
+ - items:
+ - const: allwinner,sun8i-a83t-i2c
+ - const: allwinner,sun6i-a31-i2c
+ - items:
+ - const: allwinner,sun50i-a64-i2c
+ - const: allwinner,sun6i-a31-i2c
+ - items:
+ - const: allwinner,sun50i-h6-i2c
+ - const: allwinner,sun6i-a31-i2c
+
+ - const: marvell,mv64xxx-i2c
+ - const: marvell,mv78230-i2c
+ - const: marvell,mv78230-a0-i2c
+
+ description:
+ Only use "marvell,mv78230-a0-i2c" for a very rare, initial
+ version of the SoC which had broken offload support. Linux
+ auto-detects this and sets it appropriately.
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ minItems: 1
+ maxItems: 2
+ items:
+ - description: Reference clock for the I2C bus
+ - description: Bus clock (Only for Armada 7K/8K)
+
+ clock-names:
+ minItems: 1
+ maxItems: 2
+ items:
+ - const: core
+ - const: reg
+ description:
+ Mandatory if two clocks are used (only for Armada 7k and 8k).
+
+ resets:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+allOf:
+ - $ref: /schemas/i2c/i2c-controller.yaml#
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun4i-a10-i2c
+ - allwinner,sun6i-a31-i2c
+
+ then:
+ required:
+ - clocks
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun6i-a31-i2c
+
+ then:
+ required:
+ - resets
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+examples:
+ - |
+ i2c@11000 {
+ compatible = "marvell,mv64xxx-i2c";
+ reg = <0x11000 0x20>;
+ interrupts = <29>;
+ clock-frequency = <100000>;
+ };
+
+ - |
+ i2c@11000 {
+ compatible = "marvell,mv78230-i2c";
+ reg = <0x11000 0x100>;
+ interrupts = <29>;
+ clock-frequency = <100000>;
+ };
+
+ - |
+ i2c@701000 {
+ compatible = "marvell,mv78230-i2c";
+ reg = <0x701000 0x20>;
+ interrupts = <29>;
+ clock-frequency = <100000>;
+ clock-names = "core", "reg";
+ clocks = <&core_clock>, <&reg_clock>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/i2c/i2c-rcar.txt b/Documentation/devicetree/bindings/i2c/renesas,i2c.txt
index 3ee5e8f6ee01..3ee5e8f6ee01 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-rcar.txt
+++ b/Documentation/devicetree/bindings/i2c/renesas,i2c.txt
diff --git a/Documentation/devicetree/bindings/i2c/i2c-emev2.txt b/Documentation/devicetree/bindings/i2c/renesas,iic-emev2.txt
index 5ed1ea1c7e14..5ed1ea1c7e14 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-emev2.txt
+++ b/Documentation/devicetree/bindings/i2c/renesas,iic-emev2.txt
diff --git a/Documentation/devicetree/bindings/i2c/i2c-sh_mobile.txt b/Documentation/devicetree/bindings/i2c/renesas,iic.txt
index 202602e6e837..202602e6e837 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-sh_mobile.txt
+++ b/Documentation/devicetree/bindings/i2c/renesas,iic.txt
diff --git a/Documentation/devicetree/bindings/i2c/i2c-riic.txt b/Documentation/devicetree/bindings/i2c/renesas,riic.txt
index e26fe3ad86a9..e26fe3ad86a9 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-riic.txt
+++ b/Documentation/devicetree/bindings/i2c/renesas,riic.txt
diff --git a/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
index 69da2115abdc..1cf6182f888c 100644
--- a/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
+++ b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
@@ -38,6 +38,6 @@ Example:
nunchuk: nunchuk@52 {
compatible = "nintendo,nunchuk";
- reg = <0x52 0x80000010 0>;
+ reg = <0x52 0x0 0x10>;
};
};
diff --git a/Documentation/devicetree/bindings/i3c/i3c.txt b/Documentation/devicetree/bindings/i3c/i3c.txt
index ab729a0a86ae..4ffe059f0fec 100644
--- a/Documentation/devicetree/bindings/i3c/i3c.txt
+++ b/Documentation/devicetree/bindings/i3c/i3c.txt
@@ -39,7 +39,9 @@ valid here, but several new properties have been added.
New constraint on existing properties:
--------------------------------------
- reg: contains 3 cells
- + first cell : still encoding the I2C address
+ + first cell : still encoding the I2C address. 10 bit addressing is not
+ supported. Devices with 10 bit address can't be properly passed through
+ DEFSLVS command.
+ second cell: shall be 0
diff --git a/Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml b/Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml
new file mode 100644
index 000000000000..c602b6fe1c0c
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/accel/adi,adxl345.yaml
@@ -0,0 +1,72 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/accel/adi,adxl345.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADXL345/ADXL375 3-Axis Digital Accelerometers
+
+maintainers:
+ - Michael Hennerich <michael.hennerich@analog.com>
+
+description: |
+ Analog Devices ADXL345/ADXL375 3-Axis Digital Accelerometers that supports
+ both I2C & SPI interfaces.
+ http://www.analog.com/en/products/mems/accelerometers/adxl345.html
+ http://www.analog.com/en/products/sensors-mems/accelerometers/adxl375.html
+
+properties:
+ compatible:
+ enum:
+ - adi,adxl345
+ - adi,adxl375
+
+ reg:
+ maxItems: 1
+
+ spi-cpha: true
+
+ spi-cpol: true
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ i2c0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Example for a I2C device node */
+ accelerometer@2a {
+ compatible = "adi,adxl345";
+ reg = <0x53>;
+ interrupt-parent = <&gpio0>;
+ interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Example for a SPI device node */
+ accelerometer@0 {
+ compatible = "adi,adxl345";
+ reg = <0>;
+ spi-max-frequency = <5000000>;
+ spi-cpol;
+ spi-cpha;
+ interrupt-parent = <&gpio0>;
+ interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml b/Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml
new file mode 100644
index 000000000000..e7daffec88d3
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/accel/adi,adxl372.yaml
@@ -0,0 +1,63 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/accel/adi,adxl372.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADXL372 3-Axis, +/-(200g) Digital Accelerometer
+
+maintainers:
+ - Stefan Popa <stefan.popa@analog.com>
+
+description: |
+ Analog Devices ADXL372 3-Axis, +/-(200g) Digital Accelerometer that supports
+ both I2C & SPI interfaces
+ https://www.analog.com/en/products/adxl372.html
+
+properties:
+ compatible:
+ enum:
+ - adi,adxl372
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ i2c0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Example for a I2C device node */
+ accelerometer@53 {
+ compatible = "adi,adxl372";
+ reg = <0x53>;
+ interrupt-parent = <&gpio>;
+ interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
+ };
+ };
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ accelerometer@0 {
+ compatible = "adi,adxl372";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ interrupt-parent = <&gpio>;
+ interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/accel/adxl345.txt b/Documentation/devicetree/bindings/iio/accel/adxl345.txt
deleted file mode 100644
index f9525f6e3d43..000000000000
--- a/Documentation/devicetree/bindings/iio/accel/adxl345.txt
+++ /dev/null
@@ -1,39 +0,0 @@
-Analog Devices ADXL345/ADXL375 3-Axis Digital Accelerometers
-
-http://www.analog.com/en/products/mems/accelerometers/adxl345.html
-http://www.analog.com/en/products/sensors-mems/accelerometers/adxl375.html
-
-Required properties:
- - compatible : should be one of
- "adi,adxl345"
- "adi,adxl375"
- - reg : the I2C address or SPI chip select number of the sensor
-
-Required properties for SPI bus usage:
- - spi-max-frequency : set maximum clock frequency, must be 5000000
- - spi-cpol and spi-cpha : must be defined for adxl345 to enable SPI mode 3
-
-Optional properties:
- - interrupts: interrupt mapping for IRQ as documented in
- Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
-
-Example for a I2C device node:
-
- accelerometer@2a {
- compatible = "adi,adxl345";
- reg = <0x53>;
- interrupt-parent = <&gpio1>;
- interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
- };
-
-Example for a SPI device node:
-
- accelerometer@0 {
- compatible = "adi,adxl345";
- reg = <0>;
- spi-max-frequency = <5000000>;
- spi-cpol;
- spi-cpha;
- interrupt-parent = <&gpio1>;
- interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
- };
diff --git a/Documentation/devicetree/bindings/iio/accel/adxl372.txt b/Documentation/devicetree/bindings/iio/accel/adxl372.txt
deleted file mode 100644
index a289964756a7..000000000000
--- a/Documentation/devicetree/bindings/iio/accel/adxl372.txt
+++ /dev/null
@@ -1,33 +0,0 @@
-Analog Devices ADXL372 3-Axis, +/-(200g) Digital Accelerometer
-
-http://www.analog.com/media/en/technical-documentation/data-sheets/adxl372.pdf
-
-Required properties:
- - compatible : should be "adi,adxl372"
- - reg: the I2C address or SPI chip select number for the device
-
-Required properties for SPI bus usage:
- - spi-max-frequency: Max SPI frequency to use
-
-Optional properties:
- - interrupts: interrupt mapping for IRQ as documented in
- Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
-
-Example for a I2C device node:
-
- accelerometer@53 {
- compatible = "adi,adxl372";
- reg = <0x53>;
- interrupt-parent = <&gpio>;
- interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
- };
-
-Example for a SPI device node:
-
- accelerometer@0 {
- compatible = "adi,adxl372";
- reg = <0>;
- spi-max-frequency = <1000000>;
- interrupt-parent = <&gpio>;
- interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
- };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt b/Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt
deleted file mode 100644
index 416273dce569..000000000000
--- a/Documentation/devicetree/bindings/iio/adc/adi,ad7124.txt
+++ /dev/null
@@ -1,75 +0,0 @@
-Analog Devices AD7124 ADC device driver
-
-Required properties for the AD7124:
- - compatible: Must be one of "adi,ad7124-4" or "adi,ad7124-8"
- - reg: SPI chip select number for the device
- - spi-max-frequency: Max SPI frequency to use
- see: Documentation/devicetree/bindings/spi/spi-bus.txt
- - clocks: phandle to the master clock (mclk)
- see: Documentation/devicetree/bindings/clock/clock-bindings.txt
- - clock-names: Must be "mclk".
- - interrupts: IRQ line for the ADC
- see: Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
-
- Required properties:
- * #address-cells: Must be 1.
- * #size-cells: Must be 0.
-
- Subnode(s) represent the external channels which are connected to the ADC.
- Each subnode represents one channel and has the following properties:
- Required properties:
- * reg: The channel number. It can have up to 4 channels on ad7124-4
- and 8 channels on ad7124-8, numbered from 0 to 15.
- * diff-channels: see: Documentation/devicetree/bindings/iio/adc/adc.txt
-
- Optional properties:
- * bipolar: see: Documentation/devicetree/bindings/iio/adc/adc.txt
- * adi,reference-select: Select the reference source to use when
- converting on the the specific channel. Valid values are:
- 0: REFIN1(+)/REFIN1(−).
- 1: REFIN2(+)/REFIN2(−).
- 3: AVDD
- If this field is left empty, internal reference is selected.
-
-Optional properties:
- - refin1-supply: refin1 supply can be used as reference for conversion.
- - refin2-supply: refin2 supply can be used as reference for conversion.
- - avdd-supply: avdd supply can be used as reference for conversion.
-
-Example:
- adc@0 {
- compatible = "adi,ad7124-4";
- reg = <0>;
- spi-max-frequency = <5000000>;
- interrupts = <25 2>;
- interrupt-parent = <&gpio>;
- refin1-supply = <&adc_vref>;
- clocks = <&ad7124_mclk>;
- clock-names = "mclk";
-
- #address-cells = <1>;
- #size-cells = <0>;
-
- channel@0 {
- reg = <0>;
- diff-channels = <0 1>;
- adi,reference-select = <0>;
- };
-
- channel@1 {
- reg = <1>;
- bipolar;
- diff-channels = <2 3>;
- adi,reference-select = <0>;
- };
-
- channel@2 {
- reg = <2>;
- diff-channels = <4 5>;
- };
-
- channel@3 {
- reg = <3>;
- diff-channels = <6 7>;
- };
- };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml
new file mode 100644
index 000000000000..9692b7f719f5
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7124.yaml
@@ -0,0 +1,160 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 Analog Devices Inc.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bindings/iio/adc/adi,ad7124.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD7124 ADC device driver
+
+maintainers:
+ - Stefan Popa <stefan.popa@analog.com>
+
+description: |
+ Bindings for the Analog Devices AD7124 ADC device. Datasheet can be
+ found here:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7124-8.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad7124-4
+ - adi,ad7124-8
+
+ reg:
+ description: SPI chip select number for the device
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+ description: phandle to the master clock (mclk)
+
+ clock-names:
+ items:
+ - const: mclk
+
+ interrupts:
+ description: IRQ line for the ADC
+ maxItems: 1
+
+ '#address-cells':
+ const: 1
+
+ '#size-cells':
+ const: 0
+
+ refin1-supply:
+ description: refin1 supply can be used as reference for conversion.
+ maxItems: 1
+
+ refin2-supply:
+ description: refin2 supply can be used as reference for conversion.
+ maxItems: 1
+
+ avdd-supply:
+ description: avdd supply can be used as reference for conversion.
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - interrupts
+
+patternProperties:
+ "^channel@([0-9]|1[0-5])$":
+ type: object
+ description: |
+ Represents the external channels which are connected to the ADC.
+ See Documentation/devicetree/bindings/iio/adc/adc.txt.
+
+ properties:
+ reg:
+ description: |
+ The channel number. It can have up to 8 channels on ad7124-4
+ and 16 channels on ad7124-8, numbered from 0 to 15.
+ items:
+ minimum: 0
+ maximum: 15
+
+ adi,reference-select:
+ description: |
+ Select the reference source to use when converting on
+ the specific channel. Valid values are:
+ 0: REFIN1(+)/REFIN1(−).
+ 1: REFIN2(+)/REFIN2(−).
+ 3: AVDD
+ If this field is left empty, internal reference is selected.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [0, 1, 3]
+
+ diff-channels:
+ description: see Documentation/devicetree/bindings/iio/adc/adc.txt
+ items:
+ minimum: 0
+ maximum: 15
+
+ bipolar:
+ description: see Documentation/devicetree/bindings/iio/adc/adc.txt
+ type: boolean
+
+ adi,buffered-positive:
+ description: Enable buffered mode for positive input.
+ type: boolean
+
+ adi,buffered-negative:
+ description: Enable buffered mode for negative input.
+ type: boolean
+
+ required:
+ - reg
+ - diff-channels
+
+examples:
+ - |
+ spi {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ adc@0 {
+ compatible = "adi,ad7124-4";
+ reg = <0>;
+ spi-max-frequency = <5000000>;
+ interrupts = <25 2>;
+ interrupt-parent = <&gpio>;
+ refin1-supply = <&adc_vref>;
+ clocks = <&ad7124_mclk>;
+ clock-names = "mclk";
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ channel@0 {
+ reg = <0>;
+ diff-channels = <0 1>;
+ adi,reference-select = <0>;
+ adi,buffered-positive;
+ };
+
+ channel@1 {
+ reg = <1>;
+ bipolar;
+ diff-channels = <2 3>;
+ adi,reference-select = <0>;
+ adi,buffered-positive;
+ adi,buffered-negative;
+ };
+
+ channel@2 {
+ reg = <2>;
+ diff-channels = <4 5>;
+ };
+
+ channel@3 {
+ reg = <3>;
+ diff-channels = <6 7>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml
new file mode 100644
index 000000000000..676ec42e1438
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml
@@ -0,0 +1,121 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 Analog Devices Inc.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bindings/iio/adc/adi,ad7192.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD7192 ADC device driver
+
+maintainers:
+ - Michael Hennerich <michael.hennerich@analog.com>
+
+description: |
+ Bindings for the Analog Devices AD7192 ADC device. Datasheet can be
+ found here:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7192.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad7190
+ - adi,ad7192
+ - adi,ad7193
+ - adi,ad7195
+
+ reg:
+ maxItems: 1
+
+ spi-cpol: true
+
+ spi-cpha: true
+
+ clocks:
+ maxItems: 1
+ description: phandle to the master clock (mclk)
+
+ clock-names:
+ items:
+ - const: mclk
+
+ interrupts:
+ maxItems: 1
+
+ dvdd-supply:
+ description: DVdd voltage supply
+ items:
+ - const: dvdd
+
+ avdd-supply:
+ description: AVdd voltage supply
+ items:
+ - const: avdd
+
+ adi,rejection-60-Hz-enable:
+ description: |
+ This bit enables a notch at 60 Hz when the first notch of the sinc
+ filter is at 50 Hz. When REJ60 is set, a filter notch is placed at
+ 60 Hz when the sinc filter first notch is at 50 Hz. This allows
+ simultaneous 50 Hz/ 60 Hz rejection.
+ type: boolean
+
+ adi,refin2-pins-enable:
+ description: |
+ External reference applied between the P1/REFIN2(+) and P0/REFIN2(−) pins.
+ type: boolean
+
+ adi,buffer-enable:
+ description: |
+ Enables the buffer on the analog inputs. If cleared, the analog inputs
+ are unbuffered, lowering the power consumption of the device. If this
+ bit is set, the analog inputs are buffered, allowing the user to place
+ source impedances on the front end without contributing gain errors to
+ the system.
+ type: boolean
+
+ adi,burnout-currents-enable:
+ description: |
+ When this bit is set to 1, the 500 nA current sources in the signal
+ path are enabled. When BURN = 0, the burnout currents are disabled.
+ The burnout currents can be enabled only when the buffer is active
+ and when chop is disabled.
+ type: boolean
+
+ bipolar:
+ description: see Documentation/devicetree/bindings/iio/adc/adc.txt
+ type: boolean
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - interrupts
+ - dvdd-supply
+ - avdd-supply
+ - spi-cpol
+ - spi-cpha
+
+examples:
+ - |
+ spi0 {
+ adc@0 {
+ compatible = "adi,ad7192";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ spi-cpol;
+ spi-cpha;
+ clocks = <&ad7192_mclk>;
+ clock-names = "mclk";
+ #interrupt-cells = <2>;
+ interrupts = <25 0x2>;
+ interrupt-parent = <&gpio>;
+ dvdd-supply = <&dvdd>;
+ avdd-supply = <&avdd>;
+
+ adi,refin2-pins-enable;
+ adi,rejection-60-Hz-enable;
+ adi,buffer-enable;
+ adi,burnout-currents-enable;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7606.txt b/Documentation/devicetree/bindings/iio/adc/adi,ad7606.txt
deleted file mode 100644
index d8652460198e..000000000000
--- a/Documentation/devicetree/bindings/iio/adc/adi,ad7606.txt
+++ /dev/null
@@ -1,66 +0,0 @@
-Analog Devices AD7606 Simultaneous Sampling ADC
-
-Required properties for the AD7606:
-
-- compatible: Must be one of
- * "adi,ad7605-4"
- * "adi,ad7606-8"
- * "adi,ad7606-6"
- * "adi,ad7606-4"
- * "adi,ad7616"
-- reg: SPI chip select number for the device
-- spi-max-frequency: Max SPI frequency to use
- see: Documentation/devicetree/bindings/spi/spi-bus.txt
-- spi-cpha: See Documentation/devicetree/bindings/spi/spi-bus.txt
-- avcc-supply: phandle to the Avcc power supply
-- interrupts: IRQ line for the ADC
- see: Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
-- adi,conversion-start-gpios: must be the device tree identifier of the CONVST pin.
- This logic input is used to initiate conversions on the analog
- input channels. As the line is active high, it should be marked
- GPIO_ACTIVE_HIGH.
-
-Optional properties:
-
-- reset-gpios: must be the device tree identifier of the RESET pin. If specified,
- it will be asserted during driver probe. As the line is active high,
- it should be marked GPIO_ACTIVE_HIGH.
-- standby-gpios: must be the device tree identifier of the STBY pin. This pin is used
- to place the AD7606 into one of two power-down modes, Standby mode or
- Shutdown mode. As the line is active low, it should be marked
- GPIO_ACTIVE_LOW.
-- adi,first-data-gpios: must be the device tree identifier of the FRSTDATA pin.
- The FRSTDATA output indicates when the first channel, V1, is
- being read back on either the parallel, byte or serial interface.
- As the line is active high, it should be marked GPIO_ACTIVE_HIGH.
-- adi,range-gpios: must be the device tree identifier of the RANGE pin. The polarity on
- this pin determines the input range of the analog input channels. If
- this pin is tied to a logic high, the analog input range is ±10V for
- all channels. If this pin is tied to a logic low, the analog input range
- is ±5V for all channels. As the line is active high, it should be marked
- GPIO_ACTIVE_HIGH.
-- adi,oversampling-ratio-gpios: must be the device tree identifier of the over-sampling
- mode pins. As the line is active high, it should be marked
- GPIO_ACTIVE_HIGH.
-
-Example:
-
- adc@0 {
- compatible = "adi,ad7606-8";
- reg = <0>;
- spi-max-frequency = <1000000>;
- spi-cpol;
-
- avcc-supply = <&adc_vref>;
-
- interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
- interrupt-parent = <&gpio>;
-
- adi,conversion-start-gpios = <&gpio 17 GPIO_ACTIVE_HIGH>;
- reset-gpios = <&gpio 27 GPIO_ACTIVE_HIGH>;
- adi,first-data-gpios = <&gpio 22 GPIO_ACTIVE_HIGH>;
- adi,oversampling-ratio-gpios = <&gpio 18 GPIO_ACTIVE_HIGH
- &gpio 23 GPIO_ACTIVE_HIGH
- &gpio 26 GPIO_ACTIVE_HIGH>;
- standby-gpios = <&gpio 24 GPIO_ACTIVE_LOW>;
- };
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7606.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7606.yaml
new file mode 100644
index 000000000000..cc544fdc38be
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7606.yaml
@@ -0,0 +1,138 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/adc/adi,ad7606.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD7606 Simultaneous Sampling ADC
+
+maintainers:
+ - Beniamin Bia <beniamin.bia@analog.com>
+ - Stefan Popa <stefan.popa@analog.com>
+
+description: |
+ Analog Devices AD7606 Simultaneous Sampling ADC
+ https://www.analog.com/media/en/technical-documentation/data-sheets/ad7606_7606-6_7606-4.pdf
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7606B.pdf
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7616.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad7605-4
+ - adi,ad7606-8
+ - adi,ad7606-6
+ - adi,ad7606-4
+ - adi,ad7606b
+ - adi,ad7616
+
+ reg:
+ maxItems: 1
+
+ spi-cpha: true
+
+ avcc-supply:
+ description:
+ Phandle to the Avcc power supply
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ adi,conversion-start-gpios:
+ description:
+ Must be the device tree identifier of the CONVST pin.
+ This logic input is used to initiate conversions on the analog
+ input channels. As the line is active high, it should be marked
+ GPIO_ACTIVE_HIGH.
+ maxItems: 1
+
+ reset-gpios:
+ description:
+ Must be the device tree identifier of the RESET pin. If specified,
+ it will be asserted during driver probe. As the line is active high,
+ it should be marked GPIO_ACTIVE_HIGH.
+ maxItems: 1
+
+ standby-gpios:
+ description:
+ Must be the device tree identifier of the STBY pin. This pin is used
+ to place the AD7606 into one of two power-down modes, Standby mode or
+ Shutdown mode. As the line is active low, it should be marked
+ GPIO_ACTIVE_LOW.
+ maxItems: 1
+
+ adi,first-data-gpios:
+ description:
+ Must be the device tree identifier of the FRSTDATA pin.
+ The FRSTDATA output indicates when the first channel, V1, is
+ being read back on either the parallel, byte or serial interface.
+ As the line is active high, it should be marked GPIO_ACTIVE_HIGH.
+ maxItems: 1
+
+ adi,range-gpios:
+ description:
+ Must be the device tree identifier of the RANGE pin. The polarity on
+ this pin determines the input range of the analog input channels. If
+ this pin is tied to a logic high, the analog input range is ±10V for
+ all channels. If this pin is tied to a logic low, the analog input range
+ is ±5V for all channels. As the line is active high, it should be marked
+ GPIO_ACTIVE_HIGH.
+ maxItems: 1
+
+ adi,oversampling-ratio-gpios:
+ description:
+ Must be the device tree identifier of the over-sampling
+ mode pins. As the line is active high, it should be marked
+ GPIO_ACTIVE_HIGH.
+ maxItems: 1
+
+ adi,sw-mode:
+ description:
+ Software mode of operation, so far available only for ad7616 and ad7606b.
+ It is enabled when all three oversampling mode pins are connected to
+ high level. The device is configured by the corresponding registers. If the
+ adi,oversampling-ratio-gpios property is defined, then the driver will set the
+ oversampling gpios to high. Otherwise, it is assumed that the pins are hardwired
+ to VDD.
+ type: boolean
+
+required:
+ - compatible
+ - reg
+ - spi-cpha
+ - avcc-supply
+ - interrupts
+ - adi,conversion-start-gpios
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ adc@0 {
+ compatible = "adi,ad7606-8";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ spi-cpol;
+ spi-cpha;
+
+ avcc-supply = <&adc_vref>;
+
+ interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
+ interrupt-parent = <&gpio>;
+
+ adi,conversion-start-gpios = <&gpio 17 GPIO_ACTIVE_HIGH>;
+ reset-gpios = <&gpio 27 GPIO_ACTIVE_HIGH>;
+ adi,first-data-gpios = <&gpio 22 GPIO_ACTIVE_HIGH>;
+ adi,oversampling-ratio-gpios = <&gpio 18 GPIO_ACTIVE_HIGH
+ &gpio 23 GPIO_ACTIVE_HIGH
+ &gpio 26 GPIO_ACTIVE_HIGH>;
+ standby-gpios = <&gpio 24 GPIO_ACTIVE_LOW>;
+ adi,sw-mode;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt b/Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt
deleted file mode 100644
index 440e52555349..000000000000
--- a/Documentation/devicetree/bindings/iio/adc/adi,ad7780.txt
+++ /dev/null
@@ -1,48 +0,0 @@
-* Analog Devices AD7170/AD7171/AD7780/AD7781
-
-Data sheets:
-
-- AD7170:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/AD7170.pdf
-- AD7171:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/AD7171.pdf
-- AD7780:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/ad7780.pdf
-- AD7781:
- * https://www.analog.com/media/en/technical-documentation/data-sheets/AD7781.pdf
-
-Required properties:
-
-- compatible: should be one of
- * "adi,ad7170"
- * "adi,ad7171"
- * "adi,ad7780"
- * "adi,ad7781"
-- reg: spi chip select number for the device
-- vref-supply: the regulator supply for the ADC reference voltage
-
-Optional properties:
-
-- powerdown-gpios: must be the device tree identifier of the PDRST pin. If
- specified, it will be asserted during driver probe. As the
- line is active high, it should be marked GPIO_ACTIVE_HIGH.
-- adi,gain-gpios: must be the device tree identifier of the GAIN pin. Only for
- the ad778x chips. If specified, it will be asserted during
- driver probe. As the line is active low, it should be marked
- GPIO_ACTIVE_LOW.
-- adi,filter-gpios: must be the device tree identifier of the FILTER pin. Only
- for the ad778x chips. If specified, it will be asserted
- during driver probe. As the line is active low, it should be
- marked GPIO_ACTIVE_LOW.
-
-Example:
-
-adc@0 {
- compatible = "adi,ad7780";
- reg = <0>;
- vref-supply = <&vdd_supply>
-
- powerdown-gpios = <&gpio 12 GPIO_ACTIVE_HIGH>;
- adi,gain-gpios = <&gpio 5 GPIO_ACTIVE_LOW>;
- adi,filter-gpios = <&gpio 15 GPIO_ACTIVE_LOW>;
-};
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml
new file mode 100644
index 000000000000..d1109416963c
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7780.yaml
@@ -0,0 +1,87 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/adc/adi,ad7780.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD7170/AD7171/AD7780/AD7781 analog to digital converters
+
+maintainers:
+ - Michael Hennerich <michael.hennerich@analog.com>
+
+description: |
+ The ad7780 is a sigma-delta analog to digital converter. This driver provides
+ reading voltage values and status bits from both the ad778x and ad717x series.
+ Its interface also allows writing on the FILTER and GAIN GPIO pins on the
+ ad778x.
+
+ Specifications on the converters can be found at:
+ AD7170:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7170.pdf
+ AD7171:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7171.pdf
+ AD7780:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/ad7780.pdf
+ AD7781:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7781.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad7170
+ - adi,ad7171
+ - adi,ad7780
+ - adi,ad7781
+
+ reg:
+ maxItems: 1
+
+ avdd-supply:
+ description:
+ The regulator supply for the ADC reference voltage.
+ maxItems: 1
+
+ powerdown-gpios:
+ description:
+ Must be the device tree identifier of the PDRST pin. If
+ specified, it will be asserted during driver probe. As the
+ line is active high, it should be marked GPIO_ACTIVE_HIGH.
+ maxItems: 1
+
+ adi,gain-gpios:
+ description:
+ Must be the device tree identifier of the GAIN pin. Only for
+ the ad778x chips. If specified, it will be asserted during
+ driver probe. As the line is active low, it should be marked
+ GPIO_ACTIVE_LOW.
+ maxItems: 1
+
+ adi,filter-gpios:
+ description:
+ Must be the device tree identifier of the FILTER pin. Only
+ for the ad778x chips. If specified, it will be asserted
+ during driver probe. As the line is active low, it should be
+ marked GPIO_ACTIVE_LOW.
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ adc@0 {
+ compatible = "adi,ad7780";
+ reg = <0>;
+
+ avdd-supply = <&vdd_supply>;
+ powerdown-gpios = <&gpio0 12 GPIO_ACTIVE_HIGH>;
+ adi,gain-gpios = <&gpio1 5 GPIO_ACTIVE_LOW>;
+ adi,filter-gpios = <&gpio2 15 GPIO_ACTIVE_LOW>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/hwmon/ads1015.txt b/Documentation/devicetree/bindings/iio/adc/ads1015.txt
index 918a507d1159..918a507d1159 100644
--- a/Documentation/devicetree/bindings/hwmon/ads1015.txt
+++ b/Documentation/devicetree/bindings/iio/adc/ads1015.txt
diff --git a/Documentation/devicetree/bindings/iio/adc/allwinner,sun8i-a33-ths.yaml b/Documentation/devicetree/bindings/iio/adc/allwinner,sun8i-a33-ths.yaml
new file mode 100644
index 000000000000..d74962c0f5ae
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/allwinner,sun8i-a33-ths.yaml
@@ -0,0 +1,43 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/adc/allwinner,sun8i-a33-ths.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A33 Thermal Sensor Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#io-channel-cells":
+ const: 0
+
+ "#thermal-sensor-cells":
+ const: 0
+
+ compatible:
+ const: allwinner,sun8i-a33-ths
+
+ reg:
+ maxItems: 1
+
+required:
+ - "#io-channel-cells"
+ - "#thermal-sensor-cells"
+ - compatible
+ - reg
+
+additionalProperties: false
+
+examples:
+ - |
+ ths: ths@1c25000 {
+ compatible = "allwinner,sun8i-a33-ths";
+ reg = <0x01c25000 0x100>;
+ #thermal-sensor-cells = <0>;
+ #io-channel-cells = <0>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/iio/adc/avia-hx711.yaml b/Documentation/devicetree/bindings/iio/adc/avia-hx711.yaml
index 8a4100ceeaf2..d76ece97c76c 100644
--- a/Documentation/devicetree/bindings/iio/adc/avia-hx711.yaml
+++ b/Documentation/devicetree/bindings/iio/adc/avia-hx711.yaml
@@ -61,6 +61,6 @@ examples:
compatible = "avia,hx711";
sck-gpios = <&gpio3 10 GPIO_ACTIVE_HIGH>;
dout-gpios = <&gpio0 7 GPIO_ACTIVE_HIGH>;
- avdd-suppy = <&avdd>;
+ avdd-supply = <&avdd>;
clock-frequency = <100000>;
};
diff --git a/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt b/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt
index 0df9befdaecc..78c06e05c8e5 100644
--- a/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/mt6577_auxadc.txt
@@ -13,8 +13,10 @@ Required properties:
- compatible: Should be one of:
- "mediatek,mt2701-auxadc": For MT2701 family of SoCs
- "mediatek,mt2712-auxadc": For MT2712 family of SoCs
+ - "mediatek,mt6765-auxadc": For MT6765 family of SoCs
- "mediatek,mt7622-auxadc": For MT7622 family of SoCs
- "mediatek,mt8173-auxadc": For MT8173 family of SoCs
+ - "mediatek,mt8183-auxadc", "mediatek,mt8173-auxadc": For MT8183 family of SoCs
- reg: Address range of the AUXADC unit.
- clocks: Should contain a clock specifier for each entry in clock-names
- clock-names: Should contain "main".
diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
index 8346bcb04ad7..4c0da8c74bb2 100644
--- a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
@@ -38,6 +38,7 @@ Required properties:
It's required on stm32h7.
- clock-names: Must be "adc" and/or "bus" depending on part used.
- interrupt-controller: Identifies the controller node as interrupt-parent
+- vdda-supply: Phandle to the vdda input analog voltage.
- vref-supply: Phandle to the vref input analog reference voltage.
- #interrupt-cells = <1>;
- #address-cells = <1>;
@@ -46,6 +47,12 @@ Required properties:
Optional properties:
- A pinctrl state named "default" for each ADC channel may be defined to set
inX ADC pins in mode of operation for analog input on external pin.
+- booster-supply: Phandle to the embedded booster regulator that can be used
+ to supply ADC analog input switches on stm32h7 and stm32mp1.
+- vdd-supply: Phandle to the vdd input voltage. It can be used to supply ADC
+ analog input switches on stm32mp1.
+- st,syscfg: Phandle to system configuration controller. It can be used to
+ control the analog circuitry on stm32mp1.
Contents of a stm32 adc child node:
-----------------------------------
diff --git a/Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.txt b/Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.txt
deleted file mode 100644
index c52ea2126eaa..000000000000
--- a/Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.txt
+++ /dev/null
@@ -1,26 +0,0 @@
-* Plantower PMS7003 particulate matter sensor
-
-Required properties:
-- compatible: must one of:
- "plantower,pms1003"
- "plantower,pms3003"
- "plantower,pms5003"
- "plantower,pms6003"
- "plantower,pms7003"
- "plantower,pmsa003"
-- vcc-supply: phandle to the regulator that provides power to the sensor
-
-Optional properties:
-- plantower,set-gpios: phandle to the GPIO connected to the SET line
-- reset-gpios: phandle to the GPIO connected to the RESET line
-
-Refer to serial/slave-device.txt for generic serial attached device bindings.
-
-Example:
-
-&uart0 {
- air-pollution-sensor {
- compatible = "plantower,pms7003";
- vcc-supply = <&reg_vcc5v0>;
- };
-};
diff --git a/Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.yaml b/Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.yaml
new file mode 100644
index 000000000000..a551d3101f93
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/chemical/plantower,pms7003.yaml
@@ -0,0 +1,51 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/chemical/plantower,pms7003.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Plantower PMS7003 air pollution sensor
+
+maintainers:
+ - Tomasz Duszynski <tduszyns@gmail.com>
+
+description: |
+ Air pollution sensor capable of measuring mass concentration of dust
+ particles.
+
+properties:
+ compatible:
+ enum:
+ - plantower,pms1003
+ - plantower,pms3003
+ - plantower,pms5003
+ - plantower,pms6003
+ - plantower,pms7003
+ - plantower,pmsa003
+
+ vcc-supply:
+ description: regulator that provides power to the sensor
+ maxItems: 1
+
+ plantower,set-gpios:
+ description: GPIO connected to the SET line
+ maxItems: 1
+
+ reset-gpios:
+ description: GPIO connected to the RESET line
+ maxItems: 1
+
+required:
+ - compatible
+ - vcc-supply
+
+examples:
+ - |
+ serial {
+ air-pollution-sensor {
+ compatible = "plantower,pms7003";
+ vcc-supply = <&reg_vcc5v0>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt b/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt
deleted file mode 100644
index 6eee2709b5b6..000000000000
--- a/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-* Sensirion SPS30 particulate matter sensor
-
-Required properties:
-- compatible: must be "sensirion,sps30"
-- reg: the I2C address of the sensor
-
-Example:
-
-sps30@69 {
- compatible = "sensirion,sps30";
- reg = <0x69>;
-};
diff --git a/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml b/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml
new file mode 100644
index 000000000000..50a50a0d7070
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/chemical/sensirion,sps30.yaml
@@ -0,0 +1,39 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/chemical/sensirion,sps30.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Sensirion SPS30 particulate matter sensor
+
+maintainers:
+ - Tomasz Duszynski <tduszyns@gmail.com>
+
+description: |
+ Air pollution sensor capable of measuring mass concentration of dust
+ particles.
+
+properties:
+ compatible:
+ enum:
+ - sensirion,sps30
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ air-pollution-sensor@69 {
+ compatible = "sensirion,sps30";
+ reg = <0x69>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/iio/frequency/adf4371.yaml b/Documentation/devicetree/bindings/iio/frequency/adf4371.yaml
new file mode 100644
index 000000000000..7ec3ec94356b
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/frequency/adf4371.yaml
@@ -0,0 +1,63 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/frequency/adf4371.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADF4371/ADF4372 Wideband Synthesizers
+
+maintainers:
+ - Popa Stefan <stefan.popa@analog.com>
+
+description: |
+ Analog Devices ADF4371/ADF4372 SPI Wideband Synthesizers
+ https://www.analog.com/media/en/technical-documentation/data-sheets/adf4371.pdf
+ https://www.analog.com/media/en/technical-documentation/data-sheets/adf4372.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,adf4371
+ - adi,adf4372
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ description:
+ Definition of the external clock (see clock/clock-bindings.txt)
+ maxItems: 1
+
+ clock-names:
+ description:
+ Must be "clkin"
+ maxItems: 1
+
+ adi,mute-till-lock-en:
+ type: boolean
+ description:
+ If this property is present, then the supply current to RF8P and RF8N
+ output stage will shut down until the ADF4371/ADF4372 achieves lock as
+ measured by the digital lock detect circuitry.
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ frequency@0 {
+ compatible = "adi,adf4371";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ clocks = <&adf4371_clkin>;
+ clock-names = "clkin";
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/imu/adi,adis16460.yaml b/Documentation/devicetree/bindings/iio/imu/adi,adis16460.yaml
new file mode 100644
index 000000000000..0c53009ba7d6
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/imu/adi,adis16460.yaml
@@ -0,0 +1,53 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/imu/adi,adis16460.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADIS16460 and similar IMUs
+
+maintainers:
+ - Dragos Bogdan <dragos.bogdan@analog.com>
+
+description: |
+ Analog Devices ADIS16460 and similar IMUs
+ https://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16460.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,adis16460
+
+ reg:
+ maxItems: 1
+
+ spi-cpha: true
+
+ spi-cpol: true
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ imu@0 {
+ compatible = "adi,adis16460";
+ reg = <0>;
+ spi-max-frequency = <5000000>;
+ spi-cpol;
+ spi-cpha;
+ interrupt-parent = <&gpio0>;
+ interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt b/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt
index efec9ece034a..6d0c050d89fe 100644
--- a/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt
+++ b/Documentation/devicetree/bindings/iio/imu/st_lsm6dsx.txt
@@ -11,6 +11,9 @@ Required properties:
"st,asm330lhh"
"st,lsm6dsox"
"st,lsm6dsr"
+ "st,lsm6ds3tr-c"
+ "st,ism330dhcx"
+ "st,lsm9ds1-imu"
- reg: i2c address of the sensor / spi cs line
Optional properties:
diff --git a/Documentation/devicetree/bindings/iio/light/isl29018.txt b/Documentation/devicetree/bindings/iio/light/isl29018.txt
deleted file mode 100644
index b9bbde3e13ed..000000000000
--- a/Documentation/devicetree/bindings/iio/light/isl29018.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-* ISL 29018/29023/29035 I2C ALS, Proximity, and Infrared sensor
-
-Required properties:
-
- - compatible: Should be one of
- "isil,isl29018"
- "isil,isl29023"
- "isil,isl29035"
- - reg: the I2C address of the device
-
-Optional properties:
-
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
- - vcc-supply: phandle to the regulator that provides power to the sensor.
-
-Example:
-
-isl29018@44 {
- compatible = "isil,isl29018";
- reg = <0x44>;
- interrupt-parent = <&gpio>;
- interrupts = <TEGRA_GPIO(Z, 2) IRQ_TYPE_LEVEL_HIGH>;
-};
diff --git a/Documentation/devicetree/bindings/iio/light/isl29018.yaml b/Documentation/devicetree/bindings/iio/light/isl29018.yaml
new file mode 100644
index 000000000000..cbb00be8f359
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/isl29018.yaml
@@ -0,0 +1,56 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/isl29018.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: |
+ Intersil 29018/29023/29035 Ambient Light, Infrared Light, and Proximity Sensor
+
+maintainers:
+ - Brian Masney <masneyb@onstation.org>
+
+description: |
+ Ambient and infrared light sensing with proximity detection over an i2c
+ interface.
+
+ https://www.renesas.com/us/en/www/doc/datasheet/isl29018.pdf
+ https://www.renesas.com/us/en/www/doc/datasheet/isl29023.pdf
+ https://www.renesas.com/us/en/www/doc/datasheet/isl29035.pdf
+
+properties:
+ compatible:
+ enum:
+ - isil,isl29018
+ - isil,isl29023
+ - isil,isl29035
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ vcc-supply:
+ description: Regulator that provides power to the sensor
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ sensor@44 {
+ compatible = "isil,isl29018";
+ reg = <0x44>;
+ interrupts-extended = <&msmgpio 61 IRQ_TYPE_LEVEL_HIGH>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/light/noa1305.yaml b/Documentation/devicetree/bindings/iio/light/noa1305.yaml
new file mode 100644
index 000000000000..17e7f140b69b
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/noa1305.yaml
@@ -0,0 +1,44 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/noa1305.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ON Semiconductor NOA1305 Ambient Light Sensor
+
+maintainers:
+ - Martyn Welch <martyn.welch@collabora.com>
+
+description: |
+ Ambient sensing with an i2c interface.
+
+ https://www.onsemi.com/pub/Collateral/NOA1305-D.PDF
+
+properties:
+ compatible:
+ enum:
+ - onnn,noa1305
+
+ reg:
+ maxItems: 1
+
+ vin-supply:
+ description: Regulator that provides power to the sensor
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ light@39 {
+ compatible = "onnn,noa1305";
+ reg = <0x39>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/light/isl29501.txt b/Documentation/devicetree/bindings/iio/light/renesas,isl29501.txt
index 46957997fee3..46957997fee3 100644
--- a/Documentation/devicetree/bindings/iio/light/isl29501.txt
+++ b/Documentation/devicetree/bindings/iio/light/renesas,isl29501.txt
diff --git a/Documentation/devicetree/bindings/iio/light/stk33xx.yaml b/Documentation/devicetree/bindings/iio/light/stk33xx.yaml
new file mode 100644
index 000000000000..aae8a6d627c9
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/stk33xx.yaml
@@ -0,0 +1,49 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/stk33xx.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: |
+ Sensortek STK33xx I2C Ambient Light and Proximity sensor
+
+maintainers:
+ - Jonathan Cameron <jic23@kernel.org>
+
+description: |
+ Ambient light and proximity sensor over an i2c interface.
+
+properties:
+ compatible:
+ enum:
+ - sensortek,stk3310
+ - sensortek,stk3311
+ - sensortek,stk3335
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ stk3310@48 {
+ compatible = "sensortek,stk3310";
+ reg = <0x48>;
+ interrupt-parent = <&gpio1>;
+ interrupts = <5 IRQ_TYPE_LEVEL_LOW>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2583.txt b/Documentation/devicetree/bindings/iio/light/tsl2583.txt
deleted file mode 100644
index 059dffa1829a..000000000000
--- a/Documentation/devicetree/bindings/iio/light/tsl2583.txt
+++ /dev/null
@@ -1,25 +0,0 @@
-* TAOS TSL 2580/2581/2583 ALS sensor
-
-Required properties:
-
- - compatible: Should be one of
- "amstaos,tsl2580"
- "amstaos,tsl2581"
- "amstaos,tsl2583"
- - reg: the I2C address of the device
-
-Optional properties:
-
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
- - vcc-supply: phandle to the regulator that provides power to the sensor.
-
-Example:
-
-tsl2581@29 {
- compatible = "amstaos,tsl2581";
- reg = <0x29>;
-};
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2583.yaml b/Documentation/devicetree/bindings/iio/light/tsl2583.yaml
new file mode 100644
index 000000000000..e86ef64ecf03
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/tsl2583.yaml
@@ -0,0 +1,46 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/tsl2583.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: AMS/TAOS Ambient Light Sensor (ALS)
+
+maintainers:
+ - Brian Masney <masneyb@onstation.org>
+
+description: |
+ Ambient light sensing with an i2c interface.
+
+properties:
+ compatible:
+ enum:
+ - amstaos,tsl2580
+ - amstaos,tsl2581
+ - amstaos,tsl2583
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ vcc-supply:
+ description: Regulator that provides power to the sensor
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ light-sensor@29 {
+ compatible = "amstaos,tsl2581";
+ reg = <0x29>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2772.txt b/Documentation/devicetree/bindings/iio/light/tsl2772.txt
deleted file mode 100644
index 1c5e6f17a1df..000000000000
--- a/Documentation/devicetree/bindings/iio/light/tsl2772.txt
+++ /dev/null
@@ -1,42 +0,0 @@
-* AMS/TAOS ALS and proximity sensor
-
-Required properties:
-
- - compatible: Should be one of
- "amstaos,tsl2571"
- "amstaos,tsl2671"
- "amstaos,tmd2671"
- "amstaos,tsl2771"
- "amstaos,tmd2771"
- "amstaos,tsl2572"
- "amstaos,tsl2672"
- "amstaos,tmd2672"
- "amstaos,tsl2772"
- "amstaos,tmd2772"
- "avago,apds9930"
- - reg: the I2C address of the device
-
-Optional properties:
-
- - amstaos,proximity-diodes - proximity diodes to enable. <0>, <1>, or <0 1>
- are the only valid values.
- - led-max-microamp - current for the proximity LED. Must be 100000, 50000,
- 25000, or 13000.
- - vdd-supply: phandle to the regulator that provides power to the sensor.
- - vddio-supply: phandle to the regulator that provides power to the bus.
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
-Example:
-
-tsl2772@39 {
- compatible = "amstaos,tsl2772";
- reg = <0x39>;
- interrupts-extended = <&msmgpio 61 IRQ_TYPE_EDGE_FALLING>;
- vdd-supply = <&pm8941_l17>;
- vddio-supply = <&pm8941_lvs1>;
- amstaos,proximity-diodes = <0>;
- led-max-microamp = <100000>;
-};
diff --git a/Documentation/devicetree/bindings/iio/light/tsl2772.yaml b/Documentation/devicetree/bindings/iio/light/tsl2772.yaml
new file mode 100644
index 000000000000..ed2c3d5eadf5
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/tsl2772.yaml
@@ -0,0 +1,83 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/tsl2772.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: AMS/TAOS Ambient Light Sensor (ALS) and Proximity Detector
+
+maintainers:
+ - Brian Masney <masneyb@onstation.org>
+
+description: |
+ Ambient light sensing and proximity detection with an i2c interface.
+ https://ams.com/documents/20143/36005/TSL2772_DS000181_2-00.pdf
+
+properties:
+ compatible:
+ enum:
+ - amstaos,tsl2571
+ - amstaos,tsl2671
+ - amstaos,tmd2671
+ - amstaos,tsl2771
+ - amstaos,tmd2771
+ - amstaos,tsl2572
+ - amstaos,tsl2672
+ - amstaos,tmd2672
+ - amstaos,tsl2772
+ - amstaos,tmd2772
+ - avago,apds9930
+
+ reg:
+ maxItems: 1
+
+ amstaos,proximity-diodes:
+ description: Proximity diodes to enable
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - minItems: 1
+ maxItems: 2
+ items:
+ minimum: 0
+ maximum: 1
+
+ interrupts:
+ maxItems: 1
+
+ led-max-microamp:
+ description: Current for the proximity LED
+ enum:
+ - 13000
+ - 25000
+ - 50000
+ - 100000
+
+ vdd-supply:
+ description: Regulator that provides power to the sensor
+
+ vddio-supply:
+ description: Regulator that provides power to the bus
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ sensor@39 {
+ compatible = "amstaos,tsl2772";
+ reg = <0x39>;
+ interrupts-extended = <&msmgpio 61 IRQ_TYPE_EDGE_FALLING>;
+ vdd-supply = <&pm8941_l17>;
+ vddio-supply = <&pm8941_lvs1>;
+ amstaos,proximity-diodes = <0>;
+ led-max-microamp = <100000>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/mount-matrix.txt b/Documentation/devicetree/bindings/iio/mount-matrix.txt
new file mode 100644
index 000000000000..c3344ab509a3
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/mount-matrix.txt
@@ -0,0 +1,203 @@
+For discussion. Unclear are:
+* is the definition of +/- values practical or counterintuitive?
+* are the definitions unambiguous and easy to follow?
+* are the examples correct?
+* should we have HOWTO engineer a correct matrix for a new device (without comparing to a different one)?
+
+====
+
+
+Mounting matrix
+
+The mounting matrix is a device tree property used to orient any device
+that produce three-dimensional data in relation to the world where it is
+deployed.
+
+The purpose of the mounting matrix is to translate the sensor frame of
+reference into the device frame of reference using a translation matrix as
+defined in linear algebra.
+
+The typical usecase is that where a component has an internal representation
+of the (x,y,z) triplets, such as different registers to read these coordinates,
+and thus implying that the component should be mounted in a certain orientation
+relative to some specific device frame of reference.
+
+For example a device with some kind of screen, where the user is supposed to
+interact with the environment using an accelerometer, gyroscope or magnetometer
+mounted on the same chassis as this screen, will likely take the screen as
+reference to (x,y,z) orientation, with (x,y) corresponding to these axes on the
+screen and (z) being depth, the axis perpendicular to the screen.
+
+For a screen you probably want (x) coordinates to go from negative on the left
+to positive on the right, (y) from negative on the bottom to positive on top
+and (z) depth to be negative under the screen and positive in front of it,
+toward the face of the user.
+
+A sensor can be mounted in any angle along the axes relative to the frame of
+reference. This means that the sensor may be flipped upside-down, left-right,
+or tilted at any angle relative to the frame of reference.
+
+Another frame of reference is how the device with its sensor relates to the
+external world, the environment where the device is deployed. Usually the data
+from the sensor is used to figure out how the device is oriented with respect
+to this world. When using the mounting matrix, the sensor and device orientation
+becomes identical and we can focus on the data as it relates to the surrounding
+world.
+
+Device-to-world examples for some three-dimensional sensor types:
+
+- Accelerometers have their world frame of reference toward the center of
+ gravity, usually to the core of the planet. A reading of the (x,y,z) values
+ from the sensor will give a projection of the gravity vector through the
+ device relative to the center of the planet, i.e. relative to its surface at
+ this point. Up and down in the world relative to the device frame of
+ reference can thus be determined. and users would likely expect a value of
+ 9.81 m/s^2 upwards along the (z) axis, i.e. out of the screen when the device
+ is held with its screen flat on the planets surface and 0 on the other axes,
+ as the gravity vector is projected 1:1 onto the sensors (z)-axis.
+
+ If you tilt the device, the g vector virtually coming out of the display
+ is projected onto the (x,y) plane of the display panel.
+
+ Example:
+
+ ^ z: +g ^ z: > 0
+ ! /!
+ ! x=y=0 / ! x: > 0
+ +--------+ +--------+
+ ! ! ! !
+ +--------+ +--------+
+ ! /
+ ! /
+ v v
+ center of center of
+ gravity gravity
+
+
+ If the device is tilted to the left, you get a positive x value. If you point
+ its top towards surface, you get a negative y axis.
+
+ (---------)
+ ! ! y: -g
+ ! ! ^
+ ! ! !
+ ! !
+ ! ! x: +g <- z: +g -> x: -g
+ ! 1 2 3 !
+ ! 4 5 6 ! !
+ ! 7 8 9 ! v
+ ! * 0 # ! y: +g
+ (---------)
+
+
+- Magnetometers (compasses) have their world frame of reference relative to the
+ geomagnetic field. The system orientation vis-a-vis the world is defined with
+ respect to the local earth geomagnetic reference frame where (y) is in the
+ ground plane and positive towards magnetic North, (x) is in the ground plane,
+ perpendicular to the North axis and positive towards the East and (z) is
+ perpendicular to the ground plane and positive upwards.
+
+
+ ^^^ North: y > 0
+
+ (---------)
+ ! !
+ ! !
+ ! !
+ ! ! >
+ ! ! > North: x > 0
+ ! 1 2 3 ! >
+ ! 4 5 6 !
+ ! 7 8 9 !
+ ! * 0 # !
+ (---------)
+
+ Since the geomagnetic field is not uniform this definition fails if we come
+ closer to the poles.
+
+ Sensors and driver can not and should not take care of this because there
+ are complex calculations and empirical data to be taken care of. We leave
+ this up to user space.
+
+ The definition we take:
+
+ If the device is placed at the equator and the top is pointing north, the
+ display is readable by a person standing upright on the earth surface, this
+ defines a positive y value.
+
+
+- Gyroscopes detects the movement relative the device itself. The angular
+ velocity is defined as orthogonal to the plane of rotation, so if you put the
+ device on a flat surface and spin it around the z axis (such as rotating a
+ device with a screen lying flat on a table), you should get a negative value
+ along the (z) axis if rotated clockwise, and a positive value if rotated
+ counter-clockwise according to the right-hand rule.
+
+
+ (---------) y > 0
+ ! ! v---\
+ ! !
+ ! !
+ ! ! <--\
+ ! ! ! z > 0
+ ! 1 2 3 ! --/
+ ! 4 5 6 !
+ ! 7 8 9 !
+ ! * 0 # !
+ (---------)
+
+
+So unless the sensor is ideally mounted, we need a means to indicate the
+relative orientation of any given sensor of this type with respect to the
+frame of reference.
+
+To achieve this, use the device tree property "mount-matrix" for the sensor.
+
+This supplies a 3x3 rotation matrix in the strict linear algebraic sense,
+to orient the senor axes relative to a desired point of reference. This means
+the resulting values from the sensor, after scaling to proper units, should be
+multiplied by this matrix to give the proper vectors values in three-dimensional
+space, relative to the device or world point of reference.
+
+For more information, consult:
+https://en.wikipedia.org/wiki/Rotation_matrix
+
+The mounting matrix has the layout:
+
+ (mxx, myx, mzx)
+ (mxy, myy, mzy)
+ (mxz, myz, mzz)
+
+Values are intended to be multiplied as:
+
+ x' = mxx * x + myx * y + mzx * z
+ y' = mxy * x + myy * y + mzy * z
+ z' = mxz * x + myz * y + mzz * z
+
+It is represented as an array of strings containing the real values for
+producing the transformation matrix.
+
+Examples:
+
+Identity matrix (nothing happens to the coordinates, which means the device was
+mechanically mounted in an ideal way and we need no transformation):
+
+mount-matrix = "1", "0", "0",
+ "0", "1", "0",
+ "0", "0", "1";
+
+The sensor is mounted 30 degrees (Pi/6 radians) tilted along the X axis, so we
+compensate by performing a -30 degrees rotation around the X axis:
+
+mount-matrix = "1", "0", "0",
+ "0", "0.866", "0.5",
+ "0", "-0.5", "0.866";
+
+The sensor is flipped 180 degrees (Pi radians) around the Z axis, i.e. mounted
+upside-down:
+
+mount-matrix = "0.998", "0.054", "0",
+ "-0.054", "0.998", "0",
+ "0", "0", "1";
+
+???: this does not match "180 degrees" - factors indicate ca. 3 degrees compensation
diff --git a/Documentation/devicetree/bindings/iio/potentiometer/max5432.yaml b/Documentation/devicetree/bindings/iio/potentiometer/max5432.yaml
new file mode 100644
index 000000000000..5082f919df2a
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/potentiometer/max5432.yaml
@@ -0,0 +1,44 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/potentiometer/max5432.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Maxim Integrated MAX5432-MAX5435 Digital Potentiometers
+
+maintainers:
+ - Martin Kaiser <martin@kaiser.cx>
+
+description: |
+ Maxim Integrated MAX5432-MAX5435 Digital Potentiometers connected via I2C
+
+ Datasheet:
+ https://datasheets.maximintegrated.com/en/ds/MAX5432-MAX5435.pdf
+
+properties:
+ compatible:
+ enum:
+ - maxim,max5432
+ - maxim,max5433
+ - maxim,max5434
+ - maxim,max5435
+
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+additionalProperties: false
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ max5434@28 {
+ compatible = "maxim,max5434";
+ reg = <0x28>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/input/allwinner,sun4i-a10-lradc-keys.yaml b/Documentation/devicetree/bindings/input/allwinner,sun4i-a10-lradc-keys.yaml
new file mode 100644
index 000000000000..b3bd8ef7fbd6
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/allwinner,sun4i-a10-lradc-keys.yaml
@@ -0,0 +1,95 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/input/allwinner,sun4i-a10-lradc-keys.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 LRADC Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-lradc-keys
+ - const: allwinner,sun8i-a83t-r-lradc
+ - items:
+ - const: allwinner,sun50i-a64-lradc
+ - const: allwinner,sun8i-a83t-r-lradc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ vref-supply:
+ description:
+ Regulator for the LRADC reference voltage
+
+patternProperties:
+ "^button-[0-9]+$":
+ type: object
+ properties:
+ label:
+ $ref: /schemas/types.yaml#/definitions/string
+ description: Descriptive name of the key
+
+ linux,code:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: Keycode to emit
+
+ channel:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [0, 1]
+ description: ADC Channel this key is attached to
+
+ voltage:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ Voltage in microvolts at LRADC input when this key is
+ pressed
+
+ required:
+ - label
+ - linux,code
+ - channel
+ - voltage
+
+ additionalProperties: false
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - vref-supply
+
+additionalProperties: false
+
+examples:
+ - |
+ lradc: lradc@1c22800 {
+ compatible = "allwinner,sun4i-a10-lradc-keys";
+ reg = <0x01c22800 0x100>;
+ interrupts = <31>;
+ vref-supply = <&reg_vcc3v0>;
+
+ button-191 {
+ label = "Volume Up";
+ linux,code = <115>;
+ channel = <0>;
+ voltage = <191274>;
+ };
+
+ button-392 {
+ label = "Volume Down";
+ linux,code = <114>;
+ channel = <0>;
+ voltage = <392644>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/input/elan_i2c.txt b/Documentation/devicetree/bindings/input/elan_i2c.txt
index 797607460735..9963247706f2 100644
--- a/Documentation/devicetree/bindings/input/elan_i2c.txt
+++ b/Documentation/devicetree/bindings/input/elan_i2c.txt
@@ -13,9 +13,20 @@ Optional properties:
pinctrl binding [1]).
- vcc-supply: a phandle for the regulator supplying 3.3V power.
- elan,trackpoint: touchpad can support a trackpoint (boolean)
+- elan,clickpad: touchpad is a clickpad (the entire surface is a button)
+- elan,middle-button: touchpad has a physical middle button
+- elan,x_traces: number of antennas on the x axis
+- elan,y_traces: number of antennas on the y axis
+- some generic touchscreen properties [2]:
+ * touchscreen-size-x
+ * touchscreen-size-y
+ * touchscreen-x-mm
+ * touchscreen-y-mm
+
[0]: Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
[1]: Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
+[2]: Documentation/devicetree/bindings/input/touchscreen/touchscreen.txt
Example:
&i2c1 {
diff --git a/Documentation/devicetree/bindings/input/sun4i-lradc-keys.txt b/Documentation/devicetree/bindings/input/sun4i-lradc-keys.txt
deleted file mode 100644
index 496125c6bfb7..000000000000
--- a/Documentation/devicetree/bindings/input/sun4i-lradc-keys.txt
+++ /dev/null
@@ -1,64 +0,0 @@
-Allwinner sun4i low res adc attached tablet keys
-------------------------------------------------
-
-Required properties:
- - compatible: should be one of the following string:
- "allwinner,sun4i-a10-lradc-keys"
- "allwinner,sun8i-a83t-r-lradc"
- - reg: mmio address range of the chip
- - interrupts: interrupt to which the chip is connected
- - vref-supply: powersupply for the lradc reference voltage
-
-Each key is represented as a sub-node of the compatible mentioned above:
-
-Required subnode-properties:
- - label: Descriptive name of the key.
- - linux,code: Keycode to emit.
- - channel: Channel this key is attached to, must be 0 or 1.
- - voltage: Voltage in µV at lradc input when this key is pressed.
-
-Example:
-
-#include <dt-bindings/input/input.h>
-
- lradc: lradc@1c22800 {
- compatible = "allwinner,sun4i-a10-lradc-keys";
- reg = <0x01c22800 0x100>;
- interrupts = <31>;
- vref-supply = <&reg_vcc3v0>;
-
- button@191 {
- label = "Volume Up";
- linux,code = <KEY_VOLUMEUP>;
- channel = <0>;
- voltage = <191274>;
- };
-
- button@392 {
- label = "Volume Down";
- linux,code = <KEY_VOLUMEDOWN>;
- channel = <0>;
- voltage = <392644>;
- };
-
- button@601 {
- label = "Menu";
- linux,code = <KEY_MENU>;
- channel = <0>;
- voltage = <601151>;
- };
-
- button@795 {
- label = "Enter";
- linux,code = <KEY_ENTER>;
- channel = <0>;
- voltage = <795090>;
- };
-
- button@987 {
- label = "Home";
- linux,code = <KEY_HOMEPAGE>;
- channel = <0>;
- voltage = <987387>;
- };
- };
diff --git a/Documentation/devicetree/bindings/input/touchscreen/ads7846.txt b/Documentation/devicetree/bindings/input/touchscreen/ads7846.txt
index 04413da51391..81f6bda97d3c 100644
--- a/Documentation/devicetree/bindings/input/touchscreen/ads7846.txt
+++ b/Documentation/devicetree/bindings/input/touchscreen/ads7846.txt
@@ -32,7 +32,6 @@ Optional properties:
(ADS7846).
ti,keep-vref-on set to keep vref on for differential
measurements as well
- ti,swap-xy swap x and y axis
ti,settle-delay-usec Settling time of the analog signals;
a function of Vcc and the capacitance
on the X/Y drivers. If set to non-zero,
@@ -51,13 +50,6 @@ Optional properties:
in Ohms (u16).
ti,x-min Minimum value on the X axis (u16).
ti,y-min Minimum value on the Y axis (u16).
- ti,x-max Maximum value on the X axis (u16).
- ti,y-max Minimum value on the Y axis (u16).
- ti,pressure-min Minimum reported pressure value
- (threshold) - u16.
- ti,pressure-max Maximum reported pressure value (u16).
- ti,debounce-max Max number of additional readings per
- sample (u16).
ti,debounce-tol Tolerance used for filtering (u16).
ti,debounce-rep Additional consecutive good readings
required after the first two (u16).
@@ -67,7 +59,28 @@ Optional properties:
line is connected to.
wakeup-source use any event on touchscreen as wakeup event.
(Legacy property support: "linux,wakeup")
+ touchscreen-size-x General touchscreen binding, see [1].
+ touchscreen-size-y General touchscreen binding, see [1].
+ touchscreen-max-pressure General touchscreen binding, see [1].
+ touchscreen-min-pressure General touchscreen binding, see [1].
+ touchscreen-average-samples General touchscreen binding, see [1].
+ touchscreen-inverted-x General touchscreen binding, see [1].
+ touchscreen-inverted-y General touchscreen binding, see [1].
+ touchscreen-swapped-x-y General touchscreen binding, see [1].
+
+[1] All general touchscreen properties are described in
+ Documentation/devicetree/bindings/input/touchscreen/touchscreen.txt.
+Deprecated properties:
+
+ ti,swap-xy swap x and y axis
+ ti,x-max Maximum value on the X axis (u16).
+ ti,y-max Maximum value on the Y axis (u16).
+ ti,pressure-min Minimum reported pressure value
+ (threshold) - u16.
+ ti,pressure-max Maximum reported pressure value (u16).
+ ti,debounce-max Max number of additional readings per
+ sample (u16).
Example for a TSC2046 chip connected to an McSPI controller of an OMAP SoC::
diff --git a/Documentation/devicetree/bindings/input/touchscreen/bu21013.txt b/Documentation/devicetree/bindings/input/touchscreen/bu21013.txt
index 56d835242af2..da4c9d8b99b1 100644
--- a/Documentation/devicetree/bindings/input/touchscreen/bu21013.txt
+++ b/Documentation/devicetree/bindings/input/touchscreen/bu21013.txt
@@ -2,11 +2,24 @@
Required properties:
- compatible : "rohm,bu21013_tp"
- - reg : I2C device address
+ - reg : I2C device address
+ - reset-gpios : GPIO pin enabling (selecting) chip (CS)
+ - interrupt-parent : the phandle for the gpio controller
+ - interrupts : (gpio) interrupt to which the chip is connected
Optional properties:
- - touch-gpio : GPIO pin registering a touch event
+ - touch-gpios : GPIO pin registering a touch event
- <supply_name>-supply : Phandle to a regulator supply
+ - touchscreen-size-x : General touchscreen binding, see [1].
+ - touchscreen-size-y : General touchscreen binding, see [1].
+ - touchscreen-inverted-x : General touchscreen binding, see [1].
+ - touchscreen-inverted-y : General touchscreen binding, see [1].
+ - touchscreen-swapped-x-y : General touchscreen binding, see [1].
+
+[1] All general touchscreen properties are described in
+ Documentation/devicetree/bindings/input/touchscreen/touchscreen.txt.
+
+Deprecated properties:
- rohm,touch-max-x : Maximum outward permitted limit in the X axis
- rohm,touch-max-y : Maximum outward permitted limit in the Y axis
- rohm,flip-x : Flip touch coordinates on the X axis
@@ -18,11 +31,13 @@ Example:
bu21013_tp@5c {
compatible = "rohm,bu21013_tp";
reg = <0x5c>;
- touch-gpio = <&gpio2 20 0x4>;
+ interrupt-parent = <&gpio2>;
+ interrupts <&20 IRQ_TYPE_LEVEL_LOW>;
+ touch-gpio = <&gpio2 20 GPIO_ACTIVE_LOW>;
avdd-supply = <&ab8500_ldo_aux1_reg>;
- rohm,touch-max-x = <384>;
- rohm,touch-max-y = <704>;
- rohm,flip-y;
+ touchscreen-size-x = <384>;
+ touchscreen-size-y = <704>;
+ touchscreen-inverted-y;
};
};
diff --git a/Documentation/devicetree/bindings/interconnect/qcom,qcs404.txt b/Documentation/devicetree/bindings/interconnect/qcom,qcs404.txt
new file mode 100644
index 000000000000..c07d89812b73
--- /dev/null
+++ b/Documentation/devicetree/bindings/interconnect/qcom,qcs404.txt
@@ -0,0 +1,45 @@
+Qualcomm QCS404 Network-On-Chip interconnect driver binding
+-----------------------------------------------------------
+
+Required properties :
+- compatible : shall contain only one of the following:
+ "qcom,qcs404-bimc"
+ "qcom,qcs404-pcnoc"
+ "qcom,qcs404-snoc"
+- #interconnect-cells : should contain 1
+
+reg : specifies the physical base address and size of registers
+clocks : list of phandles and specifiers to all interconnect bus clocks
+clock-names : clock names should include both "bus" and "bus_a"
+
+Example:
+
+soc {
+ ...
+ bimc: interconnect@400000 {
+ reg = <0x00400000 0x80000>;
+ compatible = "qcom,qcs404-bimc";
+ #interconnect-cells = <1>;
+ clock-names = "bus", "bus_a";
+ clocks = <&rpmcc RPM_SMD_BIMC_CLK>,
+ <&rpmcc RPM_SMD_BIMC_A_CLK>;
+ };
+
+ pnoc: interconnect@500000 {
+ reg = <0x00500000 0x15080>;
+ compatible = "qcom,qcs404-pcnoc";
+ #interconnect-cells = <1>;
+ clock-names = "bus", "bus_a";
+ clocks = <&rpmcc RPM_SMD_PNOC_CLK>,
+ <&rpmcc RPM_SMD_PNOC_A_CLK>;
+ };
+
+ snoc: interconnect@580000 {
+ reg = <0x00580000 0x23080>;
+ compatible = "qcom,qcs404-snoc";
+ #interconnect-cells = <1>;
+ clock-names = "bus", "bus_a";
+ clocks = <&rpmcc RPM_SMD_SNOC_CLK>,
+ <&rpmcc RPM_SMD_SNOC_A_CLK>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-a10-ic.yaml b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-a10-ic.yaml
new file mode 100644
index 000000000000..23a202d24e43
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-a10-ic.yaml
@@ -0,0 +1,47 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/interrupt-controller/allwinner,sun4i-a10-ic.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Interrupt Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: /schemas/interrupt-controller.yaml#
+
+properties:
+ "#interrupt-cells":
+ const: 1
+
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-ic
+ - allwinner,suniv-f1c100s-ic
+
+ reg:
+ maxItems: 1
+
+ interrupt-controller: true
+
+required:
+ - "#interrupt-cells"
+ - compatible
+ - reg
+ - interrupt-controller
+
+additionalProperties: false
+
+examples:
+ - |
+ intc: interrupt-controller@1c20400 {
+ compatible = "allwinner,sun4i-a10-ic";
+ reg = <0x01c20400 0x400>;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt
deleted file mode 100644
index 404352524c3a..000000000000
--- a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun4i-ic.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-Allwinner Sunxi Interrupt Controller
-
-Required properties:
-
-- compatible : should be one of the following:
- "allwinner,sun4i-a10-ic"
- "allwinner,suniv-f1c100s-ic"
-- reg : Specifies base physical address and size of the registers.
-- interrupt-controller : Identifies the node as an interrupt controller
-- #interrupt-cells : Specifies the number of cells needed to encode an
- interrupt source. The value shall be 1.
-
-Example:
-
-intc: interrupt-controller {
- compatible = "allwinner,sun4i-a10-ic";
- reg = <0x01c20400 0x400>;
- interrupt-controller;
- #interrupt-cells = <1>;
-};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml
new file mode 100644
index 000000000000..0eccf5551786
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml
@@ -0,0 +1,70 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A20 Non-Maskable Interrupt Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: /schemas/interrupt-controller.yaml#
+
+properties:
+ "#interrupt-cells":
+ const: 2
+ description:
+ The first cell is the IRQ number, the second cell the trigger
+ type as defined in interrupt.txt in this directory.
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun6i-a31-r-intc
+ - const: allwinner,sun6i-a31-sc-nmi
+ deprecated: true
+ - const: allwinner,sun7i-a20-sc-nmi
+ - items:
+ - const: allwinner,sun8i-a83t-r-intc
+ - const: allwinner,sun6i-a31-r-intc
+ - const: allwinner,sun9i-a80-sc-nmi
+ - items:
+ - const: allwinner,sun50i-a64-r-intc
+ - const: allwinner,sun6i-a31-r-intc
+ - items:
+ - const: allwinner,sun50i-h6-r-intc
+ - const: allwinner,sun6i-a31-r-intc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-controller: true
+
+required:
+ - "#interrupt-cells"
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-controller
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+examples:
+ - |
+ interrupt-controller@1c00030 {
+ compatible = "allwinner,sun7i-a20-sc-nmi";
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ reg = <0x01c00030 0x0c>;
+ interrupt-parent = <&gic>;
+ interrupts = <0 0 4>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt
deleted file mode 100644
index 24beadf7ba83..000000000000
--- a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sunxi-nmi.txt
+++ /dev/null
@@ -1,29 +0,0 @@
-Allwinner Sunxi NMI Controller
-==============================
-
-Required properties:
-
-- compatible : should be one of the following:
- - "allwinner,sun7i-a20-sc-nmi"
- - "allwinner,sun6i-a31-sc-nmi" (deprecated)
- - "allwinner,sun6i-a31-r-intc"
- - "allwinner,sun9i-a80-nmi"
-- reg : Specifies base physical address and size of the registers.
-- interrupt-controller : Identifies the node as an interrupt controller
-- #interrupt-cells : Specifies the number of cells needed to encode an
- interrupt source. The value shall be 2. The first cell is the IRQ number, the
- second cell the trigger type as defined in interrupt.txt in this directory.
-- interrupts: Specifies the interrupt line (NMI) which is handled by
- the interrupt controller in the parent controller's notation. This value
- shall be the NMI.
-
-Example:
-
-sc-nmi-intc@1c00030 {
- compatible = "allwinner,sun7i-a20-sc-nmi";
- interrupt-controller;
- #interrupt-cells = <2>;
- reg = <0x01c00030 0x0c>;
- interrupt-parent = <&gic>;
- interrupts = <0 0 4>;
-};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt b/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt
new file mode 100644
index 000000000000..c676b03c752e
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/amazon,al-fic.txt
@@ -0,0 +1,27 @@
+Amazon's Annapurna Labs Fabric Interrupt Controller
+
+Required properties:
+
+- compatible: should be "amazon,al-fic"
+- reg: physical base address and size of the registers
+- interrupt-controller: identifies the node as an interrupt controller
+- #interrupt-cells : must be 2. Specifies the number of cells needed to encode
+ an interrupt source. Supported trigger types are low-to-high edge
+ triggered and active high level-sensitive.
+- interrupts: describes which input line in the interrupt parent, this
+ fic's output is connected to. This field property depends on the parent's
+ binding
+
+Please refer to interrupts.txt in this directory for details of the common
+Interrupt Controllers bindings used by client devices.
+
+Example:
+
+amazon_fic: interrupt-controller@fd8a8500 {
+ compatible = "amazon,al-fic";
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ reg = <0x0 0xfd8a8500 0x0 0x1000>;
+ interrupt-parent = <&gic>;
+ interrupts = <GIC_SPI 0x0 IRQ_TYPE_LEVEL_HIGH>;
+};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
index 1502a51548bb..684bb1cd75ec 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/amlogic,meson-gpio-intc.txt
@@ -15,6 +15,8 @@ Required properties:
"amlogic,meson-gxbb-gpio-intc" for GXBB SoCs (S905) or
"amlogic,meson-gxl-gpio-intc" for GXL SoCs (S905X, S912)
"amlogic,meson-axg-gpio-intc" for AXG SoCs (A113D, A113X)
+ "amlogic,meson-g12a-gpio-intc" for G12A SoCs (S905D2, S905X2, S905Y2)
+ "amlogic,meson-sm1-gpio-intc" for SM1 SoCs (S905D3, S905X3, S905Y3)
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller.
- #interrupt-cells : Specifies the number of cells needed to encode an
diff --git a/Documentation/devicetree/bindings/interrupt-controller/arm,gic-v3.yaml b/Documentation/devicetree/bindings/interrupt-controller/arm,gic-v3.yaml
index c34df35a25fc..1fe147daca4c 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/arm,gic-v3.yaml
+++ b/Documentation/devicetree/bindings/interrupt-controller/arm,gic-v3.yaml
@@ -44,11 +44,13 @@ properties:
be at least 4.
The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI
- interrupts. Other values are reserved for future use.
+ interrupts, 2 for interrupts in the Extended SPI range, 3 for the
+ Extended PPI range. Other values are reserved for future use.
The 2nd cell contains the interrupt number for the interrupt type.
SPI interrupts are in the range [0-987]. PPI interrupts are in the
- range [0-15].
+ range [0-15]. Extented SPI interrupts are in the range [0-1023].
+ Extended PPI interrupts are in the range [0-127].
The 3rd cell is the flags, encoded as follows:
bits[3:0] trigger type and level flags.
diff --git a/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt b/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
index ab921f1698fb..e13405355166 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/csky,mpintc.txt
@@ -6,11 +6,16 @@ C-SKY Multi-processors Interrupt Controller is designed for ck807/ck810/ck860
SMP soc, and it also could be used in non-SMP system.
Interrupt number definition:
-
0-15 : software irq, and we use 15 as our IPI_IRQ.
16-31 : private irq, and we use 16 as the co-processor timer.
31-1024: common irq for soc ip.
+Interrupt triger mode: (Defined in dt-bindings/interrupt-controller/irq.h)
+ IRQ_TYPE_LEVEL_HIGH (default)
+ IRQ_TYPE_LEVEL_LOW
+ IRQ_TYPE_EDGE_RISING
+ IRQ_TYPE_EDGE_FALLING
+
=============================
intc node bindings definition
=============================
@@ -26,15 +31,22 @@ intc node bindings definition
- #interrupt-cells
Usage: required
Value type: <u32>
- Definition: must be <1>
+ Definition: <2>
- interrupt-controller:
Usage: required
-Examples:
+Examples: ("interrupts = <irq_num IRQ_TYPE_XXX>")
---------
+#include <dt-bindings/interrupt-controller/irq.h>
intc: interrupt-controller {
compatible = "csky,mpintc";
- #interrupt-cells = <1>;
+ #interrupt-cells = <2>;
interrupt-controller;
};
+
+ device: device-example {
+ ...
+ interrupts = <34 IRQ_TYPE_EDGE_RISING>;
+ interrupt-parent = <&intc>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/intel,ixp4xx-interrupt.yaml b/Documentation/devicetree/bindings/interrupt-controller/intel,ixp4xx-interrupt.yaml
index bae10e261fa9..507c141ea760 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/intel,ixp4xx-interrupt.yaml
+++ b/Documentation/devicetree/bindings/interrupt-controller/intel,ixp4xx-interrupt.yaml
@@ -2,7 +2,7 @@
# Copyright 2018 Linaro Ltd.
%YAML 1.2
---
-$id: "http://devicetree.org/schemas/interrupt/intel-ixp4xx-interrupt.yaml#"
+$id: "http://devicetree.org/schemas/interrupt-controller/intel,ixp4xx-interrupt.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Intel IXP4xx XScale Networking Processors Interrupt Controller
diff --git a/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt b/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
index 8a3c40829899..4a3ee253f7f0 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
@@ -22,10 +22,10 @@ controller node. This property is inherited, so it may be specified in an
interrupt client node or in any of its parent nodes. Interrupts listed in the
"interrupts" property are always in reference to the node's interrupt parent.
-The "interrupts-extended" property is a special form for use when a node needs
-to reference multiple interrupt parents. Each entry in this property contains
-both the parent phandle and the interrupt specifier. "interrupts-extended"
-should only be used when a device has multiple interrupt parents.
+The "interrupts-extended" property is a special form; useful when a node needs
+to reference multiple interrupt parents or a different interrupt parent than
+the inherited one. Each entry in this property contains both the parent phandle
+and the interrupt specifier.
Example:
interrupts-extended = <&intc1 5 1>, <&intc2 1 0>;
diff --git a/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt b/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt
index 0e312fea2a5d..84ced3f4179b 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt
@@ -15,6 +15,7 @@ Required properties:
"mediatek,mt7629-sysirq", "mediatek,mt6577-sysirq": for MT7629
"mediatek,mt6795-sysirq", "mediatek,mt6577-sysirq": for MT6795
"mediatek,mt6797-sysirq", "mediatek,mt6577-sysirq": for MT6797
+ "mediatek,mt6779-sysirq", "mediatek,mt6577-sysirq": for MT6779
"mediatek,mt6765-sysirq", "mediatek,mt6577-sysirq": for MT6765
"mediatek,mt6755-sysirq", "mediatek,mt6577-sysirq": for MT6755
"mediatek,mt6592-sysirq", "mediatek,mt6577-sysirq": for MT6592
diff --git a/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt b/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt
new file mode 100644
index 000000000000..727b7e4cd6e0
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/renesas,rza1-irqc.txt
@@ -0,0 +1,43 @@
+DT bindings for the Renesas RZ/A1 Interrupt Controller
+
+The RZ/A1 Interrupt Controller is a front-end for the GIC found on Renesas
+RZ/A1 and RZ/A2 SoCs:
+ - IRQ sense select for 8 external interrupts, 1:1-mapped to 8 GIC SPI
+ interrupts,
+ - NMI edge select.
+
+Required properties:
+ - compatible: Must be "renesas,<soctype>-irqc", and "renesas,rza1-irqc" as
+ fallback.
+ Examples with soctypes are:
+ - "renesas,r7s72100-irqc" (RZ/A1H)
+ - "renesas,r7s9210-irqc" (RZ/A2M)
+ - #interrupt-cells: Must be 2 (an interrupt index and flags, as defined
+ in interrupts.txt in this directory)
+ - #address-cells: Must be zero
+ - interrupt-controller: Marks the device as an interrupt controller
+ - reg: Base address and length of the memory resource used by the interrupt
+ controller
+ - interrupt-map: Specifies the mapping from external interrupts to GIC
+ interrupts
+ - interrupt-map-mask: Must be <7 0>
+
+Example:
+
+ irqc: interrupt-controller@fcfef800 {
+ compatible = "renesas,r7s72100-irqc", "renesas,rza1-irqc";
+ #interrupt-cells = <2>;
+ #address-cells = <0>;
+ interrupt-controller;
+ reg = <0xfcfef800 0x6>;
+ interrupt-map =
+ <0 0 &gic GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>,
+ <1 0 &gic GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>,
+ <2 0 &gic GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>,
+ <3 0 &gic GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>,
+ <4 0 &gic GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>,
+ <5 0 &gic GIC_SPI 5 IRQ_TYPE_LEVEL_HIGH>,
+ <6 0 &gic GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>,
+ <7 0 &gic GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-map-mask = <7 0>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt
index 09fc02b99845..a5c1db95b3ec 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt
@@ -1,20 +1,30 @@
* ARC-HS Interrupt Distribution Unit
- This optional 2nd level interrupt controller can be used in SMP configurations for
- dynamic IRQ routing, load balancing of common/external IRQs towards core intc.
+ This optional 2nd level interrupt controller can be used in SMP configurations
+ for dynamic IRQ routing, load balancing of common/external IRQs towards core
+ intc.
Properties:
- compatible: "snps,archs-idu-intc"
- interrupt-controller: This is an interrupt controller.
-- #interrupt-cells: Must be <1>.
-
- Value of the cell specifies the "common" IRQ from peripheral to IDU. Number N
- of the particular interrupt line of IDU corresponds to the line N+24 of the
- core interrupt controller.
-
- intc accessed via the special ARC AUX register interface, hence "reg" property
- is not specified.
+- #interrupt-cells: Must be <1> or <2>.
+
+ Value of the first cell specifies the "common" IRQ from peripheral to IDU.
+ Number N of the particular interrupt line of IDU corresponds to the line N+24
+ of the core interrupt controller.
+
+ The (optional) second cell specifies any of the following flags:
+ - bits[3:0] trigger type and level flags
+ 1 = low-to-high edge triggered
+ 2 = NOT SUPPORTED (high-to-low edge triggered)
+ 4 = active high level-sensitive <<< DEFAULT
+ 8 = NOT SUPPORTED (active low level-sensitive)
+ When no second cell is specified, the interrupt is assumed to be level
+ sensitive.
+
+ The interrupt controller is accessed via the special ARC AUX register
+ interface, hence "reg" property is not specified.
Example:
core_intc: core-interrupt-controller {
diff --git a/Documentation/devicetree/bindings/iommu/mediatek,iommu.txt b/Documentation/devicetree/bindings/iommu/mediatek,iommu.txt
index 6922db598def..ce59a505f5a4 100644
--- a/Documentation/devicetree/bindings/iommu/mediatek,iommu.txt
+++ b/Documentation/devicetree/bindings/iommu/mediatek,iommu.txt
@@ -11,10 +11,23 @@ ARM Short-Descriptor translation table format for address translation.
|
m4u (Multimedia Memory Management Unit)
|
+ +--------+
+ | |
+ gals0-rx gals1-rx (Global Async Local Sync rx)
+ | |
+ | |
+ gals0-tx gals1-tx (Global Async Local Sync tx)
+ | | Some SoCs may have GALS.
+ +--------+
+ |
SMI Common(Smart Multimedia Interface Common)
|
+----------------+-------
| |
+ | gals-rx There may be GALS in some larbs.
+ | |
+ | |
+ | gals-tx
| |
SMI larb0 SMI larb1 ... SoCs have several SMI local arbiter(larb).
(display) (vdec)
@@ -36,6 +49,10 @@ each local arbiter.
like display, video decode, and camera. And there are different ports
in each larb. Take a example, There are many ports like MC, PP, VLD in the
video decode local arbiter, all these ports are according to the video HW.
+ In some SoCs, there may be a GALS(Global Async Local Sync) module between
+smi-common and m4u, and additional GALS module between smi-larb and
+smi-common. GALS can been seen as a "asynchronous fifo" which could help
+synchronize for the modules in different clock frequency.
Required properties:
- compatible : must be one of the following string:
@@ -44,18 +61,25 @@ Required properties:
"mediatek,mt7623-m4u", "mediatek,mt2701-m4u" for mt7623 which uses
generation one m4u HW.
"mediatek,mt8173-m4u" for mt8173 which uses generation two m4u HW.
+ "mediatek,mt8183-m4u" for mt8183 which uses generation two m4u HW.
- reg : m4u register base and size.
- interrupts : the interrupt of m4u.
- clocks : must contain one entry for each clock-names.
-- clock-names : must be "bclk", It is the block clock of m4u.
+- clock-names : Only 1 optional clock:
+ - "bclk": the block clock of m4u.
+ Here is the list which require this "bclk":
+ - mt2701, mt2712, mt7623 and mt8173.
+ Note that m4u use the EMI clock which always has been enabled before kernel
+ if there is no this "bclk".
- mediatek,larbs : List of phandle to the local arbiters in the current Socs.
Refer to bindings/memory-controllers/mediatek,smi-larb.txt. It must sort
according to the local arbiter index, like larb0, larb1, larb2...
- iommu-cells : must be 1. This is the mtk_m4u_id according to the HW.
Specifies the mtk_m4u_id as defined in
dt-binding/memory/mt2701-larb-port.h for mt2701, mt7623
- dt-binding/memory/mt2712-larb-port.h for mt2712, and
- dt-binding/memory/mt8173-larb-port.h for mt8173.
+ dt-binding/memory/mt2712-larb-port.h for mt2712,
+ dt-binding/memory/mt8173-larb-port.h for mt8173, and
+ dt-binding/memory/mt8183-larb-port.h for mt8183.
Example:
iommu: iommu@10205000 {
diff --git a/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt b/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
index 3538a214fff1..352f5e9c759b 100644
--- a/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
+++ b/Documentation/devicetree/bindings/ipmi/npcm7xx-kcs-bmc.txt
@@ -36,4 +36,4 @@ Example:
kcs_chan = <2>;
status = "disabled";
};
- }; \ No newline at end of file
+ };
diff --git a/Documentation/devicetree/bindings/leds/ams,as3645a.txt b/Documentation/devicetree/bindings/leds/ams,as3645a.txt
index fdc40e354a64..4af2987b25e9 100644
--- a/Documentation/devicetree/bindings/leds/ams,as3645a.txt
+++ b/Documentation/devicetree/bindings/leds/ams,as3645a.txt
@@ -39,7 +39,9 @@ ams,input-max-microamp: Maximum flash controller input current. The
Optional properties of the flash child node
===========================================
-label : The label of the flash LED.
+function : See Documentation/devicetree/bindings/leds/common.txt.
+color : See Documentation/devicetree/bindings/leds/common.txt.
+label : See Documentation/devicetree/bindings/leds/common.txt (deprecated).
Required properties of the indicator child node (1)
@@ -52,28 +54,32 @@ led-max-microamp: Maximum indicator current. The allowed values are
Optional properties of the indicator child node
===============================================
-label : The label of the indicator LED.
+function : See Documentation/devicetree/bindings/leds/common.txt.
+color : See Documentation/devicetree/bindings/leds/common.txt.
+label : See Documentation/devicetree/bindings/leds/common.txt (deprecated).
Example
=======
+#include <dt-bindings/leds/common.h>
+
as3645a@30 {
- #address-cells: 1
- #size-cells: 0
+ #address-cells = <1>;
+ #size-cells = <0>;
reg = <0x30>;
compatible = "ams,as3645a";
- flash@0 {
+ led@0 {
reg = <0x0>;
flash-timeout-us = <150000>;
flash-max-microamp = <320000>;
led-max-microamp = <60000>;
ams,input-max-microamp = <1750000>;
- label = "as3645a:flash";
+ function = LED_FUNCTION_FLASH;
};
- indicator@1 {
+ led@1 {
reg = <0x1>;
led-max-microamp = <10000>;
- label = "as3645a:indicator";
+ function = LED_FUNCTION_INDICATOR;
};
};
diff --git a/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml b/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml
index 4d61fe0a98a4..dc129d9a329e 100644
--- a/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml
+++ b/Documentation/devicetree/bindings/leds/backlight/lm3630a-backlight.yaml
@@ -23,16 +23,17 @@ properties:
reg:
maxItems: 1
- ti,linear-mapping-mode:
- description: |
- Enable linear mapping mode. If disabled, then it will use exponential
- mapping mode in which the ramp up/down appears to have a more uniform
- transition to the human eye.
- type: boolean
+ '#address-cells':
+ const: 1
+
+ '#size-cells':
+ const: 0
required:
- compatible
- reg
+ - '#address-cells'
+ - '#size-cells'
patternProperties:
"^led@[01]$":
@@ -48,7 +49,6 @@ patternProperties:
in this property. The two current sinks can be controlled
independently with both banks, or bank A can be configured to control
both sinks with the led-sources property.
- maxItems: 1
minimum: 0
maximum: 1
@@ -73,6 +73,13 @@ patternProperties:
minimum: 0
maximum: 255
+ ti,linear-mapping-mode:
+ description: |
+ Enable linear mapping mode. If disabled, then it will use exponential
+ mapping mode in which the ramp up/down appears to have a more uniform
+ transition to the human eye.
+ type: boolean
+
required:
- reg
diff --git a/Documentation/devicetree/bindings/leds/common.txt b/Documentation/devicetree/bindings/leds/common.txt
index 70876ac11367..9fa6f9795d50 100644
--- a/Documentation/devicetree/bindings/leds/common.txt
+++ b/Documentation/devicetree/bindings/leds/common.txt
@@ -10,14 +10,30 @@ can influence the way of the LED device initialization, the LED components
have to be tightly coupled with the LED device binding. They are represented
by child nodes of the parent LED device binding.
+
Optional properties for child nodes:
- led-sources : List of device current outputs the LED is connected to. The
outputs are identified by the numbers that must be defined
in the LED device binding documentation.
+
+- function: LED functon. Use one of the LED_FUNCTION_* prefixed definitions
+ from the header include/dt-bindings/leds/common.h.
+ If there is no matching LED_FUNCTION available, add a new one.
+
+- color : Color of the LED. Use one of the LED_COLOR_ID_* prefixed definitions
+ from the header include/dt-bindings/leds/common.h.
+ If there is no matching LED_COLOR_ID available, add a new one.
+
+- function-enumerator: Integer to be used when more than one instance
+ of the same function is needed, differing only with
+ an ordinal number.
+
- label : The label for this LED. If omitted, the label is taken from the node
name (excluding the unit address). It has to uniquely identify
a device, i.e. no other LED class device can be assigned the same
- label.
+ label. This property is deprecated - use 'function' and 'color'
+ properties instead. function-enumerator has no effect when this
+ property is present.
- default-state : The initial state of the LED. Valid values are "on", "off",
and "keep". If the LED is already on or off and the default-state property is
@@ -99,29 +115,59 @@ Required properties for trigger source:
* Examples
-gpio-leds {
+#include <dt-bindings/leds/common.h>
+
+led-controller@0 {
compatible = "gpio-leds";
- system-status {
- label = "Status";
+ led0 {
+ function = LED_FUNCTION_STATUS;
linux,default-trigger = "heartbeat";
gpios = <&gpio0 0 GPIO_ACTIVE_HIGH>;
};
- usb {
+ led1 {
+ function = LED_FUNCTION_USB;
gpios = <&gpio0 1 GPIO_ACTIVE_HIGH>;
trigger-sources = <&ohci_port1>, <&ehci_port1>;
};
};
-max77693-led {
+led-controller@0 {
compatible = "maxim,max77693-led";
- camera-flash {
- label = "Flash";
+ led {
+ function = LED_FUNCTION_FLASH;
+ color = <LED_COLOR_ID_WHITE>;
led-sources = <0>, <1>;
led-max-microamp = <50000>;
flash-max-microamp = <320000>;
flash-max-timeout-us = <500000>;
};
};
+
+led-controller@30 {
+ compatible = "panasonic,an30259a";
+ reg = <0x30>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ led@1 {
+ reg = <1>;
+ linux,default-trigger = "heartbeat";
+ function = LED_FUNCTION_INDICATOR;
+ function-enumerator = <1>;
+ };
+
+ led@2 {
+ reg = <2>;
+ function = LED_FUNCTION_INDICATOR;
+ function-enumerator = <2>;
+ };
+
+ led@3 {
+ reg = <3>;
+ function = LED_FUNCTION_INDICATOR;
+ function-enumerator = <3>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/leds/leds-aat1290.txt b/Documentation/devicetree/bindings/leds/leds-aat1290.txt
index 85c0c58617f6..62ed17ec075b 100644
--- a/Documentation/devicetree/bindings/leds/leds-aat1290.txt
+++ b/Documentation/devicetree/bindings/leds/leds-aat1290.txt
@@ -32,15 +32,18 @@ Required properties of the LED child node:
formula: T = 8.82 * 10^9 * Ct.
Optional properties of the LED child node:
-- label : see Documentation/devicetree/bindings/leds/common.txt
+- function : see Documentation/devicetree/bindings/leds/common.txt
+- color : see Documentation/devicetree/bindings/leds/common.txt
+- label : see Documentation/devicetree/bindings/leds/common.txt (deprecated)
Example (by Ct = 220nF, Rset = 160kohm and exynos4412-trats2 board with
a switch that allows for routing strobe signal either from the host or from
the camera sensor):
#include "exynos4412.dtsi"
+#include <dt-bindings/leds/common.h>
-aat1290 {
+led-controller {
compatible = "skyworks,aat1290";
flen-gpios = <&gpj1 1 GPIO_ACTIVE_HIGH>;
enset-gpios = <&gpj1 2 GPIO_ACTIVE_HIGH>;
@@ -50,8 +53,9 @@ aat1290 {
pinctrl-1 = <&camera_flash_host>;
pinctrl-2 = <&camera_flash_isp>;
- camera_flash: flash-led {
- label = "aat1290-flash";
+ camera_flash: led {
+ function = LED_FUNCTION_FLASH;
+ color = <LED_COLOR_ID_WHITE>;
led-max-microamp = <520833>;
flash-max-microamp = <1012500>;
flash-max-timeout-us = <1940000>;
diff --git a/Documentation/devicetree/bindings/leds/leds-an30259a.txt b/Documentation/devicetree/bindings/leds/leds-an30259a.txt
index 6ffb861083c0..cbd833906b2b 100644
--- a/Documentation/devicetree/bindings/leds/leds-an30259a.txt
+++ b/Documentation/devicetree/bindings/leds/leds-an30259a.txt
@@ -15,10 +15,19 @@ Required sub-node properties:
- reg: Pin that the LED is connected to. Must be 1, 2, or 3.
Optional sub-node properties:
- - label: see Documentation/devicetree/bindings/leds/common.txt
- - linux,default-trigger: see Documentation/devicetree/bindings/leds/common.txt
+ - function :
+ see Documentation/devicetree/bindings/leds/common.txt
+ - color :
+ see Documentation/devicetree/bindings/leds/common.txt
+ - label :
+ see Documentation/devicetree/bindings/leds/common.txt (deprecated)
+ - linux,default-trigger :
+ see Documentation/devicetree/bindings/leds/common.txt
Example:
+
+#include <dt-bindings/leds/common.h>
+
led-controller@30 {
compatible = "panasonic,an30259a";
reg = <0x30>;
@@ -28,16 +37,19 @@ led-controller@30 {
led@1 {
reg = <1>;
linux,default-trigger = "heartbeat";
- label = "red:indicator";
+ function = LED_FUNCTION_INDICATOR;
+ color = <LED_COLOR_ID_RED>;
};
led@2 {
reg = <2>;
- label = "green:indicator";
+ function = LED_FUNCTION_INDICATOR;
+ color = <LED_COLOR_ID_GREEN>;
};
led@3 {
reg = <3>;
- label = "blue:indicator";
+ function = LED_FUNCTION_INDICATOR;
+ color = <LED_COLOR_ID_BLUE>;
};
};
diff --git a/Documentation/devicetree/bindings/leds/leds-cr0014114.txt b/Documentation/devicetree/bindings/leds/leds-cr0014114.txt
index 4255b19ad25c..f8de7516a39b 100644
--- a/Documentation/devicetree/bindings/leds/leds-cr0014114.txt
+++ b/Documentation/devicetree/bindings/leds/leds-cr0014114.txt
@@ -11,14 +11,20 @@ Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
apply. In particular, "reg" and "spi-max-frequency" properties must be given.
LED sub-node properties:
-- label :
+- function :
+ see Documentation/devicetree/bindings/leds/common.txt
+- color :
see Documentation/devicetree/bindings/leds/common.txt
+- label :
+ see Documentation/devicetree/bindings/leds/common.txt (deprecated)
- linux,default-trigger : (optional)
see Documentation/devicetree/bindings/leds/common.txt
Example
-------
+#include <dt-bindings/leds/common.h>
+
led-controller@0 {
compatible = "crane,cr0014114";
reg = <0>;
@@ -28,27 +34,33 @@ led-controller@0 {
led@0 {
reg = <0>;
- label = "red:coin";
+ function = "coin";
+ color = <LED_COLOR_ID_RED>;
};
led@1 {
reg = <1>;
- label = "green:coin";
+ function = "coin";
+ color = <LED_COLOR_ID_GREEN>;
};
led@2 {
reg = <2>;
- label = "blue:coin";
+ function = "coin";
+ color = <LED_COLOR_ID_BLUE>;
};
led@3 {
reg = <3>;
- label = "red:bill";
+ function = "bill";
+ color = <LED_COLOR_ID_RED>;
};
led@4 {
reg = <4>;
- label = "green:bill";
+ function = "bill";
+ color = <LED_COLOR_ID_GREEN>;
};
led@5 {
reg = <5>;
- label = "blue:bill";
+ function = "bill";
+ color = <LED_COLOR_ID_BLUE>;
};
...
};
diff --git a/Documentation/devicetree/bindings/leds/leds-gpio.txt b/Documentation/devicetree/bindings/leds/leds-gpio.txt
index a48dda268f81..d21281b63d38 100644
--- a/Documentation/devicetree/bindings/leds/leds-gpio.txt
+++ b/Documentation/devicetree/bindings/leds/leds-gpio.txt
@@ -10,8 +10,12 @@ LED sub-node properties:
- gpios : Should specify the LED's GPIO, see "gpios property" in
Documentation/devicetree/bindings/gpio/gpio.txt. Active low LEDs should be
indicated using flags in the GPIO specifier.
-- label : (optional)
+- function : (optional)
+ see Documentation/devicetree/bindings/leds/common.txt
+- color : (optional)
see Documentation/devicetree/bindings/leds/common.txt
+- label : (optional)
+ see Documentation/devicetree/bindings/leds/common.txt (deprecated)
- linux,default-trigger : (optional)
see Documentation/devicetree/bindings/leds/common.txt
- default-state: (optional) The initial state of the LED.
@@ -27,30 +31,34 @@ LED sub-node properties:
Examples:
#include <dt-bindings/gpio/gpio.h>
+#include <dt-bindings/leds/common.h>
leds {
compatible = "gpio-leds";
- hdd {
- label = "Disk Activity";
+ led0 {
gpios = <&mcu_pio 0 GPIO_ACTIVE_LOW>;
linux,default-trigger = "disk-activity";
+ function = LED_FUNCTION_DISK;
};
- fault {
+ led1 {
gpios = <&mcu_pio 1 GPIO_ACTIVE_HIGH>;
/* Keep LED on if BIOS detected hardware fault */
default-state = "keep";
+ function = LED_FUNCTION_FAULT;
};
};
run-control {
compatible = "gpio-leds";
- red {
+ led0 {
gpios = <&mpc8572 6 GPIO_ACTIVE_HIGH>;
+ color = <LED_COLOR_ID_RED>;
default-state = "off";
};
- green {
+ led1 {
gpios = <&mpc8572 7 GPIO_ACTIVE_HIGH>;
+ color = <LED_COLOR_ID_GREEN>;
default-state = "on";
};
};
@@ -58,9 +66,10 @@ run-control {
leds {
compatible = "gpio-leds";
- charger-led {
+ led0 {
gpios = <&gpio1 2 GPIO_ACTIVE_HIGH>;
linux,default-trigger = "max8903-charger-charging";
retain-state-suspended;
+ function = LED_FUNCTION_CHARGE;
};
};
diff --git a/Documentation/devicetree/bindings/leds/leds-lm3532.txt b/Documentation/devicetree/bindings/leds/leds-lm3532.txt
index c087f85ddddc..53793213dd52 100644
--- a/Documentation/devicetree/bindings/leds/leds-lm3532.txt
+++ b/Documentation/devicetree/bindings/leds/leds-lm3532.txt
@@ -62,6 +62,9 @@ Optional LED child properties:
- label : see Documentation/devicetree/bindings/leds/common.txt
- linux,default-trigger :
see Documentation/devicetree/bindings/leds/common.txt
+ - led-max-microamp : Defines the full scale current value for each control
+ bank. The range is from 5000uA-29800uA in increments
+ of 800uA.
Example:
led-controller@38 {
@@ -85,6 +88,7 @@ led-controller@38 {
reg = <0>;
led-sources = <2>;
ti,led-mode = <1>;
+ led-max-microamp = <21800>;
label = ":backlight";
linux,default-trigger = "backlight";
};
diff --git a/Documentation/devicetree/bindings/leds/leds-lm3601x.txt b/Documentation/devicetree/bindings/leds/leds-lm3601x.txt
index a88b2c41e75b..095dafb6ec7f 100644
--- a/Documentation/devicetree/bindings/leds/leds-lm3601x.txt
+++ b/Documentation/devicetree/bindings/leds/leds-lm3601x.txt
@@ -22,9 +22,14 @@ Required properties for flash LED child nodes:
- led-max-microamp : Range from 2.4mA - 376mA
Optional child properties:
- - label : see Documentation/devicetree/bindings/leds/common.txt
+ - function : see Documentation/devicetree/bindings/leds/common.txt
+ - color : see Documentation/devicetree/bindings/leds/common.txt
+ - label : see Documentation/devicetree/bindings/leds/common.txt (deprecated)
Example:
+
+#include <dt-bindings/leds/common.h>
+
led-controller@64 {
compatible = "ti,lm36010";
#address-cells = <1>;
@@ -33,7 +38,8 @@ led-controller@64 {
led@0 {
reg = <1>;
- label = "white:torch";
+ function = LED_FUNCTION_TORCH;
+ color = <LED_COLOR_ID_WHITE>;
led-max-microamp = <376000>;
flash-max-microamp = <1500000>;
flash-max-timeout-us = <1600000>;
diff --git a/Documentation/devicetree/bindings/leds/leds-lm36274.txt b/Documentation/devicetree/bindings/leds/leds-lm36274.txt
new file mode 100644
index 000000000000..39c230d59a4d
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-lm36274.txt
@@ -0,0 +1,85 @@
+* Texas Instruments LM36274 4-Channel LCD Backlight Driver w/Integrated Bias
+
+The LM36274 is an integrated four-channel WLED driver and LCD bias supply.
+The backlight boost provides the power to bias four parallel LED strings with
+up to 29V total output voltage. The 11-bit LED current is programmable via
+the I2C bus and/or controlled via a logic level PWM input from 60 uA to 30 mA.
+
+Parent device properties are documented in
+Documentation/devicetree/bindings/mfd/ti-lmu.txt
+
+Regulator properties are documented in
+Documentation/devicetree/bindings/regulator/lm363x-regulator.txt
+
+Required backlight properties:
+ - compatible:
+ "ti,lm36274-backlight"
+ - reg : 0
+ - #address-cells : 1
+ - #size-cells : 0
+ - led-sources : Indicates which LED strings will be enabled.
+ Values from 0-3, sources is 0 based so strings will be
+ source value + 1.
+
+Optional backlight properties:
+ - label : see Documentation/devicetree/bindings/leds/common.txt
+ - linux,default-trigger :
+ see Documentation/devicetree/bindings/leds/common.txt
+
+Example:
+
+HVLED string 1 and 3 are controlled by control bank A and HVLED 2 string is
+controlled by control bank B.
+
+lm36274@11 {
+ compatible = "ti,lm36274";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x11>;
+
+ enable-gpios = <&gpio1 28 GPIO_ACTIVE_HIGH>;
+
+ regulators {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm363x-regulator";
+
+ enable-gpios = <&pioC 0 GPIO_ACTIVE_HIGH>,
+ <&pioC 1 GPIO_ACTIVE_HIGH>;
+
+ vboost {
+ regulator-name = "lcd_boost";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <7150000>;
+ regulator-always-on;
+ };
+
+ vpos {
+ regulator-name = "lcd_vpos";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+
+ vneg {
+ regulator-name = "lcd_vneg";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+ };
+
+ backlight {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm36274-backlight";
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ label = "white:backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+ };
+};
+
+For more product information please see the link below:
+http://www.ti.com/lit/ds/symlink/lm36274.pdf
diff --git a/Documentation/devicetree/bindings/leds/leds-lm3692x.txt b/Documentation/devicetree/bindings/leds/leds-lm3692x.txt
index 08b352840bd7..4c2d923f8758 100644
--- a/Documentation/devicetree/bindings/leds/leds-lm3692x.txt
+++ b/Documentation/devicetree/bindings/leds/leds-lm3692x.txt
@@ -26,12 +26,16 @@ Required child properties:
3 - Will enable the LED3 sync (LM36923 only)
Optional child properties:
- - label : see Documentation/devicetree/bindings/leds/common.txt
+ - function : see Documentation/devicetree/bindings/leds/common.txt
+ - color : see Documentation/devicetree/bindings/leds/common.txt
+ - label : see Documentation/devicetree/bindings/leds/common.txt (deprecated)
- linux,default-trigger :
see Documentation/devicetree/bindings/leds/common.txt
Example:
+#include <dt-bindings/leds/common.h>
+
led-controller@36 {
compatible = "ti,lm3692x";
reg = <0x36>;
@@ -43,7 +47,8 @@ led-controller@36 {
led@0 {
reg = <0>;
- label = "white:backlight_cluster";
+ function = LED_FUNCTION_BACKLIGHT;
+ color = <LED_COLOR_ID_WHITE>;
linux,default-trigger = "backlight";
};
}
diff --git a/Documentation/devicetree/bindings/leds/leds-lm3697.txt b/Documentation/devicetree/bindings/leds/leds-lm3697.txt
new file mode 100644
index 000000000000..63992d732959
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-lm3697.txt
@@ -0,0 +1,73 @@
+* Texas Instruments - LM3697 Highly Efficient White LED Driver
+
+The LM3697 11-bit LED driver provides high-
+performance backlight dimming for 1, 2, or 3 series
+LED strings while delivering up to 90% efficiency.
+
+This device is suitable for display and keypad lighting
+
+Required properties:
+ - compatible:
+ "ti,lm3697"
+ - reg : I2C slave address
+ - #address-cells : 1
+ - #size-cells : 0
+
+Optional properties:
+ - enable-gpios : GPIO pin to enable/disable the device
+ - vled-supply : LED supply
+
+Required child properties:
+ - reg : 0 - LED is Controlled by bank A
+ 1 - LED is Controlled by bank B
+ - led-sources : Indicates which HVLED string is associated to which
+ control bank. This is a zero based property so
+ HVLED1 = 0, HVLED2 = 1, HVLED3 = 2.
+ Additional information is contained
+ in Documentation/devicetree/bindings/leds/common.txt
+
+Optional child properties:
+ - ti,brightness-resolution - see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - ramp-up-us: see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - ramp-down-us: see Documentation/devicetree/bindings/mfd/ti-lmu.txt
+ - label : see Documentation/devicetree/bindings/leds/common.txt
+ - linux,default-trigger :
+ see Documentation/devicetree/bindings/leds/common.txt
+
+Example:
+
+HVLED string 1 and 3 are controlled by control bank A and HVLED 2 string is
+controlled by control bank B.
+
+led-controller@36 {
+ compatible = "ti,lm3697";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x36>;
+
+ enable-gpios = <&gpio1 28 GPIO_ACTIVE_HIGH>;
+ vled-supply = <&vbatt>;
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ ti,brightness-resolution = <2047>;
+ ramp-up-us = <5000>;
+ ramp-down-us = <1000>;
+ label = "white:first_backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+
+ led@1 {
+ reg = <1>;
+ led-sources = <1>;
+ ti,brightness-resolution = <255>;
+ ramp-up-us = <500>;
+ ramp-down-us = <1000>;
+ label = "white:second_backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
+}
+
+For more product information please see the link below:
+http://www.ti.com/lit/ds/symlink/lm3697.pdf
diff --git a/Documentation/devicetree/bindings/leds/leds-lp8860.txt b/Documentation/devicetree/bindings/leds/leds-lp8860.txt
index 5f0e892ad759..9863220db4ba 100644
--- a/Documentation/devicetree/bindings/leds/leds-lp8860.txt
+++ b/Documentation/devicetree/bindings/leds/leds-lp8860.txt
@@ -20,12 +20,16 @@ Required child properties:
- reg : 0
Optional child properties:
- - label : see Documentation/devicetree/bindings/leds/common.txt
+ - function : see Documentation/devicetree/bindings/leds/common.txt
+ - color : see Documentation/devicetree/bindings/leds/common.txt
+ - label : see Documentation/devicetree/bindings/leds/common.txt (deprecated)
- linux,default-trigger :
see Documentation/devicetree/bindings/leds/common.txt
Example:
+#include <dt-bindings/leds/common.h>
+
led-controller@2d {
compatible = "ti,lp8860";
#address-cells = <1>;
@@ -36,7 +40,8 @@ led-controller@2d {
led@0 {
reg = <0>;
- label = "white:backlight";
+ function = LED_FUNCTION_BACKLIGHT;
+ color = <LED_COLOR_ID_WHITE>;
linux,default-trigger = "backlight";
};
}
diff --git a/Documentation/devicetree/bindings/leds/leds-lt3593.txt b/Documentation/devicetree/bindings/leds/leds-lt3593.txt
index 6b2cabc36c0c..24eccdaa6322 100644
--- a/Documentation/devicetree/bindings/leds/leds-lt3593.txt
+++ b/Documentation/devicetree/bindings/leds/leds-lt3593.txt
@@ -9,8 +9,10 @@ The hardware supports only one LED. The properties of this LED are
configured in a sub-node in the device node.
Optional sub-node properties:
-- label: A label for the LED. If none is given, the LED will be
- named "lt3595::".
+- function: See Documentation/devicetree/bindings/leds/common.txt
+- color: See Documentation/devicetree/bindings/leds/common.txt
+- label: A label for the LED. If none is given, the LED will be
+ named "lt3595::" (deprecated)
- linux,default-trigger: The default trigger for the LED.
See Documentation/devicetree/bindings/leds/common.txt
- default-state: The initial state of the LED.
@@ -21,12 +23,15 @@ be handled by its own device node.
Example:
+#include <dt-bindings/leds/common.h>
+
led-controller {
compatible = "lltc,lt3593";
lltc,ctrl-gpios = <&gpio 0 GPIO_ACTIVE_HIGH>;
led {
- label = "white:backlight";
+ function = LED_FUNCTION_BACKLIGHT;
+ color = <LED_COLOR_ID_WHITE>;
default-state = "on";
};
};
diff --git a/Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt b/Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt
index dddf84f9c7ea..df2b4e1c492b 100644
--- a/Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt
+++ b/Documentation/devicetree/bindings/leds/leds-sc27xx-bltc.txt
@@ -14,7 +14,9 @@ Required child properties:
- reg: Port this LED is connected to.
Optional child properties:
-- label: See Documentation/devicetree/bindings/leds/common.txt.
+- function: See Documentation/devicetree/bindings/leds/common.txt.
+- color: See Documentation/devicetree/bindings/leds/common.txt.
+- label: See Documentation/devicetree/bindings/leds/common.txt (deprecated).
Examples:
@@ -25,17 +27,17 @@ led-controller@200 {
reg = <0x200>;
led@0 {
- label = "red";
+ color = <LED_COLOR_ID_RED>;
reg = <0x0>;
};
led@1 {
- label = "green";
+ color = <LED_COLOR_ID_GREEN>;
reg = <0x1>;
};
led@2 {
- label = "blue";
+ color = <LED_COLOR_ID_BLUE>;
reg = <0x2>;
};
};
diff --git a/Documentation/devicetree/bindings/leds/leds-spi-byte.txt b/Documentation/devicetree/bindings/leds/leds-spi-byte.txt
new file mode 100644
index 000000000000..28b6b2d9091e
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/leds-spi-byte.txt
@@ -0,0 +1,44 @@
+* Single Byte SPI LED Device Driver.
+
+The driver can be used for controllers with a very simple SPI protocol:
+- one LED is controlled by a single byte on MOSI
+- the value of the byte gives the brightness between two values (lowest to
+ highest)
+- no return value is necessary (no MISO signal)
+
+The value for lowest and highest brightness is dependent on the device and
+therefore on the compatible string.
+
+Depending on the compatible string some special functions (like hardware
+accelerated blinking) might can be supported too.
+
+The driver currently only supports one LED. The properties of the LED are
+configured in a sub-node in the device node.
+
+Required properties:
+- compatible: should be one of
+ * "ubnt,acb-spi-led" microcontroller (SONiX 8F26E611LA) based device
+ used for example in Ubiquiti airCube ISP
+
+Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
+apply.
+
+LED sub-node properties:
+- label:
+ see Documentation/devicetree/bindings/leds/common.txt
+- default-state:
+ see Documentation/devicetree/bindings/leds/common.txt
+ Only "on" and "off" are supported.
+
+Example:
+
+led-controller@0 {
+ compatible = "ubnt,acb-spi-led";
+ reg = <0>;
+ spi-max-frequency = <100000>;
+
+ led {
+ label = "white:status";
+ default-state = "on";
+ };
+};
diff --git a/Documentation/devicetree/bindings/mailbox/amlogic,meson-gxbb-mhu.yaml b/Documentation/devicetree/bindings/mailbox/amlogic,meson-gxbb-mhu.yaml
new file mode 100644
index 000000000000..319280563648
--- /dev/null
+++ b/Documentation/devicetree/bindings/mailbox/amlogic,meson-gxbb-mhu.yaml
@@ -0,0 +1,52 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/mailbox/amlogic,meson-gxbb-mhu.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson Message-Handling-Unit Controller
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+description: |
+ The Amlogic's Meson SoCs Message-Handling-Unit (MHU) is a mailbox controller
+ that has 3 independent channels/links to communicate with remote processor(s).
+ MHU links are hardwired on a platform. A link raises interrupt for any
+ received data. However, there is no specified way of knowing if the sent
+ data has been read by the remote. This driver assumes the sender polls
+ STAT register and the remote clears it after having read the data.
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson-gxbb-mhu
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ minItems: 3
+ description:
+ Contains the interrupt information corresponding to each of the 3 links
+ of MHU.
+
+ "#mbox-cells":
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - "#mbox-cells"
+
+examples:
+ - |
+ mailbox@c883c404 {
+ compatible = "amlogic,meson-gxbb-mhu";
+ reg = <0xc883c404 0x4c>;
+ interrupts = <208>, <209>, <210>;
+ #mbox-cells = <1>;
+ };
+
diff --git a/Documentation/devicetree/bindings/mailbox/meson-mhu.txt b/Documentation/devicetree/bindings/mailbox/meson-mhu.txt
deleted file mode 100644
index a530310772b9..000000000000
--- a/Documentation/devicetree/bindings/mailbox/meson-mhu.txt
+++ /dev/null
@@ -1,34 +0,0 @@
-Amlogic Meson MHU Mailbox Driver
-================================
-
-The Amlogic's Meson SoCs Message-Handling-Unit (MHU) is a mailbox controller
-that has 3 independent channels/links to communicate with remote processor(s).
-MHU links are hardwired on a platform. A link raises interrupt for any
-received data. However, there is no specified way of knowing if the sent
-data has been read by the remote. This driver assumes the sender polls
-STAT register and the remote clears it after having read the data.
-
-Mailbox Device Node:
-====================
-
-Required properties:
---------------------
-- compatible: Shall be "amlogic,meson-gxbb-mhu"
-- reg: Contains the mailbox register address range (base
- address and length)
-- #mbox-cells Shall be 1 - the index of the channel needed.
-- interrupts: Contains the interrupt information corresponding to
- each of the 2 links of MHU.
-
-Example:
---------
-
- mailbox: mailbox@c883c404 {
- #mbox-cells = <1>;
- compatible = "amlogic,meson-gxbb-mhu";
- reg = <0 0xc883c404 0 0x4c>;
- interrupts = <0 208 IRQ_TYPE_EDGE_RISING>,
- <0 209 IRQ_TYPE_EDGE_RISING>,
- <0 210 IRQ_TYPE_EDGE_RISING>;
- #mbox-cells = <1>;
- };
diff --git a/Documentation/devicetree/bindings/mailbox/mtk-gce.txt b/Documentation/devicetree/bindings/mailbox/mtk-gce.txt
index 7d72b21c9e94..7b13787ab13d 100644
--- a/Documentation/devicetree/bindings/mailbox/mtk-gce.txt
+++ b/Documentation/devicetree/bindings/mailbox/mtk-gce.txt
@@ -9,7 +9,7 @@ CMDQ driver uses mailbox framework for communication. Please refer to
mailbox.txt for generic information about mailbox device-tree bindings.
Required properties:
-- compatible: Must be "mediatek,mt8173-gce"
+- compatible: can be "mediatek,mt8173-gce" or "mediatek,mt8183-gce"
- reg: Address range of the GCE unit
- interrupts: The interrupt signal from the GCE block
- clock: Clocks according to the common clock binding
@@ -25,11 +25,19 @@ Required properties:
Required properties for a client device:
- mboxes: Client use mailbox to communicate with GCE, it should have this
property and list of phandle, mailbox specifiers.
-- mediatek,gce-subsys: u32, specify the sub-system id which is corresponding
- to the register address.
+Optional properties for a client device:
+- mediatek,gce-client-reg: Specify the sub-system id which is corresponding
+ to the register address, it should have this property and list of phandle,
+ sub-system specifiers.
+ <&phandle subsys_number start_offset size>
+ phandle: Label name of a gce node.
+ subsys_number: specify the sub-system id which is corresponding
+ to the register address.
+ start_offset: the start offset of register address that GCE can access.
+ size: the total size of register address that GCE can access.
-Some vaules of properties are defined in 'dt-bindings/gce/mt8173-gce.h'. Such as
-sub-system ids, thread priority, event ids.
+Some vaules of properties are defined in 'dt-bindings/gce/mt8173-gce.h'
+or 'dt-binding/gce/mt8183-gce.h'. Such as sub-system ids, thread priority, event ids.
Example:
@@ -39,7 +47,6 @@ Example:
interrupts = <GIC_SPI 135 IRQ_TYPE_LEVEL_LOW>;
clocks = <&infracfg CLK_INFRA_GCE>;
clock-names = "gce";
- thread-num = CMDQ_THR_MAX_COUNT;
#mbox-cells = <3>;
};
@@ -49,9 +56,9 @@ Example for a client device:
compatible = "mediatek,mt8173-mmsys";
mboxes = <&gce 0 CMDQ_THR_PRIO_LOWEST 1>,
<&gce 1 CMDQ_THR_PRIO_LOWEST 1>;
- mediatek,gce-subsys = <SUBSYS_1400XXXX>;
mutex-event-eof = <CMDQ_EVENT_MUTEX0_STREAM_EOF
CMDQ_EVENT_MUTEX1_STREAM_EOF>;
-
+ mediatek,gce-client-reg = <&gce SUBSYS_1400XXXX 0x3000 0x1000>,
+ <&gce SUBSYS_1401XXXX 0x2000 0x100>;
...
};
diff --git a/Documentation/devicetree/bindings/mailbox/omap-mailbox.txt b/Documentation/devicetree/bindings/mailbox/omap-mailbox.txt
index 0ef372656a3e..35c3f56b7f7b 100644
--- a/Documentation/devicetree/bindings/mailbox/omap-mailbox.txt
+++ b/Documentation/devicetree/bindings/mailbox/omap-mailbox.txt
@@ -1,4 +1,4 @@
-OMAP2+ Mailbox Driver
+OMAP2+ and K3 Mailbox
=====================
The OMAP mailbox hardware facilitates communication between different processors
@@ -7,7 +7,7 @@ various processor subsystems and is connected on an interconnect bus. The
communication is achieved through a set of registers for message storage and
interrupt configuration registers.
-Each mailbox IP block has a certain number of h/w fifo queues and output
+Each mailbox IP block/cluster has a certain number of h/w fifo queues and output
interrupt lines. An output interrupt line is routed to an interrupt controller
within a processor subsystem, and there can be more than one line going to a
specific processor's interrupt controller. The interrupt line connections are
@@ -23,12 +23,16 @@ All the current OMAP SoCs except for the newest DRA7xx SoC has a single IP
instance. DRA7xx has multiple instances with different number of h/w fifo queues
and interrupt lines between different instances. The interrupt lines can also be
routed to different processor sub-systems on DRA7xx as they are routed through
-the Crossbar, a kind of interrupt router/multiplexer.
+the Crossbar, a kind of interrupt router/multiplexer. The K3 AM65x and J721E
+SoCs has each of these instances form a cluster and combine multiple clusters
+into a single IP block present within the Main NavSS. The interrupt lines from
+all these clusters are multiplexed and routed to different processor subsystems
+over a limited number of common interrupt output lines of an Interrupt Router.
Mailbox Device Node:
====================
-A Mailbox device node is used to represent a Mailbox IP instance within a SoC.
-The sub-mailboxes are represented as child nodes of this parent node.
+A Mailbox device node is used to represent a Mailbox IP instance/cluster within
+a SoC. The sub-mailboxes are represented as child nodes of this parent node.
Required properties:
--------------------
@@ -37,12 +41,12 @@ Required properties:
"ti,omap3-mailbox" for OMAP3430, OMAP3630 SoCs
"ti,omap4-mailbox" for OMAP44xx, OMAP54xx, AM33xx,
AM43xx and DRA7xx SoCs
+ "ti,am654-mailbox" for K3 AM65x and J721E SoCs
- reg: Contains the mailbox register address range (base
address and length)
- interrupts: Contains the interrupt information for the mailbox
device. The format is dependent on which interrupt
- controller the OMAP device uses
-- ti,hwmods: Name of the hwmod associated with the mailbox
+ controller the Mailbox device uses
- #mbox-cells: Common mailbox binding property to identify the number
of cells required for the mailbox specifier. Should be
1
@@ -50,6 +54,23 @@ Required properties:
device can interrupt
- ti,mbox-num-fifos: Number of h/w fifo queues within the mailbox IP block
+SoC-specific Required properties:
+---------------------------------
+The following are mandatory properties for the OMAP architecture based SoCs
+only:
+- ti,hwmods: Name of the hwmod associated with the mailbox. This
+ should be defined in the mailbox node only if the node
+ is not defined as a child node of a corresponding sysc
+ interconnect node.
+
+The following are mandatory properties for the K3 AM65x and J721E SoCs only:
+- interrupt-parent: Should contain a phandle to the TI-SCI interrupt
+ controller node that is used to dynamically program
+ the interrupt routes between the IP and the main GIC
+ controllers. See the following binding for additional
+ details,
+ Documentation/devicetree/bindings/interrupt-controller/ti,sci-intr.txt
+
Child Nodes:
============
A child node is used for representing the actual sub-mailbox device that is
@@ -98,7 +119,7 @@ to be used by the client user.
Example:
--------
-/* OMAP4 */
+1. /* OMAP4 */
mailbox: mailbox@4a0f4000 {
compatible = "ti,omap4-mailbox";
reg = <0x4a0f4000 0x200>;
@@ -123,7 +144,7 @@ dsp {
...
};
-/* AM33xx */
+2. /* AM33xx */
mailbox: mailbox@480c8000 {
compatible = "ti,omap4-mailbox";
reg = <0x480C8000 0x200>;
@@ -137,3 +158,23 @@ mailbox: mailbox@480c8000 {
ti,mbox-rx = <0 0 3>;
};
};
+
+3. /* AM65x */
+&cbass_main {
+ cbass_main_navss: interconnect0 {
+ mailbox0_cluster0: mailbox@31f80000 {
+ compatible = "ti,am654-mailbox";
+ reg = <0x00 0x31f80000 0x00 0x200>;
+ #mbox-cells = <1>;
+ ti,mbox-num-users = <4>;
+ ti,mbox-num-fifos = <16>;
+ interrupt-parent = <&intr_main_navss>;
+ interrupts = <164 0>;
+
+ mbox_mcu_r5fss0_core0: mbox-mcu-r5fss0-core0 {
+ ti,mbox-tx = <1 0 0>;
+ ti,mbox-rx = <0 0 0>;
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt b/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt
index 1232fc9fc709..0278482af65c 100644
--- a/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt
+++ b/Documentation/devicetree/bindings/mailbox/qcom,apcs-kpss-global.txt
@@ -12,7 +12,10 @@ platforms.
"qcom,msm8996-apcs-hmss-global"
"qcom,msm8998-apcs-hmss-global"
"qcom,qcs404-apcs-apps-global"
+ "qcom,sc7180-apss-shared"
"qcom,sdm845-apss-shared"
+ "qcom,sm8150-apss-shared"
+ "qcom,ipq8074-apcs-apps-global"
- reg:
Usage: required
diff --git a/Documentation/devicetree/bindings/media/allegro.txt b/Documentation/devicetree/bindings/media/allegro.txt
new file mode 100644
index 000000000000..a92e2fbf26c9
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/allegro.txt
@@ -0,0 +1,43 @@
+Device-tree bindings for the Allegro DVT video IP codecs present in the Xilinx
+ZynqMP SoC. The IP core may either be a H.264/H.265 encoder or H.264/H.265
+decoder ip core.
+
+Each actual codec engines is controlled by a microcontroller (MCU). Host
+software uses a provided mailbox interface to communicate with the MCU. The
+MCU share an interrupt.
+
+Required properties:
+ - compatible: value should be one of the following
+ "allegro,al5e-1.1", "allegro,al5e": encoder IP core
+ "allegro,al5d-1.1", "allegro,al5d": decoder IP core
+ - reg: base and length of the memory mapped register region and base and
+ length of the memory mapped sram
+ - reg-names: must include "regs" and "sram"
+ - interrupts: shared interrupt from the MCUs to the processing system
+ - clocks: must contain an entry for each entry in clock-names
+ - clock-names: must include "core_clk", "mcu_clk", "m_axi_core_aclk",
+ "m_axi_mcu_aclk", "s_axi_lite_aclk"
+
+Example:
+ al5e: video-codec@a0009000 {
+ compatible = "allegro,al5e-1.1", "allegro,al5e";
+ reg = <0 0xa0009000 0 0x1000>,
+ <0 0xa0000000 0 0x8000>;
+ reg-names = "regs", "sram";
+ interrupts = <0 96 4>;
+ clocks = <&xlnx_vcu 0>, <&xlnx_vcu 1>,
+ <&clkc 71>, <&clkc 71>, <&clkc 71>;
+ clock-names = "core_clk", "mcu_clk", "m_axi_core_aclk",
+ "m_axi_mcu_aclk", "s_axi_lite_aclk"
+ };
+ al5d: video-codec@a0029000 {
+ compatible = "allegro,al5d-1.1", "allegro,al5d";
+ reg = <0 0xa0029000 0 0x1000>,
+ <0 0xa0020000 0 0x8000>;
+ reg-names = "regs", "sram";
+ interrupts = <0 96 4>;
+ clocks = <&xlnx_vcu 2>, <&xlnx_vcu 3>,
+ <&clkc 71>, <&clkc 71>, <&clkc 71>;
+ clock-names = "core_clk", "mcu_clk", "m_axi_core_aclk",
+ "m_axi_mcu_aclk", "s_axi_lite_aclk"
+ };
diff --git a/Documentation/devicetree/bindings/media/allwinner,sun4i-a10-csi.yaml b/Documentation/devicetree/bindings/media/allwinner,sun4i-a10-csi.yaml
new file mode 100644
index 000000000000..27f38eed389e
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/allwinner,sun4i-a10-csi.yaml
@@ -0,0 +1,109 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/arm/allwinner,sun4i-a10-csi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 CMOS Sensor Interface (CSI) Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+description: |-
+ The Allwinner A10 and later has a CMOS Sensor Interface to retrieve
+ frames from a parallel or BT656 sensor.
+
+properties:
+ compatible:
+ const: allwinner,sun7i-a20-csi0
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: The CSI interface clock
+ - description: The CSI module clock
+ - description: The CSI ISP clock
+ - description: The CSI DRAM clock
+
+ clock-names:
+ items:
+ - const: bus
+ - const: mod
+ - const: isp
+ - const: ram
+
+ resets:
+ maxItems: 1
+
+ # See ./video-interfaces.txt for details
+ port:
+ type: object
+ additionalProperties: false
+
+ properties:
+ endpoint:
+ type: object
+
+ properties:
+ bus-width:
+ enum: [8, 16]
+
+ data-active: true
+ hsync-active: true
+ pclk-sample: true
+ remote-endpoint: true
+ vsync-active: true
+
+ required:
+ - bus-width
+ - data-active
+ - hsync-active
+ - pclk-sample
+ - remote-endpoint
+ - vsync-active
+
+ required:
+ - endpoint
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/sun7i-a20-ccu.h>
+ #include <dt-bindings/reset/sun4i-a10-ccu.h>
+
+ csi0: csi@1c09000 {
+ compatible = "allwinner,sun7i-a20-csi0";
+ reg = <0x01c09000 0x1000>;
+ interrupts = <GIC_SPI 42 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&ccu CLK_AHB_CSI0>, <&ccu CLK_CSI0>,
+ <&ccu CLK_CSI_SCLK>, <&ccu CLK_DRAM_CSI0>;
+ clock-names = "bus", "mod", "isp", "ram";
+ resets = <&ccu RST_CSI0>;
+
+ port {
+ csi_from_ov5640: endpoint {
+ remote-endpoint = <&ov5640_to_csi>;
+ bus-width = <8>;
+ hsync-active = <1>; /* Active high */
+ vsync-active = <0>; /* Active low */
+ data-active = <1>; /* Active high */
+ pclk-sample = <1>; /* Rising */
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/media/allwinner,sun4i-a10-ir.yaml b/Documentation/devicetree/bindings/media/allwinner,sun4i-a10-ir.yaml
new file mode 100644
index 000000000000..98c1bdde9a86
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/allwinner,sun4i-a10-ir.yaml
@@ -0,0 +1,80 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/media/allwinner,sun4i-a10-ir.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Infrared Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "rc.yaml#"
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-ir
+ - const: allwinner,sun5i-a13-ir
+ - items:
+ - const: allwinner,sun8i-a83t-ir
+ - const: allwinner,sun6i-a31-ir
+ - const: allwinner,sun6i-a31-ir
+ - items:
+ - const: allwinner,sun50i-a64-ir
+ - const: allwinner,sun6i-a31-ir
+ - items:
+ - const: allwinner,sun50i-h6-ir
+ - const: allwinner,sun6i-a31-ir
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: apb
+ - const: ir
+
+ resets:
+ maxItems: 1
+
+ clock-frequency:
+ default: 8000000
+ description:
+ IR Receiver clock frequency, in Hertz.
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+examples:
+ - |
+ ir0: ir@1c21800 {
+ compatible = "allwinner,sun4i-a10-ir";
+ clocks = <&apb0_gates 6>, <&ir0_clk>;
+ clock-names = "apb", "ir";
+ clock-frequency = <3000000>;
+ resets = <&apb0_rst 1>;
+ interrupts = <0 5 1>;
+ reg = <0x01C21800 0x40>;
+ linux,rc-map-name = "rc-rc6-mce";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/media/amlogic,vdec.txt b/Documentation/devicetree/bindings/media/amlogic,vdec.txt
new file mode 100644
index 000000000000..9b6aace86ca7
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/amlogic,vdec.txt
@@ -0,0 +1,72 @@
+Amlogic Video Decoder
+================================
+
+The video decoding IP lies within the DOS memory region,
+except for the hardware bitstream parser that makes use of an undocumented
+region.
+
+It makes use of the following blocks:
+
+- ESPARSER is a bitstream parser that outputs to a VIFIFO. Further VDEC blocks
+then feed from this VIFIFO.
+- VDEC_1 can decode MPEG-1, MPEG-2, MPEG-4 part 2, MJPEG, H.263, H.264, VC-1.
+- VDEC_HEVC can decode HEVC and VP9.
+
+Both VDEC_1 and VDEC_HEVC share the "vdec" IRQ and as such cannot run
+concurrently.
+
+Device Tree Bindings:
+---------------------
+
+VDEC: Video Decoder
+--------------------------
+
+Required properties:
+- compatible: value should be different for each SoC family as :
+ - GXBB (S905) : "amlogic,gxbb-vdec"
+ - GXL (S905X, S905D) : "amlogic,gxl-vdec"
+ - GXM (S912) : "amlogic,gxm-vdec"
+ followed by the common "amlogic,gx-vdec"
+- reg: base address and size of he following memory-mapped regions :
+ - dos
+ - esparser
+- reg-names: should contain the names of the previous memory regions
+- interrupts: should contain the following IRQs:
+ - vdec
+ - esparser
+- interrupt-names: should contain the names of the previous interrupts
+- amlogic,ao-sysctrl: should point to the AOBUS sysctrl node
+- amlogic,canvas: should point to a canvas provider node
+- clocks: should contain the following clocks :
+ - dos_parser
+ - dos
+ - vdec_1
+ - vdec_hevc
+- clock-names: should contain the names of the previous clocks
+- resets: should contain the parser reset
+- reset-names: should be "esparser"
+
+Example:
+
+vdec: video-codec@c8820000 {
+ compatible = "amlogic,gxbb-vdec", "amlogic,gx-vdec";
+ reg = <0x0 0xc8820000 0x0 0x10000>,
+ <0x0 0xc110a580 0x0 0xe4>;
+ reg-names = "dos", "esparser";
+
+ interrupts = <GIC_SPI 44 IRQ_TYPE_EDGE_RISING>,
+ <GIC_SPI 32 IRQ_TYPE_EDGE_RISING>;
+ interrupt-names = "vdec", "esparser";
+
+ amlogic,ao-sysctrl = <&sysctrl_AO>;
+ amlogic,canvas = <&canvas>;
+
+ clocks = <&clkc CLKID_DOS_PARSER>,
+ <&clkc CLKID_DOS>,
+ <&clkc CLKID_VDEC_1>,
+ <&clkc CLKID_VDEC_HEVC>;
+ clock-names = "dos_parser", "dos", "vdec_1", "vdec_hevc";
+
+ resets = <&reset RESET_PARSER>;
+ reset-names = "esparser";
+};
diff --git a/Documentation/devicetree/bindings/media/cdns,csi2tx.txt b/Documentation/devicetree/bindings/media/cdns,csi2tx.txt
index 459c6e332f52..751b9edf1247 100644
--- a/Documentation/devicetree/bindings/media/cdns,csi2tx.txt
+++ b/Documentation/devicetree/bindings/media/cdns,csi2tx.txt
@@ -5,7 +5,8 @@ The Cadence MIPI-CSI2 TX controller is a CSI-2 bridge supporting up to
4 CSI lanes in output, and up to 4 different pixel streams in input.
Required properties:
- - compatible: must be set to "cdns,csi2tx"
+ - compatible: must be set to "cdns,csi2tx" or "cdns,csi2tx-1.3"
+ for version 1.3 of the controller, "cdns,csi2tx-2.1" for v2.1
- reg: base address and size of the memory mapped region
- clocks: phandles to the clocks driving the controller
- clock-names: must contain:
diff --git a/Documentation/devicetree/bindings/media/i2c/nokia,smia.txt b/Documentation/devicetree/bindings/media/i2c/nokia,smia.txt
index 8ee7c7972ac7..c3c3479233c4 100644
--- a/Documentation/devicetree/bindings/media/i2c/nokia,smia.txt
+++ b/Documentation/devicetree/bindings/media/i2c/nokia,smia.txt
@@ -7,6 +7,9 @@ of that. These definitions are valid for both types of sensors.
More detailed documentation can be found in
Documentation/devicetree/bindings/media/video-interfaces.txt .
+The device node should contain a "port" node which may contain one or more
+endpoint nodes, in accordance with video interface bindings defined in
+Documentation/devicetree/bindings/media/video-interfaces.txt .
Mandatory properties
--------------------
@@ -37,9 +40,7 @@ Optional properties
Endpoint node mandatory properties
----------------------------------
-- clock-lanes: <0>
- data-lanes: <1..n>
-- remote-endpoint: A phandle to the bus receiver's endpoint node.
Example
@@ -48,7 +49,7 @@ Example
&i2c2 {
clock-frequency = <400000>;
- smiapp_1: camera@10 {
+ camera-sensor@10 {
compatible = "nokia,smia";
reg = <0x10>;
reset-gpios = <&gpio3 20 0>;
@@ -58,8 +59,7 @@ Example
nokia,nvm-size = <512>; /* 8 * 64 */
link-frequencies = /bits/ 64 <199200000 210000000 499200000>;
port {
- smiapp_1_1: endpoint {
- clock-lanes = <0>;
+ smiapp_ep: endpoint {
data-lanes = <1 2>;
remote-endpoint = <&csi2a_ep>;
};
diff --git a/Documentation/devicetree/bindings/media/imx7-csi.txt b/Documentation/devicetree/bindings/media/imx7-csi.txt
index 3c07bc676bc3..d80ceefa0c00 100644
--- a/Documentation/devicetree/bindings/media/imx7-csi.txt
+++ b/Documentation/devicetree/bindings/media/imx7-csi.txt
@@ -9,13 +9,12 @@ to connect directly to external CMOS image sensors.
Required properties:
-- compatible : "fsl,imx7-csi";
+- compatible : "fsl,imx7-csi" or "fsl,imx6ul-csi";
- reg : base address and length of the register set for the device;
- interrupts : should contain CSI interrupt;
- clocks : list of clock specifiers, see
Documentation/devicetree/bindings/clock/clock-bindings.txt for details;
-- clock-names : must contain "axi", "mclk" and "dcic" entries, matching
- entries in the clock property;
+- clock-names : must contain "mclk";
The device node shall contain one 'port' child node with one child 'endpoint'
node, according to the bindings defined in:
@@ -32,10 +31,8 @@ example:
compatible = "fsl,imx7-csi";
reg = <0x30710000 0x10000>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&clks IMX7D_CLK_DUMMY>,
- <&clks IMX7D_CSI_MCLK_ROOT_CLK>,
- <&clks IMX7D_CLK_DUMMY>;
- clock-names = "axi", "mclk", "dcic";
+ clocks = <&clks IMX7D_CSI_MCLK_ROOT_CLK>;
+ clock-names = "mclk";
port {
csi_from_csi_mux: endpoint {
diff --git a/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt b/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt
new file mode 100644
index 000000000000..7ec2c8c8a3b9
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.txt
@@ -0,0 +1,50 @@
+Marvell MMP2 camera host interface
+
+Required properties:
+ - compatible: Should be "marvell,mmp2-ccic".
+ - reg: Register base and size.
+ - interrupts: The interrupt number.
+ - #clock-cells: Must be 0.
+
+Optional properties:
+ - clocks: Reference to the input clock as specified by
+ Documentation/devicetree/bindings/clock/clock-bindings.txt.
+ - clock-names: Names of the clocks used; "axi" for the AXI bus interface,
+ "func" for the peripheral clock and "phy" for the parallel
+ video bus interface.
+ - clock-output-names: Optional clock source for sensors. Shall be "mclk".
+
+Required subnodes:
+ - port: The parallel bus interface port with a single endpoint linked to
+ the sensor's endpoint as described in
+ Documentation/devicetree/bindings/media/video-interfaces.txt.
+
+Required endpoint properties:
+ - bus-type: data bus type, <5> or <6> for Parallel or Bt.656 respectively
+ - pclk-sample: pixel clock polarity
+ - hsync-active: horizontal synchronization polarity (only required for
+ parallel bus)
+ - vsync-active: vertical synchronization polarity (only required for
+ parallel bus)
+
+Example:
+
+ camera0: camera@d420a000 {
+ compatible = "marvell,mmp2-ccic";
+ reg = <0xd420a000 0x800>;
+ interrupts = <42>;
+ clocks = <&soc_clocks MMP2_CLK_CCIC0>;
+ clock-names = "axi";
+ #clock-cells = <0>;
+ clock-output-names = "mclk";
+
+ port {
+ camera0_0: endpoint {
+ remote-endpoint = <&ov7670_0>;
+ bus-type = <5>; /* Parallel */
+ hsync-active = <1>; /* Active high */
+ vsync-active = <1>; /* Active high */
+ pclk-sample = <0>; /* Falling */
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/meson-ao-cec.txt b/Documentation/devicetree/bindings/media/meson-ao-cec.txt
index c67fc41d4aa2..ad92ee41c0dd 100644
--- a/Documentation/devicetree/bindings/media/meson-ao-cec.txt
+++ b/Documentation/devicetree/bindings/media/meson-ao-cec.txt
@@ -5,10 +5,12 @@ to handle communication between HDMI connected devices over the CEC bus.
Required properties:
- compatible : value should be following depending on the SoC :
- For GXBB, GXL, GXM and G12A (AO_CEC_A module) :
+ For GXBB, GXL, GXM, G12A and SM1 (AO_CEC_A module) :
"amlogic,meson-gx-ao-cec"
For G12A (AO_CEC_B module) :
"amlogic,meson-g12a-ao-cec"
+ For SM1 (AO_CEC_B module) :
+ "amlogic,meson-sm1-ao-cec"
- reg : Physical base address of the IP registers and length of memory
mapped region.
@@ -16,9 +18,9 @@ Required properties:
- interrupts : AO-CEC interrupt number to the CPU.
- clocks : from common clock binding: handle to AO-CEC clock.
- clock-names : from common clock binding, must contain :
- For GXBB, GXL, GXM and G12A (AO_CEC_A module) :
+ For GXBB, GXL, GXM, G12A and SM1 (AO_CEC_A module) :
- "core"
- For G12A (AO_CEC_B module) :
+ For G12A, SM1 (AO_CEC_B module) :
- "oscin"
corresponding to entry in the clocks property.
- hdmi-phandle: phandle to the HDMI controller
diff --git a/Documentation/devicetree/bindings/media/nvidia,tegra-vde.txt b/Documentation/devicetree/bindings/media/nvidia,tegra-vde.txt
index 7302e949e662..602169b8aa19 100644
--- a/Documentation/devicetree/bindings/media/nvidia,tegra-vde.txt
+++ b/Documentation/devicetree/bindings/media/nvidia,tegra-vde.txt
@@ -35,6 +35,7 @@ Optional properties:
- resets : Must contain an entry for each entry in reset-names.
- reset-names : Must include the following entries:
- mc
+- iommus: Must contain phandle to the IOMMU device node.
Example:
@@ -59,4 +60,5 @@ video-codec@6001a000 {
clocks = <&tegra_car TEGRA20_CLK_VDE>;
reset-names = "vde", "mc";
resets = <&tegra_car 61>, <&mc TEGRA20_MC_RESET_VDE>;
+ iommus = <&mc TEGRA_SWGROUP_VDE>;
};
diff --git a/Documentation/devicetree/bindings/media/rc.txt b/Documentation/devicetree/bindings/media/rc.txt
index d3e7a012bfda..be629f7fa77e 100644
--- a/Documentation/devicetree/bindings/media/rc.txt
+++ b/Documentation/devicetree/bindings/media/rc.txt
@@ -1,117 +1 @@
-The following properties are common to the infrared remote controllers:
-
-- linux,rc-map-name: string, specifies the scancode/key mapping table
- defined in-kernel for the remote controller. Support values are:
- * "rc-adstech-dvb-t-pci"
- * "rc-alink-dtu-m"
- * "rc-anysee"
- * "rc-apac-viewcomp"
- * "rc-asus-pc39"
- * "rc-asus-ps3-100"
- * "rc-ati-tv-wonder-hd-600"
- * "rc-ati-x10"
- * "rc-avermedia-a16d"
- * "rc-avermedia-cardbus"
- * "rc-avermedia-dvbt"
- * "rc-avermedia-m135a"
- * "rc-avermedia-m733a-rm-k6"
- * "rc-avermedia-rm-ks"
- * "rc-avermedia"
- * "rc-avertv-303"
- * "rc-azurewave-ad-tu700"
- * "rc-behold-columbus"
- * "rc-behold"
- * "rc-budget-ci-old"
- * "rc-cec"
- * "rc-cinergy-1400"
- * "rc-cinergy"
- * "rc-delock-61959"
- * "rc-dib0700-nec"
- * "rc-dib0700-rc5"
- * "rc-digitalnow-tinytwin"
- * "rc-digittrade"
- * "rc-dm1105-nec"
- * "rc-dntv-live-dvbt-pro"
- * "rc-dntv-live-dvb-t"
- * "rc-dtt200u"
- * "rc-dvbsky"
- * "rc-empty"
- * "rc-em-terratec"
- * "rc-encore-enltv2"
- * "rc-encore-enltv-fm53"
- * "rc-encore-enltv"
- * "rc-evga-indtube"
- * "rc-eztv"
- * "rc-flydvb"
- * "rc-flyvideo"
- * "rc-fusionhdtv-mce"
- * "rc-gadmei-rm008z"
- * "rc-geekbox"
- * "rc-genius-tvgo-a11mce"
- * "rc-gotview7135"
- * "rc-hauppauge"
- * "rc-imon-mce"
- * "rc-imon-pad"
- * "rc-iodata-bctv7e"
- * "rc-it913x-v1"
- * "rc-it913x-v2"
- * "rc-kaiomy"
- * "rc-kworld-315u"
- * "rc-kworld-pc150u"
- * "rc-kworld-plus-tv-analog"
- * "rc-leadtek-y04g0051"
- * "rc-lirc"
- * "rc-lme2510"
- * "rc-manli"
- * "rc-medion-x10"
- * "rc-medion-x10-digitainer"
- * "rc-medion-x10-or2x"
- * "rc-msi-digivox-ii"
- * "rc-msi-digivox-iii"
- * "rc-msi-tvanywhere-plus"
- * "rc-msi-tvanywhere"
- * "rc-nebula"
- * "rc-nec-terratec-cinergy-xs"
- * "rc-norwood"
- * "rc-npgtech"
- * "rc-pctv-sedna"
- * "rc-pinnacle-color"
- * "rc-pinnacle-grey"
- * "rc-pinnacle-pctv-hd"
- * "rc-pixelview-new"
- * "rc-pixelview"
- * "rc-pixelview-002t"
- * "rc-pixelview-mk12"
- * "rc-powercolor-real-angel"
- * "rc-proteus-2309"
- * "rc-purpletv"
- * "rc-pv951"
- * "rc-hauppauge"
- * "rc-rc5-tv"
- * "rc-rc6-mce"
- * "rc-real-audio-220-32-keys"
- * "rc-reddo"
- * "rc-snapstream-firefly"
- * "rc-streamzap"
- * "rc-tbs-nec"
- * "rc-technisat-ts35"
- * "rc-technisat-usb2"
- * "rc-terratec-cinergy-c-pci"
- * "rc-terratec-cinergy-s2-hd"
- * "rc-terratec-cinergy-xs"
- * "rc-terratec-slim"
- * "rc-terratec-slim-2"
- * "rc-tevii-nec"
- * "rc-tivo"
- * "rc-total-media-in-hand"
- * "rc-total-media-in-hand-02"
- * "rc-trekstor"
- * "rc-tt-1500"
- * "rc-twinhan-dtv-cab-ci"
- * "rc-twinhan1027"
- * "rc-videomate-k100"
- * "rc-videomate-s350"
- * "rc-videomate-tv-pvr"
- * "rc-winfast"
- * "rc-winfast-usbii-deluxe"
- * "rc-su3000"
+This file has been moved to rc.yaml.
diff --git a/Documentation/devicetree/bindings/media/rc.yaml b/Documentation/devicetree/bindings/media/rc.yaml
new file mode 100644
index 000000000000..3d5c154fd230
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/rc.yaml
@@ -0,0 +1,145 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/media/rc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic Infrared Remote Controller Device Tree Bindings
+
+maintainers:
+ - Mauro Carvalho Chehab <mchehab@kernel.org>
+ - Sean Young <sean@mess.org>
+
+properties:
+ $nodename:
+ pattern: "^ir(@[a-f0-9]+)?$"
+
+ linux,rc-map-name:
+ description:
+ Specifies the scancode/key mapping table defined in-kernel for
+ the remote controller.
+ allOf:
+ - $ref: '/schemas/types.yaml#/definitions/string'
+ - enum:
+ - rc-adstech-dvb-t-pci
+ - rc-alink-dtu-m
+ - rc-anysee
+ - rc-apac-viewcomp
+ - rc-astrometa-t2hybrid
+ - rc-asus-pc39
+ - rc-asus-ps3-100
+ - rc-ati-tv-wonder-hd-600
+ - rc-ati-x10
+ - rc-avermedia
+ - rc-avermedia-a16d
+ - rc-avermedia-cardbus
+ - rc-avermedia-dvbt
+ - rc-avermedia-m135a
+ - rc-avermedia-m733a-rm-k6
+ - rc-avermedia-rm-ks
+ - rc-avertv-303
+ - rc-azurewave-ad-tu700
+ - rc-behold
+ - rc-behold-columbus
+ - rc-budget-ci-old
+ - rc-cec
+ - rc-cinergy
+ - rc-cinergy-1400
+ - rc-d680-dmb
+ - rc-delock-61959
+ - rc-dib0700-nec
+ - rc-dib0700-rc5
+ - rc-digitalnow-tinytwin
+ - rc-digittrade
+ - rc-dm1105-nec
+ - rc-dntv-live-dvb-t
+ - rc-dntv-live-dvbt-pro
+ - rc-dtt200u
+ - rc-dvbsky
+ - rc-dvico-mce
+ - rc-dvico-portable
+ - rc-em-terratec
+ - rc-empty
+ - rc-encore-enltv
+ - rc-encore-enltv-fm53
+ - rc-encore-enltv2
+ - rc-evga-indtube
+ - rc-eztv
+ - rc-flydvb
+ - rc-flyvideo
+ - rc-fusionhdtv-mce
+ - rc-gadmei-rm008z
+ - rc-geekbox
+ - rc-genius-tvgo-a11mce
+ - rc-gotview7135
+ - rc-hauppauge
+ - rc-hauppauge
+ - rc-hisi-poplar
+ - rc-hisi-tv-demo
+ - rc-imon-mce
+ - rc-imon-pad
+ - rc-imon-rsc
+ - rc-iodata-bctv7e
+ - rc-it913x-v1
+ - rc-it913x-v2
+ - rc-kaiomy
+ - rc-kworld-315u
+ - rc-kworld-pc150u
+ - rc-kworld-plus-tv-analog
+ - rc-leadtek-y04g0051
+ - rc-lme2510
+ - rc-manli
+ - rc-medion-x10
+ - rc-medion-x10-digitainer
+ - rc-medion-x10-or2x
+ - rc-msi-digivox-ii
+ - rc-msi-digivox-iii
+ - rc-msi-tvanywhere
+ - rc-msi-tvanywhere-plus
+ - rc-nebula
+ - rc-nec-terratec-cinergy-xs
+ - rc-norwood
+ - rc-npgtech
+ - rc-pctv-sedna
+ - rc-pinnacle-color
+ - rc-pinnacle-grey
+ - rc-pinnacle-pctv-hd
+ - rc-pixelview
+ - rc-pixelview-002t
+ - rc-pixelview-mk12
+ - rc-pixelview-new
+ - rc-powercolor-real-angel
+ - rc-proteus-2309
+ - rc-purpletv
+ - rc-pv951
+ - rc-rc5-tv
+ - rc-rc6-mce
+ - rc-real-audio-220-32-keys
+ - rc-reddo
+ - rc-snapstream-firefly
+ - rc-streamzap
+ - rc-su3000
+ - rc-tango
+ - rc-tbs-nec
+ - rc-technisat-ts35
+ - rc-technisat-usb2
+ - rc-terratec-cinergy-c-pci
+ - rc-terratec-cinergy-s2-hd
+ - rc-terratec-cinergy-xs
+ - rc-terratec-slim
+ - rc-terratec-slim-2
+ - rc-tevii-nec
+ - rc-tivo
+ - rc-total-media-in-hand
+ - rc-total-media-in-hand-02
+ - rc-trekstor
+ - rc-tt-1500
+ - rc-twinhan-dtv-cab-ci
+ - rc-twinhan1027
+ - rc-videomate-k100
+ - rc-videomate-s350
+ - rc-videomate-tv-pvr
+ - rc-winfast
+ - rc-winfast-usbii-deluxe
+ - rc-xbox-dvd
+ - rc-zx-irdec
diff --git a/Documentation/devicetree/bindings/media/renesas,rcar-csi2.txt b/Documentation/devicetree/bindings/media/renesas,csi2.txt
index 331409259752..331409259752 100644
--- a/Documentation/devicetree/bindings/media/renesas,rcar-csi2.txt
+++ b/Documentation/devicetree/bindings/media/renesas,csi2.txt
diff --git a/Documentation/devicetree/bindings/media/rcar_imr.txt b/Documentation/devicetree/bindings/media/renesas,imr.txt
index b0614153ed36..b0614153ed36 100644
--- a/Documentation/devicetree/bindings/media/rcar_imr.txt
+++ b/Documentation/devicetree/bindings/media/renesas,imr.txt
diff --git a/Documentation/devicetree/bindings/media/rcar_vin.txt b/Documentation/devicetree/bindings/media/renesas,vin.txt
index aa217b096279..aa217b096279 100644
--- a/Documentation/devicetree/bindings/media/rcar_vin.txt
+++ b/Documentation/devicetree/bindings/media/renesas,vin.txt
diff --git a/Documentation/devicetree/bindings/media/rockchip-vpu.txt b/Documentation/devicetree/bindings/media/rockchip-vpu.txt
index 35dc464ad7c8..339252d9c515 100644
--- a/Documentation/devicetree/bindings/media/rockchip-vpu.txt
+++ b/Documentation/devicetree/bindings/media/rockchip-vpu.txt
@@ -1,14 +1,17 @@
device-tree bindings for rockchip VPU codec
Rockchip (Video Processing Unit) present in various Rockchip platforms,
-such as RK3288 and RK3399.
+such as RK3288, RK3328 and RK3399.
Required properties:
- compatible: value should be one of the following
"rockchip,rk3288-vpu";
+ "rockchip,rk3328-vpu";
"rockchip,rk3399-vpu";
- interrupts: encoding and decoding interrupt specifiers
-- interrupt-names: should be "vepu" and "vdpu"
+- interrupt-names: should be
+ "vepu", "vdpu" on RK3288 and RK3399,
+ "vdpu" on RK3328.
- clocks: phandle to VPU aclk, hclk clocks
- clock-names: should be "aclk" and "hclk"
- power-domains: phandle to power domain node
@@ -27,3 +30,14 @@ SoC-specific DT entry:
power-domains = <&power RK3288_PD_VIDEO>;
iommus = <&vpu_mmu>;
};
+
+ vpu: video-codec@ff350000 {
+ compatible = "rockchip,rk3328-vpu";
+ reg = <0x0 0xff350000 0x0 0x800>;
+ interrupts = <GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "vdpu";
+ clocks = <&cru ACLK_VPU>, <&cru HCLK_VPU>;
+ clock-names = "aclk", "hclk";
+ power-domains = <&power RK3328_PD_VPU>;
+ iommus = <&vpu_mmu>;
+ };
diff --git a/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt b/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt
index 249790a93017..3122ded82eb4 100644
--- a/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt
+++ b/Documentation/devicetree/bindings/media/st,stm32-dcmi.txt
@@ -11,7 +11,7 @@ Required properties:
- clock-names: must contain "mclk", which is the DCMI peripherial clock
- pinctrl: the pincontrol settings to configure muxing properly
for pins that connect to DCMI device.
- See Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt.
+ See Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml.
- dmas: phandle to DMA controller node,
see Documentation/devicetree/bindings/dma/stm32-dma.txt
- dma-names: must contain "tx", which is the transmit channel from DCMI to DMA
diff --git a/Documentation/devicetree/bindings/media/sun6i-csi.txt b/Documentation/devicetree/bindings/media/sun6i-csi.txt
index 0dd540bb03db..a2e3e56f0257 100644
--- a/Documentation/devicetree/bindings/media/sun6i-csi.txt
+++ b/Documentation/devicetree/bindings/media/sun6i-csi.txt
@@ -6,6 +6,7 @@ Allwinner V3s SoC features a CSI module(CSI1) with parallel interface.
Required properties:
- compatible: value must be one of:
* "allwinner,sun6i-a31-csi"
+ * "allwinner,sun8i-a83t-csi"
* "allwinner,sun8i-h3-csi"
* "allwinner,sun8i-v3s-csi"
* "allwinner,sun50i-a64-csi"
diff --git a/Documentation/devicetree/bindings/media/sunxi-ir.txt b/Documentation/devicetree/bindings/media/sunxi-ir.txt
deleted file mode 100644
index 278098987edb..000000000000
--- a/Documentation/devicetree/bindings/media/sunxi-ir.txt
+++ /dev/null
@@ -1,28 +0,0 @@
-Device-Tree bindings for SUNXI IR controller found in sunXi SoC family
-
-Required properties:
-- compatible : "allwinner,sun4i-a10-ir" or "allwinner,sun5i-a13-ir"
-- clocks : list of clock specifiers, corresponding to
- entries in clock-names property;
-- clock-names : should contain "apb" and "ir" entries;
-- interrupts : should contain IR IRQ number;
-- reg : should contain IO map address for IR.
-
-Optional properties:
-- linux,rc-map-name: see rc.txt file in the same directory.
-- resets : phandle + reset specifier pair
-- clock-frequency : IR Receiver clock frequency, in Hertz. Defaults to 8 MHz
- if missing.
-
-Example:
-
-ir0: ir@1c21800 {
- compatible = "allwinner,sun4i-a10-ir";
- clocks = <&apb0_gates 6>, <&ir0_clk>;
- clock-names = "apb", "ir";
- clock-frequency = <3000000>;
- resets = <&apb0_rst 1>;
- interrupts = <0 5 1>;
- reg = <0x01C21800 0x40>;
- linux,rc-map-name = "rc-rc6-mce";
-};
diff --git a/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt b/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt
index f936b5589b19..59b8dcc118ee 100644
--- a/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/ingenic,jz4780-nemc.txt
@@ -5,6 +5,7 @@ controller in Ingenic JZ4780
Required properties:
- compatible: Should be set to one of:
+ "ingenic,jz4740-nemc" (JZ4740)
"ingenic,jz4780-nemc" (JZ4780)
- reg: Should specify the NEMC controller registers location and length.
- clocks: Clock for the NEMC controller.
diff --git a/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-common.txt b/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-common.txt
index e937ddd871a6..b478ade4da65 100644
--- a/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-common.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-common.txt
@@ -2,9 +2,10 @@ SMI (Smart Multimedia Interface) Common
The hardware block diagram please check bindings/iommu/mediatek,iommu.txt
-Mediatek SMI have two generations of HW architecture, mt2712 and mt8173 use
-the second generation of SMI HW while mt2701 uses the first generation HW of
-SMI.
+Mediatek SMI have two generations of HW architecture, here is the list
+which generation the SoCs use:
+generation 1: mt2701 and mt7623.
+generation 2: mt2712, mt8173 and mt8183.
There's slight differences between the two SMI, for generation 2, the
register which control the iommu port is at each larb's register base. But
@@ -19,6 +20,7 @@ Required properties:
"mediatek,mt2712-smi-common"
"mediatek,mt7623-smi-common", "mediatek,mt2701-smi-common"
"mediatek,mt8173-smi-common"
+ "mediatek,mt8183-smi-common"
- reg : the register and size of the SMI block.
- power-domains : a phandle to the power domain of this local arbiter.
- clocks : Must contain an entry for each entry in clock-names.
@@ -30,6 +32,10 @@ Required properties:
They may be the same if both source clocks are the same.
- "async" : asynchronous clock, it help transform the smi clock into the emi
clock domain, this clock is only needed by generation 1 smi HW.
+ and these 2 option clocks for generation 2 smi HW:
+ - "gals0": the path0 clock of GALS(Global Async Local Sync).
+ - "gals1": the path1 clock of GALS(Global Async Local Sync).
+ Here is the list which has this GALS: mt8183.
Example:
smi_common: smi@14022000 {
diff --git a/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt b/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt
index 94eddcae77ab..4b369b3e1a69 100644
--- a/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt
@@ -8,6 +8,7 @@ Required properties:
"mediatek,mt2712-smi-larb"
"mediatek,mt7623-smi-larb", "mediatek,mt2701-smi-larb"
"mediatek,mt8173-smi-larb"
+ "mediatek,mt8183-smi-larb"
- reg : the register and size of this local arbiter.
- mediatek,smi : a phandle to the smi_common node.
- power-domains : a phandle to the power domain of this local arbiter.
@@ -16,6 +17,9 @@ Required properties:
- "apb" : Advanced Peripheral Bus clock, It's the clock for setting
the register.
- "smi" : It's the clock for transfer data and command.
+ and this optional clock name:
+ - "gals": the clock for GALS(Global Async Local Sync).
+ Here is the list which has this GALS: mt8183.
Required property for mt2701, mt2712 and mt7623:
- mediatek,larb-id :the hardware id of this larb.
diff --git a/Documentation/devicetree/bindings/memory-controllers/renesas-memory-controllers.txt b/Documentation/devicetree/bindings/memory-controllers/renesas,dbsc.txt
index 9f78e6c82740..9f78e6c82740 100644
--- a/Documentation/devicetree/bindings/memory-controllers/renesas-memory-controllers.txt
+++ b/Documentation/devicetree/bindings/memory-controllers/renesas,dbsc.txt
diff --git a/Documentation/devicetree/bindings/mfd/allwinner,sun4i-a10-ts.yaml b/Documentation/devicetree/bindings/mfd/allwinner,sun4i-a10-ts.yaml
new file mode 100644
index 000000000000..4b1a09acb98b
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/allwinner,sun4i-a10-ts.yaml
@@ -0,0 +1,76 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/mfd/allwinner,sun4i-a10-ts.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Resistive Touchscreen Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#thermal-sensor-cells":
+ const: 0
+
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-ts
+ - allwinner,sun5i-a13-ts
+ - allwinner,sun6i-a31-ts
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ allwinner,ts-attached:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description: A touchscreen is attached to the controller
+
+ allwinner,tp-sensitive-adjust:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 15
+ default: 15
+ description: Sensitivity of pen down detection
+
+ allwinner,filter-type:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 3
+ default: 1
+ description: |
+ Select median and averaging filter. Sample used for median /
+ averaging filter:
+ 0: 4/2
+ 1: 5/3
+ 2: 8/4
+ 3: 16/8
+
+required:
+ - "#thermal-sensor-cells"
+ - compatible
+ - reg
+ - interrupts
+
+additionalProperties: false
+
+examples:
+ - |
+ rtp: rtp@1c25000 {
+ compatible = "allwinner,sun4i-a10-ts";
+ reg = <0x01c25000 0x100>;
+ interrupts = <29>;
+ allwinner,ts-attached;
+ #thermal-sensor-cells = <0>;
+ /* sensitive/noisy touch panel */
+ allwinner,tp-sensitive-adjust = <0>;
+ allwinner,filter-type = <3>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/mfd/aspeed-scu.txt b/Documentation/devicetree/bindings/mfd/aspeed-scu.txt
index ce8cf0ec6279..4d92c0bb6687 100644
--- a/Documentation/devicetree/bindings/mfd/aspeed-scu.txt
+++ b/Documentation/devicetree/bindings/mfd/aspeed-scu.txt
@@ -4,9 +4,7 @@ configuring elements such as clocks, pinmux, and reset.
Required properties:
- compatible: One of:
"aspeed,ast2400-scu", "syscon", "simple-mfd"
- "aspeed,g4-scu", "syscon", "simple-mfd"
"aspeed,ast2500-scu", "syscon", "simple-mfd"
- "aspeed,g5-scu", "syscon", "simple-mfd"
- reg: contains the offset and length of the SCU memory region
- #clock-cells: should be set to <1> - the system controller is also a
diff --git a/Documentation/devicetree/bindings/mfd/atmel-usart.txt b/Documentation/devicetree/bindings/mfd/atmel-usart.txt
index 7f0cd72f47d2..699fd3c9ace8 100644
--- a/Documentation/devicetree/bindings/mfd/atmel-usart.txt
+++ b/Documentation/devicetree/bindings/mfd/atmel-usart.txt
@@ -17,17 +17,24 @@ Required properties for USART in SPI mode:
- cs-gpios: chipselects (internal cs not supported)
- atmel,usart-mode : Must be <AT91_USART_MODE_SPI> (found in dt-bindings/mfd/at91-usart.h)
+Optional properties in serial and SPI mode:
+- dma bindings for dma transfer:
+ - dmas: DMA specifier, consisting of a phandle to DMA controller node,
+ memory peripheral interface and USART DMA channel ID, FIFO configuration.
+ The order of DMA channels is fixed. The first DMA channel must be TX
+ associated channel and the second one must be RX associated channel.
+ Refer to dma.txt and atmel-dma.txt for details.
+ - dma-names: "tx" for TX channel.
+ "rx" for RX channel.
+ The order of dma-names is also fixed. The first name must be "tx"
+ and the second one must be "rx" as in the examples below.
+
Optional properties in serial mode:
- atmel,use-dma-rx: use of PDC or DMA for receiving data
- atmel,use-dma-tx: use of PDC or DMA for transmitting data
- {rts,cts,dtr,dsr,rng,dcd}-gpios: specify a GPIO for RTS/CTS/DTR/DSR/RI/DCD line respectively.
It will use specified PIO instead of the peripheral function pin for the USART feature.
If unsure, don't specify this property.
-- add dma bindings for dma transfer:
- - dmas: DMA specifier, consisting of a phandle to DMA controller node,
- memory peripheral interface and USART DMA channel ID, FIFO configuration.
- Refer to dma.txt and atmel-dma.txt for details.
- - dma-names: "rx" for RX channel, "tx" for TX channel.
- atmel,fifo-size: maximum number of data the RX and TX FIFOs can store for FIFO
capable USARTs.
- rs485-rts-delay, rs485-rx-during-tx, linux,rs485-enabled-at-boot-time: see rs485.txt
@@ -81,5 +88,8 @@ Example:
interrupts = <12 IRQ_TYPE_LEVEL_HIGH 5>;
clocks = <&usart0_clk>;
clock-names = "usart";
+ dmas = <&dma0 2 AT91_DMA_CFG_PER_ID(3)>,
+ <&dma0 2 (AT91_DMA_CFG_PER_ID(4) | AT91_DMA_CFG_FIFOCFG_ASAP)>;
+ dma-names = "tx", "rx";
cs-gpios = <&pioB 3 0>;
};
diff --git a/Documentation/devicetree/bindings/mfd/cros-ec.txt b/Documentation/devicetree/bindings/mfd/cros-ec.txt
index 6245c9b1a68b..4860eabd0f72 100644
--- a/Documentation/devicetree/bindings/mfd/cros-ec.txt
+++ b/Documentation/devicetree/bindings/mfd/cros-ec.txt
@@ -3,7 +3,7 @@ ChromeOS Embedded Controller
Google's ChromeOS EC is a Cortex-M device which talks to the AP and
implements various function such as keyboard and battery charging.
-The EC can be connect through various means (I2C, SPI, LPC) and the
+The EC can be connect through various means (I2C, SPI, LPC, RPMSG) and the
compatible string used depends on the interface. Each connection method has
its own driver which connects to the top level interface-agnostic EC driver.
Other Linux driver (such as cros-ec-keyb for the matrix keyboard) connect to
@@ -17,6 +17,9 @@ Required properties (SPI):
- compatible: "google,cros-ec-spi"
- reg: SPI chip select
+Required properties (RPMSG):
+- compatible: "google,cros-ec-rpmsg"
+
Optional properties (SPI):
- google,cros-ec-spi-pre-delay: Some implementations of the EC need a little
time to wake up from sleep before they can receive SPI transfers at a high
diff --git a/Documentation/devicetree/bindings/mfd/lp87565.txt b/Documentation/devicetree/bindings/mfd/lp87565.txt
index a48df7c08ab0..41671e0dc26b 100644
--- a/Documentation/devicetree/bindings/mfd/lp87565.txt
+++ b/Documentation/devicetree/bindings/mfd/lp87565.txt
@@ -41,3 +41,39 @@ lp87565_pmic: pmic@60 {
};
};
};
+
+TI LP87561 PMIC:
+
+This is a single output 4-phase regulator configuration
+
+Required properties:
+ - compatible: "ti,lp87561-q1"
+ - reg: I2C slave address.
+ - gpio-controller: Marks the device node as a GPIO Controller.
+ - #gpio-cells: Should be two. The first cell is the pin number and
+ the second cell is used to specify flags.
+ See ../gpio/gpio.txt for more information.
+ - xxx-in-supply: Phandle to parent supply node of each regulator
+ populated under regulators node. xxx should match
+ the supply_name populated in driver.
+Example:
+
+lp87561_pmic: pmic@62 {
+ compatible = "ti,lp87561-q1";
+ reg = <0x62>;
+ gpio-controller;
+ #gpio-cells = <2>;
+
+ buck3210-in-supply = <&vsys_3v3>;
+
+ regulators: regulators {
+ buck3210_reg: buck3210 {
+ /* VDD_CORE */
+ regulator-name = "buck3210";
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <800000>;
+ regulator-always-on;
+ regulator-boot-on;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/mfd/madera.txt b/Documentation/devicetree/bindings/mfd/madera.txt
index db3266088386..cad0f2800502 100644
--- a/Documentation/devicetree/bindings/mfd/madera.txt
+++ b/Documentation/devicetree/bindings/mfd/madera.txt
@@ -11,10 +11,14 @@ bindings/sound/madera.txt
Required properties:
- compatible : One of the following chip-specific strings:
+ "cirrus,cs47l15"
"cirrus,cs47l35"
"cirrus,cs47l85"
"cirrus,cs47l90"
"cirrus,cs47l91"
+ "cirrus,cs42l92"
+ "cirrus,cs47l92"
+ "cirrus,cs47l93"
"cirrus,wm1840"
- reg : I2C slave address when connected using I2C, chip select number when
@@ -22,7 +26,7 @@ Required properties:
- DCVDD-supply : Power supply for the device as defined in
bindings/regulator/regulator.txt
- Mandatory on CS47L35, CS47L90, CS47L91
+ Mandatory on CS47L15, CS47L35, CS47L90, CS47L91, CS42L92, CS47L92, CS47L93
Optional on CS47L85, WM1840
- AVDD-supply, DBVDD1-supply, DBVDD2-supply, CPVDD1-supply, CPVDD2-supply :
@@ -35,7 +39,7 @@ Required properties:
(CS47L85, WM1840)
- SPKVDD-supply : Power supply for the device
- (CS47L35)
+ (CS47L15, CS47L35)
- interrupt-controller : Indicates that this device is an interrupt controller
diff --git a/Documentation/devicetree/bindings/mfd/mt6397.txt b/Documentation/devicetree/bindings/mfd/mt6397.txt
index 0ebd08af777d..a9b105ac00a8 100644
--- a/Documentation/devicetree/bindings/mfd/mt6397.txt
+++ b/Documentation/devicetree/bindings/mfd/mt6397.txt
@@ -8,11 +8,12 @@ MT6397/MT6323 is a multifunction device with the following sub modules:
- Clock
- LED
- Keys
+- Power controller
It is interfaced to host controller using SPI interface by a proprietary hardware
called PMIC wrapper or pwrap. MT6397/MT6323 MFD is a child device of pwrap.
See the following for pwarp node definitions:
-Documentation/devicetree/bindings/soc/mediatek/pwrap.txt
+../soc/mediatek/pwrap.txt
This document describes the binding for MFD device and its sub module.
@@ -22,14 +23,16 @@ compatible: "mediatek,mt6397" or "mediatek,mt6323"
Optional subnodes:
- rtc
- Required properties:
+ Required properties: Should be one of follows
+ - compatible: "mediatek,mt6323-rtc"
- compatible: "mediatek,mt6397-rtc"
+ For details, see ../rtc/rtc-mt6397.txt
- regulators
Required properties:
- compatible: "mediatek,mt6397-regulator"
- see Documentation/devicetree/bindings/regulator/mt6397-regulator.txt
+ see ../regulator/mt6397-regulator.txt
- compatible: "mediatek,mt6323-regulator"
- see Documentation/devicetree/bindings/regulator/mt6323-regulator.txt
+ see ../regulator/mt6323-regulator.txt
- codec
Required properties:
- compatible: "mediatek,mt6397-codec"
@@ -39,12 +42,17 @@ Optional subnodes:
- led
Required properties:
- compatible: "mediatek,mt6323-led"
- see Documentation/devicetree/bindings/leds/leds-mt6323.txt
+ see ../leds/leds-mt6323.txt
- keys
Required properties:
- compatible: "mediatek,mt6397-keys" or "mediatek,mt6323-keys"
- see Documentation/devicetree/bindings/input/mtk-pmic-keys.txt
+ see ../input/mtk-pmic-keys.txt
+
+- power-controller
+ Required properties:
+ - compatible: "mediatek,mt6323-pwrc"
+ For details, see ../power/reset/mt6323-poweroff.txt
Example:
pwrap: pwrap@1000f000 {
diff --git a/Documentation/devicetree/bindings/mfd/rk808.txt b/Documentation/devicetree/bindings/mfd/rk808.txt
index 1683ec3245bc..04df07f6f793 100644
--- a/Documentation/devicetree/bindings/mfd/rk808.txt
+++ b/Documentation/devicetree/bindings/mfd/rk808.txt
@@ -3,11 +3,15 @@ RK8XX Power Management Integrated Circuit
The rk8xx family current members:
rk805
rk808
+rk809
+rk817
rk818
Required properties:
- compatible: "rockchip,rk805"
- compatible: "rockchip,rk808"
+- compatible: "rockchip,rk809"
+- compatible: "rockchip,rk817"
- compatible: "rockchip,rk818"
- reg: I2C slave address
- interrupts: the interrupt outputs of the controller.
@@ -45,6 +49,23 @@ Optional RK808 properties:
the gpio controller. If DVS GPIOs aren't present, voltage changes will happen
very quickly with no slow ramp time.
+Optional shared RK809 and RK817 properties:
+- vcc1-supply: The input supply for DCDC_REG1
+- vcc2-supply: The input supply for DCDC_REG2
+- vcc3-supply: The input supply for DCDC_REG3
+- vcc4-supply: The input supply for DCDC_REG4
+- vcc5-supply: The input supply for LDO_REG1, LDO_REG2, LDO_REG3
+- vcc6-supply: The input supply for LDO_REG4, LDO_REG5, LDO_REG6
+- vcc7-supply: The input supply for LDO_REG7, LDO_REG8, LDO_REG9
+
+Optional RK809 properties:
+- vcc8-supply: The input supply for SWITCH_REG1
+- vcc9-supply: The input supply for DCDC_REG5, SWITCH_REG2
+
+Optional RK817 properties:
+- vcc8-supply: The input supply for BOOST
+- vcc9-supply: The input supply for OTG_SWITCH
+
Optional RK818 properties:
- vcc1-supply: The input supply for DCDC_REG1
- vcc2-supply: The input supply for DCDC_REG2
@@ -86,6 +107,21 @@ number as described in RK808 datasheet.
- SWITCH_REGn
- valid values for n are 1 to 2
+Following regulators of the RK809 and RK817 PMIC blocks are supported. Note that
+the 'n' in regulator name, as in DCDC_REGn or LDOn, represents the DCDC or LDO
+number as described in RK809 and RK817 datasheets.
+
+ - DCDC_REGn
+ - valid values for n are 1 to 5 for RK809.
+ - valid values for n are 1 to 4 for RK817.
+ - LDO_REGn
+ - valid values for n are 1 to 9 for RK809.
+ - valid values for n are 1 to 9 for RK817.
+ - SWITCH_REGn
+ - valid values for n are 1 to 2 for RK809.
+ - BOOST for RK817
+ - OTG_SWITCH for RK817
+
Following regulators of the RK818 PMIC block are supported. Note that
the 'n' in regulator name, as in DCDC_REGn or LDOn, represents the DCDC or LDO
number as described in RK818 datasheet.
@@ -98,6 +134,14 @@ number as described in RK818 datasheet.
- HDMI_SWITCH
- OTG_SWITCH
+It is necessary to configure three pins for both the RK809 and RK817, the three
+pins are "gpio_ts" "gpio_gt" "gpio_slp".
+ The gpio_gt and gpio_ts pins support the gpio function.
+ The gpio_slp pin is for controlling the pmic states, as below:
+ - reset
+ - power down
+ - sleep
+
Standard regulator bindings are used inside regulator subnodes. Check
Documentation/devicetree/bindings/regulator/regulator.txt
for more details
diff --git a/Documentation/devicetree/bindings/mfd/rn5t618.txt b/Documentation/devicetree/bindings/mfd/rn5t618.txt
index 65c23263cc54..b74e5e94d1cb 100644
--- a/Documentation/devicetree/bindings/mfd/rn5t618.txt
+++ b/Documentation/devicetree/bindings/mfd/rn5t618.txt
@@ -14,6 +14,10 @@ Required properties:
"ricoh,rc5t619"
- reg: the I2C slave address of the device
+Optional properties:
+ - system-power-controller:
+ See Documentation/devicetree/bindings/power/power-controller.txt
+
Sub-nodes:
- regulators: the node is required if the regulator functionality is
needed. The valid regulator names are: DCDC1, DCDC2, DCDC3, DCDC4
@@ -28,6 +32,7 @@ Example:
pmic@32 {
compatible = "ricoh,rn5t618";
reg = <0x32>;
+ system-power-controller;
regulators {
DCDC1 {
diff --git a/Documentation/devicetree/bindings/mfd/rohm,bd70528-pmic.txt b/Documentation/devicetree/bindings/mfd/rohm,bd70528-pmic.txt
new file mode 100644
index 000000000000..c3c02ce73cde
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/rohm,bd70528-pmic.txt
@@ -0,0 +1,102 @@
+* ROHM BD70528 Power Management Integrated Circuit bindings
+
+BD70528MWV is an ultra-low quiescent current general purpose, single-chip,
+power management IC for battery-powered portable devices. The IC
+integrates 3 ultra-low current consumption buck converters, 3 LDOs and 2
+LED Drivers. Also included are 4 GPIOs, a real-time clock (RTC), a 32kHz
+clock gate, high-accuracy VREF for use with an external ADC, flexible
+dual-input power path, 10 bit SAR ADC for battery temperature monitor and
+1S battery charger with scalable charge currents.
+
+Required properties:
+ - compatible : Should be "rohm,bd70528"
+ - reg : I2C slave address.
+ - interrupts : The interrupt line the device is connected to.
+ - interrupt-controller : To indicate BD70528 acts as an interrupt controller.
+ - #interrupt-cells : Should be 2. Usage is compliant to the 2 cells
+ variant of ../interrupt-controller/interrupts.txt
+ - gpio-controller : To indicate BD70528 acts as a GPIO controller.
+ - #gpio-cells : Should be 2. The first cell is the pin number and
+ the second cell is used to specify flags. See
+ ../gpio/gpio.txt for more information.
+ - #clock-cells : Should be 0.
+ - regulators: : List of child nodes that specify the regulators.
+ Please see ../regulator/rohm,bd70528-regulator.txt
+
+Optional properties:
+ - clock-output-names : Should contain name for output clock.
+
+Example:
+/* External oscillator */
+osc: oscillator {
+ compatible = "fixed-clock";
+ #clock-cells = <1>;
+ clock-frequency = <32768>;
+ clock-output-names = "osc";
+};
+
+pmic: pmic@4b {
+ compatible = "rohm,bd70528";
+ reg = <0x4b>;
+ interrupt-parent = <&gpio1>;
+ interrupts = <29 GPIO_ACTIVE_LOW>;
+ clocks = <&osc 0>;
+ #clock-cells = <0>;
+ clock-output-names = "bd70528-32k-out";
+ #gpio-cells = <2>;
+ gpio-controller;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+
+ regulators {
+ buck1: BUCK1 {
+ regulator-name = "buck1";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3400000>;
+ regulator-boot-on;
+ regulator-ramp-delay = <125>;
+ };
+ buck2: BUCK2 {
+ regulator-name = "buck2";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-boot-on;
+ regulator-ramp-delay = <125>;
+ };
+ buck3: BUCK3 {
+ regulator-name = "buck3";
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-boot-on;
+ regulator-ramp-delay = <250>;
+ };
+ ldo1: LDO1 {
+ regulator-name = "ldo1";
+ regulator-min-microvolt = <1650000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-boot-on;
+ };
+ ldo2: LDO2 {
+ regulator-name = "ldo2";
+ regulator-min-microvolt = <1650000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-boot-on;
+ };
+
+ ldo3: LDO3 {
+ regulator-name = "ldo3";
+ regulator-min-microvolt = <1650000>;
+ regulator-max-microvolt = <3300000>;
+ };
+ led_ldo1: LED_LDO1 {
+ regulator-name = "led_ldo1";
+ regulator-min-microvolt = <200000>;
+ regulator-max-microvolt = <300000>;
+ };
+ led_ldo2: LED_LDO2 {
+ regulator-name = "led_ldo2";
+ regulator-min-microvolt = <200000>;
+ regulator-max-microvolt = <300000>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/mfd/rohm,bd71837-pmic.txt b/Documentation/devicetree/bindings/mfd/rohm,bd71837-pmic.txt
index d5f68ac78d15..f22d74c7a8db 100644
--- a/Documentation/devicetree/bindings/mfd/rohm,bd71837-pmic.txt
+++ b/Documentation/devicetree/bindings/mfd/rohm,bd71837-pmic.txt
@@ -8,6 +8,8 @@ and 6 LDOs.
Datasheet for BD71837 is available at:
https://www.rohm.com/datasheet/BD71837MWV/bd71837mwv-e
+Datasheet for BD71847 is available at:
+https://www.rohm.com/datasheet/BD71847AMWV/bd71847amwv-e
Required properties:
- compatible : Should be "rohm,bd71837" for bd71837
@@ -38,6 +40,14 @@ target state is set to READY by default. If SNVS state is used the boot
crucial regulators must have the regulator-always-on and regulator-boot-on
properties set in regulator node.
+- rohm,short-press-ms : Short press duration in milliseconds
+- rohm,long-press-ms : Long press duration in milliseconds
+
+Configure the "short press" and "long press" timers for the power button.
+Values are rounded to what hardware supports (500ms multiple for short and
+1000ms multiple for long). If these properties are not present the existing
+configuration (from bootloader or OTP) is not touched.
+
Example:
/* external oscillator node */
diff --git a/Documentation/devicetree/bindings/mfd/sun4i-gpadc.txt b/Documentation/devicetree/bindings/mfd/sun4i-gpadc.txt
deleted file mode 100644
index 86dd8191b04c..000000000000
--- a/Documentation/devicetree/bindings/mfd/sun4i-gpadc.txt
+++ /dev/null
@@ -1,59 +0,0 @@
-Allwinner SoCs' GPADC Device Tree bindings
-------------------------------------------
-The Allwinner SoCs all have an ADC that can also act as a thermal sensor
-and sometimes as a touchscreen controller.
-
-Required properties:
- - compatible: "allwinner,sun8i-a33-ths",
- - reg: mmio address range of the chip,
- - #thermal-sensor-cells: shall be 0,
- - #io-channel-cells: shall be 0,
-
-Example:
- ths: ths@1c25000 {
- compatible = "allwinner,sun8i-a33-ths";
- reg = <0x01c25000 0x100>;
- #thermal-sensor-cells = <0>;
- #io-channel-cells = <0>;
- };
-
-sun4i, sun5i and sun6i SoCs are also supported via the older binding:
-
-sun4i resistive touchscreen controller
---------------------------------------
-
-Required properties:
- - compatible: "allwinner,sun4i-a10-ts", "allwinner,sun5i-a13-ts" or
- "allwinner,sun6i-a31-ts"
- - reg: mmio address range of the chip
- - interrupts: interrupt to which the chip is connected
- - #thermal-sensor-cells: shall be 0
-
-Optional properties:
- - allwinner,ts-attached : boolean indicating that an actual touchscreen
- is attached to the controller
- - allwinner,tp-sensitive-adjust : integer (4 bits)
- adjust sensitivity of pen down detection
- between 0 (least sensitive) and 15
- (defaults to 15)
- - allwinner,filter-type : integer (2 bits)
- select median and averaging filter
- samples used for median / averaging filter
- 0: 4/2
- 1: 5/3
- 2: 8/4
- 3: 16/8
- (defaults to 1)
-
-Example:
-
- rtp: rtp@1c25000 {
- compatible = "allwinner,sun4i-a10-ts";
- reg = <0x01c25000 0x100>;
- interrupts = <29>;
- allwinner,ts-attached;
- #thermal-sensor-cells = <0>;
- /* sensitive/noisy touch panel */
- allwinner,tp-sensitive-adjust = <0>;
- allwinner,filter-type = <3>;
- };
diff --git a/Documentation/devicetree/bindings/mfd/ti-lmu.txt b/Documentation/devicetree/bindings/mfd/ti-lmu.txt
index 86ca786d54fc..2296b8f24de4 100644
--- a/Documentation/devicetree/bindings/mfd/ti-lmu.txt
+++ b/Documentation/devicetree/bindings/mfd/ti-lmu.txt
@@ -8,7 +8,7 @@ TI LMU driver supports lighting devices below.
LM3632 Backlight and regulator
LM3633 Backlight, LED and fault monitor
LM3695 Backlight
- LM3697 Backlight and fault monitor
+ LM36274 Backlight and regulator
Required properties:
- compatible: Should be one of:
@@ -16,15 +16,32 @@ Required properties:
"ti,lm3632"
"ti,lm3633"
"ti,lm3695"
- "ti,lm3697"
+ "ti,lm36274"
- reg: I2C slave address.
0x11 for LM3632
0x29 for LM3631
- 0x36 for LM3633, LM3697
+ 0x36 for LM3633
0x63 for LM3695
+ 0x11 for LM36274
-Optional property:
+Optional properties:
- enable-gpios: A GPIO specifier for hardware enable pin.
+ - ramp-up-us: Current ramping from one brightness level to
+ the a higher brightness level.
+ Range from 2048 us - 117.44 s
+ - ramp-down-us: Current ramping from one brightness level to
+ the a lower brightness level.
+ Range from 2048 us - 117.44 s
+ - ti,brightness-resolution - This determines whether to use 8 bit brightness
+ mode or 11 bit brightness mode. If this value is
+ not set the device is defaulted to the preferred
+ 8bit brightness mode per 7.3.4.1 of the data
+ sheet. This setting can either be in the parent
+ node or as part of the LED child nodes. This
+ is determined by the part itself if the strings
+ have a common brightness register or individual
+ brightness registers.
+ The values are 255 (8bit) or 2047 (11bit).
Required node:
- backlight: All LMU devices have backlight child nodes.
@@ -35,14 +52,15 @@ Optional nodes:
Required properties:
- compatible: Should be one of:
"ti,lm3633-fault-monitor"
- "ti,lm3697-fault-monitor"
- leds: LED properties for LM3633. Please refer to [2].
+ LED properties for LM36274. Please refer to [4].
- regulators: Regulator properties for LM3631 and LM3632.
Please refer to [3].
[1] ../leds/backlight/ti-lmu-backlight.txt
[2] ../leds/leds-lm3633.txt
[3] ../regulator/lm363x-regulator.txt
+[4] ../leds/leds-lm36274.txt
lm3631@29 {
compatible = "ti,lm3631";
@@ -90,7 +108,7 @@ lm3631@29 {
lcd_bl {
led-sources = <0 1>;
- ramp-up-msec = <300>;
+ ramp-up-us = <300000>;
};
};
};
@@ -152,15 +170,15 @@ lm3633@36 {
main {
label = "main_lcd";
led-sources = <1 2>;
- ramp-up-msec = <500>;
- ramp-down-msec = <500>;
+ ramp-up-us = <500000>;
+ ramp-down-us = <500000>;
};
front {
label = "front_lcd";
led-sources = <0>;
- ramp-up-msec = <1000>;
- ramp-down-msec = <0>;
+ ramp-up-us = <1000000>;
+ ramp-down-us = <0>;
};
};
@@ -201,23 +219,51 @@ lm3695@63 {
};
};
-lm3697@36 {
- compatible = "ti,lm3697";
- reg = <0x36>;
+lm36274@11 {
+ compatible = "ti,lm36274";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x11>;
enable-gpios = <&pioC 2 GPIO_ACTIVE_HIGH>;
+ regulators {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm363x-regulator";
- backlight {
- compatible = "ti,lm3697-backlight";
+ enable-gpios = <&pioC 0 GPIO_ACTIVE_HIGH>,
+ <&pioC 1 GPIO_ACTIVE_HIGH>;
- lcd {
- led-sources = <0 1 2>;
- ramp-up-msec = <200>;
- ramp-down-msec = <200>;
+ vboost {
+ regulator-name = "lcd_boost";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <7150000>;
+ regulator-always-on;
+ };
+
+ vpos {
+ regulator-name = "lcd_vpos";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
+ };
+
+ vneg {
+ regulator-name = "lcd_vneg";
+ regulator-min-microvolt = <4000000>;
+ regulator-max-microvolt = <6500000>;
};
};
- fault-monitor {
- compatible = "ti,lm3697-fault-monitor";
+ backlight {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "ti,lm36274-backlight";
+
+ led@0 {
+ reg = <0>;
+ led-sources = <0 2>;
+ label = "white:backlight_cluster";
+ linux,default-trigger = "backlight";
+ };
};
};
diff --git a/Documentation/devicetree/bindings/misc/aspeed-p2a-ctrl.txt b/Documentation/devicetree/bindings/misc/aspeed-p2a-ctrl.txt
index 854bd67ffec6..0e1fa5bc6a30 100644
--- a/Documentation/devicetree/bindings/misc/aspeed-p2a-ctrl.txt
+++ b/Documentation/devicetree/bindings/misc/aspeed-p2a-ctrl.txt
@@ -26,9 +26,7 @@ property:
- compatible : Should be one of the following:
"aspeed,ast2400-scu", "syscon", "simple-mfd"
- "aspeed,g4-scu", "syscon", "simple-mfd"
"aspeed,ast2500-scu", "syscon", "simple-mfd"
- "aspeed,g5-scu", "syscon", "simple-mfd"
Example
===================
diff --git a/Documentation/devicetree/bindings/misc/fsl,dpaa2-console.txt b/Documentation/devicetree/bindings/misc/fsl,dpaa2-console.txt
new file mode 100644
index 000000000000..1442ba5d2d98
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/fsl,dpaa2-console.txt
@@ -0,0 +1,11 @@
+DPAA2 console support
+
+Required properties:
+
+ - compatible
+ Value type: <string>
+ Definition: Must be "fsl,dpaa2-console".
+ - reg
+ Value type: <prop-encoded-array>
+ Definition: A standard property. Specifies the region where the MCFBA
+ (MC firmware base address) register can be found.
diff --git a/Documentation/devicetree/bindings/misc/intel,ixp4xx-queue-manager.yaml b/Documentation/devicetree/bindings/misc/intel,ixp4xx-ahb-queue-manager.yaml
index d2313b1d9405..0ea21a6f70b4 100644
--- a/Documentation/devicetree/bindings/misc/intel,ixp4xx-queue-manager.yaml
+++ b/Documentation/devicetree/bindings/misc/intel,ixp4xx-ahb-queue-manager.yaml
@@ -2,7 +2,7 @@
# Copyright 2019 Linaro Ltd.
%YAML 1.2
---
-$id: "http://devicetree.org/schemas/misc/intel-ixp4xx-ahb-queue-manager.yaml#"
+$id: "http://devicetree.org/schemas/misc/intel,ixp4xx-ahb-queue-manager.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Intel IXP4xx AHB Queue Manager
diff --git a/Documentation/devicetree/bindings/misc/olpc,xo1.75-ec.txt b/Documentation/devicetree/bindings/misc/olpc,xo1.75-ec.txt
new file mode 100644
index 000000000000..8c4d649cdd8f
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/olpc,xo1.75-ec.txt
@@ -0,0 +1,23 @@
+OLPC XO-1.75 Embedded Controller
+
+Required properties:
+- compatible: Should be "olpc,xo1.75-ec".
+- cmd-gpios: gpio specifier of the CMD pin
+
+The embedded controller requires the SPI controller driver to signal readiness
+to receive a transfer (that is, when TX FIFO contains the response data) by
+strobing the ACK pin with the ready signal. See the "ready-gpios" property of the
+SSP binding as documented in:
+<Documentation/devicetree/bindings/spi/spi-pxa2xx.txt>.
+
+Example:
+ &ssp3 {
+ spi-slave;
+ ready-gpios = <&gpio 125 GPIO_ACTIVE_HIGH>;
+
+ slave {
+ compatible = "olpc,xo1.75-ec";
+ spi-cpha;
+ cmd-gpios = <&gpio 155 GPIO_ACTIVE_HIGH>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt b/Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt
new file mode 100644
index 000000000000..e3289634fa30
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/xlnx,sd-fec.txt
@@ -0,0 +1,58 @@
+* Xilinx SDFEC(16nm) IP *
+
+The Soft Decision Forward Error Correction (SDFEC) Engine is a Hard IP block
+which provides high-throughput LDPC and Turbo Code implementations.
+The LDPC decode & encode functionality is capable of covering a range of
+customer specified Quasi-cyclic (QC) codes. The Turbo decode functionality
+principally covers codes used by LTE. The FEC Engine offers significant
+power and area savings versus implementations done in the FPGA fabric.
+
+
+Required properties:
+- compatible: Must be "xlnx,sd-fec-1.1"
+- clock-names : List of input clock names from the following:
+ - "core_clk", Main processing clock for processing core (required)
+ - "s_axi_aclk", AXI4-Lite memory-mapped slave interface clock (required)
+ - "s_axis_din_aclk", DIN AXI4-Stream Slave interface clock (optional)
+ - "s_axis_din_words-aclk", DIN_WORDS AXI4-Stream Slave interface clock (optional)
+ - "s_axis_ctrl_aclk", Control input AXI4-Stream Slave interface clock (optional)
+ - "m_axis_dout_aclk", DOUT AXI4-Stream Master interface clock (optional)
+ - "m_axis_dout_words_aclk", DOUT_WORDS AXI4-Stream Master interface clock (optional)
+ - "m_axis_status_aclk", Status output AXI4-Stream Master interface clock (optional)
+- clocks : Clock phandles (see clock_bindings.txt for details).
+- reg: Should contain Xilinx SDFEC 16nm Hardened IP block registers
+ location and length.
+- xlnx,sdfec-code : Should contain "ldpc" or "turbo" to describe the codes
+ being used.
+- xlnx,sdfec-din-words : A value 0 indicates that the DIN_WORDS interface is
+ driven with a fixed value and is not present on the device, a value of 1
+ configures the DIN_WORDS to be block based, while a value of 2 configures the
+ DIN_WORDS input to be supplied for each AXI transaction.
+- xlnx,sdfec-din-width : Configures the DIN AXI stream where a value of 1
+ configures a width of "1x128b", 2 a width of "2x128b" and 4 configures a width
+ of "4x128b".
+- xlnx,sdfec-dout-words : A value 0 indicates that the DOUT_WORDS interface is
+ driven with a fixed value and is not present on the device, a value of 1
+ configures the DOUT_WORDS to be block based, while a value of 2 configures the
+ DOUT_WORDS input to be supplied for each AXI transaction.
+- xlnx,sdfec-dout-width : Configures the DOUT AXI stream where a value of 1
+ configures a width of "1x128b", 2 a width of "2x128b" and 4 configures a width
+ of "4x128b".
+Optional properties:
+- interrupts: should contain SDFEC interrupt number
+
+Example
+---------------------------------------
+ sd_fec_0: sd-fec@a0040000 {
+ compatible = "xlnx,sd-fec-1.1";
+ clock-names = "core_clk","s_axi_aclk","s_axis_ctrl_aclk","s_axis_din_aclk","m_axis_status_aclk","m_axis_dout_aclk";
+ clocks = <&misc_clk_2>,<&misc_clk_0>,<&misc_clk_1>,<&misc_clk_1>,<&misc_clk_1>, <&misc_clk_1>;
+ reg = <0x0 0xa0040000 0x0 0x40000>;
+ interrupt-parent = <&axi_intc>;
+ interrupts = <1 0>;
+ xlnx,sdfec-code = "ldpc";
+ xlnx,sdfec-din-words = <0>;
+ xlnx,sdfec-din-width = <2>;
+ xlnx,sdfec-dout-words = <0>;
+ xlnx,sdfec-dout-width = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml b/Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml
new file mode 100644
index 000000000000..d2d4308596b8
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/allwinner,sun4i-a10-mmc.yaml
@@ -0,0 +1,104 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/mmc/allwinner,sun4i-a10-mmc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 MMC Controller Device Tree Bindings
+
+allOf:
+ - $ref: "mmc-controller.yaml"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells": true
+ "#size-cells": true
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-mmc
+ - const: allwinner,sun5i-a13-mmc
+ - const: allwinner,sun7i-a20-mmc
+ - const: allwinner,sun8i-a83t-emmc
+ - const: allwinner,sun9i-a80-mmc
+ - const: allwinner,sun50i-a64-emmc
+ - const: allwinner,sun50i-a64-mmc
+ - items:
+ - const: allwinner,sun8i-a83t-mmc
+ - const: allwinner,sun7i-a20-mmc
+ - items:
+ - const: allwinner,sun8i-r40-emmc
+ - const: allwinner,sun50i-a64-emmc
+ - items:
+ - const: allwinner,sun8i-r40-mmc
+ - const: allwinner,sun50i-a64-mmc
+ - items:
+ - const: allwinner,sun50i-h5-emmc
+ - const: allwinner,sun50i-a64-emmc
+ - items:
+ - const: allwinner,sun50i-h5-mmc
+ - const: allwinner,sun50i-a64-mmc
+ - items:
+ - const: allwinner,sun50i-h6-emmc
+ - const: allwinner,sun50i-a64-emmc
+ - items:
+ - const: allwinner,sun50i-h6-mmc
+ - const: allwinner,sun50i-a64-mmc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ minItems: 2
+ maxItems: 4
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+ - description: Output Clock
+ - description: Sample Clock
+
+ clock-names:
+ minItems: 2
+ maxItems: 4
+ items:
+ - const: ahb
+ - const: mmc
+ - const: output
+ - const: sample
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ const: ahb
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ mmc0: mmc@1c0f000 {
+ compatible = "allwinner,sun5i-a13-mmc";
+ reg = <0x01c0f000 0x1000>;
+ clocks = <&ahb_gates 8>, <&mmc0_clk>;
+ clock-names = "ahb", "mmc";
+ interrupts = <32>;
+ bus-width = <4>;
+ cd-gpios = <&pio 7 1 0>;
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt b/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
index 13e70409e8ac..ccc5358db131 100644
--- a/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
+++ b/Documentation/devicetree/bindings/mmc/amlogic,meson-gx.txt
@@ -22,6 +22,10 @@ Required properties:
clock rate requested by the MMC core.
- resets : phandle of the internal reset line
+Optional properties:
+- amlogic,dram-access-quirk: set when controller's internal DMA engine cannot access the
+ DRAM memory, like on the G12A dedicated SDIO controller.
+
Example:
sd_emmc_a: mmc@70000 {
diff --git a/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt b/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt
index 1edbb049cccb..7ca0aa7ccc0b 100644
--- a/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt
+++ b/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt
@@ -17,6 +17,8 @@ Required Properties:
For this device it is strongly suggested to include arasan,soc-ctl-syscon.
- "ti,am654-sdhci-5.1", "arasan,sdhci-5.1": TI AM654 MMC PHY
Note: This binding has been deprecated and moved to [5].
+ - "intel,lgm-sdhci-5.1-emmc", "arasan,sdhci-5.1": Intel LGM eMMC PHY
+ For this device it is strongly suggested to include arasan,soc-ctl-syscon.
[5] Documentation/devicetree/bindings/mmc/sdhci-am654.txt
@@ -80,3 +82,18 @@ Example:
phy-names = "phy_arasan";
#clock-cells = <0>;
};
+
+ emmc: sdhci@ec700000 {
+ compatible = "intel,lgm-sdhci-5.1-emmc", "arasan,sdhci-5.1";
+ reg = <0xec700000 0x300>;
+ interrupt-parent = <&ioapic1>;
+ interrupts = <44 1>;
+ clocks = <&cgu0 LGM_CLK_EMMC5>, <&cgu0 LGM_CLK_NGI>,
+ <&cgu0 LGM_GCLK_EMMC>;
+ clock-names = "clk_xin", "clk_ahb", "gate";
+ clock-output-names = "emmc_cardclock";
+ #clock-cells = <0>;
+ phys = <&emmc_phy>;
+ phy-names = "phy_arasan";
+ arasan,soc-ctl-syscon = <&sysconf>;
+ };
diff --git a/Documentation/devicetree/bindings/mmc/aspeed,sdhci.yaml b/Documentation/devicetree/bindings/mmc/aspeed,sdhci.yaml
new file mode 100644
index 000000000000..200de9396036
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/aspeed,sdhci.yaml
@@ -0,0 +1,106 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+# Copyright 2019 IBM Corp.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/mmc/aspeed,sdhci.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ASPEED SD/SDIO/MMC Controller
+
+maintainers:
+ - Andrew Jeffery <andrew@aj.id.au>
+ - Ryan Chen <ryanchen.aspeed@gmail.com>
+
+description: |+
+ The ASPEED SD/SDIO/eMMC controller exposes two slots implementing the SDIO
+ Host Specification v2.00, with 1 or 4 bit data buses, or an 8 bit data bus if
+ only a single slot is enabled.
+
+ The two slots are supported by a common configuration area. As the SDHCIs for
+ the slots are dependent on the common configuration area, they are described
+ as child nodes.
+
+properties:
+ compatible:
+ enum:
+ - aspeed,ast2400-sd-controller
+ - aspeed,ast2500-sd-controller
+ - aspeed,ast2600-sd-controller
+ reg:
+ maxItems: 1
+ description: Common configuration registers
+ "#address-cells":
+ const: 1
+ "#size-cells":
+ const: 1
+ ranges: true
+ clocks:
+ maxItems: 1
+ description: The SD/SDIO controller clock gate
+
+patternProperties:
+ "^sdhci@[0-9a-f]+$":
+ type: object
+ allOf:
+ - $ref: mmc-controller.yaml
+ properties:
+ compatible:
+ enum:
+ - aspeed,ast2400-sdhci
+ - aspeed,ast2500-sdhci
+ - aspeed,ast2600-sdhci
+ reg:
+ maxItems: 1
+ description: The SDHCI registers
+ clocks:
+ maxItems: 1
+ description: The SD bus clock
+ interrupts:
+ maxItems: 1
+ description: The SD interrupt shared between both slots
+ sdhci,auto-cmd12:
+ type: boolean
+ description: Specifies that controller should use auto CMD12
+ required:
+ - compatible
+ - reg
+ - clocks
+ - interrupts
+
+additionalProperties: false
+
+required:
+ - compatible
+ - reg
+ - "#address-cells"
+ - "#size-cells"
+ - ranges
+ - clocks
+
+examples:
+ - |
+ #include <dt-bindings/clock/aspeed-clock.h>
+ sdc@1e740000 {
+ compatible = "aspeed,ast2500-sd-controller";
+ reg = <0x1e740000 0x100>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0 0x1e740000 0x20000>;
+ clocks = <&syscon ASPEED_CLK_GATE_SDCLK>;
+
+ sdhci0: sdhci@100 {
+ compatible = "aspeed,ast2500-sdhci";
+ reg = <0x100 0x100>;
+ interrupts = <26>;
+ sdhci,auto-cmd12;
+ clocks = <&syscon ASPEED_CLK_SDIO>;
+ };
+
+ sdhci1: sdhci@200 {
+ compatible = "aspeed,ast2500-sdhci";
+ reg = <0x200 0x100>;
+ interrupts = <26>;
+ sdhci,auto-cmd12;
+ clocks = <&syscon ASPEED_CLK_SDIO>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mmc/brcm,sdhci-iproc.txt b/Documentation/devicetree/bindings/mmc/brcm,sdhci-iproc.txt
index fa90d253dc7e..09d87cc1182a 100644
--- a/Documentation/devicetree/bindings/mmc/brcm,sdhci-iproc.txt
+++ b/Documentation/devicetree/bindings/mmc/brcm,sdhci-iproc.txt
@@ -6,10 +6,12 @@ by mmc.txt and the properties that represent the IPROC SDHCI controller.
Required properties:
- compatible : Should be one of the following
"brcm,bcm2835-sdhci"
+ "brcm,bcm2711-emmc2"
"brcm,sdhci-iproc-cygnus"
"brcm,sdhci-iproc"
-Use brcm2835-sdhci for Rasperry PI.
+Use brcm2835-sdhci for the eMMC controller on the BCM2835 (Raspberry Pi) and
+bcm2711-emmc2 for the additional eMMC2 controller on BCM2711.
Use sdhci-iproc-cygnus for Broadcom SDHCI Controllers
restricted to 32bit host accesses to SDHCI registers.
diff --git a/Documentation/devicetree/bindings/mmc/mmc-controller.yaml b/Documentation/devicetree/bindings/mmc/mmc-controller.yaml
new file mode 100644
index 000000000000..080754e0ef35
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/mmc-controller.yaml
@@ -0,0 +1,374 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/mmc/mmc-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MMC Controller Generic Binding
+
+maintainers:
+ - Ulf Hansson <ulf.hansson@linaro.org>
+
+description: |
+ These properties are common to multiple MMC host controllers. Any host
+ that requires the respective functionality should implement them using
+ these definitions.
+
+properties:
+ $nodename:
+ pattern: "^mmc(@.*)?$"
+
+ "#address-cells":
+ const: 1
+ description: |
+ The cell is the slot ID if a function subnode is used.
+
+ "#size-cells":
+ const: 0
+
+ # Card Detection.
+ # If none of these properties are supplied, the host native card
+ # detect will be used. Only one of them should be provided.
+
+ broken-cd:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ There is no card detection available; polling must be used.
+
+ cd-gpios:
+ description:
+ The card detection will be done using the GPIO provided.
+
+ non-removable:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Non-removable slot (like eMMC); assume always present.
+
+ # *NOTE* on CD and WP polarity. To use common for all SD/MMC host
+ # controllers line polarity properties, we have to fix the meaning
+ # of the "normal" and "inverted" line levels. We choose to follow
+ # the SDHCI standard, which specifies both those lines as "active
+ # low." Therefore, using the "cd-inverted" property means, that the
+ # CD line is active high, i.e. it is high, when a card is
+ # inserted. Similar logic applies to the "wp-inverted" property.
+ #
+ # CD and WP lines can be implemented on the hardware in one of two
+ # ways: as GPIOs, specified in cd-gpios and wp-gpios properties, or
+ # as dedicated pins. Polarity of dedicated pins can be specified,
+ # using *-inverted properties. GPIO polarity can also be specified
+ # using the GPIO_ACTIVE_LOW flag. This creates an ambiguity in the
+ # latter case. We choose to use the XOR logic for GPIO CD and WP
+ # lines. This means, the two properties are "superimposed," for
+ # example leaving the GPIO_ACTIVE_LOW flag clear and specifying the
+ # respective *-inverted property property results in a
+ # double-inversion and actually means the "normal" line polarity is
+ # in effect.
+ wp-inverted:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The Write Protect line polarity is inverted.
+
+ cd-inverted:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The CD line polarity is inverted.
+
+ # Other properties
+
+ bus-width:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [1, 4, 8]
+ default: 1
+ description:
+ Number of data lines.
+
+ max-frequency:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 400000
+ - maximum: 200000000
+ description:
+ Maximum operating frequency of the bus.
+
+ disable-wp:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ When set, no physical write-protect line is present. This
+ property should only be specified when the controller has a
+ dedicated write-protect detection logic. If a GPIO is always
+ used for the write-protect detection. If a GPIO is always used
+ for the write-protect detection logic, it is sufficient to not
+ specify the wp-gpios property in the absence of a write-protect
+ line.
+
+ wp-gpios:
+ description:
+ GPIO to use for the write-protect detection.
+
+ cd-debounce-delay-ms:
+ description:
+ Set delay time before detecting card after card insert
+ interrupt.
+
+ no-1-8-v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ When specified, denotes that 1.8V card voltage is not supported
+ on this system, even if the controller claims it.
+
+ cap-sd-highspeed:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD high-speed timing is supported.
+
+ cap-mmc-highspeed:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ MMC high-speed timing is supported.
+
+ sd-uhs-sdr12:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR12 speed is supported.
+
+ sd-uhs-sdr25:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR25 speed is supported.
+
+ sd-uhs-sdr50:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR50 speed is supported.
+
+ sd-uhs-sdr104:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS SDR104 speed is supported.
+
+ sd-uhs-ddr50:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SD UHS DDR50 speed is supported.
+
+ cap-power-off-card:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Powering off the card is safe.
+
+ cap-mmc-hw-reset:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC hardware reset is supported
+
+ cap-sdio-irq:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ enable SDIO IRQ signalling on this interface
+
+ full-pwr-cycle:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Full power cycle of the card is supported.
+
+ mmc-ddr-1_2v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC high-speed DDR mode (1.2V I/O) is supported.
+
+ mmc-ddr-1_8v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC high-speed DDR mode (1.8V I/O) is supported.
+
+ mmc-ddr-3_3v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC high-speed DDR mode (3.3V I/O) is supported.
+
+ mmc-hs200-1_2v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS200 mode (1.2V I/O) is supported.
+
+ mmc-hs200-1_8v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS200 mode (1.8V I/O) is supported.
+
+ mmc-hs400-1_2v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS400 mode (1.2V I/O) is supported.
+
+ mmc-hs400-1_8v:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS400 mode (1.8V I/O) is supported.
+
+ mmc-hs400-enhanced-strobe:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ eMMC HS400 enhanced strobe mode is supported
+
+ dsr:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ - maximum: 0xffff
+ description:
+ Value the card Driver Stage Register (DSR) should be programmed
+ with.
+
+ no-sdio:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Controller is limited to send SDIO commands during
+ initialization.
+
+ no-sd:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Controller is limited to send SD commands during initialization.
+
+ no-mmc:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Controller is limited to send MMC commands during
+ initialization.
+
+ fixed-emmc-driver-type:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ - maximum: 4
+ description:
+ For non-removable eMMC, enforce this driver type. The value is
+ the driver type as specified in the eMMC specification (table
+ 206 in spec version 5.1)
+
+ post-power-on-delay-ms:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - default: 10
+ description:
+ It was invented for MMC pwrseq-simple which could be referred to
+ mmc-pwrseq-simple.txt. But now it\'s reused as a tunable delay
+ waiting for I/O signalling and card power supply to be stable,
+ regardless of whether pwrseq-simple is used. Default to 10ms if
+ no available.
+
+ supports-cqe:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The presence of this property indicates that the corresponding
+ MMC host controller supports HW command queue feature.
+
+ disable-cqe-dcmd:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The presence of this property indicates that the MMC
+ controller\'s command queue engine (CQE) does not support direct
+ commands (DCMDs).
+
+ keep-power-in-suspend:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SDIO only. Preserves card power during a suspend/resume cycle.
+
+ # Deprecated: enable-sdio-wakeup
+ wakeup-source:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ SDIO only. Enables wake up of host system on SDIO IRQ assertion.
+
+ vmmc-supply:
+ description:
+ Supply for the card power
+
+ vqmmc-supply:
+ description:
+ Supply for the bus IO line power
+
+ mmc-pwrseq:
+ $ref: /schemas/types.yaml#/definitions/phandle
+ description:
+ System-on-Chip designs may specify a specific MMC power
+ sequence. To successfully detect an (e)MMC/SD/SDIO card, that
+ power sequence must be maintained while initializing the card.
+
+patternProperties:
+ "^.*@[0-9]+$":
+ type: object
+ description: |
+ On embedded systems the cards connected to a host may need
+ additional properties. These can be specified in subnodes to the
+ host controller node. The subnodes are identified by the
+ standard \'reg\' property. Which information exactly can be
+ specified depends on the bindings for the SDIO function driver
+ for the subnode, as specified by the compatible string.
+
+ properties:
+ compatible:
+ description: |
+ Name of SDIO function following generic names recommended
+ practice
+
+ reg:
+ items:
+ - minimum: 0
+ maximum: 7
+ description:
+ Must contain the SDIO function number of the function this
+ subnode describes. A value of 0 denotes the memory SD
+ function, values from 1 to 7 denote the SDIO functions.
+
+ broken-hpi:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Use this to indicate that the mmc-card has a broken hpi
+ implementation, and that hpi should not be used.
+
+ required:
+ - reg
+
+dependencies:
+ cd-debounce-delay-ms: [ cd-gpios ]
+ fixed-emmc-driver-type: [ non-removable ]
+
+examples:
+ - |
+ sdhci@ab000000 {
+ compatible = "sdhci";
+ reg = <0xab000000 0x200>;
+ interrupts = <23>;
+ bus-width = <4>;
+ cd-gpios = <&gpio 69 0>;
+ cd-inverted;
+ wp-gpios = <&gpio 70 0>;
+ max-frequency = <50000000>;
+ keep-power-in-suspend;
+ wakeup-source;
+ mmc-pwrseq = <&sdhci0_pwrseq>;
+ };
+
+ - |
+ mmc3: mmc@1c12000 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&mmc3_pins_a>;
+ vmmc-supply = <&reg_vmmc3>;
+ bus-width = <4>;
+ non-removable;
+ mmc-pwrseq = <&sdhci0_pwrseq>;
+
+ brcmf: bcrmf@1 {
+ reg = <1>;
+ compatible = "brcm,bcm43xx-fmac";
+ interrupt-parent = <&pio>;
+ interrupts = <10 8>;
+ interrupt-names = "host-wake";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mmc/mmc.txt b/Documentation/devicetree/bindings/mmc/mmc.txt
index c269dbe384fe..bf9d7d3febf1 100644
--- a/Documentation/devicetree/bindings/mmc/mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/mmc.txt
@@ -1,177 +1 @@
-These properties are common to multiple MMC host controllers. Any host
-that requires the respective functionality should implement them using
-these definitions.
-
-Interpreted by the OF core:
-- reg: Registers location and length.
-- interrupts: Interrupts used by the MMC controller.
-
-Card detection:
-If no property below is supplied, host native card detect is used.
-Only one of the properties in this section should be supplied:
- - broken-cd: There is no card detection available; polling must be used.
- - cd-gpios: Specify GPIOs for card detection, see gpio binding
- - non-removable: non-removable slot (like eMMC); assume always present.
-
-Optional properties:
-- bus-width: Number of data lines, can be <1>, <4>, or <8>. The default
- will be <1> if the property is absent.
-- wp-gpios: Specify GPIOs for write protection, see gpio binding
-- cd-inverted: when present, polarity on the CD line is inverted. See the note
- below for the case, when a GPIO is used for the CD line
-- cd-debounce-delay-ms: Set delay time before detecting card after card insert interrupt.
- It's only valid when cd-gpios is present.
-- wp-inverted: when present, polarity on the WP line is inverted. See the note
- below for the case, when a GPIO is used for the WP line
-- disable-wp: When set no physical WP line is present. This property should
- only be specified when the controller has a dedicated write-protect
- detection logic. If a GPIO is always used for the write-protect detection
- logic it is sufficient to not specify wp-gpios property in the absence of a WP
- line.
-- max-frequency: maximum operating clock frequency
-- no-1-8-v: when present, denotes that 1.8v card voltage is not supported on
- this system, even if the controller claims it is.
-- cap-sd-highspeed: SD high-speed timing is supported
-- cap-mmc-highspeed: MMC high-speed timing is supported
-- sd-uhs-sdr12: SD UHS SDR12 speed is supported
-- sd-uhs-sdr25: SD UHS SDR25 speed is supported
-- sd-uhs-sdr50: SD UHS SDR50 speed is supported
-- sd-uhs-sdr104: SD UHS SDR104 speed is supported
-- sd-uhs-ddr50: SD UHS DDR50 speed is supported
-- cap-power-off-card: powering off the card is safe
-- cap-mmc-hw-reset: eMMC hardware reset is supported
-- cap-sdio-irq: enable SDIO IRQ signalling on this interface
-- full-pwr-cycle: full power cycle of the card is supported
-- mmc-ddr-3_3v: eMMC high-speed DDR mode(3.3V I/O) is supported
-- mmc-ddr-1_8v: eMMC high-speed DDR mode(1.8V I/O) is supported
-- mmc-ddr-1_2v: eMMC high-speed DDR mode(1.2V I/O) is supported
-- mmc-hs200-1_8v: eMMC HS200 mode(1.8V I/O) is supported
-- mmc-hs200-1_2v: eMMC HS200 mode(1.2V I/O) is supported
-- mmc-hs400-1_8v: eMMC HS400 mode(1.8V I/O) is supported
-- mmc-hs400-1_2v: eMMC HS400 mode(1.2V I/O) is supported
-- mmc-hs400-enhanced-strobe: eMMC HS400 enhanced strobe mode is supported
-- dsr: Value the card's (optional) Driver Stage Register (DSR) should be
- programmed with. Valid range: [0 .. 0xffff].
-- no-sdio: controller is limited to send sdio cmd during initialization
-- no-sd: controller is limited to send sd cmd during initialization
-- no-mmc: controller is limited to send mmc cmd during initialization
-- fixed-emmc-driver-type: for non-removable eMMC, enforce this driver type.
- The value <n> is the driver type as specified in the eMMC specification
- (table 206 in spec version 5.1).
-- post-power-on-delay-ms : It was invented for MMC pwrseq-simple which could
- be referred to mmc-pwrseq-simple.txt. But now it's reused as a tunable delay
- waiting for I/O signalling and card power supply to be stable, regardless of
- whether pwrseq-simple is used. Default to 10ms if no available.
-- supports-cqe : The presence of this property indicates that the corresponding
- MMC host controller supports HW command queue feature.
-- disable-cqe-dcmd: This property indicates that the MMC controller's command
- queue engine (CQE) does not support direct commands (DCMDs).
-
-*NOTE* on CD and WP polarity. To use common for all SD/MMC host controllers line
-polarity properties, we have to fix the meaning of the "normal" and "inverted"
-line levels. We choose to follow the SDHCI standard, which specifies both those
-lines as "active low." Therefore, using the "cd-inverted" property means, that
-the CD line is active high, i.e. it is high, when a card is inserted. Similar
-logic applies to the "wp-inverted" property.
-
-CD and WP lines can be implemented on the hardware in one of two ways: as GPIOs,
-specified in cd-gpios and wp-gpios properties, or as dedicated pins. Polarity of
-dedicated pins can be specified, using *-inverted properties. GPIO polarity can
-also be specified using the GPIO_ACTIVE_LOW flag. This creates an ambiguity
-in the latter case. We choose to use the XOR logic for GPIO CD and WP lines.
-This means, the two properties are "superimposed," for example leaving the
-GPIO_ACTIVE_LOW flag clear and specifying the respective *-inverted property
-property results in a double-inversion and actually means the "normal" line
-polarity is in effect.
-
-Optional SDIO properties:
-- keep-power-in-suspend: Preserves card power during a suspend/resume cycle
-- wakeup-source: Enables wake up of host system on SDIO IRQ assertion
- (Legacy property supported: "enable-sdio-wakeup")
-
-MMC power
----------
-
-Controllers may implement power control from both the connected cards and
-the IO signaling (for example to change to high-speed 1.8V signalling). If
-the system supports this, then the following two properties should point
-to valid regulator nodes:
-
-- vqmmc-supply: supply node for IO line power
-- vmmc-supply: supply node for card's power
-
-
-MMC power sequences:
---------------------
-
-System on chip designs may specify a specific MMC power sequence. To
-successfully detect an (e)MMC/SD/SDIO card, that power sequence must be
-maintained while initializing the card.
-
-Optional property:
-- mmc-pwrseq: phandle to the MMC power sequence node. See "mmc-pwrseq-*"
- for documentation of MMC power sequence bindings.
-
-
-Use of Function subnodes
-------------------------
-
-On embedded systems the cards connected to a host may need additional
-properties. These can be specified in subnodes to the host controller node.
-The subnodes are identified by the standard 'reg' property.
-Which information exactly can be specified depends on the bindings for the
-SDIO function driver for the subnode, as specified by the compatible string.
-
-Required host node properties when using function subnodes:
-- #address-cells: should be one. The cell is the slot id.
-- #size-cells: should be zero.
-
-Required function subnode properties:
-- reg: Must contain the SDIO function number of the function this subnode
- describes. A value of 0 denotes the memory SD function, values from
- 1 to 7 denote the SDIO functions.
-
-Optional function subnode properties:
-- compatible: name of SDIO function following generic names recommended practice
-
-
-Examples
---------
-
-Basic example:
-
-sdhci@ab000000 {
- compatible = "sdhci";
- reg = <0xab000000 0x200>;
- interrupts = <23>;
- bus-width = <4>;
- cd-gpios = <&gpio 69 0>;
- cd-inverted;
- wp-gpios = <&gpio 70 0>;
- max-frequency = <50000000>;
- keep-power-in-suspend;
- wakeup-source;
- mmc-pwrseq = <&sdhci0_pwrseq>
-}
-
-Example with sdio function subnode:
-
-mmc3: mmc@1c12000 {
- #address-cells = <1>;
- #size-cells = <0>;
-
- pinctrl-names = "default";
- pinctrl-0 = <&mmc3_pins_a>;
- vmmc-supply = <&reg_vmmc3>;
- bus-width = <4>;
- non-removable;
- mmc-pwrseq = <&sdhci0_pwrseq>
-
- brcmf: bcrmf@1 {
- reg = <1>;
- compatible = "brcm,bcm43xx-fmac";
- interrupt-parent = <&pio>;
- interrupts = <10 8>; /* PH10 / EINT10 */
- interrupt-names = "host-wake";
- };
-};
+This file has moved to mmc-controller.yaml.
diff --git a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt b/Documentation/devicetree/bindings/mmc/renesas,sdhi.txt
index 2b4f17ca9087..dd08d038a65c 100644
--- a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt
+++ b/Documentation/devicetree/bindings/mmc/renesas,sdhi.txt
@@ -1,13 +1,4 @@
-* Toshiba Mobile IO SD/MMC controller
-
-The tmio-mmc driver doesn't probe its devices actively, instead its binding to
-devices is managed by either MFD drivers or by the sh_mobile_sdhi platform
-driver. Those drivers supply the tmio-mmc driver with platform data, that either
-describe hardware capabilities, known to them, or are obtained by them from
-their own platform data or from their DT information. In the latter case all
-compulsory and any optional properties, common to all SD/MMC drivers, as
-described in mmc.txt, can be used. Additionally the following tmio_mmc-specific
-optional bindings can be used.
+* Renesas SDHI SD/MMC controller
Required properties:
- compatible: should contain one or more of the following:
diff --git a/Documentation/devicetree/bindings/mmc/sdhci-am654.txt b/Documentation/devicetree/bindings/mmc/sdhci-am654.txt
index 15dbbbace27e..50e87df47971 100644
--- a/Documentation/devicetree/bindings/mmc/sdhci-am654.txt
+++ b/Documentation/devicetree/bindings/mmc/sdhci-am654.txt
@@ -8,7 +8,10 @@ Only deviations are documented here.
[3] Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
Required Properties:
- - compatible: should be "ti,am654-sdhci-5.1"
+ - compatible: should be one of:
+ "ti,am654-sdhci-5.1": SDHCI on AM654 device.
+ "ti,j721e-sdhci-8bit": 8 bit SDHCI on J721E device.
+ "ti,j721e-sdhci-4bit": 4 bit SDHCI on J721E device.
- reg: Must be two entries.
- The first should be the sdhci register space
- The second should the subsystem/phy register space
@@ -16,9 +19,13 @@ Required Properties:
- clock-names: Tuple including "clk_xin" and "clk_ahb"
- interrupts: Interrupt specifiers
- ti,otap-del-sel: Output Tap Delay select
+
+Optional Properties (Required for ti,am654-sdhci-5.1 and ti,j721e-sdhci-8bit):
- ti,trm-icp: DLL trim select
- ti,driver-strength-ohm: driver strength in ohms.
Valid values are 33, 40, 50, 66 and 100 ohms.
+Optional Properties:
+ - ti,strobe-sel: strobe select delay for HS400 speed mode. Default value: 0x0.
Example:
diff --git a/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt b/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt
index 45c9978aad7b..eb7eb1b529f0 100644
--- a/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt
+++ b/Documentation/devicetree/bindings/mmc/sdhci-sprd.txt
@@ -14,10 +14,31 @@ Required properties:
- clock-names: Should contain the following:
"sdio" - SDIO source clock (required)
"enable" - gate clock which used for enabling/disabling the device (required)
+ "2x_enable" - gate clock controlling the device for some special platforms (optional)
Optional properties:
- assigned-clocks: the same with "sdio" clock
- assigned-clock-parents: the default parent of "sdio" clock
+- pinctrl-names: should be "default", "state_uhs"
+- pinctrl-0: should contain default/high speed pin control
+- pinctrl-1: should contain uhs mode pin control
+
+PHY DLL delays are used to delay the data valid window, and align the window
+to sampling clock. PHY DLL delays can be configured by following properties,
+and each property contains 4 cells which are used to configure the clock data
+write line delay value, clock read command line delay value, clock read data
+positive edge delay value and clock read data negative edge delay value.
+Each cell's delay value unit is cycle of the PHY clock.
+
+- sprd,phy-delay-legacy: Delay value for legacy timing.
+- sprd,phy-delay-sd-highspeed: Delay value for SD high-speed timing.
+- sprd,phy-delay-sd-uhs-sdr50: Delay value for SD UHS SDR50 timing.
+- sprd,phy-delay-sd-uhs-sdr104: Delay value for SD UHS SDR50 timing.
+- sprd,phy-delay-mmc-highspeed: Delay value for MMC high-speed timing.
+- sprd,phy-delay-mmc-ddr52: Delay value for MMC DDR52 timing.
+- sprd,phy-delay-mmc-hs200: Delay value for MMC HS200 timing.
+- sprd,phy-delay-mmc-hs400: Delay value for MMC HS400 timing.
+- sprd,phy-delay-mmc-hs400es: Delay value for MMC HS400 enhanced strobe timing.
Examples:
@@ -32,6 +53,11 @@ sdio0: sdio@20600000 {
assigned-clocks = <&ap_clk CLK_EMMC_2X>;
assigned-clock-parents = <&rpll CLK_RPLL_390M>;
+ pinctrl-names = "default", "state_uhs";
+ pinctrl-0 = <&sd0_pins_default>;
+ pinctrl-1 = <&sd0_pins_uhs>;
+
+ sprd,phy-delay-sd-uhs-sdr104 = <0x3f 0x7f 0x2e 0x2e>;
bus-width = <8>;
non-removable;
no-sdio;
diff --git a/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt b/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt
deleted file mode 100644
index e9cb3ec5e502..000000000000
--- a/Documentation/devicetree/bindings/mmc/sunxi-mmc.txt
+++ /dev/null
@@ -1,52 +0,0 @@
-* Allwinner sunxi MMC controller
-
-The highspeed MMC host controller on Allwinner SoCs provides an interface
-for MMC, SD and SDIO types of memory cards.
-
-Supported maximum speeds are the ones of the eMMC standard 4.5 as well
-as the speed of SD standard 3.0.
-Absolute maximum transfer rate is 200MB/s
-
-Required properties:
- - compatible : should be one of:
- * "allwinner,sun4i-a10-mmc"
- * "allwinner,sun5i-a13-mmc"
- * "allwinner,sun7i-a20-mmc"
- * "allwinner,sun8i-a83t-emmc"
- * "allwinner,sun9i-a80-mmc"
- * "allwinner,sun50i-a64-emmc"
- * "allwinner,sun50i-a64-mmc"
- * "allwinner,sun50i-h6-emmc", "allwinner.sun50i-a64-emmc"
- * "allwinner,sun50i-h6-mmc", "allwinner.sun50i-a64-mmc"
- - reg : mmc controller base registers
- - clocks : a list with 4 phandle + clock specifier pairs
- - clock-names : must contain "ahb", "mmc", "output" and "sample"
- - interrupts : mmc controller interrupt
-
-Optional properties:
- - resets : phandle + reset specifier pair
- - reset-names : must contain "ahb"
- - for cd, bus-width and additional generic mmc parameters
- please refer to mmc.txt within this directory
-
-Examples:
- - Within .dtsi:
- mmc0: mmc@1c0f000 {
- compatible = "allwinner,sun5i-a13-mmc";
- reg = <0x01c0f000 0x1000>;
- clocks = <&ahb_gates 8>, <&mmc0_clk>, <&mmc0_output_clk>, <&mmc0_sample_clk>;
- clock-names = "ahb", "mod", "output", "sample";
- interrupts = <0 32 4>;
- status = "disabled";
- };
-
- - Within dts:
- mmc0: mmc@1c0f000 {
- pinctrl-names = "default", "default";
- pinctrl-0 = <&mmc0_pins_a>;
- pinctrl-1 = <&mmc0_cd_pin_reference_design>;
- bus-width = <4>;
- cd-gpios = <&pio 7 1 0>; /* PH1 */
- cd-inverted;
- status = "okay";
- };
diff --git a/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml b/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml
index fbd4da3684fc..b5b3cf5b1ac2 100644
--- a/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml
+++ b/Documentation/devicetree/bindings/mtd/allwinner,sun4i-a10-nand.yaml
@@ -55,9 +55,9 @@ patternProperties:
"^pinctrl-[0-9]+$": true
"^nand@[a-f0-9]+$":
+ type: object
properties:
reg:
- maxItems: 1
minimum: 0
maximum: 7
diff --git a/Documentation/devicetree/bindings/mtd/brcm,brcmnand.txt b/Documentation/devicetree/bindings/mtd/brcm,brcmnand.txt
index 0b7c3738b66c..82156dc8f304 100644
--- a/Documentation/devicetree/bindings/mtd/brcm,brcmnand.txt
+++ b/Documentation/devicetree/bindings/mtd/brcm,brcmnand.txt
@@ -28,6 +28,7 @@ Required properties:
brcm,brcmnand-v7.0
brcm,brcmnand-v7.1
brcm,brcmnand-v7.2
+ brcm,brcmnand-v7.3
brcm,brcmnand
- reg : the register start and length for NAND register region.
(optional) Flash DMA register range (if present)
@@ -101,10 +102,10 @@ Required properties:
number (e.g., 0, 1, 2, etc.)
- #address-cells : see partition.txt
- #size-cells : see partition.txt
-- nand-ecc-strength : see nand-controller.yaml
-- nand-ecc-step-size : must be 512 or 1024. See nand-controller.yaml
Optional properties:
+- nand-ecc-strength : see nand-controller.yaml
+- nand-ecc-step-size : must be 512 or 1024. See nand-controller.yaml
- nand-on-flash-bbt : boolean, to enable the on-flash BBT for this
chip-select. See nand-controller.yaml
- brcm,nand-oob-sector-size : integer, to denote the spare area sector size
diff --git a/Documentation/devicetree/bindings/mtd/cadence-quadspi.txt b/Documentation/devicetree/bindings/mtd/cadence-quadspi.txt
index 4345c3a6f530..945be7d5b236 100644
--- a/Documentation/devicetree/bindings/mtd/cadence-quadspi.txt
+++ b/Documentation/devicetree/bindings/mtd/cadence-quadspi.txt
@@ -35,6 +35,9 @@ custom properties:
(qspi_n_ss_out).
- cdns,tslch-ns : Delay in nanoseconds between setting qspi_n_ss_out low
and first bit transfer.
+- resets : Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names : Must include either "qspi" and/or "qspi-ocp".
Example:
@@ -50,6 +53,8 @@ Example:
cdns,fifo-depth = <128>;
cdns,fifo-width = <4>;
cdns,trigger-address = <0x00000000>;
+ resets = <&rst QSPI_RESET>, <&rst QSPI_OCP_RESET>;
+ reset-names = "qspi", "qspi-ocp";
flash0: n25q00@0 {
...
diff --git a/Documentation/devicetree/bindings/mtd/cypress,hyperflash.txt b/Documentation/devicetree/bindings/mtd/cypress,hyperflash.txt
new file mode 100644
index 000000000000..ad42f4db32f1
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/cypress,hyperflash.txt
@@ -0,0 +1,13 @@
+Bindings for HyperFlash NOR flash chips compliant with Cypress HyperBus
+specification and supports Cypress CFI specification 1.5 command set.
+
+Required properties:
+- compatible : "cypress,hyperflash", "cfi-flash" for HyperFlash NOR chips
+- reg : Address of flash's memory map
+
+Example:
+
+ flash@0 {
+ compatible = "cypress,hyperflash", "cfi-flash";
+ reg = <0x0 0x4000000>;
+ };
diff --git a/Documentation/devicetree/bindings/mtd/mxic-nand.txt b/Documentation/devicetree/bindings/mtd/mxic-nand.txt
new file mode 100644
index 000000000000..46c55295a3e6
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/mxic-nand.txt
@@ -0,0 +1,36 @@
+Macronix Raw NAND Controller Device Tree Bindings
+-------------------------------------------------
+
+Required properties:
+- compatible: should be "mxic,multi-itfc-v009-nand-controller"
+- reg: should contain 1 entry for the registers
+- #address-cells: should be set to 1
+- #size-cells: should be set to 0
+- interrupts: interrupt line connected to this raw NAND controller
+- clock-names: should contain "ps", "send" and "send_dly"
+- clocks: should contain 3 phandles for the "ps", "send" and
+ "send_dly" clocks
+
+Children nodes:
+- children nodes represent the available NAND chips.
+
+See Documentation/devicetree/bindings/mtd/nand-controller.yaml
+for more details on generic bindings.
+
+Example:
+
+ nand: nand-controller@43c30000 {
+ compatible = "mxic,multi-itfc-v009-nand-controller";
+ reg = <0x43c30000 0x10000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ interrupts = <GIC_SPI 0x1d IRQ_TYPE_EDGE_RISING>;
+ clocks = <&clkwizard 0>, <&clkwizard 1>, <&clkc 15>;
+ clock-names = "send", "send_dly", "ps";
+
+ nand@0 {
+ reg = <0>;
+ nand-ecc-mode = "soft";
+ nand-ecc-algo = "bch";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mtd/nand-controller.yaml b/Documentation/devicetree/bindings/mtd/nand-controller.yaml
index 199ba5ac2a06..d261b7096c69 100644
--- a/Documentation/devicetree/bindings/mtd/nand-controller.yaml
+++ b/Documentation/devicetree/bindings/mtd/nand-controller.yaml
@@ -40,6 +40,7 @@ properties:
patternProperties:
"^nand@[a-f0-9]$":
+ type: object
properties:
reg:
description:
diff --git a/Documentation/devicetree/bindings/mtd/stm32-quadspi.txt b/Documentation/devicetree/bindings/mtd/stm32-quadspi.txt
deleted file mode 100644
index ddd18c135148..000000000000
--- a/Documentation/devicetree/bindings/mtd/stm32-quadspi.txt
+++ /dev/null
@@ -1,43 +0,0 @@
-* STMicroelectronics Quad Serial Peripheral Interface(QuadSPI)
-
-Required properties:
-- compatible: should be "st,stm32f469-qspi"
-- reg: the first contains the register location and length.
- the second contains the memory mapping address and length
-- reg-names: should contain the reg names "qspi" "qspi_mm"
-- interrupts: should contain the interrupt for the device
-- clocks: the phandle of the clock needed by the QSPI controller
-- A pinctrl must be defined to set pins in mode of operation for QSPI transfer
-
-Optional properties:
-- resets: must contain the phandle to the reset controller.
-
-A spi flash must be a child of the nor_flash node and could have some
-properties. Also see jedec,spi-nor.txt.
-
-Required properties:
-- reg: chip-Select number (QSPI controller may connect 2 nor flashes)
-- spi-max-frequency: max frequency of spi bus
-
-Optional property:
-- spi-rx-bus-width: see ../spi/spi-bus.txt for the description
-
-Example:
-
-qspi: spi@a0001000 {
- compatible = "st,stm32f469-qspi";
- reg = <0xa0001000 0x1000>, <0x90000000 0x10000000>;
- reg-names = "qspi", "qspi_mm";
- interrupts = <91>;
- resets = <&rcc STM32F4_AHB3_RESET(QSPI)>;
- clocks = <&rcc 0 STM32F4_AHB3_CLOCK(QSPI)>;
- pinctrl-names = "default";
- pinctrl-0 = <&pinctrl_qspi0>;
-
- flash@0 {
- reg = <0>;
- spi-rx-bus-width = <4>;
- spi-max-frequency = <108000000>;
- ...
- };
-};
diff --git a/Documentation/devicetree/bindings/mtd/ti,am654-hbmc.txt b/Documentation/devicetree/bindings/mtd/ti,am654-hbmc.txt
new file mode 100644
index 000000000000..faa81c2e5da6
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/ti,am654-hbmc.txt
@@ -0,0 +1,51 @@
+Bindings for HyperBus Memory Controller (HBMC) on TI's K3 family of SoCs
+
+Required properties:
+- compatible : "ti,am654-hbmc" for AM654 SoC
+- reg : Two entries:
+ First entry pointed to the register space of HBMC controller
+ Second entry pointing to the memory map region dedicated for
+ MMIO access to attached flash devices
+- ranges : Address translation from offset within CS to allocated MMIO
+ space in SoC
+
+Optional properties:
+- mux-controls : phandle to the multiplexer that controls selection of
+ HBMC vs OSPI inside Flash SubSystem (FSS). Default is OSPI,
+ if property is absent.
+ See Documentation/devicetree/bindings/mux/reg-mux.txt
+ for mmio-mux binding details
+
+Example:
+
+ system-controller@47000000 {
+ compatible = "syscon", "simple-mfd";
+ reg = <0x0 0x47000000 0x0 0x100>;
+ #address-cells = <2>;
+ #size-cells = <2>;
+ ranges;
+
+ hbmc_mux: multiplexer {
+ compatible = "mmio-mux";
+ #mux-control-cells = <1>;
+ mux-reg-masks = <0x4 0x2>; /* 0: reg 0x4, bit 1 */
+ };
+ };
+
+ hbmc: hyperbus@47034000 {
+ compatible = "ti,am654-hbmc";
+ reg = <0x0 0x47034000 0x0 0x100>,
+ <0x5 0x00000000 0x1 0x0000000>;
+ power-domains = <&k3_pds 55>;
+ #address-cells = <2>;
+ #size-cells = <1>;
+ ranges = <0x0 0x0 0x5 0x00000000 0x4000000>, /* CS0 - 64MB */
+ <0x1 0x0 0x5 0x04000000 0x4000000>; /* CS1 - 64MB */
+ mux-controls = <&hbmc_mux 0>;
+
+ /* Slave flash node */
+ flash@0,0 {
+ compatible = "cypress,hyperflash", "cfi-flash";
+ reg = <0x0 0x0 0x4000000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mux/mmio-mux.txt b/Documentation/devicetree/bindings/mux/mmio-mux.txt
deleted file mode 100644
index a9bfb4d8b6ac..000000000000
--- a/Documentation/devicetree/bindings/mux/mmio-mux.txt
+++ /dev/null
@@ -1,60 +0,0 @@
-MMIO register bitfield-based multiplexer controller bindings
-
-Define register bitfields to be used to control multiplexers. The parent
-device tree node must be a syscon node to provide register access.
-
-Required properties:
-- compatible : "mmio-mux"
-- #mux-control-cells : <1>
-- mux-reg-masks : an array of register offset and pre-shifted bitfield mask
- pairs, each describing a single mux control.
-* Standard mux-controller bindings as decribed in mux-controller.txt
-
-Optional properties:
-- idle-states : if present, the state the muxes will have when idle. The
- special state MUX_IDLE_AS_IS is the default.
-
-The multiplexer state of each multiplexer is defined as the value of the
-bitfield described by the corresponding register offset and bitfield mask pair
-in the mux-reg-masks array, accessed through the parent syscon.
-
-Example:
-
- syscon {
- compatible = "syscon";
-
- mux: mux-controller {
- compatible = "mmio-mux";
- #mux-control-cells = <1>;
-
- mux-reg-masks = <0x3 0x30>, /* 0: reg 0x3, bits 5:4 */
- <0x3 0x40>, /* 1: reg 0x3, bit 6 */
- idle-states = <MUX_IDLE_AS_IS>, <0>;
- };
- };
-
- video-mux {
- compatible = "video-mux";
- mux-controls = <&mux 0>;
-
- ports {
- /* inputs 0..3 */
- port@0 {
- reg = <0>;
- };
- port@1 {
- reg = <1>;
- };
- port@2 {
- reg = <2>;
- };
- port@3 {
- reg = <3>;
- };
-
- /* output */
- port@4 {
- reg = <4>;
- };
- };
- };
diff --git a/Documentation/devicetree/bindings/mux/reg-mux.txt b/Documentation/devicetree/bindings/mux/reg-mux.txt
new file mode 100644
index 000000000000..4afd7ba73d60
--- /dev/null
+++ b/Documentation/devicetree/bindings/mux/reg-mux.txt
@@ -0,0 +1,129 @@
+Generic register bitfield-based multiplexer controller bindings
+
+Define register bitfields to be used to control multiplexers. The parent
+device tree node must be a device node to provide register r/w access.
+
+Required properties:
+- compatible : should be one of
+ "reg-mux" : if parent device of mux controller is not syscon device
+ "mmio-mux" : if parent device of mux controller is syscon device
+- #mux-control-cells : <1>
+- mux-reg-masks : an array of register offset and pre-shifted bitfield mask
+ pairs, each describing a single mux control.
+* Standard mux-controller bindings as decribed in mux-controller.txt
+
+Optional properties:
+- idle-states : if present, the state the muxes will have when idle. The
+ special state MUX_IDLE_AS_IS is the default.
+
+The multiplexer state of each multiplexer is defined as the value of the
+bitfield described by the corresponding register offset and bitfield mask
+pair in the mux-reg-masks array.
+
+Example 1:
+The parent device of mux controller is not a syscon device.
+
+&i2c0 {
+ fpga@66 { // fpga connected to i2c
+ compatible = "fsl,lx2160aqds-fpga", "fsl,fpga-qixis-i2c",
+ "simple-mfd";
+ reg = <0x66>;
+
+ mux: mux-controller {
+ compatible = "reg-mux";
+ #mux-control-cells = <1>;
+ mux-reg-masks = <0x54 0xf8>, /* 0: reg 0x54, bits 7:3 */
+ <0x54 0x07>; /* 1: reg 0x54, bits 2:0 */
+ };
+ };
+};
+
+mdio-mux-1 {
+ compatible = "mdio-mux-multiplexer";
+ mux-controls = <&mux 0>;
+ mdio-parent-bus = <&emdio1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ mdio@0 {
+ reg = <0x0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ mdio@8 {
+ reg = <0x8>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ ..
+ ..
+};
+
+mdio-mux-2 {
+ compatible = "mdio-mux-multiplexer";
+ mux-controls = <&mux 1>;
+ mdio-parent-bus = <&emdio2>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ mdio@0 {
+ reg = <0x0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ mdio@1 {
+ reg = <0x1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ ..
+ ..
+};
+
+Example 2:
+The parent device of mux controller is syscon device.
+
+syscon {
+ compatible = "syscon";
+
+ mux: mux-controller {
+ compatible = "mmio-mux";
+ #mux-control-cells = <1>;
+
+ mux-reg-masks = <0x3 0x30>, /* 0: reg 0x3, bits 5:4 */
+ <0x3 0x40>, /* 1: reg 0x3, bit 6 */
+ idle-states = <MUX_IDLE_AS_IS>, <0>;
+ };
+};
+
+video-mux {
+ compatible = "video-mux";
+ mux-controls = <&mux 0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ports {
+ /* inputs 0..3 */
+ port@0 {
+ reg = <0>;
+ };
+ port@1 {
+ reg = <1>;
+ };
+ port@2 {
+ reg = <2>;
+ };
+ port@3 {
+ reg = <3>;
+ };
+
+ /* output */
+ port@4 {
+ reg = <4>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/adi,adin.yaml b/Documentation/devicetree/bindings/net/adi,adin.yaml
new file mode 100644
index 000000000000..69375cb28e92
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/adi,adin.yaml
@@ -0,0 +1,73 @@
+# SPDX-License-Identifier: GPL-2.0+
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/adi,adin.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices ADIN1200/ADIN1300 PHY
+
+maintainers:
+ - Alexandru Ardelean <alexandru.ardelean@analog.com>
+
+description: |
+ Bindings for Analog Devices Industrial Ethernet PHYs
+
+allOf:
+ - $ref: ethernet-phy.yaml#
+
+properties:
+ adi,rx-internal-delay-ps:
+ description: |
+ RGMII RX Clock Delay used only when PHY operates in RGMII mode with
+ internal delay (phy-mode is 'rgmii-id' or 'rgmii-rxid') in pico-seconds.
+ enum: [ 1600, 1800, 2000, 2200, 2400 ]
+ default: 2000
+
+ adi,tx-internal-delay-ps:
+ description: |
+ RGMII TX Clock Delay used only when PHY operates in RGMII mode with
+ internal delay (phy-mode is 'rgmii-id' or 'rgmii-txid') in pico-seconds.
+ enum: [ 1600, 1800, 2000, 2200, 2400 ]
+ default: 2000
+
+ adi,fifo-depth-bits:
+ description: |
+ When operating in RMII mode, this option configures the FIFO depth.
+ enum: [ 4, 8, 12, 16, 20, 24 ]
+ default: 8
+
+ adi,disable-energy-detect:
+ description: |
+ Disables Energy Detect Powerdown Mode (default disabled, i.e energy detect
+ is enabled if this property is unspecified)
+ type: boolean
+
+examples:
+ - |
+ ethernet {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ phy-mode = "rgmii-id";
+
+ ethernet-phy@0 {
+ reg = <0>;
+
+ adi,rx-internal-delay-ps = <1800>;
+ adi,tx-internal-delay-ps = <2200>;
+ };
+ };
+ - |
+ ethernet {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ phy-mode = "rmii";
+
+ ethernet-phy@1 {
+ reg = <1>;
+
+ adi,fifo-depth-bits = <16>;
+ adi,disable-energy-detect;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml
new file mode 100644
index 000000000000..792196bf4abd
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-emac.yaml
@@ -0,0 +1,56 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun4i-a10-emac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 EMAC Ethernet Controller Device Tree Bindings
+
+allOf:
+ - $ref: "ethernet-controller.yaml#"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ const: allwinner,sun4i-a10-emac
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ allwinner,sram:
+ description: Phandle to the device SRAM
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - phy-handle
+ - allwinner,sram
+
+examples:
+ - |
+ emac: ethernet@1c0b000 {
+ compatible = "allwinner,sun4i-a10-emac";
+ reg = <0x01c0b000 0x1000>;
+ interrupts = <55>;
+ clocks = <&ahb_gates 17>;
+ phy-handle = <&phy0>;
+ allwinner,sram = <&emac_sram 1>;
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml
new file mode 100644
index 000000000000..df24d9d969f7
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun4i-a10-mdio.yaml
@@ -0,0 +1,70 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun4i-a10-mdio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 MDIO Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "mdio.yaml#"
+
+# Select every compatible, including the deprecated ones. This way, we
+# will be able to report a warning when we have that compatible, since
+# we will validate the node thanks to the select, but won't report it
+# as a valid value in the compatible property description
+select:
+ properties:
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-mdio
+
+ # Deprecated
+ - allwinner,sun4i-mdio
+
+ required:
+ - compatible
+
+properties:
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ compatible:
+ const: allwinner,sun4i-a10-mdio
+
+ reg:
+ maxItems: 1
+
+ phy-supply:
+ description: PHY regulator
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ mdio@1c0b080 {
+ compatible = "allwinner,sun4i-a10-mdio";
+ reg = <0x01c0b080 0x14>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ phy-supply = <&reg_emac_3v3>;
+
+ phy0: ethernet-phy@0 {
+ reg = <0>;
+ };
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt b/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt
deleted file mode 100644
index e98118aef5f6..000000000000
--- a/Documentation/devicetree/bindings/net/allwinner,sun4i-emac.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-* Allwinner EMAC ethernet controller
-
-Required properties:
-- compatible: should be "allwinner,sun4i-a10-emac" (Deprecated:
- "allwinner,sun4i-emac")
-- reg: address and length of the register set for the device.
-- interrupts: interrupt for the device
-- phy: see ethernet.txt file in the same directory.
-- clocks: A phandle to the reference clock for this device
-
-Example:
-
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun4i-a10-emac";
- reg = <0x01c0b000 0x1000>;
- interrupts = <55>;
- clocks = <&ahb_gates 17>;
- phy = <&phy0>;
-};
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt b/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt
deleted file mode 100644
index ab5b8613b0ef..000000000000
--- a/Documentation/devicetree/bindings/net/allwinner,sun4i-mdio.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-* Allwinner A10 MDIO Ethernet Controller interface
-
-Required properties:
-- compatible: should be "allwinner,sun4i-a10-mdio"
- (Deprecated: "allwinner,sun4i-mdio").
-- reg: address and length of the register set for the device.
-
-Optional properties:
-- phy-supply: phandle to a regulator if the PHY needs one
-
-Example at the SoC level:
-mdio@1c0b080 {
- compatible = "allwinner,sun4i-a10-mdio";
- reg = <0x01c0b080 0x14>;
- #address-cells = <1>;
- #size-cells = <0>;
-};
-
-And at the board level:
-
-mdio@1c0b080 {
- phy-supply = <&reg_emac_3v3>;
-
- phy0: ethernet-phy@0 {
- reg = <0>;
- };
-};
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt
deleted file mode 100644
index 8b3f953656e3..000000000000
--- a/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-* Allwinner GMAC ethernet controller
-
-This device is a platform glue layer for stmmac.
-Please see stmmac.txt for the other unchanged properties.
-
-Required properties:
- - compatible: Should be "allwinner,sun7i-a20-gmac"
- - clocks: Should contain the GMAC main clock, and tx clock
- The tx clock type should be "allwinner,sun7i-a20-gmac-clk"
- - clock-names: Should contain the clock names "stmmaceth",
- and "allwinner_gmac_tx"
-
-Optional properties:
-- phy-supply: phandle to a regulator if the PHY needs one
-
-Examples:
-
- gmac: ethernet@1c50000 {
- compatible = "allwinner,sun7i-a20-gmac";
- reg = <0x01c50000 0x10000>,
- <0x01c20164 0x4>;
- interrupts = <0 85 1>;
- interrupt-names = "macirq";
- clocks = <&ahb_gates 49>, <&gmac_tx>;
- clock-names = "stmmaceth", "allwinner_gmac_tx";
- phy-mode = "mii";
- };
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml
new file mode 100644
index 000000000000..ef446ae166f3
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun7i-a20-gmac.yaml
@@ -0,0 +1,68 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun7i-a20-gmac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A20 GMAC Device Tree Bindings
+
+allOf:
+ - $ref: "snps,dwmac.yaml#"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ const: allwinner,sun7i-a20-gmac
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-names:
+ const: macirq
+
+ clocks:
+ items:
+ - description: GMAC main clock
+ - description: TX clock
+
+ clock-names:
+ items:
+ - const: stmmaceth
+ - const: allwinner_gmac_tx
+
+ phy-supply:
+ description:
+ PHY regulator
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+ - clock-names
+ - phy-mode
+
+examples:
+ - |
+ gmac: ethernet@1c50000 {
+ compatible = "allwinner,sun7i-a20-gmac";
+ reg = <0x01c50000 0x10000>;
+ interrupts = <0 85 1>;
+ interrupt-names = "macirq";
+ clocks = <&ahb_gates 49>, <&gmac_tx>;
+ clock-names = "stmmaceth", "allwinner_gmac_tx";
+ phy-mode = "mii";
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml b/Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml
new file mode 100644
index 000000000000..3fb0714e761e
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/allwinner,sun8i-a83t-emac.yaml
@@ -0,0 +1,321 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/allwinner,sun8i-a83t-emac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A83t EMAC Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun8i-a83t-emac
+ - const: allwinner,sun8i-h3-emac
+ - const: allwinner,sun8i-r40-emac
+ - const: allwinner,sun8i-v3s-emac
+ - const: allwinner,sun50i-a64-emac
+ - items:
+ - const: allwinner,sun50i-h6-emac
+ - const: allwinner,sun50i-a64-emac
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-names:
+ const: macirq
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ const: stmmaceth
+
+ syscon:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Phandle to the device containing the EMAC or GMAC clock
+ register
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - phy-handle
+ - phy-mode
+ - syscon
+
+allOf:
+ - $ref: "snps,dwmac.yaml#"
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+
+ then:
+ properties:
+ allwinner,tx-delay-ps:
+ default: 0
+ minimum: 0
+ maximum: 700
+ multipleOf: 100
+ description:
+ External RGMII PHY TX clock delay chain value in ps.
+
+ allwinner,rx-delay-ps:
+ default: 0
+ minimum: 0
+ maximum: 3100
+ multipleOf: 100
+ description:
+ External RGMII PHY TX clock delay chain value in ps.
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-r40-emac
+
+ then:
+ properties:
+ allwinner,rx-delay-ps:
+ default: 0
+ minimum: 0
+ maximum: 700
+ multipleOf: 100
+ description:
+ External RGMII PHY TX clock delay chain value in ps.
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-v3s-emac
+
+ then:
+ properties:
+ allwinner,leds-active-low:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ EPHY LEDs are active low.
+
+ mdio-mux:
+ type: object
+
+ properties:
+ compatible:
+ const: allwinner,sun8i-h3-mdio-mux
+
+ mdio-parent-bus:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Phandle to EMAC MDIO.
+
+ mdio@1:
+ type: object
+ description: Internal MDIO Bus
+
+ properties:
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ compatible:
+ const: allwinner,sun8i-h3-mdio-internal
+
+ reg:
+ const: 1
+
+ patternProperties:
+ "^ethernet-phy@[0-9a-f]$":
+ type: object
+ description:
+ Integrated PHY node
+
+ properties:
+ clocks:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ required:
+ - clocks
+ - resets
+
+
+ mdio@2:
+ type: object
+ description: External MDIO Bus (H3 only)
+
+ properties:
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ reg:
+ const: 2
+
+ required:
+ - compatible
+ - mdio-parent-bus
+ - mdio@1
+
+examples:
+ - |
+ ethernet@1c0b000 {
+ compatible = "allwinner,sun8i-h3-emac";
+ syscon = <&syscon>;
+ reg = <0x01c0b000 0x104>;
+ interrupts = <0 82 1>;
+ interrupt-names = "macirq";
+ resets = <&ccu 12>;
+ reset-names = "stmmaceth";
+ clocks = <&ccu 27>;
+ clock-names = "stmmaceth";
+
+ phy-handle = <&int_mii_phy>;
+ phy-mode = "mii";
+ allwinner,leds-active-low;
+
+ mdio1: mdio {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "snps,dwmac-mdio";
+ };
+
+ mdio-mux {
+ compatible = "allwinner,sun8i-h3-mdio-mux";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ mdio-parent-bus = <&mdio1>;
+
+ int_mii_phy: mdio@1 {
+ compatible = "allwinner,sun8i-h3-mdio-internal";
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet-phy@1 {
+ reg = <1>;
+ clocks = <&ccu 67>;
+ resets = <&ccu 39>;
+ phy-is-integrated;
+ };
+ };
+
+ mdio@2 {
+ reg = <2>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+ };
+ };
+
+ - |
+ ethernet@1c0b000 {
+ compatible = "allwinner,sun8i-h3-emac";
+ syscon = <&syscon>;
+ reg = <0x01c0b000 0x104>;
+ interrupts = <0 82 1>;
+ interrupt-names = "macirq";
+ resets = <&ccu 12>;
+ reset-names = "stmmaceth";
+ clocks = <&ccu 27>;
+ clock-names = "stmmaceth";
+
+ phy-handle = <&ext_rgmii_phy>;
+ phy-mode = "rgmii";
+ allwinner,leds-active-low;
+
+ mdio2: mdio {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "snps,dwmac-mdio";
+ };
+
+ mdio-mux {
+ compatible = "allwinner,sun8i-h3-mdio-mux";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ mdio-parent-bus = <&mdio2>;
+
+ mdio@1 {
+ compatible = "allwinner,sun8i-h3-mdio-internal";
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet-phy@1 {
+ reg = <1>;
+ clocks = <&ccu 67>;
+ resets = <&ccu 39>;
+ };
+ };
+
+ mdio@2 {
+ reg = <2>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ext_rgmii_phy: ethernet-phy@1 {
+ reg = <1>;
+ };
+ };
+ };
+ };
+
+ - |
+ ethernet@1c0b000 {
+ compatible = "allwinner,sun8i-a83t-emac";
+ syscon = <&syscon>;
+ reg = <0x01c0b000 0x104>;
+ interrupts = <0 82 1>;
+ interrupt-names = "macirq";
+ resets = <&ccu 13>;
+ reset-names = "stmmaceth";
+ clocks = <&ccu 27>;
+ clock-names = "stmmaceth";
+ phy-handle = <&ext_rgmii_phy1>;
+ phy-mode = "rgmii";
+
+ mdio {
+ compatible = "snps,dwmac-mdio";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ext_rgmii_phy1: ethernet-phy@1 {
+ reg = <1>;
+ };
+ };
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml b/Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml
new file mode 100644
index 000000000000..ae91aa9d8616
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml
@@ -0,0 +1,113 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/net/amlogic,meson-dwmac.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson DWMAC Ethernet controller
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+ - Martin Blumenstingl <martin.blumenstingl@googlemail.com>
+
+# We need a select here so we don't match all nodes with 'snps,dwmac'
+select:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - amlogic,meson6-dwmac
+ - amlogic,meson8b-dwmac
+ - amlogic,meson8m2-dwmac
+ - amlogic,meson-gxbb-dwmac
+ - amlogic,meson-axg-dwmac
+ required:
+ - compatible
+
+allOf:
+ - $ref: "snps,dwmac.yaml#"
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - amlogic,meson8b-dwmac
+ - amlogic,meson8m2-dwmac
+ - amlogic,meson-gxbb-dwmac
+ - amlogic,meson-axg-dwmac
+
+ then:
+ properties:
+ clocks:
+ items:
+ - description: GMAC main clock
+ - description: First parent clock of the internal mux
+ - description: Second parent clock of the internal mux
+
+ clock-names:
+ minItems: 3
+ maxItems: 3
+ items:
+ - const: stmmaceth
+ - const: clkin0
+ - const: clkin1
+
+ amlogic,tx-delay-ns:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ The internal RGMII TX clock delay (provided by this driver) in
+ nanoseconds. Allowed values are 0ns, 2ns, 4ns, 6ns.
+ When phy-mode is set to "rgmii" then the TX delay should be
+ explicitly configured. When not configured a fallback of 2ns is
+ used. When the phy-mode is set to either "rgmii-id" or "rgmii-txid"
+ the TX clock delay is already provided by the PHY. In that case
+ this property should be set to 0ns (which disables the TX clock
+ delay in the MAC to prevent the clock from going off because both
+ PHY and MAC are adding a delay).
+ Any configuration is ignored when the phy-mode is set to "rmii".
+
+properties:
+ compatible:
+ additionalItems: true
+ maxItems: 3
+ items:
+ - enum:
+ - amlogic,meson6-dwmac
+ - amlogic,meson8b-dwmac
+ - amlogic,meson8m2-dwmac
+ - amlogic,meson-gxbb-dwmac
+ - amlogic,meson-axg-dwmac
+ contains:
+ enum:
+ - snps,dwmac-3.70a
+ - snps,dwmac
+
+ reg:
+ items:
+ - description:
+ The first register range should be the one of the DWMAC controller
+ - description:
+ The second range is is for the Amlogic specific configuration
+ (for example the PRG_ETHERNET register range on Meson8b and newer)
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - clocks
+ - clock-names
+ - phy-mode
+
+examples:
+ - |
+ ethmac: ethernet@c9410000 {
+ compatible = "amlogic,meson-gxbb-dwmac", "snps,dwmac";
+ reg = <0xc9410000 0x10000>, <0xc8834540 0x8>;
+ interrupts = <8>;
+ interrupt-names = "macirq";
+ clocks = <&clk_eth>, <&clkc_fclk_div2>, <&clk_mpll2>;
+ clock-names = "stmmaceth", "clkin0", "clkin1";
+ phy-mode = "rgmii";
+ };
diff --git a/Documentation/devicetree/bindings/net/aspeed,ast2600-mdio.yaml b/Documentation/devicetree/bindings/net/aspeed,ast2600-mdio.yaml
new file mode 100644
index 000000000000..71808e78a495
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/aspeed,ast2600-mdio.yaml
@@ -0,0 +1,45 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/aspeed,ast2600-mdio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ASPEED AST2600 MDIO Controller
+
+maintainers:
+ - Andrew Jeffery <andrew@aj.id.au>
+
+description: |+
+ The ASPEED AST2600 MDIO controller is the third iteration of ASPEED's MDIO
+ bus register interface, this time also separating out the controller from the
+ MAC.
+
+allOf:
+ - $ref: "mdio.yaml#"
+
+properties:
+ compatible:
+ const: aspeed,ast2600-mdio
+ reg:
+ maxItems: 1
+ description: The register range of the MDIO controller instance
+
+required:
+ - compatible
+ - reg
+ - "#address-cells"
+ - "#size-cells"
+
+examples:
+ - |
+ mdio0: mdio@1e650000 {
+ compatible = "aspeed,ast2600-mdio";
+ reg = <0x1e650000 0x8>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethphy0: ethernet-phy@0 {
+ compatible = "ethernet-phy-ieee802.3-c22";
+ reg = <0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/broadcom-bluetooth.txt b/Documentation/devicetree/bindings/net/broadcom-bluetooth.txt
index c26f4e11037c..4fa00e2eafcf 100644
--- a/Documentation/devicetree/bindings/net/broadcom-bluetooth.txt
+++ b/Documentation/devicetree/bindings/net/broadcom-bluetooth.txt
@@ -13,6 +13,7 @@ Required properties:
* "brcm,bcm20702a1"
* "brcm,bcm4330-bt"
* "brcm,bcm43438-bt"
+ * "brcm,bcm4345c5"
Optional properties:
diff --git a/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt b/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt
index bc77477c6878..94c0f8bf4deb 100644
--- a/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt
+++ b/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt
@@ -32,6 +32,15 @@ Optional properties:
ack_gpr is the gpr register offset of CAN stop acknowledge.
ack_bit is the bit offset of CAN stop acknowledge.
+- fsl,clk-source: Select the clock source to the CAN Protocol Engine (PE).
+ It's SoC Implementation dependent. Refer to RM for detailed
+ definition. If this property is not set in device tree node
+ then driver selects clock source 1 by default.
+ 0: clock source 0 (oscillator clock)
+ 1: clock source 1 (peripheral clock)
+
+- wakeup-source: enable CAN remote wakeup
+
Example:
can@1c000 {
@@ -40,4 +49,5 @@ Example:
interrupts = <48 0x2>;
interrupt-parent = <&mpic>;
clock-frequency = <200000000>; // filled in by bootloader
+ fsl,clk-source = <0>; // select clock source 0 for PE
};
diff --git a/Documentation/devicetree/bindings/net/can/rcar_can.txt b/Documentation/devicetree/bindings/net/can/rcar_can.txt
index 9936b9ee67c3..19e4a7d91511 100644
--- a/Documentation/devicetree/bindings/net/can/rcar_can.txt
+++ b/Documentation/devicetree/bindings/net/can/rcar_can.txt
@@ -5,7 +5,9 @@ Required properties:
- compatible: "renesas,can-r8a7743" if CAN controller is a part of R8A7743 SoC.
"renesas,can-r8a7744" if CAN controller is a part of R8A7744 SoC.
"renesas,can-r8a7745" if CAN controller is a part of R8A7745 SoC.
+ "renesas,can-r8a77470" if CAN controller is a part of R8A77470 SoC.
"renesas,can-r8a774a1" if CAN controller is a part of R8A774A1 SoC.
+ "renesas,can-r8a774c0" if CAN controller is a part of R8A774C0 SoC.
"renesas,can-r8a7778" if CAN controller is a part of R8A7778 SoC.
"renesas,can-r8a7779" if CAN controller is a part of R8A7779 SoC.
"renesas,can-r8a7790" if CAN controller is a part of R8A7790 SoC.
@@ -16,6 +18,8 @@ Required properties:
"renesas,can-r8a7795" if CAN controller is a part of R8A7795 SoC.
"renesas,can-r8a7796" if CAN controller is a part of R8A7796 SoC.
"renesas,can-r8a77965" if CAN controller is a part of R8A77965 SoC.
+ "renesas,can-r8a77990" if CAN controller is a part of R8A77990 SoC.
+ "renesas,can-r8a77995" if CAN controller is a part of R8A77995 SoC.
"renesas,rcar-gen1-can" for a generic R-Car Gen1 compatible device.
"renesas,rcar-gen2-can" for a generic R-Car Gen2 or RZ/G1
compatible device.
@@ -27,17 +31,13 @@ Required properties:
- reg: physical base address and size of the R-Car CAN register map.
- interrupts: interrupt specifier for the sole interrupt.
-- clocks: phandles and clock specifiers for 2 CAN clock inputs for RZ/G2
- devices.
- phandles and clock specifiers for 3 CAN clock inputs for every other
- SoC.
-- clock-names: 2 clock input name strings for RZ/G2: "clkp1", "can_clk".
- 3 clock input name strings for every other SoC: "clkp1", "clkp2",
- "can_clk".
+- clocks: phandles and clock specifiers for 3 CAN clock inputs.
+- clock-names: 3 clock input name strings: "clkp1", "clkp2", and "can_clk".
- pinctrl-0: pin control group to be used for this controller.
- pinctrl-names: must be "default".
-Required properties for R8A7795, R8A7796 and R8A77965:
+Required properties for R8A774A1, R8A774C0, R8A7795, R8A7796, R8A77965,
+R8A77990, and R8A77995:
For the denoted SoCs, "clkp2" can be CANFD clock. This is a div6 clock and can
be used by both CAN and CAN FD controller at the same time. It needs to be
scaled to maximum frequency if any of these controllers use it. This is done
@@ -49,8 +49,7 @@ using the below properties:
Optional properties:
- renesas,can-clock-select: R-Car CAN Clock Source Select. Valid values are:
<0x0> (default) : Peripheral clock (clkp1)
- <0x1> : Peripheral clock (clkp2) (not supported by
- RZ/G2 devices)
+ <0x1> : Peripheral clock (clkp2)
<0x3> : External input clock
Example
diff --git a/Documentation/devicetree/bindings/net/can/rcar_canfd.txt b/Documentation/devicetree/bindings/net/can/rcar_canfd.txt
index ac71daa46195..a901cd9be29e 100644
--- a/Documentation/devicetree/bindings/net/can/rcar_canfd.txt
+++ b/Documentation/devicetree/bindings/net/can/rcar_canfd.txt
@@ -3,11 +3,16 @@ Renesas R-Car CAN FD controller Device Tree Bindings
Required properties:
- compatible: Must contain one or more of the following:
- - "renesas,rcar-gen3-canfd" for R-Car Gen3 compatible controller.
+ - "renesas,rcar-gen3-canfd" for R-Car Gen3 and RZ/G2 compatible controllers.
+ - "renesas,r8a774a1-canfd" for R8A774A1 (RZ/G2M) compatible controller.
+ - "renesas,r8a774c0-canfd" for R8A774C0 (RZ/G2E) compatible controller.
- "renesas,r8a7795-canfd" for R8A7795 (R-Car H3) compatible controller.
- "renesas,r8a7796-canfd" for R8A7796 (R-Car M3-W) compatible controller.
+ - "renesas,r8a77965-canfd" for R8A77965 (R-Car M3-N) compatible controller.
- "renesas,r8a77970-canfd" for R8A77970 (R-Car V3M) compatible controller.
- "renesas,r8a77980-canfd" for R8A77980 (R-Car V3H) compatible controller.
+ - "renesas,r8a77990-canfd" for R8A77990 (R-Car E3) compatible controller.
+ - "renesas,r8a77995-canfd" for R8A77995 (R-Car D3) compatible controller.
When compatible with the generic version, nodes must list the
SoC-specific version corresponding to the platform first, followed by the
@@ -26,10 +31,10 @@ The name of the child nodes are "channel0" and "channel1" respectively. Each
child node supports the "status" property only, which is used to
enable/disable the respective channel.
-Required properties for "renesas,r8a7795-canfd" and "renesas,r8a7796-canfd"
-compatible:
-In R8A7795 and R8A7796 SoCs, canfd clock is a div6 clock and can be used by both
-CAN and CAN FD controller at the same time. It needs to be scaled to maximum
+Required properties for R8A774A1, R8A774C0, R8A7795, R8A7796, R8A77965,
+R8A77990, and R8A77995:
+In the denoted SoCs, canfd clock is a div6 clock and can be used by both CAN
+and CAN FD controller at the same time. It needs to be scaled to maximum
frequency if any of these controllers use it. This is done using the below
properties:
diff --git a/Documentation/devicetree/bindings/net/can/tcan4x5x.txt b/Documentation/devicetree/bindings/net/can/tcan4x5x.txt
new file mode 100644
index 000000000000..27e1b4cebfbd
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/can/tcan4x5x.txt
@@ -0,0 +1,40 @@
+Texas Instruments TCAN4x5x CAN Controller
+================================================
+
+This file provides device node information for the TCAN4x5x interface contains.
+
+Required properties:
+ - compatible: "ti,tcan4x5x"
+ - reg: 0
+ - #address-cells: 1
+ - #size-cells: 0
+ - spi-max-frequency: Maximum frequency of the SPI bus the chip can
+ operate at should be less than or equal to 18 MHz.
+ - device-wake-gpios: Wake up GPIO to wake up the TCAN device.
+ - interrupt-parent: the phandle to the interrupt controller which provides
+ the interrupt.
+ - interrupts: interrupt specification for data-ready.
+
+See Documentation/devicetree/bindings/net/can/m_can.txt for additional
+required property details.
+
+Optional properties:
+ - reset-gpios: Hardwired output GPIO. If not defined then software
+ reset.
+ - device-state-gpios: Input GPIO that indicates if the device is in
+ a sleep state or if the device is active.
+
+Example:
+tcan4x5x: tcan4x5x@0 {
+ compatible = "ti,tcan4x5x";
+ reg = <0>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ spi-max-frequency = <10000000>;
+ bosch,mram-cfg = <0x0 0 0 32 0 0 1 1>;
+ interrupt-parent = <&gpio1>;
+ interrupts = <14 GPIO_ACTIVE_LOW>;
+ device-state-gpios = <&gpio3 21 GPIO_ACTIVE_HIGH>;
+ device-wake-gpios = <&gpio1 15 GPIO_ACTIVE_HIGH>;
+ reset-gpios = <&gpio1 27 GPIO_ACTIVE_LOW>;
+};
diff --git a/Documentation/devicetree/bindings/net/dsa/ksz.txt b/Documentation/devicetree/bindings/net/dsa/ksz.txt
index e7db7268fd0f..95e91e84151c 100644
--- a/Documentation/devicetree/bindings/net/dsa/ksz.txt
+++ b/Documentation/devicetree/bindings/net/dsa/ksz.txt
@@ -5,6 +5,9 @@ Required properties:
- compatible: For external switch chips, compatible string must be exactly one
of the following:
+ - "microchip,ksz8765"
+ - "microchip,ksz8794"
+ - "microchip,ksz8795"
- "microchip,ksz9477"
- "microchip,ksz9897"
- "microchip,ksz9896"
@@ -12,10 +15,13 @@ Required properties:
- "microchip,ksz8565"
- "microchip,ksz9893"
- "microchip,ksz9563"
+ - "microchip,ksz8563"
Optional properties:
- reset-gpios : Should be a gpio specifier for a reset line
+- microchip,synclko-125 : Set if the output SYNCLKO frequency should be set to
+ 125MHz instead of 25MHz.
See Documentation/devicetree/bindings/net/dsa/dsa.txt for a list of additional
required and optional properties.
diff --git a/Documentation/devicetree/bindings/net/dsa/marvell.txt b/Documentation/devicetree/bindings/net/dsa/marvell.txt
index feb007af13cb..30c11fea491b 100644
--- a/Documentation/devicetree/bindings/net/dsa/marvell.txt
+++ b/Documentation/devicetree/bindings/net/dsa/marvell.txt
@@ -21,10 +21,13 @@ which is at a different MDIO base address in different switch families.
6341, 6350, 6351, 6352
- "marvell,mv88e6190" : Switch has base address 0x00. Use with models:
6190, 6190X, 6191, 6290, 6390, 6390X
+- "marvell,mv88e6250" : Switch has base address 0x08 or 0x18. Use with model:
+ 6220, 6250
Required properties:
-- compatible : Should be one of "marvell,mv88e6085" or
- "marvell,mv88e6190" as indicated above
+- compatible : Should be one of "marvell,mv88e6085",
+ "marvell,mv88e6190" or "marvell,mv88e6250" as
+ indicated above
- reg : Address on the MII bus for the switch.
Optional properties:
diff --git a/Documentation/devicetree/bindings/net/dsa/mt7530.txt b/Documentation/devicetree/bindings/net/dsa/mt7530.txt
index 47aa205ee0bd..c5ed5d25f642 100644
--- a/Documentation/devicetree/bindings/net/dsa/mt7530.txt
+++ b/Documentation/devicetree/bindings/net/dsa/mt7530.txt
@@ -35,6 +35,42 @@ Required properties for the child nodes within ports container:
- phy-mode: String, must be either "trgmii" or "rgmii" for port labeled
"cpu".
+Port 5 of the switch is muxed between:
+1. GMAC5: GMAC5 can interface with another external MAC or PHY.
+2. PHY of port 0 or port 4: PHY interfaces with an external MAC like 2nd GMAC
+ of the SOC. Used in many setups where port 0/4 becomes the WAN port.
+ Note: On a MT7621 SOC with integrated switch: 2nd GMAC can only connected to
+ GMAC5 when the gpios for RGMII2 (GPIO 22-33) are not used and not
+ connected to external component!
+
+Port 5 modes/configurations:
+1. Port 5 is disabled and isolated: An external phy can interface to the 2nd
+ GMAC of the SOC.
+ In the case of a build-in MT7530 switch, port 5 shares the RGMII bus with 2nd
+ GMAC and an optional external phy. Mind the GPIO/pinctl settings of the SOC!
+2. Port 5 is muxed to PHY of port 0/4: Port 0/4 interfaces with 2nd GMAC.
+ It is a simple MAC to PHY interface, port 5 needs to be setup for xMII mode
+ and RGMII delay.
+3. Port 5 is muxed to GMAC5 and can interface to an external phy.
+ Port 5 becomes an extra switch port.
+ Only works on platform where external phy TX<->RX lines are swapped.
+ Like in the Ubiquiti ER-X-SFP.
+4. Port 5 is muxed to GMAC5 and interfaces with the 2nd GAMC as 2nd CPU port.
+ Currently a 2nd CPU port is not supported by DSA code.
+
+Depending on how the external PHY is wired:
+1. normal: The PHY can only connect to 2nd GMAC but not to the switch
+2. swapped: RGMII TX, RX are swapped; external phy interface with the switch as
+ a ethernet port. But can't interface to the 2nd GMAC.
+
+Based on the DT the port 5 mode is configured.
+
+Driver tries to lookup the phy-handle of the 2nd GMAC of the master device.
+When phy-handle matches PHY of port 0 or 4 then port 5 set-up as mode 2.
+phy-mode must be set, see also example 2 below!
+ * mt7621: phy-mode = "rgmii-txid";
+ * mt7623: phy-mode = "rgmii";
+
See Documentation/devicetree/bindings/net/dsa/dsa.txt for a list of additional
required, optional properties and how the integrated switch subnodes must
be specified.
@@ -94,3 +130,181 @@ Example:
};
};
};
+
+Example 2: MT7621: Port 4 is WAN port: 2nd GMAC -> Port 5 -> PHY port 4.
+
+&eth {
+ gmac0: mac@0 {
+ compatible = "mediatek,eth-mac";
+ reg = <0>;
+ phy-mode = "rgmii";
+
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ pause;
+ };
+ };
+
+ gmac1: mac@1 {
+ compatible = "mediatek,eth-mac";
+ reg = <1>;
+ phy-mode = "rgmii-txid";
+ phy-handle = <&phy4>;
+ };
+
+ mdio: mdio-bus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* Internal phy */
+ phy4: ethernet-phy@4 {
+ reg = <4>;
+ };
+
+ mt7530: switch@1f {
+ compatible = "mediatek,mt7621";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x1f>;
+ pinctrl-names = "default";
+ mediatek,mcm;
+
+ resets = <&rstctrl 2>;
+ reset-names = "mcm";
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+ label = "lan0";
+ };
+
+ port@1 {
+ reg = <1>;
+ label = "lan1";
+ };
+
+ port@2 {
+ reg = <2>;
+ label = "lan2";
+ };
+
+ port@3 {
+ reg = <3>;
+ label = "lan3";
+ };
+
+/* Commented out. Port 4 is handled by 2nd GMAC.
+ port@4 {
+ reg = <4>;
+ label = "lan4";
+ };
+*/
+
+ cpu_port0: port@6 {
+ reg = <6>;
+ label = "cpu";
+ ethernet = <&gmac0>;
+ phy-mode = "rgmii";
+
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ pause;
+ };
+ };
+ };
+ };
+ };
+};
+
+Example 3: MT7621: Port 5 is connected to external PHY: Port 5 -> external PHY.
+
+&eth {
+ gmac0: mac@0 {
+ compatible = "mediatek,eth-mac";
+ reg = <0>;
+ phy-mode = "rgmii";
+
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ pause;
+ };
+ };
+
+ mdio: mdio-bus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* External phy */
+ ephy5: ethernet-phy@7 {
+ reg = <7>;
+ };
+
+ mt7530: switch@1f {
+ compatible = "mediatek,mt7621";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0x1f>;
+ pinctrl-names = "default";
+ mediatek,mcm;
+
+ resets = <&rstctrl 2>;
+ reset-names = "mcm";
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+ label = "lan0";
+ };
+
+ port@1 {
+ reg = <1>;
+ label = "lan1";
+ };
+
+ port@2 {
+ reg = <2>;
+ label = "lan2";
+ };
+
+ port@3 {
+ reg = <3>;
+ label = "lan3";
+ };
+
+ port@4 {
+ reg = <4>;
+ label = "lan4";
+ };
+
+ port@5 {
+ reg = <5>;
+ label = "lan5";
+ phy-mode = "rgmii";
+ phy-handle = <&ephy5>;
+ };
+
+ cpu_port0: port@6 {
+ reg = <6>;
+ label = "cpu";
+ ethernet = <&gmac0>;
+ phy-mode = "rgmii";
+
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ pause;
+ };
+ };
+ };
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/dsa/qca8k.txt b/Documentation/devicetree/bindings/net/dsa/qca8k.txt
index 93a7469e70d4..ccbc6d89325d 100644
--- a/Documentation/devicetree/bindings/net/dsa/qca8k.txt
+++ b/Documentation/devicetree/bindings/net/dsa/qca8k.txt
@@ -9,6 +9,10 @@ Required properties:
- #size-cells: must be 0
- #address-cells: must be 1
+Optional properties:
+
+- reset-gpios: GPIO to be used to reset the whole device
+
Subnodes:
The integrated switch subnode should be specified according to the binding
@@ -66,6 +70,7 @@ for the external mdio-bus configuration:
#address-cells = <1>;
#size-cells = <0>;
+ reset-gpios = <&gpio 42 GPIO_ACTIVE_LOW>;
reg = <0x10>;
ports {
@@ -123,6 +128,7 @@ for the internal master mdio-bus configuration:
#address-cells = <1>;
#size-cells = <0>;
+ reset-gpios = <&gpio 42 GPIO_ACTIVE_LOW>;
reg = <0x10>;
ports {
diff --git a/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt b/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt
index ed4710c40641..bbf4a13f6d75 100644
--- a/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt
+++ b/Documentation/devicetree/bindings/net/dsa/vitesse,vsc73xx.txt
@@ -2,8 +2,8 @@ Vitesse VSC73xx Switches
========================
This defines device tree bindings for the Vitesse VSC73xx switch chips.
-The Vitesse company has been acquired by Microsemi and Microsemi in turn
-acquired by Microchip but retains this vendor branding.
+The Vitesse company has been acquired by Microsemi and Microsemi has
+been acquired Microchip but retains this vendor branding.
The currently supported switch chips are:
Vitesse VSC7385 SparX-G5 5+1-port Integrated Gigabit Ethernet Switch
@@ -11,8 +11,14 @@ Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch
Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch
Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch
-The device tree node is an SPI device so it must reside inside a SPI bus
-device tree node, see spi/spi-bus.txt
+This switch could have two different management interface.
+
+If SPI interface is used, the device tree node is an SPI device so it must
+reside inside a SPI bus device tree node, see spi/spi-bus.txt
+
+When the chip is connected to a parallel memory bus and work in memory-mapped
+I/O mode, a platform device is used to represent the vsc73xx. In this case it
+must reside inside a platform bus device tree node.
Required properties:
@@ -38,6 +44,7 @@ and subnodes of DSA switches.
Examples:
+SPI:
switch@0 {
compatible = "vitesse,vsc7395";
reg = <0>;
@@ -79,3 +86,46 @@ switch@0 {
};
};
};
+
+Platform:
+switch@2,0 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "vitesse,vsc7385";
+ reg = <0x2 0x0 0x20000>;
+ reset-gpios = <&gpio0 12 GPIO_ACTIVE_LOW>;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ reg = <0>;
+ label = "lan1";
+ };
+ port@1 {
+ reg = <1>;
+ label = "lan2";
+ };
+ port@2 {
+ reg = <2>;
+ label = "lan3";
+ };
+ port@3 {
+ reg = <3>;
+ label = "lan4";
+ };
+ vsc: port@6 {
+ reg = <6>;
+ label = "cpu";
+ ethernet = <&enet0>;
+ phy-mode = "rgmii";
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ pause;
+ };
+ };
+ };
+
+};
diff --git a/Documentation/devicetree/bindings/net/dwmac-sun8i.txt b/Documentation/devicetree/bindings/net/dwmac-sun8i.txt
deleted file mode 100644
index 54c66d0611cb..000000000000
--- a/Documentation/devicetree/bindings/net/dwmac-sun8i.txt
+++ /dev/null
@@ -1,201 +0,0 @@
-* Allwinner sun8i GMAC ethernet controller
-
-This device is a platform glue layer for stmmac.
-Please see stmmac.txt for the other unchanged properties.
-
-Required properties:
-- compatible: must be one of the following string:
- "allwinner,sun8i-a83t-emac"
- "allwinner,sun8i-h3-emac"
- "allwinner,sun8i-r40-gmac"
- "allwinner,sun8i-v3s-emac"
- "allwinner,sun50i-a64-emac"
- "allwinner,sun50i-h6-emac", "allwinner-sun50i-a64-emac"
-- reg: address and length of the register for the device.
-- interrupts: interrupt for the device
-- interrupt-names: must be "macirq"
-- clocks: A phandle to the reference clock for this device
-- clock-names: must be "stmmaceth"
-- resets: A phandle to the reset control for this device
-- reset-names: must be "stmmaceth"
-- phy-mode: See ethernet.txt
-- phy-handle: See ethernet.txt
-- syscon: A phandle to the device containing the EMAC or GMAC clock register
-
-Optional properties:
-- allwinner,tx-delay-ps: TX clock delay chain value in ps.
- Range is 0-700. Default is 0.
- Unavailable for allwinner,sun8i-r40-gmac
-- allwinner,rx-delay-ps: RX clock delay chain value in ps.
- Range is 0-3100. Default is 0.
- Range is 0-700 for allwinner,sun8i-r40-gmac
-Both delay properties need to be a multiple of 100. They control the
-clock delay for external RGMII PHY. They do not apply to the internal
-PHY or external non-RGMII PHYs.
-
-Optional properties for the following compatibles:
- - "allwinner,sun8i-h3-emac",
- - "allwinner,sun8i-v3s-emac":
-- allwinner,leds-active-low: EPHY LEDs are active low
-
-Required child node of emac:
-- mdio bus node: should be named mdio with compatible "snps,dwmac-mdio"
-
-Required properties of the mdio node:
-- #address-cells: shall be 1
-- #size-cells: shall be 0
-
-The device node referenced by "phy" or "phy-handle" must be a child node
-of the mdio node. See phy.txt for the generic PHY bindings.
-
-The following compatibles require that the emac node have a mdio-mux child
-node called "mdio-mux":
- - "allwinner,sun8i-h3-emac"
- - "allwinner,sun8i-v3s-emac":
-Required properties for the mdio-mux node:
- - compatible = "allwinner,sun8i-h3-mdio-mux"
- - mdio-parent-bus: a phandle to EMAC mdio
- - one child mdio for the integrated mdio with the compatible
- "allwinner,sun8i-h3-mdio-internal"
- - one child mdio for the external mdio if present (V3s have none)
-Required properties for the mdio-mux children node:
- - reg: 1 for internal MDIO bus, 2 for external MDIO bus
-
-The following compatibles require a PHY node representing the integrated
-PHY, under the integrated MDIO bus node if an mdio-mux node is used:
- - "allwinner,sun8i-h3-emac",
- - "allwinner,sun8i-v3s-emac":
-
-Additional information regarding generic multiplexer properties can be found
-at Documentation/devicetree/bindings/net/mdio-mux.txt
-
-Required properties of the integrated phy node:
-- clocks: a phandle to the reference clock for the EPHY
-- resets: a phandle to the reset control for the EPHY
-- Must be a child of the integrated mdio
-
-Example with integrated PHY:
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun8i-h3-emac";
- syscon = <&syscon>;
- reg = <0x01c0b000 0x104>;
- interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "macirq";
- resets = <&ccu RST_BUS_EMAC>;
- reset-names = "stmmaceth";
- clocks = <&ccu CLK_BUS_EMAC>;
- clock-names = "stmmaceth";
-
- phy-handle = <&int_mii_phy>;
- phy-mode = "mii";
- allwinner,leds-active-low;
-
- mdio: mdio {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "snps,dwmac-mdio";
- };
-
- mdio-mux {
- compatible = "mdio-mux", "allwinner,sun8i-h3-mdio-mux";
- #address-cells = <1>;
- #size-cells = <0>;
-
- mdio-parent-bus = <&mdio>;
-
- int_mdio: mdio@1 {
- compatible = "allwinner,sun8i-h3-mdio-internal";
- reg = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
- int_mii_phy: ethernet-phy@1 {
- reg = <1>;
- clocks = <&ccu CLK_BUS_EPHY>;
- resets = <&ccu RST_BUS_EPHY>;
- phy-is-integrated;
- };
- };
- ext_mdio: mdio@2 {
- reg = <2>;
- #address-cells = <1>;
- #size-cells = <0>;
- };
- };
-};
-
-Example with external PHY:
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun8i-h3-emac";
- syscon = <&syscon>;
- reg = <0x01c0b000 0x104>;
- interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "macirq";
- resets = <&ccu RST_BUS_EMAC>;
- reset-names = "stmmaceth";
- clocks = <&ccu CLK_BUS_EMAC>;
- clock-names = "stmmaceth";
-
- phy-handle = <&ext_rgmii_phy>;
- phy-mode = "rgmii";
- allwinner,leds-active-low;
-
- mdio: mdio {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "snps,dwmac-mdio";
- };
-
- mdio-mux {
- compatible = "allwinner,sun8i-h3-mdio-mux";
- #address-cells = <1>;
- #size-cells = <0>;
-
- mdio-parent-bus = <&mdio>;
-
- int_mdio: mdio@1 {
- compatible = "allwinner,sun8i-h3-mdio-internal";
- reg = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
- int_mii_phy: ethernet-phy@1 {
- reg = <1>;
- clocks = <&ccu CLK_BUS_EPHY>;
- resets = <&ccu RST_BUS_EPHY>;
- };
- };
- ext_mdio: mdio@2 {
- reg = <2>;
- #address-cells = <1>;
- #size-cells = <0>;
- ext_rgmii_phy: ethernet-phy@1 {
- reg = <1>;
- };
- }:
- };
-};
-
-Example with SoC without integrated PHY
-
-emac: ethernet@1c0b000 {
- compatible = "allwinner,sun8i-a83t-emac";
- syscon = <&syscon>;
- reg = <0x01c0b000 0x104>;
- interrupts = <GIC_SPI 82 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "macirq";
- resets = <&ccu RST_BUS_EMAC>;
- reset-names = "stmmaceth";
- clocks = <&ccu CLK_BUS_EMAC>;
- clock-names = "stmmaceth";
-
- phy-handle = <&ext_rgmii_phy>;
- phy-mode = "rgmii";
-
- mdio: mdio {
- compatible = "snps,dwmac-mdio";
- #address-cells = <1>;
- #size-cells = <0>;
- ext_rgmii_phy: ethernet-phy@1 {
- reg = <1>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/net/ethernet-controller.yaml b/Documentation/devicetree/bindings/net/ethernet-controller.yaml
new file mode 100644
index 000000000000..0e7c31794ae6
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/ethernet-controller.yaml
@@ -0,0 +1,206 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/ethernet-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Ethernet Controller Generic Binding
+
+maintainers:
+ - David S. Miller <davem@davemloft.net>
+
+properties:
+ $nodename:
+ pattern: "^ethernet(@.*)?$"
+
+ local-mac-address:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint8-array
+ - items:
+ - minItems: 6
+ maxItems: 6
+ description:
+ Specifies the MAC address that was assigned to the network device.
+
+ mac-address:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint8-array
+ - items:
+ - minItems: 6
+ maxItems: 6
+ description:
+ Specifies the MAC address that was last used by the boot
+ program; should be used in cases where the MAC address assigned
+ to the device by the boot program is different from the
+ local-mac-address property.
+
+ max-frame-size:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Maximum transfer unit (IEEE defined MTU), rather than the
+ maximum frame size (there\'s contradiction in the Devicetree
+ Specification).
+
+ max-speed:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Specifies maximum speed in Mbit/s supported by the device.
+
+ nvmem-cells:
+ maxItems: 1
+ description:
+ Reference to an nvmem node for the MAC address
+
+ nvmem-cells-names:
+ const: mac-address
+
+ phy-connection-type:
+ description:
+ Operation mode of the PHY interface
+ enum:
+ # There is not a standard bus between the MAC and the PHY,
+ # something proprietary is being used to embed the PHY in the
+ # MAC.
+ - internal
+ - mii
+ - gmii
+ - sgmii
+ - qsgmii
+ - tbi
+ - rev-mii
+ - rmii
+
+ # RX and TX delays are added by the MAC when required
+ - rgmii
+
+ # RGMII with internal RX and TX delays provided by the PHY,
+ # the MAC should not add the RX or TX delays in this case
+ - rgmii-id
+
+ # RGMII with internal RX delay provided by the PHY, the MAC
+ # should not add an RX delay in this case
+ - rgmii-rxid
+
+ # RGMII with internal TX delay provided by the PHY, the MAC
+ # should not add an TX delay in this case
+ - rgmii-txid
+ - rtbi
+ - smii
+ - xgmii
+ - trgmii
+ - 1000base-x
+ - 2500base-x
+ - rxaui
+ - xaui
+
+ # 10GBASE-KR, XFI, SFI
+ - 10gbase-kr
+ - usxgmii
+
+ phy-mode:
+ $ref: "#/properties/phy-connection-type"
+
+ phy-handle:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Specifies a reference to a node representing a PHY device.
+
+ phy:
+ $ref: "#/properties/phy-handle"
+ deprecated: true
+
+ phy-device:
+ $ref: "#/properties/phy-handle"
+ deprecated: true
+
+ rx-fifo-depth:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ The size of the controller\'s receive fifo in bytes. This is used
+ for components that can have configurable receive fifo sizes,
+ and is useful for determining certain configuration settings
+ such as flow control thresholds.
+
+ tx-fifo-depth:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ The size of the controller\'s transmit fifo in bytes. This
+ is used for components that can have configurable fifo sizes.
+
+ managed:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/string
+ - default: auto
+ enum:
+ - auto
+ - in-band-status
+ description:
+ Specifies the PHY management type. If auto is set and fixed-link
+ is not specified, it uses MDIO for management.
+
+ fixed-link:
+ allOf:
+ - if:
+ type: array
+ then:
+ deprecated: true
+ minItems: 1
+ maxItems: 1
+ items:
+ items:
+ - minimum: 0
+ maximum: 31
+ description:
+ Emulated PHY ID, choose any but unique to the all
+ specified fixed-links
+
+ - enum: [0, 1]
+ description:
+ Duplex configuration. 0 for half duplex or 1 for
+ full duplex
+
+ - enum: [10, 100, 1000]
+ description:
+ Link speed in Mbits/sec.
+
+ - enum: [0, 1]
+ description:
+ Pause configuration. 0 for no pause, 1 for pause
+
+ - enum: [0, 1]
+ description:
+ Asymmetric pause configuration. 0 for no asymmetric
+ pause, 1 for asymmetric pause
+
+
+ - if:
+ type: object
+ then:
+ properties:
+ speed:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [10, 100, 1000]
+ description:
+ Link speed.
+
+ full-duplex:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Indicates that full-duplex is used. When absent, half
+ duplex is assumed.
+
+ asym-pause:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Indicates that asym_pause should be enabled.
+
+ link-gpios:
+ maxItems: 1
+ description:
+ GPIO to determine if the link is up
+
+ required:
+ - speed
+
+...
diff --git a/Documentation/devicetree/bindings/net/ethernet-phy.yaml b/Documentation/devicetree/bindings/net/ethernet-phy.yaml
new file mode 100644
index 000000000000..f70f18ff821f
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/ethernet-phy.yaml
@@ -0,0 +1,177 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/ethernet-phy.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Ethernet PHY Generic Binding
+
+maintainers:
+ - Andrew Lunn <andrew@lunn.ch>
+ - Florian Fainelli <f.fainelli@gmail.com>
+ - Heiner Kallweit <hkallweit1@gmail.com>
+
+# The dt-schema tools will generate a select statement first by using
+# the compatible, and second by using the node name if any. In our
+# case, the node name is the one we want to match on, while the
+# compatible is optional.
+select:
+ properties:
+ $nodename:
+ pattern: "^ethernet-phy(@[a-f0-9]+)?$"
+
+ required:
+ - $nodename
+
+properties:
+ $nodename:
+ pattern: "^ethernet-phy(@[a-f0-9]+)?$"
+
+ compatible:
+ oneOf:
+ - const: ethernet-phy-ieee802.3-c22
+ description: PHYs that implement IEEE802.3 clause 22
+ - const: ethernet-phy-ieee802.3-c45
+ description: PHYs that implement IEEE802.3 clause 45
+ - pattern: "^ethernet-phy-id[a-f0-9]{4}\\.[a-f0-9]{4}$"
+ description:
+ If the PHY reports an incorrect ID (or none at all) then the
+ compatible list may contain an entry with the correct PHY ID
+ in the above form.
+ The first group of digits is the 16 bit Phy Identifier 1
+ register, this is the chip vendor OUI bits 3:18. The
+ second group of digits is the Phy Identifier 2 register,
+ this is the chip vendor OUI bits 19:24, followed by 10
+ bits of a vendor specific ID.
+ - items:
+ - pattern: "^ethernet-phy-id[a-f0-9]{4}\\.[a-f0-9]{4}$"
+ - const: ethernet-phy-ieee802.3-c45
+
+ reg:
+ minimum: 0
+ maximum: 31
+ description:
+ The ID number for the PHY.
+
+ interrupts:
+ maxItems: 1
+
+ max-speed:
+ enum:
+ - 10
+ - 100
+ - 1000
+ - 2500
+ - 5000
+ - 10000
+ - 20000
+ - 25000
+ - 40000
+ - 50000
+ - 56000
+ - 100000
+ - 200000
+ description:
+ Maximum PHY supported speed in Mbits / seconds.
+
+ broken-turn-around:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ If set, indicates the PHY device does not correctly release
+ the turn around line low at the end of a MDIO transaction.
+
+ enet-phy-lane-swap:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ If set, indicates the PHY will swap the TX/RX lanes to
+ compensate for the board being designed with the lanes
+ swapped.
+
+ eee-broken-100tx:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-1000t:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-10gt:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-1000kx:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-10gkx4:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ eee-broken-10gkr:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Mark the corresponding energy efficient ethernet mode as
+ broken and request the ethernet to stop advertising it.
+
+ phy-is-integrated:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ If set, indicates that the PHY is integrated into the same
+ physical package as the Ethernet MAC. If needed, muxers
+ should be configured to ensure the integrated PHY is
+ used. The absence of this property indicates the muxers
+ should be configured so that the external PHY is used.
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ const: phy
+
+ reset-gpios:
+ maxItems: 1
+ description:
+ The GPIO phandle and specifier for the PHY reset signal.
+
+ reset-assert-us:
+ description:
+ Delay after the reset was asserted in microseconds. If this
+ property is missing the delay will be skipped.
+
+ reset-deassert-us:
+ description:
+ Delay after the reset was deasserted in microseconds. If
+ this property is missing the delay will be skipped.
+
+required:
+ - reg
+
+examples:
+ - |
+ ethernet {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet-phy@0 {
+ compatible = "ethernet-phy-id0141.0e90", "ethernet-phy-ieee802.3-c45";
+ interrupt-parent = <&PIC>;
+ interrupts = <35 1>;
+ reg = <0>;
+
+ resets = <&rst 8>;
+ reset-names = "phy";
+ reset-gpios = <&gpio1 4 1>;
+ reset-assert-us = <1000>;
+ reset-deassert-us = <2000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/ethernet.txt b/Documentation/devicetree/bindings/net/ethernet.txt
index e88c3641d613..5df413d01be2 100644
--- a/Documentation/devicetree/bindings/net/ethernet.txt
+++ b/Documentation/devicetree/bindings/net/ethernet.txt
@@ -1,67 +1 @@
-The following properties are common to the Ethernet controllers:
-
-NOTE: All 'phy*' properties documented below are Ethernet specific. For the
-generic PHY 'phys' property, see
-Documentation/devicetree/bindings/phy/phy-bindings.txt.
-
-- mac-address: array of 6 bytes, specifies the MAC address that was last used by
- the boot program; should be used in cases where the MAC address assigned to
- the device by the boot program is different from the "local-mac-address"
- property;
-- local-mac-address: array of 6 bytes, specifies the MAC address that was
- assigned to the network device;
-- nvmem-cells: phandle, reference to an nvmem node for the MAC address
-- nvmem-cell-names: string, should be "mac-address" if nvmem is to be used
-- max-speed: number, specifies maximum speed in Mbit/s supported by the device;
-- max-frame-size: number, maximum transfer unit (IEEE defined MTU), rather than
- the maximum frame size (there's contradiction in the Devicetree
- Specification).
-- phy-mode: string, operation mode of the PHY interface. This is now a de-facto
- standard property; supported values are:
- * "internal" (Internal means there is not a standard bus between the MAC and
- the PHY, something proprietary is being used to embed the PHY in the MAC.)
- * "mii"
- * "gmii"
- * "sgmii"
- * "qsgmii"
- * "tbi"
- * "rev-mii"
- * "rmii"
- * "rgmii" (RX and TX delays are added by the MAC when required)
- * "rgmii-id" (RGMII with internal RX and TX delays provided by the PHY, the
- MAC should not add the RX or TX delays in this case)
- * "rgmii-rxid" (RGMII with internal RX delay provided by the PHY, the MAC
- should not add an RX delay in this case)
- * "rgmii-txid" (RGMII with internal TX delay provided by the PHY, the MAC
- should not add an TX delay in this case)
- * "rtbi"
- * "smii"
- * "xgmii"
- * "trgmii"
- * "1000base-x",
- * "2500base-x",
- * "rxaui"
- * "xaui"
- * "10gbase-kr" (10GBASE-KR, XFI, SFI)
-- phy-connection-type: the same as "phy-mode" property but described in the
- Devicetree Specification;
-- phy-handle: phandle, specifies a reference to a node representing a PHY
- device; this property is described in the Devicetree Specification and so
- preferred;
-- phy: the same as "phy-handle" property, not recommended for new bindings.
-- phy-device: the same as "phy-handle" property, not recommended for new
- bindings.
-- rx-fifo-depth: the size of the controller's receive fifo in bytes. This
- is used for components that can have configurable receive fifo sizes,
- and is useful for determining certain configuration settings such as
- flow control thresholds.
-- tx-fifo-depth: the size of the controller's transmit fifo in bytes. This
- is used for components that can have configurable fifo sizes.
-- managed: string, specifies the PHY management type. Supported values are:
- "auto", "in-band-status". "auto" is the default, it usess MDIO for
- management if fixed-link is not specified.
-
-Child nodes of the Ethernet controller are typically the individual PHY devices
-connected via the MDIO bus (sometimes the MDIO bus controller is separate).
-They are described in the phy.txt file in this same directory.
-For non-MDIO PHY management see fixed-link.txt.
+This file has moved to ethernet-controller.yaml.
diff --git a/Documentation/devicetree/bindings/net/fixed-link.txt b/Documentation/devicetree/bindings/net/fixed-link.txt
index ec5d889fe3d8..5df413d01be2 100644
--- a/Documentation/devicetree/bindings/net/fixed-link.txt
+++ b/Documentation/devicetree/bindings/net/fixed-link.txt
@@ -1,54 +1 @@
-Fixed link Device Tree binding
-------------------------------
-
-Some Ethernet MACs have a "fixed link", and are not connected to a
-normal MDIO-managed PHY device. For those situations, a Device Tree
-binding allows to describe a "fixed link".
-
-Such a fixed link situation is described by creating a 'fixed-link'
-sub-node of the Ethernet MAC device node, with the following
-properties:
-
-* 'speed' (integer, mandatory), to indicate the link speed. Accepted
- values are 10, 100 and 1000
-* 'full-duplex' (boolean, optional), to indicate that full duplex is
- used. When absent, half duplex is assumed.
-* 'pause' (boolean, optional), to indicate that pause should be
- enabled.
-* 'asym-pause' (boolean, optional), to indicate that asym_pause should
- be enabled.
-* 'link-gpios' ('gpio-list', optional), to indicate if a gpio can be read
- to determine if the link is up.
-
-Old, deprecated 'fixed-link' binding:
-
-* A 'fixed-link' property in the Ethernet MAC node, with 5 cells, of the
- form <a b c d e> with the following accepted values:
- - a: emulated PHY ID, choose any but but unique to the all specified
- fixed-links, from 0 to 31
- - b: duplex configuration: 0 for half duplex, 1 for full duplex
- - c: link speed in Mbits/sec, accepted values are: 10, 100 and 1000
- - d: pause configuration: 0 for no pause, 1 for pause
- - e: asymmetric pause configuration: 0 for no asymmetric pause, 1 for
- asymmetric pause
-
-Examples:
-
-ethernet@0 {
- ...
- fixed-link {
- speed = <1000>;
- full-duplex;
- };
- ...
-};
-
-ethernet@1 {
- ...
- fixed-link {
- speed = <1000>;
- pause;
- link-gpios = <&gpio0 12 GPIO_ACTIVE_HIGH>;
- };
- ...
-};
+This file has moved to ethernet-controller.yaml.
diff --git a/Documentation/devicetree/bindings/net/fsl-enetc.txt b/Documentation/devicetree/bindings/net/fsl-enetc.txt
index c812e25ae90f..b7034ccbc1bd 100644
--- a/Documentation/devicetree/bindings/net/fsl-enetc.txt
+++ b/Documentation/devicetree/bindings/net/fsl-enetc.txt
@@ -11,13 +11,15 @@ Required properties:
to parent node bindings.
- compatible : Should be "fsl,enetc".
-1) The ENETC external port is connected to a MDIO configurable phy:
+1. The ENETC external port is connected to a MDIO configurable phy
+
+1.1. Using the local ENETC Port MDIO interface
In this case, the ENETC node should include a "mdio" sub-node
that in turn should contain the "ethernet-phy" node describing the
external phy. Below properties are required, their bindings
-already defined in ethernet.txt or phy.txt, under
-Documentation/devicetree/bindings/net/*.
+already defined in Documentation/devicetree/bindings/net/ethernet.txt or
+Documentation/devicetree/bindings/net/phy.txt.
Required:
@@ -47,12 +49,45 @@ Example:
};
};
-2) The ENETC port is an internal port or has a fixed-link external
-connection:
+1.2. Using the central MDIO PCIe endpoint device
+
+In this case, the mdio node should be defined as another PCIe
+endpoint node, at the same level with the ENETC port nodes.
+
+Required properties:
+
+- reg : Specifies PCIe Device Number and Function
+ Number of the ENETC endpoint device, according
+ to parent node bindings.
+- compatible : Should be "fsl,enetc-mdio".
+
+The remaining required mdio bus properties are standard, their bindings
+already defined in Documentation/devicetree/bindings/net/mdio.txt.
+
+Example:
+
+ ethernet@0,0 {
+ compatible = "fsl,enetc";
+ reg = <0x000000 0 0 0 0>;
+ phy-handle = <&sgmii_phy0>;
+ phy-connection-type = "sgmii";
+ };
+
+ mdio@0,3 {
+ compatible = "fsl,enetc-mdio";
+ reg = <0x000300 0 0 0 0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ sgmii_phy0: ethernet-phy@2 {
+ reg = <0x2>;
+ };
+ };
+
+2. The ENETC port is an internal port or has a fixed-link external
+connection
In this case, the ENETC port node defines a fixed link connection,
-as specified by "fixed-link.txt", under
-Documentation/devicetree/bindings/net/*.
+as specified by Documentation/devicetree/bindings/net/fixed-link.txt.
Required:
diff --git a/Documentation/devicetree/bindings/net/fsl-fec.txt b/Documentation/devicetree/bindings/net/fsl-fec.txt
index 2d41fb96ce0a..5b88fae0307d 100644
--- a/Documentation/devicetree/bindings/net/fsl-fec.txt
+++ b/Documentation/devicetree/bindings/net/fsl-fec.txt
@@ -7,18 +7,6 @@ Required properties:
- phy-mode : See ethernet.txt file in the same directory
Optional properties:
-- phy-reset-gpios : Should specify the gpio for phy reset
-- phy-reset-duration : Reset duration in milliseconds. Should present
- only if property "phy-reset-gpios" is available. Missing the property
- will have the duration be 1 millisecond. Numbers greater than 1000 are
- invalid and 1 millisecond will be used instead.
-- phy-reset-active-high : If present then the reset sequence using the GPIO
- specified in the "phy-reset-gpios" property is reversed (H=reset state,
- L=operation state).
-- phy-reset-post-delay : Post reset delay in milliseconds. If present then
- a delay of phy-reset-post-delay milliseconds will be observed after the
- phy-reset-gpios has been toggled. Can be omitted thus no delay is
- observed. Delay is in range of 1ms to 1000ms. Other delays are invalid.
- phy-supply : regulator that powers the Ethernet PHY.
- phy-handle : phandle to the PHY device connected to this device.
- fixed-link : Assume a fixed link. See fixed-link.txt in the same directory.
@@ -47,11 +35,27 @@ Optional properties:
For imx6sx, "int0" handles all 3 queues and ENET_MII. "pps" is for the pulse
per second interrupt associated with 1588 precision time protocol(PTP).
-
Optional subnodes:
- mdio : specifies the mdio bus in the FEC, used as a container for phy nodes
according to phy.txt in the same directory
+Deprecated optional properties:
+ To avoid these, create a phy node according to phy.txt in the same
+ directory, and point the fec's "phy-handle" property to it. Then use
+ the phy's reset binding, again described by phy.txt.
+- phy-reset-gpios : Should specify the gpio for phy reset
+- phy-reset-duration : Reset duration in milliseconds. Should present
+ only if property "phy-reset-gpios" is available. Missing the property
+ will have the duration be 1 millisecond. Numbers greater than 1000 are
+ invalid and 1 millisecond will be used instead.
+- phy-reset-active-high : If present then the reset sequence using the GPIO
+ specified in the "phy-reset-gpios" property is reversed (H=reset state,
+ L=operation state).
+- phy-reset-post-delay : Post reset delay in milliseconds. If present then
+ a delay of phy-reset-post-delay milliseconds will be observed after the
+ phy-reset-gpios has been toggled. Can be omitted thus no delay is
+ observed. Delay is in range of 1ms to 1000ms. Other delays are invalid.
+
Example:
ethernet@83fec000 {
diff --git a/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt b/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt
index d1df8a00e1f3..464c0dafc617 100644
--- a/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt
+++ b/Documentation/devicetree/bindings/net/hisilicon-hip04-net.txt
@@ -10,6 +10,7 @@ Required properties:
phandle, specifies a reference to the syscon ppe node
port, port number connected to the controller
channel, recv channel start from channel * number (RX_DESC_NUM)
+ group, field in the pkg desc, in general, it is the same as the port.
- phy-mode: see ethernet.txt [1].
Optional properties:
@@ -66,7 +67,7 @@ Example:
reg = <0x28b0000 0x10000>;
interrupts = <0 413 4>;
phy-mode = "mii";
- port-handle = <&ppe 31 0>;
+ port-handle = <&ppe 31 0 31>;
};
ge0: ethernet@2800000 {
@@ -74,7 +75,7 @@ Example:
reg = <0x2800000 0x10000>;
interrupts = <0 402 4>;
phy-mode = "sgmii";
- port-handle = <&ppe 0 1>;
+ port-handle = <&ppe 0 1 0>;
phy-handle = <&phy0>;
};
@@ -83,6 +84,6 @@ Example:
reg = <0x2880000 0x10000>;
interrupts = <0 410 4>;
phy-mode = "sgmii";
- port-handle = <&ppe 8 2>;
+ port-handle = <&ppe 8 2 8>;
phy-handle = <&phy1>;
};
diff --git a/Documentation/devicetree/bindings/net/keystone-netcp.txt b/Documentation/devicetree/bindings/net/keystone-netcp.txt
index 6262c2f293b0..24f11e042f8d 100644
--- a/Documentation/devicetree/bindings/net/keystone-netcp.txt
+++ b/Documentation/devicetree/bindings/net/keystone-netcp.txt
@@ -104,6 +104,23 @@ Required properties:
- 10Gb mac<->mac forced mode : 11
----phy-handle: phandle to PHY device
+- cpts: sub-node time synchronization (CPTS) submodule configuration
+-- clocks: CPTS reference clock. Should point on cpts-refclk-mux clock.
+-- clock-names: should be "cpts"
+-- cpts-refclk-mux: multiplexer clock definition sub-node for CPTS reference (RFTCLK) clock
+--- #clock-cells: should be 0
+--- clocks: list of CPTS reference (RFTCLK) clock's parents as defined in Data manual
+--- ti,mux-tbl: array of multiplexer indexes as defined in Data manual
+--- assigned-clocks: should point on cpts-refclk-mux clock
+--- assigned-clock-parents: should point on required RFTCLK clock parent to be selected
+-- cpts_clock_mult: (optional) Numerator to convert input clock ticks
+ into nanoseconds
+-- cpts_clock_shift: (optional) Denominator to convert input clock ticks into
+ nanoseconds.
+ Mult and shift will be calculated basing on CPTS
+ rftclk frequency if both cpts_clock_shift and
+ cpts_clock_mult properties are not provided.
+
Optional properties:
- enable-ale: NetCP driver keeps the address learning feature in the ethernet
switch module disabled. This attribute is to enable the address
@@ -168,6 +185,23 @@ netcp: netcp@2000000 {
tx-queue = <648>;
tx-channel = <8>;
+ cpts {
+ clocks = <&cpts_refclk_mux>;
+ clock-names = "cpts";
+
+ cpts_refclk_mux: cpts-refclk-mux {
+ #clock-cells = <0>;
+ clocks = <&chipclk12>, <&chipclk13>,
+ <&timi0>, <&timi1>,
+ <&tsipclka>, <&tsrefclk>,
+ <&tsipclkb>;
+ ti,mux-tbl = <0x0>, <0x1>, <0x2>,
+ <0x3>, <0x4>, <0x8>, <0xC>;
+ assigned-clocks = <&cpts_refclk_mux>;
+ assigned-clock-parents = <&chipclk12>;
+ };
+ };
+
interfaces {
gbe0: interface-0 {
slave-port = <0>;
@@ -219,3 +253,13 @@ netcp: netcp@2000000 {
};
};
};
+
+CPTS board configuration - select external CPTS RFTCLK:
+
+&tsrefclk{
+ clock-frequency = <500000000>;
+};
+
+&cpts_refclk_mux {
+ assigned-clock-parents = <&tsrefclk>;
+};
diff --git a/Documentation/devicetree/bindings/net/macb.txt b/Documentation/devicetree/bindings/net/macb.txt
index 9c5e94482b5f..0b61a90f1592 100644
--- a/Documentation/devicetree/bindings/net/macb.txt
+++ b/Documentation/devicetree/bindings/net/macb.txt
@@ -15,8 +15,11 @@ Required properties:
Use "atmel,sama5d4-gem" for the GEM IP (10/100) available on Atmel sama5d4 SoCs.
Use "cdns,zynq-gem" Xilinx Zynq-7xxx SoC.
Use "cdns,zynqmp-gem" for Zynq Ultrascale+ MPSoC.
+ Use "sifive,fu540-c000-gem" for SiFive FU540-C000 SoC.
Or the generic form: "cdns,emac".
- reg: Address and length of the register set for the device
+ For "sifive,fu540-c000-gem", second range is required to specify the
+ address and length of the registers for GEMGXL Management block.
- interrupts: Should contain macb interrupt
- phy-mode: See ethernet.txt file in the same directory.
- clock-names: Tuple listing input clock names.
diff --git a/Documentation/devicetree/bindings/net/marvell-bluetooth.txt b/Documentation/devicetree/bindings/net/marvell-bluetooth.txt
new file mode 100644
index 000000000000..0e2842296032
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/marvell-bluetooth.txt
@@ -0,0 +1,25 @@
+Marvell Bluetooth Chips
+-----------------------
+
+This documents the binding structure and common properties for serial
+attached Marvell Bluetooth devices. The following chips are included in
+this binding:
+
+* Marvell 88W8897 Bluetooth devices
+
+Required properties:
+ - compatible: should be:
+ "mrvl,88w8897"
+
+Optional properties:
+None so far
+
+Example:
+
+&serial0 {
+ compatible = "ns16550a";
+ ...
+ bluetooth {
+ compatible = "mrvl,88w8897";
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt b/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt
index 42cd81090a2c..3f3cfc1d8d4d 100644
--- a/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt
+++ b/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt
@@ -16,7 +16,7 @@ Required properties:
Optional properties:
- interrupts: interrupt line number for the SMI error/done interrupt
-- clocks: phandle for up to three required clocks for the MDIO instance
+- clocks: phandle for up to four required clocks for the MDIO instance
The child nodes of the MDIO driver are the individual PHY devices
connected to this MDIO bus. They must have a "reg" property given the
diff --git a/Documentation/devicetree/bindings/net/mdio.txt b/Documentation/devicetree/bindings/net/mdio.txt
index e3e1603f256c..cf8a0105488e 100644
--- a/Documentation/devicetree/bindings/net/mdio.txt
+++ b/Documentation/devicetree/bindings/net/mdio.txt
@@ -1,37 +1 @@
-Common MDIO bus properties.
-
-These are generic properties that can apply to any MDIO bus.
-
-Optional properties:
-- reset-gpios: One GPIO that control the RESET lines of all PHYs on that MDIO
- bus.
-- reset-delay-us: RESET pulse width in microseconds.
-
-A list of child nodes, one per device on the bus is expected. These
-should follow the generic phy.txt, or a device specific binding document.
-
-The 'reset-delay-us' indicates the RESET signal pulse width in microseconds and
-applies to all PHY devices. It must therefore be appropriately determined based
-on all PHY requirements (maximum value of all per-PHY RESET pulse widths).
-
-Example :
-This example shows these optional properties, plus other properties
-required for the TI Davinci MDIO driver.
-
- davinci_mdio: ethernet@5c030000 {
- compatible = "ti,davinci_mdio";
- reg = <0x5c030000 0x1000>;
- #address-cells = <1>;
- #size-cells = <0>;
-
- reset-gpios = <&gpio2 5 GPIO_ACTIVE_LOW>;
- reset-delay-us = <2>;
-
- ethphy0: ethernet-phy@1 {
- reg = <1>;
- };
-
- ethphy1: ethernet-phy@3 {
- reg = <3>;
- };
- };
+This file has moved to mdio.yaml.
diff --git a/Documentation/devicetree/bindings/net/mdio.yaml b/Documentation/devicetree/bindings/net/mdio.yaml
new file mode 100644
index 000000000000..5d08d2ffd4eb
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/mdio.yaml
@@ -0,0 +1,74 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/mdio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MDIO Bus Generic Binding
+
+maintainers:
+ - Andrew Lunn <andrew@lunn.ch>
+ - Florian Fainelli <f.fainelli@gmail.com>
+ - Heiner Kallweit <hkallweit1@gmail.com>
+
+description:
+ These are generic properties that can apply to any MDIO bus. Any
+ MDIO bus must have a list of child nodes, one per device on the
+ bus. These should follow the generic ethernet-phy.yaml document, or
+ a device specific binding document.
+
+properties:
+ $nodename:
+ pattern: "^mdio(@.*)?"
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ reset-gpios:
+ maxItems: 1
+ description:
+ The phandle and specifier for the GPIO that controls the RESET
+ lines of all PHYs on that MDIO bus.
+
+ reset-delay-us:
+ description:
+ RESET pulse width in microseconds. It applies to all PHY devices
+ and must therefore be appropriately determined based on all PHY
+ requirements (maximum value of all per-PHY RESET pulse widths).
+
+patternProperties:
+ "^ethernet-phy@[0-9a-f]+$":
+ type: object
+
+ properties:
+ reg:
+ minimum: 0
+ maximum: 31
+ description:
+ The ID number for the PHY.
+
+ required:
+ - reg
+
+examples:
+ - |
+ davinci_mdio: mdio@5c030000 {
+ compatible = "ti,davinci_mdio";
+ reg = <0x5c030000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ reset-gpios = <&gpio2 5 1>;
+ reset-delay-us = <2>;
+
+ ethphy0: ethernet-phy@1 {
+ reg = <1>;
+ };
+
+ ethphy1: ethernet-phy@3 {
+ reg = <3>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt b/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt
index 41a7dcc80f5b..112011c51d5e 100644
--- a/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt
+++ b/Documentation/devicetree/bindings/net/mediatek-bluetooth.txt
@@ -50,16 +50,33 @@ Required properties:
"mediatek,mt7663u-bluetooth": for MT7663U device
"mediatek,mt7668u-bluetooth": for MT7668U device
- vcc-supply: Main voltage regulator
+
+If the pin controller on the platform can support both pinmux and GPIO
+control such as the most of MediaTek platform. Please use below properties.
+
- pinctrl-names: Should be "default", "runtime"
- pinctrl-0: Should contain UART RXD low when the device is powered up to
enter proper bootstrap mode.
- pinctrl-1: Should contain UART mode pin ctrl
+Else, the pin controller on the platform only can support pinmux control and
+the GPIO control still has to rely on the dedicated GPIO controller such as
+a legacy MediaTek SoC, MT7621. Please use the below properties.
+
+- boot-gpios: GPIO same to the pin as UART RXD and used to keep LOW when
+ the device is powered up to enter proper bootstrap mode when
+- pinctrl-names: Should be "default"
+- pinctrl-0: Should contain UART mode pin ctrl
+
Optional properties:
- reset-gpios: GPIO used to reset the device whose initial state keeps low,
if the GPIO is missing, then board-level design should be
guaranteed.
+- clocks: Should be the clock specifiers corresponding to the entry in
+ clock-names property. If the clock is missing, then board-level
+ design should be guaranteed.
+- clock-names: Should contain "osc" entry for the external oscillator.
- current-speed: Current baud rate of the device whose defaults to 921600
Example:
diff --git a/Documentation/devicetree/bindings/net/mediatek-net.txt b/Documentation/devicetree/bindings/net/mediatek-net.txt
index 503f2b9194e2..72d03e07cf7c 100644
--- a/Documentation/devicetree/bindings/net/mediatek-net.txt
+++ b/Documentation/devicetree/bindings/net/mediatek-net.txt
@@ -11,6 +11,8 @@ Required properties:
"mediatek,mt2701-eth": for MT2701 SoC
"mediatek,mt7623-eth", "mediatek,mt2701-eth": for MT7623 SoC
"mediatek,mt7622-eth": for MT7622 SoC
+ "mediatek,mt7629-eth": for MT7629 SoC
+ "ralink,rt5350-eth": for Ralink Rt5350F and MT7628/88 SoC
- reg: Address and length of the register set for the device
- interrupts: Should contain the three frame engines interrupts in numeric
order. These are fe_int0, fe_int1 and fe_int2.
@@ -19,14 +21,23 @@ Required properties:
"ethif", "esw", "gp2", "gp1" : For MT2701 and MT7623 SoC
"ethif", "esw", "gp0", "gp1", "gp2", "sgmii_tx250m", "sgmii_rx250m",
"sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii_ck", "eth2pll" : For MT7622 SoC
+ "ethif", "sgmiitop", "esw", "gp0", "gp1", "gp2", "fe", "sgmii_tx250m",
+ "sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii2_tx250m",
+ "sgmii2_rx250m", "sgmii2_cdr_ref", "sgmii2_cdr_fb", "sgmii_ck",
+ "eth2pll" : For MT7629 SoC.
- power-domains: phandle to the power domain that the ethernet is part of
- resets: Should contain phandles to the ethsys reset signals
- reset-names: Should contain the names of reset signal listed in the resets
property
These are "fe", "gmac" and "ppe"
- mediatek,ethsys: phandle to the syscon node that handles the port setup
-- mediatek,sgmiisys: phandle to the syscon node that handles the SGMII setup
- which is required for those SoCs equipped with SGMII such as MT7622 SoC.
+- mediatek,infracfg: phandle to the syscon node that handles the path from
+ GMAC to PHY variants, which is required for MT7629 SoC.
+- mediatek,sgmiisys: a list of phandles to the syscon node that handles the
+ SGMII setup which is required for those SoCs equipped with SGMII such
+ as MT7622 and MT7629 SoC. And MT7622 have only one set of SGMII shared
+ by GMAC1 and GMAC2; MT7629 have two independent sets of SGMII directed
+ to GMAC1 and GMAC2, respectively.
- mediatek,pctl: phandle to the syscon node that handles the ports slew rate
and driver current: only for MT2701 and MT7623 SoC
diff --git a/Documentation/devicetree/bindings/net/meson-dwmac.txt b/Documentation/devicetree/bindings/net/meson-dwmac.txt
deleted file mode 100644
index 1321bb194ed9..000000000000
--- a/Documentation/devicetree/bindings/net/meson-dwmac.txt
+++ /dev/null
@@ -1,71 +0,0 @@
-* Amlogic Meson DWMAC Ethernet controller
-
-The device inherits all the properties of the dwmac/stmmac devices
-described in the file stmmac.txt in the current directory with the
-following changes.
-
-Required properties on all platforms:
-
-- compatible: Depending on the platform this should be one of:
- - "amlogic,meson6-dwmac"
- - "amlogic,meson8b-dwmac"
- - "amlogic,meson8m2-dwmac"
- - "amlogic,meson-gxbb-dwmac"
- - "amlogic,meson-axg-dwmac"
- Additionally "snps,dwmac" and any applicable more
- detailed version number described in net/stmmac.txt
- should be used.
-
-- reg: The first register range should be the one of the DWMAC
- controller. The second range is is for the Amlogic specific
- configuration (for example the PRG_ETHERNET register range
- on Meson8b and newer)
-
-Required properties on Meson8b, Meson8m2, GXBB and newer:
-- clock-names: Should contain the following:
- - "stmmaceth" - see stmmac.txt
- - "clkin0" - first parent clock of the internal mux
- - "clkin1" - second parent clock of the internal mux
-
-Optional properties on Meson8b, Meson8m2, GXBB and newer:
-- amlogic,tx-delay-ns: The internal RGMII TX clock delay (provided
- by this driver) in nanoseconds. Allowed values
- are: 0ns, 2ns, 4ns, 6ns.
- When phy-mode is set to "rgmii" then the TX
- delay should be explicitly configured. When
- not configured a fallback of 2ns is used.
- When the phy-mode is set to either "rgmii-id"
- or "rgmii-txid" the TX clock delay is already
- provided by the PHY. In that case this
- property should be set to 0ns (which disables
- the TX clock delay in the MAC to prevent the
- clock from going off because both PHY and MAC
- are adding a delay).
- Any configuration is ignored when the phy-mode
- is set to "rmii".
-
-Example for Meson6:
-
- ethmac: ethernet@c9410000 {
- compatible = "amlogic,meson6-dwmac", "snps,dwmac";
- reg = <0xc9410000 0x10000
- 0xc1108108 0x4>;
- interrupts = <0 8 1>;
- interrupt-names = "macirq";
- clocks = <&clk81>;
- clock-names = "stmmaceth";
- }
-
-Example for GXBB:
- ethmac: ethernet@c9410000 {
- compatible = "amlogic,meson-gxbb-dwmac", "snps,dwmac";
- reg = <0x0 0xc9410000 0x0 0x10000>,
- <0x0 0xc8834540 0x0 0x8>;
- interrupts = <0 8 1>;
- interrupt-names = "macirq";
- clocks = <&clkc CLKID_ETH>,
- <&clkc CLKID_FCLK_DIV2>,
- <&clkc CLKID_MPLL2>;
- clock-names = "stmmaceth", "clkin0", "clkin1";
- phy-mode = "rgmii";
- };
diff --git a/Documentation/devicetree/bindings/net/mscc-ocelot.txt b/Documentation/devicetree/bindings/net/mscc-ocelot.txt
index 9e5c17d426ce..3b6290b45ce5 100644
--- a/Documentation/devicetree/bindings/net/mscc-ocelot.txt
+++ b/Documentation/devicetree/bindings/net/mscc-ocelot.txt
@@ -12,13 +12,15 @@ Required properties:
- "sys"
- "rew"
- "qs"
+ - "ptp" (optional due to backward compatibility)
- "qsys"
- "ana"
- "portX" with X from 0 to the number of last port index available on that
switch
-- interrupts: Should contain the switch interrupts for frame extraction and
- frame injection
-- interrupt-names: should contain the interrupt names: "xtr", "inj"
+- interrupts: Should contain the switch interrupts for frame extraction,
+ frame injection and PTP ready.
+- interrupt-names: should contain the interrupt names: "xtr", "inj". Can contain
+ "ptp_rdy" which is optional due to backward compatibility.
- ethernet-ports: A container for child nodes representing switch ports.
The ethernet-ports container has the following properties
@@ -44,6 +46,7 @@ Example:
reg = <0x1010000 0x10000>,
<0x1030000 0x10000>,
<0x1080000 0x100>,
+ <0x10e0000 0x10000>,
<0x11e0000 0x100>,
<0x11f0000 0x100>,
<0x1200000 0x100>,
@@ -57,11 +60,12 @@ Example:
<0x1280000 0x100>,
<0x1800000 0x80000>,
<0x1880000 0x10000>;
- reg-names = "sys", "rew", "qs", "port0", "port1", "port2",
- "port3", "port4", "port5", "port6", "port7",
- "port8", "port9", "port10", "qsys", "ana";
- interrupts = <21 22>;
- interrupt-names = "xtr", "inj";
+ reg-names = "sys", "rew", "qs", "ptp", "port0", "port1",
+ "port2", "port3", "port4", "port5", "port6",
+ "port7", "port8", "port9", "port10", "qsys",
+ "ana";
+ interrupts = <18 21 22>;
+ interrupt-names = "ptp_rdy", "xtr", "inj";
ethernet-ports {
#address-cells = <1>;
diff --git a/Documentation/devicetree/bindings/net/phy.txt b/Documentation/devicetree/bindings/net/phy.txt
index 9b9e5b1765dd..2399ee60caed 100644
--- a/Documentation/devicetree/bindings/net/phy.txt
+++ b/Documentation/devicetree/bindings/net/phy.txt
@@ -1,79 +1 @@
-PHY nodes
-
-Required properties:
-
- - interrupts : interrupt specifier for the sole interrupt.
- - reg : The ID number for the phy, usually a small integer
-
-Optional Properties:
-
-- compatible: Compatible list, may contain
- "ethernet-phy-ieee802.3-c22" or "ethernet-phy-ieee802.3-c45" for
- PHYs that implement IEEE802.3 clause 22 or IEEE802.3 clause 45
- specifications. If neither of these are specified, the default is to
- assume clause 22.
-
- If the PHY reports an incorrect ID (or none at all) then the
- "compatible" list may contain an entry with the correct PHY ID in the
- form: "ethernet-phy-idAAAA.BBBB" where
- AAAA - The value of the 16 bit Phy Identifier 1 register as
- 4 hex digits. This is the chip vendor OUI bits 3:18
- BBBB - The value of the 16 bit Phy Identifier 2 register as
- 4 hex digits. This is the chip vendor OUI bits 19:24,
- followed by 10 bits of a vendor specific ID.
-
- The compatible list should not contain other values than those
- listed here.
-
-- max-speed: Maximum PHY supported speed (10, 100, 1000...)
-
-- broken-turn-around: If set, indicates the PHY device does not correctly
- release the turn around line low at the end of a MDIO transaction.
-
-- enet-phy-lane-swap: If set, indicates the PHY will swap the TX/RX lanes to
- compensate for the board being designed with the lanes swapped.
-
-- enet-phy-lane-no-swap: If set, indicates that PHY will disable swap of the
- TX/RX lanes. This property allows the PHY to work correcly after e.g. wrong
- bootstrap configuration caused by issues in PCB layout design.
-
-- eee-broken-100tx:
-- eee-broken-1000t:
-- eee-broken-10gt:
-- eee-broken-1000kx:
-- eee-broken-10gkx4:
-- eee-broken-10gkr:
- Mark the corresponding energy efficient ethernet mode as broken and
- request the ethernet to stop advertising it.
-
-- phy-is-integrated: If set, indicates that the PHY is integrated into the same
- physical package as the Ethernet MAC. If needed, muxers should be configured
- to ensure the integrated PHY is used. The absence of this property indicates
- the muxers should be configured so that the external PHY is used.
-
-- resets: The reset-controller phandle and specifier for the PHY reset signal.
-
-- reset-names: Must be "phy" for the PHY reset signal.
-
-- reset-gpios: The GPIO phandle and specifier for the PHY reset signal.
-
-- reset-assert-us: Delay after the reset was asserted in microseconds.
- If this property is missing the delay will be skipped.
-
-- reset-deassert-us: Delay after the reset was deasserted in microseconds.
- If this property is missing the delay will be skipped.
-
-Example:
-
-ethernet-phy@0 {
- compatible = "ethernet-phy-id0141.0e90", "ethernet-phy-ieee802.3-c22";
- interrupt-parent = <&PIC>;
- interrupts = <35 IRQ_TYPE_EDGE_RISING>;
- reg = <0>;
-
- resets = <&rst 8>;
- reset-names = "phy";
- reset-gpios = <&gpio1 4 GPIO_ACTIVE_LOW>;
- reset-assert-us = <1000>;
- reset-deassert-us = <2000>;
-};
+This file has moved to ethernet-phy.yaml.
diff --git a/Documentation/devicetree/bindings/net/qca,ar71xx.txt b/Documentation/devicetree/bindings/net/qca,ar71xx.txt
new file mode 100644
index 000000000000..2a33e71ba72b
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/qca,ar71xx.txt
@@ -0,0 +1,45 @@
+Required properties:
+- compatible: Should be "qca,<soc>-eth". Currently support compatibles are:
+ qca,ar7100-eth - Atheros AR7100
+ qca,ar7240-eth - Atheros AR7240
+ qca,ar7241-eth - Atheros AR7241
+ qca,ar7242-eth - Atheros AR7242
+ qca,ar9130-eth - Atheros AR9130
+ qca,ar9330-eth - Atheros AR9330
+ qca,ar9340-eth - Atheros AR9340
+ qca,qca9530-eth - Qualcomm Atheros QCA9530
+ qca,qca9550-eth - Qualcomm Atheros QCA9550
+ qca,qca9560-eth - Qualcomm Atheros QCA9560
+
+- reg : Address and length of the register set for the device
+- interrupts : Should contain eth interrupt
+- phy-mode : See ethernet.txt file in the same directory
+- clocks: the clock used by the core
+- clock-names: the names of the clock listed in the clocks property. These are
+ "eth" and "mdio".
+- resets: Should contain phandles to the reset signals
+- reset-names: Should contain the names of reset signal listed in the resets
+ property. These are "mac" and "mdio"
+
+Optional properties:
+- phy-handle : phandle to the PHY device connected to this device.
+- fixed-link : Assume a fixed link. See fixed-link.txt in the same directory.
+ Use instead of phy-handle.
+
+Optional subnodes:
+- mdio : specifies the mdio bus, used as a container for phy nodes
+ according to phy.txt in the same directory
+
+Example:
+
+ethernet@1a000000 {
+ compatible = "qca,ar9330-eth";
+ reg = <0x1a000000 0x200>;
+ interrupts = <5>;
+ resets = <&rst 13>, <&rst 23>;
+ reset-names = "mac", "mdio";
+ clocks = <&pll ATH79_CLK_AHB>, <&pll ATH79_CLK_MDIO>;
+ clock-names = "eth", "mdio";
+
+ phy-mode = "gmii";
+};
diff --git a/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt b/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
index 7ef6118abd3d..68b67d9db63a 100644
--- a/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
+++ b/Documentation/devicetree/bindings/net/qualcomm-bluetooth.txt
@@ -17,6 +17,7 @@ Optional properties for compatible string qcom,qca6174-bt:
- enable-gpios: gpio specifier used to enable chip
- clocks: clock provided to the controller (SUSCLK_32KHZ)
+ - firmware-name: specify the name of nvm firmware to load
Required properties for compatible string qcom,wcn399x-bt:
@@ -28,6 +29,7 @@ Required properties for compatible string qcom,wcn399x-bt:
Optional properties for compatible string qcom,wcn399x-bt:
- max-speed: see Documentation/devicetree/bindings/serial/slave-device.txt
+ - firmware-name: specify the name of nvm firmware to load
Examples:
@@ -40,6 +42,7 @@ serial@7570000 {
enable-gpios = <&pm8994_gpios 19 GPIO_ACTIVE_HIGH>;
clocks = <&divclk4>;
+ firmware-name = "nvm_00440302.bin";
};
};
@@ -52,5 +55,6 @@ serial@898000 {
vddrf-supply = <&vreg_l17a_1p3>;
vddch0-supply = <&vreg_l25a_3p3>;
max-speed = <3200000>;
+ firmware-name = "crnv21.bin";
};
};
diff --git a/Documentation/devicetree/bindings/net/snps,dwmac.yaml b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
new file mode 100644
index 000000000000..ebe4537a7cce
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
@@ -0,0 +1,425 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/snps,dwmac.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Synopsys DesignWare MAC Device Tree Bindings
+
+maintainers:
+ - Alexandre Torgue <alexandre.torgue@st.com>
+ - Giuseppe Cavallaro <peppe.cavallaro@st.com>
+ - Jose Abreu <joabreu@synopsys.com>
+
+# Select every compatible, including the deprecated ones. This way, we
+# will be able to report a warning when we have that compatible, since
+# we will validate the node thanks to the select, but won't report it
+# as a valid value in the compatible property description
+select:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - snps,dwmac
+ - snps,dwmac-3.50a
+ - snps,dwmac-3.610
+ - snps,dwmac-3.70a
+ - snps,dwmac-3.710
+ - snps,dwmac-4.00
+ - snps,dwmac-4.10a
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+
+ # Deprecated
+ - st,spear600-gmac
+
+ required:
+ - compatible
+
+properties:
+
+ # We need to include all the compatibles from schemas that will
+ # include that schemas, otherwise compatible won't validate for
+ # those.
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun7i-a20-gmac
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-r40-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+ - amlogic,meson6-dwmac
+ - amlogic,meson8b-dwmac
+ - amlogic,meson8m2-dwmac
+ - amlogic,meson-gxbb-dwmac
+ - amlogic,meson-axg-dwmac
+ - snps,dwmac
+ - snps,dwmac-3.50a
+ - snps,dwmac-3.610
+ - snps,dwmac-3.70a
+ - snps,dwmac-3.710
+ - snps,dwmac-4.00
+ - snps,dwmac-4.10a
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+
+ reg:
+ minItems: 1
+ maxItems: 2
+
+ interrupts:
+ minItems: 1
+ maxItems: 3
+ items:
+ - description: Combined signal for various interrupt events
+ - description: The interrupt to manage the remote wake-up packet detection
+ - description: The interrupt that occurs when Rx exits the LPI state
+
+ interrupt-names:
+ minItems: 1
+ maxItems: 3
+ items:
+ - const: macirq
+ - const: eth_wake_irq
+ - const: eth_lpi
+
+ clocks:
+ minItems: 1
+ maxItems: 3
+ items:
+ - description: GMAC main clock
+ - description: Peripheral registers interface clock
+ - description:
+ PTP reference clock. This clock is used for programming the
+ Timestamp Addend Register. If not passed then the system
+ clock will be used and this is fine on some platforms.
+
+ clock-names:
+ additionalItems: true
+ contains:
+ enum:
+ - stmmaceth
+ - pclk
+ - ptp_ref
+
+ resets:
+ maxItems: 1
+ description:
+ MAC Reset signal.
+
+ reset-names:
+ const: stmmaceth
+
+ mac-mode:
+ maxItems: 1
+ description:
+ The property is identical to 'phy-mode', and assumes that there is mode
+ converter in-between the MAC & PHY (e.g. GMII-to-RGMII). This converter
+ can be passive (no SW requirement), and requires that the MAC operate
+ in a different mode than the PHY in order to function.
+
+ snps,axi-config:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ AXI BUS Mode parameters. Phandle to a node that can contain the
+ following properties
+ * snps,lpi_en, enable Low Power Interface
+ * snps,xit_frm, unlock on WoL
+ * snps,wr_osr_lmt, max write outstanding req. limit
+ * snps,rd_osr_lmt, max read outstanding req. limit
+ * snps,kbbe, do not cross 1KiB boundary.
+ * snps,blen, this is a vector of supported burst length.
+ * snps,fb, fixed-burst
+ * snps,mb, mixed-burst
+ * snps,rb, rebuild INCRx Burst
+
+ snps,mtl-rx-config:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Multiple RX Queues parameters. Phandle to a node that can
+ contain the following properties
+ * snps,rx-queues-to-use, number of RX queues to be used in the
+ driver
+ * Choose one of these RX scheduling algorithms
+ * snps,rx-sched-sp, Strict priority
+ * snps,rx-sched-wsp, Weighted Strict priority
+ * For each RX queue
+ * Choose one of these modes
+ * snps,dcb-algorithm, Queue to be enabled as DCB
+ * snps,avb-algorithm, Queue to be enabled as AVB
+ * snps,map-to-dma-channel, Channel to map
+ * Specifiy specific packet routing
+ * snps,route-avcp, AV Untagged Control packets
+ * snps,route-ptp, PTP Packets
+ * snps,route-dcbcp, DCB Control Packets
+ * snps,route-up, Untagged Packets
+ * snps,route-multi-broad, Multicast & Broadcast Packets
+ * snps,priority, RX queue priority (Range 0x0 to 0xF)
+
+ snps,mtl-tx-config:
+ $ref: /schemas/types.yaml#definitions/phandle
+ description:
+ Multiple TX Queues parameters. Phandle to a node that can
+ contain the following properties
+ * snps,tx-queues-to-use, number of TX queues to be used in the
+ driver
+ * Choose one of these TX scheduling algorithms
+ * snps,tx-sched-wrr, Weighted Round Robin
+ * snps,tx-sched-wfq, Weighted Fair Queuing
+ * snps,tx-sched-dwrr, Deficit Weighted Round Robin
+ * snps,tx-sched-sp, Strict priority
+ * For each TX queue
+ * snps,weight, TX queue weight (if using a DCB weight
+ algorithm)
+ * Choose one of these modes
+ * snps,dcb-algorithm, TX queue will be working in DCB
+ * snps,avb-algorithm, TX queue will be working in AVB
+ [Attention] Queue 0 is reserved for legacy traffic
+ and so no AVB is available in this queue.
+ * Configure Credit Base Shaper (if AVB Mode selected)
+ * snps,send_slope, enable Low Power Interface
+ * snps,idle_slope, unlock on WoL
+ * snps,high_credit, max write outstanding req. limit
+ * snps,low_credit, max read outstanding req. limit
+ * snps,priority, TX queue priority (Range 0x0 to 0xF)
+
+ snps,reset-gpio:
+ deprecated: true
+ maxItems: 1
+ description:
+ PHY Reset GPIO
+
+ snps,reset-active-low:
+ deprecated: true
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Indicates that the PHY Reset is active low
+
+ snps,reset-delays-us:
+ deprecated: true
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32-array
+ - minItems: 3
+ maxItems: 3
+ description:
+ Triplet of delays. The 1st cell is reset pre-delay in micro
+ seconds. The 2nd cell is reset pulse in micro seconds. The 3rd
+ cell is reset post-delay in micro seconds.
+
+ snps,aal:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Use Address-Aligned Beats
+
+ snps,fixed-burst:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Program the DMA to use the fixed burst mode
+
+ snps,mixed-burst:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Program the DMA to use the mixed burst mode
+
+ snps,force_thresh_dma_mode:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Force DMA to use the threshold mode for both tx and rx
+
+ snps,force_sf_dma_mode:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Force DMA to use the Store and Forward mode for both tx and
+ rx. This flag is ignored if force_thresh_dma_mode is set.
+
+ snps,en-tx-lpi-clockgating:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Enable gating of the MAC TX clock during TX low-power mode
+
+ snps,multicast-filter-bins:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Number of multicast filter hash bins supported by this device
+ instance
+
+ snps,perfect-filter-entries:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Number of perfect filter entries supported by this device
+ instance
+
+ snps,ps-speed:
+ $ref: /schemas/types.yaml#definitions/uint32
+ description:
+ Port selection speed that can be passed to the core when PCS
+ is supported. For example, this is used in case of SGMII and
+ MAC2MAC connection.
+
+ mdio:
+ type: object
+ description:
+ Creates and registers an MDIO bus.
+
+ properties:
+ compatible:
+ const: snps,dwmac-mdio
+
+ required:
+ - compatible
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - phy-mode
+
+dependencies:
+ snps,reset-active-low: ["snps,reset-gpio"]
+ snps,reset-delay-us: ["snps,reset-gpio"]
+
+allOf:
+ - $ref: "ethernet-controller.yaml#"
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun7i-a20-gmac
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-r40-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+ - st,spear600-gmac
+
+ then:
+ properties:
+ snps,pbl:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [2, 4, 8]
+ description:
+ Programmable Burst Length (tx and rx)
+
+ snps,txpbl:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [2, 4, 8]
+ description:
+ Tx Programmable Burst Length. If set, DMA tx will use this
+ value rather than snps,pbl.
+
+ snps,rxpbl:
+ allOf:
+ - $ref: /schemas/types.yaml#definitions/uint32
+ - enum: [2, 4, 8]
+ description:
+ Rx Programmable Burst Length. If set, DMA rx will use this
+ value rather than snps,pbl.
+
+ snps,no-pbl-x8:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Don\'t multiply the pbl/txpbl/rxpbl values by 8. For core
+ rev < 3.50, don\'t multiply the values by 4.
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun7i-a20-gmac
+ - allwinner,sun8i-a83t-emac
+ - allwinner,sun8i-h3-emac
+ - allwinner,sun8i-r40-emac
+ - allwinner,sun8i-v3s-emac
+ - allwinner,sun50i-a64-emac
+ - snps,dwmac-4.00
+ - snps,dwmac-4.10a
+ - snps,dwxgmac
+ - snps,dwxgmac-2.10
+ - st,spear600-gmac
+
+ then:
+ snps,tso:
+ $ref: /schemas/types.yaml#definitions/flag
+ description:
+ Enables the TSO feature otherwise it will be managed by
+ MAC HW capability register.
+
+examples:
+ - |
+ stmmac_axi_setup: stmmac-axi-config {
+ snps,wr_osr_lmt = <0xf>;
+ snps,rd_osr_lmt = <0xf>;
+ snps,blen = <256 128 64 32 0 0 0>;
+ };
+
+ mtl_rx_setup: rx-queues-config {
+ snps,rx-queues-to-use = <1>;
+ snps,rx-sched-sp;
+ queue0 {
+ snps,dcb-algorithm;
+ snps,map-to-dma-channel = <0x0>;
+ snps,priority = <0x0>;
+ };
+ };
+
+ mtl_tx_setup: tx-queues-config {
+ snps,tx-queues-to-use = <2>;
+ snps,tx-sched-wrr;
+ queue0 {
+ snps,weight = <0x10>;
+ snps,dcb-algorithm;
+ snps,priority = <0x0>;
+ };
+
+ queue1 {
+ snps,avb-algorithm;
+ snps,send_slope = <0x1000>;
+ snps,idle_slope = <0x1000>;
+ snps,high_credit = <0x3E800>;
+ snps,low_credit = <0xFFC18000>;
+ snps,priority = <0x1>;
+ };
+ };
+
+ gmac0: ethernet@e0800000 {
+ compatible = "snps,dwxgmac-2.10", "snps,dwxgmac";
+ reg = <0xe0800000 0x8000>;
+ interrupt-parent = <&vic1>;
+ interrupts = <24 23 22>;
+ interrupt-names = "macirq", "eth_wake_irq", "eth_lpi";
+ mac-address = [000000000000]; /* Filled in by U-Boot */
+ max-frame-size = <3800>;
+ phy-mode = "gmii";
+ snps,multicast-filter-bins = <256>;
+ snps,perfect-filter-entries = <128>;
+ rx-fifo-depth = <16384>;
+ tx-fifo-depth = <16384>;
+ clocks = <&clock>;
+ clock-names = "stmmaceth";
+ snps,axi-config = <&stmmac_axi_setup>;
+ snps,mtl-rx-config = <&mtl_rx_setup>;
+ snps,mtl-tx-config = <&mtl_tx_setup>;
+ mdio0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "snps,dwmac-mdio";
+ phy1: ethernet-phy@0 {
+ reg = <0>;
+ };
+ };
+ };
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/net/socfpga-dwmac.txt b/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
index 17d6819669c8..612a8e8abc88 100644
--- a/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
+++ b/Documentation/devicetree/bindings/net/socfpga-dwmac.txt
@@ -6,11 +6,17 @@ present in Documentation/devicetree/bindings/net/stmmac.txt.
The device node has additional properties:
Required properties:
- - compatible : Should contain "altr,socfpga-stmmac" along with
- "snps,dwmac" and any applicable more detailed
+ - compatible : For Cyclone5/Arria5 SoCs it should contain
+ "altr,socfpga-stmmac". For Arria10/Agilex/Stratix10 SoCs
+ "altr,socfpga-stmmac-a10-s10".
+ Along with "snps,dwmac" and any applicable more detailed
designware version numbers documented in stmmac.txt
- altr,sysmgr-syscon : Should be the phandle to the system manager node that
encompasses the glue register, the register offset, and the register shift.
+ On Cyclone5/Arria5, the register shift represents the PHY mode bits, while
+ on the Arria10/Stratix10/Agilex platforms, the register shift represents
+ bit for each emac to enable/disable signals from the FPGA fabric to the
+ EMAC modules.
- altr,f2h_ptp_ref_clk use f2h_ptp_ref_clk instead of default eosc1 clock
for ptp ref clk. This affects all emacs as the clock is common.
diff --git a/Documentation/devicetree/bindings/net/stmmac.txt b/Documentation/devicetree/bindings/net/stmmac.txt
index cb694062afff..7d48782767cb 100644
--- a/Documentation/devicetree/bindings/net/stmmac.txt
+++ b/Documentation/devicetree/bindings/net/stmmac.txt
@@ -1,178 +1 @@
-* STMicroelectronics 10/100/1000/2500/10000 Ethernet (GMAC/XGMAC)
-
-Required properties:
-- compatible: Should be "snps,dwmac-<ip_version>", "snps,dwmac" or
- "snps,dwxgmac-<ip_version>", "snps,dwxgmac".
- For backwards compatibility: "st,spear600-gmac" is also supported.
-- reg: Address and length of the register set for the device
-- interrupts: Should contain the STMMAC interrupts
-- interrupt-names: Should contain a list of interrupt names corresponding to
- the interrupts in the interrupts property, if available.
- Valid interrupt names are:
- - "macirq" (combined signal for various interrupt events)
- - "eth_wake_irq" (the interrupt to manage the remote wake-up packet detection)
- - "eth_lpi" (the interrupt that occurs when Rx exits the LPI state)
-- phy-mode: See ethernet.txt file in the same directory.
-- snps,reset-gpio gpio number for phy reset.
-- snps,reset-active-low boolean flag to indicate if phy reset is active low.
-- snps,reset-delays-us is triplet of delays
- The 1st cell is reset pre-delay in micro seconds.
- The 2nd cell is reset pulse in micro seconds.
- The 3rd cell is reset post-delay in micro seconds.
-
-Optional properties:
-- resets: Should contain a phandle to the STMMAC reset signal, if any
-- reset-names: Should contain the reset signal name "stmmaceth", if a
- reset phandle is given
-- max-frame-size: See ethernet.txt file in the same directory
-- clocks: If present, the first clock should be the GMAC main clock and
- the second clock should be peripheral's register interface clock. Further
- clocks may be specified in derived bindings.
-- clock-names: One name for each entry in the clocks property, the
- first one should be "stmmaceth" and the second one should be "pclk".
-- ptp_ref: this is the PTP reference clock; in case of the PTP is available
- this clock is used for programming the Timestamp Addend Register. If not
- passed then the system clock will be used and this is fine on some
- platforms.
-- tx-fifo-depth: See ethernet.txt file in the same directory
-- rx-fifo-depth: See ethernet.txt file in the same directory
-- snps,pbl Programmable Burst Length (tx and rx)
-- snps,txpbl Tx Programmable Burst Length. Only for GMAC and newer.
- If set, DMA tx will use this value rather than snps,pbl.
-- snps,rxpbl Rx Programmable Burst Length. Only for GMAC and newer.
- If set, DMA rx will use this value rather than snps,pbl.
-- snps,no-pbl-x8 Don't multiply the pbl/txpbl/rxpbl values by 8.
- For core rev < 3.50, don't multiply the values by 4.
-- snps,aal Address-Aligned Beats
-- snps,fixed-burst Program the DMA to use the fixed burst mode
-- snps,mixed-burst Program the DMA to use the mixed burst mode
-- snps,force_thresh_dma_mode Force DMA to use the threshold mode for
- both tx and rx
-- snps,force_sf_dma_mode Force DMA to use the Store and Forward
- mode for both tx and rx. This flag is
- ignored if force_thresh_dma_mode is set.
-- snps,en-tx-lpi-clockgating Enable gating of the MAC TX clock during
- TX low-power mode
-- snps,multicast-filter-bins: Number of multicast filter hash bins
- supported by this device instance
-- snps,perfect-filter-entries: Number of perfect filter entries supported
- by this device instance
-- snps,ps-speed: port selection speed that can be passed to the core when
- PCS is supported. For example, this is used in case of SGMII
- and MAC2MAC connection.
-- snps,tso: this enables the TSO feature otherwise it will be managed by
- MAC HW capability register. Only for GMAC4 and newer.
-- AXI BUS Mode parameters: below the list of all the parameters to program the
- AXI register inside the DMA module:
- - snps,lpi_en: enable Low Power Interface
- - snps,xit_frm: unlock on WoL
- - snps,wr_osr_lmt: max write outstanding req. limit
- - snps,rd_osr_lmt: max read outstanding req. limit
- - snps,kbbe: do not cross 1KiB boundary.
- - snps,blen: this is a vector of supported burst length.
- - snps,fb: fixed-burst
- - snps,mb: mixed-burst
- - snps,rb: rebuild INCRx Burst
-- mdio: with compatible = "snps,dwmac-mdio", create and register mdio bus.
-- Multiple RX Queues parameters: below the list of all the parameters to
- configure the multiple RX queues:
- - snps,rx-queues-to-use: number of RX queues to be used in the driver
- - Choose one of these RX scheduling algorithms:
- - snps,rx-sched-sp: Strict priority
- - snps,rx-sched-wsp: Weighted Strict priority
- - For each RX queue
- - Choose one of these modes:
- - snps,dcb-algorithm: Queue to be enabled as DCB
- - snps,avb-algorithm: Queue to be enabled as AVB
- - snps,map-to-dma-channel: Channel to map
- - Specifiy specific packet routing:
- - snps,route-avcp: AV Untagged Control packets
- - snps,route-ptp: PTP Packets
- - snps,route-dcbcp: DCB Control Packets
- - snps,route-up: Untagged Packets
- - snps,route-multi-broad: Multicast & Broadcast Packets
- - snps,priority: RX queue priority (Range: 0x0 to 0xF)
-- Multiple TX Queues parameters: below the list of all the parameters to
- configure the multiple TX queues:
- - snps,tx-queues-to-use: number of TX queues to be used in the driver
- - Choose one of these TX scheduling algorithms:
- - snps,tx-sched-wrr: Weighted Round Robin
- - snps,tx-sched-wfq: Weighted Fair Queuing
- - snps,tx-sched-dwrr: Deficit Weighted Round Robin
- - snps,tx-sched-sp: Strict priority
- - For each TX queue
- - snps,weight: TX queue weight (if using a DCB weight algorithm)
- - Choose one of these modes:
- - snps,dcb-algorithm: TX queue will be working in DCB
- - snps,avb-algorithm: TX queue will be working in AVB
- [Attention] Queue 0 is reserved for legacy traffic
- and so no AVB is available in this queue.
- - Configure Credit Base Shaper (if AVB Mode selected):
- - snps,send_slope: enable Low Power Interface
- - snps,idle_slope: unlock on WoL
- - snps,high_credit: max write outstanding req. limit
- - snps,low_credit: max read outstanding req. limit
- - snps,priority: TX queue priority (Range: 0x0 to 0xF)
-Examples:
-
- stmmac_axi_setup: stmmac-axi-config {
- snps,wr_osr_lmt = <0xf>;
- snps,rd_osr_lmt = <0xf>;
- snps,blen = <256 128 64 32 0 0 0>;
- };
-
- mtl_rx_setup: rx-queues-config {
- snps,rx-queues-to-use = <1>;
- snps,rx-sched-sp;
- queue0 {
- snps,dcb-algorithm;
- snps,map-to-dma-channel = <0x0>;
- snps,priority = <0x0>;
- };
- };
-
- mtl_tx_setup: tx-queues-config {
- snps,tx-queues-to-use = <2>;
- snps,tx-sched-wrr;
- queue0 {
- snps,weight = <0x10>;
- snps,dcb-algorithm;
- snps,priority = <0x0>;
- };
-
- queue1 {
- snps,avb-algorithm;
- snps,send_slope = <0x1000>;
- snps,idle_slope = <0x1000>;
- snps,high_credit = <0x3E800>;
- snps,low_credit = <0xFFC18000>;
- snps,priority = <0x1>;
- };
- };
-
- gmac0: ethernet@e0800000 {
- compatible = "st,spear600-gmac";
- reg = <0xe0800000 0x8000>;
- interrupt-parent = <&vic1>;
- interrupts = <24 23 22>;
- interrupt-names = "macirq", "eth_wake_irq", "eth_lpi";
- mac-address = [000000000000]; /* Filled in by U-Boot */
- max-frame-size = <3800>;
- phy-mode = "gmii";
- snps,multicast-filter-bins = <256>;
- snps,perfect-filter-entries = <128>;
- rx-fifo-depth = <16384>;
- tx-fifo-depth = <16384>;
- clocks = <&clock>;
- clock-names = "stmmaceth";
- snps,axi-config = <&stmmac_axi_setup>;
- mdio0 {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "snps,dwmac-mdio";
- phy1: ethernet-phy@0 {
- };
- };
- snps,mtl-rx-config = <&mtl_rx_setup>;
- snps,mtl-tx-config = <&mtl_tx_setup>;
- };
+This file has moved to snps,dwmac.yaml.
diff --git a/Documentation/devicetree/bindings/net/ti,dp83867.txt b/Documentation/devicetree/bindings/net/ti,dp83867.txt
index 9ef9338aaee1..388ff48f53ae 100644
--- a/Documentation/devicetree/bindings/net/ti,dp83867.txt
+++ b/Documentation/devicetree/bindings/net/ti,dp83867.txt
@@ -11,6 +11,14 @@ Required properties:
- ti,fifo-depth - Transmitt FIFO depth- see dt-bindings/net/ti-dp83867.h
for applicable values
+Note: If the interface type is PHY_INTERFACE_MODE_RGMII the TX/RX clock delays
+ will be left at their default values, as set by the PHY's pin strapping.
+ The default strapping will use a delay of 2.00 ns. Thus
+ PHY_INTERFACE_MODE_RGMII, by default, does not behave as RGMII with no
+ internal delay, but as PHY_INTERFACE_MODE_RGMII_ID. The device tree
+ should use "rgmii-id" if internal delays are desired as this may be
+ changed in future to cause "rgmii" mode to disable delays.
+
Optional property:
- ti,min-output-impedance - MAC Interface Impedance control to set
the programmable output impedance to
@@ -25,8 +33,14 @@ Optional property:
software needs to take when this pin is
strapped in these modes. See data manual
for details.
- - ti,clk-output-sel - Muxing option for CLK_OUT pin - see dt-bindings/net/ti-dp83867.h
- for applicable values.
+ - ti,clk-output-sel - Muxing option for CLK_OUT pin. See dt-bindings/net/ti-dp83867.h
+ for applicable values. The CLK_OUT pin can also
+ be disabled by this property. When omitted, the
+ PHY's default will be left as is.
+ - ti,sgmii-ref-clock-output-enable - This denotes which
+ SGMII configuration is used (4 or 6-wire modes).
+ Some MACs work with differential SGMII clock.
+ See data manual for details.
Note: ti,min-output-impedance and ti,max-output-impedance are mutually
exclusive. When both properties are present ti,max-output-impedance
diff --git a/Documentation/devicetree/bindings/net/wiznet,w5x00.txt b/Documentation/devicetree/bindings/net/wiznet,w5x00.txt
new file mode 100644
index 000000000000..e9665798c4be
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/wiznet,w5x00.txt
@@ -0,0 +1,50 @@
+* Wiznet w5x00
+
+This is a standalone 10/100 MBit Ethernet controller with SPI interface.
+
+For each device connected to a SPI bus, define a child node within
+the SPI master node.
+
+Required properties:
+- compatible: Should be one of the following strings:
+ "wiznet,w5100"
+ "wiznet,w5200"
+ "wiznet,w5500"
+- reg: Specify the SPI chip select the chip is wired to.
+- interrupts: Specify the interrupt index within the interrupt controller (referred
+ to above in interrupt-parent) and interrupt type. w5x00 natively
+ generates falling edge interrupts, however, additional board logic
+ might invert the signal.
+- pinctrl-names: List of assigned state names, see pinctrl binding documentation.
+- pinctrl-0: List of phandles to configure the GPIO pin used as interrupt line,
+ see also generic and your platform specific pinctrl binding
+ documentation.
+
+Optional properties:
+- spi-max-frequency: Maximum frequency of the SPI bus when accessing the w5500.
+ According to the w5500 datasheet, the chip allows a maximum of 80 MHz, however,
+ board designs may need to limit this value.
+- local-mac-address: See ethernet.txt in the same directory.
+
+
+Example (for Raspberry Pi with pin control stuff for GPIO irq):
+
+&spi {
+ ethernet@0: w5500@0 {
+ compatible = "wiznet,w5500";
+ reg = <0>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&eth1_pins>;
+ interrupt-parent = <&gpio>;
+ interrupts = <25 IRQ_TYPE_EDGE_FALLING>;
+ spi-max-frequency = <30000000>;
+ };
+};
+
+&gpio {
+ eth1_pins: eth1_pins {
+ brcm,pins = <25>;
+ brcm,function = <0>; /* in */
+ brcm,pull = <0>; /* none */
+ };
+};
diff --git a/Documentation/devicetree/bindings/net/xilinx_axienet.txt b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
index 38f9ec076743..7360617cdedb 100644
--- a/Documentation/devicetree/bindings/net/xilinx_axienet.txt
+++ b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
@@ -17,8 +17,15 @@ For more details about mdio please refer phy.txt file in the same directory.
Required properties:
- compatible : Must be one of "xlnx,axi-ethernet-1.00.a",
"xlnx,axi-ethernet-1.01.a", "xlnx,axi-ethernet-2.01.a"
-- reg : Address and length of the IO space.
-- interrupts : Should be a list of two interrupt, TX and RX.
+- reg : Address and length of the IO space, as well as the address
+ and length of the AXI DMA controller IO space, unless
+ axistream-connected is specified, in which case the reg
+ attribute of the node referenced by it is used.
+- interrupts : Should be a list of 2 or 3 interrupts: TX DMA, RX DMA,
+ and optionally Ethernet core. If axistream-connected is
+ specified, the TX/RX DMA interrupts should be on that node
+ instead, and only the Ethernet core interrupt is optionally
+ specified here.
- phy-handle : Should point to the external phy device.
See ethernet.txt file in the same directory.
- xlnx,rxmem : Set to allocated memory buffer for Rx/Tx in the hardware
@@ -31,15 +38,29 @@ Optional properties:
1 to enable partial TX checksum offload,
2 to enable full TX checksum offload
- xlnx,rxcsum : Same values as xlnx,txcsum but for RX checksum offload
+- clocks : AXI bus clock for the device. Refer to common clock bindings.
+ Used to calculate MDIO clock divisor. If not specified, it is
+ auto-detected from the CPU clock (but only on platforms where
+ this is possible). New device trees should specify this - the
+ auto detection is only for backward compatibility.
+- axistream-connected: Reference to another node which contains the resources
+ for the AXI DMA controller used by this device.
+ If this is specified, the DMA-related resources from that
+ device (DMA registers and DMA TX/RX interrupts) rather
+ than this one will be used.
+ - mdio : Child node for MDIO bus. Must be defined if PHY access is
+ required through the core's MDIO interface (i.e. always,
+ unless the PHY is accessed through a different bus).
Example:
axi_ethernet_eth: ethernet@40c00000 {
compatible = "xlnx,axi-ethernet-1.00.a";
device_type = "network";
interrupt-parent = <&microblaze_0_axi_intc>;
- interrupts = <2 0>;
+ interrupts = <2 0 1>;
+ clocks = <&axi_clk>;
phy-mode = "mii";
- reg = <0x40c00000 0x40000>;
+ reg = <0x40c00000 0x40000 0x50c00000 0x40000>;
xlnx,rxcsum = <0x2>;
xlnx,rxmem = <0x800>;
xlnx,txcsum = <0x2>;
diff --git a/Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml b/Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml
new file mode 100644
index 000000000000..1084e9d2917d
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/allwinner,sun4i-a10-sid.yaml
@@ -0,0 +1,51 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/nvmem/allwinner,sun4i-a10-sid.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Security ID Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+allOf:
+ - $ref: "nvmem.yaml#"
+
+properties:
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-sid
+ - allwinner,sun7i-a20-sid
+ - allwinner,sun8i-a83t-sid
+ - allwinner,sun8i-h3-sid
+ - allwinner,sun50i-a64-sid
+ - allwinner,sun50i-h5-sid
+ - allwinner,sun50i-h6-sid
+
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+# FIXME: We should set it, but it would report all the generic
+# properties as additional properties.
+# additionalProperties: false
+
+examples:
+ - |
+ efuse@1c23800 {
+ compatible = "allwinner,sun4i-a10-sid";
+ reg = <0x01c23800 0x10>;
+ };
+
+ - |
+ efuse@1c23800 {
+ compatible = "allwinner,sun7i-a20-sid";
+ reg = <0x01c23800 0x200>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt b/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
deleted file mode 100644
index cfb18b4ef8f7..000000000000
--- a/Documentation/devicetree/bindings/nvmem/allwinner,sunxi-sid.txt
+++ /dev/null
@@ -1,29 +0,0 @@
-Allwinner sunxi-sid
-
-Required properties:
-- compatible: Should be one of the following:
- "allwinner,sun4i-a10-sid"
- "allwinner,sun7i-a20-sid"
- "allwinner,sun8i-a83t-sid"
- "allwinner,sun8i-h3-sid"
- "allwinner,sun50i-a64-sid"
- "allwinner,sun50i-h5-sid"
- "allwinner,sun50i-h6-sid"
-
-- reg: Should contain registers location and length
-
-= Data cells =
-Are child nodes of sunxi-sid, bindings of which as described in
-bindings/nvmem/nvmem.txt
-
-Example for sun4i:
- sid@1c23800 {
- compatible = "allwinner,sun4i-a10-sid";
- reg = <0x01c23800 0x10>
- };
-
-Example for sun7i:
- sid@1c23800 {
- compatible = "allwinner,sun7i-a20-sid";
- reg = <0x01c23800 0x200>
- };
diff --git a/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt b/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt
index 68f7d6fdd140..904dadf3d07b 100644
--- a/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt
+++ b/Documentation/devicetree/bindings/nvmem/imx-ocotp.txt
@@ -2,7 +2,7 @@ Freescale i.MX6 On-Chip OTP Controller (OCOTP) device tree bindings
This binding represents the on-chip eFuse OTP controller found on
i.MX6Q/D, i.MX6DL/S, i.MX6SL, i.MX6SX, i.MX6UL, i.MX6ULL/ULZ, i.MX6SLL,
-i.MX7D/S, i.MX7ULP and i.MX8MQ SoCs.
+i.MX7D/S, i.MX7ULP, i.MX8MQ, i.MX8MM and i.MX8MN SoCs.
Required properties:
- compatible: should be one of
@@ -15,6 +15,8 @@ Required properties:
"fsl,imx6sll-ocotp" (i.MX6SLL),
"fsl,imx7ulp-ocotp" (i.MX7ULP),
"fsl,imx8mq-ocotp" (i.MX8MQ),
+ "fsl,imx8mm-ocotp" (i.MX8MM),
+ "fsl,imx8mn-ocotp" (i.MX8MN),
followed by "syscon".
- #address-cells : Should be 1
- #size-cells : Should be 1
diff --git a/Documentation/devicetree/bindings/nvmem/nvmem-consumer.yaml b/Documentation/devicetree/bindings/nvmem/nvmem-consumer.yaml
new file mode 100644
index 000000000000..b7c00ed31085
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/nvmem-consumer.yaml
@@ -0,0 +1,45 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/nvmem/nvmem-consumer.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NVMEM (Non Volatile Memory) Consumer Device Tree Bindings
+
+maintainers:
+ - Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
+
+select: true
+
+properties:
+ nvmem:
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+ description:
+ List of phandle to the nvmem providers.
+
+ nvmem-cells:
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+ description:
+ List of phandle to the nvmem data cells.
+
+ nvmem-names:
+ $ref: /schemas/types.yaml#/definitions/string-array
+ description:
+ Names for the each nvmem provider.
+
+ nvmem-cell-names:
+ $ref: /schemas/types.yaml#/definitions/string-array
+ description:
+ Names for each nvmem-cells specified.
+
+dependencies:
+ nvmem-names: [ nvmem ]
+ nvmem-cell-names: [ nvmem-cells ]
+
+examples:
+ - |
+ tsens {
+ /* ... */
+ nvmem-cells = <&tsens_calibration>;
+ nvmem-cell-names = "calibration";
+ };
diff --git a/Documentation/devicetree/bindings/nvmem/nvmem.txt b/Documentation/devicetree/bindings/nvmem/nvmem.txt
index fd06c09b822b..46a7ef485e24 100644
--- a/Documentation/devicetree/bindings/nvmem/nvmem.txt
+++ b/Documentation/devicetree/bindings/nvmem/nvmem.txt
@@ -1,80 +1 @@
-= NVMEM(Non Volatile Memory) Data Device Tree Bindings =
-
-This binding is intended to represent the location of hardware
-configuration data stored in NVMEMs like eeprom, efuses and so on.
-
-On a significant proportion of boards, the manufacturer has stored
-some data on NVMEM, for the OS to be able to retrieve these information
-and act upon it. Obviously, the OS has to know about where to retrieve
-these data from, and where they are stored on the storage device.
-
-This document is here to document this.
-
-= Data providers =
-Contains bindings specific to provider drivers and data cells as children
-of this node.
-
-Optional properties:
- read-only: Mark the provider as read only.
-
-= Data cells =
-These are the child nodes of the provider which contain data cell
-information like offset and size in nvmem provider.
-
-Required properties:
-reg: specifies the offset in byte within the storage device.
-
-Optional properties:
-
-bits: Is pair of bit location and number of bits, which specifies offset
- in bit and number of bits within the address range specified by reg property.
- Offset takes values from 0-7.
-
-For example:
-
- /* Provider */
- qfprom: qfprom@700000 {
- ...
-
- /* Data cells */
- tsens_calibration: calib@404 {
- reg = <0x404 0x10>;
- };
-
- tsens_calibration_bckp: calib_bckp@504 {
- reg = <0x504 0x11>;
- bits = <6 128>
- };
-
- pvs_version: pvs-version@6 {
- reg = <0x6 0x2>
- bits = <7 2>
- };
-
- speed_bin: speed-bin@c{
- reg = <0xc 0x1>;
- bits = <2 3>;
-
- };
- ...
- };
-
-= Data consumers =
-Are device nodes which consume nvmem data cells/providers.
-
-Required-properties:
-nvmem-cells: list of phandle to the nvmem data cells.
-nvmem-cell-names: names for the each nvmem-cells specified. Required if
- nvmem-cells is used.
-
-Optional-properties:
-nvmem : list of phandles to nvmem providers.
-nvmem-names: names for the each nvmem provider. required if nvmem is used.
-
-For example:
-
- tsens {
- ...
- nvmem-cells = <&tsens_calibration>;
- nvmem-cell-names = "calibration";
- };
+This file has been moved to nvmem.yaml and nvmem-consumer.yaml.
diff --git a/Documentation/devicetree/bindings/nvmem/nvmem.yaml b/Documentation/devicetree/bindings/nvmem/nvmem.yaml
new file mode 100644
index 000000000000..1c75a059206c
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/nvmem.yaml
@@ -0,0 +1,93 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/nvmem/nvmem.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NVMEM (Non Volatile Memory) Device Tree Bindings
+
+maintainers:
+ - Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
+
+description: |
+ This binding is intended to represent the location of hardware
+ configuration data stored in NVMEMs like eeprom, efuses and so on.
+
+ On a significant proportion of boards, the manufacturer has stored
+ some data on NVMEM, for the OS to be able to retrieve these
+ information and act upon it. Obviously, the OS has to know about
+ where to retrieve these data from, and where they are stored on the
+ storage device.
+
+properties:
+ $nodename:
+ pattern: "^(eeprom|efuse|nvram)(@.*|-[0-9a-f])*$"
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 1
+
+ read-only:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Mark the provider as read only.
+
+patternProperties:
+ "^.*@[0-9a-f]+$":
+ type: object
+
+ properties:
+ reg:
+ maxItems: 1
+ description:
+ Offset and size in bytes within the storage device.
+
+ bits:
+ maxItems: 1
+ items:
+ items:
+ - minimum: 0
+ maximum: 7
+ description:
+ Offset in bit within the address range specified by reg.
+ - minimum: 1
+ description:
+ Size in bit within the address range specified by reg.
+
+ required:
+ - reg
+
+ additionalProperties: false
+
+examples:
+ - |
+ qfprom: eeprom@700000 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ /* ... */
+
+ /* Data cells */
+ tsens_calibration: calib@404 {
+ reg = <0x404 0x10>;
+ };
+
+ tsens_calibration_bckp: calib_bckp@504 {
+ reg = <0x504 0x11>;
+ bits = <6 128>;
+ };
+
+ pvs_version: pvs-version@6 {
+ reg = <0x6 0x2>;
+ bits = <7 2>;
+ };
+
+ speed_bin: speed-bin@c{
+ reg = <0xc 0x1>;
+ bits = <2 3>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/opp/opp.txt b/Documentation/devicetree/bindings/opp/opp.txt
index 76b6c79604a5..68592271461f 100644
--- a/Documentation/devicetree/bindings/opp/opp.txt
+++ b/Documentation/devicetree/bindings/opp/opp.txt
@@ -140,8 +140,8 @@ Optional properties:
frequency for a short duration of time limited by the device's power, current
and thermal limits.
-- opp-suspend: Marks the OPP to be used during device suspend. Only one OPP in
- the table should have this.
+- opp-suspend: Marks the OPP to be used during device suspend. If multiple OPPs
+ in the table have this, the OPP with highest opp-hz will be used.
- opp-supported-hw: This enables us to select only a subset of OPPs from the
larger OPP table, based on what version of the hardware we are running on. We
diff --git a/Documentation/devicetree/bindings/opp/kryo-cpufreq.txt b/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
index c2127b96805a..4751029b9b74 100644
--- a/Documentation/devicetree/bindings/opp/kryo-cpufreq.txt
+++ b/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
@@ -1,25 +1,38 @@
-Qualcomm Technologies, Inc. KRYO CPUFreq and OPP bindings
+Qualcomm Technologies, Inc. NVMEM CPUFreq and OPP bindings
===================================
-In Certain Qualcomm Technologies, Inc. SoCs like apq8096 and msm8996
-that have KRYO processors, the CPU ferequencies subset and voltage value
-of each OPP varies based on the silicon variant in use.
+In Certain Qualcomm Technologies, Inc. SoCs like apq8096 and msm8996,
+the CPU frequencies subset and voltage value of each OPP varies based on
+the silicon variant in use.
Qualcomm Technologies, Inc. Process Voltage Scaling Tables
defines the voltage and frequency value based on the msm-id in SMEM
and speedbin blown in the efuse combination.
-The qcom-cpufreq-kryo driver reads the msm-id and efuse value from the SoC
+The qcom-cpufreq-nvmem driver reads the msm-id and efuse value from the SoC
to provide the OPP framework with required information (existing HW bitmap).
This is used to determine the voltage and frequency value for each OPP of
operating-points-v2 table when it is parsed by the OPP framework.
Required properties:
--------------------
-In 'cpus' nodes:
+In 'cpu' nodes:
- operating-points-v2: Phandle to the operating-points-v2 table to use.
In 'operating-points-v2' table:
- compatible: Should be
- 'operating-points-v2-kryo-cpu' for apq8096 and msm8996.
+
+Optional properties:
+--------------------
+In 'cpu' nodes:
+- power-domains: A phandle pointing to the PM domain specifier which provides
+ the performance states available for active state management.
+ Please refer to the power-domains bindings
+ Documentation/devicetree/bindings/power/power_domain.txt
+ and also examples below.
+- power-domain-names: Should be
+ - 'cpr' for qcs404.
+
+In 'operating-points-v2' table:
- nvmem-cells: A phandle pointing to a nvmem-cells node representing the
efuse registers that has information about the
speedbin that is used to select the right frequency/voltage
@@ -678,3 +691,105 @@ soc {
};
};
};
+
+Example 2:
+---------
+
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ CPU0: cpu@100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x100>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+
+ CPU1: cpu@101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x101>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+
+ CPU2: cpu@102 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x102>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+
+ CPU3: cpu@103 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x103>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+ };
+
+ cpu_opp_table: cpu-opp-table {
+ compatible = "operating-points-v2-kryo-cpu";
+ opp-shared;
+
+ opp-1094400000 {
+ opp-hz = /bits/ 64 <1094400000>;
+ required-opps = <&cpr_opp1>;
+ };
+ opp-1248000000 {
+ opp-hz = /bits/ 64 <1248000000>;
+ required-opps = <&cpr_opp2>;
+ };
+ opp-1401600000 {
+ opp-hz = /bits/ 64 <1401600000>;
+ required-opps = <&cpr_opp3>;
+ };
+ };
+
+ cpr_opp_table: cpr-opp-table {
+ compatible = "operating-points-v2-qcom-level";
+
+ cpr_opp1: opp1 {
+ opp-level = <1>;
+ qcom,opp-fuse-level = <1>;
+ };
+ cpr_opp2: opp2 {
+ opp-level = <2>;
+ qcom,opp-fuse-level = <2>;
+ };
+ cpr_opp3: opp3 {
+ opp-level = <3>;
+ qcom,opp-fuse-level = <3>;
+ };
+ };
+
+....
+
+soc {
+....
+ cpr: power-controller@b018000 {
+ compatible = "qcom,qcs404-cpr", "qcom,cpr";
+ reg = <0x0b018000 0x1000>;
+ ....
+ vdd-apc-supply = <&pms405_s3>;
+ #power-domain-cells = <0>;
+ operating-points-v2 = <&cpr_opp_table>;
+ ....
+ };
+};
diff --git a/Documentation/devicetree/bindings/opp/qcom-opp.txt b/Documentation/devicetree/bindings/opp/qcom-opp.txt
new file mode 100644
index 000000000000..32eb0793c7e6
--- /dev/null
+++ b/Documentation/devicetree/bindings/opp/qcom-opp.txt
@@ -0,0 +1,19 @@
+Qualcomm OPP bindings to describe OPP nodes
+
+The bindings are based on top of the operating-points-v2 bindings
+described in Documentation/devicetree/bindings/opp/opp.txt
+Additional properties are described below.
+
+* OPP Table Node
+
+Required properties:
+- compatible: Allow OPPs to express their compatibility. It should be:
+ "operating-points-v2-qcom-level"
+
+* OPP Node
+
+Required properties:
+- qcom,opp-fuse-level: A positive value representing the fuse corner/level
+ associated with this OPP node. Sometimes several corners/levels shares
+ a certain fuse corner/level. A fuse corner/level contains e.g. ref uV,
+ min uV, and max uV.
diff --git a/Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt b/Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt
new file mode 100644
index 000000000000..7deae57a587b
--- /dev/null
+++ b/Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt
@@ -0,0 +1,167 @@
+Allwinner Technologies, Inc. NVMEM CPUFreq and OPP bindings
+===================================
+
+For some SoCs, the CPU frequency subset and voltage value of each OPP
+varies based on the silicon variant in use. Allwinner Process Voltage
+Scaling Tables defines the voltage and frequency value based on the
+speedbin blown in the efuse combination. The sun50i-cpufreq-nvmem driver
+reads the efuse value from the SoC to provide the OPP framework with
+required information.
+
+Required properties:
+--------------------
+In 'cpus' nodes:
+- operating-points-v2: Phandle to the operating-points-v2 table to use.
+
+In 'operating-points-v2' table:
+- compatible: Should be
+ - 'allwinner,sun50i-h6-operating-points'.
+- nvmem-cells: A phandle pointing to a nvmem-cells node representing the
+ efuse registers that has information about the speedbin
+ that is used to select the right frequency/voltage value
+ pair. Please refer the for nvmem-cells bindings
+ Documentation/devicetree/bindings/nvmem/nvmem.txt and
+ also examples below.
+
+In every OPP node:
+- opp-microvolt-<name>: Voltage in micro Volts.
+ At runtime, the platform can pick a <name> and
+ matching opp-microvolt-<name> property.
+ [See: opp.txt]
+ HW: <name>:
+ sun50i-h6 speed0 speed1 speed2
+
+Example 1:
+---------
+
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu0: cpu@0 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <0>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+
+ cpu1: cpu@1 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <1>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+
+ cpu2: cpu@2 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <2>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+
+ cpu3: cpu@3 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <3>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+ };
+
+ cpu_opp_table: opp_table {
+ compatible = "allwinner,sun50i-h6-operating-points";
+ nvmem-cells = <&speedbin_efuse>;
+ opp-shared;
+
+ opp@480000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <480000000>;
+
+ opp-microvolt-speed0 = <880000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@720000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <720000000>;
+
+ opp-microvolt-speed0 = <880000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@816000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <816000000>;
+
+ opp-microvolt-speed0 = <880000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@888000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <888000000>;
+
+ opp-microvolt-speed0 = <940000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@1080000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <1080000000>;
+
+ opp-microvolt-speed0 = <1060000>;
+ opp-microvolt-speed1 = <880000>;
+ opp-microvolt-speed2 = <840000>;
+ };
+
+ opp@1320000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <1320000000>;
+
+ opp-microvolt-speed0 = <1160000>;
+ opp-microvolt-speed1 = <940000>;
+ opp-microvolt-speed2 = <900000>;
+ };
+
+ opp@1488000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <1488000000>;
+
+ opp-microvolt-speed0 = <1160000>;
+ opp-microvolt-speed1 = <1000000>;
+ opp-microvolt-speed2 = <960000>;
+ };
+ };
+....
+soc {
+....
+ sid: sid@3006000 {
+ compatible = "allwinner,sun50i-h6-sid";
+ reg = <0x03006000 0x400>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ....
+ speedbin_efuse: speed@1c {
+ reg = <0x1c 4>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
index b9165b72473c..3abeecf4983f 100644
--- a/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
+++ b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
@@ -9,7 +9,6 @@ Freescale 83xx and 512x SOCs include the same PCI bridge core.
Example (MPC8313ERDB)
pci0: pci@e0008500 {
- cell-index = <1>;
interrupt-map-mask = <0xf800 0x0 0x0 0x7>;
interrupt-map = <
/* IDSEL 0x0E -mini PCI */
diff --git a/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt b/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt
index 12b18f82d441..efa2c8b9b85a 100644
--- a/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/amlogic,meson-pcie.txt
@@ -3,7 +3,7 @@ Amlogic Meson AXG DWC PCIE SoC controller
Amlogic Meson PCIe host controller is based on the Synopsys DesignWare PCI core.
It shares common functions with the PCIe DesignWare core driver and
inherits common properties defined in
-Documentation/devicetree/bindings/pci/designware-pci.txt.
+Documentation/devicetree/bindings/pci/designware-pcie.txt.
Additional properties are described here:
diff --git a/Documentation/devicetree/bindings/pci/designware-pcie.txt b/Documentation/devicetree/bindings/pci/designware-pcie.txt
index 5561a1c060d0..78494c4050f7 100644
--- a/Documentation/devicetree/bindings/pci/designware-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/designware-pcie.txt
@@ -11,7 +11,6 @@ Required properties:
the ATU address space.
(The old way of getting the configuration address space from "ranges"
is deprecated and should be avoided.)
-- num-lanes: number of lanes to use
RC mode:
- #address-cells: set to <3>
- #size-cells: set to <2>
@@ -34,6 +33,11 @@ Optional properties:
- clock-names: Must include the following entries:
- "pcie"
- "pcie_bus"
+- snps,enable-cdm-check: This is a boolean property and if present enables
+ automatic checking of CDM (Configuration Dependent Module) registers
+ for data corruption. CDM registers include standard PCIe configuration
+ space registers, Port Logic registers, DMA and iATU (internal Address
+ Translation Unit) registers.
RC mode:
- num-viewport: number of view ports configured in hardware. If a platform
does not specify it, the driver assumes 2.
diff --git a/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt b/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt
index a7f5f5afa0e6..de4b2baf91e8 100644
--- a/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.txt
@@ -50,7 +50,7 @@ Additional required properties for imx7d-pcie and imx8mq-pcie:
- power-domains: Must be set to a phandle pointing to PCIE_PHY power domain
- resets: Must contain phandles to PCIe-related reset lines exposed by SRC
IP block
-- reset-names: Must contain the following entires:
+- reset-names: Must contain the following entries:
- "pciephy"
- "apps"
- "turnoff"
diff --git a/Documentation/devicetree/bindings/pci/mediatek-pcie.txt b/Documentation/devicetree/bindings/pci/mediatek-pcie.txt
index 92437a366e5f..7468d666763a 100644
--- a/Documentation/devicetree/bindings/pci/mediatek-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/mediatek-pcie.txt
@@ -6,6 +6,7 @@ Required properties:
"mediatek,mt2712-pcie"
"mediatek,mt7622-pcie"
"mediatek,mt7623-pcie"
+ "mediatek,mt7629-pcie"
- device_type: Must be "pci"
- reg: Base addresses and lengths of the PCIe subsys and root ports.
- reg-names: Names of the above areas to use during resource lookup.
diff --git a/Documentation/devicetree/bindings/pci/mobiveil-pcie.txt b/Documentation/devicetree/bindings/pci/mobiveil-pcie.txt
index a618d4787dd7..64156993e052 100644
--- a/Documentation/devicetree/bindings/pci/mobiveil-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/mobiveil-pcie.txt
@@ -10,8 +10,10 @@ Required properties:
interrupt source. The value must be 1.
- compatible: Should contain "mbvl,gpex40-pcie"
- reg: Should contain PCIe registers location and length
+ Mandatory:
"config_axi_slave": PCIe controller registers
"csr_axi_slave" : Bridge config registers
+ Optional:
"gpio_slave" : GPIO registers to control slot power
"apb_csr" : MSI registers
diff --git a/Documentation/devicetree/bindings/pci/nvidia,tegra194-pcie.txt b/Documentation/devicetree/bindings/pci/nvidia,tegra194-pcie.txt
new file mode 100644
index 000000000000..b739f92da58e
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/nvidia,tegra194-pcie.txt
@@ -0,0 +1,171 @@
+NVIDIA Tegra PCIe controller (Synopsys DesignWare Core based)
+
+This PCIe host controller is based on the Synopsis Designware PCIe IP
+and thus inherits all the common properties defined in designware-pcie.txt.
+
+Required properties:
+- compatible: For Tegra19x, must contain "nvidia,tegra194-pcie".
+- device_type: Must be "pci"
+- power-domains: A phandle to the node that controls power to the respective
+ PCIe controller and a specifier name for the PCIe controller. Following are
+ the specifiers for the different PCIe controllers
+ TEGRA194_POWER_DOMAIN_PCIEX8B: C0
+ TEGRA194_POWER_DOMAIN_PCIEX1A: C1
+ TEGRA194_POWER_DOMAIN_PCIEX1A: C2
+ TEGRA194_POWER_DOMAIN_PCIEX1A: C3
+ TEGRA194_POWER_DOMAIN_PCIEX4A: C4
+ TEGRA194_POWER_DOMAIN_PCIEX8A: C5
+ these specifiers are defined in
+ "include/dt-bindings/power/tegra194-powergate.h" file.
+- reg: A list of physical base address and length pairs for each set of
+ controller registers. Must contain an entry for each entry in the reg-names
+ property.
+- reg-names: Must include the following entries:
+ "appl": Controller's application logic registers
+ "config": As per the definition in designware-pcie.txt
+ "atu_dma": iATU and DMA registers. This is where the iATU (internal Address
+ Translation Unit) registers of the PCIe core are made available
+ for SW access.
+ "dbi": The aperture where root port's own configuration registers are
+ available
+- interrupts: A list of interrupt outputs of the controller. Must contain an
+ entry for each entry in the interrupt-names property.
+- interrupt-names: Must include the following entries:
+ "intr": The Tegra interrupt that is asserted for controller interrupts
+ "msi": The Tegra interrupt that is asserted when an MSI is received
+- bus-range: Range of bus numbers associated with this controller
+- #address-cells: Address representation for root ports (must be 3)
+ - cell 0 specifies the bus and device numbers of the root port:
+ [23:16]: bus number
+ [15:11]: device number
+ - cell 1 denotes the upper 32 address bits and should be 0
+ - cell 2 contains the lower 32 address bits and is used to translate to the
+ CPU address space
+- #size-cells: Size representation for root ports (must be 2)
+- ranges: Describes the translation of addresses for root ports and standard
+ PCI regions. The entries must be 7 cells each, where the first three cells
+ correspond to the address as described for the #address-cells property
+ above, the fourth and fifth cells are for the physical CPU address to
+ translate to and the sixth and seventh cells are as described for the
+ #size-cells property above.
+ - Entries setup the mapping for the standard I/O, memory and
+ prefetchable PCI regions. The first cell determines the type of region
+ that is setup:
+ - 0x81000000: I/O memory region
+ - 0x82000000: non-prefetchable memory region
+ - 0xc2000000: prefetchable memory region
+ Please refer to the standard PCI bus binding document for a more detailed
+ explanation.
+- #interrupt-cells: Size representation for interrupts (must be 1)
+- interrupt-map-mask and interrupt-map: Standard PCI IRQ mapping properties
+ Please refer to the standard PCI bus binding document for a more detailed
+ explanation.
+- clocks: Must contain an entry for each entry in clock-names.
+ See ../clocks/clock-bindings.txt for details.
+- clock-names: Must include the following entries:
+ - core
+- resets: Must contain an entry for each entry in reset-names.
+ See ../reset/reset.txt for details.
+- reset-names: Must include the following entries:
+ - apb
+ - core
+- phys: Must contain a phandle to P2U PHY for each entry in phy-names.
+- phy-names: Must include an entry for each active lane.
+ "p2u-N": where N ranges from 0 to one less than the total number of lanes
+- nvidia,bpmp: Must contain a pair of phandle to BPMP controller node followed
+ by controller-id. Following are the controller ids for each controller.
+ 0: C0
+ 1: C1
+ 2: C2
+ 3: C3
+ 4: C4
+ 5: C5
+- vddio-pex-ctl-supply: Regulator supply for PCIe side band signals
+
+Optional properties:
+- pinctrl-names: A list of pinctrl state names.
+ It is mandatory for C5 controller and optional for other controllers.
+ - "default": Configures PCIe I/O for proper operation.
+- pinctrl-0: phandle for the 'default' state of pin configuration.
+ It is mandatory for C5 controller and optional for other controllers.
+- supports-clkreq: Refer to Documentation/devicetree/bindings/pci/pci.txt
+- nvidia,update-fc-fixup: This is a boolean property and needs to be present to
+ improve performance when a platform is designed in such a way that it
+ satisfies at least one of the following conditions thereby enabling root
+ port to exchange optimum number of FC (Flow Control) credits with
+ downstream devices
+ 1. If C0/C4/C5 run at x1/x2 link widths (irrespective of speed and MPS)
+ 2. If C0/C1/C2/C3/C4/C5 operate at their respective max link widths and
+ a) speed is Gen-2 and MPS is 256B
+ b) speed is >= Gen-3 with any MPS
+- nvidia,aspm-cmrt-us: Common Mode Restore Time for proper operation of ASPM
+ to be specified in microseconds
+- nvidia,aspm-pwr-on-t-us: Power On time for proper operation of ASPM to be
+ specified in microseconds
+- nvidia,aspm-l0s-entrance-latency-us: ASPM L0s entrance latency to be
+ specified in microseconds
+- vpcie3v3-supply: A phandle to the regulator node that supplies 3.3V to the slot
+ if the platform has one such slot. (Ex:- x16 slot owned by C5 controller
+ in p2972-0000 platform).
+- vpcie12v-supply: A phandle to the regulator node that supplies 12V to the slot
+ if the platform has one such slot. (Ex:- x16 slot owned by C5 controller
+ in p2972-0000 platform).
+
+Examples:
+=========
+
+Tegra194:
+--------
+
+ pcie@14180000 {
+ compatible = "nvidia,tegra194-pcie", "snps,dw-pcie";
+ power-domains = <&bpmp TEGRA194_POWER_DOMAIN_PCIEX8B>;
+ reg = <0x00 0x14180000 0x0 0x00020000 /* appl registers (128K) */
+ 0x00 0x38000000 0x0 0x00040000 /* configuration space (256K) */
+ 0x00 0x38040000 0x0 0x00040000>; /* iATU_DMA reg space (256K) */
+ reg-names = "appl", "config", "atu_dma";
+
+ #address-cells = <3>;
+ #size-cells = <2>;
+ device_type = "pci";
+ num-lanes = <8>;
+ linux,pci-domain = <0>;
+
+ pinctrl-names = "default";
+ pinctrl-0 = <&pex_rst_c5_out_state>, <&clkreq_c5_bi_dir_state>;
+
+ clocks = <&bpmp TEGRA194_CLK_PEX0_CORE_0>;
+ clock-names = "core";
+
+ resets = <&bpmp TEGRA194_RESET_PEX0_CORE_0_APB>,
+ <&bpmp TEGRA194_RESET_PEX0_CORE_0>;
+ reset-names = "apb", "core";
+
+ interrupts = <GIC_SPI 72 IRQ_TYPE_LEVEL_HIGH>, /* controller interrupt */
+ <GIC_SPI 73 IRQ_TYPE_LEVEL_HIGH>; /* MSI interrupt */
+ interrupt-names = "intr", "msi";
+
+ #interrupt-cells = <1>;
+ interrupt-map-mask = <0 0 0 0>;
+ interrupt-map = <0 0 0 0 &gic GIC_SPI 72 IRQ_TYPE_LEVEL_HIGH>;
+
+ nvidia,bpmp = <&bpmp 0>;
+
+ supports-clkreq;
+ nvidia,aspm-cmrt-us = <60>;
+ nvidia,aspm-pwr-on-t-us = <20>;
+ nvidia,aspm-l0s-entrance-latency-us = <3>;
+
+ bus-range = <0x0 0xff>;
+ ranges = <0x81000000 0x0 0x38100000 0x0 0x38100000 0x0 0x00100000 /* downstream I/O (1MB) */
+ 0x82000000 0x0 0x38200000 0x0 0x38200000 0x0 0x01E00000 /* non-prefetchable memory (30MB) */
+ 0xc2000000 0x18 0x00000000 0x18 0x00000000 0x4 0x00000000>; /* prefetchable memory (16GB) */
+
+ vddio-pex-ctl-supply = <&vdd_1v8ao>;
+ vpcie3v3-supply = <&vdd_3v3_pcie>;
+ vpcie12v-supply = <&vdd_12v_pcie>;
+
+ phys = <&p2u_hsio_2>, <&p2u_hsio_3>, <&p2u_hsio_4>,
+ <&p2u_hsio_5>;
+ phy-names = "p2u-0", "p2u-1", "p2u-2", "p2u-3";
+ };
diff --git a/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt b/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt
index 145a4f04194f..7939bca47861 100644
--- a/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt
+++ b/Documentation/devicetree/bindings/pci/nvidia,tegra20-pcie.txt
@@ -65,6 +65,14 @@ Required properties:
- afi
- pcie_x
+Optional properties:
+- pinctrl-names: A list of pinctrl state names. Must contain the following
+ entries:
+ - "default": active state, puts PCIe I/O out of deep power down state
+ - "idle": puts PCIe I/O into deep power down state
+- pinctrl-0: phandle for the default/active state of pin configurations.
+- pinctrl-1: phandle for the idle state of pin configurations.
+
Required properties on Tegra124 and later (deprecated):
- phys: Must contain an entry for each entry in phy-names.
- phy-names: Must include the following entries:
diff --git a/Documentation/devicetree/bindings/pci/pci-armada8k.txt b/Documentation/devicetree/bindings/pci/pci-armada8k.txt
index 9e3fc15e1af8..7a813d0e6d63 100644
--- a/Documentation/devicetree/bindings/pci/pci-armada8k.txt
+++ b/Documentation/devicetree/bindings/pci/pci-armada8k.txt
@@ -11,12 +11,20 @@ Required properties:
- reg-names:
- "ctrl" for the control register region
- "config" for the config space region
-- interrupts: Interrupt specifier for the PCIe controler
+- interrupts: Interrupt specifier for the PCIe controller
- clocks: reference to the PCIe controller clocks
- clock-names: mandatory if there is a second clock, in this case the
name must be "core" for the first clock and "reg" for the second
one
+Optional properties:
+- phys: phandle(s) to PHY node(s) following the generic PHY bindings.
+ Either 1, 2 or 4 PHYs might be needed depending on the number of
+ PCIe lanes.
+- phy-names: names of the PHYs corresponding to the number of lanes.
+ Must be "cp0-pcie0-x4-lane0-phy", "cp0-pcie0-x4-lane1-phy" for
+ 2 PHYs.
+
Example:
pcie@f2600000 {
diff --git a/Documentation/devicetree/bindings/pci/pci-msi.txt b/Documentation/devicetree/bindings/pci/pci-msi.txt
index 9b3cc817d181..b73d839657b6 100644
--- a/Documentation/devicetree/bindings/pci/pci-msi.txt
+++ b/Documentation/devicetree/bindings/pci/pci-msi.txt
@@ -201,7 +201,7 @@ Example (5)
#msi-cells = <1>;
};
- pci: pci@c {
+ pci: pci@f {
reg = <0xf 0x1>;
compatible = "vendor,pcie-root-complex";
device_type = "pci";
diff --git a/Documentation/devicetree/bindings/pci/pci.txt b/Documentation/devicetree/bindings/pci/pci.txt
index 92c01db610df..29bcbd88f457 100644
--- a/Documentation/devicetree/bindings/pci/pci.txt
+++ b/Documentation/devicetree/bindings/pci/pci.txt
@@ -24,6 +24,14 @@ driver implementation may support the following properties:
unsupported link speed, for instance, trying to do training for
unsupported link speed, etc. Must be '4' for gen4, '3' for gen3, '2'
for gen2, and '1' for gen1. Any other values are invalid.
+- reset-gpios:
+ If present this property specifies PERST# GPIO. Host drivers can parse the
+ GPIO and apply fundamental reset to endpoints.
+- supports-clkreq:
+ If present this property specifies that CLKREQ signal routing exists from
+ root port to downstream device and host bridge drivers can do programming
+ which depends on CLKREQ signal existence. For example, programming root port
+ not to advertise ASPM L1 Sub-States support if there is no CLKREQ signal.
PCI-PCI Bridge properties
-------------------------
diff --git a/Documentation/devicetree/bindings/pci/pcie-al.txt b/Documentation/devicetree/bindings/pci/pcie-al.txt
new file mode 100644
index 000000000000..557a5089229d
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/pcie-al.txt
@@ -0,0 +1,46 @@
+* Amazon Annapurna Labs PCIe host bridge
+
+Amazon's Annapurna Labs PCIe Host Controller is based on the Synopsys DesignWare
+PCI core. It inherits common properties defined in
+Documentation/devicetree/bindings/pci/designware-pcie.txt.
+
+Properties of the host controller node that differ from it are:
+
+- compatible:
+ Usage: required
+ Value type: <stringlist>
+ Definition: Value should contain
+ - "amazon,al-alpine-v2-pcie" for alpine_v2
+ - "amazon,al-alpine-v3-pcie" for alpine_v3
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: Register ranges as listed in the reg-names property
+
+- reg-names:
+ Usage: required
+ Value type: <stringlist>
+ Definition: Must include the following entries
+ - "config" PCIe ECAM space
+ - "controller" AL proprietary registers
+ - "dbi" Designware PCIe registers
+
+Example:
+
+ pcie-external0: pcie@fb600000 {
+ compatible = "amazon,al-alpine-v3-pcie";
+ reg = <0x0 0xfb600000 0x0 0x00100000
+ 0x0 0xfd800000 0x0 0x00010000
+ 0x0 0xfd810000 0x0 0x00001000>;
+ reg-names = "config", "controller", "dbi";
+ bus-range = <0 255>;
+ device_type = "pci";
+ #address-cells = <3>;
+ #size-cells = <2>;
+ #interrupt-cells = <1>;
+ interrupts = <GIC_SPI 49 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-map-mask = <0x00 0 0 7>;
+ interrupt-map = <0x0000 0 0 1 &gic GIC_SPI 41 IRQ_TYPE_LEVEL_HIGH>; /* INTa */
+ ranges = <0x02000000 0x0 0xc0010000 0x0 0xc0010000 0x0 0x07ff0000>;
+ };
diff --git a/Documentation/devicetree/bindings/pci/qcom,pcie.txt b/Documentation/devicetree/bindings/pci/qcom,pcie.txt
index 1fd703bd73e0..ada80b01bf0c 100644
--- a/Documentation/devicetree/bindings/pci/qcom,pcie.txt
+++ b/Documentation/devicetree/bindings/pci/qcom,pcie.txt
@@ -10,6 +10,7 @@
- "qcom,pcie-msm8996" for msm8996 or apq8096
- "qcom,pcie-ipq4019" for ipq4019
- "qcom,pcie-ipq8074" for ipq8074
+ - "qcom,pcie-qcs404" for qcs404
- reg:
Usage: required
@@ -116,6 +117,15 @@
- "ahb" AHB clock
- "aux" Auxiliary clock
+- clock-names:
+ Usage: required for qcs404
+ Value type: <stringlist>
+ Definition: Should contain the following entries
+ - "iface" AHB clock
+ - "aux" Auxiliary clock
+ - "master_bus" AXI Master clock
+ - "slave_bus" AXI Slave clock
+
- resets:
Usage: required
Value type: <prop-encoded-array>
@@ -167,6 +177,17 @@
- "ahb" AHB Reset
- "axi_m_sticky" AXI Master Sticky reset
+- reset-names:
+ Usage: required for qcs404
+ Value type: <stringlist>
+ Definition: Should contain the following entries
+ - "axi_m" AXI Master reset
+ - "axi_s" AXI Slave reset
+ - "axi_m_sticky" AXI Master Sticky reset
+ - "pipe_sticky" PIPE sticky reset
+ - "pwr" PWR reset
+ - "ahb" AHB reset
+
- power-domains:
Usage: required for apq8084 and msm8996/apq8096
Value type: <prop-encoded-array>
@@ -195,12 +216,12 @@
Definition: A phandle to the PCIe endpoint power supply
- phys:
- Usage: required for apq8084
+ Usage: required for apq8084 and qcs404
Value type: <phandle>
Definition: List of phandle(s) as listed in phy-names property
- phy-names:
- Usage: required for apq8084
+ Usage: required for apq8084 and qcs404
Value type: <stringlist>
Definition: Should contain "pciephy"
diff --git a/Documentation/devicetree/bindings/pci/rcar-pci.txt b/Documentation/devicetree/bindings/pci/rcar-pci.txt
index 6904882a0e94..45bba9f88a51 100644
--- a/Documentation/devicetree/bindings/pci/rcar-pci.txt
+++ b/Documentation/devicetree/bindings/pci/rcar-pci.txt
@@ -3,6 +3,7 @@
Required properties:
compatible: "renesas,pcie-r8a7743" for the R8A7743 SoC;
"renesas,pcie-r8a7744" for the R8A7744 SoC;
+ "renesas,pcie-r8a774a1" for the R8A774A1 SoC;
"renesas,pcie-r8a774c0" for the R8A774C0 SoC;
"renesas,pcie-r8a7779" for the R8A7779 SoC;
"renesas,pcie-r8a7790" for the R8A7790 SoC;
diff --git a/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt
new file mode 100644
index 000000000000..d77e3f26f9e6
--- /dev/null
+++ b/Documentation/devicetree/bindings/perf/fsl-imx-ddr.txt
@@ -0,0 +1,21 @@
+* Freescale(NXP) IMX8 DDR performance monitor
+
+Required properties:
+
+- compatible: should be one of:
+ "fsl,imx8-ddr-pmu"
+ "fsl,imx8m-ddr-pmu"
+
+- reg: physical address and size
+
+- interrupts: single interrupt
+ generated by the control block
+
+Example:
+
+ ddr-pmu@5c020000 {
+ compatible = "fsl,imx8-ddr-pmu";
+ reg = <0x5c020000 0x10000>;
+ interrupt-parent = <&gic>;
+ interrupts = <GIC_SPI 131 IRQ_TYPE_LEVEL_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/allwinner,sun6i-a31-mipi-dphy.yaml b/Documentation/devicetree/bindings/phy/allwinner,sun6i-a31-mipi-dphy.yaml
new file mode 100644
index 000000000000..fa46670de299
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/allwinner,sun6i-a31-mipi-dphy.yaml
@@ -0,0 +1,57 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/phy/allwinner,sun6i-a31-mipi-dphy.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 MIPI D-PHY Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#phy-cells":
+ const: 0
+
+ compatible:
+ const: allwinner,sun6i-a31-mipi-dphy
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: bus
+ - const: mod
+
+ resets:
+ maxItems: 1
+
+required:
+ - "#phy-cells"
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - resets
+
+additionalProperties: false
+
+examples:
+ - |
+ dphy0: d-phy@1ca1000 {
+ compatible = "allwinner,sun6i-a31-mipi-dphy";
+ reg = <0x01ca1000 0x1000>;
+ clocks = <&ccu 23>, <&ccu 97>;
+ clock-names = "bus", "mod";
+ resets = <&ccu 4>;
+ #phy-cells = <0>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml b/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml
new file mode 100644
index 000000000000..51254b4e65dd
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml
@@ -0,0 +1,63 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/phy/amlogic,meson-g12a-usb2-phy.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic G12A USB2 PHY
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson-g12a-usb2-phy
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ items:
+ - const: xtal
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ items:
+ - const: phy
+
+ "#phy-cells":
+ const: 0
+
+ phy-supply:
+ maxItems: 1
+ description:
+ Phandle to a regulator that provides power to the PHY. This
+ regulator will be managed during the PHY power on/off sequence.
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - "#phy-cells"
+
+examples:
+ - |
+ phy@36000 {
+ compatible = "amlogic,meson-g12a-usb2-phy";
+ reg = <0x36000 0x2000>;
+ clocks = <&xtal>;
+ clock-names = "xtal";
+ resets = <&phy_reset>;
+ reset-names = "phy";
+ #phy-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb3-pcie-phy.yaml b/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb3-pcie-phy.yaml
new file mode 100644
index 000000000000..346f9c35427c
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb3-pcie-phy.yaml
@@ -0,0 +1,57 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/phy/amlogic,meson-g12a-usb3-pcie-phy.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic G12A USB3 + PCIE Combo PHY
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson-g12a-usb3-pcie-phy
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ items:
+ - const: ref_clk
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ items:
+ - const: phy
+
+ "#phy-cells":
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - "#phy-cells"
+
+examples:
+ - |
+ phy@46000 {
+ compatible = "amlogic,meson-g12a-usb3-pcie-phy";
+ reg = <0x46000 0x2000>;
+ clocks = <&ref_clk>;
+ clock-names = "ref_clk";
+ resets = <&phy_reset>;
+ reset-names = "phy";
+ #phy-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/lantiq,vrx200-pcie-phy.yaml b/Documentation/devicetree/bindings/phy/lantiq,vrx200-pcie-phy.yaml
new file mode 100644
index 000000000000..8a56a8526cef
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/lantiq,vrx200-pcie-phy.yaml
@@ -0,0 +1,95 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/phy/lantiq,vrx200-pcie-phy.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Lantiq VRX200 and ARX300 PCIe PHY Device Tree Bindings
+
+maintainers:
+ - Martin Blumenstingl <martin.blumenstingl@googlemail.com>
+
+properties:
+ "#phy-cells":
+ const: 1
+ description: selects the PHY mode as defined in <dt-bindings/phy/phy-lantiq-vrx200-pcie.h>
+
+ compatible:
+ enum:
+ - lantiq,vrx200-pcie-phy
+ - lantiq,arx300-pcie-phy
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: PHY module clock
+ - description: PDI register clock
+
+ clock-names:
+ items:
+ - const: phy
+ - const: pdi
+
+ resets:
+ items:
+ - description: exclusive PHY reset line
+ - description: shared reset line between the PCIe PHY and PCIe controller
+
+ resets-names:
+ items:
+ - const: phy
+ - const: pcie
+
+ lantiq,rcu:
+ $ref: /schemas/types.yaml#/definitions/phandle
+ description: phandle to the RCU syscon
+
+ lantiq,rcu-endian-offset:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: the offset of the endian registers for this PHY instance in the RCU syscon
+
+ lantiq,rcu-big-endian-mask:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: the mask to set the PDI (PHY) registers for this PHY instance to big endian
+
+ big-endian:
+ description: Configures the PDI (PHY) registers in big-endian mode
+ type: boolean
+
+ little-endian:
+ description: Configures the PDI (PHY) registers in big-endian mode
+ type: boolean
+
+required:
+ - "#phy-cells"
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - lantiq,rcu
+ - lantiq,rcu-endian-offset
+ - lantiq,rcu-big-endian-mask
+
+additionalProperties: false
+
+examples:
+ - |
+ pcie0_phy: phy@106800 {
+ compatible = "lantiq,vrx200-pcie-phy";
+ reg = <0x106800 0x100>;
+ lantiq,rcu = <&rcu0>;
+ lantiq,rcu-endian-offset = <0x4c>;
+ lantiq,rcu-big-endian-mask = <0x80>; /* bit 7 */
+ big-endian;
+ clocks = <&pmu 32>, <&pmu 36>;
+ clock-names = "phy", "pdi";
+ resets = <&reset0 12 24>, <&reset0 22 22>;
+ reset-names = "phy", "pcie";
+ #phy-cells = <1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/phy/meson-g12a-usb2-phy.txt b/Documentation/devicetree/bindings/phy/meson-g12a-usb2-phy.txt
deleted file mode 100644
index a6ebc3dea159..000000000000
--- a/Documentation/devicetree/bindings/phy/meson-g12a-usb2-phy.txt
+++ /dev/null
@@ -1,22 +0,0 @@
-* Amlogic G12A USB2 PHY binding
-
-Required properties:
-- compatible: Should be "amlogic,meson-g12a-usb2-phy"
-- reg: The base address and length of the registers
-- #phys-cells: must be 0 (see phy-bindings.txt in this directory)
-- clocks: a phandle to the clock of this PHY
-- clock-names: must be "xtal"
-- resets: a phandle to the reset line of this PHY
-- reset-names: must be "phy"
-- phy-supply: see phy-bindings.txt in this directory
-
-Example:
- usb2_phy0: phy@36000 {
- compatible = "amlogic,g12a-usb2-phy";
- reg = <0x0 0x36000 0x0 0x2000>;
- clocks = <&xtal>;
- clock-names = "xtal";
- resets = <&reset RESET_USB_PHY21>;
- reset-names = "phy";
- #phy-cells = <0>;
- };
diff --git a/Documentation/devicetree/bindings/phy/meson-g12a-usb3-pcie-phy.txt b/Documentation/devicetree/bindings/phy/meson-g12a-usb3-pcie-phy.txt
deleted file mode 100644
index 7cfc17e2df31..000000000000
--- a/Documentation/devicetree/bindings/phy/meson-g12a-usb3-pcie-phy.txt
+++ /dev/null
@@ -1,22 +0,0 @@
-* Amlogic G12A USB3 + PCIE Combo PHY binding
-
-Required properties:
-- compatible: Should be "amlogic,meson-g12a-usb3-pcie-phy"
-- #phys-cells: must be 1. The cell number is used to select the phy mode
- as defined in <dt-bindings/phy/phy.h> between PHY_TYPE_USB3 and PHY_TYPE_PCIE
-- reg: The base address and length of the registers
-- clocks: a phandle to the 100MHz reference clock of this PHY
-- clock-names: must be "ref_clk"
-- resets: phandle to the reset lines for the PHY control
-- reset-names: must be "phy"
-
-Example:
- usb3_pcie_phy: phy@46000 {
- compatible = "amlogic,g12a-usb3-pcie-phy";
- reg = <0x0 0x46000 0x0 0x2000>;
- clocks = <&clkc CLKID_PCIE_PLL>;
- clock-names = "ref_clk";
- resets = <&reset RESET_PCIE_PHY>;
- reset-names = "phy";
- #phy-cells = <1>;
- };
diff --git a/Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt b/Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt
new file mode 100644
index 000000000000..9b23407233c0
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/mixel,mipi-dsi-phy.txt
@@ -0,0 +1,29 @@
+Mixel DSI PHY for i.MX8
+
+The Mixel MIPI-DSI PHY IP block is e.g. found on i.MX8 platforms (along the
+MIPI-DSI IP from Northwest Logic). It represents the physical layer for the
+electrical signals for DSI.
+
+Required properties:
+- compatible: Must be:
+ - "fsl,imx8mq-mipi-dphy"
+- clocks: Must contain an entry for each entry in clock-names.
+- clock-names: Must contain the following entries:
+ - "phy_ref": phandle and specifier referring to the DPHY ref clock
+- reg: the register range of the PHY controller
+- #phy-cells: number of cells in PHY, as defined in
+ Documentation/devicetree/bindings/phy/phy-bindings.txt
+ this must be <0>
+
+Optional properties:
+- power-domains: phandle to power domain
+
+Example:
+ dphy: dphy@30a0030 {
+ compatible = "fsl,imx8mq-mipi-dphy";
+ clocks = <&clk IMX8MQ_CLK_DSI_PHY_REF>;
+ clock-names = "phy_ref";
+ reg = <0x30a00300 0x100>;
+ power-domains = <&pd_mipi0>;
+ #phy-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt b/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt
index 6ac98b3b5f57..c9f5c0caf8a9 100644
--- a/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt
+++ b/Documentation/devicetree/bindings/phy/mxs-usb-phy.txt
@@ -7,6 +7,7 @@ Required properties:
* "fsl,imx6sl-usbphy" for imx6sl
* "fsl,vf610-usbphy" for Vybrid vf610
* "fsl,imx6sx-usbphy" for imx6sx
+ * "fsl,imx7ulp-usbphy" for imx7ulp
"fsl,imx23-usbphy" is still a fallback for other strings
- reg: Should contain registers location and length
- interrupts: Should contain phy interrupt
@@ -23,7 +24,7 @@ Optional properties:
the 17.78mA TX reference current. Default: 100
Example:
-usbphy1: usbphy@20c9000 {
+usbphy1: usb-phy@20c9000 {
compatible = "fsl,imx6q-usbphy", "fsl,imx23-usbphy";
reg = <0x020c9000 0x1000>;
interrupts = <0 44 0x04>;
diff --git a/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt b/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt
index daedb15f322e..9fb682e47c29 100644
--- a/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt
+++ b/Documentation/devicetree/bindings/phy/nvidia,tegra124-xusb-padctl.txt
@@ -42,6 +42,18 @@ Required properties:
- reset-names: Must include the following entries:
- "padctl"
+For Tegra124:
+- avdd-pll-utmip-supply: UTMI PLL power supply. Must supply 1.8 V.
+- avdd-pll-erefe-supply: PLLE reference PLL power supply. Must supply 1.05 V.
+- avdd-pex-pll-supply: PCIe/USB3 PLL power supply. Must supply 1.05 V.
+- hvdd-pex-pll-e-supply: High-voltage PLLE power supply. Must supply 3.3 V.
+
+For Tegra210:
+- avdd-pll-utmip-supply: UTMI PLL power supply. Must supply 1.8 V.
+- avdd-pll-uerefe-supply: PLLE reference PLL power supply. Must supply 1.05 V.
+- dvdd-pex-pll-supply: PCIe/USB3 PLL power supply. Must supply 1.05 V.
+- hvdd-pex-pll-e-supply: High-voltage PLLE power supply. Must supply 1.8 V.
+
For Tegra186:
- avdd-pll-erefeut-supply: UPHY brick and reference clock as well as UTMI PHY
power supply. Must supply 1.8 V.
diff --git a/Documentation/devicetree/bindings/phy/phy-bindings.txt b/Documentation/devicetree/bindings/phy/phy-bindings.txt
index a403b81d0679..c4eb38902533 100644
--- a/Documentation/devicetree/bindings/phy/phy-bindings.txt
+++ b/Documentation/devicetree/bindings/phy/phy-bindings.txt
@@ -1,5 +1,5 @@
This document explains only the device tree data binding. For general
-information about PHY subsystem refer to Documentation/phy.txt
+information about PHY subsystem refer to Documentation/driver-api/phy/phy.rst
PHY device node
===============
diff --git a/Documentation/devicetree/bindings/phy/phy-mvebu-comphy.txt b/Documentation/devicetree/bindings/phy/phy-mvebu-comphy.txt
index cf2cd86db267..8c60e6985950 100644
--- a/Documentation/devicetree/bindings/phy/phy-mvebu-comphy.txt
+++ b/Documentation/devicetree/bindings/phy/phy-mvebu-comphy.txt
@@ -25,6 +25,13 @@ Required properties:
- #address-cells: should be 1.
- #size-cells: should be 0.
+Optional properlties:
+
+- clocks: pointers to the reference clocks for this device (CP110 only),
+ consequently: MG clock, MG Core clock, AXI clock.
+- clock-names: names of used clocks for CP110 only, must be :
+ "mg_clk", "mg_core_clk" and "axi_clk".
+
A sub-node is required for each comphy lane provided by the comphy.
Required properties (child nodes):
@@ -39,6 +46,9 @@ Examples:
compatible = "marvell,comphy-cp110";
reg = <0x120000 0x6000>;
marvell,system-controller = <&cpm_syscon0>;
+ clocks = <&CP110_LABEL(clk) 1 5>, <&CP110_LABEL(clk) 1 6>,
+ <&CP110_LABEL(clk) 1 18>;
+ clock-names = "mg_clk", "mg_core_clk", "axi_clk";
#address-cells = <1>;
#size-cells = <0>;
diff --git a/Documentation/devicetree/bindings/phy/phy-pxa-usb.txt b/Documentation/devicetree/bindings/phy/phy-pxa-usb.txt
new file mode 100644
index 000000000000..d80e36a77ec5
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-pxa-usb.txt
@@ -0,0 +1,18 @@
+Marvell PXA USB PHY
+-------------------
+
+Required properties:
+- compatible: one of: "marvell,mmp2-usb-phy", "marvell,pxa910-usb-phy",
+ "marvell,pxa168-usb-phy",
+- #phy-cells: must be 0
+
+Example:
+ usb-phy: usbphy@d4207000 {
+ compatible = "marvell,mmp2-usb-phy";
+ reg = <0xd4207000 0x40>;
+ #phy-cells = <0>;
+ status = "okay";
+ };
+
+This document explains the device tree binding. For general
+information about PHY subsystem refer to Documentation/driver-api/phy/phy.rst
diff --git a/Documentation/devicetree/bindings/phy/phy-tegra194-p2u.txt b/Documentation/devicetree/bindings/phy/phy-tegra194-p2u.txt
new file mode 100644
index 000000000000..d23ff90baad5
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-tegra194-p2u.txt
@@ -0,0 +1,28 @@
+NVIDIA Tegra194 P2U binding
+
+Tegra194 has two PHY bricks namely HSIO (High Speed IO) and NVHS (NVIDIA High
+Speed) each interfacing with 12 and 8 P2U instances respectively.
+A P2U instance is a glue logic between Synopsys DesignWare Core PCIe IP's PIPE
+interface and PHY of HSIO/NVHS bricks. Each P2U instance represents one PCIe
+lane.
+
+Required properties:
+- compatible: For Tegra19x, must contain "nvidia,tegra194-p2u".
+- reg: Should be the physical address space and length of respective each P2U
+ instance.
+- reg-names: Must include the entry "ctl".
+
+Required properties for PHY port node:
+- #phy-cells: Defined by generic PHY bindings. Must be 0.
+
+Refer to phy/phy-bindings.txt for the generic PHY binding properties.
+
+Example:
+
+p2u_hsio_0: phy@3e10000 {
+ compatible = "nvidia,tegra194-p2u";
+ reg = <0x03e10000 0x10000>;
+ reg-names = "ctl";
+
+ #phy-cells = <0>;
+};
diff --git a/Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt b/Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt
new file mode 100644
index 000000000000..30064253f290
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/qcom-pcie2-phy.txt
@@ -0,0 +1,42 @@
+Qualcomm PCIe2 PHY controller
+=============================
+
+The Qualcomm PCIe2 PHY is a Synopsys based phy found in a number of Qualcomm
+platforms.
+
+Required properties:
+ - compatible: compatible list, should be:
+ "qcom,qcs404-pcie2-phy", "qcom,pcie2-phy"
+
+ - reg: offset and length of the PHY register set.
+ - #phy-cells: must be 0.
+
+ - clocks: a clock-specifier pair for the "pipe" clock
+
+ - vdda-vp-supply: phandle to low voltage regulator
+ - vdda-vph-supply: phandle to high voltage regulator
+
+ - resets: reset-specifier pairs for the "phy" and "pipe" resets
+ - reset-names: list of resets, should contain:
+ "phy" and "pipe"
+
+ - clock-output-names: name of the outgoing clock signal from the PHY PLL
+ - #clock-cells: must be 0
+
+Example:
+ phy@7786000 {
+ compatible = "qcom,qcs404-pcie2-phy", "qcom,pcie2-phy";
+ reg = <0x07786000 0xb8>;
+
+ clocks = <&gcc GCC_PCIE_0_PIPE_CLK>;
+ resets = <&gcc GCC_PCIEPHY_0_PHY_BCR>,
+ <&gcc GCC_PCIE_0_PIPE_ARES>;
+ reset-names = "phy", "pipe";
+
+ vdda-vp-supply = <&vreg_l3_1p05>;
+ vdda-vph-supply = <&vreg_l5_1p8>;
+
+ clock-output-names = "pcie_0_pipe_clk";
+ #clock-cells = <0>;
+ #phy-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt b/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt
index d46188f450bf..503a8cfb3184 100644
--- a/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt
+++ b/Documentation/devicetree/bindings/phy/rcar-gen3-phy-usb2.txt
@@ -1,10 +1,12 @@
* Renesas R-Car generation 3 USB 2.0 PHY
This file provides information on what the device node for the R-Car generation
-3, RZ/G1C and RZ/G2 USB 2.0 PHY contain.
+3, RZ/G1C, RZ/G2 and RZ/A2 USB 2.0 PHY contain.
Required properties:
-- compatible: "renesas,usb2-phy-r8a77470" if the device is a part of an R8A77470
+- compatible: "renesas,usb2-phy-r7s9210" if the device is a part of an R7S9210
+ SoC.
+ "renesas,usb2-phy-r8a77470" if the device is a part of an R8A77470
SoC.
"renesas,usb2-phy-r8a774a1" if the device is a part of an R8A774A1
SoC.
@@ -20,8 +22,8 @@ Required properties:
R8A77990 SoC.
"renesas,usb2-phy-r8a77995" if the device is a part of an
R8A77995 SoC.
- "renesas,rcar-gen3-usb2-phy" for a generic R-Car Gen3 or RZ/G2
- compatible device.
+ "renesas,rcar-gen3-usb2-phy" for a generic R-Car Gen3, RZ/G2 or
+ RZ/A2 compatible device.
When compatible with the generic version, nodes must list the
SoC-specific version corresponding to the platform first
@@ -46,6 +48,9 @@ channel as USB OTG:
regulator will be managed during the PHY power on/off sequence.
- renesas,no-otg-pins: boolean, specify when a board does not provide proper
otg pins.
+- dr_mode: string, indicates the working mode for the PHY. Can be "host",
+ "peripheral", or "otg". Should be set if otg controller is not used.
+
Example (R-Car H3):
diff --git a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
index cf96b7c20e4d..328585c6da58 100644
--- a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt
@@ -24,6 +24,8 @@ Required properties:
"allwinner,sun8i-h3-pinctrl"
"allwinner,sun8i-h3-r-pinctrl"
"allwinner,sun8i-r40-pinctrl"
+ "allwinner,sun8i-v3-pinctrl"
+ "allwinner,sun8i-v3s-pinctrl"
"allwinner,sun50i-a64-pinctrl"
"allwinner,sun50i-a64-r-pinctrl"
"allwinner,sun50i-h5-pinctrl"
diff --git a/Documentation/devicetree/bindings/pinctrl/aspeed,ast2400-pinctrl.yaml b/Documentation/devicetree/bindings/pinctrl/aspeed,ast2400-pinctrl.yaml
new file mode 100644
index 000000000000..39ad8657d018
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/aspeed,ast2400-pinctrl.yaml
@@ -0,0 +1,76 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/pinctrl/aspeed,ast2400-pinctrl.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ASPEED AST2400 Pin Controller
+
+maintainers:
+ - Andrew Jeffery <andrew@aj.id.au>
+
+description: |+
+ The pin controller node should be the child of a syscon node with the
+ required property:
+
+ - compatible: Should be one of the following:
+ "aspeed,ast2400-scu", "syscon", "simple-mfd"
+
+ Refer to the the bindings described in
+ Documentation/devicetree/bindings/mfd/syscon.txt
+
+properties:
+ compatible:
+ const: aspeed,ast2400-pinctrl
+
+patternProperties:
+ '^.*$':
+ if:
+ type: object
+ then:
+ patternProperties:
+ "^function|groups$":
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum: [ ACPI, ADC0, ADC1, ADC10, ADC11, ADC12, ADC13, ADC14,
+ ADC15, ADC2, ADC3, ADC4, ADC5, ADC6, ADC7, ADC8, ADC9, BMCINT,
+ DDCCLK, DDCDAT, EXTRST, FLACK, FLBUSY, FLWP, GPID, GPID0, GPID2,
+ GPID4, GPID6, GPIE0, GPIE2, GPIE4, GPIE6, I2C10, I2C11, I2C12,
+ I2C13, I2C14, I2C3, I2C4, I2C5, I2C6, I2C7, I2C8, I2C9, LPCPD,
+ LPCPME, LPCRST, LPCSMI, MAC1LINK, MAC2LINK, MDIO1, MDIO2, NCTS1,
+ NCTS2, NCTS3, NCTS4, NDCD1, NDCD2, NDCD3, NDCD4, NDSR1, NDSR2,
+ NDSR3, NDSR4, NDTR1, NDTR2, NDTR3, NDTR4, NDTS4, NRI1, NRI2,
+ NRI3, NRI4, NRTS1, NRTS2, NRTS3, OSCCLK, PWM0, PWM1, PWM2, PWM3,
+ PWM4, PWM5, PWM6, PWM7, RGMII1, RGMII2, RMII1, RMII2, ROM16,
+ ROM8, ROMCS1, ROMCS2, ROMCS3, ROMCS4, RXD1, RXD2, RXD3, RXD4,
+ SALT1, SALT2, SALT3, SALT4, SD1, SD2, SGPMCK, SGPMI, SGPMLD,
+ SGPMO, SGPSCK, SGPSI0, SGPSI1, SGPSLD, SIOONCTRL, SIOPBI, SIOPBO,
+ SIOPWREQ, SIOPWRGD, SIOS3, SIOS5, SIOSCI, SPI1, SPI1DEBUG,
+ SPI1PASSTHRU, SPICS1, TIMER3, TIMER4, TIMER5, TIMER6, TIMER7,
+ TIMER8, TXD1, TXD2, TXD3, TXD4, UART6, USB11D1, USB11H2, USB2D1,
+ USB2H1, USBCKI, VGABIOS_ROM, VGAHS, VGAVS, VPI18, VPI24, VPI30,
+ VPO12, VPO24, WDTRST1, WDTRST2 ]
+
+required:
+ - compatible
+
+examples:
+ - |
+ syscon: scu@1e6e2000 {
+ compatible = "aspeed,ast2400-scu", "syscon", "simple-mfd";
+ reg = <0x1e6e2000 0x1a8>;
+
+ pinctrl: pinctrl {
+ compatible = "aspeed,g4-pinctrl";
+
+ pinctrl_i2c3_default: i2c3_default {
+ function = "I2C3";
+ groups = "I2C3";
+ };
+
+ pinctrl_gpioh0_unbiased_default: gpioh0 {
+ pins = "A8";
+ bias-disable;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/aspeed,ast2500-pinctrl.yaml b/Documentation/devicetree/bindings/pinctrl/aspeed,ast2500-pinctrl.yaml
new file mode 100644
index 000000000000..3c6405be07ed
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/aspeed,ast2500-pinctrl.yaml
@@ -0,0 +1,126 @@
+# SPDX-License-Identifier: GPL-2.0-or-later
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/pinctrl/aspeed,ast2500-pinctrl.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ASPEED AST2500 Pin Controller
+
+maintainers:
+ - Andrew Jeffery <andrew@aj.id.au>
+
+description: |+
+ The pin controller node should be the child of a syscon node with the
+ required property:
+
+ - compatible: Should be one of the following:
+ "aspeed,ast2500-scu", "syscon", "simple-mfd"
+ "aspeed,g5-scu", "syscon", "simple-mfd"
+
+ Refer to the the bindings described in
+ Documentation/devicetree/bindings/mfd/syscon.txt
+
+properties:
+ compatible:
+ const: aspeed,ast2500-pinctrl
+ aspeed,external-nodes:
+ minItems: 2
+ maxItems: 2
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/phandle-array
+ description: |
+ A cell of phandles to external controller nodes:
+ 0: compatible with "aspeed,ast2500-gfx", "syscon"
+ 1: compatible with "aspeed,ast2500-lhc", "syscon"
+
+patternProperties:
+ '^.*$':
+ if:
+ type: object
+ then:
+ patternProperties:
+ "^function|groups$":
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum: [ ACPI, ADC0, ADC1, ADC10, ADC11, ADC12, ADC13, ADC14,
+ ADC15, ADC2, ADC3, ADC4, ADC5, ADC6, ADC7, ADC8, ADC9, BMCINT,
+ DDCCLK, DDCDAT, ESPI, FWSPICS1, FWSPICS2, GPID0, GPID2, GPID4,
+ GPID6, GPIE0, GPIE2, GPIE4, GPIE6, I2C10, I2C11, I2C12, I2C13,
+ I2C14, I2C3, I2C4, I2C5, I2C6, I2C7, I2C8, I2C9, LAD0, LAD1,
+ LAD2, LAD3, LCLK, LFRAME, LPCHC, LPCPD, LPCPLUS, LPCPME, LPCRST,
+ LPCSMI, LSIRQ, MAC1LINK, MAC2LINK, MDIO1, MDIO2, NCTS1, NCTS2,
+ NCTS3, NCTS4, NDCD1, NDCD2, NDCD3, NDCD4, NDSR1, NDSR2, NDSR3,
+ NDSR4, NDTR1, NDTR2, NDTR3, NDTR4, NRI1, NRI2, NRI3, NRI4, NRTS1,
+ NRTS2, NRTS3, NRTS4, OSCCLK, PEWAKE, PNOR, PWM0, PWM1, PWM2,
+ PWM3, PWM4, PWM5, PWM6, PWM7, RGMII1, RGMII2, RMII1, RMII2, RXD1,
+ RXD2, RXD3, RXD4, SALT1, SALT10, SALT11, SALT12, SALT13, SALT14,
+ SALT2, SALT3, SALT4, SALT5, SALT6, SALT7, SALT8, SALT9, SCL1,
+ SCL2, SD1, SD2, SDA1, SDA2, SGPS1, SGPS2, SIOONCTRL, SIOPBI,
+ SIOPBO, SIOPWREQ, SIOPWRGD, SIOS3, SIOS5, SIOSCI, SPI1, SPI1CS1,
+ SPI1DEBUG, SPI1PASSTHRU, SPI2CK, SPI2CS0, SPI2CS1, SPI2MISO,
+ SPI2MOSI, TIMER3, TIMER4, TIMER5, TIMER6, TIMER7, TIMER8, TXD1,
+ TXD2, TXD3, TXD4, UART6, USB11BHID, USB2AD, USB2AH, USB2BD,
+ USB2BH, USBCKI, VGABIOSROM, VGAHS, VGAVS, VPI24, VPO, WDTRST1,
+ WDTRST2, ]
+
+required:
+ - compatible
+ - aspeed,external-nodes
+
+examples:
+ - |
+ apb {
+ compatible = "simple-bus";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ syscon: scu@1e6e2000 {
+ compatible = "aspeed,ast2500-scu", "syscon", "simple-mfd";
+ reg = <0x1e6e2000 0x1a8>;
+
+ pinctrl: pinctrl {
+ compatible = "aspeed,g5-pinctrl";
+ aspeed,external-nodes = <&gfx>, <&lhc>;
+
+ pinctrl_i2c3_default: i2c3_default {
+ function = "I2C3";
+ groups = "I2C3";
+ };
+
+ pinctrl_gpioh0_unbiased_default: gpioh0 {
+ pins = "A18";
+ bias-disable;
+ };
+ };
+ };
+
+ gfx: display@1e6e6000 {
+ compatible = "aspeed,ast2500-gfx", "syscon";
+ reg = <0x1e6e6000 0x1000>;
+ };
+ };
+
+ lpc: lpc@1e789000 {
+ compatible = "aspeed,ast2500-lpc", "simple-mfd";
+ reg = <0x1e789000 0x1000>;
+
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0x0 0x1e789000 0x1000>;
+
+ lpc_host: lpc-host@80 {
+ compatible = "aspeed,ast2500-lpc-host", "simple-mfd", "syscon";
+ reg = <0x80 0x1e0>;
+ reg-io-width = <4>;
+
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0x0 0x80 0x1e0>;
+
+ lhc: lhc@20 {
+ compatible = "aspeed,ast2500-lhc";
+ reg = <0x20 0x24 0x48 0x8>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/aspeed,ast2600-pinctrl.yaml b/Documentation/devicetree/bindings/pinctrl/aspeed,ast2600-pinctrl.yaml
new file mode 100644
index 000000000000..f83d888176cc
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/aspeed,ast2600-pinctrl.yaml
@@ -0,0 +1,115 @@
+# SPDX-License-Identifier: GPL-2.0+
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/pinctrl/aspeed,ast2600-pinctrl.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ASPEED AST2600 Pin Controller
+
+maintainers:
+ - Andrew Jeffery <andrew@aj.id.au>
+
+description: |+
+ The pin controller node should be the child of a syscon node with the
+ required property:
+
+ - compatible: Should be one of the following:
+ "aspeed,ast2600-scu", "syscon", "simple-mfd"
+
+ Refer to the the bindings described in
+ Documentation/devicetree/bindings/mfd/syscon.txt
+
+properties:
+ compatible:
+ const: aspeed,ast2600-pinctrl
+
+patternProperties:
+ '^.*$':
+ if:
+ type: object
+ then:
+ properties:
+ function:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum: [ ADC0, ADC1, ADC10, ADC11, ADC12, ADC13, ADC14, ADC15,
+ ADC2, ADC3, ADC4, ADC5, ADC6, ADC7, ADC8, ADC9, BMCINT, ESPI,
+ ESPIALT, FSI1, FSI2, FWSPIABR, FWSPID, FWSPIWP, GPIT0, GPIT1,
+ GPIT2, GPIT3, GPIT4, GPIT5, GPIT6, GPIT7, GPIU0, GPIU1, GPIU2,
+ GPIU3, GPIU4, GPIU5, GPIU6, GPIU7, I2C1, I2C10, I2C11, I2C12,
+ I2C13, I2C14, I2C15, I2C16, I2C2, I2C3, I2C4, I2C5, I2C6, I2C7,
+ I2C8, I2C9, I3C3, I3C4, I3C5, I3C6, JTAGM, LHPD, LHSIRQ, LPC,
+ LPCHC, LPCPD, LPCPME, LPCSMI, LSIRQ, MACLINK1, MACLINK2,
+ MACLINK3, MACLINK4, MDIO1, MDIO2, MDIO3, MDIO4, NCTS1, NCTS2,
+ NCTS3, NCTS4, NDCD1, NDCD2, NDCD3, NDCD4, NDSR1, NDSR2, NDSR3,
+ NDSR4, NDTR1, NDTR2, NDTR3, NDTR4, NRI1, NRI2, NRI3, NRI4, NRTS1,
+ NRTS2, NRTS3, NRTS4, OSCCLK, PEWAKE, PWM0, PWM1, PWM10, PWM11,
+ PWM12, PWM13, PWM14, PWM15, PWM2, PWM3, PWM4, PWM5, PWM6, PWM7,
+ PWM8, PWM9, RGMII1, RGMII2, RGMII3, RGMII4, RMII1, RMII2, RMII3,
+ RMII4, RXD1, RXD2, RXD3, RXD4, SALT1, SALT10, SALT11, SALT12,
+ SALT13, SALT14, SALT15, SALT16, SALT2, SALT3, SALT4, SALT5,
+ SALT6, SALT7, SALT8, SALT9, SD1, SD2, SD3, SD3DAT4, SD3DAT5,
+ SD3DAT6, SD3DAT7, SGPM1, SGPS1, SIOONCTRL, SIOPBI, SIOPBO,
+ SIOPWREQ, SIOPWRGD, SIOS3, SIOS5, SIOSCI, SPI1, SPI1ABR, SPI1CS1,
+ SPI1WP, SPI2, SPI2CS1, SPI2CS2, TACH0, TACH1, TACH10, TACH11,
+ TACH12, TACH13, TACH14, TACH15, TACH2, TACH3, TACH4, TACH5,
+ TACH6, TACH7, TACH8, TACH9, THRU0, THRU1, THRU2, THRU3, TXD1,
+ TXD2, TXD3, TXD4, UART10, UART11, UART12, UART13, UART6, UART7,
+ UART8, UART9, VB, VGAHS, VGAVS, WDTRST1, WDTRST2, WDTRST3,
+ WDTRST4, ]
+ groups:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum: [ ADC0, ADC1, ADC10, ADC11, ADC12, ADC13, ADC14, ADC15,
+ ADC2, ADC3, ADC4, ADC5, ADC6, ADC7, ADC8, ADC9, BMCINT, ESPI,
+ ESPIALT, FSI1, FSI2, FWSPIABR, FWSPID, FWQSPID, FWSPIWP, GPIT0,
+ GPIT1, GPIT2, GPIT3, GPIT4, GPIT5, GPIT6, GPIT7, GPIU0, GPIU1,
+ GPIU2, GPIU3, GPIU4, GPIU5, GPIU6, GPIU7, HVI3C3, HVI3C4, I2C1,
+ I2C10, I2C11, I2C12, I2C13, I2C14, I2C15, I2C16, I2C2, I2C3,
+ I2C4, I2C5, I2C6, I2C7, I2C8, I2C9, I3C3, I3C4, I3C5, I3C6,
+ JTAGM, LHPD, LHSIRQ, LPC, LPCHC, LPCPD, LPCPME, LPCSMI, LSIRQ,
+ MACLINK1, MACLINK2, MACLINK3, MACLINK4, MDIO1, MDIO2, MDIO3,
+ MDIO4, NCTS1, NCTS2, NCTS3, NCTS4, NDCD1, NDCD2, NDCD3, NDCD4,
+ NDSR1, NDSR2, NDSR3, NDSR4, NDTR1, NDTR2, NDTR3, NDTR4, NRI1,
+ NRI2, NRI3, NRI4, NRTS1, NRTS2, NRTS3, NRTS4, OSCCLK, PEWAKE,
+ PWM0, PWM1, PWM10G0, PWM10G1, PWM11G0, PWM11G1, PWM12G0, PWM12G1,
+ PWM13G0, PWM13G1, PWM14G0, PWM14G1, PWM15G0, PWM15G1, PWM2, PWM3,
+ PWM4, PWM5, PWM6, PWM7, PWM8G0, PWM8G1, PWM9G0, PWM9G1, QSPI1,
+ QSPI2, RGMII1, RGMII2, RGMII3, RGMII4, RMII1, RMII2, RMII3,
+ RMII4, RXD1, RXD2, RXD3, RXD4, SALT1, SALT10G0, SALT10G1,
+ SALT11G0, SALT11G1, SALT12G0, SALT12G1, SALT13G0, SALT13G1,
+ SALT14G0, SALT14G1, SALT15G0, SALT15G1, SALT16G0, SALT16G1,
+ SALT2, SALT3, SALT4, SALT5, SALT6, SALT7, SALT8, SALT9G0,
+ SALT9G1, SD1, SD2, SD3, SD3DAT4, SD3DAT5, SD3DAT6, SD3DAT7,
+ SGPM1, SGPS1, SIOONCTRL, SIOPBI, SIOPBO, SIOPWREQ, SIOPWRGD,
+ SIOS3, SIOS5, SIOSCI, SPI1, SPI1ABR, SPI1CS1, SPI1WP, SPI2,
+ SPI2CS1, SPI2CS2, TACH0, TACH1, TACH10, TACH11, TACH12, TACH13,
+ TACH14, TACH15, TACH2, TACH3, TACH4, TACH5, TACH6, TACH7, TACH8,
+ TACH9, THRU0, THRU1, THRU2, THRU3, TXD1, TXD2, TXD3, TXD4,
+ UART10, UART11, UART12G0, UART12G1, UART13G0, UART13G1, UART6,
+ UART7, UART8, UART9, VB, VGAHS, VGAVS, WDTRST1, WDTRST2, WDTRST3,
+ WDTRST4, ]
+
+required:
+ - compatible
+
+examples:
+ - |
+ syscon: scu@1e6e2000 {
+ compatible = "aspeed,ast2600-scu", "syscon", "simple-mfd";
+ reg = <0x1e6e2000 0xf6c>;
+
+ pinctrl: pinctrl {
+ compatible = "aspeed,g6-pinctrl";
+
+ pinctrl_pwm10g1_default: pwm10g1_default {
+ function = "PWM10";
+ groups = "PWM10G1";
+ };
+
+ pinctrl_gpioh0_unbiased_default: gpioh0 {
+ pins = "A18";
+ bias-disable;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/bitmain,bm1880-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/bitmain,bm1880-pinctrl.txt
index ed34bb1ee81c..4980776122cc 100644
--- a/Documentation/devicetree/bindings/pinctrl/bitmain,bm1880-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/bitmain,bm1880-pinctrl.txt
@@ -14,7 +14,8 @@ phrase "pin configuration node".
The pin configuration nodes act as a container for an arbitrary number of
subnodes. Each of these subnodes represents some desired configuration for a
pin, a group, or a list of pins or groups. This configuration for BM1880 SoC
-includes only pinmux as there is no pinconf support available in SoC.
+includes pinmux and various pin configuration parameters, such as pull-up,
+slew rate etc...
Each configuration node can consist of multiple nodes describing the pinmux
options. The name of each subnode is not important; all subnodes should be
@@ -84,10 +85,37 @@ Required Properties:
gpio66, gpio67, eth1, i2s0, i2s0_mclkin, i2s1, i2s1_mclkin,
spi0
+Optional Properties:
+
+- bias-disable: No arguments. Disable pin bias.
+- bias-pull-down: No arguments. The specified pins should be configured as
+ pull down.
+- bias-pull-up: No arguments. The specified pins should be configured as
+ pull up.
+- input-schmitt-enable: No arguments: Enable schmitt trigger for the specified
+ pins
+- input-schmitt-disable: No arguments: Disable schmitt trigger for the specified
+ pins
+- slew-rate: Integer. Sets slew rate for the specified pins.
+ Valid values are:
+ <0> - Slow
+ <1> - Fast
+- drive-strength: Integer. Selects the drive strength for the specified
+ pins in mA.
+ Valid values are:
+ <4>
+ <8>
+ <12>
+ <16>
+ <20>
+ <24>
+ <28>
+ <32>
+
Example:
- pinctrl: pinctrl@50 {
+ pinctrl: pinctrl@400 {
compatible = "bitmain,bm1880-pinctrl";
- reg = <0x50 0x4B0>;
+ reg = <0x400 0x120>;
pinctrl_uart0_default: uart0-default {
pinmux {
diff --git a/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt b/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt
index 3fac0a061bcc..3cab7336a326 100644
--- a/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt
+++ b/Documentation/devicetree/bindings/pinctrl/brcm,bcm2835-gpio.txt
@@ -5,6 +5,10 @@ controller, and pinmux/control device.
Required properties:
- compatible: "brcm,bcm2835-gpio"
+- compatible: should be one of:
+ "brcm,bcm2835-gpio" - BCM2835 compatible pinctrl
+ "brcm,bcm7211-gpio" - BCM7211 compatible pinctrl
+ "brcm,bcm2711-gpio" - BCM2711 compatible pinctrl
- reg: Should contain the physical address of the GPIO module's registers.
- gpio-controller: Marks the device node as a GPIO controller.
- #gpio-cells : Should be two. The first cell is the pin number and the
diff --git a/Documentation/devicetree/bindings/pinctrl/fsl,imx8mm-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/fsl,imx8mm-pinctrl.txt
index 524a16fca666..e4e01c05cf83 100644
--- a/Documentation/devicetree/bindings/pinctrl/fsl,imx8mm-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/fsl,imx8mm-pinctrl.txt
@@ -12,7 +12,7 @@ Required properties in sub-nodes:
- fsl,pins: each entry consists of 6 integers and represents the mux and config
setting for one pin. The first 5 integers <mux_reg conf_reg input_reg mux_val
input_val> are specified using a PIN_FUNC_ID macro, which can be found in
- <dt-bindings/pinctrl/imx8mm-pinfunc.h>. The last integer CONFIG is
+ <arch/arm64/boot/dts/freescale/imx8mm-pinfunc.h>. The last integer CONFIG is
the pad setting value like pull-up on this pin. Please refer to i.MX8M Mini
Reference Manual for detailed CONFIG settings.
diff --git a/Documentation/devicetree/bindings/pinctrl/fsl,imx8mn-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/fsl,imx8mn-pinctrl.txt
new file mode 100644
index 000000000000..330716c971b9
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/fsl,imx8mn-pinctrl.txt
@@ -0,0 +1,39 @@
+* Freescale IMX8MN IOMUX Controller
+
+Please refer to fsl,imx-pinctrl.txt and pinctrl-bindings.txt in this directory
+for common binding part and usage.
+
+Required properties:
+- compatible: "fsl,imx8mn-iomuxc"
+- reg: should contain the base physical address and size of the iomuxc
+ registers.
+
+Required properties in sub-nodes:
+- fsl,pins: each entry consists of 6 integers and represents the mux and config
+ setting for one pin. The first 5 integers <mux_reg conf_reg input_reg mux_val
+ input_val> are specified using a PIN_FUNC_ID macro, which can be found in
+ <arch/arm64/boot/dts/freescale/imx8mn-pinfunc.h>. The last integer CONFIG is
+ the pad setting value like pull-up on this pin. Please refer to i.MX8M Nano
+ Reference Manual for detailed CONFIG settings.
+
+Examples:
+
+&uart1 {
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_uart1>;
+};
+
+iomuxc: pinctrl@30330000 {
+ compatible = "fsl,imx8mn-iomuxc";
+ reg = <0x0 0x30330000 0x0 0x10000>;
+
+ pinctrl_uart1: uart1grp {
+ fsl,pins = <
+ MX8MN_IOMUXC_UART1_RXD_UART1_DCE_RX 0x140
+ MX8MN_IOMUXC_UART1_TXD_UART1_DCE_TX 0x140
+ MX8MN_IOMUXC_UART3_RXD_UART1_DCE_CTS_B 0x140
+ MX8MN_IOMUXC_UART3_TXD_UART1_DCE_RTS_B 0x140
+ MX8MN_IOMUXC_SD1_DATA4_GPIO2_IO6 0x19
+ >;
+ };
+};
diff --git a/Documentation/devicetree/bindings/pinctrl/ingenic,pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/ingenic,pinctrl.txt
index af20b0ec715c..0014d9899797 100644
--- a/Documentation/devicetree/bindings/pinctrl/ingenic,pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/ingenic,pinctrl.txt
@@ -1,18 +1,18 @@
-Ingenic jz47xx pin controller
+Ingenic XBurst pin controller
Please refer to pinctrl-bindings.txt in this directory for details of the
common pinctrl bindings used by client devices, including the meaning of the
phrase "pin configuration node".
-For the jz47xx SoCs, pin control is tightly bound with GPIO ports. All pins may
+For the XBurst SoCs, pin control is tightly bound with GPIO ports. All pins may
be used as GPIOs, multiplexed device functions are configured within the
GPIO port configuration registers and it is typical to refer to pins using the
naming scheme "PxN" where x is a character identifying the GPIO port with
which the pin is associated and N is an integer from 0 to 31 identifying the
pin within that GPIO port. For example PA0 is the first pin in GPIO port A, and
-PB31 is the last pin in GPIO port B. The jz4740 contains 4 GPIO ports, PA to
-PD, for a total of 128 pins. The jz4780 contains 6 GPIO ports, PA to PF, for a
-total of 192 pins.
+PB31 is the last pin in GPIO port B. The jz4740 and the x1000 contains 4 GPIO
+ports, PA to PD, for a total of 128 pins. The jz4760, the jz4770 and the jz4780
+contains 6 GPIO ports, PA to PF, for a total of 192 pins.
Required properties:
@@ -21,8 +21,13 @@ Required properties:
- compatible: One of:
- "ingenic,jz4740-pinctrl"
- "ingenic,jz4725b-pinctrl"
+ - "ingenic,jz4760-pinctrl"
+ - "ingenic,jz4760b-pinctrl"
- "ingenic,jz4770-pinctrl"
- "ingenic,jz4780-pinctrl"
+ - "ingenic,x1000-pinctrl"
+ - "ingenic,x1000e-pinctrl"
+ - "ingenic,x1500-pinctrl"
- reg: Address range of the pinctrl registers.
@@ -31,8 +36,10 @@ Required properties for sub-nodes (GPIO chips):
- compatible: Must contain one of:
- "ingenic,jz4740-gpio"
+ - "ingenic,jz4760-gpio"
- "ingenic,jz4770-gpio"
- "ingenic,jz4780-gpio"
+ - "ingenic,x1000-gpio"
- reg: The GPIO bank number.
- interrupt-controller: Marks the device node as an interrupt controller.
- interrupts: Interrupt specifier for the controllers interrupt.
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt
index 6c0ea155b708..2932f171ee85 100644
--- a/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,kirkwood-pinctrl.txt
@@ -6,8 +6,8 @@ part and usage.
Required properties:
- compatible: "marvell,88f6180-pinctrl",
"marvell,88f6190-pinctrl", "marvell,88f6192-pinctrl",
- "marvell,88f6281-pinctrl", "marvell,88f6282-pinctrl"
- "marvell,98dx4122-pinctrl"
+ "marvell,88f6281-pinctrl", "marvell,88f6282-pinctrl",
+ "marvell,98dx4122-pinctrl", "marvell,98dx1135-pinctrl"
- reg: register specifier of MPP registers
This driver supports all kirkwood variants, i.e. 88f6180, 88f619x, and 88f628x.
@@ -317,3 +317,43 @@ mpp44 44 gpio
mpp45 45 gpio
mpp49 49 gpio
+* Marvell Poncat2 98dx1135
+
+name pins functions
+================================================================================
+
+mpp0 0 gpio, nand(io2), spi(cs)
+mpp1 1 gpo, nand(io3), spi(mosi)
+mpp2 2 gpo, nand(io4), spi(sck)
+mpp3 3 gpo, nand(io5), spi(miso)
+mpp4 4 gpio, nand(io6), uart0(rxd)
+mpp5 5 gpo, nand(io7), uart0(txd)
+mpp6 6 sysrst(out)
+mpp7 7 gpo, spi(cs)
+mpp8 8 gpio, twsi0(sda), uart1(rts)
+mpp9 9 gpio, twsi(sck), uart1(cts)
+mpp10 10 gpo, uart0(txd)
+mpp11 11 gpio, uart0(rxd)
+mpp13 13 gpio, uart1(txd)
+mpp14 14 gpio, uart1(rxd)
+mpp15 15 gpio, uart0(rts)
+mpp16 16 gpio, uart0(cts)
+mpp17 17 gpio, nand(cle)
+mpp18 18 gpo, nand(io0)
+mpp19 19 gpo, nand(io1)
+mpp20 20 gpio
+mpp21 21 gpio
+mpp22 22 gpio
+mpp23 23 gpio
+mpp24 24 gpio
+mpp25 25 gpio
+mpp26 26 gpio
+mpp27 27 gpio
+mpp28 28 gpio, nand(ren)
+mpp29 29 gpio, nand(wen)
+mpp30 30 gpio
+mpp31 31 gpio
+mpp32 32 gpio
+mpp33 33 gpio
+mpp34 34 gpio, nand(ale)
+mpp35 35 gpio, nand(cen)
diff --git a/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt
index a47dd990a8d3..10dc4f7176ca 100644
--- a/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/meson,pinctrl.txt
@@ -47,9 +47,19 @@ Required properties for pinmux nodes are:
Required properties for configuration nodes:
- pins: a list of pin names
-Configuration nodes support the generic properties "bias-disable",
-"bias-pull-up" and "bias-pull-down", described in file
-pinctrl-bindings.txt
+Configuration nodes support the following generic properties, as
+described in file pinctrl-bindings.txt:
+ - "bias-disable"
+ - "bias-pull-up"
+ - "bias-pull-down"
+ - "output-enable"
+ - "output-disable"
+ - "output-low"
+ - "output-high"
+
+Optional properties :
+ - drive-strength-microamp: Drive strength for the specified pins in uA.
+ This property is only valid for G12A and newer.
=== Example ===
diff --git a/Documentation/devicetree/bindings/pinctrl/microchip,pic32-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/microchip,pic32-pinctrl.txt
index 29b72e303ebf..51efd2085113 100644
--- a/Documentation/devicetree/bindings/pinctrl/microchip,pic32-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/microchip,pic32-pinctrl.txt
@@ -5,7 +5,7 @@ Please refer to pinctrl-bindings.txt, ../gpio/gpio.txt, and
pin controller, GPIO, and interrupt bindings.
PIC32 'pin configuration node' is a node of a group of pins which can be
-used for a specific device or function. This node represents configuraions of
+used for a specific device or function. This node represents configurations of
pins, optional function, and optional mux related configuration.
Required properties for pin controller node:
diff --git a/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt
index 83f4bbac94bb..a1264cc8660d 100644
--- a/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/nuvoton,npcm7xx-pinctrl.txt
@@ -213,4 +213,4 @@ pinctrl: pinctrl@f0800000 {
groups = "clkreq";
function = "clkreq";
};
-}; \ No newline at end of file
+};
diff --git a/Documentation/devicetree/bindings/pinctrl/nvidia,tegra194-pinmux.txt b/Documentation/devicetree/bindings/pinctrl/nvidia,tegra194-pinmux.txt
new file mode 100644
index 000000000000..8763f448c376
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/nvidia,tegra194-pinmux.txt
@@ -0,0 +1,107 @@
+NVIDIA Tegra194 pinmux controller
+
+Required properties:
+- compatible: "nvidia,tegra194-pinmux"
+- reg: Should contain a list of base address and size pairs for:
+ - first entry: The APB_MISC_GP_*_PADCTRL registers (pad control)
+ - second entry: The PINMUX_AUX_* registers (pinmux)
+
+Please refer to pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the meaning of the
+phrase "pin configuration node".
+
+Tegra's pin configuration nodes act as a container for an arbitrary number of
+subnodes. Each of these subnodes represents some desired configuration for a
+pin, a group, or a list of pins or groups. This configuration can include the
+mux function to select on those pin(s)/group(s), and various pin configuration
+parameters, such as pull-up, tristate, drive strength, etc.
+
+See the TRM to determine which properties and values apply to each pin/group.
+Macro values for property values are defined in
+include/dt-binding/pinctrl/pinctrl-tegra.h.
+
+Required subnode-properties:
+- nvidia,pins : An array of strings. Each string contains the name of a pin or
+ group. Valid values for these names are listed below.
+
+Optional subnode-properties:
+- nvidia,function: A string containing the name of the function to mux to the
+ pin or group.
+- nvidia,pull: Integer, representing the pull-down/up to apply to the pin.
+ 0: none, 1: down, 2: up.
+- nvidia,tristate: Integer.
+ 0: drive, 1: tristate.
+- nvidia,enable-input: Integer. Enable the pin's input path.
+ enable :TEGRA_PIN_ENABLE and
+ disable or output only: TEGRA_PIN_DISABLE.
+- nvidia,open-drain: Integer.
+ enable: TEGRA_PIN_ENABLE.
+ disable: TEGRA_PIN_DISABLE.
+- nvidia,lock: Integer. Lock the pin configuration against further changes
+ until reset.
+ enable: TEGRA_PIN_ENABLE.
+ disable: TEGRA_PIN_DISABLE.
+- nvidia,io-hv: Integer. Select high-voltage receivers.
+ normal: TEGRA_PIN_DISABLE
+ high: TEGRA_PIN_ENABLE
+- nvidia,schmitt: Integer. Enables Schmitt Trigger on the input.
+ normal: TEGRA_PIN_DISABLE
+ high: TEGRA_PIN_ENABLE
+- nvidia,drive-type: Integer. Valid range 0...3.
+- nvidia,pull-down-strength: Integer. Controls drive strength. 0 is weakest.
+ The range of valid values depends on the pingroup. See "CAL_DRVDN" in the
+ Tegra TRM.
+- nvidia,pull-up-strength: Integer. Controls drive strength. 0 is weakest.
+ The range of valid values depends on the pingroup. See "CAL_DRVUP" in the
+ Tegra TRM.
+
+Valid values for pin and group names (nvidia,pin) are:
+
+ These correspond to Tegra PADCTL_* (pinmux) registers.
+
+ Mux groups:
+
+ These correspond to Tegra PADCTL_* (pinmux) registers. Any property
+ that exists in those registers may be set for the following pin names.
+
+ pex_l5_clkreq_n_pgg0, pex_l5_rst_n_pgg1
+
+ Drive groups:
+
+ These registers controls a single pin for which a mux group exists.
+ See the list above for the pin name to use when configuring the pinmux.
+
+ pex_l5_clkreq_n_pgg0, pex_l5_rst_n_pgg1
+
+Valid values for nvidia,functions are:
+
+ pe5
+
+Power Domain:
+ pex_l5_clkreq_n_pgg0 and pex_l5_rst_n_pgg1 are part of PCIE C5 power
+ partition. Client devices must enable this partition before accessing
+ these pins here.
+
+
+Example:
+
+ tegra_pinctrl: pinmux: pinmux@2430000 {
+ compatible = "nvidia,tegra194-pinmux";
+ reg = <0x2430000 0x17000
+ 0xc300000 0x4000>;
+
+ pinctrl-names = "pex_rst";
+ pinctrl-0 = <&pex_rst_c5_out_state>;
+
+ pex_rst_c5_out_state: pex_rst_c5_out {
+ pex_rst {
+ nvidia,pins = "pex_l5_rst_n_pgg1";
+ nvidia,schmitt = <TEGRA_PIN_DISABLE>;
+ nvidia,lpdr = <TEGRA_PIN_ENABLE>;
+ nvidia,enable-input = <TEGRA_PIN_DISABLE>;
+ nvidia,io-high-voltage = <TEGRA_PIN_ENABLE>;
+ nvidia,tristate = <TEGRA_PIN_DISABLE>;
+ nvidia,pull = <TEGRA_PIN_PULL_NONE>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt
deleted file mode 100644
index 3b7266c7c438..000000000000
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt
+++ /dev/null
@@ -1,172 +0,0 @@
-======================
-Aspeed Pin Controllers
-======================
-
-The Aspeed SoCs vary in functionality inside a generation but have a common mux
-device register layout.
-
-Required properties for g4:
-- compatible : Should be one of the following:
- "aspeed,ast2400-pinctrl"
- "aspeed,g4-pinctrl"
-
-Required properties for g5:
-- compatible : Should be one of the following:
- "aspeed,ast2500-pinctrl"
- "aspeed,g5-pinctrl"
-
-- aspeed,external-nodes: A cell of phandles to external controller nodes:
- 0: compatible with "aspeed,ast2500-gfx", "syscon"
- 1: compatible with "aspeed,ast2500-lhc", "syscon"
-
-The pin controller node should be the child of a syscon node with the required
-property:
-
-- compatible : Should be one of the following:
- "aspeed,ast2400-scu", "syscon", "simple-mfd"
- "aspeed,g4-scu", "syscon", "simple-mfd"
- "aspeed,ast2500-scu", "syscon", "simple-mfd"
- "aspeed,g5-scu", "syscon", "simple-mfd"
-
-Refer to the the bindings described in
-Documentation/devicetree/bindings/mfd/syscon.txt
-
-Subnode Format
-==============
-
-The required properties of pinmux child nodes are:
-- function: the mux function to select
-- groups : the list of groups to select with this function
-
-Required properties of pinconf child nodes are:
-- groups: A list of groups to select (either this or "pins" must be
- specified)
-- pins : A list of ball names as strings, eg "D14" (either this or "groups"
- must be specified)
-
-Optional properties of pinconf child nodes are:
-- bias-disable : disable any pin bias
-- bias-pull-down: pull down the pin
-- drive-strength: sink or source at most X mA
-
-Definitions are as specified in
-Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt, with any
-further limitations as described above.
-
-For pinmux, each mux function has only one associated pin group. Each group is
-named by its function. The following values for the function and groups
-properties are supported:
-
-aspeed,ast2400-pinctrl, aspeed,g4-pinctrl:
-
-ACPI ADC0 ADC1 ADC10 ADC11 ADC12 ADC13 ADC14 ADC15 ADC2 ADC3 ADC4 ADC5 ADC6
-ADC7 ADC8 ADC9 BMCINT DDCCLK DDCDAT EXTRST FLACK FLBUSY FLWP GPID GPID0 GPID2
-GPID4 GPID6 GPIE0 GPIE2 GPIE4 GPIE6 I2C10 I2C11 I2C12 I2C13 I2C14 I2C3 I2C4
-I2C5 I2C6 I2C7 I2C8 I2C9 LPCPD LPCPME LPCRST LPCSMI MAC1LINK MAC2LINK MDIO1
-MDIO2 NCTS1 NCTS2 NCTS3 NCTS4 NDCD1 NDCD2 NDCD3 NDCD4 NDSR1 NDSR2 NDSR3 NDSR4
-NDTR1 NDTR2 NDTR3 NDTR4 NDTS4 NRI1 NRI2 NRI3 NRI4 NRTS1 NRTS2 NRTS3 OSCCLK PWM0
-PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 RGMII1 RGMII2 RMII1 RMII2 ROM16 ROM8 ROMCS1
-ROMCS2 ROMCS3 ROMCS4 RXD1 RXD2 RXD3 RXD4 SALT1 SALT2 SALT3 SALT4 SD1 SD2 SGPMCK
-SGPMI SGPMLD SGPMO SGPSCK SGPSI0 SGPSI1 SGPSLD SIOONCTRL SIOPBI SIOPBO SIOPWREQ
-SIOPWRGD SIOS3 SIOS5 SIOSCI SPI1 SPI1DEBUG SPI1PASSTHRU SPICS1 TIMER3 TIMER4
-TIMER5 TIMER6 TIMER7 TIMER8 TXD1 TXD2 TXD3 TXD4 UART6 USB11D1 USB11H2 USB2D1
-USB2H1 USBCKI VGABIOS_ROM VGAHS VGAVS VPI18 VPI24 VPI30 VPO12 VPO24 WDTRST1
-WDTRST2
-
-aspeed,ast2500-pinctrl, aspeed,g5-pinctrl:
-
-ACPI ADC0 ADC1 ADC10 ADC11 ADC12 ADC13 ADC14 ADC15 ADC2 ADC3 ADC4 ADC5 ADC6
-ADC7 ADC8 ADC9 BMCINT DDCCLK DDCDAT ESPI FWSPICS1 FWSPICS2 GPID0 GPID2 GPID4
-GPID6 GPIE0 GPIE2 GPIE4 GPIE6 I2C10 I2C11 I2C12 I2C13 I2C14 I2C3 I2C4 I2C5 I2C6
-I2C7 I2C8 I2C9 LAD0 LAD1 LAD2 LAD3 LCLK LFRAME LPCHC LPCPD LPCPLUS LPCPME
-LPCRST LPCSMI LSIRQ MAC1LINK MAC2LINK MDIO1 MDIO2 NCTS1 NCTS2 NCTS3 NCTS4 NDCD1
-NDCD2 NDCD3 NDCD4 NDSR1 NDSR2 NDSR3 NDSR4 NDTR1 NDTR2 NDTR3 NDTR4 NRI1 NRI2
-NRI3 NRI4 NRTS1 NRTS2 NRTS3 NRTS4 OSCCLK PEWAKE PNOR PWM0 PWM1 PWM2 PWM3 PWM4
-PWM5 PWM6 PWM7 RGMII1 RGMII2 RMII1 RMII2 RXD1 RXD2 RXD3 RXD4 SALT1 SALT10
-SALT11 SALT12 SALT13 SALT14 SALT2 SALT3 SALT4 SALT5 SALT6 SALT7 SALT8 SALT9
-SCL1 SCL2 SD1 SD2 SDA1 SDA2 SGPS1 SGPS2 SIOONCTRL SIOPBI SIOPBO SIOPWREQ
-SIOPWRGD SIOS3 SIOS5 SIOSCI SPI1 SPI1CS1 SPI1DEBUG SPI1PASSTHRU SPI2CK SPI2CS0
-SPI2CS1 SPI2MISO SPI2MOSI TIMER3 TIMER4 TIMER5 TIMER6 TIMER7 TIMER8 TXD1 TXD2
-TXD3 TXD4 UART6 USB11BHID USB2AD USB2AH USB2BD USB2BH USBCKI VGABIOSROM VGAHS
-VGAVS VPI24 VPO WDTRST1 WDTRST2
-
-Examples
-========
-
-g4 Example
-----------
-
-syscon: scu@1e6e2000 {
- compatible = "aspeed,ast2400-scu", "syscon", "simple-mfd";
- reg = <0x1e6e2000 0x1a8>;
-
- pinctrl: pinctrl {
- compatible = "aspeed,g4-pinctrl";
-
- pinctrl_i2c3_default: i2c3_default {
- function = "I2C3";
- groups = "I2C3";
- };
-
- pinctrl_gpioh0_unbiased_default: gpioh0 {
- pins = "A8";
- bias-disable;
- };
- };
-};
-
-g5 Example
-----------
-
-ahb {
- apb {
- syscon: scu@1e6e2000 {
- compatible = "aspeed,ast2500-scu", "syscon", "simple-mfd";
- reg = <0x1e6e2000 0x1a8>;
-
- pinctrl: pinctrl {
- compatible = "aspeed,g5-pinctrl";
- aspeed,external-nodes = <&gfx &lhc>;
-
- pinctrl_i2c3_default: i2c3_default {
- function = "I2C3";
- groups = "I2C3";
- };
-
- pinctrl_gpioh0_unbiased_default: gpioh0 {
- pins = "A18";
- bias-disable;
- };
- };
- };
-
- gfx: display@1e6e6000 {
- compatible = "aspeed,ast2500-gfx", "syscon";
- reg = <0x1e6e6000 0x1000>;
- };
- };
-
- lpc: lpc@1e789000 {
- compatible = "aspeed,ast2500-lpc", "simple-mfd";
- reg = <0x1e789000 0x1000>;
-
- #address-cells = <1>;
- #size-cells = <1>;
- ranges = <0x0 0x1e789000 0x1000>;
-
- lpc_host: lpc-host@80 {
- compatible = "aspeed,ast2500-lpc-host", "simple-mfd", "syscon";
- reg = <0x80 0x1e0>;
- reg-io-width = <4>;
-
- #address-cells = <1>;
- #size-cells = <1>;
- ranges = <0x0 0x80 0x1e0>;
-
- lhc: lhc@20 {
- compatible = "aspeed,ast2500-lhc";
- reg = <0x20 0x24 0x48 0x8>;
- };
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
index cef2b5855d60..fcd37e93ed4d 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
@@ -258,6 +258,7 @@ drive-push-pull - drive actively high and low
drive-open-drain - drive with open drain
drive-open-source - drive with open source
drive-strength - sink or source at most X mA
+drive-strength-microamp - sink or source at most X uA
input-enable - enable input on pin (no effect on output, such as
enabling an input buffer)
input-disable - disable input on pin (no effect on output, such as
@@ -326,6 +327,8 @@ arguments are described below.
- drive-strength takes as argument the target strength in mA.
+- drive-strength-microamp takes as argument the target strength in uA.
+
- input-debounce takes the debounce time in usec as argument
or 0 to disable debouncing
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt
index 625a22e2f211..8b94aa8f5971 100644
--- a/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-mcp23s08.txt
@@ -82,7 +82,7 @@ gpiom1: gpio@0 {
compatible = "microchip,mcp23s17";
gpio-controller;
#gpio-cells = <2>;
- spi-present-mask = <0x01>;
+ microchip,spi-present-mask = <0x01>;
reg = <0>;
spi-max-frequency = <1000000>;
};
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,apq8084-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,apq8084-pinctrl.txt
index 68e93d5b7ede..c9782397ff14 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,apq8084-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,apq8084-pinctrl.txt
@@ -122,17 +122,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,ipq8074-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,ipq8074-pinctrl.txt
index 6dd72f8599e9..7b151894f5a0 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,ipq8074-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,ipq8074-pinctrl.txt
@@ -118,17 +118,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,mdm9615-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,mdm9615-pinctrl.txt
index 86ecdcfc4fb8..d46973968873 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,mdm9615-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,mdm9615-pinctrl.txt
@@ -97,17 +97,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,msm8916-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,msm8916-pinctrl.txt
index 195a7a0ef0cc..3354a63296d9 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,msm8916-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,msm8916-pinctrl.txt
@@ -130,17 +130,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,msm8960-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,msm8960-pinctrl.txt
index 5034eb6653c7..a7dd213c77c6 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,msm8960-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,msm8960-pinctrl.txt
@@ -124,17 +124,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,msm8994-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,msm8994-pinctrl.txt
index f15443f6e78e..da52df6273bc 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,msm8994-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,msm8994-pinctrl.txt
@@ -128,17 +128,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,msm8996-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,msm8996-pinctrl.txt
index fa97f609fe45..a56cb882830c 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,msm8996-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,msm8996-pinctrl.txt
@@ -149,17 +149,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,msm8998-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,msm8998-pinctrl.txt
index e70c79bbbc5b..c4de930f2406 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,msm8998-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,msm8998-pinctrl.txt
@@ -40,6 +40,14 @@ MSM8998 platform.
Definition: must be 2. Specifying the pin number and flags, as defined
in <dt-bindings/gpio/gpio.h>
+- gpio-ranges:
+ Usage: required
+ Definition: see ../gpio/gpio.txt
+
+- gpio-reserved-ranges:
+ Usage: optional
+ Definition: see ../gpio/gpio.txt
+
Please refer to ../gpio/gpio.txt and ../interrupt-controller/interrupts.txt for
a general description of GPIO and interrupt bindings.
@@ -124,9 +132,8 @@ to specify in a pin configuration subnode:
qlink_request, qua_mi2s, sd_card, sd_write, sdc40, sdc41,
sdc42, sdc43, sdc4_clk, sdc4_cmd, sec_mi2s, sp_cmu,
spkr_i2s, ssbi1, ssc_irq, ter_mi2s, tgu_ch0, tgu_ch1,
- tsense_pwm1, tsense_pwm2, tsif1_clk, tsif1_data, tsif1_en,
- tsif1_error, tsif1_sync, tsif2_clk, tsif2_data, tsif2_en,
- tsif2_error, tsif2_sync, uim1_clk, uim1_data, uim1_present,
+ tsense_pwm1, tsense_pwm2, tsif0, tsif1,
+ uim1_clk, uim1_data, uim1_present,
uim1_reset, uim2_clk, uim2_data, uim2_present, uim2_reset,
uim_batt, usb_phy, vfr_1, vsense_clkout, vsense_data0,
vsense_data1, vsense_mode, wlan1_adc0, wlan1_adc1,
@@ -135,17 +142,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
@@ -175,6 +182,8 @@ Example:
interrupts = <0 208 0>;
gpio-controller;
#gpio-cells = <2>;
+ gpio-ranges = <&tlmm 0 0 175>;
+ gpio-reserved-ranges = <0 4>, <81 4>;
interrupt-controller;
#interrupt-cells = <2>;
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,pmic-gpio.txt b/Documentation/devicetree/bindings/pinctrl/qcom,pmic-gpio.txt
index 7f64a7e92c28..c32bf3237545 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,pmic-gpio.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,pmic-gpio.txt
@@ -21,6 +21,8 @@ PMIC's from Qualcomm.
"qcom,pmi8994-gpio"
"qcom,pmi8998-gpio"
"qcom,pms405-gpio"
+ "qcom,pm8150-gpio"
+ "qcom,pm8150b-gpio"
And must contain either "qcom,spmi-gpio" or "qcom,ssbi-gpio"
if the device is on an spmi bus or an ssbi bus respectively
@@ -94,6 +96,10 @@ to specify in a pin configuration subnode:
gpio1-gpio22 for pma8084
gpio1-gpio10 for pmi8994
gpio1-gpio12 for pms405 (holes on gpio1, gpio9 and gpio10)
+ gpio1-gpio10 for pm8150 (holes on gpio2, gpio5, gpio7
+ and gpio8)
+ gpio1-gpio12 for pm8150b (holes on gpio3, gpio4, gpio7)
+ gpio1-gpio12 for pm8150l (hole on gpio7)
- function:
Usage: required
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,qcs404-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,qcs404-pinctrl.txt
index 2b8f77762edc..a50e74684195 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,qcs404-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,qcs404-pinctrl.txt
@@ -150,17 +150,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,sc7180-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,sc7180-pinctrl.txt
new file mode 100644
index 000000000000..b5767ee82ee6
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,sc7180-pinctrl.txt
@@ -0,0 +1,186 @@
+Qualcomm Technologies, Inc. SC7180 TLMM block
+
+This binding describes the Top Level Mode Multiplexer block found in the
+SC7180 platform.
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be "qcom,sc7180-pinctrl"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the base address and size of the north, south and west
+ TLMM tiles
+
+- reg-names:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: names for the cells of reg, must contain "north", "south"
+ and "west".
+
+- interrupts:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: should specify the TLMM summary IRQ.
+
+- interrupt-controller:
+ Usage: required
+ Value type: <none>
+ Definition: identifies this node as an interrupt controller
+
+- #interrupt-cells:
+ Usage: required
+ Value type: <u32>
+ Definition: must be 2. Specifying the pin number and flags, as defined
+ in <dt-bindings/interrupt-controller/irq.h>
+
+- gpio-controller:
+ Usage: required
+ Value type: <none>
+ Definition: identifies this node as a gpio controller
+
+- #gpio-cells:
+ Usage: required
+ Value type: <u32>
+ Definition: must be 2. Specifying the pin number and flags, as defined
+ in <dt-bindings/gpio/gpio.h>
+
+- gpio-ranges:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: see ../gpio/gpio.txt
+
+- gpio-reserved-ranges:
+ Usage: optional
+ Value type: <prop-encoded-array>
+ Definition: see ../gpio/gpio.txt
+
+Please refer to ../gpio/gpio.txt and ../interrupt-controller/interrupts.txt for
+a general description of GPIO and interrupt bindings.
+
+Please refer to pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the meaning of the
+phrase "pin configuration node".
+
+The pin configuration nodes act as a container for an arbitrary number of
+subnodes. Each of these subnodes represents some desired configuration for a
+pin, a group, or a list of pins or groups. This configuration can include the
+mux function to select on those pin(s)/group(s), and various pin configuration
+parameters, such as pull-up, drive strength, etc.
+
+
+PIN CONFIGURATION NODES:
+
+The name of each subnode is not important; all subnodes should be enumerated
+and processed purely based on their content.
+
+Each subnode only affects those parameters that are explicitly listed. In
+other words, a subnode that lists a mux function but no pin configuration
+parameters implies no information about any pin configuration parameters.
+Similarly, a pin subnode that describes a pullup parameter implies no
+information about e.g. the mux function.
+
+
+The following generic properties as defined in pinctrl-bindings.txt are valid
+to specify in a pin configuration subnode:
+
+- pins:
+ Usage: required
+ Value type: <string-array>
+ Definition: List of gpio pins affected by the properties specified in
+ this subnode.
+
+ Valid pins are:
+ gpio0-gpio118
+ Supports mux, bias and drive-strength
+
+ sdc1_clk, sdc1_cmd, sdc1_data sdc2_clk, sdc2_cmd,
+ sdc2_data sdc1_rclk
+ Supports bias and drive-strength
+
+ ufs_reset
+ Supports bias and drive-strength
+
+- function:
+ Usage: required
+ Value type: <string>
+ Definition: Specify the alternative function to be configured for the
+ specified pins. Functions are only valid for gpio pins.
+ Valid values are:
+
+ adsp_ext, agera_pll, aoss_cti, atest_char, atest_char0,
+ atest_char1, atest_char2, atest_char3, atest_tsens,
+ atest_tsens2, atest_usb1, atest_usb10, atest_usb11,
+ atest_usb12, atest_usb13, atest_usb2, atest_usb20,
+ atest_usb21, atest_usb22, atest_usb23, audio_ref,
+ btfm_slimbus, cam_mclk, cci_async, cci_i2c, cci_timer0,
+ cci_timer1, cci_timer2, cci_timer3, cci_timer4,
+ cri_trng, dbg_out, ddr_bist, ddr_pxi0, ddr_pxi1,
+ ddr_pxi2, ddr_pxi3, dp_hot, edp_lcd, gcc_gp1, gcc_gp2,
+ gcc_gp3, gpio, gp_pdm0, gp_pdm1, gp_pdm2, gps_tx,
+ jitter_bist, ldo_en, ldo_update, lpass_ext, mdp_vsync,
+ mdp_vsync0, mdp_vsync1, mdp_vsync2, mdp_vsync3, mi2s_0,
+ mi2s_1, mi2s_2, mss_lte, m_voc, pa_indicator, phase_flag,
+ PLL_BIST, pll_bypassnl, pll_reset, prng_rosc, qdss,
+ qdss_cti, qlink_enable, qlink_request, qspi_clk, qspi_cs,
+ qspi_data, qup00, qup01, qup02, qup03, qup04, qup05,
+ qup10, qup11, qup12, qup13, qup14, qup15, sdc1_tb,
+ sdc2_tb, sd_write, sp_cmu, tgu_ch0, tgu_ch1, tgu_ch2,
+ tgu_ch3, tsense_pwm1, tsense_pwm2, uim1, uim2, uim_batt,
+ usb_phy, vfr_1, _V_GPIO, _V_PPS_IN, _V_PPS_OUT,
+ vsense_trigger, wlan1_adc0, wlan1_adc1, wlan2_adc0,
+ wlan2_adc1,
+
+- bias-disable:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins should be configured as no pull.
+
+- bias-pull-down:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins should be configured as pull down.
+
+- bias-pull-up:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins should be configured as pull up.
+
+- output-high:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins are configured in output mode, driven
+ high.
+ Not valid for sdc pins.
+
+- output-low:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins are configured in output mode, driven
+ low.
+ Not valid for sdc pins.
+
+- drive-strength:
+ Usage: optional
+ Value type: <u32>
+ Definition: Selects the drive strength for the specified pins, in mA.
+ Valid values are: 2, 4, 6, 8, 10, 12, 14 and 16
+
+Example:
+
+ tlmm: pinctrl@3500000 {
+ compatible = "qcom,sc7180-pinctrl";
+ reg = <0x3500000 0x300000>,
+ <0x3900000 0x300000>,
+ <0x3D00000 0x300000>;
+ reg-names = "west", "north", "south";
+ interrupts = <GIC_SPI 208 IRQ_TYPE_LEVEL_HIGH>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ gpio-ranges = <&tlmm 0 0 119>;
+ gpio-reserved-ranges = <0 4>, <106 4>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,sdm660-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,sdm660-pinctrl.txt
index 769ca83bb40d..be034d329e10 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,sdm660-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,sdm660-pinctrl.txt
@@ -142,17 +142,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,sdm845-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,sdm845-pinctrl.txt
index 665aadb5ea28..7462e3743c68 100644
--- a/Documentation/devicetree/bindings/pinctrl/qcom,sdm845-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,sdm845-pinctrl.txt
@@ -79,7 +79,7 @@ to specify in a pin configuration subnode:
gpio0-gpio149
Supports mux, bias and drive-strength
- sdc2_clk, sdc2_cmd, sdc2_data
+ sdc2_clk, sdc2_cmd, sdc2_data, ufs_reset
Supports bias and drive-strength
- function:
@@ -118,17 +118,17 @@ to specify in a pin configuration subnode:
- bias-disable:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as no pull.
+ Definition: The specified pins should be configured as no pull.
- bias-pull-down:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull down.
+ Definition: The specified pins should be configured as pull down.
- bias-pull-up:
Usage: optional
Value type: <none>
- Definition: The specified pins should be configued as pull up.
+ Definition: The specified pins should be configured as pull up.
- output-high:
Usage: optional
diff --git a/Documentation/devicetree/bindings/pinctrl/qcom,sm8150-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/qcom,sm8150-pinctrl.txt
new file mode 100644
index 000000000000..fa37733e5102
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/qcom,sm8150-pinctrl.txt
@@ -0,0 +1,190 @@
+Qualcomm SM8150 TLMM block
+
+This binding describes the Top Level Mode Multiplexer block found in the
+QCS404 platform.
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be "qcom,sm8150-pinctrl"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the base address and size of the north, south, west
+ and east TLMM tiles.
+
+- reg-names:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Defintiion: names for the cells of reg, must contain "north", "south"
+ "west" and "east".
+
+- interrupts:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: should specify the TLMM summary IRQ.
+
+- interrupt-controller:
+ Usage: required
+ Value type: <none>
+ Definition: identifies this node as an interrupt controller
+
+- #interrupt-cells:
+ Usage: required
+ Value type: <u32>
+ Definition: must be 2. Specifying the pin number and flags, as defined
+ in <dt-bindings/interrupt-controller/irq.h>
+
+- gpio-controller:
+ Usage: required
+ Value type: <none>
+ Definition: identifies this node as a gpio controller
+
+- #gpio-cells:
+ Usage: required
+ Value type: <u32>
+ Definition: must be 2. Specifying the pin number and flags, as defined
+ in <dt-bindings/gpio/gpio.h>
+
+- gpio-ranges:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: see ../gpio/gpio.txt
+
+- gpio-reserved-ranges:
+ Usage: optional
+ Value type: <prop-encoded-array>
+ Definition: see ../gpio/gpio.txt
+
+Please refer to ../gpio/gpio.txt and ../interrupt-controller/interrupts.txt for
+a general description of GPIO and interrupt bindings.
+
+Please refer to pinctrl-bindings.txt in this directory for details of the
+common pinctrl bindings used by client devices, including the meaning of the
+phrase "pin configuration node".
+
+The pin configuration nodes act as a container for an arbitrary number of
+subnodes. Each of these subnodes represents some desired configuration for a
+pin, a group, or a list of pins or groups. This configuration can include the
+mux function to select on those pin(s)/group(s), and various pin configuration
+parameters, such as pull-up, drive strength, etc.
+
+
+PIN CONFIGURATION NODES:
+
+The name of each subnode is not important; all subnodes should be enumerated
+and processed purely based on their content.
+
+Each subnode only affects those parameters that are explicitly listed. In
+other words, a subnode that lists a mux function but no pin configuration
+parameters implies no information about any pin configuration parameters.
+Similarly, a pin subnode that describes a pullup parameter implies no
+information about e.g. the mux function.
+
+
+The following generic properties as defined in pinctrl-bindings.txt are valid
+to specify in a pin configuration subnode:
+
+- pins:
+ Usage: required
+ Value type: <string-array>
+ Definition: List of gpio pins affected by the properties specified in
+ this subnode.
+
+ Valid pins are:
+ gpio0-gpio149
+ Supports mux, bias and drive-strength
+
+ sdc1_clk, sdc1_cmd, sdc1_data sdc2_clk, sdc2_cmd,
+ sdc2_data sdc1_rclk
+ Supports bias and drive-strength
+
+ ufs_reset
+ Supports bias and drive-strength
+
+- function:
+ Usage: required
+ Value type: <string>
+ Definition: Specify the alternative function to be configured for the
+ specified pins. Functions are only valid for gpio pins.
+ Valid values are:
+
+ adsp_ext, agera_pll, aoss_cti, ddr_pxi2, atest_char,
+ atest_char0, atest_char1, atest_char2, atest_char3,
+ audio_ref, atest_usb1, atest_usb2, atest_usb10,
+ atest_usb11, atest_usb12, atest_usb13, atest_usb20,
+ atest_usb21, atest_usb22, atest_usb2, atest_usb23,
+ btfm_slimbus, cam_mclk, cci_async, cci_i2c, cci_timer0,
+ cci_timer1, cci_timer2, cci_timer3, cci_timer4,
+ cri_trng, cri_trng0, cri_trng1, dbg_out, ddr_bist,
+ ddr_pxi0, ddr_pxi1, ddr_pxi3, edp_hot, edp_lcd,
+ emac_phy, emac_pps, gcc_gp1, gcc_gp2, gcc_gp3, gpio,
+ hs1_mi2s, hs2_mi2s, hs3_mi2s, jitter_bist,
+ lpass_slimbus, mdp_vsync, mdp_vsync0, mdp_vsync1,
+ mdp_vsync2, mdp_vsync3, mss_lte, m_voc, nav_pps,
+ pa_indicator, pci_e0, phase_flag, pll_bypassnl,
+ pll_bist, pci_e1, pll_reset, pri_mi2s, pri_mi2s_ws,
+ prng_rosc, qdss, qdss_cti, qlink_request, qlink_enable,
+ qspi0, qspi1, qspi2, qspi3, qspi_clk, qspi_cs, qua_mi2s,
+ qup0, qup1, qup2, qup3, qup4, qup5, qup6, qup7, qup8,
+ qup9, qup10, qup11, qup12, qup13, qup14, qup15, qup16,
+ qup17, qup18, qup19, qup_l4, qup_l5, qup_l6, rgmii,
+ sdc4, sd_write, sec_mi2s, spkr_i2s, sp_cmu, ter_mi2s,
+ tgu_ch0, tgu_ch1, tgu_ch2, tgu_ch3, tsense_pwm1,
+ tsense_pwm2, tsif1, tsif2, uim1, uim2, uim_batt,
+ usb2phy_ac, usb_phy, vfr_1, vsense_trigger, wlan1_adc0,
+ wlan1_adc1, wlan2_adc0, wlan2_adc1, wmss_reset
+
+- bias-disable:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins should be configued as no pull.
+
+- bias-pull-down:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins should be configued as pull down.
+
+- bias-pull-up:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins should be configued as pull up.
+
+- output-high:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins are configured in output mode, driven
+ high.
+ Not valid for sdc pins.
+
+- output-low:
+ Usage: optional
+ Value type: <none>
+ Definition: The specified pins are configured in output mode, driven
+ low.
+ Not valid for sdc pins.
+
+- drive-strength:
+ Usage: optional
+ Value type: <u32>
+ Definition: Selects the drive strength for the specified pins, in mA.
+ Valid values are: 2, 4, 6, 8, 10, 12, 14 and 16
+
+Example:
+
+ tlmm: pinctrl@3000000 {
+ compatible = "qcom,sm8150-pinctrl";
+ reg = <0x03100000 0x300000>,
+ <0x03500000 0x300000>,
+ <0x03900000 0x300000>,
+ <0x03D00000 0x300000>;
+ reg-names = "west", "east", "north", "south";
+ interrupts = <GIC_SPI 208 IRQ_TYPE_LEVEL_HIGH>;
+ gpio-controller;
+ #gpio-cells = <2>;
+ gpio-ranges = <&tlmm 0 0 175>;
+ gpio-reserved-ranges = <0 4>, <126 4>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt
deleted file mode 100644
index 00169255e48c..000000000000
--- a/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt
+++ /dev/null
@@ -1,208 +0,0 @@
-* STM32 GPIO and Pin Mux/Config controller
-
-STMicroelectronics's STM32 MCUs intregrate a GPIO and Pin mux/config hardware
-controller. It controls the input/output settings on the available pins and
-also provides ability to multiplex and configure the output of various on-chip
-controllers onto these pads.
-
-Pin controller node:
-Required properies:
- - compatible: value should be one of the following:
- "st,stm32f429-pinctrl"
- "st,stm32f469-pinctrl"
- "st,stm32f746-pinctrl"
- "st,stm32f769-pinctrl"
- "st,stm32h743-pinctrl"
- "st,stm32mp157-pinctrl"
- "st,stm32mp157-z-pinctrl"
- - #address-cells: The value of this property must be 1
- - #size-cells : The value of this property must be 1
- - ranges : defines mapping between pin controller node (parent) to
- gpio-bank node (children).
- - pins-are-numbered: Specify the subnodes are using numbered pinmux to
- specify pins.
-
-GPIO controller/bank node:
-Required properties:
- - gpio-controller : Indicates this device is a GPIO controller
- - #gpio-cells : Should be two.
- The first cell is the pin number
- The second one is the polarity:
- - 0 for active high
- - 1 for active low
- - reg : The gpio address range, relative to the pinctrl range
- - clocks : clock that drives this bank
- - st,bank-name : Should be a name string for this bank as specified in
- the datasheet
-
-Optional properties:
- - reset: : Reference to the reset controller
- - st,syscfg: Should be phandle/offset/mask.
- -The phandle to the syscon node which includes IRQ mux selection register.
- -The offset of the IRQ mux selection register
- -The field mask of IRQ mux, needed if different of 0xf.
- - gpio-ranges: Define a dedicated mapping between a pin-controller and
- a gpio controller. Format is <&phandle a b c> with:
- -(phandle): phandle of pin-controller.
- -(a): gpio base offset in range.
- -(b): pin base offset in range.
- -(c): gpio count in range
- This entry has to be used either if there are holes inside a bank:
- GPIOB0/B1/B2/B14/B15 (see example 2)
- or if banks are not contiguous:
- GPIOA/B/C/E...
- NOTE: If "gpio-ranges" is used for a gpio controller, all gpio-controller
- have to use a "gpio-ranges" entry.
- More details in Documentation/devicetree/bindings/gpio/gpio.txt.
- - st,bank-ioport: should correspond to the EXTI IOport selection (EXTI line
- used to select GPIOs as interrupts).
- - hwlocks: reference to a phandle of a hardware spinlock provider node.
- - st,package: Indicates the SOC package used.
- More details in include/dt-bindings/pinctrl/stm32-pinfunc.h
-
-Example 1:
-#include <dt-bindings/pinctrl/stm32f429-pinfunc.h>
-...
-
- pin-controller {
- #address-cells = <1>;
- #size-cells = <1>;
- compatible = "st,stm32f429-pinctrl";
- ranges = <0 0x40020000 0x3000>;
- pins-are-numbered;
-
- gpioa: gpio@40020000 {
- gpio-controller;
- #gpio-cells = <2>;
- reg = <0x0 0x400>;
- resets = <&reset_ahb1 0>;
- st,bank-name = "GPIOA";
- };
- ...
- pin-functions nodes follow...
- };
-
-Example 2:
-#include <dt-bindings/pinctrl/stm32f429-pinfunc.h>
-...
-
- pinctrl: pin-controller {
- #address-cells = <1>;
- #size-cells = <1>;
- compatible = "st,stm32f429-pinctrl";
- ranges = <0 0x40020000 0x3000>;
- pins-are-numbered;
-
- gpioa: gpio@40020000 {
- gpio-controller;
- #gpio-cells = <2>;
- reg = <0x0 0x400>;
- resets = <&reset_ahb1 0>;
- st,bank-name = "GPIOA";
- gpio-ranges = <&pinctrl 0 0 16>;
- };
-
- gpiob: gpio@40020400 {
- gpio-controller;
- #gpio-cells = <2>;
- reg = <0x0 0x400>;
- resets = <&reset_ahb1 0>;
- st,bank-name = "GPIOB";
- ngpios = 4;
- gpio-ranges = <&pinctrl 0 16 3>,
- <&pinctrl 14 30 2>;
- };
-
-
- ...
- pin-functions nodes follow...
- };
-
-
-Contents of function subnode node:
-----------------------------------
-Subnode format
-A pinctrl node should contain at least one subnode representing the
-pinctrl group available on the machine. Each subnode will list the
-pins it needs, and how they should be configured, with regard to muxer
-configuration, pullups, drive, output high/low and output speed.
-
- node {
- pinmux = <PIN_NUMBER_PINMUX>;
- GENERIC_PINCONFIG;
- };
-
-Required properties:
-- pinmux: integer array, represents gpio pin number and mux setting.
- Supported pin number and mux varies for different SoCs, and are defined in
- dt-bindings/pinctrl/<soc>-pinfunc.h directly.
- These defines are calculated as:
- ((port * 16 + line) << 8) | function
- With:
- - port: The gpio port index (PA = 0, PB = 1, ..., PK = 11)
- - line: The line offset within the port (PA0 = 0, PA1 = 1, ..., PA15 = 15)
- - function: The function number, can be:
- * 0 : GPIO
- * 1 : Alternate Function 0
- * 2 : Alternate Function 1
- * 3 : Alternate Function 2
- * ...
- * 16 : Alternate Function 15
- * 17 : Analog
-
- To simplify the usage, macro is available to generate "pinmux" field.
- This macro is available here:
- - include/dt-bindings/pinctrl/stm32-pinfunc.h
-
- Some examples of using macro:
- /* GPIO A9 set as alernate function 2 */
- ... {
- pinmux = <STM32_PINMUX('A', 9, AF2)>;
- };
- /* GPIO A9 set as GPIO */
- ... {
- pinmux = <STM32_PINMUX('A', 9, GPIO)>;
- };
- /* GPIO A9 set as analog */
- ... {
- pinmux = <STM32_PINMUX('A', 9, ANALOG)>;
- };
-
-Optional properties:
-- GENERIC_PINCONFIG: is the generic pinconfig options to use.
- Available options are:
- - bias-disable,
- - bias-pull-down,
- - bias-pull-up,
- - drive-push-pull,
- - drive-open-drain,
- - output-low
- - output-high
- - slew-rate = <x>, with x being:
- < 0 > : Low speed
- < 1 > : Medium speed
- < 2 > : Fast speed
- < 3 > : High speed
-
-Example:
-
-pin-controller {
-...
- usart1_pins_a: usart1@0 {
- pins1 {
- pinmux = <STM32_PINMUX('A', 9, AF7)>;
- bias-disable;
- drive-push-pull;
- slew-rate = <0>;
- };
- pins2 {
- pinmux = <STM32_PINMUX('A', 10, AF7)>;
- bias-disable;
- };
- };
-};
-
-&usart1 {
- pinctrl-0 = <&usart1_pins_a>;
- pinctrl-names = "default";
-};
diff --git a/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml b/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
new file mode 100644
index 000000000000..400df2da018a
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
@@ -0,0 +1,272 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright (C) STMicroelectronics 2019.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/pinctrl/st,stm32-pinctrl.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: STM32 GPIO and Pin Mux/Config controller
+
+maintainers:
+ - Alexandre TORGUE <alexandre.torgue@st.com>
+
+description: |
+ STMicroelectronics's STM32 MCUs intregrate a GPIO and Pin mux/config hardware
+ controller. It controls the input/output settings on the available pins and
+ also provides ability to multiplex and configure the output of various
+ on-chip controllers onto these pads.
+
+properties:
+ compatible:
+ enum:
+ - st,stm32f429-pinctrl
+ - st,stm32f469-pinctrl
+ - st,stm32f746-pinctrl
+ - st,stm32f769-pinctrl
+ - st,stm32h743-pinctrl
+ - st,stm32mp157-pinctrl
+ - st,stm32mp157-z-pinctrl
+
+ '#address-cells':
+ const: 1
+ '#size-cells':
+ const: 1
+
+ ranges: true
+ pins-are-numbered: true
+ hwlocks: true
+
+ st,syscfg:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/phandle-array"
+ description: Should be phandle/offset/mask
+ items:
+ - description: Phandle to the syscon node which includes IRQ mux selection.
+ - description: The offset of the IRQ mux selection register.
+ - description: The field mask of IRQ mux, needed if different of 0xf.
+
+ st,package:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [1, 2, 4, 8]
+ description:
+ Indicates the SOC package used.
+ More details in include/dt-bindings/pinctrl/stm32-pinfunc.h
+
+
+patternProperties:
+ '^gpio@[0-9a-f]*$':
+ type: object
+ properties:
+ gpio-controller: true
+ '#gpio-cells':
+ const: 2
+
+ reg:
+ maxItems: 1
+ clocks:
+ maxItems: 1
+ reset:
+ minItems: 1
+ maxItems: 1
+ gpio-ranges:
+ minItems: 1
+ maxItems: 16
+ ngpios:
+ description:
+ Number of available gpios in a bank.
+ minimum: 1
+ maximum: 16
+
+ st,bank-name:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum:
+ - GPIOA
+ - GPIOB
+ - GPIOC
+ - GPIOD
+ - GPIOE
+ - GPIOF
+ - GPIOG
+ - GPIOH
+ - GPIOI
+ - GPIOJ
+ - GPIOK
+ - GPIOZ
+ description:
+ Should be a name string for this bank as specified in the datasheet.
+
+ st,bank-ioport:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - minimum: 0
+ - maximum: 11
+
+ description:
+ Should correspond to the EXTI IOport selection (EXTI line used
+ to select GPIOs as interrupts).
+
+ required:
+ - gpio-controller
+ - '#gpio-cells'
+ - reg
+ - clocks
+ - st,bank-name
+
+ '-[0-9]*$':
+ type: object
+ patternProperties:
+ '^pins':
+ type: object
+ description: |
+ A pinctrl node should contain at least one subnode representing the
+ pinctrl group available on the machine. Each subnode will list the
+ pins it needs, and how they should be configured, with regard to muxer
+ configuration, pullups, drive, output high/low and output speed.
+ properties:
+ pinmux:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32-array"
+ description: |
+ Integer array, represents gpio pin number and mux setting.
+ Supported pin number and mux varies for different SoCs, and are
+ defined in dt-bindings/pinctrl/<soc>-pinfunc.h directly.
+ These defines are calculated as: ((port * 16 + line) << 8) | function
+ With:
+ - port: The gpio port index (PA = 0, PB = 1, ..., PK = 11)
+ - line: The line offset within the port (PA0 = 0, PA1 = 1, ..., PA15 = 15)
+ - function: The function number, can be:
+ * 0 : GPIO
+ * 1 : Alternate Function 0
+ * 2 : Alternate Function 1
+ * 3 : Alternate Function 2
+ * ...
+ * 16 : Alternate Function 15
+ * 17 : Analog
+ To simplify the usage, macro is available to generate "pinmux" field.
+ This macro is available here:
+ - include/dt-bindings/pinctrl/stm32-pinfunc.h
+ Some examples of using macro:
+ /* GPIO A9 set as alernate function 2 */
+ ... {
+ pinmux = <STM32_PINMUX('A', 9, AF2)>;
+ };
+ /* GPIO A9 set as GPIO */
+ ... {
+ pinmux = <STM32_PINMUX('A', 9, GPIO)>;
+ };
+ /* GPIO A9 set as analog */
+ ... {
+ pinmux = <STM32_PINMUX('A', 9, ANALOG)>;
+ };
+
+ bias-disable:
+ type: boolean
+ bias-pull-down:
+ type: boolean
+ bias-pull-up:
+ type: boolean
+ drive-push-pull:
+ type: boolean
+ drive-open-drain:
+ type: boolean
+ output-low:
+ type: boolean
+ output-high:
+ type: boolean
+ slew-rate:
+ description: |
+ 0: Low speed
+ 1: Medium speed
+ 2: Fast speed
+ 3: High speed
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [0, 1, 2, 3]
+
+ required:
+ - pinmux
+
+required:
+ - compatible
+ - '#address-cells'
+ - '#size-cells'
+ - ranges
+ - pins-are-numbered
+
+examples:
+ - |
+ #include <dt-bindings/pinctrl/stm32-pinfunc.h>
+ #include <dt-bindings/mfd/stm32f4-rcc.h>
+ //Example 1
+ pinctrl@40020000 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "st,stm32f429-pinctrl";
+ ranges = <0 0x40020000 0x3000>;
+ pins-are-numbered;
+
+ gpioa: gpio@0 {
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x0 0x400>;
+ resets = <&reset_ahb1 0>;
+ clocks = <&rcc 0 STM32F4_AHB1_CLOCK(GPIOA)>;
+ st,bank-name = "GPIOA";
+ };
+ };
+
+ //Example 2 (using gpio-ranges)
+ pinctrl@50020000 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "st,stm32f429-pinctrl";
+ ranges = <0 0x50020000 0x3000>;
+ pins-are-numbered;
+
+ gpiob: gpio@1000 {
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x1000 0x400>;
+ resets = <&reset_ahb1 0>;
+ clocks = <&rcc 0 STM32F4_AHB1_CLOCK(GPIOB)>;
+ st,bank-name = "GPIOB";
+ gpio-ranges = <&pinctrl 0 0 16>;
+ };
+
+ gpioc: gpio@2000 {
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x2000 0x400>;
+ resets = <&reset_ahb1 0>;
+ clocks = <&rcc 0 STM32F4_AHB1_CLOCK(GPIOC)>;
+ st,bank-name = "GPIOC";
+ ngpios = <5>;
+ gpio-ranges = <&pinctrl 0 16 3>,
+ <&pinctrl 14 30 2>;
+ };
+ };
+
+ //Example 3 pin groups
+ pinctrl@60020000 {
+ usart1_pins_a: usart1-0 {
+ pins1 {
+ pinmux = <STM32_PINMUX('A', 9, AF7)>;
+ bias-disable;
+ drive-push-pull;
+ slew-rate = <0>;
+ };
+ pins2 {
+ pinmux = <STM32_PINMUX('A', 10, AF7)>;
+ bias-disable;
+ };
+ };
+ };
+
+ usart1 {
+ pinctrl-0 = <&usart1_pins_a>;
+ pinctrl-names = "default";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/power/amlogic,meson-ee-pwrc.yaml b/Documentation/devicetree/bindings/power/amlogic,meson-ee-pwrc.yaml
new file mode 100644
index 000000000000..aab70e8b681e
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/amlogic,meson-ee-pwrc.yaml
@@ -0,0 +1,93 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/power/amlogic,meson-ee-pwrc.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson Everything-Else Power Domains
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+description: |+
+ The Everything-Else Power Domains node should be the child of a syscon
+ node with the required property:
+
+ - compatible: Should be the following:
+ "amlogic,meson-gx-hhi-sysctrl", "simple-mfd", "syscon"
+
+ Refer to the the bindings described in
+ Documentation/devicetree/bindings/mfd/syscon.txt
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson-g12a-pwrc
+ - amlogic,meson-sm1-pwrc
+
+ clocks:
+ minItems: 2
+
+ clock-names:
+ items:
+ - const: vpu
+ - const: vapb
+
+ resets:
+ minItems: 11
+
+ reset-names:
+ items:
+ - const: viu
+ - const: venc
+ - const: vcbus
+ - const: bt656
+ - const: rdma
+ - const: venci
+ - const: vencp
+ - const: vdac
+ - const: vdi6
+ - const: vencl
+ - const: vid_lock
+
+ "#power-domain-cells":
+ const: 1
+
+ amlogic,ao-sysctrl:
+ description: phandle to the AO sysctrl node
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/phandle
+
+required:
+ - compatible
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - "#power-domain-cells"
+ - amlogic,ao-sysctrl
+
+examples:
+ - |
+ pwrc: power-controller {
+ compatible = "amlogic,meson-sm1-pwrc";
+ #power-domain-cells = <1>;
+ amlogic,ao-sysctrl = <&rti>;
+ resets = <&reset_viu>,
+ <&reset_venc>,
+ <&reset_vcbus>,
+ <&reset_bt656>,
+ <&reset_rdma>,
+ <&reset_venci>,
+ <&reset_vencp>,
+ <&reset_vdac>,
+ <&reset_vdi6>,
+ <&reset_vencl>,
+ <&reset_vid_lock>;
+ reset-names = "viu", "venc", "vcbus", "bt656",
+ "rdma", "venci", "vencp", "vdac",
+ "vdi6", "vencl", "vid_lock";
+ clocks = <&clk_vpu>, <&clk_vapb>;
+ clock-names = "vpu", "vapb";
+ };
diff --git a/Documentation/devicetree/bindings/power/qcom,rpmpd.txt b/Documentation/devicetree/bindings/power/qcom,rpmpd.txt
index 980e5413d18f..eb35b22f9e23 100644
--- a/Documentation/devicetree/bindings/power/qcom,rpmpd.txt
+++ b/Documentation/devicetree/bindings/power/qcom,rpmpd.txt
@@ -6,6 +6,8 @@ which then translates it into a corresponding voltage on a rail
Required Properties:
- compatible: Should be one of the following
* qcom,msm8996-rpmpd: RPM Power domain for the msm8996 family of SoC
+ * qcom,msm8998-rpmpd: RPM Power domain for the msm8998 family of SoC
+ * qcom,qcs404-rpmpd: RPM Power domain for the qcs404 family of SoC
* qcom,sdm845-rpmhpd: RPMh Power domain for the sdm845 family of SoC
- #power-domain-cells: number of cells in Power domain specifier
must be 1.
diff --git a/Documentation/devicetree/bindings/power/reset/mt6323-poweroff.txt b/Documentation/devicetree/bindings/power/reset/mt6323-poweroff.txt
new file mode 100644
index 000000000000..933f0c48e887
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/reset/mt6323-poweroff.txt
@@ -0,0 +1,20 @@
+Device Tree Bindings for Power Controller on MediaTek PMIC
+
+The power controller which could be found on PMIC is responsible for externally
+powering off or on the remote MediaTek SoC through the circuit BBPU.
+
+Required properties:
+- compatible: Should be one of follows
+ "mediatek,mt6323-pwrc": for MT6323 PMIC
+
+Example:
+
+ pmic {
+ compatible = "mediatek,mt6323";
+
+ ...
+
+ power-controller {
+ compatible = "mediatek,mt6323-pwrc";
+ };
+ }
diff --git a/Documentation/devicetree/bindings/power/reset/nvmem-reboot-mode.txt b/Documentation/devicetree/bindings/power/reset/nvmem-reboot-mode.txt
new file mode 100644
index 000000000000..752d6126d5da
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/reset/nvmem-reboot-mode.txt
@@ -0,0 +1,26 @@
+NVMEM reboot mode driver
+
+This driver gets reboot mode magic value from reboot-mode driver
+and stores it in a NVMEM cell named "reboot-mode". Then the bootloader
+can read it and take different action according to the magic
+value stored.
+
+Required properties:
+- compatible: should be "nvmem-reboot-mode".
+- nvmem-cells: A phandle to the reboot mode provided by a nvmem device.
+- nvmem-cell-names: Should be "reboot-mode".
+
+The rest of the properties should follow the generic reboot-mode description
+found in reboot-mode.txt
+
+Example:
+ reboot-mode {
+ compatible = "nvmem-reboot-mode";
+ nvmem-cells = <&reboot_mode>;
+ nvmem-cell-names = "reboot-mode";
+
+ mode-normal = <0xAAAA5501>;
+ mode-bootloader = <0xBBBB5500>;
+ mode-recovery = <0xCCCC5502>;
+ mode-test = <0xDDDD5503>;
+ };
diff --git a/Documentation/devicetree/bindings/power/reset/qcom,pon.txt b/Documentation/devicetree/bindings/power/reset/qcom,pon.txt
index 5705f575862d..0c0dc3a1e693 100644
--- a/Documentation/devicetree/bindings/power/reset/qcom,pon.txt
+++ b/Documentation/devicetree/bindings/power/reset/qcom,pon.txt
@@ -9,6 +9,7 @@ Required Properties:
-compatible: Must be one of:
"qcom,pm8916-pon"
"qcom,pms405-pon"
+ "qcom,pm8998-pon"
-reg: Specifies the physical address of the pon register
diff --git a/Documentation/devicetree/bindings/property-units.txt b/Documentation/devicetree/bindings/property-units.txt
index bfd33734faca..e9b8360b3288 100644
--- a/Documentation/devicetree/bindings/property-units.txt
+++ b/Documentation/devicetree/bindings/property-units.txt
@@ -12,32 +12,32 @@ unit prefixes.
Time/Frequency
----------------------------------------
-mhz : megahertz
--hz : Hertz (preferred)
--sec : seconds
--ms : milliseconds
--us : microseconds
--ns : nanoseconds
+-hz : hertz (preferred)
+-sec : second
+-ms : millisecond
+-us : microsecond
+-ns : nanosecond
Distance
----------------------------------------
--mm : millimeters
+-mm : millimeter
Electricity
----------------------------------------
--microamp : micro amps
--microamp-hours : micro amp-hours
--ohms : Ohms
--micro-ohms : micro Ohms
--microwatt-hours: micro Watt-hours
--microvolt : micro volts
--picofarads : picofarads
--femtofarads : femtofarads
+-microamp : microampere
+-microamp-hours : microampere hour
+-ohms : ohm
+-micro-ohms : microohm
+-microwatt-hours: microwatt hour
+-microvolt : microvolt
+-picofarads : picofarad
+-femtofarads : femtofarad
Temperature
----------------------------------------
--celsius : Degrees Celsius
--millicelsius : Degreee milli-Celsius
+-celsius : degree Celsius
+-millicelsius : millidegree Celsius
Pressure
----------------------------------------
--kpascal : kiloPascal
+-kpascal : kilopascal
diff --git a/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt b/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
index 454c937076a2..d48f9eb3636e 100644
--- a/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
+++ b/Documentation/devicetree/bindings/ptp/ptp-qoriq.txt
@@ -4,6 +4,8 @@ General Properties:
- compatible Should be "fsl,etsec-ptp" for eTSEC
Should be "fsl,fman-ptp-timer" for DPAA FMan
+ Should be "fsl,dpaa2-ptp" for DPAA2
+ Should be "fsl,enetc-ptp" for ENETC
- reg Offset and length of the register set for the device
- interrupts There should be at least two interrupts. Some devices
have as many as four PTP related interrupts.
diff --git a/Documentation/devicetree/bindings/pwm/allwinner,sun4i-a10-pwm.yaml b/Documentation/devicetree/bindings/pwm/allwinner,sun4i-a10-pwm.yaml
new file mode 100644
index 000000000000..0ac52f83a58c
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/allwinner,sun4i-a10-pwm.yaml
@@ -0,0 +1,57 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/pwm/allwinner,sun4i-a10-pwm.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 PWM Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#pwm-cells":
+ const: 3
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-pwm
+ - const: allwinner,sun5i-a10s-pwm
+ - const: allwinner,sun5i-a13-pwm
+ - const: allwinner,sun7i-a20-pwm
+ - const: allwinner,sun8i-h3-pwm
+ - items:
+ - const: allwinner,sun8i-a83t-pwm
+ - const: allwinner,sun8i-h3-pwm
+ - items:
+ - const: allwinner,sun50i-a64-pwm
+ - const: allwinner,sun5i-a13-pwm
+ - items:
+ - const: allwinner,sun50i-h5-pwm
+ - const: allwinner,sun5i-a13-pwm
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+required:
+ - "#pwm-cells"
+ - compatible
+ - reg
+ - clocks
+
+additionalProperties: false
+
+examples:
+ - |
+ pwm: pwm@1c20e00 {
+ compatible = "allwinner,sun7i-a20-pwm";
+ reg = <0x01c20e00 0xc>;
+ clocks = <&osc24M>;
+ #pwm-cells = <3>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt b/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
deleted file mode 100644
index 7d9d3f90641b..000000000000
--- a/Documentation/devicetree/bindings/pwm/ingenic,jz47xx-pwm.txt
+++ /dev/null
@@ -1,25 +0,0 @@
-Ingenic JZ47xx PWM Controller
-=============================
-
-Required properties:
-- compatible: One of:
- * "ingenic,jz4740-pwm"
- * "ingenic,jz4770-pwm"
- * "ingenic,jz4780-pwm"
-- #pwm-cells: Should be 3. See pwm.txt in this directory for a description
- of the cells format.
-- clocks : phandle to the external clock.
-- clock-names : Should be "ext".
-
-
-Example:
-
- pwm: pwm@10002000 {
- compatible = "ingenic,jz4740-pwm";
- reg = <0x10002000 0x1000>;
-
- #pwm-cells = <3>;
-
- clocks = <&ext>;
- clock-names = "ext";
- };
diff --git a/Documentation/devicetree/bindings/pwm/pwm-mediatek.txt b/Documentation/devicetree/bindings/pwm/pwm-mediatek.txt
index 991728cb46cb..c8501530173c 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-mediatek.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-mediatek.txt
@@ -6,6 +6,8 @@ Required properties:
- "mediatek,mt7622-pwm": found on mt7622 SoC.
- "mediatek,mt7623-pwm": found on mt7623 SoC.
- "mediatek,mt7628-pwm": found on mt7628 SoC.
+ - "mediatek,mt7629-pwm", "mediatek,mt7622-pwm": found on mt7629 SoC.
+ - "mediatek,mt8516-pwm": found on mt8516 SoC.
- reg: physical base address and length of the controller's registers.
- #pwm-cells: must be 2. See pwm.txt in this directory for a description of
the cell format.
diff --git a/Documentation/devicetree/bindings/pwm/pwm-sifive.txt b/Documentation/devicetree/bindings/pwm/pwm-sifive.txt
new file mode 100644
index 000000000000..36447e3c9378
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-sifive.txt
@@ -0,0 +1,33 @@
+SiFive PWM controller
+
+Unlike most other PWM controllers, the SiFive PWM controller currently only
+supports one period for all channels in the PWM. All PWMs need to run at
+the same period. The period also has significant restrictions on the values
+it can achieve, which the driver rounds to the nearest achievable period.
+PWM RTL that corresponds to the IP block version numbers can be found
+here:
+
+https://github.com/sifive/sifive-blocks/tree/master/src/main/scala/devices/pwm
+
+Required properties:
+- compatible: Should be "sifive,<chip>-pwm" and "sifive,pwm<version>".
+ Supported compatible strings are: "sifive,fu540-c000-pwm" for the SiFive
+ PWM v0 as integrated onto the SiFive FU540 chip, and "sifive,pwm0" for the
+ SiFive PWM v0 IP block with no chip integration tweaks.
+ Please refer to sifive-blocks-ip-versioning.txt for details.
+- reg: physical base address and length of the controller's registers
+- clocks: Should contain a clock identifier for the PWM's parent clock.
+- #pwm-cells: Should be 3. See pwm.txt in this directory
+ for a description of the cell format.
+- interrupts: one interrupt per PWM channel
+
+Examples:
+
+pwm: pwm@10020000 {
+ compatible = "sifive,fu540-c000-pwm", "sifive,pwm0";
+ reg = <0x0 0x10020000 0x0 0x1000>;
+ clocks = <&tlclk>;
+ interrupt-parent = <&plic>;
+ interrupts = <42 43 44 45>;
+ #pwm-cells = <3>;
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-sprd.txt b/Documentation/devicetree/bindings/pwm/pwm-sprd.txt
new file mode 100644
index 000000000000..16fa5a096206
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-sprd.txt
@@ -0,0 +1,40 @@
+Spreadtrum PWM controller
+
+Spreadtrum SoCs PWM controller provides 4 PWM channels.
+
+Required properties:
+- compatible : Should be "sprd,ums512-pwm".
+- reg: Physical base address and length of the controller's registers.
+- clocks: The phandle and specifier referencing the controller's clocks.
+- clock-names: Should contain following entries:
+ "pwmn": used to derive the functional clock for PWM channel n (n range: 0 ~ 3).
+ "enablen": for PWM channel n enable clock (n range: 0 ~ 3).
+- #pwm-cells: Should be 2. See pwm.txt in this directory for a description of
+ the cells format.
+
+Optional properties:
+- assigned-clocks: Reference to the PWM clock entries.
+- assigned-clock-parents: The phandle of the parent clock of PWM clock.
+
+Example:
+ pwms: pwm@32260000 {
+ compatible = "sprd,ums512-pwm";
+ reg = <0 0x32260000 0 0x10000>;
+ clock-names = "pwm0", "enable0",
+ "pwm1", "enable1",
+ "pwm2", "enable2",
+ "pwm3", "enable3";
+ clocks = <&aon_clk CLK_PWM0>, <&aonapb_gate CLK_PWM0_EB>,
+ <&aon_clk CLK_PWM1>, <&aonapb_gate CLK_PWM1_EB>,
+ <&aon_clk CLK_PWM2>, <&aonapb_gate CLK_PWM2_EB>,
+ <&aon_clk CLK_PWM3>, <&aonapb_gate CLK_PWM3_EB>;
+ assigned-clocks = <&aon_clk CLK_PWM0>,
+ <&aon_clk CLK_PWM1>,
+ <&aon_clk CLK_PWM2>,
+ <&aon_clk CLK_PWM3>;
+ assigned-clock-parents = <&ext_26m>,
+ <&ext_26m>,
+ <&ext_26m>,
+ <&ext_26m>;
+ #pwm-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt b/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
index bd23302e84be..6521bc44a74e 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-stm32-lp.txt
@@ -11,8 +11,10 @@ Required parameters:
bindings defined in pwm.txt.
Optional properties:
-- pinctrl-names: Set to "default".
-- pinctrl-0: Phandle pointing to pin configuration node for PWM.
+- pinctrl-names: Set to "default". An additional "sleep" state can be
+ defined to set pins in sleep state when in low power.
+- pinctrl-n: Phandle(s) pointing to pin configuration node for PWM,
+ respectively for "default" and "sleep" states.
Example:
timer@40002400 {
@@ -21,7 +23,8 @@ Example:
pwm {
compatible = "st,stm32-pwm-lp";
#pwm-cells = <3>;
- pinctrl-names = "default";
+ pinctrl-names = "default", "sleep";
pinctrl-0 = <&lppwm1_pins>;
+ pinctrl-1 = <&lppwm1_sleep_pins>;
};
};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-stm32.txt b/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
index 3e6d55018d7a..a8690bfa5e1f 100644
--- a/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm-stm32.txt
@@ -8,6 +8,8 @@ Required parameters:
- pinctrl-names: Set to "default".
- pinctrl-0: List of phandles pointing to pin configuration nodes for PWM module.
For Pinctrl properties see ../pinctrl/pinctrl-bindings.txt
+- #pwm-cells: Should be set to 3. This PWM chip uses the default 3 cells
+ bindings defined in pwm.txt.
Optional parameters:
- st,breakinput: One or two <index level filter> to describe break input configurations.
@@ -28,6 +30,7 @@ Example:
pwm {
compatible = "st,stm32-pwm";
+ #pwm-cells = <3>;
pinctrl-0 = <&pwm1_pins>;
pinctrl-names = "default";
st,breakinput = <0 1 5>;
diff --git a/Documentation/devicetree/bindings/pwm/pwm-sun4i.txt b/Documentation/devicetree/bindings/pwm/pwm-sun4i.txt
deleted file mode 100644
index 2a1affbff45e..000000000000
--- a/Documentation/devicetree/bindings/pwm/pwm-sun4i.txt
+++ /dev/null
@@ -1,24 +0,0 @@
-Allwinner sun4i and sun7i SoC PWM controller
-
-Required properties:
- - compatible: should be one of:
- - "allwinner,sun4i-a10-pwm"
- - "allwinner,sun5i-a10s-pwm"
- - "allwinner,sun5i-a13-pwm"
- - "allwinner,sun7i-a20-pwm"
- - "allwinner,sun8i-h3-pwm"
- - "allwinner,sun50i-a64-pwm", "allwinner,sun5i-a13-pwm"
- - "allwinner,sun50i-h5-pwm", "allwinner,sun5i-a13-pwm"
- - reg: physical base address and length of the controller's registers
- - #pwm-cells: should be 3. See pwm.txt in this directory for a description of
- the cells format.
- - clocks: From common clock binding, handle to the parent clock.
-
-Example:
-
- pwm: pwm@1c20e00 {
- compatible = "allwinner,sun7i-a20-pwm";
- reg = <0x01c20e00 0xc>;
- clocks = <&osc24M>;
- #pwm-cells = <3>;
- };
diff --git a/Documentation/devicetree/bindings/regulator/act8865-regulator.txt b/Documentation/devicetree/bindings/regulator/act8865-regulator.txt
index 3ae9f1088845..b9f58e480349 100644
--- a/Documentation/devicetree/bindings/regulator/act8865-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/act8865-regulator.txt
@@ -34,6 +34,9 @@ Optional input supply properties:
- inl67-supply: The input supply for LDO_REG3 and LDO_REG4
Any standard regulator properties can be used to configure the single regulator.
+regulator-initial-mode, regulator-allowed-modes and regulator-mode could be specified
+for act8865 using mode values from dt-bindings/regulator/active-semi,8865-regulator.h
+file.
The valid names for regulators are:
- for act8846:
@@ -47,6 +50,8 @@ The valid names for regulators are:
Example:
--------
+#include <dt-bindings/regulator/active-semi,8865-regulator.h>
+
i2c1: i2c@f0018000 {
pmic: act8865@5b {
compatible = "active-semi,act8865";
@@ -65,9 +70,19 @@ Example:
regulator-name = "VCC_1V2";
regulator-min-microvolt = <1100000>;
regulator-max-microvolt = <1300000>;
- regulator-suspend-mem-microvolt = <1150000>;
- regulator-suspend-standby-microvolt = <1150000>;
regulator-always-on;
+
+ regulator-allowed-modes = <ACT8865_REGULATOR_MODE_FIXED>,
+ <ACT8865_REGULATOR_MODE_LOWPOWER>;
+ regulator-initial-mode = <ACT8865_REGULATOR_MODE_FIXED>;
+
+ regulator-state-mem {
+ regulator-on-in-suspend;
+ regulator-suspend-min-microvolt = <1150000>;
+ regulator-suspend-max-microvolt = <1150000>;
+ regulator-changeable-in-suspend;
+ regulator-mode = <ACT8865_REGULATOR_MODE_LOWPOWER>;
+ };
};
vcc_3v3_reg: DCDC_REG3 {
@@ -82,6 +97,14 @@ Example:
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator-always-on;
+
+ regulator-allowed-modes = <ACT8865_REGULATOR_MODE_NORMAL>,
+ <ACT8865_REGULATOR_MODE_LOWPOWER>;
+ regulator-initial-mode = <ACT8865_REGULATOR_MODE_NORMAL>;
+
+ regulator-state-mem {
+ regulator-off-in-suspend;
+ };
};
vddfuse_reg: LDO_REG2 {
diff --git a/Documentation/devicetree/bindings/regulator/arizona-regulator.txt b/Documentation/devicetree/bindings/regulator/arizona-regulator.txt
index 443564d7784f..69bf41949b01 100644
--- a/Documentation/devicetree/bindings/regulator/arizona-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/arizona-regulator.txt
@@ -5,7 +5,8 @@ of analogue I/O.
This document lists regulator specific bindings, see the primary binding
document:
- ../mfd/arizona.txt
+ For Wolfson Microelectronic Arizona codecs: ../mfd/arizona.txt
+ For Cirrus Logic Madera codecs: ../mfd/madera.txt
Optional properties:
- wlf,ldoena : GPIO specifier for the GPIO controlling LDOENA
diff --git a/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml b/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
index d289c2f7455a..a78150c47aa2 100644
--- a/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
+++ b/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
@@ -12,13 +12,26 @@ maintainers:
description:
Any property defined as part of the core regulator binding, defined in
- regulator.txt, can also be used. However a fixed voltage regulator is
+ regulator.yaml, can also be used. However a fixed voltage regulator is
expected to have the regulator-min-microvolt and regulator-max-microvolt
to be the same.
+allOf:
+ - $ref: "regulator.yaml#"
+
+if:
+ properties:
+ compatible:
+ contains:
+ const: regulator-fixed-clock
+ required:
+ - clocks
+
properties:
compatible:
- const: regulator-fixed
+ enum:
+ - const: regulator-fixed
+ - const: regulator-fixed-clock
regulator-name: true
@@ -26,6 +39,13 @@ properties:
description: gpio to use for enable control
maxItems: 1
+ clocks:
+ description:
+ clock to use for enable control. This binding is only available if
+ the compatible is chosen to regulator-fixed-clock. The clock binding
+ is mandatory if compatible is chosen to regulator-fixed-clock.
+ maxItems: 1
+
startup-delay-us:
description: startup time in microseconds
$ref: /schemas/types.yaml#/definitions/uint32
diff --git a/Documentation/devicetree/bindings/regulator/gpio-regulator.txt b/Documentation/devicetree/bindings/regulator/gpio-regulator.txt
deleted file mode 100644
index dd25e73b5d79..000000000000
--- a/Documentation/devicetree/bindings/regulator/gpio-regulator.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-GPIO controlled regulators
-
-Required properties:
-- compatible : Must be "regulator-gpio".
-- regulator-name : Defined in regulator.txt as optional, but required
- here.
-- gpios : Array of one or more GPIO pins used to select the
- regulator voltage/current listed in "states".
-- states : Selection of available voltages/currents provided by
- this regulator and matching GPIO configurations to
- achieve them. If there are no states in the "states"
- array, use a fixed regulator instead.
-
-Optional properties:
-- enable-gpios : GPIO used to enable/disable the regulator.
- Warning, the GPIO phandle flags are ignored and the
- GPIO polarity is controlled solely by the presence
- of "enable-active-high" DT property. This is due to
- compatibility with old DTs.
-- enable-active-high : Polarity of "enable-gpio" GPIO is active HIGH.
- Default is active LOW.
-- gpios-states : On operating systems, that don't support reading back
- gpio values in output mode (most notably linux), this
- array provides the state of GPIO pins set when
- requesting them from the gpio controller. Systems,
- that are capable of preserving state when requesting
- the lines, are free to ignore this property.
- 0: LOW, 1: HIGH. Default is LOW if nothing else
- is specified.
-- startup-delay-us : Startup time in microseconds.
-- regulator-type : Specifies what is being regulated, must be either
- "voltage" or "current", defaults to voltage.
-
-Any property defined as part of the core regulator binding defined in
-regulator.txt can also be used.
-
-Example:
-
- mmciv: gpio-regulator {
- compatible = "regulator-gpio";
-
- regulator-name = "mmci-gpio-supply";
- regulator-min-microvolt = <1800000>;
- regulator-max-microvolt = <2600000>;
- regulator-boot-on;
-
- enable-gpios = <&gpio0 23 0x4>;
- gpios = <&gpio0 24 0x4
- &gpio0 25 0x4>;
- states = <1800000 0x3
- 2200000 0x2
- 2600000 0x1
- 2900000 0x0>;
-
- startup-delay-us = <100000>;
- enable-active-high;
- };
diff --git a/Documentation/devicetree/bindings/regulator/gpio-regulator.yaml b/Documentation/devicetree/bindings/regulator/gpio-regulator.yaml
new file mode 100644
index 000000000000..9d3b28417fb6
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/gpio-regulator.yaml
@@ -0,0 +1,118 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/gpio-regulator.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: GPIO controlled regulators
+
+maintainers:
+ - Liam Girdwood <lgirdwood@gmail.com>
+ - Mark Brown <broonie@kernel.org>
+
+description:
+ Any property defined as part of the core regulator binding, defined in
+ regulator.txt, can also be used.
+
+allOf:
+ - $ref: "regulator.yaml#"
+
+properties:
+ compatible:
+ const: regulator-gpio
+
+ regulator-name: true
+
+ enable-gpios:
+ description: GPIO to use to enable/disable the regulator.
+ Warning, the GPIO phandle flags are ignored and the GPIO polarity is
+ controlled solely by the presence of "enable-active-high" DT property.
+ This is due to compatibility with old DTs.
+ maxItems: 1
+
+ gpios:
+ description: Array of one or more GPIO pins used to select the regulator
+ voltage/current listed in "states".
+ minItems: 1
+ maxItems: 8 # Should be enough...
+
+ gpios-states:
+ description: |
+ On operating systems, that don't support reading back gpio values in
+ output mode (most notably linux), this array provides the state of GPIO
+ pins set when requesting them from the gpio controller. Systems, that are
+ capable of preserving state when requesting the lines, are free to ignore
+ this property.
+ 0: LOW
+ 1: HIGH
+ Default is LOW if nothing else is specified.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - maxItems: 8
+ items:
+ enum: [ 0, 1 ]
+ default: 0
+
+ states:
+ description: Selection of available voltages/currents provided by this
+ regulator and matching GPIO configurations to achieve them. If there are
+ no states in the "states" array, use a fixed regulator instead.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-matrix
+ - maxItems: 8
+ items:
+ items:
+ - description: Voltage in microvolts
+ - description: GPIO group state value
+
+ startup-delay-us:
+ description: startup time in microseconds
+
+ enable-active-high:
+ description: Polarity of "enable-gpio" GPIO is active HIGH. Default is
+ active LOW.
+ type: boolean
+
+ gpio-open-drain:
+ description:
+ GPIO is open drain type. If this property is missing then default
+ assumption is false.
+ type: boolean
+
+ regulator-type:
+ description: Specifies what is being regulated.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/string
+ - enum:
+ - voltage
+ - current
+ default: voltage
+
+required:
+ - compatible
+ - regulator-name
+ - gpios
+ - states
+
+examples:
+ - |
+ gpio-regulator {
+ compatible = "regulator-gpio";
+
+ regulator-name = "mmci-gpio-supply";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <2600000>;
+ regulator-boot-on;
+
+ enable-gpios = <&gpio0 23 0x4>;
+ gpios = <&gpio0 24 0x4
+ &gpio0 25 0x4>;
+ states = <1800000 0x3>,
+ <2200000 0x2>,
+ <2600000 0x1>,
+ <2900000 0x0>;
+
+ startup-delay-us = <100000>;
+ enable-active-high;
+ };
+...
diff --git a/Documentation/devicetree/bindings/regulator/max8660.txt b/Documentation/devicetree/bindings/regulator/max8660.txt
deleted file mode 100644
index 8ba994d8a142..000000000000
--- a/Documentation/devicetree/bindings/regulator/max8660.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Maxim MAX8660 voltage regulator
-
-Required properties:
-- compatible: must be one of "maxim,max8660", "maxim,max8661"
-- reg: I2C slave address, usually 0x34
-- any required generic properties defined in regulator.txt
-
-Example:
-
- i2c_master {
- max8660@34 {
- compatible = "maxim,max8660";
- reg = <0x34>;
-
- regulators {
- regulator@0 {
- regulator-compatible= "V3(DCDC)";
- regulator-min-microvolt = <725000>;
- regulator-max-microvolt = <1800000>;
- };
-
- regulator@1 {
- regulator-compatible= "V4(DCDC)";
- regulator-min-microvolt = <725000>;
- regulator-max-microvolt = <1800000>;
- };
-
- regulator@2 {
- regulator-compatible= "V5(LDO)";
- regulator-min-microvolt = <1700000>;
- regulator-max-microvolt = <2000000>;
- };
-
- regulator@3 {
- regulator-compatible= "V6(LDO)";
- regulator-min-microvolt = <1800000>;
- regulator-max-microvolt = <3300000>;
- };
-
- regulator@4 {
- regulator-compatible= "V7(LDO)";
- regulator-min-microvolt = <1800000>;
- regulator-max-microvolt = <3300000>;
- };
- };
- };
- };
diff --git a/Documentation/devicetree/bindings/regulator/max8660.yaml b/Documentation/devicetree/bindings/regulator/max8660.yaml
new file mode 100644
index 000000000000..9c038698f880
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/max8660.yaml
@@ -0,0 +1,77 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/max8660.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Maxim MAX8660 voltage regulator
+
+maintainers:
+ - Daniel Mack <zonque@gmail.com>
+
+properties:
+ $nodename:
+ pattern: "pmic@[0-9a-f]{1,2}"
+ compatible:
+ enum:
+ - maxim,max8660
+ - maxim,max8661
+
+ reg:
+ maxItems: 1
+
+ regulators:
+ type: object
+
+ patternProperties:
+ "regulator-.+":
+ $ref: "regulator.yaml#"
+
+ additionalProperties: false
+
+additionalProperties: false
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ pmic@34 {
+ compatible = "maxim,max8660";
+ reg = <0x34>;
+
+ regulators {
+ regulator-V3 {
+ regulator-compatible= "V3(DCDC)";
+ regulator-min-microvolt = <725000>;
+ regulator-max-microvolt = <1800000>;
+ };
+
+ regulator-V4 {
+ regulator-compatible= "V4(DCDC)";
+ regulator-min-microvolt = <725000>;
+ regulator-max-microvolt = <1800000>;
+ };
+
+ regulator-V5 {
+ regulator-compatible= "V5(LDO)";
+ regulator-min-microvolt = <1700000>;
+ regulator-max-microvolt = <2000000>;
+ };
+
+ regulator-V6 {
+ regulator-compatible= "V6(LDO)";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ regulator-V7 {
+ regulator-compatible= "V7(LDO)";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ };
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/regulator/mt6358-regulator.txt b/Documentation/devicetree/bindings/regulator/mt6358-regulator.txt
new file mode 100644
index 000000000000..9a90a92f2d7e
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/mt6358-regulator.txt
@@ -0,0 +1,358 @@
+MediaTek MT6358 Regulator
+
+All voltage regulators provided by the MT6358 PMIC are described as the
+subnodes of the MT6358 regulators node. Each regulator is named according
+to its regulator type, buck_<name> and ldo_<name>. The definition for each
+of these nodes is defined using the standard binding for regulators at
+Documentation/devicetree/bindings/regulator/regulator.txt.
+
+The valid names for regulators are::
+BUCK:
+ buck_vdram1, buck_vcore, buck_vpa, buck_vproc11, buck_vproc12, buck_vgpu,
+ buck_vs2, buck_vmodem, buck_vs1
+LDO:
+ ldo_vdram2, ldo_vsim1, ldo_vibr, ldo_vrf12, ldo_vio18, ldo_vusb, ldo_vcamio,
+ ldo_vcamd, ldo_vcn18, ldo_vfe28, ldo_vsram_proc11, ldo_vcn28, ldo_vsram_others,
+ ldo_vsram_gpu, ldo_vxo22, ldo_vefuse, ldo_vaux18, ldo_vmch, ldo_vbif28,
+ ldo_vsram_proc12, ldo_vcama1, ldo_vemc, ldo_vio28, ldo_va12, ldo_vrf18,
+ ldo_vcn33_bt, ldo_vcn33_wifi, ldo_vcama2, ldo_vmc, ldo_vldo28, ldo_vaud28,
+ ldo_vsim2
+
+Example:
+
+ pmic {
+ compatible = "mediatek,mt6358";
+
+ mt6358regulator: mt6358regulator {
+ compatible = "mediatek,mt6358-regulator";
+
+ mt6358_vdram1_reg: buck_vdram1 {
+ regulator-compatible = "buck_vdram1";
+ regulator-name = "vdram1";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <2087500>;
+ regulator-ramp-delay = <12500>;
+ regulator-enable-ramp-delay = <0>;
+ regulator-always-on;
+ };
+
+ mt6358_vcore_reg: buck_vcore {
+ regulator-name = "vcore";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <200>;
+ regulator-always-on;
+ };
+
+ mt6358_vpa_reg: buck_vpa {
+ regulator-name = "vpa";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <3650000>;
+ regulator-ramp-delay = <50000>;
+ regulator-enable-ramp-delay = <250>;
+ };
+
+ mt6358_vproc11_reg: buck_vproc11 {
+ regulator-name = "vproc11";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <200>;
+ regulator-always-on;
+ };
+
+ mt6358_vproc12_reg: buck_vproc12 {
+ regulator-name = "vproc12";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <200>;
+ regulator-always-on;
+ };
+
+ mt6358_vgpu_reg: buck_vgpu {
+ regulator-name = "vgpu";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <200>;
+ };
+
+ mt6358_vs2_reg: buck_vs2 {
+ regulator-name = "vs2";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <2087500>;
+ regulator-ramp-delay = <12500>;
+ regulator-enable-ramp-delay = <0>;
+ regulator-always-on;
+ };
+
+ mt6358_vmodem_reg: buck_vmodem {
+ regulator-name = "vmodem";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <900>;
+ regulator-always-on;
+ };
+
+ mt6358_vs1_reg: buck_vs1 {
+ regulator-name = "vs1";
+ regulator-min-microvolt = <1000000>;
+ regulator-max-microvolt = <2587500>;
+ regulator-ramp-delay = <12500>;
+ regulator-enable-ramp-delay = <0>;
+ regulator-always-on;
+ };
+
+ mt6358_vdram2_reg: ldo_vdram2 {
+ regulator-name = "vdram2";
+ regulator-min-microvolt = <600000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-enable-ramp-delay = <3300>;
+ };
+
+ mt6358_vsim1_reg: ldo_vsim1 {
+ regulator-name = "vsim1";
+ regulator-min-microvolt = <1700000>;
+ regulator-max-microvolt = <3100000>;
+ regulator-enable-ramp-delay = <540>;
+ };
+
+ mt6358_vibr_reg: ldo_vibr {
+ regulator-name = "vibr";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-enable-ramp-delay = <60>;
+ };
+
+ mt6358_vrf12_reg: ldo_vrf12 {
+ compatible = "regulator-fixed";
+ regulator-name = "vrf12";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <1200000>;
+ regulator-enable-ramp-delay = <120>;
+ };
+
+ mt6358_vio18_reg: ldo_vio18 {
+ compatible = "regulator-fixed";
+ regulator-name = "vio18";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-enable-ramp-delay = <2700>;
+ regulator-always-on;
+ };
+
+ mt6358_vusb_reg: ldo_vusb {
+ regulator-name = "vusb";
+ regulator-min-microvolt = <3000000>;
+ regulator-max-microvolt = <3100000>;
+ regulator-enable-ramp-delay = <270>;
+ regulator-always-on;
+ };
+
+ mt6358_vcamio_reg: ldo_vcamio {
+ compatible = "regulator-fixed";
+ regulator-name = "vcamio";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vcamd_reg: ldo_vcamd {
+ regulator-name = "vcamd";
+ regulator-min-microvolt = <900000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vcn18_reg: ldo_vcn18 {
+ compatible = "regulator-fixed";
+ regulator-name = "vcn18";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vfe28_reg: ldo_vfe28 {
+ compatible = "regulator-fixed";
+ regulator-name = "vfe28";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vsram_proc11_reg: ldo_vsram_proc11 {
+ regulator-name = "vsram_proc11";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <240>;
+ regulator-always-on;
+ };
+
+ mt6358_vcn28_reg: ldo_vcn28 {
+ compatible = "regulator-fixed";
+ regulator-name = "vcn28";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vsram_others_reg: ldo_vsram_others {
+ regulator-name = "vsram_others";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <240>;
+ regulator-always-on;
+ };
+
+ mt6358_vsram_gpu_reg: ldo_vsram_gpu {
+ regulator-name = "vsram_gpu";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <240>;
+ };
+
+ mt6358_vxo22_reg: ldo_vxo22 {
+ compatible = "regulator-fixed";
+ regulator-name = "vxo22";
+ regulator-min-microvolt = <2200000>;
+ regulator-max-microvolt = <2200000>;
+ regulator-enable-ramp-delay = <120>;
+ regulator-always-on;
+ };
+
+ mt6358_vefuse_reg: ldo_vefuse {
+ regulator-name = "vefuse";
+ regulator-min-microvolt = <1700000>;
+ regulator-max-microvolt = <1900000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vaux18_reg: ldo_vaux18 {
+ compatible = "regulator-fixed";
+ regulator-name = "vaux18";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vmch_reg: ldo_vmch {
+ regulator-name = "vmch";
+ regulator-min-microvolt = <2900000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-enable-ramp-delay = <60>;
+ };
+
+ mt6358_vbif28_reg: ldo_vbif28 {
+ compatible = "regulator-fixed";
+ regulator-name = "vbif28";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vsram_proc12_reg: ldo_vsram_proc12 {
+ regulator-name = "vsram_proc12";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1293750>;
+ regulator-ramp-delay = <6250>;
+ regulator-enable-ramp-delay = <240>;
+ regulator-always-on;
+ };
+
+ mt6358_vcama1_reg: ldo_vcama1 {
+ regulator-name = "vcama1";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3000000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vemc_reg: ldo_vemc {
+ regulator-name = "vemc";
+ regulator-min-microvolt = <2900000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-enable-ramp-delay = <60>;
+ regulator-always-on;
+ };
+
+ mt6358_vio28_reg: ldo_vio28 {
+ compatible = "regulator-fixed";
+ regulator-name = "vio28";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_va12_reg: ldo_va12 {
+ compatible = "regulator-fixed";
+ regulator-name = "va12";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <1200000>;
+ regulator-enable-ramp-delay = <270>;
+ regulator-always-on;
+ };
+
+ mt6358_vrf18_reg: ldo_vrf18 {
+ compatible = "regulator-fixed";
+ regulator-name = "vrf18";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <1800000>;
+ regulator-enable-ramp-delay = <120>;
+ };
+
+ mt6358_vcn33_bt_reg: ldo_vcn33_bt {
+ regulator-name = "vcn33_bt";
+ regulator-min-microvolt = <3300000>;
+ regulator-max-microvolt = <3500000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vcn33_wifi_reg: ldo_vcn33_wifi {
+ regulator-name = "vcn33_wifi";
+ regulator-min-microvolt = <3300000>;
+ regulator-max-microvolt = <3500000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vcama2_reg: ldo_vcama2 {
+ regulator-name = "vcama2";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3000000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vmc_reg: ldo_vmc {
+ regulator-name = "vmc";
+ regulator-min-microvolt = <1800000>;
+ regulator-max-microvolt = <3300000>;
+ regulator-enable-ramp-delay = <60>;
+ };
+
+ mt6358_vldo28_reg: ldo_vldo28 {
+ regulator-name = "vldo28";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <3000000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vaud28_reg: ldo_vaud28 {
+ compatible = "regulator-fixed";
+ regulator-name = "vaud28";
+ regulator-min-microvolt = <2800000>;
+ regulator-max-microvolt = <2800000>;
+ regulator-enable-ramp-delay = <270>;
+ };
+
+ mt6358_vsim2_reg: ldo_vsim2 {
+ regulator-name = "vsim2";
+ regulator-min-microvolt = <1700000>;
+ regulator-max-microvolt = <3100000>;
+ regulator-enable-ramp-delay = <540>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/pv88060.txt b/Documentation/devicetree/bindings/regulator/pv88060.txt
index 10a6dadc008e..6a7c8a92fdb0 100644
--- a/Documentation/devicetree/bindings/regulator/pv88060.txt
+++ b/Documentation/devicetree/bindings/regulator/pv88060.txt
@@ -121,4 +121,4 @@ Example
regulator-max-microvolt = <5000000>;
};
};
- }; \ No newline at end of file
+ };
diff --git a/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt
index 7ef2dbe48e8a..bab9f71140b8 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,rpmh-regulator.txt
@@ -22,9 +22,12 @@ RPMh resource.
The names used for regulator nodes must match those supported by a given PMIC.
Supported regulator node names:
+ PM8005: smps1 - smps4
+ PM8009: smps1 - smps2, ldo1 - ldo7
+ PM8150: smps1 - smps10, ldo1 - ldo18
+ PM8150L: smps1 - smps8, ldo1 - ldo11, bob, flash, rgb
PM8998: smps1 - smps13, ldo1 - ldo28, lvs1 - lvs2
PMI8998: bob
- PM8005: smps1 - smps4
========================
First Level Nodes - PMIC
@@ -33,9 +36,13 @@ First Level Nodes - PMIC
- compatible
Usage: required
Value type: <string>
- Definition: Must be one of: "qcom,pm8998-rpmh-regulators",
- "qcom,pmi8998-rpmh-regulators" or
- "qcom,pm8005-rpmh-regulators".
+ Definition: Must be one of below:
+ "qcom,pm8005-rpmh-regulators"
+ "qcom,pm8009-rpmh-regulators"
+ "qcom,pm8150-rpmh-regulators"
+ "qcom,pm8150l-rpmh-regulators"
+ "qcom,pm8998-rpmh-regulators"
+ "qcom,pmi8998-rpmh-regulators"
- qcom,pmic-id
Usage: required
@@ -97,7 +104,7 @@ Second Level Nodes - Regulators
sent for this regulator including those which are for a
strictly lower power state.
-Other properties defined in Documentation/devicetree/bindings/regulator.txt
+Other properties defined in Documentation/devicetree/bindings/regulator/regulator.txt
may also be used. regulator-initial-mode and regulator-allowed-modes may be
specified for VRM regulators using mode values from
include/dt-bindings/regulator/qcom,rpmh-regulator.h. regulator-allow-bypass
diff --git a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
index 406f2e570c50..430b8622bda1 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
@@ -4,11 +4,13 @@ Qualcomm SPMI Regulators
Usage: required
Value type: <string>
Definition: must be one of:
+ "qcom,pm8005-regulators"
"qcom,pm8841-regulators"
"qcom,pm8916-regulators"
"qcom,pm8941-regulators"
"qcom,pm8994-regulators"
"qcom,pmi8994-regulators"
+ "qcom,pms405-regulators"
- interrupts:
Usage: optional
@@ -110,6 +112,23 @@ Qualcomm SPMI Regulators
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
+- vdd_l1_l2-supply:
+- vdd_l3_l8-supply:
+- vdd_l4-supply:
+- vdd_l5_l6-supply:
+- vdd_l10_l11_l12_l13-supply:
+- vdd_l7-supply:
+- vdd_l9-supply:
+- vdd_s1-supply:
+- vdd_s2-supply:
+- vdd_s3-supply:
+- vdd_s4-supply:
+- vdd_s5-supply
+ Usage: optional (pms405 only)
+ Value type: <phandle>
+ Definition: Reference to regulator supplying the input pin, as
+ described in the data sheet.
+
- qcom,saw-reg:
Usage: optional
Value type: <phandle>
@@ -120,6 +139,9 @@ The regulator node houses sub-nodes for each regulator within the device. Each
sub-node is identified using the node's name, with valid values listed for each
of the PMICs below.
+pm8005:
+ s1, s2, s3, s4
+
pm8841:
s1, s2, s3, s4, s5, s6, s7, s8
diff --git a/Documentation/devicetree/bindings/regulator/regulator.txt b/Documentation/devicetree/bindings/regulator/regulator.txt
index 0a3f087d5844..487ccd8370b3 100644
--- a/Documentation/devicetree/bindings/regulator/regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/regulator.txt
@@ -1,139 +1 @@
-Voltage/Current Regulators
-
-Optional properties:
-- regulator-name: A string used as a descriptive name for regulator outputs
-- regulator-min-microvolt: smallest voltage consumers may set
-- regulator-max-microvolt: largest voltage consumers may set
-- regulator-microvolt-offset: Offset applied to voltages to compensate for voltage drops
-- regulator-min-microamp: smallest current consumers may set
-- regulator-max-microamp: largest current consumers may set
-- regulator-input-current-limit-microamp: maximum input current regulator allows
-- regulator-always-on: boolean, regulator should never be disabled
-- regulator-boot-on: bootloader/firmware enabled regulator
-- regulator-allow-bypass: allow the regulator to go into bypass mode
-- regulator-allow-set-load: allow the regulator performance level to be configured
-- <name>-supply: phandle to the parent supply/regulator node
-- regulator-ramp-delay: ramp delay for regulator(in uV/us)
- For hardware which supports disabling ramp rate, it should be explicitly
- initialised to zero (regulator-ramp-delay = <0>) for disabling ramp delay.
-- regulator-enable-ramp-delay: The time taken, in microseconds, for the supply
- rail to reach the target voltage, plus/minus whatever tolerance the board
- design requires. This property describes the total system ramp time
- required due to the combination of internal ramping of the regulator itself,
- and board design issues such as trace capacitance and load on the supply.
-- regulator-settling-time-us: Settling time, in microseconds, for voltage
- change if regulator have the constant time for any level voltage change.
- This is useful when regulator have exponential voltage change.
-- regulator-settling-time-up-us: Settling time, in microseconds, for voltage
- increase if the regulator needs a constant time to settle after voltage
- increases of any level. This is useful for regulators with exponential
- voltage changes.
-- regulator-settling-time-down-us: Settling time, in microseconds, for voltage
- decrease if the regulator needs a constant time to settle after voltage
- decreases of any level. This is useful for regulators with exponential
- voltage changes.
-- regulator-soft-start: Enable soft start so that voltage ramps slowly
-- regulator-state-standby sub-root node for Standby mode
- : equivalent with standby Linux sleep state, which provides energy savings
- with a relatively quick transition back time.
-- regulator-state-mem sub-root node for Suspend-to-RAM mode
- : suspend to memory, the device goes to sleep, but all data stored in memory,
- only some external interrupt can wake the device.
-- regulator-state-disk sub-root node for Suspend-to-DISK mode
- : suspend to disk, this state operates similarly to Suspend-to-RAM,
- but includes a final step of writing memory contents to disk.
-- regulator-state-[mem/disk/standby] node has following common properties:
- - regulator-on-in-suspend: regulator should be on in suspend state.
- - regulator-off-in-suspend: regulator should be off in suspend state.
- - regulator-suspend-min-microvolt: minimum voltage may be set in
- suspend state.
- - regulator-suspend-max-microvolt: maximum voltage may be set in
- suspend state.
- - regulator-suspend-microvolt: the default voltage which regulator
- would be set in suspend. This property is now deprecated, instead
- setting voltage for suspend mode via the API which regulator
- driver provides is recommended.
- - regulator-changeable-in-suspend: whether the default voltage and
- the regulator on/off in suspend can be changed in runtime.
- - regulator-mode: operating mode in the given suspend state.
- The set of possible operating modes depends on the capabilities of
- every hardware so the valid modes are documented on each regulator
- device tree binding document.
-- regulator-initial-mode: initial operating mode. The set of possible operating
- modes depends on the capabilities of every hardware so each device binding
- documentation explains which values the regulator supports.
-- regulator-allowed-modes: list of operating modes that software is allowed to
- configure for the regulator at run-time. Elements may be specified in any
- order. The set of possible operating modes depends on the capabilities of
- every hardware so each device binding document explains which values the
- regulator supports.
-- regulator-system-load: Load in uA present on regulator that is not captured by
- any consumer request.
-- regulator-pull-down: Enable pull down resistor when the regulator is disabled.
-- regulator-over-current-protection: Enable over current protection.
-- regulator-active-discharge: tristate, enable/disable active discharge of
- regulators. The values are:
- 0: Disable active discharge.
- 1: Enable active discharge.
- Absence of this property will leave configuration to default.
-- regulator-coupled-with: Regulators with which the regulator
- is coupled. The linkage is 2-way - all coupled regulators should be linked
- with each other. A regulator should not be coupled with its supplier.
-- regulator-coupled-max-spread: Array of maximum spread between voltages of
- coupled regulators in microvolts, each value in the array relates to the
- corresponding couple specified by the regulator-coupled-with property.
-- regulator-max-step-microvolt: Maximum difference between current and target
- voltages that can be changed safely in a single step.
-
-Deprecated properties:
-- regulator-compatible: If a regulator chip contains multiple
- regulators, and if the chip's binding contains a child node that
- describes each regulator, then this property indicates which regulator
- this child node is intended to configure. If this property is missing,
- the node's name will be used instead.
-
-Example:
-
- xyzreg: regulator@0 {
- regulator-min-microvolt = <1000000>;
- regulator-max-microvolt = <2500000>;
- regulator-always-on;
- vin-supply = <&vin>;
-
- regulator-state-mem {
- regulator-on-in-suspend;
- };
- };
-
-Regulator Consumers:
-Consumer nodes can reference one or more of its supplies/
-regulators using the below bindings.
-
-- <name>-supply: phandle to the regulator node
-
-These are the same bindings that a regulator in the above
-example used to reference its own supply, in which case
-its just seen as a special case of a regulator being a
-consumer itself.
-
-Example of a consumer device node (mmc) referencing two
-regulators (twl_reg1 and twl_reg2),
-
- twl_reg1: regulator@0 {
- ...
- ...
- ...
- };
-
- twl_reg2: regulator@1 {
- ...
- ...
- ...
- };
-
- mmc: mmc@0 {
- ...
- ...
- vmmc-supply = <&twl_reg1>;
- vmmcaux-supply = <&twl_reg2>;
- };
+This file has moved to regulator.yaml.
diff --git a/Documentation/devicetree/bindings/regulator/regulator.yaml b/Documentation/devicetree/bindings/regulator/regulator.yaml
new file mode 100644
index 000000000000..02c3043ce419
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/regulator.yaml
@@ -0,0 +1,200 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/regulator.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Voltage/Current Regulators
+
+maintainers:
+ - Liam Girdwood <lgirdwood@gmail.com>
+ - Mark Brown <broonie@kernel.org>
+
+properties:
+ regulator-name:
+ description: A string used as a descriptive name for regulator outputs
+ $ref: "/schemas/types.yaml#/definitions/string"
+
+ regulator-min-microvolt:
+ description: smallest voltage consumers may set
+
+ regulator-max-microvolt:
+ description: largest voltage consumers may set
+
+ regulator-microvolt-offset:
+ description: Offset applied to voltages to compensate for voltage drops
+
+ regulator-min-microamp:
+ description: smallest current consumers may set
+
+ regulator-max-microamp:
+ description: largest current consumers may set
+
+ regulator-input-current-limit-microamp:
+ description: maximum input current regulator allows
+
+ regulator-always-on:
+ description: boolean, regulator should never be disabled
+ type: boolean
+
+ regulator-boot-on:
+ description: bootloader/firmware enabled regulator
+ type: boolean
+
+ regulator-allow-bypass:
+ description: allow the regulator to go into bypass mode
+ type: boolean
+
+ regulator-allow-set-load:
+ description: allow the regulator performance level to be configured
+ type: boolean
+
+ regulator-ramp-delay:
+ description: ramp delay for regulator(in uV/us) For hardware which supports
+ disabling ramp rate, it should be explicitly initialised to zero (regulator-ramp-delay
+ = <0>) for disabling ramp delay.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-enable-ramp-delay:
+ description: The time taken, in microseconds, for the supply rail to
+ reach the target voltage, plus/minus whatever tolerance the board
+ design requires. This property describes the total system ramp time
+ required due to the combination of internal ramping of the regulator
+ itself, and board design issues such as trace capacitance and load
+ on the supply.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-settling-time-us:
+ description: Settling time, in microseconds, for voltage change if regulator
+ have the constant time for any level voltage change. This is useful
+ when regulator have exponential voltage change.
+
+ regulator-settling-time-up-us:
+ description: Settling time, in microseconds, for voltage increase if
+ the regulator needs a constant time to settle after voltage increases
+ of any level. This is useful for regulators with exponential voltage
+ changes.
+
+ regulator-settling-time-down-us:
+ description: Settling time, in microseconds, for voltage decrease if
+ the regulator needs a constant time to settle after voltage decreases
+ of any level. This is useful for regulators with exponential voltage
+ changes.
+
+ regulator-soft-start:
+ description: Enable soft start so that voltage ramps slowly
+ type: boolean
+
+ regulator-initial-mode:
+ description: initial operating mode. The set of possible operating modes
+ depends on the capabilities of every hardware so each device binding
+ documentation explains which values the regulator supports.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-allowed-modes:
+ description: list of operating modes that software is allowed to configure
+ for the regulator at run-time. Elements may be specified in any order.
+ The set of possible operating modes depends on the capabilities of
+ every hardware so each device binding document explains which values
+ the regulator supports.
+ $ref: "/schemas/types.yaml#/definitions/uint32-array"
+
+ regulator-system-load:
+ description: Load in uA present on regulator that is not captured by
+ any consumer request.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-pull-down:
+ description: Enable pull down resistor when the regulator is disabled.
+ type: boolean
+
+ regulator-over-current-protection:
+ description: Enable over current protection.
+ type: boolean
+
+ regulator-active-discharge:
+ description: |
+ tristate, enable/disable active discharge of regulators. The values are:
+ 0: Disable active discharge.
+ 1: Enable active discharge.
+ Absence of this property will leave configuration to default.
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum: [ 0, 1 ]
+
+ regulator-coupled-with:
+ description: Regulators with which the regulator is coupled. The linkage
+ is 2-way - all coupled regulators should be linked with each other.
+ A regulator should not be coupled with its supplier.
+ $ref: "/schemas/types.yaml#/definitions/phandle-array"
+
+ regulator-coupled-max-spread:
+ description: Array of maximum spread between voltages of coupled regulators
+ in microvolts, each value in the array relates to the corresponding
+ couple specified by the regulator-coupled-with property.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ regulator-max-step-microvolt:
+ description: Maximum difference between current and target voltages
+ that can be changed safely in a single step.
+
+patternProperties:
+ ".*-supply$":
+ description: Input supply phandle(s) for this node
+
+ regulator-state-(standby|mem|disk):
+ type: object
+ description:
+ sub-nodes for regulator state in Standby, Suspend-to-RAM, and
+ Suspend-to-DISK modes. Equivalent with standby, mem, and disk Linux
+ sleep states.
+
+ properties:
+ regulator-on-in-suspend:
+ description: regulator should be on in suspend state.
+ type: boolean
+
+ regulator-off-in-suspend:
+ description: regulator should be off in suspend state.
+ type: boolean
+
+ regulator-suspend-min-microvolt:
+ description: minimum voltage may be set in suspend state.
+
+ regulator-suspend-max-microvolt:
+ description: maximum voltage may be set in suspend state.
+
+ regulator-suspend-microvolt:
+ description: the default voltage which regulator would be set in
+ suspend. This property is now deprecated, instead setting voltage
+ for suspend mode via the API which regulator driver provides is
+ recommended.
+
+ regulator-changeable-in-suspend:
+ description: whether the default voltage and the regulator on/off
+ in suspend can be changed in runtime.
+ type: boolean
+
+ regulator-mode:
+ description: operating mode in the given suspend state. The set
+ of possible operating modes depends on the capabilities of every
+ hardware so the valid modes are documented on each regulator device
+ tree binding document.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ additionalProperties: false
+
+examples:
+ - |
+ xyzreg: regulator@0 {
+ regulator-min-microvolt = <1000000>;
+ regulator-max-microvolt = <2500000>;
+ regulator-always-on;
+ vin-supply = <&vin>;
+
+ regulator-state-mem {
+ regulator-on-in-suspend;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/regulator/slg51000.txt b/Documentation/devicetree/bindings/regulator/slg51000.txt
new file mode 100644
index 000000000000..aa0733e49b90
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/slg51000.txt
@@ -0,0 +1,88 @@
+* Dialog Semiconductor SLG51000 Voltage Regulator
+
+Required properties:
+- compatible : Should be "dlg,slg51000" for SLG51000
+- reg : Specifies the I2C slave address.
+- xxx-supply: Input voltage supply regulator for ldo3 to ldo7.
+ These entries are required if regulators are enabled for a device.
+ An absence of these properties can cause the regulator registration to fail.
+ If some of input supply is powered through battery or always-on supply then
+ also it is required to have these parameters with proper node handle of always
+ on power supply.
+ vin3-supply: Input supply for ldo3
+ vin4-supply: Input supply for ldo4
+ vin5-supply: Input supply for ldo5
+ vin6-supply: Input supply for ldo6
+ vin7-supply: Input supply for ldo7
+
+Optional properties:
+- interrupt-parent : Specifies the reference to the interrupt controller.
+- interrupts : IRQ line information.
+- dlg,cs-gpios : Specify a valid GPIO for chip select
+
+Sub-nodes:
+- regulators : This node defines the settings for the regulators.
+ The content of the sub-node is defined by the standard binding
+ for regulators; see regulator.txt.
+
+ The SLG51000 regulators are bound using their names listed below:
+ ldo1
+ ldo2
+ ldo3
+ ldo4
+ ldo5
+ ldo6
+ ldo7
+
+Optional properties for regulators:
+- enable-gpios : Specify a valid GPIO for platform control of the regulator.
+
+Example:
+ pmic: slg51000@75 {
+ compatible = "dlg,slg51000";
+ reg = <0x75>;
+
+ regulators {
+ ldo1 {
+ regulator-name = "ldo1";
+ regulator-min-microvolt = <2400000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ ldo2 {
+ regulator-name = "ldo2";
+ regulator-min-microvolt = <2400000>;
+ regulator-max-microvolt = <3300000>;
+ };
+
+ ldo3 {
+ regulator-name = "ldo3";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3750000>;
+ };
+
+ ldo4 {
+ regulator-name = "ldo4";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3750000>;
+ };
+
+ ldo5 {
+ regulator-name = "ldo5";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1200000>;
+ };
+
+ ldo6 {
+ regulator-name = "ldo6";
+ regulator-min-microvolt = <500000>;
+ regulator-max-microvolt = <1200000>;
+ };
+
+ ldo7 {
+ regulator-name = "ldo7";
+ regulator-min-microvolt = <1200000>;
+ regulator-max-microvolt = <3750000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/st,stm32-booster.txt b/Documentation/devicetree/bindings/regulator/st,stm32-booster.txt
new file mode 100644
index 000000000000..479ad4c8758e
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/st,stm32-booster.txt
@@ -0,0 +1,18 @@
+STM32 BOOSTER - Booster for ADC analog input switches
+
+Some STM32 devices embed a 3.3V booster supplied by Vdda, that can be used
+to supply ADC analog input switches.
+
+Required properties:
+- compatible: Should be one of:
+ "st,stm32h7-booster"
+ "st,stm32mp1-booster"
+- st,syscfg: Phandle to system configuration controller.
+- vdda-supply: Phandle to the vdda input analog voltage.
+
+Example:
+ booster: regulator-booster {
+ compatible = "st,stm32mp1-booster";
+ st,syscfg = <&syscfg>;
+ vdda-supply = <&vdda>;
+ };
diff --git a/Documentation/devicetree/bindings/regulator/sy8824x.txt b/Documentation/devicetree/bindings/regulator/sy8824x.txt
new file mode 100644
index 000000000000..c5e95850c427
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/sy8824x.txt
@@ -0,0 +1,24 @@
+SY8824C/SY8824E/SY20276 Voltage regulator
+
+Required properties:
+- compatible: Must be one of the following.
+ "silergy,sy8824c"
+ "silergy,sy8824e"
+ "silergy,sy20276"
+ "silergy,sy20278"
+- reg: I2C slave address
+
+Any property defined as part of the core regulator binding, defined in
+./regulator.txt, can also be used.
+
+Example:
+
+ vcore: regulator@00 {
+ compatible = "silergy,sy8824c";
+ reg = <0x66>;
+ regulator-name = "vcore";
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <1150000>;
+ regulator-boot-on;
+ regulator-always-on;
+ };
diff --git a/Documentation/devicetree/bindings/regulator/twl-regulator.txt b/Documentation/devicetree/bindings/regulator/twl-regulator.txt
index 74a91c4f8530..549f80436deb 100644
--- a/Documentation/devicetree/bindings/regulator/twl-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/twl-regulator.txt
@@ -71,3 +71,10 @@ Example:
regulator-min-microvolt = <1000000>;
regulator-max-microvolt = <3000000>;
};
+
+For twl6030 regulators/LDOs:
+
+ - ti,retain-on-reset: Does not turn off the supplies during warm
+ reset. Could be needed for VMMC, as TWL6030
+ reset sequence for this signal does not comply
+ with the SD specification.
diff --git a/Documentation/devicetree/bindings/regulator/uniphier-regulator.txt b/Documentation/devicetree/bindings/regulator/uniphier-regulator.txt
index c9919f4b92d2..94fd38b0d163 100644
--- a/Documentation/devicetree/bindings/regulator/uniphier-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/uniphier-regulator.txt
@@ -13,6 +13,7 @@ this layer. These clocks and resets should be described in each property.
Required properties:
- compatible: Should be
"socionext,uniphier-pro4-usb3-regulator" - for Pro4 SoC
+ "socionext,uniphier-pro5-usb3-regulator" - for Pro5 SoC
"socionext,uniphier-pxs2-usb3-regulator" - for PXs2 SoC
"socionext,uniphier-ld20-usb3-regulator" - for LD20 SoC
"socionext,uniphier-pxs3-usb3-regulator" - for PXs3 SoC
@@ -20,12 +21,12 @@ Required properties:
- clocks: A list of phandles to the clock gate for USB3 glue layer.
According to the clock-names, appropriate clocks are required.
- clock-names: Should contain
- "gio", "link" - for Pro4 SoC
+ "gio", "link" - for Pro4 and Pro5 SoCs
"link" - for others
- resets: A list of phandles to the reset control for USB3 glue layer.
According to the reset-names, appropriate resets are required.
- reset-names: Should contain
- "gio", "link" - for Pro4 SoC
+ "gio", "link" - for Pro4 and Pro5 SoCs
"link" - for others
See Documentation/devicetree/bindings/regulator/regulator.txt
diff --git a/Documentation/devicetree/bindings/remoteproc/qcom,adsp-pil.txt b/Documentation/devicetree/bindings/remoteproc/qcom,hexagon-v56.txt
index 66af2c30944f..1337a3d93d35 100644
--- a/Documentation/devicetree/bindings/remoteproc/qcom,adsp-pil.txt
+++ b/Documentation/devicetree/bindings/remoteproc/qcom,hexagon-v56.txt
@@ -1,12 +1,13 @@
-Qualcomm Technology Inc. ADSP Peripheral Image Loader
+Qualcomm Technology Inc. Hexagon v56 Peripheral Image Loader
This document defines the binding for a component that loads and boots firmware
-on the Qualcomm Technology Inc. ADSP Hexagon core.
+on the Qualcomm Technology Inc. Hexagon v56 core.
- compatible:
Usage: required
Value type: <string>
Definition: must be one of:
+ "qcom,qcs404-cdsp-pil",
"qcom,sdm845-adsp-pil"
- reg:
@@ -28,10 +29,11 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
- clocks:
Usage: required
Value type: <prop-encoded-array>
- Definition: List of 8 phandle and clock specifier pairs for the adsp.
+ Definition: List of phandles and clock specifier pairs for the Hexagon,
+ per clock-names below.
- clock-names:
- Usage: required
+ Usage: required for SDM845 ADSP
Value type: <stringlist>
Definition: List of clock input name strings sorted in the same
order as the clocks property. Definition must have
@@ -39,6 +41,14 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
"lpass_ahbm_aon_cbcr", "qdsp6ss_xo", "qdsp6ss_sleep"
and "qdsp6ss_core".
+- clock-names:
+ Usage: required for QCS404 CDSP
+ Value type: <stringlist>
+ Definition: List of clock input name strings sorted in the same
+ order as the clocks property. Definition must have
+ "xo", "sway", "tbu", "bimc", "ahb_aon", "q6ss_slave",
+ "q6ss_master", "q6_axim".
+
- power-domains:
Usage: required
Value type: <phandle>
@@ -47,28 +57,33 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
- resets:
Usage: required
Value type: <phandle>
- Definition: reference to the list of 2 reset-controller for the adsp.
+ Definition: reference to the list of resets for the Hexagon.
- reset-names:
- Usage: required
+ Usage: required for SDM845 ADSP
Value type: <stringlist>
Definition: must be "pdc_sync" and "cc_lpass"
+- reset-names:
+ Usage: required for QCS404 CDSP
+ Value type: <stringlist>
+ Definition: must be "restart"
+
- qcom,halt-regs:
Usage: required
Value type: <prop-encoded-array>
Definition: a phandle reference to a syscon representing TCSR followed
- by the offset within syscon for lpass halt register.
+ by the offset within syscon for Hexagon halt register.
- memory-region:
Usage: required
Value type: <phandle>
- Definition: reference to the reserved-memory for the ADSP
+ Definition: reference to the reserved-memory for the firmware
- qcom,smem-states:
Usage: required
Value type: <phandle>
- Definition: reference to the smem state for requesting the ADSP to
+ Definition: reference to the smem state for requesting the Hexagon to
shut down
- qcom,smem-state-names:
@@ -79,7 +94,7 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
= SUBNODES
The adsp node may have an subnode named "glink-edge" that describes the
-communication edge, channels and devices related to the ADSP.
+communication edge, channels and devices related to the Hexagon.
See ../soc/qcom/qcom,glink.txt for details on how to describe these.
= EXAMPLE
diff --git a/Documentation/devicetree/bindings/remoteproc/stm32-rproc.txt b/Documentation/devicetree/bindings/remoteproc/stm32-rproc.txt
new file mode 100644
index 000000000000..5fa915a4b736
--- /dev/null
+++ b/Documentation/devicetree/bindings/remoteproc/stm32-rproc.txt
@@ -0,0 +1,63 @@
+STMicroelectronics STM32 Remoteproc
+-----------------------------------
+This document defines the binding for the remoteproc component that loads and
+boots firmwares on the ST32MP family chipset.
+
+Required properties:
+- compatible: Must be "st,stm32mp1-m4"
+- reg: Address ranges of the RETRAM and MCU SRAM memories used by the
+ remote processor.
+- resets: Reference to a reset controller asserting the remote processor.
+- st,syscfg-holdboot: Reference to the system configuration which holds the
+ remote processor reset hold boot
+ 1st cell: phandle of syscon block
+ 2nd cell: register offset containing the hold boot setting
+ 3rd cell: register bitmask for the hold boot field
+- st,syscfg-tz: Reference to the system configuration which holds the RCC trust
+ zone mode
+ 1st cell: phandle to syscon block
+ 2nd cell: register offset containing the RCC trust zone mode setting
+ 3rd cell: register bitmask for the RCC trust zone mode bit
+
+Optional properties:
+- interrupts: Should contain the watchdog interrupt
+- mboxes: This property is required only if the rpmsg/virtio functionality
+ is used. List of phandle and mailbox channel specifiers:
+ - a channel (a) used to communicate through virtqueues with the
+ remote proc.
+ Bi-directional channel:
+ - from local to remote = send message
+ - from remote to local = send message ack
+ - a channel (b) working the opposite direction of channel (a)
+ - a channel (c) used by the local proc to notify the remote proc
+ that it is about to be shut down.
+ Unidirectional channel:
+ - from local to remote, where ACK from the remote means
+ that it is ready for shutdown
+- mbox-names: This property is required if the mboxes property is used.
+ - must be "vq0" for channel (a)
+ - must be "vq1" for channel (b)
+ - must be "shutdown" for channel (c)
+- memory-region: List of phandles to the reserved memory regions associated with
+ the remoteproc device. This is variable and describes the
+ memories shared with the remote processor (eg: remoteproc
+ firmware and carveouts, rpmsg vrings, ...).
+ (see ../reserved-memory/reserved-memory.txt)
+- st,syscfg-pdds: Reference to the system configuration which holds the remote
+ processor deep sleep setting
+ 1st cell: phandle to syscon block
+ 2nd cell: register offset containing the deep sleep setting
+ 3rd cell: register bitmask for the deep sleep bit
+- st,auto-boot: If defined, when remoteproc is probed, it loads the default
+ firmware and starts the remote processor.
+
+Example:
+ m4_rproc: m4@10000000 {
+ compatible = "st,stm32mp1-m4";
+ reg = <0x10000000 0x40000>,
+ <0x30000000 0x40000>,
+ <0x38000000 0x10000>;
+ resets = <&rcc MCU_R>;
+ st,syscfg-holdboot = <&rcc 0x10C 0x1>;
+ st,syscfg-tz = <&rcc 0x000 0x1>;
+ };
diff --git a/Documentation/devicetree/bindings/reset/amlogic,meson-reset.txt b/Documentation/devicetree/bindings/reset/amlogic,meson-reset.txt
deleted file mode 100644
index 28ef6c295c76..000000000000
--- a/Documentation/devicetree/bindings/reset/amlogic,meson-reset.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-Amlogic Meson SoC Reset Controller
-=======================================
-
-Please also refer to reset.txt in this directory for common reset
-controller binding usage.
-
-Required properties:
-- compatible: Should be "amlogic,meson8b-reset", "amlogic,meson-gxbb-reset" or
- "amlogic,meson-axg-reset".
-- reg: should contain the register address base
-- #reset-cells: 1, see below
-
-example:
-
-reset: reset-controller {
- compatible = "amlogic,meson-gxbb-reset";
- reg = <0x0 0x04404 0x0 0x20>;
- #reset-cells = <1>;
-};
diff --git a/Documentation/devicetree/bindings/reset/amlogic,meson-reset.yaml b/Documentation/devicetree/bindings/reset/amlogic,meson-reset.yaml
new file mode 100644
index 000000000000..00917d868d58
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/amlogic,meson-reset.yaml
@@ -0,0 +1,37 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/reset/amlogic,meson-reset.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson SoC Reset Controller
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson8b-reset # Reset Controller on Meson8b and compatible SoCs
+ - amlogic,meson-gxbb-reset # Reset Controller on GXBB and compatible SoCs
+ - amlogic,meson-axg-reset # Reset Controller on AXG and compatible SoCs
+
+ reg:
+ maxItems: 1
+
+ "#reset-cells":
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - "#reset-cells"
+
+examples:
+ - |
+ reset-controller@c884404 {
+ compatible = "amlogic,meson-gxbb-reset";
+ reg = <0xc884404 0x20>;
+ #reset-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/reset/bitmain,bm1880-reset.txt b/Documentation/devicetree/bindings/reset/bitmain,bm1880-reset.txt
new file mode 100644
index 000000000000..a6f8455ae6c4
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/bitmain,bm1880-reset.txt
@@ -0,0 +1,18 @@
+Bitmain BM1880 SoC Reset Controller
+===================================
+
+Please also refer to reset.txt in this directory for common reset
+controller binding usage.
+
+Required properties:
+- compatible: Should be "bitmain,bm1880-reset"
+- reg: Offset and length of reset controller space in SCTRL.
+- #reset-cells: Must be 1.
+
+Example:
+
+ rst: reset-controller@c00 {
+ compatible = "bitmain,bm1880-reset";
+ reg = <0xc00 0x8>;
+ #reset-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/reset/fsl,imx7-src.txt b/Documentation/devicetree/bindings/reset/fsl,imx7-src.txt
index 2ecf33815d18..c2489e41a801 100644
--- a/Documentation/devicetree/bindings/reset/fsl,imx7-src.txt
+++ b/Documentation/devicetree/bindings/reset/fsl,imx7-src.txt
@@ -8,6 +8,7 @@ Required properties:
- compatible:
- For i.MX7 SoCs should be "fsl,imx7d-src", "syscon"
- For i.MX8MQ SoCs should be "fsl,imx8mq-src", "syscon"
+ - For i.MX8MM SoCs should be "fsl,imx8mm-src", "fsl,imx8mq-src", "syscon"
- reg: should be register base and length as documented in the
datasheet
- interrupts: Should contain SRC interrupt
@@ -45,6 +46,7 @@ Example:
};
-For list of all valid reset indicies see
-<dt-bindings/reset/imx7-reset.h> for i.MX7 and
-<dt-bindings/reset/imx8mq-reset.h> for i.MX8MQ
+For list of all valid reset indices see
+<dt-bindings/reset/imx7-reset.h> for i.MX7,
+<dt-bindings/reset/imx8mq-reset.h> for i.MX8MQ and
+<dt-bindings/reset/imx8mq-reset.h> for i.MX8MM
diff --git a/Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt b/Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt
index c25da39df707..ea0a6a9734c1 100644
--- a/Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt
+++ b/Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt
@@ -11,6 +11,7 @@ Required properties:
- compatible: should be one of the following:
- "hisilicon,hi6220-sysctrl", "syscon" : For peripheral reset controller.
- "hisilicon,hi6220-mediactrl", "syscon" : For media reset controller.
+ - "hisilicon,hi6220-aoctrl", "syscon" : For ao reset controller.
- reg: should be register base and length as documented in the
datasheet
- #reset-cells: 1, see below
diff --git a/Documentation/devicetree/bindings/reset/snps,dw-reset.txt b/Documentation/devicetree/bindings/reset/snps,dw-reset.txt
new file mode 100644
index 000000000000..f94f911dd98d
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/snps,dw-reset.txt
@@ -0,0 +1,30 @@
+Synopsys DesignWare Reset controller
+=======================================
+
+Please also refer to reset.txt in this directory for common reset
+controller binding usage.
+
+Required properties:
+
+- compatible: should be one of the following.
+ "snps,dw-high-reset" - for active high configuration
+ "snps,dw-low-reset" - for active low configuration
+
+- reg: physical base address of the controller and length of memory mapped
+ region.
+
+- #reset-cells: must be 1.
+
+example:
+
+ dw_rst_1: reset-controller@0000 {
+ compatible = "snps,dw-high-reset";
+ reg = <0x0000 0x4>;
+ #reset-cells = <1>;
+ };
+
+ dw_rst_2: reset-controller@1000 {i
+ compatible = "snps,dw-low-reset";
+ reg = <0x1000 0x8>;
+ #reset-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/riscv/cpus.txt b/Documentation/devicetree/bindings/riscv/cpus.txt
deleted file mode 100644
index adf7b7af5dc3..000000000000
--- a/Documentation/devicetree/bindings/riscv/cpus.txt
+++ /dev/null
@@ -1,162 +0,0 @@
-===================
-RISC-V CPU Bindings
-===================
-
-The device tree allows to describe the layout of CPUs in a system through
-the "cpus" node, which in turn contains a number of subnodes (ie "cpu")
-defining properties for every cpu.
-
-Bindings for CPU nodes follow the Devicetree Specification, available from:
-
-https://www.devicetree.org/specifications/
-
-with updates for 32-bit and 64-bit RISC-V systems provided in this document.
-
-===========
-Terminology
-===========
-
-This document uses some terminology common to the RISC-V community that is not
-widely used, the definitions of which are listed here:
-
-* hart: A hardware execution context, which contains all the state mandated by
- the RISC-V ISA: a PC and some registers. This terminology is designed to
- disambiguate software's view of execution contexts from any particular
- microarchitectural implementation strategy. For example, my Intel laptop is
- described as having one socket with two cores, each of which has two hyper
- threads. Therefore this system has four harts.
-
-=====================================
-cpus and cpu node bindings definition
-=====================================
-
-The RISC-V architecture, in accordance with the Devicetree Specification,
-requires the cpus and cpu nodes to be present and contain the properties
-described below.
-
-- cpus node
-
- Description: Container of cpu nodes
-
- The node name must be "cpus".
-
- A cpus node must define the following properties:
-
- - #address-cells
- Usage: required
- Value type: <u32>
- Definition: must be set to 1
- - #size-cells
- Usage: required
- Value type: <u32>
- Definition: must be set to 0
-
-- cpu node
-
- Description: Describes a hart context
-
- PROPERTIES
-
- - device_type
- Usage: required
- Value type: <string>
- Definition: must be "cpu"
- - reg
- Usage: required
- Value type: <u32>
- Definition: The hart ID of this CPU node
- - compatible:
- Usage: required
- Value type: <stringlist>
- Definition: must contain "riscv", may contain one of
- "sifive,rocket0"
- - mmu-type:
- Usage: optional
- Value type: <string>
- Definition: Specifies the CPU's MMU type. Possible values are
- "riscv,sv32"
- "riscv,sv39"
- "riscv,sv48"
- - riscv,isa:
- Usage: required
- Value type: <string>
- Definition: Contains the RISC-V ISA string of this hart. These
- ISA strings are defined by the RISC-V ISA manual.
-
-Example: SiFive Freedom U540G Development Kit
----------------------------------------------
-
-This system contains two harts: a hart marked as disabled that's used for
-low-level system tasks and should be ignored by Linux, and a second hart that
-Linux is allowed to run on.
-
- cpus {
- #address-cells = <1>;
- #size-cells = <0>;
- timebase-frequency = <1000000>;
- cpu@0 {
- clock-frequency = <1600000000>;
- compatible = "sifive,rocket0", "riscv";
- device_type = "cpu";
- i-cache-block-size = <64>;
- i-cache-sets = <128>;
- i-cache-size = <16384>;
- next-level-cache = <&L15 &L0>;
- reg = <0>;
- riscv,isa = "rv64imac";
- status = "disabled";
- L10: interrupt-controller {
- #interrupt-cells = <1>;
- compatible = "riscv,cpu-intc";
- interrupt-controller;
- };
- };
- cpu@1 {
- clock-frequency = <1600000000>;
- compatible = "sifive,rocket0", "riscv";
- d-cache-block-size = <64>;
- d-cache-sets = <64>;
- d-cache-size = <32768>;
- d-tlb-sets = <1>;
- d-tlb-size = <32>;
- device_type = "cpu";
- i-cache-block-size = <64>;
- i-cache-sets = <64>;
- i-cache-size = <32768>;
- i-tlb-sets = <1>;
- i-tlb-size = <32>;
- mmu-type = "riscv,sv39";
- next-level-cache = <&L15 &L0>;
- reg = <1>;
- riscv,isa = "rv64imafdc";
- status = "okay";
- tlb-split;
- L13: interrupt-controller {
- #interrupt-cells = <1>;
- compatible = "riscv,cpu-intc";
- interrupt-controller;
- };
- };
- };
-
-Example: Spike ISA Simulator with 1 Hart
-----------------------------------------
-
-This device tree matches the Spike ISA golden model as run with `spike -p1`.
-
- cpus {
- cpu@0 {
- device_type = "cpu";
- reg = <0x00000000>;
- status = "okay";
- compatible = "riscv";
- riscv,isa = "rv64imafdc";
- mmu-type = "riscv,sv48";
- clock-frequency = <0x3b9aca00>;
- interrupt-controller {
- #interrupt-cells = <0x00000001>;
- interrupt-controller;
- compatible = "riscv,cpu-intc";
- }
- }
- }
diff --git a/Documentation/devicetree/bindings/riscv/cpus.yaml b/Documentation/devicetree/bindings/riscv/cpus.yaml
index f97a4ecd7b91..b261a3015f84 100644
--- a/Documentation/devicetree/bindings/riscv/cpus.yaml
+++ b/Documentation/devicetree/bindings/riscv/cpus.yaml
@@ -10,97 +10,92 @@ maintainers:
- Paul Walmsley <paul.walmsley@sifive.com>
- Palmer Dabbelt <palmer@sifive.com>
-allOf:
- - $ref: /schemas/cpus.yaml#
+description: |
+ This document uses some terminology common to the RISC-V community
+ that is not widely used, the definitions of which are listed here:
+
+ hart: A hardware execution context, which contains all the state
+ mandated by the RISC-V ISA: a PC and some registers. This
+ terminology is designed to disambiguate software's view of execution
+ contexts from any particular microarchitectural implementation
+ strategy. For example, an Intel laptop containing one socket with
+ two cores, each of which has two hyperthreads, could be described as
+ having four harts.
properties:
- $nodename:
- const: cpus
- description: Container of cpu nodes
-
- '#address-cells':
- const: 1
- description: |
- A single unsigned 32-bit integer uniquely identifies each RISC-V
- hart in a system. (See the "reg" node under the "cpu" node,
- below).
-
- '#size-cells':
- const: 0
-
-patternProperties:
- '^cpu@[0-9a-f]+$':
+ compatible:
+ items:
+ - enum:
+ - sifive,rocket0
+ - sifive,e5
+ - sifive,e51
+ - sifive,u54-mc
+ - sifive,u54
+ - sifive,u5
+ - const: riscv
+ description:
+ Identifies that the hart uses the RISC-V instruction set
+ and identifies the type of the hart.
+
+ mmu-type:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum:
+ - riscv,sv32
+ - riscv,sv39
+ - riscv,sv48
+ description:
+ Identifies the MMU address translation mode used on this
+ hart. These values originate from the RISC-V Privileged
+ Specification document, available from
+ https://riscv.org/specifications/
+
+ riscv,isa:
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/string"
+ - enum:
+ - rv64imac
+ - rv64imafdc
+ description:
+ Identifies the specific RISC-V instruction set architecture
+ supported by the hart. These are documented in the RISC-V
+ User-Level ISA document, available from
+ https://riscv.org/specifications/
+
+ While the isa strings in ISA specification are case
+ insensitive, letters in the riscv,isa string must be all
+ lowercase to simplify parsing.
+
+ timebase-frequency:
+ type: integer
+ minimum: 1
+ description:
+ Specifies the clock frequency of the system timer in Hz.
+ This value is common to all harts on a single system image.
+
+ interrupt-controller:
+ type: object
+ description: Describes the CPU's local interrupt controller
+
properties:
+ '#interrupt-cells':
+ const: 1
+
compatible:
- type: array
- items:
- - enum:
- - sifive,rocket0
- - sifive,e5
- - sifive,e51
- - sifive,u54-mc
- - sifive,u54
- - sifive,u5
- - const: riscv
- description:
- Identifies that the hart uses the RISC-V instruction set
- and identifies the type of the hart.
-
- mmu-type:
- allOf:
- - $ref: "/schemas/types.yaml#/definitions/string"
- - enum:
- - riscv,sv32
- - riscv,sv39
- - riscv,sv48
- description:
- Identifies the MMU address translation mode used on this
- hart. These values originate from the RISC-V Privileged
- Specification document, available from
- https://riscv.org/specifications/
-
- riscv,isa:
- allOf:
- - $ref: "/schemas/types.yaml#/definitions/string"
- - enum:
- - rv64imac
- - rv64imafdc
- description:
- Identifies the specific RISC-V instruction set architecture
- supported by the hart. These are documented in the RISC-V
- User-Level ISA document, available from
- https://riscv.org/specifications/
-
- timebase-frequency:
- type: integer
- minimum: 1
- description:
- Specifies the clock frequency of the system timer in Hz.
- This value is common to all harts on a single system image.
-
- interrupt-controller:
- type: object
- description: Describes the CPU's local interrupt controller
-
- properties:
- '#interrupt-cells':
- const: 1
-
- compatible:
- const: riscv,cpu-intc
-
- interrupt-controller: true
-
- required:
- - '#interrupt-cells'
- - compatible
- - interrupt-controller
+ const: riscv,cpu-intc
+
+ interrupt-controller: true
required:
- - riscv,isa
- - timebase-frequency
+ - '#interrupt-cells'
+ - compatible
- interrupt-controller
+required:
+ - riscv,isa
+ - timebase-frequency
+ - interrupt-controller
+
examples:
- |
// Example 1: SiFive Freedom U540G Development Kit
diff --git a/Documentation/devicetree/bindings/riscv/sifive.yaml b/Documentation/devicetree/bindings/riscv/sifive.yaml
index 9d17dc2f3f84..3ab532713dc1 100644
--- a/Documentation/devicetree/bindings/riscv/sifive.yaml
+++ b/Documentation/devicetree/bindings/riscv/sifive.yaml
@@ -19,7 +19,7 @@ properties:
compatible:
items:
- enum:
- - sifive,freedom-unleashed-a00
+ - sifive,hifive-unleashed-a00
- const: sifive,fu540-c000
- const: sifive,fu540
...
diff --git a/Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt b/Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt
deleted file mode 100644
index 4d403645ac9b..000000000000
--- a/Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-Amlogic Meson Random number generator
-=====================================
-
-Required properties:
-
-- compatible : should be "amlogic,meson-rng"
-- reg : Specifies base physical address and size of the registers.
-
-Optional properties:
-
-- clocks : phandle to the following named clocks
-- clock-names: Name of core clock, must be "core"
-
-Example:
-
-rng {
- compatible = "amlogic,meson-rng";
- reg = <0x0 0xc8834000 0x0 0x4>;
- clocks = <&clkc CLKID_RNG0>;
- clock-names = "core";
-};
diff --git a/Documentation/devicetree/bindings/rng/amlogic,meson-rng.yaml b/Documentation/devicetree/bindings/rng/amlogic,meson-rng.yaml
new file mode 100644
index 000000000000..a9ff3cb35c5e
--- /dev/null
+++ b/Documentation/devicetree/bindings/rng/amlogic,meson-rng.yaml
@@ -0,0 +1,37 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/rng/amlogic,meson-rng.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson Random number generator
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson-rng
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ items:
+ - const: core
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ rng@c8834000 {
+ compatible = "amlogic,meson-rng";
+ reg = <0xc8834000 0x4>;
+ };
diff --git a/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt b/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
index 0014da9145af..c223e54452da 100644
--- a/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
+++ b/Documentation/devicetree/bindings/rng/brcm,iproc-rng200.txt
@@ -2,6 +2,7 @@ HWRNG support for the iproc-rng200 driver
Required properties:
- compatible : Must be one of:
+ "brcm,bcm7211-rng200"
"brcm,bcm7278-rng200"
"brcm,iproc-rng200"
- reg : base address and size of control register block
diff --git a/Documentation/devicetree/bindings/rng/mtk-rng.txt b/Documentation/devicetree/bindings/rng/mtk-rng.txt
index 2bc89f133701..dfdcb5cd2ea8 100644
--- a/Documentation/devicetree/bindings/rng/mtk-rng.txt
+++ b/Documentation/devicetree/bindings/rng/mtk-rng.txt
@@ -6,6 +6,7 @@ Required properties:
"mediatek,mt7622-rng", "mediatek,mt7623-rng" : for MT7622
"mediatek,mt7629-rng", "mediatek,mt7623-rng" : for MT7629
"mediatek,mt7623-rng" : for MT7623
+ "mediatek,mt8516-rng", "mediatek,mt7623-rng" : for MT8516
- clocks : list of clock specifiers, corresponding to
entries in clock-names property;
- clock-names : Should contain "rng" entries;
diff --git a/Documentation/devicetree/bindings/rng/timeriomem_rng.txt b/Documentation/devicetree/bindings/rng/timeriomem_rng.txt
index 214940093b55..fb4846160047 100644
--- a/Documentation/devicetree/bindings/rng/timeriomem_rng.txt
+++ b/Documentation/devicetree/bindings/rng/timeriomem_rng.txt
@@ -12,7 +12,7 @@ Optional properties:
which disables using this rng to automatically fill the kernel's
entropy pool.
-N.B. currently 'reg' must be four bytes wide and aligned
+N.B. currently 'reg' must be at least four bytes wide and 32-bit aligned
Example:
diff --git a/Documentation/devicetree/bindings/rtc/allwinner,sun4i-a10-rtc.yaml b/Documentation/devicetree/bindings/rtc/allwinner,sun4i-a10-rtc.yaml
new file mode 100644
index 000000000000..46d69c32b89b
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/allwinner,sun4i-a10-rtc.yaml
@@ -0,0 +1,43 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/rtc/allwinner,sun4i-a10-rtc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 RTC Device Tree Bindings
+
+allOf:
+ - $ref: "rtc.yaml#"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-rtc
+ - allwinner,sun7i-a20-rtc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+additionalProperties: false
+
+examples:
+ - |
+ rtc: rtc@1c20d00 {
+ compatible = "allwinner,sun4i-a10-rtc";
+ reg = <0x01c20d00 0x20>;
+ interrupts = <24>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml b/Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml
new file mode 100644
index 000000000000..d7a57ec4a640
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml
@@ -0,0 +1,147 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/rtc/allwinner,sun6i-a31-rtc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 RTC Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#clock-cells":
+ const: 1
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun6i-a31-rtc
+ - const: allwinner,sun8i-a23-rtc
+ - const: allwinner,sun8i-h3-rtc
+ - const: allwinner,sun8i-r40-rtc
+ - const: allwinner,sun8i-v3-rtc
+ - const: allwinner,sun50i-h5-rtc
+ - items:
+ - const: allwinner,sun50i-a64-rtc
+ - const: allwinner,sun8i-h3-rtc
+ - const: allwinner,sun50i-h6-rtc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ minItems: 1
+ maxItems: 2
+ items:
+ - description: RTC Alarm 0
+ - description: RTC Alarm 1
+
+ clocks:
+ maxItems: 1
+
+ clock-output-names:
+ minItems: 1
+ maxItems: 3
+ description:
+ The RTC provides up to three clocks
+ - the Low Frequency Oscillator or LOSC, at index 0,
+ - the Low Frequency Oscillator External output (X32KFOUT in
+ the datasheet), at index 1,
+ - the Internal Oscillator, at index 2.
+
+allOf:
+ - $ref: "rtc.yaml#"
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun6i-a31-rtc
+
+ then:
+ properties:
+ clock-output-names:
+ minItems: 1
+ maxItems: 1
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-a23-rtc
+ - allwinner,sun8i-r40-rtc
+ - allwinner,sun8i-v3-rtc
+
+ then:
+ properties:
+ clock-output-names:
+ minItems: 2
+ maxItems: 2
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-h3-rtc
+ - allwinner,sun50i-h5-rtc
+
+ then:
+ properties:
+ clock-output-names:
+ minItems: 3
+ maxItems: 3
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun50i-h6-rtc
+
+ then:
+ properties:
+ clock-output-names:
+ minItems: 3
+ maxItems: 3
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun8i-r40-rtc
+
+ then:
+ properties:
+ interrupts:
+ minItems: 1
+ maxItems: 1
+
+ else:
+ properties:
+ interrupts:
+ minItems: 2
+ maxItems: 2
+
+required:
+ - "#clock-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-output-names
+
+additionalProperties: false
+
+examples:
+ - |
+ rtc: rtc@1f00000 {
+ compatible = "allwinner,sun6i-a31-rtc";
+ reg = <0x01f00000 0x400>;
+ interrupts = <0 40 4>, <0 41 4>;
+ clock-output-names = "osc32k";
+ clocks = <&ext_osc32k>;
+ #clock-cells = <1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt b/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt
index 1994f601800a..7371f525a687 100644
--- a/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt
+++ b/Documentation/devicetree/bindings/rtc/nxp,rtc-2123.txt
@@ -1,7 +1,7 @@
NXP PCF2123 SPI Real Time Clock
Required properties:
-- compatible: should be: "nxp,rtc-pcf2123"
+- compatible: should be: "nxp,pcf2123"
or "microcrystal,rv2123"
- reg: should be the SPI slave chipselect address
@@ -11,7 +11,7 @@ Optional properties:
Example:
pcf2123: rtc@3 {
- compatible = "nxp,rtc-pcf2123"
+ compatible = "nxp,pcf2123"
reg = <3>
spi-cs-high;
};
diff --git a/Documentation/devicetree/bindings/rtc/pcf8563.txt b/Documentation/devicetree/bindings/rtc/pcf8563.txt
index 36984acbb383..6076fe76dbfa 100644
--- a/Documentation/devicetree/bindings/rtc/pcf8563.txt
+++ b/Documentation/devicetree/bindings/rtc/pcf8563.txt
@@ -3,7 +3,9 @@
Philips PCF8563/Epson RTC8564 Real Time Clock
Required properties:
-- compatible: Should contain "nxp,pcf8563".
+- compatible: Should contain "nxp,pcf8563",
+ "epson,rtc8564" or
+ "microcrystal,rv8564"
- reg: I2C address for chip.
Optional property:
diff --git a/Documentation/devicetree/bindings/rtc/rtc-ds1307.txt b/Documentation/devicetree/bindings/rtc/rtc-ds1307.txt
index eaee19b60960..66f0a31ae9ce 100644
--- a/Documentation/devicetree/bindings/rtc/rtc-ds1307.txt
+++ b/Documentation/devicetree/bindings/rtc/rtc-ds1307.txt
@@ -19,6 +19,7 @@ Required properties:
"pericom,pt7c4338",
"epson,rx8025",
"isil,isl12057"
+ "epson,rx8130"
- reg: I2C bus address of the device
Optional properties:
diff --git a/Documentation/devicetree/bindings/rtc/rtc-fsl-ftm-alarm.txt b/Documentation/devicetree/bindings/rtc/rtc-fsl-ftm-alarm.txt
new file mode 100644
index 000000000000..fffac74999da
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/rtc-fsl-ftm-alarm.txt
@@ -0,0 +1,36 @@
+Freescale FlexTimer Module (FTM) Alarm
+
+Required properties:
+- compatible : Should be "fsl,<chip>-ftm-alarm", the
+ supported chips include
+ "fsl,ls1012a-ftm-alarm"
+ "fsl,ls1021a-ftm-alarm"
+ "fsl,ls1028a-ftm-alarm"
+ "fsl,ls1043a-ftm-alarm"
+ "fsl,ls1046a-ftm-alarm"
+ "fsl,ls1088a-ftm-alarm"
+ "fsl,ls208xa-ftm-alarm"
+ "fsl,lx2160a-ftm-alarm"
+- reg : Specifies base physical address and size of the register sets for the
+ FlexTimer Module.
+- interrupts : Should be the FlexTimer Module interrupt.
+- fsl,rcpm-wakeup property and rcpm node : Please refer
+ Documentation/devicetree/bindings/soc/fsl/rcpm.txt
+
+Optional properties:
+- big-endian: If the host controller is big-endian mode, specify this property.
+ The default endian mode is little-endian.
+
+Example:
+rcpm: rcpm@1e34040 {
+ compatible = "fsl,ls1088a-rcpm", "fsl,qoriq-rcpm-2.1+";
+ reg = <0x0 0x1e34040 0x0 0x18>;
+ #fsl,rcpm-wakeup-cells = <6>;
+};
+
+ftm_alarm0: timer@2800000 {
+ compatible = "fsl,ls1088a-ftm-alarm";
+ reg = <0x0 0x2800000 0x0 0x10000>;
+ fsl,rcpm-wakeup = <&rcpm 0x0 0x0 0x0 0x0 0x4000 0x0>;
+ interrupts = <0 44 4>;
+};
diff --git a/Documentation/devicetree/bindings/rtc/rtc-meson-vrtc.txt b/Documentation/devicetree/bindings/rtc/rtc-meson-vrtc.txt
new file mode 100644
index 000000000000..c014f54a9853
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/rtc-meson-vrtc.txt
@@ -0,0 +1,22 @@
+* Amlogic Virtual RTC (VRTC)
+
+This is a Linux interface to an RTC managed by firmware, hence it's
+virtual from a Linux perspective. The interface is 1 register where
+an alarm time (in seconds) is to be written.
+
+Required properties:
+- compatible: should be "amlogic,meson-vrtc"
+- reg: physical address for the alarm register
+
+The alarm register is a simple scratch register shared between the
+application processors (AP) and the secure co-processor (SCP.) When
+the AP suspends, the SCP will use the value of this register to
+program an always-on timer before going sleep. When the timer expires,
+the SCP will wake up and will then wake the AP.
+
+Example:
+
+ vrtc: rtc@0a8 {
+ compatible = "amlogic,meson-vrtc";
+ reg = <0x0 0x000a8 0x0 0x4>;
+ };
diff --git a/Documentation/devicetree/bindings/rtc/rtc.txt b/Documentation/devicetree/bindings/rtc/rtc.txt
index a97fc6a9a75e..b8d36fce5e2d 100644
--- a/Documentation/devicetree/bindings/rtc/rtc.txt
+++ b/Documentation/devicetree/bindings/rtc/rtc.txt
@@ -1,72 +1 @@
-Generic device tree bindings for Real Time Clock devices
-========================================================
-
-This document describes generic bindings which can be used to describe Real Time
-Clock devices in a device tree.
-
-Required properties
--------------------
-
-- compatible : name of RTC device following generic names recommended practice.
-
-For other required properties e.g. to describe register sets,
-clocks, etc. check the binding documentation of the specific driver.
-
-Optional properties
--------------------
-
-- start-year : if provided, the default hardware range supported by the RTC is
- shifted so the first usable year is the specified one.
-
-The following properties may not be supported by all drivers. However, if a
-driver wants to support one of the below features, it should adapt the bindings
-below.
-- trickle-resistor-ohms : Selected resistor for trickle charger. Should be given
- if trickle charger should be enabled
-- trickle-diode-disable : Do not use internal trickle charger diode Should be
- given if internal trickle charger diode should be
- disabled
-- wakeup-source : Enables wake up of host system on alarm
-- quartz-load-femtofarads : The capacitive load of the quartz(x-tal),
- expressed in femto Farad (fF).
- The default value shall be listed (if optional),
- and likewise all valid values.
-
-Trivial RTCs
-------------
-
-This is a list of trivial RTC devices that have simple device tree
-bindings, consisting only of a compatible field, an address and
-possibly an interrupt line.
-
-
-Compatible Vendor / Chip
-========== =============
-abracon,abb5zes3 AB-RTCMC-32.768kHz-B5ZE-S3: Real Time Clock/Calendar Module with I2C Interface
-abracon,abeoz9 AB-RTCMC-32.768kHz-EOZ9: Real Time Clock/Calendar Module with I2C Interface
-dallas,ds1374 I2C, 32-Bit Binary Counter Watchdog RTC with Trickle Charger and Reset Input/Output
-dallas,ds1672 Dallas DS1672 Real-time Clock
-dallas,ds3232 Extremely Accurate I²C RTC with Integrated Crystal and SRAM
-epson,rx8010 I2C-BUS INTERFACE REAL TIME CLOCK MODULE
-epson,rx8571 I2C-BUS INTERFACE REAL TIME CLOCK MODULE with Battery Backed RAM
-epson,rx8581 I2C-BUS INTERFACE REAL TIME CLOCK MODULE
-emmicro,em3027 EM Microelectronic EM3027 Real-time Clock
-isil,isl1208 Intersil ISL1208 Low Power RTC with Battery Backed SRAM
-isil,isl1218 Intersil ISL1218 Low Power RTC with Battery Backed SRAM
-isil,isl12022 Intersil ISL12022 Real-time Clock
-microcrystal,rv3028 Real Time Clock Module with I2C-Bus
-microcrystal,rv3029 Real Time Clock Module with I2C-Bus
-microcrystal,rv8523 Real Time Clock
-nxp,pcf2127 Real-time clock
-nxp,pcf2129 Real-time clock
-nxp,pcf8563 Real-time clock/calendar
-pericom,pt7c4338 Real-time Clock Module
-ricoh,r2025sd I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
-ricoh,r2221tl I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
-ricoh,rs5c372a I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
-ricoh,rs5c372b I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
-ricoh,rv5c386 I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
-ricoh,rv5c387a I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
-sii,s35390a 2-wire CMOS real-time clock
-whwave,sd3078 I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
-xircom,x1205 Xircom X1205 I2C RTC
+This file has been moved to rtc.yaml.
diff --git a/Documentation/devicetree/bindings/rtc/rtc.yaml b/Documentation/devicetree/bindings/rtc/rtc.yaml
new file mode 100644
index 000000000000..ee237b2ed66a
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/rtc.yaml
@@ -0,0 +1,50 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/rtc/rtc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: RTC Generic Binding
+
+maintainers:
+ - Alexandre Belloni <alexandre.belloni@bootlin.com>
+
+description: |
+ This document describes generic bindings which can be used to
+ describe Real Time Clock devices in a device tree.
+
+properties:
+ $nodename:
+ pattern: "^rtc(@.*|-[0-9a-f])*$"
+
+ quartz-load-femtofarads:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ The capacitive load of the quartz(x-tal), expressed in femto
+ Farad (fF). The default value shall be listed (if optional),
+ and likewise all valid values.
+
+ start-year:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ If provided, the default hardware range supported by the RTC is
+ shifted so the first usable year is the specified one.
+
+ trickle-diode-disable:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Do not use internal trickle charger diode. Should be given if
+ internal trickle charger diode should be disabled.
+
+ trickle-resistor-ohms:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ Selected resistor for trickle charger. Should be given
+ if trickle charger should be enabled.
+
+ wakeup-source:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ Enables wake up of host system on alarm.
+
+...
diff --git a/Documentation/devicetree/bindings/rtc/sun6i-rtc.txt b/Documentation/devicetree/bindings/rtc/sun6i-rtc.txt
deleted file mode 100644
index 6b732c41392b..000000000000
--- a/Documentation/devicetree/bindings/rtc/sun6i-rtc.txt
+++ /dev/null
@@ -1,46 +0,0 @@
-* sun6i Real Time Clock
-
-RTC controller for the Allwinner A31
-
-Required properties:
-- compatible : Should be one of the following combinations:
- - "allwinner,sun6i-a31-rtc"
- - "allwinner,sun8i-a23-rtc"
- - "allwinner,sun8i-h3-rtc"
- - "allwinner,sun8i-r40-rtc", "allwinner,sun8i-h3-rtc"
- - "allwinner,sun8i-v3-rtc"
- - "allwinner,sun50i-a64-rtc", "allwinner,sun8i-h3-rtc"
- - "allwinner,sun50i-h5-rtc"
-
- Where there are two or more compatible strings, this
- denotes the hardware covered by the most specific one
- is backward-compatible with the latter ones, and the
- implementation for the latter ones can be used, albeit
- with reduced functionality.
-
-- reg : physical base address of the controller and length of
- memory mapped region.
-- interrupts : IRQ lines for the RTC alarm 0 and alarm 1, in that order.
-
-Required properties for new device trees
-- clocks : phandle to the 32kHz external oscillator
-- clock-output-names : names of up to three clock outputs. See below.
-- #clock-cells : must be equal to 1.
-
-The RTC provides the following clocks at the given indices:
-- 0: LOSC
-- 1: LOSC external output, known as X32KFOUT in the datasheet.
- This clock is not available on the A31 and is deprecated for old
- device trees still using the "allwinner,sun6i-a31-rtc" compatible.
-- 2: InternalOSC, or internal RC oscillator (A64/H3/H5 only)
-
-Example:
-
-rtc: rtc@1f00000 {
- compatible = "allwinner,sun6i-a31-rtc";
- reg = <0x01f00000 0x400>;
- interrupts = <0 40 4>, <0 41 4>;
- clock-output-names = "osc32k";
- clocks = <&ext_osc32k>;
- #clock-cells = <1>;
-};
diff --git a/Documentation/devicetree/bindings/rtc/sunxi-rtc.txt b/Documentation/devicetree/bindings/rtc/sunxi-rtc.txt
deleted file mode 100644
index 4a8d79c1cf08..000000000000
--- a/Documentation/devicetree/bindings/rtc/sunxi-rtc.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-* sun4i/sun7i Real Time Clock
-
-RTC controller for the Allwinner A10/A20
-
-Required properties:
-- compatible : Should be "allwinner,sun4i-a10-rtc" or "allwinner,sun7i-a20-rtc"
-- reg: physical base address of the controller and length of memory mapped
- region.
-- interrupts: IRQ line for the RTC.
-
-Example:
-
-rtc: rtc@1c20d00 {
- compatible = "allwinner,sun4i-a10-rtc";
- reg = <0x01c20d00 0x20>;
- interrupts = <24>;
-};
diff --git a/Documentation/devicetree/bindings/rtc/trivial-rtc.yaml b/Documentation/devicetree/bindings/rtc/trivial-rtc.yaml
new file mode 100644
index 000000000000..18cb456752f6
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/trivial-rtc.yaml
@@ -0,0 +1,90 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/rtc/trivial-rtc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Trivial RTCs
+
+maintainers:
+ - Alexandre Belloni <alexandre.belloni@bootlin.com>
+
+description: |
+ This is a list of trivial RTC devices that have simple device tree
+ bindings, consisting only of a compatible field, an address and
+ possibly an interrupt line.
+
+allOf:
+ - $ref: "rtc.yaml#"
+
+properties:
+ compatible:
+ enum:
+ # AB-RTCMC-32.768kHz-B5ZE-S3: Real Time Clock/Calendar Module with I2C Interface
+ - abracon,abb5zes3
+ # AB-RTCMC-32.768kHz-EOZ9: Real Time Clock/Calendar Module with I2C Interface
+ - abracon,abeoz9
+ # I2C, 32-Bit Binary Counter Watchdog RTC with Trickle Charger and Reset Input/Output
+ - dallas,ds1374
+ # Dallas DS1672 Real-time Clock
+ - dallas,ds1672
+ # Extremely Accurate I²C RTC with Integrated Crystal and SRAM
+ - dallas,ds3232
+ # I2C-BUS INTERFACE REAL TIME CLOCK MODULE
+ - epson,rx8010
+ # I2C-BUS INTERFACE REAL TIME CLOCK MODULE with Battery Backed RAM
+ - epson,rx8571
+ # I2C-BUS INTERFACE REAL TIME CLOCK MODULE
+ - epson,rx8581
+ # Intersil ISL1208 Low Power RTC with Battery Backed SRAM
+ - isil,isl1208
+ # Intersil ISL1218 Low Power RTC with Battery Backed SRAM
+ - isil,isl1218
+ # Intersil ISL12022 Real-time Clock
+ - isil,isl12022
+ # Real Time Clock Module with I2C-Bus
+ - microcrystal,rv3028
+ # Real Time Clock Module with I2C-Bus
+ - microcrystal,rv3029
+ # Real Time Clock
+ - microcrystal,rv8523
+ # Real-time clock
+ - nxp,pcf2127
+ # Real-time clock
+ - nxp,pcf2129
+ # Real-time Clock Module
+ - pericom,pt7c4338
+ # I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+ - ricoh,r2025sd
+ # I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+ - ricoh,r2221tl
+ # I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+ - ricoh,rs5c372a
+ # I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+ - ricoh,rs5c372b
+ # I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+ - ricoh,rv5c386
+ # I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+ - ricoh,rv5c387a
+ # 2-wire CMOS real-time clock
+ - sii,s35390a
+ # I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+ - whwave,sd3078
+ # Xircom X1205 I2C RTC
+ - xircom,x1205
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ start-year: true
+
+required:
+ - compatible
+ - reg
+
+additionalProperties: false
+
+...
diff --git a/Documentation/devicetree/bindings/serial/8250.txt b/Documentation/devicetree/bindings/serial/8250.txt
index 3cba12f855b7..20d351f268ef 100644
--- a/Documentation/devicetree/bindings/serial/8250.txt
+++ b/Documentation/devicetree/bindings/serial/8250.txt
@@ -53,6 +53,9 @@ Optional properties:
programmable TX FIFO thresholds.
- resets : phandle + reset specifier pairs
- overrun-throttle-ms : how long to pause uart rx when input overrun is encountered.
+- {rts,cts,dtr,dsr,rng,dcd}-gpios: specify a GPIO for RTS/CTS/DTR/DSR/RI/DCD
+ line respectively. It will use specified GPIO instead of the peripheral
+ function pin for the UART feature. If unsure, don't specify this property.
Note:
* fsl,ns16550:
@@ -74,3 +77,19 @@ Example:
interrupts = <10>;
reg-shift = <2>;
};
+
+Example for OMAP UART using GPIO-based modem control signals:
+
+ uart4: serial@49042000 {
+ compatible = "ti,omap3-uart";
+ reg = <0x49042000 0x400>;
+ interrupts = <80>;
+ ti,hwmods = "uart4";
+ clock-frequency = <48000000>;
+ cts-gpios = <&gpio3 5 GPIO_ACTIVE_LOW>;
+ rts-gpios = <&gpio3 6 GPIO_ACTIVE_LOW>;
+ dtr-gpios = <&gpio1 12 GPIO_ACTIVE_LOW>;
+ dsr-gpios = <&gpio1 13 GPIO_ACTIVE_LOW>;
+ dcd-gpios = <&gpio1 14 GPIO_ACTIVE_LOW>;
+ rng-gpios = <&gpio1 15 GPIO_ACTIVE_LOW>;
+ };
diff --git a/Documentation/devicetree/bindings/serial/amlogic,meson-uart.txt b/Documentation/devicetree/bindings/serial/amlogic,meson-uart.txt
deleted file mode 100644
index c06c045126fc..000000000000
--- a/Documentation/devicetree/bindings/serial/amlogic,meson-uart.txt
+++ /dev/null
@@ -1,38 +0,0 @@
-Amlogic Meson SoC UART Serial Interface
-=======================================
-
-The Amlogic Meson SoC UART Serial Interface is present on a large range
-of SoCs, and can be present either in the "Always-On" power domain or the
-"Everything-Else" power domain.
-
-The particularity of the "Always-On" Serial Interface is that the hardware
-is active since power-on and does not need any clock gating and is usable
-as very early serial console.
-
-Required properties:
-- compatible : compatible: value should be different for each SoC family as :
- - Meson6 : "amlogic,meson6-uart"
- - Meson8 : "amlogic,meson8-uart"
- - Meson8b : "amlogic,meson8b-uart"
- - GX (GXBB, GXL, GXM) : "amlogic,meson-gx-uart"
- eventually followed by : "amlogic,meson-ao-uart" if this UART interface
- is in the "Always-On" power domain.
-- reg : offset and length of the register set for the device.
-- interrupts : identifier to the device interrupt
-- clocks : a list of phandle + clock-specifier pairs, one for each
- entry in clock names.
-- clock-names :
- * "xtal" for external xtal clock identifier
- * "pclk" for the bus core clock, either the clk81 clock or the gate clock
- * "baud" for the source of the baudrate generator, can be either the xtal
- or the pclk.
-
-e.g.
-uart_A: serial@84c0 {
- compatible = "amlogic,meson-gx-uart";
- reg = <0x0 0x84c0 0x0 0x14>;
- interrupts = <GIC_SPI 26 IRQ_TYPE_EDGE_RISING>;
- /* Use xtal as baud rate clock source */
- clocks = <&xtal>, <&clkc CLKID_UART0>, <&xtal>;
- clock-names = "xtal", "pclk", "baud";
-};
diff --git a/Documentation/devicetree/bindings/serial/amlogic,meson-uart.yaml b/Documentation/devicetree/bindings/serial/amlogic,meson-uart.yaml
new file mode 100644
index 000000000000..214fe8beddc3
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/amlogic,meson-uart.yaml
@@ -0,0 +1,73 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/serial/amlogic,meson-uart.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson SoC UART Serial Interface
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+description: |
+ The Amlogic Meson SoC UART Serial Interface is present on a large range
+ of SoCs, and can be present either in the "Always-On" power domain or the
+ "Everything-Else" power domain.
+
+ The particularity of the "Always-On" Serial Interface is that the hardware
+ is active since power-on and does not need any clock gating and is usable
+ as very early serial console.
+
+properties:
+ compatible:
+ oneOf:
+ - description: Always-on power domain UART controller
+ items:
+ - enum:
+ - amlogic,meson6-uart
+ - amlogic,meson8-uart
+ - amlogic,meson8b-uart
+ - amlogic,meson-gx-uart
+ - const: amlogic,meson-ao-uart
+ - description: Everything-Else power domain UART controller
+ enum:
+ - amlogic,meson6-uart
+ - amlogic,meson8-uart
+ - amlogic,meson8b-uart
+ - amlogic,meson-gx-uart
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: external xtal clock identifier
+ - description: the bus core clock, either the clk81 clock or the gate clock
+ - description: the source of the baudrate generator, can be either the xtal or the pclk
+
+ clock-names:
+ items:
+ - const: xtal
+ - const: pclk
+ - const: baud
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ serial@84c0 {
+ compatible = "amlogic,meson-gx-uart";
+ reg = <0x84c0 0x14>;
+ interrupts = <26>;
+ clocks = <&xtal>, <&pclk>, <&xtal>;
+ clock-names = "xtal", "pclk", "baud";
+ };
diff --git a/Documentation/devicetree/bindings/serial/fsl,s32-linflexuart.txt b/Documentation/devicetree/bindings/serial/fsl,s32-linflexuart.txt
new file mode 100644
index 000000000000..f1bbe0826be5
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/fsl,s32-linflexuart.txt
@@ -0,0 +1,22 @@
+* Freescale LINFlexD UART
+
+The LINFlexD controller implements several LIN protocol versions, as well as
+support for full-duplex UART communication through 8-bit and 9-bit frames.
+
+See chapter 47 ("LINFlexD") in the reference manual[1].
+
+Required properties:
+- compatible :
+ - "fsl,s32v234-linflexuart" for LINFlexD configured in UART mode, which
+ is compatible with the one integrated on S32V234 SoC
+- reg : Address and length of the register set for the device
+- interrupts : Should contain uart interrupt
+
+Example:
+uart0: serial@40053000 {
+ compatible = "fsl,s32v234-linflexuart";
+ reg = <0x0 0x40053000 0x0 0x1000>;
+ interrupts = <0 59 4>;
+};
+
+[1] https://www.nxp.com/webapp/Download?colCode=S32V234RM
diff --git a/Documentation/devicetree/bindings/serial/fsl-lpuart.txt b/Documentation/devicetree/bindings/serial/fsl-lpuart.txt
index 21483ba820bc..3495eee81d53 100644
--- a/Documentation/devicetree/bindings/serial/fsl-lpuart.txt
+++ b/Documentation/devicetree/bindings/serial/fsl-lpuart.txt
@@ -13,7 +13,10 @@ Required properties:
- reg : Address and length of the register set for the device
- interrupts : Should contain uart interrupt
- clocks : phandle + clock specifier pairs, one for each entry in clock-names
-- clock-names : should contain: "ipg" - the uart clock
+- clock-names : For vf610/ls1021a/imx7ulp, "ipg" clock is for uart bus/baud
+ clock. For imx8qxp lpuart, "ipg" clock is bus clock that is used to access
+ lpuart controller registers, it also requires "baud" clock for module to
+ receive/transmit data.
Optional properties:
- dmas: A list of two dma specifiers, one for each entry in dma-names.
diff --git a/Documentation/devicetree/bindings/serial/mtk-uart.txt b/Documentation/devicetree/bindings/serial/mtk-uart.txt
index c6b5262eb352..3a3b57079f0d 100644
--- a/Documentation/devicetree/bindings/serial/mtk-uart.txt
+++ b/Documentation/devicetree/bindings/serial/mtk-uart.txt
@@ -9,6 +9,7 @@ Required properties:
* "mediatek,mt6589-uart" for MT6589 compatible UARTS
* "mediatek,mt6755-uart" for MT6755 compatible UARTS
* "mediatek,mt6765-uart" for MT6765 compatible UARTS
+ * "mediatek,mt6779-uart" for MT6779 compatible UARTS
* "mediatek,mt6795-uart" for MT6795 compatible UARTS
* "mediatek,mt6797-uart" for MT6797 compatible UARTS
* "mediatek,mt7622-uart" for MT7622 compatible UARTS
@@ -23,7 +24,12 @@ Required properties:
- reg: The base address of the UART register bank.
-- interrupts: A single interrupt specifier.
+- interrupts:
+ index 0: an interrupt specifier for the UART controller itself
+ index 1: optional, an interrupt specifier with edge sensitivity on Rx pin to
+ support Rx in-band wake up. If one would like to use this feature,
+ one must create an addtional pinctrl to reconfigure Rx pin to normal
+ GPIO before suspend.
- clocks : Must contain an entry for each entry in clock-names.
See ../clocks/clock-bindings.txt for details.
@@ -39,7 +45,11 @@ Example:
uart0: serial@11006000 {
compatible = "mediatek,mt6589-uart", "mediatek,mt6577-uart";
reg = <0x11006000 0x400>;
- interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_LOW>;
+ interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_LOW>,
+ <GIC_SPI 52 IRQ_TYPE_EDGE_FALLING>;
clocks = <&uart_clk>, <&bus_clk>;
clock-names = "baud", "bus";
+ pinctrl-names = "default", "sleep";
+ pinctrl-0 = <&uart_pin>;
+ pinctrl-1 = <&uart_pin_sleep>;
};
diff --git a/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt b/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt
index d7edf732eb7f..f709304036c2 100644
--- a/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt
+++ b/Documentation/devicetree/bindings/serial/nvidia,tegra20-hsuart.txt
@@ -1,7 +1,12 @@
NVIDIA Tegra20/Tegra30 high speed (DMA based) UART controller driver.
Required properties:
-- compatible : should be "nvidia,tegra30-hsuart", "nvidia,tegra20-hsuart".
+- compatible : should be,
+ "nvidia,tegra20-hsuart" for Tegra20,
+ "nvidia,tegra30-hsuart" for Tegra30,
+ "nvidia,tegra186-hsuart" for Tegra186,
+ "nvidia,tegra194-hsuart" for Tegra194.
+
- reg: Should contain UART controller registers location and length.
- interrupts: Should contain UART controller interrupts.
- clocks: Must contain one entry, for the module clock.
@@ -19,6 +24,37 @@ Required properties:
Optional properties:
- nvidia,enable-modem-interrupt: Enable modem interrupts. Should be enable
only if all 8 lines of UART controller are pinmuxed.
+- nvidia,adjust-baud-rates: List of entries providing percentage of baud rate
+ adjustment within a range.
+ Each entry contains sets of 3 values. Range low/high and adjusted rate.
+ <range_low range_high adjusted_rate>
+ When baud rate set on controller falls within the range mentioned in this
+ field, baud rate will be adjusted by percentage mentioned here.
+ Ex: <9600 115200 200>
+ Increase baud rate by 2% when set baud rate falls within range 9600 to 115200
+
+Baud Rate tolerance:
+ Standard UART devices are expected to have tolerance for baud rate error by
+ -4 to +4 %. All Tegra devices till Tegra210 had this support. However,
+ Tegra186 chip has a known hardware issue. UART Rx baud rate tolerance level
+ is 0% to +4% in 1-stop config. Otherwise, the received data will have
+ corruption/invalid framing errors. Parker errata suggests adjusting baud
+ rate to be higher than the deviations observed in Tx.
+
+ Tx deviation of connected device can be captured over scope (or noted from
+ its spec) for valid range and Tegra baud rate has to be set above actual
+ Tx baud rate observed. To do this we use nvidia,adjust-baud-rates
+
+ As an example, consider there is deviation observed in Tx for baud rates as
+ listed below.
+ 0 to 9600 has 1% deviation
+ 9600 to 115200 2% deviation
+ This slight deviation is expcted and Tegra UART is expected to handle it. Due
+ to the issue stated above, baud rate on Tegra UART should be set equal to or
+ above deviation observed for avoiding frame errors.
+ Property should be set like this
+ nvidia,adjust-baud-rates = <0 9600 100>,
+ <9600 115200 200>;
Example:
@@ -33,4 +69,5 @@ serial@70006000 {
reset-names = "serial";
dmas = <&apbdma 8>, <&apbdma 8>;
dma-names = "rx", "tx";
+ nvidia,adjust-baud-rates = <1000000 4000000 136>; /* 1.36% shift */
};
diff --git a/Documentation/devicetree/bindings/serial/omap_serial.txt b/Documentation/devicetree/bindings/serial/omap_serial.txt
index 0a9b5444f4e6..dcba86b0a0d0 100644
--- a/Documentation/devicetree/bindings/serial/omap_serial.txt
+++ b/Documentation/devicetree/bindings/serial/omap_serial.txt
@@ -1,6 +1,7 @@
OMAP UART controller
Required properties:
+- compatible : should be "ti,j721e-uart", "ti,am654-uart" for J721E controllers
- compatible : should be "ti,am654-uart" for AM654 controllers
- compatible : should be "ti,omap2-uart" for OMAP2 controllers
- compatible : should be "ti,omap3-uart" for OMAP3 controllers
diff --git a/Documentation/devicetree/bindings/serial/sifive-serial.txt b/Documentation/devicetree/bindings/serial/sifive-serial.txt
deleted file mode 100644
index c86b1e524159..000000000000
--- a/Documentation/devicetree/bindings/serial/sifive-serial.txt
+++ /dev/null
@@ -1,33 +0,0 @@
-SiFive asynchronous serial interface (UART)
-
-Required properties:
-
-- compatible: should be something similar to
- "sifive,<chip>-uart" for the UART as integrated
- on a particular chip, and "sifive,uart<version>" for the
- general UART IP block programming model. Supported
- compatible strings as of the date of this writing are:
- "sifive,fu540-c000-uart" for the SiFive UART v0 as
- integrated onto the SiFive FU540 chip, or "sifive,uart0"
- for the SiFive UART v0 IP block with no chip integration
- tweaks (if any)
-- reg: address and length of the register space
-- interrupts: Should contain the UART interrupt identifier
-- clocks: Should contain a clock identifier for the UART's parent clock
-
-
-UART HDL that corresponds to the IP block version numbers can be found
-here:
-
-https://github.com/sifive/sifive-blocks/tree/master/src/main/scala/devices/uart
-
-
-Example:
-
-uart0: serial@10010000 {
- compatible = "sifive,fu540-c000-uart", "sifive,uart0";
- interrupt-parent = <&plic0>;
- interrupts = <80>;
- reg = <0x0 0x10010000 0x0 0x1000>;
- clocks = <&prci PRCI_CLK_TLCLK>;
-};
diff --git a/Documentation/devicetree/bindings/serial/sifive-serial.yaml b/Documentation/devicetree/bindings/serial/sifive-serial.yaml
new file mode 100644
index 000000000000..e8d3aeda1202
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/sifive-serial.yaml
@@ -0,0 +1,62 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/serial/sifive-serial.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SiFive asynchronous serial interface (UART)
+
+maintainers:
+ - Pragnesh Patel <pragnesh.patel@sifive.com>
+ - Paul Walmsley <paul.walmsley@sifive.com>
+ - Palmer Dabbelt <palmer@sifive.com>
+
+allOf:
+ - $ref: /schemas/serial.yaml#
+
+properties:
+ compatible:
+ items:
+ - const: sifive,fu540-c000-uart
+ - const: sifive,uart0
+
+ description:
+ Should be something similar to "sifive,<chip>-uart"
+ for the UART as integrated on a particular chip,
+ and "sifive,uart<version>" for the general UART IP
+ block programming model.
+
+ UART HDL that corresponds to the IP block version
+ numbers can be found here -
+
+ https://github.com/sifive/sifive-blocks/tree/master/src/main/scala/devices/uart
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/sifive-fu540-prci.h>
+ serial@10010000 {
+ compatible = "sifive,fu540-c000-uart", "sifive,uart0";
+ interrupt-parent = <&plic0>;
+ interrupts = <80>;
+ reg = <0x0 0x10010000 0x0 0x1000>;
+ clocks = <&prci PRCI_CLK_TLCLK>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/serial/st,stm32-usart.txt b/Documentation/devicetree/bindings/serial/st,stm32-usart.txt
index 9d3efed55deb..8620f7fcbd50 100644
--- a/Documentation/devicetree/bindings/serial/st,stm32-usart.txt
+++ b/Documentation/devicetree/bindings/serial/st,stm32-usart.txt
@@ -13,12 +13,18 @@ Required properties:
- clocks: The input clock of the USART instance
Optional properties:
+- resets: Must contain the phandle to the reset controller.
- pinctrl: The reference on the pins configuration
- st,hw-flow-ctrl: bool flag to enable hardware flow control.
- rs485-rts-delay, rs485-rx-during-tx, rs485-rts-active-low,
linux,rs485-enabled-at-boot-time: see rs485.txt.
- dmas: phandle(s) to DMA controller node(s). Refer to stm32-dma.txt
- dma-names: "rx" and/or "tx"
+- wakeup-source: bool flag to indicate this device has wakeup capabilities
+- interrupt-names, if optional wake-up interrupt is used, should be:
+ - "event": the name for the interrupt line of the USART instance
+ - "wakeup" the name for the optional wake-up interrupt
+
Examples:
usart4: serial@40004c00 {
diff --git a/Documentation/devicetree/bindings/soc/amlogic/amlogic,canvas.txt b/Documentation/devicetree/bindings/soc/amlogic/amlogic,canvas.txt
index 436d2106e80d..e876f3ce54f6 100644
--- a/Documentation/devicetree/bindings/soc/amlogic/amlogic,canvas.txt
+++ b/Documentation/devicetree/bindings/soc/amlogic/amlogic,canvas.txt
@@ -2,8 +2,8 @@ Amlogic Canvas
================================
A canvas is a collection of metadata that describes a pixel buffer.
-Those metadata include: width, height, phyaddr, wrapping, block mode
-and endianness.
+Those metadata include: width, height, phyaddr, wrapping and block mode.
+Starting with GXBB the endianness can also be described.
Many IPs within Amlogic SoCs rely on canvas indexes to read/write pixel data
rather than use the phy addresses directly. For instance, this is the case for
@@ -18,7 +18,11 @@ Video Lookup Table
--------------------------
Required properties:
-- compatible: "amlogic,canvas"
+- compatible: has to be one of:
+ - "amlogic,meson8-canvas", "amlogic,canvas" on Meson8
+ - "amlogic,meson8b-canvas", "amlogic,canvas" on Meson8b
+ - "amlogic,meson8m2-canvas", "amlogic,canvas" on Meson8m2
+ - "amlogic,canvas" on GXBB and newer
- reg: Base physical address and size of the canvas registers.
Example:
diff --git a/Documentation/devicetree/bindings/soc/amlogic/clk-measure.txt b/Documentation/devicetree/bindings/soc/amlogic/clk-measure.txt
index 6bf6b43f8dd8..3dd563cec794 100644
--- a/Documentation/devicetree/bindings/soc/amlogic/clk-measure.txt
+++ b/Documentation/devicetree/bindings/soc/amlogic/clk-measure.txt
@@ -11,6 +11,7 @@ Required properties:
"amlogic,meson8b-clk-measure" for Meson8b SoCs
"amlogic,meson-axg-clk-measure" for AXG SoCs
"amlogic,meson-g12a-clk-measure" for G12a SoCs
+ "amlogic,meson-sm1-clk-measure" for SM1 SoCs
- reg: base address and size of the Clock Measurer register space.
Example:
diff --git a/Documentation/devicetree/bindings/soc/fsl/cpm_qe/qe.txt b/Documentation/devicetree/bindings/soc/fsl/cpm_qe/qe.txt
index d7afaff5faff..05ec2a838c54 100644
--- a/Documentation/devicetree/bindings/soc/fsl/cpm_qe/qe.txt
+++ b/Documentation/devicetree/bindings/soc/fsl/cpm_qe/qe.txt
@@ -18,7 +18,8 @@ Required properties:
- reg : offset and length of the device registers.
- bus-frequency : the clock frequency for QUICC Engine.
- fsl,qe-num-riscs: define how many RISC engines the QE has.
-- fsl,qe-num-snums: define how many serial number(SNUM) the QE can use for the
+- fsl,qe-snums: This property has to be specified as '/bits/ 8' value,
+ defining the array of serial number (SNUM) values for the virtual
threads.
Optional properties:
@@ -34,6 +35,11 @@ Recommended properties
- brg-frequency : the internal clock source frequency for baud-rate
generators in Hz.
+Deprecated properties
+- fsl,qe-num-snums: define how many serial number(SNUM) the QE can use
+ for the threads. Use fsl,qe-snums instead to not only specify the
+ number of snums, but also their values.
+
Example:
qe@e0100000 {
#address-cells = <1>;
@@ -44,6 +50,11 @@ Example:
reg = <e0100000 480>;
brg-frequency = <0>;
bus-frequency = <179A7B00>;
+ fsl,qe-snums = /bits/ 8 <
+ 0x04 0x05 0x0C 0x0D 0x14 0x15 0x1C 0x1D
+ 0x24 0x25 0x2C 0x2D 0x34 0x35 0x88 0x89
+ 0x98 0x99 0xA8 0xA9 0xB8 0xB9 0xC8 0xC9
+ 0xD8 0xD9 0xE8 0xE9>;
}
* Multi-User RAM (MURAM)
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt
new file mode 100644
index 000000000000..4fc571e78f01
--- /dev/null
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt
@@ -0,0 +1,84 @@
+Qualcomm Always-On Subsystem side channel binding
+
+This binding describes the hardware component responsible for side channel
+requests to the always-on subsystem (AOSS), used for certain power management
+requests that is not handled by the standard RPMh interface. Each client in the
+SoC has it's own block of message RAM and IRQ for communication with the AOSS.
+The protocol used to communicate in the message RAM is known as Qualcomm
+Messaging Protocol (QMP)
+
+The AOSS side channel exposes control over a set of resources, used to control
+a set of debug related clocks and to affect the low power state of resources
+related to the secondary subsystems. These resources are exposed as a set of
+power-domains.
+
+- compatible:
+ Usage: required
+ Value type: <string>
+ Definition: must be one of:
+ "qcom,sc7180-aoss-qmp"
+ "qcom,sdm845-aoss-qmp"
+ "qcom,sm8150-aoss-qmp"
+
+- reg:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: the base address and size of the message RAM for this
+ client's communication with the AOSS
+
+- interrupts:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: should specify the AOSS message IRQ for this client
+
+- mboxes:
+ Usage: required
+ Value type: <prop-encoded-array>
+ Definition: reference to the mailbox representing the outgoing doorbell
+ in APCS for this client, as described in mailbox/mailbox.txt
+
+- #clock-cells:
+ Usage: optional
+ Value type: <u32>
+ Definition: must be 0
+ The single clock represents the QDSS clock.
+
+- #power-domain-cells:
+ Usage: optional
+ Value type: <u32>
+ Definition: must be 1
+ The provided power-domains are:
+ CDSP state (0), LPASS state (1), modem state (2), SLPI
+ state (3), SPSS state (4) and Venus state (5).
+
+= SUBNODES
+The AOSS side channel also provides the controls for three cooling devices,
+these are expressed as subnodes of the QMP node. The name of the node is used
+to identify the resource and must therefor be "cx", "mx" or "ebi".
+
+- #cooling-cells:
+ Usage: optional
+ Value type: <u32>
+ Definition: must be 2
+
+= EXAMPLE
+
+The following example represents the AOSS side-channel message RAM and the
+mechanism exposing the power-domains, as found in SDM845.
+
+ aoss_qmp: qmp@c300000 {
+ compatible = "qcom,sdm845-aoss-qmp";
+ reg = <0x0c300000 0x100000>;
+ interrupts = <GIC_SPI 389 IRQ_TYPE_EDGE_RISING>;
+ mboxes = <&apss_shared 0>;
+
+ #power-domain-cells = <1>;
+
+ cx_cdev: cx {
+ #cooling-cells = <2>;
+ };
+
+ mx_cdev: mx {
+ #cooling-cells = <2>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt
index bcc612cc7423..db501269f47b 100644
--- a/Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,apr.txt
@@ -9,7 +9,7 @@ used for audio/voice services on the QDSP.
Value type: <stringlist>
Definition: must be "qcom,apr-v<VERSION-NUMBER>", example "qcom,apr-v2"
-- reg
+- qcom,apr-domain
Usage: required
Value type: <u32>
Definition: Destination processor ID.
@@ -49,9 +49,9 @@ by the individual bindings for the specific service
The following example represents a QDSP based sound card on a MSM8996 device
which uses apr as communication between Apps and QDSP.
- apr@4 {
+ apr {
compatible = "qcom,apr-v2";
- reg = <APR_DOMAIN_ADSP>;
+ qcom,apr-domain = <APR_DOMAIN_ADSP>;
q6core@3 {
compatible = "qcom,q6core";
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,glink.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,glink.txt
index cf759e5f9b10..1214192847ac 100644
--- a/Documentation/devicetree/bindings/soc/qcom/qcom,glink.txt
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,glink.txt
@@ -21,6 +21,11 @@ edge.
Definition: should specify the IRQ used by the remote processor to
signal this processor about communication related events
+- qcom,remote-pid:
+ Usage: required for glink-smem
+ Value type: <u32>
+ Definition: specifies the identifier of the remote endpoint of this edge
+
- qcom,rpm-msg-ram:
Usage: required for glink-rpm
Value type: <prop-encoded-array>
diff --git a/Documentation/devicetree/bindings/soc/ti/sci-pm-domain.txt b/Documentation/devicetree/bindings/soc/ti/sci-pm-domain.txt
index f7b00a7c0f68..f541d1f776a2 100644
--- a/Documentation/devicetree/bindings/soc/ti/sci-pm-domain.txt
+++ b/Documentation/devicetree/bindings/soc/ti/sci-pm-domain.txt
@@ -19,8 +19,15 @@ child of the pmmc node.
Required Properties:
--------------------
- compatible: should be "ti,sci-pm-domain"
-- #power-domain-cells: Must be 1 so that an id can be provided in each
- device node.
+- #power-domain-cells: Can be one of the following:
+ 1: Containing the device id of each node
+ 2: First entry should be device id
+ Second entry should be one of the floowing:
+ TI_SCI_PD_EXCLUSIVE: To allow device to be
+ exclusively controlled by
+ the requesting hosts.
+ TI_SCI_PD_SHARED: To allow device to be shared
+ by multiple hosts.
Example (K2G):
-------------
diff --git a/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml
new file mode 100644
index 000000000000..eb3992138eec
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-i2s.yaml
@@ -0,0 +1,132 @@
+# SPDX-License-Identifier: (GPL-2.0+ OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/sound/allwinner,sun4i-a10-i2s.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 I2S Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#sound-dai-cells":
+ const: 0
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-i2s
+ - const: allwinner,sun6i-a31-i2s
+ - const: allwinner,sun8i-a83t-i2s
+ - const: allwinner,sun8i-h3-i2s
+ - const: allwinner,sun50i-a64-codec-i2s
+ - items:
+ - const: allwinner,sun50i-a64-i2s
+ - const: allwinner,sun8i-h3-i2s
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: apb
+ - const: mod
+
+ # Even though it only applies to subschemas under the conditionals,
+ # not listing them here will trigger a warning because of the
+ # additionalsProperties set to false.
+ dmas: true
+ dma-names: true
+ resets:
+ maxItems: 1
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun6i-a31-i2s
+ - allwinner,sun8i-a83t-i2s
+ - allwinner,sun8i-h3-i2s
+ - allwinner,sun50i-a64-codec-i2s
+
+ then:
+ required:
+ - resets
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: allwinner,sun8i-a83t-i2s
+
+ then:
+ properties:
+ dmas:
+ minItems: 1
+ maxItems: 2
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+ description:
+ Some controllers cannot receive but can only transmit
+ data. In such a case, the RX DMA channel is to be omitted.
+
+ dma-names:
+ oneOf:
+ - items:
+ - const: rx
+ - const: tx
+ - const: tx
+ description:
+ Some controllers cannot receive but can only transmit
+ data. In such a case, the RX name is to be omitted.
+
+ else:
+ properties:
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+required:
+ - "#sound-dai-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+ - dmas
+ - dma-names
+
+additionalProperties: false
+
+examples:
+ - |
+ i2s0: i2s@1c22400 {
+ #sound-dai-cells = <0>;
+ compatible = "allwinner,sun4i-a10-i2s";
+ reg = <0x01c22400 0x400>;
+ interrupts = <0 16 4>;
+ clocks = <&apb0_gates 3>, <&i2s0_clk>;
+ clock-names = "apb", "mod";
+ dmas = <&dma 0 3>, <&dma 0 3>;
+ dma-names = "rx", "tx";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml
new file mode 100644
index 000000000000..38d4cede0860
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/allwinner,sun4i-a10-spdif.yaml
@@ -0,0 +1,122 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/sound/allwinner,sun4i-a10-spdif.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 S/PDIF Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Liam Girdwood <lgirdwood@gmail.com>
+ - Mark Brown <broonie@kernel.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#sound-dai-cells":
+ const: 0
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-spdif
+ - const: allwinner,sun6i-a31-spdif
+ - const: allwinner,sun8i-h3-spdif
+ - const: allwinner,sun50i-h6-spdif
+ - items:
+ - const: allwinner,sun8i-a83t-spdif
+ - const: allwinner,sun8i-h3-spdif
+ - items:
+ - const: allwinner,sun50i-a64-spdif
+ - const: allwinner,sun8i-h3-spdif
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: apb
+ - const: spdif
+
+ # Even though it only applies to subschemas under the conditionals,
+ # not listing them here will trigger a warning because of the
+ # additionalsProperties set to false.
+ dmas: true
+ dma-names: true
+ resets:
+ maxItems: 1
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun6i-a31-spdif
+ - allwinner,sun8i-h3-spdif
+
+ then:
+ required:
+ - resets
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - allwinner,sun8i-h3-spdif
+ - allwinner,sun50i-h6-spdif
+
+ then:
+ properties:
+ dmas:
+ description: TX DMA Channel
+
+ dma-names:
+ const: tx
+
+ else:
+ properties:
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+required:
+ - "#sound-dai-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+ - dmas
+ - dma-names
+
+additionalProperties: false
+
+examples:
+ - |
+ spdif: spdif@1c21000 {
+ #sound-dai-cells = <0>;
+ compatible = "allwinner,sun4i-a10-spdif";
+ reg = <0x01c21000 0x40>;
+ interrupts = <13>;
+ clocks = <&apb0_gates 1>, <&spdif_clk>;
+ clock-names = "apb", "spdif";
+ dmas = <&dma 0 2>, <&dma 0 2>;
+ dma-names = "rx", "tx";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/sound/allwinner,sun50i-a64-codec-analog.yaml b/Documentation/devicetree/bindings/sound/allwinner,sun50i-a64-codec-analog.yaml
new file mode 100644
index 000000000000..f290eb72a878
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/allwinner,sun50i-a64-codec-analog.yaml
@@ -0,0 +1,39 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/sound/allwinner,sun50i-a64-codec-analog.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A64 Analog Codec Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ const: allwinner,sun50i-a64-codec-analog
+
+ reg:
+ maxItems: 1
+
+ cpvdd-supply:
+ description:
+ Regulator for the headphone amplifier
+
+required:
+ - compatible
+ - reg
+ - cpvdd-supply
+
+additionalProperties: false
+
+examples:
+ - |
+ codec_analog: codec-analog@1f015c0 {
+ compatible = "allwinner,sun50i-a64-codec-analog";
+ reg = <0x01f015c0 0x4>;
+ cpvdd-supply = <&reg_eldo1>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/sound/allwinner,sun8i-a33-codec.yaml b/Documentation/devicetree/bindings/sound/allwinner,sun8i-a33-codec.yaml
new file mode 100644
index 000000000000..5e7cc05bbff1
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/allwinner,sun8i-a33-codec.yaml
@@ -0,0 +1,57 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/sound/allwinner,sun8i-a33-codec.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A33 Codec Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#sound-dai-cells":
+ const: 0
+
+ compatible:
+ const: allwinner,sun8i-a33-codec
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: bus
+ - const: mod
+
+required:
+ - "#sound-dai-cells"
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ audio-codec@1c22e00 {
+ #sound-dai-cells = <0>;
+ compatible = "allwinner,sun8i-a33-codec";
+ reg = <0x01c22e00 0x400>;
+ interrupts = <0 29 4>;
+ clocks = <&ccu 47>, <&ccu 92>;
+ clock-names = "bus", "mod";
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/sound/amlogic,axg-fifo.txt b/Documentation/devicetree/bindings/sound/amlogic,axg-fifo.txt
index 4330fc9dca6d..3080979350a0 100644
--- a/Documentation/devicetree/bindings/sound/amlogic,axg-fifo.txt
+++ b/Documentation/devicetree/bindings/sound/amlogic,axg-fifo.txt
@@ -4,13 +4,18 @@ Required properties:
- compatible: 'amlogic,axg-toddr' or
'amlogic,axg-toddr' or
'amlogic,g12a-frddr' or
- 'amlogic,g12a-toddr'
+ 'amlogic,g12a-toddr' or
+ 'amlogic,sm1-frddr' or
+ 'amlogic,sm1-toddr'
- reg: physical base address of the controller and length of memory
mapped region.
- interrupts: interrupt specifier for the fifo.
- clocks: phandle to the fifo peripheral clock provided by the audio
clock controller.
-- resets: phandle to memory ARB line provided by the arb reset controller.
+- resets: list of reset phandle, one for each entry reset-names.
+- reset-names: should contain the following:
+ * "arb" : memory ARB line (required)
+ * "rst" : dedicated device reset line (optional)
- #sound-dai-cells: must be 0.
Example of FRDDR A on the A113 SoC:
diff --git a/Documentation/devicetree/bindings/sound/amlogic,axg-pdm.txt b/Documentation/devicetree/bindings/sound/amlogic,axg-pdm.txt
index 73f473a9365f..716878107a24 100644
--- a/Documentation/devicetree/bindings/sound/amlogic,axg-pdm.txt
+++ b/Documentation/devicetree/bindings/sound/amlogic,axg-pdm.txt
@@ -2,7 +2,8 @@
Required properties:
- compatible: 'amlogic,axg-pdm' or
- 'amlogic,g12a-pdm'
+ 'amlogic,g12a-pdm' or
+ 'amlogic,sm1-pdm'
- reg: physical base address of the controller and length of memory
mapped region.
- clocks: list of clock phandle, one for each entry clock-names.
@@ -12,6 +13,9 @@ Required properties:
* "sysclk" : dsp system clock
- #sound-dai-cells: must be 0.
+Optional property:
+- resets: phandle to the dedicated reset line of the pdm input.
+
Example of PDM on the A113 SoC:
pdm: audio-controller@ff632000 {
diff --git a/Documentation/devicetree/bindings/sound/amlogic,axg-spdifin.txt b/Documentation/devicetree/bindings/sound/amlogic,axg-spdifin.txt
index 0b82504fa419..df92a4ecf288 100644
--- a/Documentation/devicetree/bindings/sound/amlogic,axg-spdifin.txt
+++ b/Documentation/devicetree/bindings/sound/amlogic,axg-spdifin.txt
@@ -2,7 +2,8 @@
Required properties:
- compatible: 'amlogic,axg-spdifin' or
- 'amlogic,g12a-spdifin'
+ 'amlogic,g12a-spdifin' or
+ 'amlogic,sm1-spdifin'
- interrupts: interrupt specifier for the spdif input.
- clocks: list of clock phandle, one for each entry clock-names.
- clock-names: should contain the following:
@@ -10,6 +11,9 @@ Required properties:
* "refclk" : spdif input reference clock
- #sound-dai-cells: must be 0.
+Optional property:
+- resets: phandle to the dedicated reset line of the spdif input.
+
Example on the A113 SoC:
spdifin: audio-controller@400 {
diff --git a/Documentation/devicetree/bindings/sound/amlogic,axg-spdifout.txt b/Documentation/devicetree/bindings/sound/amlogic,axg-spdifout.txt
index 826152730508..28381dd1f633 100644
--- a/Documentation/devicetree/bindings/sound/amlogic,axg-spdifout.txt
+++ b/Documentation/devicetree/bindings/sound/amlogic,axg-spdifout.txt
@@ -2,13 +2,17 @@
Required properties:
- compatible: 'amlogic,axg-spdifout' or
- 'amlogic,g12a-spdifout'
+ 'amlogic,g12a-spdifout' or
+ 'amlogic,sm1-spdifout'
- clocks: list of clock phandle, one for each entry clock-names.
- clock-names: should contain the following:
* "pclk" : peripheral clock.
* "mclk" : master clock
- #sound-dai-cells: must be 0.
+Optional property:
+- resets: phandle to the dedicated reset line of the spdif output.
+
Example on the A113 SoC:
spdifout: audio-controller@480 {
diff --git a/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt b/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt
index 3b94a715a0b9..5996c0cd89c2 100644
--- a/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt
+++ b/Documentation/devicetree/bindings/sound/amlogic,axg-tdm-formatters.txt
@@ -4,7 +4,9 @@ Required properties:
- compatible: 'amlogic,axg-tdmin' or
'amlogic,axg-tdmout' or
'amlogic,g12a-tdmin' or
- 'amlogic,g12a-tdmout'
+ 'amlogic,g12a-tdmout' or
+ 'amlogic,sm1-tdmin' or
+ 'amlogic,sm1-tdmout
- reg: physical base address of the controller and length of memory
mapped region.
- clocks: list of clock phandle, one for each entry clock-names.
@@ -15,11 +17,15 @@ Required properties:
* "lrclk" : sample clock
* "lrclk_sel": sample clock input multiplexer
-Example of TDMOUT_A on the A113 SoC:
+Optional property:
+- resets: phandle to the dedicated reset line of the tdm formatter.
+
+Example of TDMOUT_A on the S905X2 SoC:
tdmout_a: audio-controller@500 {
compatible = "amlogic,axg-tdmout";
reg = <0x0 0x500 0x0 0x40>;
+ resets = <&clkc_audio AUD_RESET_TDMOUT_A>;
clocks = <&clkc_audio AUD_CLKID_TDMOUT_A>,
<&clkc_audio AUD_CLKID_TDMOUT_A_SCLK>,
<&clkc_audio AUD_CLKID_TDMOUT_A_SCLK_SEL>,
diff --git a/Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt b/Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt
new file mode 100644
index 000000000000..4e8cd7eb7cec
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/amlogic,g12a-tohdmitx.txt
@@ -0,0 +1,58 @@
+* Amlogic HDMI Tx control glue
+
+Required properties:
+- compatible: "amlogic,g12a-tohdmitx" or
+ "amlogic,sm1-tohdmitx"
+- reg: physical base address of the controller and length of memory
+ mapped region.
+- #sound-dai-cells: should be 1.
+- resets: phandle to the dedicated reset line of the hdmitx glue.
+
+Example on the S905X2 SoC:
+
+tohdmitx: audio-controller@744 {
+ compatible = "amlogic,g12a-tohdmitx";
+ reg = <0x0 0x744 0x0 0x4>;
+ #sound-dai-cells = <1>;
+ resets = <&clkc_audio AUD_RESET_TOHDMITX>;
+};
+
+Example of an 'amlogic,axg-sound-card':
+
+sound {
+ compatible = "amlogic,axg-sound-card";
+
+[...]
+
+ dai-link-x {
+ sound-dai = <&tdmif_a>;
+ dai-format = "i2s";
+ dai-tdm-slot-tx-mask-0 = <1 1>;
+
+ codec-0 {
+ sound-dai = <&tohdmitx TOHDMITX_I2S_IN_A>;
+ };
+
+ codec-1 {
+ sound-dai = <&external_dac>;
+ };
+ };
+
+ dai-link-y {
+ sound-dai = <&tdmif_c>;
+ dai-format = "i2s";
+ dai-tdm-slot-tx-mask-0 = <1 1>;
+
+ codec {
+ sound-dai = <&tohdmitx TOHDMITX_I2S_IN_C>;
+ };
+ };
+
+ dai-link-z {
+ sound-dai = <&tohdmitx TOHDMITX_I2S_OUT>;
+
+ codec {
+ sound-dai = <&hdmi_tx>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/cs42l73.txt b/Documentation/devicetree/bindings/sound/cs42l73.txt
index 80ae910dbf6c..47b868b5ab01 100644
--- a/Documentation/devicetree/bindings/sound/cs42l73.txt
+++ b/Documentation/devicetree/bindings/sound/cs42l73.txt
@@ -19,4 +19,4 @@ codec: cs42l73@4a {
reg = <0x4a>;
reset_gpio = <&gpio 10 0>;
chgfreq = <0x05>;
-}; \ No newline at end of file
+};
diff --git a/Documentation/devicetree/bindings/sound/cs42xx8.txt b/Documentation/devicetree/bindings/sound/cs42xx8.txt
index 8619a156d038..bbfe39347c20 100644
--- a/Documentation/devicetree/bindings/sound/cs42xx8.txt
+++ b/Documentation/devicetree/bindings/sound/cs42xx8.txt
@@ -14,6 +14,11 @@ Required properties:
- VA-supply, VD-supply, VLS-supply, VLC-supply: power supplies for the device,
as covered in Documentation/devicetree/bindings/regulator/regulator.txt
+Optional properties:
+
+ - reset-gpios : a GPIO spec to define which pin is connected to the chip's
+ !RESET pin
+
Example:
cs42888: codec@48 {
@@ -25,4 +30,5 @@ cs42888: codec@48 {
VD-supply = <&reg_audio>;
VLS-supply = <&reg_audio>;
VLC-supply = <&reg_audio>;
+ reset-gpios = <&pca9557_b 1 GPIO_ACTIVE_LOW>;
};
diff --git a/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt b/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
index a58f79f5345c..c483dcec01f8 100644
--- a/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
+++ b/Documentation/devicetree/bindings/sound/davinci-mcasp-audio.txt
@@ -44,6 +44,9 @@ Optional properties:
please refer to pinctrl-bindings.txt
- fck_parent : Should contain a valid clock name which will be used as parent
for the McASP fck
+- auxclk-fs-ratio: When McASP is bus master indicates the ratio between AUCLK
+ and FS rate if applicable:
+ AUCLK rate = auxclk-fs-ratio * FS rate
Optional GPIO support:
If any McASP pin need to be used as GPIO then the McASP node must have:
diff --git a/Documentation/devicetree/bindings/sound/everest,es8316.txt b/Documentation/devicetree/bindings/sound/everest,es8316.txt
new file mode 100644
index 000000000000..1bf03c5f2af4
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/everest,es8316.txt
@@ -0,0 +1,23 @@
+Everest ES8316 audio CODEC
+
+This device supports both I2C and SPI.
+
+Required properties:
+
+ - compatible : should be "everest,es8316"
+ - reg : the I2C address of the device for I2C
+
+Optional properties:
+
+ - clocks : a list of phandle, should contain entries for clock-names
+ - clock-names : should include as follows:
+ "mclk" : master clock (MCLK) of the device
+
+Example:
+
+es8316: codec@11 {
+ compatible = "everest,es8316";
+ reg = <0x11>;
+ clocks = <&clks 10>;
+ clock-names = "mclk";
+};
diff --git a/Documentation/devicetree/bindings/sound/fsl,esai.txt b/Documentation/devicetree/bindings/sound/fsl,esai.txt
index 5b9914367610..0e6e2166f76c 100644
--- a/Documentation/devicetree/bindings/sound/fsl,esai.txt
+++ b/Documentation/devicetree/bindings/sound/fsl,esai.txt
@@ -7,8 +7,11 @@ other DSPs. It has up to six transmitters and four receivers.
Required properties:
- - compatible : Compatible list, must contain "fsl,imx35-esai" or
- "fsl,vf610-esai"
+ - compatible : Compatible list, should contain one of the following
+ compatibles:
+ "fsl,imx35-esai",
+ "fsl,vf610-esai",
+ "fsl,imx6ull-esai",
- reg : Offset and length of the register set for the device.
diff --git a/Documentation/devicetree/bindings/sound/fsl-sai.txt b/Documentation/devicetree/bindings/sound/fsl-sai.txt
index 2e726b983845..0dc83cc4a236 100644
--- a/Documentation/devicetree/bindings/sound/fsl-sai.txt
+++ b/Documentation/devicetree/bindings/sound/fsl-sai.txt
@@ -8,7 +8,9 @@ codec/DSP interfaces.
Required properties:
- compatible : Compatible list, contains "fsl,vf610-sai",
- "fsl,imx6sx-sai" or "fsl,imx6ul-sai"
+ "fsl,imx6sx-sai", "fsl,imx6ul-sai",
+ "fsl,imx7ulp-sai", "fsl,imx8mq-sai" or
+ "fsl,imx8qm-sai".
- reg : Offset and length of the register set for the device.
diff --git a/Documentation/devicetree/bindings/sound/madera.txt b/Documentation/devicetree/bindings/sound/madera.txt
new file mode 100644
index 000000000000..5e669ce552f4
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/madera.txt
@@ -0,0 +1,67 @@
+Cirrus Logic Madera class audio codecs
+
+This describes audio configuration bindings for these codecs.
+
+See also the core bindings for the parent MFD driver:
+See Documentation/devicetree/bindings/mfd/madera.txt
+
+and defines for values used in these bindings:
+include/dt-bindings/sound/madera.h
+
+These properties are all contained in the parent MFD node.
+
+Optional properties:
+ - cirrus,dmic-ref : Indicates how the MICBIAS pins have been externally
+ connected to DMICs on each input, one cell per input.
+ <IN1 IN2 IN3 ...>
+ A value of 0 indicates MICVDD and is the default, other values depend on the
+ codec:
+ For CS47L35 one of the CS47L35_DMIC_REF_xxx values
+ For all other codecs one of the MADERA_DMIC_REF_xxx values
+ Also see the datasheet for a description of the INn_DMIC_SUP field.
+
+ - cirrus,inmode : A list of input mode settings for each input. A maximum of
+ 16 cells, with four cells per input in the order INnAL, INnAR INnBL INnBR.
+ For non-muxed inputs the first two cells for that input set the mode for
+ the left and right channel and the second two cells must be 0.
+ For muxed inputs the first two cells for that input set the mode of the
+ left and right A inputs and the second two cells set the mode of the left
+ and right B inputs.
+ Valid mode values are one of the MADERA_INMODE_xxx. If the array is shorter
+ than the number of inputs the unspecified inputs default to
+ MADERA_INMODE_DIFF.
+
+ - cirrus,out-mono : Mono bit for each output, maximum of six cells if the
+ array is shorter outputs will be set to stereo.
+
+ - cirrus,max-channels-clocked : Maximum number of channels that I2S clocks
+ will be generated for. Useful when clock master for systems where the I2S
+ bus has multiple data lines.
+ One cell for each AIF, use a value of zero for AIFs that should be handled
+ normally.
+
+ - cirrus,pdm-fmt : PDM speaker data format, must contain 2 cells
+ (OUT5 and OUT6). See the PDM_SPKn_FMT field in the datasheet for a
+ description of this value.
+ The second cell is ignored for codecs that do not have OUT6.
+
+ - cirrus,pdm-mute : PDM mute format, must contain 2 cells
+ (OUT5 and OUT6). See the PDM_SPKn_CTRL_1 register in the datasheet for a
+ description of this value.
+ The second cell is ignored for codecs that do not have OUT6.
+
+Example:
+
+cs47l35@0 {
+ compatible = "cirrus,cs47l35";
+
+ cirrus,dmic-ref = <0 0 CS47L35_DMIC_REF_MICBIAS1B 0>;
+ cirrus,inmode = <
+ MADERA_INMODE_DMIC MADERA_INMODE_DMIC /* IN1A digital */
+ MADERA_INMODE_SE MADERA_INMODE_SE /* IN1B single-ended */
+ MADERA_INMODE_DIFF MADERA_INMODE_DIFF /* IN2 differential */
+ 0 0 /* not used on this codec */
+ >;
+ cirrus,out-mono = <0 0 0 0 0 0>;
+ cirrus,max-channels-clocked = <2 0 0>;
+};
diff --git a/Documentation/devicetree/bindings/sound/max98357a.txt b/Documentation/devicetree/bindings/sound/max98357a.txt
index 28645a2ff885..4bce14ce806f 100644
--- a/Documentation/devicetree/bindings/sound/max98357a.txt
+++ b/Documentation/devicetree/bindings/sound/max98357a.txt
@@ -9,6 +9,10 @@ Optional properties:
- sdmode-gpios : GPIO specifier for the chip's SD_MODE pin.
If this option is not specified then driver does not manage
the pin state (e.g. chip is always on).
+- sdmode-delay : specify delay time for SD_MODE pin.
+ If this option is specified, which means it's required i2s clocks
+ ready before SD_MODE is unmuted in order to avoid the speaker pop noise.
+ It's observed that 5ms is sufficient.
Example:
diff --git a/Documentation/devicetree/bindings/sound/rt1011.txt b/Documentation/devicetree/bindings/sound/rt1011.txt
new file mode 100644
index 000000000000..35a23e60d679
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/rt1011.txt
@@ -0,0 +1,32 @@
+RT1011 Mono Class D Audio Amplifier
+
+This device supports I2C only.
+
+Required properties:
+
+- compatible : "realtek,rt1011".
+
+- reg : The I2C address of the device. This I2C address decide by
+ two input pins (ASEL1 and ASEL2).
+ -------------------------------------
+ | ASEL2 | ASEL1 | Address |
+ -------------------------------------
+ | 0 | 0 | 0x38 |
+ -------------------------------------
+ | 0 | 1 | 0x39 |
+ -------------------------------------
+ | 1 | 0 | 0x3a |
+ -------------------------------------
+ | 1 | 1 | 0x3b |
+ -------------------------------------
+
+Pins on the device (for linking into audio routes) for RT1011:
+
+ * SPO
+
+Example:
+
+rt1011: codec@38 {
+ compatible = "realtek,rt1011";
+ reg = <0x38>;
+};
diff --git a/Documentation/devicetree/bindings/sound/rt1308.txt b/Documentation/devicetree/bindings/sound/rt1308.txt
new file mode 100755
index 000000000000..2d46084afce4
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/rt1308.txt
@@ -0,0 +1,17 @@
+RT1308 audio Amplifier
+
+This device supports I2C only.
+
+Required properties:
+
+- compatible : "realtek,rt1308".
+
+- reg : The I2C address of the device.
+
+
+Example:
+
+rt1308: rt1308@10 {
+ compatible = "realtek,rt1308";
+ reg = <0x10>;
+};
diff --git a/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt b/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt
index 58c341300552..cbf24bcd1b8d 100644
--- a/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt
+++ b/Documentation/devicetree/bindings/sound/st,stm32-i2s.txt
@@ -18,7 +18,7 @@ Required properties:
See Documentation/devicetree/bindings/dma/stm32-dma.txt.
- dma-names: Identifier for each DMA request line. Must be "tx" and "rx".
- pinctrl-names: should contain only value "default"
- - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt
+ - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
Optional properties:
- resets: Reference to a reset controller asserting the reset controller
diff --git a/Documentation/devicetree/bindings/sound/st,stm32-sai.txt b/Documentation/devicetree/bindings/sound/st,stm32-sai.txt
index 3f4467ff0aa2..944743dd9212 100644
--- a/Documentation/devicetree/bindings/sound/st,stm32-sai.txt
+++ b/Documentation/devicetree/bindings/sound/st,stm32-sai.txt
@@ -41,7 +41,7 @@ SAI subnodes required properties:
"tx": if sai sub-block is configured as playback DAI
"rx": if sai sub-block is configured as capture DAI
- pinctrl-names: should contain only value "default"
- - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt
+ - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
SAI subnodes Optional properties:
- st,sync: specify synchronization mode.
diff --git a/Documentation/devicetree/bindings/sound/sun4i-i2s.txt b/Documentation/devicetree/bindings/sound/sun4i-i2s.txt
deleted file mode 100644
index 61e71c1729e0..000000000000
--- a/Documentation/devicetree/bindings/sound/sun4i-i2s.txt
+++ /dev/null
@@ -1,45 +0,0 @@
-* Allwinner A10 I2S controller
-
-The I2S bus (Inter-IC sound bus) is a serial link for digital
-audio data transfer between devices in the system.
-
-Required properties:
-
-- compatible: should be one of the following:
- - "allwinner,sun4i-a10-i2s"
- - "allwinner,sun6i-a31-i2s"
- - "allwinner,sun8i-a83t-i2s"
- - "allwinner,sun8i-h3-i2s"
- - "allwinner,sun50i-a64-codec-i2s"
-- reg: physical base address of the controller and length of memory mapped
- region.
-- interrupts: should contain the I2S interrupt.
-- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
- Documentation/devicetree/bindings/dma/dma.txt
-- dma-names: should include "tx" and "rx".
-- clocks: a list of phandle + clock-specifer pairs, one for each entry in clock-names.
-- clock-names: should contain the following:
- - "apb" : clock for the I2S bus interface
- - "mod" : module clock for the I2S controller
-- #sound-dai-cells : Must be equal to 0
-
-Required properties for the following compatibles:
- - "allwinner,sun6i-a31-i2s"
- - "allwinner,sun8i-a83t-i2s"
- - "allwinner,sun8i-h3-i2s"
- - "allwinner,sun50i-a64-codec-i2s"
-- resets: phandle to the reset line for this codec
-
-Example:
-
-i2s0: i2s@1c22400 {
- #sound-dai-cells = <0>;
- compatible = "allwinner,sun4i-a10-i2s";
- reg = <0x01c22400 0x400>;
- interrupts = <GIC_SPI 16 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&apb0_gates 3>, <&i2s0_clk>;
- clock-names = "apb", "mod";
- dmas = <&dma SUN4I_DMA_NORMAL 3>,
- <&dma SUN4I_DMA_NORMAL 3>;
- dma-names = "rx", "tx";
-};
diff --git a/Documentation/devicetree/bindings/sound/sun50i-codec-analog.txt b/Documentation/devicetree/bindings/sound/sun50i-codec-analog.txt
deleted file mode 100644
index 056a098495cc..000000000000
--- a/Documentation/devicetree/bindings/sound/sun50i-codec-analog.txt
+++ /dev/null
@@ -1,14 +0,0 @@
-* Allwinner A64 Codec Analog Controls
-
-Required properties:
-- compatible: must be one of the following compatibles:
- - "allwinner,sun50i-a64-codec-analog"
-- reg: must contain the registers location and length
-- cpvdd-supply: Regulator supply for the headphone amplifier
-
-Example:
- codec_analog: codec-analog@1f015c0 {
- compatible = "allwinner,sun50i-a64-codec-analog";
- reg = <0x01f015c0 0x4>;
- cpvdd-supply = <&reg_eldo1>;
- };
diff --git a/Documentation/devicetree/bindings/sound/sun8i-a33-codec.txt b/Documentation/devicetree/bindings/sound/sun8i-a33-codec.txt
deleted file mode 100644
index 2ca3d138528e..000000000000
--- a/Documentation/devicetree/bindings/sound/sun8i-a33-codec.txt
+++ /dev/null
@@ -1,63 +0,0 @@
-Allwinner SUN8I audio codec
-------------------------------------
-
-On Sun8i-A33 SoCs, the audio is separated in different parts:
- - A DAI driver. It uses the "sun4i-i2s" driver which is
- documented here:
- Documentation/devicetree/bindings/sound/sun4i-i2s.txt
- - An analog part of the codec which is handled as PRCM registers.
- See Documentation/devicetree/bindings/sound/sun8i-codec-analog.txt
- - An digital part of the codec which is documented in this current
- binding documentation.
- - And finally, an audio card which links all the above components.
- The simple-audio card will be used.
- See Documentation/devicetree/bindings/sound/simple-card.txt
-
-This bindings documentation exposes Sun8i codec (digital part).
-
-Required properties:
-- compatible: must be "allwinner,sun8i-a33-codec"
-- reg: must contain the registers location and length
-- interrupts: must contain the codec interrupt
-- clocks: a list of phandle + clock-specifer pairs, one for each entry
- in clock-names.
-- clock-names: should contain followings:
- - "bus": the parent APB clock for this controller
- - "mod": the parent module clock
-
-Here is an example to add a sound card and the codec binding on sun8i SoCs that
-are similar to A33 using simple-card:
-
- sound {
- compatible = "simple-audio-card";
- simple-audio-card,name = "sun8i-a33-audio";
- simple-audio-card,format = "i2s";
- simple-audio-card,frame-master = <&link_codec>;
- simple-audio-card,bitclock-master = <&link_codec>;
- simple-audio-card,mclk-fs = <512>;
- simple-audio-card,aux-devs = <&codec_analog>;
- simple-audio-card,routing =
- "Left DAC", "Digital Left DAC",
- "Right DAC", "Digital Right DAC";
-
- simple-audio-card,cpu {
- sound-dai = <&dai>;
- };
-
- link_codec: simple-audio-card,codec {
- sound-dai = <&codec>;
- };
-
- soc@1c00000 {
- [...]
-
- audio-codec@1c22e00 {
- #sound-dai-cells = <0>;
- compatible = "allwinner,sun8i-a33-codec";
- reg = <0x01c22e00 0x400>;
- interrupts = <GIC_SPI 29 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&ccu CLK_BUS_CODEC>, <&ccu CLK_AC_DIG>;
- clock-names = "bus", "mod";
- };
- };
-
diff --git a/Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt b/Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt
deleted file mode 100644
index 0c64a209c2e9..000000000000
--- a/Documentation/devicetree/bindings/sound/sunxi,sun4i-spdif.txt
+++ /dev/null
@@ -1,42 +0,0 @@
-Allwinner Sony/Philips Digital Interface Format (S/PDIF) Controller
-
-The Allwinner S/PDIF audio block is a transceiver that allows the
-processor to receive and transmit digital audio via an coaxial cable or
-a fibre cable.
-For now only playback is supported.
-
-Required properties:
-
- - compatible : should be one of the following:
- - "allwinner,sun4i-a10-spdif": for the Allwinner A10 SoC
- - "allwinner,sun6i-a31-spdif": for the Allwinner A31 SoC
- - "allwinner,sun8i-h3-spdif": for the Allwinner H3 SoC
-
- - reg : Offset and length of the register set for the device.
-
- - interrupts : Contains the spdif interrupt.
-
- - dmas : Generic dma devicetree binding as described in
- Documentation/devicetree/bindings/dma/dma.txt.
-
- - dma-names : Two dmas have to be defined, "tx" and "rx".
-
- - clocks : Contains an entry for each entry in clock-names.
-
- - clock-names : Includes the following entries:
- "apb" clock for the spdif bus.
- "spdif" clock for spdif controller.
-
- - resets : reset specifier for the ahb reset (A31 and newer only)
-
-Example:
-
-spdif: spdif@1c21000 {
- compatible = "allwinner,sun4i-a10-spdif";
- reg = <0x01c21000 0x40>;
- interrupts = <13>;
- clocks = <&apb0_gates 1>, <&spdif_clk>;
- clock-names = "apb", "spdif";
- dmas = <&dma 0 2>, <&dma 0 2>;
- dma-names = "rx", "tx";
-};
diff --git a/Documentation/devicetree/bindings/sound/uda1334.txt b/Documentation/devicetree/bindings/sound/uda1334.txt
new file mode 100644
index 000000000000..f64071b25e8d
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/uda1334.txt
@@ -0,0 +1,17 @@
+UDA1334 audio CODEC
+
+This device uses simple GPIO pins for controlling codec settings.
+
+Required properties:
+
+ - compatible : "nxp,uda1334"
+ - nxp,mute-gpios: a GPIO spec for the MUTE pin.
+ - nxp,deemph-gpios: a GPIO spec for the De-emphasis pin
+
+Example:
+
+uda1334: audio-codec {
+ compatible = "nxp,uda1334";
+ nxp,mute-gpios = <&gpio1 8 GPIO_ACTIVE_LOW>;
+ nxp,deemph-gpios = <&gpio3 3 GPIO_ACTIVE_LOW>;
+};
diff --git a/Documentation/devicetree/bindings/soundwire/soundwire-controller.yaml b/Documentation/devicetree/bindings/soundwire/soundwire-controller.yaml
new file mode 100644
index 000000000000..1b43993bccdb
--- /dev/null
+++ b/Documentation/devicetree/bindings/soundwire/soundwire-controller.yaml
@@ -0,0 +1,82 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/soundwire/soundwire-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SoundWire Controller Generic Binding
+
+maintainers:
+ - Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
+ - Vinod Koul <vkoul@kernel.org>
+
+description: |
+ SoundWire busses can be described with a node for the SoundWire controller
+ device and a set of child nodes for each SoundWire slave on the bus.
+
+properties:
+ $nodename:
+ pattern: "^soundwire(@.*)?$"
+
+ "#address-cells":
+ const: 2
+
+ "#size-cells":
+ const: 0
+
+patternProperties:
+ "^.*@[0-9a-f],[0-9a-f]$":
+ type: object
+
+ properties:
+ compatible:
+ pattern: "^sdw[0-9a-f]{1}[0-9a-f]{4}[0-9a-f]{4}[0-9a-f]{2}$"
+ description: Is the textual representation of SoundWire Enumeration
+ address. compatible string should contain SoundWire Version ID,
+ Manufacturer ID, Part ID and Class ID in order and shall be in
+ lower-case hexadecimal with leading zeroes.
+ Valid sizes of these fields are
+ Version ID is 1 nibble, number '0x1' represents SoundWire 1.0
+ and '0x2' represents SoundWire 1.1 and so on.
+ MFD is 4 nibbles
+ PID is 4 nibbles
+ CID is 2 nibbles
+ More Information on detail of encoding of these fields can be
+ found in MIPI Alliance DisCo & SoundWire 1.0 Specifications.
+
+ reg:
+ maxItems: 1
+ description:
+ Link ID followed by Instance ID of SoundWire Device Address.
+
+ required:
+ - compatible
+ - reg
+
+required:
+ - "#address-cells"
+ - "#size-cells"
+
+examples:
+ - |
+ soundwire@c2d0000 {
+ #address-cells = <2>;
+ #size-cells = <0>;
+ reg = <0x0c2d0000 0x2000>;
+
+ speaker@0,1 {
+ compatible = "sdw10217201000";
+ reg = <0 1>;
+ powerdown-gpios = <&wcdpinctrl 2 0>;
+ #thermal-sensor-cells = <0>;
+ };
+
+ speaker@0,2 {
+ compatible = "sdw10217201000";
+ reg = <0 2>;
+ powerdown-gpios = <&wcdpinctrl 2 0>;
+ #thermal-sensor-cells = <0>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml b/Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml
new file mode 100644
index 000000000000..6d1329c28170
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/allwinner,sun4i-a10-spi.yaml
@@ -0,0 +1,87 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/allwinner,sun4i-a10-spi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 SPI Controller Device Tree Bindings
+
+allOf:
+ - $ref: "spi-controller.yaml"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells": true
+ "#size-cells": true
+
+ compatible:
+ const: allwinner,sun4i-a10-spi
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: ahb
+ - const: mod
+
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+ num-cs: true
+
+patternProperties:
+ "^.*@[0-9a-f]+":
+ type: object
+ properties:
+ reg:
+ items:
+ minimum: 0
+ maximum: 4
+
+ spi-rx-bus-width:
+ const: 1
+
+ spi-tx-bus-width:
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ spi1: spi@1c06000 {
+ compatible = "allwinner,sun4i-a10-spi";
+ reg = <0x01c06000 0x1000>;
+ interrupts = <11>;
+ clocks = <&ahb_gates 21>, <&spi1_clk>;
+ clock-names = "ahb", "mod";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml b/Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml
new file mode 100644
index 000000000000..f36c46d236d7
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/allwinner,sun6i-a31-spi.yaml
@@ -0,0 +1,107 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/allwinner,sun6i-a31-spi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 SPI Controller Device Tree Bindings
+
+allOf:
+ - $ref: "spi-controller.yaml"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ "#address-cells": true
+ "#size-cells": true
+
+ compatible:
+ enum:
+ - allwinner,sun6i-a31-spi
+ - allwinner,sun8i-h3-spi
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Bus Clock
+ - description: Module Clock
+
+ clock-names:
+ items:
+ - const: ahb
+ - const: mod
+
+ resets:
+ maxItems: 1
+
+ dmas:
+ items:
+ - description: RX DMA Channel
+ - description: TX DMA Channel
+
+ dma-names:
+ items:
+ - const: rx
+ - const: tx
+
+ num-cs: true
+
+patternProperties:
+ "^.*@[0-9a-f]+":
+ type: object
+ properties:
+ reg:
+ items:
+ minimum: 0
+ maximum: 4
+
+ spi-rx-bus-width:
+ const: 1
+
+ spi-tx-bus-width:
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ spi1: spi@1c69000 {
+ compatible = "allwinner,sun6i-a31-spi";
+ reg = <0x01c69000 0x1000>;
+ interrupts = <0 66 4>;
+ clocks = <&ahb1_gates 21>, <&spi1_clk>;
+ clock-names = "ahb", "mod";
+ resets = <&ahb1_rst 21>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+ - |
+ spi0: spi@1c68000 {
+ compatible = "allwinner,sun8i-h3-spi";
+ reg = <0x01c68000 0x1000>;
+ interrupts = <0 65 4>;
+ clocks = <&ccu 30>, <&ccu 82>;
+ clock-names = "ahb", "mod";
+ dmas = <&dma 23>, <&dma 23>;
+ dma-names = "rx", "tx";
+ resets = <&ccu 15>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml b/Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml
new file mode 100644
index 000000000000..49b617c98ae7
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml
@@ -0,0 +1,67 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/spi/amlogic,meson-gx-spicc.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson SPI Communication Controller
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+allOf:
+ - $ref: "spi-controller.yaml#"
+
+description: |
+ The Meson SPICC is a generic SPI controller for general purpose Full-Duplex
+ communications with dedicated 16 words RX/TX PIO FIFOs.
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson-gx-spicc # SPICC controller on Amlogic GX and compatible SoCs
+ - amlogic,meson-axg-spicc # SPICC controller on Amlogic AXG and compatible SoCs
+
+ interrupts:
+ maxItems: 1
+
+ reg:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ description: input clock for the baud rate generator
+ items:
+ - const: core
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ spi@c1108d80 {
+ compatible = "amlogic,meson-gx-spicc";
+ reg = <0xc1108d80 0x80>;
+ interrupts = <112>;
+ clocks = <&clk81>;
+ clock-names = "core";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ethernet-switch@0 {
+ compatible = "micrel,ks8995m";
+ spi-max-frequency = <1000000>;
+ reg = <0>;
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/spi/amlogic,meson6-spifc.yaml b/Documentation/devicetree/bindings/spi/amlogic,meson6-spifc.yaml
new file mode 100644
index 000000000000..5f33c39d820b
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/amlogic,meson6-spifc.yaml
@@ -0,0 +1,53 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/spi/amlogic,meson6-spifc.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson SPI Flash Controller
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+allOf:
+ - $ref: "spi-controller.yaml#"
+
+description: |
+ The Meson SPIFC is a controller optimized for communication with SPI
+ NOR memories, without DMA support and a 64-byte unified transmit /
+ receive buffer.
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson6-spifc # SPI Flash Controller on Meson6 and compatible SoCs
+ - amlogic,meson-gxbb-spifc # SPI Flash Controller on GXBB and compatible SoCs
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - clocks
+
+examples:
+ - |
+ spi@c1108c80 {
+ compatible = "amlogic,meson6-spifc";
+ reg = <0xc1108c80 0x80>;
+ clocks = <&clk81>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ flash: flash@0 {
+ compatible = "spansion,m25p80", "jedec,spi-nor";
+ reg = <0>;
+ spi-max-frequency = <40000000>;
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/spi/nuvoton,npcm-fiu.txt b/Documentation/devicetree/bindings/spi/nuvoton,npcm-fiu.txt
new file mode 100644
index 000000000000..a388005842ad
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/nuvoton,npcm-fiu.txt
@@ -0,0 +1,47 @@
+* Nuvoton FLASH Interface Unit (FIU) SPI Controller
+
+NPCM FIU supports single, dual and quad communication interface.
+
+The NPCM7XX supports three FIU modules,
+FIU0 and FIUx supports two chip selects,
+FIU3 support four chip select.
+
+Required properties:
+ - compatible : "nuvoton,npcm750-fiu" for the NPCM7XX BMC
+ - #address-cells : should be 1.
+ - #size-cells : should be 0.
+ - reg : the first contains the register location and length,
+ the second contains the memory mapping address and length
+ - reg-names: Should contain the reg names "control" and "memory"
+ - clocks : phandle of FIU reference clock.
+
+Required properties in case the pins can be muxed:
+ - pinctrl-names : a pinctrl state named "default" must be defined.
+ - pinctrl-0 : phandle referencing pin configuration of the device.
+
+Optional property:
+ - nuvoton,spix-mode: enable spix-mode for an expansion bus to an ASIC or CPLD.
+
+Aliases:
+- All the FIU controller nodes should be represented in the aliases node using
+ the following format 'fiu{n}' where n is a unique number for the alias.
+ In the NPCM7XX BMC:
+ fiu0 represent fiu 0 controller
+ fiu1 represent fiu 3 controller
+ fiu2 represent fiu x controller
+
+Example:
+fiu3: spi@c00000000 {
+ compatible = "nuvoton,npcm750-fiu";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0xfb000000 0x1000>, <0x80000000 0x10000000>;
+ reg-names = "control", "memory";
+ clocks = <&clk NPCM7XX_CLK_AHB>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&spi3_pins>;
+ spi-nor@0 {
+ ...
+ };
+};
+
diff --git a/Documentation/devicetree/bindings/spi/spi-bus.txt b/Documentation/devicetree/bindings/spi/spi-bus.txt
index 1f6e86f787ef..e07783505498 100644
--- a/Documentation/devicetree/bindings/spi/spi-bus.txt
+++ b/Documentation/devicetree/bindings/spi/spi-bus.txt
@@ -1,111 +1 @@
-SPI (Serial Peripheral Interface) busses
-
-SPI busses can be described with a node for the SPI controller device
-and a set of child nodes for each SPI slave on the bus. The system's SPI
-controller may be described for use in SPI master mode or in SPI slave mode,
-but not for both at the same time.
-
-The SPI controller node requires the following properties:
-- compatible - Name of SPI bus controller following generic names
- recommended practice.
-
-In master mode, the SPI controller node requires the following additional
-properties:
-- #address-cells - number of cells required to define a chip select
- address on the SPI bus.
-- #size-cells - should be zero.
-
-In slave mode, the SPI controller node requires one additional property:
-- spi-slave - Empty property.
-
-No other properties are required in the SPI bus node. It is assumed
-that a driver for an SPI bus device will understand that it is an SPI bus.
-However, the binding does not attempt to define the specific method for
-assigning chip select numbers. Since SPI chip select configuration is
-flexible and non-standardized, it is left out of this binding with the
-assumption that board specific platform code will be used to manage
-chip selects. Individual drivers can define additional properties to
-support describing the chip select layout.
-
-Optional properties (master mode only):
-- cs-gpios - gpios chip select.
-- num-cs - total number of chipselects.
-
-If cs-gpios is used the number of chip selects will be increased automatically
-with max(cs-gpios > hw cs).
-
-So if for example the controller has 2 CS lines, and the cs-gpios
-property looks like this:
-
-cs-gpios = <&gpio1 0 0>, <0>, <&gpio1 1 0>, <&gpio1 2 0>;
-
-Then it should be configured so that num_chipselect = 4 with the
-following mapping:
-
-cs0 : &gpio1 0 0
-cs1 : native
-cs2 : &gpio1 1 0
-cs3 : &gpio1 2 0
-
-
-SPI slave nodes must be children of the SPI controller node.
-
-In master mode, one or more slave nodes (up to the number of chip selects) can
-be present. Required properties are:
-- compatible - Name of SPI device following generic names recommended
- practice.
-- reg - Chip select address of device.
-- spi-max-frequency - Maximum SPI clocking speed of device in Hz.
-
-In slave mode, the (single) slave node is optional.
-If present, it must be called "slave". Required properties are:
-- compatible - Name of SPI device following generic names recommended
- practice.
-
-All slave nodes can contain the following optional properties:
-- spi-cpol - Empty property indicating device requires inverse clock
- polarity (CPOL) mode.
-- spi-cpha - Empty property indicating device requires shifted clock
- phase (CPHA) mode.
-- spi-cs-high - Empty property indicating device requires chip select
- active high.
-- spi-3wire - Empty property indicating device requires 3-wire mode.
-- spi-lsb-first - Empty property indicating device requires LSB first mode.
-- spi-tx-bus-width - The bus width (number of data wires) that is used for MOSI.
- Defaults to 1 if not present.
-- spi-rx-bus-width - The bus width (number of data wires) that is used for MISO.
- Defaults to 1 if not present.
-- spi-rx-delay-us - Microsecond delay after a read transfer.
-- spi-tx-delay-us - Microsecond delay after a write transfer.
-
-Some SPI controllers and devices support Dual and Quad SPI transfer mode.
-It allows data in the SPI system to be transferred using 2 wires (DUAL) or 4
-wires (QUAD).
-Now the value that spi-tx-bus-width and spi-rx-bus-width can receive is
-only 1 (SINGLE), 2 (DUAL) and 4 (QUAD).
-Dual/Quad mode is not allowed when 3-wire mode is used.
-
-If a gpio chipselect is used for the SPI slave the gpio number will be passed
-via the SPI master node cs-gpios property.
-
-SPI example for an MPC5200 SPI bus:
- spi@f00 {
- #address-cells = <1>;
- #size-cells = <0>;
- compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
- reg = <0xf00 0x20>;
- interrupts = <2 13 0 2 14 0>;
- interrupt-parent = <&mpc5200_pic>;
-
- ethernet-switch@0 {
- compatible = "micrel,ks8995m";
- spi-max-frequency = <1000000>;
- reg = <0>;
- };
-
- codec@1 {
- compatible = "ti,tlv320aic26";
- spi-max-frequency = <100000>;
- reg = <1>;
- };
- };
+This file has moved to spi-controller.yaml.
diff --git a/Documentation/devicetree/bindings/spi/spi-controller.yaml b/Documentation/devicetree/bindings/spi/spi-controller.yaml
new file mode 100644
index 000000000000..732339275848
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-controller.yaml
@@ -0,0 +1,160 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-controller.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SPI Controller Generic Binding
+
+maintainers:
+ - Mark Brown <broonie@kernel.org>
+
+description: |
+ SPI busses can be described with a node for the SPI controller device
+ and a set of child nodes for each SPI slave on the bus. The system SPI
+ controller may be described for use in SPI master mode or in SPI slave mode,
+ but not for both at the same time.
+
+properties:
+ $nodename:
+ pattern: "^spi(@.*|-[0-9a-f])*$"
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ cs-gpios:
+ description: |
+ GPIOs used as chip selects.
+ If that property is used, the number of chip selects will be
+ increased automatically with max(cs-gpios, hardware chip selects).
+
+ So if, for example, the controller has 4 CS lines, and the
+ cs-gpios looks like this
+ cs-gpios = <&gpio1 0 0>, <0>, <&gpio1 1 0>, <&gpio1 2 0>;
+
+ Then it should be configured so that num_chipselect = 4, with
+ the following mapping
+ cs0 : &gpio1 0 0
+ cs1 : native
+ cs2 : &gpio1 1 0
+ cs3 : &gpio1 2 0
+
+ num-cs:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ Total number of chip selects.
+
+ spi-slave:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The SPI controller acts as a slave, instead of a master.
+
+patternProperties:
+ "^slave$":
+ type: object
+
+ properties:
+ compatible:
+ description:
+ Compatible of the SPI device.
+
+ required:
+ - compatible
+
+ "^.*@[0-9a-f]+$":
+ type: object
+
+ properties:
+ compatible:
+ description:
+ Compatible of the SPI device.
+
+ reg:
+ minimum: 0
+ maximum: 256
+ description:
+ Chip select used by the device.
+
+ spi-3wire:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires 3-wire mode.
+
+ spi-cpha:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires shifted clock phase (CPHA) mode.
+
+ spi-cpol:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires inverse clock polarity (CPOL) mode.
+
+ spi-cs-high:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires the chip select active high.
+
+ spi-lsb-first:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ The device requires the LSB first mode.
+
+ spi-max-frequency:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ Maximum SPI clocking speed of the device in Hz.
+
+ spi-rx-bus-width:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [ 1, 2, 4 ]
+ - default: 1
+ description:
+ Bus width to the SPI bus used for MISO.
+
+ spi-rx-delay-us:
+ description:
+ Delay, in microseconds, after a read transfer.
+
+ spi-tx-bus-width:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [ 1, 2, 4 ]
+ - default: 1
+ description:
+ Bus width to the SPI bus used for MOSI.
+
+ spi-tx-delay-us:
+ description:
+ Delay, in microseconds, after a write transfer.
+
+ required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ spi@f00 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
+ reg = <0xf00 0x20>;
+ interrupts = <2 13 0 2 14 0>;
+ interrupt-parent = <&mpc5200_pic>;
+
+ ethernet-switch@0 {
+ compatible = "micrel,ks8995m";
+ spi-max-frequency = <1000000>;
+ reg = <0>;
+ };
+
+ codec@1 {
+ compatible = "ti,tlv320aic26";
+ spi-max-frequency = <100000>;
+ reg = <1>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt b/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
index dcc7eaada511..162e024b95a0 100644
--- a/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
@@ -6,6 +6,7 @@ Required properties:
or
"fsl,ls2080a-dspi" followed by "fsl,ls2085a-dspi"
"fsl,ls1012a-dspi" followed by "fsl,ls1021a-v1.0-dspi"
+ "fsl,ls1088a-dspi" followed by "fsl,ls1021a-v1.0-dspi"
- reg : Offset and length of the register set for the device
- interrupts : Should contain SPI controller interrupt
- clocks: from common clock binding: handle to dspi clock.
diff --git a/Documentation/devicetree/bindings/spi/spi-fsl-qspi.txt b/Documentation/devicetree/bindings/spi/spi-fsl-qspi.txt
index e8f1d627d288..69dc5d57b1ef 100644
--- a/Documentation/devicetree/bindings/spi/spi-fsl-qspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-fsl-qspi.txt
@@ -3,9 +3,8 @@
Required properties:
- compatible : Should be "fsl,vf610-qspi", "fsl,imx6sx-qspi",
"fsl,imx7d-qspi", "fsl,imx6ul-qspi",
- "fsl,ls1021a-qspi"
+ "fsl,ls1021a-qspi", "fsl,ls2080a-qspi"
or
- "fsl,ls2080a-qspi" followed by "fsl,ls1021a-qspi",
"fsl,ls1043a-qspi" followed by "fsl,ls1021a-qspi"
- reg : the first contains the register location and length,
the second contains the memory mapping address and length
@@ -34,7 +33,11 @@ qspi0: quadspi@40044000 {
clock-names = "qspi_en", "qspi";
flash0: s25fl128s@0 {
- ....
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "spansion,s25fl128s", "jedec,spi-nor";
+ spi-max-frequency = <50000000>;
+ reg = <0>;
};
};
diff --git a/Documentation/devicetree/bindings/spi/spi-gpio.txt b/Documentation/devicetree/bindings/spi/spi-gpio.txt
deleted file mode 100644
index 52db562f17a4..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-gpio.txt
+++ /dev/null
@@ -1,43 +0,0 @@
-SPI-GPIO devicetree bindings
-
-This represents a group of 3-n GPIO lines used for bit-banged SPI on dedicated
-GPIO lines.
-
-Required properties:
-
- - compatible: should be set to "spi-gpio"
- - #address-cells: should be set to <0x1>
- - ranges
- - sck-gpios: GPIO spec for the SCK line to use
- - miso-gpios: GPIO spec for the MISO line to use
- - mosi-gpios: GPIO spec for the MOSI line to use
- - cs-gpios: GPIOs to use for chipselect lines.
- Not needed if num-chipselects = <0>.
- - num-chipselects: Number of chipselect lines. Should be <0> if a single device
- with no chip select is connected.
-
-Deprecated bindings:
-
-These legacy GPIO line bindings can alternatively be used to define the
-GPIO lines used, they should not be used in new device trees.
-
- - gpio-sck: GPIO spec for the SCK line to use
- - gpio-miso: GPIO spec for the MISO line to use
- - gpio-mosi: GPIO spec for the MOSI line to use
-
-Example:
-
- spi {
- compatible = "spi-gpio";
- #address-cells = <0x1>;
- ranges;
-
- sck-gpios = <&gpio 95 0>;
- miso-gpios = <&gpio 98 0>;
- mosi-gpios = <&gpio 97 0>;
- cs-gpios = <&gpio 125 0>;
- num-chipselects = <1>;
-
- /* clients */
- };
-
diff --git a/Documentation/devicetree/bindings/spi/spi-gpio.yaml b/Documentation/devicetree/bindings/spi/spi-gpio.yaml
new file mode 100644
index 000000000000..55c4f1705f07
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-gpio.yaml
@@ -0,0 +1,72 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-gpio.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: SPI-GPIO devicetree bindings
+
+maintainers:
+ - Rob Herring <robh@kernel.org>
+
+description:
+ This represents a group of 3-n GPIO lines used for bit-banged SPI on
+ dedicated GPIO lines.
+
+allOf:
+ - $ref: "/schemas/spi/spi-controller.yaml#"
+
+properties:
+ compatible:
+ const: spi-gpio
+
+ sck-gpios:
+ description: GPIO spec for the SCK line to use
+ maxItems: 1
+
+ miso-gpios:
+ description: GPIO spec for the MISO line to use
+ maxItems: 1
+
+ mosi-gpios:
+ description: GPIO spec for the MOSI line to use
+ maxItems: 1
+
+ cs-gpios:
+ description: GPIOs to use for chipselect lines.
+ Not needed if num-chipselects = <0>.
+ minItems: 1
+ maxItems: 1024
+
+ num-chipselects:
+ description: Number of chipselect lines. Should be <0> if a single device
+ with no chip select is connected.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ # Deprecated properties
+ gpio-sck: false
+ gpio-miso: false
+ gpio-mosi: false
+
+required:
+ - compatible
+ - num-chipselects
+ - sck-gpios
+
+examples:
+ - |
+ spi {
+ compatible = "spi-gpio";
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+
+ sck-gpios = <&gpio 95 0>;
+ miso-gpios = <&gpio 98 0>;
+ mosi-gpios = <&gpio 97 0>;
+ cs-gpios = <&gpio 125 0>;
+ num-chipselects = <1>;
+
+ /* clients */
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/spi/spi-meson.txt b/Documentation/devicetree/bindings/spi/spi-meson.txt
deleted file mode 100644
index b7f5e86fed22..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-meson.txt
+++ /dev/null
@@ -1,55 +0,0 @@
-Amlogic Meson SPI controllers
-
-* SPIFC (SPI Flash Controller)
-
-The Meson SPIFC is a controller optimized for communication with SPI
-NOR memories, without DMA support and a 64-byte unified transmit /
-receive buffer.
-
-Required properties:
- - compatible: should be "amlogic,meson6-spifc" or "amlogic,meson-gxbb-spifc"
- - reg: physical base address and length of the controller registers
- - clocks: phandle of the input clock for the baud rate generator
- - #address-cells: should be 1
- - #size-cells: should be 0
-
- spi@c1108c80 {
- compatible = "amlogic,meson6-spifc";
- reg = <0xc1108c80 0x80>;
- clocks = <&clk81>;
- #address-cells = <1>;
- #size-cells = <0>;
- };
-
-* SPICC (SPI Communication Controller)
-
-The Meson SPICC is generic SPI controller for general purpose Full-Duplex
-communications with dedicated 16 words RX/TX PIO FIFOs.
-
-Required properties:
- - compatible: should be:
- "amlogic,meson-gx-spicc" on Amlogic GX and compatible SoCs.
- "amlogic,meson-axg-spicc" on Amlogic AXG and compatible SoCs
- - reg: physical base address and length of the controller registers
- - interrupts: The interrupt specifier
- - clock-names: Must contain "core"
- - clocks: phandle of the input clock for the baud rate generator
- - #address-cells: should be 1
- - #size-cells: should be 0
-
-Optional properties:
- - resets: phandle of the internal reset line
-
-See ../spi/spi-bus.txt for more details on SPI bus master and slave devices
-required and optional properties.
-
-Example :
- spi@c1108d80 {
- compatible = "amlogic,meson-gx-spicc";
- reg = <0xc1108d80 0x80>;
- interrupts = <GIC_SPI 112 IRQ_TYPE_LEVEL_HIGH>;
- clock-names = "core";
- clocks = <&clk81>;
- #address-cells = <1>;
- #size-cells = <0>;
- };
diff --git a/Documentation/devicetree/bindings/spi/spi-mt65xx.txt b/Documentation/devicetree/bindings/spi/spi-mt65xx.txt
index c0f6c8ecfa2e..3a8079eb18c8 100644
--- a/Documentation/devicetree/bindings/spi/spi-mt65xx.txt
+++ b/Documentation/devicetree/bindings/spi/spi-mt65xx.txt
@@ -5,6 +5,7 @@ Required properties:
- mediatek,mt2701-spi: for mt2701 platforms
- mediatek,mt2712-spi: for mt2712 platforms
- mediatek,mt6589-spi: for mt6589 platforms
+ - mediatek,mt6765-spi: for mt6765 platforms
- mediatek,mt7622-spi: for mt7622 platforms
- "mediatek,mt7629-spi", "mediatek,mt7622-spi": for mt7629 platforms
- mediatek,mt8135-spi: for mt8135 platforms
diff --git a/Documentation/devicetree/bindings/spi/spi-pl022.yaml b/Documentation/devicetree/bindings/spi/spi-pl022.yaml
new file mode 100644
index 000000000000..dfb697c69341
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-pl022.yaml
@@ -0,0 +1,165 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-pl022.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM PL022 SPI controller
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+
+allOf:
+ - $ref: "spi-controller.yaml#"
+
+# We need a select here so we don't match all nodes with 'arm,primecell'
+select:
+ properties:
+ compatible:
+ contains:
+ const: arm,pl022
+ required:
+ - compatible
+
+properties:
+ compatible:
+ items:
+ - const: arm,pl022
+ - const: arm,primecell
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ maxItems: 2
+
+ clock-names:
+ items:
+ - enum:
+ - SSPCLK
+ - sspclk
+ - const: apb_pclk
+
+ pl022,autosuspend-delay:
+ description: delay in ms following transfer completion before the
+ runtime power management system suspends the device. A setting of 0
+ indicates no delay and the device will be suspended immediately.
+ $ref: "/schemas/types.yaml#/definitions/uint32"
+
+ pl022,rt:
+ description: indicates the controller should run the message pump with realtime
+ priority to minimise the transfer latency on the bus (boolean)
+ type: boolean
+
+ dmas:
+ description:
+ Two or more DMA channel specifiers following the convention outlined
+ in bindings/dma/dma.txt
+ minItems: 2
+ maxItems: 32
+
+ dma-names:
+ description:
+ There must be at least one channel named "tx" for transmit and named "rx"
+ for receive.
+ minItems: 2
+ maxItems: 32
+ additionalItems: true
+ items:
+ - const: rx
+ - const: tx
+
+patternProperties:
+ "^[a-zA-Z][a-zA-Z0-9,+\\-._]{0,63}@[0-9a-f]+$":
+ type: object
+ # SPI slave nodes must be children of the SPI master node and can
+ # contain the following properties.
+ properties:
+ pl022,interface:
+ description: SPI interface type
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum:
+ - 0 # SPI
+ - 1 # Texas Instruments Synchronous Serial Frame Format
+ - 2 # Microwire (Half Duplex)
+
+ pl022,com-mode:
+ description: Specifies the transfer mode
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum:
+ - 0 # interrupt mode
+ - 1 # polling mode
+ - 2 # DMA mode
+ default: 1
+
+ pl022,rx-level-trig:
+ description: Rx FIFO watermark level
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - minimum: 0
+ maximum: 4
+
+ pl022,tx-level-trig:
+ description: Tx FIFO watermark level
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - minimum: 0
+ maximum: 4
+
+ pl022,ctrl-len:
+ description: Microwire interface - Control length
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - minimum: 0x03
+ maximum: 0x1f
+
+ pl022,wait-state:
+ description: Microwire interface - Wait state
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum: [ 0, 1 ]
+
+ pl022,duplex:
+ description: Microwire interface - Full/Half duplex
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/uint32"
+ - enum: [ 0, 1 ]
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ spi@e0100000 {
+ compatible = "arm,pl022", "arm,primecell";
+ reg = <0xe0100000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ interrupts = <0 31 0x4>;
+ dmas = <&dma_controller 23 1>,
+ <&dma_controller 24 0>;
+ dma-names = "rx", "tx";
+
+ m25p80@1 {
+ compatible = "st,m25p80";
+ reg = <1>;
+ spi-max-frequency = <12000000>;
+ spi-cpol;
+ spi-cpha;
+ pl022,interface = <0>;
+ pl022,com-mode = <0x2>;
+ pl022,rx-level-trig = <0>;
+ pl022,tx-level-trig = <0>;
+ pl022,ctrl-len = <0x11>;
+ pl022,wait-state = <0>;
+ pl022,duplex = <0>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/spi/spi-sprd-adi.txt b/Documentation/devicetree/bindings/spi/spi-sprd-adi.txt
index 8de589b376ce..2567c829e2dc 100644
--- a/Documentation/devicetree/bindings/spi/spi-sprd-adi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-sprd-adi.txt
@@ -25,18 +25,23 @@ data by ADI software channels at the same time, or two parallel routine of setti
ADI registers will make ADI controller registers chaos to lead incorrect results.
Then we need one hardware spinlock to synchronize between the multiple subsystems.
+The new version ADI controller supplies multiple master channels for different
+subsystem accessing, that means no need to add hardware spinlock to synchronize,
+thus change the hardware spinlock support to be optional to keep backward
+compatibility.
+
Required properties:
- compatible: Should be "sprd,sc9860-adi".
- reg: Offset and length of ADI-SPI controller register space.
-- hwlocks: Reference to a phandle of a hwlock provider node.
-- hwlock-names: Reference to hwlock name strings defined in the same order
- as the hwlocks, should be "adi".
- #address-cells: Number of cells required to define a chip select address
on the ADI-SPI bus. Should be set to 1.
- #size-cells: Size of cells required to define a chip select address size
on the ADI-SPI bus. Should be set to 0.
Optional properties:
+- hwlocks: Reference to a phandle of a hwlock provider node.
+- hwlock-names: Reference to hwlock name strings defined in the same order
+ as the hwlocks, should be "adi".
- sprd,hw-channels: This is an array of channel values up to 49 channels.
The first value specifies the hardware channel id which is used to
transfer data triggered by hardware automatically, and the second
diff --git a/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt b/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt
index adeeb63e84b9..bfc038b9478d 100644
--- a/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-stm32-qspi.txt
@@ -19,8 +19,11 @@ Required properties:
- reg: chip-Select number (QSPI controller may connect 2 flashes)
- spi-max-frequency: max frequency of spi bus
-Optional property:
+Optional properties:
- spi-rx-bus-width: see ./spi-bus.txt for the description
+- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
+Documentation/devicetree/bindings/dma/dma.txt.
+- dma-names: DMA request names should include "tx" and "rx" if present.
Example:
diff --git a/Documentation/devicetree/bindings/spi/spi-sun4i.txt b/Documentation/devicetree/bindings/spi/spi-sun4i.txt
deleted file mode 100644
index c75d604a8290..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-sun4i.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-Allwinner A10 SPI controller
-
-Required properties:
-- compatible: Should be "allwinner,sun4-a10-spi".
-- reg: Should contain register location and length.
-- interrupts: Should contain interrupt.
-- clocks: phandle to the clocks feeding the SPI controller. Two are
- needed:
- - "ahb": the gated AHB parent clock
- - "mod": the parent module clock
-- clock-names: Must contain the clock names described just above
-
-Example:
-
-spi1: spi@1c06000 {
- compatible = "allwinner,sun4i-a10-spi";
- reg = <0x01c06000 0x1000>;
- interrupts = <11>;
- clocks = <&ahb_gates 21>, <&spi1_clk>;
- clock-names = "ahb", "mod";
- #address-cells = <1>;
- #size-cells = <0>;
-};
diff --git a/Documentation/devicetree/bindings/spi/spi-sun6i.txt b/Documentation/devicetree/bindings/spi/spi-sun6i.txt
deleted file mode 100644
index 435a8e0731ac..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-sun6i.txt
+++ /dev/null
@@ -1,44 +0,0 @@
-Allwinner A31/H3 SPI controller
-
-Required properties:
-- compatible: Should be "allwinner,sun6i-a31-spi" or "allwinner,sun8i-h3-spi".
-- reg: Should contain register location and length.
-- interrupts: Should contain interrupt.
-- clocks: phandle to the clocks feeding the SPI controller. Two are
- needed:
- - "ahb": the gated AHB parent clock
- - "mod": the parent module clock
-- clock-names: Must contain the clock names described just above
-- resets: phandle to the reset controller asserting this device in
- reset
-
-Optional properties:
-- dmas: DMA specifiers for rx and tx dma. See the DMA client binding,
- Documentation/devicetree/bindings/dma/dma.txt
-- dma-names: DMA request names should include "rx" and "tx" if present.
-
-Example:
-
-spi1: spi@1c69000 {
- compatible = "allwinner,sun6i-a31-spi";
- reg = <0x01c69000 0x1000>;
- interrupts = <0 66 4>;
- clocks = <&ahb1_gates 21>, <&spi1_clk>;
- clock-names = "ahb", "mod";
- resets = <&ahb1_rst 21>;
-};
-
-spi0: spi@1c68000 {
- compatible = "allwinner,sun8i-h3-spi";
- reg = <0x01c68000 0x1000>;
- interrupts = <GIC_SPI 65 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&ccu CLK_BUS_SPI0>, <&ccu CLK_SPI0>;
- clock-names = "ahb", "mod";
- dmas = <&dma 23>, <&dma 23>;
- dma-names = "rx", "tx";
- pinctrl-names = "default";
- pinctrl-0 = <&spi0_pins>;
- resets = <&ccu RST_BUS_SPI0>;
- #address-cells = <1>;
- #size-cells = <0>;
-};
diff --git a/Documentation/devicetree/bindings/spi/spi-synquacer.txt b/Documentation/devicetree/bindings/spi/spi-synquacer.txt
new file mode 100644
index 000000000000..291dfa692d0a
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-synquacer.txt
@@ -0,0 +1,27 @@
+* Socionext Synquacer HS-SPI bindings
+
+Required Properties:
+- compatible: should be "socionext,synquacer-spi"
+- reg: physical base address of the controller and length of memory mapped
+ region.
+- interrupts: should contain the "spi_rx", "spi_tx" and "spi_fault" interrupts.
+- clocks: core clock iHCLK. Optional rate clock iPCLK (default is iHCLK)
+- clock-names: Shall be "iHCLK" and "iPCLK" respectively
+
+Optional Properties:
+- socionext,use-rtm: boolean, if required to use "retimed clock" for RX
+- socionext,set-aces: boolean, if same active clock edges field to be set.
+
+Example:
+
+ spi0: spi@ff110000 {
+ compatible = "socionext,synquacer-spi";
+ reg = <0xff110000 0x1000>;
+ interrupts = <GIC_SPI 160 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 161 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 162 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&clk_hsspi>;
+ clock-names = "iHCLK";
+ socionext,use-rtm;
+ socionext,set-aces;
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi_pl022.txt b/Documentation/devicetree/bindings/spi/spi_pl022.txt
deleted file mode 100644
index 7638b4968ddb..000000000000
--- a/Documentation/devicetree/bindings/spi/spi_pl022.txt
+++ /dev/null
@@ -1,70 +0,0 @@
-ARM PL022 SPI controller
-
-Required properties:
-- compatible : "arm,pl022", "arm,primecell"
-- reg : Offset and length of the register set for the device
-- interrupts : Should contain SPI controller interrupt
-- num-cs : total number of chipselects
-
-Optional properties:
-- cs-gpios : should specify GPIOs used for chipselects.
- The gpios will be referred to as reg = <index> in the SPI child nodes.
- If unspecified, a single SPI device without a chip select can be used.
-- pl022,autosuspend-delay : delay in ms following transfer completion before
- the runtime power management system suspends the
- device. A setting of 0 indicates no delay and the
- device will be suspended immediately
-- pl022,rt : indicates the controller should run the message pump with realtime
- priority to minimise the transfer latency on the bus (boolean)
-- dmas : Two or more DMA channel specifiers following the convention outlined
- in bindings/dma/dma.txt
-- dma-names: Names for the dma channels, if present. There must be at
- least one channel named "tx" for transmit and named "rx" for
- receive.
-
-
-SPI slave nodes must be children of the SPI master node and can
-contain the following properties.
-
-- pl022,interface : interface type:
- 0: SPI
- 1: Texas Instruments Synchronous Serial Frame Format
- 2: Microwire (Half Duplex)
-- pl022,com-mode : specifies the transfer mode:
- 0: interrupt mode
- 1: polling mode (default mode if property not present)
- 2: DMA mode
-- pl022,rx-level-trig : Rx FIFO watermark level
-- pl022,tx-level-trig : Tx FIFO watermark level
-- pl022,ctrl-len : Microwire interface: Control length
-- pl022,wait-state : Microwire interface: Wait state
-- pl022,duplex : Microwire interface: Full/Half duplex
-
-
-Example:
-
- spi@e0100000 {
- compatible = "arm,pl022", "arm,primecell";
- reg = <0xe0100000 0x1000>;
- #address-cells = <1>;
- #size-cells = <0>;
- interrupts = <0 31 0x4>;
- dmas = <&dma-controller 23 1>,
- <&dma-controller 24 0>;
- dma-names = "rx", "tx";
-
- m25p80@1 {
- compatible = "st,m25p80";
- reg = <1>;
- spi-max-frequency = <12000000>;
- spi-cpol;
- spi-cpha;
- pl022,interface = <0>;
- pl022,com-mode = <0x2>;
- pl022,rx-level-trig = <0>;
- pl022,tx-level-trig = <0>;
- pl022,ctrl-len = <0x11>;
- pl022,wait-state = <0>;
- pl022,duplex = <0>;
- };
- };
diff --git a/Documentation/devicetree/bindings/thermal/qoriq-thermal.txt b/Documentation/devicetree/bindings/thermal/qoriq-thermal.txt
index 04cbb90a5d3e..28f2cbaf1702 100644
--- a/Documentation/devicetree/bindings/thermal/qoriq-thermal.txt
+++ b/Documentation/devicetree/bindings/thermal/qoriq-thermal.txt
@@ -23,6 +23,7 @@ Required properties:
Optional property:
- little-endian : If present, the TMU registers are little endian. If absent,
the default is big endian.
+- clocks : the clock for clocking the TMU silicon.
Example:
diff --git a/Documentation/devicetree/bindings/timer/allwinner,sun4i-a10-timer.yaml b/Documentation/devicetree/bindings/timer/allwinner,sun4i-a10-timer.yaml
new file mode 100644
index 000000000000..20adc1c8e9cc
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/allwinner,sun4i-a10-timer.yaml
@@ -0,0 +1,102 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/timer/allwinner,sun4i-a10-timer.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Timer Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ enum:
+ - allwinner,sun4i-a10-timer
+ - allwinner,sun8i-a23-timer
+ - allwinner,sun8i-v3s-timer
+ - allwinner,suniv-f1c100s-timer
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ description:
+ List of timers interrupts
+
+ clocks:
+ maxItems: 1
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ items:
+ const: allwinner,sun4i-a10-timer
+
+ then:
+ properties:
+ interrupts:
+ minItems: 6
+ maxItems: 6
+
+ - if:
+ properties:
+ compatible:
+ items:
+ const: allwinner,sun8i-a23-timer
+
+ then:
+ properties:
+ interrupts:
+ minItems: 2
+ maxItems: 2
+
+ - if:
+ properties:
+ compatible:
+ items:
+ const: allwinner,sun8i-v3s-timer
+
+ then:
+ properties:
+ interrupts:
+ minItems: 3
+ maxItems: 3
+
+ - if:
+ properties:
+ compatible:
+ items:
+ const: allwinner,suniv-f1c100s-timer
+
+ then:
+ properties:
+ interrupts:
+ minItems: 3
+ maxItems: 3
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+
+additionalProperties: false
+
+examples:
+ - |
+ timer {
+ compatible = "allwinner,sun4i-a10-timer";
+ reg = <0x01c20c00 0x400>;
+ interrupts = <22>,
+ <23>,
+ <24>,
+ <25>,
+ <67>,
+ <68>;
+ clocks = <&osc>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt b/Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt
deleted file mode 100644
index 3da9d515c03a..000000000000
--- a/Documentation/devicetree/bindings/timer/allwinner,sun4i-timer.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-Allwinner A1X SoCs Timer Controller
-
-Required properties:
-
-- compatible : should be one of the following:
- "allwinner,sun4i-a10-timer"
- "allwinner,suniv-f1c100s-timer"
-- reg : Specifies base physical address and size of the registers.
-- interrupts : The interrupt of the first timer
-- clocks: phandle to the source clock (usually a 24 MHz fixed clock)
-
-Example:
-
-timer {
- compatible = "allwinner,sun4i-a10-timer";
- reg = <0x01c20c00 0x400>;
- interrupts = <22>;
- clocks = <&osc>;
-};
diff --git a/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt b/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt
deleted file mode 100644
index 2c5c1be78360..000000000000
--- a/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.txt
+++ /dev/null
@@ -1,26 +0,0 @@
-Allwinner SoCs High Speed Timer Controller
-
-Required properties:
-
-- compatible : should be "allwinner,sun5i-a13-hstimer" or
- "allwinner,sun7i-a20-hstimer"
-- reg : Specifies base physical address and size of the registers.
-- interrupts : The interrupts of these timers (2 for the sun5i IP, 4 for the sun7i
- one)
-- clocks: phandle to the source clock (usually the AHB clock)
-
-Optional properties:
-- resets: phandle to a reset controller asserting the timer
-
-Example:
-
-timer@1c60000 {
- compatible = "allwinner,sun7i-a20-hstimer";
- reg = <0x01c60000 0x1000>;
- interrupts = <0 51 1>,
- <0 52 1>,
- <0 53 1>,
- <0 54 1>;
- clocks = <&ahb1_gates 19>;
- resets = <&ahb1rst 19>;
-};
diff --git a/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.yaml b/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.yaml
new file mode 100644
index 000000000000..dfa0c41fd261
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/allwinner,sun5i-a13-hstimer.yaml
@@ -0,0 +1,79 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/timer/allwinner,sun5i-a13-hstimer.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A13 High-Speed Timer Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun5i-a13-hstimer
+ - const: allwinner,sun7i-a20-hstimer
+ - items:
+ - const: allwinner,sun6i-a31-hstimer
+ - const: allwinner,sun7i-a20-hstimer
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ minItems: 2
+ maxItems: 4
+ items:
+ - description: Timer 0 Interrupt
+ - description: Timer 1 Interrupt
+ - description: Timer 2 Interrupt
+ - description: Timer 3 Interrupt
+
+ clocks:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+
+if:
+ properties:
+ compatible:
+ items:
+ const: allwinner,sun5i-a13-hstimer
+
+then:
+ properties:
+ interrupts:
+ minItems: 2
+ maxItems: 2
+
+else:
+ properties:
+ interrupts:
+ minItems: 4
+ maxItems: 4
+
+additionalProperties: false
+
+examples:
+ - |
+ timer@1c60000 {
+ compatible = "allwinner,sun7i-a20-hstimer";
+ reg = <0x01c60000 0x1000>;
+ interrupts = <0 51 1>,
+ <0 52 1>,
+ <0 53 1>,
+ <0 54 1>;
+ clocks = <&ahb1_gates 19>;
+ resets = <&ahb1rst 19>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/timer/ingenic,tcu.txt b/Documentation/devicetree/bindings/timer/ingenic,tcu.txt
new file mode 100644
index 000000000000..5a4b9ddd9470
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/ingenic,tcu.txt
@@ -0,0 +1,137 @@
+Ingenic JZ47xx SoCs Timer/Counter Unit devicetree bindings
+==========================================================
+
+For a description of the TCU hardware and drivers, have a look at
+Documentation/mips/ingenic-tcu.txt.
+
+Required properties:
+
+- compatible: Must be one of:
+ * ingenic,jz4740-tcu
+ * ingenic,jz4725b-tcu
+ * ingenic,jz4770-tcu
+ followed by "simple-mfd".
+- reg: Should be the offset/length value corresponding to the TCU registers
+- clocks: List of phandle & clock specifiers for clocks external to the TCU.
+ The "pclk", "rtc" and "ext" clocks should be provided. The "tcu" clock
+ should be provided if the SoC has it.
+- clock-names: List of name strings for the external clocks.
+- #clock-cells: Should be <1>;
+ Clock consumers specify this argument to identify a clock. The valid values
+ may be found in <dt-bindings/clock/ingenic,tcu.h>.
+- interrupt-controller : Identifies the node as an interrupt controller
+- #interrupt-cells : Specifies the number of cells needed to encode an
+ interrupt source. The value should be 1.
+- interrupts : Specifies the interrupt the controller is connected to.
+
+Optional properties:
+
+- ingenic,pwm-channels-mask: Bitmask of TCU channels reserved for PWM use.
+ Default value is 0xfc.
+
+
+Children nodes
+==========================================================
+
+
+PWM node:
+---------
+
+Required properties:
+
+- compatible: Must be one of:
+ * ingenic,jz4740-pwm
+ * ingenic,jz4725b-pwm
+- #pwm-cells: Should be 3. See ../pwm/pwm.txt for a description of the cell
+ format.
+- clocks: List of phandle & clock specifiers for the TCU clocks.
+- clock-names: List of name strings for the TCU clocks.
+
+
+Watchdog node:
+--------------
+
+Required properties:
+
+- compatible: Must be "ingenic,jz4740-watchdog"
+- clocks: phandle to the WDT clock
+- clock-names: should be "wdt"
+
+
+OS Timer node:
+---------
+
+Required properties:
+
+- compatible: Must be one of:
+ * ingenic,jz4725b-ost
+ * ingenic,jz4770-ost
+- clocks: phandle to the OST clock
+- clock-names: should be "ost"
+- interrupts : Specifies the interrupt the OST is connected to.
+
+
+Example
+==========================================================
+
+#include <dt-bindings/clock/jz4770-cgu.h>
+#include <dt-bindings/clock/ingenic,tcu.h>
+
+/ {
+ tcu: timer@10002000 {
+ compatible = "ingenic,jz4770-tcu", "simple-mfd";
+ reg = <0x10002000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0x0 0x10002000 0x1000>;
+
+ #clock-cells = <1>;
+
+ clocks = <&cgu JZ4770_CLK_RTC
+ &cgu JZ4770_CLK_EXT
+ &cgu JZ4770_CLK_PCLK>;
+ clock-names = "rtc", "ext", "pclk";
+
+ interrupt-controller;
+ #interrupt-cells = <1>;
+
+ interrupt-parent = <&intc>;
+ interrupts = <27 26 25>;
+
+ watchdog: watchdog@0 {
+ compatible = "ingenic,jz4740-watchdog";
+ reg = <0x0 0xc>;
+
+ clocks = <&tcu TCU_CLK_WDT>;
+ clock-names = "wdt";
+ };
+
+ pwm: pwm@40 {
+ compatible = "ingenic,jz4740-pwm";
+ reg = <0x40 0x80>;
+
+ #pwm-cells = <3>;
+
+ clocks = <&tcu TCU_CLK_TIMER0
+ &tcu TCU_CLK_TIMER1
+ &tcu TCU_CLK_TIMER2
+ &tcu TCU_CLK_TIMER3
+ &tcu TCU_CLK_TIMER4
+ &tcu TCU_CLK_TIMER5
+ &tcu TCU_CLK_TIMER6
+ &tcu TCU_CLK_TIMER7>;
+ clock-names = "timer0", "timer1", "timer2", "timer3",
+ "timer4", "timer5", "timer6", "timer7";
+ };
+
+ ost: timer@e0 {
+ compatible = "ingenic,jz4770-ost";
+ reg = <0xe0 0x20>;
+
+ clocks = <&tcu TCU_CLK_OST>;
+ clock-names = "ost";
+
+ interrupts = <15>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/timer/intel,ixp4xx-timer.yaml b/Documentation/devicetree/bindings/timer/intel,ixp4xx-timer.yaml
index a36a0746c056..2807225db902 100644
--- a/Documentation/devicetree/bindings/timer/intel,ixp4xx-timer.yaml
+++ b/Documentation/devicetree/bindings/timer/intel,ixp4xx-timer.yaml
@@ -2,7 +2,7 @@
# Copyright 2018 Linaro Ltd.
%YAML 1.2
---
-$id: "http://devicetree.org/schemas/timer/intel-ixp4xx-timer.yaml#"
+$id: "http://devicetree.org/schemas/timer/intel,ixp4xx-timer.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: Intel IXP4xx XScale Networking Processors Timers
diff --git a/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt b/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt
new file mode 100644
index 000000000000..d57659996d62
--- /dev/null
+++ b/Documentation/devicetree/bindings/timer/nxp,sysctr-timer.txt
@@ -0,0 +1,25 @@
+NXP System Counter Module(sys_ctr)
+
+The system counter(sys_ctr) is a programmable system counter which provides
+a shared time base to Cortex A15, A7, A53, A73, etc. it is intended for use in
+applications where the counter is always powered and support multiple,
+unrelated clocks. The compare frame inside can be used for timer purpose.
+
+Required properties:
+
+- compatible : should be "nxp,sysctr-timer"
+- reg : Specifies the base physical address and size of the comapre
+ frame and the counter control, read & compare.
+- interrupts : should be the first compare frames' interrupt
+- clocks : Specifies the counter clock.
+- clock-names: Specifies the clock's name of this module
+
+Example:
+
+ system_counter: timer@306a0000 {
+ compatible = "nxp,sysctr-timer";
+ reg = <0x306a0000 0x20000>;/* system-counter-rd & compare */
+ clocks = <&clk_8m>;
+ clock-names = "per";
+ interrupts = <GIC_SPI 47 IRQ_TYPE_LEVEL_HIGH>;
+ };
diff --git a/Documentation/devicetree/bindings/timer/renesas,cmt.txt b/Documentation/devicetree/bindings/timer/renesas,cmt.txt
index c0594450e9ef..a444cfc5852a 100644
--- a/Documentation/devicetree/bindings/timer/renesas,cmt.txt
+++ b/Documentation/devicetree/bindings/timer/renesas,cmt.txt
@@ -12,16 +12,13 @@ datasheets.
Required Properties:
- compatible: must contain one or more of the following:
- - "renesas,cmt-48-sh73a0" for the sh73A0 48-bit CMT
- (CMT1)
- - "renesas,cmt-48-r8a7740" for the r8a7740 48-bit CMT
- (CMT1)
- - "renesas,cmt-48" for all non-second generation 48-bit CMT
- (CMT1 on sh73a0 and r8a7740)
- This is a fallback for the above renesas,cmt-48-* entries.
-
- "renesas,r8a73a4-cmt0" for the 32-bit CMT0 device included in r8a73a4.
- "renesas,r8a73a4-cmt1" for the 48-bit CMT1 device included in r8a73a4.
+ - "renesas,r8a7740-cmt0" for the 32-bit CMT0 device included in r8a7740.
+ - "renesas,r8a7740-cmt1" for the 48-bit CMT1 device included in r8a7740.
+ - "renesas,r8a7740-cmt2" for the 32-bit CMT2 device included in r8a7740.
+ - "renesas,r8a7740-cmt3" for the 32-bit CMT3 device included in r8a7740.
+ - "renesas,r8a7740-cmt4" for the 32-bit CMT4 device included in r8a7740.
- "renesas,r8a7743-cmt0" for the 32-bit CMT0 device included in r8a7743.
- "renesas,r8a7743-cmt1" for the 48-bit CMT1 device included in r8a7743.
- "renesas,r8a7744-cmt0" for the 32-bit CMT0 device included in r8a7744.
@@ -31,23 +28,38 @@ Required Properties:
- "renesas,r8a77470-cmt0" for the 32-bit CMT0 device included in r8a77470.
- "renesas,r8a77470-cmt1" for the 48-bit CMT1 device included in r8a77470.
- "renesas,r8a774a1-cmt0" for the 32-bit CMT0 device included in r8a774a1.
- - "renesas,r8a774a1-cmt1" for the 48-bit CMT1 device included in r8a774a1.
+ - "renesas,r8a774a1-cmt1" for the 48-bit CMT devices included in r8a774a1.
- "renesas,r8a774c0-cmt0" for the 32-bit CMT0 device included in r8a774c0.
- - "renesas,r8a774c0-cmt1" for the 48-bit CMT1 device included in r8a774c0.
+ - "renesas,r8a774c0-cmt1" for the 48-bit CMT devices included in r8a774c0.
- "renesas,r8a7790-cmt0" for the 32-bit CMT0 device included in r8a7790.
- "renesas,r8a7790-cmt1" for the 48-bit CMT1 device included in r8a7790.
- "renesas,r8a7791-cmt0" for the 32-bit CMT0 device included in r8a7791.
- "renesas,r8a7791-cmt1" for the 48-bit CMT1 device included in r8a7791.
+ - "renesas,r8a7792-cmt0" for the 32-bit CMT0 device included in r8a7792.
+ - "renesas,r8a7792-cmt1" for the 48-bit CMT1 device included in r8a7792.
- "renesas,r8a7793-cmt0" for the 32-bit CMT0 device included in r8a7793.
- "renesas,r8a7793-cmt1" for the 48-bit CMT1 device included in r8a7793.
- "renesas,r8a7794-cmt0" for the 32-bit CMT0 device included in r8a7794.
- "renesas,r8a7794-cmt1" for the 48-bit CMT1 device included in r8a7794.
+ - "renesas,r8a7795-cmt0" for the 32-bit CMT0 device included in r8a7795.
+ - "renesas,r8a7795-cmt1" for the 48-bit CMT devices included in r8a7795.
- "renesas,r8a7796-cmt0" for the 32-bit CMT0 device included in r8a7796.
- - "renesas,r8a7796-cmt1" for the 48-bit CMT1 device included in r8a7796.
+ - "renesas,r8a7796-cmt1" for the 48-bit CMT devices included in r8a7796.
+ - "renesas,r8a77965-cmt0" for the 32-bit CMT0 device included in r8a77965.
+ - "renesas,r8a77965-cmt1" for the 48-bit CMT devices included in r8a77965.
- "renesas,r8a77970-cmt0" for the 32-bit CMT0 device included in r8a77970.
- - "renesas,r8a77970-cmt1" for the 48-bit CMT1 device included in r8a77970.
+ - "renesas,r8a77970-cmt1" for the 48-bit CMT devices included in r8a77970.
- "renesas,r8a77980-cmt0" for the 32-bit CMT0 device included in r8a77980.
- - "renesas,r8a77980-cmt1" for the 48-bit CMT1 device included in r8a77980.
+ - "renesas,r8a77980-cmt1" for the 48-bit CMT devices included in r8a77980.
+ - "renesas,r8a77990-cmt0" for the 32-bit CMT0 device included in r8a77990.
+ - "renesas,r8a77990-cmt1" for the 48-bit CMT devices included in r8a77990.
+ - "renesas,r8a77995-cmt0" for the 32-bit CMT0 device included in r8a77995.
+ - "renesas,r8a77995-cmt1" for the 48-bit CMT devices included in r8a77995.
+ - "renesas,sh73a0-cmt0" for the 32-bit CMT0 device included in sh73a0.
+ - "renesas,sh73a0-cmt1" for the 48-bit CMT1 device included in sh73a0.
+ - "renesas,sh73a0-cmt2" for the 32-bit CMT2 device included in sh73a0.
+ - "renesas,sh73a0-cmt3" for the 32-bit CMT3 device included in sh73a0.
+ - "renesas,sh73a0-cmt4" for the 32-bit CMT4 device included in sh73a0.
- "renesas,rcar-gen2-cmt0" for 32-bit CMT0 devices included in R-Car Gen2
and RZ/G1.
@@ -57,7 +69,7 @@ Required Properties:
listed above.
- "renesas,rcar-gen3-cmt0" for 32-bit CMT0 devices included in R-Car Gen3
and RZ/G2.
- - "renesas,rcar-gen3-cmt1" for 48-bit CMT1 devices included in R-Car Gen3
+ - "renesas,rcar-gen3-cmt1" for 48-bit CMT devices included in R-Car Gen3
and RZ/G2.
These are fallbacks for R-Car Gen3 and RZ/G2 entries listed
above.
diff --git a/Documentation/devicetree/bindings/trivial-devices.yaml b/Documentation/devicetree/bindings/trivial-devices.yaml
index 747fd3f689dc..870ac52d2225 100644
--- a/Documentation/devicetree/bindings/trivial-devices.yaml
+++ b/Documentation/devicetree/bindings/trivial-devices.yaml
@@ -52,6 +52,10 @@ properties:
- at,24c08
# i2c trusted platform module (TPM)
- atmel,at97sc3204t
+ # i2c h/w symmetric crypto module
+ - atmel,atsha204a
+ # i2c h/w elliptic curve crypto module
+ - atmel,atecc508a
# CM32181: Ambient Light Sensor
- capella,cm32181
# CM3232: Ambient Light Sensor
@@ -100,6 +104,8 @@ properties:
- infineon,slb9645tt
# Infineon TLV493D-A1B6 I2C 3D Magnetic Sensor
- infineon,tlv493d-a1b6
+ # Inspur Power System power supply unit version 1
+ - inspur,ipsps1
# Intersil ISL29028 Ambient Light and Proximity Sensor
- isil,isl29028
# Intersil ISL29030 Ambient Light and Proximity Sensor
diff --git a/Documentation/devicetree/bindings/ufs/ufshcd-pltfrm.txt b/Documentation/devicetree/bindings/ufs/ufshcd-pltfrm.txt
index a74720486ee2..d78ef63935f9 100644
--- a/Documentation/devicetree/bindings/ufs/ufshcd-pltfrm.txt
+++ b/Documentation/devicetree/bindings/ufs/ufshcd-pltfrm.txt
@@ -54,6 +54,8 @@ Optional properties:
PHY reset from the UFS controller.
- resets : reset node register
- reset-names : describe reset node register, the "rst" corresponds to reset the whole UFS IP.
+- reset-gpios : A phandle and gpio specifier denoting the GPIO connected
+ to the RESET pin of the UFS memory device.
Note: If above properties are not defined it can be assumed that the supply
regulators or clocks are always on.
diff --git a/Documentation/devicetree/bindings/usb/cdns-usb3.txt b/Documentation/devicetree/bindings/usb/cdns-usb3.txt
new file mode 100644
index 000000000000..b7dc606d37b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/cdns-usb3.txt
@@ -0,0 +1,45 @@
+Binding for the Cadence USBSS-DRD controller
+
+Required properties:
+ - reg: Physical base address and size of the controller's register areas.
+ Controller has 3 different regions:
+ - HOST registers area
+ - DEVICE registers area
+ - OTG/DRD registers area
+ - reg-names - register memory area names:
+ "xhci" - for HOST registers space
+ "dev" - for DEVICE registers space
+ "otg" - for OTG/DRD registers space
+ - compatible: Should contain: "cdns,usb3"
+ - interrupts: Interrupts used by cdns3 controller:
+ "host" - interrupt used by XHCI driver.
+ "peripheral" - interrupt used by device driver
+ "otg" - interrupt used by DRD/OTG part of driver
+
+Optional properties:
+ - maximum-speed : valid arguments are "super-speed", "high-speed" and
+ "full-speed"; refer to usb/generic.txt
+ - dr_mode: Should be one of "host", "peripheral" or "otg".
+ - phys: reference to the USB PHY
+ - phy-names: from the *Generic PHY* bindings;
+ Supported names are:
+ - cdns3,usb2-phy
+ - cdns3,usb3-phy
+
+ - cdns,on-chip-buff-size : size of memory intended as internal memory for endpoints
+ buffers expressed in KB
+
+Example:
+ usb@f3000000 {
+ compatible = "cdns,usb3";
+ interrupts = <GIC_USB_IRQ 7 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_USB_IRQ 7 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_USB_IRQ 8 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "host", "peripheral", "otg";
+ reg = <0xf3000000 0x10000>, /* memory area for HOST registers */
+ <0xf3010000 0x10000>, /* memory area for DEVICE registers */
+ <0xf3020000 0x10000>; /* memory area for OTG/DRD registers */
+ reg-names = "xhci", "dev", "otg";
+ phys = <&usb2_phy>, <&usb3_phy>;
+ phy-names = "cdns3,usb2-phy", "cnds3,usb3-phy";
+ };
diff --git a/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt b/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
index a254386a91ad..cfc9f40ab641 100644
--- a/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
+++ b/Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt
@@ -10,6 +10,7 @@ Required properties:
"fsl,imx6sx-usb"
"fsl,imx6ul-usb"
"fsl,imx7d-usb"
+ "fsl,imx7ulp-usb"
"lsi,zevio-usb"
"qcom,ci-hdrc"
"chipidea,usb2"
diff --git a/Documentation/devicetree/bindings/usb/dwc2.txt b/Documentation/devicetree/bindings/usb/dwc2.txt
index 49eac0dc86b0..aafff3a6904d 100644
--- a/Documentation/devicetree/bindings/usb/dwc2.txt
+++ b/Documentation/devicetree/bindings/usb/dwc2.txt
@@ -42,6 +42,8 @@ Refer to phy/phy-bindings.txt for generic phy consumer properties
- g-rx-fifo-size: size of rx fifo size in gadget mode.
- g-np-tx-fifo-size: size of non-periodic tx fifo size in gadget mode.
- g-tx-fifo-size: size of periodic tx fifo per endpoint (except ep0) in gadget mode.
+- snps,need-phy-for-wake: If present indicates that the phy needs to be left
+ on for remote wakeup during suspend.
- snps,reset-phy-on-wake: If present indicates that we need to reset the PHY when
we detect a wakeup. This is due to a hardware errata.
@@ -58,4 +60,5 @@ Example:
clock-names = "otg";
phys = <&usbphy>;
phy-names = "usb2-phy";
+ snps,need-phy-for-wake;
};
diff --git a/Documentation/devicetree/bindings/usb/dwc3.txt b/Documentation/devicetree/bindings/usb/dwc3.txt
index 8e5265e9f658..66780a47ad85 100644
--- a/Documentation/devicetree/bindings/usb/dwc3.txt
+++ b/Documentation/devicetree/bindings/usb/dwc3.txt
@@ -64,6 +64,8 @@ Optional properties:
- snps,dis_u2_susphy_quirk: when set core will disable USB2 suspend phy.
- snps,dis_enblslpm_quirk: when set clears the enblslpm in GUSB2PHYCFG,
disabling the suspend signal to the PHY.
+ - snps,dis-u1-entry-quirk: set if link entering into U1 needs to be disabled.
+ - snps,dis-u2-entry-quirk: set if link entering into U2 needs to be disabled.
- snps,dis_rxdet_inp3_quirk: when set core will disable receiver detection
in PHY P3 power state.
- snps,dis-u2-freeclk-exists-quirk: when set, clear the u2_freeclk_exists
diff --git a/Documentation/devicetree/bindings/usb/exynos-usb.txt b/Documentation/devicetree/bindings/usb/exynos-usb.txt
index b7111f43fa59..66c394f9e11f 100644
--- a/Documentation/devicetree/bindings/usb/exynos-usb.txt
+++ b/Documentation/devicetree/bindings/usb/exynos-usb.txt
@@ -12,13 +12,11 @@ Required properties:
- interrupts: interrupt number to the cpu.
- clocks: from common clock binding: handle to usb clock.
- clock-names: from common clock binding: Shall be "usbhost".
- - port: if in the SoC there are EHCI phys, they should be listed here.
- One phy per port. Each port should have following entries:
- - reg: port number on EHCI controller, e.g
- On Exynos5250, port 0 is USB2.0 otg phy
- port 1 is HSIC phy0
- port 2 is HSIC phy1
- - phys: from the *Generic PHY* bindings; specifying phy used by port.
+ - phys: from the *Generic PHY* bindings; array specifying phy(s) used
+ by the root port.
+ - phy-names: from the *Generic PHY* bindings; array of the names for
+ each phy for the root ports, must be a subset of the following:
+ "host", "hsic0", "hsic1".
Optional properties:
- samsung,vbus-gpio: if present, specifies the GPIO that
@@ -35,12 +33,8 @@ Example:
clocks = <&clock 285>;
clock-names = "usbhost";
- #address-cells = <1>;
- #size-cells = <0>;
- port@0 {
- reg = <0>;
- phys = <&usb2phy 1>;
- };
+ phys = <&usb2phy 1>;
+ phy-names = "host";
};
OHCI
@@ -52,13 +46,11 @@ Required properties:
- interrupts: interrupt number to the cpu.
- clocks: from common clock binding: handle to usb clock.
- clock-names: from common clock binding: Shall be "usbhost".
- - port: if in the SoC there are OHCI phys, they should be listed here.
- One phy per port. Each port should have following entries:
- - reg: port number on OHCI controller, e.g
- On Exynos5250, port 0 is USB2.0 otg phy
- port 1 is HSIC phy0
- port 2 is HSIC phy1
- - phys: from the *Generic PHY* bindings, specifying phy used by port.
+ - phys: from the *Generic PHY* bindings; array specifying phy(s) used
+ by the root port.
+ - phy-names: from the *Generic PHY* bindings; array of the names for
+ each phy for the root ports, must be a subset of the following:
+ "host", "hsic0", "hsic1".
Example:
usb@12120000 {
@@ -69,13 +61,8 @@ Example:
clocks = <&clock 285>;
clock-names = "usbhost";
- #address-cells = <1>;
- #size-cells = <0>;
- port@0 {
- reg = <0>;
- phys = <&usb2phy 1>;
- };
-
+ phys = <&usb2phy 1>;
+ phy-names = "host";
};
DWC3
diff --git a/Documentation/devicetree/bindings/usb/fcs,fusb302.txt b/Documentation/devicetree/bindings/usb/fcs,fusb302.txt
index a5d011d2efc8..ba2e32d500c0 100644
--- a/Documentation/devicetree/bindings/usb/fcs,fusb302.txt
+++ b/Documentation/devicetree/bindings/usb/fcs,fusb302.txt
@@ -11,13 +11,6 @@ Required sub-node:
Documentation/devicetree/bindings/connector/usb-connector.txt
-Deprecated properties :
-- fcs,max-sink-microvolt : Maximum sink voltage accepted by port controller
-- fcs,max-sink-microamp : Maximum sink current accepted by port controller
-- fcs,max-sink-microwatt : Maximum sink power accepted by port controller
-- fcs,operating-sink-microwatt : Minimum amount of power accepted from a sink
- when negotiating
-
Example:
diff --git a/Documentation/devicetree/bindings/usb/generic-ehci.yaml b/Documentation/devicetree/bindings/usb/generic-ehci.yaml
index d3b4f6415920..059f6ef1ad4a 100644
--- a/Documentation/devicetree/bindings/usb/generic-ehci.yaml
+++ b/Documentation/devicetree/bindings/usb/generic-ehci.yaml
@@ -74,7 +74,7 @@ additionalProperties: false
examples:
- |
- ehci@e0000300 {
+ usb@e0000300 {
compatible = "ibm,usb-ehci-440epx", "generic-ehci";
interrupt-parent = <&UIC0>;
interrupts = <0x1a 4>;
@@ -89,7 +89,6 @@ examples:
interrupts = <39>;
clocks = <&ahb_gates 1>;
phys = <&usbphy 1>;
- phy-names = "usb";
};
...
diff --git a/Documentation/devicetree/bindings/usb/generic.txt b/Documentation/devicetree/bindings/usb/generic.txt
index 0a74ab8dfdc2..cf5a1ad456e6 100644
--- a/Documentation/devicetree/bindings/usb/generic.txt
+++ b/Documentation/devicetree/bindings/usb/generic.txt
@@ -30,6 +30,10 @@ Optional properties:
optional for OTG device.
- adp-disable: tells OTG controllers we want to disable OTG ADP, ADP is
optional for OTG device.
+ - usb-role-switch: boolean, indicates that the device is capable of assigning
+ the USB data role (USB host or USB device) for a given
+ USB connector, such as Type-C, Type-B(micro).
+ see connector/usb-connector.txt.
This is an attribute to a USB controller such as:
diff --git a/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt b/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt
index 266c2d917a28..f3e4acecabe8 100644
--- a/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt
+++ b/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt
@@ -30,7 +30,8 @@ Required properties:
the following ones are optional:
"ref_ck": reference clock used by low power mode etc,
"mcu_ck": mcu_bus clock for register access,
- "dma_ck": dma_bus clock for data transfer by DMA
+ "dma_ck": dma_bus clock for data transfer by DMA,
+ "xhci_ck": controller clock
- phys : see usb-hcd.txt in the current directory
@@ -100,7 +101,7 @@ Required properties:
- clocks : a list of phandle + clock-specifier pairs, one for each
entry in clock-names
- clock-names : must contain "sys_ck", and the following ones are optional:
- "ref_ck", "mcu_ck" and "dma_ck"
+ "ref_ck", "mcu_ck" and "dma_ck", "xhci_ck"
Optional properties:
- vbus-supply : reference to the VBUS regulator;
diff --git a/Documentation/devicetree/bindings/usb/mediatek,mtu3.txt b/Documentation/devicetree/bindings/usb/mediatek,mtu3.txt
index 3382b5cb471d..b9af7f5ee91d 100644
--- a/Documentation/devicetree/bindings/usb/mediatek,mtu3.txt
+++ b/Documentation/devicetree/bindings/usb/mediatek,mtu3.txt
@@ -16,7 +16,7 @@ Required properties:
entry in clock-names
- clock-names : must contain "sys_ck" for clock of controller,
the following clocks are optional:
- "ref_ck", "mcu_ck" and "dam_ck";
+ "ref_ck", "mcu_ck" and "dma_ck";
- phys : see usb-hcd.txt in the current directory
- dr_mode : should be one of "host", "peripheral" or "otg",
refer to usb/generic.txt
@@ -28,8 +28,13 @@ Optional properties:
parent's address space
- extcon : external connector for vbus and idpin changes detection, needed
when supports dual-role mode.
+ it's considered valid for compatibility reasons, not allowed for
+ new bindings, and use "usb-role-switch" property instead.
- vbus-supply : reference to the VBUS regulator, needed when supports
dual-role mode.
+ it's considered valid for compatibility reasons, not allowed for
+ new bindings, and put into a usb-connector node.
+ see connector/usb-connector.txt.
- pinctrl-names : a pinctrl state named "default" is optional, and need be
defined if auto drd switch is enabled, that means the property dr_mode
is set as "otg", and meanwhile the property "mediatek,enable-manual-drd"
@@ -39,6 +44,8 @@ Optional properties:
- maximum-speed : valid arguments are "super-speed", "high-speed" and
"full-speed"; refer to usb/generic.txt
+ - usb-role-switch : use USB Role Switch to support dual-role switch, but
+ not extcon; see usb/generic.txt.
- enable-manual-drd : supports manual dual-role switch via debugfs; usually
used when receptacle is TYPE-A and also wants to support dual-role
mode.
@@ -61,6 +68,9 @@ The xhci should be added as subnode to mtu3 as shown in the following example
if host mode is enabled. The DT binding details of xhci can be found in:
Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt
+The port would be added as subnode if use "usb-role-switch" property.
+ see graph.txt
+
Example:
ssusb: usb@11271000 {
compatible = "mediatek,mt8173-mtu3";
diff --git a/Documentation/devicetree/bindings/usb/renesas_usb3.txt b/Documentation/devicetree/bindings/usb/renesas,usb3-peri.txt
index 35039e720515..35039e720515 100644
--- a/Documentation/devicetree/bindings/usb/renesas_usb3.txt
+++ b/Documentation/devicetree/bindings/usb/renesas,usb3-peri.txt
diff --git a/Documentation/devicetree/bindings/usb/renesas_usbhs.txt b/Documentation/devicetree/bindings/usb/renesas,usbhs.txt
index b8acc2a994a8..e39255ea6e4f 100644
--- a/Documentation/devicetree/bindings/usb/renesas_usbhs.txt
+++ b/Documentation/devicetree/bindings/usb/renesas,usbhs.txt
@@ -20,9 +20,11 @@ Required properties:
- "renesas,usbhs-r8a77990" for r8a77990 (R-Car E3) compatible device
- "renesas,usbhs-r8a77995" for r8a77995 (R-Car D3) compatible device
- "renesas,usbhs-r7s72100" for r7s72100 (RZ/A1) compatible device
+ - "renesas,usbhs-r7s9210" for r7s9210 (RZ/A2) compatible device
- "renesas,rcar-gen2-usbhs" for R-Car Gen2 or RZ/G1 compatible devices
- "renesas,rcar-gen3-usbhs" for R-Car Gen3 or RZ/G2 compatible devices
- "renesas,rza1-usbhs" for RZ/A1 compatible device
+ - "renesas,rza2-usbhs" for RZ/A2 compatible device
When compatible with the generic version, nodes must list the
SoC-specific version corresponding to the platform first followed
diff --git a/Documentation/devicetree/bindings/usb/s3c2410-usb.txt b/Documentation/devicetree/bindings/usb/s3c2410-usb.txt
index e45b38ce2986..26c85afd0b53 100644
--- a/Documentation/devicetree/bindings/usb/s3c2410-usb.txt
+++ b/Documentation/devicetree/bindings/usb/s3c2410-usb.txt
@@ -4,7 +4,7 @@ OHCI
Required properties:
- compatible: should be "samsung,s3c2410-ohci" for USB host controller
- - reg: address and lenght of the controller memory mapped region
+ - reg: address and length of the controller memory mapped region
- interrupts: interrupt number for the USB OHCI controller
- clocks: Should reference the bus and host clocks
- clock-names: Should contain two strings
diff --git a/Documentation/devicetree/bindings/usb/usb-conn-gpio.txt b/Documentation/devicetree/bindings/usb/usb-conn-gpio.txt
new file mode 100644
index 000000000000..3d05ae56cb0d
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/usb-conn-gpio.txt
@@ -0,0 +1,30 @@
+USB GPIO Based Connection Detection
+
+This is typically used to switch dual role mode from the USB ID pin connected
+to an input GPIO, and also used to enable/disable device mode from the USB
+Vbus pin connected to an input GPIO.
+
+Required properties:
+- compatible : should include "gpio-usb-b-connector" and "usb-b-connector".
+- id-gpios, vbus-gpios : input gpios, either one of them must be present,
+ and both can be present as well.
+ see connector/usb-connector.txt
+
+Optional properties:
+- vbus-supply : can be present if needed when supports dual role mode.
+ see connector/usb-connector.txt
+
+- Sub-nodes:
+ - port : can be present.
+ see graph.txt
+
+Example:
+
+&mtu3 {
+ connector {
+ compatible = "gpio-usb-b-connector", "usb-b-connector";
+ type = "micro";
+ id-gpios = <&pio 12 GPIO_ACTIVE_HIGH>;
+ vbus-supply = <&usb_p0_vbus>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/usb/usb251xb.txt b/Documentation/devicetree/bindings/usb/usb251xb.txt
index bc7945e9dbfe..17915f64b8ee 100644
--- a/Documentation/devicetree/bindings/usb/usb251xb.txt
+++ b/Documentation/devicetree/bindings/usb/usb251xb.txt
@@ -64,10 +64,8 @@ Optional properties :
- power-on-time-ms : Specifies the time it takes from the time the host
initiates the power-on sequence to a port until the port has adequate
power. The value is given in ms in a 0 - 510 range (default is 100ms).
- - swap-dx-lanes : Specifies the downstream ports which will swap the
- differential-pair (D+/D-), default is not-swapped.
- - swap-us-lanes : Selects the upstream port differential-pair (D+/D-)
- swapping (boolean, default is not-swapped)
+ - swap-dx-lanes : Specifies the ports which will swap the differential-pair
+ (D+/D-), default is not-swapped.
Examples:
usb2512b@2c {
diff --git a/Documentation/devicetree/bindings/usb/usbmisc-imx.txt b/Documentation/devicetree/bindings/usb/usbmisc-imx.txt
index a85a631ec434..b353b9816487 100644
--- a/Documentation/devicetree/bindings/usb/usbmisc-imx.txt
+++ b/Documentation/devicetree/bindings/usb/usbmisc-imx.txt
@@ -7,6 +7,7 @@ Required properties:
"fsl,vf610-usbmisc" for Vybrid vf610
"fsl,imx6sx-usbmisc" for imx6sx
"fsl,imx7d-usbmisc" for imx7d
+ "fsl,imx7ulp-usbmisc" for imx7ulp
- reg: Should contain registers location and length
Examples:
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.yaml b/Documentation/devicetree/bindings/vendor-prefixes.yaml
index 33a65a45e319..967e78c5ec0a 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.yaml
+++ b/Documentation/devicetree/bindings/vendor-prefixes.yaml
@@ -27,6 +27,8 @@ patternProperties:
description: Abilis Systems
"^abracon,.*":
description: Abracon Corporation
+ "^acme,.*":
+ description: Acme Systems srl
"^actions,.*":
description: Actions Semiconductor Co., Ltd.
"^active-semi,.*":
@@ -49,6 +51,8 @@ patternProperties:
description: Aeroflex Gaisler AB
"^al,.*":
description: Annapurna Labs
+ "^allegro,.*":
+ description: Allegro DVT
"^allo,.*":
description: Allo.com
"^allwinner,.*":
@@ -79,6 +83,8 @@ patternProperties:
description: Analogix Semiconductor, Inc.
"^andestech,.*":
description: Andes Technology Corporation
+ "^anvo,.*":
+ description: Anvo-Systems Dresden GmbH
"^apm,.*":
description: Applied Micro Circuits Corporation (APM)
"^aptina,.*":
@@ -147,6 +153,8 @@ patternProperties:
description: Broadcom Corporation
"^buffalo,.*":
description: Buffalo, Inc.
+ "^bur,.*":
+ description: B&R Industrial Automation GmbH
"^bticino,.*":
description: Bticino International
"^calxeda,.*":
@@ -175,6 +183,8 @@ patternProperties:
description: Common Hardware Reference Platform
"^chunghwa,.*":
description: Chunghwa Picture Tubes Ltd.
+ "^chuwi,.*":
+ description: Chuwi Innovation Ltd.
"^ciaa,.*":
description: Computadora Industrial Abierta Argentina
"^cirrus,.*":
@@ -185,8 +195,12 @@ patternProperties:
description: Chips&Media, Inc.
"^cnxt,.*":
description: Conexant Systems, Inc.
+ "^colorfly,.*":
+ description: Colorful GRP, Shenzhen Xueyushi Technology Ltd.
"^compulab,.*":
description: CompuLab Ltd.
+ "^corpro,.*":
+ description: Chengdu Corpro Technology Co., Ltd.
"^cortina,.*":
description: Cortina Systems, Inc.
"^cosmic,.*":
@@ -199,6 +213,8 @@ patternProperties:
description: Crystalfontz America, Inc.
"^csky,.*":
description: Hangzhou C-SKY Microsystems Co., Ltd
+ "^csq,.*":
+ description: Shenzen Chuangsiqi Technology Co.,Ltd.
"^cubietech,.*":
description: Cubietech, Ltd.
"^cypress,.*":
@@ -219,6 +235,8 @@ patternProperties:
description: Devantech, Ltd.
"^dh,.*":
description: DH electronics GmbH
+ "^difrnce,.*":
+ description: Shenzhen Yagu Electronic Technology Co., Ltd.
"^digi,.*":
description: Digi International Inc.
"^digilent,.*":
@@ -241,6 +259,8 @@ patternProperties:
description: DPTechnics
"^dragino,.*":
description: Dragino Technology Co., Limited
+ "^dserve,.*":
+ description: dServe Technology B.V.
"^ea,.*":
description: Embedded Artists AB
"^ebs-systart,.*":
@@ -253,6 +273,8 @@ patternProperties:
description: Emerging Display Technologies
"^eeti,.*":
description: eGalax_eMPIA Technology Inc
+ "^einfochips,.*":
+ description: Einfochips
"^elan,.*":
description: Elan Microelectronic Corp.
"^elgin,.*":
@@ -263,6 +285,8 @@ patternProperties:
description: Emlid, Ltd.
"^emmicro,.*":
description: EM Microelectronic
+ "^empire-electronix,.*":
+ description: Empire Electronix
"^emtrion,.*":
description: emtrion GmbH
"^endless,.*":
@@ -277,6 +301,8 @@ patternProperties:
description: Ecole Polytechnique Fédérale de Lausanne
"^epson,.*":
description: Seiko Epson Corp.
+ "^esp,.*":
+ description: Espressif Systems Co. Ltd.
"^est,.*":
description: ESTeem Wireless Modems
"^ettus,.*":
@@ -287,6 +313,8 @@ patternProperties:
description: Everest Semiconductor Co. Ltd.
"^everspin,.*":
description: Everspin Technologies, Inc.
+ "^evervision,.*":
+ description: Evervision Electronics Co. Ltd.
"^exar,.*":
description: Exar Corporation
"^excito,.*":
@@ -327,6 +355,8 @@ patternProperties:
description: GE Fanuc Intelligent Platforms Embedded Systems, Inc.
"^GEFanuc,.*":
description: GE Fanuc Intelligent Platforms Embedded Systems, Inc.
+ "^gemei,.*":
+ description: Gemei Digital Technology Co., Ltd.
"^geniatech,.*":
description: Geniatech, Inc.
"^giantec,.*":
@@ -371,12 +401,20 @@ patternProperties:
description: Holt Integrated Circuits, Inc.
"^honeywell,.*":
description: Honeywell
+ "^hoperun,.*":
+ description: Jiangsu HopeRun Software Co., Ltd.
"^hp,.*":
description: Hewlett Packard
+ "^hsg,.*":
+ description: HannStar Display Co.
"^holtek,.*":
description: Holtek Semiconductor, Inc.
+ "^hugsun,.*":
+ description: Shenzhen Hugsun Technology Co. Ltd.
"^hwacom,.*":
description: HwaCom Systems Inc.
+ "^hyundai,.*":
+ description: Hyundai Technology
"^i2se,.*":
description: I2SE GmbH
"^ibm,.*":
@@ -391,6 +429,10 @@ patternProperties:
description: ILI Technology Corporation (ILITEK)
"^img,.*":
description: Imagination Technologies Ltd.
+ "^incircuit,.*":
+ description: In-Circuit GmbH
+ "^inet-tek,.*":
+ description: Shenzhen iNet Mobile Internet Technology Co., Ltd
"^infineon,.*":
description: Infineon Technologies
"^inforce,.*":
@@ -401,6 +443,8 @@ patternProperties:
description: Innolux Corporation
"^inside-secure,.*":
description: INSIDE Secure
+ "^inspur,.*":
+ description: Inspur Corporation
"^intel,.*":
description: Intel Corporation
"^intercontrol,.*":
@@ -425,6 +469,8 @@ patternProperties:
description: Japan Display Inc.
"^jedec,.*":
description: JEDEC Solid State Technology Association
+ "^jesurun,.*":
+ description: Shenzhen Jesurun Electronics Business Dept.
"^jianda,.*":
description: Jiandangjing Technology Co., Ltd.
"^karo,.*":
@@ -449,6 +495,8 @@ patternProperties:
description: Rakuten Kobo Inc.
"^koe,.*":
description: Kaohsiung Opto-Electronics Inc.
+ "^kontron,.*":
+ description: Kontron S&T AG
"^kosagi,.*":
description: Sutajio Ko-Usagi PTE Ltd.
"^kyo,.*":
@@ -457,10 +505,14 @@ patternProperties:
description: LaCie
"^laird,.*":
description: Laird PLC
+ "^lamobo,.*":
+ description: Ketai Huajie Technology Co., Ltd.
"^lantiq,.*":
description: Lantiq Semiconductor
"^lattice,.*":
description: Lattice Semiconductor
+ "^leez,.*":
+ description: Leez
"^lego,.*":
description: LEGO Systems A/S
"^lemaker,.*":
@@ -469,12 +521,16 @@ patternProperties:
description: Lenovo Group Ltd.
"^lg,.*":
description: LG Corporation
+ "^lgphilips,.*":
+ description: LG Display
"^libretech,.*":
description: Shenzhen Libre Technology Co., Ltd
"^licheepi,.*":
description: Lichee Pi
"^linaro,.*":
description: Linaro Limited
+ "^linksprite,.*":
+ description: LinkSprite Technologies, Inc.
"^linksys,.*":
description: Belkin International, Inc. (Linksys)
"^linux,.*":
@@ -485,12 +541,16 @@ patternProperties:
description: Linear Technology Corporation
"^logicpd,.*":
description: Logic PD, Inc.
+ "^longcheer,.*":
+ description: Longcheer Technology (Shanghai) Co., Ltd.
"^lsi,.*":
description: LSI Corp. (LSI Logic)
"^lwn,.*":
description: Liebherr-Werk Nenzing GmbH
"^macnica,.*":
description: Macnica Americas
+ "^mapleboard,.*":
+ description: Mapleboard.org
"^marvell,.*":
description: Marvell Technology Group Ltd.
"^maxbotix,.*":
@@ -503,6 +563,8 @@ patternProperties:
description: mCube
"^meas,.*":
description: Measurement Specialties
+ "^mecer,.*":
+ description: Mustek Limited
"^mediatek,.*":
description: MediaTek Inc.
"^megachips,.*":
@@ -529,8 +591,12 @@ patternProperties:
description: Micro Crystal AG
"^micron,.*":
description: Micron Technology Inc.
+ "^microsoft,.*":
+ description: Microsoft Corporation
"^mikroe,.*":
description: MikroElektronika d.o.o.
+ "^miniand,.*":
+ description: Miniand Tech
"^minix,.*":
description: MINIX Technology Ltd.
"^miramems,.*":
@@ -661,28 +727,38 @@ patternProperties:
description: Picochip Ltd
"^pine64,.*":
description: Pine64
+ "^pineriver,.*":
+ description: Shenzhen PineRiver Designs Co., Ltd.
"^pixcir,.*":
description: PIXCIR MICROELECTRONICS Co., Ltd
"^plantower,.*":
description: Plantower Co., Ltd
"^plathome,.*":
- description: Plat'Home Co., Ltd.
+ description: Plat\'Home Co., Ltd.
"^plda,.*":
description: PLDA
"^plx,.*":
description: Broadcom Corporation (formerly PLX Technology)
"^pni,.*":
description: PNI Sensor Corporation
+ "^polaroid,.*":
+ description: Polaroid Corporation
"^portwell,.*":
description: Portwell Inc.
"^poslab,.*":
description: Poslab Technology Co., Ltd.
+ "^pov,.*":
+ description: Point of View International B.V.
"^powervr,.*":
description: PowerVR (deprecated, use img)
+ "^primux,.*":
+ description: Primux Trading, S.L.
"^probox2,.*":
description: PROBOX2 (by W2COMP Co., Ltd.)
"^pulsedlight,.*":
description: PulsedLight, Inc
+ "^purism,.*":
+ description: Purism, SPC
"^qca,.*":
description: Qualcomm Atheros, Inc.
"^qcom,.*":
@@ -691,6 +767,8 @@ patternProperties:
description: QEMU, a generic and open source machine emulator and virtualizer
"^qi,.*":
description: Qi Hardware
+ "^qihua,.*":
+ description: Chengdu Kaixuan Information Technology Co., Ltd.
"^qiaodian,.*":
description: QiaoDian XianShi Corporation
"^qnap,.*":
@@ -713,6 +791,8 @@ patternProperties:
description: Realtek Semiconductor Corp.
"^renesas,.*":
description: Renesas Electronics Corporation
+ "^rervision,.*":
+ description: Shenzhen Rervision Technology Co., Ltd.
"^richtek,.*":
description: Richtek Technology Corporation
"^ricoh,.*":
@@ -751,6 +831,8 @@ patternProperties:
description: Semtech Corporation
"^sensirion,.*":
description: Sensirion AG
+ "^sensortek,.*":
+ description: Sensortek Technology Corporation
"^sff,.*":
description: Small Form Factor Committee
"^sgd,.*":
@@ -781,8 +863,14 @@ patternProperties:
description: Silergy Corp.
"^siliconmitus,.*":
description: Silicon Mitus, Inc.
- "^simte,.*":
- description: k
+ "^simtek,.*":
+ description: Cypress Semiconductor Corporation (Simtek Corporation)
+ "^sinlinx,.*":
+ description: Sinlinx Electronics Technology Co., LTD
+ "^sinovoip,.*":
+ description: SinoVoip Co., Ltd
+ "^sipeed,.*":
+ description: Shenzhen Sipeed Technology Co., Ltd.
"^sirf,.*":
description: SiRF Technology, Inc.
"^sis,.*":
@@ -795,6 +883,8 @@ patternProperties:
description: Standard Microsystems Corporation
"^snps,.*":
description: Synopsys, Inc.
+ "^sochip,.*":
+ description: Shenzhen SoChip Technology Co., Ltd.
"^socionext,.*":
description: Socionext Inc.
"^solidrun,.*":
@@ -849,6 +939,8 @@ patternProperties:
description: Shenzhen Techstar Electronics Co., Ltd.
"^terasic,.*":
description: Terasic Inc.
+ "^tfc,.*":
+ description: Three Five Corp
"^thine,.*":
description: THine Electronics, Inc.
"^ti,.*":
@@ -861,6 +953,9 @@ patternProperties:
description: Tecon Microprocessor Technologies, LLC.
"^topeet,.*":
description: Topeet
+ "^toppoly,.*":
+ description: TPO (deprecated, use tpo)
+ deprecated: true
"^toradex,.*":
description: Toradex AG
"^toshiba,.*":
@@ -901,6 +996,8 @@ patternProperties:
description: United Radiant Technology Corporation
"^usi,.*":
description: Universal Scientific Industrial Co., Ltd.
+ "^utoo,.*":
+ description: Aigo Digital Technology Co., Ltd.
"^v3,.*":
description: V3 Semiconductor
"^vamrs,.*":
@@ -923,6 +1020,8 @@ patternProperties:
description: Voipac Technologies s.r.o.
"^vot,.*":
description: Vision Optical Technology Co., Ltd.
+ "^vxt,.*":
+ description: VXT Ltd
"^wd,.*":
description: Western Digital Corp.
"^wetek,.*":
@@ -937,10 +1036,14 @@ patternProperties:
description: Winbond Electronics corp.
"^winstar,.*":
description: Winstar Display Corp.
+ "^wits,.*":
+ description: Shenzhen Merrii Technology Co., Ltd. (WITS)
"^wlf,.*":
description: Wolfson Microelectronics
"^wm,.*":
description: Wondermedia Technologies, Inc.
+ "^wobo,.*":
+ description: Wobo
"^x-powers,.*":
description: X-Powers
"^xes,.*":
@@ -951,6 +1054,8 @@ patternProperties:
description: Xilinx
"^xunlong,.*":
description: Shenzhen Xunlong Software CO.,Limited
+ "^yones-toptech,.*":
+ description: Yones Toptech Co., Ltd.
"^ysoft,.*":
description: Y Soft Corporation a.s.
"^zarlink,.*":
@@ -968,7 +1073,7 @@ patternProperties:
# Normal property name match without a comma
# These should catch all node/property names without a prefix
- "^[a-zA-Z0-9#][a-zA-Z0-9+\\-._@]{0,63}$": true
+ "^[a-zA-Z0-9#_][a-zA-Z0-9+\\-._@]{0,63}$": true
"^[a-zA-Z0-9+\\-._]*@[0-9a-zA-Z,]*$": true
"^#.*": true
diff --git a/Documentation/devicetree/bindings/virtio/iommu.txt b/Documentation/devicetree/bindings/virtio/iommu.txt
new file mode 100644
index 000000000000..2407fea0651c
--- /dev/null
+++ b/Documentation/devicetree/bindings/virtio/iommu.txt
@@ -0,0 +1,66 @@
+* virtio IOMMU PCI device
+
+When virtio-iommu uses the PCI transport, its programming interface is
+discovered dynamically by the PCI probing infrastructure. However the
+device tree statically describes the relation between IOMMU and DMA
+masters. Therefore, the PCI root complex that hosts the virtio-iommu
+contains a child node representing the IOMMU device explicitly.
+
+Required properties:
+
+- compatible: Should be "virtio,pci-iommu"
+- reg: PCI address of the IOMMU. As defined in the PCI Bus
+ Binding reference [1], the reg property is a five-cell
+ address encoded as (phys.hi phys.mid phys.lo size.hi
+ size.lo). phys.hi should contain the device's BDF as
+ 0b00000000 bbbbbbbb dddddfff 00000000. The other cells
+ should be zero.
+- #iommu-cells: Each platform DMA master managed by the IOMMU is assigned
+ an endpoint ID, described by the "iommus" property [2].
+ For virtio-iommu, #iommu-cells must be 1.
+
+Notes:
+
+- DMA from the IOMMU device isn't managed by another IOMMU. Therefore the
+ virtio-iommu node doesn't have an "iommus" property, and is omitted from
+ the iommu-map property of the root complex.
+
+Example:
+
+pcie@10000000 {
+ compatible = "pci-host-ecam-generic";
+ ...
+
+ /* The IOMMU programming interface uses slot 00:01.0 */
+ iommu0: iommu@0008 {
+ compatible = "virtio,pci-iommu";
+ reg = <0x00000800 0 0 0 0>;
+ #iommu-cells = <1>;
+ };
+
+ /*
+ * The IOMMU manages all functions in this PCI domain except
+ * itself. Omit BDF 00:01.0.
+ */
+ iommu-map = <0x0 &iommu0 0x0 0x8>
+ <0x9 &iommu0 0x9 0xfff7>;
+};
+
+pcie@20000000 {
+ compatible = "pci-host-ecam-generic";
+ ...
+ /*
+ * The IOMMU also manages all functions from this domain,
+ * with endpoint IDs 0x10000 - 0x1ffff
+ */
+ iommu-map = <0x0 &iommu0 0x10000 0x10000>;
+};
+
+ethernet@fe001000 {
+ ...
+ /* The IOMMU manages this platform device with endpoint ID 0x20000 */
+ iommus = <&iommu0 0x20000>;
+};
+
+[1] Documentation/devicetree/bindings/pci/pci.txt
+[2] Documentation/devicetree/bindings/iommu/iommu.txt
diff --git a/Documentation/devicetree/bindings/virtio/mmio.txt b/Documentation/devicetree/bindings/virtio/mmio.txt
index 5069c1b8e193..21af30fbb81f 100644
--- a/Documentation/devicetree/bindings/virtio/mmio.txt
+++ b/Documentation/devicetree/bindings/virtio/mmio.txt
@@ -8,10 +8,40 @@ Required properties:
- reg: control registers base address and size including configuration space
- interrupts: interrupt generated by the device
+Required properties for virtio-iommu:
+
+- #iommu-cells: When the node corresponds to a virtio-iommu device, it is
+ linked to DMA masters using the "iommus" or "iommu-map"
+ properties [1][2]. #iommu-cells specifies the size of the
+ "iommus" property. For virtio-iommu #iommu-cells must be
+ 1, each cell describing a single endpoint ID.
+
+Optional properties:
+
+- iommus: If the device accesses memory through an IOMMU, it should
+ have an "iommus" property [1]. Since virtio-iommu itself
+ does not access memory through an IOMMU, the "virtio,mmio"
+ node cannot have both an "#iommu-cells" and an "iommus"
+ property.
+
Example:
virtio_block@3000 {
compatible = "virtio,mmio";
reg = <0x3000 0x100>;
interrupts = <41>;
+
+ /* Device has endpoint ID 23 */
+ iommus = <&viommu 23>
}
+
+ viommu: iommu@3100 {
+ compatible = "virtio,mmio";
+ reg = <0x3100 0x100>;
+ interrupts = <42>;
+
+ #iommu-cells = <1>
+ }
+
+[1] Documentation/devicetree/bindings/iommu/iommu.txt
+[2] Documentation/devicetree/bindings/pci/pci-iommu.txt
diff --git a/Documentation/devicetree/bindings/watchdog/allwinner,sun4i-a10-wdt.yaml b/Documentation/devicetree/bindings/watchdog/allwinner,sun4i-a10-wdt.yaml
new file mode 100644
index 000000000000..3a54f58683a0
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/allwinner,sun4i-a10-wdt.yaml
@@ -0,0 +1,58 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/watchdog/allwinner,sun4i-a10-wdt.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A10 Watchdog Device Tree Bindings
+
+allOf:
+ - $ref: "watchdog.yaml#"
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <maxime.ripard@bootlin.com>
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun4i-a10-wdt
+ - const: allwinner,sun6i-a31-wdt
+ - items:
+ - const: allwinner,sun50i-a64-wdt
+ - const: allwinner,sun6i-a31-wdt
+ - items:
+ - const: allwinner,sun50i-h6-wdt
+ - const: allwinner,sun6i-a31-wdt
+ - items:
+ - const: allwinner,suniv-f1c100s-wdt
+ - const: allwinner,sun4i-a10-wdt
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - interrupts
+
+unevaluatedProperties: false
+
+examples:
+ - |
+ wdt: watchdog@1c20c90 {
+ compatible = "allwinner,sun4i-a10-wdt";
+ reg = <0x01c20c90 0x10>;
+ interrupts = <24>;
+ clocks = <&osc24M>;
+ timeout-sec = <10>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/watchdog/amlogic,meson-gxbb-wdt.yaml b/Documentation/devicetree/bindings/watchdog/amlogic,meson-gxbb-wdt.yaml
new file mode 100644
index 000000000000..d7352f709b37
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/amlogic,meson-gxbb-wdt.yaml
@@ -0,0 +1,37 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2019 BayLibre, SAS
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/watchdog/amlogic,meson-gxbb-wdt.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Meson GXBB SoCs Watchdog timer
+
+maintainers:
+ - Neil Armstrong <narmstrong@baylibre.com>
+
+properties:
+ compatible:
+ enum:
+ - amlogic,meson-gxbb-wdt
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+ description:
+ A phandle to the clock of this PHY
+
+required:
+ - compatible
+ - reg
+ - clocks
+
+examples:
+ - |
+ watchdog@98d0 {
+ compatible = "amlogic,meson-gxbb-wdt";
+ reg = <0x98d0 0x10>;
+ clocks = <&xtal>;
+ };
diff --git a/Documentation/devicetree/bindings/watchdog/aspeed-wdt.txt b/Documentation/devicetree/bindings/watchdog/aspeed-wdt.txt
index c5077a1f5cb3..d78d4a8fb868 100644
--- a/Documentation/devicetree/bindings/watchdog/aspeed-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/aspeed-wdt.txt
@@ -4,6 +4,7 @@ Required properties:
- compatible: must be one of:
- "aspeed,ast2400-wdt"
- "aspeed,ast2500-wdt"
+ - "aspeed,ast2600-wdt"
- reg: physical base address of the controller and length of memory mapped
region
diff --git a/Documentation/devicetree/bindings/watchdog/fsl-imx-sc-wdt.txt b/Documentation/devicetree/bindings/watchdog/fsl-imx-sc-wdt.txt
deleted file mode 100644
index 02b87e92ae68..000000000000
--- a/Documentation/devicetree/bindings/watchdog/fsl-imx-sc-wdt.txt
+++ /dev/null
@@ -1,24 +0,0 @@
-* Freescale i.MX System Controller Watchdog
-
-i.MX system controller watchdog is for i.MX SoCs with system controller inside,
-the watchdog is managed by system controller, users can ONLY communicate with
-system controller from secure mode for watchdog operations, so Linux i.MX system
-controller watchdog driver will call ARM SMC API and trap into ARM-Trusted-Firmware
-for watchdog operations, ARM-Trusted-Firmware is running at secure EL3 mode and
-it will request system controller to execute the watchdog operation passed from
-Linux kernel.
-
-Required properties:
-- compatible: Should be :
- "fsl,imx8qxp-sc-wdt"
- followed by "fsl,imx-sc-wdt";
-
-Optional properties:
-- timeout-sec : Contains the watchdog timeout in seconds.
-
-Examples:
-
-watchdog {
- compatible = "fsl,imx8qxp-sc-wdt", "fsl,imx-sc-wdt";
- timeout-sec = <60>;
-};
diff --git a/Documentation/devicetree/bindings/watchdog/fsl-imx7ulp-wdt.txt b/Documentation/devicetree/bindings/watchdog/fsl-imx7ulp-wdt.txt
new file mode 100644
index 000000000000..f902508d6cac
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/fsl-imx7ulp-wdt.txt
@@ -0,0 +1,22 @@
+* Freescale i.MX7ULP Watchdog Timer (WDT) Controller
+
+Required properties:
+- compatible : Should be "fsl,imx7ulp-wdt"
+- reg : Should contain WDT registers location and length
+- interrupts : Should contain WDT interrupt
+- clocks: Should contain a phandle pointing to the gated peripheral clock.
+
+Optional properties:
+- timeout-sec : Contains the watchdog timeout in seconds
+
+Examples:
+
+wdog1: watchdog@403d0000 {
+ compatible = "fsl,imx7ulp-wdt";
+ reg = <0x403d0000 0x10000>;
+ interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&pcc2 IMX7ULP_CLK_WDG1>;
+ assigned-clocks = <&pcc2 IMX7ULP_CLK_WDG1>;
+ assigned-clocks-parents = <&scg1 IMX7ULP_CLK_FIRC_BUS_CLK>;
+ timeout-sec = <40>;
+};
diff --git a/Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt b/Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt
deleted file mode 100644
index ce1cb72d5345..000000000000
--- a/Documentation/devicetree/bindings/watchdog/ingenic,jz4740-wdt.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-Ingenic Watchdog Timer (WDT) Controller for JZ4740 & JZ4780
-
-Required properties:
-compatible: "ingenic,jz4740-watchdog" or "ingenic,jz4780-watchdog"
-reg: Register address and length for watchdog registers
-clocks: phandle to the RTC clock
-clock-names: should be "rtc"
-
-Example:
-
-watchdog: jz4740-watchdog@10002000 {
- compatible = "ingenic,jz4740-watchdog";
- reg = <0x10002000 0x10>;
-
- clocks = <&cgu JZ4740_CLK_RTC>;
- clock-names = "rtc";
-};
diff --git a/Documentation/devicetree/bindings/watchdog/meson-gxbb-wdt.txt b/Documentation/devicetree/bindings/watchdog/meson-gxbb-wdt.txt
deleted file mode 100644
index c7fe36fa739c..000000000000
--- a/Documentation/devicetree/bindings/watchdog/meson-gxbb-wdt.txt
+++ /dev/null
@@ -1,16 +0,0 @@
-Meson GXBB SoCs Watchdog timer
-
-Required properties:
-
-- compatible : should be "amlogic,meson-gxbb-wdt"
-- reg : Specifies base physical address and size of the registers.
-- clocks : Should be a phandle to the Watchdog clock source, for GXBB the xtal
- is the default clock source.
-
-Example:
-
-wdt: watchdog@98d0 {
- compatible = "amlogic,meson-gxbb-wdt";
- reg = <0 0x98d0 0x0 0x10>;
- clocks = <&xtal>;
-};
diff --git a/Documentation/devicetree/bindings/watchdog/renesas-wdt.txt b/Documentation/devicetree/bindings/watchdog/renesas,wdt.txt
index 9f365c1a3399..9f365c1a3399 100644
--- a/Documentation/devicetree/bindings/watchdog/renesas-wdt.txt
+++ b/Documentation/devicetree/bindings/watchdog/renesas,wdt.txt
diff --git a/Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt b/Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt
deleted file mode 100644
index 46055254e8dd..000000000000
--- a/Documentation/devicetree/bindings/watchdog/sunxi-wdt.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-Allwinner SoCs Watchdog timer
-
-Required properties:
-
-- compatible : should be one of
- "allwinner,sun4i-a10-wdt"
- "allwinner,sun6i-a31-wdt"
- "allwinner,sun50i-a64-wdt","allwinner,sun6i-a31-wdt"
- "allwinner,suniv-f1c100s-wdt", "allwinner,sun4i-a10-wdt"
-- reg : Specifies base physical address and size of the registers.
-
-Optional properties:
-- timeout-sec : Contains the watchdog timeout in seconds
-
-Example:
-
-wdt: watchdog@1c20c90 {
- compatible = "allwinner,sun4i-a10-wdt";
- reg = <0x01c20c90 0x10>;
- timeout-sec = <10>;
-};
diff --git a/Documentation/devicetree/bindings/watchdog/watchdog.yaml b/Documentation/devicetree/bindings/watchdog/watchdog.yaml
new file mode 100644
index 000000000000..187bf6cb62bf
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/watchdog.yaml
@@ -0,0 +1,26 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/watchdog/watchdog.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Watchdog Generic Bindings
+
+maintainers:
+ - Guenter Roeck <linux@roeck-us.net>
+ - Wim Van Sebroeck <wim@linux-watchdog.org>
+
+description: |
+ This document describes generic bindings which can be used to
+ describe watchdog devices in a device tree.
+
+properties:
+ $nodename:
+ pattern: "^watchdog(@.*|-[0-9a-f])?$"
+
+ timeout-sec:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description:
+ Contains the watchdog timeout in seconds.
+
+...
diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt
index e86bd2f64117..4660ccee35a3 100644
--- a/Documentation/devicetree/booting-without-of.txt
+++ b/Documentation/devicetree/booting-without-of.txt
@@ -160,7 +160,7 @@ it with special cases.
of the kernel image. That entry point supports two calling
conventions. A summary of the interface is described here. A full
description of the boot requirements is documented in
- Documentation/arm/Booting
+ Documentation/arm/booting.rst
a) ATAGS interface. Minimal information is passed from firmware
to the kernel with a tagged list of predefined parameters.
@@ -174,7 +174,7 @@ it with special cases.
b) Entry with a flattened device-tree block. Firmware loads the
physical address of the flattened device tree block (dtb) into r2,
r1 is not used, but it is considered good practice to use a valid
- machine number as described in Documentation/arm/Booting.
+ machine number as described in Documentation/arm/booting.rst.
r0 : 0
@@ -277,7 +277,7 @@ it with special cases.
the decompressor (the real mode entry point goes to the same 32bit
entry point once it switched into protected mode). That entry point
supports one calling convention which is documented in
- Documentation/x86/boot.txt
+ Documentation/x86/boot.rst
The physical pointer to the device-tree block (defined in chapter II)
is passed via setup_data which requires at least boot protocol 2.09.
The type filed is defined as
diff --git a/Documentation/devicetree/writing-schema.md b/Documentation/devicetree/writing-schema.md
deleted file mode 100644
index dc032db36262..000000000000
--- a/Documentation/devicetree/writing-schema.md
+++ /dev/null
@@ -1,130 +0,0 @@
-# Writing DeviceTree Bindings in json-schema
-
-Devicetree bindings are written using json-schema vocabulary. Schema files are
-written in a JSON compatible subset of YAML. YAML is used instead of JSON as it
-considered more human readable and has some advantages such as allowing
-comments (Prefixed with '#').
-
-## Schema Contents
-
-Each schema doc is a structured json-schema which is defined by a set of
-top-level properties. Generally, there is one binding defined per file. The
-top-level json-schema properties used are:
-
-- __$id__ - A json-schema unique identifier string. The string must be a valid
-URI typically containing the binding's filename and path. For DT schema, it must
-begin with "http://devicetree.org/schemas/". The URL is used in constructing
-references to other files specified in schema "$ref" properties. A $ref values
-with a leading '/' will have the hostname prepended. A $ref value a relative
-path or filename only will be prepended with the hostname and path components
-of the current schema file's '$id' value. A URL is used even for local files,
-but there may not actually be files present at those locations.
-
-- __$schema__ - Indicates the meta-schema the schema file adheres to.
-
-- __title__ - A one line description on the contents of the binding schema.
-
-- __maintainers__ - A DT specific property. Contains a list of email address(es)
-for maintainers of this binding.
-
-- __description__ - Optional. A multi-line text block containing any detailed
-information about this binding. It should contain things such as what the block
-or device does, standards the device conforms to, and links to datasheets for
-more information.
-
-- __select__ - Optional. A json-schema used to match nodes for applying the
-schema. By default without 'select', nodes are matched against their possible
-compatible string values or node name. Most bindings should not need select.
-
-- __allOf__ - Optional. A list of other schemas to include. This is used to
-include other schemas the binding conforms to. This may be schemas for a
-particular class of devices such as I2C or SPI controllers.
-
-- __properties__ - A set of sub-schema defining all the DT properties for the
-binding. The exact schema syntax depends on whether properties are known,
-common properties (e.g. 'interrupts') or are binding/vendor specific properties.
-
- A property can also define a child DT node with child properties defined
-under it.
-
- For more details on properties sections, see 'Property Schema' section.
-
-- __patternProperties__ - Optional. Similar to 'properties', but names are regex.
-
-- __required__ - A list of DT properties from the 'properties' section that
-must always be present.
-
-- __examples__ - Optional. A list of one or more DTS hunks implementing the
-binding. Note: YAML doesn't allow leading tabs, so spaces must be used instead.
-
-Unless noted otherwise, all properties are required.
-
-## Property Schema
-
-The 'properties' section of the schema contains all the DT properties for a
-binding. Each property contains a set of constraints using json-schema
-vocabulary for that property. The properties schemas are what is used for
-validation of DT files.
-
-For common properties, only additional constraints not covered by the common
-binding schema need to be defined such as how many values are valid or what
-possible values are valid.
-
-Vendor specific properties will typically need more detailed schema. With the
-exception of boolean properties, they should have a reference to a type in
-schemas/types.yaml. A "description" property is always required.
-
-The Devicetree schemas don't exactly match the YAML encoded DT data produced by
-dtc. They are simplified to make them more compact and avoid a bunch of
-boilerplate. The tools process the schema files to produce the final schema for
-validation. There are currently 2 transformations the tools perform.
-
-The default for arrays in json-schema is they are variable sized and allow more
-entries than explicitly defined. This can be restricted by defining 'minItems',
-'maxItems', and 'additionalItems'. However, for DeviceTree Schemas, a fixed
-size is desired in most cases, so these properties are added based on the
-number of entries in an 'items' list.
-
-The YAML Devicetree format also makes all string values an array and scalar
-values a matrix (in order to define groupings) even when only a single value
-is present. Single entries in schemas are fixed up to match this encoding.
-
-## Testing
-
-### Dependencies
-
-The DT schema project must be installed in order to validate the DT schema
-binding documents and validate DTS files using the DT schema. The DT schema
-project can be installed with pip:
-
-`pip3 install git+https://github.com/devicetree-org/dt-schema.git@master`
-
-dtc must also be built with YAML output support enabled. This requires that
-libyaml and its headers be installed on the host system.
-
-### Running checks
-
-The DT schema binding documents must be validated using the meta-schema (the
-schema for the schema) to ensure they are both valid json-schema and valid
-binding schema. All of the DT binding documents can be validated using the
-`dt_binding_check` target:
-
-`make dt_binding_check`
-
-In order to perform validation of DT source files, use the `dtbs_check` target:
-
-`make dtbs_check`
-
-This will first run the `dt_binding_check` which generates the processed schema.
-
-It is also possible to run checks with a single schema file by setting the
-'DT_SCHEMA_FILES' variable to a specific schema file.
-
-`make dtbs_check DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-devices.yaml`
-
-
-## json-schema Resources
-
-[JSON-Schema Specifications](http://json-schema.org/)
-
-[Using JSON Schema Book](http://usingjsonschema.com/)
diff --git a/Documentation/devicetree/writing-schema.rst b/Documentation/devicetree/writing-schema.rst
new file mode 100644
index 000000000000..f4a638072262
--- /dev/null
+++ b/Documentation/devicetree/writing-schema.rst
@@ -0,0 +1,154 @@
+:orphan:
+
+Writing DeviceTree Bindings in json-schema
+==========================================
+
+Devicetree bindings are written using json-schema vocabulary. Schema files are
+written in a JSON compatible subset of YAML. YAML is used instead of JSON as it
+considered more human readable and has some advantages such as allowing
+comments (Prefixed with '#').
+
+Schema Contents
+---------------
+
+Each schema doc is a structured json-schema which is defined by a set of
+top-level properties. Generally, there is one binding defined per file. The
+top-level json-schema properties used are:
+
+$id
+ A json-schema unique identifier string. The string must be a valid
+ URI typically containing the binding's filename and path. For DT schema, it must
+ begin with "http://devicetree.org/schemas/". The URL is used in constructing
+ references to other files specified in schema "$ref" properties. A $ref values
+ with a leading '/' will have the hostname prepended. A $ref value a relative
+ path or filename only will be prepended with the hostname and path components
+ of the current schema file's '$id' value. A URL is used even for local files,
+ but there may not actually be files present at those locations.
+
+$schema
+ Indicates the meta-schema the schema file adheres to.
+
+title
+ A one line description on the contents of the binding schema.
+
+maintainers
+ A DT specific property. Contains a list of email address(es)
+ for maintainers of this binding.
+
+description
+ Optional. A multi-line text block containing any detailed
+ information about this binding. It should contain things such as what the block
+ or device does, standards the device conforms to, and links to datasheets for
+ more information.
+
+select
+ Optional. A json-schema used to match nodes for applying the
+ schema. By default without 'select', nodes are matched against their possible
+ compatible string values or node name. Most bindings should not need select.
+
+ allOf
+ Optional. A list of other schemas to include. This is used to
+ include other schemas the binding conforms to. This may be schemas for a
+ particular class of devices such as I2C or SPI controllers.
+
+ properties
+ A set of sub-schema defining all the DT properties for the
+ binding. The exact schema syntax depends on whether properties are known,
+ common properties (e.g. 'interrupts') or are binding/vendor specific properties.
+
+A property can also define a child DT node with child properties defined
+under it.
+
+For more details on properties sections, see 'Property Schema' section.
+
+patternProperties
+ Optional. Similar to 'properties', but names are regex.
+
+required
+ A list of DT properties from the 'properties' section that
+ must always be present.
+
+examples
+ Optional. A list of one or more DTS hunks implementing the
+ binding. Note: YAML doesn't allow leading tabs, so spaces must be used instead.
+
+Unless noted otherwise, all properties are required.
+
+Property Schema
+---------------
+
+The 'properties' section of the schema contains all the DT properties for a
+binding. Each property contains a set of constraints using json-schema
+vocabulary for that property. The properties schemas are what is used for
+validation of DT files.
+
+For common properties, only additional constraints not covered by the common
+binding schema need to be defined such as how many values are valid or what
+possible values are valid.
+
+Vendor specific properties will typically need more detailed schema. With the
+exception of boolean properties, they should have a reference to a type in
+schemas/types.yaml. A "description" property is always required.
+
+The Devicetree schemas don't exactly match the YAML encoded DT data produced by
+dtc. They are simplified to make them more compact and avoid a bunch of
+boilerplate. The tools process the schema files to produce the final schema for
+validation. There are currently 2 transformations the tools perform.
+
+The default for arrays in json-schema is they are variable sized and allow more
+entries than explicitly defined. This can be restricted by defining 'minItems',
+'maxItems', and 'additionalItems'. However, for DeviceTree Schemas, a fixed
+size is desired in most cases, so these properties are added based on the
+number of entries in an 'items' list.
+
+The YAML Devicetree format also makes all string values an array and scalar
+values a matrix (in order to define groupings) even when only a single value
+is present. Single entries in schemas are fixed up to match this encoding.
+
+Testing
+-------
+
+Dependencies
+~~~~~~~~~~~~
+
+The DT schema project must be installed in order to validate the DT schema
+binding documents and validate DTS files using the DT schema. The DT schema
+project can be installed with pip::
+
+ pip3 install git+https://github.com/devicetree-org/dt-schema.git@master
+
+dtc must also be built with YAML output support enabled. This requires that
+libyaml and its headers be installed on the host system.
+
+Running checks
+~~~~~~~~~~~~~~
+
+The DT schema binding documents must be validated using the meta-schema (the
+schema for the schema) to ensure they are both valid json-schema and valid
+binding schema. All of the DT binding documents can be validated using the
+``dt_binding_check`` target::
+
+ make dt_binding_check
+
+In order to perform validation of DT source files, use the `dtbs_check` target::
+
+ make dtbs_check
+
+This will first run the `dt_binding_check` which generates the processed schema.
+
+It is also possible to run checks with a single schema file by setting the
+``DT_SCHEMA_FILES`` variable to a specific schema file.
+
+::
+
+ make dt_binding_check DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-devices.yaml
+ make dtbs_check DT_SCHEMA_FILES=Documentation/devicetree/bindings/trivial-devices.yaml
+
+
+json-schema Resources
+---------------------
+
+
+`JSON-Schema Specifications <http://json-schema.org/>`_
+
+`Using JSON Schema Book <http://usingjsonschema.com/>`_
diff --git a/Documentation/doc-guide/conf.py b/Documentation/doc-guide/conf.py
deleted file mode 100644
index fd3731182d5a..000000000000
--- a/Documentation/doc-guide/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = 'Linux Kernel Documentation Guide'
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'kernel-doc-guide.tex', 'Linux Kernel Documentation Guide',
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/doc-guide/kernel-doc.rst b/Documentation/doc-guide/kernel-doc.rst
index f96059767c8c..192c36af39e2 100644
--- a/Documentation/doc-guide/kernel-doc.rst
+++ b/Documentation/doc-guide/kernel-doc.rst
@@ -359,7 +359,7 @@ Domain`_ references.
``monospaced font``.
Useful if you need to use special characters that would otherwise have some
- meaning either by kernel-doc script of by reStructuredText.
+ meaning either by kernel-doc script or by reStructuredText.
This is particularly useful if you need to use things like ``%ph`` inside
a function description.
diff --git a/Documentation/doc-guide/sphinx.rst b/Documentation/doc-guide/sphinx.rst
index c039224b404e..f71ddd592aaa 100644
--- a/Documentation/doc-guide/sphinx.rst
+++ b/Documentation/doc-guide/sphinx.rst
@@ -27,8 +27,7 @@ Sphinx Install
==============
The ReST markups currently used by the Documentation/ files are meant to be
-built with ``Sphinx`` version 1.3 or higher. If you desire to build
-PDF output, it is recommended to use version 1.4.6 or higher.
+built with ``Sphinx`` version 1.3 or higher.
There's a script that checks for the Sphinx requirements. Please see
:ref:`sphinx-pre-install` for further details.
@@ -56,13 +55,13 @@ or ``virtualenv``, depending on how your distribution packaged Python 3.
those expressions are written using LaTeX notation. It needs texlive
installed with amdfonts and amsmath in order to evaluate them.
-In summary, if you want to install Sphinx version 1.4.9, you should do::
+In summary, if you want to install Sphinx version 1.7.9, you should do::
- $ virtualenv sphinx_1.4
- $ . sphinx_1.4/bin/activate
- (sphinx_1.4) $ pip install -r Documentation/sphinx/requirements.txt
+ $ virtualenv sphinx_1.7.9
+ $ . sphinx_1.7.9/bin/activate
+ (sphinx_1.7.9) $ pip install -r Documentation/sphinx/requirements.txt
-After running ``. sphinx_1.4/bin/activate``, the prompt will change,
+After running ``. sphinx_1.7.9/bin/activate``, the prompt will change,
in order to indicate that you're using the new environment. If you
open a new shell, you need to rerun this command to enter again at
the virtual environment before building the documentation.
@@ -105,8 +104,8 @@ command line options for your distro::
You should run:
sudo dnf install -y texlive-luatex85
- /usr/bin/virtualenv sphinx_1.4
- . sphinx_1.4/bin/activate
+ /usr/bin/virtualenv sphinx_1.7.9
+ . sphinx_1.7.9/bin/activate
pip install -r Documentation/sphinx/requirements.txt
Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.
@@ -218,7 +217,7 @@ Here are some specific guidelines for the kernel documentation:
examples, etc.), use ``::`` for anything that doesn't really benefit
from syntax highlighting, especially short snippets. Use
``.. code-block:: <language>`` for longer code blocks that benefit
- from highlighting.
+ from highlighting. For a short snippet of code embedded in the text, use \`\`.
the C domain
@@ -242,11 +241,14 @@ The C domain of the kernel-doc has some additional features. E.g. you can
The func-name (e.g. ioctl) remains in the output but the ref-name changed from
``ioctl`` to ``VIDIOC_LOG_STATUS``. The index entry for this function is also
-changed to ``VIDIOC_LOG_STATUS`` and the function can now referenced by:
-
-.. code-block:: rst
-
- :c:func:`VIDIOC_LOG_STATUS`
+changed to ``VIDIOC_LOG_STATUS``.
+
+Please note that there is no need to use ``c:func:`` to generate cross
+references to function documentation. Due to some Sphinx extension magic,
+the documentation build system will automatically turn a reference to
+``function()`` into a cross reference if an index entry for the given
+function name exists. If you see ``c:func:`` use in a kernel document,
+please feel free to remove it.
list tables
diff --git a/Documentation/docutils.conf b/Documentation/docutils.conf
index 2830772264c8..f1a180b97dec 100644
--- a/Documentation/docutils.conf
+++ b/Documentation/docutils.conf
@@ -4,4 +4,4 @@
# http://docutils.sourceforge.net/docs/user/config.html
[general]
-halt_level: severe \ No newline at end of file
+halt_level: severe
diff --git a/Documentation/dontdiff b/Documentation/dontdiff
index 5eba889ea84d..9f4392876099 100644
--- a/Documentation/dontdiff
+++ b/Documentation/dontdiff
@@ -30,6 +30,7 @@
*.lzo
*.mo
*.moc
+*.mod
*.mod.c
*.o
*.o.*
diff --git a/Documentation/driver-api/80211/conf.py b/Documentation/driver-api/80211/conf.py
deleted file mode 100644
index 4424b4b0b9c3..000000000000
--- a/Documentation/driver-api/80211/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Linux 802.11 Driver Developer's Guide"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', '80211.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/driver-api/80211/mac80211-advanced.rst b/Documentation/driver-api/80211/mac80211-advanced.rst
index 70a89b2163c2..9f1c5bb7ac35 100644
--- a/Documentation/driver-api/80211/mac80211-advanced.rst
+++ b/Documentation/driver-api/80211/mac80211-advanced.rst
@@ -226,9 +226,6 @@ TBD
.. kernel-doc:: include/net/mac80211.h
:functions: ieee80211_tx_rate_control
-.. kernel-doc:: include/net/mac80211.h
- :functions: rate_control_send_low
-
TBD
This part of the book describes mac80211 internals.
diff --git a/Documentation/driver-api/backlight/lp855x-driver.rst b/Documentation/driver-api/backlight/lp855x-driver.rst
new file mode 100644
index 000000000000..1e0b224fc397
--- /dev/null
+++ b/Documentation/driver-api/backlight/lp855x-driver.rst
@@ -0,0 +1,81 @@
+====================
+Kernel driver lp855x
+====================
+
+Backlight driver for LP855x ICs
+
+Supported chips:
+
+ Texas Instruments LP8550, LP8551, LP8552, LP8553, LP8555, LP8556 and
+ LP8557
+
+Author: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+-----------
+
+* Brightness control
+
+ Brightness can be controlled by the pwm input or the i2c command.
+ The lp855x driver supports both cases.
+
+* Device attributes
+
+ 1) bl_ctl_mode
+
+ Backlight control mode.
+
+ Value: pwm based or register based
+
+ 2) chip_id
+
+ The lp855x chip id.
+
+ Value: lp8550/lp8551/lp8552/lp8553/lp8555/lp8556/lp8557
+
+Platform data for lp855x
+------------------------
+
+For supporting platform specific data, the lp855x platform data can be used.
+
+* name:
+ Backlight driver name. If it is not defined, default name is set.
+* device_control:
+ Value of DEVICE CONTROL register.
+* initial_brightness:
+ Initial value of backlight brightness.
+* period_ns:
+ Platform specific PWM period value. unit is nano.
+ Only valid when brightness is pwm input mode.
+* size_program:
+ Total size of lp855x_rom_data.
+* rom_data:
+ List of new eeprom/eprom registers.
+
+Examples
+========
+
+1) lp8552 platform data: i2c register mode with new eeprom data::
+
+ #define EEPROM_A5_ADDR 0xA5
+ #define EEPROM_A5_VAL 0x4f /* EN_VSYNC=0 */
+
+ static struct lp855x_rom_data lp8552_eeprom_arr[] = {
+ {EEPROM_A5_ADDR, EEPROM_A5_VAL},
+ };
+
+ static struct lp855x_platform_data lp8552_pdata = {
+ .name = "lcd-bl",
+ .device_control = I2C_CONFIG(LP8552),
+ .initial_brightness = INITIAL_BRT,
+ .size_program = ARRAY_SIZE(lp8552_eeprom_arr),
+ .rom_data = lp8552_eeprom_arr,
+ };
+
+2) lp8556 platform data: pwm input mode with default rom data::
+
+ static struct lp855x_platform_data lp8556_pdata = {
+ .device_control = PWM_CONFIG(LP8556),
+ .initial_brightness = INITIAL_BRT,
+ .period_ns = 1000000,
+ };
diff --git a/Documentation/driver-api/basics.rst b/Documentation/driver-api/basics.rst
index e970fadf4d1a..1ba88c7b3984 100644
--- a/Documentation/driver-api/basics.rst
+++ b/Documentation/driver-api/basics.rst
@@ -115,9 +115,6 @@ Kernel utility functions
.. kernel-doc:: kernel/rcu/tree.c
:export:
-.. kernel-doc:: kernel/rcu/tree_plugin.h
- :export:
-
.. kernel-doc:: kernel/rcu/update.c
:export:
diff --git a/Documentation/bt8xxgpio.txt b/Documentation/driver-api/bt8xxgpio.rst
index a845feb074de..a845feb074de 100644
--- a/Documentation/bt8xxgpio.txt
+++ b/Documentation/driver-api/bt8xxgpio.rst
diff --git a/Documentation/driver-api/clk.rst b/Documentation/driver-api/clk.rst
index 593cca5058b1..3cad45d14187 100644
--- a/Documentation/driver-api/clk.rst
+++ b/Documentation/driver-api/clk.rst
@@ -175,9 +175,9 @@ the following::
To take advantage of your data you'll need to support valid operations
for your clk::
- struct clk_ops clk_foo_ops {
- .enable = &clk_foo_enable;
- .disable = &clk_foo_disable;
+ struct clk_ops clk_foo_ops = {
+ .enable = &clk_foo_enable,
+ .disable = &clk_foo_disable,
};
Implement the above functions using container_of::
diff --git a/Documentation/driver-api/conf.py b/Documentation/driver-api/conf.py
deleted file mode 100644
index 202726d20088..000000000000
--- a/Documentation/driver-api/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "The Linux driver implementer's API guide"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'driver-api.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/connector/connector.txt b/Documentation/driver-api/connector.rst
index ab7ca897fab7..c100c7482289 100644
--- a/Documentation/connector/connector.txt
+++ b/Documentation/driver-api/connector.rst
@@ -1,6 +1,8 @@
-/*****************************************/
-Kernel Connector.
-/*****************************************/
+.. SPDX-License-Identifier: GPL-2.0
+
+================
+Kernel Connector
+================
Kernel connector - new netlink based userspace <-> kernel space easy
to use communication module.
@@ -12,94 +14,55 @@ identifier, the appropriate callback will be called.
From the userspace point of view it's quite straightforward:
- socket();
- bind();
- send();
- recv();
+ - socket();
+ - bind();
+ - send();
+ - recv();
But if kernelspace wants to use the full power of such connections, the
driver writer must create special sockets, must know about struct sk_buff
handling, etc... The Connector driver allows any kernelspace agents to use
netlink based networking for inter-process communication in a significantly
-easier way:
+easier way::
-int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
-void cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __group, int gfp_mask);
-void cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group, int gfp_mask);
+ int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
+ void cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __group, int gfp_mask);
+ void cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group, int gfp_mask);
-struct cb_id
-{
+ struct cb_id
+ {
__u32 idx;
__u32 val;
-};
+ };
idx and val are unique identifiers which must be registered in the
-connector.h header for in-kernel usage. void (*callback) (void *) is a
+connector.h header for in-kernel usage. `void (*callback) (void *)` is a
callback function which will be called when a message with above idx.val
is received by the connector core. The argument for that function must
-be dereferenced to struct cn_msg *.
+be dereferenced to `struct cn_msg *`::
-struct cn_msg
-{
+ struct cn_msg
+ {
struct cb_id id;
__u32 seq;
__u32 ack;
- __u32 len; /* Length of the following data */
+ __u32 len; /* Length of the following data */
__u8 data[0];
-};
-
-/*****************************************/
-Connector interfaces.
-/*****************************************/
-
-int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
-
- Registers new callback with connector core.
-
- struct cb_id *id - unique connector's user identifier.
- It must be registered in connector.h for legal in-kernel users.
- char *name - connector's callback symbolic name.
- void (*callback) (struct cn..) - connector's callback.
- cn_msg and the sender's credentials
-
-
-void cn_del_callback(struct cb_id *id);
-
- Unregisters new callback with connector core.
-
- struct cb_id *id - unique connector's user identifier.
-
-
-int cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __groups, int gfp_mask);
-int cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __groups, int gfp_mask);
+ };
- Sends message to the specified groups. It can be safely called from
- softirq context, but may silently fail under strong memory pressure.
- If there are no listeners for given group -ESRCH can be returned.
+Connector interfaces
+====================
- struct cn_msg * - message header(with attached data).
- u16 len - for *_multi multiple cn_msg messages can be sent
- u32 port - destination port.
- If non-zero the message will be sent to the
- given port, which should be set to the
- original sender.
- u32 __group - destination group.
- If port and __group is zero, then appropriate group will
- be searched through all registered connector users,
- and message will be delivered to the group which was
- created for user with the same ID as in msg.
- If __group is not zero, then message will be delivered
- to the specified group.
- int gfp_mask - GFP mask.
+ .. kernel-doc:: include/linux/connector.h
- Note: When registering new callback user, connector core assigns
- netlink group to the user which is equal to its id.idx.
+ Note:
+ When registering new callback user, connector core assigns
+ netlink group to the user which is equal to its id.idx.
-/*****************************************/
-Protocol description.
-/*****************************************/
+Protocol description
+====================
The current framework offers a transport layer with fixed headers. The
recommended protocol which uses such a header is as following:
@@ -132,9 +95,8 @@ driver (it also registers itself with id={-1, -1}).
As example of this usage can be found in the cn_test.c module which
uses the connector to request notification and to send messages.
-/*****************************************/
-Reliability.
-/*****************************************/
+Reliability
+===========
Netlink itself is not a reliable protocol. That means that messages can
be lost due to memory pressure or process' receiving queue overflowed,
@@ -142,32 +104,31 @@ so caller is warned that it must be prepared. That is why the struct
cn_msg [main connector's message header] contains u32 seq and u32 ack
fields.
-/*****************************************/
-Userspace usage.
-/*****************************************/
+Userspace usage
+===============
2.6.14 has a new netlink socket implementation, which by default does not
allow people to send data to netlink groups other than 1.
So, if you wish to use a netlink socket (for example using connector)
with a different group number, the userspace application must subscribe to
-that group first. It can be achieved by the following pseudocode:
+that group first. It can be achieved by the following pseudocode::
-s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
+ s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
-l_local.nl_family = AF_NETLINK;
-l_local.nl_groups = 12345;
-l_local.nl_pid = 0;
+ l_local.nl_family = AF_NETLINK;
+ l_local.nl_groups = 12345;
+ l_local.nl_pid = 0;
-if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
+ if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
perror("bind");
close(s);
return -1;
-}
+ }
-{
+ {
int on = l_local.nl_groups;
setsockopt(s, 270, 1, &on, sizeof(on));
-}
+ }
Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP socket
option. To drop a multicast subscription, one should call the above socket
@@ -180,16 +141,15 @@ group number 12345, you must increment CN_NETLINK_USERS to that number.
Additional 0xf numbers are allocated to be used by non-in-kernel users.
Due to this limitation, group 0xffffffff does not work now, so one can
-not use add/remove connector's group notifications, but as far as I know,
+not use add/remove connector's group notifications, but as far as I know,
only cn_test.c test module used it.
Some work in netlink area is still being done, so things can be changed in
2.6.15 timeframe, if it will happen, documentation will be updated for that
kernel.
-/*****************************************/
Code samples
-/*****************************************/
+============
Sample code for a connector test module and user space can be found
in samples/connector/. To build this code, enable CONFIG_CONNECTOR
diff --git a/Documentation/console/console.txt b/Documentation/driver-api/console.rst
index d73c2ab4beda..8394ad7747ac 100644
--- a/Documentation/console/console.txt
+++ b/Documentation/driver-api/console.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
Console Drivers
===============
@@ -17,25 +20,26 @@ of driver occupying the consoles.) They can only take over the console that is
occupied by the system driver. In the same token, if the modular driver is
released by the console, the system driver will take over.
-Modular drivers, from the programmer's point of view, have to call:
+Modular drivers, from the programmer's point of view, have to call::
do_take_over_console() - load and bind driver to console layer
give_up_console() - unload driver; it will only work if driver
is fully unbound
-In newer kernels, the following are also available:
+In newer kernels, the following are also available::
do_register_con_driver()
do_unregister_con_driver()
If sysfs is enabled, the contents of /sys/class/vtconsole can be
examined. This shows the console backends currently registered by the
-system which are named vtcon<n> where <n> is an integer from 0 to 15. Thus:
+system which are named vtcon<n> where <n> is an integer from 0 to 15.
+Thus::
ls /sys/class/vtconsole
. .. vtcon0 vtcon1
-Each directory in /sys/class/vtconsole has 3 files:
+Each directory in /sys/class/vtconsole has 3 files::
ls /sys/class/vtconsole/vtcon0
. .. bind name uevent
@@ -46,27 +50,29 @@ What do these files signify?
read, or acts to bind or unbind the driver to the virtual consoles
when written to. The possible values are:
- 0 - means the driver is not bound and if echo'ed, commands the driver
+ 0
+ - means the driver is not bound and if echo'ed, commands the driver
to unbind
- 1 - means the driver is bound and if echo'ed, commands the driver to
+ 1
+ - means the driver is bound and if echo'ed, commands the driver to
bind
- 2. name - read-only file. Shows the name of the driver in this format:
+ 2. name - read-only file. Shows the name of the driver in this format::
- cat /sys/class/vtconsole/vtcon0/name
- (S) VGA+
+ cat /sys/class/vtconsole/vtcon0/name
+ (S) VGA+
- '(S)' stands for a (S)ystem driver, i.e., it cannot be directly
- commanded to bind or unbind
+ '(S)' stands for a (S)ystem driver, i.e., it cannot be directly
+ commanded to bind or unbind
- 'VGA+' is the name of the driver
+ 'VGA+' is the name of the driver
- cat /sys/class/vtconsole/vtcon1/name
- (M) frame buffer device
+ cat /sys/class/vtconsole/vtcon1/name
+ (M) frame buffer device
- In this case, '(M)' stands for a (M)odular driver, one that can be
- directly commanded to bind or unbind.
+ In this case, '(M)' stands for a (M)odular driver, one that can be
+ directly commanded to bind or unbind.
3. uevent - ignore this file
@@ -75,14 +81,17 @@ driver takes over the consoles vacated by the driver. Binding, on the other
hand, will bind the driver to the consoles that are currently occupied by a
system driver.
-NOTE1: Binding and unbinding must be selected in Kconfig. It's under:
+NOTE1:
+ Binding and unbinding must be selected in Kconfig. It's under::
-Device Drivers -> Character devices -> Support for binding and unbinding
-console drivers
+ Device Drivers ->
+ Character devices ->
+ Support for binding and unbinding console drivers
-NOTE2: If any of the virtual consoles are in KD_GRAPHICS mode, then binding or
-unbinding will not succeed. An example of an application that sets the console
-to KD_GRAPHICS is X.
+NOTE2:
+ If any of the virtual consoles are in KD_GRAPHICS mode, then binding or
+ unbinding will not succeed. An example of an application that sets the
+ console to KD_GRAPHICS is X.
How useful is this feature? This is very useful for console driver
developers. By unbinding the driver from the console layer, one can unload the
@@ -92,10 +101,10 @@ framebuffer console to VGA console and vice versa, this feature also makes
this possible. (NOTE NOTE NOTE: Please read fbcon.txt under Documentation/fb
for more details.)
-Notes for developers:
-=====================
+Notes for developers
+====================
-do_take_over_console() is now broken up into:
+do_take_over_console() is now broken up into::
do_register_con_driver()
do_bind_con_driver() - private function
@@ -104,7 +113,7 @@ give_up_console() is a wrapper to do_unregister_con_driver(), and a driver must
be fully unbound for this call to succeed. con_is_bound() will check if the
driver is bound or not.
-Guidelines for console driver writers:
+Guidelines for console driver writers
=====================================
In order for binding to and unbinding from the console to properly work,
@@ -140,6 +149,4 @@ The current crop of console drivers should still work correctly, but binding
and unbinding them may cause problems. With minimal fixes, these drivers can
be made to work correctly.
-==========================
Antonino Daplas <adaplas@pol.net>
-
diff --git a/Documentation/dcdbas.txt b/Documentation/driver-api/dcdbas.rst
index 309cc57a7c1c..309cc57a7c1c 100644
--- a/Documentation/dcdbas.txt
+++ b/Documentation/driver-api/dcdbas.rst
diff --git a/Documentation/dell_rbu.txt b/Documentation/driver-api/dell_rbu.rst
index 5d1ce7bcd04d..5d1ce7bcd04d 100644
--- a/Documentation/dell_rbu.txt
+++ b/Documentation/driver-api/dell_rbu.rst
diff --git a/Documentation/driver-api/device_link.rst b/Documentation/driver-api/device_link.rst
index ae1e3d0394b0..1b5020ec6517 100644
--- a/Documentation/driver-api/device_link.rst
+++ b/Documentation/driver-api/device_link.rst
@@ -78,8 +78,8 @@ typically deleted in its ``->remove`` callback for symmetry. That way, if the
driver is compiled as a module, the device link is added on module load and
orderly deleted on unload. The same restrictions that apply to device link
addition (e.g. exclusion of a parallel suspend/resume transition) apply equally
-to deletion. Device links with ``DL_FLAG_STATELESS`` unset (i.e. managed
-device links) are deleted automatically by the driver core.
+to deletion. Device links managed by the driver core are deleted automatically
+by it.
Several flags may be specified on device link addition, two of which
have already been mentioned above: ``DL_FLAG_STATELESS`` to express that no
diff --git a/Documentation/driver-api/dmaengine/dmatest.rst b/Documentation/driver-api/dmaengine/dmatest.rst
index e78d070bb468..ee268d445d38 100644
--- a/Documentation/driver-api/dmaengine/dmatest.rst
+++ b/Documentation/driver-api/dmaengine/dmatest.rst
@@ -44,7 +44,8 @@ Example of usage::
dmatest.timeout=2000 dmatest.iterations=1 dmatest.channel=dma0chan0 dmatest.run=1
-Example of multi-channel test usage:
+Example of multi-channel test usage (new in the 5.0 kernel)::
+
% modprobe dmatest
% echo 2000 > /sys/module/dmatest/parameters/timeout
% echo 1 > /sys/module/dmatest/parameters/iterations
@@ -53,15 +54,18 @@ Example of multi-channel test usage:
% echo dma0chan2 > /sys/module/dmatest/parameters/channel
% echo 1 > /sys/module/dmatest/parameters/run
-Note: the channel parameter should always be the last parameter set prior to
-running the test (setting run=1), this is because upon setting the channel
-parameter, that specific channel is requested using the dmaengine and a thread
-is created with the existing parameters. This thread is set as pending
-and will be executed once run is set to 1. Any parameters set after the thread
-is created are not applied.
+.. note::
+ For all tests, starting in the 5.0 kernel, either single- or multi-channel,
+ the channel parameter(s) must be set after all other parameters. It is at
+ that time that the existing parameter values are acquired for use by the
+ thread(s). All other parameters are shared. Therefore, if changes are made
+ to any of the other parameters, and an additional channel specified, the
+ (shared) parameters used for all threads will use the new values.
+ After the channels are specified, each thread is set as pending. All threads
+ begin execution when the run parameter is set to 1.
.. hint::
- available channel list could be extracted by running the following command::
+ A list of available channels can be found by running the following command::
% ls -1 /sys/class/dma/
@@ -204,6 +208,7 @@ Releasing Channels
Channels can be freed by setting run to 0.
Example::
+
% echo dma0chan1 > /sys/module/dmatest/parameters/channel
dmatest: Added 1 threads using dma0chan1
% cat /sys/class/dma/dma0chan1/in_use
diff --git a/Documentation/driver-api/dmaengine/index.rst b/Documentation/driver-api/dmaengine/index.rst
index 3026fa975937..b9df904d0a79 100644
--- a/Documentation/driver-api/dmaengine/index.rst
+++ b/Documentation/driver-api/dmaengine/index.rst
@@ -47,7 +47,7 @@ This book adds some notes about PXA DMA
pxa_dma
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/driver-model/binding.txt b/Documentation/driver-api/driver-model/binding.rst
index abfc8e290d53..7ea1d7a41e1d 100644
--- a/Documentation/driver-model/binding.txt
+++ b/Documentation/driver-api/driver-model/binding.rst
@@ -1,5 +1,6 @@
-
+==============
Driver Binding
+==============
Driver binding is the process of associating a device with a device
driver that can control it. Bus drivers have typically handled this
@@ -25,7 +26,7 @@ device_register
When a new device is added, the bus's list of drivers is iterated over
to find one that supports it. In order to determine that, the device
ID of the device must match one of the device IDs that the driver
-supports. The format and semantics for comparing IDs is bus-specific.
+supports. The format and semantics for comparing IDs is bus-specific.
Instead of trying to derive a complex state machine and matching
algorithm, it is up to the bus driver to provide a callback to compare
a device against the IDs of a driver. The bus returns 1 if a match was
@@ -36,14 +37,14 @@ int match(struct device * dev, struct device_driver * drv);
If a match is found, the device's driver field is set to the driver
and the driver's probe callback is called. This gives the driver a
chance to verify that it really does support the hardware, and that
-it's in a working state.
+it's in a working state.
Device Class
~~~~~~~~~~~~
Upon the successful completion of probe, the device is registered with
the class to which it belongs. Device drivers belong to one and only one
-class, and that is set in the driver's devclass field.
+class, and that is set in the driver's devclass field.
devclass_add_device is called to enumerate the device within the class
and actually register it with the class, which happens with the
class's register_dev callback.
@@ -53,7 +54,7 @@ Driver
~~~~~~
When a driver is attached to a device, the device is inserted into the
-driver's list of devices.
+driver's list of devices.
sysfs
@@ -67,18 +68,18 @@ to the device's directory in the physical hierarchy.
A directory for the device is created in the class's directory. A
symlink is created in that directory that points to the device's
-physical location in the sysfs tree.
+physical location in the sysfs tree.
A symlink can be created (though this isn't done yet) in the device's
physical directory to either its class directory, or the class's
top-level directory. One can also be created to point to its driver's
-directory also.
+directory also.
driver_register
~~~~~~~~~~~~~~~
-The process is almost identical for when a new driver is added.
+The process is almost identical for when a new driver is added.
The bus's list of devices is iterated over to find a match. Devices
that already have a driver are skipped. All the devices are iterated
over, to bind as many devices as possible to the driver.
@@ -94,5 +95,4 @@ of the driver is decremented. All symlinks between the two are removed.
When a driver is removed, the list of devices that it supports is
iterated over, and the driver's remove callback is called for each
-one. The device is removed from that list and the symlinks removed.
-
+one. The device is removed from that list and the symlinks removed.
diff --git a/Documentation/driver-model/bus.txt b/Documentation/driver-api/driver-model/bus.rst
index c247b488a567..016b15a6e8ea 100644
--- a/Documentation/driver-model/bus.txt
+++ b/Documentation/driver-api/driver-model/bus.rst
@@ -1,5 +1,6 @@
-
-Bus Types
+=========
+Bus Types
+=========
Definition
~~~~~~~~~~
@@ -13,12 +14,12 @@ Declaration
Each bus type in the kernel (PCI, USB, etc) should declare one static
object of this type. They must initialize the name field, and may
-optionally initialize the match callback.
+optionally initialize the match callback::
-struct bus_type pci_bus_type = {
- .name = "pci",
- .match = pci_bus_match,
-};
+ struct bus_type pci_bus_type = {
+ .name = "pci",
+ .match = pci_bus_match,
+ };
The structure should be exported to drivers in a header file:
@@ -30,8 +31,8 @@ Registration
When a bus driver is initialized, it calls bus_register. This
initializes the rest of the fields in the bus object and inserts it
-into a global list of bus types. Once the bus object is registered,
-the fields in it are usable by the bus driver.
+into a global list of bus types. Once the bus object is registered,
+the fields in it are usable by the bus driver.
Callbacks
@@ -43,17 +44,17 @@ match(): Attaching Drivers to Devices
The format of device ID structures and the semantics for comparing
them are inherently bus-specific. Drivers typically declare an array
of device IDs of devices they support that reside in a bus-specific
-driver structure.
+driver structure.
The purpose of the match callback is to give the bus an opportunity to
determine if a particular driver supports a particular device by
comparing the device IDs the driver supports with the device ID of a
particular device, without sacrificing bus-specific functionality or
-type-safety.
+type-safety.
When a driver is registered with the bus, the bus's list of devices is
iterated over, and the match callback is called for each device that
-does not have a driver associated with it.
+does not have a driver associated with it.
@@ -64,22 +65,23 @@ The lists of devices and drivers are intended to replace the local
lists that many buses keep. They are lists of struct devices and
struct device_drivers, respectively. Bus drivers are free to use the
lists as they please, but conversion to the bus-specific type may be
-necessary.
+necessary.
-The LDM core provides helper functions for iterating over each list.
+The LDM core provides helper functions for iterating over each list::
-int bus_for_each_dev(struct bus_type * bus, struct device * start, void * data,
- int (*fn)(struct device *, void *));
+ int bus_for_each_dev(struct bus_type * bus, struct device * start,
+ void * data,
+ int (*fn)(struct device *, void *));
-int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
- void * data, int (*fn)(struct device_driver *, void *));
+ int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
+ void * data, int (*fn)(struct device_driver *, void *));
These helpers iterate over the respective list, and call the callback
for each device or driver in the list. All list accesses are
synchronized by taking the bus's lock (read currently). The reference
count on each object in the list is incremented before the callback is
called; it is decremented after the next object has been obtained. The
-lock is not held when calling the callback.
+lock is not held when calling the callback.
sysfs
@@ -87,14 +89,14 @@ sysfs
There is a top-level directory named 'bus'.
Each bus gets a directory in the bus directory, along with two default
-directories:
+directories::
/sys/bus/pci/
|-- devices
`-- drivers
Drivers registered with the bus get a directory in the bus's drivers
-directory:
+directory::
/sys/bus/pci/
|-- devices
@@ -106,7 +108,7 @@ directory:
Each device that is discovered on a bus of that type gets a symlink in
the bus's devices directory to the device's directory in the physical
-hierarchy:
+hierarchy::
/sys/bus/pci/
|-- devices
@@ -118,26 +120,27 @@ hierarchy:
Exporting Attributes
~~~~~~~~~~~~~~~~~~~~
-struct bus_attribute {
+
+::
+
+ struct bus_attribute {
struct attribute attr;
ssize_t (*show)(struct bus_type *, char * buf);
ssize_t (*store)(struct bus_type *, const char * buf, size_t count);
-};
+ };
Bus drivers can export attributes using the BUS_ATTR_RW macro that works
similarly to the DEVICE_ATTR_RW macro for devices. For example, a
-definition like this:
+definition like this::
-static BUS_ATTR_RW(debug);
+ static BUS_ATTR_RW(debug);
-is equivalent to declaring:
+is equivalent to declaring::
-static bus_attribute bus_attr_debug;
+ static bus_attribute bus_attr_debug;
This can then be used to add and remove the attribute from the bus's
-sysfs directory using:
-
-int bus_create_file(struct bus_type *, struct bus_attribute *);
-void bus_remove_file(struct bus_type *, struct bus_attribute *);
-
+sysfs directory using::
+ int bus_create_file(struct bus_type *, struct bus_attribute *);
+ void bus_remove_file(struct bus_type *, struct bus_attribute *);
diff --git a/Documentation/driver-model/class.txt b/Documentation/driver-api/driver-model/class.rst
index 1fefc480a80b..fff55b80e86a 100644
--- a/Documentation/driver-model/class.txt
+++ b/Documentation/driver-api/driver-model/class.rst
@@ -1,6 +1,6 @@
-
+==============
Device Classes
-
+==============
Introduction
~~~~~~~~~~~~
@@ -13,37 +13,37 @@ device. The following device classes have been identified:
Each device class defines a set of semantics and a programming interface
that devices of that class adhere to. Device drivers are the
implementation of that programming interface for a particular device on
-a particular bus.
+a particular bus.
Device classes are agnostic with respect to what bus a device resides
-on.
+on.
Programming Interface
~~~~~~~~~~~~~~~~~~~~~
-The device class structure looks like:
+The device class structure looks like::
-typedef int (*devclass_add)(struct device *);
-typedef void (*devclass_remove)(struct device *);
+ typedef int (*devclass_add)(struct device *);
+ typedef void (*devclass_remove)(struct device *);
See the kerneldoc for the struct class.
-A typical device class definition would look like:
+A typical device class definition would look like::
-struct device_class input_devclass = {
+ struct device_class input_devclass = {
.name = "input",
.add_device = input_add_device,
.remove_device = input_remove_device,
-};
+ };
Each device class structure should be exported in a header file so it
can be used by drivers, extensions and interfaces.
-Device classes are registered and unregistered with the core using:
+Device classes are registered and unregistered with the core using::
-int devclass_register(struct device_class * cls);
-void devclass_unregister(struct device_class * cls);
+ int devclass_register(struct device_class * cls);
+ void devclass_unregister(struct device_class * cls);
Devices
@@ -52,16 +52,16 @@ As devices are bound to drivers, they are added to the device class
that the driver belongs to. Before the driver model core, this would
typically happen during the driver's probe() callback, once the device
has been initialized. It now happens after the probe() callback
-finishes from the core.
+finishes from the core.
The device is enumerated in the class. Each time a device is added to
the class, the class's devnum field is incremented and assigned to the
device. The field is never decremented, so if the device is removed
from the class and re-added, it will receive a different enumerated
-value.
+value.
The class is allowed to create a class-specific structure for the
-device and store it in the device's class_data pointer.
+device and store it in the device's class_data pointer.
There is no list of devices in the device class. Each driver has a
list of devices that it supports. The device class has a list of
@@ -73,15 +73,15 @@ Device Drivers
~~~~~~~~~~~~~~
Device drivers are added to device classes when they are registered
with the core. A driver specifies the class it belongs to by setting
-the struct device_driver::devclass field.
+the struct device_driver::devclass field.
sysfs directory structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-There is a top-level sysfs directory named 'class'.
+There is a top-level sysfs directory named 'class'.
Each class gets a directory in the class directory, along with two
-default subdirectories:
+default subdirectories::
class/
`-- input
@@ -89,8 +89,8 @@ default subdirectories:
`-- drivers
-Drivers registered with the class get a symlink in the drivers/ directory
-that points to the driver's directory (under its bus directory):
+Drivers registered with the class get a symlink in the drivers/ directory
+that points to the driver's directory (under its bus directory)::
class/
`-- input
@@ -99,8 +99,8 @@ that points to the driver's directory (under its bus directory):
`-- usb:usb_mouse -> ../../../bus/drivers/usb_mouse/
-Each device gets a symlink in the devices/ directory that points to the
-device's directory in the physical hierarchy:
+Each device gets a symlink in the devices/ directory that points to the
+device's directory in the physical hierarchy::
class/
`-- input
@@ -111,37 +111,39 @@ device's directory in the physical hierarchy:
Exporting Attributes
~~~~~~~~~~~~~~~~~~~~
-struct devclass_attribute {
+
+::
+
+ struct devclass_attribute {
struct attribute attr;
ssize_t (*show)(struct device_class *, char * buf, size_t count, loff_t off);
ssize_t (*store)(struct device_class *, const char * buf, size_t count, loff_t off);
-};
+ };
Class drivers can export attributes using the DEVCLASS_ATTR macro that works
-similarly to the DEVICE_ATTR macro for devices. For example, a definition
-like this:
+similarly to the DEVICE_ATTR macro for devices. For example, a definition
+like this::
-static DEVCLASS_ATTR(debug,0644,show_debug,store_debug);
+ static DEVCLASS_ATTR(debug,0644,show_debug,store_debug);
-is equivalent to declaring:
+is equivalent to declaring::
-static devclass_attribute devclass_attr_debug;
+ static devclass_attribute devclass_attr_debug;
The bus driver can add and remove the attribute from the class's
-sysfs directory using:
+sysfs directory using::
-int devclass_create_file(struct device_class *, struct devclass_attribute *);
-void devclass_remove_file(struct device_class *, struct devclass_attribute *);
+ int devclass_create_file(struct device_class *, struct devclass_attribute *);
+ void devclass_remove_file(struct device_class *, struct devclass_attribute *);
In the example above, the file will be named 'debug' in placed in the
-class's directory in sysfs.
+class's directory in sysfs.
Interfaces
~~~~~~~~~~
There may exist multiple mechanisms for accessing the same device of a
-particular class type. Device interfaces describe these mechanisms.
+particular class type. Device interfaces describe these mechanisms.
When a device is added to a device class, the core attempts to add it
to every interface that is registered with the device class.
-
diff --git a/Documentation/driver-model/design-patterns.txt b/Documentation/driver-api/driver-model/design-patterns.rst
index ba7b2df64904..41eb8f41f7dd 100644
--- a/Documentation/driver-model/design-patterns.txt
+++ b/Documentation/driver-api/driver-model/design-patterns.rst
@@ -1,6 +1,6 @@
-
+=============================
Device Driver Design Patterns
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+=============================
This document describes a few common design patterns found in device drivers.
It is likely that subsystem maintainers will ask driver developers to
@@ -19,23 +19,23 @@ that the device the driver binds to will appear in several instances. This
means that the probe() function and all callbacks need to be reentrant.
The most common way to achieve this is to use the state container design
-pattern. It usually has this form:
+pattern. It usually has this form::
-struct foo {
- spinlock_t lock; /* Example member */
- (...)
-};
+ struct foo {
+ spinlock_t lock; /* Example member */
+ (...)
+ };
-static int foo_probe(...)
-{
- struct foo *foo;
+ static int foo_probe(...)
+ {
+ struct foo *foo;
- foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
- if (!foo)
- return -ENOMEM;
- spin_lock_init(&foo->lock);
- (...)
-}
+ foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
+ if (!foo)
+ return -ENOMEM;
+ spin_lock_init(&foo->lock);
+ (...)
+ }
This will create an instance of struct foo in memory every time probe() is
called. This is our state container for this instance of the device driver.
@@ -43,21 +43,21 @@ Of course it is then necessary to always pass this instance of the
state around to all functions that need access to the state and its members.
For example, if the driver is registering an interrupt handler, you would
-pass around a pointer to struct foo like this:
+pass around a pointer to struct foo like this::
-static irqreturn_t foo_handler(int irq, void *arg)
-{
- struct foo *foo = arg;
- (...)
-}
+ static irqreturn_t foo_handler(int irq, void *arg)
+ {
+ struct foo *foo = arg;
+ (...)
+ }
-static int foo_probe(...)
-{
- struct foo *foo;
+ static int foo_probe(...)
+ {
+ struct foo *foo;
- (...)
- ret = request_irq(irq, foo_handler, 0, "foo", foo);
-}
+ (...)
+ ret = request_irq(irq, foo_handler, 0, "foo", foo);
+ }
This way you always get a pointer back to the correct instance of foo in
your interrupt handler.
@@ -66,38 +66,38 @@ your interrupt handler.
2. container_of()
~~~~~~~~~~~~~~~~~
-Continuing on the above example we add an offloaded work:
+Continuing on the above example we add an offloaded work::
-struct foo {
- spinlock_t lock;
- struct workqueue_struct *wq;
- struct work_struct offload;
- (...)
-};
+ struct foo {
+ spinlock_t lock;
+ struct workqueue_struct *wq;
+ struct work_struct offload;
+ (...)
+ };
-static void foo_work(struct work_struct *work)
-{
- struct foo *foo = container_of(work, struct foo, offload);
+ static void foo_work(struct work_struct *work)
+ {
+ struct foo *foo = container_of(work, struct foo, offload);
- (...)
-}
+ (...)
+ }
-static irqreturn_t foo_handler(int irq, void *arg)
-{
- struct foo *foo = arg;
+ static irqreturn_t foo_handler(int irq, void *arg)
+ {
+ struct foo *foo = arg;
- queue_work(foo->wq, &foo->offload);
- (...)
-}
+ queue_work(foo->wq, &foo->offload);
+ (...)
+ }
-static int foo_probe(...)
-{
- struct foo *foo;
+ static int foo_probe(...)
+ {
+ struct foo *foo;
- foo->wq = create_singlethread_workqueue("foo-wq");
- INIT_WORK(&foo->offload, foo_work);
- (...)
-}
+ foo->wq = create_singlethread_workqueue("foo-wq");
+ INIT_WORK(&foo->offload, foo_work);
+ (...)
+ }
The design pattern is the same for an hrtimer or something similar that will
return a single argument which is a pointer to a struct member in the
diff --git a/Documentation/driver-model/device.txt b/Documentation/driver-api/driver-model/device.rst
index 2403eb856187..2b868d49d349 100644
--- a/Documentation/driver-model/device.txt
+++ b/Documentation/driver-api/driver-model/device.rst
@@ -1,6 +1,6 @@
-
+==========================
The Basic Device Structure
-~~~~~~~~~~~~~~~~~~~~~~~~~~
+==========================
See the kerneldoc for the struct device.
@@ -8,9 +8,9 @@ See the kerneldoc for the struct device.
Programming Interface
~~~~~~~~~~~~~~~~~~~~~
The bus driver that discovers the device uses this to register the
-device with the core:
+device with the core::
-int device_register(struct device * dev);
+ int device_register(struct device * dev);
The bus should initialize the following fields:
@@ -20,30 +20,33 @@ The bus should initialize the following fields:
- bus
A device is removed from the core when its reference count goes to
-0. The reference count can be adjusted using:
+0. The reference count can be adjusted using::
-struct device * get_device(struct device * dev);
-void put_device(struct device * dev);
+ struct device * get_device(struct device * dev);
+ void put_device(struct device * dev);
get_device() will return a pointer to the struct device passed to it
if the reference is not already 0 (if it's in the process of being
removed already).
-A driver can access the lock in the device structure using:
+A driver can access the lock in the device structure using::
-void lock_device(struct device * dev);
-void unlock_device(struct device * dev);
+ void lock_device(struct device * dev);
+ void unlock_device(struct device * dev);
Attributes
~~~~~~~~~~
-struct device_attribute {
+
+::
+
+ struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
-};
+ };
Attributes of devices can be exported by a device driver through sysfs.
@@ -54,39 +57,39 @@ As explained in Documentation/kobject.txt, device attributes must be
created before the KOBJ_ADD uevent is generated. The only way to realize
that is by defining an attribute group.
-Attributes are declared using a macro called DEVICE_ATTR:
+Attributes are declared using a macro called DEVICE_ATTR::
-#define DEVICE_ATTR(name,mode,show,store)
+ #define DEVICE_ATTR(name,mode,show,store)
-Example:
+Example:::
-static DEVICE_ATTR(type, 0444, show_type, NULL);
-static DEVICE_ATTR(power, 0644, show_power, store_power);
+ static DEVICE_ATTR(type, 0444, show_type, NULL);
+ static DEVICE_ATTR(power, 0644, show_power, store_power);
This declares two structures of type struct device_attribute with respective
names 'dev_attr_type' and 'dev_attr_power'. These two attributes can be
-organized as follows into a group:
+organized as follows into a group::
-static struct attribute *dev_attrs[] = {
+ static struct attribute *dev_attrs[] = {
&dev_attr_type.attr,
&dev_attr_power.attr,
NULL,
-};
+ };
-static struct attribute_group dev_attr_group = {
+ static struct attribute_group dev_attr_group = {
.attrs = dev_attrs,
-};
+ };
-static const struct attribute_group *dev_attr_groups[] = {
+ static const struct attribute_group *dev_attr_groups[] = {
&dev_attr_group,
NULL,
-};
+ };
This array of groups can then be associated with a device by setting the
-group pointer in struct device before device_register() is invoked:
+group pointer in struct device before device_register() is invoked::
- dev->groups = dev_attr_groups;
- device_register(dev);
+ dev->groups = dev_attr_groups;
+ device_register(dev);
The device_register() function will use the 'groups' pointer to create the
device attributes and the device_unregister() function will use this pointer
diff --git a/Documentation/driver-model/devres.txt b/Documentation/driver-api/driver-model/devres.rst
index 69c7fa7f616c..a100bef54952 100644
--- a/Documentation/driver-model/devres.txt
+++ b/Documentation/driver-api/driver-model/devres.rst
@@ -1,3 +1,4 @@
+================================
Devres - Managed Device Resource
================================
@@ -5,17 +6,18 @@ Tejun Heo <teheo@suse.de>
First draft 10 January 2007
+.. contents
-1. Intro : Huh? Devres?
-2. Devres : Devres in a nutshell
-3. Devres Group : Group devres'es and release them together
-4. Details : Life time rules, calling context, ...
-5. Overhead : How much do we have to pay for this?
-6. List of managed interfaces : Currently implemented managed interfaces
+ 1. Intro : Huh? Devres?
+ 2. Devres : Devres in a nutshell
+ 3. Devres Group : Group devres'es and release them together
+ 4. Details : Life time rules, calling context, ...
+ 5. Overhead : How much do we have to pay for this?
+ 6. List of managed interfaces: Currently implemented managed interfaces
- 1. Intro
- --------
+1. Intro
+--------
devres came up while trying to convert libata to use iomap. Each
iomapped address should be kept and unmapped on driver detach. For
@@ -42,8 +44,8 @@ would leak resources or even cause oops when failure occurs. iomap
adds more to this mix. So do msi and msix.
- 2. Devres
- ---------
+2. Devres
+---------
devres is basically linked list of arbitrarily sized memory areas
associated with a struct device. Each devres entry is associated with
@@ -58,7 +60,7 @@ using dma_alloc_coherent(). The managed version is called
dmam_alloc_coherent(). It is identical to dma_alloc_coherent() except
for the DMA memory allocated using it is managed and will be
automatically released on driver detach. Implementation looks like
-the following.
+the following::
struct dma_devres {
size_t size;
@@ -98,7 +100,7 @@ If a driver uses dmam_alloc_coherent(), the area is guaranteed to be
freed whether initialization fails half-way or the device gets
detached. If most resources are acquired using managed interface, a
driver can have much simpler init and exit code. Init path basically
-looks like the following.
+looks like the following::
my_init_one()
{
@@ -119,7 +121,7 @@ looks like the following.
return register_to_upper_layer(d);
}
-And exit path,
+And exit path::
my_remove_one()
{
@@ -140,13 +142,13 @@ on you. In some cases this may mean introducing checks that were not
necessary before moving to the managed devm_* calls.
- 3. Devres group
- ---------------
+3. Devres group
+---------------
Devres entries can be grouped using devres group. When a group is
released, all contained normal devres entries and properly nested
groups are released. One usage is to rollback series of acquired
-resources on failure. For example,
+resources on failure. For example::
if (!devres_open_group(dev, NULL, GFP_KERNEL))
return -ENOMEM;
@@ -172,7 +174,7 @@ like above are usually useful in midlayer driver (e.g. libata core
layer) where interface function shouldn't have side effect on failure.
For LLDs, just returning error code suffices in most cases.
-Each group is identified by void *id. It can either be explicitly
+Each group is identified by `void *id`. It can either be explicitly
specified by @id argument to devres_open_group() or automatically
created by passing NULL as @id as in the above example. In both
cases, devres_open_group() returns the group's id. The returned id
@@ -180,7 +182,7 @@ can be passed to other devres functions to select the target group.
If NULL is given to those functions, the latest open group is
selected.
-For example, you can do something like the following.
+For example, you can do something like the following::
int my_midlayer_create_something()
{
@@ -199,8 +201,8 @@ For example, you can do something like the following.
}
- 4. Details
- ----------
+4. Details
+----------
Lifetime of a devres entry begins on devres allocation and finishes
when it is released or destroyed (removed and freed) - no reference
@@ -220,8 +222,8 @@ All devres interface functions can be called without context if the
right gfp mask is given.
- 5. Overhead
- -----------
+5. Overhead
+-----------
Each devres bookkeeping info is allocated together with requested data
area. With debug option turned off, bookkeeping info occupies 16
@@ -237,13 +239,17 @@ and 400 bytes on 32bit machine after naive conversion (we can
certainly invest a bit more effort into libata core layer).
- 6. List of managed interfaces
- -----------------------------
+6. List of managed interfaces
+-----------------------------
CLOCK
devm_clk_get()
devm_clk_get_optional()
devm_clk_put()
+ devm_clk_bulk_get()
+ devm_clk_bulk_get_all()
+ devm_clk_bulk_get_optional()
+ devm_get_clk_from_childl()
devm_clk_hw_register()
devm_of_clk_add_hw_provider()
devm_clk_hw_register_clkdev()
diff --git a/Documentation/driver-model/driver.txt b/Documentation/driver-api/driver-model/driver.rst
index d661e6f7e6a0..11d281506a04 100644
--- a/Documentation/driver-model/driver.txt
+++ b/Documentation/driver-api/driver-model/driver.rst
@@ -1,5 +1,6 @@
-
+==============
Device Drivers
+==============
See the kerneldoc for the struct device_driver.
@@ -26,50 +27,50 @@ Declaration
As stated above, struct device_driver objects are statically
allocated. Below is an example declaration of the eepro100
driver. This declaration is hypothetical only; it relies on the driver
-being converted completely to the new model.
-
-static struct device_driver eepro100_driver = {
- .name = "eepro100",
- .bus = &pci_bus_type,
-
- .probe = eepro100_probe,
- .remove = eepro100_remove,
- .suspend = eepro100_suspend,
- .resume = eepro100_resume,
-};
+being converted completely to the new model::
+
+ static struct device_driver eepro100_driver = {
+ .name = "eepro100",
+ .bus = &pci_bus_type,
+
+ .probe = eepro100_probe,
+ .remove = eepro100_remove,
+ .suspend = eepro100_suspend,
+ .resume = eepro100_resume,
+ };
Most drivers will not be able to be converted completely to the new
model because the bus they belong to has a bus-specific structure with
-bus-specific fields that cannot be generalized.
+bus-specific fields that cannot be generalized.
The most common example of this are device ID structures. A driver
typically defines an array of device IDs that it supports. The format
of these structures and the semantics for comparing device IDs are
completely bus-specific. Defining them as bus-specific entities would
-sacrifice type-safety, so we keep bus-specific structures around.
+sacrifice type-safety, so we keep bus-specific structures around.
Bus-specific drivers should include a generic struct device_driver in
-the definition of the bus-specific driver. Like this:
+the definition of the bus-specific driver. Like this::
-struct pci_driver {
- const struct pci_device_id *id_table;
- struct device_driver driver;
-};
+ struct pci_driver {
+ const struct pci_device_id *id_table;
+ struct device_driver driver;
+ };
A definition that included bus-specific fields would look like
-(using the eepro100 driver again):
+(using the eepro100 driver again)::
-static struct pci_driver eepro100_driver = {
- .id_table = eepro100_pci_tbl,
- .driver = {
+ static struct pci_driver eepro100_driver = {
+ .id_table = eepro100_pci_tbl,
+ .driver = {
.name = "eepro100",
.bus = &pci_bus_type,
.probe = eepro100_probe,
.remove = eepro100_remove,
.suspend = eepro100_suspend,
.resume = eepro100_resume,
- },
-};
+ },
+ };
Some may find the syntax of embedded struct initialization awkward or
even a bit ugly. So far, it's the best way we've found to do what we want...
@@ -77,12 +78,14 @@ even a bit ugly. So far, it's the best way we've found to do what we want...
Registration
~~~~~~~~~~~~
-int driver_register(struct device_driver * drv);
+::
+
+ int driver_register(struct device_driver *drv);
The driver registers the structure on startup. For drivers that have
no bus-specific fields (i.e. don't have a bus-specific driver
structure), they would use driver_register and pass a pointer to their
-struct device_driver object.
+struct device_driver object.
Most drivers, however, will have a bus-specific structure and will
need to register with the bus using something like pci_driver_register.
@@ -101,7 +104,7 @@ By defining wrapper functions, the transition to the new model can be
made easier. Drivers can ignore the generic structure altogether and
let the bus wrapper fill in the fields. For the callbacks, the bus can
define generic callbacks that forward the call to the bus-specific
-callbacks of the drivers.
+callbacks of the drivers.
This solution is intended to be only temporary. In order to get class
information in the driver, the drivers must be modified anyway. Since
@@ -113,16 +116,16 @@ Access
~~~~~~
Once the object has been registered, it may access the common fields of
-the object, like the lock and the list of devices.
+the object, like the lock and the list of devices::
-int driver_for_each_dev(struct device_driver * drv, void * data,
- int (*callback)(struct device * dev, void * data));
+ int driver_for_each_dev(struct device_driver *drv, void *data,
+ int (*callback)(struct device *dev, void *data));
The devices field is a list of all the devices that have been bound to
the driver. The LDM core provides a helper function to operate on all
the devices a driver controls. This helper locks the driver on each
node access, and does proper reference counting on each device as it
-accesses it.
+accesses it.
sysfs
@@ -142,7 +145,9 @@ supports.
Callbacks
~~~~~~~~~
- int (*probe) (struct device * dev);
+::
+
+ int (*probe) (struct device *dev);
The probe() entry is called in task context, with the bus's rwsem locked
and the driver partially bound to the device. Drivers commonly use
@@ -162,9 +167,9 @@ the driver to that device.
A driver's probe() may return a negative errno value to indicate that
the driver did not bind to this device, in which case it should have
-released all resources it allocated.
+released all resources it allocated::
- int (*remove) (struct device * dev);
+ int (*remove) (struct device *dev);
remove is called to unbind a driver from a device. This may be
called if a device is physically removed from the system, if the
@@ -173,43 +178,46 @@ in other cases.
It is up to the driver to determine if the device is present or
not. It should free any resources allocated specifically for the
-device; i.e. anything in the device's driver_data field.
+device; i.e. anything in the device's driver_data field.
If the device is still present, it should quiesce the device and place
-it into a supported low-power state.
+it into a supported low-power state::
- int (*suspend) (struct device * dev, pm_message_t state);
+ int (*suspend) (struct device *dev, pm_message_t state);
-suspend is called to put the device in a low power state.
+suspend is called to put the device in a low power state::
- int (*resume) (struct device * dev);
+ int (*resume) (struct device *dev);
Resume is used to bring a device back from a low power state.
Attributes
~~~~~~~~~~
-struct driver_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device_driver *driver, char *buf);
- ssize_t (*store)(struct device_driver *, const char * buf, size_t count);
-};
-Device drivers can export attributes via their sysfs directories.
+::
+
+ struct driver_attribute {
+ struct attribute attr;
+ ssize_t (*show)(struct device_driver *driver, char *buf);
+ ssize_t (*store)(struct device_driver *, const char *buf, size_t count);
+ };
+
+Device drivers can export attributes via their sysfs directories.
Drivers can declare attributes using a DRIVER_ATTR_RW and DRIVER_ATTR_RO
macro that works identically to the DEVICE_ATTR_RW and DEVICE_ATTR_RO
macros.
-Example:
+Example::
-DRIVER_ATTR_RW(debug);
+ DRIVER_ATTR_RW(debug);
-This is equivalent to declaring:
+This is equivalent to declaring::
-struct driver_attribute driver_attr_debug;
+ struct driver_attribute driver_attr_debug;
This can then be used to add and remove the attribute from the
-driver's directory using:
+driver's directory using::
-int driver_create_file(struct device_driver *, const struct driver_attribute *);
-void driver_remove_file(struct device_driver *, const struct driver_attribute *);
+ int driver_create_file(struct device_driver *, const struct driver_attribute *);
+ void driver_remove_file(struct device_driver *, const struct driver_attribute *);
diff --git a/Documentation/driver-api/driver-model/index.rst b/Documentation/driver-api/driver-model/index.rst
new file mode 100644
index 000000000000..755016422269
--- /dev/null
+++ b/Documentation/driver-api/driver-model/index.rst
@@ -0,0 +1,24 @@
+============
+Driver Model
+============
+
+.. toctree::
+ :maxdepth: 1
+
+ binding
+ bus
+ class
+ design-patterns
+ device
+ devres
+ driver
+ overview
+ platform
+ porting
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/driver-model/overview.txt b/Documentation/driver-api/driver-model/overview.rst
index 6a8f9a8075d8..d4d1e9b40e0c 100644
--- a/Documentation/driver-model/overview.txt
+++ b/Documentation/driver-api/driver-model/overview.rst
@@ -1,4 +1,6 @@
+=============================
The Linux Kernel Device Model
+=============================
Patrick Mochel <mochel@digitalimplant.org>
@@ -41,14 +43,14 @@ data structure. These fields must still be accessed by the bus layers,
and sometimes by the device-specific drivers.
Other bus layers are encouraged to do what has been done for the PCI layer.
-struct pci_dev now looks like this:
+struct pci_dev now looks like this::
-struct pci_dev {
+ struct pci_dev {
...
struct device dev; /* Generic device interface */
...
-};
+ };
Note first that the struct device dev within the struct pci_dev is
statically allocated. This means only one allocation on device discovery.
@@ -80,26 +82,26 @@ easy. This has been accomplished by implementing a special purpose virtual
file system named sysfs.
Almost all mainstream Linux distros mount this filesystem automatically; you
-can see some variation of the following in the output of the "mount" command:
+can see some variation of the following in the output of the "mount" command::
-$ mount
-...
-none on /sys type sysfs (rw,noexec,nosuid,nodev)
-...
-$
+ $ mount
+ ...
+ none on /sys type sysfs (rw,noexec,nosuid,nodev)
+ ...
+ $
The auto-mounting of sysfs is typically accomplished by an entry similar to
-the following in the /etc/fstab file:
+the following in the /etc/fstab file::
-none /sys sysfs defaults 0 0
+ none /sys sysfs defaults 0 0
-or something similar in the /lib/init/fstab file on Debian-based systems:
+or something similar in the /lib/init/fstab file on Debian-based systems::
-none /sys sysfs nodev,noexec,nosuid 0 0
+ none /sys sysfs nodev,noexec,nosuid 0 0
-If sysfs is not automatically mounted, you can always do it manually with:
+If sysfs is not automatically mounted, you can always do it manually with::
-# mount -t sysfs sysfs /sys
+ # mount -t sysfs sysfs /sys
Whenever a device is inserted into the tree, a directory is created for it.
This directory may be populated at each layer of discovery - the global layer,
@@ -108,7 +110,7 @@ the bus layer, or the device layer.
The global layer currently creates two files - 'name' and 'power'. The
former only reports the name of the device. The latter reports the
current power state of the device. It will also be used to set the current
-power state.
+power state.
The bus layer may also create files for the devices it finds while probing the
bus. For example, the PCI layer currently creates 'irq' and 'resource' files
@@ -118,6 +120,5 @@ A device-specific driver may also export files in its directory to expose
device-specific data or tunable interfaces.
More information about the sysfs directory layout can be found in
-the other documents in this directory and in the file
+the other documents in this directory and in the file
Documentation/filesystems/sysfs.txt.
-
diff --git a/Documentation/driver-model/platform.txt b/Documentation/driver-api/driver-model/platform.rst
index 9d9e47dfc013..334dd4071ae4 100644
--- a/Documentation/driver-model/platform.txt
+++ b/Documentation/driver-api/driver-model/platform.rst
@@ -1,5 +1,7 @@
+============================
Platform Devices and Drivers
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+============================
+
See <linux/platform_device.h> for the driver model interface to the
platform bus: platform_device, and platform_driver. This pseudo-bus
is used to connect devices on busses with minimal infrastructure,
@@ -19,15 +21,15 @@ be connected through a segment of some other kind of bus; but its
registers will still be directly addressable.
Platform devices are given a name, used in driver binding, and a
-list of resources such as addresses and IRQs.
+list of resources such as addresses and IRQs::
-struct platform_device {
+ struct platform_device {
const char *name;
u32 id;
struct device dev;
u32 num_resources;
struct resource *resource;
-};
+ };
Platform drivers
@@ -35,9 +37,9 @@ Platform drivers
Platform drivers follow the standard driver model convention, where
discovery/enumeration is handled outside the drivers, and drivers
provide probe() and remove() methods. They support power management
-and shutdown notifications using the standard conventions.
+and shutdown notifications using the standard conventions::
-struct platform_driver {
+ struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
@@ -46,25 +48,25 @@ struct platform_driver {
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
-};
+ };
Note that probe() should in general verify that the specified device hardware
actually exists; sometimes platform setup code can't be sure. The probing
can use device resources, including clocks, and device platform_data.
-Platform drivers register themselves the normal way:
+Platform drivers register themselves the normal way::
int platform_driver_register(struct platform_driver *drv);
Or, in common situations where the device is known not to be hot-pluggable,
the probe() routine can live in an init section to reduce the driver's
-runtime memory footprint:
+runtime memory footprint::
int platform_driver_probe(struct platform_driver *drv,
int (*probe)(struct platform_device *))
Kernel modules can be composed of several platform drivers. The platform core
-provides helpers to register and unregister an array of drivers:
+provides helpers to register and unregister an array of drivers::
int __platform_register_drivers(struct platform_driver * const *drivers,
unsigned int count, struct module *owner);
@@ -73,7 +75,7 @@ provides helpers to register and unregister an array of drivers:
If one of the drivers fails to register, all drivers registered up to that
point will be unregistered in reverse order. Note that there is a convenience
-macro that passes THIS_MODULE as owner parameter:
+macro that passes THIS_MODULE as owner parameter::
#define platform_register_drivers(drivers, count)
@@ -81,7 +83,7 @@ macro that passes THIS_MODULE as owner parameter:
Device Enumeration
~~~~~~~~~~~~~~~~~~
As a rule, platform specific (and often board-specific) setup code will
-register platform devices:
+register platform devices::
int platform_device_register(struct platform_device *pdev);
@@ -133,14 +135,14 @@ tend to already have "normal" modes, such as ones using device nodes that
were created by PNP or by platform device setup.
None the less, there are some APIs to support such legacy drivers. Avoid
-using these calls except with such hotplug-deficient drivers.
+using these calls except with such hotplug-deficient drivers::
struct platform_device *platform_device_alloc(
const char *name, int id);
You can use platform_device_alloc() to dynamically allocate a device, which
you will then initialize with resources and platform_device_register().
-A better solution is usually:
+A better solution is usually::
struct platform_device *platform_device_register_simple(
const char *name, int id,
diff --git a/Documentation/driver-model/porting.txt b/Documentation/driver-api/driver-model/porting.rst
index 453053f1661f..931ea879af3f 100644
--- a/Documentation/driver-model/porting.txt
+++ b/Documentation/driver-api/driver-model/porting.rst
@@ -1,5 +1,6 @@
-
+=======================================
Porting Drivers to the New Driver Model
+=======================================
Patrick Mochel
@@ -8,8 +9,8 @@ Patrick Mochel
Overview
-Please refer to Documentation/driver-model/*.txt for definitions of
-various driver types and concepts.
+Please refer to `Documentation/driver-api/driver-model/*.rst` for definitions of
+various driver types and concepts.
Most of the work of porting devices drivers to the new model happens
at the bus driver layer. This was intentional, to minimize the
@@ -18,11 +19,11 @@ of bus drivers.
In a nutshell, the driver model consists of a set of objects that can
be embedded in larger, bus-specific objects. Fields in these generic
-objects can replace fields in the bus-specific objects.
+objects can replace fields in the bus-specific objects.
The generic objects must be registered with the driver model core. By
doing so, they will exported via the sysfs filesystem. sysfs can be
-mounted by doing
+mounted by doing::
# mount -t sysfs sysfs /sys
@@ -30,108 +31,109 @@ mounted by doing
The Process
-Step 0: Read include/linux/device.h for object and function definitions.
+Step 0: Read include/linux/device.h for object and function definitions.
-Step 1: Registering the bus driver.
+Step 1: Registering the bus driver.
-- Define a struct bus_type for the bus driver.
+- Define a struct bus_type for the bus driver::
-struct bus_type pci_bus_type = {
- .name = "pci",
-};
+ struct bus_type pci_bus_type = {
+ .name = "pci",
+ };
- Register the bus type.
+
This should be done in the initialization function for the bus type,
- which is usually the module_init(), or equivalent, function.
+ which is usually the module_init(), or equivalent, function::
-static int __init pci_driver_init(void)
-{
- return bus_register(&pci_bus_type);
-}
+ static int __init pci_driver_init(void)
+ {
+ return bus_register(&pci_bus_type);
+ }
-subsys_initcall(pci_driver_init);
+ subsys_initcall(pci_driver_init);
The bus type may be unregistered (if the bus driver may be compiled
- as a module) by doing:
+ as a module) by doing::
bus_unregister(&pci_bus_type);
-- Export the bus type for others to use.
+- Export the bus type for others to use.
- Other code may wish to reference the bus type, so declare it in a
+ Other code may wish to reference the bus type, so declare it in a
shared header file and export the symbol.
-From include/linux/pci.h:
+From include/linux/pci.h::
-extern struct bus_type pci_bus_type;
+ extern struct bus_type pci_bus_type;
-From file the above code appears in:
+From file the above code appears in::
-EXPORT_SYMBOL(pci_bus_type);
+ EXPORT_SYMBOL(pci_bus_type);
- This will cause the bus to show up in /sys/bus/pci/ with two
- subdirectories: 'devices' and 'drivers'.
+ subdirectories: 'devices' and 'drivers'::
-# tree -d /sys/bus/pci/
-/sys/bus/pci/
-|-- devices
-`-- drivers
+ # tree -d /sys/bus/pci/
+ /sys/bus/pci/
+ |-- devices
+ `-- drivers
-Step 2: Registering Devices.
+Step 2: Registering Devices.
struct device represents a single device. It mainly contains metadata
-describing the relationship the device has to other entities.
+describing the relationship the device has to other entities.
-- Embed a struct device in the bus-specific device type.
+- Embed a struct device in the bus-specific device type::
-struct pci_dev {
- ...
- struct device dev; /* Generic device interface */
- ...
-};
+ struct pci_dev {
+ ...
+ struct device dev; /* Generic device interface */
+ ...
+ };
- It is recommended that the generic device not be the first item in
+ It is recommended that the generic device not be the first item in
the struct to discourage programmers from doing mindless casts
between the object types. Instead macros, or inline functions,
- should be created to convert from the generic object type.
+ should be created to convert from the generic object type::
-#define to_pci_dev(n) container_of(n, struct pci_dev, dev)
+ #define to_pci_dev(n) container_of(n, struct pci_dev, dev)
-or
+ or
-static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
-{
+ static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
+ {
return container_of(n, struct pci_dev, dev);
-}
+ }
- This allows the compiler to verify type-safety of the operations
+ This allows the compiler to verify type-safety of the operations
that are performed (which is Good).
- Initialize the device on registration.
- When devices are discovered or registered with the bus type, the
+ When devices are discovered or registered with the bus type, the
bus driver should initialize the generic device. The most important
things to initialize are the bus_id, parent, and bus fields.
The bus_id is an ASCII string that contains the device's address on
the bus. The format of this string is bus-specific. This is
- necessary for representing devices in sysfs.
+ necessary for representing devices in sysfs.
parent is the physical parent of the device. It is important that
- the bus driver sets this field correctly.
+ the bus driver sets this field correctly.
The driver model maintains an ordered list of devices that it uses
for power management. This list must be in order to guarantee that
@@ -140,13 +142,13 @@ static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
devices.
Also, the location of the device's sysfs directory depends on a
- device's parent. sysfs exports a directory structure that mirrors
+ device's parent. sysfs exports a directory structure that mirrors
the device hierarchy. Accurately setting the parent guarantees that
sysfs will accurately represent the hierarchy.
The device's bus field is a pointer to the bus type the device
belongs to. This should be set to the bus_type that was declared
- and initialized before.
+ and initialized before.
Optionally, the bus driver may set the device's name and release
fields.
@@ -155,107 +157,107 @@ static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
"ATI Technologies Inc Radeon QD"
- The release field is a callback that the driver model core calls
- when the device has been removed, and all references to it have
+ The release field is a callback that the driver model core calls
+ when the device has been removed, and all references to it have
been released. More on this in a moment.
-- Register the device.
+- Register the device.
Once the generic device has been initialized, it can be registered
- with the driver model core by doing:
+ with the driver model core by doing::
device_register(&dev->dev);
- It can later be unregistered by doing:
+ It can later be unregistered by doing::
device_unregister(&dev->dev);
- This should happen on buses that support hotpluggable devices.
+ This should happen on buses that support hotpluggable devices.
If a bus driver unregisters a device, it should not immediately free
- it. It should instead wait for the driver model core to call the
- device's release method, then free the bus-specific object.
+ it. It should instead wait for the driver model core to call the
+ device's release method, then free the bus-specific object.
(There may be other code that is currently referencing the device
- structure, and it would be rude to free the device while that is
+ structure, and it would be rude to free the device while that is
happening).
- When the device is registered, a directory in sysfs is created.
- The PCI tree in sysfs looks like:
-
-/sys/devices/pci0/
-|-- 00:00.0
-|-- 00:01.0
-| `-- 01:00.0
-|-- 00:02.0
-| `-- 02:1f.0
-| `-- 03:00.0
-|-- 00:1e.0
-| `-- 04:04.0
-|-- 00:1f.0
-|-- 00:1f.1
-| |-- ide0
-| | |-- 0.0
-| | `-- 0.1
-| `-- ide1
-| `-- 1.0
-|-- 00:1f.2
-|-- 00:1f.3
-`-- 00:1f.5
+ When the device is registered, a directory in sysfs is created.
+ The PCI tree in sysfs looks like::
+
+ /sys/devices/pci0/
+ |-- 00:00.0
+ |-- 00:01.0
+ | `-- 01:00.0
+ |-- 00:02.0
+ | `-- 02:1f.0
+ | `-- 03:00.0
+ |-- 00:1e.0
+ | `-- 04:04.0
+ |-- 00:1f.0
+ |-- 00:1f.1
+ | |-- ide0
+ | | |-- 0.0
+ | | `-- 0.1
+ | `-- ide1
+ | `-- 1.0
+ |-- 00:1f.2
+ |-- 00:1f.3
+ `-- 00:1f.5
Also, symlinks are created in the bus's 'devices' directory
- that point to the device's directory in the physical hierarchy.
+ that point to the device's directory in the physical hierarchy::
-/sys/bus/pci/devices/
-|-- 00:00.0 -> ../../../devices/pci0/00:00.0
-|-- 00:01.0 -> ../../../devices/pci0/00:01.0
-|-- 00:02.0 -> ../../../devices/pci0/00:02.0
-|-- 00:1e.0 -> ../../../devices/pci0/00:1e.0
-|-- 00:1f.0 -> ../../../devices/pci0/00:1f.0
-|-- 00:1f.1 -> ../../../devices/pci0/00:1f.1
-|-- 00:1f.2 -> ../../../devices/pci0/00:1f.2
-|-- 00:1f.3 -> ../../../devices/pci0/00:1f.3
-|-- 00:1f.5 -> ../../../devices/pci0/00:1f.5
-|-- 01:00.0 -> ../../../devices/pci0/00:01.0/01:00.0
-|-- 02:1f.0 -> ../../../devices/pci0/00:02.0/02:1f.0
-|-- 03:00.0 -> ../../../devices/pci0/00:02.0/02:1f.0/03:00.0
-`-- 04:04.0 -> ../../../devices/pci0/00:1e.0/04:04.0
+ /sys/bus/pci/devices/
+ |-- 00:00.0 -> ../../../devices/pci0/00:00.0
+ |-- 00:01.0 -> ../../../devices/pci0/00:01.0
+ |-- 00:02.0 -> ../../../devices/pci0/00:02.0
+ |-- 00:1e.0 -> ../../../devices/pci0/00:1e.0
+ |-- 00:1f.0 -> ../../../devices/pci0/00:1f.0
+ |-- 00:1f.1 -> ../../../devices/pci0/00:1f.1
+ |-- 00:1f.2 -> ../../../devices/pci0/00:1f.2
+ |-- 00:1f.3 -> ../../../devices/pci0/00:1f.3
+ |-- 00:1f.5 -> ../../../devices/pci0/00:1f.5
+ |-- 01:00.0 -> ../../../devices/pci0/00:01.0/01:00.0
+ |-- 02:1f.0 -> ../../../devices/pci0/00:02.0/02:1f.0
+ |-- 03:00.0 -> ../../../devices/pci0/00:02.0/02:1f.0/03:00.0
+ `-- 04:04.0 -> ../../../devices/pci0/00:1e.0/04:04.0
Step 3: Registering Drivers.
struct device_driver is a simple driver structure that contains a set
-of operations that the driver model core may call.
+of operations that the driver model core may call.
-- Embed a struct device_driver in the bus-specific driver.
+- Embed a struct device_driver in the bus-specific driver.
- Just like with devices, do something like:
+ Just like with devices, do something like::
-struct pci_driver {
- ...
- struct device_driver driver;
-};
+ struct pci_driver {
+ ...
+ struct device_driver driver;
+ };
-- Initialize the generic driver structure.
+- Initialize the generic driver structure.
When the driver registers with the bus (e.g. doing pci_register_driver()),
initialize the necessary fields of the driver: the name and bus
- fields.
+ fields.
- Register the driver.
- After the generic driver has been initialized, call
+ After the generic driver has been initialized, call::
driver_register(&drv->driver);
to register the driver with the core.
When the driver is unregistered from the bus, unregister it from the
- core by doing:
+ core by doing::
driver_unregister(&drv->driver);
@@ -265,15 +267,15 @@ struct pci_driver {
- Sysfs representation.
- Drivers are exported via sysfs in their bus's 'driver's directory.
- For example:
+ Drivers are exported via sysfs in their bus's 'driver's directory.
+ For example::
-/sys/bus/pci/drivers/
-|-- 3c59x
-|-- Ensoniq AudioPCI
-|-- agpgart-amdk7
-|-- e100
-`-- serial
+ /sys/bus/pci/drivers/
+ |-- 3c59x
+ |-- Ensoniq AudioPCI
+ |-- agpgart-amdk7
+ |-- e100
+ `-- serial
Step 4: Define Generic Methods for Drivers.
@@ -281,30 +283,30 @@ Step 4: Define Generic Methods for Drivers.
struct device_driver defines a set of operations that the driver model
core calls. Most of these operations are probably similar to
operations the bus already defines for drivers, but taking different
-parameters.
+parameters.
It would be difficult and tedious to force every driver on a bus to
simultaneously convert their drivers to generic format. Instead, the
bus driver should define single instances of the generic methods that
-forward call to the bus-specific drivers. For instance:
+forward call to the bus-specific drivers. For instance::
-static int pci_device_remove(struct device * dev)
-{
- struct pci_dev * pci_dev = to_pci_dev(dev);
- struct pci_driver * drv = pci_dev->driver;
+ static int pci_device_remove(struct device * dev)
+ {
+ struct pci_dev * pci_dev = to_pci_dev(dev);
+ struct pci_driver * drv = pci_dev->driver;
- if (drv) {
- if (drv->remove)
- drv->remove(pci_dev);
- pci_dev->driver = NULL;
- }
- return 0;
-}
+ if (drv) {
+ if (drv->remove)
+ drv->remove(pci_dev);
+ pci_dev->driver = NULL;
+ }
+ return 0;
+ }
The generic driver should be initialized with these methods before it
-is registered.
+is registered::
/* initialize common driver fields */
drv->driver.name = drv->name;
@@ -320,23 +322,23 @@ is registered.
Ideally, the bus should only initialize the fields if they are not
already set. This allows the drivers to implement their own generic
-methods.
+methods.
-Step 5: Support generic driver binding.
+Step 5: Support generic driver binding.
The model assumes that a device or driver can be dynamically
registered with the bus at any time. When registration happens,
devices must be bound to a driver, or drivers must be bound to all
-devices that it supports.
+devices that it supports.
A driver typically contains a list of device IDs that it supports. The
-bus driver compares these IDs to the IDs of devices registered with it.
+bus driver compares these IDs to the IDs of devices registered with it.
The format of the device IDs, and the semantics for comparing them are
-bus-specific, so the generic model does attempt to generalize them.
+bus-specific, so the generic model does attempt to generalize them.
Instead, a bus may supply a method in struct bus_type that does the
-comparison:
+comparison::
int (*match)(struct device * dev, struct device_driver * drv);
@@ -346,59 +348,59 @@ and zero otherwise. It may also return error code (for example
not possible.
When a device is registered, the bus's list of drivers is iterated
-over. bus->match() is called for each one until a match is found.
+over. bus->match() is called for each one until a match is found.
When a driver is registered, the bus's list of devices is iterated
over. bus->match() is called for each device that is not already
-claimed by a driver.
+claimed by a driver.
When a device is successfully bound to a driver, device->driver is
set, the device is added to a per-driver list of devices, and a
symlink is created in the driver's sysfs directory that points to the
-device's physical directory:
+device's physical directory::
-/sys/bus/pci/drivers/
-|-- 3c59x
-| `-- 00:0b.0 -> ../../../../devices/pci0/00:0b.0
-|-- Ensoniq AudioPCI
-|-- agpgart-amdk7
-| `-- 00:00.0 -> ../../../../devices/pci0/00:00.0
-|-- e100
-| `-- 00:0c.0 -> ../../../../devices/pci0/00:0c.0
-`-- serial
+ /sys/bus/pci/drivers/
+ |-- 3c59x
+ | `-- 00:0b.0 -> ../../../../devices/pci0/00:0b.0
+ |-- Ensoniq AudioPCI
+ |-- agpgart-amdk7
+ | `-- 00:00.0 -> ../../../../devices/pci0/00:00.0
+ |-- e100
+ | `-- 00:0c.0 -> ../../../../devices/pci0/00:0c.0
+ `-- serial
This driver binding should replace the existing driver binding
-mechanism the bus currently uses.
+mechanism the bus currently uses.
Step 6: Supply a hotplug callback.
Whenever a device is registered with the driver model core, the
-userspace program /sbin/hotplug is called to notify userspace.
+userspace program /sbin/hotplug is called to notify userspace.
Users can define actions to perform when a device is inserted or
-removed.
+removed.
The driver model core passes several arguments to userspace via
environment variables, including
- ACTION: set to 'add' or 'remove'
-- DEVPATH: set to the device's physical path in sysfs.
+- DEVPATH: set to the device's physical path in sysfs.
A bus driver may also supply additional parameters for userspace to
consume. To do this, a bus must implement the 'hotplug' method in
-struct bus_type:
+struct bus_type::
- int (*hotplug) (struct device *dev, char **envp,
+ int (*hotplug) (struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
-This is called immediately before /sbin/hotplug is executed.
+This is called immediately before /sbin/hotplug is executed.
Step 7: Cleaning up the bus driver.
The generic bus, device, and driver structures provide several fields
-that can replace those defined privately to the bus driver.
+that can replace those defined privately to the bus driver.
- Device list.
@@ -407,36 +409,36 @@ type. This includes all devices on all instances of that bus type.
An internal list that the bus uses may be removed, in favor of using
this one.
-The core provides an iterator to access these devices.
+The core provides an iterator to access these devices::
-int bus_for_each_dev(struct bus_type * bus, struct device * start,
- void * data, int (*fn)(struct device *, void *));
+ int bus_for_each_dev(struct bus_type * bus, struct device * start,
+ void * data, int (*fn)(struct device *, void *));
- Driver list.
struct bus_type also contains a list of all drivers registered with
-it. An internal list of drivers that the bus driver maintains may
-be removed in favor of using the generic one.
+it. An internal list of drivers that the bus driver maintains may
+be removed in favor of using the generic one.
-The drivers may be iterated over, like devices:
+The drivers may be iterated over, like devices::
-int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
- void * data, int (*fn)(struct device_driver *, void *));
+ int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
+ void * data, int (*fn)(struct device_driver *, void *));
Please see drivers/base/bus.c for more information.
-- rwsem
+- rwsem
struct bus_type contains an rwsem that protects all core accesses to
the device and driver lists. This can be used by the bus driver
internally, and should be used when accessing the device or driver
-lists the bus maintains.
+lists the bus maintains.
-- Device and driver fields.
+- Device and driver fields.
Some of the fields in struct device and struct device_driver duplicate
fields in the bus-specific representations of these objects. Feel free
@@ -444,4 +446,3 @@ to remove the bus-specific ones and favor the generic ones. Note
though, that this will likely mean fixing up all the drivers that
reference the bus-specific fields (though those should all be 1-line
changes).
-
diff --git a/Documentation/early-userspace/buffer-format.txt b/Documentation/driver-api/early-userspace/buffer-format.rst
index e1fd7f9dad16..7f74e301fdf3 100644
--- a/Documentation/early-userspace/buffer-format.txt
+++ b/Documentation/driver-api/early-userspace/buffer-format.rst
@@ -1,8 +1,10 @@
- initramfs buffer format
- -----------------------
+=======================
+initramfs buffer format
+=======================
- Al Viro, H. Peter Anvin
- Last revision: 2002-01-13
+Al Viro, H. Peter Anvin
+
+Last revision: 2002-01-13
Starting with kernel 2.5.x, the old "initial ramdisk" protocol is
getting {replaced/complemented} with the new "initial ramfs"
@@ -18,7 +20,8 @@ archive can be compressed using gzip(1). One valid version of an
initramfs buffer is thus a single .cpio.gz file.
The full format of the initramfs buffer is defined by the following
-grammar, where:
+grammar, where::
+
* is used to indicate "0 or more occurrences of"
(|) indicates alternatives
+ indicates concatenation
@@ -49,7 +52,9 @@ hexadecimal ASCII numbers fully padded with '0' on the left to the
full width of the field, for example, the integer 4780 is represented
by the ASCII string "000012ac"):
+============= ================== ==============================================
Field name Field size Meaning
+============= ================== ==============================================
c_magic 6 bytes The string "070701" or "070702"
c_ino 8 bytes File inode number
c_mode 8 bytes File mode and permissions
@@ -65,6 +70,7 @@ c_rmin 8 bytes Minor part of device node reference
c_namesize 8 bytes Length of filename, including final \0
c_chksum 8 bytes Checksum of data field if c_magic is 070702;
otherwise zero
+============= ================== ==============================================
The c_mode field matches the contents of st_mode returned by stat(2)
on Linux, and encodes the file type and file permissions.
@@ -82,7 +88,8 @@ If the filename is "TRAILER!!!" this is actually an end-of-archive
marker; the c_filesize for an end-of-archive marker must be zero.
-*** Handling of hard links
+Handling of hard links
+======================
When a nondirectory with c_nlink > 1 is seen, the (c_maj,c_min,c_ino)
tuple is looked up in a tuple buffer. If not found, it is entered in
diff --git a/Documentation/early-userspace/README b/Documentation/driver-api/early-userspace/early_userspace_support.rst
index 955d667dc87e..3deefb34046b 100644
--- a/Documentation/early-userspace/README
+++ b/Documentation/driver-api/early-userspace/early_userspace_support.rst
@@ -1,3 +1,4 @@
+=======================
Early userspace support
=======================
@@ -26,6 +27,7 @@ archive to be used as the image or have the kernel build process build
the image from specifications.
CPIO ARCHIVE method
+-------------------
You can create a cpio archive that contains the early userspace image.
Your cpio archive should be specified in CONFIG_INITRAMFS_SOURCE and it
@@ -34,6 +36,7 @@ CONFIG_INITRAMFS_SOURCE and directory and file names are not allowed in
combination with a cpio archive.
IMAGE BUILDING method
+---------------------
The kernel build process can also build an early userspace image from
source parts rather than supplying a cpio archive. This method provides
diff --git a/Documentation/driver-api/early-userspace/index.rst b/Documentation/driver-api/early-userspace/index.rst
new file mode 100644
index 000000000000..149c1822f06d
--- /dev/null
+++ b/Documentation/driver-api/early-userspace/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+Early Userspace
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+ early_userspace_support
+ buffer-format
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/EDID/HOWTO.txt b/Documentation/driver-api/edid.rst
index 539871c3b785..b1b5acd501ed 100644
--- a/Documentation/EDID/HOWTO.txt
+++ b/Documentation/driver-api/edid.rst
@@ -1,3 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====
+EDID
+====
+
In the good old days when graphics parameters were configured explicitly
in a file called xorg.conf, even broken hardware could be managed.
@@ -34,16 +40,19 @@ Makefile. Please note that the EDID data structure expects the timing
values in a different way as compared to the standard X11 format.
X11:
-HTimings: hdisp hsyncstart hsyncend htotal
-VTimings: vdisp vsyncstart vsyncend vtotal
-
-EDID:
-#define XPIX hdisp
-#define XBLANK htotal-hdisp
-#define XOFFSET hsyncstart-hdisp
-#define XPULSE hsyncend-hsyncstart
-
-#define YPIX vdisp
-#define YBLANK vtotal-vdisp
-#define YOFFSET vsyncstart-vdisp
-#define YPULSE vsyncend-vsyncstart
+ HTimings:
+ hdisp hsyncstart hsyncend htotal
+ VTimings:
+ vdisp vsyncstart vsyncend vtotal
+
+EDID::
+
+ #define XPIX hdisp
+ #define XBLANK htotal-hdisp
+ #define XOFFSET hsyncstart-hdisp
+ #define XPULSE hsyncend-hsyncstart
+
+ #define YPIX vdisp
+ #define YBLANK vtotal-vdisp
+ #define YOFFSET vsyncstart-vdisp
+ #define YPULSE vsyncend-vsyncstart
diff --git a/Documentation/eisa.txt b/Documentation/driver-api/eisa.rst
index 2806e5544e43..c07565ba57da 100644
--- a/Documentation/eisa.txt
+++ b/Documentation/driver-api/eisa.rst
@@ -103,7 +103,7 @@ id_table an array of NULL terminated EISA id strings,
(driver_data).
driver a generic driver, such as described in
- Documentation/driver-model/driver.txt. Only .name,
+ Documentation/driver-api/driver-model/driver.rst. Only .name,
.probe and .remove members are mandatory.
=============== ====================================================
@@ -152,7 +152,7 @@ state set of flags indicating the state of the device. Current
flags are EISA_CONFIG_ENABLED and EISA_CONFIG_FORCED.
res set of four 256 bytes I/O regions allocated to this device
dma_mask DMA mask set from the parent device.
-dev generic device (see Documentation/driver-model/device.txt)
+dev generic device (see Documentation/driver-api/driver-model/device.rst)
======== ============================================================
You can get the 'struct eisa_device' from 'struct device' using the
diff --git a/Documentation/driver-api/firmware/other_interfaces.rst b/Documentation/driver-api/firmware/other_interfaces.rst
index a4ac54b5fd79..b81794e0cfbb 100644
--- a/Documentation/driver-api/firmware/other_interfaces.rst
+++ b/Documentation/driver-api/firmware/other_interfaces.rst
@@ -33,7 +33,7 @@ of the requests on to a secure monitor (EL3).
:functions: stratix10_svc_client_msg
.. kernel-doc:: include/linux/firmware/intel/stratix10-svc-client.h
- :functions: stratix10_svc_command_reconfig_payload
+ :functions: stratix10_svc_command_config_type
.. kernel-doc:: include/linux/firmware/intel/stratix10-svc-client.h
:functions: stratix10_svc_cb_data
diff --git a/Documentation/driver-api/generic-counter.rst b/Documentation/driver-api/generic-counter.rst
index 0c161b1a3be6..8382f01a53e3 100644
--- a/Documentation/driver-api/generic-counter.rst
+++ b/Documentation/driver-api/generic-counter.rst
@@ -233,7 +233,7 @@ Userspace Interface
Several sysfs attributes are generated by the Generic Counter interface,
and reside under the /sys/bus/counter/devices/counterX directory, where
counterX refers to the respective counter device. Please see
-Documentation/ABI/testing/sys-bus-counter-generic-sysfs for detailed
+Documentation/ABI/testing/sysfs-bus-counter for detailed
information on each Generic Counter interface sysfs attribute.
Through these sysfs attributes, programs and scripts may interact with
@@ -325,7 +325,7 @@ sysfs attributes, where Y is the unique ID of the respective Count:
For a more detailed breakdown of the available Generic Counter interface
sysfs attributes, please refer to the
-Documentation/ABI/testing/sys-bus-counter file.
+Documentation/ABI/testing/sysfs-bus-counter file.
The Signals and Counts associated with the Counter device are registered
to the system as well by the counter_register function. The
diff --git a/Documentation/driver-api/gpio/board.rst b/Documentation/driver-api/gpio/board.rst
index b37f3f7b8926..ce91518bf9f4 100644
--- a/Documentation/driver-api/gpio/board.rst
+++ b/Documentation/driver-api/gpio/board.rst
@@ -101,7 +101,7 @@ with the help of _DSD (Device Specific Data), introduced in ACPI 5.1::
}
For more information about the ACPI GPIO bindings see
-Documentation/acpi/gpio-properties.txt.
+Documentation/firmware-guide/acpi/gpio-properties.rst.
Platform Data
-------------
diff --git a/Documentation/driver-api/gpio/consumer.rst b/Documentation/driver-api/gpio/consumer.rst
index 5e4d8aa68913..423492d125b9 100644
--- a/Documentation/driver-api/gpio/consumer.rst
+++ b/Documentation/driver-api/gpio/consumer.rst
@@ -283,8 +283,6 @@ To summarize::
gpiod_set_value(desc, 1); default (active high) high
gpiod_set_value(desc, 0); active low high
gpiod_set_value(desc, 1); active low low
- gpiod_set_value(desc, 0); default (active high) low
- gpiod_set_value(desc, 1); default (active high) high
gpiod_set_value(desc, 0); open drain low
gpiod_set_value(desc, 1); open drain high impedance
gpiod_set_value(desc, 0); open source high impedance
@@ -366,7 +364,7 @@ accessed sequentially.
The functions take three arguments:
* array_size - the number of array elements
* desc_array - an array of GPIO descriptors
- * array_info - optional information obtained from gpiod_array_get()
+ * array_info - optional information obtained from gpiod_get_array()
* value_bitmap - a bitmap to store the GPIOs' values (get) or
a bitmap of values to assign to the GPIOs (set)
@@ -437,7 +435,7 @@ case, it will be handled by the GPIO subsystem automatically. However, if the
_DSD is not present, the mappings between GpioIo()/GpioInt() resources and GPIO
connection IDs need to be provided by device drivers.
-For details refer to Documentation/acpi/gpio-properties.txt
+For details refer to Documentation/firmware-guide/acpi/gpio-properties.rst
Interacting With the Legacy GPIO Subsystem
diff --git a/Documentation/driver-api/gpio/driver.rst b/Documentation/driver-api/gpio/driver.rst
index 1ce7fcd0f989..3fdb32422f8a 100644
--- a/Documentation/driver-api/gpio/driver.rst
+++ b/Documentation/driver-api/gpio/driver.rst
@@ -69,9 +69,9 @@ driver code:
The code implementing a gpio_chip should support multiple instances of the
controller, preferably using the driver model. That code will configure each
-gpio_chip and issue ``gpiochip_add[_data]()`` or ``devm_gpiochip_add_data()``.
-Removing a GPIO controller should be rare; use ``[devm_]gpiochip_remove()``
-when it is unavoidable.
+gpio_chip and issue gpiochip_add(), gpiochip_add_data(), or
+devm_gpiochip_add_data(). Removing a GPIO controller should be rare; use
+gpiochip_remove() when it is unavoidable.
Often a gpio_chip is part of an instance-specific structure with states not
exposed by the GPIO interfaces, such as addressing, power management, and more.
@@ -235,7 +235,7 @@ means that a pull up or pull-down resistor is available on the output of the
GPIO line, and this resistor is software controlled.
In discrete designs, a pull-up or pull-down resistor is simply soldered on
-the circuit board. This is not something we deal or model in software. The
+the circuit board. This is not something we deal with or model in software. The
most you will think about these lines is that they will very likely be
configured as open drain or open source (see the section above).
@@ -259,7 +259,7 @@ most often cascaded off a parent interrupt controller, and in some special
cases the GPIO logic is melded with a SoC's primary interrupt controller.
The IRQ portions of the GPIO block are implemented using an irq_chip, using
-the header <linux/irq.h>. So basically such a driver is utilizing two sub-
+the header <linux/irq.h>. So this combined driver is utilizing two sub-
systems simultaneously: gpio and irq.
It is legal for any IRQ consumer to request an IRQ from any irqchip even if it
@@ -292,18 +292,18 @@ We can divide GPIO irqchips in two broad categories:
- HIERARCHICAL INTERRUPT CHIPS: this means that each GPIO line has a dedicated
irq line to a parent interrupt controller one level up. There is no need
- to inquire the GPIO hardware to figure out which line has figured, but it
- may still be necessary to acknowledge the interrupt and set up the
- configuration such as edge sensitivity.
+ to inquire the GPIO hardware to figure out which line has fired, but it
+ may still be necessary to acknowledge the interrupt and set up configuration
+ such as edge sensitivity.
Realtime considerations: a realtime compliant GPIO driver should not use
spinlock_t or any sleepable APIs (like PM runtime) as part of its irqchip
implementation.
-- spinlock_t should be replaced with raw_spinlock_t [1].
+- spinlock_t should be replaced with raw_spinlock_t.[1]
- If sleepable APIs have to be used, these can be done from the .irq_bus_lock()
and .irq_bus_unlock() callbacks, as these are the only slowpath callbacks
- on an irqchip. Create the callbacks if needed [2].
+ on an irqchip. Create the callbacks if needed.[2]
Cascaded GPIO irqchips
@@ -361,7 +361,7 @@ Cascaded GPIO irqchips usually fall in one of three categories:
Realtime considerations: this kind of handlers will be forced threaded on -RT,
and as result the IRQ core will complain that generic_handle_irq() is called
- with IRQ enabled and the same work around as for "CHAINED GPIO irqchips" can
+ with IRQ enabled and the same work-around as for "CHAINED GPIO irqchips" can
be applied.
- NESTED THREADED GPIO IRQCHIPS: these are off-chip GPIO expanders and any
@@ -391,14 +391,108 @@ Infrastructure helpers for GPIO irqchips
----------------------------------------
To help out in handling the set-up and management of GPIO irqchips and the
-associated irqdomain and resource allocation callbacks, the gpiolib has
-some helpers that can be enabled by selecting the GPIOLIB_IRQCHIP Kconfig
-symbol:
-
-- gpiochip_irqchip_add(): adds a chained cascaded irqchip to a gpiochip. It
- will pass the struct gpio_chip* for the chip to all IRQ callbacks, so the
- callbacks need to embed the gpio_chip in its state container and obtain a
- pointer to the container using container_of().
+associated irqdomain and resource allocation callbacks. These are activated
+by selecting the Kconfig symbol GPIOLIB_IRQCHIP. If the symbol
+IRQ_DOMAIN_HIERARCHY is also selected, hierarchical helpers will also be
+provided. A big portion of overhead code will be managed by gpiolib,
+under the assumption that your interrupts are 1-to-1-mapped to the
+GPIO line index:
+
+ GPIO line offset Hardware IRQ
+ 0 0
+ 1 1
+ 2 2
+ ... ...
+ ngpio-1 ngpio-1
+
+If some GPIO lines do not have corresponding IRQs, the bitmask valid_mask
+and the flag need_valid_mask in gpio_irq_chip can be used to mask off some
+lines as invalid for associating with IRQs.
+
+The preferred way to set up the helpers is to fill in the
+struct gpio_irq_chip inside struct gpio_chip before adding the gpio_chip.
+If you do this, the additional irq_chip will be set up by gpiolib at the
+same time as setting up the rest of the GPIO functionality. The following
+is a typical example of a cascaded interrupt handler using gpio_irq_chip:
+
+ /* Typical state container with dynamic irqchip */
+ struct my_gpio {
+ struct gpio_chip gc;
+ struct irq_chip irq;
+ };
+
+ int irq; /* from platform etc */
+ struct my_gpio *g;
+ struct gpio_irq_chip *girq;
+
+ /* Set up the irqchip dynamically */
+ g->irq.name = "my_gpio_irq";
+ g->irq.irq_ack = my_gpio_ack_irq;
+ g->irq.irq_mask = my_gpio_mask_irq;
+ g->irq.irq_unmask = my_gpio_unmask_irq;
+ g->irq.irq_set_type = my_gpio_set_irq_type;
+
+ /* Get a pointer to the gpio_irq_chip */
+ girq = &g->gc.irq;
+ girq->chip = &g->irq;
+ girq->parent_handler = ftgpio_gpio_irq_handler;
+ girq->num_parents = 1;
+ girq->parents = devm_kcalloc(dev, 1, sizeof(*girq->parents),
+ GFP_KERNEL);
+ if (!girq->parents)
+ return -ENOMEM;
+ girq->default_type = IRQ_TYPE_NONE;
+ girq->handler = handle_bad_irq;
+ girq->parents[0] = irq;
+
+ return devm_gpiochip_add_data(dev, &g->gc, g);
+
+The helper support using hierarchical interrupt controllers as well.
+In this case the typical set-up will look like this:
+
+ /* Typical state container with dynamic irqchip */
+ struct my_gpio {
+ struct gpio_chip gc;
+ struct irq_chip irq;
+ struct fwnode_handle *fwnode;
+ };
+
+ int irq; /* from platform etc */
+ struct my_gpio *g;
+ struct gpio_irq_chip *girq;
+
+ /* Set up the irqchip dynamically */
+ g->irq.name = "my_gpio_irq";
+ g->irq.irq_ack = my_gpio_ack_irq;
+ g->irq.irq_mask = my_gpio_mask_irq;
+ g->irq.irq_unmask = my_gpio_unmask_irq;
+ g->irq.irq_set_type = my_gpio_set_irq_type;
+
+ /* Get a pointer to the gpio_irq_chip */
+ girq = &g->gc.irq;
+ girq->chip = &g->irq;
+ girq->default_type = IRQ_TYPE_NONE;
+ girq->handler = handle_bad_irq;
+ girq->fwnode = g->fwnode;
+ girq->parent_domain = parent;
+ girq->child_to_parent_hwirq = my_gpio_child_to_parent_hwirq;
+
+ return devm_gpiochip_add_data(dev, &g->gc, g);
+
+As you can see pretty similar, but you do not supply a parent handler for
+the IRQ, instead a parent irqdomain, an fwnode for the hardware and
+a funcion .child_to_parent_hwirq() that has the purpose of looking up
+the parent hardware irq from a child (i.e. this gpio chip) hardware irq.
+As always it is good to look at examples in the kernel tree for advice
+on how to find the required pieces.
+
+The old way of adding irqchips to gpiochips after registration is also still
+available but we try to move away from this:
+
+- DEPRECATED: gpiochip_irqchip_add(): adds a chained cascaded irqchip to a
+ gpiochip. It will pass the struct gpio_chip* for the chip to all IRQ
+ callbacks, so the callbacks need to embed the gpio_chip in its state
+ container and obtain a pointer to the container using container_of().
(See Documentation/driver-model/design-patterns.txt)
- gpiochip_irqchip_add_nested(): adds a nested cascaded irqchip to a gpiochip,
@@ -406,10 +500,10 @@ symbol:
cascaded irq has to be handled by a threaded interrupt handler.
Apart from that it works exactly like the chained irqchip.
-- gpiochip_set_chained_irqchip(): sets up a chained cascaded irq handler for a
- gpio_chip from a parent IRQ and passes the struct gpio_chip* as handler
- data. Notice that we pass is as the handler data, since the irqchip data is
- likely used by the parent irqchip.
+- DEPRECATED: gpiochip_set_chained_irqchip(): sets up a chained cascaded irq
+ handler for a gpio_chip from a parent IRQ and passes the struct gpio_chip*
+ as handler data. Notice that we pass is as the handler data, since the
+ irqchip data is likely used by the parent irqchip.
- gpiochip_set_nested_irqchip(): sets up a nested cascaded irq handler for a
gpio_chip from a parent IRQ. As the parent IRQ has usually been
@@ -418,11 +512,11 @@ symbol:
If there is a need to exclude certain GPIO lines from the IRQ domain handled by
these helpers, we can set .irq.need_valid_mask of the gpiochip before
-[devm_]gpiochip_add_data() is called. This allocates an .irq.valid_mask with as
-many bits set as there are GPIO lines in the chip, each bit representing line
-0..n-1. Drivers can exclude GPIO lines by clearing bits from this mask. The mask
-must be filled in before gpiochip_irqchip_add() or gpiochip_irqchip_add_nested()
-is called.
+devm_gpiochip_add_data() or gpiochip_add_data() is called. This allocates an
+.irq.valid_mask with as many bits set as there are GPIO lines in the chip, each
+bit representing line 0..n-1. Drivers can exclude GPIO lines by clearing bits
+from this mask. The mask must be filled in before gpiochip_irqchip_add() or
+gpiochip_irqchip_add_nested() is called.
To use the helpers please keep the following in mind:
diff --git a/Documentation/driver-api/iio/hw-consumer.rst b/Documentation/driver-api/iio/hw-consumer.rst
index e0fe0b98230e..819fb9edc005 100644
--- a/Documentation/driver-api/iio/hw-consumer.rst
+++ b/Documentation/driver-api/iio/hw-consumer.rst
@@ -45,7 +45,6 @@ A typical IIO HW consumer setup looks like this::
More details
============
-.. kernel-doc:: include/linux/iio/hw-consumer.h
.. kernel-doc:: drivers/iio/buffer/industrialio-hw-consumer.c
:export:
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index d26308af6036..38e638abe3eb 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -14,8 +14,10 @@ available subsections can be seen below.
.. toctree::
:maxdepth: 2
+ driver-model/index
basics
infrastructure
+ early-userspace/index
pm/index
clk
device-io
@@ -34,7 +36,9 @@ available subsections can be seen below.
pci/index
spi
i2c
+ ipmb
i3c/index
+ interconnect
hsi
edac
scsi
@@ -42,8 +46,12 @@ available subsections can be seen below.
target
mtdnand
miscellaneous
+ mei/index
+ mtd/index
+ mmc/index
+ nvdimm/index
w1
- rapidio
+ rapidio/index
s390-drivers
vme
80211/index
@@ -51,13 +59,50 @@ available subsections can be seen below.
firmware/index
pinctl
gpio/index
+ md/index
misc_devices
+ nfc/index
dmaengine/index
slimbus
soundwire/index
+ thermal/index
fpga/index
acpi/index
+ backlight/lp855x-driver.rst
+ bt8xxgpio
+ connector
+ console
+ dcdbas
+ dell_rbu
+ edid
+ eisa
+ ipmb
+ isa
+ isapnp
generic-counter
+ lightnvm-pblk
+ memory-devices/index
+ men-chameleon-bus
+ ntb
+ nvmem
+ parport-lowlevel
+ pps
+ ptp
+ phy/index
+ pti_intel_mid
+ pwm
+ rfkill
+ serial/index
+ sgi-ioc4
+ sm501
+ smsc_ece1099
+ switchtec
+ sync_file
+ vfio-mediated-device
+ vfio
+ xilinx/index
+ xillybus
+ zorro
.. only:: subproject and html
diff --git a/Documentation/interconnect/interconnect.rst b/Documentation/driver-api/interconnect.rst
index b8107dcc4cd3..c3e004893796 100644
--- a/Documentation/interconnect/interconnect.rst
+++ b/Documentation/driver-api/interconnect.rst
@@ -89,6 +89,5 @@ Interconnect consumers
Interconnect consumers are the clients which use the interconnect APIs to
get paths between endpoints and set their bandwidth/latency/QoS requirements
-for these interconnect paths.
-
-.. kernel-doc:: include/linux/interconnect.h
+for these interconnect paths. These interfaces are not currently
+documented.
diff --git a/Documentation/driver-api/ipmb.rst b/Documentation/driver-api/ipmb.rst
new file mode 100644
index 000000000000..3ec3baed84c4
--- /dev/null
+++ b/Documentation/driver-api/ipmb.rst
@@ -0,0 +1,105 @@
+==============================
+IPMB Driver for a Satellite MC
+==============================
+
+The Intelligent Platform Management Bus or IPMB, is an
+I2C bus that provides a standardized interconnection between
+different boards within a chassis. This interconnection is
+between the baseboard management (BMC) and chassis electronics.
+IPMB is also associated with the messaging protocol through the
+IPMB bus.
+
+The devices using the IPMB are usually management
+controllers that perform management functions such as servicing
+the front panel interface, monitoring the baseboard,
+hot-swapping disk drivers in the system chassis, etc...
+
+When an IPMB is implemented in the system, the BMC serves as
+a controller to give system software access to the IPMB. The BMC
+sends IPMI requests to a device (usually a Satellite Management
+Controller or Satellite MC) via IPMB and the device
+sends a response back to the BMC.
+
+For more information on IPMB and the format of an IPMB message,
+refer to the IPMB and IPMI specifications.
+
+IPMB driver for Satellite MC
+----------------------------
+
+ipmb-dev-int - This is the driver needed on a Satellite MC to
+receive IPMB messages from a BMC and send a response back.
+This driver works with the I2C driver and a userspace
+program such as OpenIPMI:
+
+1) It is an I2C slave backend driver. So, it defines a callback
+ function to set the Satellite MC as an I2C slave.
+ This callback function handles the received IPMI requests.
+
+2) It defines the read and write functions to enable a user
+ space program (such as OpenIPMI) to communicate with the kernel.
+
+
+Load the IPMB driver
+--------------------
+
+The driver needs to be loaded at boot time or manually first.
+First, make sure you have the following in your config file:
+CONFIG_IPMB_DEVICE_INTERFACE=y
+
+1) If you want the driver to be loaded at boot time:
+
+a) Add this entry to your ACPI table, under the appropriate SMBus::
+
+ Device (SMB0) // Example SMBus host controller
+ {
+ Name (_HID, "<Vendor-Specific HID>") // Vendor-Specific HID
+ Name (_UID, 0) // Unique ID of particular host controller
+ :
+ :
+ Device (IPMB)
+ {
+ Name (_HID, "IPMB0001") // IPMB device interface
+ Name (_UID, 0) // Unique device identifier
+ }
+ }
+
+b) Example for device tree::
+
+ &i2c2 {
+ status = "okay";
+
+ ipmb@10 {
+ compatible = "ipmb-dev";
+ reg = <0x10>;
+ };
+ };
+
+2) Manually from Linux::
+
+ modprobe ipmb-dev-int
+
+
+Instantiate the device
+----------------------
+
+After loading the driver, you can instantiate the device as
+described in 'Documentation/i2c/instantiating-devices.rst'.
+If you have multiple BMCs, each connected to your Satellite MC via
+a different I2C bus, you can instantiate a device for each of
+those BMCs.
+
+The name of the instantiated device contains the I2C bus number
+associated with it as follows::
+
+ BMC1 ------ IPMB/I2C bus 1 ---------| /dev/ipmb-1
+ Satellite MC
+ BMC1 ------ IPMB/I2C bus 2 ---------| /dev/ipmb-2
+
+For instance, you can instantiate the ipmb-dev-int device from
+user space at the 7 bit address 0x10 on bus 2::
+
+ # echo ipmb-dev 0x1010 > /sys/bus/i2c/devices/i2c-2/new_device
+
+This will create the device file /dev/ipmb-2, which can be accessed
+by the user space program. The device needs to be instantiated
+before running the user space program.
diff --git a/Documentation/isa.txt b/Documentation/driver-api/isa.rst
index def4a7b690b5..def4a7b690b5 100644
--- a/Documentation/isa.txt
+++ b/Documentation/driver-api/isa.rst
diff --git a/Documentation/isapnp.txt b/Documentation/driver-api/isapnp.rst
index 8d0840ac847b..8d0840ac847b 100644
--- a/Documentation/isapnp.txt
+++ b/Documentation/driver-api/isapnp.rst
diff --git a/Documentation/lightnvm/pblk.txt b/Documentation/driver-api/lightnvm-pblk.rst
index 1040ed1cec81..1040ed1cec81 100644
--- a/Documentation/lightnvm/pblk.txt
+++ b/Documentation/driver-api/lightnvm-pblk.rst
diff --git a/Documentation/driver-api/md/index.rst b/Documentation/driver-api/md/index.rst
new file mode 100644
index 000000000000..18f54a7d7d6e
--- /dev/null
+++ b/Documentation/driver-api/md/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====
+RAID
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ md-cluster
+ raid5-cache
+ raid5-ppl
diff --git a/Documentation/md/md-cluster.txt b/Documentation/driver-api/md/md-cluster.rst
index e1055f105cf5..96eb52cec7eb 100644
--- a/Documentation/md/md-cluster.txt
+++ b/Documentation/driver-api/md/md-cluster.rst
@@ -1,19 +1,24 @@
+==========
+MD Cluster
+==========
+
The cluster MD is a shared-device RAID for a cluster, it supports
two levels: raid1 and raid10 (limited support).
1. On-disk format
+=================
Separate write-intent-bitmaps are used for each cluster node.
The bitmaps record all writes that may have been started on that node,
-and may not yet have finished. The on-disk layout is:
+and may not yet have finished. The on-disk layout is::
-0 4k 8k 12k
--------------------------------------------------------------------
-| idle | md super | bm super [0] + bits |
-| bm bits[0, contd] | bm super[1] + bits | bm bits[1, contd] |
-| bm super[2] + bits | bm bits [2, contd] | bm super[3] + bits |
-| bm bits [3, contd] | | |
+ 0 4k 8k 12k
+ -------------------------------------------------------------------
+ | idle | md super | bm super [0] + bits |
+ | bm bits[0, contd] | bm super[1] + bits | bm bits[1, contd] |
+ | bm super[2] + bits | bm bits [2, contd] | bm super[3] + bits |
+ | bm bits [3, contd] | | |
During "normal" functioning we assume the filesystem ensures that only
one node writes to any given block at a time, so a write request will
@@ -28,10 +33,12 @@ node) is writing.
2. DLM Locks for management
+===========================
There are three groups of locks for managing the device:
2.1 Bitmap lock resource (bm_lockres)
+-------------------------------------
The bm_lockres protects individual node bitmaps. They are named in
the form bitmap000 for node 1, bitmap001 for node 2 and so on. When a
@@ -48,6 +55,7 @@ There are three groups of locks for managing the device:
joins the cluster.
2.2 Message passing locks
+-------------------------
Each node has to communicate with other nodes when starting or ending
resync, and for metadata superblock updates. This communication is
@@ -55,116 +63,155 @@ There are three groups of locks for managing the device:
with the Lock Value Block (LVB) of one of the "message" lock.
2.3 new-device management
+-------------------------
A single lock: "no-new-dev" is used to co-ordinate the addition of
new devices - this must be synchronized across the array.
Normally all nodes hold a concurrent-read lock on this device.
3. Communication
+================
Messages can be broadcast to all nodes, and the sender waits for all
other nodes to acknowledge the message before proceeding. Only one
message can be processed at a time.
3.1 Message Types
+-----------------
There are six types of messages which are passed:
- 3.1.1 METADATA_UPDATED: informs other nodes that the metadata has
+3.1.1 METADATA_UPDATED
+^^^^^^^^^^^^^^^^^^^^^^
+
+ informs other nodes that the metadata has
been updated, and the node must re-read the md superblock. This is
performed synchronously. It is primarily used to signal device
failure.
- 3.1.2 RESYNCING: informs other nodes that a resync is initiated or
+3.1.2 RESYNCING
+^^^^^^^^^^^^^^^
+ informs other nodes that a resync is initiated or
ended so that each node may suspend or resume the region. Each
RESYNCING message identifies a range of the devices that the
sending node is about to resync. This overrides any previous
notification from that node: only one ranged can be resynced at a
time per-node.
- 3.1.3 NEWDISK: informs other nodes that a device is being added to
+3.1.3 NEWDISK
+^^^^^^^^^^^^^
+
+ informs other nodes that a device is being added to
the array. Message contains an identifier for that device. See
below for further details.
- 3.1.4 REMOVE: A failed or spare device is being removed from the
+3.1.4 REMOVE
+^^^^^^^^^^^^
+
+ A failed or spare device is being removed from the
array. The slot-number of the device is included in the message.
- 3.1.5 RE_ADD: A failed device is being re-activated - the assumption
+ 3.1.5 RE_ADD:
+
+ A failed device is being re-activated - the assumption
is that it has been determined to be working again.
- 3.1.6 BITMAP_NEEDS_SYNC: if a node is stopped locally but the bitmap
+ 3.1.6 BITMAP_NEEDS_SYNC:
+
+ If a node is stopped locally but the bitmap
isn't clean, then another node is informed to take the ownership of
resync.
3.2 Communication mechanism
+---------------------------
The DLM LVB is used to communicate within nodes of the cluster. There
are three resources used for the purpose:
- 3.2.1 token: The resource which protects the entire communication
+3.2.1 token
+^^^^^^^^^^^
+ The resource which protects the entire communication
system. The node having the token resource is allowed to
communicate.
- 3.2.2 message: The lock resource which carries the data to
- communicate.
+3.2.2 message
+^^^^^^^^^^^^^
+ The lock resource which carries the data to communicate.
- 3.2.3 ack: The resource, acquiring which means the message has been
+3.2.3 ack
+^^^^^^^^^
+
+ The resource, acquiring which means the message has been
acknowledged by all nodes in the cluster. The BAST of the resource
is used to inform the receiving node that a node wants to
communicate.
The algorithm is:
- 1. receive status - all nodes have concurrent-reader lock on "ack".
+ 1. receive status - all nodes have concurrent-reader lock on "ack"::
+
+ sender receiver receiver
+ "ack":CR "ack":CR "ack":CR
- sender receiver receiver
- "ack":CR "ack":CR "ack":CR
+ 2. sender get EX on "token",
+ sender get EX on "message"::
- 2. sender get EX on "token"
- sender get EX on "message"
- sender receiver receiver
- "token":EX "ack":CR "ack":CR
- "message":EX
- "ack":CR
+ sender receiver receiver
+ "token":EX "ack":CR "ack":CR
+ "message":EX
+ "ack":CR
Sender checks that it still needs to send a message. Messages
received or other events that happened while waiting for the
"token" may have made this message inappropriate or redundant.
- 3. sender writes LVB.
+ 3. sender writes LVB
+
sender down-convert "message" from EX to CW
+
sender try to get EX of "ack"
- [ wait until all receivers have *processed* the "message" ]
- [ triggered by bast of "ack" ]
- receiver get CR on "message"
- receiver read LVB
- receiver processes the message
- [ wait finish ]
- receiver releases "ack"
- receiver tries to get PR on "message"
+ ::
+
+ [ wait until all receivers have *processed* the "message" ]
- sender receiver receiver
- "token":EX "message":CR "message":CR
- "message":CW
- "ack":EX
+ [ triggered by bast of "ack" ]
+ receiver get CR on "message"
+ receiver read LVB
+ receiver processes the message
+ [ wait finish ]
+ receiver releases "ack"
+ receiver tries to get PR on "message"
+
+ sender receiver receiver
+ "token":EX "message":CR "message":CR
+ "message":CW
+ "ack":EX
4. triggered by grant of EX on "ack" (indicating all receivers
have processed message)
+
sender down-converts "ack" from EX to CR
+
sender releases "message"
+
sender releases "token"
- receiver upconvert to PR on "message"
- receiver get CR of "ack"
- receiver release "message"
- sender receiver receiver
- "ack":CR "ack":CR "ack":CR
+ ::
+
+ receiver upconvert to PR on "message"
+ receiver get CR of "ack"
+ receiver release "message"
+
+ sender receiver receiver
+ "ack":CR "ack":CR "ack":CR
4. Handling Failures
+====================
4.1 Node Failure
+----------------
When a node fails, the DLM informs the cluster with the slot
number. The node starts a cluster recovery thread. The cluster
@@ -177,11 +224,11 @@ The algorithm is:
- cleans the bitmap of the failed node
- releases bitmap<number> lock of the failed node
- initiates resync of the bitmap on the current node
- md_check_recovery is invoked within recover_bitmaps,
- then md_check_recovery -> metadata_update_start/finish,
- it will lock the communication by lock_comm.
- Which means when one node is resyncing it blocks all
- other nodes from writing anywhere on the array.
+ md_check_recovery is invoked within recover_bitmaps,
+ then md_check_recovery -> metadata_update_start/finish,
+ it will lock the communication by lock_comm.
+ Which means when one node is resyncing it blocks all
+ other nodes from writing anywhere on the array.
The resync process is the regular md resync. However, in a clustered
environment when a resync is performed, it needs to tell other nodes
@@ -198,6 +245,7 @@ The algorithm is:
particular I/O range should be suspended or not.
4.2 Device Failure
+==================
Device failures are handled and communicated with the metadata update
routine. When a node detects a device failure it does not allow
@@ -205,38 +253,41 @@ The algorithm is:
acknowledged by all other nodes.
5. Adding a new Device
+----------------------
For adding a new device, it is necessary that all nodes "see" the new
device to be added. For this, the following algorithm is used:
- 1. Node 1 issues mdadm --manage /dev/mdX --add /dev/sdYY which issues
+ 1. Node 1 issues mdadm --manage /dev/mdX --add /dev/sdYY which issues
ioctl(ADD_NEW_DISK with disc.state set to MD_DISK_CLUSTER_ADD)
- 2. Node 1 sends a NEWDISK message with uuid and slot number
- 3. Other nodes issue kobject_uevent_env with uuid and slot number
+ 2. Node 1 sends a NEWDISK message with uuid and slot number
+ 3. Other nodes issue kobject_uevent_env with uuid and slot number
(Steps 4,5 could be a udev rule)
- 4. In userspace, the node searches for the disk, perhaps
+ 4. In userspace, the node searches for the disk, perhaps
using blkid -t SUB_UUID=""
- 5. Other nodes issue either of the following depending on whether
+ 5. Other nodes issue either of the following depending on whether
the disk was found:
ioctl(ADD_NEW_DISK with disc.state set to MD_DISK_CANDIDATE and
- disc.number set to slot number)
+ disc.number set to slot number)
ioctl(CLUSTERED_DISK_NACK)
- 6. Other nodes drop lock on "no-new-devs" (CR) if device is found
- 7. Node 1 attempts EX lock on "no-new-dev"
- 8. If node 1 gets the lock, it sends METADATA_UPDATED after
+ 6. Other nodes drop lock on "no-new-devs" (CR) if device is found
+ 7. Node 1 attempts EX lock on "no-new-dev"
+ 8. If node 1 gets the lock, it sends METADATA_UPDATED after
unmarking the disk as SpareLocal
- 9. If not (get "no-new-dev" lock), it fails the operation and sends
+ 9. If not (get "no-new-dev" lock), it fails the operation and sends
METADATA_UPDATED.
10. Other nodes get the information whether a disk is added or not
by the following METADATA_UPDATED.
-6. Module interface.
+6. Module interface
+===================
There are 17 call-backs which the md core can make to the cluster
module. Understanding these can give a good overview of the whole
process.
6.1 join(nodes) and leave()
+---------------------------
These are called when an array is started with a clustered bitmap,
and when the array is stopped. join() ensures the cluster is
@@ -244,11 +295,13 @@ The algorithm is:
Only the first 'nodes' nodes in the cluster can use the array.
6.2 slot_number()
+-----------------
Reports the slot number advised by the cluster infrastructure.
Range is from 0 to nodes-1.
6.3 resync_info_update()
+------------------------
This updates the resync range that is stored in the bitmap lock.
The starting point is updated as the resync progresses. The
@@ -256,6 +309,7 @@ The algorithm is:
It does *not* send a RESYNCING message.
6.4 resync_start(), resync_finish()
+-----------------------------------
These are called when resync/recovery/reshape starts or stops.
They update the resyncing range in the bitmap lock and also
@@ -265,8 +319,8 @@ The algorithm is:
resync_finish() also sends a BITMAP_NEEDS_SYNC message which
allows some other node to take over.
-6.5 metadata_update_start(), metadata_update_finish(),
- metadata_update_cancel().
+6.5 metadata_update_start(), metadata_update_finish(), metadata_update_cancel()
+-------------------------------------------------------------------------------
metadata_update_start is used to get exclusive access to
the metadata. If a change is still needed once that access is
@@ -275,6 +329,7 @@ The algorithm is:
can be used to release the lock.
6.6 area_resyncing()
+--------------------
This combines two elements of functionality.
@@ -289,6 +344,7 @@ The algorithm is:
a node failure.
6.7 add_new_disk_start(), add_new_disk_finish(), new_disk_ack()
+---------------------------------------------------------------
These are used to manage the new-disk protocol described above.
When a new device is added, add_new_disk_start() is called before
@@ -300,17 +356,20 @@ The algorithm is:
new_disk_ack() is called.
6.8 remove_disk()
+-----------------
This is called when a spare or failed device is removed from
the array. It causes a REMOVE message to be send to other nodes.
6.9 gather_bitmaps()
+--------------------
This sends a RE_ADD message to all other nodes and then
gathers bitmap information from all bitmaps. This combined
bitmap is then used to recovery the re-added device.
6.10 lock_all_bitmaps() and unlock_all_bitmaps()
+------------------------------------------------
These are called when change bitmap to none. If a node plans
to clear the cluster raid's bitmap, it need to make sure no other
@@ -319,6 +378,7 @@ The algorithm is:
accordingly.
7. Unsupported features
+=======================
There are somethings which are not supported by cluster MD yet.
diff --git a/Documentation/md/raid5-cache.txt b/Documentation/driver-api/md/raid5-cache.rst
index 2b210f295786..d7a15f44a7c3 100644
--- a/Documentation/md/raid5-cache.txt
+++ b/Documentation/driver-api/md/raid5-cache.rst
@@ -1,4 +1,6 @@
-RAID5 cache
+================
+RAID 4/5/6 cache
+================
Raid 4/5/6 could include an extra disk for data cache besides normal RAID
disks. The role of RAID disks isn't changed with the cache disk. The cache disk
@@ -6,19 +8,19 @@ caches data to the RAID disks. The cache can be in write-through (supported
since 4.4) or write-back mode (supported since 4.10). mdadm (supported since
3.4) has a new option '--write-journal' to create array with cache. Please
refer to mdadm manual for details. By default (RAID array starts), the cache is
-in write-through mode. A user can switch it to write-back mode by:
+in write-through mode. A user can switch it to write-back mode by::
-echo "write-back" > /sys/block/md0/md/journal_mode
+ echo "write-back" > /sys/block/md0/md/journal_mode
-And switch it back to write-through mode by:
+And switch it back to write-through mode by::
-echo "write-through" > /sys/block/md0/md/journal_mode
+ echo "write-through" > /sys/block/md0/md/journal_mode
In both modes, all writes to the array will hit cache disk first. This means
the cache disk must be fast and sustainable.
--------------------------------------
-write-through mode:
+write-through mode
+==================
This mode mainly fixes the 'write hole' issue. For RAID 4/5/6 array, an unclean
shutdown can cause data in some stripes to not be in consistent state, eg, data
@@ -42,8 +44,8 @@ exposed to 'write hole' again.
In write-through mode, the cache disk isn't required to be big. Several
hundreds megabytes are enough.
---------------------------------------
-write-back mode:
+write-back mode
+===============
write-back mode fixes the 'write hole' issue too, since all write data is
cached on cache disk. But the main goal of 'write-back' cache is to speed up
@@ -64,16 +66,16 @@ data loss.
In write-back mode, MD also caches data in memory. The memory cache includes
the same data stored on cache disk, so a power loss doesn't cause data loss.
The memory cache size has performance impact for the array. It's recommended
-the size is big. A user can configure the size by:
+the size is big. A user can configure the size by::
-echo "2048" > /sys/block/md0/md/stripe_cache_size
+ echo "2048" > /sys/block/md0/md/stripe_cache_size
Too small cache disk will make the write aggregation less efficient in this
mode depending on the workloads. It's recommended to use a cache disk with at
least several gigabytes size in write-back mode.
---------------------------------------
-The implementation:
+The implementation
+==================
The write-through and write-back cache use the same disk format. The cache disk
is organized as a simple write log. The log consists of 'meta data' and 'data'
diff --git a/Documentation/md/raid5-ppl.txt b/Documentation/driver-api/md/raid5-ppl.rst
index bfa092589e00..357e5515bc55 100644
--- a/Documentation/md/raid5-ppl.txt
+++ b/Documentation/driver-api/md/raid5-ppl.rst
@@ -1,4 +1,6 @@
+==================
Partial Parity Log
+==================
Partial Parity Log (PPL) is a feature available for RAID5 arrays. The issue
addressed by PPL is that after a dirty shutdown, parity of a particular stripe
diff --git a/Documentation/driver-api/mei/hdcp.rst b/Documentation/driver-api/mei/hdcp.rst
new file mode 100644
index 000000000000..e85a065b1cdc
--- /dev/null
+++ b/Documentation/driver-api/mei/hdcp.rst
@@ -0,0 +1,32 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+HDCP:
+=====
+
+ME FW as a security engine provides the capability for setting up
+HDCP2.2 protocol negotiation between the Intel graphics device and
+an HDC2.2 sink.
+
+ME FW prepares HDCP2.2 negotiation parameters, signs and encrypts them
+according the HDCP 2.2 spec. The Intel graphics sends the created blob
+to the HDCP2.2 sink.
+
+Similarly, the HDCP2.2 sink's response is transferred to ME FW
+for decryption and verification.
+
+Once all the steps of HDCP2.2 negotiation are completed,
+upon request ME FW will configure the port as authenticated and supply
+the HDCP encryption keys to Intel graphics hardware.
+
+
+mei_hdcp driver
+---------------
+.. kernel-doc:: drivers/misc/mei/hdcp/mei_hdcp.c
+ :doc: MEI_HDCP Client Driver
+
+mei_hdcp api
+------------
+
+.. kernel-doc:: drivers/misc/mei/hdcp/mei_hdcp.c
+ :functions:
+
diff --git a/Documentation/driver-api/mei/iamt.rst b/Documentation/driver-api/mei/iamt.rst
new file mode 100644
index 000000000000..6ef3e613684b
--- /dev/null
+++ b/Documentation/driver-api/mei/iamt.rst
@@ -0,0 +1,101 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Intel(R) Active Management Technology (Intel AMT)
+=================================================
+
+Prominent usage of the Intel ME Interface is to communicate with Intel(R)
+Active Management Technology (Intel AMT) implemented in firmware running on
+the Intel ME.
+
+Intel AMT provides the ability to manage a host remotely out-of-band (OOB)
+even when the operating system running on the host processor has crashed or
+is in a sleep state.
+
+Some examples of Intel AMT usage are:
+ - Monitoring hardware state and platform components
+ - Remote power off/on (useful for green computing or overnight IT
+ maintenance)
+ - OS updates
+ - Storage of useful platform information such as software assets
+ - Built-in hardware KVM
+ - Selective network isolation of Ethernet and IP protocol flows based
+ on policies set by a remote management console
+ - IDE device redirection from remote management console
+
+Intel AMT (OOB) communication is based on SOAP (deprecated
+starting with Release 6.0) over HTTP/S or WS-Management protocol over
+HTTP/S that are received from a remote management console application.
+
+For more information about Intel AMT:
+https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+
+
+Intel AMT Applications
+----------------------
+
+ 1) Intel Local Management Service (Intel LMS)
+
+ Applications running locally on the platform communicate with Intel AMT Release
+ 2.0 and later releases in the same way that network applications do via SOAP
+ over HTTP (deprecated starting with Release 6.0) or with WS-Management over
+ SOAP over HTTP. This means that some Intel AMT features can be accessed from a
+ local application using the same network interface as a remote application
+ communicating with Intel AMT over the network.
+
+ When a local application sends a message addressed to the local Intel AMT host
+ name, the Intel LMS, which listens for traffic directed to the host name,
+ intercepts the message and routes it to the Intel MEI.
+ For more information:
+ https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+ Under "About Intel AMT" => "Local Access"
+
+ For downloading Intel LMS:
+ https://github.com/intel/lms
+
+ The Intel LMS opens a connection using the Intel MEI driver to the Intel LMS
+ firmware feature using a defined GUID and then communicates with the feature
+ using a protocol called Intel AMT Port Forwarding Protocol (Intel APF protocol).
+ The protocol is used to maintain multiple sessions with Intel AMT from a
+ single application.
+
+ See the protocol specification in the Intel AMT Software Development Kit (SDK)
+ https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+ Under "SDK Resources" => "Intel(R) vPro(TM) Gateway (MPS)"
+ => "Information for Intel(R) vPro(TM) Gateway Developers"
+ => "Description of the Intel AMT Port Forwarding (APF) Protocol"
+
+ 2) Intel AMT Remote configuration using a Local Agent
+
+ A Local Agent enables IT personnel to configure Intel AMT out-of-the-box
+ without requiring installing additional data to enable setup. The remote
+ configuration process may involve an ISV-developed remote configuration
+ agent that runs on the host.
+ For more information:
+ https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
+ Under "Setup and Configuration of Intel AMT" =>
+ "SDK Tools Supporting Setup and Configuration" =>
+ "Using the Local Agent Sample"
+
+Intel AMT OS Health Watchdog
+----------------------------
+
+The Intel AMT Watchdog is an OS Health (Hang/Crash) watchdog.
+Whenever the OS hangs or crashes, Intel AMT will send an event
+to any subscriber to this event. This mechanism means that
+IT knows when a platform crashes even when there is a hard failure on the host.
+
+The Intel AMT Watchdog is composed of two parts:
+ 1) Firmware feature - receives the heartbeats
+ and sends an event when the heartbeats stop.
+ 2) Intel MEI iAMT watchdog driver - connects to the watchdog feature,
+ configures the watchdog and sends the heartbeats.
+
+The Intel iAMT watchdog MEI driver uses the kernel watchdog API to configure
+the Intel AMT Watchdog and to send heartbeats to it. The default timeout of the
+watchdog is 120 seconds.
+
+If the Intel AMT is not enabled in the firmware then the watchdog client won't enumerate
+on the me client bus and watchdog devices won't be exposed.
+
+---
+linux-mei@linux.intel.com
diff --git a/Documentation/driver-api/mei/index.rst b/Documentation/driver-api/mei/index.rst
new file mode 100644
index 000000000000..3a22b522ee78
--- /dev/null
+++ b/Documentation/driver-api/mei/index.rst
@@ -0,0 +1,23 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: <isonum.txt>
+
+===================================================
+Intel(R) Management Engine Interface (Intel(R) MEI)
+===================================================
+
+**Copyright** |copy| 2019 Intel Corporation
+
+
+.. only:: html
+
+ .. class:: toc-title
+
+ Table of Contents
+
+.. toctree::
+ :maxdepth: 3
+
+ mei
+ mei-client-bus
+ iamt
diff --git a/Documentation/driver-api/mei/mei-client-bus.rst b/Documentation/driver-api/mei/mei-client-bus.rst
new file mode 100644
index 000000000000..f242b3f8d6aa
--- /dev/null
+++ b/Documentation/driver-api/mei/mei-client-bus.rst
@@ -0,0 +1,168 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============================================
+Intel(R) Management Engine (ME) Client bus API
+==============================================
+
+
+Rationale
+=========
+
+The MEI character device is useful for dedicated applications to send and receive
+data to the many FW appliance found in Intel's ME from the user space.
+However, for some of the ME functionalities it makes sense to leverage existing software
+stack and expose them through existing kernel subsystems.
+
+In order to plug seamlessly into the kernel device driver model we add kernel virtual
+bus abstraction on top of the MEI driver. This allows implementing Linux kernel drivers
+for the various MEI features as a stand alone entities found in their respective subsystem.
+Existing device drivers can even potentially be re-used by adding an MEI CL bus layer to
+the existing code.
+
+
+MEI CL bus API
+==============
+
+A driver implementation for an MEI Client is very similar to any other existing bus
+based device drivers. The driver registers itself as an MEI CL bus driver through
+the ``struct mei_cl_driver`` structure defined in :file:`include/linux/mei_cl_bus.c`
+
+.. code-block:: C
+
+ struct mei_cl_driver {
+ struct device_driver driver;
+ const char *name;
+
+ const struct mei_cl_device_id *id_table;
+
+ int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id *id);
+ int (*remove)(struct mei_cl_device *dev);
+ };
+
+
+
+The mei_cl_device_id structure defined in :file:`include/linux/mod_devicetable.h` allows a
+driver to bind itself against a device name.
+
+.. code-block:: C
+
+ struct mei_cl_device_id {
+ char name[MEI_CL_NAME_SIZE];
+ uuid_le uuid;
+ __u8 version;
+ kernel_ulong_t driver_info;
+ };
+
+To actually register a driver on the ME Client bus one must call the :c:func:`mei_cl_add_driver`
+API. This is typically called at module initialization time.
+
+Once the driver is registered and bound to the device, a driver will typically
+try to do some I/O on this bus and this should be done through the :c:func:`mei_cl_send`
+and :c:func:`mei_cl_recv` functions. More detailed information is in :ref:`api` section.
+
+In order for a driver to be notified about pending traffic or event, the driver
+should register a callback via :c:func:`mei_cl_devev_register_rx_cb` and
+:c:func:`mei_cldev_register_notify_cb` function respectively.
+
+.. _api:
+
+API:
+----
+.. kernel-doc:: drivers/misc/mei/bus.c
+ :export: drivers/misc/mei/bus.c
+
+
+
+Example
+=======
+
+As a theoretical example let's pretend the ME comes with a "contact" NFC IP.
+The driver init and exit routines for this device would look like:
+
+.. code-block:: C
+
+ #define CONTACT_DRIVER_NAME "contact"
+
+ static struct mei_cl_device_id contact_mei_cl_tbl[] = {
+ { CONTACT_DRIVER_NAME, },
+
+ /* required last entry */
+ { }
+ };
+ MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl);
+
+ static struct mei_cl_driver contact_driver = {
+ .id_table = contact_mei_tbl,
+ .name = CONTACT_DRIVER_NAME,
+
+ .probe = contact_probe,
+ .remove = contact_remove,
+ };
+
+ static int contact_init(void)
+ {
+ int r;
+
+ r = mei_cl_driver_register(&contact_driver);
+ if (r) {
+ pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n");
+ return r;
+ }
+
+ return 0;
+ }
+
+ static void __exit contact_exit(void)
+ {
+ mei_cl_driver_unregister(&contact_driver);
+ }
+
+ module_init(contact_init);
+ module_exit(contact_exit);
+
+And the driver's simplified probe routine would look like that:
+
+.. code-block:: C
+
+ int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id)
+ {
+ [...]
+ mei_cldev_enable(dev);
+
+ mei_cldev_register_rx_cb(dev, contact_rx_cb);
+
+ return 0;
+ }
+
+In the probe routine the driver first enable the MEI device and then registers
+an rx handler which is as close as it can get to registering a threaded IRQ handler.
+The handler implementation will typically call :c:func:`mei_cldev_recv` and then
+process received data.
+
+.. code-block:: C
+
+ #define MAX_PAYLOAD 128
+ #define HDR_SIZE 4
+ static void conntact_rx_cb(struct mei_cl_device *cldev)
+ {
+ struct contact *c = mei_cldev_get_drvdata(cldev);
+ unsigned char payload[MAX_PAYLOAD];
+ ssize_t payload_sz;
+
+ payload_sz = mei_cldev_recv(cldev, payload, MAX_PAYLOAD)
+ if (reply_size < HDR_SIZE) {
+ return;
+ }
+
+ c->process_rx(payload);
+
+ }
+
+MEI Client Bus Drivers
+======================
+
+.. toctree::
+ :maxdepth: 2
+
+ hdcp
+ nfc
diff --git a/Documentation/driver-api/mei/mei.rst b/Documentation/driver-api/mei/mei.rst
new file mode 100644
index 000000000000..c800d8e5f422
--- /dev/null
+++ b/Documentation/driver-api/mei/mei.rst
@@ -0,0 +1,176 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Introduction
+============
+
+The Intel Management Engine (Intel ME) is an isolated and protected computing
+resource (Co-processor) residing inside certain Intel chipsets. The Intel ME
+provides support for computer/IT management and security features.
+The actual feature set depends on the Intel chipset SKU.
+
+The Intel Management Engine Interface (Intel MEI, previously known as HECI)
+is the interface between the Host and Intel ME. This interface is exposed
+to the host as a PCI device, actually multiple PCI devices might be exposed.
+The Intel MEI Driver is in charge of the communication channel between
+a host application and the Intel ME features.
+
+Each Intel ME feature, or Intel ME Client is addressed by a unique GUID and
+each client has its own protocol. The protocol is message-based with a
+header and payload up to maximal number of bytes advertised by the client,
+upon connection.
+
+Intel MEI Driver
+================
+
+The driver exposes a character device with device nodes /dev/meiX.
+
+An application maintains communication with an Intel ME feature while
+/dev/meiX is open. The binding to a specific feature is performed by calling
+:c:macro:`MEI_CONNECT_CLIENT_IOCTL`, which passes the desired GUID.
+The number of instances of an Intel ME feature that can be opened
+at the same time depends on the Intel ME feature, but most of the
+features allow only a single instance.
+
+The driver is transparent to data that are passed between firmware feature
+and host application.
+
+Because some of the Intel ME features can change the system
+configuration, the driver by default allows only a privileged
+user to access it.
+
+The session is terminated calling :c:func:`close(int fd)`.
+
+A code snippet for an application communicating with Intel AMTHI client:
+
+.. code-block:: C
+
+ struct mei_connect_client_data data;
+ fd = open(MEI_DEVICE);
+
+ data.d.in_client_uuid = AMTHI_GUID;
+
+ ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &data);
+
+ printf("Ver=%d, MaxLen=%ld\n",
+ data.d.in_client_uuid.protocol_version,
+ data.d.in_client_uuid.max_msg_length);
+
+ [...]
+
+ write(fd, amthi_req_data, amthi_req_data_len);
+
+ [...]
+
+ read(fd, &amthi_res_data, amthi_res_data_len);
+
+ [...]
+ close(fd);
+
+
+User space API
+
+IOCTLs:
+=======
+
+The Intel MEI Driver supports the following IOCTL commands:
+
+IOCTL_MEI_CONNECT_CLIENT
+-------------------------
+Connect to firmware Feature/Client.
+
+.. code-block:: none
+
+ Usage:
+
+ struct mei_connect_client_data client_data;
+
+ ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &client_data);
+
+ Inputs:
+
+ struct mei_connect_client_data - contain the following
+ Input field:
+
+ in_client_uuid - GUID of the FW Feature that needs
+ to connect to.
+ Outputs:
+ out_client_properties - Client Properties: MTU and Protocol Version.
+
+ Error returns:
+
+ ENOTTY No such client (i.e. wrong GUID) or connection is not allowed.
+ EINVAL Wrong IOCTL Number
+ ENODEV Device or Connection is not initialized or ready.
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EBUSY Connection Already Open
+
+:Note:
+ max_msg_length (MTU) in client properties describes the maximum
+ data that can be sent or received. (e.g. if MTU=2K, can send
+ requests up to bytes 2k and received responses up to 2k bytes).
+
+
+IOCTL_MEI_NOTIFY_SET
+---------------------
+Enable or disable event notifications.
+
+
+.. code-block:: none
+
+ Usage:
+
+ uint32_t enable;
+
+ ioctl(fd, IOCTL_MEI_NOTIFY_SET, &enable);
+
+
+ uint32_t enable = 1;
+ or
+ uint32_t enable[disable] = 0;
+
+ Error returns:
+
+
+ EINVAL Wrong IOCTL Number
+ ENODEV Device is not initialized or the client not connected
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EOPNOTSUPP if the device doesn't support the feature
+
+:Note:
+ The client must be connected in order to enable notification events
+
+
+IOCTL_MEI_NOTIFY_GET
+--------------------
+Retrieve event
+
+.. code-block:: none
+
+ Usage:
+ uint32_t event;
+ ioctl(fd, IOCTL_MEI_NOTIFY_GET, &event);
+
+ Outputs:
+ 1 - if an event is pending
+ 0 - if there is no even pending
+
+ Error returns:
+ EINVAL Wrong IOCTL Number
+ ENODEV Device is not initialized or the client not connected
+ ENOMEM Unable to allocate memory to client internal data.
+ EFAULT Fatal Error (e.g. Unable to access user input data)
+ EOPNOTSUPP if the device doesn't support the feature
+
+:Note:
+ The client must be connected and event notification has to be enabled
+ in order to receive an event
+
+
+
+Supported Chipsets
+==================
+82X38/X48 Express and newer
+
+linux-mei@linux.intel.com
diff --git a/Documentation/driver-api/mei/nfc.rst b/Documentation/driver-api/mei/nfc.rst
new file mode 100644
index 000000000000..b5b6fc96f85e
--- /dev/null
+++ b/Documentation/driver-api/mei/nfc.rst
@@ -0,0 +1,28 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+MEI NFC
+-------
+
+Some Intel 8 and 9 Serieses chipsets supports NFC devices connected behind
+the Intel Management Engine controller.
+MEI client bus exposes the NFC chips as NFC phy devices and enables
+binding with Microread and NXP PN544 NFC device driver from the Linux NFC
+subsystem.
+
+.. kernel-render:: DOT
+ :alt: MEI NFC digraph
+ :caption: **MEI NFC** Stack
+
+ digraph NFC {
+ cl_nfc -> me_cl_nfc;
+ "drivers/nfc/mei_phy" -> cl_nfc [lhead=bus];
+ "drivers/nfc/microread/mei" -> cl_nfc;
+ "drivers/nfc/microread/mei" -> "drivers/nfc/mei_phy";
+ "drivers/nfc/pn544/mei" -> cl_nfc;
+ "drivers/nfc/pn544/mei" -> "drivers/nfc/mei_phy";
+ "net/nfc" -> "drivers/nfc/microread/mei";
+ "net/nfc" -> "drivers/nfc/pn544/mei";
+ "neard" -> "net/nfc";
+ cl_nfc [label="mei/bus(nfc)"];
+ me_cl_nfc [label="me fw (nfc)"];
+ }
diff --git a/Documentation/driver-api/memory-devices/index.rst b/Documentation/driver-api/memory-devices/index.rst
new file mode 100644
index 000000000000..28101458cda5
--- /dev/null
+++ b/Documentation/driver-api/memory-devices/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================
+Memory Controller drivers
+=========================
+
+.. toctree::
+ :maxdepth: 1
+
+ ti-emif
+ ti-gpmc
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/memory-devices/ti-emif.txt b/Documentation/driver-api/memory-devices/ti-emif.rst
index f4ad9a7d0f4b..dea2ad9bcd7e 100644
--- a/Documentation/memory-devices/ti-emif.txt
+++ b/Documentation/driver-api/memory-devices/ti-emif.rst
@@ -1,20 +1,24 @@
-TI EMIF SDRAM Controller Driver:
+.. SPDX-License-Identifier: GPL-2.0
+
+===============================
+TI EMIF SDRAM Controller Driver
+===============================
Author
-========
+======
Aneesh V <aneesh@ti.com>
Location
-============
+========
driver/memory/emif.c
Supported SoCs:
-===================
+===============
TI OMAP44xx
TI OMAP54xx
Menuconfig option:
-==========================
+==================
Device Drivers
Memory devices
Texas Instruments EMIF driver
@@ -29,10 +33,11 @@ functions of the driver includes re-configuring AC timing
parameters and other settings during frequency, voltage and
temperature changes
-Platform Data (see include/linux/platform_data/emif_plat.h):
-=====================================================================
+Platform Data (see include/linux/platform_data/emif_plat.h)
+===========================================================
DDR device details and other board dependent and SoC dependent
information can be passed through platform data (struct emif_platform_data)
+
- DDR device details: 'struct ddr_device_info'
- Device AC timings: 'struct lpddr2_timings' and 'struct lpddr2_min_tck'
- Custom configurations: customizable policy options through
@@ -40,17 +45,19 @@ information can be passed through platform data (struct emif_platform_data)
- IP revision
- PHY type
-Interface to the external world:
-================================
+Interface to the external world
+===============================
EMIF driver registers notifiers for voltage and frequency changes
affecting EMIF and takes appropriate actions when these are invoked.
+
- freq_pre_notify_handling()
- freq_post_notify_handling()
- volt_notify_handling()
Debugfs
-========
+=======
The driver creates two debugfs entries per device.
+
- regcache_dump : dump of register values calculated and saved for all
frequencies used so far.
- mr4 : last polled value of MR4 register in the LPDDR2 device. MR4
diff --git a/Documentation/bus-devices/ti-gpmc.txt b/Documentation/driver-api/memory-devices/ti-gpmc.rst
index cc9ce57e0a26..33efcb81f080 100644
--- a/Documentation/bus-devices/ti-gpmc.txt
+++ b/Documentation/driver-api/memory-devices/ti-gpmc.rst
@@ -1,8 +1,12 @@
-GPMC (General Purpose Memory Controller):
-=========================================
+.. SPDX-License-Identifier: GPL-2.0
+
+========================================
+GPMC (General Purpose Memory Controller)
+========================================
GPMC is an unified memory controller dedicated to interfacing external
memory devices like
+
* Asynchronous SRAM like memories and application specific integrated
circuit devices.
* Asynchronous, synchronous, and page mode burst NOR flash devices
@@ -48,75 +52,128 @@ most of the datasheets & hardware (to be exact none of those supported
in mainline having custom timing routine) and by simulation.
gpmc timing dependency on peripheral timings:
+
[<gpmc_timing>: <peripheral timing1>, <peripheral timing2> ...]
1. common
-cs_on: t_ceasu
-adv_on: t_avdasu, t_ceavd
+
+cs_on:
+ t_ceasu
+adv_on:
+ t_avdasu, t_ceavd
2. sync common
-sync_clk: clk
-page_burst_access: t_bacc
-clk_activation: t_ces, t_avds
+
+sync_clk:
+ clk
+page_burst_access:
+ t_bacc
+clk_activation:
+ t_ces, t_avds
3. read async muxed
-adv_rd_off: t_avdp_r
-oe_on: t_oeasu, t_aavdh
-access: t_iaa, t_oe, t_ce, t_aa
-rd_cycle: t_rd_cycle, t_cez_r, t_oez
+
+adv_rd_off:
+ t_avdp_r
+oe_on:
+ t_oeasu, t_aavdh
+access:
+ t_iaa, t_oe, t_ce, t_aa
+rd_cycle:
+ t_rd_cycle, t_cez_r, t_oez
4. read async non-muxed
-adv_rd_off: t_avdp_r
-oe_on: t_oeasu
-access: t_iaa, t_oe, t_ce, t_aa
-rd_cycle: t_rd_cycle, t_cez_r, t_oez
+
+adv_rd_off:
+ t_avdp_r
+oe_on:
+ t_oeasu
+access:
+ t_iaa, t_oe, t_ce, t_aa
+rd_cycle:
+ t_rd_cycle, t_cez_r, t_oez
5. read sync muxed
-adv_rd_off: t_avdp_r, t_avdh
-oe_on: t_oeasu, t_ach, cyc_aavdh_oe
-access: t_iaa, cyc_iaa, cyc_oe
-rd_cycle: t_cez_r, t_oez, t_ce_rdyz
+
+adv_rd_off:
+ t_avdp_r, t_avdh
+oe_on:
+ t_oeasu, t_ach, cyc_aavdh_oe
+access:
+ t_iaa, cyc_iaa, cyc_oe
+rd_cycle:
+ t_cez_r, t_oez, t_ce_rdyz
6. read sync non-muxed
-adv_rd_off: t_avdp_r
-oe_on: t_oeasu
-access: t_iaa, cyc_iaa, cyc_oe
-rd_cycle: t_cez_r, t_oez, t_ce_rdyz
+
+adv_rd_off:
+ t_avdp_r
+oe_on:
+ t_oeasu
+access:
+ t_iaa, cyc_iaa, cyc_oe
+rd_cycle:
+ t_cez_r, t_oez, t_ce_rdyz
7. write async muxed
-adv_wr_off: t_avdp_w
-we_on, wr_data_mux_bus: t_weasu, t_aavdh, cyc_aavhd_we
-we_off: t_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_wr_cycle
+
+adv_wr_off:
+ t_avdp_w
+we_on, wr_data_mux_bus:
+ t_weasu, t_aavdh, cyc_aavhd_we
+we_off:
+ t_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_wr_cycle
8. write async non-muxed
-adv_wr_off: t_avdp_w
-we_on, wr_data_mux_bus: t_weasu
-we_off: t_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_wr_cycle
+
+adv_wr_off:
+ t_avdp_w
+we_on, wr_data_mux_bus:
+ t_weasu
+we_off:
+ t_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_wr_cycle
9. write sync muxed
-adv_wr_off: t_avdp_w, t_avdh
-we_on, wr_data_mux_bus: t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
-we_off: t_wpl, cyc_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_ce_rdyz
+
+adv_wr_off:
+ t_avdp_w, t_avdh
+we_on, wr_data_mux_bus:
+ t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
+we_off:
+ t_wpl, cyc_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_ce_rdyz
10. write sync non-muxed
-adv_wr_off: t_avdp_w
-we_on, wr_data_mux_bus: t_weasu, t_rdyo
-we_off: t_wpl, cyc_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_ce_rdyz
-
-
-Note: Many of gpmc timings are dependent on other gpmc timings (a few
-gpmc timings purely dependent on other gpmc timings, a reason that
-some of the gpmc timings are missing above), and it will result in
-indirect dependency of peripheral timings to gpmc timings other than
-mentioned above, refer timing routine for more details. To know what
-these peripheral timings correspond to, please see explanations in
-struct gpmc_device_timings definition. And for gpmc timings refer
-IP details (link above).
+
+adv_wr_off:
+ t_avdp_w
+we_on, wr_data_mux_bus:
+ t_weasu, t_rdyo
+we_off:
+ t_wpl, cyc_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_ce_rdyz
+
+
+Note:
+ Many of gpmc timings are dependent on other gpmc timings (a few
+ gpmc timings purely dependent on other gpmc timings, a reason that
+ some of the gpmc timings are missing above), and it will result in
+ indirect dependency of peripheral timings to gpmc timings other than
+ mentioned above, refer timing routine for more details. To know what
+ these peripheral timings correspond to, please see explanations in
+ struct gpmc_device_timings definition. And for gpmc timings refer
+ IP details (link above).
diff --git a/Documentation/men-chameleon-bus.txt b/Documentation/driver-api/men-chameleon-bus.rst
index 1b1f048aa748..1b1f048aa748 100644
--- a/Documentation/men-chameleon-bus.txt
+++ b/Documentation/driver-api/men-chameleon-bus.rst
diff --git a/Documentation/driver-api/mmc/index.rst b/Documentation/driver-api/mmc/index.rst
new file mode 100644
index 000000000000..7339736ac774
--- /dev/null
+++ b/Documentation/driver-api/mmc/index.rst
@@ -0,0 +1,13 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========================
+MMC/SD/SDIO card support
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ mmc-dev-attrs
+ mmc-dev-parts
+ mmc-async-req
+ mmc-tools
diff --git a/Documentation/mmc/mmc-async-req.txt b/Documentation/driver-api/mmc/mmc-async-req.rst
index ae1907b10e4a..0f7197c9c3b5 100644
--- a/Documentation/mmc/mmc-async-req.txt
+++ b/Documentation/driver-api/mmc/mmc-async-req.rst
@@ -1,13 +1,20 @@
+========================
+MMC Asynchronous Request
+========================
+
Rationale
=========
How significant is the cache maintenance overhead?
+
It depends. Fast eMMC and multiple cache levels with speculative cache
pre-fetch makes the cache overhead relatively significant. If the DMA
preparations for the next request are done in parallel with the current
transfer, the DMA preparation overhead would not affect the MMC performance.
+
The intention of non-blocking (asynchronous) MMC requests is to minimize the
time between when an MMC request ends and another MMC request begins.
+
Using mmc_wait_for_req(), the MMC controller is idle while dma_map_sg and
dma_unmap_sg are processing. Using non-blocking MMC requests makes it
possible to prepare the caches for next job in parallel with an active
@@ -17,6 +24,7 @@ MMC block driver
================
The mmc_blk_issue_rw_rq() in the MMC block driver is made non-blocking.
+
The increase in throughput is proportional to the time it takes to
prepare (major part of preparations are dma_map_sg() and dma_unmap_sg())
a request and how fast the memory is. The faster the MMC/SD is the
@@ -35,6 +43,7 @@ MMC core API extension
======================
There is one new public function mmc_start_req().
+
It starts a new MMC command request for a host. The function isn't
truly non-blocking. If there is an ongoing async request it waits
for completion of that request and starts the new one and returns. It
@@ -47,6 +56,7 @@ MMC host extensions
There are two optional members in the mmc_host_ops -- pre_req() and
post_req() -- that the host driver may implement in order to move work
to before and after the actual mmc_host_ops.request() function is called.
+
In the DMA case pre_req() may do dma_map_sg() and prepare the DMA
descriptor, and post_req() runs the dma_unmap_sg().
@@ -55,33 +65,34 @@ Optimize for the first request
The first request in a series of requests can't be prepared in parallel
with the previous transfer, since there is no previous request.
+
The argument is_first_req in pre_req() indicates that there is no previous
request. The host driver may optimize for this scenario to minimize
the performance loss. A way to optimize for this is to split the current
request in two chunks, prepare the first chunk and start the request,
and finally prepare the second chunk and start the transfer.
-Pseudocode to handle is_first_req scenario with minimal prepare overhead:
-
-if (is_first_req && req->size > threshold)
- /* start MMC transfer for the complete transfer size */
- mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);
-
- /*
- * Begin to prepare DMA while cmd is being processed by MMC.
- * The first chunk of the request should take the same time
- * to prepare as the "MMC process command time".
- * If prepare time exceeds MMC cmd time
- * the transfer is delayed, guesstimate max 4k as first chunk size.
- */
- prepare_1st_chunk_for_dma(req);
- /* flush pending desc to the DMAC (dmaengine.h) */
- dma_issue_pending(req->dma_desc);
-
- prepare_2nd_chunk_for_dma(req);
- /*
- * The second issue_pending should be called before MMC runs out
- * of the first chunk. If the MMC runs out of the first data chunk
- * before this call, the transfer is delayed.
- */
- dma_issue_pending(req->dma_desc);
+Pseudocode to handle is_first_req scenario with minimal prepare overhead::
+
+ if (is_first_req && req->size > threshold)
+ /* start MMC transfer for the complete transfer size */
+ mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);
+
+ /*
+ * Begin to prepare DMA while cmd is being processed by MMC.
+ * The first chunk of the request should take the same time
+ * to prepare as the "MMC process command time".
+ * If prepare time exceeds MMC cmd time
+ * the transfer is delayed, guesstimate max 4k as first chunk size.
+ */
+ prepare_1st_chunk_for_dma(req);
+ /* flush pending desc to the DMAC (dmaengine.h) */
+ dma_issue_pending(req->dma_desc);
+
+ prepare_2nd_chunk_for_dma(req);
+ /*
+ * The second issue_pending should be called before MMC runs out
+ * of the first chunk. If the MMC runs out of the first data chunk
+ * before this call, the transfer is delayed.
+ */
+ dma_issue_pending(req->dma_desc);
diff --git a/Documentation/mmc/mmc-dev-attrs.txt b/Documentation/driver-api/mmc/mmc-dev-attrs.rst
index 4ad0bb17f343..4f44b1b730d6 100644
--- a/Documentation/mmc/mmc-dev-attrs.txt
+++ b/Documentation/driver-api/mmc/mmc-dev-attrs.rst
@@ -1,3 +1,4 @@
+==================================
SD and MMC Block Device Attributes
==================================
@@ -6,23 +7,29 @@ SD or MMC device.
The following attributes are read/write.
- force_ro Enforce read-only access even if write protect switch is off.
+ ======== ===============================================
+ force_ro Enforce read-only access even if write protect switch is off.
+ ======== ===============================================
SD and MMC Device Attributes
============================
All attributes are read-only.
+ ====================== ===============================================
cid Card Identification Register
csd Card Specific Data Register
scr SD Card Configuration Register (SD only)
date Manufacturing Date (from CID Register)
- fwrev Firmware/Product Revision (from CID Register) (SD and MMCv1 only)
- hwrev Hardware/Product Revision (from CID Register) (SD and MMCv1 only)
+ fwrev Firmware/Product Revision (from CID Register)
+ (SD and MMCv1 only)
+ hwrev Hardware/Product Revision (from CID Register)
+ (SD and MMCv1 only)
manfid Manufacturer ID (from CID Register)
name Product Name (from CID Register)
oemid OEM/Application ID (from CID Register)
- prv Product Revision (from CID Register) (SD and MMCv4 only)
+ prv Product Revision (from CID Register)
+ (SD and MMCv4 only)
serial Product Serial Number (from CID Register)
erase_size Erase group size
preferred_erase_size Preferred erase size
@@ -30,7 +37,10 @@ All attributes are read-only.
rel_sectors Reliable write sector count
ocr Operation Conditions Register
dsr Driver Stage Register
- cmdq_en Command Queue enabled: 1 => enabled, 0 => not enabled
+ cmdq_en Command Queue enabled:
+
+ 1 => enabled, 0 => not enabled
+ ====================== ===============================================
Note on Erase Size and Preferred Erase Size:
@@ -44,14 +54,15 @@ Note on Erase Size and Preferred Erase Size:
SD/MMC cards can erase an arbitrarily large area up to and
including the whole card. When erasing a large area it may
be desirable to do it in smaller chunks for three reasons:
- 1. A single erase command will make all other I/O on
+
+ 1. A single erase command will make all other I/O on
the card wait. This is not a problem if the whole card
is being erased, but erasing one partition will make
I/O for another partition on the same card wait for the
duration of the erase - which could be a several
minutes.
- 2. To be able to inform the user of erase progress.
- 3. The erase timeout becomes too large to be very
+ 2. To be able to inform the user of erase progress.
+ 3. The erase timeout becomes too large to be very
useful. Because the erase timeout contains a margin
which is multiplied by the size of the erase area,
the value can end up being several minutes for large
@@ -72,6 +83,9 @@ Note on Erase Size and Preferred Erase Size:
"preferred_erase_size" is in bytes.
Note on raw_rpmb_size_mult:
+
"raw_rpmb_size_mult" is a multiple of 128kB block.
+
RPMB size in byte is calculated by using the following equation:
- RPMB partition size = 128kB x raw_rpmb_size_mult
+
+ RPMB partition size = 128kB x raw_rpmb_size_mult
diff --git a/Documentation/mmc/mmc-dev-parts.txt b/Documentation/driver-api/mmc/mmc-dev-parts.rst
index f08d078d43cf..995922f1f744 100644
--- a/Documentation/mmc/mmc-dev-parts.txt
+++ b/Documentation/driver-api/mmc/mmc-dev-parts.rst
@@ -1,3 +1,4 @@
+============================
SD and MMC Device Partitions
============================
@@ -18,18 +19,18 @@ platform, write access is disabled by default to reduce the chance of
accidental bricking.
To enable write access to /dev/mmcblkXbootY, disable the forced read-only
-access with:
+access with::
-echo 0 > /sys/block/mmcblkXbootY/force_ro
+ echo 0 > /sys/block/mmcblkXbootY/force_ro
-To re-enable read-only access:
+To re-enable read-only access::
-echo 1 > /sys/block/mmcblkXbootY/force_ro
+ echo 1 > /sys/block/mmcblkXbootY/force_ro
The boot partitions can also be locked read only until the next power on,
-with:
+with::
-echo 1 > /sys/block/mmcblkXbootY/ro_lock_until_next_power_on
+ echo 1 > /sys/block/mmcblkXbootY/ro_lock_until_next_power_on
This is a feature of the card and not of the kernel. If the card does
not support boot partition locking, the file will not exist. If the
diff --git a/Documentation/mmc/mmc-tools.txt b/Documentation/driver-api/mmc/mmc-tools.rst
index 735509c165d5..54406093768b 100644
--- a/Documentation/mmc/mmc-tools.txt
+++ b/Documentation/driver-api/mmc/mmc-tools.rst
@@ -1,14 +1,17 @@
+======================
MMC tools introduction
======================
There is one MMC test tools called mmc-utils, which is maintained by Chris Ball,
you can find it at the below public git repository:
-http://git.kernel.org/cgit/linux/kernel/git/cjb/mmc-utils.git/
+
+ http://git.kernel.org/cgit/linux/kernel/git/cjb/mmc-utils.git/
Functions
=========
The mmc-utils tools can do the following:
+
- Print and parse extcsd data.
- Determine the eMMC writeprotect status.
- Set the eMMC writeprotect status.
diff --git a/Documentation/driver-api/mtd/index.rst b/Documentation/driver-api/mtd/index.rst
new file mode 100644
index 000000000000..436ba5a851d7
--- /dev/null
+++ b/Documentation/driver-api/mtd/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============================
+Memory Technology Device (MTD)
+==============================
+
+.. toctree::
+ :maxdepth: 1
+
+ intel-spi
+ nand_ecc
+ spi-nor
diff --git a/Documentation/mtd/intel-spi.txt b/Documentation/driver-api/mtd/intel-spi.rst
index bc357729c2cb..0e6d9cd5388d 100644
--- a/Documentation/mtd/intel-spi.txt
+++ b/Documentation/driver-api/mtd/intel-spi.rst
@@ -1,5 +1,6 @@
+==============================
Upgrading BIOS using intel-spi
-------------------------------
+==============================
Many Intel CPUs like Baytrail and Braswell include SPI serial flash host
controller which is used to hold BIOS and other platform specific data.
@@ -36,45 +37,45 @@ Linux.
module parameter to modprobe).
4) Once the board is up and running again, find the right MTD partition
- (it is named as "BIOS"):
+ (it is named as "BIOS")::
- # cat /proc/mtd
- dev: size erasesize name
- mtd0: 00800000 00001000 "BIOS"
+ # cat /proc/mtd
+ dev: size erasesize name
+ mtd0: 00800000 00001000 "BIOS"
So here it will be /dev/mtd0 but it may vary.
- 5) Make backup of the existing image first:
+ 5) Make backup of the existing image first::
- # dd if=/dev/mtd0ro of=bios.bak
- 16384+0 records in
- 16384+0 records out
- 8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s
+ # dd if=/dev/mtd0ro of=bios.bak
+ 16384+0 records in
+ 16384+0 records out
+ 8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s
- 6) Verify the backup
+ 6) Verify the backup:
- # sha1sum /dev/mtd0ro bios.bak
- fdbb011920572ca6c991377c4b418a0502668b73 /dev/mtd0ro
- fdbb011920572ca6c991377c4b418a0502668b73 bios.bak
+ # sha1sum /dev/mtd0ro bios.bak
+ fdbb011920572ca6c991377c4b418a0502668b73 /dev/mtd0ro
+ fdbb011920572ca6c991377c4b418a0502668b73 bios.bak
The SHA1 sums must match. Otherwise do not continue any further!
7) Erase the SPI serial flash. After this step, do not reboot the
- board! Otherwise it will not start anymore.
+ board! Otherwise it will not start anymore::
- # flash_erase /dev/mtd0 0 0
- Erasing 4 Kibyte @ 7ff000 -- 100 % complete
+ # flash_erase /dev/mtd0 0 0
+ Erasing 4 Kibyte @ 7ff000 -- 100 % complete
8) Once completed without errors you can write the new BIOS image:
# dd if=MNW2MAX1.X64.0092.R01.1605221712.bin of=/dev/mtd0
9) Verify that the new content of the SPI serial flash matches the new
- BIOS image:
+ BIOS image::
- # sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin
- 9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro
- 9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.1605221712.bin
+ # sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin
+ 9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro
+ 9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.1605221712.bin
The SHA1 sums should match.
@@ -84,5 +85,6 @@ Linux.
References
----------
-[1] https://firmware.intel.com/sites/default/files/MinnowBoard.MAX_.X64.92.R01.zip
+[1] https://firmware.intel.com/sites/default/files/MinnowBoard%2EMAX_%2EX64%2E92%2ER01%2Ezip
+
[2] http://www.linux-mtd.infradead.org/
diff --git a/Documentation/mtd/nand_ecc.txt b/Documentation/driver-api/mtd/nand_ecc.rst
index f8c3284bf6a7..e8d3c53a5056 100644
--- a/Documentation/mtd/nand_ecc.txt
+++ b/Documentation/driver-api/mtd/nand_ecc.rst
@@ -1,3 +1,7 @@
+==========================
+NAND Error-correction Code
+==========================
+
Introduction
============
@@ -37,63 +41,79 @@ sometimes also referred to as xor. In C the operator for xor is ^
Back to ecc.
Let's give a small figure:
+========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
-....
+...
byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
+========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
This figure represents a sector of 256 bytes.
cp is my abbreviation for column parity, rp for row parity.
Let's start to explain column parity.
-cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
-so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
+
+- cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
+
+ so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
+
Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
-cp2 is the parity over bit0, bit1, bit4 and bit5
-cp3 is the parity over bit2, bit3, bit6 and bit7.
-cp4 is the parity over bit0, bit1, bit2 and bit3.
-cp5 is the parity over bit4, bit5, bit6 and bit7.
+
+- cp2 is the parity over bit0, bit1, bit4 and bit5
+- cp3 is the parity over bit2, bit3, bit6 and bit7.
+- cp4 is the parity over bit0, bit1, bit2 and bit3.
+- cp5 is the parity over bit4, bit5, bit6 and bit7.
+
Note that each of cp0 .. cp5 is exactly one bit.
Row parity actually works almost the same.
-rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
-rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
-rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
-(so handle two bytes, then skip 2 bytes).
-rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
-for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
-so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
-and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
+
+- rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
+- rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
+- rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
+ (so handle two bytes, then skip 2 bytes).
+- rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
+- for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
+
+ so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
+- and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
+
The story now becomes quite boring. I guess you get the idea.
-rp6 covers 8 bytes then skips 8 etc
-rp7 skips 8 bytes then covers 8 etc
-rp8 covers 16 bytes then skips 16 etc
-rp9 skips 16 bytes then covers 16 etc
-rp10 covers 32 bytes then skips 32 etc
-rp11 skips 32 bytes then covers 32 etc
-rp12 covers 64 bytes then skips 64 etc
-rp13 skips 64 bytes then covers 64 etc
-rp14 covers 128 bytes then skips 128
-rp15 skips 128 bytes then covers 128
+
+- rp6 covers 8 bytes then skips 8 etc
+- rp7 skips 8 bytes then covers 8 etc
+- rp8 covers 16 bytes then skips 16 etc
+- rp9 skips 16 bytes then covers 16 etc
+- rp10 covers 32 bytes then skips 32 etc
+- rp11 skips 32 bytes then covers 32 etc
+- rp12 covers 64 bytes then skips 64 etc
+- rp13 skips 64 bytes then covers 64 etc
+- rp14 covers 128 bytes then skips 128
+- rp15 skips 128 bytes then covers 128
In the end the parity bits are grouped together in three bytes as
follows:
+
+===== ===== ===== ===== ===== ===== ===== ===== =====
ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
+===== ===== ===== ===== ===== ===== ===== ===== =====
ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
+===== ===== ===== ===== ===== ===== ===== ===== =====
I detected after writing this that ST application note AN1823
(http://www.st.com/stonline/) gives a much
nicer picture.(but they use line parity as term where I use row parity)
Oh well, I'm graphically challenged, so suffer with me for a moment :-)
+
And I could not reuse the ST picture anyway for copyright reasons.
@@ -101,9 +121,10 @@ Attempt 0
=========
Implementing the parity calculation is pretty simple.
-In C pseudocode:
-for (i = 0; i < 256; i++)
-{
+In C pseudocode::
+
+ for (i = 0; i < 256; i++)
+ {
if (i & 0x01)
rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
else
@@ -142,7 +163,7 @@ for (i = 0; i < 256; i++)
cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
-}
+ }
Analysis 0
@@ -167,82 +188,84 @@ This leads to:
Attempt 1
=========
-const char parity[256] = {
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
-};
-
-void ecc1(const unsigned char *buf, unsigned char *code)
-{
- int i;
- const unsigned char *bp = buf;
- unsigned char cur;
- unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
- unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
- unsigned char par;
-
- par = 0;
- rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
- rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
- rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
- rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
-
- for (i = 0; i < 256; i++)
- {
- cur = *bp++;
- par ^= cur;
- if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
- if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
- if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
- if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
- if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
- if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
- if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
- if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
- }
- code[0] =
- (parity[rp7] << 7) |
- (parity[rp6] << 6) |
- (parity[rp5] << 5) |
- (parity[rp4] << 4) |
- (parity[rp3] << 3) |
- (parity[rp2] << 2) |
- (parity[rp1] << 1) |
- (parity[rp0]);
- code[1] =
- (parity[rp15] << 7) |
- (parity[rp14] << 6) |
- (parity[rp13] << 5) |
- (parity[rp12] << 4) |
- (parity[rp11] << 3) |
- (parity[rp10] << 2) |
- (parity[rp9] << 1) |
- (parity[rp8]);
- code[2] =
- (parity[par & 0xf0] << 7) |
- (parity[par & 0x0f] << 6) |
- (parity[par & 0xcc] << 5) |
- (parity[par & 0x33] << 4) |
- (parity[par & 0xaa] << 3) |
- (parity[par & 0x55] << 2);
- code[0] = ~code[0];
- code[1] = ~code[1];
- code[2] = ~code[2];
-}
+::
+
+ const char parity[256] = {
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
+ };
+
+ void ecc1(const unsigned char *buf, unsigned char *code)
+ {
+ int i;
+ const unsigned char *bp = buf;
+ unsigned char cur;
+ unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+ unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
+ unsigned char par;
+
+ par = 0;
+ rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
+ rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
+ rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
+ rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
+
+ for (i = 0; i < 256; i++)
+ {
+ cur = *bp++;
+ par ^= cur;
+ if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
+ if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
+ if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
+ }
+ code[0] =
+ (parity[rp7] << 7) |
+ (parity[rp6] << 6) |
+ (parity[rp5] << 5) |
+ (parity[rp4] << 4) |
+ (parity[rp3] << 3) |
+ (parity[rp2] << 2) |
+ (parity[rp1] << 1) |
+ (parity[rp0]);
+ code[1] =
+ (parity[rp15] << 7) |
+ (parity[rp14] << 6) |
+ (parity[rp13] << 5) |
+ (parity[rp12] << 4) |
+ (parity[rp11] << 3) |
+ (parity[rp10] << 2) |
+ (parity[rp9] << 1) |
+ (parity[rp8]);
+ code[2] =
+ (parity[par & 0xf0] << 7) |
+ (parity[par & 0x0f] << 6) |
+ (parity[par & 0xcc] << 5) |
+ (parity[par & 0x33] << 4) |
+ (parity[par & 0xaa] << 3) |
+ (parity[par & 0x55] << 2);
+ code[0] = ~code[0];
+ code[1] = ~code[1];
+ code[2] = ~code[2];
+ }
Still pretty straightforward. The last three invert statements are there to
give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
@@ -293,88 +316,90 @@ Let's give it a try...
Attempt 2
=========
-extern const char parity[256];
-
-void ecc2(const unsigned char *buf, unsigned char *code)
-{
- int i;
- const unsigned long *bp = (unsigned long *)buf;
- unsigned long cur;
- unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
- unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
- unsigned long par;
-
- par = 0;
- rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
- rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
- rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
- rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
-
- for (i = 0; i < 64; i++)
- {
- cur = *bp++;
- par ^= cur;
- if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
- if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
- if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
- if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
- if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
- if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
- }
- /*
- we need to adapt the code generation for the fact that rp vars are now
- long; also the column parity calculation needs to be changed.
- we'll bring rp4 to 15 back to single byte entities by shifting and
- xoring
- */
- rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
- rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
- rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
- rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
- rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
- rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
- rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
- rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
- rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
- rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
- rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
- rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
- rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
- rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
- par ^= (par >> 16);
- rp1 = (par >> 8); rp1 &= 0xff;
- rp0 = (par & 0xff);
- par ^= (par >> 8); par &= 0xff;
-
- code[0] =
- (parity[rp7] << 7) |
- (parity[rp6] << 6) |
- (parity[rp5] << 5) |
- (parity[rp4] << 4) |
- (parity[rp3] << 3) |
- (parity[rp2] << 2) |
- (parity[rp1] << 1) |
- (parity[rp0]);
- code[1] =
- (parity[rp15] << 7) |
- (parity[rp14] << 6) |
- (parity[rp13] << 5) |
- (parity[rp12] << 4) |
- (parity[rp11] << 3) |
- (parity[rp10] << 2) |
- (parity[rp9] << 1) |
- (parity[rp8]);
- code[2] =
- (parity[par & 0xf0] << 7) |
- (parity[par & 0x0f] << 6) |
- (parity[par & 0xcc] << 5) |
- (parity[par & 0x33] << 4) |
- (parity[par & 0xaa] << 3) |
- (parity[par & 0x55] << 2);
- code[0] = ~code[0];
- code[1] = ~code[1];
- code[2] = ~code[2];
-}
+::
+
+ extern const char parity[256];
+
+ void ecc2(const unsigned char *buf, unsigned char *code)
+ {
+ int i;
+ const unsigned long *bp = (unsigned long *)buf;
+ unsigned long cur;
+ unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+ unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
+ unsigned long par;
+
+ par = 0;
+ rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
+ rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
+ rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
+ rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
+
+ for (i = 0; i < 64; i++)
+ {
+ cur = *bp++;
+ par ^= cur;
+ if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
+ }
+ /*
+ we need to adapt the code generation for the fact that rp vars are now
+ long; also the column parity calculation needs to be changed.
+ we'll bring rp4 to 15 back to single byte entities by shifting and
+ xoring
+ */
+ rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
+ rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
+ rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
+ rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
+ rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
+ rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
+ rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
+ rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
+ rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
+ rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
+ rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
+ rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
+ rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
+ rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
+ par ^= (par >> 16);
+ rp1 = (par >> 8); rp1 &= 0xff;
+ rp0 = (par & 0xff);
+ par ^= (par >> 8); par &= 0xff;
+
+ code[0] =
+ (parity[rp7] << 7) |
+ (parity[rp6] << 6) |
+ (parity[rp5] << 5) |
+ (parity[rp4] << 4) |
+ (parity[rp3] << 3) |
+ (parity[rp2] << 2) |
+ (parity[rp1] << 1) |
+ (parity[rp0]);
+ code[1] =
+ (parity[rp15] << 7) |
+ (parity[rp14] << 6) |
+ (parity[rp13] << 5) |
+ (parity[rp12] << 4) |
+ (parity[rp11] << 3) |
+ (parity[rp10] << 2) |
+ (parity[rp9] << 1) |
+ (parity[rp8]);
+ code[2] =
+ (parity[par & 0xf0] << 7) |
+ (parity[par & 0x0f] << 6) |
+ (parity[par & 0xcc] << 5) |
+ (parity[par & 0x33] << 4) |
+ (parity[par & 0xaa] << 3) |
+ (parity[par & 0x55] << 2);
+ code[0] = ~code[0];
+ code[1] = ~code[1];
+ code[2] = ~code[2];
+ }
The parity array is not shown any more. Note also that for these
examples I kinda deviated from my regular programming style by allowing
@@ -403,28 +428,32 @@ lookups
Attempt 3
=========
-Odd replaced:
- if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
- if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
- if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
- if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
- if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
- if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
-with
- if (i & 0x01) rp5 ^= cur;
- if (i & 0x02) rp7 ^= cur;
- if (i & 0x04) rp9 ^= cur;
- if (i & 0x08) rp11 ^= cur;
- if (i & 0x10) rp13 ^= cur;
- if (i & 0x20) rp15 ^= cur;
-
- and outside the loop added:
- rp4 = par ^ rp5;
- rp6 = par ^ rp7;
- rp8 = par ^ rp9;
- rp10 = par ^ rp11;
- rp12 = par ^ rp13;
- rp14 = par ^ rp15;
+Odd replaced::
+
+ if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
+
+with::
+
+ if (i & 0x01) rp5 ^= cur;
+ if (i & 0x02) rp7 ^= cur;
+ if (i & 0x04) rp9 ^= cur;
+ if (i & 0x08) rp11 ^= cur;
+ if (i & 0x10) rp13 ^= cur;
+ if (i & 0x20) rp15 ^= cur;
+
+and outside the loop added::
+
+ rp4 = par ^ rp5;
+ rp6 = par ^ rp7;
+ rp8 = par ^ rp9;
+ rp10 = par ^ rp11;
+ rp12 = par ^ rp13;
+ rp14 = par ^ rp15;
And after that the code takes about 30% more time, although the number of
statements is reduced. This is also reflected in the assembly code.
@@ -448,7 +477,7 @@ Attempt 4
=========
Unrolled the loop 1, 2, 3 and 4 times.
-For 4 the code starts with:
+For 4 the code starts with::
for (i = 0; i < 4; i++)
{
@@ -471,8 +500,11 @@ Analysis 4
==========
Unrolling once gains about 15%
+
Unrolling twice keeps the gain at about 15%
+
Unrolling three times gives a gain of 30% compared to attempt 2.
+
Unrolling four times gives a marginal improvement compared to unrolling
three times.
@@ -492,8 +524,10 @@ Attempt 5
Effectively so all odd digit rp assignments in the loop were removed.
This included the else clause of the if statements.
-Of course after the loop we need to correct things by adding code like:
+Of course after the loop we need to correct things by adding code like::
+
rp5 = par ^ rp4;
+
Also the initial assignments (rp5 = 0; etc) could be removed.
Along the line I also removed the initialisation of rp0/1/2/3.
@@ -513,7 +547,7 @@ statement. Time for yet another version!
Attempt 6
=========
-THe code within the for loop was changed to:
+THe code within the for loop was changed to::
for (i = 0; i < 4; i++)
{
@@ -564,13 +598,17 @@ million iterations in order not to lose too much accuracy. This one
definitely seemed to be the jackpot!
There is a little bit more room for improvement though. There are three
-places with statements:
-rp4 ^= cur; rp6 ^= cur;
+places with statements::
+
+ rp4 ^= cur; rp6 ^= cur;
+
It seems more efficient to also maintain a variable rp4_6 in the while
loop; This eliminates 3 statements per loop. Of course after the loop we
-need to correct by adding:
- rp4 ^= rp4_6;
- rp6 ^= rp4_6
+need to correct by adding::
+
+ rp4 ^= rp4_6;
+ rp6 ^= rp4_6
+
Furthermore there are 4 sequential assignments to rp8. This can be
encoded slightly more efficiently by saving tmppar before those 4 lines
and later do rp8 = rp8 ^ tmppar ^ notrp8;
@@ -582,7 +620,7 @@ Time for a new test!
Attempt 7
=========
-The new code now looks like:
+The new code now looks like::
for (i = 0; i < 4; i++)
{
@@ -644,9 +682,12 @@ Although it seems that the code within the loop cannot be optimised
further there is still room to optimize the generation of the ecc codes.
We can simply calculate the total parity. If this is 0 then rp4 = rp5
etc. If the parity is 1, then rp4 = !rp5;
+
But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
-in the result byte and then do something like
+in the result byte and then do something like::
+
code[0] |= (code[0] << 1);
+
Lets test this.
@@ -657,11 +698,13 @@ Changed the code but again this slightly degrades performance. Tried all
kind of other things, like having dedicated parity arrays to avoid the
shift after parity[rp7] << 7; No gain.
Change the lookup using the parity array by using shift operators (e.g.
-replace parity[rp7] << 7 with:
-rp7 ^= (rp7 << 4);
-rp7 ^= (rp7 << 2);
-rp7 ^= (rp7 << 1);
-rp7 &= 0x80;
+replace parity[rp7] << 7 with::
+
+ rp7 ^= (rp7 << 4);
+ rp7 ^= (rp7 << 2);
+ rp7 ^= (rp7 << 1);
+ rp7 &= 0x80;
+
No gain.
The only marginal change was inverting the parity bits, so we can remove
@@ -683,13 +726,16 @@ Correcting errors
For correcting errors I again used the ST application note as a starter,
but I also peeked at the existing code.
+
The algorithm itself is pretty straightforward. Just xor the given and
the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
are 1 we have one correctable bit error. If there is 1 bit 1, we have an
error in the given ecc code.
+
It proved to be fastest to do some table lookups. Performance gain
introduced by this is about a factor 2 on my system when a repair had to
be done, and 1% or so if no repair had to be done.
+
Code size increased from 330 bytes to 686 bytes for this function.
(gcc 4.2, -O3)
@@ -700,8 +746,10 @@ Conclusion
The gain when calculating the ecc is tremendous. Om my development hardware
a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
embedded system with a MIPS core a factor 7 was obtained.
+
On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
5 (big endian mode, gcc 4.1.2, -O3)
+
For correction not much gain could be obtained (as bitflips are rare). Then
again there are also much less cycles spent there.
@@ -711,4 +759,5 @@ out of it with an assembler program, but due to pipeline behaviour etc
this is very tricky (at least for intel hw).
Author: Frans Meulenbroeks
+
Copyright (C) 2008 Koninklijke Philips Electronics NV.
diff --git a/Documentation/mtd/spi-nor.txt b/Documentation/driver-api/mtd/spi-nor.rst
index da1fbff5a24c..1f0437676762 100644
--- a/Documentation/mtd/spi-nor.txt
+++ b/Documentation/driver-api/mtd/spi-nor.rst
@@ -1,5 +1,6 @@
- SPI NOR framework
- ============================================
+=================
+SPI NOR framework
+=================
Part I - Why do we need this framework?
---------------------------------------
@@ -23,7 +24,7 @@ This framework just adds a new layer between the MTD and the SPI bus driver.
With this new layer, the SPI NOR controller driver does not depend on the
m25p80 code anymore.
- Before this framework, the layer is like:
+Before this framework, the layer is like::
MTD
------------------------
@@ -58,7 +59,7 @@ Part III - How can drivers use the framework?
The main API is spi_nor_scan(). Before you call the hook, a driver should
initialize the necessary fields for spi_nor{}. Please see
-drivers/mtd/spi-nor/spi-nor.c for detail. Please also refer to fsl-quadspi.c
+drivers/mtd/spi-nor/spi-nor.c for detail. Please also refer to spi-fsl-qspi.c
when you want to write a new driver for a SPI NOR controller.
Another API is spi_nor_restore(), this is used to restore the status of SPI
flash chip such as addressing mode. Call it whenever detach the driver from
diff --git a/Documentation/driver-api/nfc/index.rst b/Documentation/driver-api/nfc/index.rst
new file mode 100644
index 000000000000..b6e9eedbff29
--- /dev/null
+++ b/Documentation/driver-api/nfc/index.rst
@@ -0,0 +1,11 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========================
+Near Field Communication
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ nfc-hci
+ nfc-pn544
diff --git a/Documentation/nfc/nfc-hci.txt b/Documentation/driver-api/nfc/nfc-hci.rst
index 0dc078cab972..eb8a1a14e919 100644
--- a/Documentation/nfc/nfc-hci.txt
+++ b/Documentation/driver-api/nfc/nfc-hci.rst
@@ -1,7 +1,9 @@
+========================
HCI backend for NFC Core
+========================
-Author: Eric Lapuyade, Samuel Ortiz
-Contact: eric.lapuyade@intel.com, samuel.ortiz@intel.com
+- Author: Eric Lapuyade, Samuel Ortiz
+- Contact: eric.lapuyade@intel.com, samuel.ortiz@intel.com
General
-------
@@ -24,12 +26,13 @@ HCI events can also be received from the host controller. They will be handled
and a translation will be forwarded to NFC Core as needed. There are hooks to
let the HCI driver handle proprietary events or override standard behavior.
HCI uses 2 execution contexts:
+
- one for executing commands : nfc_hci_msg_tx_work(). Only one command
-can be executing at any given moment.
+ can be executing at any given moment.
- one for dispatching received events and commands : nfc_hci_msg_rx_work().
-HCI Session initialization:
----------------------------
+HCI Session initialization
+--------------------------
The Session initialization is an HCI standard which must unfortunately
support proprietary gates. This is the reason why the driver will pass a list
@@ -58,9 +61,9 @@ HCI Management
--------------
A driver would normally register itself with HCI and provide the following
-entry points:
+entry points::
-struct nfc_hci_ops {
+ struct nfc_hci_ops {
int (*open)(struct nfc_hci_dev *hdev);
void (*close)(struct nfc_hci_dev *hdev);
int (*hci_ready) (struct nfc_hci_dev *hdev);
@@ -82,38 +85,38 @@ struct nfc_hci_ops {
struct nfc_target *target);
int (*event_received)(struct nfc_hci_dev *hdev, u8 gate, u8 event,
struct sk_buff *skb);
-};
+ };
- open() and close() shall turn the hardware on and off.
- hci_ready() is an optional entry point that is called right after the hci
-session has been set up. The driver can use it to do additional initialization
-that must be performed using HCI commands.
+ session has been set up. The driver can use it to do additional initialization
+ that must be performed using HCI commands.
- xmit() shall simply write a frame to the physical link.
- start_poll() is an optional entrypoint that shall set the hardware in polling
-mode. This must be implemented only if the hardware uses proprietary gates or a
-mechanism slightly different from the HCI standard.
+ mode. This must be implemented only if the hardware uses proprietary gates or a
+ mechanism slightly different from the HCI standard.
- dep_link_up() is called after a p2p target has been detected, to finish
-the p2p connection setup with hardware parameters that need to be passed back
-to nfc core.
+ the p2p connection setup with hardware parameters that need to be passed back
+ to nfc core.
- dep_link_down() is called to bring the p2p link down.
- target_from_gate() is an optional entrypoint to return the nfc protocols
-corresponding to a proprietary gate.
+ corresponding to a proprietary gate.
- complete_target_discovered() is an optional entry point to let the driver
-perform additional proprietary processing necessary to auto activate the
-discovered target.
+ perform additional proprietary processing necessary to auto activate the
+ discovered target.
- im_transceive() must be implemented by the driver if proprietary HCI commands
-are required to send data to the tag. Some tag types will require custom
-commands, others can be written to using the standard HCI commands. The driver
-can check the tag type and either do proprietary processing, or return 1 to ask
-for standard processing. The data exchange command itself must be sent
-asynchronously.
+ are required to send data to the tag. Some tag types will require custom
+ commands, others can be written to using the standard HCI commands. The driver
+ can check the tag type and either do proprietary processing, or return 1 to ask
+ for standard processing. The data exchange command itself must be sent
+ asynchronously.
- tm_send() is called to send data in the case of a p2p connection
- check_presence() is an optional entry point that will be called regularly
-by the core to check that an activated tag is still in the field. If this is
-not implemented, the core will not be able to push tag_lost events to the user
-space
+ by the core to check that an activated tag is still in the field. If this is
+ not implemented, the core will not be able to push tag_lost events to the user
+ space
- event_received() is called to handle an event coming from the chip. Driver
-can handle the event or return 1 to let HCI attempt standard processing.
+ can handle the event or return 1 to let HCI attempt standard processing.
On the rx path, the driver is responsible to push incoming HCP frames to HCI
using nfc_hci_recv_frame(). HCI will take care of re-aggregation and handling
@@ -122,20 +125,23 @@ This must be done from a context that can sleep.
PHY Management
--------------
-The physical link (i2c, ...) management is defined by the following structure:
+The physical link (i2c, ...) management is defined by the following structure::
-struct nfc_phy_ops {
+ struct nfc_phy_ops {
int (*write)(void *dev_id, struct sk_buff *skb);
int (*enable)(void *dev_id);
void (*disable)(void *dev_id);
-};
-
-enable(): turn the phy on (power on), make it ready to transfer data
-disable(): turn the phy off
-write(): Send a data frame to the chip. Note that to enable higher
-layers such as an llc to store the frame for re-emission, this function must
-not alter the skb. It must also not return a positive result (return 0 for
-success, negative for failure).
+ };
+
+enable():
+ turn the phy on (power on), make it ready to transfer data
+disable():
+ turn the phy off
+write():
+ Send a data frame to the chip. Note that to enable higher
+ layers such as an llc to store the frame for re-emission, this
+ function must not alter the skb. It must also not return a positive
+ result (return 0 for success, negative for failure).
Data coming from the chip shall be sent directly to nfc_hci_recv_frame().
@@ -145,9 +151,9 @@ LLC
Communication between the CPU and the chip often requires some link layer
protocol. Those are isolated as modules managed by the HCI layer. There are
currently two modules : nop (raw transfert) and shdlc.
-A new llc must implement the following functions:
+A new llc must implement the following functions::
-struct nfc_llc_ops {
+ struct nfc_llc_ops {
void *(*init) (struct nfc_hci_dev *hdev, xmit_to_drv_t xmit_to_drv,
rcv_to_hci_t rcv_to_hci, int tx_headroom,
int tx_tailroom, int *rx_headroom, int *rx_tailroom,
@@ -157,17 +163,25 @@ struct nfc_llc_ops {
int (*stop) (struct nfc_llc *llc);
void (*rcv_from_drv) (struct nfc_llc *llc, struct sk_buff *skb);
int (*xmit_from_hci) (struct nfc_llc *llc, struct sk_buff *skb);
-};
-
-- init() : allocate and init your private storage
-- deinit() : cleanup
-- start() : establish the logical connection
-- stop () : terminate the logical connection
-- rcv_from_drv() : handle data coming from the chip, going to HCI
-- xmit_from_hci() : handle data sent by HCI, going to the chip
+ };
+
+init():
+ allocate and init your private storage
+deinit():
+ cleanup
+start():
+ establish the logical connection
+stop ():
+ terminate the logical connection
+rcv_from_drv():
+ handle data coming from the chip, going to HCI
+xmit_from_hci():
+ handle data sent by HCI, going to the chip
The llc must be registered with nfc before it can be used. Do that by
-calling nfc_llc_register(const char *name, struct nfc_llc_ops *ops);
+calling::
+
+ nfc_llc_register(const char *name, struct nfc_llc_ops *ops);
Again, note that the llc does not handle the physical link. It is thus very
easy to mix any physical link with any llc for a given chip driver.
@@ -187,26 +201,32 @@ fast, cannot sleep. sends incoming frames to HCI where they are passed to
the current llc. In case of shdlc, the frame is queued in shdlc rx queue.
- SHDLC State Machine worker (SMW)
-Only when llc_shdlc is used: handles shdlc rx & tx queues.
-Dispatches HCI cmd responses.
+
+ Only when llc_shdlc is used: handles shdlc rx & tx queues.
+
+ Dispatches HCI cmd responses.
- HCI Tx Cmd worker (MSGTXWQ)
-Serializes execution of HCI commands. Completes execution in case of response
-timeout.
+
+ Serializes execution of HCI commands.
+
+ Completes execution in case of response timeout.
- HCI Rx worker (MSGRXWQ)
-Dispatches incoming HCI commands or events.
+
+ Dispatches incoming HCI commands or events.
- Syscall context from a userspace call (SYSCALL)
-Any entrypoint in HCI called from NFC Core
+
+ Any entrypoint in HCI called from NFC Core
Workflow executing an HCI command (using shdlc)
-----------------------------------------------
Executing an HCI command can easily be performed synchronously using the
-following API:
+following API::
-int nfc_hci_send_cmd (struct nfc_hci_dev *hdev, u8 gate, u8 cmd,
+ int nfc_hci_send_cmd (struct nfc_hci_dev *hdev, u8 gate, u8 cmd,
const u8 *param, size_t param_len, struct sk_buff **skb)
The API must be invoked from a context that can sleep. Most of the time, this
@@ -234,11 +254,11 @@ waiting command execution. Response processing involves invoking the completion
callback that was provided by nfc_hci_msg_tx_work() when it sent the command.
The completion callback will then wake the syscall context.
-It is also possible to execute the command asynchronously using this API:
+It is also possible to execute the command asynchronously using this API::
-static int nfc_hci_execute_cmd_async(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
- const u8 *param, size_t param_len,
- data_exchange_cb_t cb, void *cb_context)
+ static int nfc_hci_execute_cmd_async(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
+ const u8 *param, size_t param_len,
+ data_exchange_cb_t cb, void *cb_context)
The workflow is the same, except that the API call returns immediately, and
the callback will be called with the result from the SMW context.
@@ -268,23 +288,24 @@ went wrong below and know that expected events will probably never happen.
Handling of these errors is done as follows:
- driver (pn544) fails to deliver an incoming frame: it stores the error such
-that any subsequent call to the driver will result in this error. Then it calls
-the standard nfc_shdlc_recv_frame() with a NULL argument to report the problem
-above. shdlc stores a EREMOTEIO sticky status, which will trigger SMW to
-report above in turn.
+ that any subsequent call to the driver will result in this error. Then it
+ calls the standard nfc_shdlc_recv_frame() with a NULL argument to report the
+ problem above. shdlc stores a EREMOTEIO sticky status, which will trigger
+ SMW to report above in turn.
- SMW is basically a background thread to handle incoming and outgoing shdlc
-frames. This thread will also check the shdlc sticky status and report to HCI
-when it discovers it is not able to run anymore because of an unrecoverable
-error that happened within shdlc or below. If the problem occurs during shdlc
-connection, the error is reported through the connect completion.
+ frames. This thread will also check the shdlc sticky status and report to HCI
+ when it discovers it is not able to run anymore because of an unrecoverable
+ error that happened within shdlc or below. If the problem occurs during shdlc
+ connection, the error is reported through the connect completion.
- HCI: if an internal HCI error happens (frame is lost), or HCI is reported an
-error from a lower layer, HCI will either complete the currently executing
-command with that error, or notify NFC Core directly if no command is executing.
+ error from a lower layer, HCI will either complete the currently executing
+ command with that error, or notify NFC Core directly if no command is
+ executing.
- NFC Core: when NFC Core is notified of an error from below and polling is
-active, it will send a tag discovered event with an empty tag list to the user
-space to let it know that the poll operation will never be able to detect a tag.
-If polling is not active and the error was sticky, lower levels will return it
-at next invocation.
+ active, it will send a tag discovered event with an empty tag list to the user
+ space to let it know that the poll operation will never be able to detect a
+ tag. If polling is not active and the error was sticky, lower levels will
+ return it at next invocation.
diff --git a/Documentation/nfc/nfc-pn544.txt b/Documentation/driver-api/nfc/nfc-pn544.rst
index b36ca14ca2d6..6b2d8aae0c4e 100644
--- a/Documentation/nfc/nfc-pn544.txt
+++ b/Documentation/driver-api/nfc/nfc-pn544.rst
@@ -1,5 +1,7 @@
-Kernel driver for the NXP Semiconductors PN544 Near Field
-Communication chip
+============================================================================
+Kernel driver for the NXP Semiconductors PN544 Near Field Communication chip
+============================================================================
+
General
-------
diff --git a/Documentation/ntb.txt b/Documentation/driver-api/ntb.rst
index 074a423c853c..87d1372da879 100644
--- a/Documentation/ntb.txt
+++ b/Documentation/driver-api/ntb.rst
@@ -200,6 +200,33 @@ Debugfs Files:
This file is used to read and write peer scratchpads. See
*spad* for details.
+NTB MSI Test Client (ntb\_msi\_test)
+------------------------------------
+
+The MSI test client serves to test and debug the MSI library which
+allows for passing MSI interrupts across NTB memory windows. The
+test client is interacted with through the debugfs filesystem:
+
+* *debugfs*/ntb\_tool/*hw*/
+ A directory in debugfs will be created for each
+ NTB device probed by the tool. This directory is shortened to *hw*
+ below.
+* *hw*/port
+ This file describes the local port number
+* *hw*/irq*_occurrences
+ One occurrences file exists for each interrupt and, when read,
+ returns the number of times the interrupt has been triggered.
+* *hw*/peer*/port
+ This file describes the port number for each peer
+* *hw*/peer*/count
+ This file describes the number of interrupts that can be
+ triggered on each peer
+* *hw*/peer*/trigger
+ Writing an interrupt number (any number less than the value
+ specified in count) will trigger the interrupt on the
+ specified peer. That peer's interrupt's occurrence file
+ should be incremented.
+
NTB Hardware Drivers
====================
diff --git a/Documentation/nvdimm/btt.txt b/Documentation/driver-api/nvdimm/btt.rst
index e293fb664924..107395c042ae 100644
--- a/Documentation/nvdimm/btt.txt
+++ b/Documentation/driver-api/nvdimm/btt.rst
@@ -1,9 +1,10 @@
+=============================
BTT - Block Translation Table
=============================
1. Introduction
----------------
+===============
Persistent memory based storage is able to perform IO at byte (or more
accurately, cache line) granularity. However, we often want to expose such
@@ -25,7 +26,7 @@ provides atomic sector updates.
2. Static Layout
-----------------
+================
The underlying storage on which a BTT can be laid out is not limited in any way.
The BTT, however, splits the available space into chunks of up to 512 GiB,
@@ -33,43 +34,43 @@ called "Arenas".
Each arena follows the same layout for its metadata, and all references in an
arena are internal to it (with the exception of one field that points to the
-next arena). The following depicts the "On-disk" metadata layout:
-
-
- Backing Store +-------> Arena
-+---------------+ | +------------------+
-| | | | Arena info block |
-| Arena 0 +---+ | 4K |
-| 512G | +------------------+
-| | | |
-+---------------+ | |
-| | | |
-| Arena 1 | | Data Blocks |
-| 512G | | |
-| | | |
-+---------------+ | |
-| . | | |
-| . | | |
-| . | | |
-| | | |
-| | | |
-+---------------+ +------------------+
- | |
- | BTT Map |
- | |
- | |
- +------------------+
- | |
- | BTT Flog |
- | |
- +------------------+
- | Info block copy |
- | 4K |
- +------------------+
+next arena). The following depicts the "On-disk" metadata layout::
+
+
+ Backing Store +-------> Arena
+ +---------------+ | +------------------+
+ | | | | Arena info block |
+ | Arena 0 +---+ | 4K |
+ | 512G | +------------------+
+ | | | |
+ +---------------+ | |
+ | | | |
+ | Arena 1 | | Data Blocks |
+ | 512G | | |
+ | | | |
+ +---------------+ | |
+ | . | | |
+ | . | | |
+ | . | | |
+ | | | |
+ | | | |
+ +---------------+ +------------------+
+ | |
+ | BTT Map |
+ | |
+ | |
+ +------------------+
+ | |
+ | BTT Flog |
+ | |
+ +------------------+
+ | Info block copy |
+ | 4K |
+ +------------------+
3. Theory of Operation
-----------------------
+======================
a. The BTT Map
@@ -79,31 +80,37 @@ The map is a simple lookup/indirection table that maps an LBA to an internal
block. Each map entry is 32 bits. The two most significant bits are special
flags, and the remaining form the internal block number.
+======== =============================================================
Bit Description
-31 - 30 : Error and Zero flags - Used in the following way:
- Bit Description
- 31 30
- -----------------------------------------------------------------------
- 00 Initial state. Reads return zeroes; Premap = Postmap
- 01 Zero state: Reads return zeroes
- 10 Error state: Reads fail; Writes clear 'E' bit
- 11 Normal Block – has valid postmap
+======== =============================================================
+31 - 30 Error and Zero flags - Used in the following way::
+ == == ====================================================
+ 31 30 Description
+ == == ====================================================
+ 0 0 Initial state. Reads return zeroes; Premap = Postmap
+ 0 1 Zero state: Reads return zeroes
+ 1 0 Error state: Reads fail; Writes clear 'E' bit
+ 1 1 Normal Block – has valid postmap
+ == == ====================================================
-29 - 0 : Mappings to internal 'postmap' blocks
+29 - 0 Mappings to internal 'postmap' blocks
+======== =============================================================
Some of the terminology that will be subsequently used:
-External LBA : LBA as made visible to upper layers.
-ABA : Arena Block Address - Block offset/number within an arena
-Premap ABA : The block offset into an arena, which was decided upon by range
+============ ================================================================
+External LBA LBA as made visible to upper layers.
+ABA Arena Block Address - Block offset/number within an arena
+Premap ABA The block offset into an arena, which was decided upon by range
checking the External LBA
-Postmap ABA : The block number in the "Data Blocks" area obtained after
+Postmap ABA The block number in the "Data Blocks" area obtained after
indirection from the map
-nfree : The number of free blocks that are maintained at any given time.
+nfree The number of free blocks that are maintained at any given time.
This is the number of concurrent writes that can happen to the
arena.
+============ ================================================================
For example, after adding a BTT, we surface a disk of 1024G. We get a read for
@@ -121,19 +128,21 @@ i.e. Every write goes to a "free" block. A running list of free blocks is
maintained in the form of the BTT flog. 'Flog' is a combination of the words
"free list" and "log". The flog contains 'nfree' entries, and an entry contains:
-lba : The premap ABA that is being written to
-old_map : The old postmap ABA - after 'this' write completes, this will be a
+======== =====================================================================
+lba The premap ABA that is being written to
+old_map The old postmap ABA - after 'this' write completes, this will be a
free block.
-new_map : The new postmap ABA. The map will up updated to reflect this
+new_map The new postmap ABA. The map will up updated to reflect this
lba->postmap_aba mapping, but we log it here in case we have to
recover.
-seq : Sequence number to mark which of the 2 sections of this flog entry is
+seq Sequence number to mark which of the 2 sections of this flog entry is
valid/newest. It cycles between 01->10->11->01 (binary) under normal
operation, with 00 indicating an uninitialized state.
-lba' : alternate lba entry
-old_map': alternate old postmap entry
-new_map': alternate new postmap entry
-seq' : alternate sequence number.
+lba' alternate lba entry
+old_map' alternate old postmap entry
+new_map' alternate new postmap entry
+seq' alternate sequence number.
+======== =====================================================================
Each of the above fields is 32-bit, making one entry 32 bytes. Entries are also
padded to 64 bytes to avoid cache line sharing or aliasing. Flog updates are
@@ -147,8 +156,10 @@ c. The concept of lanes
While 'nfree' describes the number of concurrent IOs an arena can process
concurrently, 'nlanes' is the number of IOs the BTT device as a whole can
-process.
- nlanes = min(nfree, num_cpus)
+process::
+
+ nlanes = min(nfree, num_cpus)
+
A lane number is obtained at the start of any IO, and is used for indexing into
all the on-disk and in-memory data structures for the duration of the IO. If
there are more CPUs than the max number of available lanes, than lanes are
@@ -180,10 +191,10 @@ e. In-memory data structure: map locks
--------------------------------------
Consider a case where two writer threads are writing to the same LBA. There can
-be a race in the following sequence of steps:
+be a race in the following sequence of steps::
-free[lane] = map[premap_aba]
-map[premap_aba] = postmap_aba
+ free[lane] = map[premap_aba]
+ map[premap_aba] = postmap_aba
Both threads can update their respective free[lane] with the same old, freed
postmap_aba. This has made the layout inconsistent by losing a free entry, and
@@ -202,6 +213,7 @@ On startup, we analyze the BTT flog to create our list of free blocks. We walk
through all the entries, and for each lane, of the set of two possible
'sections', we always look at the most recent one only (based on the sequence
number). The reconstruction rules/steps are simple:
+
- Read map[log_entry.lba].
- If log_entry.new matches the map entry, then log_entry.old is free.
- If log_entry.new does not match the map entry, then log_entry.new is free.
@@ -228,7 +240,7 @@ Write:
1. Convert external LBA to Arena number + pre-map ABA
2. Get a lane (and take lane_lock)
3. Use lane to index into in-memory free list and obtain a new block, next flog
- index, next sequence number
+ index, next sequence number
4. Scan the RTT to check if free block is present, and spin/wait if it is.
5. Write data to this free block
6. Read map to get the existing post-map ABA entry for this pre-map ABA
@@ -245,6 +257,7 @@ Write:
An arena would be in an error state if any of the metadata is corrupted
irrecoverably, either due to a bug or a media error. The following conditions
indicate an error:
+
- Info block checksum does not match (and recovering from the copy also fails)
- All internal available blocks are not uniquely and entirely addressed by the
sum of mapped blocks and free blocks (from the BTT flog).
@@ -263,11 +276,10 @@ The BTT can be set up on any disk (namespace) exposed by the libnvdimm subsystem
(pmem, or blk mode). The easiest way to set up such a namespace is using the
'ndctl' utility [1]:
-For example, the ndctl command line to setup a btt with a 4k sector size is:
+For example, the ndctl command line to setup a btt with a 4k sector size is::
ndctl create-namespace -f -e namespace0.0 -m sector -l 4k
See ndctl create-namespace --help for more options.
[1]: https://github.com/pmem/ndctl
-
diff --git a/Documentation/driver-api/nvdimm/index.rst b/Documentation/driver-api/nvdimm/index.rst
new file mode 100644
index 000000000000..a4f8f98aeb94
--- /dev/null
+++ b/Documentation/driver-api/nvdimm/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================================
+Non-Volatile Memory Device (NVDIMM)
+===================================
+
+.. toctree::
+ :maxdepth: 1
+
+ nvdimm
+ btt
+ security
diff --git a/Documentation/nvdimm/nvdimm.txt b/Documentation/driver-api/nvdimm/nvdimm.rst
index e894de69915a..08f855cbb4e6 100644
--- a/Documentation/nvdimm/nvdimm.txt
+++ b/Documentation/driver-api/nvdimm/nvdimm.rst
@@ -1,8 +1,14 @@
- LIBNVDIMM: Non-Volatile Devices
- libnvdimm - kernel / libndctl - userspace helper library
- linux-nvdimm@lists.01.org
- v13
+===============================
+LIBNVDIMM: Non-Volatile Devices
+===============================
+libnvdimm - kernel / libndctl - userspace helper library
+
+linux-nvdimm@lists.01.org
+
+Version 13
+
+.. contents:
Glossary
Overview
@@ -40,49 +46,57 @@
Glossary
---------
-
-PMEM: A system-physical-address range where writes are persistent. A
-block device composed of PMEM is capable of DAX. A PMEM address range
-may span an interleave of several DIMMs.
-
-BLK: A set of one or more programmable memory mapped apertures provided
-by a DIMM to access its media. This indirection precludes the
-performance benefit of interleaving, but enables DIMM-bounded failure
-modes.
-
-DPA: DIMM Physical Address, is a DIMM-relative offset. With one DIMM in
-the system there would be a 1:1 system-physical-address:DPA association.
-Once more DIMMs are added a memory controller interleave must be
-decoded to determine the DPA associated with a given
-system-physical-address. BLK capacity always has a 1:1 relationship
-with a single-DIMM's DPA range.
-
-DAX: File system extensions to bypass the page cache and block layer to
-mmap persistent memory, from a PMEM block device, directly into a
-process address space.
-
-DSM: Device Specific Method: ACPI method to to control specific
-device - in this case the firmware.
-
-DCR: NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5.
-It defines a vendor-id, device-id, and interface format for a given DIMM.
-
-BTT: Block Translation Table: Persistent memory is byte addressable.
-Existing software may have an expectation that the power-fail-atomicity
-of writes is at least one sector, 512 bytes. The BTT is an indirection
-table with atomic update semantics to front a PMEM/BLK block device
-driver and present arbitrary atomic sector sizes.
-
-LABEL: Metadata stored on a DIMM device that partitions and identifies
-(persistently names) storage between PMEM and BLK. It also partitions
-BLK storage to host BTTs with different parameters per BLK-partition.
-Note that traditional partition tables, GPT/MBR, are layered on top of a
-BLK or PMEM device.
+========
+
+PMEM:
+ A system-physical-address range where writes are persistent. A
+ block device composed of PMEM is capable of DAX. A PMEM address range
+ may span an interleave of several DIMMs.
+
+BLK:
+ A set of one or more programmable memory mapped apertures provided
+ by a DIMM to access its media. This indirection precludes the
+ performance benefit of interleaving, but enables DIMM-bounded failure
+ modes.
+
+DPA:
+ DIMM Physical Address, is a DIMM-relative offset. With one DIMM in
+ the system there would be a 1:1 system-physical-address:DPA association.
+ Once more DIMMs are added a memory controller interleave must be
+ decoded to determine the DPA associated with a given
+ system-physical-address. BLK capacity always has a 1:1 relationship
+ with a single-DIMM's DPA range.
+
+DAX:
+ File system extensions to bypass the page cache and block layer to
+ mmap persistent memory, from a PMEM block device, directly into a
+ process address space.
+
+DSM:
+ Device Specific Method: ACPI method to to control specific
+ device - in this case the firmware.
+
+DCR:
+ NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5.
+ It defines a vendor-id, device-id, and interface format for a given DIMM.
+
+BTT:
+ Block Translation Table: Persistent memory is byte addressable.
+ Existing software may have an expectation that the power-fail-atomicity
+ of writes is at least one sector, 512 bytes. The BTT is an indirection
+ table with atomic update semantics to front a PMEM/BLK block device
+ driver and present arbitrary atomic sector sizes.
+
+LABEL:
+ Metadata stored on a DIMM device that partitions and identifies
+ (persistently names) storage between PMEM and BLK. It also partitions
+ BLK storage to host BTTs with different parameters per BLK-partition.
+ Note that traditional partition tables, GPT/MBR, are layered on top of a
+ BLK or PMEM device.
Overview
---------
+========
The LIBNVDIMM subsystem provides support for three types of NVDIMMs, namely,
PMEM, BLK, and NVDIMM devices that can simultaneously support both PMEM
@@ -96,19 +110,30 @@ accessible via BLK. When that occurs a LABEL is needed to reserve DPA
for exclusive access via one mode a time.
Supporting Documents
-ACPI 6: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
-NVDIMM Namespace: http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
-DSM Interface Example: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
-Driver Writer's Guide: http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
+--------------------
+
+ACPI 6:
+ http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
+NVDIMM Namespace:
+ http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
+DSM Interface Example:
+ http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
+Driver Writer's Guide:
+ http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
Git Trees
-LIBNVDIMM: https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
-LIBNDCTL: https://github.com/pmem/ndctl.git
-PMEM: https://github.com/01org/prd
+---------
+
+LIBNVDIMM:
+ https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
+LIBNDCTL:
+ https://github.com/pmem/ndctl.git
+PMEM:
+ https://github.com/01org/prd
LIBNVDIMM PMEM and BLK
-------------------
+======================
Prior to the arrival of the NFIT, non-volatile memory was described to a
system in various ad-hoc ways. Usually only the bare minimum was
@@ -122,38 +147,39 @@ For each NVDIMM access method (PMEM, BLK), LIBNVDIMM provides a block
device driver:
1. PMEM (nd_pmem.ko): Drives a system-physical-address range. This
- range is contiguous in system memory and may be interleaved (hardware
- memory controller striped) across multiple DIMMs. When interleaved the
- platform may optionally provide details of which DIMMs are participating
- in the interleave.
-
- Note that while LIBNVDIMM describes system-physical-address ranges that may
- alias with BLK access as ND_NAMESPACE_PMEM ranges and those without
- alias as ND_NAMESPACE_IO ranges, to the nd_pmem driver there is no
- distinction. The different device-types are an implementation detail
- that userspace can exploit to implement policies like "only interface
- with address ranges from certain DIMMs". It is worth noting that when
- aliasing is present and a DIMM lacks a label, then no block device can
- be created by default as userspace needs to do at least one allocation
- of DPA to the PMEM range. In contrast ND_NAMESPACE_IO ranges, once
- registered, can be immediately attached to nd_pmem.
+ range is contiguous in system memory and may be interleaved (hardware
+ memory controller striped) across multiple DIMMs. When interleaved the
+ platform may optionally provide details of which DIMMs are participating
+ in the interleave.
+
+ Note that while LIBNVDIMM describes system-physical-address ranges that may
+ alias with BLK access as ND_NAMESPACE_PMEM ranges and those without
+ alias as ND_NAMESPACE_IO ranges, to the nd_pmem driver there is no
+ distinction. The different device-types are an implementation detail
+ that userspace can exploit to implement policies like "only interface
+ with address ranges from certain DIMMs". It is worth noting that when
+ aliasing is present and a DIMM lacks a label, then no block device can
+ be created by default as userspace needs to do at least one allocation
+ of DPA to the PMEM range. In contrast ND_NAMESPACE_IO ranges, once
+ registered, can be immediately attached to nd_pmem.
2. BLK (nd_blk.ko): This driver performs I/O using a set of platform
- defined apertures. A set of apertures will access just one DIMM.
- Multiple windows (apertures) allow multiple concurrent accesses, much like
- tagged-command-queuing, and would likely be used by different threads or
- different CPUs.
+ defined apertures. A set of apertures will access just one DIMM.
+ Multiple windows (apertures) allow multiple concurrent accesses, much like
+ tagged-command-queuing, and would likely be used by different threads or
+ different CPUs.
+
+ The NFIT specification defines a standard format for a BLK-aperture, but
+ the spec also allows for vendor specific layouts, and non-NFIT BLK
+ implementations may have other designs for BLK I/O. For this reason
+ "nd_blk" calls back into platform-specific code to perform the I/O.
- The NFIT specification defines a standard format for a BLK-aperture, but
- the spec also allows for vendor specific layouts, and non-NFIT BLK
- implementations may have other designs for BLK I/O. For this reason
- "nd_blk" calls back into platform-specific code to perform the I/O.
- One such implementation is defined in the "Driver Writer's Guide" and "DSM
- Interface Example".
+ One such implementation is defined in the "Driver Writer's Guide" and "DSM
+ Interface Example".
Why BLK?
---------
+========
While PMEM provides direct byte-addressable CPU-load/store access to
NVDIMM storage, it does not provide the best system RAS (recovery,
@@ -162,12 +188,15 @@ system-physical-address address causes a CPU exception while an access
to a corrupted address through an BLK-aperture causes that block window
to raise an error status in a register. The latter is more aligned with
the standard error model that host-bus-adapter attached disks present.
+
Also, if an administrator ever wants to replace a memory it is easier to
service a system at DIMM module boundaries. Compare this to PMEM where
data could be interleaved in an opaque hardware specific manner across
several DIMMs.
PMEM vs BLK
+-----------
+
BLK-apertures solve these RAS problems, but their presence is also the
major contributing factor to the complexity of the ND subsystem. They
complicate the implementation because PMEM and BLK alias in DPA space.
@@ -185,13 +214,14 @@ carved into an arbitrary number of BLK devices with discontiguous
extents.
BLK-REGIONs, PMEM-REGIONs, Atomic Sectors, and DAX
---------------------------------------------------
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
One of the few
reasons to allow multiple BLK namespaces per REGION is so that each
BLK-namespace can be configured with a BTT with unique atomic sector
sizes. While a PMEM device can host a BTT the LABEL specification does
not provide for a sector size to be specified for a PMEM namespace.
+
This is due to the expectation that the primary usage model for PMEM is
via DAX, and the BTT is incompatible with DAX. However, for the cases
where an application or filesystem still needs atomic sector update
@@ -200,52 +230,52 @@ LIBNVDIMM/NDCTL: Block Translation Table "btt"
Example NVDIMM Platform
------------------------
+=======================
For the remainder of this document the following diagram will be
-referenced for any example sysfs layouts.
-
-
- (a) (b) DIMM BLK-REGION
- +-------------------+--------+--------+--------+
-+------+ | pm0.0 | blk2.0 | pm1.0 | blk2.1 | 0 region2
-| imc0 +--+- - - region0- - - +--------+ +--------+
-+--+---+ | pm0.0 | blk3.0 | pm1.0 | blk3.1 | 1 region3
- | +-------------------+--------v v--------+
-+--+---+ | |
-| cpu0 | region1
-+--+---+ | |
- | +----------------------------^ ^--------+
-+--+---+ | blk4.0 | pm1.0 | blk4.0 | 2 region4
-| imc1 +--+----------------------------| +--------+
-+------+ | blk5.0 | pm1.0 | blk5.0 | 3 region5
- +----------------------------+--------+--------+
+referenced for any example sysfs layouts::
+
+
+ (a) (b) DIMM BLK-REGION
+ +-------------------+--------+--------+--------+
+ +------+ | pm0.0 | blk2.0 | pm1.0 | blk2.1 | 0 region2
+ | imc0 +--+- - - region0- - - +--------+ +--------+
+ +--+---+ | pm0.0 | blk3.0 | pm1.0 | blk3.1 | 1 region3
+ | +-------------------+--------v v--------+
+ +--+---+ | |
+ | cpu0 | region1
+ +--+---+ | |
+ | +----------------------------^ ^--------+
+ +--+---+ | blk4.0 | pm1.0 | blk4.0 | 2 region4
+ | imc1 +--+----------------------------| +--------+
+ +------+ | blk5.0 | pm1.0 | blk5.0 | 3 region5
+ +----------------------------+--------+--------+
In this platform we have four DIMMs and two memory controllers in one
socket. Each unique interface (BLK or PMEM) to DPA space is identified
by a region device with a dynamically assigned id (REGION0 - REGION5).
1. The first portion of DIMM0 and DIMM1 are interleaved as REGION0. A
- single PMEM namespace is created in the REGION0-SPA-range that spans most
- of DIMM0 and DIMM1 with a user-specified name of "pm0.0". Some of that
- interleaved system-physical-address range is reclaimed as BLK-aperture
- accessed space starting at DPA-offset (a) into each DIMM. In that
- reclaimed space we create two BLK-aperture "namespaces" from REGION2 and
- REGION3 where "blk2.0" and "blk3.0" are just human readable names that
- could be set to any user-desired name in the LABEL.
+ single PMEM namespace is created in the REGION0-SPA-range that spans most
+ of DIMM0 and DIMM1 with a user-specified name of "pm0.0". Some of that
+ interleaved system-physical-address range is reclaimed as BLK-aperture
+ accessed space starting at DPA-offset (a) into each DIMM. In that
+ reclaimed space we create two BLK-aperture "namespaces" from REGION2 and
+ REGION3 where "blk2.0" and "blk3.0" are just human readable names that
+ could be set to any user-desired name in the LABEL.
2. In the last portion of DIMM0 and DIMM1 we have an interleaved
- system-physical-address range, REGION1, that spans those two DIMMs as
- well as DIMM2 and DIMM3. Some of REGION1 is allocated to a PMEM namespace
- named "pm1.0", the rest is reclaimed in 4 BLK-aperture namespaces (for
- each DIMM in the interleave set), "blk2.1", "blk3.1", "blk4.0", and
- "blk5.0".
+ system-physical-address range, REGION1, that spans those two DIMMs as
+ well as DIMM2 and DIMM3. Some of REGION1 is allocated to a PMEM namespace
+ named "pm1.0", the rest is reclaimed in 4 BLK-aperture namespaces (for
+ each DIMM in the interleave set), "blk2.1", "blk3.1", "blk4.0", and
+ "blk5.0".
3. The portion of DIMM2 and DIMM3 that do not participate in the REGION1
- interleaved system-physical-address range (i.e. the DPA address past
- offset (b) are also included in the "blk4.0" and "blk5.0" namespaces.
- Note, that this example shows that BLK-aperture namespaces don't need to
- be contiguous in DPA-space.
+ interleaved system-physical-address range (i.e. the DPA address past
+ offset (b) are also included in the "blk4.0" and "blk5.0" namespaces.
+ Note, that this example shows that BLK-aperture namespaces don't need to
+ be contiguous in DPA-space.
This bus is provided by the kernel under the device
/sys/devices/platform/nfit_test.0 when CONFIG_NFIT_TEST is enabled and
@@ -254,7 +284,7 @@ by a region device with a dynamically assigned id (REGION0 - REGION5).
LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API
-----------------------------------------------------
+========================================================
What follows is a description of the LIBNVDIMM sysfs layout and a
corresponding object hierarchy diagram as viewed through the LIBNDCTL
@@ -263,12 +293,18 @@ NVDIMM Platform which is also the LIBNVDIMM bus used in the LIBNDCTL unit
test.
LIBNDCTL: Context
+-----------------
+
Every API call in the LIBNDCTL library requires a context that holds the
logging parameters and other library instance state. The library is
based on the libabc template:
-https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git
+
+ https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git
LIBNDCTL: instantiate a new library context example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+::
struct ndctl_ctx *ctx;
@@ -278,19 +314,20 @@ LIBNDCTL: instantiate a new library context example
return NULL;
LIBNVDIMM/LIBNDCTL: Bus
--------------------
+-----------------------
A bus has a 1:1 relationship with an NFIT. The current expectation for
ACPI based systems is that there is only ever one platform-global NFIT.
That said, it is trivial to register multiple NFITs, the specification
does not preclude it. The infrastructure supports multiple busses and
-we we use this capability to test multiple NFIT configurations in the
-unit test.
+we use this capability to test multiple NFIT configurations in the unit
+test.
LIBNVDIMM: control class device in /sys/class
+---------------------------------------------
This character device accepts DSM messages to be passed to DIMM
-identified by its NFIT handle.
+identified by its NFIT handle::
/sys/class/nd/ndctl0
|-- dev
@@ -300,10 +337,15 @@ identified by its NFIT handle.
LIBNVDIMM: bus
+--------------
+
+::
struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
struct nvdimm_bus_descriptor *nfit_desc);
+::
+
/sys/devices/platform/nfit_test.0/ndbus0
|-- commands
|-- nd
@@ -324,7 +366,9 @@ LIBNVDIMM: bus
`-- wait_probe
LIBNDCTL: bus enumeration example
-Find the bus handle that describes the bus from Example NVDIMM Platform
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Find the bus handle that describes the bus from Example NVDIMM Platform::
static struct ndctl_bus *get_bus_by_provider(struct ndctl_ctx *ctx,
const char *provider)
@@ -342,7 +386,7 @@ Find the bus handle that describes the bus from Example NVDIMM Platform
LIBNVDIMM/LIBNDCTL: DIMM (NMEM)
----------------------------
+-------------------------------
The DIMM device provides a character device for sending commands to
hardware, and it is a container for LABELs. If the DIMM is defined by
@@ -355,11 +399,16 @@ Range Mapping Structure", and there is no requirement that they actually
be physical DIMMs, so we use a more generic name.
LIBNVDIMM: DIMM (NMEM)
+^^^^^^^^^^^^^^^^^^^^^^
+
+::
struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data,
const struct attribute_group **groups, unsigned long flags,
unsigned long *dsm_mask);
+::
+
/sys/devices/platform/nfit_test.0/ndbus0
|-- nmem0
| |-- available_slots
@@ -384,15 +433,20 @@ LIBNVDIMM: DIMM (NMEM)
LIBNDCTL: DIMM enumeration example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Note, in this example we are assuming NFIT-defined DIMMs which are
identified by an "nfit_handle" a 32-bit value where:
-Bit 3:0 DIMM number within the memory channel
-Bit 7:4 memory channel number
-Bit 11:8 memory controller ID
-Bit 15:12 socket ID (within scope of a Node controller if node controller is present)
-Bit 27:16 Node Controller ID
-Bit 31:28 Reserved
+
+ - Bit 3:0 DIMM number within the memory channel
+ - Bit 7:4 memory channel number
+ - Bit 11:8 memory controller ID
+ - Bit 15:12 socket ID (within scope of a Node controller if node
+ controller is present)
+ - Bit 27:16 Node Controller ID
+ - Bit 31:28 Reserved
+
+::
static struct ndctl_dimm *get_dimm_by_handle(struct ndctl_bus *bus,
unsigned int handle)
@@ -413,7 +467,7 @@ Bit 31:28 Reserved
dimm = get_dimm_by_handle(bus, DIMM_HANDLE(0, 0, 0, 0, 0));
LIBNVDIMM/LIBNDCTL: Region
-----------------------
+--------------------------
A generic REGION device is registered for each PMEM range or BLK-aperture
set. Per the example there are 6 regions: 2 PMEM and 4 BLK-aperture
@@ -435,13 +489,15 @@ emits, "devtype" duplicates the DEVTYPE variable stored by udev at the
at the 'add' event, and finally, the optional "spa_index" is provided in
the case where the region is defined by a SPA.
-LIBNVDIMM: region
+LIBNVDIMM: region::
struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc);
struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc);
+::
+
/sys/devices/platform/nfit_test.0/ndbus0
|-- region0
| |-- available_size
@@ -468,10 +524,11 @@ LIBNVDIMM: region
[..]
LIBNDCTL: region enumeration example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sample region retrieval routines based on NFIT-unique data like
"spa_index" (interleave set id) for PMEM and "nfit_handle" (dimm id) for
-BLK.
+BLK::
static struct ndctl_region *get_pmem_region_by_spa_index(struct ndctl_bus *bus,
unsigned int spa_index)
@@ -518,33 +575,33 @@ REGION name generic and expects userspace to always consider the
region-attributes for four reasons:
1. There are already more than two REGION and "namespace" types. For
- PMEM there are two subtypes. As mentioned previously we have PMEM where
- the constituent DIMM devices are known and anonymous PMEM. For BLK
- regions the NFIT specification already anticipates vendor specific
- implementations. The exact distinction of what a region contains is in
- the region-attributes not the region-name or the region-devtype.
+ PMEM there are two subtypes. As mentioned previously we have PMEM where
+ the constituent DIMM devices are known and anonymous PMEM. For BLK
+ regions the NFIT specification already anticipates vendor specific
+ implementations. The exact distinction of what a region contains is in
+ the region-attributes not the region-name or the region-devtype.
2. A region with zero child-namespaces is a possible configuration. For
- example, the NFIT allows for a DCR to be published without a
- corresponding BLK-aperture. This equates to a DIMM that can only accept
- control/configuration messages, but no i/o through a descendant block
- device. Again, this "type" is advertised in the attributes ('mappings'
- == 0) and the name does not tell you much.
+ example, the NFIT allows for a DCR to be published without a
+ corresponding BLK-aperture. This equates to a DIMM that can only accept
+ control/configuration messages, but no i/o through a descendant block
+ device. Again, this "type" is advertised in the attributes ('mappings'
+ == 0) and the name does not tell you much.
3. What if a third major interface type arises in the future? Outside
- of vendor specific implementations, it's not difficult to envision a
- third class of interface type beyond BLK and PMEM. With a generic name
- for the REGION level of the device-hierarchy old userspace
- implementations can still make sense of new kernel advertised
- region-types. Userspace can always rely on the generic region
- attributes like "mappings", "size", etc and the expected child devices
- named "namespace". This generic format of the device-model hierarchy
- allows the LIBNVDIMM and LIBNDCTL implementations to be more uniform and
- future-proof.
+ of vendor specific implementations, it's not difficult to envision a
+ third class of interface type beyond BLK and PMEM. With a generic name
+ for the REGION level of the device-hierarchy old userspace
+ implementations can still make sense of new kernel advertised
+ region-types. Userspace can always rely on the generic region
+ attributes like "mappings", "size", etc and the expected child devices
+ named "namespace". This generic format of the device-model hierarchy
+ allows the LIBNVDIMM and LIBNDCTL implementations to be more uniform and
+ future-proof.
4. There are more robust mechanisms for determining the major type of a
- region than a device name. See the next section, How Do I Determine the
- Major Type of a Region?
+ region than a device name. See the next section, How Do I Determine the
+ Major Type of a Region?
How Do I Determine the Major Type of a Region?
----------------------------------------------
@@ -553,7 +610,8 @@ Outside of the blanket recommendation of "use libndctl", or simply
looking at the kernel header (/usr/include/linux/ndctl.h) to decode the
"nstype" integer attribute, here are some other options.
- 1. module alias lookup:
+1. module alias lookup
+^^^^^^^^^^^^^^^^^^^^^^
The whole point of region/namespace device type differentiation is to
decide which block-device driver will attach to a given LIBNVDIMM namespace.
@@ -569,28 +627,31 @@ looking at the kernel header (/usr/include/linux/ndctl.h) to decode the
the resulting namespaces. The output from module resolution is more
accurate than a region-name or region-devtype.
- 2. udev:
+2. udev
+^^^^^^^
+
+ The kernel "devtype" is registered in the udev database::
- The kernel "devtype" is registered in the udev database
- # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region0
- P: /devices/platform/nfit_test.0/ndbus0/region0
- E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region0
- E: DEVTYPE=nd_pmem
- E: MODALIAS=nd:t2
- E: SUBSYSTEM=nd
+ # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region0
+ P: /devices/platform/nfit_test.0/ndbus0/region0
+ E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region0
+ E: DEVTYPE=nd_pmem
+ E: MODALIAS=nd:t2
+ E: SUBSYSTEM=nd
- # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region4
- P: /devices/platform/nfit_test.0/ndbus0/region4
- E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region4
- E: DEVTYPE=nd_blk
- E: MODALIAS=nd:t3
- E: SUBSYSTEM=nd
+ # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region4
+ P: /devices/platform/nfit_test.0/ndbus0/region4
+ E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region4
+ E: DEVTYPE=nd_blk
+ E: MODALIAS=nd:t3
+ E: SUBSYSTEM=nd
...and is available as a region attribute, but keep in mind that the
"devtype" does not indicate sub-type variations and scripts should
really be understanding the other attributes.
- 3. type specific attributes:
+3. type specific attributes
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
As it currently stands a BLK-aperture region will never have a
"nfit/spa_index" attribute, but neither will a non-NFIT PMEM region. A
@@ -600,7 +661,7 @@ looking at the kernel header (/usr/include/linux/ndctl.h) to decode the
LIBNVDIMM/LIBNDCTL: Namespace
--------------------------
+-----------------------------
A REGION, after resolving DPA aliasing and LABEL specified boundaries,
surfaces one or more "namespace" devices. The arrival of a "namespace"
@@ -608,12 +669,14 @@ device currently triggers either the nd_blk or nd_pmem driver to load
and register a disk/block device.
LIBNVDIMM: namespace
+^^^^^^^^^^^^^^^^^^^^
+
Here is a sample layout from the three major types of NAMESPACE where
namespace0.0 represents DIMM-info-backed PMEM (note that it has a 'uuid'
attribute), namespace2.0 represents a BLK namespace (note it has a
'sector_size' attribute) that, and namespace6.0 represents an anonymous
PMEM namespace (note that has no 'uuid' attribute due to not support a
-LABEL).
+LABEL)::
/sys/devices/platform/nfit_test.0/ndbus0/region0/namespace0.0
|-- alt_name
@@ -656,76 +719,84 @@ LABEL).
`-- uevent
LIBNDCTL: namespace enumeration example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Namespaces are indexed relative to their parent region, example below.
These indexes are mostly static from boot to boot, but subsystem makes
no guarantees in this regard. For a static namespace identifier use its
'uuid' attribute.
-static struct ndctl_namespace *get_namespace_by_id(struct ndctl_region *region,
- unsigned int id)
-{
- struct ndctl_namespace *ndns;
+::
- ndctl_namespace_foreach(region, ndns)
- if (ndctl_namespace_get_id(ndns) == id)
- return ndns;
+ static struct ndctl_namespace
+ *get_namespace_by_id(struct ndctl_region *region, unsigned int id)
+ {
+ struct ndctl_namespace *ndns;
- return NULL;
-}
+ ndctl_namespace_foreach(region, ndns)
+ if (ndctl_namespace_get_id(ndns) == id)
+ return ndns;
+
+ return NULL;
+ }
LIBNDCTL: namespace creation example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
Idle namespaces are automatically created by the kernel if a given
region has enough available capacity to create a new namespace.
Namespace instantiation involves finding an idle namespace and
configuring it. For the most part the setting of namespace attributes
can occur in any order, the only constraint is that 'uuid' must be set
before 'size'. This enables the kernel to track DPA allocations
-internally with a static identifier.
+internally with a static identifier::
-static int configure_namespace(struct ndctl_region *region,
- struct ndctl_namespace *ndns,
- struct namespace_parameters *parameters)
-{
- char devname[50];
+ static int configure_namespace(struct ndctl_region *region,
+ struct ndctl_namespace *ndns,
+ struct namespace_parameters *parameters)
+ {
+ char devname[50];
- snprintf(devname, sizeof(devname), "namespace%d.%d",
- ndctl_region_get_id(region), paramaters->id);
+ snprintf(devname, sizeof(devname), "namespace%d.%d",
+ ndctl_region_get_id(region), paramaters->id);
- ndctl_namespace_set_alt_name(ndns, devname);
- /* 'uuid' must be set prior to setting size! */
- ndctl_namespace_set_uuid(ndns, paramaters->uuid);
- ndctl_namespace_set_size(ndns, paramaters->size);
- /* unlike pmem namespaces, blk namespaces have a sector size */
- if (parameters->lbasize)
- ndctl_namespace_set_sector_size(ndns, parameters->lbasize);
- ndctl_namespace_enable(ndns);
-}
+ ndctl_namespace_set_alt_name(ndns, devname);
+ /* 'uuid' must be set prior to setting size! */
+ ndctl_namespace_set_uuid(ndns, paramaters->uuid);
+ ndctl_namespace_set_size(ndns, paramaters->size);
+ /* unlike pmem namespaces, blk namespaces have a sector size */
+ if (parameters->lbasize)
+ ndctl_namespace_set_sector_size(ndns, parameters->lbasize);
+ ndctl_namespace_enable(ndns);
+ }
Why the Term "namespace"?
+^^^^^^^^^^^^^^^^^^^^^^^^^
1. Why not "volume" for instance? "volume" ran the risk of confusing
- ND (libnvdimm subsystem) to a volume manager like device-mapper.
+ ND (libnvdimm subsystem) to a volume manager like device-mapper.
2. The term originated to describe the sub-devices that can be created
- within a NVME controller (see the nvme specification:
- http://www.nvmexpress.org/specifications/), and NFIT namespaces are
- meant to parallel the capabilities and configurability of
- NVME-namespaces.
+ within a NVME controller (see the nvme specification:
+ http://www.nvmexpress.org/specifications/), and NFIT namespaces are
+ meant to parallel the capabilities and configurability of
+ NVME-namespaces.
LIBNVDIMM/LIBNDCTL: Block Translation Table "btt"
----------------------------------------------
+-------------------------------------------------
A BTT (design document: http://pmem.io/2014/09/23/btt.html) is a stacked
block device driver that fronts either the whole block device or a
partition of a block device emitted by either a PMEM or BLK NAMESPACE.
LIBNVDIMM: btt layout
+^^^^^^^^^^^^^^^^^^^^^
+
Every region will start out with at least one BTT device which is the
seed device. To activate it set the "namespace", "uuid", and
"sector_size" attributes and then bind the device to the nd_pmem or
-nd_blk driver depending on the region type.
+nd_blk driver depending on the region type::
/sys/devices/platform/nfit_test.1/ndbus0/region0/btt0/
|-- namespace
@@ -739,10 +810,12 @@ nd_blk driver depending on the region type.
`-- uuid
LIBNDCTL: btt creation example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
Similar to namespaces an idle BTT device is automatically created per
region. Each time this "seed" btt device is configured and enabled a new
seed is created. Creating a BTT configuration involves two steps of
-finding and idle BTT and assigning it to consume a PMEM or BLK namespace.
+finding and idle BTT and assigning it to consume a PMEM or BLK namespace::
static struct ndctl_btt *get_idle_btt(struct ndctl_region *region)
{
@@ -787,29 +860,28 @@ Summary LIBNDCTL Diagram
------------------------
For the given example above, here is the view of the objects as seen by the
-LIBNDCTL API:
- +---+
- |CTX| +---------+ +--------------+ +---------------+
- +-+-+ +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" |
- | | +---------+ +--------------+ +---------------+
-+-------+ | | +---------+ +--------------+ +---------------+
-| DIMM0 <-+ | +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" |
-+-------+ | | | +---------+ +--------------+ +---------------+
-| DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+
-+-------+ +-+BUS0+---> REGION2 +-+-> NAMESPACE2.0 +--> ND6 "blk2.0" |
-| DIMM2 <-+ +----+ | +---------+ | +--------------+ +----------------------+
-+-------+ | | +-> NAMESPACE2.1 +--> ND5 "blk2.1" | BTT2 |
-| DIMM3 <-+ | +--------------+ +----------------------+
-+-------+ | +---------+ +--------------+ +---------------+
- +-> REGION3 +-+-> NAMESPACE3.0 +--> ND4 "blk3.0" |
- | +---------+ | +--------------+ +----------------------+
- | +-> NAMESPACE3.1 +--> ND3 "blk3.1" | BTT1 |
- | +--------------+ +----------------------+
- | +---------+ +--------------+ +---------------+
- +-> REGION4 +---> NAMESPACE4.0 +--> ND2 "blk4.0" |
- | +---------+ +--------------+ +---------------+
- | +---------+ +--------------+ +----------------------+
- +-> REGION5 +---> NAMESPACE5.0 +--> ND1 "blk5.0" | BTT0 |
- +---------+ +--------------+ +---------------+------+
-
-
+LIBNDCTL API::
+
+ +---+
+ |CTX| +---------+ +--------------+ +---------------+
+ +-+-+ +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" |
+ | | +---------+ +--------------+ +---------------+
+ +-------+ | | +---------+ +--------------+ +---------------+
+ | DIMM0 <-+ | +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" |
+ +-------+ | | | +---------+ +--------------+ +---------------+
+ | DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+
+ +-------+ +-+BUS0+---> REGION2 +-+-> NAMESPACE2.0 +--> ND6 "blk2.0" |
+ | DIMM2 <-+ +----+ | +---------+ | +--------------+ +----------------------+
+ +-------+ | | +-> NAMESPACE2.1 +--> ND5 "blk2.1" | BTT2 |
+ | DIMM3 <-+ | +--------------+ +----------------------+
+ +-------+ | +---------+ +--------------+ +---------------+
+ +-> REGION3 +-+-> NAMESPACE3.0 +--> ND4 "blk3.0" |
+ | +---------+ | +--------------+ +----------------------+
+ | +-> NAMESPACE3.1 +--> ND3 "blk3.1" | BTT1 |
+ | +--------------+ +----------------------+
+ | +---------+ +--------------+ +---------------+
+ +-> REGION4 +---> NAMESPACE4.0 +--> ND2 "blk4.0" |
+ | +---------+ +--------------+ +---------------+
+ | +---------+ +--------------+ +----------------------+
+ +-> REGION5 +---> NAMESPACE5.0 +--> ND1 "blk5.0" | BTT0 |
+ +---------+ +--------------+ +---------------+------+
diff --git a/Documentation/nvdimm/security.txt b/Documentation/driver-api/nvdimm/security.rst
index 4c36c05ca98e..ad9dea099b34 100644
--- a/Documentation/nvdimm/security.txt
+++ b/Documentation/driver-api/nvdimm/security.rst
@@ -1,4 +1,5 @@
-NVDIMM SECURITY
+===============
+NVDIMM Security
===============
1. Introduction
@@ -138,4 +139,5 @@ This command is only available when the master security is enabled, indicated
by the extended security status.
[1]: http://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf
+
[2]: http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf
diff --git a/Documentation/nvmem/nvmem.txt b/Documentation/driver-api/nvmem.rst
index fc2fe4b18655..d9d958d5c824 100644
--- a/Documentation/nvmem/nvmem.txt
+++ b/Documentation/driver-api/nvmem.rst
@@ -1,5 +1,10 @@
- NVMEM SUBSYSTEM
- Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+NVMEM Subsystem
+===============
+
+ Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
This document explains the NVMEM Framework along with the APIs provided,
and how to use it.
@@ -40,54 +45,54 @@ nvmem_device pointer.
nvmem_unregister(nvmem) is used to unregister a previously registered provider.
-For example, a simple qfprom case:
+For example, a simple qfprom case::
-static struct nvmem_config econfig = {
+ static struct nvmem_config econfig = {
.name = "qfprom",
.owner = THIS_MODULE,
-};
+ };
-static int qfprom_probe(struct platform_device *pdev)
-{
+ static int qfprom_probe(struct platform_device *pdev)
+ {
...
econfig.dev = &pdev->dev;
nvmem = nvmem_register(&econfig);
...
-}
+ }
It is mandatory that the NVMEM provider has a regmap associated with its
struct device. Failure to do would return error code from nvmem_register().
Users of board files can define and register nvmem cells using the
-nvmem_cell_table struct:
+nvmem_cell_table struct::
-static struct nvmem_cell_info foo_nvmem_cells[] = {
+ static struct nvmem_cell_info foo_nvmem_cells[] = {
{
.name = "macaddr",
.offset = 0x7f00,
.bytes = ETH_ALEN,
}
-};
+ };
-static struct nvmem_cell_table foo_nvmem_cell_table = {
+ static struct nvmem_cell_table foo_nvmem_cell_table = {
.nvmem_name = "i2c-eeprom",
.cells = foo_nvmem_cells,
.ncells = ARRAY_SIZE(foo_nvmem_cells),
-};
+ };
-nvmem_add_cell_table(&foo_nvmem_cell_table);
+ nvmem_add_cell_table(&foo_nvmem_cell_table);
Additionally it is possible to create nvmem cell lookup entries and register
-them with the nvmem framework from machine code as shown in the example below:
+them with the nvmem framework from machine code as shown in the example below::
-static struct nvmem_cell_lookup foo_nvmem_lookup = {
+ static struct nvmem_cell_lookup foo_nvmem_lookup = {
.nvmem_name = "i2c-eeprom",
.cell_name = "macaddr",
.dev_id = "foo_mac.0",
.con_id = "mac-address",
-};
+ };
-nvmem_add_cell_lookups(&foo_nvmem_lookup, 1);
+ nvmem_add_cell_lookups(&foo_nvmem_lookup, 1);
NVMEM Consumers
+++++++++++++++
@@ -99,43 +104,43 @@ read from and to NVMEM.
=================================
NVMEM cells are the data entries/fields in the NVMEM.
-The NVMEM framework provides 3 APIs to read/write NVMEM cells.
+The NVMEM framework provides 3 APIs to read/write NVMEM cells::
-struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
-struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
+ struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
+ struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
-void nvmem_cell_put(struct nvmem_cell *cell);
-void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+ void nvmem_cell_put(struct nvmem_cell *cell);
+ void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
-void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
-int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
+ void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
+ int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
-*nvmem_cell_get() apis will get a reference to nvmem cell for a given id,
+`*nvmem_cell_get()` apis will get a reference to nvmem cell for a given id,
and nvmem_cell_read/write() can then read or write to the cell.
-Once the usage of the cell is finished the consumer should call *nvmem_cell_put()
-to free all the allocation memory for the cell.
+Once the usage of the cell is finished the consumer should call
+`*nvmem_cell_put()` to free all the allocation memory for the cell.
4. Direct NVMEM device based consumer APIs
==========================================
In some instances it is necessary to directly read/write the NVMEM.
-To facilitate such consumers NVMEM framework provides below apis.
+To facilitate such consumers NVMEM framework provides below apis::
-struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
-struct nvmem_device *devm_nvmem_device_get(struct device *dev,
+ struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
+ struct nvmem_device *devm_nvmem_device_get(struct device *dev,
const char *name);
-void nvmem_device_put(struct nvmem_device *nvmem);
-int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
+ void nvmem_device_put(struct nvmem_device *nvmem);
+ int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
size_t bytes, void *buf);
-int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
+ int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
size_t bytes, void *buf);
-int nvmem_device_cell_read(struct nvmem_device *nvmem,
+ int nvmem_device_cell_read(struct nvmem_device *nvmem,
struct nvmem_cell_info *info, void *buf);
-int nvmem_device_cell_write(struct nvmem_device *nvmem,
+ int nvmem_device_cell_write(struct nvmem_device *nvmem,
struct nvmem_cell_info *info, void *buf);
Before the consumers can read/write NVMEM directly, it should get hold
-of nvmem_controller from one of the *nvmem_device_get() api.
+of nvmem_controller from one of the `*nvmem_device_get()` api.
The difference between these apis and cell based apis is that these apis always
take nvmem_device as parameter.
@@ -145,12 +150,12 @@ take nvmem_device as parameter.
When a consumer no longer needs the NVMEM, it has to release the reference
to the NVMEM it has obtained using the APIs mentioned in the above section.
-The NVMEM framework provides 2 APIs to release a reference to the NVMEM.
+The NVMEM framework provides 2 APIs to release a reference to the NVMEM::
-void nvmem_cell_put(struct nvmem_cell *cell);
-void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
-void nvmem_device_put(struct nvmem_device *nvmem);
-void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
+ void nvmem_cell_put(struct nvmem_cell *cell);
+ void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+ void nvmem_device_put(struct nvmem_device *nvmem);
+ void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
Both these APIs are used to release a reference to the NVMEM and
devm_nvmem_cell_put and devm_nvmem_device_put destroys the devres associated
@@ -162,20 +167,21 @@ Userspace
6. Userspace binary interface
==============================
-Userspace can read/write the raw NVMEM file located at
-/sys/bus/nvmem/devices/*/nvmem
+Userspace can read/write the raw NVMEM file located at::
+
+ /sys/bus/nvmem/devices/*/nvmem
-ex:
+ex::
-hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
+ hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
-0000000 0000 0000 0000 0000 0000 0000 0000 0000
-*
-00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
-0000000 0000 0000 0000 0000 0000 0000 0000 0000
-...
-*
-0001000
+ 0000000 0000 0000 0000 0000 0000 0000 0000 0000
+ *
+ 00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
+ 0000000 0000 0000 0000 0000 0000 0000 0000 0000
+ ...
+ *
+ 0001000
7. DeviceTree Binding
=====================
diff --git a/Documentation/parport-lowlevel.txt b/Documentation/driver-api/parport-lowlevel.rst
index 0633d70ffda7..0633d70ffda7 100644
--- a/Documentation/parport-lowlevel.txt
+++ b/Documentation/driver-api/parport-lowlevel.rst
diff --git a/Documentation/driver-api/phy/index.rst b/Documentation/driver-api/phy/index.rst
new file mode 100644
index 000000000000..69ba1216de72
--- /dev/null
+++ b/Documentation/driver-api/phy/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================
+Generic PHY Framework
+=====================
+
+.. toctree::
+
+ phy
+ samsung-usb2
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
+
diff --git a/Documentation/phy.txt b/Documentation/driver-api/phy/phy.rst
index 457c3e0f86d6..8fc1ce0bb905 100644
--- a/Documentation/phy.txt
+++ b/Documentation/driver-api/phy/phy.rst
@@ -179,8 +179,8 @@ PHY Mappings
In order to get reference to a PHY without help from DeviceTree, the framework
offers lookups which can be compared to clkdev that allow clk structures to be
-bound to devices. A lookup can be made be made during runtime when a handle to
-the struct phy already exists.
+bound to devices. A lookup can be made during runtime when a handle to the
+struct phy already exists.
The framework offers the following API for registering and unregistering the
lookups::
diff --git a/Documentation/phy/samsung-usb2.txt b/Documentation/driver-api/phy/samsung-usb2.rst
index ed12d437189d..c48c8b9797b9 100644
--- a/Documentation/phy/samsung-usb2.txt
+++ b/Documentation/driver-api/phy/samsung-usb2.rst
@@ -1,9 +1,9 @@
-.------------------------------------------------------------------------------+
-| Samsung USB 2.0 PHY adaptation layer |
-+-----------------------------------------------------------------------------+'
+====================================
+Samsung USB 2.0 PHY adaptation layer
+====================================
-| 1. Description
-+----------------
+1. Description
+--------------
The architecture of the USB 2.0 PHY module in Samsung SoCs is similar
among many SoCs. In spite of the similarities it proved difficult to
@@ -14,8 +14,8 @@ the PHY powering up process had to be altered. This adaptation layer is
a compromise between having separate drivers and having a single driver
with added support for many special cases.
-| 2. Files description
-+----------------------
+2. Files description
+--------------------
- phy-samsung-usb2.c
This is the main file of the adaptation layer. This file contains
@@ -32,44 +32,45 @@ with added support for many special cases.
driver. In addition it should contain extern declarations for
structures that describe particular SoCs.
-| 3. Supporting SoCs
-+--------------------
+3. Supporting SoCs
+------------------
To support a new SoC a new file should be added to the drivers/phy
directory. Each SoC's configuration is stored in an instance of the
-struct samsung_usb2_phy_config.
+struct samsung_usb2_phy_config::
-struct samsung_usb2_phy_config {
+ struct samsung_usb2_phy_config {
const struct samsung_usb2_common_phy *phys;
int (*rate_to_clk)(unsigned long, u32 *);
unsigned int num_phys;
bool has_mode_switch;
-};
+ };
-The num_phys is the number of phys handled by the driver. *phys is an
+The num_phys is the number of phys handled by the driver. `*phys` is an
array that contains the configuration for each phy. The has_mode_switch
property is a boolean flag that determines whether the SoC has USB host
and device on a single pair of pins. If so, a special register has to
be modified to change the internal routing of these pins between a USB
device or host module.
-For example the configuration for Exynos 4210 is following:
+For example the configuration for Exynos 4210 is following::
-const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = {
+ const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = {
.has_mode_switch = 0,
.num_phys = EXYNOS4210_NUM_PHYS,
.phys = exynos4210_phys,
.rate_to_clk = exynos4210_rate_to_clk,
-}
+ }
+
+- `int (*rate_to_clk)(unsigned long, u32 *)`
-- int (*rate_to_clk)(unsigned long, u32 *)
The rate_to_clk callback is to convert the rate of the clock
used as the reference clock for the PHY module to the value
that should be written in the hardware register.
-The exynos4210_phys configuration array is as follows:
+The exynos4210_phys configuration array is as follows::
-static const struct samsung_usb2_common_phy exynos4210_phys[] = {
+ static const struct samsung_usb2_common_phy exynos4210_phys[] = {
{
.label = "device",
.id = EXYNOS4210_DEVICE,
@@ -95,29 +96,30 @@ static const struct samsung_usb2_common_phy exynos4210_phys[] = {
.power_off = exynos4210_power_off,
},
{},
-};
+ };
+
+- `int (*power_on)(struct samsung_usb2_phy_instance *);`
+ `int (*power_off)(struct samsung_usb2_phy_instance *);`
-- int (*power_on)(struct samsung_usb2_phy_instance *);
-- int (*power_off)(struct samsung_usb2_phy_instance *);
These two callbacks are used to power on and power off the phy
by modifying appropriate registers.
Final change to the driver is adding appropriate compatible value to the
phy-samsung-usb2.c file. In case of Exynos 4210 the following lines were
-added to the struct of_device_id samsung_usb2_phy_of_match[] array:
+added to the struct of_device_id samsung_usb2_phy_of_match[] array::
-#ifdef CONFIG_PHY_EXYNOS4210_USB2
+ #ifdef CONFIG_PHY_EXYNOS4210_USB2
{
.compatible = "samsung,exynos4210-usb2-phy",
.data = &exynos4210_usb2_phy_config,
},
-#endif
+ #endif
To add further flexibility to the driver the Kconfig file enables to
include support for selected SoCs in the compiled driver. The Kconfig
-entry for Exynos 4210 is following:
+entry for Exynos 4210 is following::
-config PHY_EXYNOS4210_USB2
+ config PHY_EXYNOS4210_USB2
bool "Support for Exynos 4210"
depends on PHY_SAMSUNG_USB2
depends on CPU_EXYNOS4210
@@ -128,8 +130,8 @@ config PHY_EXYNOS4210_USB2
phys are available - device, host, HSCI0 and HSCI1.
The newly created file that supports the new SoC has to be also added to the
-Makefile. In case of Exynos 4210 the added line is following:
+Makefile. In case of Exynos 4210 the added line is following::
-obj-$(CONFIG_PHY_EXYNOS4210_USB2) += phy-exynos4210-usb2.o
+ obj-$(CONFIG_PHY_EXYNOS4210_USB2) += phy-exynos4210-usb2.o
After completing these steps the support for the new SoC should be ready.
diff --git a/Documentation/driver-api/pinctl.rst b/Documentation/driver-api/pinctl.rst
index 2bb1bc484278..3d2deaf48841 100644
--- a/Documentation/driver-api/pinctl.rst
+++ b/Documentation/driver-api/pinctl.rst
@@ -638,8 +638,8 @@ group of pins would work something like this::
}
static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
- unsigned ** const pins,
- unsigned * const num_pins)
+ const unsigned ** pins,
+ unsigned * num_pins)
{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
@@ -705,7 +705,7 @@ group of pins would work something like this::
{
u8 regbit = (1 << selector + group);
- writeb((readb(MUX)|regbit), MUX)
+ writeb((readb(MUX)|regbit), MUX);
return 0;
}
diff --git a/Documentation/driver-api/pm/conf.py b/Documentation/driver-api/pm/conf.py
deleted file mode 100644
index a89fac11272f..000000000000
--- a/Documentation/driver-api/pm/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Device Power Management"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'pm.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/driver-api/pm/devices.rst b/Documentation/driver-api/pm/devices.rst
index 30835683616a..f66c7b9126ea 100644
--- a/Documentation/driver-api/pm/devices.rst
+++ b/Documentation/driver-api/pm/devices.rst
@@ -225,7 +225,7 @@ system-wide transition to a sleep state even though its :c:member:`runtime_auto`
flag is clear.
For more information about the runtime power management framework, refer to
-:file:`Documentation/power/runtime_pm.txt`.
+:file:`Documentation/power/runtime_pm.rst`.
Calling Drivers to Enter and Leave System Sleep States
@@ -728,7 +728,7 @@ it into account in any way.
Devices may be defined as IRQ-safe which indicates to the PM core that their
runtime PM callbacks may be invoked with disabled interrupts (see
-:file:`Documentation/power/runtime_pm.txt` for more information). If an
+:file:`Documentation/power/runtime_pm.rst` for more information). If an
IRQ-safe device belongs to a PM domain, the runtime PM of the domain will be
disallowed, unless the domain itself is defined as IRQ-safe. However, it
makes sense to define a PM domain as IRQ-safe only if all the devices in it
@@ -795,7 +795,7 @@ so on) and the final state of the device must reflect the "active" runtime PM
status in that case.
During system-wide resume from a sleep state it's easiest to put devices into
-the full-power state, as explained in :file:`Documentation/power/runtime_pm.txt`.
+the full-power state, as explained in :file:`Documentation/power/runtime_pm.rst`.
[Refer to that document for more information regarding this particular issue as
well as for information on the device runtime power management framework in
general.]
diff --git a/Documentation/pps/pps.txt b/Documentation/driver-api/pps.rst
index 99f5d8c4c652..2d6b99766ee8 100644
--- a/Documentation/pps/pps.txt
+++ b/Documentation/driver-api/pps.rst
@@ -1,8 +1,10 @@
+.. SPDX-License-Identifier: GPL-2.0
- PPS - Pulse Per Second
- ----------------------
+======================
+PPS - Pulse Per Second
+======================
-(C) Copyright 2007 Rodolfo Giometti <giometti@enneenne.com>
+Copyright (C) 2007 Rodolfo Giometti <giometti@enneenne.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -88,7 +90,7 @@ Coding example
--------------
To register a PPS source into the kernel you should define a struct
-pps_source_info as follows:
+pps_source_info as follows::
static struct pps_source_info pps_ktimer_info = {
.name = "ktimer",
@@ -101,12 +103,12 @@ pps_source_info as follows:
};
and then calling the function pps_register_source() in your
-initialization routine as follows:
+initialization routine as follows::
source = pps_register_source(&pps_ktimer_info,
PPS_CAPTUREASSERT | PPS_OFFSETASSERT);
-The pps_register_source() prototype is:
+The pps_register_source() prototype is::
int pps_register_source(struct pps_source_info *info, int default_params)
@@ -118,7 +120,7 @@ pps_source_info which describe the capabilities of the driver).
Once you have registered a new PPS source into the system you can
signal an assert event (for example in the interrupt handler routine)
-just using:
+just using::
pps_event(source, &ts, PPS_CAPTUREASSERT, ptr)
@@ -134,13 +136,13 @@ Please see the file drivers/pps/clients/pps-ktimer.c for example code.
SYSFS support
-------------
-If the SYSFS filesystem is enabled in the kernel it provides a new class:
+If the SYSFS filesystem is enabled in the kernel it provides a new class::
$ ls /sys/class/pps/
pps0/ pps1/ pps2/
Every directory is the ID of a PPS sources defined in the system and
-inside you find several files:
+inside you find several files::
$ ls -F /sys/class/pps/pps0/
assert dev mode path subsystem@
@@ -148,7 +150,7 @@ inside you find several files:
Inside each "assert" and "clear" file you can find the timestamp and a
-sequence number:
+sequence number::
$ cat /sys/class/pps/pps0/assert
1170026870.983207967#8
@@ -175,11 +177,11 @@ and the userland tools available in your distribution's pps-tools package,
http://linuxpps.org , or https://github.com/redlab-i/pps-tools.
Once you have enabled the compilation of pps-ktimer just modprobe it (if
-not statically compiled):
+not statically compiled)::
# modprobe pps-ktimer
-and the run ppstest as follow:
+and the run ppstest as follow::
$ ./ppstest /dev/pps1
trying PPS source "/dev/pps1"
@@ -204,26 +206,27 @@ nor affordable. The cheap way is to load a PPS generator on one of the
computers (master) and PPS clients on others (slaves), and use very simple
cables to deliver signals using parallel ports, for example.
-Parallel port cable pinout:
-pin name master slave
-1 STROBE *------ *
-2 D0 * | *
-3 D1 * | *
-4 D2 * | *
-5 D3 * | *
-6 D4 * | *
-7 D5 * | *
-8 D6 * | *
-9 D7 * | *
-10 ACK * ------*
-11 BUSY * *
-12 PE * *
-13 SEL * *
-14 AUTOFD * *
-15 ERROR * *
-16 INIT * *
-17 SELIN * *
-18-25 GND *-----------*
+Parallel port cable pinout::
+
+ pin name master slave
+ 1 STROBE *------ *
+ 2 D0 * | *
+ 3 D1 * | *
+ 4 D2 * | *
+ 5 D3 * | *
+ 6 D4 * | *
+ 7 D5 * | *
+ 8 D6 * | *
+ 9 D7 * | *
+ 10 ACK * ------*
+ 11 BUSY * *
+ 12 PE * *
+ 13 SEL * *
+ 14 AUTOFD * *
+ 15 ERROR * *
+ 16 INIT * *
+ 17 SELIN * *
+ 18-25 GND *-----------*
Please note that parallel port interrupt occurs only on high->low transition,
so it is used for PPS assert edge. PPS clear edge can be determined only
diff --git a/Documentation/driver-api/pti_intel_mid.rst b/Documentation/driver-api/pti_intel_mid.rst
new file mode 100644
index 000000000000..20f1cff42d5f
--- /dev/null
+++ b/Documentation/driver-api/pti_intel_mid.rst
@@ -0,0 +1,106 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+Intel MID PTI
+=============
+
+The Intel MID PTI project is HW implemented in Intel Atom
+system-on-a-chip designs based on the Parallel Trace
+Interface for MIPI P1149.7 cJTAG standard. The kernel solution
+for this platform involves the following files::
+
+ ./include/linux/pti.h
+ ./drivers/.../n_tracesink.h
+ ./drivers/.../n_tracerouter.c
+ ./drivers/.../n_tracesink.c
+ ./drivers/.../pti.c
+
+pti.c is the driver that enables various debugging features
+popular on platforms from certain mobile manufacturers.
+n_tracerouter.c and n_tracesink.c allow extra system information to
+be collected and routed to the pti driver, such as trace
+debugging data from a modem. Although n_tracerouter
+and n_tracesink are a part of the complete PTI solution,
+these two line disciplines can work separately from
+pti.c and route any data stream from one /dev/tty node
+to another /dev/tty node via kernel-space. This provides
+a stable, reliable connection that will not break unless
+the user-space application shuts down (plus avoids
+kernel->user->kernel context switch overheads of routing
+data).
+
+An example debugging usage for this driver system:
+
+ * Hook /dev/ttyPTI0 to syslogd. Opening this port will also start
+ a console device to further capture debugging messages to PTI.
+ * Hook /dev/ttyPTI1 to modem debugging data to write to PTI HW.
+ This is where n_tracerouter and n_tracesink are used.
+ * Hook /dev/pti to a user-level debugging application for writing
+ to PTI HW.
+ * `Use mipi_` Kernel Driver API in other device drivers for
+ debugging to PTI by first requesting a PTI write address via
+ mipi_request_masterchannel(1).
+
+Below is example pseudo-code on how a 'privileged' application
+can hook up n_tracerouter and n_tracesink to any tty on
+a system. 'Privileged' means the application has enough
+privileges to successfully manipulate the ldisc drivers
+but is not just blindly executing as 'root'. Keep in mind
+the use of ioctl(,TIOCSETD,) is not specific to the n_tracerouter
+and n_tracesink line discpline drivers but is a generic
+operation for a program to use a line discpline driver
+on a tty port other than the default n_tty::
+
+ /////////// To hook up n_tracerouter and n_tracesink /////////
+
+ // Note that n_tracerouter depends on n_tracesink.
+ #include <errno.h>
+ #define ONE_TTY "/dev/ttyOne"
+ #define TWO_TTY "/dev/ttyTwo"
+
+ // needed global to hand onto ldisc connection
+ static int g_fd_source = -1;
+ static int g_fd_sink = -1;
+
+ // these two vars used to grab LDISC values from loaded ldisc drivers
+ // in OS. Look at /proc/tty/ldiscs to get the right numbers from
+ // the ldiscs loaded in the system.
+ int source_ldisc_num, sink_ldisc_num = -1;
+ int retval;
+
+ g_fd_source = open(ONE_TTY, O_RDWR); // must be R/W
+ g_fd_sink = open(TWO_TTY, O_RDWR); // must be R/W
+
+ if (g_fd_source <= 0) || (g_fd_sink <= 0) {
+ // doubt you'll want to use these exact error lines of code
+ printf("Error on open(). errno: %d\n",errno);
+ return errno;
+ }
+
+ retval = ioctl(g_fd_sink, TIOCSETD, &sink_ldisc_num);
+ if (retval < 0) {
+ printf("Error on ioctl(). errno: %d\n", errno);
+ return errno;
+ }
+
+ retval = ioctl(g_fd_source, TIOCSETD, &source_ldisc_num);
+ if (retval < 0) {
+ printf("Error on ioctl(). errno: %d\n", errno);
+ return errno;
+ }
+
+ /////////// To disconnect n_tracerouter and n_tracesink ////////
+
+ // First make sure data through the ldiscs has stopped.
+
+ // Second, disconnect ldiscs. This provides a
+ // little cleaner shutdown on tty stack.
+ sink_ldisc_num = 0;
+ source_ldisc_num = 0;
+ ioctl(g_fd_uart, TIOCSETD, &sink_ldisc_num);
+ ioctl(g_fd_gadget, TIOCSETD, &source_ldisc_num);
+
+ // Three, program closes connection, and cleanup:
+ close(g_fd_uart);
+ close(g_fd_gadget);
+ g_fd_uart = g_fd_gadget = NULL;
diff --git a/Documentation/ptp/ptp.txt b/Documentation/driver-api/ptp.rst
index 11e904ee073f..a15192e32347 100644
--- a/Documentation/ptp/ptp.txt
+++ b/Documentation/driver-api/ptp.rst
@@ -1,5 +1,8 @@
+.. SPDX-License-Identifier: GPL-2.0
-* PTP hardware clock infrastructure for Linux
+===========================================
+PTP hardware clock infrastructure for Linux
+===========================================
This patch set introduces support for IEEE 1588 PTP clocks in
Linux. Together with the SO_TIMESTAMPING socket options, this
@@ -22,7 +25,8 @@
- Period output signals configurable from user space
- Synchronization of the Linux system time via the PPS subsystem
-** PTP hardware clock kernel API
+PTP hardware clock kernel API
+=============================
A PTP clock driver registers itself with the class driver. The
class driver handles all of the dealings with user space. The
@@ -36,7 +40,8 @@
development, it can be useful to have more than one clock in a
single system, in order to allow performance comparisons.
-** PTP hardware clock user space API
+PTP hardware clock user space API
+=================================
The class driver also creates a character device for each
registered clock. User space can use an open file descriptor from
@@ -49,7 +54,8 @@
ancillary clock features. User space can receive time stamped
events via blocking read() and poll().
-** Writing clock drivers
+Writing clock drivers
+=====================
Clock drivers include include/linux/ptp_clock_kernel.h and register
themselves by presenting a 'struct ptp_clock_info' to the
@@ -66,14 +72,17 @@
class driver, since the lock may also be needed by the clock
driver's interrupt service routine.
-** Supported hardware
+Supported hardware
+==================
+
+ * Freescale eTSEC gianfar
- + Freescale eTSEC gianfar
- 2 Time stamp external triggers, programmable polarity (opt. interrupt)
- 2 Alarm registers (optional interrupt)
- 3 Periodic signals (optional interrupt)
- + National DP83640
+ * National DP83640
+
- 6 GPIOs programmable as inputs or outputs
- 6 GPIOs with dedicated functions (LED/JTAG/clock) can also be
used as general inputs or outputs
@@ -81,6 +90,7 @@
- GPIO outputs can produce periodic signals
- 1 interrupt pin
- + Intel IXP465
+ * Intel IXP465
+
- Auxiliary Slave/Master Mode Snapshot (optional interrupt)
- Target Time (optional interrupt)
diff --git a/Documentation/pwm.txt b/Documentation/driver-api/pwm.rst
index 8fbf0aa3ba2d..ab62f1bb0366 100644
--- a/Documentation/pwm.txt
+++ b/Documentation/driver-api/pwm.rst
@@ -65,6 +65,10 @@ period). struct pwm_args contains 2 fields (period and polarity) and should
be used to set the initial PWM config (usually done in the probe function
of the PWM user). PWM arguments are retrieved with pwm_get_args().
+All consumers should really be reconfiguring the PWM upon resume as
+appropriate. This is the only way to ensure that everything is resumed in
+the proper order.
+
Using PWMs with the sysfs interface
-----------------------------------
@@ -141,6 +145,9 @@ The implementation of ->get_state() (a method used to retrieve initial PWM
state) is also encouraged for the same reason: letting the PWM user know
about the current PWM state would allow him to avoid glitches.
+Drivers should not implement any power management. In other words,
+consumers should implement it as described in the "Using PWMs" section.
+
Locking
-------
diff --git a/Documentation/driver-api/rapidio/index.rst b/Documentation/driver-api/rapidio/index.rst
new file mode 100644
index 000000000000..a41b4242d16f
--- /dev/null
+++ b/Documentation/driver-api/rapidio/index.rst
@@ -0,0 +1,15 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========================
+The Linux RapidIO Subsystem
+===========================
+
+.. toctree::
+ :maxdepth: 1
+
+ rapidio
+ sysfs
+
+ tsi721
+ mport_cdev
+ rio_cm
diff --git a/Documentation/rapidio/mport_cdev.txt b/Documentation/driver-api/rapidio/mport_cdev.rst
index a53f786ee2e9..df77a7f7be7d 100644
--- a/Documentation/rapidio/mport_cdev.txt
+++ b/Documentation/driver-api/rapidio/mport_cdev.rst
@@ -1,13 +1,9 @@
-RapidIO subsystem mport character device driver (rio_mport_cdev.c)
==================================================================
-
-Version History:
-----------------
- 1.0.0 - Initial driver release.
-
+RapidIO subsystem mport character device driver (rio_mport_cdev.c)
==================================================================
-I. Overview
+1. Overview
+===========
This device driver is the result of collaboration within the RapidIO.org
Software Task Group (STG) between Texas Instruments, Freescale,
@@ -29,40 +25,41 @@ Using available set of ioctl commands user-space applications can perform
following RapidIO bus and subsystem operations:
- Reads and writes from/to configuration registers of mport devices
- (RIO_MPORT_MAINT_READ_LOCAL/RIO_MPORT_MAINT_WRITE_LOCAL)
+ (RIO_MPORT_MAINT_READ_LOCAL/RIO_MPORT_MAINT_WRITE_LOCAL)
- Reads and writes from/to configuration registers of remote RapidIO devices.
This operations are defined as RapidIO Maintenance reads/writes in RIO spec.
- (RIO_MPORT_MAINT_READ_REMOTE/RIO_MPORT_MAINT_WRITE_REMOTE)
+ (RIO_MPORT_MAINT_READ_REMOTE/RIO_MPORT_MAINT_WRITE_REMOTE)
- Set RapidIO Destination ID for mport devices (RIO_MPORT_MAINT_HDID_SET)
- Set RapidIO Component Tag for mport devices (RIO_MPORT_MAINT_COMPTAG_SET)
- Query logical index of mport devices (RIO_MPORT_MAINT_PORT_IDX_GET)
- Query capabilities and RapidIO link configuration of mport devices
- (RIO_MPORT_GET_PROPERTIES)
+ (RIO_MPORT_GET_PROPERTIES)
- Enable/Disable reporting of RapidIO doorbell events to user-space applications
- (RIO_ENABLE_DOORBELL_RANGE/RIO_DISABLE_DOORBELL_RANGE)
+ (RIO_ENABLE_DOORBELL_RANGE/RIO_DISABLE_DOORBELL_RANGE)
- Enable/Disable reporting of RIO port-write events to user-space applications
- (RIO_ENABLE_PORTWRITE_RANGE/RIO_DISABLE_PORTWRITE_RANGE)
+ (RIO_ENABLE_PORTWRITE_RANGE/RIO_DISABLE_PORTWRITE_RANGE)
- Query/Control type of events reported through this driver: doorbells,
port-writes or both (RIO_SET_EVENT_MASK/RIO_GET_EVENT_MASK)
- Configure/Map mport's outbound requests window(s) for specific size,
RapidIO destination ID, hopcount and request type
- (RIO_MAP_OUTBOUND/RIO_UNMAP_OUTBOUND)
+ (RIO_MAP_OUTBOUND/RIO_UNMAP_OUTBOUND)
- Configure/Map mport's inbound requests window(s) for specific size,
RapidIO base address and local memory base address
- (RIO_MAP_INBOUND/RIO_UNMAP_INBOUND)
+ (RIO_MAP_INBOUND/RIO_UNMAP_INBOUND)
- Allocate/Free contiguous DMA coherent memory buffer for DMA data transfers
to/from remote RapidIO devices (RIO_ALLOC_DMA/RIO_FREE_DMA)
- Initiate DMA data transfers to/from remote RapidIO devices (RIO_TRANSFER).
Supports blocking, asynchronous and posted (a.k.a 'fire-and-forget') data
transfer modes.
- Check/Wait for completion of asynchronous DMA data transfer
- (RIO_WAIT_FOR_ASYNC)
+ (RIO_WAIT_FOR_ASYNC)
- Manage device objects supported by RapidIO subsystem (RIO_DEV_ADD/RIO_DEV_DEL).
This allows implementation of various RapidIO fabric enumeration algorithms
as user-space applications while using remaining functionality provided by
kernel RapidIO subsystem.
-II. Hardware Compatibility
+2. Hardware Compatibility
+=========================
This device driver uses standard interfaces defined by kernel RapidIO subsystem
and therefore it can be used with any mport device driver registered by RapidIO
@@ -78,29 +75,35 @@ functionality of their platform when planning to use this driver:
specific DMA engine support and therefore DMA data transfers mport_cdev driver
are not available.
-III. Module parameters
+3. Module parameters
+====================
-- 'dma_timeout' - DMA transfer completion timeout (in msec, default value 3000).
+- 'dma_timeout'
+ - DMA transfer completion timeout (in msec, default value 3000).
This parameter set a maximum completion wait time for SYNC mode DMA
transfer requests and for RIO_WAIT_FOR_ASYNC ioctl requests.
-- 'dbg_level' - This parameter allows to control amount of debug information
+- 'dbg_level'
+ - This parameter allows to control amount of debug information
generated by this device driver. This parameter is formed by set of
bit masks that correspond to the specific functional blocks.
For mask definitions see 'drivers/rapidio/devices/rio_mport_cdev.c'
This parameter can be changed dynamically.
Use CONFIG_RAPIDIO_DEBUG=y to enable debug output at the top level.
-IV. Known problems
+4. Known problems
+=================
None.
-V. User-space Applications and API
+5. User-space Applications and API
+==================================
API library and applications that use this device driver are available from
RapidIO.org.
-VI. TODO List
+6. TODO List
+============
- Add support for sending/receiving "raw" RapidIO messaging packets.
- Add memory mapped DMA data transfers as an option when RapidIO-specific DMA
diff --git a/Documentation/rapidio/rapidio.txt b/Documentation/driver-api/rapidio/rapidio.rst
index 28fbd877f85a..fb8942d3ba85 100644
--- a/Documentation/rapidio/rapidio.txt
+++ b/Documentation/driver-api/rapidio/rapidio.rst
@@ -1,6 +1,6 @@
- The Linux RapidIO Subsystem
-
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+============
+Introduction
+============
The RapidIO standard is a packet-based fabric interconnect standard designed for
use in embedded systems. Development of the RapidIO standard is directed by the
@@ -11,7 +11,7 @@ This document describes the basics of the Linux RapidIO subsystem and provides
information on its major components.
1 Overview
-----------
+==========
Because the RapidIO subsystem follows the Linux device model it is integrated
into the kernel similarly to other buses by defining RapidIO-specific device and
@@ -22,7 +22,7 @@ architecture-specific interfaces that provide support for common RapidIO
subsystem operations.
2. Core Components
-------------------
+==================
A typical RapidIO network is a combination of endpoints and switches.
Each of these components is represented in the subsystem by an associated data
@@ -30,6 +30,7 @@ structure. The core logical components of the RapidIO subsystem are defined
in include/linux/rio.h file.
2.1 Master Port
+---------------
A master port (or mport) is a RapidIO interface controller that is local to the
processor executing the Linux code. A master port generates and receives RapidIO
@@ -46,6 +47,7 @@ includes rio_ops data structure which contains pointers to hardware specific
implementations of RapidIO functions.
2.2 Device
+----------
A RapidIO device is any endpoint (other than mport) or switch in the network.
All devices are presented in the RapidIO subsystem by corresponding rio_dev data
@@ -53,6 +55,7 @@ structure. Devices form one global device list and per-network device lists
(depending on number of available mports and networks).
2.3 Switch
+----------
A RapidIO switch is a special class of device that routes packets between its
ports towards their final destination. The packet destination port within a
@@ -66,6 +69,7 @@ specific switch drivers that are designed to provide hardware-specific
implementation of common switch management routines.
2.4 Network
+-----------
A RapidIO network is a combination of interconnected endpoint and switch devices.
Each RapidIO network known to the system is represented by corresponding rio_net
@@ -74,11 +78,13 @@ ports that form the same network. It also contains a pointer to the default
master port that is used to communicate with devices within the network.
2.5 Device Drivers
+------------------
RapidIO device-specific drivers follow Linux Kernel Driver Model and are
intended to support specific RapidIO devices attached to the RapidIO network.
2.6 Subsystem Interfaces
+------------------------
RapidIO interconnect specification defines features that may be used to provide
one or more common service layers for all participating RapidIO devices. These
@@ -90,7 +96,7 @@ subsystem interfaces. This allows to have multiple common services attached to
the same device without blocking attachment of a device-specific driver.
3. Subsystem Initialization
----------------------------
+===========================
In order to initialize the RapidIO subsystem, a platform must initialize and
register at least one master port within the RapidIO network. To register mport
@@ -105,7 +111,7 @@ RapidIO subsystem can be configured to be built as a statically linked or
modular component of the kernel (see details below).
4. Enumeration and Discovery
-----------------------------
+============================
4.1 Overview
------------
@@ -168,14 +174,16 @@ on RapidIO subsystem build configuration:
(b) If the RapidIO subsystem core is built as a loadable module, in addition
to the method shown above, the host destination ID(s) can be specified using
traditional methods of passing module parameter "hdid=" during its loading:
+
- from command line: "modprobe rapidio hdid=-1,7", or
- from modprobe configuration file using configuration command "options",
like in this example: "options rapidio hdid=-1,7". An example of modprobe
configuration file is provided in the section below.
- NOTES:
+NOTES:
(i) if "hdid=" parameter is omitted all available mport will be assigned
destination ID = -1;
+
(ii) the "hdid=" parameter in systems with multiple mports can have
destination ID assignments omitted from the end of list (default = -1).
@@ -317,8 +325,7 @@ must ensure that they are loaded before the enumeration/discovery starts.
This process can be automated by specifying pre- or post- dependencies in the
RapidIO-specific modprobe configuration file as shown in the example below.
- File /etc/modprobe.d/rapidio.conf:
- ----------------------------------
+File /etc/modprobe.d/rapidio.conf::
# Configure RapidIO subsystem modules
@@ -335,17 +342,21 @@ RapidIO-specific modprobe configuration file as shown in the example below.
--------------------------
-NOTE: In the example above, one of "softdep" commands must be removed or
-commented out to keep required module loading sequence.
+NOTE:
+ In the example above, one of "softdep" commands must be removed or
+ commented out to keep required module loading sequence.
-A. References
--------------
+5. References
+=============
[1] RapidIO Trade Association. RapidIO Interconnect Specifications.
http://www.rapidio.org.
+
[2] Rapidio TA. Technology Comparisons.
http://www.rapidio.org/education/technology_comparisons/
+
[3] RapidIO support for Linux.
http://lwn.net/Articles/139118/
+
[4] Matt Porter. RapidIO for Linux. Ottawa Linux Symposium, 2005
http://www.kernel.org/doc/ols/2005/ols2005v2-pages-43-56.pdf
diff --git a/Documentation/rapidio/rio_cm.txt b/Documentation/driver-api/rapidio/rio_cm.rst
index 27aa401f1126..5294430a7a74 100644
--- a/Documentation/rapidio/rio_cm.txt
+++ b/Documentation/driver-api/rapidio/rio_cm.rst
@@ -1,13 +1,10 @@
+==========================================================================
RapidIO subsystem Channelized Messaging character device driver (rio_cm.c)
==========================================================================
-Version History:
-----------------
- 1.0.0 - Initial driver release.
-
-==========================================================================
-I. Overview
+1. Overview
+===========
This device driver is the result of collaboration within the RapidIO.org
Software Task Group (STG) between Texas Instruments, Prodrive Technologies,
@@ -41,79 +38,98 @@ in /dev directory common for all registered RapidIO mport devices.
Following ioctl commands are available to user-space applications:
-- RIO_CM_MPORT_GET_LIST : Returns to caller list of local mport devices that
+- RIO_CM_MPORT_GET_LIST:
+ Returns to caller list of local mport devices that
support messaging operations (number of entries up to RIO_MAX_MPORTS).
Each list entry is combination of mport's index in the system and RapidIO
destination ID assigned to the port.
-- RIO_CM_EP_GET_LIST_SIZE : Returns number of messaging capable remote endpoints
+- RIO_CM_EP_GET_LIST_SIZE:
+ Returns number of messaging capable remote endpoints
in a RapidIO network associated with the specified mport device.
-- RIO_CM_EP_GET_LIST : Returns list of RapidIO destination IDs for messaging
+- RIO_CM_EP_GET_LIST:
+ Returns list of RapidIO destination IDs for messaging
capable remote endpoints (peers) available in a RapidIO network associated
with the specified mport device.
-- RIO_CM_CHAN_CREATE : Creates RapidIO message exchange channel data structure
+- RIO_CM_CHAN_CREATE:
+ Creates RapidIO message exchange channel data structure
with channel ID assigned automatically or as requested by a caller.
-- RIO_CM_CHAN_BIND : Binds the specified channel data structure to the specified
+- RIO_CM_CHAN_BIND:
+ Binds the specified channel data structure to the specified
mport device.
-- RIO_CM_CHAN_LISTEN : Enables listening for connection requests on the specified
+- RIO_CM_CHAN_LISTEN:
+ Enables listening for connection requests on the specified
channel.
-- RIO_CM_CHAN_ACCEPT : Accepts a connection request from peer on the specified
+- RIO_CM_CHAN_ACCEPT:
+ Accepts a connection request from peer on the specified
channel. If wait timeout for this request is specified by a caller it is
a blocking call. If timeout set to 0 this is non-blocking call - ioctl
handler checks for a pending connection request and if one is not available
exits with -EGAIN error status immediately.
-- RIO_CM_CHAN_CONNECT : Sends a connection request to a remote peer/channel.
-- RIO_CM_CHAN_SEND : Sends a data message through the specified channel.
+- RIO_CM_CHAN_CONNECT:
+ Sends a connection request to a remote peer/channel.
+- RIO_CM_CHAN_SEND:
+ Sends a data message through the specified channel.
The handler for this request assumes that message buffer specified by
a caller includes the reserved space for a packet header required by
this driver.
-- RIO_CM_CHAN_RECEIVE : Receives a data message through a connected channel.
+- RIO_CM_CHAN_RECEIVE:
+ Receives a data message through a connected channel.
If the channel does not have an incoming message ready to return this ioctl
handler will wait for new message until timeout specified by a caller
expires. If timeout value is set to 0, ioctl handler uses a default value
defined by MAX_SCHEDULE_TIMEOUT.
-- RIO_CM_CHAN_CLOSE : Closes a specified channel and frees associated buffers.
+- RIO_CM_CHAN_CLOSE:
+ Closes a specified channel and frees associated buffers.
If the specified channel is in the CONNECTED state, sends close notification
to the remote peer.
The ioctl command codes and corresponding data structures intended for use by
user-space applications are defined in 'include/uapi/linux/rio_cm_cdev.h'.
-II. Hardware Compatibility
+2. Hardware Compatibility
+=========================
This device driver uses standard interfaces defined by kernel RapidIO subsystem
and therefore it can be used with any mport device driver registered by RapidIO
subsystem with limitations set by available mport HW implementation of messaging
mailboxes.
-III. Module parameters
+3. Module parameters
+====================
-- 'dbg_level' - This parameter allows to control amount of debug information
+- 'dbg_level'
+ - This parameter allows to control amount of debug information
generated by this device driver. This parameter is formed by set of
bit masks that correspond to the specific functional block.
For mask definitions see 'drivers/rapidio/devices/rio_cm.c'
This parameter can be changed dynamically.
Use CONFIG_RAPIDIO_DEBUG=y to enable debug output at the top level.
-- 'cmbox' - Number of RapidIO mailbox to use (default value is 1).
+- 'cmbox'
+ - Number of RapidIO mailbox to use (default value is 1).
This parameter allows to set messaging mailbox number that will be used
within entire RapidIO network. It can be used when default mailbox is
used by other device drivers or is not supported by some nodes in the
RapidIO network.
-- 'chstart' - Start channel number for dynamic assignment. Default value - 256.
+- 'chstart'
+ - Start channel number for dynamic assignment. Default value - 256.
Allows to exclude channel numbers below this parameter from dynamic
allocation to avoid conflicts with software components that use
reserved predefined channel numbers.
-IV. Known problems
+4. Known problems
+=================
None.
-V. User-space Applications and API Library
+5. User-space Applications and API Library
+==========================================
Messaging API library and applications that use this device driver are available
from RapidIO.org.
-VI. TODO List
+6. TODO List
+============
- Add support for system notification messages (reserved channel 0).
diff --git a/Documentation/rapidio/sysfs.txt b/Documentation/driver-api/rapidio/sysfs.rst
index a1adac888e6e..540f72683496 100644
--- a/Documentation/rapidio/sysfs.txt
+++ b/Documentation/driver-api/rapidio/sysfs.rst
@@ -1,3 +1,7 @@
+=============
+Sysfs entries
+=============
+
The RapidIO sysfs files have moved to:
Documentation/ABI/testing/sysfs-bus-rapidio and
Documentation/ABI/testing/sysfs-class-rapidio
diff --git a/Documentation/rapidio/tsi721.txt b/Documentation/driver-api/rapidio/tsi721.rst
index cd2a2935d51d..42aea438cd20 100644
--- a/Documentation/rapidio/tsi721.txt
+++ b/Documentation/driver-api/rapidio/tsi721.rst
@@ -1,7 +1,9 @@
+=========================================================================
RapidIO subsystem mport driver for IDT Tsi721 PCI Express-to-SRIO bridge.
=========================================================================
-I. Overview
+1. Overview
+===========
This driver implements all currently defined RapidIO mport callback functions.
It supports maintenance read and write operations, inbound and outbound RapidIO
@@ -17,7 +19,9 @@ into the corresponding message queue. Messaging callbacks are implemented to be
fully compatible with RIONET driver (Ethernet over RapidIO messaging services).
1. Module parameters:
-- 'dbg_level' - This parameter allows to control amount of debug information
+
+- 'dbg_level'
+ - This parameter allows to control amount of debug information
generated by this device driver. This parameter is formed by set of
This parameter can be changed bit masks that correspond to the specific
functional block.
@@ -25,37 +29,44 @@ fully compatible with RIONET driver (Ethernet over RapidIO messaging services).
This parameter can be changed dynamically.
Use CONFIG_RAPIDIO_DEBUG=y to enable debug output at the top level.
-- 'dma_desc_per_channel' - This parameter defines number of hardware buffer
+- 'dma_desc_per_channel'
+ - This parameter defines number of hardware buffer
descriptors allocated for each registered Tsi721 DMA channel.
Its default value is 128.
-- 'dma_txqueue_sz' - DMA transactions queue size. Defines number of pending
+- 'dma_txqueue_sz'
+ - DMA transactions queue size. Defines number of pending
transaction requests that can be accepted by each DMA channel.
Default value is 16.
-- 'dma_sel' - DMA channel selection mask. Bitmask that defines which hardware
+- 'dma_sel'
+ - DMA channel selection mask. Bitmask that defines which hardware
DMA channels (0 ... 6) will be registered with DmaEngine core.
If bit is set to 1, the corresponding DMA channel will be registered.
DMA channels not selected by this mask will not be used by this device
driver. Default value is 0x7f (use all channels).
-- 'pcie_mrrs' - override value for PCIe Maximum Read Request Size (MRRS).
+- 'pcie_mrrs'
+ - override value for PCIe Maximum Read Request Size (MRRS).
This parameter gives an ability to override MRRS value set during PCIe
configuration process. Tsi721 supports read request sizes up to 4096B.
Value for this parameter must be set as defined by PCIe specification:
0 = 128B, 1 = 256B, 2 = 512B, 3 = 1024B, 4 = 2048B and 5 = 4096B.
Default value is '-1' (= keep platform setting).
-- 'mbox_sel' - RIO messaging MBOX selection mask. This is a bitmask that defines
+- 'mbox_sel'
+ - RIO messaging MBOX selection mask. This is a bitmask that defines
messaging MBOXes are managed by this device driver. Mask bits 0 - 3
correspond to MBOX0 - MBOX3. MBOX is under driver's control if the
corresponding bit is set to '1'. Default value is 0x0f (= all).
-II. Known problems
+2. Known problems
+=================
None.
-III. DMA Engine Support
+3. DMA Engine Support
+=====================
Tsi721 mport driver supports DMA data transfers between local system memory and
remote RapidIO devices. This functionality is implemented according to SLAVE
@@ -68,17 +79,21 @@ One BDMA channel is reserved for generation of maintenance read/write requests.
If Tsi721 mport driver have been built with RAPIDIO_DMA_ENGINE support included,
this driver will accept DMA-specific module parameter:
- "dma_desc_per_channel" - defines number of hardware buffer descriptors used by
+
+ "dma_desc_per_channel"
+ - defines number of hardware buffer descriptors used by
each BDMA channel of Tsi721 (by default - 128).
-IV. Version History
+4. Version History
- 1.1.0 - DMA operations re-worked to support data scatter/gather lists larger
+ ===== ====================================================================
+ 1.1.0 DMA operations re-worked to support data scatter/gather lists larger
than hardware buffer descriptors ring.
- 1.0.0 - Initial driver release.
+ 1.0.0 Initial driver release.
+ ===== ====================================================================
-V. License
------------------------------------------------
+5. License
+===========
Copyright(c) 2011 Integrated Device Technology, Inc. All rights reserved.
diff --git a/Documentation/rfkill.txt b/Documentation/driver-api/rfkill.rst
index 7d3684e81df6..7d3684e81df6 100644
--- a/Documentation/rfkill.txt
+++ b/Documentation/driver-api/rfkill.rst
diff --git a/Documentation/driver-api/s390-drivers.rst b/Documentation/driver-api/s390-drivers.rst
index 30e6aa7e160b..5158577bc29b 100644
--- a/Documentation/driver-api/s390-drivers.rst
+++ b/Documentation/driver-api/s390-drivers.rst
@@ -27,7 +27,7 @@ not strictly considered I/O devices. They are considered here as well,
although they are not the focus of this document.
Some additional information can also be found in the kernel source under
-Documentation/s390/driver-model.txt.
+Documentation/s390/driver-model.rst.
The css bus
===========
@@ -38,7 +38,7 @@ into several categories:
* Standard I/O subchannels, for use by the system. They have a child
device on the ccw bus and are described below.
* I/O subchannels bound to the vfio-ccw driver. See
- Documentation/s390/vfio-ccw.txt.
+ Documentation/s390/vfio-ccw.rst.
* Message subchannels. No Linux driver currently exists.
* CHSC subchannels (at most one). The chsc subchannel driver can be used
to send asynchronous chsc commands.
diff --git a/Documentation/serial/cyclades_z.rst b/Documentation/driver-api/serial/cyclades_z.rst
index 532ff67e2f1c..532ff67e2f1c 100644
--- a/Documentation/serial/cyclades_z.rst
+++ b/Documentation/driver-api/serial/cyclades_z.rst
diff --git a/Documentation/serial/driver.rst b/Documentation/driver-api/serial/driver.rst
index 4537119bf624..31bd4e16fb1f 100644
--- a/Documentation/serial/driver.rst
+++ b/Documentation/driver-api/serial/driver.rst
@@ -311,7 +311,7 @@ hardware.
This call must not sleep
set_ldisc(port,termios)
- Notifier for discipline change. See Documentation/serial/tty.rst.
+ Notifier for discipline change. See Documentation/driver-api/serial/tty.rst.
Locking: caller holds tty_port->mutex
diff --git a/Documentation/serial/index.rst b/Documentation/driver-api/serial/index.rst
index d0ba22ea23bf..33ad10d05b26 100644
--- a/Documentation/serial/index.rst
+++ b/Documentation/driver-api/serial/index.rst
@@ -1,4 +1,4 @@
-:orphan:
+.. SPDX-License-Identifier: GPL-2.0
==========================
Support for Serial devices
diff --git a/Documentation/serial/moxa-smartio.rst b/Documentation/driver-api/serial/moxa-smartio.rst
index 156100f17c3f..156100f17c3f 100644
--- a/Documentation/serial/moxa-smartio.rst
+++ b/Documentation/driver-api/serial/moxa-smartio.rst
diff --git a/Documentation/serial/n_gsm.rst b/Documentation/driver-api/serial/n_gsm.rst
index f3ad9fd26408..286e7ff4d2d9 100644
--- a/Documentation/serial/n_gsm.rst
+++ b/Documentation/driver-api/serial/n_gsm.rst
@@ -18,18 +18,22 @@ How to use it
2. switch the serial line to using the n_gsm line discipline by using
TIOCSETD ioctl,
3. configure the mux using GSMIOC_GETCONF / GSMIOC_SETCONF ioctl,
+4. obtain base gsmtty number for the used serial port,
Major parts of the initialization program :
(a good starting point is util-linux-ng/sys-utils/ldattach.c)::
+ #include <stdio.h>
+ #include <stdint.h>
#include <linux/gsmmux.h>
- #define N_GSM0710 21 /* GSM 0710 Mux */
+ #include <linux/tty.h>
#define DEFAULT_SPEED B115200
#define SERIAL_PORT /dev/ttyS0
int ldisc = N_GSM0710;
struct gsm_config c;
struct termios configuration;
+ uint32_t first;
/* open the serial port connected to the modem */
fd = open(SERIAL_PORT, O_RDWR | O_NOCTTY | O_NDELAY);
@@ -58,21 +62,14 @@ Major parts of the initialization program :
c.mtu = 127;
/* set the new configuration */
ioctl(fd, GSMIOC_SETCONF, &c);
+ /* get first gsmtty device node */
+ ioctl(fd, GSMIOC_GETFIRST, &first);
+ printf("first muxed line: /dev/gsmtty%i\n", first);
/* and wait for ever to keep the line discipline enabled */
daemon(0,0);
pause();
-4. create the devices corresponding to the "virtual" serial ports (take care,
- each modem has its configuration and some DLC have dedicated functions,
- for example GPS), starting with minor 1 (DLC0 is reserved for the management
- of the mux)::
-
- MAJOR=`cat /proc/devices |grep gsmtty | awk '{print $1}`
- for i in `seq 1 4`; do
- mknod /dev/ttygsm$i c $MAJOR $i
- done
-
5. use these devices as plain serial ports.
for example, it's possible:
diff --git a/Documentation/serial/rocket.rst b/Documentation/driver-api/serial/rocket.rst
index 23761eae4282..23761eae4282 100644
--- a/Documentation/serial/rocket.rst
+++ b/Documentation/driver-api/serial/rocket.rst
diff --git a/Documentation/serial/serial-iso7816.rst b/Documentation/driver-api/serial/serial-iso7816.rst
index d990143de0c6..d990143de0c6 100644
--- a/Documentation/serial/serial-iso7816.rst
+++ b/Documentation/driver-api/serial/serial-iso7816.rst
diff --git a/Documentation/serial/serial-rs485.rst b/Documentation/driver-api/serial/serial-rs485.rst
index 6bc824f948f9..6bc824f948f9 100644
--- a/Documentation/serial/serial-rs485.rst
+++ b/Documentation/driver-api/serial/serial-rs485.rst
diff --git a/Documentation/serial/tty.rst b/Documentation/driver-api/serial/tty.rst
index dd972caacf3e..dd972caacf3e 100644
--- a/Documentation/serial/tty.rst
+++ b/Documentation/driver-api/serial/tty.rst
diff --git a/Documentation/SM501.txt b/Documentation/driver-api/sm501.rst
index 882507453ba4..882507453ba4 100644
--- a/Documentation/SM501.txt
+++ b/Documentation/driver-api/sm501.rst
diff --git a/Documentation/smsc_ece1099.txt b/Documentation/driver-api/smsc_ece1099.rst
index 079277421eaf..079277421eaf 100644
--- a/Documentation/smsc_ece1099.txt
+++ b/Documentation/driver-api/smsc_ece1099.rst
diff --git a/Documentation/driver-api/soundwire/index.rst b/Documentation/driver-api/soundwire/index.rst
index 6db026028f27..234911a0db99 100644
--- a/Documentation/driver-api/soundwire/index.rst
+++ b/Documentation/driver-api/soundwire/index.rst
@@ -10,7 +10,7 @@ SoundWire Documentation
error_handling
locking
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/driver-api/soundwire/locking.rst b/Documentation/driver-api/soundwire/locking.rst
index 253f73555255..3a7ffb3d87f3 100644
--- a/Documentation/driver-api/soundwire/locking.rst
+++ b/Documentation/driver-api/soundwire/locking.rst
@@ -44,7 +44,9 @@ Message transfer.
b. Transfer message (Read/Write) to Slave1 or broadcast message on
Bus in case of bank switch.
- c. Release Message lock ::
+ c. Release Message lock
+
+ ::
+----------+ +---------+
| | | |
diff --git a/Documentation/switchtec.txt b/Documentation/driver-api/switchtec.rst
index 30d6a64e53f7..7611fdc53e19 100644
--- a/Documentation/switchtec.txt
+++ b/Documentation/driver-api/switchtec.rst
@@ -97,6 +97,6 @@ the following configuration settings:
NT EP BAR 2 will be dynamically configured as a Direct Window, and
the configuration file does not need to configure it explicitly.
-Please refer to Documentation/ntb.txt in Linux source tree for an overall
+Please refer to Documentation/driver-api/ntb.rst in Linux source tree for an overall
understanding of the Linux NTB stack. ntb_hw_switchtec works as an NTB
Hardware Driver in this stack.
diff --git a/Documentation/sync_file.txt b/Documentation/driver-api/sync_file.rst
index 496fb2c3b3e6..496fb2c3b3e6 100644
--- a/Documentation/sync_file.txt
+++ b/Documentation/driver-api/sync_file.rst
diff --git a/Documentation/driver-api/target.rst b/Documentation/driver-api/target.rst
index 4363611dd86d..620ec6173a93 100644
--- a/Documentation/driver-api/target.rst
+++ b/Documentation/driver-api/target.rst
@@ -10,8 +10,8 @@ TBD
Target core device interfaces
=============================
-.. kernel-doc:: drivers/target/target_core_device.c
- :export:
+This section is blank because no kerneldoc comments have been added to
+drivers/target/target_core_device.c.
Target core transport interfaces
================================
diff --git a/Documentation/thermal/cpu-cooling-api.txt b/Documentation/driver-api/thermal/cpu-cooling-api.rst
index 7df567eaea1a..645d914c45a6 100644
--- a/Documentation/thermal/cpu-cooling-api.txt
+++ b/Documentation/driver-api/thermal/cpu-cooling-api.rst
@@ -1,5 +1,6 @@
+=======================
CPU cooling APIs How To
-===================================
+=======================
Written by Amit Daniel Kachhap <amit.kachhap@linaro.org>
@@ -8,40 +9,54 @@ Updated: 6 Jan 2015
Copyright (c) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
0. Introduction
+===============
The generic cpu cooling(freq clipping) provides registration/unregistration APIs
to the caller. The binding of the cooling devices to the trip point is left for
the user. The registration APIs returns the cooling device pointer.
1. cpu cooling APIs
+===================
1.1 cpufreq registration/unregistration APIs
-1.1.1 struct thermal_cooling_device *cpufreq_cooling_register(
- struct cpumask *clip_cpus)
+--------------------------------------------
+
+ ::
+
+ struct thermal_cooling_device
+ *cpufreq_cooling_register(struct cpumask *clip_cpus)
This interface function registers the cpufreq cooling device with the name
"thermal-cpufreq-%x". This api can support multiple instances of cpufreq
cooling devices.
- clip_cpus: cpumask of cpus where the frequency constraints will happen.
+ clip_cpus:
+ cpumask of cpus where the frequency constraints will happen.
+
+ ::
-1.1.2 struct thermal_cooling_device *of_cpufreq_cooling_register(
- struct cpufreq_policy *policy)
+ struct thermal_cooling_device
+ *of_cpufreq_cooling_register(struct cpufreq_policy *policy)
This interface function registers the cpufreq cooling device with
the name "thermal-cpufreq-%x" linking it with a device tree node, in
order to bind it via the thermal DT code. This api can support multiple
instances of cpufreq cooling devices.
- policy: CPUFreq policy.
+ policy:
+ CPUFreq policy.
+
+
+ ::
-1.1.3 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
+ void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
This interface function unregisters the "thermal-cpufreq-%x" cooling device.
cdev: Cooling device pointer which has to be unregistered.
2. Power models
+===============
The power API registration functions provide a simple power model for
CPUs. The current power is calculated as dynamic power (static power isn't
@@ -65,9 +80,9 @@ For a given processor implementation the primary factors are:
variation. In pathological cases this variation can be significant,
but typically it is of a much lesser impact than the factors above.
-A high level dynamic power consumption model may then be represented as:
+A high level dynamic power consumption model may then be represented as::
-Pdyn = f(run) * Voltage^2 * Frequency * Utilisation
+ Pdyn = f(run) * Voltage^2 * Frequency * Utilisation
f(run) here represents the described execution behaviour and its
result has a units of Watts/Hz/Volt^2 (this often expressed in
@@ -80,9 +95,9 @@ factors. Therefore, in initial implementation that contribution is
represented as a constant coefficient. This is a simplification
consistent with the relative contribution to overall power variation.
-In this simplified representation our model becomes:
+In this simplified representation our model becomes::
-Pdyn = Capacitance * Voltage^2 * Frequency * Utilisation
+ Pdyn = Capacitance * Voltage^2 * Frequency * Utilisation
Where `capacitance` is a constant that represents an indicative
running time dynamic power coefficient in fundamental units of
diff --git a/Documentation/thermal/exynos_thermal b/Documentation/driver-api/thermal/exynos_thermal.rst
index 9010c4416967..5bd556566c70 100644
--- a/Documentation/thermal/exynos_thermal
+++ b/Documentation/driver-api/thermal/exynos_thermal.rst
@@ -1,8 +1,11 @@
+========================
Kernel driver exynos_tmu
-=================
+========================
Supported chips:
+
* ARM SAMSUNG EXYNOS4, EXYNOS5 series of SoC
+
Datasheet: Not publicly available
Authors: Donggeun Kim <dg77.kim@samsung.com>
@@ -19,32 +22,39 @@ Temperature can be taken from the temperature code.
There are three equations converting from temperature to temperature code.
The three equations are:
- 1. Two point trimming
+ 1. Two point trimming::
+
Tc = (T - 25) * (TI2 - TI1) / (85 - 25) + TI1
- 2. One point trimming
+ 2. One point trimming::
+
Tc = T + TI1 - 25
- 3. No trimming
+ 3. No trimming::
+
Tc = T + 50
- Tc: Temperature code, T: Temperature,
- TI1: Trimming info for 25 degree Celsius (stored at TRIMINFO register)
+ Tc:
+ Temperature code, T: Temperature,
+ TI1:
+ Trimming info for 25 degree Celsius (stored at TRIMINFO register)
Temperature code measured at 25 degree Celsius which is unchanged
- TI2: Trimming info for 85 degree Celsius (stored at TRIMINFO register)
+ TI2:
+ Trimming info for 85 degree Celsius (stored at TRIMINFO register)
Temperature code measured at 85 degree Celsius which is unchanged
TMU(Thermal Management Unit) in EXYNOS4/5 generates interrupt
when temperature exceeds pre-defined levels.
The maximum number of configurable threshold is five.
-The threshold levels are defined as follows:
+The threshold levels are defined as follows::
+
Level_0: current temperature > trigger_level_0 + threshold
Level_1: current temperature > trigger_level_1 + threshold
Level_2: current temperature > trigger_level_2 + threshold
Level_3: current temperature > trigger_level_3 + threshold
- The threshold and each trigger_level are set
- through the corresponding registers.
+The threshold and each trigger_level are set
+through the corresponding registers.
When an interrupt occurs, this driver notify kernel thermal framework
with the function exynos_report_trigger.
@@ -54,24 +64,27 @@ it can be used to synchronize the cooling action.
TMU driver description:
-----------------------
-The exynos thermal driver is structured as,
+The exynos thermal driver is structured as::
Kernel Core thermal framework
(thermal_core.c, step_wise.c, cpu_cooling.c)
^
|
|
-TMU configuration data -------> TMU Driver <------> Exynos Core thermal wrapper
-(exynos_tmu_data.c) (exynos_tmu.c) (exynos_thermal_common.c)
-(exynos_tmu_data.h) (exynos_tmu.h) (exynos_thermal_common.h)
+ TMU configuration data -----> TMU Driver <----> Exynos Core thermal wrapper
+ (exynos_tmu_data.c) (exynos_tmu.c) (exynos_thermal_common.c)
+ (exynos_tmu_data.h) (exynos_tmu.h) (exynos_thermal_common.h)
-a) TMU configuration data: This consist of TMU register offsets/bitfields
+a) TMU configuration data:
+ This consist of TMU register offsets/bitfields
described through structure exynos_tmu_registers. Also several
other platform data (struct exynos_tmu_platform_data) members
are used to configure the TMU.
-b) TMU driver: This component initialises the TMU controller and sets different
+b) TMU driver:
+ This component initialises the TMU controller and sets different
thresholds. It invokes core thermal implementation with the call
exynos_report_trigger.
-c) Exynos Core thermal wrapper: This provides 3 wrapper function to use the
+c) Exynos Core thermal wrapper:
+ This provides 3 wrapper function to use the
Kernel core thermal framework. They are exynos_unregister_thermal,
exynos_register_thermal and exynos_report_trigger.
diff --git a/Documentation/driver-api/thermal/exynos_thermal_emulation.rst b/Documentation/driver-api/thermal/exynos_thermal_emulation.rst
new file mode 100644
index 000000000000..c21d10838bc5
--- /dev/null
+++ b/Documentation/driver-api/thermal/exynos_thermal_emulation.rst
@@ -0,0 +1,61 @@
+=====================
+Exynos Emulation Mode
+=====================
+
+Copyright (C) 2012 Samsung Electronics
+
+Written by Jonghwa Lee <jonghwa3.lee@samsung.com>
+
+Description
+-----------
+
+Exynos 4x12 (4212, 4412) and 5 series provide emulation mode for thermal
+management unit. Thermal emulation mode supports software debug for
+TMU's operation. User can set temperature manually with software code
+and TMU will read current temperature from user value not from sensor's
+value.
+
+Enabling CONFIG_THERMAL_EMULATION option will make this support
+available. When it's enabled, sysfs node will be created as
+/sys/devices/virtual/thermal/thermal_zone'zone id'/emul_temp.
+
+The sysfs node, 'emul_node', will contain value 0 for the initial state.
+When you input any temperature you want to update to sysfs node, it
+automatically enable emulation mode and current temperature will be
+changed into it.
+
+(Exynos also supports user changeable delay time which would be used to
+delay of changing temperature. However, this node only uses same delay
+of real sensing time, 938us.)
+
+Exynos emulation mode requires synchronous of value changing and
+enabling. It means when you want to update the any value of delay or
+next temperature, then you have to enable emulation mode at the same
+time. (Or you have to keep the mode enabling.) If you don't, it fails to
+change the value to updated one and just use last succeessful value
+repeatedly. That's why this node gives users the right to change
+termerpature only. Just one interface makes it more simply to use.
+
+Disabling emulation mode only requires writing value 0 to sysfs node.
+
+::
+
+
+ TEMP 120 |
+ |
+ 100 |
+ |
+ 80 |
+ | +-----------
+ 60 | | |
+ | +-------------| |
+ 40 | | | |
+ | | | |
+ 20 | | | +----------
+ | | | | |
+ 0 |______________|_____________|__________|__________|_________
+ A A A A TIME
+ |<----->| |<----->| |<----->| |
+ | 938us | | | | | |
+ emulation : 0 50 | 70 | 20 | 0
+ current temp: sensor 50 70 20 sensor
diff --git a/Documentation/driver-api/thermal/index.rst b/Documentation/driver-api/thermal/index.rst
new file mode 100644
index 000000000000..5ba61d19c6ae
--- /dev/null
+++ b/Documentation/driver-api/thermal/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======
+Thermal
+=======
+
+.. toctree::
+ :maxdepth: 1
+
+ cpu-cooling-api
+ sysfs-api
+ power_allocator
+
+ exynos_thermal
+ exynos_thermal_emulation
+ intel_powerclamp
+ nouveau_thermal
+ x86_pkg_temperature_thermal
diff --git a/Documentation/thermal/intel_powerclamp.txt b/Documentation/driver-api/thermal/intel_powerclamp.rst
index b5df21168fbc..3f6dfb0b3ea6 100644
--- a/Documentation/thermal/intel_powerclamp.txt
+++ b/Documentation/driver-api/thermal/intel_powerclamp.rst
@@ -1,10 +1,13 @@
- =======================
- INTEL POWERCLAMP DRIVER
- =======================
-By: Arjan van de Ven <arjan@linux.intel.com>
- Jacob Pan <jacob.jun.pan@linux.intel.com>
+=======================
+Intel Powerclamp Driver
+=======================
+
+By:
+ - Arjan van de Ven <arjan@linux.intel.com>
+ - Jacob Pan <jacob.jun.pan@linux.intel.com>
+
+.. Contents:
-Contents:
(*) Introduction
- Goals and Objectives
@@ -23,7 +26,6 @@ Contents:
- Generic Thermal Layer (sysfs)
- Kernel APIs (TBD)
-============
INTRODUCTION
============
@@ -47,7 +49,6 @@ scalability, and user experience. In many cases, clear advantage is
shown over taking the CPU offline or modulating the CPU clock.
-===================
THEORY OF OPERATION
===================
@@ -57,11 +58,12 @@ Idle Injection
On modern Intel processors (Nehalem or later), package level C-state
residency is available in MSRs, thus also available to the kernel.
-These MSRs are:
- #define MSR_PKG_C2_RESIDENCY 0x60D
- #define MSR_PKG_C3_RESIDENCY 0x3F8
- #define MSR_PKG_C6_RESIDENCY 0x3F9
- #define MSR_PKG_C7_RESIDENCY 0x3FA
+These MSRs are::
+
+ #define MSR_PKG_C2_RESIDENCY 0x60D
+ #define MSR_PKG_C3_RESIDENCY 0x3F8
+ #define MSR_PKG_C6_RESIDENCY 0x3F9
+ #define MSR_PKG_C7_RESIDENCY 0x3FA
If the kernel can also inject idle time to the system, then a
closed-loop control system can be established that manages package
@@ -96,19 +98,21 @@ are not masked. Tests show that the extra wakeups from scheduler tick
have a dramatic impact on the effectiveness of the powerclamp driver
on large scale systems (Westmere system with 80 processors).
-CPU0
- ____________ ____________
-kidle_inject/0 | sleep | mwait | sleep |
- _________| |________| |_______
- duration
-CPU1
- ____________ ____________
-kidle_inject/1 | sleep | mwait | sleep |
- _________| |________| |_______
- ^
- |
- |
- roundup(jiffies, interval)
+::
+
+ CPU0
+ ____________ ____________
+ kidle_inject/0 | sleep | mwait | sleep |
+ _________| |________| |_______
+ duration
+ CPU1
+ ____________ ____________
+ kidle_inject/1 | sleep | mwait | sleep |
+ _________| |________| |_______
+ ^
+ |
+ |
+ roundup(jiffies, interval)
Only one CPU is allowed to collect statistics and update global
control parameters. This CPU is referred to as the controlling CPU in
@@ -148,7 +152,7 @@ b) determine the amount of compensation needed at each target ratio
Compensation to each target ratio consists of two parts:
- a) steady state error compensation
+ a) steady state error compensation
This is to offset the error occurring when the system can
enter idle without extra wakeups (such as external interrupts).
@@ -158,41 +162,42 @@ Compensation to each target ratio consists of two parts:
slowing down CPU activities.
A debugfs file is provided for the user to examine compensation
-progress and results, such as on a Westmere system.
-[jacob@nex01 ~]$ cat
-/sys/kernel/debug/intel_powerclamp/powerclamp_calib
-controlling cpu: 0
-pct confidence steady dynamic (compensation)
-0 0 0 0
-1 1 0 0
-2 1 1 0
-3 3 1 0
-4 3 1 0
-5 3 1 0
-6 3 1 0
-7 3 1 0
-8 3 1 0
-...
-30 3 2 0
-31 3 2 0
-32 3 1 0
-33 3 2 0
-34 3 1 0
-35 3 2 0
-36 3 1 0
-37 3 2 0
-38 3 1 0
-39 3 2 0
-40 3 3 0
-41 3 1 0
-42 3 2 0
-43 3 1 0
-44 3 1 0
-45 3 2 0
-46 3 3 0
-47 3 0 0
-48 3 2 0
-49 3 3 0
+progress and results, such as on a Westmere system::
+
+ [jacob@nex01 ~]$ cat
+ /sys/kernel/debug/intel_powerclamp/powerclamp_calib
+ controlling cpu: 0
+ pct confidence steady dynamic (compensation)
+ 0 0 0 0
+ 1 1 0 0
+ 2 1 1 0
+ 3 3 1 0
+ 4 3 1 0
+ 5 3 1 0
+ 6 3 1 0
+ 7 3 1 0
+ 8 3 1 0
+ ...
+ 30 3 2 0
+ 31 3 2 0
+ 32 3 1 0
+ 33 3 2 0
+ 34 3 1 0
+ 35 3 2 0
+ 36 3 1 0
+ 37 3 2 0
+ 38 3 1 0
+ 39 3 2 0
+ 40 3 3 0
+ 41 3 1 0
+ 42 3 2 0
+ 43 3 1 0
+ 44 3 1 0
+ 45 3 2 0
+ 46 3 3 0
+ 47 3 0 0
+ 48 3 2 0
+ 49 3 3 0
Calibration occurs during runtime. No offline method is available.
Steady state compensation is used only when confidence levels of all
@@ -217,9 +222,8 @@ keeps track of clamping kernel threads, even after they are migrated
to other CPUs, after a CPU offline event.
-=====================
Performance Analysis
-=====================
+====================
This section describes the general performance data collected on
multiple systems, including Westmere (80P) and Ivy Bridge (4P, 8P).
@@ -257,16 +261,15 @@ achieve up to 40% better performance per watt. (measured by a spin
counter summed over per CPU counting threads spawned for all running
CPUs).
-====================
Usage and Interfaces
====================
The powerclamp driver is registered to the generic thermal layer as a
-cooling device. Currently, it’s not bound to any thermal zones.
+cooling device. Currently, it’s not bound to any thermal zones::
-jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . *
-cur_state:0
-max_state:50
-type:intel_powerclamp
+ jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . *
+ cur_state:0
+ max_state:50
+ type:intel_powerclamp
cur_state allows user to set the desired idle percentage. Writing 0 to
cur_state will stop idle injection. Writing a value between 1 and
@@ -278,9 +281,9 @@ cur_state returns value -1 instead of 0 which is to avoid confusing
100% busy state with the disabled state.
Example usage:
-- To inject 25% idle time
-$ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state
-"
+- To inject 25% idle time::
+
+ $ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state
If the system is not busy and has more than 25% idle time already,
then the powerclamp driver will not start idle injection. Using Top
@@ -292,23 +295,23 @@ idle time is accounted as normal idle in that common code path is
taken as the idle task.
In this example, 24.1% idle is shown. This helps the system admin or
-user determine the cause of slowdown, when a powerclamp driver is in action.
-
-
-Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie
-Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
-Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers
-Swap: 4087804k total, 0k used, 4087804k free, 945336k cached
-
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin
- 3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0
- 3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3
- 3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1
- 3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2
- 2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox
- 1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg
- 2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz
+user determine the cause of slowdown, when a powerclamp driver is in action::
+
+
+ Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie
+ Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
+ Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers
+ Swap: 4087804k total, 0k used, 4087804k free, 945336k cached
+
+ PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
+ 3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin
+ 3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0
+ 3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3
+ 3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1
+ 3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2
+ 2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox
+ 1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg
+ 2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz
Tests have shown that by using the powerclamp driver as a cooling
device, a PID based userspace thermal controller can manage to
diff --git a/Documentation/thermal/nouveau_thermal b/Documentation/driver-api/thermal/nouveau_thermal.rst
index 6e17a11efcb0..37255fd6735d 100644
--- a/Documentation/thermal/nouveau_thermal
+++ b/Documentation/driver-api/thermal/nouveau_thermal.rst
@@ -1,13 +1,15 @@
+=====================
Kernel driver nouveau
-===================
+=====================
Supported chips:
+
* NV43+
Authors: Martin Peres (mupuf) <martin.peres@free.fr>
Description
----------
+-----------
This driver allows to read the GPU core temperature, drive the GPU fan and
set temperature alarms.
@@ -19,20 +21,25 @@ interface is likely not to work. This document may then not cover your situation
entirely.
Temperature management
---------------------
+----------------------
Temperature is exposed under as a read-only HWMON attribute temp1_input.
In order to protect the GPU from overheating, Nouveau supports 4 configurable
temperature thresholds:
- * Fan_boost: Fan speed is set to 100% when reaching this temperature;
- * Downclock: The GPU will be downclocked to reduce its power dissipation;
- * Critical: The GPU is put on hold to further lower power dissipation;
- * Shutdown: Shut the computer down to protect your GPU.
+ * Fan_boost:
+ Fan speed is set to 100% when reaching this temperature;
+ * Downclock:
+ The GPU will be downclocked to reduce its power dissipation;
+ * Critical:
+ The GPU is put on hold to further lower power dissipation;
+ * Shutdown:
+ Shut the computer down to protect your GPU.
-WARNING: Some of these thresholds may not be used by Nouveau depending
-on your chipset.
+WARNING:
+ Some of these thresholds may not be used by Nouveau depending
+ on your chipset.
The default value for these thresholds comes from the GPU's vbios. These
thresholds can be configured thanks to the following HWMON attributes:
@@ -46,19 +53,24 @@ NOTE: Remember that the values are stored as milli degrees Celsius. Don't forget
to multiply!
Fan management
-------------
+--------------
Not all cards have a drivable fan. If you do, then the following HWMON
attributes should be available:
- * pwm1_enable: Current fan management mode (NONE, MANUAL or AUTO);
- * pwm1: Current PWM value (power percentage);
- * pwm1_min: The minimum PWM speed allowed;
- * pwm1_max: The maximum PWM speed allowed (bypassed when hitting Fan_boost);
+ * pwm1_enable:
+ Current fan management mode (NONE, MANUAL or AUTO);
+ * pwm1:
+ Current PWM value (power percentage);
+ * pwm1_min:
+ The minimum PWM speed allowed;
+ * pwm1_max:
+ The maximum PWM speed allowed (bypassed when hitting Fan_boost);
You may also have the following attribute:
- * fan1_input: Speed in RPM of your fan.
+ * fan1_input:
+ Speed in RPM of your fan.
Your fan can be driven in different modes:
@@ -66,14 +78,16 @@ Your fan can be driven in different modes:
* 1: The fan can be driven in manual (use pwm1 to change the speed);
* 2; The fan is driven automatically depending on the temperature.
-NOTE: Be sure to use the manual mode if you want to drive the fan speed manually
+NOTE:
+ Be sure to use the manual mode if you want to drive the fan speed manually
-NOTE2: When operating in manual mode outside the vbios-defined
-[PWM_min, PWM_max] range, the reported fan speed (RPM) may not be accurate
-depending on your hardware.
+NOTE2:
+ When operating in manual mode outside the vbios-defined
+ [PWM_min, PWM_max] range, the reported fan speed (RPM) may not be accurate
+ depending on your hardware.
Bug reports
----------
+-----------
Thermal management on Nouveau is new and may not work on all cards. If you have
inquiries, please ping mupuf on IRC (#nouveau, freenode).
diff --git a/Documentation/thermal/power_allocator.txt b/Documentation/driver-api/thermal/power_allocator.rst
index 9fb0ff06dca9..67b6a3297238 100644
--- a/Documentation/thermal/power_allocator.txt
+++ b/Documentation/driver-api/thermal/power_allocator.rst
@@ -1,3 +1,4 @@
+=================================
Power allocator governor tunables
=================================
@@ -25,36 +26,36 @@ temperature as the control input and power as the controlled output:
P_max = k_p * e + k_i * err_integral + k_d * diff_err + sustainable_power
where
- e = desired_temperature - current_temperature
- err_integral is the sum of previous errors
- diff_err = e - previous_error
-
-It is similar to the one depicted below:
-
- k_d
- |
-current_temp |
- | v
- | +----------+ +---+
- | +----->| diff_err |-->| X |------+
- | | +----------+ +---+ |
- | | | tdp actor
- | | k_i | | get_requested_power()
- | | | | | | |
- | | | | | | | ...
- v | v v v v v
- +---+ | +-------+ +---+ +---+ +---+ +----------+
- | S |-------+----->| sum e |----->| X |--->| S |-->| S |-->|power |
- +---+ | +-------+ +---+ +---+ +---+ |allocation|
- ^ | ^ +----------+
- | | | | |
- | | +---+ | | |
- | +------->| X |-------------------+ v v
- | +---+ granted performance
-desired_temperature ^
- |
- |
- k_po/k_pu
+ - e = desired_temperature - current_temperature
+ - err_integral is the sum of previous errors
+ - diff_err = e - previous_error
+
+It is similar to the one depicted below::
+
+ k_d
+ |
+ current_temp |
+ | v
+ | +----------+ +---+
+ | +----->| diff_err |-->| X |------+
+ | | +----------+ +---+ |
+ | | | tdp actor
+ | | k_i | | get_requested_power()
+ | | | | | | |
+ | | | | | | | ...
+ v | v v v v v
+ +---+ | +-------+ +---+ +---+ +---+ +----------+
+ | S |-----+----->| sum e |----->| X |--->| S |-->| S |-->|power |
+ +---+ | +-------+ +---+ +---+ +---+ |allocation|
+ ^ | ^ +----------+
+ | | | | |
+ | | +---+ | | |
+ | +------->| X |-------------------+ v v
+ | +---+ granted performance
+ desired_temperature ^
+ |
+ |
+ k_po/k_pu
Sustainable power
-----------------
@@ -73,7 +74,7 @@ is typically 2000mW, while on a 10" tablet is around 4500mW (may vary
depending on screen size).
If you are using device tree, do add it as a property of the
-thermal-zone. For example:
+thermal-zone. For example::
thermal-zones {
soc_thermal {
@@ -85,7 +86,7 @@ thermal-zone. For example:
Instead, if the thermal zone is registered from the platform code, pass a
`thermal_zone_params` that has a `sustainable_power`. If no
`thermal_zone_params` were being passed, then something like below
-will suffice:
+will suffice::
static const struct thermal_zone_params tz_params = {
.sustainable_power = 3500,
@@ -112,18 +113,18 @@ available capacity at a low temperature. On the other hand, a high
value of `k_pu` will result in the governor granting very high power
while temperature is low, and may lead to temperature overshooting.
-The default value for `k_pu` is:
+The default value for `k_pu` is::
2 * sustainable_power / (desired_temperature - switch_on_temp)
This means that at `switch_on_temp` the output of the controller's
proportional term will be 2 * `sustainable_power`. The default value
-for `k_po` is:
+for `k_po` is::
sustainable_power / (desired_temperature - switch_on_temp)
Focusing on the proportional and feed forward values of the PID
-controller equation we have:
+controller equation we have::
P_max = k_p * e + sustainable_power
@@ -134,21 +135,23 @@ is the desired one, then the proportional component is zero and
thermal equilibrium under constant load. `sustainable_power` is only
an estimate, which is the reason for closed-loop control such as this.
-Expanding `k_pu` we get:
+Expanding `k_pu` we get::
+
P_max = 2 * sustainable_power * (T_set - T) / (T_set - T_on) +
- sustainable_power
+ sustainable_power
-where
- T_set is the desired temperature
- T is the current temperature
- T_on is the switch on temperature
+where:
+
+ - T_set is the desired temperature
+ - T is the current temperature
+ - T_on is the switch on temperature
When the current temperature is the switch_on temperature, the above
-formula becomes:
+formula becomes::
P_max = 2 * sustainable_power * (T_set - T_on) / (T_set - T_on) +
- sustainable_power = 2 * sustainable_power + sustainable_power =
- 3 * sustainable_power
+ sustainable_power = 2 * sustainable_power + sustainable_power =
+ 3 * sustainable_power
Therefore, the proportional term alone linearly decreases power from
3 * `sustainable_power` to `sustainable_power` as the temperature
@@ -178,11 +181,18 @@ Cooling device power API
Cooling devices controlled by this governor must supply the additional
"power" API in their `cooling_device_ops`. It consists on three ops:
-1. int get_requested_power(struct thermal_cooling_device *cdev,
- struct thermal_zone_device *tz, u32 *power);
-@cdev: The `struct thermal_cooling_device` pointer
-@tz: thermal zone in which we are currently operating
-@power: pointer in which to store the calculated power
+1. ::
+
+ int get_requested_power(struct thermal_cooling_device *cdev,
+ struct thermal_zone_device *tz, u32 *power);
+
+
+@cdev:
+ The `struct thermal_cooling_device` pointer
+@tz:
+ thermal zone in which we are currently operating
+@power:
+ pointer in which to store the calculated power
`get_requested_power()` calculates the power requested by the device
in milliwatts and stores it in @power . It should return 0 on
@@ -190,23 +200,37 @@ success, -E* on failure. This is currently used by the power
allocator governor to calculate how much power to give to each cooling
device.
-2. int state2power(struct thermal_cooling_device *cdev, struct
- thermal_zone_device *tz, unsigned long state, u32 *power);
-@cdev: The `struct thermal_cooling_device` pointer
-@tz: thermal zone in which we are currently operating
-@state: A cooling device state
-@power: pointer in which to store the equivalent power
+2. ::
+
+ int state2power(struct thermal_cooling_device *cdev, struct
+ thermal_zone_device *tz, unsigned long state,
+ u32 *power);
+
+@cdev:
+ The `struct thermal_cooling_device` pointer
+@tz:
+ thermal zone in which we are currently operating
+@state:
+ A cooling device state
+@power:
+ pointer in which to store the equivalent power
Convert cooling device state @state into power consumption in
milliwatts and store it in @power. It should return 0 on success, -E*
on failure. This is currently used by thermal core to calculate the
maximum power that an actor can consume.
-3. int power2state(struct thermal_cooling_device *cdev, u32 power,
- unsigned long *state);
-@cdev: The `struct thermal_cooling_device` pointer
-@power: power in milliwatts
-@state: pointer in which to store the resulting state
+3. ::
+
+ int power2state(struct thermal_cooling_device *cdev, u32 power,
+ unsigned long *state);
+
+@cdev:
+ The `struct thermal_cooling_device` pointer
+@power:
+ power in milliwatts
+@state:
+ pointer in which to store the resulting state
Calculate a cooling device state that would make the device consume at
most @power mW and store it in @state. It should return 0 on success,
diff --git a/Documentation/thermal/sysfs-api.txt b/Documentation/driver-api/thermal/sysfs-api.rst
index c3fa500df92c..fab2c9b36d08 100644
--- a/Documentation/thermal/sysfs-api.txt
+++ b/Documentation/driver-api/thermal/sysfs-api.rst
@@ -1,3 +1,4 @@
+===================================
Generic Thermal Sysfs driver How To
===================================
@@ -9,6 +10,7 @@ Copyright (c) 2008 Intel Corporation
0. Introduction
+===============
The generic thermal sysfs provides a set of interfaces for thermal zone
devices (sensors) and thermal cooling devices (fan, processor...) to register
@@ -25,59 +27,90 @@ An intelligent thermal management application can make decisions based on
inputs from thermal zone attributes (the current temperature and trip point
temperature) and throttle appropriate devices.
-[0-*] denotes any positive number starting from 0
-[1-*] denotes any positive number starting from 1
+- `[0-*]` denotes any positive number starting from 0
+- `[1-*]` denotes any positive number starting from 1
1. thermal sysfs driver interface functions
+===========================================
1.1 thermal zone device interface
-1.1.1 struct thermal_zone_device *thermal_zone_device_register(char *type,
- int trips, int mask, void *devdata,
- struct thermal_zone_device_ops *ops,
- const struct thermal_zone_params *tzp,
- int passive_delay, int polling_delay))
+---------------------------------
+
+ ::
+
+ struct thermal_zone_device
+ *thermal_zone_device_register(char *type,
+ int trips, int mask, void *devdata,
+ struct thermal_zone_device_ops *ops,
+ const struct thermal_zone_params *tzp,
+ int passive_delay, int polling_delay))
This interface function adds a new thermal zone device (sensor) to
- /sys/class/thermal folder as thermal_zone[0-*]. It tries to bind all the
+ /sys/class/thermal folder as `thermal_zone[0-*]`. It tries to bind all the
thermal cooling devices registered at the same time.
- type: the thermal zone type.
- trips: the total number of trip points this thermal zone supports.
- mask: Bit string: If 'n'th bit is set, then trip point 'n' is writeable.
- devdata: device private data
- ops: thermal zone device call-backs.
- .bind: bind the thermal zone device with a thermal cooling device.
- .unbind: unbind the thermal zone device with a thermal cooling device.
- .get_temp: get the current temperature of the thermal zone.
- .set_trips: set the trip points window. Whenever the current temperature
+ type:
+ the thermal zone type.
+ trips:
+ the total number of trip points this thermal zone supports.
+ mask:
+ Bit string: If 'n'th bit is set, then trip point 'n' is writeable.
+ devdata:
+ device private data
+ ops:
+ thermal zone device call-backs.
+
+ .bind:
+ bind the thermal zone device with a thermal cooling device.
+ .unbind:
+ unbind the thermal zone device with a thermal cooling device.
+ .get_temp:
+ get the current temperature of the thermal zone.
+ .set_trips:
+ set the trip points window. Whenever the current temperature
is updated, the trip points immediately below and above the
current temperature are found.
- .get_mode: get the current mode (enabled/disabled) of the thermal zone.
- - "enabled" means the kernel thermal management is enabled.
- - "disabled" will prevent kernel thermal driver action upon trip points
- so that user applications can take charge of thermal management.
- .set_mode: set the mode (enabled/disabled) of the thermal zone.
- .get_trip_type: get the type of certain trip point.
- .get_trip_temp: get the temperature above which the certain trip point
+ .get_mode:
+ get the current mode (enabled/disabled) of the thermal zone.
+
+ - "enabled" means the kernel thermal management is
+ enabled.
+ - "disabled" will prevent kernel thermal driver action
+ upon trip points so that user applications can take
+ charge of thermal management.
+ .set_mode:
+ set the mode (enabled/disabled) of the thermal zone.
+ .get_trip_type:
+ get the type of certain trip point.
+ .get_trip_temp:
+ get the temperature above which the certain trip point
will be fired.
- .set_emul_temp: set the emulation temperature which helps in debugging
+ .set_emul_temp:
+ set the emulation temperature which helps in debugging
different threshold temperature points.
- tzp: thermal zone platform parameters.
- passive_delay: number of milliseconds to wait between polls when
+ tzp:
+ thermal zone platform parameters.
+ passive_delay:
+ number of milliseconds to wait between polls when
performing passive cooling.
- polling_delay: number of milliseconds to wait between polls when checking
+ polling_delay:
+ number of milliseconds to wait between polls when checking
whether trip points have been crossed (0 for interrupt driven systems).
+ ::
-1.1.2 void thermal_zone_device_unregister(struct thermal_zone_device *tz)
+ void thermal_zone_device_unregister(struct thermal_zone_device *tz)
This interface function removes the thermal zone device.
It deletes the corresponding entry from /sys/class/thermal folder and
unbinds all the thermal cooling devices it uses.
-1.1.3 struct thermal_zone_device *thermal_zone_of_sensor_register(
- struct device *dev, int sensor_id, void *data,
- const struct thermal_zone_of_device_ops *ops)
+ ::
+
+ struct thermal_zone_device
+ *thermal_zone_of_sensor_register(struct device *dev, int sensor_id,
+ void *data,
+ const struct thermal_zone_of_device_ops *ops)
This interface adds a new sensor to a DT thermal zone.
This function will search the list of thermal zones described in
@@ -87,25 +120,33 @@ temperature) and throttle appropriate devices.
thermal zone device.
The parameters for this interface are:
- dev: Device node of sensor containing valid node pointer in
+
+ dev:
+ Device node of sensor containing valid node pointer in
dev->of_node.
- sensor_id: a sensor identifier, in case the sensor IP has more
+ sensor_id:
+ a sensor identifier, in case the sensor IP has more
than one sensors
- data: a private pointer (owned by the caller) that will be
+ data:
+ a private pointer (owned by the caller) that will be
passed back, when a temperature reading is needed.
- ops: struct thermal_zone_of_device_ops *.
+ ops:
+ `struct thermal_zone_of_device_ops *`.
- get_temp: a pointer to a function that reads the
+ ============== =======================================
+ get_temp a pointer to a function that reads the
sensor temperature. This is mandatory
callback provided by sensor driver.
- set_trips: a pointer to a function that sets a
+ set_trips a pointer to a function that sets a
temperature window. When this window is
left the driver must inform the thermal
core via thermal_zone_device_update.
- get_trend: a pointer to a function that reads the
+ get_trend a pointer to a function that reads the
sensor temperature trend.
- set_emul_temp: a pointer to a function that sets
+ set_emul_temp a pointer to a function that sets
sensor emulated temperature.
+ ============== =======================================
+
The thermal zone temperature is provided by the get_temp() function
pointer of thermal_zone_of_device_ops. When called, it will
have the private pointer @data back.
@@ -114,8 +155,10 @@ temperature) and throttle appropriate devices.
handle. Caller should check the return handle with IS_ERR() for finding
whether success or not.
-1.1.4 void thermal_zone_of_sensor_unregister(struct device *dev,
- struct thermal_zone_device *tzd)
+ ::
+
+ void thermal_zone_of_sensor_unregister(struct device *dev,
+ struct thermal_zone_device *tzd)
This interface unregisters a sensor from a DT thermal zone which was
successfully added by interface thermal_zone_of_sensor_register().
@@ -124,21 +167,29 @@ temperature) and throttle appropriate devices.
interface. It will also silent the zone by remove the .get_temp() and
get_trend() thermal zone device callbacks.
-1.1.5 struct thermal_zone_device *devm_thermal_zone_of_sensor_register(
- struct device *dev, int sensor_id,
- void *data, const struct thermal_zone_of_device_ops *ops)
+ ::
+
+ struct thermal_zone_device
+ *devm_thermal_zone_of_sensor_register(struct device *dev,
+ int sensor_id,
+ void *data,
+ const struct thermal_zone_of_device_ops *ops)
This interface is resource managed version of
thermal_zone_of_sensor_register().
+
All details of thermal_zone_of_sensor_register() described in
section 1.1.3 is applicable here.
+
The benefit of using this interface to register sensor is that it
is not require to explicitly call thermal_zone_of_sensor_unregister()
in error path or during driver unbinding as this is done by driver
resource manager.
-1.1.6 void devm_thermal_zone_of_sensor_unregister(struct device *dev,
- struct thermal_zone_device *tzd)
+ ::
+
+ void devm_thermal_zone_of_sensor_unregister(struct device *dev,
+ struct thermal_zone_device *tzd)
This interface is resource managed version of
thermal_zone_of_sensor_unregister().
@@ -147,123 +198,186 @@ temperature) and throttle appropriate devices.
Normally this function will not need to be called and the resource
management code will ensure that the resource is freed.
-1.1.7 int thermal_zone_get_slope(struct thermal_zone_device *tz)
+ ::
+
+ int thermal_zone_get_slope(struct thermal_zone_device *tz)
This interface is used to read the slope attribute value
for the thermal zone device, which might be useful for platform
drivers for temperature calculations.
-1.1.8 int thermal_zone_get_offset(struct thermal_zone_device *tz)
+ ::
+
+ int thermal_zone_get_offset(struct thermal_zone_device *tz)
This interface is used to read the offset attribute value
for the thermal zone device, which might be useful for platform
drivers for temperature calculations.
1.2 thermal cooling device interface
-1.2.1 struct thermal_cooling_device *thermal_cooling_device_register(char *name,
- void *devdata, struct thermal_cooling_device_ops *)
+------------------------------------
+
+
+ ::
+
+ struct thermal_cooling_device
+ *thermal_cooling_device_register(char *name,
+ void *devdata, struct thermal_cooling_device_ops *)
This interface function adds a new thermal cooling device (fan/processor/...)
- to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself
+ to /sys/class/thermal/ folder as `cooling_device[0-*]`. It tries to bind itself
to all the thermal zone devices registered at the same time.
- name: the cooling device name.
- devdata: device private data.
- ops: thermal cooling devices call-backs.
- .get_max_state: get the Maximum throttle state of the cooling device.
- .get_cur_state: get the Currently requested throttle state of the cooling device.
- .set_cur_state: set the Current throttle state of the cooling device.
-1.2.2 void thermal_cooling_device_unregister(struct thermal_cooling_device *cdev)
+ name:
+ the cooling device name.
+ devdata:
+ device private data.
+ ops:
+ thermal cooling devices call-backs.
+
+ .get_max_state:
+ get the Maximum throttle state of the cooling device.
+ .get_cur_state:
+ get the Currently requested throttle state of the
+ cooling device.
+ .set_cur_state:
+ set the Current throttle state of the cooling device.
+
+ ::
+
+ void thermal_cooling_device_unregister(struct thermal_cooling_device *cdev)
This interface function removes the thermal cooling device.
It deletes the corresponding entry from /sys/class/thermal folder and
unbinds itself from all the thermal zone devices using it.
1.3 interface for binding a thermal zone device with a thermal cooling device
-1.3.1 int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz,
- int trip, struct thermal_cooling_device *cdev,
- unsigned long upper, unsigned long lower, unsigned int weight);
+-----------------------------------------------------------------------------
+
+ ::
+
+ int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz,
+ int trip, struct thermal_cooling_device *cdev,
+ unsigned long upper, unsigned long lower, unsigned int weight);
This interface function binds a thermal cooling device to a particular trip
point of a thermal zone device.
+
This function is usually called in the thermal zone device .bind callback.
- tz: the thermal zone device
- cdev: thermal cooling device
- trip: indicates which trip point in this thermal zone the cooling device
- is associated with.
- upper:the Maximum cooling state for this trip point.
- THERMAL_NO_LIMIT means no upper limit,
+
+ tz:
+ the thermal zone device
+ cdev:
+ thermal cooling device
+ trip:
+ indicates which trip point in this thermal zone the cooling device
+ is associated with.
+ upper:
+ the Maximum cooling state for this trip point.
+ THERMAL_NO_LIMIT means no upper limit,
and the cooling device can be in max_state.
- lower:the Minimum cooling state can be used for this trip point.
- THERMAL_NO_LIMIT means no lower limit,
+ lower:
+ the Minimum cooling state can be used for this trip point.
+ THERMAL_NO_LIMIT means no lower limit,
and the cooling device can be in cooling state 0.
- weight: the influence of this cooling device in this thermal
- zone. See 1.4.1 below for more information.
+ weight:
+ the influence of this cooling device in this thermal
+ zone. See 1.4.1 below for more information.
-1.3.2 int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz,
- int trip, struct thermal_cooling_device *cdev);
+ ::
+
+ int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz,
+ int trip, struct thermal_cooling_device *cdev);
This interface function unbinds a thermal cooling device from a particular
trip point of a thermal zone device. This function is usually called in
the thermal zone device .unbind callback.
- tz: the thermal zone device
- cdev: thermal cooling device
- trip: indicates which trip point in this thermal zone the cooling device
- is associated with.
+
+ tz:
+ the thermal zone device
+ cdev:
+ thermal cooling device
+ trip:
+ indicates which trip point in this thermal zone the cooling device
+ is associated with.
1.4 Thermal Zone Parameters
-1.4.1 struct thermal_bind_params
+---------------------------
+
+ ::
+
+ struct thermal_bind_params
+
This structure defines the following parameters that are used to bind
a zone with a cooling device for a particular trip point.
- .cdev: The cooling device pointer
- .weight: The 'influence' of a particular cooling device on this
- zone. This is relative to the rest of the cooling
- devices. For example, if all cooling devices have a
- weight of 1, then they all contribute the same. You can
- use percentages if you want, but it's not mandatory. A
- weight of 0 means that this cooling device doesn't
- contribute to the cooling of this zone unless all cooling
- devices have a weight of 0. If all weights are 0, then
- they all contribute the same.
- .trip_mask:This is a bit mask that gives the binding relation between
- this thermal zone and cdev, for a particular trip point.
- If nth bit is set, then the cdev and thermal zone are bound
- for trip point n.
- .binding_limits: This is an array of cooling state limits. Must have
- exactly 2 * thermal_zone.number_of_trip_points. It is an
- array consisting of tuples <lower-state upper-state> of
- state limits. Each trip will be associated with one state
- limit tuple when binding. A NULL pointer means
- <THERMAL_NO_LIMITS THERMAL_NO_LIMITS> on all trips.
- These limits are used when binding a cdev to a trip point.
- .match: This call back returns success(0) if the 'tz and cdev' need to
+
+ .cdev:
+ The cooling device pointer
+ .weight:
+ The 'influence' of a particular cooling device on this
+ zone. This is relative to the rest of the cooling
+ devices. For example, if all cooling devices have a
+ weight of 1, then they all contribute the same. You can
+ use percentages if you want, but it's not mandatory. A
+ weight of 0 means that this cooling device doesn't
+ contribute to the cooling of this zone unless all cooling
+ devices have a weight of 0. If all weights are 0, then
+ they all contribute the same.
+ .trip_mask:
+ This is a bit mask that gives the binding relation between
+ this thermal zone and cdev, for a particular trip point.
+ If nth bit is set, then the cdev and thermal zone are bound
+ for trip point n.
+ .binding_limits:
+ This is an array of cooling state limits. Must have
+ exactly 2 * thermal_zone.number_of_trip_points. It is an
+ array consisting of tuples <lower-state upper-state> of
+ state limits. Each trip will be associated with one state
+ limit tuple when binding. A NULL pointer means
+ <THERMAL_NO_LIMITS THERMAL_NO_LIMITS> on all trips.
+ These limits are used when binding a cdev to a trip point.
+ .match:
+ This call back returns success(0) if the 'tz and cdev' need to
be bound, as per platform data.
-1.4.2 struct thermal_zone_params
+
+ ::
+
+ struct thermal_zone_params
+
This structure defines the platform level parameters for a thermal zone.
This data, for each thermal zone should come from the platform layer.
This is an optional feature where some platforms can choose not to
provide this data.
- .governor_name: Name of the thermal governor used for this zone
- .no_hwmon: a boolean to indicate if the thermal to hwmon sysfs interface
- is required. when no_hwmon == false, a hwmon sysfs interface
- will be created. when no_hwmon == true, nothing will be done.
- In case the thermal_zone_params is NULL, the hwmon interface
- will be created (for backward compatibility).
- .num_tbps: Number of thermal_bind_params entries for this zone
- .tbp: thermal_bind_params entries
+
+ .governor_name:
+ Name of the thermal governor used for this zone
+ .no_hwmon:
+ a boolean to indicate if the thermal to hwmon sysfs interface
+ is required. when no_hwmon == false, a hwmon sysfs interface
+ will be created. when no_hwmon == true, nothing will be done.
+ In case the thermal_zone_params is NULL, the hwmon interface
+ will be created (for backward compatibility).
+ .num_tbps:
+ Number of thermal_bind_params entries for this zone
+ .tbp:
+ thermal_bind_params entries
2. sysfs attributes structure
+=============================
+== ================
RO read only value
WO write only value
RW read/write value
+== ================
Thermal sysfs attributes will be represented under /sys/class/thermal.
Hwmon sysfs I/F extension is also available under /sys/class/hwmon
if hwmon is compiled in or built as a module.
-Thermal zone device sys I/F, created once it's registered:
-/sys/class/thermal/thermal_zone[0-*]:
+Thermal zone device sys I/F, created once it's registered::
+
+ /sys/class/thermal/thermal_zone[0-*]:
|---type: Type of the thermal zone
|---temp: Current temperature
|---mode: Working mode of the thermal zone
@@ -282,8 +396,9 @@ Thermal zone device sys I/F, created once it's registered:
|---slope: Slope constant applied as linear extrapolation
|---offset: Offset constant applied as linear extrapolation
-Thermal cooling device sys I/F, created once it's registered:
-/sys/class/thermal/cooling_device[0-*]:
+Thermal cooling device sys I/F, created once it's registered::
+
+ /sys/class/thermal/cooling_device[0-*]:
|---type: Type of the cooling device(processor/fan/...)
|---max_state: Maximum cooling state of the cooling device
|---cur_state: Current cooling state of the cooling device
@@ -299,11 +414,13 @@ the relationship between a thermal zone and its associated cooling device.
They are created/removed for each successful execution of
thermal_zone_bind_cooling_device/thermal_zone_unbind_cooling_device.
-/sys/class/thermal/thermal_zone[0-*]:
+::
+
+ /sys/class/thermal/thermal_zone[0-*]:
|---cdev[0-*]: [0-*]th cooling device in current thermal zone
|---cdev[0-*]_trip_point: Trip point that cdev[0-*] is associated with
|---cdev[0-*]_weight: Influence of the cooling device in
- this thermal zone
+ this thermal zone
Besides the thermal zone device sysfs I/F and cooling device sysfs I/F,
the generic thermal driver also creates a hwmon sysfs I/F for each _type_
@@ -311,16 +428,17 @@ of thermal zone device. E.g. the generic thermal driver registers one hwmon
class device and build the associated hwmon sysfs I/F for all the registered
ACPI thermal zones.
-/sys/class/hwmon/hwmon[0-*]:
+::
+
+ /sys/class/hwmon/hwmon[0-*]:
|---name: The type of the thermal zone devices
|---temp[1-*]_input: The current temperature of thermal zone [1-*]
|---temp[1-*]_critical: The critical trip point of thermal zone [1-*]
Please read Documentation/hwmon/sysfs-interface.rst for additional information.
-***************************
-* Thermal zone attributes *
-***************************
+Thermal zone attributes
+-----------------------
type
Strings which represent the thermal zone type.
@@ -340,54 +458,67 @@ mode
This file gives information about the algorithm that is currently
managing the thermal zone. It can be either default kernel based
algorithm or user space application.
- enabled = enable Kernel Thermal management.
- disabled = Preventing kernel thermal zone driver actions upon
+
+ enabled
+ enable Kernel Thermal management.
+ disabled
+ Preventing kernel thermal zone driver actions upon
trip points so that user application can take full
charge of the thermal management.
+
RW, Optional
policy
One of the various thermal governors used for a particular zone.
+
RW, Required
available_policies
Available thermal governors which can be used for a particular zone.
+
RO, Required
-trip_point_[0-*]_temp
+`trip_point_[0-*]_temp`
The temperature above which trip point will be fired.
+
Unit: millidegree Celsius
+
RO, Optional
-trip_point_[0-*]_type
+`trip_point_[0-*]_type`
Strings which indicate the type of the trip point.
- E.g. it can be one of critical, hot, passive, active[0-*] for ACPI
+
+ E.g. it can be one of critical, hot, passive, `active[0-*]` for ACPI
thermal zone.
+
RO, Optional
-trip_point_[0-*]_hyst
+`trip_point_[0-*]_hyst`
The hysteresis value for a trip point, represented as an integer
Unit: Celsius
RW, Optional
-cdev[0-*]
+`cdev[0-*]`
Sysfs link to the thermal cooling device node where the sys I/F
for cooling device throttling control represents.
+
RO, Optional
-cdev[0-*]_trip_point
- The trip point in this thermal zone which cdev[0-*] is associated
+`cdev[0-*]_trip_point`
+ The trip point in this thermal zone which `cdev[0-*]` is associated
with; -1 means the cooling device is not associated with any trip
point.
+
RO, Optional
-cdev[0-*]_weight
- The influence of cdev[0-*] in this thermal zone. This value
- is relative to the rest of cooling devices in the thermal
- zone. For example, if a cooling device has a weight double
- than that of other, it's twice as effective in cooling the
- thermal zone.
- RW, Optional
+`cdev[0-*]_weight`
+ The influence of `cdev[0-*]` in this thermal zone. This value
+ is relative to the rest of cooling devices in the thermal
+ zone. For example, if a cooling device has a weight double
+ than that of other, it's twice as effective in cooling the
+ thermal zone.
+
+ RW, Optional
passive
Attribute is only present for zones in which the passive cooling
@@ -395,8 +526,11 @@ passive
and can be set to a temperature (in millidegrees) to enable a
passive trip point for the zone. Activation is done by polling with
an interval of 1 second.
+
Unit: millidegrees Celsius
+
Valid values: 0 (disabled) or greater than 1000
+
RW, Optional
emul_temp
@@ -407,17 +541,21 @@ emul_temp
threshold and its associated cooling action. This is write only node
and writing 0 on this node should disable emulation.
Unit: millidegree Celsius
+
WO, Optional
- WARNING: Be careful while enabling this option on production systems,
- because userland can easily disable the thermal policy by simply
- flooding this sysfs node with low temperature values.
+ WARNING:
+ Be careful while enabling this option on production systems,
+ because userland can easily disable the thermal policy by simply
+ flooding this sysfs node with low temperature values.
sustainable_power
An estimate of the sustained power that can be dissipated by
the thermal zone. Used by the power allocator governor. For
- more information see Documentation/thermal/power_allocator.txt
+ more information see Documentation/driver-api/thermal/power_allocator.rst
+
Unit: milliwatts
+
RW, Optional
k_po
@@ -425,7 +563,8 @@ k_po
controller during temperature overshoot. Temperature overshoot
is when the current temperature is above the "desired
temperature" trip point. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/driver-api/thermal/power_allocator.rst
+
RW, Optional
k_pu
@@ -433,20 +572,23 @@ k_pu
controller during temperature undershoot. Temperature undershoot
is when the current temperature is below the "desired
temperature" trip point. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/driver-api/thermal/power_allocator.rst
+
RW, Optional
k_i
The integral term of the power allocator governor's PID
controller. This term allows the PID controller to compensate
for long term drift. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/driver-api/thermal/power_allocator.rst
+
RW, Optional
k_d
The derivative term of the power allocator governor's PID
controller. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/driver-api/thermal/power_allocator.rst
+
RW, Optional
integral_cutoff
@@ -456,8 +598,10 @@ integral_cutoff
example, if integral_cutoff is 0, then the integral term only
accumulates error when temperature is above the desired
temperature trip point. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/driver-api/thermal/power_allocator.rst
+
Unit: millidegree Celsius
+
RW, Optional
slope
@@ -465,6 +609,7 @@ slope
to determine a hotspot temperature based off the sensor's
raw readings. It is up to the device driver to determine
the usage of these values.
+
RW, Optional
offset
@@ -472,28 +617,33 @@ offset
to determine a hotspot temperature based off the sensor's
raw readings. It is up to the device driver to determine
the usage of these values.
+
RW, Optional
-*****************************
-* Cooling device attributes *
-*****************************
+Cooling device attributes
+-------------------------
type
String which represents the type of device, e.g:
+
- for generic ACPI: should be "Fan", "Processor" or "LCD"
- for memory controller device on intel_menlow platform:
should be "Memory controller".
+
RO, Required
max_state
The maximum permissible cooling state of this cooling device.
+
RO, Required
cur_state
The current cooling state of this cooling device.
The value can any integer numbers between 0 and max_state:
+
- cur_state == 0 means no cooling
- cur_state == max_state means the maximum cooling.
+
RW, Required
stats/reset
@@ -508,9 +658,11 @@ stats/time_in_state_ms:
units here is 10mS (similar to other time exported in /proc).
RO, Required
+
stats/total_trans:
A single positive value showing the total number of times the state of a
cooling device is changed.
+
RO, Required
stats/trans_table:
@@ -522,6 +674,7 @@ stats/trans_table:
RO, Required
3. A simple implementation
+==========================
ACPI thermal zone may support multiple trip points like critical, hot,
passive, active. If an ACPI thermal zone supports critical, passive,
@@ -532,11 +685,10 @@ thermal_cooling_device. Both are considered to have the same
effectiveness in cooling the thermal zone.
If the processor is listed in _PSL method, and the fan is listed in _AL0
-method, the sys I/F structure will be built like this:
+method, the sys I/F structure will be built like this::
-/sys/class/thermal:
-
-|thermal_zone1:
+ /sys/class/thermal:
+ |thermal_zone1:
|---type: acpitz
|---temp: 37000
|---mode: enabled
@@ -557,24 +709,24 @@ method, the sys I/F structure will be built like this:
|---cdev1_trip_point: 2 /* cdev1 can be used for active[0]*/
|---cdev1_weight: 1024
-|cooling_device0:
+ |cooling_device0:
|---type: Processor
|---max_state: 8
|---cur_state: 0
-|cooling_device3:
+ |cooling_device3:
|---type: Fan
|---max_state: 2
|---cur_state: 0
-/sys/class/hwmon:
-
-|hwmon0:
+ /sys/class/hwmon:
+ |hwmon0:
|---name: acpitz
|---temp1_input: 37000
|---temp1_crit: 100000
4. Event Notification
+=====================
The framework includes a simple notification mechanism, in the form of a
netlink event. Netlink socket initialization is done during the _init_
@@ -587,21 +739,28 @@ event will be one of:{THERMAL_AUX0, THERMAL_AUX1, THERMAL_CRITICAL,
THERMAL_DEV_FAULT}. Notification can be sent when the current temperature
crosses any of the configured thresholds.
-5. Export Symbol APIs:
+5. Export Symbol APIs
+=====================
+
+5.1. get_tz_trend
+-----------------
-5.1: get_tz_trend:
This function returns the trend of a thermal zone, i.e the rate of change
of temperature of the thermal zone. Ideally, the thermal sensor drivers
are supposed to implement the callback. If they don't, the thermal
framework calculated the trend by comparing the previous and the current
temperature values.
-5.2:get_thermal_instance:
+5.2. get_thermal_instance
+-------------------------
+
This function returns the thermal_instance corresponding to a given
{thermal_zone, cooling_device, trip_point} combination. Returns NULL
if such an instance does not exist.
-5.3:thermal_notify_framework:
+5.3. thermal_notify_framework
+-----------------------------
+
This function handles the trip events from sensor drivers. It starts
throttling the cooling devices according to the policy configured.
For CRITICAL and HOT trip points, this notifies the respective drivers,
@@ -609,12 +768,15 @@ and does actual throttling for other trip points i.e ACTIVE and PASSIVE.
The throttling policy is based on the configured platform data; if no
platform data is provided, this uses the step_wise throttling policy.
-5.4:thermal_cdev_update:
+5.4. thermal_cdev_update
+------------------------
+
This function serves as an arbitrator to set the state of a cooling
device. It sets the cooling device to the deepest cooling state if
possible.
-6. thermal_emergency_poweroff:
+6. thermal_emergency_poweroff
+=============================
On an event of critical trip temperature crossing. Thermal framework
allows the system to shutdown gracefully by calling orderly_poweroff().
diff --git a/Documentation/thermal/x86_pkg_temperature_thermal b/Documentation/driver-api/thermal/x86_pkg_temperature_thermal.rst
index 17a3a4c0a0ca..2ac42ccd236f 100644
--- a/Documentation/thermal/x86_pkg_temperature_thermal
+++ b/Documentation/driver-api/thermal/x86_pkg_temperature_thermal.rst
@@ -1,19 +1,23 @@
+===================================
Kernel driver: x86_pkg_temp_thermal
-===================
+===================================
Supported chips:
+
* x86: with package level thermal management
+
(Verify using: CPUID.06H:EAX[bit 6] =1)
Authors: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Reference
----
+---------
+
Intel® 64 and IA-32 Architectures Software Developer’s Manual (Jan, 2013):
Chapter 14.6: PACKAGE LEVEL THERMAL MANAGEMENT
Description
----------
+-----------
This driver register CPU digital temperature package level sensor as a thermal
zone with maximum two user mode configurable trip points. Number of trip points
@@ -25,23 +29,27 @@ take any action to control temperature.
Threshold management
--------------------
Each package will register as a thermal zone under /sys/class/thermal.
-Example:
-/sys/class/thermal/thermal_zone1
+
+Example::
+
+ /sys/class/thermal/thermal_zone1
This contains two trip points:
+
- trip_point_0_temp
- trip_point_1_temp
User can set any temperature between 0 to TJ-Max temperature. Temperature units
-are in milli-degree Celsius. Refer to "Documentation/thermal/sysfs-api.txt" for
+are in milli-degree Celsius. Refer to "Documentation/driver-api/thermal/sysfs-api.rst" for
thermal sys-fs details.
Any value other than 0 in these trip points, can trigger thermal notifications.
Setting 0, stops sending thermal notifications.
-Thermal notifications: To get kobject-uevent notifications, set the thermal zone
-policy to "user_space". For example: echo -n "user_space" > policy
-
-
+Thermal notifications:
+To get kobject-uevent notifications, set the thermal zone
+policy to "user_space".
+For example::
+ echo -n "user_space" > policy
diff --git a/Documentation/driver-api/uio-howto.rst b/Documentation/driver-api/uio-howto.rst
index 8fecfa11d4ff..84091cd25dc4 100644
--- a/Documentation/driver-api/uio-howto.rst
+++ b/Documentation/driver-api/uio-howto.rst
@@ -408,6 +408,13 @@ handler code. You also do not need to know anything about the chip's
internal registers to create the kernel part of the driver. All you need
to know is the irq number of the pin the chip is connected to.
+When used in a device-tree enabled system, the driver needs to be
+probed with the ``"of_id"`` module parameter set to the ``"compatible"``
+string of the node the driver is supposed to handle. By default, the
+node's name (without the unit address) is exposed as name for the
+UIO device in userspace. To set a custom name, a property named
+``"linux,uio-name"`` may be specified in the DT node.
+
Using uio_dmem_genirq for platform devices
------------------------------------------
diff --git a/Documentation/driver-api/usb/power-management.rst b/Documentation/driver-api/usb/power-management.rst
index 4a74cf6f2797..2525c3622cae 100644
--- a/Documentation/driver-api/usb/power-management.rst
+++ b/Documentation/driver-api/usb/power-management.rst
@@ -46,7 +46,7 @@ device is turned off while the system as a whole remains running, we
call it a "dynamic suspend" (also known as a "runtime suspend" or
"selective suspend"). This document concentrates mostly on how
dynamic PM is implemented in the USB subsystem, although system PM is
-covered to some extent (see ``Documentation/power/*.txt`` for more
+covered to some extent (see ``Documentation/power/*.rst`` for more
information about system PM).
System PM support is present only if the kernel was built with
diff --git a/Documentation/vfio-mediated-device.txt b/Documentation/driver-api/vfio-mediated-device.rst
index c3f69bcaf96e..25eb7d5b834b 100644
--- a/Documentation/vfio-mediated-device.txt
+++ b/Documentation/driver-api/vfio-mediated-device.rst
@@ -408,7 +408,7 @@ card.
References
==========
-1. See Documentation/vfio.txt for more information on VFIO.
+1. See Documentation/driver-api/vfio.rst for more information on VFIO.
2. struct mdev_driver in include/linux/mdev.h
3. struct mdev_parent_ops in include/linux/mdev.h
4. struct vfio_iommu_driver_ops in include/linux/vfio.h
diff --git a/Documentation/vfio.txt b/Documentation/driver-api/vfio.rst
index f1a4d3c3ba0b..f1a4d3c3ba0b 100644
--- a/Documentation/vfio.txt
+++ b/Documentation/driver-api/vfio.rst
diff --git a/Documentation/xilinx/eemi.txt b/Documentation/driver-api/xilinx/eemi.rst
index 5f39b4ffdcd4..9dcbc6f18d75 100644
--- a/Documentation/xilinx/eemi.txt
+++ b/Documentation/driver-api/xilinx/eemi.rst
@@ -1,6 +1,6 @@
----------------------------------------------------------------------
+====================================
Xilinx Zynq MPSoC EEMI Documentation
----------------------------------------------------------------------
+====================================
Xilinx Zynq MPSoC Firmware Interface
-------------------------------------
@@ -21,7 +21,7 @@ The zynqmp-firmware driver maintain all EEMI APIs in zynqmp_eemi_ops
structure. Any driver who want to communicate with PMC using EEMI APIs
can call zynqmp_pm_get_eemi_ops().
-Example of EEMI ops:
+Example of EEMI ops::
/* zynqmp-firmware driver maintain all EEMI APIs */
struct zynqmp_eemi_ops {
@@ -34,7 +34,7 @@ Example of EEMI ops:
.query_data = zynqmp_pm_query_data,
};
-Example of EEMI ops usage:
+Example of EEMI ops usage::
static const struct zynqmp_eemi_ops *eemi_ops;
u32 ret_payload[PAYLOAD_ARG_CNT];
diff --git a/Documentation/driver-api/xilinx/index.rst b/Documentation/driver-api/xilinx/index.rst
new file mode 100644
index 000000000000..13f7589ed442
--- /dev/null
+++ b/Documentation/driver-api/xilinx/index.rst
@@ -0,0 +1,16 @@
+
+===========
+Xilinx FPGA
+===========
+
+.. toctree::
+ :maxdepth: 1
+
+ eemi
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/xillybus.txt b/Documentation/driver-api/xillybus.rst
index 2446ee303c09..2446ee303c09 100644
--- a/Documentation/xillybus.txt
+++ b/Documentation/driver-api/xillybus.rst
diff --git a/Documentation/zorro.txt b/Documentation/driver-api/zorro.rst
index 664072b017e3..664072b017e3 100644
--- a/Documentation/zorro.txt
+++ b/Documentation/driver-api/zorro.rst
diff --git a/Documentation/fault-injection/fault-injection.txt b/Documentation/fault-injection/fault-injection.rst
index a17517a083c3..f51bb21d20e4 100644
--- a/Documentation/fault-injection/fault-injection.txt
+++ b/Documentation/fault-injection/fault-injection.rst
@@ -1,3 +1,4 @@
+===========================================
Fault injection capabilities infrastructure
===========================================
@@ -7,36 +8,36 @@ See also drivers/md/md-faulty.c and "every_nth" module option for scsi_debug.
Available fault injection capabilities
--------------------------------------
-o failslab
+- failslab
injects slab allocation failures. (kmalloc(), kmem_cache_alloc(), ...)
-o fail_page_alloc
+- fail_page_alloc
injects page allocation failures. (alloc_pages(), get_free_pages(), ...)
-o fail_futex
+- fail_futex
injects futex deadlock and uaddr fault errors.
-o fail_make_request
+- fail_make_request
injects disk IO errors on devices permitted by setting
/sys/block/<device>/make-it-fail or
/sys/block/<device>/<partition>/make-it-fail. (generic_make_request())
-o fail_mmc_request
+- fail_mmc_request
injects MMC data errors on devices permitted by setting
debugfs entries under /sys/kernel/debug/mmc0/fail_mmc_request
-o fail_function
+- fail_function
injects error return on specific functions, which are marked by
ALLOW_ERROR_INJECTION() macro, by setting debugfs entries
under /sys/kernel/debug/fail_function. No boot option supported.
-o NVMe fault injection
+- NVMe fault injection
inject NVMe status code and retry flag on devices permitted by setting
debugfs entries under /sys/kernel/debug/nvme*/fault_inject. The default
@@ -47,7 +48,8 @@ o NVMe fault injection
Configure fault-injection capabilities behavior
-----------------------------------------------
-o debugfs entries
+debugfs entries
+^^^^^^^^^^^^^^^
fault-inject-debugfs kernel module provides some debugfs entries for runtime
configuration of fault-injection capabilities.
@@ -55,6 +57,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/probability:
likelihood of failure injection, in percent.
+
Format: <percent>
Note that one-failure-per-hundred is a very high error rate
@@ -83,6 +86,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/verbose
Format: { 0 | 1 | 2 }
+
specifies the verbosity of the messages when failure is
injected. '0' means no messages; '1' will print only a single
log line per failure; '2' will print a call trace too -- useful
@@ -91,14 +95,15 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/task-filter:
Format: { 'Y' | 'N' }
+
A value of 'N' disables filtering by process (default).
Any positive value limits failures to only processes indicated by
/proc/<pid>/make-it-fail==1.
-- /sys/kernel/debug/fail*/require-start:
-- /sys/kernel/debug/fail*/require-end:
-- /sys/kernel/debug/fail*/reject-start:
-- /sys/kernel/debug/fail*/reject-end:
+- /sys/kernel/debug/fail*/require-start,
+ /sys/kernel/debug/fail*/require-end,
+ /sys/kernel/debug/fail*/reject-start,
+ /sys/kernel/debug/fail*/reject-end:
specifies the range of virtual addresses tested during
stacktrace walking. Failure is injected only if some caller
@@ -116,6 +121,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_page_alloc/ignore-gfp-highmem:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' won't inject failures into
highmem/user allocations.
@@ -123,6 +129,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_page_alloc/ignore-gfp-wait:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' will inject failures
only into non-sleep allocations (GFP_ATOMIC allocations).
@@ -134,12 +141,14 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_futex/ignore-private:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' will disable failure injections
when dealing with private (address space) futexes.
- /sys/kernel/debug/fail_function/inject:
Format: { 'function-name' | '!function-name' | '' }
+
specifies the target function of error injection by name.
If the function name leads '!' prefix, given function is
removed from injection list. If nothing specified ('')
@@ -160,10 +169,11 @@ configuration of fault-injection capabilities.
function for given function. This will be created when
user specifies new injection entry.
-o Boot option
+Boot option
+^^^^^^^^^^^
In order to inject faults while debugfs is not available (early boot time),
-use the boot option:
+use the boot option::
failslab=
fail_page_alloc=
@@ -171,10 +181,11 @@ use the boot option:
fail_futex=
mmc_core.fail_request=<interval>,<probability>,<space>,<times>
-o proc entries
+proc entries
+^^^^^^^^^^^^
-- /proc/<pid>/fail-nth:
-- /proc/self/task/<tid>/fail-nth:
+- /proc/<pid>/fail-nth,
+ /proc/self/task/<tid>/fail-nth:
Write to this file of integer N makes N-th call in the task fail.
Read from this file returns a integer value. A value of '0' indicates
@@ -191,16 +202,16 @@ o proc entries
How to add new fault injection capability
-----------------------------------------
-o #include <linux/fault-inject.h>
+- #include <linux/fault-inject.h>
-o define the fault attributes
+- define the fault attributes
DECLARE_FAULT_ATTR(name);
Please see the definition of struct fault_attr in fault-inject.h
for details.
-o provide a way to configure fault attributes
+- provide a way to configure fault attributes
- boot option
@@ -222,126 +233,126 @@ o provide a way to configure fault attributes
single kernel module, it is better to provide module parameters to
configure the fault attributes.
-o add a hook to insert failures
+- add a hook to insert failures
- Upon should_fail() returning true, client code should inject a failure.
+ Upon should_fail() returning true, client code should inject a failure:
should_fail(attr, size);
Application Examples
--------------------
-o Inject slab allocation failures into module init/exit code
+- Inject slab allocation failures into module init/exit code::
-#!/bin/bash
+ #!/bin/bash
-FAILTYPE=failslab
-echo Y > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 10 > /sys/kernel/debug/$FAILTYPE/probability
-echo 100 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
+ FAILTYPE=failslab
+ echo Y > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 10 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 100 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
-faulty_system()
-{
+ faulty_system()
+ {
bash -c "echo 1 > /proc/self/make-it-fail && exec $*"
-}
+ }
-if [ $# -eq 0 ]
-then
+ if [ $# -eq 0 ]
+ then
echo "Usage: $0 modulename [ modulename ... ]"
exit 1
-fi
+ fi
-for m in $*
-do
+ for m in $*
+ do
echo inserting $m...
faulty_system modprobe $m
echo removing $m...
faulty_system modprobe -r $m
-done
+ done
------------------------------------------------------------------------------
-o Inject page allocation failures only for a specific module
+- Inject page allocation failures only for a specific module::
-#!/bin/bash
+ #!/bin/bash
-FAILTYPE=fail_page_alloc
-module=$1
+ FAILTYPE=fail_page_alloc
+ module=$1
-if [ -z $module ]
-then
+ if [ -z $module ]
+ then
echo "Usage: $0 <modulename>"
exit 1
-fi
+ fi
-modprobe $module
+ modprobe $module
-if [ ! -d /sys/module/$module/sections ]
-then
+ if [ ! -d /sys/module/$module/sections ]
+ then
echo Module $module is not loaded
exit 1
-fi
+ fi
-cat /sys/module/$module/sections/.text > /sys/kernel/debug/$FAILTYPE/require-start
-cat /sys/module/$module/sections/.data > /sys/kernel/debug/$FAILTYPE/require-end
+ cat /sys/module/$module/sections/.text > /sys/kernel/debug/$FAILTYPE/require-start
+ cat /sys/module/$module/sections/.data > /sys/kernel/debug/$FAILTYPE/require-end
-echo N > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 10 > /sys/kernel/debug/$FAILTYPE/probability
-echo 100 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-highmem
-echo 10 > /sys/kernel/debug/$FAILTYPE/stacktrace-depth
+ echo N > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 10 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 100 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-highmem
+ echo 10 > /sys/kernel/debug/$FAILTYPE/stacktrace-depth
-trap "echo 0 > /sys/kernel/debug/$FAILTYPE/probability" SIGINT SIGTERM EXIT
+ trap "echo 0 > /sys/kernel/debug/$FAILTYPE/probability" SIGINT SIGTERM EXIT
-echo "Injecting errors into the module $module... (interrupt to stop)"
-sleep 1000000
+ echo "Injecting errors into the module $module... (interrupt to stop)"
+ sleep 1000000
------------------------------------------------------------------------------
-o Inject open_ctree error while btrfs mount
-
-#!/bin/bash
-
-rm -f testfile.img
-dd if=/dev/zero of=testfile.img bs=1M seek=1000 count=1
-DEVICE=$(losetup --show -f testfile.img)
-mkfs.btrfs -f $DEVICE
-mkdir -p tmpmnt
-
-FAILTYPE=fail_function
-FAILFUNC=open_ctree
-echo $FAILFUNC > /sys/kernel/debug/$FAILTYPE/inject
-echo -12 > /sys/kernel/debug/$FAILTYPE/$FAILFUNC/retval
-echo N > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 100 > /sys/kernel/debug/$FAILTYPE/probability
-echo 0 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 1 > /sys/kernel/debug/$FAILTYPE/verbose
-
-mount -t btrfs $DEVICE tmpmnt
-if [ $? -ne 0 ]
-then
+- Inject open_ctree error while btrfs mount::
+
+ #!/bin/bash
+
+ rm -f testfile.img
+ dd if=/dev/zero of=testfile.img bs=1M seek=1000 count=1
+ DEVICE=$(losetup --show -f testfile.img)
+ mkfs.btrfs -f $DEVICE
+ mkdir -p tmpmnt
+
+ FAILTYPE=fail_function
+ FAILFUNC=open_ctree
+ echo $FAILFUNC > /sys/kernel/debug/$FAILTYPE/inject
+ echo -12 > /sys/kernel/debug/$FAILTYPE/$FAILFUNC/retval
+ echo N > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 100 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 0 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 1 > /sys/kernel/debug/$FAILTYPE/verbose
+
+ mount -t btrfs $DEVICE tmpmnt
+ if [ $? -ne 0 ]
+ then
echo "SUCCESS!"
-else
+ else
echo "FAILED!"
umount tmpmnt
-fi
+ fi
-echo > /sys/kernel/debug/$FAILTYPE/inject
+ echo > /sys/kernel/debug/$FAILTYPE/inject
-rmdir tmpmnt
-losetup -d $DEVICE
-rm testfile.img
+ rmdir tmpmnt
+ losetup -d $DEVICE
+ rm testfile.img
Tool to run command with failslab or fail_page_alloc
@@ -354,43 +365,43 @@ see the following examples.
Examples:
Run a command "make -C tools/testing/selftests/ run_tests" with injecting slab
-allocation failure.
+allocation failure::
# ./tools/testing/fault-injection/failcmd.sh \
-- make -C tools/testing/selftests/ run_tests
Same as above except to specify 100 times failures at most instead of one time
-at most by default.
+at most by default::
# ./tools/testing/fault-injection/failcmd.sh --times=100 \
-- make -C tools/testing/selftests/ run_tests
Same as above except to inject page allocation failure instead of slab
-allocation failure.
+allocation failure::
# env FAILCMD_TYPE=fail_page_alloc \
./tools/testing/fault-injection/failcmd.sh --times=100 \
- -- make -C tools/testing/selftests/ run_tests
+ -- make -C tools/testing/selftests/ run_tests
Systematic faults using fail-nth
---------------------------------
The following code systematically faults 0-th, 1-st, 2-nd and so on
-capabilities in the socketpair() system call.
-
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <sys/socket.h>
-#include <sys/syscall.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <errno.h>
-
-int main()
-{
+capabilities in the socketpair() system call::
+
+ #include <sys/types.h>
+ #include <sys/stat.h>
+ #include <sys/socket.h>
+ #include <sys/syscall.h>
+ #include <fcntl.h>
+ #include <unistd.h>
+ #include <string.h>
+ #include <stdlib.h>
+ #include <stdio.h>
+ #include <errno.h>
+
+ int main()
+ {
int i, err, res, fail_nth, fds[2];
char buf[128];
@@ -413,23 +424,23 @@ int main()
break;
}
return 0;
-}
-
-An example output:
-
-1-th fault Y: res=-1/23
-2-th fault Y: res=-1/23
-3-th fault Y: res=-1/12
-4-th fault Y: res=-1/12
-5-th fault Y: res=-1/23
-6-th fault Y: res=-1/23
-7-th fault Y: res=-1/23
-8-th fault Y: res=-1/12
-9-th fault Y: res=-1/12
-10-th fault Y: res=-1/12
-11-th fault Y: res=-1/12
-12-th fault Y: res=-1/12
-13-th fault Y: res=-1/12
-14-th fault Y: res=-1/12
-15-th fault Y: res=-1/12
-16-th fault N: res=0/12
+ }
+
+An example output::
+
+ 1-th fault Y: res=-1/23
+ 2-th fault Y: res=-1/23
+ 3-th fault Y: res=-1/12
+ 4-th fault Y: res=-1/12
+ 5-th fault Y: res=-1/23
+ 6-th fault Y: res=-1/23
+ 7-th fault Y: res=-1/23
+ 8-th fault Y: res=-1/12
+ 9-th fault Y: res=-1/12
+ 10-th fault Y: res=-1/12
+ 11-th fault Y: res=-1/12
+ 12-th fault Y: res=-1/12
+ 13-th fault Y: res=-1/12
+ 14-th fault Y: res=-1/12
+ 15-th fault Y: res=-1/12
+ 16-th fault N: res=0/12
diff --git a/Documentation/fault-injection/index.rst b/Documentation/fault-injection/index.rst
new file mode 100644
index 000000000000..8408a8a91b34
--- /dev/null
+++ b/Documentation/fault-injection/index.rst
@@ -0,0 +1,20 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+fault-injection
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+ fault-injection
+ notifier-error-inject
+ nvme-fault-injection
+ provoke-crashes
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/fault-injection/notifier-error-inject.txt b/Documentation/fault-injection/notifier-error-inject.rst
index e861d761de24..1668b6e48d3a 100644
--- a/Documentation/fault-injection/notifier-error-inject.txt
+++ b/Documentation/fault-injection/notifier-error-inject.rst
@@ -14,7 +14,8 @@ modules that can be used to test the following notifiers.
PM notifier error injection module
----------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/pm/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/pm/actions/<notifier event>/error
Possible PM notifier events to be failed are:
@@ -22,7 +23,7 @@ Possible PM notifier events to be failed are:
* PM_SUSPEND_PREPARE
* PM_RESTORE_PREPARE
-Example: Inject PM suspend error (-12 = -ENOMEM)
+Example: Inject PM suspend error (-12 = -ENOMEM)::
# cd /sys/kernel/debug/notifier-error-inject/pm/
# echo -12 > actions/PM_SUSPEND_PREPARE/error
@@ -32,14 +33,15 @@ Example: Inject PM suspend error (-12 = -ENOMEM)
Memory hotplug notifier error injection module
----------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/memory/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/memory/actions/<notifier event>/error
Possible memory notifier events to be failed are:
* MEM_GOING_ONLINE
* MEM_GOING_OFFLINE
-Example: Inject memory hotplug offline error (-12 == -ENOMEM)
+Example: Inject memory hotplug offline error (-12 == -ENOMEM)::
# cd /sys/kernel/debug/notifier-error-inject/memory
# echo -12 > actions/MEM_GOING_OFFLINE/error
@@ -49,7 +51,8 @@ Example: Inject memory hotplug offline error (-12 == -ENOMEM)
powerpc pSeries reconfig notifier error injection module
--------------------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/pSeries-reconfig/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/pSeries-reconfig/actions/<notifier event>/error
Possible pSeries reconfig notifier events to be failed are:
@@ -61,7 +64,8 @@ Possible pSeries reconfig notifier events to be failed are:
Netdevice notifier error injection module
----------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/netdev/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/netdev/actions/<notifier event>/error
Netdevice notifier events which can be failed are:
@@ -75,7 +79,7 @@ Netdevice notifier events which can be failed are:
* NETDEV_PRECHANGEUPPER
* NETDEV_CHANGEUPPER
-Example: Inject netdevice mtu change error (-22 == -EINVAL)
+Example: Inject netdevice mtu change error (-22 == -EINVAL)::
# cd /sys/kernel/debug/notifier-error-inject/netdev
# echo -22 > actions/NETDEV_CHANGEMTU/error
diff --git a/Documentation/fault-injection/nvme-fault-injection.rst b/Documentation/fault-injection/nvme-fault-injection.rst
new file mode 100644
index 000000000000..cdb2e829228e
--- /dev/null
+++ b/Documentation/fault-injection/nvme-fault-injection.rst
@@ -0,0 +1,178 @@
+NVMe Fault Injection
+====================
+Linux's fault injection framework provides a systematic way to support
+error injection via debugfs in the /sys/kernel/debug directory. When
+enabled, the default NVME_SC_INVALID_OPCODE with no retry will be
+injected into the nvme_end_request. Users can change the default status
+code and no retry flag via the debugfs. The list of Generic Command
+Status can be found in include/linux/nvme.h
+
+Following examples show how to inject an error into the nvme.
+
+First, enable CONFIG_FAULT_INJECTION_DEBUG_FS kernel config,
+recompile the kernel. After booting up the kernel, do the
+following.
+
+Example 1: Inject default status code with no retry
+---------------------------------------------------
+
+::
+
+ mount /dev/nvme0n1 /mnt
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
+ echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
+ cp a.file /mnt
+
+Expected Result::
+
+ cp: cannot stat ‘/mnt/a.file’: Input/output error
+
+Message from dmesg::
+
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 0, times 1
+ CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.15.0-rc8+ #2
+ Hardware name: innotek GmbH VirtualBox/VirtualBox,
+ BIOS VirtualBox 12/01/2006
+ Call Trace:
+ <IRQ>
+ dump_stack+0x5c/0x7d
+ should_fail+0x148/0x170
+ nvme_should_fail+0x2f/0x50 [nvme_core]
+ nvme_process_cq+0xe7/0x1d0 [nvme]
+ nvme_irq+0x1e/0x40 [nvme]
+ __handle_irq_event_percpu+0x3a/0x190
+ handle_irq_event_percpu+0x30/0x70
+ handle_irq_event+0x36/0x60
+ handle_fasteoi_irq+0x78/0x120
+ handle_irq+0xa7/0x130
+ ? tick_irq_enter+0xa8/0xc0
+ do_IRQ+0x43/0xc0
+ common_interrupt+0xa2/0xa2
+ </IRQ>
+ RIP: 0010:native_safe_halt+0x2/0x10
+ RSP: 0018:ffffffff82003e90 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdd
+ RAX: ffffffff817a10c0 RBX: ffffffff82012480 RCX: 0000000000000000
+ RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
+ RBP: 0000000000000000 R08: 000000008e38ce64 R09: 0000000000000000
+ R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82012480
+ R13: ffffffff82012480 R14: 0000000000000000 R15: 0000000000000000
+ ? __sched_text_end+0x4/0x4
+ default_idle+0x18/0xf0
+ do_idle+0x150/0x1d0
+ cpu_startup_entry+0x6f/0x80
+ start_kernel+0x4c4/0x4e4
+ ? set_init_arg+0x55/0x55
+ secondary_startup_64+0xa5/0xb0
+ print_req_error: I/O error, dev nvme0n1, sector 9240
+ EXT4-fs error (device nvme0n1): ext4_find_entry:1436:
+ inode #2: comm cp: reading directory lblock 0
+
+Example 2: Inject default status code with retry
+------------------------------------------------
+
+::
+
+ mount /dev/nvme0n1 /mnt
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
+ echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/status
+ echo 0 > /sys/kernel/debug/nvme0n1/fault_inject/dont_retry
+
+ cp a.file /mnt
+
+Expected Result::
+
+ command success without error
+
+Message from dmesg::
+
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 0, times 1
+ CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.15.0-rc8+ #4
+ Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
+ Call Trace:
+ <IRQ>
+ dump_stack+0x5c/0x7d
+ should_fail+0x148/0x170
+ nvme_should_fail+0x30/0x60 [nvme_core]
+ nvme_loop_queue_response+0x84/0x110 [nvme_loop]
+ nvmet_req_complete+0x11/0x40 [nvmet]
+ nvmet_bio_done+0x28/0x40 [nvmet]
+ blk_update_request+0xb0/0x310
+ blk_mq_end_request+0x18/0x60
+ flush_smp_call_function_queue+0x3d/0xf0
+ smp_call_function_single_interrupt+0x2c/0xc0
+ call_function_single_interrupt+0xa2/0xb0
+ </IRQ>
+ RIP: 0010:native_safe_halt+0x2/0x10
+ RSP: 0018:ffffc9000068bec0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff04
+ RAX: ffffffff817a10c0 RBX: ffff88011a3c9680 RCX: 0000000000000000
+ RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
+ RBP: 0000000000000001 R08: 000000008e38c131 R09: 0000000000000000
+ R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011a3c9680
+ R13: ffff88011a3c9680 R14: 0000000000000000 R15: 0000000000000000
+ ? __sched_text_end+0x4/0x4
+ default_idle+0x18/0xf0
+ do_idle+0x150/0x1d0
+ cpu_startup_entry+0x6f/0x80
+ start_secondary+0x187/0x1e0
+ secondary_startup_64+0xa5/0xb0
+
+Example 3: Inject an error into the 10th admin command
+------------------------------------------------------
+
+::
+
+ echo 100 > /sys/kernel/debug/nvme0/fault_inject/probability
+ echo 10 > /sys/kernel/debug/nvme0/fault_inject/space
+ echo 1 > /sys/kernel/debug/nvme0/fault_inject/times
+ nvme reset /dev/nvme0
+
+Expected Result::
+
+ After NVMe controller reset, the reinitialization may or may not succeed.
+ It depends on which admin command is actually forced to fail.
+
+Message from dmesg::
+
+ nvme nvme0: resetting controller
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 1, times 1
+ CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.2.0-rc2+ #2
+ Hardware name: MSI MS-7A45/B150M MORTAR ARCTIC (MS-7A45), BIOS 1.50 04/25/2017
+ Call Trace:
+ <IRQ>
+ dump_stack+0x63/0x85
+ should_fail+0x14a/0x170
+ nvme_should_fail+0x38/0x80 [nvme_core]
+ nvme_irq+0x129/0x280 [nvme]
+ ? blk_mq_end_request+0xb3/0x120
+ __handle_irq_event_percpu+0x84/0x1a0
+ handle_irq_event_percpu+0x32/0x80
+ handle_irq_event+0x3b/0x60
+ handle_edge_irq+0x7f/0x1a0
+ handle_irq+0x20/0x30
+ do_IRQ+0x4e/0xe0
+ common_interrupt+0xf/0xf
+ </IRQ>
+ RIP: 0010:cpuidle_enter_state+0xc5/0x460
+ Code: ff e8 8f 5f 86 ff 80 7d c7 00 74 17 9c 58 0f 1f 44 00 00 f6 c4 02 0f 85 69 03 00 00 31 ff e8 62 aa 8c ff fb 66 0f 1f 44 00 00 <45> 85 ed 0f 88 37 03 00 00 4c 8b 45 d0 4c 2b 45 b8 48 ba cf f7 53
+ RSP: 0018:ffffffff88c03dd0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdc
+ RAX: ffff9dac25a2ac80 RBX: ffffffff88d53760 RCX: 000000000000001f
+ RDX: 0000000000000000 RSI: 000000002d958403 RDI: 0000000000000000
+ RBP: ffffffff88c03e18 R08: fffffff75e35ffb7 R09: 00000a49a56c0b48
+ R10: ffffffff88c03da0 R11: 0000000000001b0c R12: ffff9dac25a34d00
+ R13: 0000000000000006 R14: 0000000000000006 R15: ffffffff88d53760
+ cpuidle_enter+0x2e/0x40
+ call_cpuidle+0x23/0x40
+ do_idle+0x201/0x280
+ cpu_startup_entry+0x1d/0x20
+ rest_init+0xaa/0xb0
+ arch_call_rest_init+0xe/0x1b
+ start_kernel+0x51c/0x53b
+ x86_64_start_reservations+0x24/0x26
+ x86_64_start_kernel+0x74/0x77
+ secondary_startup_64+0xa4/0xb0
+ nvme nvme0: Could not set queue count (16385)
+ nvme nvme0: IO queues not created
diff --git a/Documentation/fault-injection/nvme-fault-injection.txt b/Documentation/fault-injection/nvme-fault-injection.txt
deleted file mode 100644
index 8fbf3bf60b62..000000000000
--- a/Documentation/fault-injection/nvme-fault-injection.txt
+++ /dev/null
@@ -1,116 +0,0 @@
-NVMe Fault Injection
-====================
-Linux's fault injection framework provides a systematic way to support
-error injection via debugfs in the /sys/kernel/debug directory. When
-enabled, the default NVME_SC_INVALID_OPCODE with no retry will be
-injected into the nvme_end_request. Users can change the default status
-code and no retry flag via the debugfs. The list of Generic Command
-Status can be found in include/linux/nvme.h
-
-Following examples show how to inject an error into the nvme.
-
-First, enable CONFIG_FAULT_INJECTION_DEBUG_FS kernel config,
-recompile the kernel. After booting up the kernel, do the
-following.
-
-Example 1: Inject default status code with no retry
----------------------------------------------------
-
-mount /dev/nvme0n1 /mnt
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
-echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
-cp a.file /mnt
-
-Expected Result:
-
-cp: cannot stat ‘/mnt/a.file’: Input/output error
-
-Message from dmesg:
-
-FAULT_INJECTION: forcing a failure.
-name fault_inject, interval 1, probability 100, space 0, times 1
-CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.15.0-rc8+ #2
-Hardware name: innotek GmbH VirtualBox/VirtualBox,
-BIOS VirtualBox 12/01/2006
-Call Trace:
- <IRQ>
- dump_stack+0x5c/0x7d
- should_fail+0x148/0x170
- nvme_should_fail+0x2f/0x50 [nvme_core]
- nvme_process_cq+0xe7/0x1d0 [nvme]
- nvme_irq+0x1e/0x40 [nvme]
- __handle_irq_event_percpu+0x3a/0x190
- handle_irq_event_percpu+0x30/0x70
- handle_irq_event+0x36/0x60
- handle_fasteoi_irq+0x78/0x120
- handle_irq+0xa7/0x130
- ? tick_irq_enter+0xa8/0xc0
- do_IRQ+0x43/0xc0
- common_interrupt+0xa2/0xa2
- </IRQ>
-RIP: 0010:native_safe_halt+0x2/0x10
-RSP: 0018:ffffffff82003e90 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdd
-RAX: ffffffff817a10c0 RBX: ffffffff82012480 RCX: 0000000000000000
-RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
-RBP: 0000000000000000 R08: 000000008e38ce64 R09: 0000000000000000
-R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82012480
-R13: ffffffff82012480 R14: 0000000000000000 R15: 0000000000000000
- ? __sched_text_end+0x4/0x4
- default_idle+0x18/0xf0
- do_idle+0x150/0x1d0
- cpu_startup_entry+0x6f/0x80
- start_kernel+0x4c4/0x4e4
- ? set_init_arg+0x55/0x55
- secondary_startup_64+0xa5/0xb0
- print_req_error: I/O error, dev nvme0n1, sector 9240
-EXT4-fs error (device nvme0n1): ext4_find_entry:1436:
-inode #2: comm cp: reading directory lblock 0
-
-Example 2: Inject default status code with retry
-------------------------------------------------
-
-mount /dev/nvme0n1 /mnt
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
-echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/status
-echo 0 > /sys/kernel/debug/nvme0n1/fault_inject/dont_retry
-
-cp a.file /mnt
-
-Expected Result:
-
-command success without error
-
-Message from dmesg:
-
-FAULT_INJECTION: forcing a failure.
-name fault_inject, interval 1, probability 100, space 0, times 1
-CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.15.0-rc8+ #4
-Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
-Call Trace:
- <IRQ>
- dump_stack+0x5c/0x7d
- should_fail+0x148/0x170
- nvme_should_fail+0x30/0x60 [nvme_core]
- nvme_loop_queue_response+0x84/0x110 [nvme_loop]
- nvmet_req_complete+0x11/0x40 [nvmet]
- nvmet_bio_done+0x28/0x40 [nvmet]
- blk_update_request+0xb0/0x310
- blk_mq_end_request+0x18/0x60
- flush_smp_call_function_queue+0x3d/0xf0
- smp_call_function_single_interrupt+0x2c/0xc0
- call_function_single_interrupt+0xa2/0xb0
- </IRQ>
-RIP: 0010:native_safe_halt+0x2/0x10
-RSP: 0018:ffffc9000068bec0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff04
-RAX: ffffffff817a10c0 RBX: ffff88011a3c9680 RCX: 0000000000000000
-RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
-RBP: 0000000000000001 R08: 000000008e38c131 R09: 0000000000000000
-R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011a3c9680
-R13: ffff88011a3c9680 R14: 0000000000000000 R15: 0000000000000000
- ? __sched_text_end+0x4/0x4
- default_idle+0x18/0xf0
- do_idle+0x150/0x1d0
- cpu_startup_entry+0x6f/0x80
- start_secondary+0x187/0x1e0
- secondary_startup_64+0xa5/0xb0
diff --git a/Documentation/fault-injection/provoke-crashes.rst b/Documentation/fault-injection/provoke-crashes.rst
new file mode 100644
index 000000000000..9279a3e12278
--- /dev/null
+++ b/Documentation/fault-injection/provoke-crashes.rst
@@ -0,0 +1,48 @@
+===============
+Provoke crashes
+===============
+
+The lkdtm module provides an interface to crash or injure the kernel at
+predefined crashpoints to evaluate the reliability of crash dumps obtained
+using different dumping solutions. The module uses KPROBEs to instrument
+crashing points, but can also crash the kernel directly without KRPOBE
+support.
+
+
+You can provide the way either through module arguments when inserting
+the module, or through a debugfs interface.
+
+Usage::
+
+ insmod lkdtm.ko [recur_count={>0}] cpoint_name=<> cpoint_type=<>
+ [cpoint_count={>0}]
+
+recur_count
+ Recursion level for the stack overflow test. Default is 10.
+
+cpoint_name
+ Crash point where the kernel is to be crashed. It can be
+ one of INT_HARDWARE_ENTRY, INT_HW_IRQ_EN, INT_TASKLET_ENTRY,
+ FS_DEVRW, MEM_SWAPOUT, TIMERADD, SCSI_DISPATCH_CMD,
+ IDE_CORE_CP, DIRECT
+
+cpoint_type
+ Indicates the action to be taken on hitting the crash point.
+ It can be one of PANIC, BUG, EXCEPTION, LOOP, OVERFLOW,
+ CORRUPT_STACK, UNALIGNED_LOAD_STORE_WRITE, OVERWRITE_ALLOCATION,
+ WRITE_AFTER_FREE,
+
+cpoint_count
+ Indicates the number of times the crash point is to be hit
+ to trigger an action. The default is 10.
+
+You can also induce failures by mounting debugfs and writing the type to
+<mountpoint>/provoke-crash/<crashpoint>. E.g.::
+
+ mount -t debugfs debugfs /mnt
+ echo EXCEPTION > /mnt/provoke-crash/INT_HARDWARE_ENTRY
+
+
+A special file is `DIRECT` which will induce the crash directly without
+KPROBE instrumentation. This mode is the only one available when the module
+is built on a kernel without KPROBEs support.
diff --git a/Documentation/fault-injection/provoke-crashes.txt b/Documentation/fault-injection/provoke-crashes.txt
deleted file mode 100644
index 7a9d3d81525b..000000000000
--- a/Documentation/fault-injection/provoke-crashes.txt
+++ /dev/null
@@ -1,38 +0,0 @@
-The lkdtm module provides an interface to crash or injure the kernel at
-predefined crashpoints to evaluate the reliability of crash dumps obtained
-using different dumping solutions. The module uses KPROBEs to instrument
-crashing points, but can also crash the kernel directly without KRPOBE
-support.
-
-
-You can provide the way either through module arguments when inserting
-the module, or through a debugfs interface.
-
-Usage: insmod lkdtm.ko [recur_count={>0}] cpoint_name=<> cpoint_type=<>
- [cpoint_count={>0}]
-
- recur_count : Recursion level for the stack overflow test. Default is 10.
-
- cpoint_name : Crash point where the kernel is to be crashed. It can be
- one of INT_HARDWARE_ENTRY, INT_HW_IRQ_EN, INT_TASKLET_ENTRY,
- FS_DEVRW, MEM_SWAPOUT, TIMERADD, SCSI_DISPATCH_CMD,
- IDE_CORE_CP, DIRECT
-
- cpoint_type : Indicates the action to be taken on hitting the crash point.
- It can be one of PANIC, BUG, EXCEPTION, LOOP, OVERFLOW,
- CORRUPT_STACK, UNALIGNED_LOAD_STORE_WRITE, OVERWRITE_ALLOCATION,
- WRITE_AFTER_FREE,
-
- cpoint_count : Indicates the number of times the crash point is to be hit
- to trigger an action. The default is 10.
-
-You can also induce failures by mounting debugfs and writing the type to
-<mountpoint>/provoke-crash/<crashpoint>. E.g.,
-
- mount -t debugfs debugfs /mnt
- echo EXCEPTION > /mnt/provoke-crash/INT_HARDWARE_ENTRY
-
-
-A special file is `DIRECT' which will induce the crash directly without
-KPROBE instrumentation. This mode is the only one available when the module
-is built on a kernel without KPROBEs support.
diff --git a/Documentation/fb/api.txt b/Documentation/fb/api.rst
index d52cf1e3b975..79ec33dded74 100644
--- a/Documentation/fb/api.txt
+++ b/Documentation/fb/api.rst
@@ -1,5 +1,6 @@
- The Frame Buffer Device API
- ---------------------------
+===========================
+The Frame Buffer Device API
+===========================
Last revised: June 21, 2011
@@ -21,13 +22,13 @@ deal with different behaviours.
---------------
Device and driver capabilities are reported in the fixed screen information
-capabilities field.
+capabilities field::
-struct fb_fix_screeninfo {
+ struct fb_fix_screeninfo {
...
__u16 capabilities; /* see FB_CAP_* */
...
-};
+ };
Application should use those capabilities to find out what features they can
expect from the device and driver.
@@ -151,9 +152,9 @@ fb_fix_screeninfo and fb_var_screeninfo structure respectively.
struct fb_fix_screeninfo stores device independent unchangeable information
about the frame buffer device and the current format. Those information can't
be directly modified by applications, but can be changed by the driver when an
-application modifies the format.
+application modifies the format::
-struct fb_fix_screeninfo {
+ struct fb_fix_screeninfo {
char id[16]; /* identification string eg "TT Builtin" */
unsigned long smem_start; /* Start of frame buffer mem */
/* (physical address) */
@@ -172,13 +173,13 @@ struct fb_fix_screeninfo {
/* specific chip/card we have */
__u16 capabilities; /* see FB_CAP_* */
__u16 reserved[2]; /* Reserved for future compatibility */
-};
+ };
struct fb_var_screeninfo stores device independent changeable information
about a frame buffer device, its current format and video mode, as well as
-other miscellaneous parameters.
+other miscellaneous parameters::
-struct fb_var_screeninfo {
+ struct fb_var_screeninfo {
__u32 xres; /* visible resolution */
__u32 yres;
__u32 xres_virtual; /* virtual resolution */
@@ -216,7 +217,7 @@ struct fb_var_screeninfo {
__u32 rotate; /* angle we rotate counter clockwise */
__u32 colorspace; /* colorspace for FOURCC-based modes */
__u32 reserved[4]; /* Reserved for future compatibility */
-};
+ };
To modify variable information, applications call the FBIOPUT_VSCREENINFO
ioctl with a pointer to a fb_var_screeninfo structure. If the call is
@@ -255,14 +256,14 @@ monochrome, grayscale or pseudocolor visuals, although this is not required.
- For truecolor and directcolor formats, applications set the grayscale field
to zero, and the red, blue, green and transp fields to describe the layout of
- color components in memory.
+ color components in memory::
-struct fb_bitfield {
+ struct fb_bitfield {
__u32 offset; /* beginning of bitfield */
__u32 length; /* length of bitfield */
__u32 msb_right; /* != 0 : Most significant bit is */
/* right */
-};
+ };
Pixel values are bits_per_pixel wide and are split in non-overlapping red,
green, blue and alpha (transparency) components. Location and size of each
diff --git a/Documentation/fb/arkfb.txt b/Documentation/fb/arkfb.rst
index e8487a9d6a05..aeca8773dd7e 100644
--- a/Documentation/fb/arkfb.txt
+++ b/Documentation/fb/arkfb.rst
@@ -1,6 +1,6 @@
-
- arkfb - fbdev driver for ARK Logic chips
- ========================================
+========================================
+arkfb - fbdev driver for ARK Logic chips
+========================================
Supported Hardware
@@ -47,7 +47,7 @@ Missing Features
(alias TODO list)
* secondary (not initialized by BIOS) device support
- * big endian support
+ * big endian support
* DPMS support
* MMIO support
* interlaced mode variant
diff --git a/Documentation/fb/aty128fb.txt b/Documentation/fb/aty128fb.rst
index b605204fcfe1..3f107718f933 100644
--- a/Documentation/fb/aty128fb.txt
+++ b/Documentation/fb/aty128fb.rst
@@ -1,8 +1,9 @@
-[This file is cloned from VesaFB/matroxfb]
-
+=================
What is aty128fb?
=================
+.. [This file is cloned from VesaFB/matroxfb]
+
This is a driver for a graphic framebuffer for ATI Rage128 based devices
on Intel and PPC boxes.
@@ -24,15 +25,15 @@ How to use it?
==============
Switching modes is done using the video=aty128fb:<resolution>... modedb
-boot parameter or using `fbset' program.
+boot parameter or using `fbset` program.
-See Documentation/fb/modedb.txt for more information on modedb
+See Documentation/fb/modedb.rst for more information on modedb
resolutions.
You should compile in both vgacon (to boot if you remove your Rage128 from
box) and aty128fb (for graphics mode). You should not compile-in vesafb
-unless you have primary display on non-Rage128 VBE2.0 device (see
-Documentation/fb/vesafb.txt for details).
+unless you have primary display on non-Rage128 VBE2.0 device (see
+Documentation/fb/vesafb.rst for details).
X11
@@ -48,16 +49,18 @@ Configuration
=============
You can pass kernel command line options to vesafb with
-`video=aty128fb:option1,option2:value2,option3' (multiple options should
-be separated by comma, values are separated from options by `:').
+`video=aty128fb:option1,option2:value2,option3` (multiple options should
+be separated by comma, values are separated from options by `:`).
Accepted options:
-noaccel - do not use acceleration engine. It is default.
-accel - use acceleration engine. Not finished.
-vmode:x - chooses PowerMacintosh video mode <x>. Deprecated.
-cmode:x - chooses PowerMacintosh colour mode <x>. Deprecated.
-<XxX@X> - selects startup videomode. See modedb.txt for detailed
- explanation. Default is 640x480x8bpp.
+========= =======================================================
+noaccel do not use acceleration engine. It is default.
+accel use acceleration engine. Not finished.
+vmode:x chooses PowerMacintosh video mode <x>. Deprecated.
+cmode:x chooses PowerMacintosh colour mode <x>. Deprecated.
+<XxX@X> selects startup videomode. See modedb.txt for detailed
+ explanation. Default is 640x480x8bpp.
+========= =======================================================
Limitations
@@ -65,8 +68,8 @@ Limitations
There are known and unknown bugs, features and misfeatures.
Currently there are following known bugs:
- + This driver is still experimental and is not finished. Too many
+
+ - This driver is still experimental and is not finished. Too many
bugs/errata to list here.
---
Brad Douglas <brad@neruo.com>
diff --git a/Documentation/fb/cirrusfb.txt b/Documentation/fb/cirrusfb.rst
index f75950d330a4..8c3e6c6cb114 100644
--- a/Documentation/fb/cirrusfb.txt
+++ b/Documentation/fb/cirrusfb.rst
@@ -1,32 +1,32 @@
+============================================
+Framebuffer driver for Cirrus Logic chipsets
+============================================
- Framebuffer driver for Cirrus Logic chipsets
- Copyright 1999 Jeff Garzik <jgarzik@pobox.com>
+Copyright 1999 Jeff Garzik <jgarzik@pobox.com>
-
-{ just a little something to get people going; contributors welcome! }
-
+.. just a little something to get people going; contributors welcome!
Chip families supported:
- SD64
- Piccolo
- Picasso
- Spectrum
- Alpine (GD-543x/4x)
- Picasso4 (GD-5446)
- GD-5480
- Laguna (GD-546x)
+ - SD64
+ - Piccolo
+ - Picasso
+ - Spectrum
+ - Alpine (GD-543x/4x)
+ - Picasso4 (GD-5446)
+ - GD-5480
+ - Laguna (GD-546x)
Bus's supported:
- PCI
- Zorro
+ - PCI
+ - Zorro
Architectures supported:
- i386
- Alpha
- PPC (Motorola Powerstack)
- m68k (Amiga)
+ - i386
+ - Alpha
+ - PPC (Motorola Powerstack)
+ - m68k (Amiga)
@@ -34,10 +34,9 @@ Default video modes
-------------------
At the moment, there are two kernel command line arguments supported:
-mode:640x480
-mode:800x600
- or
-mode:1024x768
+- mode:640x480
+- mode:800x600
+- mode:1024x768
Full support for startup video modes (modedb) will be integrated soon.
@@ -93,5 +92,3 @@ Version 1.9.4
Version 1.9.3
-------------
* Bundled with kernel 2.3.14-pre1 or later.
-
-
diff --git a/Documentation/fb/cmap_xfbdev.txt b/Documentation/fb/cmap_xfbdev.rst
index 55e1f0a3d2b4..5db5e9787361 100644
--- a/Documentation/fb/cmap_xfbdev.txt
+++ b/Documentation/fb/cmap_xfbdev.rst
@@ -1,26 +1,29 @@
+==========================
Understanding fbdev's cmap
---------------------------
+==========================
These notes explain how X's dix layer uses fbdev's cmap structures.
-*. example of relevant structures in fbdev as used for a 3-bit grayscale cmap
-struct fb_var_screeninfo {
- .bits_per_pixel = 8,
- .grayscale = 1,
- .red = { 4, 3, 0 },
- .green = { 0, 0, 0 },
- .blue = { 0, 0, 0 },
-}
-struct fb_fix_screeninfo {
- .visual = FB_VISUAL_STATIC_PSEUDOCOLOR,
-}
-for (i = 0; i < 8; i++)
+- example of relevant structures in fbdev as used for a 3-bit grayscale cmap::
+
+ struct fb_var_screeninfo {
+ .bits_per_pixel = 8,
+ .grayscale = 1,
+ .red = { 4, 3, 0 },
+ .green = { 0, 0, 0 },
+ .blue = { 0, 0, 0 },
+ }
+ struct fb_fix_screeninfo {
+ .visual = FB_VISUAL_STATIC_PSEUDOCOLOR,
+ }
+ for (i = 0; i < 8; i++)
info->cmap.red[i] = (((2*i)+1)*(0xFFFF))/16;
-memcpy(info->cmap.green, info->cmap.red, sizeof(u16)*8);
-memcpy(info->cmap.blue, info->cmap.red, sizeof(u16)*8);
+ memcpy(info->cmap.green, info->cmap.red, sizeof(u16)*8);
+ memcpy(info->cmap.blue, info->cmap.red, sizeof(u16)*8);
-*. X11 apps do something like the following when trying to use grayscale.
-for (i=0; i < 8; i++) {
+- X11 apps do something like the following when trying to use grayscale::
+
+ for (i=0; i < 8; i++) {
char colorspec[64];
memset(colorspec,0,64);
sprintf(colorspec, "rgb:%x/%x/%x", i*36,i*36,i*36);
@@ -28,26 +31,26 @@ for (i=0; i < 8; i++) {
printf("Can't get color %s\n",colorspec);
XAllocColor(outputDisplay, testColormap, &wantedColor);
grays[i] = wantedColor;
-}
+ }
+
There's also named equivalents like gray1..x provided you have an rgb.txt.
Somewhere in X's callchain, this results in a call to X code that handles the
colormap. For example, Xfbdev hits the following:
-xc-011010/programs/Xserver/dix/colormap.c:
+xc-011010/programs/Xserver/dix/colormap.c::
-FindBestPixel(pentFirst, size, prgb, channel)
+ FindBestPixel(pentFirst, size, prgb, channel)
-dr = (long) pent->co.local.red - prgb->red;
-dg = (long) pent->co.local.green - prgb->green;
-db = (long) pent->co.local.blue - prgb->blue;
-sq = dr * dr;
-UnsignedToBigNum (sq, &sum);
-BigNumAdd (&sum, &temp, &sum);
+ dr = (long) pent->co.local.red - prgb->red;
+ dg = (long) pent->co.local.green - prgb->green;
+ db = (long) pent->co.local.blue - prgb->blue;
+ sq = dr * dr;
+ UnsignedToBigNum (sq, &sum);
+ BigNumAdd (&sum, &temp, &sum);
co.local.red are entries that were brought in through FBIOGETCMAP which come
directly from the info->cmap.red that was listed above. The prgb is the rgb
that the app wants to match to. The above code is doing what looks like a least
squares matching function. That's why the cmap entries can't be set to the left
hand side boundaries of a color range.
-
diff --git a/Documentation/fb/deferred_io.txt b/Documentation/fb/deferred_io.rst
index 748328370250..7300cff255a3 100644
--- a/Documentation/fb/deferred_io.txt
+++ b/Documentation/fb/deferred_io.rst
@@ -1,5 +1,6 @@
+===========
Deferred IO
------------
+===========
Deferred IO is a way to delay and repurpose IO. It uses host memory as a
buffer and the MMU pagefault as a pretrigger for when to perform the device
@@ -16,7 +17,7 @@ works:
- app continues writing to that page with no additional cost. this is
the key benefit.
- the workqueue task comes in and mkcleans the pages on the list, then
- completes the work associated with updating the framebuffer. this is
+ completes the work associated with updating the framebuffer. this is
the real work talking to the device.
- app tries to write to the address (that has now been mkcleaned)
- get pagefault and the above sequence occurs again
@@ -47,29 +48,32 @@ How to use it: (for fbdev drivers)
----------------------------------
The following example may be helpful.
-1. Setup your structure. Eg:
+1. Setup your structure. Eg::
-static struct fb_deferred_io hecubafb_defio = {
- .delay = HZ,
- .deferred_io = hecubafb_dpy_deferred_io,
-};
+ static struct fb_deferred_io hecubafb_defio = {
+ .delay = HZ,
+ .deferred_io = hecubafb_dpy_deferred_io,
+ };
The delay is the minimum delay between when the page_mkwrite trigger occurs
and when the deferred_io callback is called. The deferred_io callback is
explained below.
-2. Setup your deferred IO callback. Eg:
-static void hecubafb_dpy_deferred_io(struct fb_info *info,
- struct list_head *pagelist)
+2. Setup your deferred IO callback. Eg::
+
+ static void hecubafb_dpy_deferred_io(struct fb_info *info,
+ struct list_head *pagelist)
The deferred_io callback is where you would perform all your IO to the display
device. You receive the pagelist which is the list of pages that were written
to during the delay. You must not modify this list. This callback is called
from a workqueue.
-3. Call init
+3. Call init::
+
info->fbdefio = &hecubafb_defio;
fb_deferred_io_init(info);
-4. Call cleanup
+4. Call cleanup::
+
fb_deferred_io_cleanup(info);
diff --git a/Documentation/fb/efifb.txt b/Documentation/fb/efifb.rst
index 1a85c1bdaf38..04840331a00e 100644
--- a/Documentation/fb/efifb.txt
+++ b/Documentation/fb/efifb.rst
@@ -1,6 +1,6 @@
-
+==============
What is efifb?
-===============
+==============
This is a generic EFI platform driver for Intel based Apple computers.
efifb is only for EFI booted Intel Macs.
@@ -8,16 +8,17 @@ efifb is only for EFI booted Intel Macs.
Supported Hardware
==================
-iMac 17"/20"
-Macbook
-Macbook Pro 15"/17"
-MacMini
+- iMac 17"/20"
+- Macbook
+- Macbook Pro 15"/17"
+- MacMini
How to use it?
==============
efifb does not have any kind of autodetection of your machine.
-You have to add the following kernel parameters in your elilo.conf:
+You have to add the following kernel parameters in your elilo.conf::
+
Macbook :
video=efifb:macbook
MacMini :
@@ -29,9 +30,10 @@ You have to add the following kernel parameters in your elilo.conf:
Accepted options:
+======= ===========================================================
nowc Don't map the framebuffer write combined. This can be used
to workaround side-effects and slowdowns on other CPU cores
when large amounts of console data are written.
+======= ===========================================================
---
Edgar Hucek <gimli@dark-green.com>
diff --git a/Documentation/fb/ep93xx-fb.txt b/Documentation/fb/ep93xx-fb.rst
index 5af1bd9effae..6f7767926d1a 100644
--- a/Documentation/fb/ep93xx-fb.txt
+++ b/Documentation/fb/ep93xx-fb.rst
@@ -4,7 +4,7 @@ Driver for EP93xx LCD controller
The EP93xx LCD controller can drive both standard desktop monitors and
embedded LCD displays. If you have a standard desktop monitor then you
-can use the standard Linux video mode database. In your board file:
+can use the standard Linux video mode database. In your board file::
static struct ep93xxfb_mach_info some_board_fb_info = {
.num_modes = EP93XXFB_USE_MODEDB,
@@ -12,7 +12,7 @@ can use the standard Linux video mode database. In your board file:
};
If you have an embedded LCD display then you need to define a video
-mode for it as follows:
+mode for it as follows::
static struct fb_videomode some_board_video_modes[] = {
{
@@ -23,11 +23,11 @@ mode for it as follows:
Note that the pixel clock value is in pico-seconds. You can use the
KHZ2PICOS macro to convert the pixel clock value. Most other values
-are in pixel clocks. See Documentation/fb/framebuffer.txt for further
+are in pixel clocks. See Documentation/fb/framebuffer.rst for further
details.
The ep93xxfb_mach_info structure for your board should look like the
-following:
+following::
static struct ep93xxfb_mach_info some_board_fb_info = {
.num_modes = ARRAY_SIZE(some_board_video_modes),
@@ -37,7 +37,7 @@ following:
};
The framebuffer device can be registered by adding the following to
-your board initialisation function:
+your board initialisation function::
ep93xx_register_fb(&some_board_fb_info);
@@ -50,6 +50,7 @@ to configure the controller. The video attributes flags are fully
documented in section 7 of the EP93xx users' guide. The following
flags are available:
+=============================== ==========================================
EP93XXFB_PCLK_FALLING Clock data on the falling edge of the
pixel clock. The default is to clock
data on the rising edge.
@@ -62,10 +63,12 @@ EP93XXFB_SYNC_HORIZ_HIGH Horizontal sync is active high. By
EP93XXFB_SYNC_VERT_HIGH Vertical sync is active high. By
default the vertical sync is active high.
+=============================== ==========================================
The physical address of the framebuffer can be controlled using the
following flags:
+=============================== ======================================
EP93XXFB_USE_SDCSN0 Use SDCSn[0] for the framebuffer. This
is the default setting.
@@ -74,6 +77,7 @@ EP93XXFB_USE_SDCSN1 Use SDCSn[1] for the framebuffer.
EP93XXFB_USE_SDCSN2 Use SDCSn[2] for the framebuffer.
EP93XXFB_USE_SDCSN3 Use SDCSn[3] for the framebuffer.
+=============================== ======================================
==================
Platform callbacks
@@ -87,7 +91,7 @@ blanked or unblanked.
The setup and teardown devices pass the platform_device structure as
an argument. The fb_info and ep93xxfb_mach_info structures can be
-obtained as follows:
+obtained as follows::
static int some_board_fb_setup(struct platform_device *pdev)
{
@@ -101,17 +105,17 @@ obtained as follows:
Setting the video mode
======================
-The video mode is set using the following syntax:
+The video mode is set using the following syntax::
video=XRESxYRES[-BPP][@REFRESH]
If the EP93xx video driver is built-in then the video mode is set on
-the Linux kernel command line, for example:
+the Linux kernel command line, for example::
video=ep93xx-fb:800x600-16@60
If the EP93xx video driver is built as a module then the video mode is
-set when the module is installed:
+set when the module is installed::
modprobe ep93xx-fb video=320x240
@@ -121,13 +125,14 @@ Screenpage bug
At least on the EP9315 there is a silicon bug which causes bit 27 of
the VIDSCRNPAGE (framebuffer physical offset) to be tied low. There is
-an unofficial errata for this bug at:
+an unofficial errata for this bug at::
+
http://marc.info/?l=linux-arm-kernel&m=110061245502000&w=2
By default the EP93xx framebuffer driver checks if the allocated physical
address has bit 27 set. If it does, then the memory is freed and an
error is returned. The check can be disabled by adding the following
-option when loading the driver:
+option when loading the driver::
ep93xx-fb.check_screenpage_bug=0
diff --git a/Documentation/fb/fbcon.txt b/Documentation/fb/fbcon.rst
index 5a865437b33f..ebca41785abe 100644
--- a/Documentation/fb/fbcon.txt
+++ b/Documentation/fb/fbcon.rst
@@ -1,39 +1,41 @@
+=======================
The Framebuffer Console
=======================
- The framebuffer console (fbcon), as its name implies, is a text
+The framebuffer console (fbcon), as its name implies, is a text
console running on top of the framebuffer device. It has the functionality of
any standard text console driver, such as the VGA console, with the added
features that can be attributed to the graphical nature of the framebuffer.
- In the x86 architecture, the framebuffer console is optional, and
+In the x86 architecture, the framebuffer console is optional, and
some even treat it as a toy. For other architectures, it is the only available
display device, text or graphical.
- What are the features of fbcon? The framebuffer console supports
+What are the features of fbcon? The framebuffer console supports
high resolutions, varying font types, display rotation, primitive multihead,
etc. Theoretically, multi-colored fonts, blending, aliasing, and any feature
made available by the underlying graphics card are also possible.
A. Configuration
+================
- The framebuffer console can be enabled by using your favorite kernel
+The framebuffer console can be enabled by using your favorite kernel
configuration tool. It is under Device Drivers->Graphics Support->Frame
buffer Devices->Console display driver support->Framebuffer Console Support.
Select 'y' to compile support statically or 'm' for module support. The
module will be fbcon.
- In order for fbcon to activate, at least one framebuffer driver is
+In order for fbcon to activate, at least one framebuffer driver is
required, so choose from any of the numerous drivers available. For x86
systems, they almost universally have VGA cards, so vga16fb and vesafb will
always be available. However, using a chipset-specific driver will give you
more speed and features, such as the ability to change the video mode
dynamically.
- To display the penguin logo, choose any logo available in Graphics
+To display the penguin logo, choose any logo available in Graphics
support->Bootup logo.
- Also, you will need to select at least one compiled-in font, but if
+Also, you will need to select at least one compiled-in font, but if
you don't do anything, the kernel configuration tool will select one for you,
usually an 8x16 font.
@@ -44,6 +46,7 @@ fortunate to have a driver that does not alter the graphics chip, then you
will still get a VGA console.
B. Loading
+==========
Possible scenarios:
@@ -72,33 +75,33 @@ Possible scenarios:
C. Boot options
- The framebuffer console has several, largely unknown, boot options
- that can change its behavior.
+ The framebuffer console has several, largely unknown, boot options
+ that can change its behavior.
1. fbcon=font:<name>
- Select the initial font to use. The value 'name' can be any of the
- compiled-in fonts: 10x18, 6x10, 7x14, Acorn8x8, MINI4x6,
- PEARL8x8, ProFont6x11, SUN12x22, SUN8x16, TER16x32, VGA8x16, VGA8x8.
+ Select the initial font to use. The value 'name' can be any of the
+ compiled-in fonts: 10x18, 6x10, 7x14, Acorn8x8, MINI4x6,
+ PEARL8x8, ProFont6x11, SUN12x22, SUN8x16, TER16x32, VGA8x16, VGA8x8.
Note, not all drivers can handle font with widths not divisible by 8,
- such as vga16fb.
+ such as vga16fb.
2. fbcon=scrollback:<value>[k]
- The scrollback buffer is memory that is used to preserve display
- contents that has already scrolled past your view. This is accessed
- by using the Shift-PageUp key combination. The value 'value' is any
- integer. It defaults to 32KB. The 'k' suffix is optional, and will
- multiply the 'value' by 1024.
+ The scrollback buffer is memory that is used to preserve display
+ contents that has already scrolled past your view. This is accessed
+ by using the Shift-PageUp key combination. The value 'value' is any
+ integer. It defaults to 32KB. The 'k' suffix is optional, and will
+ multiply the 'value' by 1024.
3. fbcon=map:<0123>
- This is an interesting option. It tells which driver gets mapped to
- which console. The value '0123' is a sequence that gets repeated until
- the total length is 64 which is the number of consoles available. In
- the above example, it is expanded to 012301230123... and the mapping
- will be:
+ This is an interesting option. It tells which driver gets mapped to
+ which console. The value '0123' is a sequence that gets repeated until
+ the total length is 64 which is the number of consoles available. In
+ the above example, it is expanded to 012301230123... and the mapping
+ will be::
tty | 1 2 3 4 5 6 7 8 9 ...
fb | 0 1 2 3 0 1 2 3 0 ...
@@ -126,20 +129,20 @@ C. Boot options
4. fbcon=rotate:<n>
- This option changes the orientation angle of the console display. The
- value 'n' accepts the following:
+ This option changes the orientation angle of the console display. The
+ value 'n' accepts the following:
- 0 - normal orientation (0 degree)
- 1 - clockwise orientation (90 degrees)
- 2 - upside down orientation (180 degrees)
- 3 - counterclockwise orientation (270 degrees)
+ - 0 - normal orientation (0 degree)
+ - 1 - clockwise orientation (90 degrees)
+ - 2 - upside down orientation (180 degrees)
+ - 3 - counterclockwise orientation (270 degrees)
The angle can be changed anytime afterwards by 'echoing' the same
numbers to any one of the 2 attributes found in
/sys/class/graphics/fbcon:
- rotate - rotate the display of the active console
- rotate_all - rotate the display of all consoles
+ - rotate - rotate the display of the active console
+ - rotate_all - rotate the display of all consoles
Console rotation will only become available if Framebuffer Console
Rotation support is compiled in your kernel.
@@ -177,19 +180,19 @@ Before going on to how to attach, detach and unload the framebuffer console, an
illustration of the dependencies may help.
The console layer, as with most subsystems, needs a driver that interfaces with
-the hardware. Thus, in a VGA console:
+the hardware. Thus, in a VGA console::
-console ---> VGA driver ---> hardware.
+ console ---> VGA driver ---> hardware.
Assuming the VGA driver can be unloaded, one must first unbind the VGA driver
from the console layer before unloading the driver. The VGA driver cannot be
unloaded if it is still bound to the console layer. (See
-Documentation/console/console.txt for more information).
+Documentation/driver-api/console.rst for more information).
This is more complicated in the case of the framebuffer console (fbcon),
-because fbcon is an intermediate layer between the console and the drivers:
+because fbcon is an intermediate layer between the console and the drivers::
-console ---> fbcon ---> fbdev drivers ---> hardware
+ console ---> fbcon ---> fbdev drivers ---> hardware
The fbdev drivers cannot be unloaded if bound to fbcon, and fbcon cannot
be unloaded if it's bound to the console layer.
@@ -201,15 +204,15 @@ fbcon. Thus, there is no need to explicitly unbind the fbdev drivers from
fbcon.
So, how do we unbind fbcon from the console? Part of the answer is in
-Documentation/console/console.txt. To summarize:
+Documentation/driver-api/console.rst. To summarize:
Echo a value to the bind file that represents the framebuffer console
-driver. So assuming vtcon1 represents fbcon, then:
+driver. So assuming vtcon1 represents fbcon, then::
-echo 1 > sys/class/vtconsole/vtcon1/bind - attach framebuffer console to
- console layer
-echo 0 > sys/class/vtconsole/vtcon1/bind - detach framebuffer console from
- console layer
+ echo 1 > sys/class/vtconsole/vtcon1/bind - attach framebuffer console to
+ console layer
+ echo 0 > sys/class/vtconsole/vtcon1/bind - detach framebuffer console from
+ console layer
If fbcon is detached from the console layer, your boot console driver (which is
usually VGA text mode) will take over. A few drivers (rivafb and i810fb) will
@@ -223,19 +226,19 @@ restored properly. The following is one of the several methods that you can do:
2. In your kernel configuration, ensure that CONFIG_FRAMEBUFFER_CONSOLE is set
to 'y' or 'm'. Enable one or more of your favorite framebuffer drivers.
-3. Boot into text mode and as root run:
+3. Boot into text mode and as root run::
vbetool vbestate save > <vga state file>
- The above command saves the register contents of your graphics
- hardware to <vga state file>. You need to do this step only once as
- the state file can be reused.
+ The above command saves the register contents of your graphics
+ hardware to <vga state file>. You need to do this step only once as
+ the state file can be reused.
-4. If fbcon is compiled as a module, load fbcon by doing:
+4. If fbcon is compiled as a module, load fbcon by doing::
modprobe fbcon
-5. Now to detach fbcon:
+5. Now to detach fbcon::
vbetool vbestate restore < <vga state file> && \
echo 0 > /sys/class/vtconsole/vtcon1/bind
@@ -243,7 +246,7 @@ restored properly. The following is one of the several methods that you can do:
6. That's it, you're back to VGA mode. And if you compiled fbcon as a module,
you can unload it by 'rmmod fbcon'.
-7. To reattach fbcon:
+7. To reattach fbcon::
echo 1 > /sys/class/vtconsole/vtcon1/bind
@@ -266,82 +269,82 @@ the following:
Variation 1:
- a. Before detaching fbcon, do
+ a. Before detaching fbcon, do::
- vbetool vbemode save > <vesa state file> # do once for each vesafb mode,
- # the file can be reused
+ vbetool vbemode save > <vesa state file> # do once for each vesafb mode,
+ # the file can be reused
b. Detach fbcon as in step 5.
- c. Attach fbcon
+ c. Attach fbcon::
- vbetool vbestate restore < <vesa state file> && \
+ vbetool vbestate restore < <vesa state file> && \
echo 1 > /sys/class/vtconsole/vtcon1/bind
Variation 2:
- a. Before detaching fbcon, do:
- echo <ID> > /sys/class/tty/console/bind
+ a. Before detaching fbcon, do::
+ echo <ID> > /sys/class/tty/console/bind
- vbetool vbemode get
+ vbetool vbemode get
b. Take note of the mode number
b. Detach fbcon as in step 5.
- c. Attach fbcon:
+ c. Attach fbcon::
- vbetool vbemode set <mode number> && \
- echo 1 > /sys/class/vtconsole/vtcon1/bind
+ vbetool vbemode set <mode number> && \
+ echo 1 > /sys/class/vtconsole/vtcon1/bind
Samples:
========
Here are 2 sample bash scripts that you can use to bind or unbind the
-framebuffer console driver if you are on an X86 box:
+framebuffer console driver if you are on an X86 box::
----------------------------------------------------------------------------
-#!/bin/bash
-# Unbind fbcon
+ #!/bin/bash
+ # Unbind fbcon
-# Change this to where your actual vgastate file is located
-# Or Use VGASTATE=$1 to indicate the state file at runtime
-VGASTATE=/tmp/vgastate
+ # Change this to where your actual vgastate file is located
+ # Or Use VGASTATE=$1 to indicate the state file at runtime
+ VGASTATE=/tmp/vgastate
-# path to vbetool
-VBETOOL=/usr/local/bin
+ # path to vbetool
+ VBETOOL=/usr/local/bin
-for (( i = 0; i < 16; i++))
-do
- if test -x /sys/class/vtconsole/vtcon$i; then
- if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
- = 1 ]; then
+ for (( i = 0; i < 16; i++))
+ do
+ if test -x /sys/class/vtconsole/vtcon$i; then
+ if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
+ = 1 ]; then
if test -x $VBETOOL/vbetool; then
echo Unbinding vtcon$i
$VBETOOL/vbetool vbestate restore < $VGASTATE
echo 0 > /sys/class/vtconsole/vtcon$i/bind
fi
- fi
- fi
-done
+ fi
+ fi
+ done
---------------------------------------------------------------------------
-#!/bin/bash
-# Bind fbcon
-
-for (( i = 0; i < 16; i++))
-do
- if test -x /sys/class/vtconsole/vtcon$i; then
- if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
- = 1 ]; then
+
+::
+
+ #!/bin/bash
+ # Bind fbcon
+
+ for (( i = 0; i < 16; i++))
+ do
+ if test -x /sys/class/vtconsole/vtcon$i; then
+ if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \
+ = 1 ]; then
echo Unbinding vtcon$i
echo 1 > /sys/class/vtconsole/vtcon$i/bind
- fi
- fi
-done
----------------------------------------------------------------------------
+ fi
+ fi
+ done
---
Antonino Daplas <adaplas@pol.net>
diff --git a/Documentation/fb/framebuffer.txt b/Documentation/fb/framebuffer.rst
index 58c5ae2e9f59..7fe087310c82 100644
--- a/Documentation/fb/framebuffer.txt
+++ b/Documentation/fb/framebuffer.rst
@@ -1,7 +1,7 @@
- The Frame Buffer Device
- -----------------------
+=======================
+The Frame Buffer Device
+=======================
-Maintained by Geert Uytterhoeven <geert@linux-m68k.org>
Last revised: May 10, 2001
@@ -26,7 +26,7 @@ other device in /dev. It's a character device using major 29; the minor
specifies the frame buffer number.
By convention, the following device nodes are used (numbers indicate the device
-minor numbers):
+minor numbers)::
0 = /dev/fb0 First frame buffer
1 = /dev/fb1 Second frame buffer
@@ -34,15 +34,15 @@ minor numbers):
31 = /dev/fb31 32nd frame buffer
For backwards compatibility, you may want to create the following symbolic
-links:
+links::
/dev/fb0current -> fb0
/dev/fb1current -> fb1
and so on...
-The frame buffer devices are also `normal' memory devices, this means, you can
-read and write their contents. You can, for example, make a screen snapshot by
+The frame buffer devices are also `normal` memory devices, this means, you can
+read and write their contents. You can, for example, make a screen snapshot by::
cp /dev/fb0 myfile
@@ -54,11 +54,11 @@ Application software that uses the frame buffer device (e.g. the X server) will
use /dev/fb0 by default (older software uses /dev/fb0current). You can specify
an alternative frame buffer device by setting the environment variable
$FRAMEBUFFER to the path name of a frame buffer device, e.g. (for sh/bash
-users):
+users)::
export FRAMEBUFFER=/dev/fb1
-or (for csh users):
+or (for csh users)::
setenv FRAMEBUFFER /dev/fb1
@@ -90,9 +90,9 @@ which data structures they work. Here's just a brief overview:
possible).
- You can get and set parts of the color map. Communication is done with 16
- bits per color part (red, green, blue, transparency) to support all
- existing hardware. The driver does all the computations needed to apply
- it to the hardware (round it down to less bits, maybe throw away
+ bits per color part (red, green, blue, transparency) to support all
+ existing hardware. The driver does all the computations needed to apply
+ it to the hardware (round it down to less bits, maybe throw away
transparency).
All this hardware abstraction makes the implementation of application programs
@@ -113,10 +113,10 @@ much trouble...
3. Frame Buffer Resolution Maintenance
--------------------------------------
-Frame buffer resolutions are maintained using the utility `fbset'. It can
+Frame buffer resolutions are maintained using the utility `fbset`. It can
change the video mode properties of a frame buffer device. Its main usage is
-to change the current video mode, e.g. during boot up in one of your /etc/rc.*
-or /etc/init.d/* files.
+to change the current video mode, e.g. during boot up in one of your `/etc/rc.*`
+or `/etc/init.d/*` files.
Fbset uses a video mode database stored in a configuration file, so you can
easily add your own modes and refer to them with a simple identifier.
@@ -129,8 +129,8 @@ The X server (XF68_FBDev) is the most notable application program for the frame
buffer device. Starting with XFree86 release 3.2, the X server is part of
XFree86 and has 2 modes:
- - If the `Display' subsection for the `fbdev' driver in the /etc/XF86Config
- file contains a
+ - If the `Display` subsection for the `fbdev` driver in the /etc/XF86Config
+ file contains a::
Modes "default"
@@ -146,7 +146,7 @@ XFree86 and has 2 modes:
same virtual desktop size. The frame buffer device that's used is still
/dev/fb0current (or $FRAMEBUFFER), but the available resolutions are
defined by /etc/XF86Config now. The disadvantage is that you have to
- specify the timings in a different format (but `fbset -x' may help).
+ specify the timings in a different format (but `fbset -x` may help).
To tune a video mode, you can use fbset or xvidtune. Note that xvidtune doesn't
work 100% with XF68_FBDev: the reported clock values are always incorrect.
@@ -172,29 +172,29 @@ retrace, the electron beam is turned off (blanked).
The speed at which the electron beam paints the pixels is determined by the
dotclock in the graphics board. For a dotclock of e.g. 28.37516 MHz (millions
-of cycles per second), each pixel is 35242 ps (picoseconds) long:
+of cycles per second), each pixel is 35242 ps (picoseconds) long::
1/(28.37516E6 Hz) = 35.242E-9 s
-If the screen resolution is 640x480, it will take
+If the screen resolution is 640x480, it will take::
640*35.242E-9 s = 22.555E-6 s
to paint the 640 (xres) pixels on one scanline. But the horizontal retrace
-also takes time (e.g. 272 `pixels'), so a full scanline takes
+also takes time (e.g. 272 `pixels`), so a full scanline takes::
(640+272)*35.242E-9 s = 32.141E-6 s
-We'll say that the horizontal scanrate is about 31 kHz:
+We'll say that the horizontal scanrate is about 31 kHz::
1/(32.141E-6 s) = 31.113E3 Hz
A full screen counts 480 (yres) lines, but we have to consider the vertical
-retrace too (e.g. 49 `lines'). So a full screen will take
+retrace too (e.g. 49 `lines`). So a full screen will take::
(480+49)*32.141E-6 s = 17.002E-3 s
-The vertical scanrate is about 59 Hz:
+The vertical scanrate is about 59 Hz::
1/(17.002E-3 s) = 58.815 Hz
@@ -212,7 +212,7 @@ influenced by the moments at which the synchronization pulses occur.
The following picture summarizes all timings. The horizontal retrace time is
the sum of the left margin, the right margin and the hsync length, while the
vertical retrace time is the sum of the upper margin, the lower margin and the
-vsync length.
+vsync length::
+----------+---------------------------------------------+----------+-------+
| | ↑ | | |
@@ -256,7 +256,8 @@ The frame buffer device expects all horizontal timings in number of dotclocks
6. Converting XFree86 timing values info frame buffer device timings
--------------------------------------------------------------------
-An XFree86 mode line consists of the following fields:
+An XFree86 mode line consists of the following fields::
+
"800x600" 50 800 856 976 1040 600 637 643 666
< name > DCF HR SH1 SH2 HFL VR SV1 SV2 VFL
@@ -271,19 +272,27 @@ The frame buffer device uses the following fields:
- vsync_len: length of vertical sync
1) Pixelclock:
+
xfree: in MHz
+
fb: in picoseconds (ps)
pixclock = 1000000 / DCF
2) horizontal timings:
+
left_margin = HFL - SH2
+
right_margin = SH1 - HR
+
hsync_len = SH2 - SH1
3) vertical timings:
+
upper_margin = VFL - SV2
+
lower_margin = SV1 - VR
+
vsync_len = SV2 - SV1
Good examples for VESA timings can be found in the XFree86 source tree,
@@ -303,9 +312,10 @@ and to the following documentation:
- The manual pages for fbset: fbset(8), fb.modes(5)
- The manual pages for XFree86: XF68_FBDev(1), XF86Config(4/5)
- The mighty kernel sources:
- o linux/drivers/video/
- o linux/include/linux/fb.h
- o linux/include/video/
+
+ - linux/drivers/video/
+ - linux/include/linux/fb.h
+ - linux/include/video/
@@ -330,14 +340,14 @@ and on its mirrors.
The latest version of fbset can be found at
- http://www.linux-fbdev.org/
+ http://www.linux-fbdev.org/
+
+
+10. Credits
+-----------
-
-10. Credits
-----------
-
This readme was written by Geert Uytterhoeven, partly based on the original
-`X-framebuffer.README' by Roman Hodek and Martin Schaller. Section 6 was
+`X-framebuffer.README` by Roman Hodek and Martin Schaller. Section 6 was
provided by Frank Neumann.
The frame buffer device abstraction was designed by Martin Schaller.
diff --git a/Documentation/fb/gxfb.txt b/Documentation/fb/gxfb.rst
index 2f640903bbb2..5738709bccbb 100644
--- a/Documentation/fb/gxfb.txt
+++ b/Documentation/fb/gxfb.rst
@@ -1,7 +1,8 @@
-[This file is cloned from VesaFB/aty128fb]
-
+=============
What is gxfb?
-=================
+=============
+
+.. [This file is cloned from VesaFB/aty128fb]
This is a graphics framebuffer driver for AMD Geode GX2 based processors.
@@ -23,9 +24,9 @@ How to use it?
==============
Switching modes is done using gxfb.mode_option=<resolution>... boot
-parameter or using `fbset' program.
+parameter or using `fbset` program.
-See Documentation/fb/modedb.txt for more information on modedb
+See Documentation/fb/modedb.rst for more information on modedb
resolutions.
@@ -42,11 +43,12 @@ You can pass kernel command line options to gxfb with gxfb.<option>.
For example, gxfb.mode_option=800x600@75.
Accepted options:
-mode_option - specify the video mode. Of the form
- <x>x<y>[-<bpp>][@<refresh>]
-vram - size of video ram (normally auto-detected)
-vt_switch - enable vt switching during suspend/resume. The vt
- switch is slow, but harmless.
+================ ==================================================
+mode_option specify the video mode. Of the form
+ <x>x<y>[-<bpp>][@<refresh>]
+vram size of video ram (normally auto-detected)
+vt_switch enable vt switching during suspend/resume. The vt
+ switch is slow, but harmless.
+================ ==================================================
---
Andres Salomon <dilinger@debian.org>
diff --git a/Documentation/fb/index.rst b/Documentation/fb/index.rst
new file mode 100644
index 000000000000..baf02393d8ee
--- /dev/null
+++ b/Documentation/fb/index.rst
@@ -0,0 +1,50 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============
+Frame Buffer
+============
+
+.. toctree::
+ :maxdepth: 1
+
+ api
+ arkfb
+ aty128fb
+ cirrusfb
+ cmap_xfbdev
+ deferred_io
+ efifb
+ ep93xx-fb
+ fbcon
+ framebuffer
+ gxfb
+ intel810
+ intelfb
+ internals
+ lxfb
+ matroxfb
+ metronomefb
+ modedb
+ pvr2fb
+ pxafb
+ s3fb
+ sa1100fb
+ sh7760fb
+ sisfb
+ sm501
+ sm712fb
+ sstfb
+ tgafb
+ tridentfb
+ udlfb
+ uvesafb
+ vesafb
+ viafb
+ vt8623fb
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/fb/intel810.txt b/Documentation/fb/intel810.rst
index a8e9f5bca6f3..eb86098db91f 100644
--- a/Documentation/fb/intel810.txt
+++ b/Documentation/fb/intel810.rst
@@ -1,26 +1,31 @@
+================================
Intel 810/815 Framebuffer driver
- Tony Daplas <adaplas@pol.net>
- http://i810fb.sourceforge.net
+================================
- March 17, 2002
+Tony Daplas <adaplas@pol.net>
- First Released: July 2001
- Last Update: September 12, 2005
-================================================================
+http://i810fb.sourceforge.net
+
+March 17, 2002
+
+First Released: July 2001
+Last Update: September 12, 2005
A. Introduction
+===============
This is a framebuffer driver for various Intel 810/815 compatible
graphics devices. These include:
- Intel 810
- Intel 810E
- Intel 810-DC100
- Intel 815 Internal graphics only, 100Mhz FSB
- Intel 815 Internal graphics only
- Intel 815 Internal graphics and AGP
+ - Intel 810
+ - Intel 810E
+ - Intel 810-DC100
+ - Intel 815 Internal graphics only, 100Mhz FSB
+ - Intel 815 Internal graphics only
+ - Intel 815 Internal graphics and AGP
B. Features
+============
- Choice of using Discrete Video Timings, VESA Generalized Timing
Formula, or a framebuffer specific database to set the video mode
@@ -45,10 +50,11 @@ B. Features
- Can concurrently run with xfree86 running with native i810 drivers
- Hardware Cursor Support
-
+
- Supports EDID probing either by DDC/I2C or through the BIOS
C. List of available options
+=============================
a. "video=i810fb"
enables the i810 driver
@@ -158,7 +164,7 @@ C. List of available options
(default = not set)
n. "dcolor"
- Use directcolor visual instead of truecolor for pixel depths greater
+ Use directcolor visual instead of truecolor for pixel depths greater
than 8 bpp. Useful for color tuning, such as gamma control.
Recommendation: do not set
@@ -167,35 +173,37 @@ C. List of available options
o. <xres>x<yres>[-<bpp>][@<refresh>]
The driver will now accept specification of boot mode option. If this
is specified, the options 'xres' and 'yres' will be ignored. See
- Documentation/fb/modedb.txt for usage.
+ Documentation/fb/modedb.rst for usage.
D. Kernel booting
+=================
Separate each option/option-pair by commas (,) and the option from its value
-with a colon (:) as in the following:
+with a colon (:) as in the following::
-video=i810fb:option1,option2:value2
+ video=i810fb:option1,option2:value2
Sample Usage
------------
-In /etc/lilo.conf, add the line:
+In /etc/lilo.conf, add the line::
-append="video=i810fb:vram:2,xres:1024,yres:768,bpp:8,hsync1:30,hsync2:55, \
- vsync1:50,vsync2:85,accel,mtrr"
+ append="video=i810fb:vram:2,xres:1024,yres:768,bpp:8,hsync1:30,hsync2:55, \
+ vsync1:50,vsync2:85,accel,mtrr"
This will initialize the framebuffer to 1024x768 at 8bpp. The framebuffer
will use 2 MB of System RAM. MTRR support will be enabled. The refresh rate
will be computed based on the hsync1/hsync2 and vsync1/vsync2 values.
IMPORTANT:
-You must include hsync1, hsync2, vsync1 and vsync2 to enable video modes
-better than 640x480 at 60Hz. HOWEVER, if your chipset/display combination
-supports I2C and has an EDID block, you can safely exclude hsync1, hsync2,
-vsync1 and vsync2 parameters. These parameters will be taken from the EDID
-block.
+ You must include hsync1, hsync2, vsync1 and vsync2 to enable video modes
+ better than 640x480 at 60Hz. HOWEVER, if your chipset/display combination
+ supports I2C and has an EDID block, you can safely exclude hsync1, hsync2,
+ vsync1 and vsync2 parameters. These parameters will be taken from the EDID
+ block.
E. Module options
+==================
The module parameters are essentially similar to the kernel
parameters. The main difference is that you need to include a Boolean value
@@ -206,31 +214,32 @@ Example, to enable MTRR, include "mtrr=1".
Sample Usage
------------
-Using the same setup as described above, load the module like this:
+Using the same setup as described above, load the module like this::
modprobe i810fb vram=2 xres=1024 bpp=8 hsync1=30 hsync2=55 vsync1=50 \
- vsync2=85 accel=1 mtrr=1
+ vsync2=85 accel=1 mtrr=1
-Or just add the following to a configuration file in /etc/modprobe.d/
+Or just add the following to a configuration file in /etc/modprobe.d/::
options i810fb vram=2 xres=1024 bpp=16 hsync1=30 hsync2=55 vsync1=50 \
vsync2=85 accel=1 mtrr=1
-and just do a
+and just do a::
modprobe i810fb
F. Setup
+=========
- a. Do your usual method of configuring the kernel.
+ a. Do your usual method of configuring the kernel
- make menuconfig/xconfig/config
+ make menuconfig/xconfig/config
b. Under "Code maturity level options" enable "Prompt for development
and/or incomplete code/drivers".
- c. Enable agpgart support for the Intel 810/815 on-board graphics.
+ c. Enable agpgart support for the Intel 810/815 on-board graphics.
This is required. The option is under "Character Devices".
d. Under "Graphics Support", select "Intel 810/815" either statically
@@ -242,7 +251,7 @@ F. Setup
set 'Enable DDC Support' to 'y'. To make this option appear, set
'use VESA Generalized Timing Formula' to 'y'.
- f. If you want a framebuffer console, enable it under "Console
+ f. If you want a framebuffer console, enable it under "Console
Drivers".
g. Compile your kernel.
@@ -253,6 +262,7 @@ F. Setup
patch to see the chipset in action (or inaction :-).
G. Acknowledgment:
+===================
1. Geert Uytterhoeven - his excellent howto and the virtual
framebuffer driver code made this possible.
@@ -269,10 +279,9 @@ G. Acknowledgment:
optimizations possible.
H. Home Page:
+==============
A more complete, and probably updated information is provided at
http://i810fb.sourceforge.net.
-###########################
Tony
-
diff --git a/Documentation/fb/intelfb.txt b/Documentation/fb/intelfb.rst
index feac4e4d6968..e2d0903f4efb 100644
--- a/Documentation/fb/intelfb.txt
+++ b/Documentation/fb/intelfb.rst
@@ -1,24 +1,28 @@
+=============================================================
Intel 830M/845G/852GM/855GM/865G/915G/945G Framebuffer driver
-================================================================
+=============================================================
A. Introduction
- This is a framebuffer driver for various Intel 8xx/9xx compatible
+===============
+
+This is a framebuffer driver for various Intel 8xx/9xx compatible
graphics devices. These would include:
- Intel 830M
- Intel 845G
- Intel 852GM
- Intel 855GM
- Intel 865G
- Intel 915G
- Intel 915GM
- Intel 945G
- Intel 945GM
- Intel 945GME
- Intel 965G
- Intel 965GM
+ - Intel 830M
+ - Intel 845G
+ - Intel 852GM
+ - Intel 855GM
+ - Intel 865G
+ - Intel 915G
+ - Intel 915GM
+ - Intel 945G
+ - Intel 945GM
+ - Intel 945GME
+ - Intel 965G
+ - Intel 965GM
B. List of available options
+=============================
a. "video=intelfb"
enables the intelfb driver
@@ -39,12 +43,12 @@ B. List of available options
(default = 4 MB)
d. "voffset=<value>"
- select at what offset in MB of the logical memory to allocate the
+ select at what offset in MB of the logical memory to allocate the
framebuffer memory. The intent is to avoid the memory blocks
used by standard graphics applications (XFree86). Depending on your
- usage, adjust the value up or down, (0 for maximum usage, 63/127 MB
- for the least amount). Note, an arbitrary setting may conflict
- with XFree86.
+ usage, adjust the value up or down, (0 for maximum usage, 63/127 MB
+ for the least amount). Note, an arbitrary setting may conflict
+ with XFree86.
Recommendation: do not set
(default = 48 MB)
@@ -80,18 +84,19 @@ B. List of available options
The default parameter (not named) is the mode.
C. Kernel booting
+=================
Separate each option/option-pair by commas (,) and the option from its value
-with an equals sign (=) as in the following:
+with an equals sign (=) as in the following::
-video=intelfb:option1,option2=value2
+ video=intelfb:option1,option2=value2
Sample Usage
------------
-In /etc/lilo.conf, add the line:
+In /etc/lilo.conf, add the line::
-append="video=intelfb:mode=800x600-32@75,accel,hwcursor,vram=8"
+ append="video=intelfb:mode=800x600-32@75,accel,hwcursor,vram=8"
This will initialize the framebuffer to 800x600 at 32bpp and 75Hz. The
framebuffer will use 8 MB of System RAM. hw acceleration of text and cursor
@@ -106,8 +111,9 @@ in this directory.
D. Module options
+==================
- The module parameters are essentially similar to the kernel
+The module parameters are essentially similar to the kernel
parameters. The main difference is that you need to include a Boolean value
(1 for TRUE, and 0 for FALSE) for those options which don't need a value.
@@ -116,23 +122,24 @@ Example, to enable MTRR, include "mtrr=1".
Sample Usage
------------
-Using the same setup as described above, load the module like this:
+Using the same setup as described above, load the module like this::
modprobe intelfb mode=800x600-32@75 vram=8 accel=1 hwcursor=1
-Or just add the following to a configuration file in /etc/modprobe.d/
+Or just add the following to a configuration file in /etc/modprobe.d/::
options intelfb mode=800x600-32@75 vram=8 accel=1 hwcursor=1
-and just do a
+and just do a::
modprobe intelfb
E. Acknowledgment:
+===================
1. Geert Uytterhoeven - his excellent howto and the virtual
- framebuffer driver code made this possible.
+ framebuffer driver code made this possible.
2. Jeff Hartmann for his agpgart code.
@@ -145,5 +152,4 @@ E. Acknowledgment:
6. Andrew Morton for his kernel patches maintenance.
-###########################
Sylvain
diff --git a/Documentation/fb/internals.txt b/Documentation/fb/internals.rst
index 9b2a2b2f3e57..696b50aa7c24 100644
--- a/Documentation/fb/internals.txt
+++ b/Documentation/fb/internals.rst
@@ -1,13 +1,19 @@
+=============================
+Frame Buffer device internals
+=============================
This is a first start for some documentation about frame buffer device
internals.
-Geert Uytterhoeven <geert@linux-m68k.org>, 21 July 1998
-James Simmons <jsimmons@user.sf.net>, Nov 26 2002
+Authors:
+
+- Geert Uytterhoeven <geert@linux-m68k.org>, 21 July 1998
+- James Simmons <jsimmons@user.sf.net>, Nov 26 2002
--------------------------------------------------------------------------------
- *** STRUCTURES USED BY THE FRAME BUFFER DEVICE API ***
+Structures used by the frame buffer device API
+==============================================
The following structures play a role in the game of frame buffer devices. They
are defined in <linux/fb.h>.
@@ -40,19 +46,18 @@ are defined in <linux/fb.h>.
Generic information, API and low level information about a specific frame
buffer device instance (slot number, board address, ...).
- - struct `par'
+ - struct `par`
Device dependent information that uniquely defines the video mode for this
particular piece of hardware.
---------------------------------------------------------------------------------
-
- *** VISUALS USED BY THE FRAME BUFFER DEVICE API ***
+Visuals used by the frame buffer device API
+===========================================
Monochrome (FB_VISUAL_MONO01 and FB_VISUAL_MONO10)
--------------------------------------------------
+--------------------------------------------------
Each pixel is either black or white.
@@ -70,7 +75,7 @@ The pixel value is broken up into red, green, and blue fields.
Direct color (FB_VISUAL_DIRECTCOLOR)
------------------------------------
-The pixel value is broken up into red, green, and blue fields, each of which
+The pixel value is broken up into red, green, and blue fields, each of which
are looked up in separate red, green, and blue lookup tables.
@@ -79,4 +84,3 @@ Grayscale displays
Grayscale and static grayscale are special variants of pseudo color and static
pseudo color, where the red, green and blue components are always equal to
each other.
-
diff --git a/Documentation/fb/lxfb.txt b/Documentation/fb/lxfb.rst
index 38b3ca6f6ca7..863e6b98fbae 100644
--- a/Documentation/fb/lxfb.txt
+++ b/Documentation/fb/lxfb.rst
@@ -1,7 +1,9 @@
-[This file is cloned from VesaFB/aty128fb]
-
+=============
What is lxfb?
-=================
+=============
+
+.. [This file is cloned from VesaFB/aty128fb]
+
This is a graphics framebuffer driver for AMD Geode LX based processors.
@@ -23,9 +25,9 @@ How to use it?
==============
Switching modes is done using lxfb.mode_option=<resolution>... boot
-parameter or using `fbset' program.
+parameter or using `fbset` program.
-See Documentation/fb/modedb.txt for more information on modedb
+See Documentation/fb/modedb.rst for more information on modedb
resolutions.
@@ -42,11 +44,12 @@ You can pass kernel command line options to lxfb with lxfb.<option>.
For example, lxfb.mode_option=800x600@75.
Accepted options:
-mode_option - specify the video mode. Of the form
- <x>x<y>[-<bpp>][@<refresh>]
-vram - size of video ram (normally auto-detected)
-vt_switch - enable vt switching during suspend/resume. The vt
- switch is slow, but harmless.
+================ ==================================================
+mode_option specify the video mode. Of the form
+ <x>x<y>[-<bpp>][@<refresh>]
+vram size of video ram (normally auto-detected)
+vt_switch enable vt switching during suspend/resume. The vt
+ switch is slow, but harmless.
+================ ==================================================
---
Andres Salomon <dilinger@debian.org>
diff --git a/Documentation/fb/matroxfb.rst b/Documentation/fb/matroxfb.rst
new file mode 100644
index 000000000000..f1859d98606e
--- /dev/null
+++ b/Documentation/fb/matroxfb.rst
@@ -0,0 +1,443 @@
+=================
+What is matroxfb?
+=================
+
+.. [This file is cloned from VesaFB. Thanks go to Gerd Knorr]
+
+
+This is a driver for a graphic framebuffer for Matrox devices on
+Alpha, Intel and PPC boxes.
+
+Advantages:
+
+ * It provides a nice large console (128 cols + 48 lines with 1024x768)
+ without using tiny, unreadable fonts.
+ * You can run XF{68,86}_FBDev or XFree86 fbdev driver on top of /dev/fb0
+ * Most important: boot logo :-)
+
+Disadvantages:
+
+ * graphic mode is slower than text mode... but you should not notice
+ if you use same resolution as you used in textmode.
+
+
+How to use it?
+==============
+
+Switching modes is done using the video=matroxfb:vesa:... boot parameter
+or using `fbset` program.
+
+If you want, for example, enable a resolution of 1280x1024x24bpp you should
+pass to the kernel this command line: "video=matroxfb:vesa:0x1BB".
+
+You should compile in both vgacon (to boot if you remove you Matrox from
+box) and matroxfb (for graphics mode). You should not compile-in vesafb
+unless you have primary display on non-Matrox VBE2.0 device (see
+Documentation/fb/vesafb.rst for details).
+
+Currently supported video modes are (through vesa:... interface, PowerMac
+has [as addon] compatibility code):
+
+
+Graphic modes
+-------------
+
+=== ======= ======= ======= ======= =======
+bpp 640x400 640x480 768x576 800x600 960x720
+=== ======= ======= ======= ======= =======
+ 4 0x12 0x102
+ 8 0x100 0x101 0x180 0x103 0x188
+ 15 0x110 0x181 0x113 0x189
+ 16 0x111 0x182 0x114 0x18A
+ 24 0x1B2 0x184 0x1B5 0x18C
+ 32 0x112 0x183 0x115 0x18B
+=== ======= ======= ======= ======= =======
+
+
+Graphic modes (continued)
+-------------------------
+
+=== ======== ======== ========= ========= =========
+bpp 1024x768 1152x864 1280x1024 1408x1056 1600x1200
+=== ======== ======== ========= ========= =========
+ 4 0x104 0x106
+ 8 0x105 0x190 0x107 0x198 0x11C
+ 15 0x116 0x191 0x119 0x199 0x11D
+ 16 0x117 0x192 0x11A 0x19A 0x11E
+ 24 0x1B8 0x194 0x1BB 0x19C 0x1BF
+ 32 0x118 0x193 0x11B 0x19B
+=== ======== ======== ========= ========= =========
+
+
+Text modes
+----------
+
+==== ======= ======= ======== ======== ========
+text 640x400 640x480 1056x344 1056x400 1056x480
+==== ======= ======= ======== ======== ========
+ 8x8 0x1C0 0x108 0x10A 0x10B 0x10C
+8x16 2, 3, 7 0x109
+==== ======= ======= ======== ======== ========
+
+You can enter these number either hexadecimal (leading `0x`) or decimal
+(0x100 = 256). You can also use value + 512 to achieve compatibility
+with your old number passed to vesafb.
+
+Non-listed number can be achieved by more complicated command-line, for
+example 1600x1200x32bpp can be specified by `video=matroxfb:vesa:0x11C,depth:32`.
+
+
+X11
+===
+
+XF{68,86}_FBDev should work just fine, but it is non-accelerated. On non-intel
+architectures there are some glitches for 24bpp videomodes. 8, 16 and 32bpp
+works fine.
+
+Running another (accelerated) X-Server like XF86_SVGA works too. But (at least)
+XFree servers have big troubles in multihead configurations (even on first
+head, not even talking about second). Running XFree86 4.x accelerated mga
+driver is possible, but you must not enable DRI - if you do, resolution and
+color depth of your X desktop must match resolution and color depths of your
+virtual consoles, otherwise X will corrupt accelerator settings.
+
+
+SVGALib
+=======
+
+Driver contains SVGALib compatibility code. It is turned on by choosing textual
+mode for console. You can do it at boot time by using videomode
+2,3,7,0x108-0x10C or 0x1C0. At runtime, `fbset -depth 0` does this work.
+Unfortunately, after SVGALib application exits, screen contents is corrupted.
+Switching to another console and back fixes it. I hope that it is SVGALib's
+problem and not mine, but I'm not sure.
+
+
+Configuration
+=============
+
+You can pass kernel command line options to matroxfb with
+`video=matroxfb:option1,option2:value2,option3` (multiple options should be
+separated by comma, values are separated from options by `:`).
+Accepted options:
+
+============ ===================================================================
+mem:X size of memory (X can be in megabytes, kilobytes or bytes)
+ You can only decrease value determined by driver because of
+ it always probe for memory. Default is to use whole detected
+ memory usable for on-screen display (i.e. max. 8 MB).
+disabled do not load driver; you can use also `off`, but `disabled`
+ is here too.
+enabled load driver, if you have `video=matroxfb:disabled` in LILO
+ configuration, you can override it by this (you cannot override
+ `off`). It is default.
+noaccel do not use acceleration engine. It does not work on Alphas.
+accel use acceleration engine. It is default.
+nopan create initial consoles with vyres = yres, thus disabling virtual
+ scrolling.
+pan create initial consoles as tall as possible (vyres = memory/vxres).
+ It is default.
+nopciretry disable PCI retries. It is needed for some broken chipsets,
+ it is autodetected for intel's 82437. In this case device does
+ not comply to PCI 2.1 specs (it will not guarantee that every
+ transaction terminate with success or retry in 32 PCLK).
+pciretry enable PCI retries. It is default, except for intel's 82437.
+novga disables VGA I/O ports. It is default if BIOS did not enable
+ device. You should not use this option, some boards then do not
+ restart without power off.
+vga preserve state of VGA I/O ports. It is default. Driver does not
+ enable VGA I/O if BIOS did not it (it is not safe to enable it in
+ most cases).
+nobios disables BIOS ROM. It is default if BIOS did not enable BIOS
+ itself. You should not use this option, some boards then do not
+ restart without power off.
+bios preserve state of BIOS ROM. It is default. Driver does not enable
+ BIOS if BIOS was not enabled before.
+noinit tells driver, that devices were already initialized. You should use
+ it if you have G100 and/or if driver cannot detect memory, you see
+ strange pattern on screen and so on. Devices not enabled by BIOS
+ are still initialized. It is default.
+init driver initializes every device it knows about.
+memtype specifies memory type, implies 'init'. This is valid only for G200
+ and G400 and has following meaning:
+
+ G200:
+ - 0 -> 2x128Kx32 chips, 2MB onboard, probably sgram
+ - 1 -> 2x128Kx32 chips, 4MB onboard, probably sgram
+ - 2 -> 2x256Kx32 chips, 4MB onboard, probably sgram
+ - 3 -> 2x256Kx32 chips, 8MB onboard, probably sgram
+ - 4 -> 2x512Kx16 chips, 8/16MB onboard, probably sdram only
+ - 5 -> same as above
+ - 6 -> 4x128Kx32 chips, 4MB onboard, probably sgram
+ - 7 -> 4x128Kx32 chips, 8MB onboard, probably sgram
+ G400:
+ - 0 -> 2x512Kx16 SDRAM, 16/32MB
+ - 2x512Kx32 SGRAM, 16/32MB
+ - 1 -> 2x256Kx32 SGRAM, 8/16MB
+ - 2 -> 4x128Kx32 SGRAM, 8/16MB
+ - 3 -> 4x512Kx32 SDRAM, 32MB
+ - 4 -> 4x256Kx32 SGRAM, 16/32MB
+ - 5 -> 2x1Mx32 SDRAM, 32MB
+ - 6 -> reserved
+ - 7 -> reserved
+
+ You should use sdram or sgram parameter in addition to memtype
+ parameter.
+nomtrr disables write combining on frame buffer. This slows down driver
+ but there is reported minor incompatibility between GUS DMA and
+ XFree under high loads if write combining is enabled (sound
+ dropouts).
+mtrr enables write combining on frame buffer. It speeds up video
+ accesses much. It is default. You must have MTRR support enabled
+ in kernel and your CPU must have MTRR (f.e. Pentium II have them).
+sgram tells to driver that you have Gxx0 with SGRAM memory. It has no
+ effect without `init`.
+sdram tells to driver that you have Gxx0 with SDRAM memory.
+ It is a default.
+inv24 change timings parameters for 24bpp modes on Millennium and
+ Millennium II. Specify this if you see strange color shadows
+ around characters.
+noinv24 use standard timings. It is the default.
+inverse invert colors on screen (for LCD displays)
+noinverse show true colors on screen. It is default.
+dev:X bind driver to device X. Driver numbers device from 0 up to N,
+ where device 0 is first `known` device found, 1 second and so on.
+ lspci lists devices in this order.
+ Default is `every` known device.
+nohwcursor disables hardware cursor (use software cursor instead).
+hwcursor enables hardware cursor. It is default. If you are using
+ non-accelerated mode (`noaccel` or `fbset -accel false`), software
+ cursor is used (except for text mode).
+noblink disables cursor blinking. Cursor in text mode always blinks (hw
+ limitation).
+blink enables cursor blinking. It is default.
+nofastfont disables fastfont feature. It is default.
+fastfont:X enables fastfont feature. X specifies size of memory reserved for
+ font data, it must be >= (fontwidth*fontheight*chars_in_font)/8.
+ It is faster on Gx00 series, but slower on older cards.
+grayscale enable grayscale summing. It works in PSEUDOCOLOR modes (text,
+ 4bpp, 8bpp). In DIRECTCOLOR modes it is limited to characters
+ displayed through putc/putcs. Direct accesses to framebuffer
+ can paint colors.
+nograyscale disable grayscale summing. It is default.
+cross4MB enables that pixel line can cross 4MB boundary. It is default for
+ non-Millennium.
+nocross4MB pixel line must not cross 4MB boundary. It is default for
+ Millennium I or II, because of these devices have hardware
+ limitations which do not allow this. But this option is
+ incompatible with some (if not all yet released) versions of
+ XF86_FBDev.
+dfp enables digital flat panel interface. This option is incompatible
+ with secondary (TV) output - if DFP is active, TV output must be
+ inactive and vice versa. DFP always uses same timing as primary
+ (monitor) output.
+dfp:X use settings X for digital flat panel interface. X is number from
+ 0 to 0xFF, and meaning of each individual bit is described in
+ G400 manual, in description of DAC register 0x1F. For normal
+ operation you should set all bits to zero, except lowest bit. This
+ lowest bit selects who is source of display clocks, whether G400,
+ or panel. Default value is now read back from hardware - so you
+ should specify this value only if you are also using `init`
+ parameter.
+outputs:XYZ set mapping between CRTC and outputs. Each letter can have value
+ of 0 (for no CRTC), 1 (CRTC1) or 2 (CRTC2), and first letter
+ corresponds to primary analog output, second letter to the
+ secondary analog output and third letter to the DVI output.
+ Default setting is 100 for cards below G400 or G400 without DFP,
+ 101 for G400 with DFP, and 111 for G450 and G550. You can set
+ mapping only on first card, use matroxset for setting up other
+ devices.
+vesa:X selects startup videomode. X is number from 0 to 0x1FF, see table
+ above for detailed explanation. Default is 640x480x8bpp if driver
+ has 8bpp support. Otherwise first available of 640x350x4bpp,
+ 640x480x15bpp, 640x480x24bpp, 640x480x32bpp or 80x25 text
+ (80x25 text is always available).
+============ ===================================================================
+
+If you are not satisfied with videomode selected by `vesa` option, you
+can modify it with these options:
+
+============ ===================================================================
+xres:X horizontal resolution, in pixels. Default is derived from `vesa`
+ option.
+yres:X vertical resolution, in pixel lines. Default is derived from `vesa`
+ option.
+upper:X top boundary: lines between end of VSYNC pulse and start of first
+ pixel line of picture. Default is derived from `vesa` option.
+lower:X bottom boundary: lines between end of picture and start of VSYNC
+ pulse. Default is derived from `vesa` option.
+vslen:X length of VSYNC pulse, in lines. Default is derived from `vesa`
+ option.
+left:X left boundary: pixels between end of HSYNC pulse and first pixel.
+ Default is derived from `vesa` option.
+right:X right boundary: pixels between end of picture and start of HSYNC
+ pulse. Default is derived from `vesa` option.
+hslen:X length of HSYNC pulse, in pixels. Default is derived from `vesa`
+ option.
+pixclock:X dotclocks, in ps (picoseconds). Default is derived from `vesa`
+ option and from `fh` and `fv` options.
+sync:X sync. pulse - bit 0 inverts HSYNC polarity, bit 1 VSYNC polarity.
+ If bit 3 (value 0x08) is set, composite sync instead of HSYNC is
+ generated. If bit 5 (value 0x20) is set, sync on green is turned
+ on. Do not forget that if you want sync on green, you also probably
+ want composite sync.
+ Default depends on `vesa`.
+depth:X Bits per pixel: 0=text, 4,8,15,16,24 or 32. Default depends on
+ `vesa`.
+============ ===================================================================
+
+If you know capabilities of your monitor, you can specify some (or all) of
+`maxclk`, `fh` and `fv`. In this case, `pixclock` is computed so that
+pixclock <= maxclk, real_fh <= fh and real_fv <= fv.
+
+============ ==================================================================
+maxclk:X maximum dotclock. X can be specified in MHz, kHz or Hz. Default is
+ `don`t care`.
+fh:X maximum horizontal synchronization frequency. X can be specified
+ in kHz or Hz. Default is `don't care`.
+fv:X maximum vertical frequency. X must be specified in Hz. Default is
+ 70 for modes derived from `vesa` with yres <= 400, 60Hz for
+ yres > 400.
+============ ==================================================================
+
+
+Limitations
+===========
+
+There are known and unknown bugs, features and misfeatures.
+Currently there are following known bugs:
+
+ - SVGALib does not restore screen on exit
+ - generic fbcon-cfbX procedures do not work on Alphas. Due to this,
+ `noaccel` (and cfb4 accel) driver does not work on Alpha. So everyone
+ with access to `/dev/fb*` on Alpha can hang machine (you should restrict
+ access to `/dev/fb*` - everyone with access to this device can destroy
+ your monitor, believe me...).
+ - 24bpp does not support correctly XF-FBDev on big-endian architectures.
+ - interlaced text mode is not supported; it looks like hardware limitation,
+ but I'm not sure.
+ - Gxx0 SGRAM/SDRAM is not autodetected.
+ - If you are using more than one framebuffer device, you must boot kernel
+ with 'video=scrollback:0'.
+ - maybe more...
+
+And following misfeatures:
+
+ - SVGALib does not restore screen on exit.
+ - pixclock for text modes is limited by hardware to
+
+ - 83 MHz on G200
+ - 66 MHz on Millennium I
+ - 60 MHz on Millennium II
+
+ Because I have no access to other devices, I do not know specific
+ frequencies for them. So driver does not check this and allows you to
+ set frequency higher that this. It causes sparks, black holes and other
+ pretty effects on screen. Device was not destroyed during tests. :-)
+ - my Millennium G200 oscillator has frequency range from 35 MHz to 380 MHz
+ (and it works with 8bpp on about 320 MHz dotclocks (and changed mclk)).
+ But Matrox says on product sheet that VCO limit is 50-250 MHz, so I believe
+ them (maybe that chip overheats, but it has a very big cooler (G100 has
+ none), so it should work).
+ - special mixed video/graphics videomodes of Mystique and Gx00 - 2G8V16 and
+ G16V16 are not supported
+ - color keying is not supported
+ - feature connector of Mystique and Gx00 is set to VGA mode (it is disabled
+ by BIOS)
+ - DDC (monitor detection) is supported through dualhead driver
+ - some check for input values are not so strict how it should be (you can
+ specify vslen=4000 and so on).
+ - maybe more...
+
+And following features:
+
+ - 4bpp is available only on Millennium I and Millennium II. It is hardware
+ limitation.
+ - selection between 1:5:5:5 and 5:6:5 16bpp videomode is done by -rgba
+ option of fbset: "fbset -depth 16 -rgba 5,5,5" selects 1:5:5:5, anything
+ else selects 5:6:5 mode.
+ - text mode uses 6 bit VGA palette instead of 8 bit (one of 262144 colors
+ instead of one of 16M colors). It is due to hardware limitation of
+ Millennium I/II and SVGALib compatibility.
+
+
+Benchmarks
+==========
+It is time to redraw whole screen 1000 times in 1024x768, 60Hz. It is
+time for draw 6144000 characters on screen through /dev/vcsa
+(for 32bpp it is about 3GB of data (exactly 3000 MB); for 8x16 font in
+16 seconds, i.e. 187 MBps).
+Times were obtained from one older version of driver, now they are about 3%
+faster, it is kernel-space only time on P-II/350 MHz, Millennium I in 33 MHz
+PCI slot, G200 in AGP 2x slot. I did not test vgacon::
+
+ NOACCEL
+ 8x16 12x22
+ Millennium I G200 Millennium I G200
+ 8bpp 16.42 9.54 12.33 9.13
+ 16bpp 21.00 15.70 19.11 15.02
+ 24bpp 36.66 36.66 35.00 35.00
+ 32bpp 35.00 30.00 33.85 28.66
+
+ ACCEL, nofastfont
+ 8x16 12x22 6x11
+ Millennium I G200 Millennium I G200 Millennium I G200
+ 8bpp 7.79 7.24 13.55 7.78 30.00 21.01
+ 16bpp 9.13 7.78 16.16 7.78 30.00 21.01
+ 24bpp 14.17 10.72 18.69 10.24 34.99 21.01
+ 32bpp 16.15 16.16 18.73 13.09 34.99 21.01
+
+ ACCEL, fastfont
+ 8x16 12x22 6x11
+ Millennium I G200 Millennium I G200 Millennium I G200
+ 8bpp 8.41 6.01 6.54 4.37 16.00 10.51
+ 16bpp 9.54 9.12 8.76 6.17 17.52 14.01
+ 24bpp 15.00 12.36 11.67 10.00 22.01 18.32
+ 32bpp 16.18 18.29* 12.71 12.74 24.44 21.00
+
+ TEXT
+ 8x16
+ Millennium I G200
+ TEXT 3.29 1.50
+
+ * Yes, it is slower than Millennium I.
+
+
+Dualhead G400
+=============
+Driver supports dualhead G400 with some limitations:
+ + secondary head shares videomemory with primary head. It is not problem
+ if you have 32MB of videoram, but if you have only 16MB, you may have
+ to think twice before choosing videomode (for example twice 1880x1440x32bpp
+ is not possible).
+ + due to hardware limitation, secondary head can use only 16 and 32bpp
+ videomodes.
+ + secondary head is not accelerated. There were bad problems with accelerated
+ XFree when secondary head used to use acceleration.
+ + secondary head always powerups in 640x480@60-32 videomode. You have to use
+ fbset to change this mode.
+ + secondary head always powerups in monitor mode. You have to use fbmatroxset
+ to change it to TV mode. Also, you must select at least 525 lines for
+ NTSC output and 625 lines for PAL output.
+ + kernel is not fully multihead ready. So some things are impossible to do.
+ + if you compiled it as module, you must insert i2c-matroxfb, matroxfb_maven
+ and matroxfb_crtc2 into kernel.
+
+
+Dualhead G450
+=============
+Driver supports dualhead G450 with some limitations:
+ + secondary head shares videomemory with primary head. It is not problem
+ if you have 32MB of videoram, but if you have only 16MB, you may have
+ to think twice before choosing videomode.
+ + due to hardware limitation, secondary head can use only 16 and 32bpp
+ videomodes.
+ + secondary head is not accelerated.
+ + secondary head always powerups in 640x480@60-32 videomode. You have to use
+ fbset to change this mode.
+ + TV output is not supported
+ + kernel is not fully multihead ready, so some things are impossible to do.
+ + if you compiled it as module, you must insert matroxfb_g450 and matroxfb_crtc2
+ into kernel.
+
+Petr Vandrovec <vandrove@vc.cvut.cz>
diff --git a/Documentation/fb/matroxfb.txt b/Documentation/fb/matroxfb.txt
deleted file mode 100644
index b95f5bb522f2..000000000000
--- a/Documentation/fb/matroxfb.txt
+++ /dev/null
@@ -1,413 +0,0 @@
-[This file is cloned from VesaFB. Thanks go to Gerd Knorr]
-
-What is matroxfb?
-=================
-
-This is a driver for a graphic framebuffer for Matrox devices on
-Alpha, Intel and PPC boxes.
-
-Advantages:
-
- * It provides a nice large console (128 cols + 48 lines with 1024x768)
- without using tiny, unreadable fonts.
- * You can run XF{68,86}_FBDev or XFree86 fbdev driver on top of /dev/fb0
- * Most important: boot logo :-)
-
-Disadvantages:
-
- * graphic mode is slower than text mode... but you should not notice
- if you use same resolution as you used in textmode.
-
-
-How to use it?
-==============
-
-Switching modes is done using the video=matroxfb:vesa:... boot parameter
-or using `fbset' program.
-
-If you want, for example, enable a resolution of 1280x1024x24bpp you should
-pass to the kernel this command line: "video=matroxfb:vesa:0x1BB".
-
-You should compile in both vgacon (to boot if you remove you Matrox from
-box) and matroxfb (for graphics mode). You should not compile-in vesafb
-unless you have primary display on non-Matrox VBE2.0 device (see
-Documentation/fb/vesafb.txt for details).
-
-Currently supported video modes are (through vesa:... interface, PowerMac
-has [as addon] compatibility code):
-
-
-[Graphic modes]
-
-bpp | 640x400 640x480 768x576 800x600 960x720
-----+--------------------------------------------
- 4 | 0x12 0x102
- 8 | 0x100 0x101 0x180 0x103 0x188
- 15 | 0x110 0x181 0x113 0x189
- 16 | 0x111 0x182 0x114 0x18A
- 24 | 0x1B2 0x184 0x1B5 0x18C
- 32 | 0x112 0x183 0x115 0x18B
-
-
-[Graphic modes (continued)]
-
-bpp | 1024x768 1152x864 1280x1024 1408x1056 1600x1200
-----+------------------------------------------------
- 4 | 0x104 0x106
- 8 | 0x105 0x190 0x107 0x198 0x11C
- 15 | 0x116 0x191 0x119 0x199 0x11D
- 16 | 0x117 0x192 0x11A 0x19A 0x11E
- 24 | 0x1B8 0x194 0x1BB 0x19C 0x1BF
- 32 | 0x118 0x193 0x11B 0x19B
-
-
-[Text modes]
-
-text | 640x400 640x480 1056x344 1056x400 1056x480
------+------------------------------------------------
- 8x8 | 0x1C0 0x108 0x10A 0x10B 0x10C
-8x16 | 2, 3, 7 0x109
-
-You can enter these number either hexadecimal (leading `0x') or decimal
-(0x100 = 256). You can also use value + 512 to achieve compatibility
-with your old number passed to vesafb.
-
-Non-listed number can be achieved by more complicated command-line, for
-example 1600x1200x32bpp can be specified by `video=matroxfb:vesa:0x11C,depth:32'.
-
-
-X11
-===
-
-XF{68,86}_FBDev should work just fine, but it is non-accelerated. On non-intel
-architectures there are some glitches for 24bpp videomodes. 8, 16 and 32bpp
-works fine.
-
-Running another (accelerated) X-Server like XF86_SVGA works too. But (at least)
-XFree servers have big troubles in multihead configurations (even on first
-head, not even talking about second). Running XFree86 4.x accelerated mga
-driver is possible, but you must not enable DRI - if you do, resolution and
-color depth of your X desktop must match resolution and color depths of your
-virtual consoles, otherwise X will corrupt accelerator settings.
-
-
-SVGALib
-=======
-
-Driver contains SVGALib compatibility code. It is turned on by choosing textual
-mode for console. You can do it at boot time by using videomode
-2,3,7,0x108-0x10C or 0x1C0. At runtime, `fbset -depth 0' does this work.
-Unfortunately, after SVGALib application exits, screen contents is corrupted.
-Switching to another console and back fixes it. I hope that it is SVGALib's
-problem and not mine, but I'm not sure.
-
-
-Configuration
-=============
-
-You can pass kernel command line options to matroxfb with
-`video=matroxfb:option1,option2:value2,option3' (multiple options should be
-separated by comma, values are separated from options by `:').
-Accepted options:
-
-mem:X - size of memory (X can be in megabytes, kilobytes or bytes)
- You can only decrease value determined by driver because of
- it always probe for memory. Default is to use whole detected
- memory usable for on-screen display (i.e. max. 8 MB).
-disabled - do not load driver; you can use also `off', but `disabled'
- is here too.
-enabled - load driver, if you have `video=matroxfb:disabled' in LILO
- configuration, you can override it by this (you cannot override
- `off'). It is default.
-noaccel - do not use acceleration engine. It does not work on Alphas.
-accel - use acceleration engine. It is default.
-nopan - create initial consoles with vyres = yres, thus disabling virtual
- scrolling.
-pan - create initial consoles as tall as possible (vyres = memory/vxres).
- It is default.
-nopciretry - disable PCI retries. It is needed for some broken chipsets,
- it is autodetected for intel's 82437. In this case device does
- not comply to PCI 2.1 specs (it will not guarantee that every
- transaction terminate with success or retry in 32 PCLK).
-pciretry - enable PCI retries. It is default, except for intel's 82437.
-novga - disables VGA I/O ports. It is default if BIOS did not enable device.
- You should not use this option, some boards then do not restart
- without power off.
-vga - preserve state of VGA I/O ports. It is default. Driver does not
- enable VGA I/O if BIOS did not it (it is not safe to enable it in
- most cases).
-nobios - disables BIOS ROM. It is default if BIOS did not enable BIOS itself.
- You should not use this option, some boards then do not restart
- without power off.
-bios - preserve state of BIOS ROM. It is default. Driver does not enable
- BIOS if BIOS was not enabled before.
-noinit - tells driver, that devices were already initialized. You should use
- it if you have G100 and/or if driver cannot detect memory, you see
- strange pattern on screen and so on. Devices not enabled by BIOS
- are still initialized. It is default.
-init - driver initializes every device it knows about.
-memtype - specifies memory type, implies 'init'. This is valid only for G200
- and G400 and has following meaning:
- G200: 0 -> 2x128Kx32 chips, 2MB onboard, probably sgram
- 1 -> 2x128Kx32 chips, 4MB onboard, probably sgram
- 2 -> 2x256Kx32 chips, 4MB onboard, probably sgram
- 3 -> 2x256Kx32 chips, 8MB onboard, probably sgram
- 4 -> 2x512Kx16 chips, 8/16MB onboard, probably sdram only
- 5 -> same as above
- 6 -> 4x128Kx32 chips, 4MB onboard, probably sgram
- 7 -> 4x128Kx32 chips, 8MB onboard, probably sgram
- G400: 0 -> 2x512Kx16 SDRAM, 16/32MB
- 2x512Kx32 SGRAM, 16/32MB
- 1 -> 2x256Kx32 SGRAM, 8/16MB
- 2 -> 4x128Kx32 SGRAM, 8/16MB
- 3 -> 4x512Kx32 SDRAM, 32MB
- 4 -> 4x256Kx32 SGRAM, 16/32MB
- 5 -> 2x1Mx32 SDRAM, 32MB
- 6 -> reserved
- 7 -> reserved
- You should use sdram or sgram parameter in addition to memtype
- parameter.
-nomtrr - disables write combining on frame buffer. This slows down driver but
- there is reported minor incompatibility between GUS DMA and XFree
- under high loads if write combining is enabled (sound dropouts).
-mtrr - enables write combining on frame buffer. It speeds up video accesses
- much. It is default. You must have MTRR support enabled in kernel
- and your CPU must have MTRR (f.e. Pentium II have them).
-sgram - tells to driver that you have Gxx0 with SGRAM memory. It has no
- effect without `init'.
-sdram - tells to driver that you have Gxx0 with SDRAM memory.
- It is a default.
-inv24 - change timings parameters for 24bpp modes on Millennium and
- Millennium II. Specify this if you see strange color shadows around
- characters.
-noinv24 - use standard timings. It is the default.
-inverse - invert colors on screen (for LCD displays)
-noinverse - show true colors on screen. It is default.
-dev:X - bind driver to device X. Driver numbers device from 0 up to N,
- where device 0 is first `known' device found, 1 second and so on.
- lspci lists devices in this order.
- Default is `every' known device.
-nohwcursor - disables hardware cursor (use software cursor instead).
-hwcursor - enables hardware cursor. It is default. If you are using
- non-accelerated mode (`noaccel' or `fbset -accel false'), software
- cursor is used (except for text mode).
-noblink - disables cursor blinking. Cursor in text mode always blinks (hw
- limitation).
-blink - enables cursor blinking. It is default.
-nofastfont - disables fastfont feature. It is default.
-fastfont:X - enables fastfont feature. X specifies size of memory reserved for
- font data, it must be >= (fontwidth*fontheight*chars_in_font)/8.
- It is faster on Gx00 series, but slower on older cards.
-grayscale - enable grayscale summing. It works in PSEUDOCOLOR modes (text,
- 4bpp, 8bpp). In DIRECTCOLOR modes it is limited to characters
- displayed through putc/putcs. Direct accesses to framebuffer
- can paint colors.
-nograyscale - disable grayscale summing. It is default.
-cross4MB - enables that pixel line can cross 4MB boundary. It is default for
- non-Millennium.
-nocross4MB - pixel line must not cross 4MB boundary. It is default for
- Millennium I or II, because of these devices have hardware
- limitations which do not allow this. But this option is
- incompatible with some (if not all yet released) versions of
- XF86_FBDev.
-dfp - enables digital flat panel interface. This option is incompatible with
- secondary (TV) output - if DFP is active, TV output must be
- inactive and vice versa. DFP always uses same timing as primary
- (monitor) output.
-dfp:X - use settings X for digital flat panel interface. X is number from
- 0 to 0xFF, and meaning of each individual bit is described in
- G400 manual, in description of DAC register 0x1F. For normal operation
- you should set all bits to zero, except lowest bit. This lowest bit
- selects who is source of display clocks, whether G400, or panel.
- Default value is now read back from hardware - so you should specify
- this value only if you are also using `init' parameter.
-outputs:XYZ - set mapping between CRTC and outputs. Each letter can have value
- of 0 (for no CRTC), 1 (CRTC1) or 2 (CRTC2), and first letter corresponds
- to primary analog output, second letter to the secondary analog output
- and third letter to the DVI output. Default setting is 100 for
- cards below G400 or G400 without DFP, 101 for G400 with DFP, and
- 111 for G450 and G550. You can set mapping only on first card,
- use matroxset for setting up other devices.
-vesa:X - selects startup videomode. X is number from 0 to 0x1FF, see table
- above for detailed explanation. Default is 640x480x8bpp if driver
- has 8bpp support. Otherwise first available of 640x350x4bpp,
- 640x480x15bpp, 640x480x24bpp, 640x480x32bpp or 80x25 text
- (80x25 text is always available).
-
-If you are not satisfied with videomode selected by `vesa' option, you
-can modify it with these options:
-
-xres:X - horizontal resolution, in pixels. Default is derived from `vesa'
- option.
-yres:X - vertical resolution, in pixel lines. Default is derived from `vesa'
- option.
-upper:X - top boundary: lines between end of VSYNC pulse and start of first
- pixel line of picture. Default is derived from `vesa' option.
-lower:X - bottom boundary: lines between end of picture and start of VSYNC
- pulse. Default is derived from `vesa' option.
-vslen:X - length of VSYNC pulse, in lines. Default is derived from `vesa'
- option.
-left:X - left boundary: pixels between end of HSYNC pulse and first pixel.
- Default is derived from `vesa' option.
-right:X - right boundary: pixels between end of picture and start of HSYNC
- pulse. Default is derived from `vesa' option.
-hslen:X - length of HSYNC pulse, in pixels. Default is derived from `vesa'
- option.
-pixclock:X - dotclocks, in ps (picoseconds). Default is derived from `vesa'
- option and from `fh' and `fv' options.
-sync:X - sync. pulse - bit 0 inverts HSYNC polarity, bit 1 VSYNC polarity.
- If bit 3 (value 0x08) is set, composite sync instead of HSYNC is
- generated. If bit 5 (value 0x20) is set, sync on green is turned on.
- Do not forget that if you want sync on green, you also probably
- want composite sync.
- Default depends on `vesa'.
-depth:X - Bits per pixel: 0=text, 4,8,15,16,24 or 32. Default depends on
- `vesa'.
-
-If you know capabilities of your monitor, you can specify some (or all) of
-`maxclk', `fh' and `fv'. In this case, `pixclock' is computed so that
-pixclock <= maxclk, real_fh <= fh and real_fv <= fv.
-
-maxclk:X - maximum dotclock. X can be specified in MHz, kHz or Hz. Default is
- `don't care'.
-fh:X - maximum horizontal synchronization frequency. X can be specified
- in kHz or Hz. Default is `don't care'.
-fv:X - maximum vertical frequency. X must be specified in Hz. Default is
- 70 for modes derived from `vesa' with yres <= 400, 60Hz for
- yres > 400.
-
-
-Limitations
-===========
-
-There are known and unknown bugs, features and misfeatures.
-Currently there are following known bugs:
- + SVGALib does not restore screen on exit
- + generic fbcon-cfbX procedures do not work on Alphas. Due to this,
- `noaccel' (and cfb4 accel) driver does not work on Alpha. So everyone
- with access to /dev/fb* on Alpha can hang machine (you should restrict
- access to /dev/fb* - everyone with access to this device can destroy
- your monitor, believe me...).
- + 24bpp does not support correctly XF-FBDev on big-endian architectures.
- + interlaced text mode is not supported; it looks like hardware limitation,
- but I'm not sure.
- + Gxx0 SGRAM/SDRAM is not autodetected.
- + If you are using more than one framebuffer device, you must boot kernel
- with 'video=scrollback:0'.
- + maybe more...
-And following misfeatures:
- + SVGALib does not restore screen on exit.
- + pixclock for text modes is limited by hardware to
- 83 MHz on G200
- 66 MHz on Millennium I
- 60 MHz on Millennium II
- Because I have no access to other devices, I do not know specific
- frequencies for them. So driver does not check this and allows you to
- set frequency higher that this. It causes sparks, black holes and other
- pretty effects on screen. Device was not destroyed during tests. :-)
- + my Millennium G200 oscillator has frequency range from 35 MHz to 380 MHz
- (and it works with 8bpp on about 320 MHz dotclocks (and changed mclk)).
- But Matrox says on product sheet that VCO limit is 50-250 MHz, so I believe
- them (maybe that chip overheats, but it has a very big cooler (G100 has
- none), so it should work).
- + special mixed video/graphics videomodes of Mystique and Gx00 - 2G8V16 and
- G16V16 are not supported
- + color keying is not supported
- + feature connector of Mystique and Gx00 is set to VGA mode (it is disabled
- by BIOS)
- + DDC (monitor detection) is supported through dualhead driver
- + some check for input values are not so strict how it should be (you can
- specify vslen=4000 and so on).
- + maybe more...
-And following features:
- + 4bpp is available only on Millennium I and Millennium II. It is hardware
- limitation.
- + selection between 1:5:5:5 and 5:6:5 16bpp videomode is done by -rgba
- option of fbset: "fbset -depth 16 -rgba 5,5,5" selects 1:5:5:5, anything
- else selects 5:6:5 mode.
- + text mode uses 6 bit VGA palette instead of 8 bit (one of 262144 colors
- instead of one of 16M colors). It is due to hardware limitation of
- Millennium I/II and SVGALib compatibility.
-
-
-Benchmarks
-==========
-It is time to redraw whole screen 1000 times in 1024x768, 60Hz. It is
-time for draw 6144000 characters on screen through /dev/vcsa
-(for 32bpp it is about 3GB of data (exactly 3000 MB); for 8x16 font in
-16 seconds, i.e. 187 MBps).
-Times were obtained from one older version of driver, now they are about 3%
-faster, it is kernel-space only time on P-II/350 MHz, Millennium I in 33 MHz
-PCI slot, G200 in AGP 2x slot. I did not test vgacon.
-
-NOACCEL
- 8x16 12x22
- Millennium I G200 Millennium I G200
-8bpp 16.42 9.54 12.33 9.13
-16bpp 21.00 15.70 19.11 15.02
-24bpp 36.66 36.66 35.00 35.00
-32bpp 35.00 30.00 33.85 28.66
-
-ACCEL, nofastfont
- 8x16 12x22 6x11
- Millennium I G200 Millennium I G200 Millennium I G200
-8bpp 7.79 7.24 13.55 7.78 30.00 21.01
-16bpp 9.13 7.78 16.16 7.78 30.00 21.01
-24bpp 14.17 10.72 18.69 10.24 34.99 21.01
-32bpp 16.15 16.16 18.73 13.09 34.99 21.01
-
-ACCEL, fastfont
- 8x16 12x22 6x11
- Millennium I G200 Millennium I G200 Millennium I G200
-8bpp 8.41 6.01 6.54 4.37 16.00 10.51
-16bpp 9.54 9.12 8.76 6.17 17.52 14.01
-24bpp 15.00 12.36 11.67 10.00 22.01 18.32
-32bpp 16.18 18.29* 12.71 12.74 24.44 21.00
-
-TEXT
- 8x16
- Millennium I G200
-TEXT 3.29 1.50
-
-* Yes, it is slower than Millennium I.
-
-
-Dualhead G400
-=============
-Driver supports dualhead G400 with some limitations:
- + secondary head shares videomemory with primary head. It is not problem
- if you have 32MB of videoram, but if you have only 16MB, you may have
- to think twice before choosing videomode (for example twice 1880x1440x32bpp
- is not possible).
- + due to hardware limitation, secondary head can use only 16 and 32bpp
- videomodes.
- + secondary head is not accelerated. There were bad problems with accelerated
- XFree when secondary head used to use acceleration.
- + secondary head always powerups in 640x480@60-32 videomode. You have to use
- fbset to change this mode.
- + secondary head always powerups in monitor mode. You have to use fbmatroxset
- to change it to TV mode. Also, you must select at least 525 lines for
- NTSC output and 625 lines for PAL output.
- + kernel is not fully multihead ready. So some things are impossible to do.
- + if you compiled it as module, you must insert i2c-matroxfb, matroxfb_maven
- and matroxfb_crtc2 into kernel.
-
-
-Dualhead G450
-=============
-Driver supports dualhead G450 with some limitations:
- + secondary head shares videomemory with primary head. It is not problem
- if you have 32MB of videoram, but if you have only 16MB, you may have
- to think twice before choosing videomode.
- + due to hardware limitation, secondary head can use only 16 and 32bpp
- videomodes.
- + secondary head is not accelerated.
- + secondary head always powerups in 640x480@60-32 videomode. You have to use
- fbset to change this mode.
- + TV output is not supported
- + kernel is not fully multihead ready, so some things are impossible to do.
- + if you compiled it as module, you must insert matroxfb_g450 and matroxfb_crtc2
- into kernel.
-
---
-Petr Vandrovec <vandrove@vc.cvut.cz>
diff --git a/Documentation/fb/metronomefb.txt b/Documentation/fb/metronomefb.rst
index 237ca412582d..63e1d31a7e54 100644
--- a/Documentation/fb/metronomefb.txt
+++ b/Documentation/fb/metronomefb.rst
@@ -1,6 +1,9 @@
- Metronomefb
- -----------
+===========
+Metronomefb
+===========
+
Maintained by Jaya Kumar <jayakumar.lkml.gmail.com>
+
Last revised: Mar 10, 2008
Metronomefb is a driver for the Metronome display controller. The controller
@@ -33,4 +36,3 @@ the physical media.
Metronomefb uses the deferred IO interface so that it can provide a memory
mappable frame buffer. It has been tested with tinyx (Xfbdev). It is known
to work at this time with xeyes, xclock, xloadimage, xpdf.
-
diff --git a/Documentation/fb/modedb.txt b/Documentation/fb/modedb.rst
index 16aa08453911..9c4e3fd39e6d 100644
--- a/Documentation/fb/modedb.txt
+++ b/Documentation/fb/modedb.rst
@@ -1,6 +1,6 @@
-
-
- modedb default video mode support
+=================================
+modedb default video mode support
+=================================
Currently all frame buffer device drivers have their own video mode databases,
@@ -18,7 +18,7 @@ When a frame buffer device receives a video= option it doesn't know, it should
consider that to be a video mode option. If no frame buffer device is specified
in a video= option, fbmem considers that to be a global video mode option.
-Valid mode specifiers (mode_option argument):
+Valid mode specifiers (mode_option argument)::
<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
<name>[-<bpp>][@<refresh>]
@@ -45,15 +45,32 @@ signals (e.g. HDMI and DVI-I). For other outputs it behaves like 'e'. If 'd'
is specified the output is disabled.
You can additionally specify which output the options matches to.
-To force the VGA output to be enabled and drive a specific mode say:
+To force the VGA output to be enabled and drive a specific mode say::
+
video=VGA-1:1280x1024@60me
-Specifying the option multiple times for different ports is possible, e.g.:
+Specifying the option multiple times for different ports is possible, e.g.::
+
video=LVDS-1:d video=HDMI-1:D
-***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo *****
+Options can also be passed after the mode, using commas as separator.
+
+ Sample usage: 720x480,rotate=180 - 720x480 mode, rotated by 180 degrees
+
+Valid options are::
+
+ - margin_top, margin_bottom, margin_left, margin_right (integer):
+ Number of pixels in the margins, typically to deal with overscan on TVs
+ - reflect_x (boolean): Perform an axial symmetry on the X axis
+ - reflect_y (boolean): Perform an axial symmetry on the Y axis
+ - rotate (integer): Rotate the initial framebuffer by x
+ degrees. Valid values are 0, 90, 180 and 270.
+
+
+-----------------------------------------------------------------------------
What is the VESA(TM) Coordinated Video Timings (CVT)?
+=====================================================
From the VESA(TM) Website:
@@ -90,14 +107,14 @@ determined from its EDID. The version 1.3 of the EDID has extra 128-byte
blocks where additional timing information is placed. As of this time, there
is no support yet in the layer to parse this additional blocks.)
-CVT also introduced a new naming convention (should be seen from dmesg output):
+CVT also introduced a new naming convention (should be seen from dmesg output)::
<pix>M<a>[-R]
where: pix = total amount of pixels in MB (xres x yres)
- M = always present
- a = aspect ratio (3 - 4:3; 4 - 5:4; 9 - 15:9, 16:9; A - 16:10)
- -R = reduced blanking
+ M = always present
+ a = aspect ratio (3 - 4:3; 4 - 5:4; 9 - 15:9, 16:9; A - 16:10)
+ -R = reduced blanking
example: .48M3-R - 800x600 with reduced blanking
@@ -110,15 +127,15 @@ Note: VESA(TM) has restrictions on what is a standard CVT timing:
If one of the above are not satisfied, the kernel will print a warning but the
timings will still be calculated.
-***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo *****
+-----------------------------------------------------------------------------
-To find a suitable video mode, you just call
+To find a suitable video mode, you just call::
-int __init fb_find_mode(struct fb_var_screeninfo *var,
- struct fb_info *info, const char *mode_option,
- const struct fb_videomode *db, unsigned int dbsize,
- const struct fb_videomode *default_mode,
- unsigned int default_bpp)
+ int __init fb_find_mode(struct fb_var_screeninfo *var,
+ struct fb_info *info, const char *mode_option,
+ const struct fb_videomode *db, unsigned int dbsize,
+ const struct fb_videomode *default_mode,
+ unsigned int default_bpp)
with db/dbsize your non-standard video mode database, or NULL to use the
standard video mode database.
@@ -127,12 +144,13 @@ fb_find_mode() first tries the specified video mode (or any mode that matches,
e.g. there can be multiple 640x480 modes, each of them is tried). If that
fails, the default mode is tried. If that fails, it walks over all modes.
-To specify a video mode at bootup, use the following boot options:
+To specify a video mode at bootup, use the following boot options::
+
video=<driver>:<xres>x<yres>[-<bpp>][@refresh]
where <driver> is a name from the table below. Valid default modes can be
found in linux/drivers/video/modedb.c. Check your driver's documentation.
-There may be more modes.
+There may be more modes::
Drivers that support modedb boot options
Boot Name Cards Supported
diff --git a/Documentation/fb/pvr2fb.rst b/Documentation/fb/pvr2fb.rst
new file mode 100644
index 000000000000..fcf2c21c8fcf
--- /dev/null
+++ b/Documentation/fb/pvr2fb.rst
@@ -0,0 +1,66 @@
+===============
+What is pvr2fb?
+===============
+
+This is a driver for PowerVR 2 based graphics frame buffers, such as the
+one found in the Dreamcast.
+
+Advantages:
+
+ * It provides a nice large console (128 cols + 48 lines with 1024x768)
+ without using tiny, unreadable fonts (NOT on the Dreamcast)
+ * You can run XF86_FBDev on top of /dev/fb0
+ * Most important: boot logo :-)
+
+Disadvantages:
+
+ * Driver is largely untested on non-Dreamcast systems.
+
+Configuration
+=============
+
+You can pass kernel command line options to pvr2fb with
+`video=pvr2fb:option1,option2:value2,option3` (multiple options should be
+separated by comma, values are separated from options by `:`).
+
+Accepted options:
+
+========== ==================================================================
+font:X default font to use. All fonts are supported, including the
+ SUN12x22 font which is very nice at high resolutions.
+
+
+mode:X default video mode with format [xres]x[yres]-<bpp>@<refresh rate>
+ The following video modes are supported:
+ 640x640-16@60, 640x480-24@60, 640x480-32@60. The Dreamcast
+ defaults to 640x480-16@60. At the time of writing the
+ 24bpp and 32bpp modes function poorly. Work to fix that is
+ ongoing
+
+ Note: the 640x240 mode is currently broken, and should not be
+ used for any reason. It is only mentioned here as a reference.
+
+inverse invert colors on screen (for LCD displays)
+
+nomtrr disables write combining on frame buffer. This slows down driver
+ but there is reported minor incompatibility between GUS DMA and
+ XFree under high loads if write combining is enabled (sound
+ dropouts). MTRR is enabled by default on systems that have it
+ configured and that support it.
+
+cable:X cable type. This can be any of the following: vga, rgb, and
+ composite. If none is specified, we guess.
+
+output:X output type. This can be any of the following: pal, ntsc, and
+ vga. If none is specified, we guess.
+========== ==================================================================
+
+X11
+===
+
+XF86_FBDev has been shown to work on the Dreamcast in the past - though not yet
+on any 2.6 series kernel.
+
+Paul Mundt <lethal@linuxdc.org>
+
+Updated by Adrian McMenamin <adrian@mcmen.demon.co.uk>
diff --git a/Documentation/fb/pvr2fb.txt b/Documentation/fb/pvr2fb.txt
deleted file mode 100644
index 36bdeff585e2..000000000000
--- a/Documentation/fb/pvr2fb.txt
+++ /dev/null
@@ -1,65 +0,0 @@
-$Id: pvr2fb.txt,v 1.1 2001/05/24 05:09:16 mrbrown Exp $
-
-What is pvr2fb?
-===============
-
-This is a driver for PowerVR 2 based graphics frame buffers, such as the
-one found in the Dreamcast.
-
-Advantages:
-
- * It provides a nice large console (128 cols + 48 lines with 1024x768)
- without using tiny, unreadable fonts (NOT on the Dreamcast)
- * You can run XF86_FBDev on top of /dev/fb0
- * Most important: boot logo :-)
-
-Disadvantages:
-
- * Driver is largely untested on non-Dreamcast systems.
-
-Configuration
-=============
-
-You can pass kernel command line options to pvr2fb with
-`video=pvr2fb:option1,option2:value2,option3' (multiple options should be
-separated by comma, values are separated from options by `:').
-Accepted options:
-
-font:X - default font to use. All fonts are supported, including the
- SUN12x22 font which is very nice at high resolutions.
-
-
-mode:X - default video mode with format [xres]x[yres]-<bpp>@<refresh rate>
- The following video modes are supported:
- 640x640-16@60, 640x480-24@60, 640x480-32@60. The Dreamcast
- defaults to 640x480-16@60. At the time of writing the
- 24bpp and 32bpp modes function poorly. Work to fix that is
- ongoing
-
- Note: the 640x240 mode is currently broken, and should not be
- used for any reason. It is only mentioned here as a reference.
-
-inverse - invert colors on screen (for LCD displays)
-
-nomtrr - disables write combining on frame buffer. This slows down driver
- but there is reported minor incompatibility between GUS DMA and
- XFree under high loads if write combining is enabled (sound
- dropouts). MTRR is enabled by default on systems that have it
- configured and that support it.
-
-cable:X - cable type. This can be any of the following: vga, rgb, and
- composite. If none is specified, we guess.
-
-output:X - output type. This can be any of the following: pal, ntsc, and
- vga. If none is specified, we guess.
-
-X11
-===
-
-XF86_FBDev has been shown to work on the Dreamcast in the past - though not yet
-on any 2.6 series kernel.
-
---
-Paul Mundt <lethal@linuxdc.org>
-Updated by Adrian McMenamin <adrian@mcmen.demon.co.uk>
-
diff --git a/Documentation/fb/pxafb.txt b/Documentation/fb/pxafb.rst
index d143a0a749f9..90177f5e7e76 100644
--- a/Documentation/fb/pxafb.txt
+++ b/Documentation/fb/pxafb.rst
@@ -1,59 +1,82 @@
+================================
Driver for PXA25x LCD controller
================================
The driver supports the following options, either via
options=<OPTIONS> when modular or video=pxafb:<OPTIONS> when built in.
-For example:
+For example::
+
modprobe pxafb options=vmem:2M,mode:640x480-8,passive
-or on the kernel command line
+
+or on the kernel command line::
+
video=pxafb:vmem:2M,mode:640x480-8,passive
vmem: VIDEO_MEM_SIZE
+
Amount of video memory to allocate (can be suffixed with K or M
for kilobytes or megabytes)
mode:XRESxYRES[-BPP]
+
XRES == LCCR1_PPL + 1
+
YRES == LLCR2_LPP + 1
+
The resolution of the display in pixels
+
BPP == The bit depth. Valid values are 1, 2, 4, 8 and 16.
pixclock:PIXCLOCK
+
Pixel clock in picoseconds
left:LEFT == LCCR1_BLW + 1
+
right:RIGHT == LCCR1_ELW + 1
+
hsynclen:HSYNC == LCCR1_HSW + 1
+
upper:UPPER == LCCR2_BFW
+
lower:LOWER == LCCR2_EFR
+
vsynclen:VSYNC == LCCR2_VSW + 1
+
Display margins and sync times
color | mono => LCCR0_CMS
+
umm...
active | passive => LCCR0_PAS
+
Active (TFT) or Passive (STN) display
single | dual => LCCR0_SDS
+
Single or dual panel passive display
4pix | 8pix => LCCR0_DPD
+
4 or 8 pixel monochrome single panel data
-hsync:HSYNC
-vsync:VSYNC
+hsync:HSYNC, vsync:VSYNC
+
Horizontal and vertical sync. 0 => active low, 1 => active
high.
dpc:DPC
+
Double pixel clock. 1=>true, 0=>false
outputen:POLARITY
+
Output Enable Polarity. 0 => active low, 1 => active high
pixclockpol:POLARITY
+
pixel clock polarity
0 => falling edge, 1 => rising edge
@@ -76,44 +99,50 @@ Overlay Support for PXA27x and later LCD controllers
not for such purpose).
2. overlay framebuffer is allocated dynamically according to specified
- 'struct fb_var_screeninfo', the amount is decided by:
+ 'struct fb_var_screeninfo', the amount is decided by::
- var->xres_virtual * var->yres_virtual * bpp
+ var->xres_virtual * var->yres_virtual * bpp
bpp = 16 -- for RGB565 or RGBT555
- = 24 -- for YUV444 packed
- = 24 -- for YUV444 planar
- = 16 -- for YUV422 planar (1 pixel = 1 Y + 1/2 Cb + 1/2 Cr)
- = 12 -- for YUV420 planar (1 pixel = 1 Y + 1/4 Cb + 1/4 Cr)
+
+ bpp = 24 -- for YUV444 packed
+
+ bpp = 24 -- for YUV444 planar
+
+ bpp = 16 -- for YUV422 planar (1 pixel = 1 Y + 1/2 Cb + 1/2 Cr)
+
+ bpp = 12 -- for YUV420 planar (1 pixel = 1 Y + 1/4 Cb + 1/4 Cr)
NOTE:
a. overlay does not support panning in x-direction, thus
- var->xres_virtual will always be equal to var->xres
+ var->xres_virtual will always be equal to var->xres
b. line length of overlay(s) must be on a 32-bit word boundary,
- for YUV planar modes, it is a requirement for the component
+ for YUV planar modes, it is a requirement for the component
with minimum bits per pixel, e.g. for YUV420, Cr component
for one pixel is actually 2-bits, it means the line length
should be a multiple of 16-pixels
c. starting horizontal position (XPOS) should start on a 32-bit
- word boundary, otherwise the fb_check_var() will just fail.
+ word boundary, otherwise the fb_check_var() will just fail.
d. the rectangle of the overlay should be within the base plane,
- otherwise fail
+ otherwise fail
Applications should follow the sequence below to operate an overlay
framebuffer:
- a. open("/dev/fb[1-2]", ...)
+ a. open("/dev/fb[1-2]", ...)
b. ioctl(fd, FBIOGET_VSCREENINFO, ...)
c. modify 'var' with desired parameters:
+
1) var->xres and var->yres
2) larger var->yres_virtual if more memory is required,
usually for double-buffering
3) var->nonstd for starting (x, y) and color format
4) var->{red, green, blue, transp} if RGB mode is to be used
+
d. ioctl(fd, FBIOPUT_VSCREENINFO, ...)
e. ioctl(fd, FBIOGET_FSCREENINFO, ...)
f. mmap
@@ -124,19 +153,21 @@ Overlay Support for PXA27x and later LCD controllers
and lengths of each component within the framebuffer.
4. var->nonstd is used to pass starting (x, y) position and color format,
- the detailed bit fields are shown below:
+ the detailed bit fields are shown below::
- 31 23 20 10 0
- +-----------------+---+----------+----------+
- | ... unused ... |FOR| XPOS | YPOS |
- +-----------------+---+----------+----------+
+ 31 23 20 10 0
+ +-----------------+---+----------+----------+
+ | ... unused ... |FOR| XPOS | YPOS |
+ +-----------------+---+----------+----------+
FOR - color format, as defined by OVERLAY_FORMAT_* in pxafb.h
- 0 - RGB
- 1 - YUV444 PACKED
- 2 - YUV444 PLANAR
- 3 - YUV422 PLANAR
- 4 - YUR420 PLANAR
+
+ - 0 - RGB
+ - 1 - YUV444 PACKED
+ - 2 - YUV444 PLANAR
+ - 3 - YUV422 PLANAR
+ - 4 - YUR420 PLANAR
XPOS - starting horizontal position
+
YPOS - starting vertical position
diff --git a/Documentation/fb/s3fb.txt b/Documentation/fb/s3fb.rst
index 2c97770bdbaa..e809d69c21a7 100644
--- a/Documentation/fb/s3fb.txt
+++ b/Documentation/fb/s3fb.rst
@@ -1,6 +1,6 @@
-
- s3fb - fbdev driver for S3 Trio/Virge chips
- ===========================================
+===========================================
+s3fb - fbdev driver for S3 Trio/Virge chips
+===========================================
Supported Hardware
@@ -56,7 +56,7 @@ Missing Features
(alias TODO list)
* secondary (not initialized by BIOS) device support
- * big endian support
+ * big endian support
* Zorro bus support
* MMIO support
* 24 bpp mode support on more cards
diff --git a/Documentation/fb/sa1100fb.txt b/Documentation/fb/sa1100fb.rst
index f1b4220464df..67e2650e017d 100644
--- a/Documentation/fb/sa1100fb.txt
+++ b/Documentation/fb/sa1100fb.rst
@@ -1,17 +1,19 @@
-[This file is cloned from VesaFB/matroxfb]
-
+=================
What is sa1100fb?
=================
+.. [This file is cloned from VesaFB/matroxfb]
+
+
This is a driver for a graphic framebuffer for the SA-1100 LCD
controller.
Configuration
==============
-For most common passive displays, giving the option
+For most common passive displays, giving the option::
-video=sa1100fb:bpp:<value>,lccr0:<value>,lccr1:<value>,lccr2:<value>,lccr3:<value>
+ video=sa1100fb:bpp:<value>,lccr0:<value>,lccr1:<value>,lccr2:<value>,lccr3:<value>
on the kernel command line should be enough to configure the
controller. The bits per pixel (bpp) value should be 4, 8, 12, or
@@ -27,13 +29,12 @@ sa1100fb_init_fbinfo(), sa1100fb_activate_var(),
sa1100fb_disable_lcd_controller(), and sa1100fb_enable_lcd_controller()
will probably be necessary.
-Accepted options:
+Accepted options::
-bpp:<value> Configure for <value> bits per pixel
-lccr0:<value> Configure LCD control register 0 (11.7.3)
-lccr1:<value> Configure LCD control register 1 (11.7.4)
-lccr2:<value> Configure LCD control register 2 (11.7.5)
-lccr3:<value> Configure LCD control register 3 (11.7.6)
+ bpp:<value> Configure for <value> bits per pixel
+ lccr0:<value> Configure LCD control register 0 (11.7.3)
+ lccr1:<value> Configure LCD control register 1 (11.7.4)
+ lccr2:<value> Configure LCD control register 2 (11.7.5)
+ lccr3:<value> Configure LCD control register 3 (11.7.6)
---
Mark Huang <mhuang@livetoy.com>
diff --git a/Documentation/fb/sh7760fb.rst b/Documentation/fb/sh7760fb.rst
new file mode 100644
index 000000000000..c3266485f810
--- /dev/null
+++ b/Documentation/fb/sh7760fb.rst
@@ -0,0 +1,130 @@
+================================================
+SH7760/SH7763 integrated LCDC Framebuffer driver
+================================================
+
+0. Overview
+-----------
+The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
+supports (in theory) resolutions ranging from 1x1 to 1024x1024,
+with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.
+
+Caveats:
+
+* Framebuffer memory must be a large chunk allocated at the top
+ of Area3 (HW requirement). Because of this requirement you should NOT
+ make the driver a module since at runtime it may become impossible to
+ get a large enough contiguous chunk of memory.
+
+* The driver does not support changing resolution while loaded
+ (displays aren't hotpluggable anyway)
+
+* Heavy flickering may be observed
+ a) if you're using 15/16bit color modes at >= 640x480 px resolutions,
+ b) during PCMCIA (or any other slow bus) activity.
+
+* Rotation works only 90degress clockwise, and only if horizontal
+ resolution is <= 320 pixels.
+
+Files:
+ - drivers/video/sh7760fb.c
+ - include/asm-sh/sh7760fb.h
+ - Documentation/fb/sh7760fb.rst
+
+1. Platform setup
+-----------------
+SH7760:
+ Video data is fetched via the DMABRG DMA engine, so you have to
+ configure the SH DMAC for DMABRG mode (write 0x94808080 to the
+ DMARSRA register somewhere at boot).
+
+ PFC registers PCCR and PCDR must be set to peripheral mode.
+ (write zeros to both).
+
+The driver does NOT do the above for you since board setup is, well, job
+of the board setup code.
+
+2. Panel definitions
+--------------------
+The LCDC must explicitly be told about the type of LCD panel
+attached. Data must be wrapped in a "struct sh7760fb_platdata" and
+passed to the driver as platform_data.
+
+Suggest you take a closer look at the SH7760 Manual, Section 30.
+(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)
+
+The following code illustrates what needs to be done to
+get the framebuffer working on a 640x480 TFT::
+
+ #include <linux/fb.h>
+ #include <asm/sh7760fb.h>
+
+ /*
+ * NEC NL6440bc26-01 640x480 TFT
+ * dotclock 25175 kHz
+ * Xres 640 Yres 480
+ * Htotal 800 Vtotal 525
+ * HsynStart 656 VsynStart 490
+ * HsynLenn 30 VsynLenn 2
+ *
+ * The linux framebuffer layer does not use the syncstart/synclen
+ * values but right/left/upper/lower margin values. The comments
+ * for the x_margin explain how to calculate those from given
+ * panel sync timings.
+ */
+ static struct fb_videomode nl6448bc26 = {
+ .name = "NL6448BC26",
+ .refresh = 60,
+ .xres = 640,
+ .yres = 480,
+ .pixclock = 39683, /* in picoseconds! */
+ .hsync_len = 30,
+ .vsync_len = 2,
+ .left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */
+ .right_margin = 16, /* HSYNSTART - XRES */
+ .upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */
+ .lower_margin = 10, /* VSYNSTART - YRES */
+ .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
+ .vmode = FB_VMODE_NONINTERLACED,
+ .flag = 0,
+ };
+
+ static struct sh7760fb_platdata sh7760fb_nl6448 = {
+ .def_mode = &nl6448bc26,
+ .ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */
+ .lddfr = LDDFR_8BPP, /* we want 8bit output */
+ .ldpmmr = 0x0070,
+ .ldpspr = 0x0500,
+ .ldaclnr = 0,
+ .ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |
+ LDICKR_CLKDIV(1),
+ .rotate = 0,
+ .novsync = 1,
+ .blank = NULL,
+ };
+
+ /* SH7760:
+ * 0xFE300800: 256 * 4byte xRGB palette ram
+ * 0xFE300C00: 42 bytes ctrl registers
+ */
+ static struct resource sh7760_lcdc_res[] = {
+ [0] = {
+ .start = 0xFE300800,
+ .end = 0xFE300CFF,
+ .flags = IORESOURCE_MEM,
+ },
+ [1] = {
+ .start = 65,
+ .end = 65,
+ .flags = IORESOURCE_IRQ,
+ },
+ };
+
+ static struct platform_device sh7760_lcdc_dev = {
+ .dev = {
+ .platform_data = &sh7760fb_nl6448,
+ },
+ .name = "sh7760-lcdc",
+ .id = -1,
+ .resource = sh7760_lcdc_res,
+ .num_resources = ARRAY_SIZE(sh7760_lcdc_res),
+ };
diff --git a/Documentation/fb/sh7760fb.txt b/Documentation/fb/sh7760fb.txt
deleted file mode 100644
index b994c3b10549..000000000000
--- a/Documentation/fb/sh7760fb.txt
+++ /dev/null
@@ -1,131 +0,0 @@
-SH7760/SH7763 integrated LCDC Framebuffer driver
-================================================
-
-0. Overview
------------
-The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
-supports (in theory) resolutions ranging from 1x1 to 1024x1024,
-with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.
-
-Caveats:
-* Framebuffer memory must be a large chunk allocated at the top
- of Area3 (HW requirement). Because of this requirement you should NOT
- make the driver a module since at runtime it may become impossible to
- get a large enough contiguous chunk of memory.
-
-* The driver does not support changing resolution while loaded
- (displays aren't hotpluggable anyway)
-
-* Heavy flickering may be observed
- a) if you're using 15/16bit color modes at >= 640x480 px resolutions,
- b) during PCMCIA (or any other slow bus) activity.
-
-* Rotation works only 90degress clockwise, and only if horizontal
- resolution is <= 320 pixels.
-
-files: drivers/video/sh7760fb.c
- include/asm-sh/sh7760fb.h
- Documentation/fb/sh7760fb.txt
-
-1. Platform setup
------------------
-SH7760:
- Video data is fetched via the DMABRG DMA engine, so you have to
- configure the SH DMAC for DMABRG mode (write 0x94808080 to the
- DMARSRA register somewhere at boot).
-
- PFC registers PCCR and PCDR must be set to peripheral mode.
- (write zeros to both).
-
-The driver does NOT do the above for you since board setup is, well, job
-of the board setup code.
-
-2. Panel definitions
---------------------
-The LCDC must explicitly be told about the type of LCD panel
-attached. Data must be wrapped in a "struct sh7760fb_platdata" and
-passed to the driver as platform_data.
-
-Suggest you take a closer look at the SH7760 Manual, Section 30.
-(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)
-
-The following code illustrates what needs to be done to
-get the framebuffer working on a 640x480 TFT:
-
-====================== cut here ======================================
-
-#include <linux/fb.h>
-#include <asm/sh7760fb.h>
-
-/*
- * NEC NL6440bc26-01 640x480 TFT
- * dotclock 25175 kHz
- * Xres 640 Yres 480
- * Htotal 800 Vtotal 525
- * HsynStart 656 VsynStart 490
- * HsynLenn 30 VsynLenn 2
- *
- * The linux framebuffer layer does not use the syncstart/synclen
- * values but right/left/upper/lower margin values. The comments
- * for the x_margin explain how to calculate those from given
- * panel sync timings.
- */
-static struct fb_videomode nl6448bc26 = {
- .name = "NL6448BC26",
- .refresh = 60,
- .xres = 640,
- .yres = 480,
- .pixclock = 39683, /* in picoseconds! */
- .hsync_len = 30,
- .vsync_len = 2,
- .left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */
- .right_margin = 16, /* HSYNSTART - XRES */
- .upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */
- .lower_margin = 10, /* VSYNSTART - YRES */
- .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
- .vmode = FB_VMODE_NONINTERLACED,
- .flag = 0,
-};
-
-static struct sh7760fb_platdata sh7760fb_nl6448 = {
- .def_mode = &nl6448bc26,
- .ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */
- .lddfr = LDDFR_8BPP, /* we want 8bit output */
- .ldpmmr = 0x0070,
- .ldpspr = 0x0500,
- .ldaclnr = 0,
- .ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |
- LDICKR_CLKDIV(1),
- .rotate = 0,
- .novsync = 1,
- .blank = NULL,
-};
-
-/* SH7760:
- * 0xFE300800: 256 * 4byte xRGB palette ram
- * 0xFE300C00: 42 bytes ctrl registers
- */
-static struct resource sh7760_lcdc_res[] = {
- [0] = {
- .start = 0xFE300800,
- .end = 0xFE300CFF,
- .flags = IORESOURCE_MEM,
- },
- [1] = {
- .start = 65,
- .end = 65,
- .flags = IORESOURCE_IRQ,
- },
-};
-
-static struct platform_device sh7760_lcdc_dev = {
- .dev = {
- .platform_data = &sh7760fb_nl6448,
- },
- .name = "sh7760-lcdc",
- .id = -1,
- .resource = sh7760_lcdc_res,
- .num_resources = ARRAY_SIZE(sh7760_lcdc_res),
-};
-
-====================== cut here ======================================
diff --git a/Documentation/fb/sisfb.txt b/Documentation/fb/sisfb.rst
index 2e68e503e72f..8f4e502ea12e 100644
--- a/Documentation/fb/sisfb.txt
+++ b/Documentation/fb/sisfb.rst
@@ -1,4 +1,4 @@
-
+==============
What is sisfb?
==============
@@ -41,11 +41,11 @@ statement to add the parameters to the kernel command line. Please see lilo's
parameters are given with the modprobe (or insmod) command.
Example for sisfb as part of the static kernel: Add the following line to your
-lilo.conf:
+lilo.conf::
append="video=sisfb:mode:1024x768x16,mem:12288,rate:75"
-Example for sisfb as a module: Start sisfb by typing
+Example for sisfb as a module: Start sisfb by typing::
modprobe sisfb mode=1024x768x16 rate=75 mem=12288
@@ -57,7 +57,7 @@ described above or the vesa keyword instead of mode). If compiled as a module,
the parameter format reads mode=none or mode=1024x768x16 (or whatever mode you
want to use). Using a "=" for a ":" (and vice versa) is a huge difference!
Additionally: If you give more than one argument to the in-kernel sisfb, the
-arguments are separated with ",". For example:
+arguments are separated with ",". For example::
video=sisfb:mode:1024x768x16,rate:75,mem:12288
@@ -73,6 +73,7 @@ supported options including some explanation.
The desired display mode can be specified using the keyword "mode" with
a parameter in one of the following formats:
+
- XxYxDepth or
- XxY-Depth or
- XxY-Depth@Rate or
@@ -130,29 +131,30 @@ Configuration
(Some) accepted options:
-off - Disable sisfb. This option is only understood if sisfb is
- in-kernel, not a module.
-mem:X - size of memory for the console, rest will be used for DRI/DRM. X
- is in kilobytes. On 300 series, the default is 4096, 8192 or
+========= ==================================================================
+off Disable sisfb. This option is only understood if sisfb is
+ in-kernel, not a module.
+mem:X size of memory for the console, rest will be used for DRI/DRM. X
+ is in kilobytes. On 300 series, the default is 4096, 8192 or
16384 (each in kilobyte) depending on how much video ram the card
- has. On 315/330 series, the default is the maximum available ram
+ has. On 315/330 series, the default is the maximum available ram
(since DRI/DRM is not supported for these chipsets).
-noaccel - do not use 2D acceleration engine. (Default: use acceleration)
-noypan - disable y-panning and scroll by redrawing the entire screen.
- This is much slower than y-panning. (Default: use y-panning)
-vesa:X - selects startup videomode. X is number from 0 to 0x1FF and
- represents the VESA mode number (can be given in decimal or
+noaccel do not use 2D acceleration engine. (Default: use acceleration)
+noypan disable y-panning and scroll by redrawing the entire screen.
+ This is much slower than y-panning. (Default: use y-panning)
+vesa:X selects startup videomode. X is number from 0 to 0x1FF and
+ represents the VESA mode number (can be given in decimal or
hexadecimal form, the latter prefixed with "0x").
-mode:X - selects startup videomode. Please see above for the format of
- "X".
+mode:X selects startup videomode. Please see above for the format of
+ "X".
+========= ==================================================================
Boolean options such as "noaccel" or "noypan" are to be given without a
parameter if sisfb is in-kernel (for example "video=sisfb:noypan). If
sisfb is a module, these are to be set to 1 (for example "modprobe sisfb
noypan=1").
---
-Thomas Winischhofer <thomas@winischhofer.net>
-May 27, 2004
+Thomas Winischhofer <thomas@winischhofer.net>
+May 27, 2004
diff --git a/Documentation/fb/sm501.txt b/Documentation/fb/sm501.rst
index 187f3b3ccb6c..03e02c8042a7 100644
--- a/Documentation/fb/sm501.txt
+++ b/Documentation/fb/sm501.rst
@@ -1,6 +1,11 @@
+=======
+sm501fb
+=======
+
Configuration:
-You can pass the following kernel command line options to sm501 videoframebuffer:
+You can pass the following kernel command line options to sm501
+videoframebuffer::
sm501fb.bpp= SM501 Display driver:
Specify bits-per-pixel if not specified by 'mode'
diff --git a/Documentation/fb/sm712fb.txt b/Documentation/fb/sm712fb.rst
index c388442edf51..994dad3b0238 100644
--- a/Documentation/fb/sm712fb.txt
+++ b/Documentation/fb/sm712fb.rst
@@ -1,5 +1,6 @@
+================
What is sm712fb?
-=================
+================
This is a graphics framebuffer driver for Silicon Motion SM712 based processors.
@@ -15,13 +16,16 @@ You should not compile-in vesafb.
Currently supported video modes are:
-[Graphic modes]
+Graphic modes
+-------------
-bpp | 640x480 800x600 1024x768 1280x1024
-----+--------------------------------------------
- 8 | 0x301 0x303 0x305 0x307
- 16 | 0x311 0x314 0x317 0x31A
- 24 | 0x312 0x315 0x318 0x31B
+=== ======= ======= ======== =========
+bpp 640x480 800x600 1024x768 1280x1024
+=== ======= ======= ======== =========
+ 8 0x301 0x303 0x305 0x307
+ 16 0x311 0x314 0x317 0x31A
+ 24 0x312 0x315 0x318 0x31B
+=== ======= ======= ======== =========
Missing Features
================
diff --git a/Documentation/fb/sstfb.rst b/Documentation/fb/sstfb.rst
new file mode 100644
index 000000000000..8e8c1b940359
--- /dev/null
+++ b/Documentation/fb/sstfb.rst
@@ -0,0 +1,207 @@
+=====
+sstfb
+=====
+
+Introduction
+============
+
+This is a frame buffer device driver for 3dfx' Voodoo Graphics
+(aka voodoo 1, aka sst1) and Voodoo² (aka Voodoo 2, aka CVG) based
+video boards. It's highly experimental code, but is guaranteed to work
+on my computer, with my "Maxi Gamer 3D" and "Maxi Gamer 3d²" boards,
+and with me "between chair and keyboard". Some people tested other
+combinations and it seems that it works.
+The main page is located at <http://sstfb.sourceforge.net>, and if
+you want the latest version, check out the CVS, as the driver is a work
+in progress, I feel uncomfortable with releasing tarballs of something
+not completely working...Don't worry, it's still more than usable
+(I eat my own dog food)
+
+Please read the Bug section, and report any success or failure to me
+(Ghozlane Toumi <gtoumi@laposte.net>).
+BTW, If you have only one monitor , and you don't feel like playing
+with the vga passthrou cable, I can only suggest borrowing a screen
+somewhere...
+
+
+Installation
+============
+
+This driver (should) work on ix86, with "late" 2.2.x kernel (tested
+with x = 19) and "recent" 2.4.x kernel, as a module or compiled in.
+It has been included in mainstream kernel since the infamous 2.4.10.
+You can apply the patches found in `sstfb/kernel/*-2.{2|4}.x.patch`,
+and copy sstfb.c to linux/drivers/video/, or apply a single patch,
+`sstfb/patch-2.{2|4}.x-sstfb-yymmdd` to your linux source tree.
+
+Then configure your kernel as usual: choose "m" or "y" to 3Dfx Voodoo
+Graphics in section "console". Compile, install, have fun... and please
+drop me a report :)
+
+
+Module Usage
+============
+
+.. warning::
+
+ #. You should read completely this section before issuing any command.
+
+ #. If you have only one monitor to play with, once you insmod the
+ module, the 3dfx takes control of the output, so you'll have to
+ plug the monitor to the "normal" video board in order to issue
+ the commands, or you can blindly use sst_dbg_vgapass
+ in the tools directory (See Tools). The latest solution is pass the
+ parameter vgapass=1 when insmodding the driver. (See Kernel/Modules
+ Options)
+
+Module insertion
+----------------
+
+ #. insmod sstfb.o
+
+ you should see some strange output from the board:
+ a big blue square, a green and a red small squares and a vertical
+ white rectangle. why? the function's name is self-explanatory:
+ "sstfb_test()"...
+ (if you don't have a second monitor, you'll have to plug your monitor
+ directly to the 2D videocard to see what you're typing)
+
+ #. con2fb /dev/fbx /dev/ttyx
+
+ bind a tty to the new frame buffer. if you already have a frame
+ buffer driver, the voodoo fb will likely be /dev/fb1. if not,
+ the device will be /dev/fb0. You can check this by doing a
+ cat /proc/fb. You can find a copy of con2fb in tools/ directory.
+ if you don't have another fb device, this step is superfluous,
+ as the console subsystem automagicaly binds ttys to the fb.
+ #. switch to the virtual console you just mapped. "tadaaa" ...
+
+Module removal
+--------------
+
+ #. con2fb /dev/fbx /dev/ttyx
+
+ bind the tty to the old frame buffer so the module can be removed.
+ (how does it work with vgacon ? short answer : it doesn't work)
+
+ #. rmmod sstfb
+
+
+Kernel/Modules Options
+----------------------
+
+You can pass some options to the sstfb module, and via the kernel
+command line when the driver is compiled in:
+for module : insmod sstfb.o option1=value1 option2=value2 ...
+in kernel : video=sstfb:option1,option2:value2,option3 ...
+
+sstfb supports the following options:
+
+=============== =============== ===============================================
+Module Kernel Description
+=============== =============== ===============================================
+vgapass=0 vganopass Enable or disable VGA passthrou cable.
+vgapass=1 vgapass When enabled, the monitor will get the signal
+ from the VGA board and not from the voodoo.
+
+ Default: nopass
+
+mem=x mem:x Force frame buffer memory in MiB
+ allowed values: 0, 1, 2, 4.
+
+ Default: 0 (= autodetect)
+
+inverse=1 inverse Supposed to enable inverse console.
+ doesn't work yet...
+
+clipping=1 clipping Enable or disable clipping.
+clipping=0 noclipping With clipping enabled, all offscreen
+ reads and writes are discarded.
+
+ Default: enable clipping.
+
+gfxclk=x gfxclk:x Force graphic clock frequency (in MHz).
+ Be careful with this option, it may be
+ DANGEROUS.
+
+ Default: auto
+
+ - 50Mhz for Voodoo 1,
+ - 75MHz for Voodoo 2.
+
+slowpci=1 fastpci Enable or disable fast PCI read/writes.
+slowpci=1 slowpci Default : fastpci
+
+dev=x dev:x Attach the driver to device number x.
+ 0 is the first compatible board (in
+ lspci order)
+=============== =============== ===============================================
+
+Tools
+=====
+
+These tools are mostly for debugging purposes, but you can
+find some of these interesting:
+
+- `con2fb`, maps a tty to a fbramebuffer::
+
+ con2fb /dev/fb1 /dev/tty5
+
+- `sst_dbg_vgapass`, changes vga passthrou. You have to recompile the
+ driver with SST_DEBUG and SST_DEBUG_IOCTL set to 1::
+
+ sst_dbg_vgapass /dev/fb1 1 (enables vga cable)
+ sst_dbg_vgapass /dev/fb1 0 (disables vga cable)
+
+- `glide_reset`, resets the voodoo using glide
+ use this after rmmoding sstfb, if the module refuses to
+ reinsert.
+
+Bugs
+====
+
+- DO NOT use glide while the sstfb module is in, you'll most likely
+ hang your computer.
+- If you see some artefacts (pixels not cleaning and stuff like that),
+ try turning off clipping (clipping=0), and/or using slowpci
+- the driver don't detect the 4Mb frame buffer voodoos, it seems that
+ the 2 last Mbs wrap around. looking into that .
+- The driver is 16 bpp only, 24/32 won't work.
+- The driver is not your_favorite_toy-safe. this includes SMP...
+
+ [Actually from inspection it seems to be safe - Alan]
+
+- When using XFree86 FBdev (X over fbdev) you may see strange color
+ patterns at the border of your windows (the pixels lose the lowest
+ byte -> basically the blue component and some of the green). I'm unable
+ to reproduce this with XFree86-3.3, but one of the testers has this
+ problem with XFree86-4. Apparently recent Xfree86-4.x solve this
+ problem.
+- I didn't really test changing the palette, so you may find some weird
+ things when playing with that.
+- Sometimes the driver will not recognise the DAC, and the
+ initialisation will fail. This is specifically true for
+ voodoo 2 boards, but it should be solved in recent versions. Please
+ contact me.
+- The 24/32 is not likely to work anytime soon, knowing that the
+ hardware does ... unusual things in 24/32 bpp.
+- When used with another video board, current limitations of the linux
+ console subsystem can cause some troubles, specifically, you should
+ disable software scrollback, as it can oops badly ...
+
+Todo
+====
+
+- Get rid of the previous paragraph.
+- Buy more coffee.
+- test/port to other arch.
+- try to add panning using tweeks with front and back buffer .
+- try to implement accel on voodoo2, this board can actually do a
+ lot in 2D even if it was sold as a 3D only board ...
+
+Ghozlane Toumi <gtoumi@laposte.net>
+
+
+Date: 2002/05/09 20:11:45
+
+http://sstfb.sourceforge.net/README
diff --git a/Documentation/fb/sstfb.txt b/Documentation/fb/sstfb.txt
deleted file mode 100644
index 13db1075e4a5..000000000000
--- a/Documentation/fb/sstfb.txt
+++ /dev/null
@@ -1,174 +0,0 @@
-
-Introduction
-
- This is a frame buffer device driver for 3dfx' Voodoo Graphics
- (aka voodoo 1, aka sst1) and Voodoo² (aka Voodoo 2, aka CVG) based
- video boards. It's highly experimental code, but is guaranteed to work
- on my computer, with my "Maxi Gamer 3D" and "Maxi Gamer 3d²" boards,
- and with me "between chair and keyboard". Some people tested other
- combinations and it seems that it works.
- The main page is located at <http://sstfb.sourceforge.net>, and if
- you want the latest version, check out the CVS, as the driver is a work
- in progress, I feel uncomfortable with releasing tarballs of something
- not completely working...Don't worry, it's still more than usable
- (I eat my own dog food)
-
- Please read the Bug section, and report any success or failure to me
- (Ghozlane Toumi <gtoumi@laposte.net>).
- BTW, If you have only one monitor , and you don't feel like playing
- with the vga passthrou cable, I can only suggest borrowing a screen
- somewhere...
-
-
-Installation
-
- This driver (should) work on ix86, with "late" 2.2.x kernel (tested
- with x = 19) and "recent" 2.4.x kernel, as a module or compiled in.
- It has been included in mainstream kernel since the infamous 2.4.10.
- You can apply the patches found in sstfb/kernel/*-2.{2|4}.x.patch,
- and copy sstfb.c to linux/drivers/video/, or apply a single patch,
- sstfb/patch-2.{2|4}.x-sstfb-yymmdd to your linux source tree.
-
- Then configure your kernel as usual: choose "m" or "y" to 3Dfx Voodoo
- Graphics in section "console". Compile, install, have fun... and please
- drop me a report :)
-
-
-Module Usage
-
- Warnings.
- # You should read completely this section before issuing any command.
- # If you have only one monitor to play with, once you insmod the
- module, the 3dfx takes control of the output, so you'll have to
- plug the monitor to the "normal" video board in order to issue
- the commands, or you can blindly use sst_dbg_vgapass
- in the tools directory (See Tools). The latest solution is pass the
- parameter vgapass=1 when insmodding the driver. (See Kernel/Modules
- Options)
-
- Module insertion:
- # insmod sstfb.o
- you should see some strange output from the board:
- a big blue square, a green and a red small squares and a vertical
- white rectangle. why? the function's name is self-explanatory:
- "sstfb_test()"...
- (if you don't have a second monitor, you'll have to plug your monitor
- directly to the 2D videocard to see what you're typing)
- # con2fb /dev/fbx /dev/ttyx
- bind a tty to the new frame buffer. if you already have a frame
- buffer driver, the voodoo fb will likely be /dev/fb1. if not,
- the device will be /dev/fb0. You can check this by doing a
- cat /proc/fb. You can find a copy of con2fb in tools/ directory.
- if you don't have another fb device, this step is superfluous,
- as the console subsystem automagicaly binds ttys to the fb.
- # switch to the virtual console you just mapped. "tadaaa" ...
-
- Module removal:
- # con2fb /dev/fbx /dev/ttyx
- bind the tty to the old frame buffer so the module can be removed.
- (how does it work with vgacon ? short answer : it doesn't work)
- # rmmod sstfb
-
-
-Kernel/Modules Options
-
- You can pass some options to the sstfb module, and via the kernel
- command line when the driver is compiled in:
- for module : insmod sstfb.o option1=value1 option2=value2 ...
- in kernel : video=sstfb:option1,option2:value2,option3 ...
-
- sstfb supports the following options :
-
-Module Kernel Description
-
-vgapass=0 vganopass Enable or disable VGA passthrou cable.
-vgapass=1 vgapass When enabled, the monitor will get the signal
- from the VGA board and not from the voodoo.
- Default: nopass
-
-mem=x mem:x Force frame buffer memory in MiB
- allowed values: 0, 1, 2, 4.
- Default: 0 (= autodetect)
-
-inverse=1 inverse Supposed to enable inverse console.
- doesn't work yet...
-
-clipping=1 clipping Enable or disable clipping.
-clipping=0 noclipping With clipping enabled, all offscreen
- reads and writes are discarded.
- Default: enable clipping.
-
-gfxclk=x gfxclk:x Force graphic clock frequency (in MHz).
- Be careful with this option, it may be
- DANGEROUS.
- Default: auto
- 50Mhz for Voodoo 1,
- 75MHz for Voodoo 2.
-
-slowpci=1 fastpci Enable or disable fast PCI read/writes.
-slowpci=1 slowpci Default : fastpci
-
-dev=x dev:x Attach the driver to device number x.
- 0 is the first compatible board (in
- lspci order)
-
-Tools
-
- These tools are mostly for debugging purposes, but you can
- find some of these interesting :
- - con2fb , maps a tty to a fbramebuffer .
- con2fb /dev/fb1 /dev/tty5
- - sst_dbg_vgapass , changes vga passthrou. You have to recompile the
- driver with SST_DEBUG and SST_DEBUG_IOCTL set to 1
- sst_dbg_vgapass /dev/fb1 1 (enables vga cable)
- sst_dbg_vgapass /dev/fb1 0 (disables vga cable)
- - glide_reset , resets the voodoo using glide
- use this after rmmoding sstfb, if the module refuses to
- reinsert .
-
-Bugs
-
- - DO NOT use glide while the sstfb module is in, you'll most likely
- hang your computer.
- - If you see some artefacts (pixels not cleaning and stuff like that),
- try turning off clipping (clipping=0), and/or using slowpci
- - the driver don't detect the 4Mb frame buffer voodoos, it seems that
- the 2 last Mbs wrap around. looking into that .
- - The driver is 16 bpp only, 24/32 won't work.
- - The driver is not your_favorite_toy-safe. this includes SMP...
- [Actually from inspection it seems to be safe - Alan]
- - When using XFree86 FBdev (X over fbdev) you may see strange color
- patterns at the border of your windows (the pixels lose the lowest
- byte -> basically the blue component and some of the green). I'm unable
- to reproduce this with XFree86-3.3, but one of the testers has this
- problem with XFree86-4. Apparently recent Xfree86-4.x solve this
- problem.
- - I didn't really test changing the palette, so you may find some weird
- things when playing with that.
- - Sometimes the driver will not recognise the DAC, and the
- initialisation will fail. This is specifically true for
- voodoo 2 boards, but it should be solved in recent versions. Please
- contact me.
- - The 24/32 is not likely to work anytime soon, knowing that the
- hardware does ... unusual things in 24/32 bpp.
- - When used with another video board, current limitations of the linux
- console subsystem can cause some troubles, specifically, you should
- disable software scrollback, as it can oops badly ...
-
-Todo
-
- - Get rid of the previous paragraph.
- - Buy more coffee.
- - test/port to other arch.
- - try to add panning using tweeks with front and back buffer .
- - try to implement accel on voodoo2, this board can actually do a
- lot in 2D even if it was sold as a 3D only board ...
-
-ghoz.
-
---
-Ghozlane Toumi <gtoumi@laposte.net>
-
-
-$Date: 2002/05/09 20:11:45 $
-http://sstfb.sourceforge.net/README
diff --git a/Documentation/fb/tgafb.txt b/Documentation/fb/tgafb.rst
index 250083ada8fb..0c50d2134aa4 100644
--- a/Documentation/fb/tgafb.txt
+++ b/Documentation/fb/tgafb.rst
@@ -1,15 +1,14 @@
-$Id: tgafb.txt,v 1.1.2.2 2000/04/04 06:50:18 mato Exp $
-
+==============
What is tgafb?
-===============
+==============
This is a driver for DECChip 21030 based graphics framebuffers, a.k.a. TGA
cards, which are usually found in older Digital Alpha systems. The
following models are supported:
-ZLxP-E1 (8bpp, 2 MB VRAM)
-ZLxP-E2 (32bpp, 8 MB VRAM)
-ZLxP-E3 (32bpp, 16 MB VRAM, Zbuffer)
+- ZLxP-E1 (8bpp, 2 MB VRAM)
+- ZLxP-E2 (32bpp, 8 MB VRAM)
+- ZLxP-E3 (32bpp, 16 MB VRAM, Zbuffer)
This version is an almost complete rewrite of the code written by Geert
Uytterhoeven, which was based on the original TGA console code written by
@@ -18,7 +17,7 @@ Jay Estabrook.
Major new features since Linux 2.0.x:
* Support for multiple resolutions
- * Support for fixed-frequency and other oddball monitors
+ * Support for fixed-frequency and other oddball monitors
(by allowing the video mode to be set at boot time)
User-visible changes since Linux 2.2.x:
@@ -36,19 +35,22 @@ Configuration
=============
You can pass kernel command line options to tgafb with
-`video=tgafb:option1,option2:value2,option3' (multiple options should be
-separated by comma, values are separated from options by `:').
+`video=tgafb:option1,option2:value2,option3` (multiple options should be
+separated by comma, values are separated from options by `:`).
+
Accepted options:
-font:X - default font to use. All fonts are supported, including the
- SUN12x22 font which is very nice at high resolutions.
+========== ============================================================
+font:X default font to use. All fonts are supported, including the
+ SUN12x22 font which is very nice at high resolutions.
-mode:X - default video mode. The following video modes are supported:
- 640x480-60, 800x600-56, 640x480-72, 800x600-60, 800x600-72,
+mode:X default video mode. The following video modes are supported:
+ 640x480-60, 800x600-56, 640x480-72, 800x600-60, 800x600-72,
1024x768-60, 1152x864-60, 1024x768-70, 1024x768-76,
1152x864-70, 1280x1024-61, 1024x768-85, 1280x1024-70,
1152x864-84, 1280x1024-76, 1280x1024-85
-
+========== ============================================================
+
Known Issues
============
diff --git a/Documentation/fb/tridentfb.txt b/Documentation/fb/tridentfb.rst
index 45d9de5b13a3..7921c9dee78c 100644
--- a/Documentation/fb/tridentfb.txt
+++ b/Documentation/fb/tridentfb.rst
@@ -1,3 +1,7 @@
+=========
+Tridentfb
+=========
+
Tridentfb is a framebuffer driver for some Trident chip based cards.
The following list of chips is thought to be supported although not all are
@@ -17,6 +21,7 @@ limited comparing to the range if acceleration is disabled (see list
of parameters below).
Known bugs:
+
1. The driver randomly locks up on 3DImage975 chip with acceleration
enabled. The same happens in X11 (Xorg).
2. The ramdac speeds require some more fine tuning. It is possible to
@@ -26,28 +31,30 @@ Known bugs:
How to use it?
==============
-When booting you can pass the video parameter.
-video=tridentfb
+When booting you can pass the video parameter::
+
+ video=tridentfb
-The parameters for tridentfb are concatenated with a ':' as in this example.
+The parameters for tridentfb are concatenated with a ':' as in this example::
-video=tridentfb:800x600-16@75,noaccel
+ video=tridentfb:800x600-16@75,noaccel
The second level parameters that tridentfb understands are:
-noaccel - turns off acceleration (when it doesn't work for your card)
+======== =====================================================================
+noaccel turns off acceleration (when it doesn't work for your card)
-fp - use flat panel related stuff
-crt - assume monitor is present instead of fp
+fp use flat panel related stuff
+crt assume monitor is present instead of fp
-center - for flat panels and resolutions smaller than native size center the
+center for flat panels and resolutions smaller than native size center the
image, otherwise use
stretch
-memsize - integer value in KB, use if your card's memory size is misdetected.
+memsize integer value in KB, use if your card's memory size is misdetected.
look at the driver output to see what it says when initializing.
-memdiff - integer value in KB, should be nonzero if your card reports
+memdiff integer value in KB, should be nonzero if your card reports
more memory than it actually has. For instance mine is 192K less than
detection says in all three BIOS selectable situations 2M, 4M, 8M.
Only use if your video memory is taken from main memory hence of
@@ -56,12 +63,13 @@ memdiff - integer value in KB, should be nonzero if your card reports
at the bottom this might help by not letting change to that mode
anymore.
-nativex - the width in pixels of the flat panel.If you know it (usually 1024
+nativex the width in pixels of the flat panel.If you know it (usually 1024
800 or 1280) and it is not what the driver seems to detect use it.
-bpp - bits per pixel (8,16 or 32)
-mode - a mode name like 800x600-8@75 as described in
- Documentation/fb/modedb.txt
+bpp bits per pixel (8,16 or 32)
+mode a mode name like 800x600-8@75 as described in
+ Documentation/fb/modedb.rst
+======== =====================================================================
Using insane values for the above parameters will probably result in driver
misbehaviour so take care(for instance memsize=12345678 or memdiff=23784 or
diff --git a/Documentation/fb/udlfb.txt b/Documentation/fb/udlfb.rst
index c985cb65dd06..732b37db3504 100644
--- a/Documentation/fb/udlfb.txt
+++ b/Documentation/fb/udlfb.rst
@@ -1,6 +1,6 @@
-
+==============
What is udlfb?
-===============
+==============
This is a driver for DisplayLink USB 2.0 era graphics chips.
@@ -100,6 +100,7 @@ options udlfb fb_defio=0 console=1 shadow=1
Accepted boolean options:
+=============== ================================================================
fb_defio Make use of the fb_defio (CONFIG_FB_DEFERRED_IO) kernel
module to track changed areas of the framebuffer by page faults.
Standard fbdev applications that use mmap but that do not
@@ -109,7 +110,7 @@ fb_defio Make use of the fb_defio (CONFIG_FB_DEFERRED_IO) kernel
more stable, and higher performance.
default: fb_defio=1
-console Allow fbcon to attach to udlfb provided framebuffers.
+console Allow fbcon to attach to udlfb provided framebuffers.
Can be disabled if fbcon and other clients
(e.g. X with --shared-vt) are in conflict.
default: console=1
@@ -119,6 +120,7 @@ shadow Allocate a 2nd framebuffer to shadow what's currently across
do not transmit. Spends host memory to save USB transfers.
Enabled by default. Only disable on very low memory systems.
default: shadow=1
+=============== ================================================================
Sysfs Attributes
================
@@ -126,34 +128,35 @@ Sysfs Attributes
Udlfb creates several files in /sys/class/graphics/fb?
Where ? is the sequential framebuffer id of the particular DisplayLink device
-edid If a valid EDID blob is written to this file (typically
- by a udev rule), then udlfb will use this EDID as a
- backup in case reading the actual EDID of the monitor
- attached to the DisplayLink device fails. This is
- especially useful for fixed panels, etc. that cannot
- communicate their capabilities via EDID. Reading
- this file returns the current EDID of the attached
- monitor (or last backup value written). This is
- useful to get the EDID of the attached monitor,
- which can be passed to utilities like parse-edid.
+======================== ========================================================
+edid If a valid EDID blob is written to this file (typically
+ by a udev rule), then udlfb will use this EDID as a
+ backup in case reading the actual EDID of the monitor
+ attached to the DisplayLink device fails. This is
+ especially useful for fixed panels, etc. that cannot
+ communicate their capabilities via EDID. Reading
+ this file returns the current EDID of the attached
+ monitor (or last backup value written). This is
+ useful to get the EDID of the attached monitor,
+ which can be passed to utilities like parse-edid.
-metrics_bytes_rendered 32-bit count of pixel bytes rendered
+metrics_bytes_rendered 32-bit count of pixel bytes rendered
-metrics_bytes_identical 32-bit count of how many of those bytes were found to be
- unchanged, based on a shadow framebuffer check
+metrics_bytes_identical 32-bit count of how many of those bytes were found to be
+ unchanged, based on a shadow framebuffer check
-metrics_bytes_sent 32-bit count of how many bytes were transferred over
- USB to communicate the resulting changed pixels to the
- hardware. Includes compression and protocol overhead
+metrics_bytes_sent 32-bit count of how many bytes were transferred over
+ USB to communicate the resulting changed pixels to the
+ hardware. Includes compression and protocol overhead
metrics_cpu_kcycles_used 32-bit count of CPU cycles used in processing the
- above pixels (in thousands of cycles).
+ above pixels (in thousands of cycles).
-metrics_reset Write-only. Any write to this file resets all metrics
- above to zero. Note that the 32-bit counters above
- roll over very quickly. To get reliable results, design
- performance tests to start and finish in a very short
- period of time (one minute or less is safe).
+metrics_reset Write-only. Any write to this file resets all metrics
+ above to zero. Note that the 32-bit counters above
+ roll over very quickly. To get reliable results, design
+ performance tests to start and finish in a very short
+ period of time (one minute or less is safe).
+======================== ========================================================
---
Bernie Thompson <bernie@plugable.com>
diff --git a/Documentation/fb/uvesafb.txt b/Documentation/fb/uvesafb.rst
index aa924196c366..d1c2523fbb33 100644
--- a/Documentation/fb/uvesafb.txt
+++ b/Documentation/fb/uvesafb.rst
@@ -1,4 +1,4 @@
-
+==========================================================
uvesafb - A Generic Driver for VBE2+ compliant video cards
==========================================================
@@ -49,7 +49,7 @@ The most important limitations are:
uvesafb can be compiled either as a module, or directly into the kernel.
In both cases it supports the same set of configuration options, which
-are either given on the kernel command line or as module parameters, e.g.:
+are either given on the kernel command line or as module parameters, e.g.::
video=uvesafb:1024x768-32,mtrr:3,ywrap (compiled into the kernel)
@@ -57,85 +57,90 @@ are either given on the kernel command line or as module parameters, e.g.:
Accepted options:
+======= =========================================================
ypan Enable display panning using the VESA protected mode
- interface. The visible screen is just a window of the
- video memory, console scrolling is done by changing the
- start of the window. This option is available on x86
- only and is the default option on that architecture.
+ interface. The visible screen is just a window of the
+ video memory, console scrolling is done by changing the
+ start of the window. This option is available on x86
+ only and is the default option on that architecture.
ywrap Same as ypan, but assumes your gfx board can wrap-around
- the video memory (i.e. starts reading from top if it
- reaches the end of video memory). Faster than ypan.
- Available on x86 only.
+ the video memory (i.e. starts reading from top if it
+ reaches the end of video memory). Faster than ypan.
+ Available on x86 only.
redraw Scroll by redrawing the affected part of the screen, this
- is the default on non-x86.
+ is the default on non-x86.
+======= =========================================================
(If you're using uvesafb as a module, the above three options are
- used a parameter of the scroll option, e.g. scroll=ypan.)
+used a parameter of the scroll option, e.g. scroll=ypan.)
-vgapal Use the standard VGA registers for palette changes.
+=========== ====================================================================
+vgapal Use the standard VGA registers for palette changes.
-pmipal Use the protected mode interface for palette changes.
- This is the default if the protected mode interface is
- available. Available on x86 only.
+pmipal Use the protected mode interface for palette changes.
+ This is the default if the protected mode interface is
+ available. Available on x86 only.
-mtrr:n Setup memory type range registers for the framebuffer
- where n:
- 0 - disabled (equivalent to nomtrr)
- 3 - write-combining (default)
+mtrr:n Setup memory type range registers for the framebuffer
+ where n:
- Values other than 0 and 3 will result in a warning and will be
- treated just like 3.
+ - 0 - disabled (equivalent to nomtrr)
+ - 3 - write-combining (default)
-nomtrr Do not use memory type range registers.
+ Values other than 0 and 3 will result in a warning and will be
+ treated just like 3.
+
+nomtrr Do not use memory type range registers.
vremap:n
- Remap 'n' MiB of video RAM. If 0 or not specified, remap memory
- according to video mode.
-
-vtotal:n
- If the video BIOS of your card incorrectly determines the total
- amount of video RAM, use this option to override the BIOS (in MiB).
-
-<mode> The mode you want to set, in the standard modedb format. Refer to
- modedb.txt for a detailed description. When uvesafb is compiled as
- a module, the mode string should be provided as a value of the
- 'mode_option' option.
-
-vbemode:x
- Force the use of VBE mode x. The mode will only be set if it's
- found in the VBE-provided list of supported modes.
- NOTE: The mode number 'x' should be specified in VESA mode number
- notation, not the Linux kernel one (eg. 257 instead of 769).
- HINT: If you use this option because normal <mode> parameter does
- not work for you and you use a X server, you'll probably want to
- set the 'nocrtc' option to ensure that the video mode is properly
- restored after console <-> X switches.
-
-nocrtc Do not use CRTC timings while setting the video mode. This option
- has any effect only if the Video BIOS is VBE 3.0 compliant. Use it
- if you have problems with modes set the standard way. Note that
- using this option implies that any refresh rate adjustments will
- be ignored and the refresh rate will stay at your BIOS default (60 Hz).
-
-noedid Do not try to fetch and use EDID-provided modes.
-
-noblank Disable hardware blanking.
-
-v86d:path
- Set path to the v86d executable. This option is only available as
- a module parameter, and not as a part of the video= string. If you
- need to use it and have uvesafb built into the kernel, use
- uvesafb.v86d="path".
+ Remap 'n' MiB of video RAM. If 0 or not specified, remap memory
+ according to video mode.
+
+vtotal:n If the video BIOS of your card incorrectly determines the total
+ amount of video RAM, use this option to override the BIOS (in MiB).
+
+<mode> The mode you want to set, in the standard modedb format. Refer to
+ modedb.txt for a detailed description. When uvesafb is compiled as
+ a module, the mode string should be provided as a value of the
+ 'mode_option' option.
+
+vbemode:x Force the use of VBE mode x. The mode will only be set if it's
+ found in the VBE-provided list of supported modes.
+ NOTE: The mode number 'x' should be specified in VESA mode number
+ notation, not the Linux kernel one (eg. 257 instead of 769).
+ HINT: If you use this option because normal <mode> parameter does
+ not work for you and you use a X server, you'll probably want to
+ set the 'nocrtc' option to ensure that the video mode is properly
+ restored after console <-> X switches.
+
+nocrtc Do not use CRTC timings while setting the video mode. This option
+ has any effect only if the Video BIOS is VBE 3.0 compliant. Use it
+ if you have problems with modes set the standard way. Note that
+ using this option implies that any refresh rate adjustments will
+ be ignored and the refresh rate will stay at your BIOS default
+ (60 Hz).
+
+noedid Do not try to fetch and use EDID-provided modes.
+
+noblank Disable hardware blanking.
+
+v86d:path Set path to the v86d executable. This option is only available as
+ a module parameter, and not as a part of the video= string. If you
+ need to use it and have uvesafb built into the kernel, use
+ uvesafb.v86d="path".
+=========== ====================================================================
Additionally, the following parameters may be provided. They all override the
EDID-provided values and BIOS defaults. Refer to your monitor's specs to get
the correct values for maxhf, maxvf and maxclk for your hardware.
+=========== ======================================
maxhf:n Maximum horizontal frequency (in kHz).
maxvf:n Maximum vertical frequency (in Hz).
maxclk:n Maximum pixel clock (in MHz).
+=========== ======================================
4. The sysfs interface
----------------------
@@ -146,27 +151,26 @@ additional information.
Driver attributes:
/sys/bus/platform/drivers/uvesafb
- - v86d (default: /sbin/v86d)
+ v86d
+ (default: /sbin/v86d)
+
Path to the v86d executable. v86d is started by uvesafb
if an instance of the daemon isn't already running.
Device attributes:
/sys/bus/platform/drivers/uvesafb/uvesafb.0
- - nocrtc
+ nocrtc
Use the default refresh rate (60 Hz) if set to 1.
- - oem_product_name
- - oem_product_rev
- - oem_string
- - oem_vendor
+ oem_product_name, oem_product_rev, oem_string, oem_vendor
Information about the card and its maker.
- - vbe_modes
+ vbe_modes
A list of video modes supported by the Video BIOS along with their
VBE mode numbers in hex.
- - vbe_version
+ vbe_version
A BCD value indicating the implemented VBE standard.
5. Miscellaneous
@@ -176,9 +180,9 @@ Uvesafb will set a video mode with the default refresh rate and timings
from the Video BIOS if you set pixclock to 0 in fb_var_screeninfo.
---
+
Michal Januszewski <spock@gentoo.org>
+
Last updated: 2017-10-10
Documentation of the uvesafb options is loosely based on vesafb.txt.
-
diff --git a/Documentation/fb/vesafb.txt b/Documentation/fb/vesafb.rst
index 413bb73235be..6821c87b7893 100644
--- a/Documentation/fb/vesafb.txt
+++ b/Documentation/fb/vesafb.rst
@@ -1,4 +1,4 @@
-
+===============
What is vesafb?
===============
@@ -30,7 +30,7 @@ How to use it?
==============
Switching modes is done using the vga=... boot parameter. Read
-Documentation/svga.txt for details.
+Documentation/admin-guide/svga.rst for details.
You should compile in both vgacon (for text mode) and vesafb (for
graphics mode). Which of them takes over the console depends on
@@ -40,30 +40,35 @@ The graphic modes are NOT in the list which you get if you boot with
vga=ask and hit return. The mode you wish to use is derived from the
VESA mode number. Here are those VESA mode numbers:
- | 640x480 800x600 1024x768 1280x1024
-----+-------------------------------------
-256 | 0x101 0x103 0x105 0x107
-32k | 0x110 0x113 0x116 0x119
-64k | 0x111 0x114 0x117 0x11A
-16M | 0x112 0x115 0x118 0x11B
+====== ======= ======= ======== =========
+colors 640x480 800x600 1024x768 1280x1024
+====== ======= ======= ======== =========
+256 0x101 0x103 0x105 0x107
+32k 0x110 0x113 0x116 0x119
+64k 0x111 0x114 0x117 0x11A
+16M 0x112 0x115 0x118 0x11B
+====== ======= ======= ======== =========
+
The video mode number of the Linux kernel is the VESA mode number plus
-0x200.
-
+0x200:
+
Linux_kernel_mode_number = VESA_mode_number + 0x200
So the table for the Kernel mode numbers are:
- | 640x480 800x600 1024x768 1280x1024
-----+-------------------------------------
-256 | 0x301 0x303 0x305 0x307
-32k | 0x310 0x313 0x316 0x319
-64k | 0x311 0x314 0x317 0x31A
-16M | 0x312 0x315 0x318 0x31B
+====== ======= ======= ======== =========
+colors 640x480 800x600 1024x768 1280x1024
+====== ======= ======= ======== =========
+256 0x301 0x303 0x305 0x307
+32k 0x310 0x313 0x316 0x319
+64k 0x311 0x314 0x317 0x31A
+16M 0x312 0x315 0x318 0x31B
+====== ======= ======= ======== =========
To enable one of those modes you have to specify "vga=ask" in the
lilo.conf file and rerun LILO. Then you can type in the desired
-mode at the "vga=ask" prompt. For example if you like to use
+mode at the "vga=ask" prompt. For example if you like to use
1024x768x256 colors you have to say "305" at this prompt.
If this does not work, this might be because your BIOS does not support
@@ -72,10 +77,10 @@ Even if your board does, it might be the BIOS which does not. VESA BIOS
Extensions v2.0 are required, 1.2 is NOT sufficient. You will get a
"bad mode number" message if something goes wrong.
-1. Note: LILO cannot handle hex, for booting directly with
- "vga=mode-number" you have to transform the numbers to decimal.
+1. Note: LILO cannot handle hex, for booting directly with
+ "vga=mode-number" you have to transform the numbers to decimal.
2. Note: Some newer versions of LILO appear to work with those hex values,
- if you set the 0x in front of the numbers.
+ if you set the 0x in front of the numbers.
X11
===
@@ -120,62 +125,68 @@ Accepted options:
inverse use inverse color map
-ypan enable display panning using the VESA protected mode
- interface. The visible screen is just a window of the
- video memory, console scrolling is done by changing the
- start of the window.
- pro: * scrolling (fullscreen) is fast, because there is
+========= ======================================================================
+ypan enable display panning using the VESA protected mode
+ interface. The visible screen is just a window of the
+ video memory, console scrolling is done by changing the
+ start of the window.
+
+ pro:
+
+ * scrolling (fullscreen) is fast, because there is
no need to copy around data.
* You'll get scrollback (the Shift-PgUp thing),
the video memory can be used as scrollback buffer
- kontra: * scrolling only parts of the screen causes some
+
+ kontra:
+
+ * scrolling only parts of the screen causes some
ugly flicker effects (boot logo flickers for
example).
-ywrap Same as ypan, but assumes your gfx board can wrap-around
- the video memory (i.e. starts reading from top if it
- reaches the end of video memory). Faster than ypan.
+ywrap Same as ypan, but assumes your gfx board can wrap-around
+ the video memory (i.e. starts reading from top if it
+ reaches the end of video memory). Faster than ypan.
-redraw scroll by redrawing the affected part of the screen, this
- is the safe (and slow) default.
+redraw Scroll by redrawing the affected part of the screen, this
+ is the safe (and slow) default.
-vgapal Use the standard vga registers for palette changes.
- This is the default.
-pmipal Use the protected mode interface for palette changes.
+vgapal Use the standard vga registers for palette changes.
+ This is the default.
+pmipal Use the protected mode interface for palette changes.
-mtrr:n setup memory type range registers for the vesafb framebuffer
- where n:
- 0 - disabled (equivalent to nomtrr) (default)
- 1 - uncachable
- 2 - write-back
- 3 - write-combining
- 4 - write-through
+mtrr:n Setup memory type range registers for the vesafb framebuffer
+ where n:
- If you see the following in dmesg, choose the type that matches the
- old one. In this example, use "mtrr:2".
+ - 0 - disabled (equivalent to nomtrr) (default)
+ - 1 - uncachable
+ - 2 - write-back
+ - 3 - write-combining
+ - 4 - write-through
+
+ If you see the following in dmesg, choose the type that matches the
+ old one. In this example, use "mtrr:2".
...
-mtrr: type mismatch for e0000000,8000000 old: write-back new: write-combining
+mtrr: type mismatch for e0000000,8000000 old: write-back new:
+ write-combining
...
-nomtrr disable mtrr
+nomtrr disable mtrr
vremap:n
- remap 'n' MiB of video RAM. If 0 or not specified, remap memory
- according to video mode. (2.5.66 patch/idea by Antonino Daplas
- reversed to give override possibility (allocate more fb memory
- than the kernel would) to 2.4 by tmb@iki.fi)
+ Remap 'n' MiB of video RAM. If 0 or not specified, remap memory
+ according to video mode. (2.5.66 patch/idea by Antonino Daplas
+ reversed to give override possibility (allocate more fb memory
+ than the kernel would) to 2.4 by tmb@iki.fi)
-vtotal:n
- if the video BIOS of your card incorrectly determines the total
- amount of video RAM, use this option to override the BIOS (in MiB).
+vtotal:n If the video BIOS of your card incorrectly determines the total
+ amount of video RAM, use this option to override the BIOS (in MiB).
+========= ======================================================================
Have fun!
- Gerd
-
---
Gerd Knorr <kraxel@goldbach.in-berlin.de>
-Minor (mostly typo) changes
+Minor (mostly typo) changes
by Nico Schmoigl <schmoigl@rumms.uni-mannheim.de>
diff --git a/Documentation/fb/viafb.rst b/Documentation/fb/viafb.rst
new file mode 100644
index 000000000000..8eb7a3bb068c
--- /dev/null
+++ b/Documentation/fb/viafb.rst
@@ -0,0 +1,297 @@
+=======================================================
+VIA Integration Graphic Chip Console Framebuffer Driver
+=======================================================
+
+Platform
+--------
+ The console framebuffer driver is for graphics chips of
+ VIA UniChrome Family
+ (CLE266, PM800 / CN400 / CN300,
+ P4M800CE / P4M800Pro / CN700 / VN800,
+ CX700 / VX700, K8M890, P4M890,
+ CN896 / P4M900, VX800, VX855)
+
+Driver features
+---------------
+ Device: CRT, LCD, DVI
+
+ Support viafb_mode::
+
+ CRT:
+ 640x480(60, 75, 85, 100, 120 Hz), 720x480(60 Hz),
+ 720x576(60 Hz), 800x600(60, 75, 85, 100, 120 Hz),
+ 848x480(60 Hz), 856x480(60 Hz), 1024x512(60 Hz),
+ 1024x768(60, 75, 85, 100 Hz), 1152x864(75 Hz),
+ 1280x768(60 Hz), 1280x960(60 Hz), 1280x1024(60, 75, 85 Hz),
+ 1440x1050(60 Hz), 1600x1200(60, 75 Hz), 1280x720(60 Hz),
+ 1920x1080(60 Hz), 1400x1050(60 Hz), 800x480(60 Hz)
+
+ color depth: 8 bpp, 16 bpp, 32 bpp supports.
+
+ Support 2D hardware accelerator.
+
+Using the viafb module
+----------------------
+ Start viafb with default settings::
+
+ #modprobe viafb
+
+ Start viafb with user options::
+
+ #modprobe viafb viafb_mode=800x600 viafb_bpp=16 viafb_refresh=60
+ viafb_active_dev=CRT+DVI viafb_dvi_port=DVP1
+ viafb_mode1=1024x768 viafb_bpp=16 viafb_refresh1=60
+ viafb_SAMM_ON=1
+
+ viafb_mode:
+ - 640x480 (default)
+ - 720x480
+ - 800x600
+ - 1024x768
+
+ viafb_bpp:
+ - 8, 16, 32 (default:32)
+
+ viafb_refresh:
+ - 60, 75, 85, 100, 120 (default:60)
+
+ viafb_lcd_dsp_method:
+ - 0 : expansion (default)
+ - 1 : centering
+
+ viafb_lcd_mode:
+ 0 : LCD panel with LSB data format input (default)
+ 1 : LCD panel with MSB data format input
+
+ viafb_lcd_panel_id:
+ - 0 : Resolution: 640x480, Channel: single, Dithering: Enable
+ - 1 : Resolution: 800x600, Channel: single, Dithering: Enable
+ - 2 : Resolution: 1024x768, Channel: single, Dithering: Enable (default)
+ - 3 : Resolution: 1280x768, Channel: single, Dithering: Enable
+ - 4 : Resolution: 1280x1024, Channel: dual, Dithering: Enable
+ - 5 : Resolution: 1400x1050, Channel: dual, Dithering: Enable
+ - 6 : Resolution: 1600x1200, Channel: dual, Dithering: Enable
+
+ - 8 : Resolution: 800x480, Channel: single, Dithering: Enable
+ - 9 : Resolution: 1024x768, Channel: dual, Dithering: Enable
+ - 10: Resolution: 1024x768, Channel: single, Dithering: Disable
+ - 11: Resolution: 1024x768, Channel: dual, Dithering: Disable
+ - 12: Resolution: 1280x768, Channel: single, Dithering: Disable
+ - 13: Resolution: 1280x1024, Channel: dual, Dithering: Disable
+ - 14: Resolution: 1400x1050, Channel: dual, Dithering: Disable
+ - 15: Resolution: 1600x1200, Channel: dual, Dithering: Disable
+ - 16: Resolution: 1366x768, Channel: single, Dithering: Disable
+ - 17: Resolution: 1024x600, Channel: single, Dithering: Enable
+ - 18: Resolution: 1280x768, Channel: dual, Dithering: Enable
+ - 19: Resolution: 1280x800, Channel: single, Dithering: Enable
+
+ viafb_accel:
+ - 0 : No 2D Hardware Acceleration
+ - 1 : 2D Hardware Acceleration (default)
+
+ viafb_SAMM_ON:
+ - 0 : viafb_SAMM_ON disable (default)
+ - 1 : viafb_SAMM_ON enable
+
+ viafb_mode1: (secondary display device)
+ - 640x480 (default)
+ - 720x480
+ - 800x600
+ - 1024x768
+
+ viafb_bpp1: (secondary display device)
+ - 8, 16, 32 (default:32)
+
+ viafb_refresh1: (secondary display device)
+ - 60, 75, 85, 100, 120 (default:60)
+
+ viafb_active_dev:
+ This option is used to specify active devices.(CRT, DVI, CRT+LCD...)
+ DVI stands for DVI or HDMI, E.g., If you want to enable HDMI,
+ set viafb_active_dev=DVI. In SAMM case, the previous of
+ viafb_active_dev is primary device, and the following is
+ secondary device.
+
+ For example:
+
+ To enable one device, such as DVI only, we can use::
+
+ modprobe viafb viafb_active_dev=DVI
+
+ To enable two devices, such as CRT+DVI::
+
+ modprobe viafb viafb_active_dev=CRT+DVI;
+
+ For DuoView case, we can use::
+
+ modprobe viafb viafb_active_dev=CRT+DVI
+
+ OR::
+
+ modprobe viafb viafb_active_dev=DVI+CRT...
+
+ For SAMM case:
+
+ If CRT is primary and DVI is secondary, we should use::
+
+ modprobe viafb viafb_active_dev=CRT+DVI viafb_SAMM_ON=1...
+
+ If DVI is primary and CRT is secondary, we should use::
+
+ modprobe viafb viafb_active_dev=DVI+CRT viafb_SAMM_ON=1...
+
+ viafb_display_hardware_layout:
+ This option is used to specify display hardware layout for CX700 chip.
+
+ - 1 : LCD only
+ - 2 : DVI only
+ - 3 : LCD+DVI (default)
+ - 4 : LCD1+LCD2 (internal + internal)
+ - 16: LCD1+ExternalLCD2 (internal + external)
+
+ viafb_second_size:
+ This option is used to set second device memory size(MB) in SAMM case.
+ The minimal size is 16.
+
+ viafb_platform_epia_dvi:
+ This option is used to enable DVI on EPIA - M
+
+ - 0 : No DVI on EPIA - M (default)
+ - 1 : DVI on EPIA - M
+
+ viafb_bus_width:
+ When using 24 - Bit Bus Width Digital Interface,
+ this option should be set.
+
+ - 12: 12-Bit LVDS or 12-Bit TMDS (default)
+ - 24: 24-Bit LVDS or 24-Bit TMDS
+
+ viafb_device_lcd_dualedge:
+ When using Dual Edge Panel, this option should be set.
+
+ - 0 : No Dual Edge Panel (default)
+ - 1 : Dual Edge Panel
+
+ viafb_lcd_port:
+ This option is used to specify LCD output port,
+ available values are "DVP0" "DVP1" "DFP_HIGHLOW" "DFP_HIGH" "DFP_LOW".
+
+ for external LCD + external DVI on CX700(External LCD is on DVP0),
+ we should use::
+
+ modprobe viafb viafb_lcd_port=DVP0...
+
+Notes:
+ 1. CRT may not display properly for DuoView CRT & DVI display at
+ the "640x480" PAL mode with DVI overscan enabled.
+ 2. SAMM stands for single adapter multi monitors. It is different from
+ multi-head since SAMM support multi monitor at driver layers, thus fbcon
+ layer doesn't even know about it; SAMM's second screen doesn't have a
+ device node file, thus a user mode application can't access it directly.
+ When SAMM is enabled, viafb_mode and viafb_mode1, viafb_bpp and
+ viafb_bpp1, viafb_refresh and viafb_refresh1 can be different.
+ 3. When console is depending on viafbinfo1, dynamically change resolution
+ and bpp, need to call VIAFB specified ioctl interface VIAFB_SET_DEVICE
+ instead of calling common ioctl function FBIOPUT_VSCREENINFO since
+ viafb doesn't support multi-head well, or it will cause screen crush.
+
+
+Configure viafb with "fbset" tool
+---------------------------------
+
+ "fbset" is an inbox utility of Linux.
+
+ 1. Inquire current viafb information, type::
+
+ # fbset -i
+
+ 2. Set various resolutions and viafb_refresh rates::
+
+ # fbset <resolution-vertical_sync>
+
+ example::
+
+ # fbset "1024x768-75"
+
+ or::
+
+ # fbset -g 1024 768 1024 768 32
+
+ Check the file "/etc/fb.modes" to find display modes available.
+
+ 3. Set the color depth::
+
+ # fbset -depth <value>
+
+ example::
+
+ # fbset -depth 16
+
+
+Configure viafb via /proc
+-------------------------
+ The following files exist in /proc/viafb
+
+ supported_output_devices
+ This read-only file contains a full ',' separated list containing all
+ output devices that could be available on your platform. It is likely
+ that not all of those have a connector on your hardware but it should
+ provide a good starting point to figure out which of those names match
+ a real connector.
+
+ Example::
+
+ # cat /proc/viafb/supported_output_devices
+
+ iga1/output_devices, iga2/output_devices
+ These two files are readable and writable. iga1 and iga2 are the two
+ independent units that produce the screen image. Those images can be
+ forwarded to one or more output devices. Reading those files is a way
+ to query which output devices are currently used by an iga.
+
+ Example::
+
+ # cat /proc/viafb/iga1/output_devices
+
+ If there are no output devices printed the output of this iga is lost.
+ This can happen for example if only one (the other) iga is used.
+ Writing to these files allows adjusting the output devices during
+ runtime. One can add new devices, remove existing ones or switch
+ between igas. Essentially you can write a ',' separated list of device
+ names (or a single one) in the same format as the output to those
+ files. You can add a '+' or '-' as a prefix allowing simple addition
+ and removal of devices. So a prefix '+' adds the devices from your list
+ to the already existing ones, '-' removes the listed devices from the
+ existing ones and if no prefix is given it replaces all existing ones
+ with the listed ones. If you remove devices they are expected to turn
+ off. If you add devices that are already part of the other iga they are
+ removed there and added to the new one.
+
+ Examples:
+
+ Add CRT as output device to iga1::
+
+ # echo +CRT > /proc/viafb/iga1/output_devices
+
+ Remove (turn off) DVP1 and LVDS1 as output devices of iga2::
+
+ # echo -DVP1,LVDS1 > /proc/viafb/iga2/output_devices
+
+ Replace all iga1 output devices by CRT::
+
+ # echo CRT > /proc/viafb/iga1/output_devices
+
+
+Bootup with viafb
+-----------------
+
+Add the following line to your grub.conf::
+
+ append = "video=viafb:viafb_mode=1024x768,viafb_bpp=32,viafb_refresh=85"
+
+
+VIA Framebuffer modes
+=====================
+
+.. include:: viafb.modes
+ :literal:
diff --git a/Documentation/fb/viafb.txt b/Documentation/fb/viafb.txt
deleted file mode 100644
index 1cb2462a71ce..000000000000
--- a/Documentation/fb/viafb.txt
+++ /dev/null
@@ -1,252 +0,0 @@
-
- VIA Integration Graphic Chip Console Framebuffer Driver
-
-[Platform]
------------------------
- The console framebuffer driver is for graphics chips of
- VIA UniChrome Family(CLE266, PM800 / CN400 / CN300,
- P4M800CE / P4M800Pro / CN700 / VN800,
- CX700 / VX700, K8M890, P4M890,
- CN896 / P4M900, VX800, VX855)
-
-[Driver features]
-------------------------
- Device: CRT, LCD, DVI
-
- Support viafb_mode:
- CRT:
- 640x480(60, 75, 85, 100, 120 Hz), 720x480(60 Hz),
- 720x576(60 Hz), 800x600(60, 75, 85, 100, 120 Hz),
- 848x480(60 Hz), 856x480(60 Hz), 1024x512(60 Hz),
- 1024x768(60, 75, 85, 100 Hz), 1152x864(75 Hz),
- 1280x768(60 Hz), 1280x960(60 Hz), 1280x1024(60, 75, 85 Hz),
- 1440x1050(60 Hz), 1600x1200(60, 75 Hz), 1280x720(60 Hz),
- 1920x1080(60 Hz), 1400x1050(60 Hz), 800x480(60 Hz)
-
- color depth: 8 bpp, 16 bpp, 32 bpp supports.
-
- Support 2D hardware accelerator.
-
-[Using the viafb module]
--- -- --------------------
- Start viafb with default settings:
- #modprobe viafb
-
- Start viafb with user options:
- #modprobe viafb viafb_mode=800x600 viafb_bpp=16 viafb_refresh=60
- viafb_active_dev=CRT+DVI viafb_dvi_port=DVP1
- viafb_mode1=1024x768 viafb_bpp=16 viafb_refresh1=60
- viafb_SAMM_ON=1
-
- viafb_mode:
- 640x480 (default)
- 720x480
- 800x600
- 1024x768
- ......
-
- viafb_bpp:
- 8, 16, 32 (default:32)
-
- viafb_refresh:
- 60, 75, 85, 100, 120 (default:60)
-
- viafb_lcd_dsp_method:
- 0 : expansion (default)
- 1 : centering
-
- viafb_lcd_mode:
- 0 : LCD panel with LSB data format input (default)
- 1 : LCD panel with MSB data format input
-
- viafb_lcd_panel_id:
- 0 : Resolution: 640x480, Channel: single, Dithering: Enable
- 1 : Resolution: 800x600, Channel: single, Dithering: Enable
- 2 : Resolution: 1024x768, Channel: single, Dithering: Enable (default)
- 3 : Resolution: 1280x768, Channel: single, Dithering: Enable
- 4 : Resolution: 1280x1024, Channel: dual, Dithering: Enable
- 5 : Resolution: 1400x1050, Channel: dual, Dithering: Enable
- 6 : Resolution: 1600x1200, Channel: dual, Dithering: Enable
-
- 8 : Resolution: 800x480, Channel: single, Dithering: Enable
- 9 : Resolution: 1024x768, Channel: dual, Dithering: Enable
- 10: Resolution: 1024x768, Channel: single, Dithering: Disable
- 11: Resolution: 1024x768, Channel: dual, Dithering: Disable
- 12: Resolution: 1280x768, Channel: single, Dithering: Disable
- 13: Resolution: 1280x1024, Channel: dual, Dithering: Disable
- 14: Resolution: 1400x1050, Channel: dual, Dithering: Disable
- 15: Resolution: 1600x1200, Channel: dual, Dithering: Disable
- 16: Resolution: 1366x768, Channel: single, Dithering: Disable
- 17: Resolution: 1024x600, Channel: single, Dithering: Enable
- 18: Resolution: 1280x768, Channel: dual, Dithering: Enable
- 19: Resolution: 1280x800, Channel: single, Dithering: Enable
-
- viafb_accel:
- 0 : No 2D Hardware Acceleration
- 1 : 2D Hardware Acceleration (default)
-
- viafb_SAMM_ON:
- 0 : viafb_SAMM_ON disable (default)
- 1 : viafb_SAMM_ON enable
-
- viafb_mode1: (secondary display device)
- 640x480 (default)
- 720x480
- 800x600
- 1024x768
- ... ...
-
- viafb_bpp1: (secondary display device)
- 8, 16, 32 (default:32)
-
- viafb_refresh1: (secondary display device)
- 60, 75, 85, 100, 120 (default:60)
-
- viafb_active_dev:
- This option is used to specify active devices.(CRT, DVI, CRT+LCD...)
- DVI stands for DVI or HDMI, E.g., If you want to enable HDMI,
- set viafb_active_dev=DVI. In SAMM case, the previous of
- viafb_active_dev is primary device, and the following is
- secondary device.
-
- For example:
- To enable one device, such as DVI only, we can use:
- modprobe viafb viafb_active_dev=DVI
- To enable two devices, such as CRT+DVI:
- modprobe viafb viafb_active_dev=CRT+DVI;
-
- For DuoView case, we can use:
- modprobe viafb viafb_active_dev=CRT+DVI
- OR
- modprobe viafb viafb_active_dev=DVI+CRT...
-
- For SAMM case:
- If CRT is primary and DVI is secondary, we should use:
- modprobe viafb viafb_active_dev=CRT+DVI viafb_SAMM_ON=1...
- If DVI is primary and CRT is secondary, we should use:
- modprobe viafb viafb_active_dev=DVI+CRT viafb_SAMM_ON=1...
-
- viafb_display_hardware_layout:
- This option is used to specify display hardware layout for CX700 chip.
- 1 : LCD only
- 2 : DVI only
- 3 : LCD+DVI (default)
- 4 : LCD1+LCD2 (internal + internal)
- 16: LCD1+ExternalLCD2 (internal + external)
-
- viafb_second_size:
- This option is used to set second device memory size(MB) in SAMM case.
- The minimal size is 16.
-
- viafb_platform_epia_dvi:
- This option is used to enable DVI on EPIA - M
- 0 : No DVI on EPIA - M (default)
- 1 : DVI on EPIA - M
-
- viafb_bus_width:
- When using 24 - Bit Bus Width Digital Interface,
- this option should be set.
- 12: 12-Bit LVDS or 12-Bit TMDS (default)
- 24: 24-Bit LVDS or 24-Bit TMDS
-
- viafb_device_lcd_dualedge:
- When using Dual Edge Panel, this option should be set.
- 0 : No Dual Edge Panel (default)
- 1 : Dual Edge Panel
-
- viafb_lcd_port:
- This option is used to specify LCD output port,
- available values are "DVP0" "DVP1" "DFP_HIGHLOW" "DFP_HIGH" "DFP_LOW".
- for external LCD + external DVI on CX700(External LCD is on DVP0),
- we should use:
- modprobe viafb viafb_lcd_port=DVP0...
-
-Notes:
- 1. CRT may not display properly for DuoView CRT & DVI display at
- the "640x480" PAL mode with DVI overscan enabled.
- 2. SAMM stands for single adapter multi monitors. It is different from
- multi-head since SAMM support multi monitor at driver layers, thus fbcon
- layer doesn't even know about it; SAMM's second screen doesn't have a
- device node file, thus a user mode application can't access it directly.
- When SAMM is enabled, viafb_mode and viafb_mode1, viafb_bpp and
- viafb_bpp1, viafb_refresh and viafb_refresh1 can be different.
- 3. When console is depending on viafbinfo1, dynamically change resolution
- and bpp, need to call VIAFB specified ioctl interface VIAFB_SET_DEVICE
- instead of calling common ioctl function FBIOPUT_VSCREENINFO since
- viafb doesn't support multi-head well, or it will cause screen crush.
-
-
-[Configure viafb with "fbset" tool]
------------------------------------
- "fbset" is an inbox utility of Linux.
- 1. Inquire current viafb information, type,
- # fbset -i
-
- 2. Set various resolutions and viafb_refresh rates,
- # fbset <resolution-vertical_sync>
-
- example,
- # fbset "1024x768-75"
- or
- # fbset -g 1024 768 1024 768 32
- Check the file "/etc/fb.modes" to find display modes available.
-
- 3. Set the color depth,
- # fbset -depth <value>
-
- example,
- # fbset -depth 16
-
-
-[Configure viafb via /proc]
----------------------------
- The following files exist in /proc/viafb
-
- supported_output_devices
-
- This read-only file contains a full ',' separated list containing all
- output devices that could be available on your platform. It is likely
- that not all of those have a connector on your hardware but it should
- provide a good starting point to figure out which of those names match
- a real connector.
- Example:
- # cat /proc/viafb/supported_output_devices
-
- iga1/output_devices
- iga2/output_devices
-
- These two files are readable and writable. iga1 and iga2 are the two
- independent units that produce the screen image. Those images can be
- forwarded to one or more output devices. Reading those files is a way
- to query which output devices are currently used by an iga.
- Example:
- # cat /proc/viafb/iga1/output_devices
- If there are no output devices printed the output of this iga is lost.
- This can happen for example if only one (the other) iga is used.
- Writing to these files allows adjusting the output devices during
- runtime. One can add new devices, remove existing ones or switch
- between igas. Essentially you can write a ',' separated list of device
- names (or a single one) in the same format as the output to those
- files. You can add a '+' or '-' as a prefix allowing simple addition
- and removal of devices. So a prefix '+' adds the devices from your list
- to the already existing ones, '-' removes the listed devices from the
- existing ones and if no prefix is given it replaces all existing ones
- with the listed ones. If you remove devices they are expected to turn
- off. If you add devices that are already part of the other iga they are
- removed there and added to the new one.
- Examples:
- Add CRT as output device to iga1
- # echo +CRT > /proc/viafb/iga1/output_devices
-
- Remove (turn off) DVP1 and LVDS1 as output devices of iga2
- # echo -DVP1,LVDS1 > /proc/viafb/iga2/output_devices
-
- Replace all iga1 output devices by CRT
- # echo CRT > /proc/viafb/iga1/output_devices
-
-
-[Bootup with viafb]:
---------------------
- Add the following line to your grub.conf:
- append = "video=viafb:viafb_mode=1024x768,viafb_bpp=32,viafb_refresh=85"
-
diff --git a/Documentation/fb/vt8623fb.txt b/Documentation/fb/vt8623fb.rst
index f654576c56b7..ba1730937dd8 100644
--- a/Documentation/fb/vt8623fb.txt
+++ b/Documentation/fb/vt8623fb.rst
@@ -1,13 +1,13 @@
-
- vt8623fb - fbdev driver for graphics core in VIA VT8623 chipset
- ===============================================================
+===============================================================
+vt8623fb - fbdev driver for graphics core in VIA VT8623 chipset
+===============================================================
Supported Hardware
==================
- VIA VT8623 [CLE266] chipset and its graphics core
- (known as CastleRock or Unichrome)
+VIA VT8623 [CLE266] chipset and its graphics core
+(known as CastleRock or Unichrome)
I tested vt8623fb on VIA EPIA ML-6000
diff --git a/Documentation/features/core/jump-labels/arch-support.txt b/Documentation/features/core/jump-labels/arch-support.txt
index 7fc2e243dee9..cae7be2f7725 100644
--- a/Documentation/features/core/jump-labels/arch-support.txt
+++ b/Documentation/features/core/jump-labels/arch-support.txt
@@ -21,7 +21,7 @@
| nds32: | TODO |
| nios2: | TODO |
| openrisc: | TODO |
- | parisc: | TODO |
+ | parisc: | ok |
| powerpc: | ok |
| riscv: | TODO |
| s390: | ok |
diff --git a/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt b/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt
index 68f266944d5f..4fae0464ddff 100644
--- a/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt
+++ b/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt
@@ -21,7 +21,7 @@
| nds32: | TODO |
| nios2: | TODO |
| openrisc: | TODO |
- | parisc: | TODO |
+ | parisc: | ok |
| powerpc: | ok |
| riscv: | TODO |
| s390: | TODO |
diff --git a/Documentation/features/debug/stackprotector/arch-support.txt b/Documentation/features/debug/stackprotector/arch-support.txt
index 9999ea521f3e..32bbdfc64c32 100644
--- a/Documentation/features/debug/stackprotector/arch-support.txt
+++ b/Documentation/features/debug/stackprotector/arch-support.txt
@@ -22,7 +22,7 @@
| nios2: | TODO |
| openrisc: | TODO |
| parisc: | TODO |
- | powerpc: | TODO |
+ | powerpc: | ok |
| riscv: | TODO |
| s390: | TODO |
| sh: | ok |
diff --git a/Documentation/features/locking/queued-rwlocks/arch-support.txt b/Documentation/features/locking/queued-rwlocks/arch-support.txt
index c683da198f31..ee922746a64c 100644
--- a/Documentation/features/locking/queued-rwlocks/arch-support.txt
+++ b/Documentation/features/locking/queued-rwlocks/arch-support.txt
@@ -30,5 +30,5 @@
| um: | TODO |
| unicore32: | TODO |
| x86: | ok |
- | xtensa: | TODO |
+ | xtensa: | ok |
-----------------------
diff --git a/Documentation/features/locking/queued-spinlocks/arch-support.txt b/Documentation/features/locking/queued-spinlocks/arch-support.txt
index e3080b82aefd..c52116c1a049 100644
--- a/Documentation/features/locking/queued-spinlocks/arch-support.txt
+++ b/Documentation/features/locking/queued-spinlocks/arch-support.txt
@@ -9,7 +9,7 @@
| alpha: | TODO |
| arc: | TODO |
| arm: | TODO |
- | arm64: | TODO |
+ | arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
| h8300: | TODO |
@@ -30,5 +30,5 @@
| um: | TODO |
| unicore32: | TODO |
| x86: | ok |
- | xtensa: | TODO |
+ | xtensa: | ok |
-----------------------
diff --git a/Documentation/features/locking/rwsem-optimized/arch-support.txt b/Documentation/features/locking/rwsem-optimized/arch-support.txt
deleted file mode 100644
index 7521d7500fbe..000000000000
--- a/Documentation/features/locking/rwsem-optimized/arch-support.txt
+++ /dev/null
@@ -1,34 +0,0 @@
-#
-# Feature name: rwsem-optimized
-# Kconfig: !RWSEM_GENERIC_SPINLOCK
-# description: arch provides optimized rwsem APIs
-#
- -----------------------
- | arch |status|
- -----------------------
- | alpha: | ok |
- | arc: | TODO |
- | arm: | ok |
- | arm64: | ok |
- | c6x: | TODO |
- | csky: | TODO |
- | h8300: | TODO |
- | hexagon: | TODO |
- | ia64: | ok |
- | m68k: | TODO |
- | microblaze: | TODO |
- | mips: | TODO |
- | nds32: | TODO |
- | nios2: | TODO |
- | openrisc: | TODO |
- | parisc: | TODO |
- | powerpc: | TODO |
- | riscv: | TODO |
- | s390: | ok |
- | sh: | ok |
- | sparc: | ok |
- | um: | ok |
- | unicore32: | TODO |
- | x86: | ok |
- | xtensa: | ok |
- -----------------------
diff --git a/Documentation/filesystems/api-summary.rst b/Documentation/filesystems/api-summary.rst
index aa51ffcfa029..bbb0c1c0e5cf 100644
--- a/Documentation/filesystems/api-summary.rst
+++ b/Documentation/filesystems/api-summary.rst
@@ -89,9 +89,6 @@ Other Functions
.. kernel-doc:: fs/direct-io.c
:export:
-.. kernel-doc:: fs/file_table.c
- :export:
-
.. kernel-doc:: fs/libfs.c
:export:
diff --git a/Documentation/filesystems/ceph.txt b/Documentation/filesystems/ceph.txt
index d2c6a5ccf0f5..b19b6a03f91c 100644
--- a/Documentation/filesystems/ceph.txt
+++ b/Documentation/filesystems/ceph.txt
@@ -158,6 +158,20 @@ Mount Options
copies. Currently, it's only used in copy_file_range, which will revert
to the default VFS implementation if this option is used.
+ recover_session=<no|clean>
+ Set auto reconnect mode in the case where the client is blacklisted. The
+ available modes are "no" and "clean". The default is "no".
+
+ * no: never attempt to reconnect when client detects that it has been
+ blacklisted. Operations will generally fail after being blacklisted.
+
+ * clean: client reconnects to the ceph cluster automatically when it
+ detects that it has been blacklisted. During reconnect, client drops
+ dirty data/metadata, invalidates page caches and writable file handles.
+ After reconnect, file locks become stale because the MDS loses track
+ of them. If an inode contains any stale file locks, read/write on the
+ inode is not allowed until applications release all stale file locks.
+
More Information
================
diff --git a/Documentation/filesystems/cifs/cifsroot.txt b/Documentation/filesystems/cifs/cifsroot.txt
new file mode 100644
index 000000000000..0fa1a2c36a40
--- /dev/null
+++ b/Documentation/filesystems/cifs/cifsroot.txt
@@ -0,0 +1,97 @@
+Mounting root file system via SMB (cifs.ko)
+===========================================
+
+Written 2019 by Paulo Alcantara <palcantara@suse.de>
+Written 2019 by Aurelien Aptel <aaptel@suse.com>
+
+The CONFIG_CIFS_ROOT option enables experimental root file system
+support over the SMB protocol via cifs.ko.
+
+It introduces a new kernel command-line option called 'cifsroot='
+which will tell the kernel to mount the root file system over the
+network by utilizing SMB or CIFS protocol.
+
+In order to mount, the network stack will also need to be set up by
+using 'ip=' config option. For more details, see
+Documentation/filesystems/nfs/nfsroot.txt.
+
+A CIFS root mount currently requires the use of SMB1+UNIX Extensions
+which is only supported by the Samba server. SMB1 is the older
+deprecated version of the protocol but it has been extended to support
+POSIX features (See [1]). The equivalent extensions for the newer
+recommended version of the protocol (SMB3) have not been fully
+implemented yet which means SMB3 doesn't support some required POSIX
+file system objects (e.g. block devices, pipes, sockets).
+
+As a result, a CIFS root will default to SMB1 for now but the version
+to use can nonetheless be changed via the 'vers=' mount option. This
+default will change once the SMB3 POSIX extensions are fully
+implemented.
+
+Server configuration
+====================
+
+To enable SMB1+UNIX extensions you will need to set these global
+settings in Samba smb.conf:
+
+ [global]
+ server min protocol = NT1
+ unix extension = yes # default
+
+Kernel command line
+===================
+
+root=/dev/cifs
+
+This is just a virtual device that basically tells the kernel to mount
+the root file system via SMB protocol.
+
+cifsroot=//<server-ip>/<share>[,options]
+
+Enables the kernel to mount the root file system via SMB that are
+located in the <server-ip> and <share> specified in this option.
+
+The default mount options are set in fs/cifs/cifsroot.c.
+
+server-ip
+ IPv4 address of the server.
+
+share
+ Path to SMB share (rootfs).
+
+options
+ Optional mount options. For more information, see mount.cifs(8).
+
+Examples
+========
+
+Export root file system as a Samba share in smb.conf file.
+
+...
+[linux]
+ path = /path/to/rootfs
+ read only = no
+ guest ok = yes
+ force user = root
+ force group = root
+ browseable = yes
+ writeable = yes
+ admin users = root
+ public = yes
+ create mask = 0777
+ directory mask = 0777
+...
+
+Restart smb service.
+
+# systemctl restart smb
+
+Test it under QEMU on a kernel built with CONFIG_CIFS_ROOT and
+CONFIG_IP_PNP options enabled.
+
+# qemu-system-x86_64 -enable-kvm -cpu host -m 1024 \
+ -kernel /path/to/linux/arch/x86/boot/bzImage -nographic \
+ -append "root=/dev/cifs rw ip=dhcp cifsroot=//10.0.2.2/linux,username=foo,password=bar console=ttyS0 3"
+
+
+1: https://wiki.samba.org/index.php/UNIX_Extensions
diff --git a/Documentation/filesystems/coda.txt b/Documentation/filesystems/coda.txt
index 61311356025d..1711ad48e38a 100644
--- a/Documentation/filesystems/coda.txt
+++ b/Documentation/filesystems/coda.txt
@@ -421,14 +421,14 @@ kernel support.
The CodaCred structure defines a variety of user and group ids as
- they are set for the calling process. The vuid_t and guid_t are 32 bit
+ they are set for the calling process. The vuid_t and vgid_t are 32 bit
unsigned integers. It also defines group membership in an array. On
Unix the CodaCred has proven sufficient to implement good security
semantics for Coda but the structure may have to undergo modification
for the Windows environment when these mature.
struct CodaCred {
- vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, effective, set, fs uid*/
+ vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, effective, set, fs uid */
vgid_t cr_gid, cr_egid, cr_sgid, cr_fsgid; /* same for groups */
vgid_t cr_groups[NGROUPS]; /* Group membership for caller */
};
@@ -481,7 +481,10 @@ kernel support.
-
+ struct coda_timespec {
+ int64_t tv_sec; /* seconds */
+ long tv_nsec; /* nanoseconds */
+ };
struct coda_vattr {
enum coda_vtype va_type; /* vnode type (for create) */
@@ -493,9 +496,9 @@ kernel support.
long va_fileid; /* file id */
u_quad_t va_size; /* file size in bytes */
long va_blocksize; /* blocksize preferred for i/o */
- struct timespec va_atime; /* time of last access */
- struct timespec va_mtime; /* time of last modification */
- struct timespec va_ctime; /* time file changed */
+ struct coda_timespec va_atime; /* time of last access */
+ struct coda_timespec va_mtime; /* time of last modification */
+ struct coda_timespec va_ctime; /* time file changed */
u_long va_gen; /* generation number of file */
u_long va_flags; /* flags defined for file */
dev_t va_rdev; /* device special file represents */
diff --git a/Documentation/filesystems/conf.py b/Documentation/filesystems/conf.py
deleted file mode 100644
index ea44172af5c4..000000000000
--- a/Documentation/filesystems/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Linux Filesystems API"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'filesystems.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/filesystems/dax.txt b/Documentation/filesystems/dax.txt
index 6d2c0d340dea..679729442fd2 100644
--- a/Documentation/filesystems/dax.txt
+++ b/Documentation/filesystems/dax.txt
@@ -76,7 +76,7 @@ exposure of uninitialized data through mmap.
These filesystems may be used for inspiration:
- ext2: see Documentation/filesystems/ext2.txt
- ext4: see Documentation/filesystems/ext4/
-- xfs: see Documentation/filesystems/xfs.txt
+- xfs: see Documentation/admin-guide/xfs.rst
Handling Media Errors
diff --git a/Documentation/filesystems/debugfs.txt b/Documentation/filesystems/debugfs.txt
index 4a0a9c3f4af6..9e27c843d00e 100644
--- a/Documentation/filesystems/debugfs.txt
+++ b/Documentation/filesystems/debugfs.txt
@@ -169,7 +169,7 @@ byte offsets over a base for the register block.
If you want to dump an u32 array in debugfs, you can create file with:
- struct dentry *debugfs_create_u32_array(const char *name, umode_t mode,
+ void debugfs_create_u32_array(const char *name, umode_t mode,
struct dentry *parent,
u32 *array, u32 elements);
diff --git a/Documentation/filesystems/directory-locking b/Documentation/filesystems/directory-locking.rst
index 4e32cb961e5b..de12016ee419 100644
--- a/Documentation/filesystems/directory-locking
+++ b/Documentation/filesystems/directory-locking.rst
@@ -1,12 +1,17 @@
- Locking scheme used for directory operations is based on two
+=================
+Directory Locking
+=================
+
+
+Locking scheme used for directory operations is based on two
kinds of locks - per-inode (->i_rwsem) and per-filesystem
(->s_vfs_rename_mutex).
- When taking the i_rwsem on multiple non-directory objects, we
+When taking the i_rwsem on multiple non-directory objects, we
always acquire the locks in order by increasing address. We'll call
that "inode pointer" order in the following.
- For our purposes all operations fall in 5 classes:
+For our purposes all operations fall in 5 classes:
1) read access. Locking rules: caller locks directory we are accessing.
The lock is taken shared.
@@ -27,25 +32,29 @@ NB: we might get away with locking the the source (and target in exchange
case) shared.
5) link creation. Locking rules:
+
* lock parent
* check that source is not a directory
* lock source
* call the method.
+
All locks are exclusive.
6) cross-directory rename. The trickiest in the whole bunch. Locking
rules:
+
* lock the filesystem
* lock parents in "ancestors first" order.
* find source and target.
* if old parent is equal to or is a descendent of target
- fail with -ENOTEMPTY
+ fail with -ENOTEMPTY
* if new parent is equal to or is a descendent of source
- fail with -ELOOP
+ fail with -ELOOP
* If it's an exchange, lock both the source and the target.
* If the target exists, lock it. If the source is a non-directory,
lock it. If we need to lock both, do so in inode pointer order.
* call the method.
+
All ->i_rwsem are taken exclusive. Again, we might get away with locking
the the source (and target in exchange case) shared.
@@ -54,10 +63,11 @@ read, modified or removed by method will be locked by caller.
If no directory is its own ancestor, the scheme above is deadlock-free.
+
Proof:
First of all, at any moment we have a partial ordering of the
-objects - A < B iff A is an ancestor of B.
+ objects - A < B iff A is an ancestor of B.
That ordering can change. However, the following is true:
@@ -77,32 +87,32 @@ objects - A < B iff A is an ancestor of B.
non-directory object, except renames, which take locks on source and
target in inode pointer order in the case they are not directories.)
- Now consider the minimal deadlock. Each process is blocked on
+Now consider the minimal deadlock. Each process is blocked on
attempt to acquire some lock and already holds at least one lock. Let's
consider the set of contended locks. First of all, filesystem lock is
not contended, since any process blocked on it is not holding any locks.
Thus all processes are blocked on ->i_rwsem.
- By (3), any process holding a non-directory lock can only be
+By (3), any process holding a non-directory lock can only be
waiting on another non-directory lock with a larger address. Therefore
the process holding the "largest" such lock can always make progress, and
non-directory objects are not included in the set of contended locks.
- Thus link creation can't be a part of deadlock - it can't be
+Thus link creation can't be a part of deadlock - it can't be
blocked on source and it means that it doesn't hold any locks.
- Any contended object is either held by cross-directory rename or
+Any contended object is either held by cross-directory rename or
has a child that is also contended. Indeed, suppose that it is held by
operation other than cross-directory rename. Then the lock this operation
is blocked on belongs to child of that object due to (1).
- It means that one of the operations is cross-directory rename.
+It means that one of the operations is cross-directory rename.
Otherwise the set of contended objects would be infinite - each of them
would have a contended child and we had assumed that no object is its
own descendent. Moreover, there is exactly one cross-directory rename
(see above).
- Consider the object blocking the cross-directory rename. One
+Consider the object blocking the cross-directory rename. One
of its descendents is locked by cross-directory rename (otherwise we
would again have an infinite set of contended objects). But that
means that cross-directory rename is taking locks out of order. Due
@@ -112,7 +122,7 @@ try to acquire lock on descendent before the lock on ancestor.
Contradiction. I.e. deadlock is impossible. Q.E.D.
- These operations are guaranteed to avoid loop creation. Indeed,
+These operations are guaranteed to avoid loop creation. Indeed,
the only operation that could introduce loops is cross-directory rename.
Since the only new (parent, child) pair added by rename() is (new parent,
source), such loop would have to contain these objects and the rest of it
@@ -123,13 +133,13 @@ new parent had been equal to or a descendent of source since the moment when
we had acquired filesystem lock and rename() would fail with -ELOOP in that
case.
- While this locking scheme works for arbitrary DAGs, it relies on
+While this locking scheme works for arbitrary DAGs, it relies on
ability to check that directory is a descendent of another object. Current
implementation assumes that directory graph is a tree. This assumption is
also preserved by all operations (cross-directory rename on a tree that would
not introduce a cycle will leave it a tree and link() fails for directories).
- Notice that "directory" in the above == "anything that might have
+Notice that "directory" in the above == "anything that might have
children", so if we are going to introduce hybrid objects we will need
either to make sure that link(2) doesn't work for them or to make changes
in is_subdir() that would make it work even in presence of such beasts.
diff --git a/Documentation/filesystems/erofs.txt b/Documentation/filesystems/erofs.txt
new file mode 100644
index 000000000000..b0c085326e2e
--- /dev/null
+++ b/Documentation/filesystems/erofs.txt
@@ -0,0 +1,210 @@
+Overview
+========
+
+EROFS file-system stands for Enhanced Read-Only File System. Different
+from other read-only file systems, it aims to be designed for flexibility,
+scalability, but be kept simple and high performance.
+
+It is designed as a better filesystem solution for the following scenarios:
+ - read-only storage media or
+
+ - part of a fully trusted read-only solution, which means it needs to be
+ immutable and bit-for-bit identical to the official golden image for
+ their releases due to security and other considerations and
+
+ - hope to save some extra storage space with guaranteed end-to-end performance
+ by using reduced metadata and transparent file compression, especially
+ for those embedded devices with limited memory (ex, smartphone);
+
+Here is the main features of EROFS:
+ - Little endian on-disk design;
+
+ - Currently 4KB block size (nobh) and therefore maximum 16TB address space;
+
+ - Metadata & data could be mixed by design;
+
+ - 2 inode versions for different requirements:
+ v1 v2
+ Inode metadata size: 32 bytes 64 bytes
+ Max file size: 4 GB 16 EB (also limited by max. vol size)
+ Max uids/gids: 65536 4294967296
+ File creation time: no yes (64 + 32-bit timestamp)
+ Max hardlinks: 65536 4294967296
+ Metadata reserved: 4 bytes 14 bytes
+
+ - Support extended attributes (xattrs) as an option;
+
+ - Support xattr inline and tail-end data inline for all files;
+
+ - Support POSIX.1e ACLs by using xattrs;
+
+ - Support transparent file compression as an option:
+ LZ4 algorithm with 4 KB fixed-output compression for high performance;
+
+The following git tree provides the file system user-space tools under
+development (ex, formatting tool mkfs.erofs):
+>> git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git
+
+Bugs and patches are welcome, please kindly help us and send to the following
+linux-erofs mailing list:
+>> linux-erofs mailing list <linux-erofs@lists.ozlabs.org>
+
+Mount options
+=============
+
+(no)user_xattr Setup Extended User Attributes. Note: xattr is enabled
+ by default if CONFIG_EROFS_FS_XATTR is selected.
+(no)acl Setup POSIX Access Control List. Note: acl is enabled
+ by default if CONFIG_EROFS_FS_POSIX_ACL is selected.
+cache_strategy=%s Select a strategy for cached decompression from now on:
+ disabled: In-place I/O decompression only;
+ readahead: Cache the last incomplete compressed physical
+ cluster for further reading. It still does
+ in-place I/O decompression for the rest
+ compressed physical clusters;
+ readaround: Cache the both ends of incomplete compressed
+ physical clusters for further reading.
+ It still does in-place I/O decompression
+ for the rest compressed physical clusters.
+
+On-disk details
+===============
+
+Summary
+-------
+Different from other read-only file systems, an EROFS volume is designed
+to be as simple as possible:
+
+ |-> aligned with the block size
+ ____________________________________________________________
+ | |SB| | ... | Metadata | ... | Data | Metadata | ... | Data |
+ |_|__|_|_____|__________|_____|______|__________|_____|______|
+ 0 +1K
+
+All data areas should be aligned with the block size, but metadata areas
+may not. All metadatas can be now observed in two different spaces (views):
+ 1. Inode metadata space
+ Each valid inode should be aligned with an inode slot, which is a fixed
+ value (32 bytes) and designed to be kept in line with v1 inode size.
+
+ Each inode can be directly found with the following formula:
+ inode offset = meta_blkaddr * block_size + 32 * nid
+
+ |-> aligned with 8B
+ |-> followed closely
+ + meta_blkaddr blocks |-> another slot
+ _____________________________________________________________________
+ | ... | inode | xattrs | extents | data inline | ... | inode ...
+ |________|_______|(optional)|(optional)|__(optional)_|_____|__________
+ |-> aligned with the inode slot size
+ . .
+ . .
+ . .
+ . .
+ . .
+ . .
+ .____________________________________________________|-> aligned with 4B
+ | xattr_ibody_header | shared xattrs | inline xattrs |
+ |____________________|_______________|_______________|
+ |-> 12 bytes <-|->x * 4 bytes<-| .
+ . . .
+ . . .
+ . . .
+ ._______________________________.______________________.
+ | id | id | id | id | ... | id | ent | ... | ent| ... |
+ |____|____|____|____|______|____|_____|_____|____|_____|
+ |-> aligned with 4B
+ |-> aligned with 4B
+
+ Inode could be 32 or 64 bytes, which can be distinguished from a common
+ field which all inode versions have -- i_advise:
+
+ __________________ __________________
+ | i_advise | | i_advise |
+ |__________________| |__________________|
+ | ... | | ... |
+ | | | |
+ |__________________| 32 bytes | |
+ | |
+ |__________________| 64 bytes
+
+ Xattrs, extents, data inline are followed by the corresponding inode with
+ proper alignes, and they could be optional for different data mappings,
+ _currently_ there are totally 3 valid data mappings supported:
+
+ 1) flat file data without data inline (no extent);
+ 2) fixed-output size data compression (must have extents);
+ 3) flat file data with tail-end data inline (no extent);
+
+ The size of the optional xattrs is indicated by i_xattr_count in inode
+ header. Large xattrs or xattrs shared by many different files can be
+ stored in shared xattrs metadata rather than inlined right after inode.
+
+ 2. Shared xattrs metadata space
+ Shared xattrs space is similar to the above inode space, started with
+ a specific block indicated by xattr_blkaddr, organized one by one with
+ proper align.
+
+ Each share xattr can also be directly found by the following formula:
+ xattr offset = xattr_blkaddr * block_size + 4 * xattr_id
+
+ |-> aligned by 4 bytes
+ + xattr_blkaddr blocks |-> aligned with 4 bytes
+ _________________________________________________________________________
+ | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ...
+ |________|_____________|_____________|_____|______________|_______________
+
+Directories
+-----------
+All directories are now organized in a compact on-disk format. Note that
+each directory block is divided into index and name areas in order to support
+random file lookup, and all directory entries are _strictly_ recorded in
+alphabetical order in order to support improved prefix binary search
+algorithm (could refer to the related source code).
+
+ ___________________________
+ / |
+ / ______________|________________
+ / / | nameoff1 | nameoffN-1
+ ____________.______________._______________v________________v__________
+| dirent | dirent | ... | dirent | filename | filename | ... | filename |
+|___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____|
+ \ ^
+ \ | * could have
+ \ | trailing '\0'
+ \________________________| nameoff0
+
+ Directory block
+
+Note that apart from the offset of the first filename, nameoff0 also indicates
+the total number of directory entries in this block since it is no need to
+introduce another on-disk field at all.
+
+Compression
+-----------
+Currently, EROFS supports 4KB fixed-output clustersize transparent file
+compression, as illustrated below:
+
+ |---- Variant-Length Extent ----|-------- VLE --------|----- VLE -----
+ clusterofs clusterofs clusterofs
+ | | | logical data
+_________v_______________________________v_____________________v_______________
+... | . | | . | | . | ...
+____|____.________|_____________|________.____|_____________|__.__________|____
+ |-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size size size
+ . . . .
+ . . . .
+ . . . .
+ _______._____________._____________._____________._____________________
+ ... | | | | ... physical data
+ _______|_____________|_____________|_____________|_____________________
+ |-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size
+
+Currently each on-disk physical cluster can contain 4KB (un)compressed data
+at most. For each logical cluster, there is a corresponding on-disk index to
+describe its cluster type, physical cluster address, etc.
+
+See "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details.
+
diff --git a/Documentation/filesystems/ext2.txt b/Documentation/filesystems/ext2.txt
index a19973a4dd1e..94c2cf0292f5 100644
--- a/Documentation/filesystems/ext2.txt
+++ b/Documentation/filesystems/ext2.txt
@@ -57,7 +57,13 @@ noacl Don't support POSIX ACLs.
nobh Do not attach buffer_heads to file pagecache.
-grpquota,noquota,quota,usrquota Quota options are silently ignored by ext2.
+quota, usrquota Enable user disk quota support
+ (requires CONFIG_QUOTA).
+
+grpquota Enable group disk quota support
+ (requires CONFIG_QUOTA).
+
+noquota option ls silently ignored by ext2.
Specification
diff --git a/Documentation/filesystems/ext4/bigalloc.rst b/Documentation/filesystems/ext4/bigalloc.rst
index c6d88557553c..72075aa608e4 100644
--- a/Documentation/filesystems/ext4/bigalloc.rst
+++ b/Documentation/filesystems/ext4/bigalloc.rst
@@ -9,14 +9,26 @@ ext4 code is not prepared to handle the case where the block size
exceeds the page size. However, for a filesystem of mostly huge files,
it is desirable to be able to allocate disk blocks in units of multiple
blocks to reduce both fragmentation and metadata overhead. The
-`bigalloc <Bigalloc>`__ feature provides exactly this ability. The
-administrator can set a block cluster size at mkfs time (which is stored
-in the s\_log\_cluster\_size field in the superblock); from then on, the
-block bitmaps track clusters, not individual blocks. This means that
-block groups can be several gigabytes in size (instead of just 128MiB);
-however, the minimum allocation unit becomes a cluster, not a block,
-even for directories. TaoBao had a patchset to extend the “use units of
-clusters instead of blocks” to the extent tree, though it is not clear
-where those patches went-- they eventually morphed into “extent tree v2”
-but that code has not landed as of May 2015.
+bigalloc feature provides exactly this ability.
+
+The bigalloc feature (EXT4_FEATURE_RO_COMPAT_BIGALLOC) changes ext4 to
+use clustered allocation, so that each bit in the ext4 block allocation
+bitmap addresses a power of two number of blocks. For example, if the
+file system is mainly going to be storing large files in the 4-32
+megabyte range, it might make sense to set a cluster size of 1 megabyte.
+This means that each bit in the block allocation bitmap now addresses
+256 4k blocks. This shrinks the total size of the block allocation
+bitmaps for a 2T file system from 64 megabytes to 256 kilobytes. It also
+means that a block group addresses 32 gigabytes instead of 128 megabytes,
+also shrinking the amount of file system overhead for metadata.
+
+The administrator can set a block cluster size at mkfs time (which is
+stored in the s\_log\_cluster\_size field in the superblock); from then
+on, the block bitmaps track clusters, not individual blocks. This means
+that block groups can be several gigabytes in size (instead of just
+128MiB); however, the minimum allocation unit becomes a cluster, not a
+block, even for directories. TaoBao had a patchset to extend the “use
+units of clusters instead of blocks” to the extent tree, though it is
+not clear where those patches went-- they eventually morphed into
+“extent tree v2” but that code has not landed as of May 2015.
diff --git a/Documentation/filesystems/ext4/blockgroup.rst b/Documentation/filesystems/ext4/blockgroup.rst
index baf888e4c06a..3da156633339 100644
--- a/Documentation/filesystems/ext4/blockgroup.rst
+++ b/Documentation/filesystems/ext4/blockgroup.rst
@@ -71,11 +71,11 @@ if the flex\_bg size is 4, then group 0 will contain (in order) the
superblock, group descriptors, data block bitmaps for groups 0-3, inode
bitmaps for groups 0-3, inode tables for groups 0-3, and the remaining
space in group 0 is for file data. The effect of this is to group the
-block metadata close together for faster loading, and to enable large
-files to be continuous on disk. Backup copies of the superblock and
-group descriptors are always at the beginning of block groups, even if
-flex\_bg is enabled. The number of block groups that make up a flex\_bg
-is given by 2 ^ ``sb.s_log_groups_per_flex``.
+block group metadata close together for faster loading, and to enable
+large files to be continuous on disk. Backup copies of the superblock
+and group descriptors are always at the beginning of block groups, even
+if flex\_bg is enabled. The number of block groups that make up a
+flex\_bg is given by 2 ^ ``sb.s_log_groups_per_flex``.
Meta Block Groups
-----------------
diff --git a/Documentation/filesystems/ext4/blocks.rst b/Documentation/filesystems/ext4/blocks.rst
index 73d4dc0f7bda..bd722ecd92d6 100644
--- a/Documentation/filesystems/ext4/blocks.rst
+++ b/Documentation/filesystems/ext4/blocks.rst
@@ -10,7 +10,9 @@ block groups. Block size is specified at mkfs time and typically is
4KiB. You may experience mounting problems if block size is greater than
page size (i.e. 64KiB blocks on a i386 which only has 4KiB memory
pages). By default a filesystem can contain 2^32 blocks; if the '64bit'
-feature is enabled, then a filesystem can have 2^64 blocks.
+feature is enabled, then a filesystem can have 2^64 blocks. The location
+of structures is stored in terms of the block number the structure lives
+in and not the absolute offset on disk.
For 32-bit filesystems, limits are as follows:
diff --git a/Documentation/filesystems/ext4/directory.rst b/Documentation/filesystems/ext4/directory.rst
index 614034e24669..073940cc64ed 100644
--- a/Documentation/filesystems/ext4/directory.rst
+++ b/Documentation/filesystems/ext4/directory.rst
@@ -59,7 +59,7 @@ is at most 263 bytes long, though on disk you'll need to reference
- File name.
Since file names cannot be longer than 255 bytes, the new directory
-entry format shortens the rec\_len field and uses the space for a file
+entry format shortens the name\_len field and uses the space for a file
type flag, probably to avoid having to load every inode during directory
tree traversal. This format is ``ext4_dir_entry_2``, which is at most
263 bytes long, though on disk you'll need to reference
diff --git a/Documentation/filesystems/ext4/group_descr.rst b/Documentation/filesystems/ext4/group_descr.rst
index 0f783ed88592..7ba6114e7f5c 100644
--- a/Documentation/filesystems/ext4/group_descr.rst
+++ b/Documentation/filesystems/ext4/group_descr.rst
@@ -99,9 +99,12 @@ The block group descriptor is laid out in ``struct ext4_group_desc``.
* - 0x1E
- \_\_le16
- bg\_checksum
- - Group descriptor checksum; crc16(sb\_uuid+group+desc) if the
- RO\_COMPAT\_GDT\_CSUM feature is set, or crc32c(sb\_uuid+group\_desc) &
- 0xFFFF if the RO\_COMPAT\_METADATA\_CSUM feature is set.
+ - Group descriptor checksum; crc16(sb\_uuid+group\_num+bg\_desc) if the
+ RO\_COMPAT\_GDT\_CSUM feature is set, or
+ crc32c(sb\_uuid+group\_num+bg\_desc) & 0xFFFF if the
+ RO\_COMPAT\_METADATA\_CSUM feature is set. The bg\_checksum
+ field in bg\_desc is skipped when calculating crc16 checksum,
+ and set to zero if crc32c checksum is used.
* -
-
-
diff --git a/Documentation/filesystems/ext4/index.rst b/Documentation/filesystems/ext4/index.rst
index 3be3e54d480d..705d813d558f 100644
--- a/Documentation/filesystems/ext4/index.rst
+++ b/Documentation/filesystems/ext4/index.rst
@@ -8,7 +8,7 @@ ext4 Data Structures and Algorithms
:maxdepth: 6
:numbered:
- about.rst
- overview.rst
- globals.rst
- dynamic.rst
+ about
+ overview
+ globals
+ dynamic
diff --git a/Documentation/filesystems/ext4/inodes.rst b/Documentation/filesystems/ext4/inodes.rst
index 6bd35e506b6f..a65baffb4ebf 100644
--- a/Documentation/filesystems/ext4/inodes.rst
+++ b/Documentation/filesystems/ext4/inodes.rst
@@ -277,6 +277,8 @@ The ``i_flags`` field is a combination of these values:
- This is a huge file (EXT4\_HUGE\_FILE\_FL).
* - 0x80000
- Inode uses extents (EXT4\_EXTENTS\_FL).
+ * - 0x100000
+ - Verity protected file (EXT4\_VERITY\_FL).
* - 0x200000
- Inode stores a large extended attribute value in its data blocks
(EXT4\_EA\_INODE\_FL).
@@ -299,9 +301,9 @@ The ``i_flags`` field is a combination of these values:
- Reserved for ext4 library (EXT4\_RESERVED\_FL).
* -
- Aggregate flags:
- * - 0x4BDFFF
+ * - 0x705BDFFF
- User-visible flags.
- * - 0x4B80FF
+ * - 0x604BC0FF
- User-modifiable flags. Note that while EXT4\_JOURNAL\_DATA\_FL and
EXT4\_EXTENTS\_FL can be set with setattr, they are not in the kernel's
EXT4\_FL\_USER\_MODIFIABLE mask, since it needs to handle the setting of
@@ -470,8 +472,8 @@ inode, which allows struct ext4\_inode to grow for a new kernel without
having to upgrade all of the on-disk inodes. Access to fields beyond
EXT2\_GOOD\_OLD\_INODE\_SIZE should be verified to be within
``i_extra_isize``. By default, ext4 inode records are 256 bytes, and (as
-of October 2013) the inode structure is 156 bytes
-(``i_extra_isize = 28``). The extra space between the end of the inode
+of August 2019) the inode structure is 160 bytes
+(``i_extra_isize = 32``). The extra space between the end of the inode
structure and the end of the inode record can be used to store extended
attributes. Each inode record can be as large as the filesystem block
size, though this is not terribly efficient.
diff --git a/Documentation/filesystems/ext4/overview.rst b/Documentation/filesystems/ext4/overview.rst
index cbab18baba12..123ebfde47ee 100644
--- a/Documentation/filesystems/ext4/overview.rst
+++ b/Documentation/filesystems/ext4/overview.rst
@@ -24,3 +24,4 @@ order.
.. include:: bigalloc.rst
.. include:: inlinedata.rst
.. include:: eainode.rst
+.. include:: verity.rst
diff --git a/Documentation/filesystems/ext4/super.rst b/Documentation/filesystems/ext4/super.rst
index 04ff079a2acf..93e55d7c1d40 100644
--- a/Documentation/filesystems/ext4/super.rst
+++ b/Documentation/filesystems/ext4/super.rst
@@ -58,7 +58,7 @@ The ext4 superblock is laid out as follows in
* - 0x1C
- \_\_le32
- s\_log\_cluster\_size
- - Cluster size is (2 ^ s\_log\_cluster\_size) blocks if bigalloc is
+ - Cluster size is 2 ^ (10 + s\_log\_cluster\_size) blocks if bigalloc is
enabled. Otherwise s\_log\_cluster\_size must equal s\_log\_block\_size.
* - 0x20
- \_\_le32
@@ -447,7 +447,7 @@ The ext4 superblock is laid out as follows in
- Upper 8 bits of the s_wtime field.
* - 0x275
- \_\_u8
- - s\_wtime_hi
+ - s\_mtime_hi
- Upper 8 bits of the s_mtime field.
* - 0x276
- \_\_u8
@@ -466,12 +466,20 @@ The ext4 superblock is laid out as follows in
- s\_last_error_time_hi
- Upper 8 bits of the s_last_error_time_hi field.
* - 0x27A
- - \_\_u8[2]
- - s\_pad
+ - \_\_u8
+ - s\_pad[2]
- Zero padding.
* - 0x27C
+ - \_\_le16
+ - s\_encoding
+ - Filename charset encoding.
+ * - 0x27E
+ - \_\_le16
+ - s\_encoding_flags
+ - Filename charset encoding flags.
+ * - 0x280
- \_\_le32
- - s\_reserved[96]
+ - s\_reserved[95]
- Padding to the end of the block.
* - 0x3FC
- \_\_le32
@@ -617,7 +625,7 @@ following:
* - 0x80
- Enable a filesystem size of 2^64 blocks (INCOMPAT\_64BIT).
* - 0x100
- - Multiple mount protection. Not implemented (INCOMPAT\_MMP).
+ - Multiple mount protection (INCOMPAT\_MMP).
* - 0x200
- Flexible block groups. See the earlier discussion of this feature
(INCOMPAT\_FLEX\_BG).
@@ -696,6 +704,8 @@ the following:
(RO\_COMPAT\_READONLY)
* - 0x2000
- Filesystem tracks project quotas. (RO\_COMPAT\_PROJECT)
+ * - 0x8000
+ - Verity inodes may be present on the filesystem. (RO\_COMPAT\_VERITY)
.. _super_def_hash:
diff --git a/Documentation/filesystems/ext4/verity.rst b/Documentation/filesystems/ext4/verity.rst
new file mode 100644
index 000000000000..3e4c0ee0e068
--- /dev/null
+++ b/Documentation/filesystems/ext4/verity.rst
@@ -0,0 +1,41 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Verity files
+------------
+
+ext4 supports fs-verity, which is a filesystem feature that provides
+Merkle tree based hashing for individual readonly files. Most of
+fs-verity is common to all filesystems that support it; see
+:ref:`Documentation/filesystems/fsverity.rst <fsverity>` for the
+fs-verity documentation. However, the on-disk layout of the verity
+metadata is filesystem-specific. On ext4, the verity metadata is
+stored after the end of the file data itself, in the following format:
+
+- Zero-padding to the next 65536-byte boundary. This padding need not
+ actually be allocated on-disk, i.e. it may be a hole.
+
+- The Merkle tree, as documented in
+ :ref:`Documentation/filesystems/fsverity.rst
+ <fsverity_merkle_tree>`, with the tree levels stored in order from
+ root to leaf, and the tree blocks within each level stored in their
+ natural order.
+
+- Zero-padding to the next filesystem block boundary.
+
+- The verity descriptor, as documented in
+ :ref:`Documentation/filesystems/fsverity.rst <fsverity_descriptor>`,
+ with optionally appended signature blob.
+
+- Zero-padding to the next offset that is 4 bytes before a filesystem
+ block boundary.
+
+- The size of the verity descriptor in bytes, as a 4-byte little
+ endian integer.
+
+Verity inodes have EXT4_VERITY_FL set, and they must use extents, i.e.
+EXT4_EXTENTS_FL must be set and EXT4_INLINE_DATA_FL must be clear.
+They can have EXT4_ENCRYPT_FL set, in which case the verity metadata
+is encrypted as well as the data itself.
+
+Verity files cannot have blocks allocated past the end of the verity
+metadata.
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
index f7b5e4ff0de3..7e1991328473 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.txt
@@ -157,6 +157,11 @@ noinline_data Disable the inline data feature, inline data feature is
enabled by default.
data_flush Enable data flushing before checkpoint in order to
persist data of regular and symlink.
+reserve_root=%d Support configuring reserved space which is used for
+ allocation from a privileged user with specified uid or
+ gid, unit: 4KB, the default limit is 0.2% of user blocks.
+resuid=%d The user ID which may use the reserved blocks.
+resgid=%d The group ID which may use the reserved blocks.
fault_injection=%d Enable fault injection in all supported types with
specified injection rate.
fault_type=%d Support configuring fault injection type, should be
@@ -214,11 +219,22 @@ fsync_mode=%s Control the policy of fsync. Currently supports "posix",
non-atomic files likewise "nobarrier" mount option.
test_dummy_encryption Enable dummy encryption, which provides a fake fscrypt
context. The fake fscrypt context is used by xfstests.
-checkpoint=%s Set to "disable" to turn off checkpointing. Set to "enable"
+checkpoint=%s[:%u[%]] Set to "disable" to turn off checkpointing. Set to "enable"
to reenable checkpointing. Is enabled by default. While
disabled, any unmounting or unexpected shutdowns will cause
the filesystem contents to appear as they did when the
filesystem was mounted with that option.
+ While mounting with checkpoint=disabled, the filesystem must
+ run garbage collection to ensure that all available space can
+ be used. If this takes too much time, the mount may return
+ EAGAIN. You may optionally add a value to indicate how much
+ of the disk you would be willing to temporarily give up to
+ avoid additional garbage collection. This can be given as a
+ number of blocks, or as a percent. For instance, mounting
+ with checkpoint=disable:100% would always succeed, but it may
+ hide up to all remaining free space. The actual space that
+ would be unusable can be viewed at /sys/fs/f2fs/<disk>/unusable
+ This space is reclaimed once checkpoint=enable.
================================================================================
DEBUGFS ENTRIES
@@ -246,11 +262,14 @@ Files in /sys/fs/f2fs/<devname>
..............................................................................
File Content
- gc_max_sleep_time This tuning parameter controls the maximum sleep
+ gc_urgent_sleep_time This parameter controls sleep time for gc_urgent.
+ 500 ms is set by default. See above gc_urgent.
+
+ gc_min_sleep_time This tuning parameter controls the minimum sleep
time for the garbage collection thread. Time is
in milliseconds.
- gc_min_sleep_time This tuning parameter controls the minimum sleep
+ gc_max_sleep_time This tuning parameter controls the maximum sleep
time for the garbage collection thread. Time is
in milliseconds.
@@ -270,9 +289,6 @@ Files in /sys/fs/f2fs/<devname>
to 1, background thread starts to do GC by given
gc_urgent_sleep_time interval.
- gc_urgent_sleep_time This parameter controls sleep time for gc_urgent.
- 500 ms is set by default. See above gc_urgent.
-
reclaim_segments This parameter controls the number of prefree
segments to be reclaimed. If the number of prefree
segments is larger than the number of segments
@@ -287,7 +303,16 @@ Files in /sys/fs/f2fs/<devname>
checkpoint is triggered, and issued during the
checkpoint. By default, it is disabled with 0.
- trim_sections This parameter controls the number of sections
+ discard_granularity This parameter controls the granularity of discard
+ command size. It will issue discard commands iif
+ the size is larger than given granularity. Its
+ unit size is 4KB, and 4 (=16KB) is set by default.
+ The maximum value is 128 (=512KB).
+
+ reserved_blocks This parameter indicates the number of blocks that
+ f2fs reserves internally for root.
+
+ batched_trim_sections This parameter controls the number of sections
to be trimmed out in batch mode when FITRIM
conducts. 32 sections is set by default.
@@ -309,11 +334,35 @@ Files in /sys/fs/f2fs/<devname>
the number is less than this value, it triggers
in-place-updates.
+ min_seq_blocks This parameter controls the threshold to serialize
+ write IOs issued by multiple threads in parallel.
+
+ min_hot_blocks This parameter controls the threshold to allocate
+ a hot data log for pending data blocks to write.
+
+ min_ssr_sections This parameter adds the threshold when deciding
+ SSR block allocation. If this is large, SSR mode
+ will be enabled early.
+
+ ram_thresh This parameter controls the memory footprint used
+ by free nids and cached nat entries. By default,
+ 10 is set, which indicates 10 MB / 1 GB RAM.
+
+ ra_nid_pages When building free nids, F2FS reads NAT blocks
+ ahead for speed up. Default is 0.
+
+ dirty_nats_ratio Given dirty ratio of cached nat entries, F2FS
+ determines flushing them in background.
+
max_victim_search This parameter controls the number of trials to
find a victim segment when conducting SSR and
cleaning operations. The default value is 4096
which covers 8GB block address range.
+ migration_granularity For large-sized sections, F2FS can stop GC given
+ this granularity instead of reclaiming entire
+ section.
+
dir_level This parameter controls the directory level to
support large directory. If a directory has a
number of files, it can reduce the file lookup
@@ -321,9 +370,56 @@ Files in /sys/fs/f2fs/<devname>
Otherwise, it needs to decrease this value to
reduce the space overhead. The default value is 0.
- ram_thresh This parameter controls the memory footprint used
- by free nids and cached nat entries. By default,
- 10 is set, which indicates 10 MB / 1 GB RAM.
+ cp_interval F2FS tries to do checkpoint periodically, 60 secs
+ by default.
+
+ idle_interval F2FS detects system is idle, if there's no F2FS
+ operations during given interval, 5 secs by
+ default.
+
+ discard_idle_interval F2FS detects the discard thread is idle, given
+ time interval. Default is 5 secs.
+
+ gc_idle_interval F2FS detects the GC thread is idle, given time
+ interval. Default is 5 secs.
+
+ umount_discard_timeout When unmounting the disk, F2FS waits for finishing
+ queued discard commands which can take huge time.
+ This gives time out for it, 5 secs by default.
+
+ iostat_enable This controls to enable/disable iostat in F2FS.
+
+ readdir_ra This enables/disabled readahead of inode blocks
+ in readdir, and default is enabled.
+
+ gc_pin_file_thresh This indicates how many GC can be failed for the
+ pinned file. If it exceeds this, F2FS doesn't
+ guarantee its pinning state. 2048 trials is set
+ by default.
+
+ extension_list This enables to change extension_list for hot/cold
+ files in runtime.
+
+ inject_rate This controls injection rate of arbitrary faults.
+
+ inject_type This controls injection type of arbitrary faults.
+
+ dirty_segments This shows # of dirty segments.
+
+ lifetime_write_kbytes This shows # of data written to the disk.
+
+ features This shows current features enabled on F2FS.
+
+ current_reserved_blocks This shows # of blocks currently reserved.
+
+ unusable If checkpoint=disable, this shows the number of
+ blocks that are unusable.
+ If checkpoint=enable it shows the number of blocks
+ that would be unusable if checkpoint=disable were
+ to be set.
+
+encoding This shows the encoding used for casefolding.
+ If casefolding is not enabled, returns (none)
================================================================================
USAGE
@@ -716,3 +812,28 @@ WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
WRITE_LIFE_NONE " WRITE_LIFE_NONE
WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
WRITE_LIFE_LONG " WRITE_LIFE_LONG
+
+Fallocate(2) Policy
+-------------------
+
+The default policy follows the below posix rule.
+
+Allocating disk space
+ The default operation (i.e., mode is zero) of fallocate() allocates
+ the disk space within the range specified by offset and len. The
+ file size (as reported by stat(2)) will be changed if offset+len is
+ greater than the file size. Any subregion within the range specified
+ by offset and len that did not contain data before the call will be
+ initialized to zero. This default behavior closely resembles the
+ behavior of the posix_fallocate(3) library function, and is intended
+ as a method of optimally implementing that function.
+
+However, once F2FS receives ioctl(fd, F2FS_IOC_SET_PIN_FILE) in prior to
+fallocate(fd, DEFAULT_MODE), it allocates on-disk blocks addressess having
+zero or random data, which is useful to the below scenario where:
+ 1. create(fd)
+ 2. ioctl(fd, F2FS_IOC_SET_PIN_FILE)
+ 3. fallocate(fd, 0, 0, size)
+ 4. address = fibmap(fd, offset)
+ 5. open(blkdev)
+ 6. write(blkdev, address)
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index 08c23b60e016..8a0700af9596 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -72,6 +72,9 @@ Online attacks
fscrypt (and storage encryption in general) can only provide limited
protection, if any at all, against online attacks. In detail:
+Side-channel attacks
+~~~~~~~~~~~~~~~~~~~~
+
fscrypt is only resistant to side-channel attacks, such as timing or
electromagnetic attacks, to the extent that the underlying Linux
Cryptographic API algorithms are. If a vulnerable algorithm is used,
@@ -80,29 +83,90 @@ attacker to mount a side channel attack against the online system.
Side channel attacks may also be mounted against applications
consuming decrypted data.
-After an encryption key has been provided, fscrypt is not designed to
-hide the plaintext file contents or filenames from other users on the
-same system, regardless of the visibility of the keyring key.
-Instead, existing access control mechanisms such as file mode bits,
-POSIX ACLs, LSMs, or mount namespaces should be used for this purpose.
-Also note that as long as the encryption keys are *anywhere* in
-memory, an online attacker can necessarily compromise them by mounting
-a physical attack or by exploiting any kernel security vulnerability
-which provides an arbitrary memory read primitive.
-
-While it is ostensibly possible to "evict" keys from the system,
-recently accessed encrypted files will remain accessible at least
-until the filesystem is unmounted or the VFS caches are dropped, e.g.
-using ``echo 2 > /proc/sys/vm/drop_caches``. Even after that, if the
-RAM is compromised before being powered off, it will likely still be
-possible to recover portions of the plaintext file contents, if not
-some of the encryption keys as well. (Since Linux v4.12, all
-in-kernel keys related to fscrypt are sanitized before being freed.
-However, userspace would need to do its part as well.)
-
-Currently, fscrypt does not prevent a user from maliciously providing
-an incorrect key for another user's existing encrypted files. A
-protection against this is planned.
+Unauthorized file access
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+After an encryption key has been added, fscrypt does not hide the
+plaintext file contents or filenames from other users on the same
+system. Instead, existing access control mechanisms such as file mode
+bits, POSIX ACLs, LSMs, or namespaces should be used for this purpose.
+
+(For the reasoning behind this, understand that while the key is
+added, the confidentiality of the data, from the perspective of the
+system itself, is *not* protected by the mathematical properties of
+encryption but rather only by the correctness of the kernel.
+Therefore, any encryption-specific access control checks would merely
+be enforced by kernel *code* and therefore would be largely redundant
+with the wide variety of access control mechanisms already available.)
+
+Kernel memory compromise
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+An attacker who compromises the system enough to read from arbitrary
+memory, e.g. by mounting a physical attack or by exploiting a kernel
+security vulnerability, can compromise all encryption keys that are
+currently in use.
+
+However, fscrypt allows encryption keys to be removed from the kernel,
+which may protect them from later compromise.
+
+In more detail, the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl (or the
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS ioctl) can wipe a master
+encryption key from kernel memory. If it does so, it will also try to
+evict all cached inodes which had been "unlocked" using the key,
+thereby wiping their per-file keys and making them once again appear
+"locked", i.e. in ciphertext or encrypted form.
+
+However, these ioctls have some limitations:
+
+- Per-file keys for in-use files will *not* be removed or wiped.
+ Therefore, for maximum effect, userspace should close the relevant
+ encrypted files and directories before removing a master key, as
+ well as kill any processes whose working directory is in an affected
+ encrypted directory.
+
+- The kernel cannot magically wipe copies of the master key(s) that
+ userspace might have as well. Therefore, userspace must wipe all
+ copies of the master key(s) it makes as well; normally this should
+ be done immediately after FS_IOC_ADD_ENCRYPTION_KEY, without waiting
+ for FS_IOC_REMOVE_ENCRYPTION_KEY. Naturally, the same also applies
+ to all higher levels in the key hierarchy. Userspace should also
+ follow other security precautions such as mlock()ing memory
+ containing keys to prevent it from being swapped out.
+
+- In general, decrypted contents and filenames in the kernel VFS
+ caches are freed but not wiped. Therefore, portions thereof may be
+ recoverable from freed memory, even after the corresponding key(s)
+ were wiped. To partially solve this, you can set
+ CONFIG_PAGE_POISONING=y in your kernel config and add page_poison=1
+ to your kernel command line. However, this has a performance cost.
+
+- Secret keys might still exist in CPU registers, in crypto
+ accelerator hardware (if used by the crypto API to implement any of
+ the algorithms), or in other places not explicitly considered here.
+
+Limitations of v1 policies
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+v1 encryption policies have some weaknesses with respect to online
+attacks:
+
+- There is no verification that the provided master key is correct.
+ Therefore, a malicious user can temporarily associate the wrong key
+ with another user's encrypted files to which they have read-only
+ access. Because of filesystem caching, the wrong key will then be
+ used by the other user's accesses to those files, even if the other
+ user has the correct key in their own keyring. This violates the
+ meaning of "read-only access".
+
+- A compromise of a per-file key also compromises the master key from
+ which it was derived.
+
+- Non-root users cannot securely remove encryption keys.
+
+All the above problems are fixed with v2 encryption policies. For
+this reason among others, it is recommended to use v2 encryption
+policies on all new encrypted directories.
Key hierarchy
=============
@@ -123,11 +187,52 @@ appropriate master key. There can be any number of master keys, each
of which protects any number of directory trees on any number of
filesystems.
-Userspace should generate master keys either using a cryptographically
-secure random number generator, or by using a KDF (Key Derivation
-Function). Note that whenever a KDF is used to "stretch" a
-lower-entropy secret such as a passphrase, it is critical that a KDF
-designed for this purpose be used, such as scrypt, PBKDF2, or Argon2.
+Master keys must be real cryptographic keys, i.e. indistinguishable
+from random bytestrings of the same length. This implies that users
+**must not** directly use a password as a master key, zero-pad a
+shorter key, or repeat a shorter key. Security cannot be guaranteed
+if userspace makes any such error, as the cryptographic proofs and
+analysis would no longer apply.
+
+Instead, users should generate master keys either using a
+cryptographically secure random number generator, or by using a KDF
+(Key Derivation Function). The kernel does not do any key stretching;
+therefore, if userspace derives the key from a low-entropy secret such
+as a passphrase, it is critical that a KDF designed for this purpose
+be used, such as scrypt, PBKDF2, or Argon2.
+
+Key derivation function
+-----------------------
+
+With one exception, fscrypt never uses the master key(s) for
+encryption directly. Instead, they are only used as input to a KDF
+(Key Derivation Function) to derive the actual keys.
+
+The KDF used for a particular master key differs depending on whether
+the key is used for v1 encryption policies or for v2 encryption
+policies. Users **must not** use the same key for both v1 and v2
+encryption policies. (No real-world attack is currently known on this
+specific case of key reuse, but its security cannot be guaranteed
+since the cryptographic proofs and analysis would no longer apply.)
+
+For v1 encryption policies, the KDF only supports deriving per-file
+encryption keys. It works by encrypting the master key with
+AES-128-ECB, using the file's 16-byte nonce as the AES key. The
+resulting ciphertext is used as the derived key. If the ciphertext is
+longer than needed, then it is truncated to the needed length.
+
+For v2 encryption policies, the KDF is HKDF-SHA512. The master key is
+passed as the "input keying material", no salt is used, and a distinct
+"application-specific information string" is used for each distinct
+key to be derived. For example, when a per-file encryption key is
+derived, the application-specific information string is the file's
+nonce prefixed with "fscrypt\\0" and a context byte. Different
+context bytes are used for other types of derived keys.
+
+HKDF-SHA512 is preferred to the original AES-128-ECB based KDF because
+HKDF is more flexible, is nonreversible, and evenly distributes
+entropy from the master key. HKDF is also standardized and widely
+used by other software, whereas the AES-128-ECB based KDF is ad-hoc.
Per-file keys
-------------
@@ -138,29 +243,9 @@ files doesn't map to the same ciphertext, or vice versa. In most
cases, fscrypt does this by deriving per-file keys. When a new
encrypted inode (regular file, directory, or symlink) is created,
fscrypt randomly generates a 16-byte nonce and stores it in the
-inode's encryption xattr. Then, it uses a KDF (Key Derivation
-Function) to derive the file's key from the master key and nonce.
-
-The Adiantum encryption mode (see `Encryption modes and usage`_) is
-special, since it accepts longer IVs and is suitable for both contents
-and filenames encryption. For it, a "direct key" option is offered
-where the file's nonce is included in the IVs and the master key is
-used for encryption directly. This improves performance; however,
-users must not use the same master key for any other encryption mode.
-
-Below, the KDF and design considerations are described in more detail.
-
-The current KDF works by encrypting the master key with AES-128-ECB,
-using the file's nonce as the AES key. The output is used as the
-derived key. If the output is longer than needed, then it is
-truncated to the needed length.
-
-Note: this KDF meets the primary security requirement, which is to
-produce unique derived keys that preserve the entropy of the master
-key, assuming that the master key is already a good pseudorandom key.
-However, it is nonstandard and has some problems such as being
-reversible, so it is generally considered to be a mistake! It may be
-replaced with HKDF or another more standard KDF in the future.
+inode's encryption xattr. Then, it uses a KDF (as described in `Key
+derivation function`_) to derive the file's key from the master key
+and nonce.
Key derivation was chosen over key wrapping because wrapped keys would
require larger xattrs which would be less likely to fit in-line in the
@@ -176,6 +261,37 @@ rejected as it would have prevented ext4 filesystems from being
resized, and by itself still wouldn't have been sufficient to prevent
the same key from being directly reused for both XTS and CTS-CBC.
+DIRECT_KEY and per-mode keys
+----------------------------
+
+The Adiantum encryption mode (see `Encryption modes and usage`_) is
+suitable for both contents and filenames encryption, and it accepts
+long IVs --- long enough to hold both an 8-byte logical block number
+and a 16-byte per-file nonce. Also, the overhead of each Adiantum key
+is greater than that of an AES-256-XTS key.
+
+Therefore, to improve performance and save memory, for Adiantum a
+"direct key" configuration is supported. When the user has enabled
+this by setting FSCRYPT_POLICY_FLAG_DIRECT_KEY in the fscrypt policy,
+per-file keys are not used. Instead, whenever any data (contents or
+filenames) is encrypted, the file's 16-byte nonce is included in the
+IV. Moreover:
+
+- For v1 encryption policies, the encryption is done directly with the
+ master key. Because of this, users **must not** use the same master
+ key for any other purpose, even for other v1 policies.
+
+- For v2 encryption policies, the encryption is done with a per-mode
+ key derived using the KDF. Users may use the same master key for
+ other v2 encryption policies.
+
+Key identifiers
+---------------
+
+For master keys used for v2 encryption policies, a unique 16-byte "key
+identifier" is also derived using the KDF. This value is stored in
+the clear, since it is needed to reliably identify the key itself.
+
Encryption modes and usage
==========================
@@ -191,7 +307,9 @@ Currently, the following pairs of encryption modes are supported:
If unsure, you should use the (AES-256-XTS, AES-256-CTS-CBC) pair.
AES-128-CBC was added only for low-powered embedded devices with
-crypto accelerators such as CAAM or CESA that do not support XTS.
+crypto accelerators such as CAAM or CESA that do not support XTS. To
+use AES-128-CBC, CONFIG_CRYPTO_SHA256 (or another SHA-256
+implementation) must be enabled so that ESSIV can be used.
Adiantum is a (primarily) stream cipher-based mode that is fast even
on CPUs without dedicated crypto instructions. It's also a true
@@ -223,9 +341,10 @@ a little endian number, except that:
is encrypted with AES-256 where the AES-256 key is the SHA-256 hash
of the file's data encryption key.
-- In the "direct key" configuration (FS_POLICY_FLAG_DIRECT_KEY set in
- the fscrypt_policy), the file's nonce is also appended to the IV.
- Currently this is only allowed with the Adiantum encryption mode.
+- In the "direct key" configuration (FSCRYPT_POLICY_FLAG_DIRECT_KEY
+ set in the fscrypt_policy), the file's nonce is also appended to the
+ IV. Currently this is only allowed with the Adiantum encryption
+ mode.
Filenames encryption
--------------------
@@ -267,49 +386,77 @@ User API
Setting an encryption policy
----------------------------
+FS_IOC_SET_ENCRYPTION_POLICY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
The FS_IOC_SET_ENCRYPTION_POLICY ioctl sets an encryption policy on an
empty directory or verifies that a directory or regular file already
has the specified encryption policy. It takes in a pointer to a
-:c:type:`struct fscrypt_policy`, defined as follows::
+:c:type:`struct fscrypt_policy_v1` or a :c:type:`struct
+fscrypt_policy_v2`, defined as follows::
- #define FS_KEY_DESCRIPTOR_SIZE 8
+ #define FSCRYPT_POLICY_V1 0
+ #define FSCRYPT_KEY_DESCRIPTOR_SIZE 8
+ struct fscrypt_policy_v1 {
+ __u8 version;
+ __u8 contents_encryption_mode;
+ __u8 filenames_encryption_mode;
+ __u8 flags;
+ __u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ };
+ #define fscrypt_policy fscrypt_policy_v1
- struct fscrypt_policy {
+ #define FSCRYPT_POLICY_V2 2
+ #define FSCRYPT_KEY_IDENTIFIER_SIZE 16
+ struct fscrypt_policy_v2 {
__u8 version;
__u8 contents_encryption_mode;
__u8 filenames_encryption_mode;
__u8 flags;
- __u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
+ __u8 __reserved[4];
+ __u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
};
This structure must be initialized as follows:
-- ``version`` must be 0.
+- ``version`` must be FSCRYPT_POLICY_V1 (0) if the struct is
+ :c:type:`fscrypt_policy_v1` or FSCRYPT_POLICY_V2 (2) if the struct
+ is :c:type:`fscrypt_policy_v2`. (Note: we refer to the original
+ policy version as "v1", though its version code is really 0.) For
+ new encrypted directories, use v2 policies.
- ``contents_encryption_mode`` and ``filenames_encryption_mode`` must
- be set to constants from ``<linux/fs.h>`` which identify the
- encryption modes to use. If unsure, use
- FS_ENCRYPTION_MODE_AES_256_XTS (1) for ``contents_encryption_mode``
- and FS_ENCRYPTION_MODE_AES_256_CTS (4) for
- ``filenames_encryption_mode``.
+ be set to constants from ``<linux/fscrypt.h>`` which identify the
+ encryption modes to use. If unsure, use FSCRYPT_MODE_AES_256_XTS
+ (1) for ``contents_encryption_mode`` and FSCRYPT_MODE_AES_256_CTS
+ (4) for ``filenames_encryption_mode``.
-- ``flags`` must contain a value from ``<linux/fs.h>`` which
+- ``flags`` must contain a value from ``<linux/fscrypt.h>`` which
identifies the amount of NUL-padding to use when encrypting
- filenames. If unsure, use FS_POLICY_FLAGS_PAD_32 (0x3).
- In addition, if the chosen encryption modes are both
- FS_ENCRYPTION_MODE_ADIANTUM, this can contain
- FS_POLICY_FLAG_DIRECT_KEY to specify that the master key should be
- used directly, without key derivation.
-
-- ``master_key_descriptor`` specifies how to find the master key in
- the keyring; see `Adding keys`_. It is up to userspace to choose a
- unique ``master_key_descriptor`` for each master key. The e4crypt
- and fscrypt tools use the first 8 bytes of
+ filenames. If unsure, use FSCRYPT_POLICY_FLAGS_PAD_32 (0x3).
+ Additionally, if the encryption modes are both
+ FSCRYPT_MODE_ADIANTUM, this can contain
+ FSCRYPT_POLICY_FLAG_DIRECT_KEY; see `DIRECT_KEY and per-mode keys`_.
+
+- For v2 encryption policies, ``__reserved`` must be zeroed.
+
+- For v1 encryption policies, ``master_key_descriptor`` specifies how
+ to find the master key in a keyring; see `Adding keys`_. It is up
+ to userspace to choose a unique ``master_key_descriptor`` for each
+ master key. The e4crypt and fscrypt tools use the first 8 bytes of
``SHA-512(SHA-512(master_key))``, but this particular scheme is not
required. Also, the master key need not be in the keyring yet when
FS_IOC_SET_ENCRYPTION_POLICY is executed. However, it must be added
before any files can be created in the encrypted directory.
+ For v2 encryption policies, ``master_key_descriptor`` has been
+ replaced with ``master_key_identifier``, which is longer and cannot
+ be arbitrarily chosen. Instead, the key must first be added using
+ `FS_IOC_ADD_ENCRYPTION_KEY`_. Then, the ``key_spec.u.identifier``
+ the kernel returned in the :c:type:`struct fscrypt_add_key_arg` must
+ be used as the ``master_key_identifier`` in the :c:type:`struct
+ fscrypt_policy_v2`.
+
If the file is not yet encrypted, then FS_IOC_SET_ENCRYPTION_POLICY
verifies that the file is an empty directory. If so, the specified
encryption policy is assigned to the directory, turning it into an
@@ -325,6 +472,15 @@ policy exactly matches the actual one. If they match, then the ioctl
returns 0. Otherwise, it fails with EEXIST. This works on both
regular files and directories, including nonempty directories.
+When a v2 encryption policy is assigned to a directory, it is also
+required that either the specified key has been added by the current
+user or that the caller has CAP_FOWNER in the initial user namespace.
+(This is needed to prevent a user from encrypting their data with
+another user's key.) The key must remain added while
+FS_IOC_SET_ENCRYPTION_POLICY is executing. However, if the new
+encrypted directory does not need to be accessed immediately, then the
+key can be removed right away afterwards.
+
Note that the ext4 filesystem does not allow the root directory to be
encrypted, even if it is empty. Users who want to encrypt an entire
filesystem with one key should consider using dm-crypt instead.
@@ -337,7 +493,11 @@ FS_IOC_SET_ENCRYPTION_POLICY can fail with the following errors:
- ``EEXIST``: the file is already encrypted with an encryption policy
different from the one specified
- ``EINVAL``: an invalid encryption policy was specified (invalid
- version, mode(s), or flags)
+ version, mode(s), or flags; or reserved bits were set)
+- ``ENOKEY``: a v2 encryption policy was specified, but the key with
+ the specified ``master_key_identifier`` has not been added, nor does
+ the process have the CAP_FOWNER capability in the initial user
+ namespace
- ``ENOTDIR``: the file is unencrypted and is a regular file, not a
directory
- ``ENOTEMPTY``: the file is unencrypted and is a nonempty directory
@@ -356,25 +516,79 @@ FS_IOC_SET_ENCRYPTION_POLICY can fail with the following errors:
Getting an encryption policy
----------------------------
-The FS_IOC_GET_ENCRYPTION_POLICY ioctl retrieves the :c:type:`struct
-fscrypt_policy`, if any, for a directory or regular file. See above
-for the struct definition. No additional permissions are required
-beyond the ability to open the file.
+Two ioctls are available to get a file's encryption policy:
+
+- `FS_IOC_GET_ENCRYPTION_POLICY_EX`_
+- `FS_IOC_GET_ENCRYPTION_POLICY`_
+
+The extended (_EX) version of the ioctl is more general and is
+recommended to use when possible. However, on older kernels only the
+original ioctl is available. Applications should try the extended
+version, and if it fails with ENOTTY fall back to the original
+version.
+
+FS_IOC_GET_ENCRYPTION_POLICY_EX
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_POLICY_EX ioctl retrieves the encryption
+policy, if any, for a directory or regular file. No additional
+permissions are required beyond the ability to open the file. It
+takes in a pointer to a :c:type:`struct fscrypt_get_policy_ex_arg`,
+defined as follows::
+
+ struct fscrypt_get_policy_ex_arg {
+ __u64 policy_size; /* input/output */
+ union {
+ __u8 version;
+ struct fscrypt_policy_v1 v1;
+ struct fscrypt_policy_v2 v2;
+ } policy; /* output */
+ };
+
+The caller must initialize ``policy_size`` to the size available for
+the policy struct, i.e. ``sizeof(arg.policy)``.
-FS_IOC_GET_ENCRYPTION_POLICY can fail with the following errors:
+On success, the policy struct is returned in ``policy``, and its
+actual size is returned in ``policy_size``. ``policy.version`` should
+be checked to determine the version of policy returned. Note that the
+version code for the "v1" policy is actually 0 (FSCRYPT_POLICY_V1).
+
+FS_IOC_GET_ENCRYPTION_POLICY_EX can fail with the following errors:
- ``EINVAL``: the file is encrypted, but it uses an unrecognized
- encryption context format
+ encryption policy version
- ``ENODATA``: the file is not encrypted
-- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``ENOTTY``: this type of filesystem does not implement encryption,
+ or this kernel is too old to support FS_IOC_GET_ENCRYPTION_POLICY_EX
+ (try FS_IOC_GET_ENCRYPTION_POLICY instead)
- ``EOPNOTSUPP``: the kernel was not configured with encryption
- support for this filesystem
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+- ``EOVERFLOW``: the file is encrypted and uses a recognized
+ encryption policy version, but the policy struct does not fit into
+ the provided buffer
Note: if you only need to know whether a file is encrypted or not, on
most filesystems it is also possible to use the FS_IOC_GETFLAGS ioctl
and check for FS_ENCRYPT_FL, or to use the statx() system call and
check for STATX_ATTR_ENCRYPTED in stx_attributes.
+FS_IOC_GET_ENCRYPTION_POLICY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_POLICY ioctl can also retrieve the
+encryption policy, if any, for a directory or regular file. However,
+unlike `FS_IOC_GET_ENCRYPTION_POLICY_EX`_,
+FS_IOC_GET_ENCRYPTION_POLICY only supports the original policy
+version. It takes in a pointer directly to a :c:type:`struct
+fscrypt_policy_v1` rather than a :c:type:`struct
+fscrypt_get_policy_ex_arg`.
+
+The error codes for FS_IOC_GET_ENCRYPTION_POLICY are the same as those
+for FS_IOC_GET_ENCRYPTION_POLICY_EX, except that
+FS_IOC_GET_ENCRYPTION_POLICY also returns ``EINVAL`` if the file is
+encrypted using a newer encryption policy version.
+
Getting the per-filesystem salt
-------------------------------
@@ -390,8 +604,115 @@ generate and manage any needed salt(s) in userspace.
Adding keys
-----------
-To provide a master key, userspace must add it to an appropriate
-keyring using the add_key() system call (see:
+FS_IOC_ADD_ENCRYPTION_KEY
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_ADD_ENCRYPTION_KEY ioctl adds a master encryption key to
+the filesystem, making all files on the filesystem which were
+encrypted using that key appear "unlocked", i.e. in plaintext form.
+It can be executed on any file or directory on the target filesystem,
+but using the filesystem's root directory is recommended. It takes in
+a pointer to a :c:type:`struct fscrypt_add_key_arg`, defined as
+follows::
+
+ struct fscrypt_add_key_arg {
+ struct fscrypt_key_specifier key_spec;
+ __u32 raw_size;
+ __u32 __reserved[9];
+ __u8 raw[];
+ };
+
+ #define FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR 1
+ #define FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER 2
+
+ struct fscrypt_key_specifier {
+ __u32 type; /* one of FSCRYPT_KEY_SPEC_TYPE_* */
+ __u32 __reserved;
+ union {
+ __u8 __reserved[32]; /* reserve some extra space */
+ __u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ __u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
+ } u;
+ };
+
+:c:type:`struct fscrypt_add_key_arg` must be zeroed, then initialized
+as follows:
+
+- If the key is being added for use by v1 encryption policies, then
+ ``key_spec.type`` must contain FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR, and
+ ``key_spec.u.descriptor`` must contain the descriptor of the key
+ being added, corresponding to the value in the
+ ``master_key_descriptor`` field of :c:type:`struct
+ fscrypt_policy_v1`. To add this type of key, the calling process
+ must have the CAP_SYS_ADMIN capability in the initial user
+ namespace.
+
+ Alternatively, if the key is being added for use by v2 encryption
+ policies, then ``key_spec.type`` must contain
+ FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER, and ``key_spec.u.identifier`` is
+ an *output* field which the kernel fills in with a cryptographic
+ hash of the key. To add this type of key, the calling process does
+ not need any privileges. However, the number of keys that can be
+ added is limited by the user's quota for the keyrings service (see
+ ``Documentation/security/keys/core.rst``).
+
+- ``raw_size`` must be the size of the ``raw`` key provided, in bytes.
+
+- ``raw`` is a variable-length field which must contain the actual
+ key, ``raw_size`` bytes long.
+
+For v2 policy keys, the kernel keeps track of which user (identified
+by effective user ID) added the key, and only allows the key to be
+removed by that user --- or by "root", if they use
+`FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS`_.
+
+However, if another user has added the key, it may be desirable to
+prevent that other user from unexpectedly removing it. Therefore,
+FS_IOC_ADD_ENCRYPTION_KEY may also be used to add a v2 policy key
+*again*, even if it's already added by other user(s). In this case,
+FS_IOC_ADD_ENCRYPTION_KEY will just install a claim to the key for the
+current user, rather than actually add the key again (but the raw key
+must still be provided, as a proof of knowledge).
+
+FS_IOC_ADD_ENCRYPTION_KEY returns 0 if either the key or a claim to
+the key was either added or already exists.
+
+FS_IOC_ADD_ENCRYPTION_KEY can fail with the following errors:
+
+- ``EACCES``: FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR was specified, but the
+ caller does not have the CAP_SYS_ADMIN capability in the initial
+ user namespace
+- ``EDQUOT``: the key quota for this user would be exceeded by adding
+ the key
+- ``EINVAL``: invalid key size or key specifier type, or reserved bits
+ were set
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+Legacy method
+~~~~~~~~~~~~~
+
+For v1 encryption policies, a master encryption key can also be
+provided by adding it to a process-subscribed keyring, e.g. to a
+session keyring, or to a user keyring if the user keyring is linked
+into the session keyring.
+
+This method is deprecated (and not supported for v2 encryption
+policies) for several reasons. First, it cannot be used in
+combination with FS_IOC_REMOVE_ENCRYPTION_KEY (see `Removing keys`_),
+so for removing a key a workaround such as keyctl_unlink() in
+combination with ``sync; echo 2 > /proc/sys/vm/drop_caches`` would
+have to be used. Second, it doesn't match the fact that the
+locked/unlocked status of encrypted files (i.e. whether they appear to
+be in plaintext form or in ciphertext form) is global. This mismatch
+has caused much confusion as well as real problems when processes
+running under different UIDs, such as a ``sudo`` command, need to
+access encrypted files.
+
+Nevertheless, to add a key to one of the process-subscribed keyrings,
+the add_key() system call can be used (see:
``Documentation/security/keys/core.rst``). The key type must be
"logon"; keys of this type are kept in kernel memory and cannot be
read back by userspace. The key description must be "fscrypt:"
@@ -399,12 +720,12 @@ followed by the 16-character lower case hex representation of the
``master_key_descriptor`` that was set in the encryption policy. The
key payload must conform to the following structure::
- #define FS_MAX_KEY_SIZE 64
+ #define FSCRYPT_MAX_KEY_SIZE 64
struct fscrypt_key {
- u32 mode;
- u8 raw[FS_MAX_KEY_SIZE];
- u32 size;
+ __u32 mode;
+ __u8 raw[FSCRYPT_MAX_KEY_SIZE];
+ __u32 size;
};
``mode`` is ignored; just set it to 0. The actual key is provided in
@@ -416,26 +737,194 @@ with a filesystem-specific prefix such as "ext4:". However, the
filesystem-specific prefixes are deprecated and should not be used in
new programs.
-There are several different types of keyrings in which encryption keys
-may be placed, such as a session keyring, a user session keyring, or a
-user keyring. Each key must be placed in a keyring that is "attached"
-to all processes that might need to access files encrypted with it, in
-the sense that request_key() will find the key. Generally, if only
-processes belonging to a specific user need to access a given
-encrypted directory and no session keyring has been installed, then
-that directory's key should be placed in that user's user session
-keyring or user keyring. Otherwise, a session keyring should be
-installed if needed, and the key should be linked into that session
-keyring, or in a keyring linked into that session keyring.
-
-Note: introducing the complex visibility semantics of keyrings here
-was arguably a mistake --- especially given that by design, after any
-process successfully opens an encrypted file (thereby setting up the
-per-file key), possessing the keyring key is not actually required for
-any process to read/write the file until its in-memory inode is
-evicted. In the future there probably should be a way to provide keys
-directly to the filesystem instead, which would make the intended
-semantics clearer.
+Removing keys
+-------------
+
+Two ioctls are available for removing a key that was added by
+`FS_IOC_ADD_ENCRYPTION_KEY`_:
+
+- `FS_IOC_REMOVE_ENCRYPTION_KEY`_
+- `FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS`_
+
+These two ioctls differ only in cases where v2 policy keys are added
+or removed by non-root users.
+
+These ioctls don't work on keys that were added via the legacy
+process-subscribed keyrings mechanism.
+
+Before using these ioctls, read the `Kernel memory compromise`_
+section for a discussion of the security goals and limitations of
+these ioctls.
+
+FS_IOC_REMOVE_ENCRYPTION_KEY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_REMOVE_ENCRYPTION_KEY ioctl removes a claim to a master
+encryption key from the filesystem, and possibly removes the key
+itself. It can be executed on any file or directory on the target
+filesystem, but using the filesystem's root directory is recommended.
+It takes in a pointer to a :c:type:`struct fscrypt_remove_key_arg`,
+defined as follows::
+
+ struct fscrypt_remove_key_arg {
+ struct fscrypt_key_specifier key_spec;
+ #define FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY 0x00000001
+ #define FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS 0x00000002
+ __u32 removal_status_flags; /* output */
+ __u32 __reserved[5];
+ };
+
+This structure must be zeroed, then initialized as follows:
+
+- The key to remove is specified by ``key_spec``:
+
+ - To remove a key used by v1 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR and fill
+ in ``key_spec.u.descriptor``. To remove this type of key, the
+ calling process must have the CAP_SYS_ADMIN capability in the
+ initial user namespace.
+
+ - To remove a key used by v2 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER and fill
+ in ``key_spec.u.identifier``.
+
+For v2 policy keys, this ioctl is usable by non-root users. However,
+to make this possible, it actually just removes the current user's
+claim to the key, undoing a single call to FS_IOC_ADD_ENCRYPTION_KEY.
+Only after all claims are removed is the key really removed.
+
+For example, if FS_IOC_ADD_ENCRYPTION_KEY was called with uid 1000,
+then the key will be "claimed" by uid 1000, and
+FS_IOC_REMOVE_ENCRYPTION_KEY will only succeed as uid 1000. Or, if
+both uids 1000 and 2000 added the key, then for each uid
+FS_IOC_REMOVE_ENCRYPTION_KEY will only remove their own claim. Only
+once *both* are removed is the key really removed. (Think of it like
+unlinking a file that may have hard links.)
+
+If FS_IOC_REMOVE_ENCRYPTION_KEY really removes the key, it will also
+try to "lock" all files that had been unlocked with the key. It won't
+lock files that are still in-use, so this ioctl is expected to be used
+in cooperation with userspace ensuring that none of the files are
+still open. However, if necessary, this ioctl can be executed again
+later to retry locking any remaining files.
+
+FS_IOC_REMOVE_ENCRYPTION_KEY returns 0 if either the key was removed
+(but may still have files remaining to be locked), the user's claim to
+the key was removed, or the key was already removed but had files
+remaining to be the locked so the ioctl retried locking them. In any
+of these cases, ``removal_status_flags`` is filled in with the
+following informational status flags:
+
+- ``FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY``: set if some file(s)
+ are still in-use. Not guaranteed to be set in the case where only
+ the user's claim to the key was removed.
+- ``FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS``: set if only the
+ user's claim to the key was removed, not the key itself
+
+FS_IOC_REMOVE_ENCRYPTION_KEY can fail with the following errors:
+
+- ``EACCES``: The FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR key specifier type
+ was specified, but the caller does not have the CAP_SYS_ADMIN
+ capability in the initial user namespace
+- ``EINVAL``: invalid key specifier type, or reserved bits were set
+- ``ENOKEY``: the key object was not found at all, i.e. it was never
+ added in the first place or was already fully removed including all
+ files locked; or, the user does not have a claim to the key (but
+ someone else does).
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS is exactly the same as
+`FS_IOC_REMOVE_ENCRYPTION_KEY`_, except that for v2 policy keys, the
+ALL_USERS version of the ioctl will remove all users' claims to the
+key, not just the current user's. I.e., the key itself will always be
+removed, no matter how many users have added it. This difference is
+only meaningful if non-root users are adding and removing keys.
+
+Because of this, FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS also requires
+"root", namely the CAP_SYS_ADMIN capability in the initial user
+namespace. Otherwise it will fail with EACCES.
+
+Getting key status
+------------------
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_KEY_STATUS ioctl retrieves the status of a
+master encryption key. It can be executed on any file or directory on
+the target filesystem, but using the filesystem's root directory is
+recommended. It takes in a pointer to a :c:type:`struct
+fscrypt_get_key_status_arg`, defined as follows::
+
+ struct fscrypt_get_key_status_arg {
+ /* input */
+ struct fscrypt_key_specifier key_spec;
+ __u32 __reserved[6];
+
+ /* output */
+ #define FSCRYPT_KEY_STATUS_ABSENT 1
+ #define FSCRYPT_KEY_STATUS_PRESENT 2
+ #define FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED 3
+ __u32 status;
+ #define FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF 0x00000001
+ __u32 status_flags;
+ __u32 user_count;
+ __u32 __out_reserved[13];
+ };
+
+The caller must zero all input fields, then fill in ``key_spec``:
+
+ - To get the status of a key for v1 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR and fill
+ in ``key_spec.u.descriptor``.
+
+ - To get the status of a key for v2 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER and fill
+ in ``key_spec.u.identifier``.
+
+On success, 0 is returned and the kernel fills in the output fields:
+
+- ``status`` indicates whether the key is absent, present, or
+ incompletely removed. Incompletely removed means that the master
+ secret has been removed, but some files are still in use; i.e.,
+ `FS_IOC_REMOVE_ENCRYPTION_KEY`_ returned 0 but set the informational
+ status flag FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY.
+
+- ``status_flags`` can contain the following flags:
+
+ - ``FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF`` indicates that the key
+ has added by the current user. This is only set for keys
+ identified by ``identifier`` rather than by ``descriptor``.
+
+- ``user_count`` specifies the number of users who have added the key.
+ This is only set for keys identified by ``identifier`` rather than
+ by ``descriptor``.
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS can fail with the following errors:
+
+- ``EINVAL``: invalid key specifier type, or reserved bits were set
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+Among other use cases, FS_IOC_GET_ENCRYPTION_KEY_STATUS can be useful
+for determining whether the key for a given encrypted directory needs
+to be added before prompting the user for the passphrase needed to
+derive the key.
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS can only get the status of keys in
+the filesystem-level keyring, i.e. the keyring managed by
+`FS_IOC_ADD_ENCRYPTION_KEY`_ and `FS_IOC_REMOVE_ENCRYPTION_KEY`_. It
+cannot get the status of a key that has only been added for use by v1
+encryption policies using the legacy mechanism involving
+process-subscribed keyrings.
Access semantics
================
@@ -498,7 +987,7 @@ Without the key
Some filesystem operations may be performed on encrypted regular
files, directories, and symlinks even before their encryption key has
-been provided:
+been added, or after their encryption key has been removed:
- File metadata may be read, e.g. using stat().
@@ -563,33 +1052,44 @@ Encryption context
------------------
An encryption policy is represented on-disk by a :c:type:`struct
-fscrypt_context`. It is up to individual filesystems to decide where
-to store it, but normally it would be stored in a hidden extended
-attribute. It should *not* be exposed by the xattr-related system
-calls such as getxattr() and setxattr() because of the special
-semantics of the encryption xattr. (In particular, there would be
-much confusion if an encryption policy were to be added to or removed
-from anything other than an empty directory.) The struct is defined
-as follows::
-
- #define FS_KEY_DESCRIPTOR_SIZE 8
+fscrypt_context_v1` or a :c:type:`struct fscrypt_context_v2`. It is
+up to individual filesystems to decide where to store it, but normally
+it would be stored in a hidden extended attribute. It should *not* be
+exposed by the xattr-related system calls such as getxattr() and
+setxattr() because of the special semantics of the encryption xattr.
+(In particular, there would be much confusion if an encryption policy
+were to be added to or removed from anything other than an empty
+directory.) These structs are defined as follows::
+
#define FS_KEY_DERIVATION_NONCE_SIZE 16
- struct fscrypt_context {
- u8 format;
+ #define FSCRYPT_KEY_DESCRIPTOR_SIZE 8
+ struct fscrypt_context_v1 {
+ u8 version;
+ u8 contents_encryption_mode;
+ u8 filenames_encryption_mode;
+ u8 flags;
+ u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
+ };
+
+ #define FSCRYPT_KEY_IDENTIFIER_SIZE 16
+ struct fscrypt_context_v2 {
+ u8 version;
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
- u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
+ u8 __reserved[4];
+ u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
-Note that :c:type:`struct fscrypt_context` contains the same
-information as :c:type:`struct fscrypt_policy` (see `Setting an
-encryption policy`_), except that :c:type:`struct fscrypt_context`
-also contains a nonce. The nonce is randomly generated by the kernel
-and is used to derive the inode's encryption key as described in
-`Per-file keys`_.
+The context structs contain the same information as the corresponding
+policy structs (see `Setting an encryption policy`_), except that the
+context structs also contain a nonce. The nonce is randomly generated
+by the kernel and is used as KDF input or as a tweak to cause
+different files to be encrypted differently; see `Per-file keys`_ and
+`DIRECT_KEY and per-mode keys`_.
Data path changes
-----------------
@@ -647,3 +1147,42 @@ Note that the precise way that filenames are presented to userspace
without the key is subject to change in the future. It is only meant
as a way to temporarily present valid filenames so that commands like
``rm -r`` work as expected on encrypted directories.
+
+Tests
+=====
+
+To test fscrypt, use xfstests, which is Linux's de facto standard
+filesystem test suite. First, run all the tests in the "encrypt"
+group on the relevant filesystem(s). For example, to test ext4 and
+f2fs encryption using `kvm-xfstests
+<https://github.com/tytso/xfstests-bld/blob/master/Documentation/kvm-quickstart.md>`_::
+
+ kvm-xfstests -c ext4,f2fs -g encrypt
+
+UBIFS encryption can also be tested this way, but it should be done in
+a separate command, and it takes some time for kvm-xfstests to set up
+emulated UBI volumes::
+
+ kvm-xfstests -c ubifs -g encrypt
+
+No tests should fail. However, tests that use non-default encryption
+modes (e.g. generic/549 and generic/550) will be skipped if the needed
+algorithms were not built into the kernel's crypto API. Also, tests
+that access the raw block device (e.g. generic/399, generic/548,
+generic/549, generic/550) will be skipped on UBIFS.
+
+Besides running the "encrypt" group tests, for ext4 and f2fs it's also
+possible to run most xfstests with the "test_dummy_encryption" mount
+option. This option causes all new files to be automatically
+encrypted with a dummy key, without having to make any API calls.
+This tests the encrypted I/O paths more thoroughly. To do this with
+kvm-xfstests, use the "encrypt" filesystem configuration::
+
+ kvm-xfstests -c ext4/encrypt,f2fs/encrypt -g auto
+
+Because this runs many more tests than "-g encrypt" does, it takes
+much longer to run; so also consider using `gce-xfstests
+<https://github.com/tytso/xfstests-bld/blob/master/Documentation/gce-xfstests.md>`_
+instead of kvm-xfstests::
+
+ gce-xfstests -c ext4/encrypt,f2fs/encrypt -g auto
diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst
new file mode 100644
index 000000000000..42a0b6dd9e0b
--- /dev/null
+++ b/Documentation/filesystems/fsverity.rst
@@ -0,0 +1,726 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. _fsverity:
+
+=======================================================
+fs-verity: read-only file-based authenticity protection
+=======================================================
+
+Introduction
+============
+
+fs-verity (``fs/verity/``) is a support layer that filesystems can
+hook into to support transparent integrity and authenticity protection
+of read-only files. Currently, it is supported by the ext4 and f2fs
+filesystems. Like fscrypt, not too much filesystem-specific code is
+needed to support fs-verity.
+
+fs-verity is similar to `dm-verity
+<https://www.kernel.org/doc/Documentation/device-mapper/verity.txt>`_
+but works on files rather than block devices. On regular files on
+filesystems supporting fs-verity, userspace can execute an ioctl that
+causes the filesystem to build a Merkle tree for the file and persist
+it to a filesystem-specific location associated with the file.
+
+After this, the file is made readonly, and all reads from the file are
+automatically verified against the file's Merkle tree. Reads of any
+corrupted data, including mmap reads, will fail.
+
+Userspace can use another ioctl to retrieve the root hash (actually
+the "file measurement", which is a hash that includes the root hash)
+that fs-verity is enforcing for the file. This ioctl executes in
+constant time, regardless of the file size.
+
+fs-verity is essentially a way to hash a file in constant time,
+subject to the caveat that reads which would violate the hash will
+fail at runtime.
+
+Use cases
+=========
+
+By itself, the base fs-verity feature only provides integrity
+protection, i.e. detection of accidental (non-malicious) corruption.
+
+However, because fs-verity makes retrieving the file hash extremely
+efficient, it's primarily meant to be used as a tool to support
+authentication (detection of malicious modifications) or auditing
+(logging file hashes before use).
+
+Trusted userspace code (e.g. operating system code running on a
+read-only partition that is itself authenticated by dm-verity) can
+authenticate the contents of an fs-verity file by using the
+`FS_IOC_MEASURE_VERITY`_ ioctl to retrieve its hash, then verifying a
+digital signature of it.
+
+A standard file hash could be used instead of fs-verity. However,
+this is inefficient if the file is large and only a small portion may
+be accessed. This is often the case for Android application package
+(APK) files, for example. These typically contain many translations,
+classes, and other resources that are infrequently or even never
+accessed on a particular device. It would be slow and wasteful to
+read and hash the entire file before starting the application.
+
+Unlike an ahead-of-time hash, fs-verity also re-verifies data each
+time it's paged in. This ensures that malicious disk firmware can't
+undetectably change the contents of the file at runtime.
+
+fs-verity does not replace or obsolete dm-verity. dm-verity should
+still be used on read-only filesystems. fs-verity is for files that
+must live on a read-write filesystem because they are independently
+updated and potentially user-installed, so dm-verity cannot be used.
+
+The base fs-verity feature is a hashing mechanism only; actually
+authenticating the files is up to userspace. However, to meet some
+users' needs, fs-verity optionally supports a simple signature
+verification mechanism where users can configure the kernel to require
+that all fs-verity files be signed by a key loaded into a keyring; see
+`Built-in signature verification`_. Support for fs-verity file hashes
+in IMA (Integrity Measurement Architecture) policies is also planned.
+
+User API
+========
+
+FS_IOC_ENABLE_VERITY
+--------------------
+
+The FS_IOC_ENABLE_VERITY ioctl enables fs-verity on a file. It takes
+in a pointer to a :c:type:`struct fsverity_enable_arg`, defined as
+follows::
+
+ struct fsverity_enable_arg {
+ __u32 version;
+ __u32 hash_algorithm;
+ __u32 block_size;
+ __u32 salt_size;
+ __u64 salt_ptr;
+ __u32 sig_size;
+ __u32 __reserved1;
+ __u64 sig_ptr;
+ __u64 __reserved2[11];
+ };
+
+This structure contains the parameters of the Merkle tree to build for
+the file, and optionally contains a signature. It must be initialized
+as follows:
+
+- ``version`` must be 1.
+- ``hash_algorithm`` must be the identifier for the hash algorithm to
+ use for the Merkle tree, such as FS_VERITY_HASH_ALG_SHA256. See
+ ``include/uapi/linux/fsverity.h`` for the list of possible values.
+- ``block_size`` must be the Merkle tree block size. Currently, this
+ must be equal to the system page size, which is usually 4096 bytes.
+ Other sizes may be supported in the future. This value is not
+ necessarily the same as the filesystem block size.
+- ``salt_size`` is the size of the salt in bytes, or 0 if no salt is
+ provided. The salt is a value that is prepended to every hashed
+ block; it can be used to personalize the hashing for a particular
+ file or device. Currently the maximum salt size is 32 bytes.
+- ``salt_ptr`` is the pointer to the salt, or NULL if no salt is
+ provided.
+- ``sig_size`` is the size of the signature in bytes, or 0 if no
+ signature is provided. Currently the signature is (somewhat
+ arbitrarily) limited to 16128 bytes. See `Built-in signature
+ verification`_ for more information.
+- ``sig_ptr`` is the pointer to the signature, or NULL if no
+ signature is provided.
+- All reserved fields must be zeroed.
+
+FS_IOC_ENABLE_VERITY causes the filesystem to build a Merkle tree for
+the file and persist it to a filesystem-specific location associated
+with the file, then mark the file as a verity file. This ioctl may
+take a long time to execute on large files, and it is interruptible by
+fatal signals.
+
+FS_IOC_ENABLE_VERITY checks for write access to the inode. However,
+it must be executed on an O_RDONLY file descriptor and no processes
+can have the file open for writing. Attempts to open the file for
+writing while this ioctl is executing will fail with ETXTBSY. (This
+is necessary to guarantee that no writable file descriptors will exist
+after verity is enabled, and to guarantee that the file's contents are
+stable while the Merkle tree is being built over it.)
+
+On success, FS_IOC_ENABLE_VERITY returns 0, and the file becomes a
+verity file. On failure (including the case of interruption by a
+fatal signal), no changes are made to the file.
+
+FS_IOC_ENABLE_VERITY can fail with the following errors:
+
+- ``EACCES``: the process does not have write access to the file
+- ``EBADMSG``: the signature is malformed
+- ``EBUSY``: this ioctl is already running on the file
+- ``EEXIST``: the file already has verity enabled
+- ``EFAULT``: the caller provided inaccessible memory
+- ``EINTR``: the operation was interrupted by a fatal signal
+- ``EINVAL``: unsupported version, hash algorithm, or block size; or
+ reserved bits are set; or the file descriptor refers to neither a
+ regular file nor a directory.
+- ``EISDIR``: the file descriptor refers to a directory
+- ``EKEYREJECTED``: the signature doesn't match the file
+- ``EMSGSIZE``: the salt or signature is too long
+- ``ENOKEY``: the fs-verity keyring doesn't contain the certificate
+ needed to verify the signature
+- ``ENOPKG``: fs-verity recognizes the hash algorithm, but it's not
+ available in the kernel's crypto API as currently configured (e.g.
+ for SHA-512, missing CONFIG_CRYPTO_SHA512).
+- ``ENOTTY``: this type of filesystem does not implement fs-verity
+- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
+ support; or the filesystem superblock has not had the 'verity'
+ feature enabled on it; or the filesystem does not support fs-verity
+ on this file. (See `Filesystem support`_.)
+- ``EPERM``: the file is append-only; or, a signature is required and
+ one was not provided.
+- ``EROFS``: the filesystem is read-only
+- ``ETXTBSY``: someone has the file open for writing. This can be the
+ caller's file descriptor, another open file descriptor, or the file
+ reference held by a writable memory map.
+
+FS_IOC_MEASURE_VERITY
+---------------------
+
+The FS_IOC_MEASURE_VERITY ioctl retrieves the measurement of a verity
+file. The file measurement is a digest that cryptographically
+identifies the file contents that are being enforced on reads.
+
+This ioctl takes in a pointer to a variable-length structure::
+
+ struct fsverity_digest {
+ __u16 digest_algorithm;
+ __u16 digest_size; /* input/output */
+ __u8 digest[];
+ };
+
+``digest_size`` is an input/output field. On input, it must be
+initialized to the number of bytes allocated for the variable-length
+``digest`` field.
+
+On success, 0 is returned and the kernel fills in the structure as
+follows:
+
+- ``digest_algorithm`` will be the hash algorithm used for the file
+ measurement. It will match ``fsverity_enable_arg::hash_algorithm``.
+- ``digest_size`` will be the size of the digest in bytes, e.g. 32
+ for SHA-256. (This can be redundant with ``digest_algorithm``.)
+- ``digest`` will be the actual bytes of the digest.
+
+FS_IOC_MEASURE_VERITY is guaranteed to execute in constant time,
+regardless of the size of the file.
+
+FS_IOC_MEASURE_VERITY can fail with the following errors:
+
+- ``EFAULT``: the caller provided inaccessible memory
+- ``ENODATA``: the file is not a verity file
+- ``ENOTTY``: this type of filesystem does not implement fs-verity
+- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
+ support, or the filesystem superblock has not had the 'verity'
+ feature enabled on it. (See `Filesystem support`_.)
+- ``EOVERFLOW``: the digest is longer than the specified
+ ``digest_size`` bytes. Try providing a larger buffer.
+
+FS_IOC_GETFLAGS
+---------------
+
+The existing ioctl FS_IOC_GETFLAGS (which isn't specific to fs-verity)
+can also be used to check whether a file has fs-verity enabled or not.
+To do so, check for FS_VERITY_FL (0x00100000) in the returned flags.
+
+The verity flag is not settable via FS_IOC_SETFLAGS. You must use
+FS_IOC_ENABLE_VERITY instead, since parameters must be provided.
+
+Accessing verity files
+======================
+
+Applications can transparently access a verity file just like a
+non-verity one, with the following exceptions:
+
+- Verity files are readonly. They cannot be opened for writing or
+ truncate()d, even if the file mode bits allow it. Attempts to do
+ one of these things will fail with EPERM. However, changes to
+ metadata such as owner, mode, timestamps, and xattrs are still
+ allowed, since these are not measured by fs-verity. Verity files
+ can also still be renamed, deleted, and linked to.
+
+- Direct I/O is not supported on verity files. Attempts to use direct
+ I/O on such files will fall back to buffered I/O.
+
+- DAX (Direct Access) is not supported on verity files, because this
+ would circumvent the data verification.
+
+- Reads of data that doesn't match the verity Merkle tree will fail
+ with EIO (for read()) or SIGBUS (for mmap() reads).
+
+- If the sysctl "fs.verity.require_signatures" is set to 1 and the
+ file's verity measurement is not signed by a key in the fs-verity
+ keyring, then opening the file will fail. See `Built-in signature
+ verification`_.
+
+Direct access to the Merkle tree is not supported. Therefore, if a
+verity file is copied, or is backed up and restored, then it will lose
+its "verity"-ness. fs-verity is primarily meant for files like
+executables that are managed by a package manager.
+
+File measurement computation
+============================
+
+This section describes how fs-verity hashes the file contents using a
+Merkle tree to produce the "file measurement" which cryptographically
+identifies the file contents. This algorithm is the same for all
+filesystems that support fs-verity.
+
+Userspace only needs to be aware of this algorithm if it needs to
+compute the file measurement itself, e.g. in order to sign the file.
+
+.. _fsverity_merkle_tree:
+
+Merkle tree
+-----------
+
+The file contents is divided into blocks, where the block size is
+configurable but is usually 4096 bytes. The end of the last block is
+zero-padded if needed. Each block is then hashed, producing the first
+level of hashes. Then, the hashes in this first level are grouped
+into 'blocksize'-byte blocks (zero-padding the ends as needed) and
+these blocks are hashed, producing the second level of hashes. This
+proceeds up the tree until only a single block remains. The hash of
+this block is the "Merkle tree root hash".
+
+If the file fits in one block and is nonempty, then the "Merkle tree
+root hash" is simply the hash of the single data block. If the file
+is empty, then the "Merkle tree root hash" is all zeroes.
+
+The "blocks" here are not necessarily the same as "filesystem blocks".
+
+If a salt was specified, then it's zero-padded to the closest multiple
+of the input size of the hash algorithm's compression function, e.g.
+64 bytes for SHA-256 or 128 bytes for SHA-512. The padded salt is
+prepended to every data or Merkle tree block that is hashed.
+
+The purpose of the block padding is to cause every hash to be taken
+over the same amount of data, which simplifies the implementation and
+keeps open more possibilities for hardware acceleration. The purpose
+of the salt padding is to make the salting "free" when the salted hash
+state is precomputed, then imported for each hash.
+
+Example: in the recommended configuration of SHA-256 and 4K blocks,
+128 hash values fit in each block. Thus, each level of the Merkle
+tree is approximately 128 times smaller than the previous, and for
+large files the Merkle tree's size converges to approximately 1/127 of
+the original file size. However, for small files, the padding is
+significant, making the space overhead proportionally more.
+
+.. _fsverity_descriptor:
+
+fs-verity descriptor
+--------------------
+
+By itself, the Merkle tree root hash is ambiguous. For example, it
+can't a distinguish a large file from a small second file whose data
+is exactly the top-level hash block of the first file. Ambiguities
+also arise from the convention of padding to the next block boundary.
+
+To solve this problem, the verity file measurement is actually
+computed as a hash of the following structure, which contains the
+Merkle tree root hash as well as other fields such as the file size::
+
+ struct fsverity_descriptor {
+ __u8 version; /* must be 1 */
+ __u8 hash_algorithm; /* Merkle tree hash algorithm */
+ __u8 log_blocksize; /* log2 of size of data and tree blocks */
+ __u8 salt_size; /* size of salt in bytes; 0 if none */
+ __le32 sig_size; /* must be 0 */
+ __le64 data_size; /* size of file the Merkle tree is built over */
+ __u8 root_hash[64]; /* Merkle tree root hash */
+ __u8 salt[32]; /* salt prepended to each hashed block */
+ __u8 __reserved[144]; /* must be 0's */
+ };
+
+Note that the ``sig_size`` field must be set to 0 for the purpose of
+computing the file measurement, even if a signature was provided (or
+will be provided) to `FS_IOC_ENABLE_VERITY`_.
+
+Built-in signature verification
+===============================
+
+With CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y, fs-verity supports putting
+a portion of an authentication policy (see `Use cases`_) in the
+kernel. Specifically, it adds support for:
+
+1. At fs-verity module initialization time, a keyring ".fs-verity" is
+ created. The root user can add trusted X.509 certificates to this
+ keyring using the add_key() system call, then (when done)
+ optionally use keyctl_restrict_keyring() to prevent additional
+ certificates from being added.
+
+2. `FS_IOC_ENABLE_VERITY`_ accepts a pointer to a PKCS#7 formatted
+ detached signature in DER format of the file measurement. On
+ success, this signature is persisted alongside the Merkle tree.
+ Then, any time the file is opened, the kernel will verify the
+ file's actual measurement against this signature, using the
+ certificates in the ".fs-verity" keyring.
+
+3. A new sysctl "fs.verity.require_signatures" is made available.
+ When set to 1, the kernel requires that all verity files have a
+ correctly signed file measurement as described in (2).
+
+File measurements must be signed in the following format, which is
+similar to the structure used by `FS_IOC_MEASURE_VERITY`_::
+
+ struct fsverity_signed_digest {
+ char magic[8]; /* must be "FSVerity" */
+ __le16 digest_algorithm;
+ __le16 digest_size;
+ __u8 digest[];
+ };
+
+fs-verity's built-in signature verification support is meant as a
+relatively simple mechanism that can be used to provide some level of
+authenticity protection for verity files, as an alternative to doing
+the signature verification in userspace or using IMA-appraisal.
+However, with this mechanism, userspace programs still need to check
+that the verity bit is set, and there is no protection against verity
+files being swapped around.
+
+Filesystem support
+==================
+
+fs-verity is currently supported by the ext4 and f2fs filesystems.
+The CONFIG_FS_VERITY kconfig option must be enabled to use fs-verity
+on either filesystem.
+
+``include/linux/fsverity.h`` declares the interface between the
+``fs/verity/`` support layer and filesystems. Briefly, filesystems
+must provide an ``fsverity_operations`` structure that provides
+methods to read and write the verity metadata to a filesystem-specific
+location, including the Merkle tree blocks and
+``fsverity_descriptor``. Filesystems must also call functions in
+``fs/verity/`` at certain times, such as when a file is opened or when
+pages have been read into the pagecache. (See `Verifying data`_.)
+
+ext4
+----
+
+ext4 supports fs-verity since Linux TODO and e2fsprogs v1.45.2.
+
+To create verity files on an ext4 filesystem, the filesystem must have
+been formatted with ``-O verity`` or had ``tune2fs -O verity`` run on
+it. "verity" is an RO_COMPAT filesystem feature, so once set, old
+kernels will only be able to mount the filesystem readonly, and old
+versions of e2fsck will be unable to check the filesystem. Moreover,
+currently ext4 only supports mounting a filesystem with the "verity"
+feature when its block size is equal to PAGE_SIZE (often 4096 bytes).
+
+ext4 sets the EXT4_VERITY_FL on-disk inode flag on verity files. It
+can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be cleared.
+
+ext4 also supports encryption, which can be used simultaneously with
+fs-verity. In this case, the plaintext data is verified rather than
+the ciphertext. This is necessary in order to make the file
+measurement meaningful, since every file is encrypted differently.
+
+ext4 stores the verity metadata (Merkle tree and fsverity_descriptor)
+past the end of the file, starting at the first 64K boundary beyond
+i_size. This approach works because (a) verity files are readonly,
+and (b) pages fully beyond i_size aren't visible to userspace but can
+be read/written internally by ext4 with only some relatively small
+changes to ext4. This approach avoids having to depend on the
+EA_INODE feature and on rearchitecturing ext4's xattr support to
+support paging multi-gigabyte xattrs into memory, and to support
+encrypting xattrs. Note that the verity metadata *must* be encrypted
+when the file is, since it contains hashes of the plaintext data.
+
+Currently, ext4 verity only supports the case where the Merkle tree
+block size, filesystem block size, and page size are all the same. It
+also only supports extent-based files.
+
+f2fs
+----
+
+f2fs supports fs-verity since Linux TODO and f2fs-tools v1.11.0.
+
+To create verity files on an f2fs filesystem, the filesystem must have
+been formatted with ``-O verity``.
+
+f2fs sets the FADVISE_VERITY_BIT on-disk inode flag on verity files.
+It can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be
+cleared.
+
+Like ext4, f2fs stores the verity metadata (Merkle tree and
+fsverity_descriptor) past the end of the file, starting at the first
+64K boundary beyond i_size. See explanation for ext4 above.
+Moreover, f2fs supports at most 4096 bytes of xattr entries per inode
+which wouldn't be enough for even a single Merkle tree block.
+
+Currently, f2fs verity only supports a Merkle tree block size of 4096.
+Also, f2fs doesn't support enabling verity on files that currently
+have atomic or volatile writes pending.
+
+Implementation details
+======================
+
+Verifying data
+--------------
+
+fs-verity ensures that all reads of a verity file's data are verified,
+regardless of which syscall is used to do the read (e.g. mmap(),
+read(), pread()) and regardless of whether it's the first read or a
+later read (unless the later read can return cached data that was
+already verified). Below, we describe how filesystems implement this.
+
+Pagecache
+~~~~~~~~~
+
+For filesystems using Linux's pagecache, the ``->readpage()`` and
+``->readpages()`` methods must be modified to verify pages before they
+are marked Uptodate. Merely hooking ``->read_iter()`` would be
+insufficient, since ``->read_iter()`` is not used for memory maps.
+
+Therefore, fs/verity/ provides a function fsverity_verify_page() which
+verifies a page that has been read into the pagecache of a verity
+inode, but is still locked and not Uptodate, so it's not yet readable
+by userspace. As needed to do the verification,
+fsverity_verify_page() will call back into the filesystem to read
+Merkle tree pages via fsverity_operations::read_merkle_tree_page().
+
+fsverity_verify_page() returns false if verification failed; in this
+case, the filesystem must not set the page Uptodate. Following this,
+as per the usual Linux pagecache behavior, attempts by userspace to
+read() from the part of the file containing the page will fail with
+EIO, and accesses to the page within a memory map will raise SIGBUS.
+
+fsverity_verify_page() currently only supports the case where the
+Merkle tree block size is equal to PAGE_SIZE (often 4096 bytes).
+
+In principle, fsverity_verify_page() verifies the entire path in the
+Merkle tree from the data page to the root hash. However, for
+efficiency the filesystem may cache the hash pages. Therefore,
+fsverity_verify_page() only ascends the tree reading hash pages until
+an already-verified hash page is seen, as indicated by the PageChecked
+bit being set. It then verifies the path to that page.
+
+This optimization, which is also used by dm-verity, results in
+excellent sequential read performance. This is because usually (e.g.
+127 in 128 times for 4K blocks and SHA-256) the hash page from the
+bottom level of the tree will already be cached and checked from
+reading a previous data page. However, random reads perform worse.
+
+Block device based filesystems
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Block device based filesystems (e.g. ext4 and f2fs) in Linux also use
+the pagecache, so the above subsection applies too. However, they
+also usually read many pages from a file at once, grouped into a
+structure called a "bio". To make it easier for these types of
+filesystems to support fs-verity, fs/verity/ also provides a function
+fsverity_verify_bio() which verifies all pages in a bio.
+
+ext4 and f2fs also support encryption. If a verity file is also
+encrypted, the pages must be decrypted before being verified. To
+support this, these filesystems allocate a "post-read context" for
+each bio and store it in ``->bi_private``::
+
+ struct bio_post_read_ctx {
+ struct bio *bio;
+ struct work_struct work;
+ unsigned int cur_step;
+ unsigned int enabled_steps;
+ };
+
+``enabled_steps`` is a bitmask that specifies whether decryption,
+verity, or both is enabled. After the bio completes, for each needed
+postprocessing step the filesystem enqueues the bio_post_read_ctx on a
+workqueue, and then the workqueue work does the decryption or
+verification. Finally, pages where no decryption or verity error
+occurred are marked Uptodate, and the pages are unlocked.
+
+Files on ext4 and f2fs may contain holes. Normally, ``->readpages()``
+simply zeroes holes and sets the corresponding pages Uptodate; no bios
+are issued. To prevent this case from bypassing fs-verity, these
+filesystems use fsverity_verify_page() to verify hole pages.
+
+ext4 and f2fs disable direct I/O on verity files, since otherwise
+direct I/O would bypass fs-verity. (They also do the same for
+encrypted files.)
+
+Userspace utility
+=================
+
+This document focuses on the kernel, but a userspace utility for
+fs-verity can be found at:
+
+ https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/fsverity-utils.git
+
+See the README.md file in the fsverity-utils source tree for details,
+including examples of setting up fs-verity protected files.
+
+Tests
+=====
+
+To test fs-verity, use xfstests. For example, using `kvm-xfstests
+<https://github.com/tytso/xfstests-bld/blob/master/Documentation/kvm-quickstart.md>`_::
+
+ kvm-xfstests -c ext4,f2fs -g verity
+
+FAQ
+===
+
+This section answers frequently asked questions about fs-verity that
+weren't already directly answered in other parts of this document.
+
+:Q: Why isn't fs-verity part of IMA?
+:A: fs-verity and IMA (Integrity Measurement Architecture) have
+ different focuses. fs-verity is a filesystem-level mechanism for
+ hashing individual files using a Merkle tree. In contrast, IMA
+ specifies a system-wide policy that specifies which files are
+ hashed and what to do with those hashes, such as log them,
+ authenticate them, or add them to a measurement list.
+
+ IMA is planned to support the fs-verity hashing mechanism as an
+ alternative to doing full file hashes, for people who want the
+ performance and security benefits of the Merkle tree based hash.
+ But it doesn't make sense to force all uses of fs-verity to be
+ through IMA. As a standalone filesystem feature, fs-verity
+ already meets many users' needs, and it's testable like other
+ filesystem features e.g. with xfstests.
+
+:Q: Isn't fs-verity useless because the attacker can just modify the
+ hashes in the Merkle tree, which is stored on-disk?
+:A: To verify the authenticity of an fs-verity file you must verify
+ the authenticity of the "file measurement", which is basically the
+ root hash of the Merkle tree. See `Use cases`_.
+
+:Q: Isn't fs-verity useless because the attacker can just replace a
+ verity file with a non-verity one?
+:A: See `Use cases`_. In the initial use case, it's really trusted
+ userspace code that authenticates the files; fs-verity is just a
+ tool to do this job efficiently and securely. The trusted
+ userspace code will consider non-verity files to be inauthentic.
+
+:Q: Why does the Merkle tree need to be stored on-disk? Couldn't you
+ store just the root hash?
+:A: If the Merkle tree wasn't stored on-disk, then you'd have to
+ compute the entire tree when the file is first accessed, even if
+ just one byte is being read. This is a fundamental consequence of
+ how Merkle tree hashing works. To verify a leaf node, you need to
+ verify the whole path to the root hash, including the root node
+ (the thing which the root hash is a hash of). But if the root
+ node isn't stored on-disk, you have to compute it by hashing its
+ children, and so on until you've actually hashed the entire file.
+
+ That defeats most of the point of doing a Merkle tree-based hash,
+ since if you have to hash the whole file ahead of time anyway,
+ then you could simply do sha256(file) instead. That would be much
+ simpler, and a bit faster too.
+
+ It's true that an in-memory Merkle tree could still provide the
+ advantage of verification on every read rather than just on the
+ first read. However, it would be inefficient because every time a
+ hash page gets evicted (you can't pin the entire Merkle tree into
+ memory, since it may be very large), in order to restore it you
+ again need to hash everything below it in the tree. This again
+ defeats most of the point of doing a Merkle tree-based hash, since
+ a single block read could trigger re-hashing gigabytes of data.
+
+:Q: But couldn't you store just the leaf nodes and compute the rest?
+:A: See previous answer; this really just moves up one level, since
+ one could alternatively interpret the data blocks as being the
+ leaf nodes of the Merkle tree. It's true that the tree can be
+ computed much faster if the leaf level is stored rather than just
+ the data, but that's only because each level is less than 1% the
+ size of the level below (assuming the recommended settings of
+ SHA-256 and 4K blocks). For the exact same reason, by storing
+ "just the leaf nodes" you'd already be storing over 99% of the
+ tree, so you might as well simply store the whole tree.
+
+:Q: Can the Merkle tree be built ahead of time, e.g. distributed as
+ part of a package that is installed to many computers?
+:A: This isn't currently supported. It was part of the original
+ design, but was removed to simplify the kernel UAPI and because it
+ wasn't a critical use case. Files are usually installed once and
+ used many times, and cryptographic hashing is somewhat fast on
+ most modern processors.
+
+:Q: Why doesn't fs-verity support writes?
+:A: Write support would be very difficult and would require a
+ completely different design, so it's well outside the scope of
+ fs-verity. Write support would require:
+
+ - A way to maintain consistency between the data and hashes,
+ including all levels of hashes, since corruption after a crash
+ (especially of potentially the entire file!) is unacceptable.
+ The main options for solving this are data journalling,
+ copy-on-write, and log-structured volume. But it's very hard to
+ retrofit existing filesystems with new consistency mechanisms.
+ Data journalling is available on ext4, but is very slow.
+
+ - Rebuilding the the Merkle tree after every write, which would be
+ extremely inefficient. Alternatively, a different authenticated
+ dictionary structure such as an "authenticated skiplist" could
+ be used. However, this would be far more complex.
+
+ Compare it to dm-verity vs. dm-integrity. dm-verity is very
+ simple: the kernel just verifies read-only data against a
+ read-only Merkle tree. In contrast, dm-integrity supports writes
+ but is slow, is much more complex, and doesn't actually support
+ full-device authentication since it authenticates each sector
+ independently, i.e. there is no "root hash". It doesn't really
+ make sense for the same device-mapper target to support these two
+ very different cases; the same applies to fs-verity.
+
+:Q: Since verity files are immutable, why isn't the immutable bit set?
+:A: The existing "immutable" bit (FS_IMMUTABLE_FL) already has a
+ specific set of semantics which not only make the file contents
+ read-only, but also prevent the file from being deleted, renamed,
+ linked to, or having its owner or mode changed. These extra
+ properties are unwanted for fs-verity, so reusing the immutable
+ bit isn't appropriate.
+
+:Q: Why does the API use ioctls instead of setxattr() and getxattr()?
+:A: Abusing the xattr interface for basically arbitrary syscalls is
+ heavily frowned upon by most of the Linux filesystem developers.
+ An xattr should really just be an xattr on-disk, not an API to
+ e.g. magically trigger construction of a Merkle tree.
+
+:Q: Does fs-verity support remote filesystems?
+:A: Only ext4 and f2fs support is implemented currently, but in
+ principle any filesystem that can store per-file verity metadata
+ can support fs-verity, regardless of whether it's local or remote.
+ Some filesystems may have fewer options of where to store the
+ verity metadata; one possibility is to store it past the end of
+ the file and "hide" it from userspace by manipulating i_size. The
+ data verification functions provided by ``fs/verity/`` also assume
+ that the filesystem uses the Linux pagecache, but both local and
+ remote filesystems normally do so.
+
+:Q: Why is anything filesystem-specific at all? Shouldn't fs-verity
+ be implemented entirely at the VFS level?
+:A: There are many reasons why this is not possible or would be very
+ difficult, including the following:
+
+ - To prevent bypassing verification, pages must not be marked
+ Uptodate until they've been verified. Currently, each
+ filesystem is responsible for marking pages Uptodate via
+ ``->readpages()``. Therefore, currently it's not possible for
+ the VFS to do the verification on its own. Changing this would
+ require significant changes to the VFS and all filesystems.
+
+ - It would require defining a filesystem-independent way to store
+ the verity metadata. Extended attributes don't work for this
+ because (a) the Merkle tree may be gigabytes, but many
+ filesystems assume that all xattrs fit into a single 4K
+ filesystem block, and (b) ext4 and f2fs encryption doesn't
+ encrypt xattrs, yet the Merkle tree *must* be encrypted when the
+ file contents are, because it stores hashes of the plaintext
+ file contents.
+
+ So the verity metadata would have to be stored in an actual
+ file. Using a separate file would be very ugly, since the
+ metadata is fundamentally part of the file to be protected, and
+ it could cause problems where users could delete the real file
+ but not the metadata file or vice versa. On the other hand,
+ having it be in the same file would break applications unless
+ filesystems' notion of i_size were divorced from the VFS's,
+ which would be complex and require changes to all filesystems.
+
+ - It's desirable that FS_IOC_ENABLE_VERITY uses the filesystem's
+ transaction mechanism so that either the file ends up with
+ verity enabled, or no changes were made. Allowing intermediate
+ states to occur after a crash may cause problems.
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 1131c34d77f6..2c3a9f761205 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -16,9 +16,14 @@ algorithms work.
.. toctree::
:maxdepth: 2
- path-lookup.rst
+ vfs
+ path-lookup
api-summary
splice
+ locking
+ directory-locking
+
+ porting
Filesystem support layers
=========================
@@ -31,13 +36,14 @@ filesystem implementations.
journalling
fscrypt
+ fsverity
-Filesystem-specific documentation
-=================================
+Filesystems
+===========
-Documentation for individual filesystem types can be found here.
+Documentation for filesystem implementations.
.. toctree::
:maxdepth: 2
- binderfs.rst
+ virtiofs
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/locking.rst
index dac435575384..fc3a0704553c 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/locking.rst
@@ -1,14 +1,22 @@
- The text below describes the locking rules for VFS-related methods.
+=======
+Locking
+=======
+
+The text below describes the locking rules for VFS-related methods.
It is (believed to be) up-to-date. *Please*, if you change anything in
prototypes or locking protocols - update this file. And update the relevant
instances in the tree, don't leave that to maintainers of filesystems/devices/
etc. At the very least, put the list of dubious cases in the end of this file.
Don't turn it into log - maintainers of out-of-the-tree code are supposed to
be able to use diff(1).
- Thing currently missing here: socket operations. Alexey?
---------------------------- dentry_operations --------------------------
-prototypes:
+Thing currently missing here: socket operations. Alexey?
+
+dentry_operations
+=================
+
+prototypes::
+
int (*d_revalidate)(struct dentry *, unsigned int);
int (*d_weak_revalidate)(struct dentry *, unsigned int);
int (*d_hash)(const struct dentry *, struct qstr *);
@@ -24,23 +32,30 @@ prototypes:
struct dentry *(*d_real)(struct dentry *, const struct inode *);
locking rules:
- rename_lock ->d_lock may block rcu-walk
-d_revalidate: no no yes (ref-walk) maybe
-d_weak_revalidate:no no yes no
-d_hash no no no maybe
-d_compare: yes no no maybe
-d_delete: no yes no no
-d_init: no no yes no
-d_release: no no yes no
-d_prune: no yes no no
-d_iput: no no yes no
-d_dname: no no no no
-d_automount: no no yes no
-d_manage: no no yes (ref-walk) maybe
-d_real no no yes no
-
---------------------------- inode_operations ---------------------------
-prototypes:
+
+================== =========== ======== ============== ========
+ops rename_lock ->d_lock may block rcu-walk
+================== =========== ======== ============== ========
+d_revalidate: no no yes (ref-walk) maybe
+d_weak_revalidate: no no yes no
+d_hash no no no maybe
+d_compare: yes no no maybe
+d_delete: no yes no no
+d_init: no no yes no
+d_release: no no yes no
+d_prune: no yes no no
+d_iput: no no yes no
+d_dname: no no no no
+d_automount: no no yes no
+d_manage: no no yes (ref-walk) maybe
+d_real no no yes no
+================== =========== ======== ============== ========
+
+inode_operations
+================
+
+prototypes::
+
int (*create) (struct inode *,struct dentry *,umode_t, bool);
struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
int (*link) (struct dentry *,struct inode *,struct dentry *);
@@ -68,7 +83,10 @@ prototypes:
locking rules:
all may block
- i_rwsem(inode)
+
+============ =============================================
+ops i_rwsem(inode)
+============ =============================================
lookup: shared
create: exclusive
link: exclusive (both)
@@ -89,17 +107,21 @@ fiemap: no
update_time: no
atomic_open: exclusive
tmpfile: no
+============ =============================================
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_rwsem
exclusive on victim.
cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
-See Documentation/filesystems/directory-locking for more detailed discussion
+See Documentation/filesystems/directory-locking.rst for more detailed discussion
of the locking scheme for directory operations.
------------------------ xattr_handler operations -----------------------
-prototypes:
+xattr_handler operations
+========================
+
+prototypes::
+
bool (*list)(struct dentry *dentry);
int (*get)(const struct xattr_handler *handler, struct dentry *dentry,
struct inode *inode, const char *name, void *buffer,
@@ -110,13 +132,20 @@ prototypes:
locking rules:
all may block
- i_rwsem(inode)
+
+===== ==============
+ops i_rwsem(inode)
+===== ==============
list: no
get: no
set: exclusive
+===== ==============
+
+super_operations
+================
+
+prototypes::
---------------------------- super_operations ---------------------------
-prototypes:
struct inode *(*alloc_inode)(struct super_block *sb);
void (*free_inode)(struct inode *);
void (*destroy_inode)(struct inode *);
@@ -138,7 +167,10 @@ prototypes:
locking rules:
All may block [not true, see below]
- s_umount
+
+====================== ============ ========================
+ops s_umount note
+====================== ============ ========================
alloc_inode:
free_inode: called from RCU callback
destroy_inode:
@@ -157,6 +189,7 @@ show_options: no (namespace_sem)
quota_read: no (see below)
quota_write: no (see below)
bdev_try_to_free_page: no (see below)
+====================== ============ ========================
->statfs() has s_umount (shared) when called by ustat(2) (native or
compat), but that's an accident of bad API; s_umount is used to pin
@@ -164,31 +197,44 @@ the superblock down when we only have dev_t given us by userland to
identify the superblock. Everything else (statfs(), fstatfs(), etc.)
doesn't hold it when calling ->statfs() - superblock is pinned down
by resolving the pathname passed to syscall.
+
->quota_read() and ->quota_write() functions are both guaranteed to
be the only ones operating on the quota file by the quota code (via
dqio_sem) (unless an admin really wants to screw up something and
writes to quota files with quotas on). For other details about locking
see also dquot_operations section.
+
->bdev_try_to_free_page is called from the ->releasepage handler of
the block device inode. See there for more details.
---------------------------- file_system_type ---------------------------
-prototypes:
+file_system_type
+================
+
+prototypes::
+
struct dentry *(*mount) (struct file_system_type *, int,
const char *, void *);
void (*kill_sb) (struct super_block *);
+
locking rules:
- may block
+
+======= =========
+ops may block
+======= =========
mount yes
kill_sb yes
+======= =========
->mount() returns ERR_PTR or the root dentry; its superblock should be locked
on return.
+
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
unlocks and drops the reference.
---------------------------- address_space_operations --------------------------
-prototypes:
+address_space_operations
+========================
+prototypes::
+
int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage)(struct file *, struct page *);
int (*writepages)(struct address_space *, struct writeback_control *);
@@ -218,14 +264,16 @@ prototypes:
locking rules:
All except set_page_dirty and freepage may block
- PageLocked(page) i_rwsem
+====================== ======================== =========
+ops PageLocked(page) i_rwsem
+====================== ======================== =========
writepage: yes, unlocks (see below)
readpage: yes, unlocks
writepages:
set_page_dirty no
readpages:
-write_begin: locks the page exclusive
-write_end: yes, unlocks exclusive
+write_begin: locks the page exclusive
+write_end: yes, unlocks exclusive
bmap:
invalidatepage: yes
releasepage: yes
@@ -239,17 +287,18 @@ is_partially_uptodate: yes
error_remove_page: yes
swap_activate: no
swap_deactivate: no
+====================== ======================== =========
- ->write_begin(), ->write_end() and ->readpage() may be called from
+->write_begin(), ->write_end() and ->readpage() may be called from
the request handler (/dev/loop).
- ->readpage() unlocks the page, either synchronously or via I/O
+->readpage() unlocks the page, either synchronously or via I/O
completion.
- ->readpages() populates the pagecache with the passed pages and starts
+->readpages() populates the pagecache with the passed pages and starts
I/O against them. They come unlocked upon I/O completion.
- ->writepage() is used for two purposes: for "memory cleansing" and for
+->writepage() is used for two purposes: for "memory cleansing" and for
"sync". These are quite different operations and the behaviour may differ
depending upon the mode.
@@ -297,72 +346,81 @@ will leave the page itself marked clean but it will be tagged as dirty in the
radix tree. This incoherency can lead to all sorts of hard-to-debug problems
in the filesystem like having dirty inodes at umount and losing written data.
- ->writepages() is used for periodic writeback and for syscall-initiated
+->writepages() is used for periodic writeback and for syscall-initiated
sync operations. The address_space should start I/O against at least
-*nr_to_write pages. *nr_to_write must be decremented for each page which is
-written. The address_space implementation may write more (or less) pages
-than *nr_to_write asks for, but it should try to be reasonably close. If
-nr_to_write is NULL, all dirty pages must be written.
+``*nr_to_write`` pages. ``*nr_to_write`` must be decremented for each page
+which is written. The address_space implementation may write more (or less)
+pages than ``*nr_to_write`` asks for, but it should try to be reasonably close.
+If nr_to_write is NULL, all dirty pages must be written.
writepages should _only_ write pages which are present on
mapping->io_pages.
- ->set_page_dirty() is called from various places in the kernel
+->set_page_dirty() is called from various places in the kernel
when the target page is marked as needing writeback. It may be called
under spinlock (it cannot block) and is sometimes called with the page
not locked.
- ->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
+->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
filesystems and by the swapper. The latter will eventually go away. Please,
keep it that way and don't breed new callers.
- ->invalidatepage() is called when the filesystem must attempt to drop
+->invalidatepage() is called when the filesystem must attempt to drop
some or all of the buffers from the page when it is being truncated. It
returns zero on success. If ->invalidatepage is zero, the kernel uses
block_invalidatepage() instead.
- ->releasepage() is called when the kernel is about to try to drop the
+->releasepage() is called when the kernel is about to try to drop the
buffers from the page in preparation for freeing it. It returns zero to
indicate that the buffers are (or may be) freeable. If ->releasepage is zero,
the kernel assumes that the fs has no private interest in the buffers.
- ->freepage() is called when the kernel is done dropping the page
+->freepage() is called when the kernel is done dropping the page
from the page cache.
- ->launder_page() may be called prior to releasing a page if
+->launder_page() may be called prior to releasing a page if
it is still found to be dirty. It returns zero if the page was successfully
cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.
- ->swap_activate will be called with a non-zero argument on
+->swap_activate will be called with a non-zero argument on
files backing (non block device backed) swapfiles. A return value
of zero indicates success, in which case this file can be used for
backing swapspace. The swapspace operations will be proxied to the
address space operations.
- ->swap_deactivate() will be called in the sys_swapoff()
+->swap_deactivate() will be called in the sys_swapoff()
path after ->swap_activate() returned success.
------------------------ file_lock_operations ------------------------------
-prototypes:
+file_lock_operations
+====================
+
+prototypes::
+
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
void (*fl_release_private)(struct file_lock *);
locking rules:
- inode->i_lock may block
+
+=================== ============= =========
+ops inode->i_lock may block
+=================== ============= =========
fl_copy_lock: yes no
-fl_release_private: maybe maybe[1]
+fl_release_private: maybe maybe[1]_
+=================== ============= =========
+
+.. [1]:
+ ->fl_release_private for flock or POSIX locks is currently allowed
+ to block. Leases however can still be freed while the i_lock is held and
+ so fl_release_private called on a lease should not block.
-[1]: ->fl_release_private for flock or POSIX locks is currently allowed
-to block. Leases however can still be freed while the i_lock is held and
-so fl_release_private called on a lease should not block.
+lock_manager_operations
+=======================
+
+prototypes::
------------------------ lock_manager_operations ---------------------------
-prototypes:
- int (*lm_compare_owner)(struct file_lock *, struct file_lock *);
- unsigned long (*lm_owner_key)(struct file_lock *);
void (*lm_notify)(struct file_lock *); /* unblock callback */
int (*lm_grant)(struct file_lock *, struct file_lock *, int);
void (*lm_break)(struct file_lock *); /* break_lease callback */
@@ -370,36 +428,33 @@ prototypes:
locking rules:
- inode->i_lock blocked_lock_lock may block
-lm_compare_owner: yes[1] maybe no
-lm_owner_key yes[1] yes no
+========== ============= ================= =========
+ops inode->i_lock blocked_lock_lock may block
+========== ============= ================= =========
lm_notify: yes yes no
lm_grant: no no no
lm_break: yes no no
lm_change yes no no
+========== ============= ================= =========
+
+buffer_head
+===========
+
+prototypes::
-[1]: ->lm_compare_owner and ->lm_owner_key are generally called with
-*an* inode->i_lock held. It may not be the i_lock of the inode
-associated with either file_lock argument! This is the case with deadlock
-detection, since the code has to chase down the owners of locks that may
-be entirely unrelated to the one on which the lock is being acquired.
-For deadlock detection however, the blocked_lock_lock is also held. The
-fact that these locks are held ensures that the file_locks do not
-disappear out from under you while doing the comparison or generating an
-owner key.
-
---------------------------- buffer_head -----------------------------------
-prototypes:
void (*b_end_io)(struct buffer_head *bh, int uptodate);
locking rules:
- called from interrupts. In other words, extreme care is needed here.
+
+called from interrupts. In other words, extreme care is needed here.
bh is locked, but that's all warranties we have here. Currently only RAID1,
highmem, fs/buffer.c, and fs/ntfs/aops.c are providing these. Block devices
call this method upon the IO completion.
---------------------------- block_device_operations -----------------------
-prototypes:
+block_device_operations
+=======================
+prototypes::
+
int (*open) (struct block_device *, fmode_t);
int (*release) (struct gendisk *, fmode_t);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
@@ -413,7 +468,10 @@ prototypes:
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
locking rules:
- bd_mutex
+
+======================= ===================
+ops bd_mutex
+======================= ===================
open: yes
release: yes
ioctl: no
@@ -424,6 +482,7 @@ unlock_native_capacity: no
revalidate_disk: no
getgeo: no
swap_slot_free_notify: no (see below)
+======================= ===================
media_changed, unlock_native_capacity and revalidate_disk are called only from
check_disk_change().
@@ -432,8 +491,11 @@ swap_slot_free_notify is called with swap_lock and sometimes the page lock
held.
---------------------------- file_operations -------------------------------
-prototypes:
+file_operations
+===============
+
+prototypes::
+
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
@@ -469,7 +531,6 @@ prototypes:
size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **, void **);
long (*fallocate)(struct file *, int, loff_t, loff_t);
-};
locking rules:
All may block.
@@ -504,8 +565,11 @@ in sys_read() and friends.
the lease within the individual filesystem to record the result of the
operation
---------------------------- dquot_operations -------------------------------
-prototypes:
+dquot_operations
+================
+
+prototypes::
+
int (*write_dquot) (struct dquot *);
int (*acquire_dquot) (struct dquot *);
int (*release_dquot) (struct dquot *);
@@ -517,20 +581,26 @@ a proper locking wrt the filesystem and call the generic quota operations.
What filesystem should expect from the generic quota functions:
- FS recursion Held locks when called
+============== ============ =========================
+ops FS recursion Held locks when called
+============== ============ =========================
write_dquot: yes dqonoff_sem or dqptr_sem
acquire_dquot: yes dqonoff_sem or dqptr_sem
release_dquot: yes dqonoff_sem or dqptr_sem
mark_dirty: no -
write_info: yes dqonoff_sem
+============== ============ =========================
FS recursion means calling ->quota_read() and ->quota_write() from superblock
operations.
More details about quota locking can be found in fs/dquot.c.
---------------------------- vm_operations_struct -----------------------------
-prototypes:
+vm_operations_struct
+====================
+
+prototypes::
+
void (*open)(struct vm_area_struct*);
void (*close)(struct vm_area_struct*);
vm_fault_t (*fault)(struct vm_area_struct*, struct vm_fault *);
@@ -539,7 +609,10 @@ prototypes:
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
locking rules:
- mmap_sem PageLocked(page)
+
+============= ======== ===========================
+ops mmap_sem PageLocked(page)
+============= ======== ===========================
open: yes
close: yes
fault: yes can return with page locked
@@ -547,8 +620,9 @@ map_pages: yes
page_mkwrite: yes can return with page locked
pfn_mkwrite: yes
access: yes
+============= ======== ===========================
- ->fault() is called when a previously not present pte is about
+->fault() is called when a previously not present pte is about
to be faulted in. The filesystem must find and return the page associated
with the passed in "pgoff" in the vm_fault structure. If it is possible that
the page may be truncated and/or invalidated, then the filesystem must lock
@@ -556,7 +630,7 @@ the page, then ensure it is not already truncated (the page lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.
- ->map_pages() is called when VM asks to map easy accessible pages.
+->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from "start_pgoff"
till "end_pgoff". ->map_pages() is called with page table locked and must
not block. If it's not possible to reach a page without blocking,
@@ -565,25 +639,26 @@ page table entry. Pointer to entry associated with the page is passed in
"pte" field in vm_fault structure. Pointers to entries for other offsets
should be calculated relative to "pte".
- ->page_mkwrite() is called when a previously read-only pte is
+->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
no truncate/invalidate races, and then return with the page locked. If
the page has been truncated, the filesystem should not look up a new page
like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
will cause the VM to retry the fault.
- ->pfn_mkwrite() is the same as page_mkwrite but when the pte is
+->pfn_mkwrite() is the same as page_mkwrite but when the pte is
VM_PFNMAP or VM_MIXEDMAP with a page-less entry. Expected return is
VM_FAULT_NOPAGE. Or one of the VM_FAULT_ERROR types. The default behavior
after this call is to make the pte read-write, unless pfn_mkwrite returns
an error.
- ->access() is called when get_user_pages() fails in
+->access() is called when get_user_pages() fails in
access_process_vm(), typically used to debug a process through
/proc/pid/mem or ptrace. This function is needed only for
VM_IO | VM_PFNMAP VMAs.
-================================================================================
+--------------------------------------------------------------------------------
+
Dubious stuff
(if you break something or notice that it is broken and do not fix it yourself
diff --git a/Documentation/filesystems/mandatory-locking.txt b/Documentation/filesystems/mandatory-locking.txt
index 0979d1d2ca8b..a251ca33164a 100644
--- a/Documentation/filesystems/mandatory-locking.txt
+++ b/Documentation/filesystems/mandatory-locking.txt
@@ -169,3 +169,13 @@ havoc if they lock crucial files. The way around it is to change the file
permissions (remove the setgid bit) before trying to read or write to it.
Of course, that might be a bit tricky if the system is hung :-(
+7. The "mand" mount option
+--------------------------
+Mandatory locking is disabled on all filesystems by default, and must be
+administratively enabled by mounting with "-o mand". That mount option
+is only allowed if the mounting task has the CAP_SYS_ADMIN capability.
+
+Since kernel v4.5, it is possible to disable mandatory locking
+altogether by setting CONFIG_MANDATORY_FILE_LOCKING to "n". A kernel
+with this disabled will reject attempts to mount filesystems with the
+"mand" mount option with the error status EPERM.
diff --git a/Documentation/filesystems/nfs/Exporting b/Documentation/filesystems/nfs/exporting.rst
index 63889149f532..33d588a01ace 100644
--- a/Documentation/filesystems/nfs/Exporting
+++ b/Documentation/filesystems/nfs/exporting.rst
@@ -1,3 +1,4 @@
+:orphan:
Making Filesystems Exportable
=============================
@@ -42,9 +43,9 @@ filehandle fragment, there is no automatic creation of a path prefix
for the object. This leads to two related but distinct features of
the dcache that are not needed for normal filesystem access.
-1/ The dcache must sometimes contain objects that are not part of the
+1. The dcache must sometimes contain objects that are not part of the
proper prefix. i.e that are not connected to the root.
-2/ The dcache must be prepared for a newly found (via ->lookup) directory
+2. The dcache must be prepared for a newly found (via ->lookup) directory
to already have a (non-connected) dentry, and must be able to move
that dentry into place (based on the parent and name in the
->lookup). This is particularly needed for directories as
@@ -52,7 +53,7 @@ the dcache that are not needed for normal filesystem access.
To implement these features, the dcache has:
-a/ A dentry flag DCACHE_DISCONNECTED which is set on
+a. A dentry flag DCACHE_DISCONNECTED which is set on
any dentry that might not be part of the proper prefix.
This is set when anonymous dentries are created, and cleared when a
dentry is noticed to be a child of a dentry which is in the proper
@@ -71,48 +72,52 @@ a/ A dentry flag DCACHE_DISCONNECTED which is set on
dentries. That guarantees that we won't need to hunt them down upon
umount.
-b/ A primitive for creation of secondary roots - d_obtain_root(inode).
+b. A primitive for creation of secondary roots - d_obtain_root(inode).
Those do _not_ bear DCACHE_DISCONNECTED. They are placed on the
per-superblock list (->s_roots), so they can be located at umount
time for eviction purposes.
-c/ Helper routines to allocate anonymous dentries, and to help attach
+c. Helper routines to allocate anonymous dentries, and to help attach
loose directory dentries at lookup time. They are:
+
d_obtain_alias(inode) will return a dentry for the given inode.
If the inode already has a dentry, one of those is returned.
+
If it doesn't, a new anonymous (IS_ROOT and
- DCACHE_DISCONNECTED) dentry is allocated and attached.
+ DCACHE_DISCONNECTED) dentry is allocated and attached.
+
In the case of a directory, care is taken that only one dentry
can ever be attached.
+
d_splice_alias(inode, dentry) will introduce a new dentry into the tree;
either the passed-in dentry or a preexisting alias for the given inode
(such as an anonymous one created by d_obtain_alias), if appropriate.
It returns NULL when the passed-in dentry is used, following the calling
convention of ->lookup.
-
+
Filesystem Issues
-----------------
For a filesystem to be exportable it must:
-
- 1/ provide the filehandle fragment routines described below.
- 2/ make sure that d_splice_alias is used rather than d_add
+
+ 1. provide the filehandle fragment routines described below.
+ 2. make sure that d_splice_alias is used rather than d_add
when ->lookup finds an inode for a given parent and name.
- If inode is NULL, d_splice_alias(inode, dentry) is equivalent to
+ If inode is NULL, d_splice_alias(inode, dentry) is equivalent to::
d_add(dentry, inode), NULL
Similarly, d_splice_alias(ERR_PTR(err), dentry) = ERR_PTR(err)
- Typically the ->lookup routine will simply end with a:
+ Typically the ->lookup routine will simply end with a::
return d_splice_alias(inode, dentry);
}
- A file system implementation declares that instances of the filesystem
+A file system implementation declares that instances of the filesystem
are exportable by setting the s_export_op field in the struct
super_block. This field must point to a "struct export_operations"
struct which has the following members:
diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt
index d2963123eb1c..ae4332464560 100644
--- a/Documentation/filesystems/nfs/nfsroot.txt
+++ b/Documentation/filesystems/nfs/nfsroot.txt
@@ -239,7 +239,7 @@ rdinit=<executable file>
A description of the process of mounting the root file system can be
found in:
- Documentation/early-userspace/README
+ Documentation/driver-api/early-userspace/early_userspace_support.rst
diff --git a/Documentation/filesystems/overlayfs.txt b/Documentation/filesystems/overlayfs.txt
index 1da2f1668f08..845d689e0fd7 100644
--- a/Documentation/filesystems/overlayfs.txt
+++ b/Documentation/filesystems/overlayfs.txt
@@ -302,7 +302,7 @@ beneath or above the path of another overlay lower layer path.
Using an upper layer path and/or a workdir path that are already used by
another overlay mount is not allowed and may fail with EBUSY. Using
-partially overlapping paths is not allowed but will not fail with EBUSY.
+partially overlapping paths is not allowed and may fail with EBUSY.
If files are accessed from two overlayfs mounts which share or overlap the
upper layer and/or workdir path the behavior of the overlay is undefined,
though it will not result in a crash or deadlock.
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
deleted file mode 100644
index 3bd1148d8bb6..000000000000
--- a/Documentation/filesystems/porting
+++ /dev/null
@@ -1,675 +0,0 @@
-Changes since 2.5.0:
-
----
-[recommended]
-
-New helpers: sb_bread(), sb_getblk(), sb_find_get_block(), set_bh(),
- sb_set_blocksize() and sb_min_blocksize().
-
-Use them.
-
-(sb_find_get_block() replaces 2.4's get_hash_table())
-
----
-[recommended]
-
-New methods: ->alloc_inode() and ->destroy_inode().
-
-Remove inode->u.foo_inode_i
-Declare
- struct foo_inode_info {
- /* fs-private stuff */
- struct inode vfs_inode;
- };
- static inline struct foo_inode_info *FOO_I(struct inode *inode)
- {
- return list_entry(inode, struct foo_inode_info, vfs_inode);
- }
-
-Use FOO_I(inode) instead of &inode->u.foo_inode_i;
-
-Add foo_alloc_inode() and foo_destroy_inode() - the former should allocate
-foo_inode_info and return the address of ->vfs_inode, the latter should free
-FOO_I(inode) (see in-tree filesystems for examples).
-
-Make them ->alloc_inode and ->destroy_inode in your super_operations.
-
-Keep in mind that now you need explicit initialization of private data
-typically between calling iget_locked() and unlocking the inode.
-
-At some point that will become mandatory.
-
----
-[mandatory]
-
-Change of file_system_type method (->read_super to ->get_sb)
-
-->read_super() is no more. Ditto for DECLARE_FSTYPE and DECLARE_FSTYPE_DEV.
-
-Turn your foo_read_super() into a function that would return 0 in case of
-success and negative number in case of error (-EINVAL unless you have more
-informative error value to report). Call it foo_fill_super(). Now declare
-
-int foo_get_sb(struct file_system_type *fs_type,
- int flags, const char *dev_name, void *data, struct vfsmount *mnt)
-{
- return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super,
- mnt);
-}
-
-(or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of
-filesystem).
-
-Replace DECLARE_FSTYPE... with explicit initializer and have ->get_sb set as
-foo_get_sb.
-
----
-[mandatory]
-
-Locking change: ->s_vfs_rename_sem is taken only by cross-directory renames.
-Most likely there is no need to change anything, but if you relied on
-global exclusion between renames for some internal purpose - you need to
-change your internal locking. Otherwise exclusion warranties remain the
-same (i.e. parents and victim are locked, etc.).
-
----
-[informational]
-
-Now we have the exclusion between ->lookup() and directory removal (by
-->rmdir() and ->rename()). If you used to need that exclusion and do
-it by internal locking (most of filesystems couldn't care less) - you
-can relax your locking.
-
----
-[mandatory]
-
-->lookup(), ->truncate(), ->create(), ->unlink(), ->mknod(), ->mkdir(),
-->rmdir(), ->link(), ->lseek(), ->symlink(), ->rename()
-and ->readdir() are called without BKL now. Grab it on entry, drop upon return
-- that will guarantee the same locking you used to have. If your method or its
-parts do not need BKL - better yet, now you can shift lock_kernel() and
-unlock_kernel() so that they would protect exactly what needs to be
-protected.
-
----
-[mandatory]
-
-BKL is also moved from around sb operations. BKL should have been shifted into
-individual fs sb_op functions. If you don't need it, remove it.
-
----
-[informational]
-
-check for ->link() target not being a directory is done by callers. Feel
-free to drop it...
-
----
-[informational]
-
-->link() callers hold ->i_mutex on the object we are linking to. Some of your
-problems might be over...
-
----
-[mandatory]
-
-new file_system_type method - kill_sb(superblock). If you are converting
-an existing filesystem, set it according to ->fs_flags:
- FS_REQUIRES_DEV - kill_block_super
- FS_LITTER - kill_litter_super
- neither - kill_anon_super
-FS_LITTER is gone - just remove it from fs_flags.
-
----
-[mandatory]
-
- FS_SINGLE is gone (actually, that had happened back when ->get_sb()
-went in - and hadn't been documented ;-/). Just remove it from fs_flags
-(and see ->get_sb() entry for other actions).
-
----
-[mandatory]
-
-->setattr() is called without BKL now. Caller _always_ holds ->i_mutex, so
-watch for ->i_mutex-grabbing code that might be used by your ->setattr().
-Callers of notify_change() need ->i_mutex now.
-
----
-[recommended]
-
-New super_block field "struct export_operations *s_export_op" for
-explicit support for exporting, e.g. via NFS. The structure is fully
-documented at its declaration in include/linux/fs.h, and in
-Documentation/filesystems/nfs/Exporting.
-
-Briefly it allows for the definition of decode_fh and encode_fh operations
-to encode and decode filehandles, and allows the filesystem to use
-a standard helper function for decode_fh, and provide file-system specific
-support for this helper, particularly get_parent.
-
-It is planned that this will be required for exporting once the code
-settles down a bit.
-
-[mandatory]
-
-s_export_op is now required for exporting a filesystem.
-isofs, ext2, ext3, resierfs, fat
-can be used as examples of very different filesystems.
-
----
-[mandatory]
-
-iget4() and the read_inode2 callback have been superseded by iget5_locked()
-which has the following prototype,
-
- struct inode *iget5_locked(struct super_block *sb, unsigned long ino,
- int (*test)(struct inode *, void *),
- int (*set)(struct inode *, void *),
- void *data);
-
-'test' is an additional function that can be used when the inode
-number is not sufficient to identify the actual file object. 'set'
-should be a non-blocking function that initializes those parts of a
-newly created inode to allow the test function to succeed. 'data' is
-passed as an opaque value to both test and set functions.
-
-When the inode has been created by iget5_locked(), it will be returned with the
-I_NEW flag set and will still be locked. The filesystem then needs to finalize
-the initialization. Once the inode is initialized it must be unlocked by
-calling unlock_new_inode().
-
-The filesystem is responsible for setting (and possibly testing) i_ino
-when appropriate. There is also a simpler iget_locked function that
-just takes the superblock and inode number as arguments and does the
-test and set for you.
-
-e.g.
- inode = iget_locked(sb, ino);
- if (inode->i_state & I_NEW) {
- err = read_inode_from_disk(inode);
- if (err < 0) {
- iget_failed(inode);
- return err;
- }
- unlock_new_inode(inode);
- }
-
-Note that if the process of setting up a new inode fails, then iget_failed()
-should be called on the inode to render it dead, and an appropriate error
-should be passed back to the caller.
-
----
-[recommended]
-
-->getattr() finally getting used. See instances in nfs, minix, etc.
-
----
-[mandatory]
-
-->revalidate() is gone. If your filesystem had it - provide ->getattr()
-and let it call whatever you had as ->revlidate() + (for symlinks that
-had ->revalidate()) add calls in ->follow_link()/->readlink().
-
----
-[mandatory]
-
-->d_parent changes are not protected by BKL anymore. Read access is safe
-if at least one of the following is true:
- * filesystem has no cross-directory rename()
- * we know that parent had been locked (e.g. we are looking at
-->d_parent of ->lookup() argument).
- * we are called from ->rename().
- * the child's ->d_lock is held
-Audit your code and add locking if needed. Notice that any place that is
-not protected by the conditions above is risky even in the old tree - you
-had been relying on BKL and that's prone to screwups. Old tree had quite
-a few holes of that kind - unprotected access to ->d_parent leading to
-anything from oops to silent memory corruption.
-
----
-[mandatory]
-
- FS_NOMOUNT is gone. If you use it - just set SB_NOUSER in flags
-(see rootfs for one kind of solution and bdev/socket/pipe for another).
-
----
-[recommended]
-
- Use bdev_read_only(bdev) instead of is_read_only(kdev). The latter
-is still alive, but only because of the mess in drivers/s390/block/dasd.c.
-As soon as it gets fixed is_read_only() will die.
-
----
-[mandatory]
-
-->permission() is called without BKL now. Grab it on entry, drop upon
-return - that will guarantee the same locking you used to have. If
-your method or its parts do not need BKL - better yet, now you can
-shift lock_kernel() and unlock_kernel() so that they would protect
-exactly what needs to be protected.
-
----
-[mandatory]
-
-->statfs() is now called without BKL held. BKL should have been
-shifted into individual fs sb_op functions where it's not clear that
-it's safe to remove it. If you don't need it, remove it.
-
----
-[mandatory]
-
- is_read_only() is gone; use bdev_read_only() instead.
-
----
-[mandatory]
-
- destroy_buffers() is gone; use invalidate_bdev().
-
----
-[mandatory]
-
- fsync_dev() is gone; use fsync_bdev(). NOTE: lvm breakage is
-deliberate; as soon as struct block_device * is propagated in a reasonable
-way by that code fixing will become trivial; until then nothing can be
-done.
-
-[mandatory]
-
- block truncatation on error exit from ->write_begin, and ->direct_IO
-moved from generic methods (block_write_begin, cont_write_begin,
-nobh_write_begin, blockdev_direct_IO*) to callers. Take a look at
-ext2_write_failed and callers for an example.
-
-[mandatory]
-
- ->truncate is gone. The whole truncate sequence needs to be
-implemented in ->setattr, which is now mandatory for filesystems
-implementing on-disk size changes. Start with a copy of the old inode_setattr
-and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
-be in order of zeroing blocks using block_truncate_page or similar helpers,
-size update and on finally on-disk truncation which should not fail.
-setattr_prepare (which used to be inode_change_ok) now includes the size checks
-for ATTR_SIZE and must be called in the beginning of ->setattr unconditionally.
-
-[mandatory]
-
- ->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
-be used instead. It gets called whenever the inode is evicted, whether it has
-remaining links or not. Caller does *not* evict the pagecache or inode-associated
-metadata buffers; the method has to use truncate_inode_pages_final() to get rid
-of those. Caller makes sure async writeback cannot be running for the inode while
-(or after) ->evict_inode() is called.
-
- ->drop_inode() returns int now; it's called on final iput() with
-inode->i_lock held and it returns true if filesystems wants the inode to be
-dropped. As before, generic_drop_inode() is still the default and it's been
-updated appropriately. generic_delete_inode() is also alive and it consists
-simply of return 1. Note that all actual eviction work is done by caller after
-->drop_inode() returns.
-
- As before, clear_inode() must be called exactly once on each call of
-->evict_inode() (as it used to be for each call of ->delete_inode()). Unlike
-before, if you are using inode-associated metadata buffers (i.e.
-mark_buffer_dirty_inode()), it's your responsibility to call
-invalidate_inode_buffers() before clear_inode().
-
- NOTE: checking i_nlink in the beginning of ->write_inode() and bailing out
-if it's zero is not *and* *never* *had* *been* enough. Final unlink() and iput()
-may happen while the inode is in the middle of ->write_inode(); e.g. if you blindly
-free the on-disk inode, you may end up doing that while ->write_inode() is writing
-to it.
-
----
-[mandatory]
-
- .d_delete() now only advises the dcache as to whether or not to cache
-unreferenced dentries, and is now only called when the dentry refcount goes to
-0. Even on 0 refcount transition, it must be able to tolerate being called 0,
-1, or more times (eg. constant, idempotent).
-
----
-[mandatory]
-
- .d_compare() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.txt (and
-look at examples of other filesystems) for guidance.
-
----
-[mandatory]
-
- .d_hash() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.txt (and
-look at examples of other filesystems) for guidance.
-
----
-[mandatory]
- dcache_lock is gone, replaced by fine grained locks. See fs/dcache.c
-for details of what locks to replace dcache_lock with in order to protect
-particular things. Most of the time, a filesystem only needs ->d_lock, which
-protects *all* the dcache state of a given dentry.
-
---
-[mandatory]
-
- Filesystems must RCU-free their inodes, if they can have been accessed
-via rcu-walk path walk (basically, if the file can have had a path name in the
-vfs namespace).
-
- Even though i_dentry and i_rcu share storage in a union, we will
-initialize the former in inode_init_always(), so just leave it alone in
-the callback. It used to be necessary to clean it there, but not anymore
-(starting at 3.2).
-
---
-[recommended]
- vfs now tries to do path walking in "rcu-walk mode", which avoids
-atomic operations and scalability hazards on dentries and inodes (see
-Documentation/filesystems/path-lookup.txt). d_hash and d_compare changes
-(above) are examples of the changes required to support this. For more complex
-filesystem callbacks, the vfs drops out of rcu-walk mode before the fs call, so
-no changes are required to the filesystem. However, this is costly and loses
-the benefits of rcu-walk mode. We will begin to add filesystem callbacks that
-are rcu-walk aware, shown below. Filesystems should take advantage of this
-where possible.
-
---
-[mandatory]
- d_revalidate is a callback that is made on every path element (if
-the filesystem provides it), which requires dropping out of rcu-walk mode. This
-may now be called in rcu-walk mode (nd->flags & LOOKUP_RCU). -ECHILD should be
-returned if the filesystem cannot handle rcu-walk. See
-Documentation/filesystems/vfs.txt for more details.
-
- permission is an inode permission check that is called on many or all
-directory inodes on the way down a path walk (to check for exec permission). It
-must now be rcu-walk aware (mask & MAY_NOT_BLOCK). See
-Documentation/filesystems/vfs.txt for more details.
-
---
-[mandatory]
- In ->fallocate() you must check the mode option passed in. If your
-filesystem does not support hole punching (deallocating space in the middle of a
-file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode.
-Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set,
-so the i_size should not change when hole punching, even when puching the end of
-a file off.
-
---
-[mandatory]
- ->get_sb() is gone. Switch to use of ->mount(). Typically it's just
-a matter of switching from calling get_sb_... to mount_... and changing the
-function type. If you were doing it manually, just switch from setting ->mnt_root
-to some pointer to returning that pointer. On errors return ERR_PTR(...).
-
---
-[mandatory]
- ->permission() and generic_permission()have lost flags
-argument; instead of passing IPERM_FLAG_RCU we add MAY_NOT_BLOCK into mask.
- generic_permission() has also lost the check_acl argument; ACL checking
-has been taken to VFS and filesystems need to provide a non-NULL ->i_op->get_acl
-to read an ACL from disk.
-
---
-[mandatory]
- If you implement your own ->llseek() you must handle SEEK_HOLE and
-SEEK_DATA. You can hanle this by returning -EINVAL, but it would be nicer to
-support it in some way. The generic handler assumes that the entire file is
-data and there is a virtual hole at the end of the file. So if the provided
-offset is less than i_size and SEEK_DATA is specified, return the same offset.
-If the above is true for the offset and you are given SEEK_HOLE, return the end
-of the file. If the offset is i_size or greater return -ENXIO in either case.
-
-[mandatory]
- If you have your own ->fsync() you must make sure to call
-filemap_write_and_wait_range() so that all dirty pages are synced out properly.
-You must also keep in mind that ->fsync() is not called with i_mutex held
-anymore, so if you require i_mutex locking you must make sure to take it and
-release it yourself.
-
---
-[mandatory]
- d_alloc_root() is gone, along with a lot of bugs caused by code
-misusing it. Replacement: d_make_root(inode). The difference is,
-d_make_root() drops the reference to inode if dentry allocation fails.
-
---
-[mandatory]
- The witch is dead! Well, 2/3 of it, anyway. ->d_revalidate() and
-->lookup() do *not* take struct nameidata anymore; just the flags.
---
-[mandatory]
- ->create() doesn't take struct nameidata *; unlike the previous
-two, it gets "is it an O_EXCL or equivalent?" boolean argument. Note that
-local filesystems can ignore tha argument - they are guaranteed that the
-object doesn't exist. It's remote/distributed ones that might care...
---
-[mandatory]
- FS_REVAL_DOT is gone; if you used to have it, add ->d_weak_revalidate()
-in your dentry operations instead.
---
-[mandatory]
- vfs_readdir() is gone; switch to iterate_dir() instead
---
-[mandatory]
- ->readdir() is gone now; switch to ->iterate()
-[mandatory]
- vfs_follow_link has been removed. Filesystems must use nd_set_link
- from ->follow_link for normal symlinks, or nd_jump_link for magic
- /proc/<pid> style links.
---
-[mandatory]
- iget5_locked()/ilookup5()/ilookup5_nowait() test() callback used to be
- called with both ->i_lock and inode_hash_lock held; the former is *not*
- taken anymore, so verify that your callbacks do not rely on it (none
- of the in-tree instances did). inode_hash_lock is still held,
- of course, so they are still serialized wrt removal from inode hash,
- as well as wrt set() callback of iget5_locked().
---
-[mandatory]
- d_materialise_unique() is gone; d_splice_alias() does everything you
- need now. Remember that they have opposite orders of arguments ;-/
---
-[mandatory]
- f_dentry is gone; use f_path.dentry, or, better yet, see if you can avoid
- it entirely.
---
-[mandatory]
- never call ->read() and ->write() directly; use __vfs_{read,write} or
- wrappers; instead of checking for ->write or ->read being NULL, look for
- FMODE_CAN_{WRITE,READ} in file->f_mode.
---
-[mandatory]
- do _not_ use new_sync_{read,write} for ->read/->write; leave it NULL
- instead.
---
-[mandatory]
- ->aio_read/->aio_write are gone. Use ->read_iter/->write_iter.
----
-[recommended]
- for embedded ("fast") symlinks just set inode->i_link to wherever the
- symlink body is and use simple_follow_link() as ->follow_link().
---
-[mandatory]
- calling conventions for ->follow_link() have changed. Instead of returning
- cookie and using nd_set_link() to store the body to traverse, we return
- the body to traverse and store the cookie using explicit void ** argument.
- nameidata isn't passed at all - nd_jump_link() doesn't need it and
- nd_[gs]et_link() is gone.
---
-[mandatory]
- calling conventions for ->put_link() have changed. It gets inode instead of
- dentry, it does not get nameidata at all and it gets called only when cookie
- is non-NULL. Note that link body isn't available anymore, so if you need it,
- store it as cookie.
---
-[mandatory]
- any symlink that might use page_follow_link_light/page_put_link() must
- have inode_nohighmem(inode) called before anything might start playing with
- its pagecache. No highmem pages should end up in the pagecache of such
- symlinks. That includes any preseeding that might be done during symlink
- creation. __page_symlink() will honour the mapping gfp flags, so once
- you've done inode_nohighmem() it's safe to use, but if you allocate and
- insert the page manually, make sure to use the right gfp flags.
---
-[mandatory]
- ->follow_link() is replaced with ->get_link(); same API, except that
- * ->get_link() gets inode as a separate argument
- * ->get_link() may be called in RCU mode - in that case NULL
- dentry is passed
---
-[mandatory]
- ->get_link() gets struct delayed_call *done now, and should do
- set_delayed_call() where it used to set *cookie.
- ->put_link() is gone - just give the destructor to set_delayed_call()
- in ->get_link().
---
-[mandatory]
- ->getxattr() and xattr_handler.get() get dentry and inode passed separately.
- dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
- in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
- called before we attach dentry to inode.
---
-[mandatory]
- symlinks are no longer the only inodes that do *not* have i_bdev/i_cdev/
- i_pipe/i_link union zeroed out at inode eviction. As the result, you can't
- assume that non-NULL value in ->i_nlink at ->destroy_inode() implies that
- it's a symlink. Checking ->i_mode is really needed now. In-tree we had
- to fix shmem_destroy_callback() that used to take that kind of shortcut;
- watch out, since that shortcut is no longer valid.
---
-[mandatory]
- ->i_mutex is replaced with ->i_rwsem now. inode_lock() et.al. work as
- they used to - they just take it exclusive. However, ->lookup() may be
- called with parent locked shared. Its instances must not
- * use d_instantiate) and d_rehash() separately - use d_add() or
- d_splice_alias() instead.
- * use d_rehash() alone - call d_add(new_dentry, NULL) instead.
- * in the unlikely case when (read-only) access to filesystem
- data structures needs exclusion for some reason, arrange it
- yourself. None of the in-tree filesystems needed that.
- * rely on ->d_parent and ->d_name not changing after dentry has
- been fed to d_add() or d_splice_alias(). Again, none of the
- in-tree instances relied upon that.
- We are guaranteed that lookups of the same name in the same directory
- will not happen in parallel ("same" in the sense of your ->d_compare()).
- Lookups on different names in the same directory can and do happen in
- parallel now.
---
-[recommended]
- ->iterate_shared() is added; it's a parallel variant of ->iterate().
- Exclusion on struct file level is still provided (as well as that
- between it and lseek on the same struct file), but if your directory
- has been opened several times, you can get these called in parallel.
- Exclusion between that method and all directory-modifying ones is
- still provided, of course.
-
- Often enough ->iterate() can serve as ->iterate_shared() without any
- changes - it is a read-only operation, after all. If you have any
- per-inode or per-dentry in-core data structures modified by ->iterate(),
- you might need something to serialize the access to them. If you
- do dcache pre-seeding, you'll need to switch to d_alloc_parallel() for
- that; look for in-tree examples.
-
- Old method is only used if the new one is absent; eventually it will
- be removed. Switch while you still can; the old one won't stay.
---
-[mandatory]
- ->atomic_open() calls without O_CREAT may happen in parallel.
---
-[mandatory]
- ->setxattr() and xattr_handler.set() get dentry and inode passed separately.
- dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
- in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
- called before we attach dentry to inode and !@#!@##!@$!$#!@#$!@$!@$ smack
- ->d_instantiate() uses not just ->getxattr() but ->setxattr() as well.
---
-[mandatory]
- ->d_compare() doesn't get parent as a separate argument anymore. If you
- used it for finding the struct super_block involved, dentry->d_sb will
- work just as well; if it's something more complicated, use dentry->d_parent.
- Just be careful not to assume that fetching it more than once will yield
- the same value - in RCU mode it could change under you.
---
-[mandatory]
- ->rename() has an added flags argument. Any flags not handled by the
- filesystem should result in EINVAL being returned.
---
-[recommended]
- ->readlink is optional for symlinks. Don't set, unless filesystem needs
- to fake something for readlink(2).
---
-[mandatory]
- ->getattr() is now passed a struct path rather than a vfsmount and
- dentry separately, and it now has request_mask and query_flags arguments
- to specify the fields and sync type requested by statx. Filesystems not
- supporting any statx-specific features may ignore the new arguments.
---
-[mandatory]
- ->atomic_open() calling conventions have changed. Gone is int *opened,
- along with FILE_OPENED/FILE_CREATED. In place of those we have
- FMODE_OPENED/FMODE_CREATED, set in file->f_mode. Additionally, return
- value for 'called finish_no_open(), open it yourself' case has become
- 0, not 1. Since finish_no_open() itself is returning 0 now, that part
- does not need any changes in ->atomic_open() instances.
---
-[mandatory]
- alloc_file() has become static now; two wrappers are to be used instead.
- alloc_file_pseudo(inode, vfsmount, name, flags, ops) is for the cases
- when dentry needs to be created; that's the majority of old alloc_file()
- users. Calling conventions: on success a reference to new struct file
- is returned and callers reference to inode is subsumed by that. On
- failure, ERR_PTR() is returned and no caller's references are affected,
- so the caller needs to drop the inode reference it held.
- alloc_file_clone(file, flags, ops) does not affect any caller's references.
- On success you get a new struct file sharing the mount/dentry with the
- original, on failure - ERR_PTR().
---
-[mandatory]
- ->clone_file_range() and ->dedupe_file_range have been replaced with
- ->remap_file_range(). See Documentation/filesystems/vfs.txt for more
- information.
---
-[recommended]
- ->lookup() instances doing an equivalent of
- if (IS_ERR(inode))
- return ERR_CAST(inode);
- return d_splice_alias(inode, dentry);
- don't need to bother with the check - d_splice_alias() will do the
- right thing when given ERR_PTR(...) as inode. Moreover, passing NULL
- inode to d_splice_alias() will also do the right thing (equivalent of
- d_add(dentry, NULL); return NULL;), so that kind of special cases
- also doesn't need a separate treatment.
---
-[strongly recommended]
- take the RCU-delayed parts of ->destroy_inode() into a new method -
- ->free_inode(). If ->destroy_inode() becomes empty - all the better,
- just get rid of it. Synchronous work (e.g. the stuff that can't
- be done from an RCU callback, or any WARN_ON() where we want the
- stack trace) *might* be movable to ->evict_inode(); however,
- that goes only for the things that are not needed to balance something
- done by ->alloc_inode(). IOW, if it's cleaning up the stuff that
- might have accumulated over the life of in-core inode, ->evict_inode()
- might be a fit.
-
- Rules for inode destruction:
- * if ->destroy_inode() is non-NULL, it gets called
- * if ->free_inode() is non-NULL, it gets scheduled by call_rcu()
- * combination of NULL ->destroy_inode and NULL ->free_inode is
- treated as NULL/free_inode_nonrcu, to preserve the compatibility.
-
- Note that the callback (be it via ->free_inode() or explicit call_rcu()
- in ->destroy_inode()) is *NOT* ordered wrt superblock destruction;
- as the matter of fact, the superblock and all associated structures
- might be already gone. The filesystem driver is guaranteed to be still
- there, but that's it. Freeing memory in the callback is fine; doing
- more than that is possible, but requires a lot of care and is best
- avoided.
---
-[mandatory]
- DCACHE_RCUACCESS is gone; having an RCU delay on dentry freeing is the
- default. DCACHE_NORCU opts out, and only d_alloc_pseudo() has any
- business doing so.
---
-[mandatory]
- d_alloc_pseudo() is internal-only; uses outside of alloc_file_pseudo() are
- very suspect (and won't work in modules). Such uses are very likely to
- be misspelled d_alloc_anon().
diff --git a/Documentation/filesystems/porting.rst b/Documentation/filesystems/porting.rst
new file mode 100644
index 000000000000..f18506083ced
--- /dev/null
+++ b/Documentation/filesystems/porting.rst
@@ -0,0 +1,852 @@
+====================
+Changes since 2.5.0:
+====================
+
+---
+
+**recommended**
+
+New helpers: sb_bread(), sb_getblk(), sb_find_get_block(), set_bh(),
+sb_set_blocksize() and sb_min_blocksize().
+
+Use them.
+
+(sb_find_get_block() replaces 2.4's get_hash_table())
+
+---
+
+**recommended**
+
+New methods: ->alloc_inode() and ->destroy_inode().
+
+Remove inode->u.foo_inode_i
+
+Declare::
+
+ struct foo_inode_info {
+ /* fs-private stuff */
+ struct inode vfs_inode;
+ };
+ static inline struct foo_inode_info *FOO_I(struct inode *inode)
+ {
+ return list_entry(inode, struct foo_inode_info, vfs_inode);
+ }
+
+Use FOO_I(inode) instead of &inode->u.foo_inode_i;
+
+Add foo_alloc_inode() and foo_destroy_inode() - the former should allocate
+foo_inode_info and return the address of ->vfs_inode, the latter should free
+FOO_I(inode) (see in-tree filesystems for examples).
+
+Make them ->alloc_inode and ->destroy_inode in your super_operations.
+
+Keep in mind that now you need explicit initialization of private data
+typically between calling iget_locked() and unlocking the inode.
+
+At some point that will become mandatory.
+
+---
+
+**mandatory**
+
+Change of file_system_type method (->read_super to ->get_sb)
+
+->read_super() is no more. Ditto for DECLARE_FSTYPE and DECLARE_FSTYPE_DEV.
+
+Turn your foo_read_super() into a function that would return 0 in case of
+success and negative number in case of error (-EINVAL unless you have more
+informative error value to report). Call it foo_fill_super(). Now declare::
+
+ int foo_get_sb(struct file_system_type *fs_type,
+ int flags, const char *dev_name, void *data, struct vfsmount *mnt)
+ {
+ return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super,
+ mnt);
+ }
+
+(or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of
+filesystem).
+
+Replace DECLARE_FSTYPE... with explicit initializer and have ->get_sb set as
+foo_get_sb.
+
+---
+
+**mandatory**
+
+Locking change: ->s_vfs_rename_sem is taken only by cross-directory renames.
+Most likely there is no need to change anything, but if you relied on
+global exclusion between renames for some internal purpose - you need to
+change your internal locking. Otherwise exclusion warranties remain the
+same (i.e. parents and victim are locked, etc.).
+
+---
+
+**informational**
+
+Now we have the exclusion between ->lookup() and directory removal (by
+->rmdir() and ->rename()). If you used to need that exclusion and do
+it by internal locking (most of filesystems couldn't care less) - you
+can relax your locking.
+
+---
+
+**mandatory**
+
+->lookup(), ->truncate(), ->create(), ->unlink(), ->mknod(), ->mkdir(),
+->rmdir(), ->link(), ->lseek(), ->symlink(), ->rename()
+and ->readdir() are called without BKL now. Grab it on entry, drop upon return
+- that will guarantee the same locking you used to have. If your method or its
+parts do not need BKL - better yet, now you can shift lock_kernel() and
+unlock_kernel() so that they would protect exactly what needs to be
+protected.
+
+---
+
+**mandatory**
+
+BKL is also moved from around sb operations. BKL should have been shifted into
+individual fs sb_op functions. If you don't need it, remove it.
+
+---
+
+**informational**
+
+check for ->link() target not being a directory is done by callers. Feel
+free to drop it...
+
+---
+
+**informational**
+
+->link() callers hold ->i_mutex on the object we are linking to. Some of your
+problems might be over...
+
+---
+
+**mandatory**
+
+new file_system_type method - kill_sb(superblock). If you are converting
+an existing filesystem, set it according to ->fs_flags::
+
+ FS_REQUIRES_DEV - kill_block_super
+ FS_LITTER - kill_litter_super
+ neither - kill_anon_super
+
+FS_LITTER is gone - just remove it from fs_flags.
+
+---
+
+**mandatory**
+
+FS_SINGLE is gone (actually, that had happened back when ->get_sb()
+went in - and hadn't been documented ;-/). Just remove it from fs_flags
+(and see ->get_sb() entry for other actions).
+
+---
+
+**mandatory**
+
+->setattr() is called without BKL now. Caller _always_ holds ->i_mutex, so
+watch for ->i_mutex-grabbing code that might be used by your ->setattr().
+Callers of notify_change() need ->i_mutex now.
+
+---
+
+**recommended**
+
+New super_block field ``struct export_operations *s_export_op`` for
+explicit support for exporting, e.g. via NFS. The structure is fully
+documented at its declaration in include/linux/fs.h, and in
+Documentation/filesystems/nfs/exporting.rst.
+
+Briefly it allows for the definition of decode_fh and encode_fh operations
+to encode and decode filehandles, and allows the filesystem to use
+a standard helper function for decode_fh, and provide file-system specific
+support for this helper, particularly get_parent.
+
+It is planned that this will be required for exporting once the code
+settles down a bit.
+
+**mandatory**
+
+s_export_op is now required for exporting a filesystem.
+isofs, ext2, ext3, resierfs, fat
+can be used as examples of very different filesystems.
+
+---
+
+**mandatory**
+
+iget4() and the read_inode2 callback have been superseded by iget5_locked()
+which has the following prototype::
+
+ struct inode *iget5_locked(struct super_block *sb, unsigned long ino,
+ int (*test)(struct inode *, void *),
+ int (*set)(struct inode *, void *),
+ void *data);
+
+'test' is an additional function that can be used when the inode
+number is not sufficient to identify the actual file object. 'set'
+should be a non-blocking function that initializes those parts of a
+newly created inode to allow the test function to succeed. 'data' is
+passed as an opaque value to both test and set functions.
+
+When the inode has been created by iget5_locked(), it will be returned with the
+I_NEW flag set and will still be locked. The filesystem then needs to finalize
+the initialization. Once the inode is initialized it must be unlocked by
+calling unlock_new_inode().
+
+The filesystem is responsible for setting (and possibly testing) i_ino
+when appropriate. There is also a simpler iget_locked function that
+just takes the superblock and inode number as arguments and does the
+test and set for you.
+
+e.g.::
+
+ inode = iget_locked(sb, ino);
+ if (inode->i_state & I_NEW) {
+ err = read_inode_from_disk(inode);
+ if (err < 0) {
+ iget_failed(inode);
+ return err;
+ }
+ unlock_new_inode(inode);
+ }
+
+Note that if the process of setting up a new inode fails, then iget_failed()
+should be called on the inode to render it dead, and an appropriate error
+should be passed back to the caller.
+
+---
+
+**recommended**
+
+->getattr() finally getting used. See instances in nfs, minix, etc.
+
+---
+
+**mandatory**
+
+->revalidate() is gone. If your filesystem had it - provide ->getattr()
+and let it call whatever you had as ->revlidate() + (for symlinks that
+had ->revalidate()) add calls in ->follow_link()/->readlink().
+
+---
+
+**mandatory**
+
+->d_parent changes are not protected by BKL anymore. Read access is safe
+if at least one of the following is true:
+
+ * filesystem has no cross-directory rename()
+ * we know that parent had been locked (e.g. we are looking at
+ ->d_parent of ->lookup() argument).
+ * we are called from ->rename().
+ * the child's ->d_lock is held
+
+Audit your code and add locking if needed. Notice that any place that is
+not protected by the conditions above is risky even in the old tree - you
+had been relying on BKL and that's prone to screwups. Old tree had quite
+a few holes of that kind - unprotected access to ->d_parent leading to
+anything from oops to silent memory corruption.
+
+---
+
+**mandatory**
+
+FS_NOMOUNT is gone. If you use it - just set SB_NOUSER in flags
+(see rootfs for one kind of solution and bdev/socket/pipe for another).
+
+---
+
+**recommended**
+
+Use bdev_read_only(bdev) instead of is_read_only(kdev). The latter
+is still alive, but only because of the mess in drivers/s390/block/dasd.c.
+As soon as it gets fixed is_read_only() will die.
+
+---
+
+**mandatory**
+
+->permission() is called without BKL now. Grab it on entry, drop upon
+return - that will guarantee the same locking you used to have. If
+your method or its parts do not need BKL - better yet, now you can
+shift lock_kernel() and unlock_kernel() so that they would protect
+exactly what needs to be protected.
+
+---
+
+**mandatory**
+
+->statfs() is now called without BKL held. BKL should have been
+shifted into individual fs sb_op functions where it's not clear that
+it's safe to remove it. If you don't need it, remove it.
+
+---
+
+**mandatory**
+
+is_read_only() is gone; use bdev_read_only() instead.
+
+---
+
+**mandatory**
+
+destroy_buffers() is gone; use invalidate_bdev().
+
+---
+
+**mandatory**
+
+fsync_dev() is gone; use fsync_bdev(). NOTE: lvm breakage is
+deliberate; as soon as struct block_device * is propagated in a reasonable
+way by that code fixing will become trivial; until then nothing can be
+done.
+
+**mandatory**
+
+block truncatation on error exit from ->write_begin, and ->direct_IO
+moved from generic methods (block_write_begin, cont_write_begin,
+nobh_write_begin, blockdev_direct_IO*) to callers. Take a look at
+ext2_write_failed and callers for an example.
+
+**mandatory**
+
+->truncate is gone. The whole truncate sequence needs to be
+implemented in ->setattr, which is now mandatory for filesystems
+implementing on-disk size changes. Start with a copy of the old inode_setattr
+and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
+be in order of zeroing blocks using block_truncate_page or similar helpers,
+size update and on finally on-disk truncation which should not fail.
+setattr_prepare (which used to be inode_change_ok) now includes the size checks
+for ATTR_SIZE and must be called in the beginning of ->setattr unconditionally.
+
+**mandatory**
+
+->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
+be used instead. It gets called whenever the inode is evicted, whether it has
+remaining links or not. Caller does *not* evict the pagecache or inode-associated
+metadata buffers; the method has to use truncate_inode_pages_final() to get rid
+of those. Caller makes sure async writeback cannot be running for the inode while
+(or after) ->evict_inode() is called.
+
+->drop_inode() returns int now; it's called on final iput() with
+inode->i_lock held and it returns true if filesystems wants the inode to be
+dropped. As before, generic_drop_inode() is still the default and it's been
+updated appropriately. generic_delete_inode() is also alive and it consists
+simply of return 1. Note that all actual eviction work is done by caller after
+->drop_inode() returns.
+
+As before, clear_inode() must be called exactly once on each call of
+->evict_inode() (as it used to be for each call of ->delete_inode()). Unlike
+before, if you are using inode-associated metadata buffers (i.e.
+mark_buffer_dirty_inode()), it's your responsibility to call
+invalidate_inode_buffers() before clear_inode().
+
+NOTE: checking i_nlink in the beginning of ->write_inode() and bailing out
+if it's zero is not *and* *never* *had* *been* enough. Final unlink() and iput()
+may happen while the inode is in the middle of ->write_inode(); e.g. if you blindly
+free the on-disk inode, you may end up doing that while ->write_inode() is writing
+to it.
+
+---
+
+**mandatory**
+
+.d_delete() now only advises the dcache as to whether or not to cache
+unreferenced dentries, and is now only called when the dentry refcount goes to
+0. Even on 0 refcount transition, it must be able to tolerate being called 0,
+1, or more times (eg. constant, idempotent).
+
+---
+
+**mandatory**
+
+.d_compare() calling convention and locking rules are significantly
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
+look at examples of other filesystems) for guidance.
+
+---
+
+**mandatory**
+
+.d_hash() calling convention and locking rules are significantly
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
+look at examples of other filesystems) for guidance.
+
+---
+
+**mandatory**
+
+dcache_lock is gone, replaced by fine grained locks. See fs/dcache.c
+for details of what locks to replace dcache_lock with in order to protect
+particular things. Most of the time, a filesystem only needs ->d_lock, which
+protects *all* the dcache state of a given dentry.
+
+---
+
+**mandatory**
+
+Filesystems must RCU-free their inodes, if they can have been accessed
+via rcu-walk path walk (basically, if the file can have had a path name in the
+vfs namespace).
+
+Even though i_dentry and i_rcu share storage in a union, we will
+initialize the former in inode_init_always(), so just leave it alone in
+the callback. It used to be necessary to clean it there, but not anymore
+(starting at 3.2).
+
+---
+
+**recommended**
+
+vfs now tries to do path walking in "rcu-walk mode", which avoids
+atomic operations and scalability hazards on dentries and inodes (see
+Documentation/filesystems/path-lookup.txt). d_hash and d_compare changes
+(above) are examples of the changes required to support this. For more complex
+filesystem callbacks, the vfs drops out of rcu-walk mode before the fs call, so
+no changes are required to the filesystem. However, this is costly and loses
+the benefits of rcu-walk mode. We will begin to add filesystem callbacks that
+are rcu-walk aware, shown below. Filesystems should take advantage of this
+where possible.
+
+---
+
+**mandatory**
+
+d_revalidate is a callback that is made on every path element (if
+the filesystem provides it), which requires dropping out of rcu-walk mode. This
+may now be called in rcu-walk mode (nd->flags & LOOKUP_RCU). -ECHILD should be
+returned if the filesystem cannot handle rcu-walk. See
+Documentation/filesystems/vfs.rst for more details.
+
+permission is an inode permission check that is called on many or all
+directory inodes on the way down a path walk (to check for exec permission). It
+must now be rcu-walk aware (mask & MAY_NOT_BLOCK). See
+Documentation/filesystems/vfs.rst for more details.
+
+---
+
+**mandatory**
+
+In ->fallocate() you must check the mode option passed in. If your
+filesystem does not support hole punching (deallocating space in the middle of a
+file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode.
+Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set,
+so the i_size should not change when hole punching, even when puching the end of
+a file off.
+
+---
+
+**mandatory**
+
+->get_sb() is gone. Switch to use of ->mount(). Typically it's just
+a matter of switching from calling ``get_sb_``... to ``mount_``... and changing
+the function type. If you were doing it manually, just switch from setting
+->mnt_root to some pointer to returning that pointer. On errors return
+ERR_PTR(...).
+
+---
+
+**mandatory**
+
+->permission() and generic_permission()have lost flags
+argument; instead of passing IPERM_FLAG_RCU we add MAY_NOT_BLOCK into mask.
+
+generic_permission() has also lost the check_acl argument; ACL checking
+has been taken to VFS and filesystems need to provide a non-NULL ->i_op->get_acl
+to read an ACL from disk.
+
+---
+
+**mandatory**
+
+If you implement your own ->llseek() you must handle SEEK_HOLE and
+SEEK_DATA. You can hanle this by returning -EINVAL, but it would be nicer to
+support it in some way. The generic handler assumes that the entire file is
+data and there is a virtual hole at the end of the file. So if the provided
+offset is less than i_size and SEEK_DATA is specified, return the same offset.
+If the above is true for the offset and you are given SEEK_HOLE, return the end
+of the file. If the offset is i_size or greater return -ENXIO in either case.
+
+**mandatory**
+
+If you have your own ->fsync() you must make sure to call
+filemap_write_and_wait_range() so that all dirty pages are synced out properly.
+You must also keep in mind that ->fsync() is not called with i_mutex held
+anymore, so if you require i_mutex locking you must make sure to take it and
+release it yourself.
+
+---
+
+**mandatory**
+
+d_alloc_root() is gone, along with a lot of bugs caused by code
+misusing it. Replacement: d_make_root(inode). On success d_make_root(inode)
+allocates and returns a new dentry instantiated with the passed in inode.
+On failure NULL is returned and the passed in inode is dropped so the reference
+to inode is consumed in all cases and failure handling need not do any cleanup
+for the inode. If d_make_root(inode) is passed a NULL inode it returns NULL
+and also requires no further error handling. Typical usage is::
+
+ inode = foofs_new_inode(....);
+ s->s_root = d_make_root(inode);
+ if (!s->s_root)
+ /* Nothing needed for the inode cleanup */
+ return -ENOMEM;
+ ...
+
+---
+
+**mandatory**
+
+The witch is dead! Well, 2/3 of it, anyway. ->d_revalidate() and
+->lookup() do *not* take struct nameidata anymore; just the flags.
+
+---
+
+**mandatory**
+
+->create() doesn't take ``struct nameidata *``; unlike the previous
+two, it gets "is it an O_EXCL or equivalent?" boolean argument. Note that
+local filesystems can ignore tha argument - they are guaranteed that the
+object doesn't exist. It's remote/distributed ones that might care...
+
+---
+
+**mandatory**
+
+FS_REVAL_DOT is gone; if you used to have it, add ->d_weak_revalidate()
+in your dentry operations instead.
+
+---
+
+**mandatory**
+
+vfs_readdir() is gone; switch to iterate_dir() instead
+
+---
+
+**mandatory**
+
+->readdir() is gone now; switch to ->iterate()
+
+**mandatory**
+
+vfs_follow_link has been removed. Filesystems must use nd_set_link
+from ->follow_link for normal symlinks, or nd_jump_link for magic
+/proc/<pid> style links.
+
+---
+
+**mandatory**
+
+iget5_locked()/ilookup5()/ilookup5_nowait() test() callback used to be
+called with both ->i_lock and inode_hash_lock held; the former is *not*
+taken anymore, so verify that your callbacks do not rely on it (none
+of the in-tree instances did). inode_hash_lock is still held,
+of course, so they are still serialized wrt removal from inode hash,
+as well as wrt set() callback of iget5_locked().
+
+---
+
+**mandatory**
+
+d_materialise_unique() is gone; d_splice_alias() does everything you
+need now. Remember that they have opposite orders of arguments ;-/
+
+---
+
+**mandatory**
+
+f_dentry is gone; use f_path.dentry, or, better yet, see if you can avoid
+it entirely.
+
+---
+
+**mandatory**
+
+never call ->read() and ->write() directly; use __vfs_{read,write} or
+wrappers; instead of checking for ->write or ->read being NULL, look for
+FMODE_CAN_{WRITE,READ} in file->f_mode.
+
+---
+
+**mandatory**
+
+do _not_ use new_sync_{read,write} for ->read/->write; leave it NULL
+instead.
+
+---
+
+**mandatory**
+ ->aio_read/->aio_write are gone. Use ->read_iter/->write_iter.
+
+---
+
+**recommended**
+
+for embedded ("fast") symlinks just set inode->i_link to wherever the
+symlink body is and use simple_follow_link() as ->follow_link().
+
+---
+
+**mandatory**
+
+calling conventions for ->follow_link() have changed. Instead of returning
+cookie and using nd_set_link() to store the body to traverse, we return
+the body to traverse and store the cookie using explicit void ** argument.
+nameidata isn't passed at all - nd_jump_link() doesn't need it and
+nd_[gs]et_link() is gone.
+
+---
+
+**mandatory**
+
+calling conventions for ->put_link() have changed. It gets inode instead of
+dentry, it does not get nameidata at all and it gets called only when cookie
+is non-NULL. Note that link body isn't available anymore, so if you need it,
+store it as cookie.
+
+---
+
+**mandatory**
+
+any symlink that might use page_follow_link_light/page_put_link() must
+have inode_nohighmem(inode) called before anything might start playing with
+its pagecache. No highmem pages should end up in the pagecache of such
+symlinks. That includes any preseeding that might be done during symlink
+creation. __page_symlink() will honour the mapping gfp flags, so once
+you've done inode_nohighmem() it's safe to use, but if you allocate and
+insert the page manually, make sure to use the right gfp flags.
+
+---
+
+**mandatory**
+
+->follow_link() is replaced with ->get_link(); same API, except that
+
+ * ->get_link() gets inode as a separate argument
+ * ->get_link() may be called in RCU mode - in that case NULL
+ dentry is passed
+
+---
+
+**mandatory**
+
+->get_link() gets struct delayed_call ``*done`` now, and should do
+set_delayed_call() where it used to set ``*cookie``.
+
+->put_link() is gone - just give the destructor to set_delayed_call()
+in ->get_link().
+
+---
+
+**mandatory**
+
+->getxattr() and xattr_handler.get() get dentry and inode passed separately.
+dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
+in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
+called before we attach dentry to inode.
+
+---
+
+**mandatory**
+
+symlinks are no longer the only inodes that do *not* have i_bdev/i_cdev/
+i_pipe/i_link union zeroed out at inode eviction. As the result, you can't
+assume that non-NULL value in ->i_nlink at ->destroy_inode() implies that
+it's a symlink. Checking ->i_mode is really needed now. In-tree we had
+to fix shmem_destroy_callback() that used to take that kind of shortcut;
+watch out, since that shortcut is no longer valid.
+
+---
+
+**mandatory**
+
+->i_mutex is replaced with ->i_rwsem now. inode_lock() et.al. work as
+they used to - they just take it exclusive. However, ->lookup() may be
+called with parent locked shared. Its instances must not
+
+ * use d_instantiate) and d_rehash() separately - use d_add() or
+ d_splice_alias() instead.
+ * use d_rehash() alone - call d_add(new_dentry, NULL) instead.
+ * in the unlikely case when (read-only) access to filesystem
+ data structures needs exclusion for some reason, arrange it
+ yourself. None of the in-tree filesystems needed that.
+ * rely on ->d_parent and ->d_name not changing after dentry has
+ been fed to d_add() or d_splice_alias(). Again, none of the
+ in-tree instances relied upon that.
+
+We are guaranteed that lookups of the same name in the same directory
+will not happen in parallel ("same" in the sense of your ->d_compare()).
+Lookups on different names in the same directory can and do happen in
+parallel now.
+
+---
+
+**recommended**
+
+->iterate_shared() is added; it's a parallel variant of ->iterate().
+Exclusion on struct file level is still provided (as well as that
+between it and lseek on the same struct file), but if your directory
+has been opened several times, you can get these called in parallel.
+Exclusion between that method and all directory-modifying ones is
+still provided, of course.
+
+Often enough ->iterate() can serve as ->iterate_shared() without any
+changes - it is a read-only operation, after all. If you have any
+per-inode or per-dentry in-core data structures modified by ->iterate(),
+you might need something to serialize the access to them. If you
+do dcache pre-seeding, you'll need to switch to d_alloc_parallel() for
+that; look for in-tree examples.
+
+Old method is only used if the new one is absent; eventually it will
+be removed. Switch while you still can; the old one won't stay.
+
+---
+
+**mandatory**
+
+->atomic_open() calls without O_CREAT may happen in parallel.
+
+---
+
+**mandatory**
+
+->setxattr() and xattr_handler.set() get dentry and inode passed separately.
+dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
+in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
+called before we attach dentry to inode and !@#!@##!@$!$#!@#$!@$!@$ smack
+->d_instantiate() uses not just ->getxattr() but ->setxattr() as well.
+
+---
+
+**mandatory**
+
+->d_compare() doesn't get parent as a separate argument anymore. If you
+used it for finding the struct super_block involved, dentry->d_sb will
+work just as well; if it's something more complicated, use dentry->d_parent.
+Just be careful not to assume that fetching it more than once will yield
+the same value - in RCU mode it could change under you.
+
+---
+
+**mandatory**
+
+->rename() has an added flags argument. Any flags not handled by the
+filesystem should result in EINVAL being returned.
+
+---
+
+
+**recommended**
+
+->readlink is optional for symlinks. Don't set, unless filesystem needs
+to fake something for readlink(2).
+
+---
+
+**mandatory**
+
+->getattr() is now passed a struct path rather than a vfsmount and
+dentry separately, and it now has request_mask and query_flags arguments
+to specify the fields and sync type requested by statx. Filesystems not
+supporting any statx-specific features may ignore the new arguments.
+
+---
+
+**mandatory**
+
+->atomic_open() calling conventions have changed. Gone is ``int *opened``,
+along with FILE_OPENED/FILE_CREATED. In place of those we have
+FMODE_OPENED/FMODE_CREATED, set in file->f_mode. Additionally, return
+value for 'called finish_no_open(), open it yourself' case has become
+0, not 1. Since finish_no_open() itself is returning 0 now, that part
+does not need any changes in ->atomic_open() instances.
+
+---
+
+**mandatory**
+
+alloc_file() has become static now; two wrappers are to be used instead.
+alloc_file_pseudo(inode, vfsmount, name, flags, ops) is for the cases
+when dentry needs to be created; that's the majority of old alloc_file()
+users. Calling conventions: on success a reference to new struct file
+is returned and callers reference to inode is subsumed by that. On
+failure, ERR_PTR() is returned and no caller's references are affected,
+so the caller needs to drop the inode reference it held.
+alloc_file_clone(file, flags, ops) does not affect any caller's references.
+On success you get a new struct file sharing the mount/dentry with the
+original, on failure - ERR_PTR().
+
+---
+
+**mandatory**
+
+->clone_file_range() and ->dedupe_file_range have been replaced with
+->remap_file_range(). See Documentation/filesystems/vfs.rst for more
+information.
+
+---
+
+**recommended**
+
+->lookup() instances doing an equivalent of::
+
+ if (IS_ERR(inode))
+ return ERR_CAST(inode);
+ return d_splice_alias(inode, dentry);
+
+don't need to bother with the check - d_splice_alias() will do the
+right thing when given ERR_PTR(...) as inode. Moreover, passing NULL
+inode to d_splice_alias() will also do the right thing (equivalent of
+d_add(dentry, NULL); return NULL;), so that kind of special cases
+also doesn't need a separate treatment.
+
+---
+
+**strongly recommended**
+
+take the RCU-delayed parts of ->destroy_inode() into a new method -
+->free_inode(). If ->destroy_inode() becomes empty - all the better,
+just get rid of it. Synchronous work (e.g. the stuff that can't
+be done from an RCU callback, or any WARN_ON() where we want the
+stack trace) *might* be movable to ->evict_inode(); however,
+that goes only for the things that are not needed to balance something
+done by ->alloc_inode(). IOW, if it's cleaning up the stuff that
+might have accumulated over the life of in-core inode, ->evict_inode()
+might be a fit.
+
+Rules for inode destruction:
+
+ * if ->destroy_inode() is non-NULL, it gets called
+ * if ->free_inode() is non-NULL, it gets scheduled by call_rcu()
+ * combination of NULL ->destroy_inode and NULL ->free_inode is
+ treated as NULL/free_inode_nonrcu, to preserve the compatibility.
+
+Note that the callback (be it via ->free_inode() or explicit call_rcu()
+in ->destroy_inode()) is *NOT* ordered wrt superblock destruction;
+as the matter of fact, the superblock and all associated structures
+might be already gone. The filesystem driver is guaranteed to be still
+there, but that's it. Freeing memory in the callback is fine; doing
+more than that is possible, but requires a lot of care and is best
+avoided.
+
+---
+
+**mandatory**
+
+DCACHE_RCUACCESS is gone; having an RCU delay on dentry freeing is the
+default. DCACHE_NORCU opts out, and only d_alloc_pseudo() has any
+business doing so.
+
+---
+
+**mandatory**
+
+d_alloc_pseudo() is internal-only; uses outside of alloc_file_pseudo() are
+very suspect (and won't work in modules). Such uses are very likely to
+be misspelled d_alloc_anon().
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 66cad5c86171..99ca040e3f90 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -45,6 +45,7 @@ Table of Contents
3.9 /proc/<pid>/map_files - Information about memory mapped files
3.10 /proc/<pid>/timerslack_ns - Task timerslack value
3.11 /proc/<pid>/patch_state - Livepatch patch operation state
+ 3.12 /proc/<pid>/arch_status - Task architecture specific information
4 Configuring procfs
4.1 Mount options
@@ -153,9 +154,11 @@ Table 1-1: Process specific entries in /proc
symbol the task is blocked in - or "0" if not blocked.
pagemap Page table
stack Report full stack trace, enable via CONFIG_STACKTRACE
- smaps an extension based on maps, showing the memory consumption of
+ smaps An extension based on maps, showing the memory consumption of
each mapping and flags associated with it
- numa_maps an extension based on maps, showing the memory locality and
+ smaps_rollup Accumulated smaps stats for all mappings of the process. This
+ can be derived from smaps, but is faster and more convenient
+ numa_maps An extension based on maps, showing the memory locality and
binding policy as well as mem usage (in pages) of each mapping.
..............................................................................
@@ -365,7 +368,7 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
exit_code the thread's exit_code in the form reported by the waitpid system call
..............................................................................
-The /proc/PID/maps file containing the currently mapped memory regions and
+The /proc/PID/maps file contains the currently mapped memory regions and
their access permissions.
The format is:
@@ -416,11 +419,14 @@ is not associated with a file:
or if empty, the mapping is anonymous.
The /proc/PID/smaps is an extension based on maps, showing the memory
-consumption for each of the process's mappings. For each of mappings there
-is a series of lines such as the following:
+consumption for each of the process's mappings. For each mapping (aka Virtual
+Memory Area, or VMA) there is a series of lines such as the following:
08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash
+
Size: 1084 kB
+KernelPageSize: 4 kB
+MMUPageSize: 4 kB
Rss: 892 kB
Pss: 374 kB
Shared_Clean: 892 kB
@@ -442,11 +448,14 @@ Locked: 0 kB
THPeligible: 0
VmFlags: rd ex mr mw me dw
-the first of these lines shows the same information as is displayed for the
-mapping in /proc/PID/maps. The remaining lines show the size of the mapping
-(size), the amount of the mapping that is currently resident in RAM (RSS), the
-process' proportional share of this mapping (PSS), the number of clean and
-dirty private pages in the mapping.
+The first of these lines shows the same information as is displayed for the
+mapping in /proc/PID/maps. Following lines show the size of the mapping
+(size); the size of each page allocated when backing a VMA (KernelPageSize),
+which is usually the same as the size in the page table entries; the page size
+used by the MMU when backing a VMA (in most cases, the same as KernelPageSize);
+the amount of the mapping that is currently resident in RAM (RSS); the
+process' proportional share of this mapping (PSS); and the number of clean and
+dirty shared and private pages in the mapping.
The "proportional set size" (PSS) of a process is the count of pages it has
in memory, where each page is divided by the number of processes sharing it.
@@ -477,8 +486,8 @@ replaced by copy-on-write) part of the underlying shmem object out on swap.
"SwapPss" shows proportional swap share of this mapping. Unlike "Swap", this
does not take into account swapped out page of underlying shmem objects.
"Locked" indicates whether the mapping is locked in memory or not.
-"THPeligible" indicates whether the mapping is eligible for THP pages - 1 if
-true, 0 otherwise.
+"THPeligible" indicates whether the mapping is eligible for allocating THP
+pages - 1 if true, 0 otherwise. It just shows the current status.
"VmFlags" field deserves a separate description. This member represents the kernel
flags associated with the particular virtual memory area in two letter encoded
@@ -531,6 +540,19 @@ guarantees:
2) If there is something at a given vaddr during the entirety of the
life of the smaps/maps walk, there will be some output for it.
+The /proc/PID/smaps_rollup file includes the same fields as /proc/PID/smaps,
+but their values are the sums of the corresponding values for all mappings of
+the process. Additionally, it contains these fields:
+
+Pss_Anon
+Pss_File
+Pss_Shmem
+
+They represent the proportional shares of anonymous, file, and shmem pages, as
+described for smaps above. These fields are omitted in smaps since each
+mapping identifies the type (anon, file, or shmem) of all pages it contains.
+Thus all information in smaps_rollup can be derived from smaps, but at a
+significantly higher cost.
The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG
bits on both physical and virtual pages associated with a process, and the
@@ -1478,7 +1500,7 @@ review the kernel documentation in the directory /usr/src/linux/Documentation.
This chapter is heavily based on the documentation included in the pre 2.2
kernels, and became part of it in version 2.2.1 of the Linux kernel.
-Please see: Documentation/sysctl/ directory for descriptions of these
+Please see: Documentation/admin-guide/sysctl/ directory for descriptions of these
entries.
------------------------------------------------------------------------------
@@ -1948,6 +1970,45 @@ patched. If the patch is being enabled, then the task has already been
patched. If the patch is being disabled, then the task hasn't been
unpatched yet.
+3.12 /proc/<pid>/arch_status - task architecture specific status
+-------------------------------------------------------------------
+When CONFIG_PROC_PID_ARCH_STATUS is enabled, this file displays the
+architecture specific status of the task.
+
+Example
+-------
+ $ cat /proc/6753/arch_status
+ AVX512_elapsed_ms: 8
+
+Description
+-----------
+
+x86 specific entries:
+---------------------
+ AVX512_elapsed_ms:
+ ------------------
+ If AVX512 is supported on the machine, this entry shows the milliseconds
+ elapsed since the last time AVX512 usage was recorded. The recording
+ happens on a best effort basis when a task is scheduled out. This means
+ that the value depends on two factors:
+
+ 1) The time which the task spent on the CPU without being scheduled
+ out. With CPU isolation and a single runnable task this can take
+ several seconds.
+
+ 2) The time since the task was scheduled out last. Depending on the
+ reason for being scheduled out (time slice exhausted, syscall ...)
+ this can be arbitrary long time.
+
+ As a consequence the value cannot be considered precise and authoritative
+ information. The application which uses this information has to be aware
+ of the overall scenario on the system in order to determine whether a
+ task is a real AVX512 user or not. Precise information can be obtained
+ with performance counters.
+
+ A special value of '-1' indicates that no AVX512 usage was recorded, thus
+ the task is unlikely an AVX512 user, but depends on the workload and the
+ scheduling scenario, it also could be a false negative mentioned above.
------------------------------------------------------------------------------
Configuring procfs
diff --git a/Documentation/filesystems/ramfs-rootfs-initramfs.txt b/Documentation/filesystems/ramfs-rootfs-initramfs.txt
index 79637d227e85..97d42ccaa92d 100644
--- a/Documentation/filesystems/ramfs-rootfs-initramfs.txt
+++ b/Documentation/filesystems/ramfs-rootfs-initramfs.txt
@@ -105,7 +105,7 @@ All this differs from the old initrd in several ways:
- The old initrd file was a gzipped filesystem image (in some file format,
such as ext2, that needed a driver built into the kernel), while the new
initramfs archive is a gzipped cpio archive (like tar only simpler,
- see cpio(1) and Documentation/early-userspace/buffer-format.txt). The
+ see cpio(1) and Documentation/driver-api/early-userspace/buffer-format.rst). The
kernel's cpio extraction code is not only extremely small, it's also
__init text and data that can be discarded during the boot process.
@@ -159,7 +159,7 @@ One advantage of the configuration file is that root access is not required to
set permissions or create device nodes in the new archive. (Note that those
two example "file" entries expect to find files named "init.sh" and "busybox" in
a directory called "initramfs", under the linux-2.6.* directory. See
-Documentation/early-userspace/README for more details.)
+Documentation/driver-api/early-userspace/early_userspace_support.rst for more details.)
The kernel does not depend on external cpio tools. If you specify a
directory instead of a configuration file, the kernel's build infrastructure
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt
index 5b5311f9358d..ddf15b1b0d5a 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.txt
@@ -319,7 +319,7 @@ quick way to lookup the sysfs interface for a device from the result of
a stat(2) operation.
More information can driver-model specific features can be found in
-Documentation/driver-model/.
+Documentation/driver-api/driver-model/.
TODO: Finish this section.
diff --git a/Documentation/filesystems/tmpfs.txt b/Documentation/filesystems/tmpfs.txt
index d06e9a59a9f4..5ecbc03e6b2f 100644
--- a/Documentation/filesystems/tmpfs.txt
+++ b/Documentation/filesystems/tmpfs.txt
@@ -98,7 +98,7 @@ A memory policy with a valid NodeList will be saved, as specified, for
use at file creation time. When a task allocates a file in the file
system, the mount option memory policy will be applied with a NodeList,
if any, modified by the calling task's cpuset constraints
-[See Documentation/cgroup-v1/cpusets.txt] and any optional flags, listed
+[See Documentation/admin-guide/cgroup-v1/cpusets.rst] and any optional flags, listed
below. If the resulting NodeLists is the empty set, the effective memory
policy for the file will revert to "default" policy.
diff --git a/Documentation/filesystems/ubifs-authentication.md b/Documentation/filesystems/ubifs-authentication.rst
index 028b3e2e25f9..6a9584f6ff46 100644
--- a/Documentation/filesystems/ubifs-authentication.md
+++ b/Documentation/filesystems/ubifs-authentication.rst
@@ -1,8 +1,11 @@
-% UBIFS Authentication
-% sigma star gmbh
-% 2018
+:orphan:
-# Introduction
+.. UBIFS Authentication
+.. sigma star gmbh
+.. 2018
+
+Introduction
+============
UBIFS utilizes the fscrypt framework to provide confidentiality for file
contents and file names. This prevents attacks where an attacker is able to
@@ -33,7 +36,8 @@ existing features like key derivation can be utilized. It should however also
be possible to use UBIFS authentication without using encryption.
-## MTD, UBI & UBIFS
+MTD, UBI & UBIFS
+----------------
On Linux, the MTD (Memory Technology Devices) subsystem provides a uniform
interface to access raw flash devices. One of the more prominent subsystems that
@@ -47,7 +51,7 @@ UBIFS is a filesystem for raw flash which operates on top of UBI. Thus, wear
leveling and some flash specifics are left to UBI, while UBIFS focuses on
scalability, performance and recoverability.
-
+::
+------------+ +*******+ +-----------+ +-----+
| | * UBIFS * | UBI-BLOCK | | ... |
@@ -84,7 +88,8 @@ persisted onto the flash directly. More details on UBIFS can also be found in
[UBIFS-WP].
-### UBIFS Index & Tree Node Cache
+UBIFS Index & Tree Node Cache
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Basic on-flash UBIFS entities are called *nodes*. UBIFS knows different types
of nodes. Eg. data nodes (`struct ubifs_data_node`) which store chunks of file
@@ -118,17 +123,18 @@ on-flash filesystem structures like the index. On every commit, the TNC nodes
marked as dirty are written to the flash to update the persisted index.
-### Journal
+Journal
+~~~~~~~
To avoid wearing out the flash, the index is only persisted (*commited*) when
-certain conditions are met (eg. `fsync(2)`). The journal is used to record
+certain conditions are met (eg. ``fsync(2)``). The journal is used to record
any changes (in form of inode nodes, data nodes etc.) between commits
of the index. During mount, the journal is read from the flash and replayed
onto the TNC (which will be created on-demand from the on-flash index).
UBIFS reserves a bunch of LEBs just for the journal called *log area*. The
amount of log area LEBs is configured on filesystem creation (using
-`mkfs.ubifs`) and stored in the superblock node. The log area contains only
+``mkfs.ubifs``) and stored in the superblock node. The log area contains only
two types of nodes: *reference nodes* and *commit start nodes*. A commit start
node is written whenever an index commit is performed. Reference nodes are
written on every journal update. Each reference node points to the position of
@@ -152,6 +158,7 @@ done for the last referenced LEB of the journal. Only this can become corrupt
because of a power cut. If the recovery fails, UBIFS will not mount. An error
for every other LEB will directly cause UBIFS to fail the mount operation.
+::
| ---- LOG AREA ---- | ---------- MAIN AREA ------------ |
@@ -172,10 +179,11 @@ for every other LEB will directly cause UBIFS to fail the mount operation.
containing their buds
-### LEB Property Tree/Table
+LEB Property Tree/Table
+~~~~~~~~~~~~~~~~~~~~~~~
The LEB property tree is used to store per-LEB information. This includes the
-LEB type and amount of free and *dirty* (old, obsolete content) space [1] on
+LEB type and amount of free and *dirty* (old, obsolete content) space [1]_ on
the LEB. The type is important, because UBIFS never mixes index nodes with data
nodes on a single LEB and thus each LEB has a specific purpose. This again is
useful for free space calculations. See [UBIFS-WP] for more details.
@@ -185,19 +193,21 @@ index. Due to its smaller size it is always written as one chunk on every
commit. Thus, saving the LPT is an atomic operation.
-[1] Since LEBs can only be appended and never overwritten, there is a
-difference between free space ie. the remaining space left on the LEB to be
-written to without erasing it and previously written content that is obsolete
-but can't be overwritten without erasing the full LEB.
+.. [1] Since LEBs can only be appended and never overwritten, there is a
+ difference between free space ie. the remaining space left on the LEB to be
+ written to without erasing it and previously written content that is obsolete
+ but can't be overwritten without erasing the full LEB.
-# UBIFS Authentication
+UBIFS Authentication
+====================
This chapter introduces UBIFS authentication which enables UBIFS to verify
the authenticity and integrity of metadata and file contents stored on flash.
-## Threat Model
+Threat Model
+------------
UBIFS authentication enables detection of offline data modification. While it
does not prevent it, it enables (trusted) code to check the integrity and
@@ -224,7 +234,8 @@ Additional measures like secure boot and trusted boot have to be taken to
ensure that only trusted code is executed on a device.
-## Authentication
+Authentication
+--------------
To be able to fully trust data read from flash, all UBIFS data structures
stored on flash are authenticated. That is:
@@ -236,7 +247,8 @@ stored on flash are authenticated. That is:
- The LPT which stores UBI LEB metadata which UBIFS uses for free space accounting
-### Index Authentication
+Index Authentication
+~~~~~~~~~~~~~~~~~~~~
Through UBIFS' concept of a wandering tree, it already takes care of only
updating and persisting changed parts from leaf node up to the root node
@@ -260,6 +272,7 @@ include a hash. All other types of nodes will remain unchanged. This reduces
the storage overhead which is precious for users of UBIFS (ie. embedded
devices).
+::
+---------------+
| Master Node |
@@ -303,7 +316,8 @@ hashes to index nodes does not change this since each hash will be persisted
atomically together with its respective node.
-### Journal Authentication
+Journal Authentication
+~~~~~~~~~~~~~~~~~~~~~~
The journal is authenticated too. Since the journal is continuously written
it is necessary to also add authentication information frequently to the
@@ -316,7 +330,7 @@ of the hash chain. That way a journal can be authenticated up to the last
authentication node. The tail of the journal which may not have a authentication
node cannot be authenticated and is skipped during journal replay.
-We get this picture for journal authentication:
+We get this picture for journal authentication::
,,,,,,,,
,......,...........................................
@@ -352,7 +366,8 @@ the superblock struct. The superblock node is stored in LEB 0 and is only
modified on feature flag or similar changes, but never on file changes.
-### LPT Authentication
+LPT Authentication
+~~~~~~~~~~~~~~~~~~
The location of the LPT root node on the flash is stored in the UBIFS master
node. Since the LPT is written and read atomically on every commit, there is
@@ -363,7 +378,8 @@ be verified by verifying the authenticity of the master node and comparing the
LTP hash stored there with the hash computed from the read on-flash LPT.
-## Key Management
+Key Management
+--------------
For simplicity, UBIFS authentication uses a single key to compute the HMACs
of superblock, master, commit start and reference nodes. This key has to be
@@ -399,7 +415,8 @@ approach is similar to the approach proposed for fscrypt encryption policy v2
[FSCRYPT-POLICY2].
-# Future Extensions
+Future Extensions
+=================
In certain cases where a vendor wants to provide an authenticated filesystem
image to customers, it should be possible to do so without sharing the secret
@@ -411,15 +428,16 @@ to the way the IMA/EVM subsystem deals with such situations. The HMAC key
will then have to be provided beforehand in the normal way.
-# References
+References
+==========
[CRYPTSETUP2] http://www.saout.de/pipermail/dm-crypt/2017-November/005745.html
[DMC-CBC-ATTACK] http://www.jakoblell.com/blog/2013/12/22/practical-malleability-attack-against-cbc-encrypted-luks-partitions/
-[DM-INTEGRITY] https://www.kernel.org/doc/Documentation/device-mapper/dm-integrity.txt
+[DM-INTEGRITY] https://www.kernel.org/doc/Documentation/device-mapper/dm-integrity.rst
-[DM-VERITY] https://www.kernel.org/doc/Documentation/device-mapper/verity.txt
+[DM-VERITY] https://www.kernel.org/doc/Documentation/device-mapper/verity.rst
[FSCRYPT-POLICY2] https://www.spinics.net/lists/linux-ext4/msg58710.html
diff --git a/Documentation/filesystems/vfs.rst b/Documentation/filesystems/vfs.rst
new file mode 100644
index 000000000000..7d4d09dd5e6d
--- /dev/null
+++ b/Documentation/filesystems/vfs.rst
@@ -0,0 +1,1428 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================================
+Overview of the Linux Virtual File System
+=========================================
+
+Original author: Richard Gooch <rgooch@atnf.csiro.au>
+
+- Copyright (C) 1999 Richard Gooch
+- Copyright (C) 2005 Pekka Enberg
+
+
+Introduction
+============
+
+The Virtual File System (also known as the Virtual Filesystem Switch) is
+the software layer in the kernel that provides the filesystem interface
+to userspace programs. It also provides an abstraction within the
+kernel which allows different filesystem implementations to coexist.
+
+VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so on
+are called from a process context. Filesystem locking is described in
+the document Documentation/filesystems/locking.rst.
+
+
+Directory Entry Cache (dcache)
+------------------------------
+
+The VFS implements the open(2), stat(2), chmod(2), and similar system
+calls. The pathname argument that is passed to them is used by the VFS
+to search through the directory entry cache (also known as the dentry
+cache or dcache). This provides a very fast look-up mechanism to
+translate a pathname (filename) into a specific dentry. Dentries live
+in RAM and are never saved to disc: they exist only for performance.
+
+The dentry cache is meant to be a view into your entire filespace. As
+most computers cannot fit all dentries in the RAM at the same time, some
+bits of the cache are missing. In order to resolve your pathname into a
+dentry, the VFS may have to resort to creating dentries along the way,
+and then loading the inode. This is done by looking up the inode.
+
+
+The Inode Object
+----------------
+
+An individual dentry usually has a pointer to an inode. Inodes are
+filesystem objects such as regular files, directories, FIFOs and other
+beasts. They live either on the disc (for block device filesystems) or
+in the memory (for pseudo filesystems). Inodes that live on the disc
+are copied into the memory when required and changes to the inode are
+written back to disc. A single inode can be pointed to by multiple
+dentries (hard links, for example, do this).
+
+To look up an inode requires that the VFS calls the lookup() method of
+the parent directory inode. This method is installed by the specific
+filesystem implementation that the inode lives in. Once the VFS has the
+required dentry (and hence the inode), we can do all those boring things
+like open(2) the file, or stat(2) it to peek at the inode data. The
+stat(2) operation is fairly simple: once the VFS has the dentry, it
+peeks at the inode data and passes some of it back to userspace.
+
+
+The File Object
+---------------
+
+Opening a file requires another operation: allocation of a file
+structure (this is the kernel-side implementation of file descriptors).
+The freshly allocated file structure is initialized with a pointer to
+the dentry and a set of file operation member functions. These are
+taken from the inode data. The open() file method is then called so the
+specific filesystem implementation can do its work. You can see that
+this is another switch performed by the VFS. The file structure is
+placed into the file descriptor table for the process.
+
+Reading, writing and closing files (and other assorted VFS operations)
+is done by using the userspace file descriptor to grab the appropriate
+file structure, and then calling the required file structure method to
+do whatever is required. For as long as the file is open, it keeps the
+dentry in use, which in turn means that the VFS inode is still in use.
+
+
+Registering and Mounting a Filesystem
+=====================================
+
+To register and unregister a filesystem, use the following API
+functions:
+
+.. code-block:: c
+
+ #include <linux/fs.h>
+
+ extern int register_filesystem(struct file_system_type *);
+ extern int unregister_filesystem(struct file_system_type *);
+
+The passed struct file_system_type describes your filesystem. When a
+request is made to mount a filesystem onto a directory in your
+namespace, the VFS will call the appropriate mount() method for the
+specific filesystem. New vfsmount referring to the tree returned by
+->mount() will be attached to the mountpoint, so that when pathname
+resolution reaches the mountpoint it will jump into the root of that
+vfsmount.
+
+You can see all filesystems that are registered to the kernel in the
+file /proc/filesystems.
+
+
+struct file_system_type
+-----------------------
+
+This describes the filesystem. As of kernel 2.6.39, the following
+members are defined:
+
+.. code-block:: c
+
+ struct file_system_operations {
+ const char *name;
+ int fs_flags;
+ struct dentry *(*mount) (struct file_system_type *, int,
+ const char *, void *);
+ void (*kill_sb) (struct super_block *);
+ struct module *owner;
+ struct file_system_type * next;
+ struct list_head fs_supers;
+ struct lock_class_key s_lock_key;
+ struct lock_class_key s_umount_key;
+ };
+
+``name``
+ the name of the filesystem type, such as "ext2", "iso9660",
+ "msdos" and so on
+
+``fs_flags``
+ various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)
+
+``mount``
+ the method to call when a new instance of this filesystem should
+ be mounted
+
+``kill_sb``
+ the method to call when an instance of this filesystem should be
+ shut down
+
+
+``owner``
+ for internal VFS use: you should initialize this to THIS_MODULE
+ in most cases.
+
+``next``
+ for internal VFS use: you should initialize this to NULL
+
+ s_lock_key, s_umount_key: lockdep-specific
+
+The mount() method has the following arguments:
+
+``struct file_system_type *fs_type``
+ describes the filesystem, partly initialized by the specific
+ filesystem code
+
+``int flags``
+ mount flags
+
+``const char *dev_name``
+ the device name we are mounting.
+
+``void *data``
+ arbitrary mount options, usually comes as an ASCII string (see
+ "Mount Options" section)
+
+The mount() method must return the root dentry of the tree requested by
+caller. An active reference to its superblock must be grabbed and the
+superblock must be locked. On failure it should return ERR_PTR(error).
+
+The arguments match those of mount(2) and their interpretation depends
+on filesystem type. E.g. for block filesystems, dev_name is interpreted
+as block device name, that device is opened and if it contains a
+suitable filesystem image the method creates and initializes struct
+super_block accordingly, returning its root dentry to caller.
+
+->mount() may choose to return a subtree of existing filesystem - it
+doesn't have to create a new one. The main result from the caller's
+point of view is a reference to dentry at the root of (sub)tree to be
+attached; creation of new superblock is a common side effect.
+
+The most interesting member of the superblock structure that the mount()
+method fills in is the "s_op" field. This is a pointer to a "struct
+super_operations" which describes the next level of the filesystem
+implementation.
+
+Usually, a filesystem uses one of the generic mount() implementations
+and provides a fill_super() callback instead. The generic variants are:
+
+``mount_bdev``
+ mount a filesystem residing on a block device
+
+``mount_nodev``
+ mount a filesystem that is not backed by a device
+
+``mount_single``
+ mount a filesystem which shares the instance between all mounts
+
+A fill_super() callback implementation has the following arguments:
+
+``struct super_block *sb``
+ the superblock structure. The callback must initialize this
+ properly.
+
+``void *data``
+ arbitrary mount options, usually comes as an ASCII string (see
+ "Mount Options" section)
+
+``int silent``
+ whether or not to be silent on error
+
+
+The Superblock Object
+=====================
+
+A superblock object represents a mounted filesystem.
+
+
+struct super_operations
+-----------------------
+
+This describes how the VFS can manipulate the superblock of your
+filesystem. As of kernel 2.6.22, the following members are defined:
+
+.. code-block:: c
+
+ struct super_operations {
+ struct inode *(*alloc_inode)(struct super_block *sb);
+ void (*destroy_inode)(struct inode *);
+
+ void (*dirty_inode) (struct inode *, int flags);
+ int (*write_inode) (struct inode *, int);
+ void (*drop_inode) (struct inode *);
+ void (*delete_inode) (struct inode *);
+ void (*put_super) (struct super_block *);
+ int (*sync_fs)(struct super_block *sb, int wait);
+ int (*freeze_fs) (struct super_block *);
+ int (*unfreeze_fs) (struct super_block *);
+ int (*statfs) (struct dentry *, struct kstatfs *);
+ int (*remount_fs) (struct super_block *, int *, char *);
+ void (*clear_inode) (struct inode *);
+ void (*umount_begin) (struct super_block *);
+
+ int (*show_options)(struct seq_file *, struct dentry *);
+
+ ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
+ ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
+ int (*nr_cached_objects)(struct super_block *);
+ void (*free_cached_objects)(struct super_block *, int);
+ };
+
+All methods are called without any locks being held, unless otherwise
+noted. This means that most methods can block safely. All methods are
+only called from a process context (i.e. not from an interrupt handler
+or bottom half).
+
+``alloc_inode``
+ this method is called by alloc_inode() to allocate memory for
+ struct inode and initialize it. If this function is not
+ defined, a simple 'struct inode' is allocated. Normally
+ alloc_inode will be used to allocate a larger structure which
+ contains a 'struct inode' embedded within it.
+
+``destroy_inode``
+ this method is called by destroy_inode() to release resources
+ allocated for struct inode. It is only required if
+ ->alloc_inode was defined and simply undoes anything done by
+ ->alloc_inode.
+
+``dirty_inode``
+ this method is called by the VFS to mark an inode dirty.
+
+``write_inode``
+ this method is called when the VFS needs to write an inode to
+ disc. The second parameter indicates whether the write should
+ be synchronous or not, not all filesystems check this flag.
+
+``drop_inode``
+ called when the last access to the inode is dropped, with the
+ inode->i_lock spinlock held.
+
+ This method should be either NULL (normal UNIX filesystem
+ semantics) or "generic_delete_inode" (for filesystems that do
+ not want to cache inodes - causing "delete_inode" to always be
+ called regardless of the value of i_nlink)
+
+ The "generic_delete_inode()" behavior is equivalent to the old
+ practice of using "force_delete" in the put_inode() case, but
+ does not have the races that the "force_delete()" approach had.
+
+``delete_inode``
+ called when the VFS wants to delete an inode
+
+``put_super``
+ called when the VFS wishes to free the superblock
+ (i.e. unmount). This is called with the superblock lock held
+
+``sync_fs``
+ called when VFS is writing out all dirty data associated with a
+ superblock. The second parameter indicates whether the method
+ should wait until the write out has been completed. Optional.
+
+``freeze_fs``
+ called when VFS is locking a filesystem and forcing it into a
+ consistent state. This method is currently used by the Logical
+ Volume Manager (LVM).
+
+``unfreeze_fs``
+ called when VFS is unlocking a filesystem and making it writable
+ again.
+
+``statfs``
+ called when the VFS needs to get filesystem statistics.
+
+``remount_fs``
+ called when the filesystem is remounted. This is called with
+ the kernel lock held
+
+``clear_inode``
+ called then the VFS clears the inode. Optional
+
+``umount_begin``
+ called when the VFS is unmounting a filesystem.
+
+``show_options``
+ called by the VFS to show mount options for /proc/<pid>/mounts.
+ (see "Mount Options" section)
+
+``quota_read``
+ called by the VFS to read from filesystem quota file.
+
+``quota_write``
+ called by the VFS to write to filesystem quota file.
+
+``nr_cached_objects``
+ called by the sb cache shrinking function for the filesystem to
+ return the number of freeable cached objects it contains.
+ Optional.
+
+``free_cache_objects``
+ called by the sb cache shrinking function for the filesystem to
+ scan the number of objects indicated to try to free them.
+ Optional, but any filesystem implementing this method needs to
+ also implement ->nr_cached_objects for it to be called
+ correctly.
+
+ We can't do anything with any errors that the filesystem might
+ encountered, hence the void return type. This will never be
+ called if the VM is trying to reclaim under GFP_NOFS conditions,
+ hence this method does not need to handle that situation itself.
+
+ Implementations must include conditional reschedule calls inside
+ any scanning loop that is done. This allows the VFS to
+ determine appropriate scan batch sizes without having to worry
+ about whether implementations will cause holdoff problems due to
+ large scan batch sizes.
+
+Whoever sets up the inode is responsible for filling in the "i_op"
+field. This is a pointer to a "struct inode_operations" which describes
+the methods that can be performed on individual inodes.
+
+
+struct xattr_handlers
+---------------------
+
+On filesystems that support extended attributes (xattrs), the s_xattr
+superblock field points to a NULL-terminated array of xattr handlers.
+Extended attributes are name:value pairs.
+
+``name``
+ Indicates that the handler matches attributes with the specified
+ name (such as "system.posix_acl_access"); the prefix field must
+ be NULL.
+
+``prefix``
+ Indicates that the handler matches all attributes with the
+ specified name prefix (such as "user."); the name field must be
+ NULL.
+
+``list``
+ Determine if attributes matching this xattr handler should be
+ listed for a particular dentry. Used by some listxattr
+ implementations like generic_listxattr.
+
+``get``
+ Called by the VFS to get the value of a particular extended
+ attribute. This method is called by the getxattr(2) system
+ call.
+
+``set``
+ Called by the VFS to set the value of a particular extended
+ attribute. When the new value is NULL, called to remove a
+ particular extended attribute. This method is called by the the
+ setxattr(2) and removexattr(2) system calls.
+
+When none of the xattr handlers of a filesystem match the specified
+attribute name or when a filesystem doesn't support extended attributes,
+the various ``*xattr(2)`` system calls return -EOPNOTSUPP.
+
+
+The Inode Object
+================
+
+An inode object represents an object within the filesystem.
+
+
+struct inode_operations
+-----------------------
+
+This describes how the VFS can manipulate an inode in your filesystem.
+As of kernel 2.6.22, the following members are defined:
+
+.. code-block:: c
+
+ struct inode_operations {
+ int (*create) (struct inode *,struct dentry *, umode_t, bool);
+ struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
+ int (*link) (struct dentry *,struct inode *,struct dentry *);
+ int (*unlink) (struct inode *,struct dentry *);
+ int (*symlink) (struct inode *,struct dentry *,const char *);
+ int (*mkdir) (struct inode *,struct dentry *,umode_t);
+ int (*rmdir) (struct inode *,struct dentry *);
+ int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
+ int (*rename) (struct inode *, struct dentry *,
+ struct inode *, struct dentry *, unsigned int);
+ int (*readlink) (struct dentry *, char __user *,int);
+ const char *(*get_link) (struct dentry *, struct inode *,
+ struct delayed_call *);
+ int (*permission) (struct inode *, int);
+ int (*get_acl)(struct inode *, int);
+ int (*setattr) (struct dentry *, struct iattr *);
+ int (*getattr) (const struct path *, struct kstat *, u32, unsigned int);
+ ssize_t (*listxattr) (struct dentry *, char *, size_t);
+ void (*update_time)(struct inode *, struct timespec *, int);
+ int (*atomic_open)(struct inode *, struct dentry *, struct file *,
+ unsigned open_flag, umode_t create_mode);
+ int (*tmpfile) (struct inode *, struct dentry *, umode_t);
+ };
+
+Again, all methods are called without any locks being held, unless
+otherwise noted.
+
+``create``
+ called by the open(2) and creat(2) system calls. Only required
+ if you want to support regular files. The dentry you get should
+ not have an inode (i.e. it should be a negative dentry). Here
+ you will probably call d_instantiate() with the dentry and the
+ newly created inode
+
+``lookup``
+ called when the VFS needs to look up an inode in a parent
+ directory. The name to look for is found in the dentry. This
+ method must call d_add() to insert the found inode into the
+ dentry. The "i_count" field in the inode structure should be
+ incremented. If the named inode does not exist a NULL inode
+ should be inserted into the dentry (this is called a negative
+ dentry). Returning an error code from this routine must only be
+ done on a real error, otherwise creating inodes with system
+ calls like create(2), mknod(2), mkdir(2) and so on will fail.
+ If you wish to overload the dentry methods then you should
+ initialise the "d_dop" field in the dentry; this is a pointer to
+ a struct "dentry_operations". This method is called with the
+ directory inode semaphore held
+
+``link``
+ called by the link(2) system call. Only required if you want to
+ support hard links. You will probably need to call
+ d_instantiate() just as you would in the create() method
+
+``unlink``
+ called by the unlink(2) system call. Only required if you want
+ to support deleting inodes
+
+``symlink``
+ called by the symlink(2) system call. Only required if you want
+ to support symlinks. You will probably need to call
+ d_instantiate() just as you would in the create() method
+
+``mkdir``
+ called by the mkdir(2) system call. Only required if you want
+ to support creating subdirectories. You will probably need to
+ call d_instantiate() just as you would in the create() method
+
+``rmdir``
+ called by the rmdir(2) system call. Only required if you want
+ to support deleting subdirectories
+
+``mknod``
+ called by the mknod(2) system call to create a device (char,
+ block) inode or a named pipe (FIFO) or socket. Only required if
+ you want to support creating these types of inodes. You will
+ probably need to call d_instantiate() just as you would in the
+ create() method
+
+``rename``
+ called by the rename(2) system call to rename the object to have
+ the parent and name given by the second inode and dentry.
+
+ The filesystem must return -EINVAL for any unsupported or
+ unknown flags. Currently the following flags are implemented:
+ (1) RENAME_NOREPLACE: this flag indicates that if the target of
+ the rename exists the rename should fail with -EEXIST instead of
+ replacing the target. The VFS already checks for existence, so
+ for local filesystems the RENAME_NOREPLACE implementation is
+ equivalent to plain rename.
+ (2) RENAME_EXCHANGE: exchange source and target. Both must
+ exist; this is checked by the VFS. Unlike plain rename, source
+ and target may be of different type.
+
+``get_link``
+ called by the VFS to follow a symbolic link to the inode it
+ points to. Only required if you want to support symbolic links.
+ This method returns the symlink body to traverse (and possibly
+ resets the current position with nd_jump_link()). If the body
+ won't go away until the inode is gone, nothing else is needed;
+ if it needs to be otherwise pinned, arrange for its release by
+ having get_link(..., ..., done) do set_delayed_call(done,
+ destructor, argument). In that case destructor(argument) will
+ be called once VFS is done with the body you've returned. May
+ be called in RCU mode; that is indicated by NULL dentry
+ argument. If request can't be handled without leaving RCU mode,
+ have it return ERR_PTR(-ECHILD).
+
+ If the filesystem stores the symlink target in ->i_link, the
+ VFS may use it directly without calling ->get_link(); however,
+ ->get_link() must still be provided. ->i_link must not be
+ freed until after an RCU grace period. Writing to ->i_link
+ post-iget() time requires a 'release' memory barrier.
+
+``readlink``
+ this is now just an override for use by readlink(2) for the
+ cases when ->get_link uses nd_jump_link() or object is not in
+ fact a symlink. Normally filesystems should only implement
+ ->get_link for symlinks and readlink(2) will automatically use
+ that.
+
+``permission``
+ called by the VFS to check for access rights on a POSIX-like
+ filesystem.
+
+ May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in
+ rcu-walk mode, the filesystem must check the permission without
+ blocking or storing to the inode.
+
+ If a situation is encountered that rcu-walk cannot handle,
+ return
+ -ECHILD and it will be called again in ref-walk mode.
+
+``setattr``
+ called by the VFS to set attributes for a file. This method is
+ called by chmod(2) and related system calls.
+
+``getattr``
+ called by the VFS to get attributes of a file. This method is
+ called by stat(2) and related system calls.
+
+``listxattr``
+ called by the VFS to list all extended attributes for a given
+ file. This method is called by the listxattr(2) system call.
+
+``update_time``
+ called by the VFS to update a specific time or the i_version of
+ an inode. If this is not defined the VFS will update the inode
+ itself and call mark_inode_dirty_sync.
+
+``atomic_open``
+ called on the last component of an open. Using this optional
+ method the filesystem can look up, possibly create and open the
+ file in one atomic operation. If it wants to leave actual
+ opening to the caller (e.g. if the file turned out to be a
+ symlink, device, or just something filesystem won't do atomic
+ open for), it may signal this by returning finish_no_open(file,
+ dentry). This method is only called if the last component is
+ negative or needs lookup. Cached positive dentries are still
+ handled by f_op->open(). If the file was created, FMODE_CREATED
+ flag should be set in file->f_mode. In case of O_EXCL the
+ method must only succeed if the file didn't exist and hence
+ FMODE_CREATED shall always be set on success.
+
+``tmpfile``
+ called in the end of O_TMPFILE open(). Optional, equivalent to
+ atomically creating, opening and unlinking a file in given
+ directory.
+
+
+The Address Space Object
+========================
+
+The address space object is used to group and manage pages in the page
+cache. It can be used to keep track of the pages in a file (or anything
+else) and also track the mapping of sections of the file into process
+address spaces.
+
+There are a number of distinct yet related services that an
+address-space can provide. These include communicating memory pressure,
+page lookup by address, and keeping track of pages tagged as Dirty or
+Writeback.
+
+The first can be used independently to the others. The VM can try to
+either write dirty pages in order to clean them, or release clean pages
+in order to reuse them. To do this it can call the ->writepage method
+on dirty pages, and ->releasepage on clean pages with PagePrivate set.
+Clean pages without PagePrivate and with no external references will be
+released without notice being given to the address_space.
+
+To achieve this functionality, pages need to be placed on an LRU with
+lru_cache_add and mark_page_active needs to be called whenever the page
+is used.
+
+Pages are normally kept in a radix tree index by ->index. This tree
+maintains information about the PG_Dirty and PG_Writeback status of each
+page, so that pages with either of these flags can be found quickly.
+
+The Dirty tag is primarily used by mpage_writepages - the default
+->writepages method. It uses the tag to find dirty pages to call
+->writepage on. If mpage_writepages is not used (i.e. the address
+provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is almost
+unused. write_inode_now and sync_inode do use it (through
+__sync_single_inode) to check if ->writepages has been successful in
+writing out the whole address_space.
+
+The Writeback tag is used by filemap*wait* and sync_page* functions, via
+filemap_fdatawait_range, to wait for all writeback to complete.
+
+An address_space handler may attach extra information to a page,
+typically using the 'private' field in the 'struct page'. If such
+information is attached, the PG_Private flag should be set. This will
+cause various VM routines to make extra calls into the address_space
+handler to deal with that data.
+
+An address space acts as an intermediate between storage and
+application. Data is read into the address space a whole page at a
+time, and provided to the application either by copying of the page, or
+by memory-mapping the page. Data is written into the address space by
+the application, and then written-back to storage typically in whole
+pages, however the address_space has finer control of write sizes.
+
+The read process essentially only requires 'readpage'. The write
+process is more complicated and uses write_begin/write_end or
+set_page_dirty to write data into the address_space, and writepage and
+writepages to writeback data to storage.
+
+Adding and removing pages to/from an address_space is protected by the
+inode's i_mutex.
+
+When data is written to a page, the PG_Dirty flag should be set. It
+typically remains set until writepage asks for it to be written. This
+should clear PG_Dirty and set PG_Writeback. It can be actually written
+at any point after PG_Dirty is clear. Once it is known to be safe,
+PG_Writeback is cleared.
+
+Writeback makes use of a writeback_control structure to direct the
+operations. This gives the the writepage and writepages operations some
+information about the nature of and reason for the writeback request,
+and the constraints under which it is being done. It is also used to
+return information back to the caller about the result of a writepage or
+writepages request.
+
+
+Handling errors during writeback
+--------------------------------
+
+Most applications that do buffered I/O will periodically call a file
+synchronization call (fsync, fdatasync, msync or sync_file_range) to
+ensure that data written has made it to the backing store. When there
+is an error during writeback, they expect that error to be reported when
+a file sync request is made. After an error has been reported on one
+request, subsequent requests on the same file descriptor should return
+0, unless further writeback errors have occurred since the previous file
+syncronization.
+
+Ideally, the kernel would report errors only on file descriptions on
+which writes were done that subsequently failed to be written back. The
+generic pagecache infrastructure does not track the file descriptions
+that have dirtied each individual page however, so determining which
+file descriptors should get back an error is not possible.
+
+Instead, the generic writeback error tracking infrastructure in the
+kernel settles for reporting errors to fsync on all file descriptions
+that were open at the time that the error occurred. In a situation with
+multiple writers, all of them will get back an error on a subsequent
+fsync, even if all of the writes done through that particular file
+descriptor succeeded (or even if there were no writes on that file
+descriptor at all).
+
+Filesystems that wish to use this infrastructure should call
+mapping_set_error to record the error in the address_space when it
+occurs. Then, after writing back data from the pagecache in their
+file->fsync operation, they should call file_check_and_advance_wb_err to
+ensure that the struct file's error cursor has advanced to the correct
+point in the stream of errors emitted by the backing device(s).
+
+
+struct address_space_operations
+-------------------------------
+
+This describes how the VFS can manipulate mapping of a file to page
+cache in your filesystem. The following members are defined:
+
+.. code-block:: c
+
+ struct address_space_operations {
+ int (*writepage)(struct page *page, struct writeback_control *wbc);
+ int (*readpage)(struct file *, struct page *);
+ int (*writepages)(struct address_space *, struct writeback_control *);
+ int (*set_page_dirty)(struct page *page);
+ int (*readpages)(struct file *filp, struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages);
+ int (*write_begin)(struct file *, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata);
+ int (*write_end)(struct file *, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned copied,
+ struct page *page, void *fsdata);
+ sector_t (*bmap)(struct address_space *, sector_t);
+ void (*invalidatepage) (struct page *, unsigned int, unsigned int);
+ int (*releasepage) (struct page *, int);
+ void (*freepage)(struct page *);
+ ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
+ /* isolate a page for migration */
+ bool (*isolate_page) (struct page *, isolate_mode_t);
+ /* migrate the contents of a page to the specified target */
+ int (*migratepage) (struct page *, struct page *);
+ /* put migration-failed page back to right list */
+ void (*putback_page) (struct page *);
+ int (*launder_page) (struct page *);
+
+ int (*is_partially_uptodate) (struct page *, unsigned long,
+ unsigned long);
+ void (*is_dirty_writeback) (struct page *, bool *, bool *);
+ int (*error_remove_page) (struct mapping *mapping, struct page *page);
+ int (*swap_activate)(struct file *);
+ int (*swap_deactivate)(struct file *);
+ };
+
+``writepage``
+ called by the VM to write a dirty page to backing store. This
+ may happen for data integrity reasons (i.e. 'sync'), or to free
+ up memory (flush). The difference can be seen in
+ wbc->sync_mode. The PG_Dirty flag has been cleared and
+ PageLocked is true. writepage should start writeout, should set
+ PG_Writeback, and should make sure the page is unlocked, either
+ synchronously or asynchronously when the write operation
+ completes.
+
+ If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to
+ try too hard if there are problems, and may choose to write out
+ other pages from the mapping if that is easier (e.g. due to
+ internal dependencies). If it chooses not to start writeout, it
+ should return AOP_WRITEPAGE_ACTIVATE so that the VM will not
+ keep calling ->writepage on that page.
+
+ See the file "Locking" for more details.
+
+``readpage``
+ called by the VM to read a page from backing store. The page
+ will be Locked when readpage is called, and should be unlocked
+ and marked uptodate once the read completes. If ->readpage
+ discovers that it needs to unlock the page for some reason, it
+ can do so, and then return AOP_TRUNCATED_PAGE. In this case,
+ the page will be relocated, relocked and if that all succeeds,
+ ->readpage will be called again.
+
+``writepages``
+ called by the VM to write out pages associated with the
+ address_space object. If wbc->sync_mode is WBC_SYNC_ALL, then
+ the writeback_control will specify a range of pages that must be
+ written out. If it is WBC_SYNC_NONE, then a nr_to_write is
+ given and that many pages should be written if possible. If no
+ ->writepages is given, then mpage_writepages is used instead.
+ This will choose pages from the address space that are tagged as
+ DIRTY and will pass them to ->writepage.
+
+``set_page_dirty``
+ called by the VM to set a page dirty. This is particularly
+ needed if an address space attaches private data to a page, and
+ that data needs to be updated when a page is dirtied. This is
+ called, for example, when a memory mapped page gets modified.
+ If defined, it should set the PageDirty flag, and the
+ PAGECACHE_TAG_DIRTY tag in the radix tree.
+
+``readpages``
+ called by the VM to read pages associated with the address_space
+ object. This is essentially just a vector version of readpage.
+ Instead of just one page, several pages are requested.
+ readpages is only used for read-ahead, so read errors are
+ ignored. If anything goes wrong, feel free to give up.
+
+``write_begin``
+ Called by the generic buffered write code to ask the filesystem
+ to prepare to write len bytes at the given offset in the file.
+ The address_space should check that the write will be able to
+ complete, by allocating space if necessary and doing any other
+ internal housekeeping. If the write will update parts of any
+ basic-blocks on storage, then those blocks should be pre-read
+ (if they haven't been read already) so that the updated blocks
+ can be written out properly.
+
+ The filesystem must return the locked pagecache page for the
+ specified offset, in ``*pagep``, for the caller to write into.
+
+ It must be able to cope with short writes (where the length
+ passed to write_begin is greater than the number of bytes copied
+ into the page).
+
+ flags is a field for AOP_FLAG_xxx flags, described in
+ include/linux/fs.h.
+
+ A void * may be returned in fsdata, which then gets passed into
+ write_end.
+
+ Returns 0 on success; < 0 on failure (which is the error code),
+ in which case write_end is not called.
+
+``write_end``
+ After a successful write_begin, and data copy, write_end must be
+ called. len is the original len passed to write_begin, and
+ copied is the amount that was able to be copied.
+
+ The filesystem must take care of unlocking the page and
+ releasing it refcount, and updating i_size.
+
+ Returns < 0 on failure, otherwise the number of bytes (<=
+ 'copied') that were able to be copied into pagecache.
+
+``bmap``
+ called by the VFS to map a logical block offset within object to
+ physical block number. This method is used by the FIBMAP ioctl
+ and for working with swap-files. To be able to swap to a file,
+ the file must have a stable mapping to a block device. The swap
+ system does not go through the filesystem but instead uses bmap
+ to find out where the blocks in the file are and uses those
+ addresses directly.
+
+``invalidatepage``
+ If a page has PagePrivate set, then invalidatepage will be
+ called when part or all of the page is to be removed from the
+ address space. This generally corresponds to either a
+ truncation, punch hole or a complete invalidation of the address
+ space (in the latter case 'offset' will always be 0 and 'length'
+ will be PAGE_SIZE). Any private data associated with the page
+ should be updated to reflect this truncation. If offset is 0
+ and length is PAGE_SIZE, then the private data should be
+ released, because the page must be able to be completely
+ discarded. This may be done by calling the ->releasepage
+ function, but in this case the release MUST succeed.
+
+``releasepage``
+ releasepage is called on PagePrivate pages to indicate that the
+ page should be freed if possible. ->releasepage should remove
+ any private data from the page and clear the PagePrivate flag.
+ If releasepage() fails for some reason, it must indicate failure
+ with a 0 return value. releasepage() is used in two distinct
+ though related cases. The first is when the VM finds a clean
+ page with no active users and wants to make it a free page. If
+ ->releasepage succeeds, the page will be removed from the
+ address_space and become free.
+
+ The second case is when a request has been made to invalidate
+ some or all pages in an address_space. This can happen through
+ the fadvise(POSIX_FADV_DONTNEED) system call or by the
+ filesystem explicitly requesting it as nfs and 9fs do (when they
+ believe the cache may be out of date with storage) by calling
+ invalidate_inode_pages2(). If the filesystem makes such a call,
+ and needs to be certain that all pages are invalidated, then its
+ releasepage will need to ensure this. Possibly it can clear the
+ PageUptodate bit if it cannot free private data yet.
+
+``freepage``
+ freepage is called once the page is no longer visible in the
+ page cache in order to allow the cleanup of any private data.
+ Since it may be called by the memory reclaimer, it should not
+ assume that the original address_space mapping still exists, and
+ it should not block.
+
+``direct_IO``
+ called by the generic read/write routines to perform direct_IO -
+ that is IO requests which bypass the page cache and transfer
+ data directly between the storage and the application's address
+ space.
+
+``isolate_page``
+ Called by the VM when isolating a movable non-lru page. If page
+ is successfully isolated, VM marks the page as PG_isolated via
+ __SetPageIsolated.
+
+``migrate_page``
+ This is used to compact the physical memory usage. If the VM
+ wants to relocate a page (maybe off a memory card that is
+ signalling imminent failure) it will pass a new page and an old
+ page to this function. migrate_page should transfer any private
+ data across and update any references that it has to the page.
+
+``putback_page``
+ Called by the VM when isolated page's migration fails.
+
+``launder_page``
+ Called before freeing a page - it writes back the dirty page.
+ To prevent redirtying the page, it is kept locked during the
+ whole operation.
+
+``is_partially_uptodate``
+ Called by the VM when reading a file through the pagecache when
+ the underlying blocksize != pagesize. If the required block is
+ up to date then the read can complete without needing the IO to
+ bring the whole page up to date.
+
+``is_dirty_writeback``
+ Called by the VM when attempting to reclaim a page. The VM uses
+ dirty and writeback information to determine if it needs to
+ stall to allow flushers a chance to complete some IO.
+ Ordinarily it can use PageDirty and PageWriteback but some
+ filesystems have more complex state (unstable pages in NFS
+ prevent reclaim) or do not set those flags due to locking
+ problems. This callback allows a filesystem to indicate to the
+ VM if a page should be treated as dirty or writeback for the
+ purposes of stalling.
+
+``error_remove_page``
+ normally set to generic_error_remove_page if truncation is ok
+ for this address space. Used for memory failure handling.
+ Setting this implies you deal with pages going away under you,
+ unless you have them locked or reference counts increased.
+
+``swap_activate``
+ Called when swapon is used on a file to allocate space if
+ necessary and pin the block lookup information in memory. A
+ return value of zero indicates success, in which case this file
+ can be used to back swapspace.
+
+``swap_deactivate``
+ Called during swapoff on files where swap_activate was
+ successful.
+
+
+The File Object
+===============
+
+A file object represents a file opened by a process. This is also known
+as an "open file description" in POSIX parlance.
+
+
+struct file_operations
+----------------------
+
+This describes how the VFS can manipulate an open file. As of kernel
+4.18, the following members are defined:
+
+.. code-block:: c
+
+ struct file_operations {
+ struct module *owner;
+ loff_t (*llseek) (struct file *, loff_t, int);
+ ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
+ ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
+ ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
+ ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
+ int (*iopoll)(struct kiocb *kiocb, bool spin);
+ int (*iterate) (struct file *, struct dir_context *);
+ int (*iterate_shared) (struct file *, struct dir_context *);
+ __poll_t (*poll) (struct file *, struct poll_table_struct *);
+ long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
+ long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
+ int (*mmap) (struct file *, struct vm_area_struct *);
+ int (*open) (struct inode *, struct file *);
+ int (*flush) (struct file *, fl_owner_t id);
+ int (*release) (struct inode *, struct file *);
+ int (*fsync) (struct file *, loff_t, loff_t, int datasync);
+ int (*fasync) (int, struct file *, int);
+ int (*lock) (struct file *, int, struct file_lock *);
+ ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
+ unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
+ int (*check_flags)(int);
+ int (*flock) (struct file *, int, struct file_lock *);
+ ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
+ ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
+ int (*setlease)(struct file *, long, struct file_lock **, void **);
+ long (*fallocate)(struct file *file, int mode, loff_t offset,
+ loff_t len);
+ void (*show_fdinfo)(struct seq_file *m, struct file *f);
+ #ifndef CONFIG_MMU
+ unsigned (*mmap_capabilities)(struct file *);
+ #endif
+ ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int);
+ loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
+ struct file *file_out, loff_t pos_out,
+ loff_t len, unsigned int remap_flags);
+ int (*fadvise)(struct file *, loff_t, loff_t, int);
+ };
+
+Again, all methods are called without any locks being held, unless
+otherwise noted.
+
+``llseek``
+ called when the VFS needs to move the file position index
+
+``read``
+ called by read(2) and related system calls
+
+``read_iter``
+ possibly asynchronous read with iov_iter as destination
+
+``write``
+ called by write(2) and related system calls
+
+``write_iter``
+ possibly asynchronous write with iov_iter as source
+
+``iopoll``
+ called when aio wants to poll for completions on HIPRI iocbs
+
+``iterate``
+ called when the VFS needs to read the directory contents
+
+``iterate_shared``
+ called when the VFS needs to read the directory contents when
+ filesystem supports concurrent dir iterators
+
+``poll``
+ called by the VFS when a process wants to check if there is
+ activity on this file and (optionally) go to sleep until there
+ is activity. Called by the select(2) and poll(2) system calls
+
+``unlocked_ioctl``
+ called by the ioctl(2) system call.
+
+``compat_ioctl``
+ called by the ioctl(2) system call when 32 bit system calls are
+ used on 64 bit kernels.
+
+``mmap``
+ called by the mmap(2) system call
+
+``open``
+ called by the VFS when an inode should be opened. When the VFS
+ opens a file, it creates a new "struct file". It then calls the
+ open method for the newly allocated file structure. You might
+ think that the open method really belongs in "struct
+ inode_operations", and you may be right. I think it's done the
+ way it is because it makes filesystems simpler to implement.
+ The open() method is a good place to initialize the
+ "private_data" member in the file structure if you want to point
+ to a device structure
+
+``flush``
+ called by the close(2) system call to flush a file
+
+``release``
+ called when the last reference to an open file is closed
+
+``fsync``
+ called by the fsync(2) system call. Also see the section above
+ entitled "Handling errors during writeback".
+
+``fasync``
+ called by the fcntl(2) system call when asynchronous
+ (non-blocking) mode is enabled for a file
+
+``lock``
+ called by the fcntl(2) system call for F_GETLK, F_SETLK, and
+ F_SETLKW commands
+
+``get_unmapped_area``
+ called by the mmap(2) system call
+
+``check_flags``
+ called by the fcntl(2) system call for F_SETFL command
+
+``flock``
+ called by the flock(2) system call
+
+``splice_write``
+ called by the VFS to splice data from a pipe to a file. This
+ method is used by the splice(2) system call
+
+``splice_read``
+ called by the VFS to splice data from file to a pipe. This
+ method is used by the splice(2) system call
+
+``setlease``
+ called by the VFS to set or release a file lock lease. setlease
+ implementations should call generic_setlease to record or remove
+ the lease in the inode after setting it.
+
+``fallocate``
+ called by the VFS to preallocate blocks or punch a hole.
+
+``copy_file_range``
+ called by the copy_file_range(2) system call.
+
+``remap_file_range``
+ called by the ioctl(2) system call for FICLONERANGE and FICLONE
+ and FIDEDUPERANGE commands to remap file ranges. An
+ implementation should remap len bytes at pos_in of the source
+ file into the dest file at pos_out. Implementations must handle
+ callers passing in len == 0; this means "remap to the end of the
+ source file". The return value should the number of bytes
+ remapped, or the usual negative error code if errors occurred
+ before any bytes were remapped. The remap_flags parameter
+ accepts REMAP_FILE_* flags. If REMAP_FILE_DEDUP is set then the
+ implementation must only remap if the requested file ranges have
+ identical contents. If REMAP_CAN_SHORTEN is set, the caller is
+ ok with the implementation shortening the request length to
+ satisfy alignment or EOF requirements (or any other reason).
+
+``fadvise``
+ possibly called by the fadvise64() system call.
+
+Note that the file operations are implemented by the specific
+filesystem in which the inode resides. When opening a device node
+(character or block special) most filesystems will call special
+support routines in the VFS which will locate the required device
+driver information. These support routines replace the filesystem file
+operations with those for the device driver, and then proceed to call
+the new open() method for the file. This is how opening a device file
+in the filesystem eventually ends up calling the device driver open()
+method.
+
+
+Directory Entry Cache (dcache)
+==============================
+
+
+struct dentry_operations
+------------------------
+
+This describes how a filesystem can overload the standard dentry
+operations. Dentries and the dcache are the domain of the VFS and the
+individual filesystem implementations. Device drivers have no business
+here. These methods may be set to NULL, as they are either optional or
+the VFS uses a default. As of kernel 2.6.22, the following members are
+defined:
+
+.. code-block:: c
+
+ struct dentry_operations {
+ int (*d_revalidate)(struct dentry *, unsigned int);
+ int (*d_weak_revalidate)(struct dentry *, unsigned int);
+ int (*d_hash)(const struct dentry *, struct qstr *);
+ int (*d_compare)(const struct dentry *,
+ unsigned int, const char *, const struct qstr *);
+ int (*d_delete)(const struct dentry *);
+ int (*d_init)(struct dentry *);
+ void (*d_release)(struct dentry *);
+ void (*d_iput)(struct dentry *, struct inode *);
+ char *(*d_dname)(struct dentry *, char *, int);
+ struct vfsmount *(*d_automount)(struct path *);
+ int (*d_manage)(const struct path *, bool);
+ struct dentry *(*d_real)(struct dentry *, const struct inode *);
+ };
+
+``d_revalidate``
+ called when the VFS needs to revalidate a dentry. This is
+ called whenever a name look-up finds a dentry in the dcache.
+ Most local filesystems leave this as NULL, because all their
+ dentries in the dcache are valid. Network filesystems are
+ different since things can change on the server without the
+ client necessarily being aware of it.
+
+ This function should return a positive value if the dentry is
+ still valid, and zero or a negative error code if it isn't.
+
+ d_revalidate may be called in rcu-walk mode (flags &
+ LOOKUP_RCU). If in rcu-walk mode, the filesystem must
+ revalidate the dentry without blocking or storing to the dentry,
+ d_parent and d_inode should not be used without care (because
+ they can change and, in d_inode case, even become NULL under
+ us).
+
+ If a situation is encountered that rcu-walk cannot handle,
+ return
+ -ECHILD and it will be called again in ref-walk mode.
+
+``_weak_revalidate``
+ called when the VFS needs to revalidate a "jumped" dentry. This
+ is called when a path-walk ends at dentry that was not acquired
+ by doing a lookup in the parent directory. This includes "/",
+ "." and "..", as well as procfs-style symlinks and mountpoint
+ traversal.
+
+ In this case, we are less concerned with whether the dentry is
+ still fully correct, but rather that the inode is still valid.
+ As with d_revalidate, most local filesystems will set this to
+ NULL since their dcache entries are always valid.
+
+ This function has the same return code semantics as
+ d_revalidate.
+
+ d_weak_revalidate is only called after leaving rcu-walk mode.
+
+``d_hash``
+ called when the VFS adds a dentry to the hash table. The first
+ dentry passed to d_hash is the parent directory that the name is
+ to be hashed into.
+
+ Same locking and synchronisation rules as d_compare regarding
+ what is safe to dereference etc.
+
+``d_compare``
+ called to compare a dentry name with a given name. The first
+ dentry is the parent of the dentry to be compared, the second is
+ the child dentry. len and name string are properties of the
+ dentry to be compared. qstr is the name to compare it with.
+
+ Must be constant and idempotent, and should not take locks if
+ possible, and should not or store into the dentry. Should not
+ dereference pointers outside the dentry without lots of care
+ (eg. d_parent, d_inode, d_name should not be used).
+
+ However, our vfsmount is pinned, and RCU held, so the dentries
+ and inodes won't disappear, neither will our sb or filesystem
+ module. ->d_sb may be used.
+
+ It is a tricky calling convention because it needs to be called
+ under "rcu-walk", ie. without any locks or references on things.
+
+``d_delete``
+ called when the last reference to a dentry is dropped and the
+ dcache is deciding whether or not to cache it. Return 1 to
+ delete immediately, or 0 to cache the dentry. Default is NULL
+ which means to always cache a reachable dentry. d_delete must
+ be constant and idempotent.
+
+``d_init``
+ called when a dentry is allocated
+
+``d_release``
+ called when a dentry is really deallocated
+
+``d_iput``
+ called when a dentry loses its inode (just prior to its being
+ deallocated). The default when this is NULL is that the VFS
+ calls iput(). If you define this method, you must call iput()
+ yourself
+
+``d_dname``
+ called when the pathname of a dentry should be generated.
+ Useful for some pseudo filesystems (sockfs, pipefs, ...) to
+ delay pathname generation. (Instead of doing it when dentry is
+ created, it's done only when the path is needed.). Real
+ filesystems probably dont want to use it, because their dentries
+ are present in global dcache hash, so their hash should be an
+ invariant. As no lock is held, d_dname() should not try to
+ modify the dentry itself, unless appropriate SMP safety is used.
+ CAUTION : d_path() logic is quite tricky. The correct way to
+ return for example "Hello" is to put it at the end of the
+ buffer, and returns a pointer to the first char.
+ dynamic_dname() helper function is provided to take care of
+ this.
+
+ Example :
+
+.. code-block:: c
+
+ static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)
+ {
+ return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
+ dentry->d_inode->i_ino);
+ }
+
+``d_automount``
+ called when an automount dentry is to be traversed (optional).
+ This should create a new VFS mount record and return the record
+ to the caller. The caller is supplied with a path parameter
+ giving the automount directory to describe the automount target
+ and the parent VFS mount record to provide inheritable mount
+ parameters. NULL should be returned if someone else managed to
+ make the automount first. If the vfsmount creation failed, then
+ an error code should be returned. If -EISDIR is returned, then
+ the directory will be treated as an ordinary directory and
+ returned to pathwalk to continue walking.
+
+ If a vfsmount is returned, the caller will attempt to mount it
+ on the mountpoint and will remove the vfsmount from its
+ expiration list in the case of failure. The vfsmount should be
+ returned with 2 refs on it to prevent automatic expiration - the
+ caller will clean up the additional ref.
+
+ This function is only used if DCACHE_NEED_AUTOMOUNT is set on
+ the dentry. This is set by __d_instantiate() if S_AUTOMOUNT is
+ set on the inode being added.
+
+``d_manage``
+ called to allow the filesystem to manage the transition from a
+ dentry (optional). This allows autofs, for example, to hold up
+ clients waiting to explore behind a 'mountpoint' while letting
+ the daemon go past and construct the subtree there. 0 should be
+ returned to let the calling process continue. -EISDIR can be
+ returned to tell pathwalk to use this directory as an ordinary
+ directory and to ignore anything mounted on it and not to check
+ the automount flag. Any other error code will abort pathwalk
+ completely.
+
+ If the 'rcu_walk' parameter is true, then the caller is doing a
+ pathwalk in RCU-walk mode. Sleeping is not permitted in this
+ mode, and the caller can be asked to leave it and call again by
+ returning -ECHILD. -EISDIR may also be returned to tell
+ pathwalk to ignore d_automount or any mounts.
+
+ This function is only used if DCACHE_MANAGE_TRANSIT is set on
+ the dentry being transited from.
+
+``d_real``
+ overlay/union type filesystems implement this method to return
+ one of the underlying dentries hidden by the overlay. It is
+ used in two different modes:
+
+ Called from file_dentry() it returns the real dentry matching
+ the inode argument. The real dentry may be from a lower layer
+ already copied up, but still referenced from the file. This
+ mode is selected with a non-NULL inode argument.
+
+ With NULL inode the topmost real underlying dentry is returned.
+
+Each dentry has a pointer to its parent dentry, as well as a hash list
+of child dentries. Child dentries are basically like files in a
+directory.
+
+
+Directory Entry Cache API
+--------------------------
+
+There are a number of functions defined which permit a filesystem to
+manipulate dentries:
+
+``dget``
+ open a new handle for an existing dentry (this just increments
+ the usage count)
+
+``dput``
+ close a handle for a dentry (decrements the usage count). If
+ the usage count drops to 0, and the dentry is still in its
+ parent's hash, the "d_delete" method is called to check whether
+ it should be cached. If it should not be cached, or if the
+ dentry is not hashed, it is deleted. Otherwise cached dentries
+ are put into an LRU list to be reclaimed on memory shortage.
+
+``d_drop``
+ this unhashes a dentry from its parents hash list. A subsequent
+ call to dput() will deallocate the dentry if its usage count
+ drops to 0
+
+``d_delete``
+ delete a dentry. If there are no other open references to the
+ dentry then the dentry is turned into a negative dentry (the
+ d_iput() method is called). If there are other references, then
+ d_drop() is called instead
+
+``d_add``
+ add a dentry to its parents hash list and then calls
+ d_instantiate()
+
+``d_instantiate``
+ add a dentry to the alias hash list for the inode and updates
+ the "d_inode" member. The "i_count" member in the inode
+ structure should be set/incremented. If the inode pointer is
+ NULL, the dentry is called a "negative dentry". This function
+ is commonly called when an inode is created for an existing
+ negative dentry
+
+``d_lookup``
+ look up a dentry given its parent and path name component It
+ looks up the child of that given name from the dcache hash
+ table. If it is found, the reference count is incremented and
+ the dentry is returned. The caller must use dput() to free the
+ dentry when it finishes using it.
+
+
+Mount Options
+=============
+
+
+Parsing options
+---------------
+
+On mount and remount the filesystem is passed a string containing a
+comma separated list of mount options. The options can have either of
+these forms:
+
+ option
+ option=value
+
+The <linux/parser.h> header defines an API that helps parse these
+options. There are plenty of examples on how to use it in existing
+filesystems.
+
+
+Showing options
+---------------
+
+If a filesystem accepts mount options, it must define show_options() to
+show all the currently active options. The rules are:
+
+ - options MUST be shown which are not default or their values differ
+ from the default
+
+ - options MAY be shown which are enabled by default or have their
+ default value
+
+Options used only internally between a mount helper and the kernel (such
+as file descriptors), or which only have an effect during the mounting
+(such as ones controlling the creation of a journal) are exempt from the
+above rules.
+
+The underlying reason for the above rules is to make sure, that a mount
+can be accurately replicated (e.g. umounting and mounting again) based
+on the information found in /proc/mounts.
+
+
+Resources
+=========
+
+(Note some of these resources are not up-to-date with the latest kernel
+ version.)
+
+Creating Linux virtual filesystems. 2002
+ <http://lwn.net/Articles/13325/>
+
+The Linux Virtual File-system Layer by Neil Brown. 1999
+ <http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html>
+
+A tour of the Linux VFS by Michael K. Johnson. 1996
+ <http://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html>
+
+A small trail through the Linux kernel by Andries Brouwer. 2001
+ <http://www.win.tue.nl/~aeb/linux/vfs/trail.html>
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
deleted file mode 100644
index 57fc576b1f3e..000000000000
--- a/Documentation/filesystems/vfs.txt
+++ /dev/null
@@ -1,1268 +0,0 @@
-
- Overview of the Linux Virtual File System
-
- Original author: Richard Gooch <rgooch@atnf.csiro.au>
-
- Copyright (C) 1999 Richard Gooch
- Copyright (C) 2005 Pekka Enberg
-
- This file is released under the GPLv2.
-
-
-Introduction
-============
-
-The Virtual File System (also known as the Virtual Filesystem Switch)
-is the software layer in the kernel that provides the filesystem
-interface to userspace programs. It also provides an abstraction
-within the kernel which allows different filesystem implementations to
-coexist.
-
-VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so
-on are called from a process context. Filesystem locking is described
-in the document Documentation/filesystems/Locking.
-
-
-Directory Entry Cache (dcache)
-------------------------------
-
-The VFS implements the open(2), stat(2), chmod(2), and similar system
-calls. The pathname argument that is passed to them is used by the VFS
-to search through the directory entry cache (also known as the dentry
-cache or dcache). This provides a very fast look-up mechanism to
-translate a pathname (filename) into a specific dentry. Dentries live
-in RAM and are never saved to disc: they exist only for performance.
-
-The dentry cache is meant to be a view into your entire filespace. As
-most computers cannot fit all dentries in the RAM at the same time,
-some bits of the cache are missing. In order to resolve your pathname
-into a dentry, the VFS may have to resort to creating dentries along
-the way, and then loading the inode. This is done by looking up the
-inode.
-
-
-The Inode Object
-----------------
-
-An individual dentry usually has a pointer to an inode. Inodes are
-filesystem objects such as regular files, directories, FIFOs and other
-beasts. They live either on the disc (for block device filesystems)
-or in the memory (for pseudo filesystems). Inodes that live on the
-disc are copied into the memory when required and changes to the inode
-are written back to disc. A single inode can be pointed to by multiple
-dentries (hard links, for example, do this).
-
-To look up an inode requires that the VFS calls the lookup() method of
-the parent directory inode. This method is installed by the specific
-filesystem implementation that the inode lives in. Once the VFS has
-the required dentry (and hence the inode), we can do all those boring
-things like open(2) the file, or stat(2) it to peek at the inode
-data. The stat(2) operation is fairly simple: once the VFS has the
-dentry, it peeks at the inode data and passes some of it back to
-userspace.
-
-
-The File Object
----------------
-
-Opening a file requires another operation: allocation of a file
-structure (this is the kernel-side implementation of file
-descriptors). The freshly allocated file structure is initialized with
-a pointer to the dentry and a set of file operation member functions.
-These are taken from the inode data. The open() file method is then
-called so the specific filesystem implementation can do its work. You
-can see that this is another switch performed by the VFS. The file
-structure is placed into the file descriptor table for the process.
-
-Reading, writing and closing files (and other assorted VFS operations)
-is done by using the userspace file descriptor to grab the appropriate
-file structure, and then calling the required file structure method to
-do whatever is required. For as long as the file is open, it keeps the
-dentry in use, which in turn means that the VFS inode is still in use.
-
-
-Registering and Mounting a Filesystem
-=====================================
-
-To register and unregister a filesystem, use the following API
-functions:
-
- #include <linux/fs.h>
-
- extern int register_filesystem(struct file_system_type *);
- extern int unregister_filesystem(struct file_system_type *);
-
-The passed struct file_system_type describes your filesystem. When a
-request is made to mount a filesystem onto a directory in your namespace,
-the VFS will call the appropriate mount() method for the specific
-filesystem. New vfsmount referring to the tree returned by ->mount()
-will be attached to the mountpoint, so that when pathname resolution
-reaches the mountpoint it will jump into the root of that vfsmount.
-
-You can see all filesystems that are registered to the kernel in the
-file /proc/filesystems.
-
-
-struct file_system_type
------------------------
-
-This describes the filesystem. As of kernel 2.6.39, the following
-members are defined:
-
-struct file_system_type {
- const char *name;
- int fs_flags;
- struct dentry *(*mount) (struct file_system_type *, int,
- const char *, void *);
- void (*kill_sb) (struct super_block *);
- struct module *owner;
- struct file_system_type * next;
- struct list_head fs_supers;
- struct lock_class_key s_lock_key;
- struct lock_class_key s_umount_key;
-};
-
- name: the name of the filesystem type, such as "ext2", "iso9660",
- "msdos" and so on
-
- fs_flags: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)
-
- mount: the method to call when a new instance of this
- filesystem should be mounted
-
- kill_sb: the method to call when an instance of this filesystem
- should be shut down
-
- owner: for internal VFS use: you should initialize this to THIS_MODULE in
- most cases.
-
- next: for internal VFS use: you should initialize this to NULL
-
- s_lock_key, s_umount_key: lockdep-specific
-
-The mount() method has the following arguments:
-
- struct file_system_type *fs_type: describes the filesystem, partly initialized
- by the specific filesystem code
-
- int flags: mount flags
-
- const char *dev_name: the device name we are mounting.
-
- void *data: arbitrary mount options, usually comes as an ASCII
- string (see "Mount Options" section)
-
-The mount() method must return the root dentry of the tree requested by
-caller. An active reference to its superblock must be grabbed and the
-superblock must be locked. On failure it should return ERR_PTR(error).
-
-The arguments match those of mount(2) and their interpretation
-depends on filesystem type. E.g. for block filesystems, dev_name is
-interpreted as block device name, that device is opened and if it
-contains a suitable filesystem image the method creates and initializes
-struct super_block accordingly, returning its root dentry to caller.
-
-->mount() may choose to return a subtree of existing filesystem - it
-doesn't have to create a new one. The main result from the caller's
-point of view is a reference to dentry at the root of (sub)tree to
-be attached; creation of new superblock is a common side effect.
-
-The most interesting member of the superblock structure that the
-mount() method fills in is the "s_op" field. This is a pointer to
-a "struct super_operations" which describes the next level of the
-filesystem implementation.
-
-Usually, a filesystem uses one of the generic mount() implementations
-and provides a fill_super() callback instead. The generic variants are:
-
- mount_bdev: mount a filesystem residing on a block device
-
- mount_nodev: mount a filesystem that is not backed by a device
-
- mount_single: mount a filesystem which shares the instance between
- all mounts
-
-A fill_super() callback implementation has the following arguments:
-
- struct super_block *sb: the superblock structure. The callback
- must initialize this properly.
-
- void *data: arbitrary mount options, usually comes as an ASCII
- string (see "Mount Options" section)
-
- int silent: whether or not to be silent on error
-
-
-The Superblock Object
-=====================
-
-A superblock object represents a mounted filesystem.
-
-
-struct super_operations
------------------------
-
-This describes how the VFS can manipulate the superblock of your
-filesystem. As of kernel 2.6.22, the following members are defined:
-
-struct super_operations {
- struct inode *(*alloc_inode)(struct super_block *sb);
- void (*destroy_inode)(struct inode *);
-
- void (*dirty_inode) (struct inode *, int flags);
- int (*write_inode) (struct inode *, int);
- void (*drop_inode) (struct inode *);
- void (*delete_inode) (struct inode *);
- void (*put_super) (struct super_block *);
- int (*sync_fs)(struct super_block *sb, int wait);
- int (*freeze_fs) (struct super_block *);
- int (*unfreeze_fs) (struct super_block *);
- int (*statfs) (struct dentry *, struct kstatfs *);
- int (*remount_fs) (struct super_block *, int *, char *);
- void (*clear_inode) (struct inode *);
- void (*umount_begin) (struct super_block *);
-
- int (*show_options)(struct seq_file *, struct dentry *);
-
- ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
- ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
- int (*nr_cached_objects)(struct super_block *);
- void (*free_cached_objects)(struct super_block *, int);
-};
-
-All methods are called without any locks being held, unless otherwise
-noted. This means that most methods can block safely. All methods are
-only called from a process context (i.e. not from an interrupt handler
-or bottom half).
-
- alloc_inode: this method is called by alloc_inode() to allocate memory
- for struct inode and initialize it. If this function is not
- defined, a simple 'struct inode' is allocated. Normally
- alloc_inode will be used to allocate a larger structure which
- contains a 'struct inode' embedded within it.
-
- destroy_inode: this method is called by destroy_inode() to release
- resources allocated for struct inode. It is only required if
- ->alloc_inode was defined and simply undoes anything done by
- ->alloc_inode.
-
- dirty_inode: this method is called by the VFS to mark an inode dirty.
-
- write_inode: this method is called when the VFS needs to write an
- inode to disc. The second parameter indicates whether the write
- should be synchronous or not, not all filesystems check this flag.
-
- drop_inode: called when the last access to the inode is dropped,
- with the inode->i_lock spinlock held.
-
- This method should be either NULL (normal UNIX filesystem
- semantics) or "generic_delete_inode" (for filesystems that do not
- want to cache inodes - causing "delete_inode" to always be
- called regardless of the value of i_nlink)
-
- The "generic_delete_inode()" behavior is equivalent to the
- old practice of using "force_delete" in the put_inode() case,
- but does not have the races that the "force_delete()" approach
- had.
-
- delete_inode: called when the VFS wants to delete an inode
-
- put_super: called when the VFS wishes to free the superblock
- (i.e. unmount). This is called with the superblock lock held
-
- sync_fs: called when VFS is writing out all dirty data associated with
- a superblock. The second parameter indicates whether the method
- should wait until the write out has been completed. Optional.
-
- freeze_fs: called when VFS is locking a filesystem and
- forcing it into a consistent state. This method is currently
- used by the Logical Volume Manager (LVM).
-
- unfreeze_fs: called when VFS is unlocking a filesystem and making it writable
- again.
-
- statfs: called when the VFS needs to get filesystem statistics.
-
- remount_fs: called when the filesystem is remounted. This is called
- with the kernel lock held
-
- clear_inode: called then the VFS clears the inode. Optional
-
- umount_begin: called when the VFS is unmounting a filesystem.
-
- show_options: called by the VFS to show mount options for
- /proc/<pid>/mounts. (see "Mount Options" section)
-
- quota_read: called by the VFS to read from filesystem quota file.
-
- quota_write: called by the VFS to write to filesystem quota file.
-
- nr_cached_objects: called by the sb cache shrinking function for the
- filesystem to return the number of freeable cached objects it contains.
- Optional.
-
- free_cache_objects: called by the sb cache shrinking function for the
- filesystem to scan the number of objects indicated to try to free them.
- Optional, but any filesystem implementing this method needs to also
- implement ->nr_cached_objects for it to be called correctly.
-
- We can't do anything with any errors that the filesystem might
- encountered, hence the void return type. This will never be called if
- the VM is trying to reclaim under GFP_NOFS conditions, hence this
- method does not need to handle that situation itself.
-
- Implementations must include conditional reschedule calls inside any
- scanning loop that is done. This allows the VFS to determine
- appropriate scan batch sizes without having to worry about whether
- implementations will cause holdoff problems due to large scan batch
- sizes.
-
-Whoever sets up the inode is responsible for filling in the "i_op" field. This
-is a pointer to a "struct inode_operations" which describes the methods that
-can be performed on individual inodes.
-
-struct xattr_handlers
----------------------
-
-On filesystems that support extended attributes (xattrs), the s_xattr
-superblock field points to a NULL-terminated array of xattr handlers. Extended
-attributes are name:value pairs.
-
- name: Indicates that the handler matches attributes with the specified name
- (such as "system.posix_acl_access"); the prefix field must be NULL.
-
- prefix: Indicates that the handler matches all attributes with the specified
- name prefix (such as "user."); the name field must be NULL.
-
- list: Determine if attributes matching this xattr handler should be listed
- for a particular dentry. Used by some listxattr implementations like
- generic_listxattr.
-
- get: Called by the VFS to get the value of a particular extended attribute.
- This method is called by the getxattr(2) system call.
-
- set: Called by the VFS to set the value of a particular extended attribute.
- When the new value is NULL, called to remove a particular extended
- attribute. This method is called by the the setxattr(2) and
- removexattr(2) system calls.
-
-When none of the xattr handlers of a filesystem match the specified attribute
-name or when a filesystem doesn't support extended attributes, the various
-*xattr(2) system calls return -EOPNOTSUPP.
-
-
-The Inode Object
-================
-
-An inode object represents an object within the filesystem.
-
-
-struct inode_operations
------------------------
-
-This describes how the VFS can manipulate an inode in your
-filesystem. As of kernel 2.6.22, the following members are defined:
-
-struct inode_operations {
- int (*create) (struct inode *,struct dentry *, umode_t, bool);
- struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
- int (*link) (struct dentry *,struct inode *,struct dentry *);
- int (*unlink) (struct inode *,struct dentry *);
- int (*symlink) (struct inode *,struct dentry *,const char *);
- int (*mkdir) (struct inode *,struct dentry *,umode_t);
- int (*rmdir) (struct inode *,struct dentry *);
- int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
- int (*rename) (struct inode *, struct dentry *,
- struct inode *, struct dentry *, unsigned int);
- int (*readlink) (struct dentry *, char __user *,int);
- const char *(*get_link) (struct dentry *, struct inode *,
- struct delayed_call *);
- int (*permission) (struct inode *, int);
- int (*get_acl)(struct inode *, int);
- int (*setattr) (struct dentry *, struct iattr *);
- int (*getattr) (const struct path *, struct kstat *, u32, unsigned int);
- ssize_t (*listxattr) (struct dentry *, char *, size_t);
- void (*update_time)(struct inode *, struct timespec *, int);
- int (*atomic_open)(struct inode *, struct dentry *, struct file *,
- unsigned open_flag, umode_t create_mode);
- int (*tmpfile) (struct inode *, struct dentry *, umode_t);
-};
-
-Again, all methods are called without any locks being held, unless
-otherwise noted.
-
- create: called by the open(2) and creat(2) system calls. Only
- required if you want to support regular files. The dentry you
- get should not have an inode (i.e. it should be a negative
- dentry). Here you will probably call d_instantiate() with the
- dentry and the newly created inode
-
- lookup: called when the VFS needs to look up an inode in a parent
- directory. The name to look for is found in the dentry. This
- method must call d_add() to insert the found inode into the
- dentry. The "i_count" field in the inode structure should be
- incremented. If the named inode does not exist a NULL inode
- should be inserted into the dentry (this is called a negative
- dentry). Returning an error code from this routine must only
- be done on a real error, otherwise creating inodes with system
- calls like create(2), mknod(2), mkdir(2) and so on will fail.
- If you wish to overload the dentry methods then you should
- initialise the "d_dop" field in the dentry; this is a pointer
- to a struct "dentry_operations".
- This method is called with the directory inode semaphore held
-
- link: called by the link(2) system call. Only required if you want
- to support hard links. You will probably need to call
- d_instantiate() just as you would in the create() method
-
- unlink: called by the unlink(2) system call. Only required if you
- want to support deleting inodes
-
- symlink: called by the symlink(2) system call. Only required if you
- want to support symlinks. You will probably need to call
- d_instantiate() just as you would in the create() method
-
- mkdir: called by the mkdir(2) system call. Only required if you want
- to support creating subdirectories. You will probably need to
- call d_instantiate() just as you would in the create() method
-
- rmdir: called by the rmdir(2) system call. Only required if you want
- to support deleting subdirectories
-
- mknod: called by the mknod(2) system call to create a device (char,
- block) inode or a named pipe (FIFO) or socket. Only required
- if you want to support creating these types of inodes. You
- will probably need to call d_instantiate() just as you would
- in the create() method
-
- rename: called by the rename(2) system call to rename the object to
- have the parent and name given by the second inode and dentry.
-
- The filesystem must return -EINVAL for any unsupported or
- unknown flags. Currently the following flags are implemented:
- (1) RENAME_NOREPLACE: this flag indicates that if the target
- of the rename exists the rename should fail with -EEXIST
- instead of replacing the target. The VFS already checks for
- existence, so for local filesystems the RENAME_NOREPLACE
- implementation is equivalent to plain rename.
- (2) RENAME_EXCHANGE: exchange source and target. Both must
- exist; this is checked by the VFS. Unlike plain rename,
- source and target may be of different type.
-
- get_link: called by the VFS to follow a symbolic link to the
- inode it points to. Only required if you want to support
- symbolic links. This method returns the symlink body
- to traverse (and possibly resets the current position with
- nd_jump_link()). If the body won't go away until the inode
- is gone, nothing else is needed; if it needs to be otherwise
- pinned, arrange for its release by having get_link(..., ..., done)
- do set_delayed_call(done, destructor, argument).
- In that case destructor(argument) will be called once VFS is
- done with the body you've returned.
- May be called in RCU mode; that is indicated by NULL dentry
- argument. If request can't be handled without leaving RCU mode,
- have it return ERR_PTR(-ECHILD).
-
- If the filesystem stores the symlink target in ->i_link, the
- VFS may use it directly without calling ->get_link(); however,
- ->get_link() must still be provided. ->i_link must not be
- freed until after an RCU grace period. Writing to ->i_link
- post-iget() time requires a 'release' memory barrier.
-
- readlink: this is now just an override for use by readlink(2) for the
- cases when ->get_link uses nd_jump_link() or object is not in
- fact a symlink. Normally filesystems should only implement
- ->get_link for symlinks and readlink(2) will automatically use
- that.
-
- permission: called by the VFS to check for access rights on a POSIX-like
- filesystem.
-
- May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in rcu-walk
- mode, the filesystem must check the permission without blocking or
- storing to the inode.
-
- If a situation is encountered that rcu-walk cannot handle, return
- -ECHILD and it will be called again in ref-walk mode.
-
- setattr: called by the VFS to set attributes for a file. This method
- is called by chmod(2) and related system calls.
-
- getattr: called by the VFS to get attributes of a file. This method
- is called by stat(2) and related system calls.
-
- listxattr: called by the VFS to list all extended attributes for a
- given file. This method is called by the listxattr(2) system call.
-
- update_time: called by the VFS to update a specific time or the i_version of
- an inode. If this is not defined the VFS will update the inode itself
- and call mark_inode_dirty_sync.
-
- atomic_open: called on the last component of an open. Using this optional
- method the filesystem can look up, possibly create and open the file in
- one atomic operation. If it wants to leave actual opening to the
- caller (e.g. if the file turned out to be a symlink, device, or just
- something filesystem won't do atomic open for), it may signal this by
- returning finish_no_open(file, dentry). This method is only called if
- the last component is negative or needs lookup. Cached positive dentries
- are still handled by f_op->open(). If the file was created,
- FMODE_CREATED flag should be set in file->f_mode. In case of O_EXCL
- the method must only succeed if the file didn't exist and hence FMODE_CREATED
- shall always be set on success.
-
- tmpfile: called in the end of O_TMPFILE open(). Optional, equivalent to
- atomically creating, opening and unlinking a file in given directory.
-
-The Address Space Object
-========================
-
-The address space object is used to group and manage pages in the page
-cache. It can be used to keep track of the pages in a file (or
-anything else) and also track the mapping of sections of the file into
-process address spaces.
-
-There are a number of distinct yet related services that an
-address-space can provide. These include communicating memory
-pressure, page lookup by address, and keeping track of pages tagged as
-Dirty or Writeback.
-
-The first can be used independently to the others. The VM can try to
-either write dirty pages in order to clean them, or release clean
-pages in order to reuse them. To do this it can call the ->writepage
-method on dirty pages, and ->releasepage on clean pages with
-PagePrivate set. Clean pages without PagePrivate and with no external
-references will be released without notice being given to the
-address_space.
-
-To achieve this functionality, pages need to be placed on an LRU with
-lru_cache_add and mark_page_active needs to be called whenever the
-page is used.
-
-Pages are normally kept in a radix tree index by ->index. This tree
-maintains information about the PG_Dirty and PG_Writeback status of
-each page, so that pages with either of these flags can be found
-quickly.
-
-The Dirty tag is primarily used by mpage_writepages - the default
-->writepages method. It uses the tag to find dirty pages to call
-->writepage on. If mpage_writepages is not used (i.e. the address
-provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is
-almost unused. write_inode_now and sync_inode do use it (through
-__sync_single_inode) to check if ->writepages has been successful in
-writing out the whole address_space.
-
-The Writeback tag is used by filemap*wait* and sync_page* functions,
-via filemap_fdatawait_range, to wait for all writeback to complete.
-
-An address_space handler may attach extra information to a page,
-typically using the 'private' field in the 'struct page'. If such
-information is attached, the PG_Private flag should be set. This will
-cause various VM routines to make extra calls into the address_space
-handler to deal with that data.
-
-An address space acts as an intermediate between storage and
-application. Data is read into the address space a whole page at a
-time, and provided to the application either by copying of the page,
-or by memory-mapping the page.
-Data is written into the address space by the application, and then
-written-back to storage typically in whole pages, however the
-address_space has finer control of write sizes.
-
-The read process essentially only requires 'readpage'. The write
-process is more complicated and uses write_begin/write_end or
-set_page_dirty to write data into the address_space, and writepage
-and writepages to writeback data to storage.
-
-Adding and removing pages to/from an address_space is protected by the
-inode's i_mutex.
-
-When data is written to a page, the PG_Dirty flag should be set. It
-typically remains set until writepage asks for it to be written. This
-should clear PG_Dirty and set PG_Writeback. It can be actually
-written at any point after PG_Dirty is clear. Once it is known to be
-safe, PG_Writeback is cleared.
-
-Writeback makes use of a writeback_control structure to direct the
-operations. This gives the the writepage and writepages operations some
-information about the nature of and reason for the writeback request,
-and the constraints under which it is being done. It is also used to
-return information back to the caller about the result of a writepage or
-writepages request.
-
-Handling errors during writeback
---------------------------------
-Most applications that do buffered I/O will periodically call a file
-synchronization call (fsync, fdatasync, msync or sync_file_range) to
-ensure that data written has made it to the backing store. When there
-is an error during writeback, they expect that error to be reported when
-a file sync request is made. After an error has been reported on one
-request, subsequent requests on the same file descriptor should return
-0, unless further writeback errors have occurred since the previous file
-syncronization.
-
-Ideally, the kernel would report errors only on file descriptions on
-which writes were done that subsequently failed to be written back. The
-generic pagecache infrastructure does not track the file descriptions
-that have dirtied each individual page however, so determining which
-file descriptors should get back an error is not possible.
-
-Instead, the generic writeback error tracking infrastructure in the
-kernel settles for reporting errors to fsync on all file descriptions
-that were open at the time that the error occurred. In a situation with
-multiple writers, all of them will get back an error on a subsequent fsync,
-even if all of the writes done through that particular file descriptor
-succeeded (or even if there were no writes on that file descriptor at all).
-
-Filesystems that wish to use this infrastructure should call
-mapping_set_error to record the error in the address_space when it
-occurs. Then, after writing back data from the pagecache in their
-file->fsync operation, they should call file_check_and_advance_wb_err to
-ensure that the struct file's error cursor has advanced to the correct
-point in the stream of errors emitted by the backing device(s).
-
-struct address_space_operations
--------------------------------
-
-This describes how the VFS can manipulate mapping of a file to page cache in
-your filesystem. The following members are defined:
-
-struct address_space_operations {
- int (*writepage)(struct page *page, struct writeback_control *wbc);
- int (*readpage)(struct file *, struct page *);
- int (*writepages)(struct address_space *, struct writeback_control *);
- int (*set_page_dirty)(struct page *page);
- int (*readpages)(struct file *filp, struct address_space *mapping,
- struct list_head *pages, unsigned nr_pages);
- int (*write_begin)(struct file *, struct address_space *mapping,
- loff_t pos, unsigned len, unsigned flags,
- struct page **pagep, void **fsdata);
- int (*write_end)(struct file *, struct address_space *mapping,
- loff_t pos, unsigned len, unsigned copied,
- struct page *page, void *fsdata);
- sector_t (*bmap)(struct address_space *, sector_t);
- void (*invalidatepage) (struct page *, unsigned int, unsigned int);
- int (*releasepage) (struct page *, int);
- void (*freepage)(struct page *);
- ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
- /* isolate a page for migration */
- bool (*isolate_page) (struct page *, isolate_mode_t);
- /* migrate the contents of a page to the specified target */
- int (*migratepage) (struct page *, struct page *);
- /* put migration-failed page back to right list */
- void (*putback_page) (struct page *);
- int (*launder_page) (struct page *);
-
- int (*is_partially_uptodate) (struct page *, unsigned long,
- unsigned long);
- void (*is_dirty_writeback) (struct page *, bool *, bool *);
- int (*error_remove_page) (struct mapping *mapping, struct page *page);
- int (*swap_activate)(struct file *);
- int (*swap_deactivate)(struct file *);
-};
-
- writepage: called by the VM to write a dirty page to backing store.
- This may happen for data integrity reasons (i.e. 'sync'), or
- to free up memory (flush). The difference can be seen in
- wbc->sync_mode.
- The PG_Dirty flag has been cleared and PageLocked is true.
- writepage should start writeout, should set PG_Writeback,
- and should make sure the page is unlocked, either synchronously
- or asynchronously when the write operation completes.
-
- If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to
- try too hard if there are problems, and may choose to write out
- other pages from the mapping if that is easier (e.g. due to
- internal dependencies). If it chooses not to start writeout, it
- should return AOP_WRITEPAGE_ACTIVATE so that the VM will not keep
- calling ->writepage on that page.
-
- See the file "Locking" for more details.
-
- readpage: called by the VM to read a page from backing store.
- The page will be Locked when readpage is called, and should be
- unlocked and marked uptodate once the read completes.
- If ->readpage discovers that it needs to unlock the page for
- some reason, it can do so, and then return AOP_TRUNCATED_PAGE.
- In this case, the page will be relocated, relocked and if
- that all succeeds, ->readpage will be called again.
-
- writepages: called by the VM to write out pages associated with the
- address_space object. If wbc->sync_mode is WBC_SYNC_ALL, then
- the writeback_control will specify a range of pages that must be
- written out. If it is WBC_SYNC_NONE, then a nr_to_write is given
- and that many pages should be written if possible.
- If no ->writepages is given, then mpage_writepages is used
- instead. This will choose pages from the address space that are
- tagged as DIRTY and will pass them to ->writepage.
-
- set_page_dirty: called by the VM to set a page dirty.
- This is particularly needed if an address space attaches
- private data to a page, and that data needs to be updated when
- a page is dirtied. This is called, for example, when a memory
- mapped page gets modified.
- If defined, it should set the PageDirty flag, and the
- PAGECACHE_TAG_DIRTY tag in the radix tree.
-
- readpages: called by the VM to read pages associated with the address_space
- object. This is essentially just a vector version of
- readpage. Instead of just one page, several pages are
- requested.
- readpages is only used for read-ahead, so read errors are
- ignored. If anything goes wrong, feel free to give up.
-
- write_begin:
- Called by the generic buffered write code to ask the filesystem to
- prepare to write len bytes at the given offset in the file. The
- address_space should check that the write will be able to complete,
- by allocating space if necessary and doing any other internal
- housekeeping. If the write will update parts of any basic-blocks on
- storage, then those blocks should be pre-read (if they haven't been
- read already) so that the updated blocks can be written out properly.
-
- The filesystem must return the locked pagecache page for the specified
- offset, in *pagep, for the caller to write into.
-
- It must be able to cope with short writes (where the length passed to
- write_begin is greater than the number of bytes copied into the page).
-
- flags is a field for AOP_FLAG_xxx flags, described in
- include/linux/fs.h.
-
- A void * may be returned in fsdata, which then gets passed into
- write_end.
-
- Returns 0 on success; < 0 on failure (which is the error code), in
- which case write_end is not called.
-
- write_end: After a successful write_begin, and data copy, write_end must
- be called. len is the original len passed to write_begin, and copied
- is the amount that was able to be copied.
-
- The filesystem must take care of unlocking the page and releasing it
- refcount, and updating i_size.
-
- Returns < 0 on failure, otherwise the number of bytes (<= 'copied')
- that were able to be copied into pagecache.
-
- bmap: called by the VFS to map a logical block offset within object to
- physical block number. This method is used by the FIBMAP
- ioctl and for working with swap-files. To be able to swap to
- a file, the file must have a stable mapping to a block
- device. The swap system does not go through the filesystem
- but instead uses bmap to find out where the blocks in the file
- are and uses those addresses directly.
-
- invalidatepage: If a page has PagePrivate set, then invalidatepage
- will be called when part or all of the page is to be removed
- from the address space. This generally corresponds to either a
- truncation, punch hole or a complete invalidation of the address
- space (in the latter case 'offset' will always be 0 and 'length'
- will be PAGE_SIZE). Any private data associated with the page
- should be updated to reflect this truncation. If offset is 0 and
- length is PAGE_SIZE, then the private data should be released,
- because the page must be able to be completely discarded. This may
- be done by calling the ->releasepage function, but in this case the
- release MUST succeed.
-
- releasepage: releasepage is called on PagePrivate pages to indicate
- that the page should be freed if possible. ->releasepage
- should remove any private data from the page and clear the
- PagePrivate flag. If releasepage() fails for some reason, it must
- indicate failure with a 0 return value.
- releasepage() is used in two distinct though related cases. The
- first is when the VM finds a clean page with no active users and
- wants to make it a free page. If ->releasepage succeeds, the
- page will be removed from the address_space and become free.
-
- The second case is when a request has been made to invalidate
- some or all pages in an address_space. This can happen
- through the fadvise(POSIX_FADV_DONTNEED) system call or by the
- filesystem explicitly requesting it as nfs and 9fs do (when
- they believe the cache may be out of date with storage) by
- calling invalidate_inode_pages2().
- If the filesystem makes such a call, and needs to be certain
- that all pages are invalidated, then its releasepage will
- need to ensure this. Possibly it can clear the PageUptodate
- bit if it cannot free private data yet.
-
- freepage: freepage is called once the page is no longer visible in
- the page cache in order to allow the cleanup of any private
- data. Since it may be called by the memory reclaimer, it
- should not assume that the original address_space mapping still
- exists, and it should not block.
-
- direct_IO: called by the generic read/write routines to perform
- direct_IO - that is IO requests which bypass the page cache
- and transfer data directly between the storage and the
- application's address space.
-
- isolate_page: Called by the VM when isolating a movable non-lru page.
- If page is successfully isolated, VM marks the page as PG_isolated
- via __SetPageIsolated.
-
- migrate_page: This is used to compact the physical memory usage.
- If the VM wants to relocate a page (maybe off a memory card
- that is signalling imminent failure) it will pass a new page
- and an old page to this function. migrate_page should
- transfer any private data across and update any references
- that it has to the page.
-
- putback_page: Called by the VM when isolated page's migration fails.
-
- launder_page: Called before freeing a page - it writes back the dirty page. To
- prevent redirtying the page, it is kept locked during the whole
- operation.
-
- is_partially_uptodate: Called by the VM when reading a file through the
- pagecache when the underlying blocksize != pagesize. If the required
- block is up to date then the read can complete without needing the IO
- to bring the whole page up to date.
-
- is_dirty_writeback: Called by the VM when attempting to reclaim a page.
- The VM uses dirty and writeback information to determine if it needs
- to stall to allow flushers a chance to complete some IO. Ordinarily
- it can use PageDirty and PageWriteback but some filesystems have
- more complex state (unstable pages in NFS prevent reclaim) or
- do not set those flags due to locking problems. This callback
- allows a filesystem to indicate to the VM if a page should be
- treated as dirty or writeback for the purposes of stalling.
-
- error_remove_page: normally set to generic_error_remove_page if truncation
- is ok for this address space. Used for memory failure handling.
- Setting this implies you deal with pages going away under you,
- unless you have them locked or reference counts increased.
-
- swap_activate: Called when swapon is used on a file to allocate
- space if necessary and pin the block lookup information in
- memory. A return value of zero indicates success,
- in which case this file can be used to back swapspace.
-
- swap_deactivate: Called during swapoff on files where swap_activate
- was successful.
-
-
-The File Object
-===============
-
-A file object represents a file opened by a process. This is also known
-as an "open file description" in POSIX parlance.
-
-
-struct file_operations
-----------------------
-
-This describes how the VFS can manipulate an open file. As of kernel
-4.18, the following members are defined:
-
-struct file_operations {
- struct module *owner;
- loff_t (*llseek) (struct file *, loff_t, int);
- ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
- ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
- ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
- ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
- int (*iopoll)(struct kiocb *kiocb, bool spin);
- int (*iterate) (struct file *, struct dir_context *);
- int (*iterate_shared) (struct file *, struct dir_context *);
- __poll_t (*poll) (struct file *, struct poll_table_struct *);
- long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
- long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
- int (*mmap) (struct file *, struct vm_area_struct *);
- int (*open) (struct inode *, struct file *);
- int (*flush) (struct file *, fl_owner_t id);
- int (*release) (struct inode *, struct file *);
- int (*fsync) (struct file *, loff_t, loff_t, int datasync);
- int (*fasync) (int, struct file *, int);
- int (*lock) (struct file *, int, struct file_lock *);
- ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
- unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
- int (*check_flags)(int);
- int (*flock) (struct file *, int, struct file_lock *);
- ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
- ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
- int (*setlease)(struct file *, long, struct file_lock **, void **);
- long (*fallocate)(struct file *file, int mode, loff_t offset,
- loff_t len);
- void (*show_fdinfo)(struct seq_file *m, struct file *f);
-#ifndef CONFIG_MMU
- unsigned (*mmap_capabilities)(struct file *);
-#endif
- ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int);
- loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
- struct file *file_out, loff_t pos_out,
- loff_t len, unsigned int remap_flags);
- int (*fadvise)(struct file *, loff_t, loff_t, int);
-};
-
-Again, all methods are called without any locks being held, unless
-otherwise noted.
-
- llseek: called when the VFS needs to move the file position index
-
- read: called by read(2) and related system calls
-
- read_iter: possibly asynchronous read with iov_iter as destination
-
- write: called by write(2) and related system calls
-
- write_iter: possibly asynchronous write with iov_iter as source
-
- iopoll: called when aio wants to poll for completions on HIPRI iocbs
-
- iterate: called when the VFS needs to read the directory contents
-
- iterate_shared: called when the VFS needs to read the directory contents
- when filesystem supports concurrent dir iterators
-
- poll: called by the VFS when a process wants to check if there is
- activity on this file and (optionally) go to sleep until there
- is activity. Called by the select(2) and poll(2) system calls
-
- unlocked_ioctl: called by the ioctl(2) system call.
-
- compat_ioctl: called by the ioctl(2) system call when 32 bit system calls
- are used on 64 bit kernels.
-
- mmap: called by the mmap(2) system call
-
- open: called by the VFS when an inode should be opened. When the VFS
- opens a file, it creates a new "struct file". It then calls the
- open method for the newly allocated file structure. You might
- think that the open method really belongs in
- "struct inode_operations", and you may be right. I think it's
- done the way it is because it makes filesystems simpler to
- implement. The open() method is a good place to initialize the
- "private_data" member in the file structure if you want to point
- to a device structure
-
- flush: called by the close(2) system call to flush a file
-
- release: called when the last reference to an open file is closed
-
- fsync: called by the fsync(2) system call. Also see the section above
- entitled "Handling errors during writeback".
-
- fasync: called by the fcntl(2) system call when asynchronous
- (non-blocking) mode is enabled for a file
-
- lock: called by the fcntl(2) system call for F_GETLK, F_SETLK, and F_SETLKW
- commands
-
- get_unmapped_area: called by the mmap(2) system call
-
- check_flags: called by the fcntl(2) system call for F_SETFL command
-
- flock: called by the flock(2) system call
-
- splice_write: called by the VFS to splice data from a pipe to a file. This
- method is used by the splice(2) system call
-
- splice_read: called by the VFS to splice data from file to a pipe. This
- method is used by the splice(2) system call
-
- setlease: called by the VFS to set or release a file lock lease. setlease
- implementations should call generic_setlease to record or remove
- the lease in the inode after setting it.
-
- fallocate: called by the VFS to preallocate blocks or punch a hole.
-
- copy_file_range: called by the copy_file_range(2) system call.
-
- remap_file_range: called by the ioctl(2) system call for FICLONERANGE and
- FICLONE and FIDEDUPERANGE commands to remap file ranges. An
- implementation should remap len bytes at pos_in of the source file into
- the dest file at pos_out. Implementations must handle callers passing
- in len == 0; this means "remap to the end of the source file". The
- return value should the number of bytes remapped, or the usual
- negative error code if errors occurred before any bytes were remapped.
- The remap_flags parameter accepts REMAP_FILE_* flags. If
- REMAP_FILE_DEDUP is set then the implementation must only remap if the
- requested file ranges have identical contents. If REMAP_CAN_SHORTEN is
- set, the caller is ok with the implementation shortening the request
- length to satisfy alignment or EOF requirements (or any other reason).
-
- fadvise: possibly called by the fadvise64() system call.
-
-Note that the file operations are implemented by the specific
-filesystem in which the inode resides. When opening a device node
-(character or block special) most filesystems will call special
-support routines in the VFS which will locate the required device
-driver information. These support routines replace the filesystem file
-operations with those for the device driver, and then proceed to call
-the new open() method for the file. This is how opening a device file
-in the filesystem eventually ends up calling the device driver open()
-method.
-
-
-Directory Entry Cache (dcache)
-==============================
-
-
-struct dentry_operations
-------------------------
-
-This describes how a filesystem can overload the standard dentry
-operations. Dentries and the dcache are the domain of the VFS and the
-individual filesystem implementations. Device drivers have no business
-here. These methods may be set to NULL, as they are either optional or
-the VFS uses a default. As of kernel 2.6.22, the following members are
-defined:
-
-struct dentry_operations {
- int (*d_revalidate)(struct dentry *, unsigned int);
- int (*d_weak_revalidate)(struct dentry *, unsigned int);
- int (*d_hash)(const struct dentry *, struct qstr *);
- int (*d_compare)(const struct dentry *,
- unsigned int, const char *, const struct qstr *);
- int (*d_delete)(const struct dentry *);
- int (*d_init)(struct dentry *);
- void (*d_release)(struct dentry *);
- void (*d_iput)(struct dentry *, struct inode *);
- char *(*d_dname)(struct dentry *, char *, int);
- struct vfsmount *(*d_automount)(struct path *);
- int (*d_manage)(const struct path *, bool);
- struct dentry *(*d_real)(struct dentry *, const struct inode *);
-};
-
- d_revalidate: called when the VFS needs to revalidate a dentry. This
- is called whenever a name look-up finds a dentry in the
- dcache. Most local filesystems leave this as NULL, because all their
- dentries in the dcache are valid. Network filesystems are different
- since things can change on the server without the client necessarily
- being aware of it.
-
- This function should return a positive value if the dentry is still
- valid, and zero or a negative error code if it isn't.
-
- d_revalidate may be called in rcu-walk mode (flags & LOOKUP_RCU).
- If in rcu-walk mode, the filesystem must revalidate the dentry without
- blocking or storing to the dentry, d_parent and d_inode should not be
- used without care (because they can change and, in d_inode case, even
- become NULL under us).
-
- If a situation is encountered that rcu-walk cannot handle, return
- -ECHILD and it will be called again in ref-walk mode.
-
- d_weak_revalidate: called when the VFS needs to revalidate a "jumped" dentry.
- This is called when a path-walk ends at dentry that was not acquired by
- doing a lookup in the parent directory. This includes "/", "." and "..",
- as well as procfs-style symlinks and mountpoint traversal.
-
- In this case, we are less concerned with whether the dentry is still
- fully correct, but rather that the inode is still valid. As with
- d_revalidate, most local filesystems will set this to NULL since their
- dcache entries are always valid.
-
- This function has the same return code semantics as d_revalidate.
-
- d_weak_revalidate is only called after leaving rcu-walk mode.
-
- d_hash: called when the VFS adds a dentry to the hash table. The first
- dentry passed to d_hash is the parent directory that the name is
- to be hashed into.
-
- Same locking and synchronisation rules as d_compare regarding
- what is safe to dereference etc.
-
- d_compare: called to compare a dentry name with a given name. The first
- dentry is the parent of the dentry to be compared, the second is
- the child dentry. len and name string are properties of the dentry
- to be compared. qstr is the name to compare it with.
-
- Must be constant and idempotent, and should not take locks if
- possible, and should not or store into the dentry.
- Should not dereference pointers outside the dentry without
- lots of care (eg. d_parent, d_inode, d_name should not be used).
-
- However, our vfsmount is pinned, and RCU held, so the dentries and
- inodes won't disappear, neither will our sb or filesystem module.
- ->d_sb may be used.
-
- It is a tricky calling convention because it needs to be called under
- "rcu-walk", ie. without any locks or references on things.
-
- d_delete: called when the last reference to a dentry is dropped and the
- dcache is deciding whether or not to cache it. Return 1 to delete
- immediately, or 0 to cache the dentry. Default is NULL which means to
- always cache a reachable dentry. d_delete must be constant and
- idempotent.
-
- d_init: called when a dentry is allocated
-
- d_release: called when a dentry is really deallocated
-
- d_iput: called when a dentry loses its inode (just prior to its
- being deallocated). The default when this is NULL is that the
- VFS calls iput(). If you define this method, you must call
- iput() yourself
-
- d_dname: called when the pathname of a dentry should be generated.
- Useful for some pseudo filesystems (sockfs, pipefs, ...) to delay
- pathname generation. (Instead of doing it when dentry is created,
- it's done only when the path is needed.). Real filesystems probably
- dont want to use it, because their dentries are present in global
- dcache hash, so their hash should be an invariant. As no lock is
- held, d_dname() should not try to modify the dentry itself, unless
- appropriate SMP safety is used. CAUTION : d_path() logic is quite
- tricky. The correct way to return for example "Hello" is to put it
- at the end of the buffer, and returns a pointer to the first char.
- dynamic_dname() helper function is provided to take care of this.
-
- Example :
-
- static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)
- {
- return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
- dentry->d_inode->i_ino);
- }
-
- d_automount: called when an automount dentry is to be traversed (optional).
- This should create a new VFS mount record and return the record to the
- caller. The caller is supplied with a path parameter giving the
- automount directory to describe the automount target and the parent
- VFS mount record to provide inheritable mount parameters. NULL should
- be returned if someone else managed to make the automount first. If
- the vfsmount creation failed, then an error code should be returned.
- If -EISDIR is returned, then the directory will be treated as an
- ordinary directory and returned to pathwalk to continue walking.
-
- If a vfsmount is returned, the caller will attempt to mount it on the
- mountpoint and will remove the vfsmount from its expiration list in
- the case of failure. The vfsmount should be returned with 2 refs on
- it to prevent automatic expiration - the caller will clean up the
- additional ref.
-
- This function is only used if DCACHE_NEED_AUTOMOUNT is set on the
- dentry. This is set by __d_instantiate() if S_AUTOMOUNT is set on the
- inode being added.
-
- d_manage: called to allow the filesystem to manage the transition from a
- dentry (optional). This allows autofs, for example, to hold up clients
- waiting to explore behind a 'mountpoint' while letting the daemon go
- past and construct the subtree there. 0 should be returned to let the
- calling process continue. -EISDIR can be returned to tell pathwalk to
- use this directory as an ordinary directory and to ignore anything
- mounted on it and not to check the automount flag. Any other error
- code will abort pathwalk completely.
-
- If the 'rcu_walk' parameter is true, then the caller is doing a
- pathwalk in RCU-walk mode. Sleeping is not permitted in this mode,
- and the caller can be asked to leave it and call again by returning
- -ECHILD. -EISDIR may also be returned to tell pathwalk to
- ignore d_automount or any mounts.
-
- This function is only used if DCACHE_MANAGE_TRANSIT is set on the
- dentry being transited from.
-
- d_real: overlay/union type filesystems implement this method to return one of
- the underlying dentries hidden by the overlay. It is used in two
- different modes:
-
- Called from file_dentry() it returns the real dentry matching the inode
- argument. The real dentry may be from a lower layer already copied up,
- but still referenced from the file. This mode is selected with a
- non-NULL inode argument.
-
- With NULL inode the topmost real underlying dentry is returned.
-
-Each dentry has a pointer to its parent dentry, as well as a hash list
-of child dentries. Child dentries are basically like files in a
-directory.
-
-
-Directory Entry Cache API
---------------------------
-
-There are a number of functions defined which permit a filesystem to
-manipulate dentries:
-
- dget: open a new handle for an existing dentry (this just increments
- the usage count)
-
- dput: close a handle for a dentry (decrements the usage count). If
- the usage count drops to 0, and the dentry is still in its
- parent's hash, the "d_delete" method is called to check whether
- it should be cached. If it should not be cached, or if the dentry
- is not hashed, it is deleted. Otherwise cached dentries are put
- into an LRU list to be reclaimed on memory shortage.
-
- d_drop: this unhashes a dentry from its parents hash list. A
- subsequent call to dput() will deallocate the dentry if its
- usage count drops to 0
-
- d_delete: delete a dentry. If there are no other open references to
- the dentry then the dentry is turned into a negative dentry
- (the d_iput() method is called). If there are other
- references, then d_drop() is called instead
-
- d_add: add a dentry to its parents hash list and then calls
- d_instantiate()
-
- d_instantiate: add a dentry to the alias hash list for the inode and
- updates the "d_inode" member. The "i_count" member in the
- inode structure should be set/incremented. If the inode
- pointer is NULL, the dentry is called a "negative
- dentry". This function is commonly called when an inode is
- created for an existing negative dentry
-
- d_lookup: look up a dentry given its parent and path name component
- It looks up the child of that given name from the dcache
- hash table. If it is found, the reference count is incremented
- and the dentry is returned. The caller must use dput()
- to free the dentry when it finishes using it.
-
-Mount Options
-=============
-
-Parsing options
----------------
-
-On mount and remount the filesystem is passed a string containing a
-comma separated list of mount options. The options can have either of
-these forms:
-
- option
- option=value
-
-The <linux/parser.h> header defines an API that helps parse these
-options. There are plenty of examples on how to use it in existing
-filesystems.
-
-Showing options
----------------
-
-If a filesystem accepts mount options, it must define show_options()
-to show all the currently active options. The rules are:
-
- - options MUST be shown which are not default or their values differ
- from the default
-
- - options MAY be shown which are enabled by default or have their
- default value
-
-Options used only internally between a mount helper and the kernel
-(such as file descriptors), or which only have an effect during the
-mounting (such as ones controlling the creation of a journal) are exempt
-from the above rules.
-
-The underlying reason for the above rules is to make sure, that a
-mount can be accurately replicated (e.g. umounting and mounting again)
-based on the information found in /proc/mounts.
-
-Resources
-=========
-
-(Note some of these resources are not up-to-date with the latest kernel
- version.)
-
-Creating Linux virtual filesystems. 2002
- <http://lwn.net/Articles/13325/>
-
-The Linux Virtual File-system Layer by Neil Brown. 1999
- <http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html>
-
-A tour of the Linux VFS by Michael K. Johnson. 1996
- <http://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html>
-
-A small trail through the Linux kernel by Andries Brouwer. 2001
- <http://www.win.tue.nl/~aeb/linux/vfs/trail.html>
diff --git a/Documentation/filesystems/virtiofs.rst b/Documentation/filesystems/virtiofs.rst
new file mode 100644
index 000000000000..4f338e3cb3f7
--- /dev/null
+++ b/Documentation/filesystems/virtiofs.rst
@@ -0,0 +1,60 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================================================
+virtiofs: virtio-fs host<->guest shared file system
+===================================================
+
+- Copyright (C) 2019 Red Hat, Inc.
+
+Introduction
+============
+The virtiofs file system for Linux implements a driver for the paravirtualized
+VIRTIO "virtio-fs" device for guest<->host file system sharing. It allows a
+guest to mount a directory that has been exported on the host.
+
+Guests often require access to files residing on the host or remote systems.
+Use cases include making files available to new guests during installation,
+booting from a root file system located on the host, persistent storage for
+stateless or ephemeral guests, and sharing a directory between guests.
+
+Although it is possible to use existing network file systems for some of these
+tasks, they require configuration steps that are hard to automate and they
+expose the storage network to the guest. The virtio-fs device was designed to
+solve these problems by providing file system access without networking.
+
+Furthermore the virtio-fs device takes advantage of the co-location of the
+guest and host to increase performance and provide semantics that are not
+possible with network file systems.
+
+Usage
+=====
+Mount file system with tag ``myfs`` on ``/mnt``:
+
+.. code-block:: sh
+
+ guest# mount -t virtiofs myfs /mnt
+
+Please see https://virtio-fs.gitlab.io/ for details on how to configure QEMU
+and the virtiofsd daemon.
+
+Internals
+=========
+Since the virtio-fs device uses the FUSE protocol for file system requests, the
+virtiofs file system for Linux is integrated closely with the FUSE file system
+client. The guest acts as the FUSE client while the host acts as the FUSE
+server. The /dev/fuse interface between the kernel and userspace is replaced
+with the virtio-fs device interface.
+
+FUSE requests are placed into a virtqueue and processed by the host. The
+response portion of the buffer is filled in by the host and the guest handles
+the request completion.
+
+Mapping /dev/fuse to virtqueues requires solving differences in semantics
+between /dev/fuse and virtqueues. Each time the /dev/fuse device is read, the
+FUSE client may choose which request to transfer, making it possible to
+prioritize certain requests over others. Virtqueues have queue semantics and
+it is not possible to change the order of requests that have been enqueued.
+This is especially important if the virtqueue becomes full since it is then
+impossible to add high priority requests. In order to address this difference,
+the virtio-fs device uses a "hiprio" virtqueue specifically for requests that
+have priority over normal requests.
diff --git a/Documentation/filesystems/xfs-delayed-logging-design.txt b/Documentation/filesystems/xfs-delayed-logging-design.txt
index 2ce36439c09f..9a6dd289b17b 100644
--- a/Documentation/filesystems/xfs-delayed-logging-design.txt
+++ b/Documentation/filesystems/xfs-delayed-logging-design.txt
@@ -34,7 +34,7 @@ transaction:
D A+B+C+D X+n+m+o
<object written to disk>
E E Y (> X+n+m+o)
- F E+F Yٍ+p
+ F E+F Y+p
In other words, each time an object is relogged, the new transaction contains
the aggregation of all the previous changes currently held only in the log.
diff --git a/Documentation/filesystems/xfs-self-describing-metadata.txt b/Documentation/filesystems/xfs-self-describing-metadata.txt
index 68604e67a495..8db0121d0980 100644
--- a/Documentation/filesystems/xfs-self-describing-metadata.txt
+++ b/Documentation/filesystems/xfs-self-describing-metadata.txt
@@ -222,7 +222,7 @@ static void
xfs_foo_read_verify(
struct xfs_buf *bp)
{
- struct xfs_mount *mp = bp->b_target->bt_mount;
+ struct xfs_mount *mp = bp->b_mount;
if ((xfs_sb_version_hascrc(&mp->m_sb) &&
!xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
@@ -245,7 +245,7 @@ static bool
xfs_foo_verify(
struct xfs_buf *bp)
{
- struct xfs_mount *mp = bp->b_target->bt_mount;
+ struct xfs_mount *mp = bp->b_mount;
struct xfs_ondisk_hdr *hdr = bp->b_addr;
if (hdr->magic != cpu_to_be32(XFS_FOO_MAGIC))
@@ -272,7 +272,7 @@ static bool
xfs_foo_verify(
struct xfs_buf *bp)
{
- struct xfs_mount *mp = bp->b_target->bt_mount;
+ struct xfs_mount *mp = bp->b_mount;
struct xfs_ondisk_hdr *hdr = bp->b_addr;
if (hdr->magic == cpu_to_be32(XFS_FOO_CRC_MAGIC)) {
@@ -297,7 +297,7 @@ static void
xfs_foo_write_verify(
struct xfs_buf *bp)
{
- struct xfs_mount *mp = bp->b_target->bt_mount;
+ struct xfs_mount *mp = bp->b_mount;
struct xfs_buf_log_item *bip = bp->b_fspriv;
if (!xfs_foo_verify(bp)) {
diff --git a/Documentation/acpi/dsd/leds.txt b/Documentation/firmware-guide/acpi/dsd/leds.rst
index 81a63af42ed2..946efe2b2936 100644
--- a/Documentation/acpi/dsd/leds.txt
+++ b/Documentation/firmware-guide/acpi/dsd/leds.rst
@@ -1,4 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+========================================
Describing and referring to LEDs in ACPI
+========================================
Individual LEDs are described by hierarchical data extension [6] nodes under the
device node, the LED driver chip. The "reg" property in the LED specific nodes
@@ -25,8 +30,12 @@ entry shall contain the string "led@" followed by the number of the LED,
followed by the referred object name. That object shall be named "LED" followed
by the number of the LED.
-An ASL example of a camera sensor device and a LED driver device for two LEDs.
-Objects not relevant for LEDs or the references to them have been omitted.
+Example
+=======
+
+An ASL example of a camera sensor device and a LED driver device for two LEDs is
+show below. Objects not relevant for LEDs or the references to them have been
+omitted. ::
Device (LED)
{
@@ -71,12 +80,15 @@ Objects not relevant for LEDs or the references to them have been omitted.
}
where
+::
LED LED driver device
LED0 First LED
LED1 Second LED
- SEN Camera sensor device (or another device the LED is
- related to)
+ SEN Camera sensor device (or another device the LED is related to)
+
+References
+==========
[1] Device tree. <URL:http://www.devicetree.org>, referenced 2019-02-21.
@@ -96,4 +108,4 @@ where
<URL:http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.1.pdf>,
referenced 2019-02-21.
-[7] Documentation/acpi/dsd/data-node-reference.txt
+[7] Documentation/firmware-guide/acpi/dsd/data-node-references.rst
diff --git a/Documentation/firmware-guide/acpi/enumeration.rst b/Documentation/firmware-guide/acpi/enumeration.rst
index 850be9696931..0a72b6321f5f 100644
--- a/Documentation/firmware-guide/acpi/enumeration.rst
+++ b/Documentation/firmware-guide/acpi/enumeration.rst
@@ -316,7 +316,7 @@ specifies the path to the controller. In order to use these GPIOs in Linux
we need to translate them to the corresponding Linux GPIO descriptors.
There is a standard GPIO API for that and is documented in
-Documentation/gpio/.
+Documentation/admin-guide/gpio/.
In the above example we can get the corresponding two GPIO descriptors with
a code like this::
@@ -339,7 +339,7 @@ a code like this::
There are also devm_* versions of these functions which release the
descriptors once the device is released.
-See Documentation/acpi/gpio-properties.txt for more information about the
+See Documentation/firmware-guide/acpi/gpio-properties.rst for more information about the
_DSD binding related to GPIOs.
MFD devices
diff --git a/Documentation/extcon/intel-int3496.txt b/Documentation/firmware-guide/acpi/extcon-intel-int3496.rst
index 8155dbc7fad3..5137ca834b54 100644
--- a/Documentation/extcon/intel-int3496.txt
+++ b/Documentation/firmware-guide/acpi/extcon-intel-int3496.rst
@@ -1,5 +1,6 @@
+=====================================================
Intel INT3496 ACPI device extcon driver documentation
------------------------------------------------------
+=====================================================
The Intel INT3496 ACPI device extcon driver is a driver for ACPI
devices with an acpi-id of INT3496, such as found for example on
@@ -13,15 +14,20 @@ between an USB host and an USB peripheral controller.
The ACPI devices exposes this functionality by returning an array with up
to 3 gpio descriptors from its ACPI _CRS (Current Resource Settings) call:
-Index 0: The input gpio for the id-pin, this is always present and valid
-Index 1: The output gpio for enabling Vbus output from the device to the otg
+======= =====================================================================
+Index 0 The input gpio for the id-pin, this is always present and valid
+Index 1 The output gpio for enabling Vbus output from the device to the otg
port, write 1 to enable the Vbus output (this gpio descriptor may
be absent or invalid)
-Index 2: The output gpio for muxing of the data pins between the USB host and
+Index 2 The output gpio for muxing of the data pins between the USB host and
the USB peripheral controller, write 1 to mux to the peripheral
controller
+======= =====================================================================
There is a mapping between indices and GPIO connection IDs as follows
+
+ ======= =======
id index 0
vbus index 1
mux index 2
+ ======= =======
diff --git a/Documentation/firmware-guide/acpi/index.rst b/Documentation/firmware-guide/acpi/index.rst
index ae609eec4679..ad3b5afdae77 100644
--- a/Documentation/firmware-guide/acpi/index.rst
+++ b/Documentation/firmware-guide/acpi/index.rst
@@ -10,6 +10,7 @@ ACPI Support
namespace
dsd/graph
dsd/data-node-references
+ dsd/leds
enumeration
osi
method-customizing
@@ -24,3 +25,4 @@ ACPI Support
acpi-lid
lpit
video_extension
+ extcon-intel-int3496
diff --git a/Documentation/firmware-guide/acpi/method-tracing.rst b/Documentation/firmware-guide/acpi/method-tracing.rst
index d0b077b73f5f..0aa7e2c5d32a 100644
--- a/Documentation/firmware-guide/acpi/method-tracing.rst
+++ b/Documentation/firmware-guide/acpi/method-tracing.rst
@@ -68,7 +68,7 @@ c. Filter out the debug layer/level matched logs when the specified
Where:
0xXXXXXXXX/0xYYYYYYYY
- Refer to Documentation/acpi/debug.txt for possible debug layer/level
+ Refer to Documentation/firmware-guide/acpi/debug.rst for possible debug layer/level
masking values.
\PPPP.AAAA.TTTT.HHHH
Full path of a control method that can be found in the ACPI namespace.
diff --git a/Documentation/fmc/API.txt b/Documentation/fmc/API.txt
deleted file mode 100644
index 06b06b92c794..000000000000
--- a/Documentation/fmc/API.txt
+++ /dev/null
@@ -1,47 +0,0 @@
-Functions Exported by fmc.ko
-****************************
-
-The FMC core exports the usual 4 functions that are needed for a bus to
-work, and a few more:
-
- int fmc_driver_register(struct fmc_driver *drv);
- void fmc_driver_unregister(struct fmc_driver *drv);
- int fmc_device_register(struct fmc_device *fmc);
- void fmc_device_unregister(struct fmc_device *fmc);
-
- int fmc_device_register_n(struct fmc_device **fmc, int n);
- void fmc_device_unregister_n(struct fmc_device **fmc, int n);
-
- uint32_t fmc_readl(struct fmc_device *fmc, int offset);
- void fmc_writel(struct fmc_device *fmc, uint32_t val, int off);
- void *fmc_get_drvdata(struct fmc_device *fmc);
- void fmc_set_drvdata(struct fmc_device *fmc, void *data);
-
- int fmc_reprogram(struct fmc_device *f, struct fmc_driver *d, char *gw,
- int sdb_entry);
-
-The data structure that describe a device is detailed in *note FMC
-Device::, the one that describes a driver is detailed in *note FMC
-Driver::. Please note that structures of type fmc_device must be
-allocated by the caller, but must not be released after unregistering.
-The fmc-bus itself takes care of releasing the structure when their use
-count reaches zero - actually, the device model does that in lieu of us.
-
-The functions to register and unregister n devices are meant to be used
-by carriers that host more than one mezzanine. The devices must all be
-registered at the same time because if the FPGA is reprogrammed, all
-devices in the array are affected. Usually, the driver matching the
-first device will reprogram the FPGA, so other devices must know they
-are already driven by a reprogrammed FPGA.
-
-If a carrier hosts slots that are driven by different FPGA devices, it
-should register as a group only mezzanines that are driven by the same
-FPGA, for the reason outlined above.
-
-Finally, the fmc_reprogram function calls the reprogram method (see
-*note The API Offered by Carriers:: and also scans the memory area for
-an SDB tree. You can pass -1 as sdb_entry to disable such scan.
-Otherwise, the function fails if no tree is found at the specified
-entry point. The function is meant to factorize common code, and by
-the time you read this it is already used by the spec-sw and fine-delay
-modules.
diff --git a/Documentation/fmc/FMC-and-SDB.txt b/Documentation/fmc/FMC-and-SDB.txt
deleted file mode 100644
index fa14e0b24521..000000000000
--- a/Documentation/fmc/FMC-and-SDB.txt
+++ /dev/null
@@ -1,88 +0,0 @@
-
-FMC (FPGA Mezzanine Card) is the standard we use for our I/O devices,
-in the context of White Rabbit and related hardware.
-
-In our I/O environments we need to write drivers for each mezzanine
-card, and such drivers must work regardless of the carrier being used.
-To achieve this, we abstract the FMC interface.
-
-We have a carrier for PCI-E called SPEC and one for VME called SVEC,
-but more are planned. Also, we support stand-alone devices (usually
-plugged on a SPEC card), controlled through Etherbone, developed by GSI.
-
-Code and documentation for the FMC bus was born as part of the spec-sw
-project, but now it lives in its own project. Other projects, i.e.
-software support for the various carriers, should include this as a
-submodule.
-
-The most up to date version of code and documentation is always
-available from the repository you can clone from:
-
- git://ohwr.org/fmc-projects/fmc-bus.git (read-only)
- git@ohwr.org:fmc-projects/fmc-bus.git (read-write for developers)
-
-Selected versions of the documentation, as well as complete tar
-archives for selected revisions are placed to the Files section of the
-project: `http://www.ohwr.org/projects/fmc-bus/files'
-
-
-What is FMC
-***********
-
-FMC, as said, stands for "FPGA Mezzanine Card". It is a standard
-developed by the VME consortium called VITA (VMEbus International Trade
-Association and ratified by ANSI, the American National Standard
-Institute. The official documentation is called "ANSI-VITA 57.1".
-
-The FMC card is an almost square PCB, around 70x75 millimeters, that is
-called mezzanine in this document. It usually lives plugged into
-another PCB for power supply and control; such bigger circuit board is
-called carrier from now on, and a single carrier may host more than one
-mezzanine.
-
-In the typical application the mezzanine is mostly analog while the
-carrier is mostly digital, and hosts an FPGA that must be configured to
-match the specific mezzanine and the desired application. Thus, you may
-need to load different FPGA images to drive different instances of the
-same mezzanine.
-
-FMC, as such, is not a bus in the usual meaning of the term, because
-most carriers have only one connector, and carriers with several
-connectors have completely separate electrical connections to them.
-This package, however, implements a bus as a software abstraction.
-
-
-What is SDB
-***********
-
-SDB (Self Describing Bus) is a set of data structures that we use for
-enumerating the internal structure of an FPGA image. We also use it as
-a filesystem inside the FMC EEPROM.
-
-SDB is not mandatory for use of this FMC kernel bus, but if you have SDB
-this package can make good use of it. SDB itself is developed in the
-fpga-config-space OHWR project. The link to the repository is
-`git://ohwr.org/hdl-core-lib/fpga-config-space.git' and what is used in
-this project lives in the sdbfs subdirectory in there.
-
-SDB support for FMC is described in *note FMC Identification:: and
-*note SDB Support::
-
-
-SDB Support
-***********
-
-The fmc.ko bus driver exports a few functions to help drivers taking
-advantage of the SDB information that may be present in your own FPGA
-memory image.
-
-The module exports the following functions, in the special header
-<linux/fmc-sdb.h>. The linux/ prefix in the name is there because we
-plan to submit it upstream in the future, and don't want to force
-changes on our drivers if that happens.
-
- int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address);
- void fmc_show_sdb_tree(struct fmc_device *fmc);
- signed long fmc_find_sdb_device(struct sdb_array *tree, uint64_t vendor,
- uint32_t device, unsigned long *sz);
- int fmc_free_sdb_tree(struct fmc_device *fmc);
diff --git a/Documentation/fmc/carrier.txt b/Documentation/fmc/carrier.txt
deleted file mode 100644
index 5e4f1dd3e98b..000000000000
--- a/Documentation/fmc/carrier.txt
+++ /dev/null
@@ -1,311 +0,0 @@
-FMC Device
-**********
-
-Within the Linux bus framework, the FMC device is created and
-registered by the carrier driver. For example, the PCI driver for the
-SPEC card fills a data structure for each SPEC that it drives, and
-registers an associated FMC device for each card. The SVEC driver can
-do exactly the same for the VME carrier (actually, it should do it
-twice, because the SVEC carries two FMC mezzanines). Similarly, an
-Etherbone driver will be able to register its own FMC devices, offering
-communication primitives through frame exchange.
-
-The contents of the EEPROM within the FMC are used for identification
-purposes, i.e. for matching the device with its own driver. For this
-reason the device structure includes a complete copy of the EEPROM
-(actually, the carrier driver may choose whether or not to return it -
-for example we most likely won't have the whole EEPROM available for
-Etherbone devices.
-
-The following listing shows the current structure defining a device.
-Please note that all the machinery is in place but some details may
-still change in the future. For this reason, there is a version field
-at the beginning of the structure. As usual, the minor number will
-change for compatible changes (like a new flag) and the major number
-will increase when an incompatible change happens (for example, a
-change in layout of some fmc data structures). Device writers should
-just set it to the value FMC_VERSION, and be ready to get back -EINVAL
-at registration time.
-
- struct fmc_device {
- unsigned long version;
- unsigned long flags;
- struct module *owner; /* char device must pin it */
- struct fmc_fru_id id; /* for EEPROM-based match */
- struct fmc_operations *op; /* carrier-provided */
- int irq; /* according to host bus. 0 == none */
- int eeprom_len; /* Usually 8kB, may be less */
- int eeprom_addr; /* 0x50, 0x52 etc */
- uint8_t *eeprom; /* Full contents or leading part */
- char *carrier_name; /* "SPEC" or similar, for special use */
- void *carrier_data; /* "struct spec *" or equivalent */
- __iomem void *fpga_base; /* May be NULL (Etherbone) */
- __iomem void *slot_base; /* Set by the driver */
- struct fmc_device **devarray; /* Allocated by the bus */
- int slot_id; /* Index in the slot array */
- int nr_slots; /* Number of slots in this carrier */
- unsigned long memlen; /* Used for the char device */
- struct device dev; /* For Linux use */
- struct device *hwdev; /* The underlying hardware device */
- unsigned long sdbfs_entry;
- struct sdb_array *sdb;
- uint32_t device_id; /* Filled by the device */
- char *mezzanine_name; /* Defaults to ``fmc'' */
- void *mezzanine_data;
- };
-
-The meaning of most fields is summarized in the code comment above.
-
-The following fields must be filled by the carrier driver before
-registration:
-
- * version: must be set to FMC_VERSION.
-
- * owner: set to MODULE_OWNER.
-
- * op: the operations to act on the device.
-
- * irq: number for the mezzanine; may be zero.
-
- * eeprom_len: length of the following array.
-
- * eeprom_addr: 0x50 for first mezzanine and so on.
-
- * eeprom: the full content of the I2C EEPROM.
-
- * carrier_name.
-
- * carrier_data: a unique pointer for the carrier.
-
- * fpga_base: the I/O memory address (may be NULL).
-
- * slot_id: the index of this slot (starting from zero).
-
- * memlen: if fpga_base is valid, the length of I/O memory.
-
- * hwdev: to be used in some dev_err() calls.
-
- * device_id: a slot-specific unique integer number.
-
-
-Please note that the carrier should read its own EEPROM memory before
-registering the device, as well as fill all other fields listed above.
-
-The following fields should not be assigned, because they are filled
-later by either the bus or the device driver:
-
- * flags.
-
- * fru_id: filled by the bus, parsing the eeprom.
-
- * slot_base: filled and used by the driver, if useful to it.
-
- * devarray: an array og all mezzanines driven by a singe FPGA.
-
- * nr_slots: set by the core at registration time.
-
- * dev: used by Linux.
-
- * sdb: FPGA contents, scanned according to driver's directions.
-
- * sdbfs_entry: SDB entry point in EEPROM: autodetected.
-
- * mezzanine_data: available for the driver.
-
- * mezzanine_name: filled by fmc-bus during identification.
-
-
-Note: mezzanine_data may be redundant, because Linux offers the drvdata
-approach, so the field may be removed in later versions of this bus
-implementation.
-
-As I write this, she SPEC carrier is already completely functional in
-the fmc-bus environment, and is a good reference to look at.
-
-
-The API Offered by Carriers
-===========================
-
-The carrier provides a number of methods by means of the
-`fmc_operations' structure, which currently is defined like this
-(again, it is a moving target, please refer to the header rather than
-this document):
-
- struct fmc_operations {
- uint32_t (*readl)(struct fmc_device *fmc, int offset);
- void (*writel)(struct fmc_device *fmc, uint32_t value, int offset);
- int (*reprogram)(struct fmc_device *f, struct fmc_driver *d, char *gw);
- int (*validate)(struct fmc_device *fmc, struct fmc_driver *drv);
- int (*irq_request)(struct fmc_device *fmc, irq_handler_t h,
- char *name, int flags);
- void (*irq_ack)(struct fmc_device *fmc);
- int (*irq_free)(struct fmc_device *fmc);
- int (*gpio_config)(struct fmc_device *fmc, struct fmc_gpio *gpio,
- int ngpio);
- int (*read_ee)(struct fmc_device *fmc, int pos, void *d, int l);
- int (*write_ee)(struct fmc_device *fmc, int pos, const void *d, int l);
- };
-
-The individual methods perform the following tasks:
-
-`readl'
-`writel'
- These functions access FPGA registers by whatever means the
- carrier offers. They are not expected to fail, and most of the time
- they will just make a memory access to the host bus. If the
- carrier provides a fpga_base pointer, the driver may use direct
- access through that pointer. For this reason the header offers the
- inline functions fmc_readl and fmc_writel that access fpga_base if
- the respective method is NULL. A driver that wants to be portable
- and efficient should use fmc_readl and fmc_writel. For Etherbone,
- or other non-local carriers, error-management is still to be
- defined.
-
-`validate'
- Module parameters are used to manage different applications for
- two or more boards of the same kind. Validation is based on the
- busid module parameter, if provided, and returns the matching
- index in the associated array. See *note Module Parameters:: in in
- doubt. If no match is found, `-ENOENT' is returned; if the user
- didn't pass `busid=', all devices will pass validation. The value
- returned by the validate method can be used as index into other
- parameters (for example, some drivers use the `lm32=' parameter in
- this way). Such "generic parameters" are documented in *note
- Module Parameters::, below. The validate method is used by
- `fmc-trivial.ko', described in *note fmc-trivial::.
-
-`reprogram'
- The carrier enumerates FMC devices by loading a standard (or
- golden) FPGA binary that allows EEPROM access. Each driver, then,
- will need to reprogram the FPGA by calling this function. If the
- name argument is NULL, the carrier should reprogram the golden
- binary. If the gateware name has been overridden through module
- parameters (in a carrier-specific way) the file loaded will match
- the parameters. Per-device gateware names can be specified using
- the `gateware=' parameter, see *note Module Parameters::. Note:
- Clients should call rhe new helper, fmc_reprogram, which both
- calls this method and parse the SDB tree of the FPGA.
-
-`irq_request'
-`irq_ack'
-`irq_free'
- Interrupt management is carrier-specific, so it is abstracted as
- operations. The interrupt number is listed in the device
- structure, and for the mezzanine driver the number is only
- informative. The handler will receive the fmc pointer as dev_id;
- the flags argument is passed to the Linux request_irq function,
- but fmc-specific flags may be added in the future. You'll most
- likely want to pass the `IRQF_SHARED' flag.
-
-`gpio_config'
- The method allows to configure a GPIO pin in the carrier, and read
- its current value if it is configured as input. See *note The GPIO
- Abstraction:: for details.
-
-`read_ee'
-`write_ee'
- Read or write the EEPROM. The functions are expected to be only
- called before reprogramming and the carrier should refuse them
- with `ENODEV' after reprogramming. The offset is expected to be
- within 8kB (the current size), but addresses up to 1MB are
- reserved to fit bigger I2C devices in the future. Carriers may
- offer access to other internal flash memories using these same
- methods: for example the SPEC driver may define that its carrier
- I2C memory is seen at offset 1M and the internal SPI flash is seen
- at offset 16M. This multiplexing of several flash memories in the
- same address space is carrier-specific and should only be used
- by a driver that has verified the `carrier_name' field.
-
-
-
-The GPIO Abstraction
-====================
-
-Support for GPIO pins in the fmc-bus environment is not very
-straightforward and deserves special discussion.
-
-While the general idea of a carrier-independent driver seems to fly,
-configuration of specific signals within the carrier needs at least
-some knowledge of the carrier itself. For this reason, the specific
-driver can request to configure carrier-specific GPIO pins, numbered
-from 0 to at most 4095. Configuration is performed by passing a
-pointer to an array of struct fmc_gpio items, as well as the length of
-the array. This is the data structure:
-
- struct fmc_gpio {
- char *carrier_name;
- int gpio;
- int _gpio; /* internal use by the carrier */
- int mode; /* GPIOF_DIR_OUT etc, from <linux/gpio.h> */
- int irqmode; /* IRQF_TRIGGER_LOW and so on */
- };
-
-By specifying a carrier_name for each pin, the driver may access
-different pins in different carriers. The gpio_config method is
-expected to return the number of pins successfully configured, ignoring
-requests for other carriers. However, if no pin is configured (because
-no structure at all refers to the current carrier_name), the operation
-returns an error so the caller will know that it is running under a
-yet-unsupported carrier.
-
-So, for example, a driver that has been developed and tested on both
-the SPEC and the SVEC may request configuration of two different GPIO
-pins, and expect one such configuration to succeed - if none succeeds
-it most likely means that the current carrier is a still-unknown one.
-
-If, however, your GPIO pin has a specific known role, you can pass a
-special number in the gpio field, using one of the following macros:
-
- #define FMC_GPIO_RAW(x) (x) /* 4096 of them */
- #define FMC_GPIO_IRQ(x) ((x) + 0x1000) /* 256 of them */
- #define FMC_GPIO_LED(x) ((x) + 0x1100) /* 256 of them */
- #define FMC_GPIO_KEY(x) ((x) + 0x1200) /* 256 of them */
- #define FMC_GPIO_TP(x) ((x) + 0x1300) /* 256 of them */
- #define FMC_GPIO_USER(x) ((x) + 0x1400) /* 256 of them */
-
-Use of virtual GPIO numbers (anything but FMC_GPIO_RAW) is allowed
-provided the carrier_name field in the data structure is left
-unspecified (NULL). Each carrier is responsible for providing a mapping
-between virtual and physical GPIO numbers. The carrier may then use the
-_gpio field to cache the result of this mapping.
-
-All carriers must map their I/O lines to the sets above starting from
-zero. The SPEC, for example, maps interrupt pins 0 and 1, and test
-points 0 through 3 (even if the test points on the PCB are called
-5,6,7,8).
-
-If, for example, a driver requires a free LED and a test point (for a
-scope probe to be plugged at some point during development) it may ask
-for FMC_GPIO_LED(0) and FMC_GPIO_TP(0). Each carrier will provide
-suitable GPIO pins. Clearly, the person running the drivers will know
-the order used by the specific carrier driver in assigning leds and
-testpoints, so to make a carrier-dependent use of the diagnostic tools.
-
-In theory, some form of autodetection should be possible: a driver like
-the wr-nic (which uses IRQ(1) on the SPEC card) should configure
-IRQ(0), make a test with software-generated interrupts and configure
-IRQ(1) if the test fails. This probing step should be used because even
-if the wr-nic gateware is known to use IRQ1 on the SPEC, the driver
-should be carrier-independent and thus use IRQ(0) as a first bet -
-actually, the knowledge that IRQ0 may fail is carrier-dependent
-information, but using it doesn't make the driver unsuitable for other
-carriers.
-
-The return value of gpio_config is defined as follows:
-
- * If no pin in the array can be used by the carrier, `-ENODEV'.
-
- * If at least one virtual GPIO number cannot be mapped, `-ENOENT'.
-
- * On success, 0 or positive. The value returned is the number of
- high input bits (if no input is configured, the value for success
- is 0).
-
-While I admit the procedure is not completely straightforward, it
-allows configuration, input and output with a single carrier operation.
-Given the typical use case of FMC devices, GPIO operations are not
-expected to ever by in hot paths, and GPIO access so fare has only been
-used to configure the interrupt pin, mode and polarity. Especially
-reading inputs is not expected to be common. If your device has GPIO
-capabilities in the hot path, you should consider using the kernel's
-GPIO mechanisms.
diff --git a/Documentation/fmc/fmc-chardev.txt b/Documentation/fmc/fmc-chardev.txt
deleted file mode 100644
index d9ccb278e597..000000000000
--- a/Documentation/fmc/fmc-chardev.txt
+++ /dev/null
@@ -1,64 +0,0 @@
-fmc-chardev
-===========
-
-This is a simple generic driver, that allows user access by means of a
-character device (actually, one for each mezzanine it takes hold of).
-
-The char device is created as a misc device. Its name in /dev (as
-created by udev) is the same name as the underlying FMC device. Thus,
-the name can be a silly fmc-0000 look-alike if the device has no
-identifiers nor bus_id, a more specific fmc-0400 if the device has a
-bus-specific address but no associated name, or something like
-fdelay-0400 if the FMC core can rely on both a mezzanine name and a bus
-address.
-
-Currently the driver only supports read and write: you can lseek to the
-desired address and read or write a register.
-
-The driver assumes all registers are 32-bit in size, and only accepts a
-single read or write per system call. However, as a result of Unix read
-and write semantics, users can simply fread or fwrite bigger areas in
-order to dump or store bigger memory areas.
-
-There is currently no support for mmap, user-space interrupt management
-and DMA buffers. They may be added in later versions, if the need
-arises.
-
-The example below shows raw access to a SPEC card programmed with its
-golden FPGA file, that features an SDB structure at offset 256 - i.e.
-64 words. The mezzanine's EEPROM in this case is not programmed, so the
-default name is fmc-<bus><devfn>, and there are two cards in the system:
-
- spusa.root# insmod fmc-chardev.ko
- [ 1073.339332] spec 0000:02:00.0: Driver has no ID: matches all
- [ 1073.345051] spec 0000:02:00.0: Created misc device "fmc-0200"
- [ 1073.350821] spec 0000:04:00.0: Driver has no ID: matches all
- [ 1073.356525] spec 0000:04:00.0: Created misc device "fmc-0400"
- spusa.root# ls -l /dev/fmc*
- crw------- 1 root root 10, 58 Nov 20 19:23 /dev/fmc-0200
- crw------- 1 root root 10, 57 Nov 20 19:23 /dev/fmc-0400
- spusa.root# dd bs=4 skip=64 count=1 if=/dev/fmc-0200 2> /dev/null | od -t x1z
- 0000000 2d 42 44 53 >-BDS<
- 0000004
-
-The simple program tools/fmc-mem in this package can access an FMC char
-device and read or write a word or a whole area. Actually, the program
-is not specific to FMC at all, it just uses lseek, read and write.
-
-Its first argument is the device name, the second the offset, the third
-(if any) the value to write and the optional last argument that must
-begin with "+" is the number of bytes to read or write. In case of
-repeated reading data is written to stdout; repeated writes read from
-stdin and the value argument is ignored.
-
-The following examples show reading the SDB magic number and the first
-SDB record from a SPEC device programmed with its golden image:
-
- spusa.root# ./fmc-mem /dev/fmc-0200 100
- 5344422d
- spusa.root# ./fmc-mem /dev/fmc-0200 100 +40 | od -Ax -t x1z
- 000000 2d 42 44 53 00 01 02 00 00 00 00 00 00 00 00 00 >-BDS............<
- 000010 00 00 00 00 ff 01 00 00 00 00 00 00 51 06 00 00 >............Q...<
- 000020 c9 42 a5 e6 02 00 00 00 11 05 12 20 2d 34 42 57 >.B......... -4BW<
- 000030 73 6f 72 43 72 61 62 73 49 53 47 2d 00 20 20 20 >sorCrabsISG-. <
- 000040
diff --git a/Documentation/fmc/fmc-fakedev.txt b/Documentation/fmc/fmc-fakedev.txt
deleted file mode 100644
index e85b74a4ae30..000000000000
--- a/Documentation/fmc/fmc-fakedev.txt
+++ /dev/null
@@ -1,36 +0,0 @@
-fmc-fakedev
-===========
-
-This package includes a software-only device, called fmc-fakedev, which
-is able to register up to 4 mezzanines (by default it registers one).
-Unlike the SPEC driver, which creates an FMC device for each PCI cards
-it manages, this module creates a single instance of its set of
-mezzanines.
-
-It is meant as the simplest possible example of how a driver should be
-written, and it includes a fake EEPROM image (built using the tools
-described in *note FMC Identification::),, which by default is
-replicated for each fake mezzanine.
-
-You can also use this device to verify the match algorithms, by asking
-it to test your own EEPROM image. You can provide the image by means of
-the eeprom= module parameter: the new EEPROM image is loaded, as usual,
-by means of the firmware loader. This example shows the defaults and a
-custom EEPROM image:
-
- spusa.root# insmod fmc-fakedev.ko
- [ 99.971247] fake-fmc-carrier: mezzanine 0
- [ 99.975393] Manufacturer: fake-vendor
- [ 99.979624] Product name: fake-design-for-testing
- spusa.root# rmmod fmc-fakedev
- spusa.root# insmod fmc-fakedev.ko eeprom=fdelay-eeprom.bin
- [ 121.447464] fake-fmc-carrier: Mezzanine 0: eeprom "fdelay-eeprom.bin"
- [ 121.462725] fake-fmc-carrier: mezzanine 0
- [ 121.466858] Manufacturer: CERN
- [ 121.470477] Product name: FmcDelay1ns4cha
- spusa.root# rmmod fmc-fakedev
-
-After loading the device, you can use the write_ee method do modify its
-own internal fake EEPROM: whenever the image is overwritten starting at
-offset 0, the module will unregister and register again the FMC device.
-This is shown in fmc-write-eeprom.txt
diff --git a/Documentation/fmc/fmc-trivial.txt b/Documentation/fmc/fmc-trivial.txt
deleted file mode 100644
index d1910bc67159..000000000000
--- a/Documentation/fmc/fmc-trivial.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-fmc-trivial
-===========
-
-The simple module fmc-trivial is just a simple client that registers an
-interrupt handler. I used it to verify the basic mechanism of the FMC
-bus and how interrupts worked.
-
-The module implements the generic FMC parameters, so it can program a
-different gateware file in each card. The whole list of parameters it
-accepts are:
-
-`busid='
-`gateware='
- Generic parameters. See mezzanine.txt
-
-
-This driver is worth reading, in my opinion.
diff --git a/Documentation/fmc/fmc-write-eeprom.txt b/Documentation/fmc/fmc-write-eeprom.txt
deleted file mode 100644
index e0a9712156aa..000000000000
--- a/Documentation/fmc/fmc-write-eeprom.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-fmc-write-eeprom
-================
-
-This module is designed to load a binary file from /lib/firmware and to
-write it to the internal EEPROM of the mezzanine card. This driver uses
-the `busid' generic parameter.
-
-Overwriting the EEPROM is not something you should do daily, and it is
-expected to only happen during manufacturing. For this reason, the
-module makes it unlikely for the random user to change a working EEPROM.
-
-However, since the EEPROM may include application-specific information
-other than the identification, later versions of this packages added
-write-support through sysfs. See *note Accessing the EEPROM::.
-
-To avoid damaging the EEPROM content, the module takes the following
-measures:
-
- * It accepts a `file=' argument (within /lib/firmware) and if no
- such argument is received, it doesn't write anything to EEPROM
- (i.e. there is no default file name).
-
- * If the file name ends with `.bin' it is written verbatim starting
- at offset 0.
-
- * If the file name ends with `.tlv' it is interpreted as
- type-length-value (i.e., it allows writev(2)-like operation).
-
- * If the file name doesn't match any of the patterns above, it is
- ignored and no write is performed.
-
- * Only cards listed with `busid=' are written to. If no busid is
- specified, no programming is done (and the probe function of the
- driver will fail).
-
-
-Each TLV tuple is formatted in this way: the header is 5 bytes,
-followed by data. The first byte is `w' for write, the next two bytes
-represent the address, in little-endian byte order, and the next two
-represent the data length, in little-endian order. The length does not
-include the header (it is the actual number of bytes to be written).
-
-This is a real example: that writes 5 bytes at position 0x110:
-
- spusa.root# od -t x1 -Ax /lib/firmware/try.tlv
- 000000 77 10 01 05 00 30 31 32 33 34
- 00000a
- spusa.root# insmod /tmp/fmc-write-eeprom.ko busid=0x0200 file=try.tlv
- [19983.391498] spec 0000:03:00.0: write 5 bytes at 0x0110
- [19983.414615] spec 0000:03:00.0: write_eeprom: success
-
-Please note that you'll most likely want to use SDBFS to build your
-EEPROM image, at least if your mezzanines are being used in the White
-Rabbit environment. For this reason the TLV format is not expected to
-be used much and is not expected to be developed further.
-
-If you want to try reflashing fake EEPROM devices, you can use the
-fmc-fakedev.ko module (see *note fmc-fakedev::). Whenever you change
-the image starting at offset 0, it will deregister and register again
-after two seconds. Please note, however, that if fmc-write-eeprom is
-still loaded, the system will associate it to the new device, which
-will be reprogrammed and thus will be unloaded after two seconds. The
-following example removes the module after it reflashed fakedev the
-first time.
-
- spusa.root# insmod fmc-fakedev.ko
- [ 72.984733] fake-fmc: Manufacturer: fake-vendor
- [ 72.989434] fake-fmc: Product name: fake-design-for-testing
- spusa.root# insmod fmc-write-eeprom.ko busid=0 file=fdelay-eeprom.bin; \
- rmmod fmc-write-eeprom
- [ 130.874098] fake-fmc: Matching a generic driver (no ID)
- [ 130.887845] fake-fmc: programming 6155 bytes
- [ 130.894567] fake-fmc: write_eeprom: success
- [ 132.895794] fake-fmc: Manufacturer: CERN
- [ 132.899872] fake-fmc: Product name: FmcDelay1ns4cha
-
-
-Accessing the EEPROM
-=====================
-
-The bus creates a sysfs binary file called eeprom for each mezzanine it
-knows about:
-
- spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcAdc100m14b4cha-0800/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDelay1ns4cha-0200/eeprom
- -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDio5cha-0400/eeprom
-
-Everybody can read the files and the superuser can also modify it, but
-the operation may on the carrier driver, if the carrier is unable to
-access the I2C bus. For example, the spec driver can access the bus
-only with its golden gateware: after a mezzanine driver reprogrammed
-the FPGA with a custom circuit, the carrier is unable to access the
-EEPROM and returns ENOTSUPP.
-
-An alternative way to write the EEPROM is the mezzanine driver
-fmc-write-eeprom (See *note fmc-write-eeprom::), but the procedure is
-more complex.
diff --git a/Documentation/fmc/identifiers.txt b/Documentation/fmc/identifiers.txt
deleted file mode 100644
index 3bb577ff0d52..000000000000
--- a/Documentation/fmc/identifiers.txt
+++ /dev/null
@@ -1,168 +0,0 @@
-FMC Identification
-******************
-
-The FMC standard requires every compliant mezzanine to carry
-identification information in an I2C EEPROM. The information must be
-laid out according to the "IPMI Platform Management FRU Information",
-where IPMI is a lie I'd better not expand, and FRU means "Field
-Replaceable Unit".
-
-The FRU information is an intricate unreadable binary blob that must
-live at offset 0 of the EEPROM, and typically extends for a few hundred
-bytes. The standard allows the application to use all the remaining
-storage area of the EEPROM as it wants.
-
-This chapter explains how to create your own EEPROM image and how to
-write it in your mezzanine, as well as how devices and drivers are
-paired at run time. EEPROM programming uses tools that are part of this
-package and SDB (part of the fpga-config-space package).
-
-The first sections are only interesting for manufacturers who need to
-write the EEPROM. If you are just a software developer writing an FMC
-device or driver, you may jump straight to *note SDB Support::.
-
-
-Building the FRU Structure
-==========================
-
-If you want to know the internals of the FRU structure and despair, you
-can retrieve the document from
-`http://download.intel.com/design/servers/ipmi/FRU1011.pdf' . The
-standard is awful and difficult without reason, so we only support the
-minimum mandatory subset - we create a simple structure and parse it
-back at run time, but we are not able to either generate or parse more
-arcane features like non-english languages and 6-bit text. If you need
-more items of the FRU standard for your boards, please submit patches.
-
-This package includes the Python script that Matthieu Cattin wrote to
-generate the FRU binary blob, based on an helper libipmi by Manohar
-Vanga and Matthieu himself. I changed the test script to receive
-parameters from the command line or from the environment (the command
-line takes precedence)
-
-To make a long story short, in order to build a standard-compliant
-binary file to be burned in your EEPROM, you need the following items:
-
- Environment Opt Official Name Default
----------------------------------------------------------------------
- FRU_VENDOR -v "Board Manufacturer" fmc-example
- FRU_NAME -n "Board Product Name" mezzanine
- FRU_SERIAL -s `Board Serial Number" 0001
- FRU_PART -p "Board Part Number" sample-part
- FRU_OUTPUT -o not applicable /dev/stdout
-
-The "Official Name" above is what you find in the FRU official
-documentation, chapter 11, page 7 ("Board Info Area Format"). The
-output option is used to save the generated binary to a specific file
-name instead of stdout.
-
-You can pass the items to the FRU generator either in the environment
-or on the command line. This package has currently no support for
-specifying power consumption or such stuff, but I plan to add it as
-soon as I find some time for that.
-
-FIXME: consumption etc for FRU are here or in PTS?
-
-The following example creates a binary image for a specific board:
-
- ./tools/fru-generator -v CERN -n FmcAdc100m14b4cha \
- -s HCCFFIA___-CR000003 -p EDA-02063-V5-0 > eeprom.bin
-
-The following example shows a script that builds several binary EEPROM
-images for a series of boards, changing the serial number for each of
-them. The script uses a mix of environment variables and command line
-options, and uses the same string patterns shown above.
-
- #!/bin/sh
-
- export FRU_VENDOR="CERN"
- export FRU_NAME="FmcAdc100m14b4cha"
- export FRU_PART="EDA-02063-V5-0"
-
- serial="HCCFFIA___-CR"
-
- for number in $(seq 1 50); do
- # build number-string "ns"
- ns="$(printf %06d $number)"
- ./fru-generator -s "${serial}${ns}" > eeprom-${ns}.bin
- done
-
-
-Using SDB-FS in the EEPROM
-==========================
-
-If you want to use SDB as a filesystem in the EEPROM device within the
-mezzanine, you should create one such filesystem using gensdbfs, from
-the fpga-config-space package on OHWR.
-
-By using an SBD filesystem you can cluster several files in a single
-EEPROM, so both the host system and a soft-core running in the FPGA (if
-any) can access extra production-time information.
-
-We chose to use SDB as a storage filesystem because the format is very
-simple, and both the host system and the soft-core will likely already
-include support code for such format. The SDB library offered by the
-fpga-config-space is less than 1kB under LM32, so it proves quite up to
-the task.
-
-The SDB entry point (which acts as a directory listing) cannot live at
-offset zero in the flash device, because the FRU information must live
-there. To avoid wasting precious storage space while still allowing
-for more-than-minimal FRU structures, the fmc.ko will look for the SDB
-record at address 256, 512 and 1024.
-
-In order to generate the complete EEPROM image you'll need a
-configuration file for gensdbfs: you tell the program where to place
-the sdb entry point, and you must force the FRU data file to be placed
-at the beginning of the storage device. If needed, you can also place
-other files at a special offset (we sometimes do it for backward
-compatibility with drivers we wrote before implementing SDB for flash
-memory).
-
-The directory tools/sdbfs of this package includes a well-commented
-example that you may want to use as a starting point (the comments are
-in the file called -SDB-CONFIG-). Reading documentation for gensdbfs
-is a suggested first step anyways.
-
-This package (generic FMC bus support) only accesses two files in the
-EEPROM: the FRU information, at offset zero, with a suggested filename
-of IPMI-FRU and the short name for the mezzanine, in a file called
-name. The IPMI-FRU name is not mandatory, but a strongly suggested
-choice; the name filename is mandatory, because this is the preferred
-short name used by the FMC core. For example, a name of "fdelay" may
-supplement a Product Name like "FmcDelay1ns4cha" - exactly as
-demonstrated in `tools/sdbfs'.
-
-Note: SDB access to flash memory is not yet supported, so the short
-name currently in use is just the "Product Name" FRU string.
-
-The example in tools/sdbfs includes an extra file, that is needed by
-the fine-delay driver, and must live at a known address of 0x1800. By
-running gensdbfs on that directory you can output your binary EEPROM
-image (here below spusa$ is the shell prompt):
-
- spusa$ ../fru-generator -v CERN -n FmcDelay1ns4cha -s proto-0 \
- -p EDA-02267-V3 > IPMI-FRU
- spusa$ ls -l
- total 16
- -rw-rw-r-- 1 rubini staff 975 Nov 19 18:08 --SDB-CONFIG--
- -rw-rw-r-- 1 rubini staff 216 Nov 19 18:13 IPMI-FRU
- -rw-rw-r-- 1 rubini staff 11 Nov 19 18:04 fd-calib
- -rw-rw-r-- 1 rubini staff 7 Nov 19 18:04 name
- spusa$ sudo gensdbfs . /lib/firmware/fdelay-eeprom.bin
- spusa$ sdb-read -l -e 0x100 /lib/firmware/fdelay-eeprom.bin
- /home/rubini/wip/sdbfs/userspace/sdb-read: listing format is to be defined
- 46696c6544617461:2e202020 00000100-000018ff .
- 46696c6544617461:6e616d65 00000200-00000206 name
- 46696c6544617461:66642d63 00001800-000018ff fd-calib
- 46696c6544617461:49504d49 00000000-000000d7 IPMI-FRU
- spusa$ ../fru-dump /lib/firmware/fdelay-eeprom.bin
- /lib/firmware/fdelay-eeprom.bin: manufacturer: CERN
- /lib/firmware/fdelay-eeprom.bin: product-name: FmcDelay1ns4cha
- /lib/firmware/fdelay-eeprom.bin: serial-number: proto-0
- /lib/firmware/fdelay-eeprom.bin: part-number: EDA-02267-V3
-
-As expected, the output file is both a proper sdbfs object and an IPMI
-FRU information blob. The fd-calib file lives at offset 0x1800 and is
-over-allocated to 256 bytes, according to the configuration file for
-gensdbfs.
diff --git a/Documentation/fmc/mezzanine.txt b/Documentation/fmc/mezzanine.txt
deleted file mode 100644
index 87910dbfc91e..000000000000
--- a/Documentation/fmc/mezzanine.txt
+++ /dev/null
@@ -1,123 +0,0 @@
-FMC Driver
-**********
-
-An FMC driver is concerned with the specific mezzanine and associated
-gateware. As such, it is expected to be independent of the carrier
-being used: it will perform I/O accesses only by means of
-carrier-provided functions.
-
-The matching between device and driver is based on the content of the
-EEPROM (as mandated by the FMC standard) or by the actual cores
-configured in the FPGA; the latter technique is used when the FPGA is
-already programmed when the device is registered to the bus core.
-
-In some special cases it is possible for a driver to directly access
-FPGA registers, by means of the `fpga_base' field of the device
-structure. This may be needed for high-bandwidth peripherals like fast
-ADC cards. If the device module registered a remote device (for example
-by means of Etherbone), the `fpga_base' pointer will be NULL.
-Therefore, drivers must be ready to deal with NULL base pointers, and
-fail gracefully. Most driver, however, are not expected to access the
-pointer directly but run fmc_readl and fmc_writel instead, which will
-work in any case.
-
-In even more special cases, the driver may access carrier-specific
-functionality: the `carrier_name' string allows the driver to check
-which is the current carrier and make use of the `carrier_data'
-pointer. We chose to use carrier names rather than numeric identifiers
-for greater flexibility, but also to avoid a central registry within
-the `fmc.h' file - we hope other users will exploit our framework with
-their own carriers. An example use of carrier names is in GPIO setup
-(see *note The GPIO Abstraction::), although the name match is not
-expected to be performed by the driver. If you depend on specific
-carriers, please check the carrier name and fail gracefully if your
-driver finds it is running in a yet-unknown-to-it environment.
-
-
-ID Table
-========
-
-Like most other Linux drivers, and FMC driver must list all the devices
-which it is able to drive. This is usually done by means of a device
-table, but in FMC we can match hardware based either on the contents of
-their EEPROM or on the actual FPGA cores that can be enumerated.
-Therefore, we have two tables of identifiers.
-
-Matching of FRU information depends on two names, the manufacturer (or
-vendor) and the device (see *note FMC Identification::); for
-flexibility during production (i.e. before writing to the EEPROM) the
-bus supports a catch-all driver that specifies NULL strings. For this
-reason, the table is specified as pointer-and-length, not a a
-null-terminated array - the entry with NULL names can be a valid entry.
-
-Matching on FPGA cores depends on two numeric fields: the 64-bit vendor
-number and the 32-bit device number. Support for matching based on
-class is not yet implemented. Each device is expected to be uniquely
-identified by an array of cores (it matches if all of the cores are
-instantiated), and for consistency the list is passed as
-pointer-and-length. Several similar devices can be driven by the same
-driver, and thus the driver specifies and array of such arrays.
-
-The complete set of involved data structures is thus the following:
-
- struct fmc_fru_id { char *manufacturer; char *product_name; };
- struct fmc_sdb_one_id { uint64_t vendor; uint32_t device; };
- struct fmc_sdb_id { struct fmc_sdb_one_id *cores; int cores_nr; };
-
- struct fmc_device_id {
- struct fmc_fru_id *fru_id; int fru_id_nr;
- struct fmc_sdb_id *sdb_id; int sdb_id_nr;
- };
-
-A better reference, with full explanation, is the <linux/fmc.h> header.
-
-
-Module Parameters
-=================
-
-Most of the FMC drivers need the same set of kernel parameters. This
-package includes support to implement common parameters by means of
-fields in the `fmc_driver' structure and simple macro definitions.
-
-The parameters are carrier-specific, in that they rely on the busid
-concept, that varies among carriers. For the SPEC, the identifier is a
-PCI bus and devfn number, 16 bits wide in total; drivers for other
-carriers will most likely offer something similar but not identical,
-and some code duplication is unavoidable.
-
-This is the list of parameters that are common to several modules to
-see how they are actually used, please look at spec-trivial.c.
-
-`busid='
- This is an array of integers, listing carrier-specific
- identification numbers. For PIC, for example, `0x0400' represents
- bus 4, slot 0. If any such ID is specified, the driver will only
- accept to drive cards that appear in the list (even if the FMC ID
- matches). This is accomplished by the validate carrier method.
-
-`gateware='
- The argument is an array of strings. If no busid= is specified,
- the first string of gateware= is used for all cards; otherwise the
- identifiers and gateware names are paired one by one, in the order
- specified.
-
-`show_sdb='
- For modules supporting it, this parameter asks to show the SDB
- internal structure by means of kernel messages. It is disabled by
- default because those lines tend to hide more important messages,
- if you look at the system console while loading the drivers.
- Note: the parameter is being obsoleted, because fmc.ko itself now
- supports dump_sdb= that applies to every client driver.
-
-
-For example, if you are using the trivial driver to load two different
-gateware files to two different cards, you can use the following
-parameters to load different binaries to the cards, after looking up
-the PCI identifiers. This has been tested with a SPEC carrier.
-
- insmod fmc-trivial.ko \
- busid=0x0200,0x0400 \
- gateware=fmc/fine-delay.bin,fmc/simple-dio.bin
-
-Please note that not all sub-modules support all of those parameters.
-You can use modinfo to check what is supported by each module.
diff --git a/Documentation/fmc/parameters.txt b/Documentation/fmc/parameters.txt
deleted file mode 100644
index 59edf088e3a4..000000000000
--- a/Documentation/fmc/parameters.txt
+++ /dev/null
@@ -1,56 +0,0 @@
-Module Parameters in fmc.ko
-***************************
-
-The core driver receives two module parameters, meant to help debugging
-client modules. Both parameters can be modified by writing to
-/sys/module/fmc/parameters/, because they are used when client drivers
-are devices are registered, not when fmc.ko is loaded.
-
-`dump_eeprom='
- If not zero, the parameter asks the bus controller to dump the
- EEPROM of any device that is registered, using printk.
-
-`dump_sdb='
- If not zero, the parameter prints the SDB tree of every FPGA it is
- loaded by fmc_reprogram(). If greater than one, it asks to dump
- the binary content of SDB records. This currently only dumps the
- top-level SDB array, though.
-
-
-EEPROM dumping avoids repeating lines, since most of the contents is
-usually empty and all bits are one or zero. This is an example of the
-output:
-
- [ 6625.850480] spec 0000:02:00.0: FPGA programming successful
- [ 6626.139949] spec 0000:02:00.0: Manufacturer: CERN
- [ 6626.144666] spec 0000:02:00.0: Product name: FmcDelay1ns4cha
- [ 6626.150370] FMC: mezzanine 0: 0000:02:00.0 on SPEC
- [ 6626.155179] FMC: dumping eeprom 0x2000 (8192) bytes
- [ 6626.160087] 0000: 01 00 00 01 00 0b 00 f3 01 0a 00 a5 85 87 c4 43
- [ 6626.167069] 0010: 45 52 4e cf 46 6d 63 44 65 6c 61 79 31 6e 73 34
- [ 6626.174019] 0020: 63 68 61 c7 70 72 6f 74 6f 2d 30 cc 45 44 41 2d
- [ 6626.180975] 0030: 30 32 32 36 37 2d 56 33 da 32 30 31 32 2d 31 31
- [...]
- [ 6626.371366] 0200: 66 64 65 6c 61 79 0a 00 00 00 00 00 00 00 00 00
- [ 6626.378359] 0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
- [ 6626.385361] [...]
- [ 6626.387308] 1800: 70 6c 61 63 65 68 6f 6c 64 65 72 ff ff ff ff ff
- [ 6626.394259] 1810: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
- [ 6626.401250] [...]
-
-The dump of SDB looks like the following; the example shows the simple
-golden gateware for the SPEC card, removing the leading timestamps to
-fit the page:
-
- spec 0000:02:00.0: SDB: 00000651:e6a542c9 WB4-Crossbar-GSI
- spec 0000:02:00.0: SDB: 0000ce42:ff07fc47 WR-Periph-Syscon (00000000-000000ff)
- FMC: mezzanine 0: 0000:02:00.0 on SPEC
- FMC: poor dump of sdb first level:
- 0000: 53 44 42 2d 00 02 01 00 00 00 00 00 00 00 00 00
- 0010: 00 00 00 00 00 00 01 ff 00 00 00 00 00 00 06 51
- 0020: e6 a5 42 c9 00 00 00 02 20 12 05 11 57 42 34 2d
- 0030: 43 72 6f 73 73 62 61 72 2d 47 53 49 20 20 20 00
- 0040: 00 00 01 01 00 00 00 07 00 00 00 00 00 00 00 00
- 0050: 00 00 00 00 00 00 00 ff 00 00 00 00 00 00 ce 42
- 0060: ff 07 fc 47 00 00 00 01 20 12 03 05 57 52 2d 50
- 0070: 65 72 69 70 68 2d 53 79 73 63 6f 6e 20 20 20 01
diff --git a/Documentation/fpga/dfl.txt b/Documentation/fpga/dfl.rst
index 6df4621c3f2a..6fa483fc823e 100644
--- a/Documentation/fpga/dfl.txt
+++ b/Documentation/fpga/dfl.rst
@@ -1,9 +1,12 @@
-===============================================================================
- FPGA Device Feature List (DFL) Framework Overview
--------------------------------------------------------------------------------
- Enno Luebbers <enno.luebbers@intel.com>
- Xiao Guangrong <guangrong.xiao@linux.intel.com>
- Wu Hao <hao.wu@intel.com>
+=================================================
+FPGA Device Feature List (DFL) Framework Overview
+=================================================
+
+Authors:
+
+- Enno Luebbers <enno.luebbers@intel.com>
+- Xiao Guangrong <guangrong.xiao@linux.intel.com>
+- Wu Hao <hao.wu@intel.com>
The Device Feature List (DFL) FPGA framework (and drivers according to this
this framework) hides the very details of low layer hardwares and provides
@@ -19,7 +22,7 @@ Device Feature List (DFL) defines a linked list of feature headers within the
device MMIO space to provide an extensible way of adding features. Software can
walk through these predefined data structures to enumerate FPGA features:
FPGA Interface Unit (FIU), Accelerated Function Unit (AFU) and Private Features,
-as illustrated below:
+as illustrated below::
Header Header Header Header
+----------+ +-->+----------+ +-->+----------+ +-->+----------+
@@ -81,9 +84,11 @@ and release it using close().
The following functions are exposed through ioctls:
- Get driver API version (DFL_FPGA_GET_API_VERSION)
- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
- Program bitstream (DFL_FPGA_FME_PORT_PR)
+- Get driver API version (DFL_FPGA_GET_API_VERSION)
+- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+- Program bitstream (DFL_FPGA_FME_PORT_PR)
+- Assign port to PF (DFL_FPGA_FME_PORT_ASSIGN)
+- Release port from PF (DFL_FPGA_FME_PORT_RELEASE)
More functions are exposed through sysfs
(/sys/class/fpga_region/regionX/dfl-fme.n/):
@@ -99,6 +104,10 @@ More functions are exposed through sysfs
one FPGA device may have more than one port, this sysfs interface indicates
how many ports the FPGA device has.
+ Global error reporting management (errors/)
+ error reporting sysfs interfaces allow user to read errors detected by the
+ hardware, and clear the logged errors.
+
FIU - PORT
==========
@@ -118,18 +127,19 @@ port by using open() on the port device node and release it using close().
The following functions are exposed through ioctls:
- Get driver API version (DFL_FPGA_GET_API_VERSION)
- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
- Get port info (DFL_FPGA_PORT_GET_INFO)
- Get MMIO region info (DFL_FPGA_PORT_GET_REGION_INFO)
- Map DMA buffer (DFL_FPGA_PORT_DMA_MAP)
- Unmap DMA buffer (DFL_FPGA_PORT_DMA_UNMAP)
- Reset AFU (*DFL_FPGA_PORT_RESET)
+- Get driver API version (DFL_FPGA_GET_API_VERSION)
+- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+- Get port info (DFL_FPGA_PORT_GET_INFO)
+- Get MMIO region info (DFL_FPGA_PORT_GET_REGION_INFO)
+- Map DMA buffer (DFL_FPGA_PORT_DMA_MAP)
+- Unmap DMA buffer (DFL_FPGA_PORT_DMA_UNMAP)
+- Reset AFU (DFL_FPGA_PORT_RESET)
-*DFL_FPGA_PORT_RESET: reset the FPGA Port and its AFU. Userspace can do Port
-reset at any time, e.g. during DMA or Partial Reconfiguration. But it should
-never cause any system level issue, only functional failure (e.g. DMA or PR
-operation failure) and be recoverable from the failure.
+DFL_FPGA_PORT_RESET:
+ reset the FPGA Port and its AFU. Userspace can do Port
+ reset at any time, e.g. during DMA or Partial Reconfiguration. But it should
+ never cause any system level issue, only functional failure (e.g. DMA or PR
+ operation failure) and be recoverable from the failure.
User-space applications can also mmap() accelerator MMIO regions.
@@ -139,10 +149,16 @@ More functions are exposed through sysfs:
Read Accelerator GUID (afu_id)
afu_id indicates which PR bitstream is programmed to this AFU.
+ Error reporting (errors/)
+ error reporting sysfs interfaces allow user to read port/afu errors
+ detected by the hardware, and clear the logged errors.
+
DFL Framework Overview
======================
+::
+
+----------+ +--------+ +--------+ +--------+
| FME | | AFU | | AFU | | AFU |
| Module | | Module | | Module | | Module |
@@ -151,7 +167,7 @@ DFL Framework Overview
| FPGA Container Device | Device Feature List
| (FPGA Base Region) | Framework
+-----------------------+
---------------------------------------------------------------------
+ ------------------------------------------------------------------
+----------------------------+
| FPGA DFL Device Module |
| (e.g. PCIE/Platform Device)|
@@ -212,6 +228,101 @@ the compat_id exposed by the target FPGA region. This check is usually done by
userspace before calling the reconfiguration IOCTL.
+FPGA virtualization - PCIe SRIOV
+================================
+This section describes the virtualization support on DFL based FPGA device to
+enable accessing an accelerator from applications running in a virtual machine
+(VM). This section only describes the PCIe based FPGA device with SRIOV support.
+
+Features supported by the particular FPGA device are exposed through Device
+Feature Lists, as illustrated below:
+
+::
+
+ +-------------------------------+ +-------------+
+ | PF | | VF |
+ +-------------------------------+ +-------------+
+ ^ ^ ^ ^
+ | | | |
+ +-----|------------|---------|--------------|-------+
+ | | | | | |
+ | +-----+ +-------+ +-------+ +-------+ |
+ | | FME | | Port0 | | Port1 | | Port2 | |
+ | +-----+ +-------+ +-------+ +-------+ |
+ | ^ ^ ^ |
+ | | | | |
+ | +-------+ +------+ +-------+ |
+ | | AFU | | AFU | | AFU | |
+ | +-------+ +------+ +-------+ |
+ | |
+ | DFL based FPGA PCIe Device |
+ +---------------------------------------------------+
+
+FME is always accessed through the physical function (PF).
+
+Ports (and related AFUs) are accessed via PF by default, but could be exposed
+through virtual function (VF) devices via PCIe SRIOV. Each VF only contains
+1 Port and 1 AFU for isolation. Users could assign individual VFs (accelerators)
+created via PCIe SRIOV interface, to virtual machines.
+
+The driver organization in virtualization case is illustrated below:
+::
+
+ +-------++------++------+ |
+ | FME || FME || FME | |
+ | FPGA || FPGA || FPGA | |
+ |Manager||Bridge||Region| |
+ +-------++------++------+ |
+ +-----------------------+ +--------+ | +--------+
+ | FME | | AFU | | | AFU |
+ | Module | | Module | | | Module |
+ +-----------------------+ +--------+ | +--------+
+ +-----------------------+ | +-----------------------+
+ | FPGA Container Device | | | FPGA Container Device |
+ | (FPGA Base Region) | | | (FPGA Base Region) |
+ +-----------------------+ | +-----------------------+
+ +------------------+ | +------------------+
+ | FPGA PCIE Module | | Virtual | FPGA PCIE Module |
+ +------------------+ Host | Machine +------------------+
+ -------------------------------------- | ------------------------------
+ +---------------+ | +---------------+
+ | PCI PF Device | | | PCI VF Device |
+ +---------------+ | +---------------+
+
+FPGA PCIe device driver is always loaded first once a FPGA PCIe PF or VF device
+is detected. It:
+
+* Finishes enumeration on both FPGA PCIe PF and VF device using common
+ interfaces from DFL framework.
+* Supports SRIOV.
+
+The FME device driver plays a management role in this driver architecture, it
+provides ioctls to release Port from PF and assign Port to PF. After release
+a port from PF, then it's safe to expose this port through a VF via PCIe SRIOV
+sysfs interface.
+
+To enable accessing an accelerator from applications running in a VM, the
+respective AFU's port needs to be assigned to a VF using the following steps:
+
+#. The PF owns all AFU ports by default. Any port that needs to be
+ reassigned to a VF must first be released through the
+ DFL_FPGA_FME_PORT_RELEASE ioctl on the FME device.
+
+#. Once N ports are released from PF, then user can use command below
+ to enable SRIOV and VFs. Each VF owns only one Port with AFU.
+
+ ::
+
+ echo N > $PCI_DEVICE_PATH/sriov_numvfs
+
+#. Pass through the VFs to VMs
+
+#. The AFU under VF is accessible from applications in VM (using the
+ same driver inside the VF).
+
+Note that an FME can't be assigned to a VF, thus PR and other management
+functions are only available via the PF.
+
Device enumeration
==================
This section introduces how applications enumerate the fpga device from
@@ -220,7 +331,7 @@ the sysfs hierarchy under /sys/class/fpga_region.
In the example below, two DFL based FPGA devices are installed in the host. Each
fpga device has one FME and two ports (AFUs).
-FPGA regions are created under /sys/class/fpga_region/
+FPGA regions are created under /sys/class/fpga_region/::
/sys/class/fpga_region/region0
/sys/class/fpga_region/region1
@@ -231,7 +342,7 @@ Application needs to search each regionX folder, if feature device is found,
(e.g. "dfl-port.n" or "dfl-fme.m" is found), then it's the base
fpga region which represents the FPGA device.
-Each base region has one FME and two ports (AFUs) as child devices:
+Each base region has one FME and two ports (AFUs) as child devices::
/sys/class/fpga_region/region0/dfl-fme.0
/sys/class/fpga_region/region0/dfl-port.0
@@ -243,7 +354,7 @@ Each base region has one FME and two ports (AFUs) as child devices:
/sys/class/fpga_region/region3/dfl-port.3
...
-In general, the FME/AFU sysfs interfaces are named as follows:
+In general, the FME/AFU sysfs interfaces are named as follows::
/sys/class/fpga_region/<regionX>/<dfl-fme.n>/
/sys/class/fpga_region/<regionX>/<dfl-port.m>/
@@ -251,7 +362,7 @@ In general, the FME/AFU sysfs interfaces are named as follows:
with 'n' consecutively numbering all FMEs and 'm' consecutively numbering all
ports.
-The device nodes used for ioctl() or mmap() can be referenced through:
+The device nodes used for ioctl() or mmap() can be referenced through::
/sys/class/fpga_region/<regionX>/<dfl-fme.n>/dev
/sys/class/fpga_region/<regionX>/<dfl-port.n>/dev
diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst
new file mode 100644
index 000000000000..f80f95667ca2
--- /dev/null
+++ b/Documentation/fpga/index.rst
@@ -0,0 +1,17 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====
+fpga
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ dfl
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/gpu/amdgpu.rst b/Documentation/gpu/amdgpu.rst
index a740e491dfcc..5acdd1842ea2 100644
--- a/Documentation/gpu/amdgpu.rst
+++ b/Documentation/gpu/amdgpu.rst
@@ -37,10 +37,10 @@ Buffer Objects
PRIME Buffer Sharing
--------------------
-.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_prime.c
+.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_dma_buf.c
:doc: PRIME Buffer Sharing
-.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_prime.c
+.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_dma_buf.c
:internal:
MMU Notifier
@@ -70,6 +70,26 @@ Interrupt Handling
.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_irq.c
:internal:
+AMDGPU XGMI Support
+===================
+
+.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_xgmi.c
+ :doc: AMDGPU XGMI Support
+
+.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_xgmi.c
+ :internal:
+
+AMDGPU RAS debugfs control interface
+====================================
+
+.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_ras.c
+ :doc: AMDGPU RAS debugfs control interface
+
+
+.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_ras.c
+ :internal:
+
+
GPU Power/Thermal Controls and Monitoring
=========================================
diff --git a/Documentation/gpu/conf.py b/Documentation/gpu/conf.py
deleted file mode 100644
index 1757b040fb32..000000000000
--- a/Documentation/gpu/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Linux GPU Driver Developer's Guide"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'gpu.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/gpu/drivers.rst b/Documentation/gpu/drivers.rst
index 044a7025477c..b4a0ed3ca961 100644
--- a/Documentation/gpu/drivers.rst
+++ b/Documentation/gpu/drivers.rst
@@ -7,10 +7,10 @@ GPU Driver Documentation
amdgpu
amdgpu-dc
i915
+ mcde
meson
pl111
tegra
- tinydrm
tve200
v3d
vc4
diff --git a/Documentation/gpu/drm-client.rst b/Documentation/gpu/drm-client.rst
index 7e672063e7eb..58b5a1d1219d 100644
--- a/Documentation/gpu/drm-client.rst
+++ b/Documentation/gpu/drm-client.rst
@@ -10,3 +10,6 @@ Kernel clients
.. kernel-doc:: drivers/gpu/drm/drm_client.c
:export:
+
+.. kernel-doc:: drivers/gpu/drm/drm_client_modeset.c
+ :export:
diff --git a/Documentation/gpu/drm-kms-helpers.rst b/Documentation/gpu/drm-kms-helpers.rst
index 14102ae035dc..3868008db8a9 100644
--- a/Documentation/gpu/drm-kms-helpers.rst
+++ b/Documentation/gpu/drm-kms-helpers.rst
@@ -181,6 +181,21 @@ Panel Helper Reference
.. kernel-doc:: drivers/gpu/drm/drm_panel_orientation_quirks.c
:export:
+Panel Self Refresh Helper Reference
+===================================
+
+.. kernel-doc:: drivers/gpu/drm/drm_self_refresh_helper.c
+ :doc: overview
+
+.. kernel-doc:: drivers/gpu/drm/drm_self_refresh_helper.c
+ :export:
+
+HDCP Helper Functions Reference
+===============================
+
+.. kernel-doc:: drivers/gpu/drm/drm_hdcp.c
+ :export:
+
Display Port Helper Functions Reference
=======================================
@@ -248,6 +263,18 @@ the MST topology helpers easier to understand
drm_dp_mst_topology_put_port
drm_dp_mst_get_mstb_malloc drm_dp_mst_put_mstb_malloc
+MIPI DBI Helper Functions Reference
+===================================
+
+.. kernel-doc:: drivers/gpu/drm/drm_mipi_dbi.c
+ :doc: overview
+
+.. kernel-doc:: include/drm/drm_mipi_dbi.h
+ :internal:
+
+.. kernel-doc:: drivers/gpu/drm/drm_mipi_dbi.c
+ :export:
+
MIPI DSI Helper Functions Reference
===================================
diff --git a/Documentation/gpu/drm-mm.rst b/Documentation/gpu/drm-mm.rst
index 54a696d961a7..b664f054c259 100644
--- a/Documentation/gpu/drm-mm.rst
+++ b/Documentation/gpu/drm-mm.rst
@@ -79,7 +79,6 @@ count for the TTM, which will call your initialization function.
See the radeon_ttm.c file for an example of usage.
-
The Graphics Execution Manager (GEM)
====================================
@@ -380,6 +379,39 @@ GEM CMA Helper Functions Reference
.. kernel-doc:: drivers/gpu/drm/drm_gem_cma_helper.c
:export:
+VRAM Helper Function Reference
+==============================
+
+.. kernel-doc:: drivers/gpu/drm/drm_vram_helper_common.c
+ :doc: overview
+
+.. kernel-doc:: include/drm/drm_gem_vram_helper.h
+ :internal:
+
+GEM VRAM Helper Functions Reference
+-----------------------------------
+
+.. kernel-doc:: drivers/gpu/drm/drm_gem_vram_helper.c
+ :doc: overview
+
+.. kernel-doc:: include/drm/drm_gem_vram_helper.h
+ :internal:
+
+.. kernel-doc:: drivers/gpu/drm/drm_gem_vram_helper.c
+ :export:
+
+VRAM MM Helper Functions Reference
+----------------------------------
+
+.. kernel-doc:: drivers/gpu/drm/drm_vram_mm_helper.c
+ :doc: overview
+
+.. kernel-doc:: include/drm/drm_vram_mm_helper.h
+ :internal:
+
+.. kernel-doc:: drivers/gpu/drm/drm_vram_mm_helper.c
+ :export:
+
VMA Offset Manager
==================
@@ -401,43 +433,11 @@ PRIME is the cross device buffer sharing framework in drm, originally
created for the OPTIMUS range of multi-gpu platforms. To userspace PRIME
buffers are dma-buf based file descriptors.
-Overview and Driver Interface
------------------------------
+Overview and Lifetime Rules
+---------------------------
-Similar to GEM global names, PRIME file descriptors are also used to
-share buffer objects across processes. They offer additional security:
-as file descriptors must be explicitly sent over UNIX domain sockets to
-be shared between applications, they can't be guessed like the globally
-unique GEM names.
-
-Drivers that support the PRIME API must set the DRIVER_PRIME bit in the
-struct :c:type:`struct drm_driver <drm_driver>`
-driver_features field, and implement the prime_handle_to_fd and
-prime_fd_to_handle operations.
-
-int (\*prime_handle_to_fd)(struct drm_device \*dev, struct drm_file
-\*file_priv, uint32_t handle, uint32_t flags, int \*prime_fd); int
-(\*prime_fd_to_handle)(struct drm_device \*dev, struct drm_file
-\*file_priv, int prime_fd, uint32_t \*handle); Those two operations
-convert a handle to a PRIME file descriptor and vice versa. Drivers must
-use the kernel dma-buf buffer sharing framework to manage the PRIME file
-descriptors. Similar to the mode setting API PRIME is agnostic to the
-underlying buffer object manager, as long as handles are 32bit unsigned
-integers.
-
-While non-GEM drivers must implement the operations themselves, GEM
-drivers must use the :c:func:`drm_gem_prime_handle_to_fd()` and
-:c:func:`drm_gem_prime_fd_to_handle()` helper functions. Those
-helpers rely on the driver gem_prime_export and gem_prime_import
-operations to create a dma-buf instance from a GEM object (dma-buf
-exporter role) and to create a GEM object from a dma-buf instance
-(dma-buf importer role).
-
-struct dma_buf \* (\*gem_prime_export)(struct drm_device \*dev,
-struct drm_gem_object \*obj, int flags); struct drm_gem_object \*
-(\*gem_prime_import)(struct drm_device \*dev, struct dma_buf
-\*dma_buf); These two operations are mandatory for GEM drivers that
-support PRIME.
+.. kernel-doc:: drivers/gpu/drm/drm_prime.c
+ :doc: overview and lifetime rules
PRIME Helper Functions
----------------------
diff --git a/Documentation/gpu/drm-uapi.rst b/Documentation/gpu/drm-uapi.rst
index c9fd23efd957..94f90521f58c 100644
--- a/Documentation/gpu/drm-uapi.rst
+++ b/Documentation/gpu/drm-uapi.rst
@@ -85,16 +85,18 @@ leads to a few additional requirements:
- The userspace side must be fully reviewed and tested to the standards of that
userspace project. For e.g. mesa this means piglit testcases and review on the
mailing list. This is again to ensure that the new interface actually gets the
- job done.
+ job done. The userspace-side reviewer should also provide an Acked-by on the
+ kernel uAPI patch indicating that they believe the proposed uAPI is sound and
+ sufficiently documented and validated for userspace's consumption.
- The userspace patches must be against the canonical upstream, not some vendor
fork. This is to make sure that no one cheats on the review and testing
requirements by doing a quick fork.
- The kernel patch can only be merged after all the above requirements are met,
- but it **must** be merged **before** the userspace patches land. uAPI always flows
- from the kernel, doing things the other way round risks divergence of the uAPI
- definitions and header files.
+ but it **must** be merged to either drm-next or drm-misc-next **before** the
+ userspace patches land. uAPI always flows from the kernel, doing things the
+ other way round risks divergence of the uAPI definitions and header files.
These are fairly steep requirements, but have grown out from years of shared
pain and experience with uAPI added hastily, and almost always regretted about
@@ -327,3 +329,12 @@ DRM_IOCTL_MODESET_CTL
mode setting, since on many devices the vertical blank counter is
reset to 0 at some point during modeset. Modern drivers should not
call this any more since with kernel mode setting it is a no-op.
+
+Userspace API Structures
+========================
+
+.. kernel-doc:: include/uapi/drm/drm_mode.h
+ :doc: overview
+
+.. kernel-doc:: include/uapi/drm/drm_mode.h
+ :internal:
diff --git a/Documentation/gpu/i915.rst b/Documentation/gpu/i915.rst
index 055df45596c1..3415255ad3dc 100644
--- a/Documentation/gpu/i915.rst
+++ b/Documentation/gpu/i915.rst
@@ -61,7 +61,7 @@ Intel GVT-g Host Support(vGPU device model)
Workarounds
-----------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_workarounds.c
+.. kernel-doc:: drivers/gpu/drm/i915/gt/intel_workarounds.c
:doc: Hardware workarounds
Display Hardware Handling
@@ -82,25 +82,22 @@ change.
Frontbuffer Tracking
--------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_frontbuffer.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_frontbuffer.c
:doc: frontbuffer tracking
-.. kernel-doc:: drivers/gpu/drm/i915/intel_frontbuffer.h
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_frontbuffer.h
:internal:
-.. kernel-doc:: drivers/gpu/drm/i915/intel_frontbuffer.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_frontbuffer.c
:internal:
-.. kernel-doc:: drivers/gpu/drm/i915/i915_gem.c
- :functions: i915_gem_track_fb
-
Display FIFO Underrun Reporting
-------------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_fifo_underrun.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_fifo_underrun.c
:doc: fifo underrun handling
-.. kernel-doc:: drivers/gpu/drm/i915/intel_fifo_underrun.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_fifo_underrun.c
:internal:
Plane Configuration
@@ -115,10 +112,10 @@ panel self refresh.
Atomic Plane Helpers
--------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_atomic_plane.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_atomic_plane.c
:doc: atomic plane helpers
-.. kernel-doc:: drivers/gpu/drm/i915/intel_atomic_plane.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_atomic_plane.c
:internal:
Output Probing
@@ -132,19 +129,19 @@ probing, so those sections fully apply.
Hotplug
-------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_hotplug.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_hotplug.c
:doc: Hotplug
-.. kernel-doc:: drivers/gpu/drm/i915/intel_hotplug.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_hotplug.c
:internal:
High Definition Audio
---------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_audio.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_audio.c
:doc: High Definition Audio over HDMI and Display Port
-.. kernel-doc:: drivers/gpu/drm/i915/intel_audio.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_audio.c
:internal:
.. kernel-doc:: include/drm/i915_component.h
@@ -153,58 +150,58 @@ High Definition Audio
Intel HDMI LPE Audio Support
----------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_lpe_audio.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_lpe_audio.c
:doc: LPE Audio integration for HDMI or DP playback
-.. kernel-doc:: drivers/gpu/drm/i915/intel_lpe_audio.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_lpe_audio.c
:internal:
Panel Self Refresh PSR (PSR/SRD)
--------------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_psr.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_psr.c
:doc: Panel Self Refresh (PSR/SRD)
-.. kernel-doc:: drivers/gpu/drm/i915/intel_psr.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_psr.c
:internal:
Frame Buffer Compression (FBC)
------------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_fbc.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_fbc.c
:doc: Frame Buffer Compression (FBC)
-.. kernel-doc:: drivers/gpu/drm/i915/intel_fbc.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_fbc.c
:internal:
Display Refresh Rate Switching (DRRS)
-------------------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dp.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dp.c
:doc: Display Refresh Rate Switching (DRRS)
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dp.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dp.c
:functions: intel_dp_set_drrs_state
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dp.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dp.c
:functions: intel_edp_drrs_enable
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dp.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dp.c
:functions: intel_edp_drrs_disable
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dp.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dp.c
:functions: intel_edp_drrs_invalidate
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dp.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dp.c
:functions: intel_edp_drrs_flush
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dp.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dp.c
:functions: intel_dp_drrs_init
DPIO
----
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dpio_phy.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dpio_phy.c
:doc: DPIO
CSR firmware support for DMC
@@ -219,34 +216,34 @@ CSR firmware support for DMC
Video BIOS Table (VBT)
----------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_bios.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_bios.c
:doc: Video BIOS Table (VBT)
-.. kernel-doc:: drivers/gpu/drm/i915/intel_bios.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_bios.c
:internal:
-.. kernel-doc:: drivers/gpu/drm/i915/intel_vbt_defs.h
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_vbt_defs.h
:internal:
Display clocks
--------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_cdclk.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_cdclk.c
:doc: CDCLK / RAWCLK
-.. kernel-doc:: drivers/gpu/drm/i915/intel_cdclk.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_cdclk.c
:internal:
Display PLLs
------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dpll_mgr.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dpll_mgr.c
:doc: Display PLLs
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dpll_mgr.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dpll_mgr.c
:internal:
-.. kernel-doc:: drivers/gpu/drm/i915/intel_dpll_mgr.h
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_dpll_mgr.h
:internal:
Memory Management and Command Submission
@@ -349,7 +346,7 @@ of buffer object caches. Shrinking is used to make main memory
available. Note that this is mostly orthogonal to evicting buffer
objects, which has the goal to make space in gpu virtual address spaces.
-.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_shrinker.c
+.. kernel-doc:: drivers/gpu/drm/i915/gem/i915_gem_shrinker.c
:internal:
Batchbuffer Parsing
@@ -373,18 +370,15 @@ Batchbuffer Pools
User Batchbuffer Execution
--------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_execbuffer.c
+.. kernel-doc:: drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c
:doc: User command execution
Logical Rings, Logical Ring Contexts and Execlists
--------------------------------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_lrc.c
+.. kernel-doc:: drivers/gpu/drm/i915/gt/intel_lrc.c
:doc: Logical Rings, Logical Ring Contexts and Execlists
-.. kernel-doc:: drivers/gpu/drm/i915/intel_lrc.c
- :internal:
-
Global GTT views
----------------
@@ -415,10 +409,10 @@ Hardware Tiling and Swizzling Details
Object Tiling IOCTLs
--------------------
-.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_tiling.c
+.. kernel-doc:: drivers/gpu/drm/i915/gem/i915_gem_tiling.c
:internal:
-.. kernel-doc:: drivers/gpu/drm/i915/i915_gem_tiling.c
+.. kernel-doc:: drivers/gpu/drm/i915/gem/i915_gem_tiling.c
:doc: buffer object tiling
WOPCM
@@ -433,31 +427,31 @@ WOPCM Layout
GuC
===
+Firmware Layout
+-------------------
+
+.. kernel-doc:: drivers/gpu/drm/i915/gt/uc/intel_uc_fw_abi.h
+ :doc: Firmware Layout
+
GuC-specific firmware loader
----------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_guc_fw.c
+.. kernel-doc:: drivers/gpu/drm/i915/gt/uc/intel_guc_fw.c
:internal:
GuC-based command submission
----------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_guc_submission.c
+.. kernel-doc:: drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c
:doc: GuC-based command submission
-.. kernel-doc:: drivers/gpu/drm/i915/intel_guc_submission.c
+.. kernel-doc:: drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c
:internal:
-GuC Firmware Layout
--------------------
-
-.. kernel-doc:: drivers/gpu/drm/i915/intel_guc_fwif.h
- :doc: GuC Firmware Layout
-
GuC Address Space
-----------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_guc.c
+.. kernel-doc:: drivers/gpu/drm/i915/gt/uc/intel_guc.c
:doc: GuC Address Space
Tracing
@@ -478,12 +472,6 @@ i915_context_create and i915_context_free
.. kernel-doc:: drivers/gpu/drm/i915/i915_trace.h
:doc: i915_context_create and i915_context_free tracepoints
-switch_mm
----------
-
-.. kernel-doc:: drivers/gpu/drm/i915/i915_trace.h
- :doc: switch_mm tracepoint
-
Perf
====
diff --git a/Documentation/gpu/introduction.rst b/Documentation/gpu/introduction.rst
index fccbe375244d..25a56e9c0cfd 100644
--- a/Documentation/gpu/introduction.rst
+++ b/Documentation/gpu/introduction.rst
@@ -51,6 +51,22 @@ and "FIXME" where the interface could be cleaned up.
Also read the :ref:`guidelines for the kernel documentation at large <doc_guide>`.
+Documentation Requirements for kAPI
+-----------------------------------
+
+All kernel APIs exported to other modules must be documented, including their
+datastructures and at least a short introductory section explaining the overall
+concepts. Documentation should be put into the code itself as kerneldoc comments
+as much as reasonable.
+
+Do not blindly document everything, but document only what's relevant for driver
+authors: Internal functions of drm.ko and definitely static functions should not
+have formal kerneldoc comments. Use normal C comments if you feel like a comment
+is warranted. You may use kerneldoc syntax in the comment, but it shall not
+start with a /** kerneldoc marker. Similar for data structures, annotate
+anything entirely private with ``/* private: */`` comments as per the
+documentation guide.
+
Getting Started
===============
diff --git a/Documentation/gpu/mcde.rst b/Documentation/gpu/mcde.rst
new file mode 100644
index 000000000000..c69e977defda
--- /dev/null
+++ b/Documentation/gpu/mcde.rst
@@ -0,0 +1,8 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================================
+ drm/mcde ST-Ericsson MCDE Multi-channel display engine
+=======================================================
+
+.. kernel-doc:: drivers/gpu/drm/mcde/mcde_drv.c
+ :doc: ST-Ericsson MCDE DRM Driver
diff --git a/Documentation/gpu/msm-crash-dump.rst b/Documentation/gpu/msm-crash-dump.rst
index 757cd257e0d8..240ef200f76c 100644
--- a/Documentation/gpu/msm-crash-dump.rst
+++ b/Documentation/gpu/msm-crash-dump.rst
@@ -1,3 +1,5 @@
+:orphan:
+
=====================
MSM Crash Dump Format
=====================
diff --git a/Documentation/gpu/tinydrm.rst b/Documentation/gpu/tinydrm.rst
deleted file mode 100644
index 33a41544f659..000000000000
--- a/Documentation/gpu/tinydrm.rst
+++ /dev/null
@@ -1,30 +0,0 @@
-============================
-drm/tinydrm Tiny DRM drivers
-============================
-
-tinydrm is a collection of DRM drivers that are so small they can fit in a
-single source file.
-
-Helpers
-=======
-
-.. kernel-doc:: include/drm/tinydrm/tinydrm-helpers.h
- :internal:
-
-.. kernel-doc:: drivers/gpu/drm/tinydrm/core/tinydrm-helpers.c
- :export:
-
-.. kernel-doc:: drivers/gpu/drm/tinydrm/core/tinydrm-pipe.c
- :export:
-
-MIPI DBI Compatible Controllers
-===============================
-
-.. kernel-doc:: drivers/gpu/drm/tinydrm/mipi-dbi.c
- :doc: overview
-
-.. kernel-doc:: include/drm/tinydrm/mipi-dbi.h
- :internal:
-
-.. kernel-doc:: drivers/gpu/drm/tinydrm/mipi-dbi.c
- :export:
diff --git a/Documentation/gpu/todo.rst b/Documentation/gpu/todo.rst
index 1528ad2d598b..32787acff0a8 100644
--- a/Documentation/gpu/todo.rst
+++ b/Documentation/gpu/todo.rst
@@ -10,25 +10,6 @@ graphics subsystem useful as newbie projects. Or for slow rainy days.
Subsystem-wide refactorings
===========================
-De-midlayer drivers
--------------------
-
-With the recent ``drm_bus`` cleanup patches for 3.17 it is no longer required
-to have a ``drm_bus`` structure set up. Drivers can directly set up the
-``drm_device`` structure instead of relying on bus methods in ``drm_usb.c``
-and ``drm_pci.c``. The goal is to get rid of the driver's ``->load`` /
-``->unload`` callbacks and open-code the load/unload sequence properly, using
-the new two-stage ``drm_device`` setup/teardown.
-
-Once all existing drivers are converted we can also remove those bus support
-files for USB and platform devices.
-
-All you need is a GPU for a non-converted driver (currently almost all of
-them, but also all the virtual ones used by KVM, so everyone qualifies).
-
-Contact: Daniel Vetter, Thierry Reding, respective driver maintainers
-
-
Remove custom dumb_map_offset implementations
---------------------------------------------
@@ -181,7 +162,7 @@ Clean up mmap forwarding
A lot of drivers forward gem mmap calls to dma-buf mmap for imported buffers.
And also a lot of them forward dma-buf mmap to the gem mmap implementations.
-Would be great to refactor this all into a set of small common helpers.
+There's drm_gem_prime_mmap() for this now, but still needs to be rolled out.
Contact: Daniel Vetter
@@ -215,15 +196,6 @@ Might be good to also have some igt testcases for this.
Contact: Daniel Vetter, Noralf Tronnes
-Remove the ->gem_prime_res_obj callback
---------------------------------------------
-
-The ->gem_prime_res_obj callback can be removed from drivers by using the
-reservation_object in the drm_gem_object. It may also be possible to use the
-generic drm_gem_reservation_object_wait helper for waiting for a bo.
-
-Contact: Daniel Vetter
-
idr_init_base()
---------------
@@ -234,19 +206,16 @@ efficient.
Contact: Daniel Vetter
-Defaults for .gem_prime_import and export
------------------------------------------
-
-Most drivers don't need to set drm_driver->gem_prime_import and
-->gem_prime_export now that drm_gem_prime_import() and drm_gem_prime_export()
-are the default.
-
struct drm_gem_object_funcs
---------------------------
GEM objects can now have a function table instead of having the callbacks on the
DRM driver struct. This is now the preferred way and drivers can be moved over.
+We also need a 2nd version of the CMA define that doesn't require the
+vmapping to be present (different hook for prime importing). Plus this needs to
+be rolled out to all drivers using their own implementations, too.
+
Use DRM_MODESET_LOCK_ALL_* helpers instead of boilerplate
---------------------------------------------------------
@@ -300,6 +269,21 @@ it to use drm_mode_hsync() instead.
Contact: Sean Paul
+drm_fb_helper tasks
+-------------------
+
+- drm_fb_helper_restore_fbdev_mode_unlocked() should call restore_fbdev_mode()
+ not the _force variant so it can bail out if there is a master. But first
+ these igt tests need to be fixed: kms_fbcon_fbt@psr and
+ kms_fbcon_fbt@psr-suspend.
+
+- The max connector argument for drm_fb_helper_init() and
+ drm_fb_helper_fbdev_setup() isn't used anymore and can be removed.
+
+- The helper doesn't keep an array of connectors anymore so these can be
+ removed: drm_fb_helper_single_add_all_connectors(),
+ drm_fb_helper_add_one_connector() and drm_fb_helper_remove_one_connector().
+
Core refactorings
=================
@@ -315,19 +299,6 @@ In the end no .c file should need to include ``drmP.h`` anymore.
Contact: Daniel Vetter
-Add missing kerneldoc for exported functions
---------------------------------------------
-
-The DRM reference documentation is still lacking kerneldoc in a few areas. The
-task would be to clean up interfaces like moving functions around between
-files to better group them and improving the interfaces like dropping return
-values for functions that never fail. Then write kerneldoc for all exported
-functions and an overview section and integrate it all into the drm book.
-
-See https://dri.freedesktop.org/docs/drm/ for what's there already.
-
-Contact: Daniel Vetter
-
Make panic handling work
------------------------
@@ -391,6 +362,9 @@ There's a bunch of issues with it:
this (together with the drm_minor->drm_device move) would allow us to remove
debugfs_init.
+- Drop the return code and error checking from all debugfs functions. Greg KH is
+ working on this already.
+
Contact: Daniel Vetter
KMS cleanups
@@ -438,38 +412,21 @@ fit the available time.
Contact: Daniel Vetter
-Driver Specific
-===============
-
-tinydrm
--------
-
-Tinydrm is the helper driver for really simple fb drivers. The goal is to make
-those drivers as simple as possible, so lots of room for refactoring:
+Backlight Refactoring
+---------------------
-- backlight helpers, probably best to put them into a new drm_backlight.c.
- This is because drivers/video is de-facto unmaintained. We could also
- move drivers/video/backlight to drivers/gpu/backlight and take it all
- over within drm-misc, but that's more work. Backlight helpers require a fair
- bit of reworking and refactoring. A simple example is the enabling of a backlight.
- Tinydrm has helpers for this. It would be good if other drivers can also use the
- helper. However, there are various cases we need to consider i.e different
- drivers seem to have different ways of enabling/disabling a backlight.
- We also need to consider the backlight drivers (like gpio_backlight). The situation
- is further complicated by the fact that the backlight is tied to fbdev
- via fb_notifier_callback() which has complicated logic. For further details, refer
- to the following discussion thread:
- https://groups.google.com/forum/#!topic/outreachy-kernel/8rBe30lwtdA
+Backlight drivers have a triple enable/disable state, which is a bit overkill.
+Plan to fix this:
-- spi helpers, probably best put into spi core/helper code. Thierry said
- the spi maintainer is fast&reactive, so shouldn't be a big issue.
+1. Roll out backlight_enable() and backlight_disable() helpers everywhere. This
+ has started already.
+2. In all, only look at one of the three status bits set by the above helpers.
+3. Remove the other two status bits.
-- extract the mipi-dbi helper (well, the non-tinydrm specific parts at
- least) into a separate helper, like we have for mipi-dsi already. Or follow
- one of the ideas for having a shared dsi/dbi helper, abstracting away the
- transport details more.
+Contact: Daniel Vetter
-Contact: Noralf Trønnes, Daniel Vetter
+Driver Specific
+===============
AMD DC Display Driver
---------------------
@@ -488,5 +445,20 @@ i915
device_link_add to model the dependency between i915 and snd_had. See
https://dri.freedesktop.org/docs/drm/driver-api/device_link.html
+Bootsplash
+==========
+
+There is support in place now for writing internal DRM clients making it
+possible to pick up the bootsplash work that was rejected because it was written
+for fbdev.
+
+- [v6,8/8] drm/client: Hack: Add bootsplash example
+ https://patchwork.freedesktop.org/patch/306579/
+
+- [RFC PATCH v2 00/13] Kernel based bootsplash
+ https://lkml.org/lkml/2017/12/13/764
+
+Contact: Sam Ravnborg
+
Outside DRM
===========
diff --git a/Documentation/hid/hid-alps.txt b/Documentation/hid/hid-alps.rst
index 6b02a2447c77..e2f4c4c11e3f 100644
--- a/Documentation/hid/hid-alps.txt
+++ b/Documentation/hid/hid-alps.rst
@@ -1,19 +1,26 @@
+==========================
ALPS HID Touchpad Protocol
-----------------------
+==========================
Introduction
------------
Currently ALPS HID driver supports U1 Touchpad device.
-U1 devuce basic information.
+U1 device basic information.
+
+========== ======
Vender ID 0x044E
Product ID 0x120B
Version ID 0x0121
+========== ======
HID Descriptor
-------------
+--------------
+
+======= ==================== ===== =======================================
Byte Field Value Notes
+======= ==================== ===== =======================================
0 wHIDDescLength 001E Length of HID Descriptor : 30 bytes
2 bcdVersion 0100 Compliant with Version 1.00
4 wReportDescLength 00B2 Report Descriptor is 178 Bytes (0x00B2)
@@ -28,32 +35,42 @@ Byte Field Value Notes
22 wProductID 120B Product ID 0x120B
24 wVersionID 0121 Version 01.21
26 RESERVED 0000 RESERVED
+======= ==================== ===== =======================================
Report ID
-------------
-ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
-ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
-ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
-ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
-ReportID-5 (Feature Reports) Feature Reports
-ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
-ReportID-7 (Feature Reports) Flash update (Bootloader)
+---------
+
+========== ================= =========================================
+ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
+ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
+ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
+ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
+ReportID-5 (Feature Reports) Feature Reports
+ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
+ReportID-7 (Feature Reports) Flash update (Bootloader)
+========== ================= =========================================
Data pattern
------------
+
+===== ========== ===== =================
Case1 ReportID_1 TP/SP Relative/Relative
Case2 ReportID_3 TP Absolute
ReportID_6 SP Absolute
+===== ========== ===== =================
Command Read/Write
------------------
To read/write to RAM, need to send a commands to the device.
+
The command format is as below.
DataByte(SET_REPORT)
+
+===== ======================
Byte1 Command Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
@@ -61,13 +78,19 @@ Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum
+===== ======================
Command Byte is read=0xD1/write=0xD2 .
+
Address is read/write RAM address.
+
Value Byte is writing data when you send the write commands.
+
When you read RAM, there is no meaning.
DataByte(GET_REPORT)
+
+===== ======================
Byte1 Response Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
@@ -75,6 +98,7 @@ Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum
+===== ======================
Read value is stored in Value Byte.
@@ -82,7 +106,11 @@ Read value is stored in Value Byte.
Packet Format
Touchpad data byte
------------------
- b7 b6 b5 b4 b3 b2 b1 b0
+
+
+======= ======= ======= ======= ======= ======= ======= ======= =====
+- b7 b6 b5 b4 b3 b2 b1 b0
+======= ======= ======= ======= ======= ======= ======= ======= =====
1 0 0 SW6 SW5 SW4 SW3 SW2 SW1
2 0 0 0 Fcv Fn3 Fn2 Fn1 Fn0
3 Xa0_7 Xa0_6 Xa0_5 Xa0_4 Xa0_3 Xa0_2 Xa0_1 Xa0_0
@@ -114,17 +142,25 @@ Touchpad data byte
25 Ya4_7 Ya4_6 Ya4_5 Ya4_4 Ya4_3 Ya4_2 Ya4_1 Ya4_0
26 Ya4_15 Ya4_14 Ya4_13 Ya4_12 Ya4_11 Ya4_10 Ya4_9 Ya4_8
27 LFB4 Zs4_6 Zs4_5 Zs4_4 Zs4_3 Zs4_2 Zs4_1 Zs4_0
+======= ======= ======= ======= ======= ======= ======= ======= =====
-SW1-SW6: SW ON/OFF status
-Xan_15-0(16bit):X Absolute data of the "n"th finger
-Yan_15-0(16bit):Y Absolute data of the "n"th finger
-Zsn_6-0(7bit): Operation area of the "n"th finger
+SW1-SW6:
+ SW ON/OFF status
+Xan_15-0(16bit):
+ X Absolute data of the "n"th finger
+Yan_15-0(16bit):
+ Y Absolute data of the "n"th finger
+Zsn_6-0(7bit):
+ Operation area of the "n"th finger
StickPointer data byte
-------------------
- b7 b6 b5 b4 b3 b2 b1 b0
+----------------------
+
+======= ======= ======= ======= ======= ======= ======= ======= =====
+- b7 b6 b5 b4 b3 b2 b1 b0
+======= ======= ======= ======= ======= ======= ======= ======= =====
Byte1 1 1 1 0 1 SW3 SW2 SW1
Byte2 X7 X6 X5 X4 X3 X2 X1 X0
Byte3 X15 X14 X13 X12 X11 X10 X9 X8
@@ -132,8 +168,13 @@ Byte4 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
Byte5 Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
Byte6 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0
Byte7 T&P Z14 Z13 Z12 Z11 Z10 Z9 Z8
-
-SW1-SW3: SW ON/OFF status
-Xn_15-0(16bit):X Absolute data
-Yn_15-0(16bit):Y Absolute data
-Zn_14-0(15bit):Z
+======= ======= ======= ======= ======= ======= ======= ======= =====
+
+SW1-SW3:
+ SW ON/OFF status
+Xn_15-0(16bit):
+ X Absolute data
+Yn_15-0(16bit):
+ Y Absolute data
+Zn_14-0(15bit):
+ Z
diff --git a/Documentation/hid/hid-sensor.txt b/Documentation/hid/hid-sensor.rst
index b287752a31cd..758972e34971 100644
--- a/Documentation/hid/hid-sensor.txt
+++ b/Documentation/hid/hid-sensor.rst
@@ -1,6 +1,6 @@
-
+=====================
HID Sensors Framework
-======================
+=====================
HID sensor framework provides necessary interfaces to implement sensor drivers,
which are connected to a sensor hub. The sensor hub is a HID device and it provides
a report descriptor conforming to HID 1.12 sensor usage tables.
@@ -15,22 +15,22 @@ the drivers themselves."
This specification describes many usage IDs, which describe the type of sensor
and also the individual data fields. Each sensor can have variable number of
data fields. The length and order is specified in the report descriptor. For
-example a part of report descriptor can look like:
-
- INPUT(1)[INPUT]
- ..
- Field(2)
- Physical(0020.0073)
- Usage(1)
- 0020.045f
- Logical Minimum(-32767)
- Logical Maximum(32767)
- Report Size(8)
- Report Count(1)
- Report Offset(16)
- Flags(Variable Absolute)
-..
-..
+example a part of report descriptor can look like::
+
+ INPUT(1)[INPUT]
+ ..
+ Field(2)
+ Physical(0020.0073)
+ Usage(1)
+ 0020.045f
+ Logical Minimum(-32767)
+ Logical Maximum(32767)
+ Report Size(8)
+ Report Count(1)
+ Report Offset(16)
+ Flags(Variable Absolute)
+ ..
+ ..
The report is indicating "sensor page (0x20)" contains an accelerometer-3D (0x73).
This accelerometer-3D has some fields. Here for example field 2 is motion intensity
@@ -40,13 +40,14 @@ data will use this format.
Implementation
-=================
+==============
This specification defines many different types of sensors with different sets of
data fields. It is difficult to have a common input event to user space applications,
for different sensors. For example an accelerometer can send X,Y and Z data, whereas
an ambient light sensor can send illumination data.
So the implementation has two parts:
+
- Core hid driver
- Individual sensor processing part (sensor drivers)
@@ -55,8 +56,11 @@ Core driver
The core driver registers (hid-sensor-hub) registers as a HID driver. It parses
report descriptors and identifies all the sensors present. It adds an MFD device
with name HID-SENSOR-xxxx (where xxxx is usage id from the specification).
-For example
+
+For example:
+
HID-SENSOR-200073 is registered for an Accelerometer 3D driver.
+
So if any driver with this name is inserted, then the probe routine for that
function will be called. So an accelerometer processing driver can register
with this name and will be probed if there is an accelerometer-3D detected.
@@ -66,7 +70,8 @@ drivers to register and get events for that usage id. Also it provides parsing
functions, which get and set each input/feature/output report.
Individual sensor processing part (sensor drivers)
------------
+--------------------------------------------------
+
The processing driver will use an interface provided by the core driver to parse
the report and get the indexes of the fields and also can get events. This driver
can use IIO interface to use the standard ABI defined for a type of sensor.
@@ -75,31 +80,34 @@ can use IIO interface to use the standard ABI defined for a type of sensor.
Core driver Interface
=====================
-Callback structure:
-Each processing driver can use this structure to set some callbacks.
+Callback structure::
+
+ Each processing driver can use this structure to set some callbacks.
int (*suspend)(..): Callback when HID suspend is received
int (*resume)(..): Callback when HID resume is received
int (*capture_sample)(..): Capture a sample for one of its data fields
int (*send_event)(..): One complete event is received which can have
multiple data fields.
-Registration functions:
-int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev,
+Registration functions::
+
+ int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
struct hid_sensor_hub_callbacks *usage_callback):
Registers callbacks for an usage id. The callback functions are not allowed
-to sleep.
+to sleep::
-int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev,
+ int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id):
Removes callbacks for an usage id.
-Parsing function:
-int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device *hsdev,
+Parsing function::
+
+ int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device *hsdev,
u8 type,
u32 usage_id, u32 attr_usage_id,
struct hid_sensor_hub_attribute_info *info);
@@ -110,26 +118,27 @@ so that fields can be set or get individually.
These indexes avoid searching every time and getting field index to get or set.
-Set Feature report
-int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
+Set Feature report::
+
+ int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
u32 field_index, s32 value);
This interface is used to set a value for a field in feature report. For example
if there is a field report_interval, which is parsed by a call to
-sensor_hub_input_get_attribute_info before, then it can directly set that individual
-field.
+sensor_hub_input_get_attribute_info before, then it can directly set that
+individual field::
-int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
+ int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
u32 field_index, s32 *value);
This interface is used to get a value for a field in input report. For example
if there is a field report_interval, which is parsed by a call to
-sensor_hub_input_get_attribute_info before, then it can directly get that individual
-field value.
+sensor_hub_input_get_attribute_info before, then it can directly get that
+individual field value::
-int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device *hsdev,
+ int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
u32 attr_usage_id, u32 report_id);
@@ -143,6 +152,8 @@ registered callback function to process the sample.
----------
HID Custom and generic Sensors
+------------------------------
+
HID Sensor specification defines two special sensor usage types. Since they
don't represent a standard sensor, it is not possible to define using Linux IIO
@@ -158,66 +169,73 @@ keyboard attached/detached or lid open/close.
To allow application to utilize these sensors, here they are exported uses sysfs
attribute groups, attributes and misc device interface.
-An example of this representation on sysfs:
-/sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.0001/HID-SENSOR-2000e1.6.auto$ tree -R
-.
-????????? enable_sensor
-????????? feature-0-200316
-??????? ????????? feature-0-200316-maximum
-??????? ????????? feature-0-200316-minimum
-??????? ????????? feature-0-200316-name
-??????? ????????? feature-0-200316-size
-??????? ????????? feature-0-200316-unit-expo
-??????? ????????? feature-0-200316-units
-??????? ????????? feature-0-200316-value
-????????? feature-1-200201
-??????? ????????? feature-1-200201-maximum
-??????? ????????? feature-1-200201-minimum
-??????? ????????? feature-1-200201-name
-??????? ????????? feature-1-200201-size
-??????? ????????? feature-1-200201-unit-expo
-??????? ????????? feature-1-200201-units
-??????? ????????? feature-1-200201-value
-????????? input-0-200201
-??????? ????????? input-0-200201-maximum
-??????? ????????? input-0-200201-minimum
-??????? ????????? input-0-200201-name
-??????? ????????? input-0-200201-size
-??????? ????????? input-0-200201-unit-expo
-??????? ????????? input-0-200201-units
-??????? ????????? input-0-200201-value
-????????? input-1-200202
-??????? ????????? input-1-200202-maximum
-??????? ????????? input-1-200202-minimum
-??????? ????????? input-1-200202-name
-??????? ????????? input-1-200202-size
-??????? ????????? input-1-200202-unit-expo
-??????? ????????? input-1-200202-units
-??????? ????????? input-1-200202-value
+An example of this representation on sysfs::
+
+ /sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.0001/HID-SENSOR-2000e1.6.auto$ tree -R
+ .
+ │   ├── enable_sensor
+ │   │   ├── feature-0-200316
+ │   │   │   ├── feature-0-200316-maximum
+ │   │   │   ├── feature-0-200316-minimum
+ │   │   │   ├── feature-0-200316-name
+ │   │   │   ├── feature-0-200316-size
+ │   │   │   ├── feature-0-200316-unit-expo
+ │   │   │   ├── feature-0-200316-units
+ │   │   │   ├── feature-0-200316-value
+ │   │   ├── feature-1-200201
+ │   │   │   ├── feature-1-200201-maximum
+ │   │   │   ├── feature-1-200201-minimum
+ │   │   │   ├── feature-1-200201-name
+ │   │   │   ├── feature-1-200201-size
+ │   │   │   ├── feature-1-200201-unit-expo
+ │   │   │   ├── feature-1-200201-units
+ │   │   │   ├── feature-1-200201-value
+ │   │   ├── input-0-200201
+ │   │   │   ├── input-0-200201-maximum
+ │   │   │   ├── input-0-200201-minimum
+ │   │   │   ├── input-0-200201-name
+ │   │   │   ├── input-0-200201-size
+ │   │   │   ├── input-0-200201-unit-expo
+ │   │   │   ├── input-0-200201-units
+ │   │   │   ├── input-0-200201-value
+ │   │   ├── input-1-200202
+ │   │   │   ├── input-1-200202-maximum
+ │   │   │   ├── input-1-200202-minimum
+ │   │   │   ├── input-1-200202-name
+ │   │   │   ├── input-1-200202-size
+ │   │   │   ├── input-1-200202-unit-expo
+ │   │   │   ├── input-1-200202-units
+ │   │   │   ├── input-1-200202-value
Here there is a custom sensors with four fields, two feature and two inputs.
Each field is represented by a set of attributes. All fields except the "value"
are read only. The value field is a RW field.
-Example
-/sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -r . *
-feature-0-200316-maximum:6
-feature-0-200316-minimum:0
-feature-0-200316-name:property-reporting-state
-feature-0-200316-size:1
-feature-0-200316-unit-expo:0
-feature-0-200316-units:25
-feature-0-200316-value:1
+
+Example::
+
+ /sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -r . *
+ feature-0-200316-maximum:6
+ feature-0-200316-minimum:0
+ feature-0-200316-name:property-reporting-state
+ feature-0-200316-size:1
+ feature-0-200316-unit-expo:0
+ feature-0-200316-units:25
+ feature-0-200316-value:1
How to enable such sensor?
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
By default sensor can be power gated. To enable sysfs attribute "enable" can be
-used.
-$ echo 1 > enable_sensor
+used::
+
+ $ echo 1 > enable_sensor
Once enabled and powered on, sensor can report value using HID reports.
-These reports are pushed using misc device interface in a FIFO order.
-/dev$ tree | grep HID-SENSOR-2000e1.6.auto
-??????? ????????? 10:53 -> ../HID-SENSOR-2000e1.6.auto
-????????? HID-SENSOR-2000e1.6.auto
+These reports are pushed using misc device interface in a FIFO order::
+
+ /dev$ tree | grep HID-SENSOR-2000e1.6.auto
+ │   │   │   ├── 10:53 -> ../HID-SENSOR-2000e1.6.auto
+ │   ├── HID-SENSOR-2000e1.6.auto
Each reports can be of variable length preceded by a header. This header
consist of a 32 bit usage id, 64 bit time stamp and 32 bit length field of raw
diff --git a/Documentation/hid/hid-transport.txt b/Documentation/hid/hid-transport.rst
index 3dcba9fd4a3a..0fe526f36db6 100644
--- a/Documentation/hid/hid-transport.txt
+++ b/Documentation/hid/hid-transport.rst
@@ -1,5 +1,6 @@
- HID I/O Transport Drivers
- ===========================
+=========================
+HID I/O Transport Drivers
+=========================
The HID subsystem is independent of the underlying transport driver. Initially,
only USB was supported, but other specifications adopted the HID design and
@@ -16,6 +17,8 @@ transport and device setup/management. HID core is responsible of
report-parsing, report interpretation and the user-space API. Device specifics
and quirks are handled by all layers depending on the quirk.
+::
+
+-----------+ +-----------+ +-----------+ +-----------+
| Device #1 | | Device #i | | Device #j | | Device #k |
+-----------+ +-----------+ +-----------+ +-----------+
@@ -42,8 +45,9 @@ and quirks are handled by all layers depending on the quirk.
+----------------+ +-----------+ +------------------+ +------------------+
Example Drivers:
- I/O: USB, I2C, Bluetooth-l2cap
- Transport: USB-HID, I2C-HID, BT-HIDP
+
+ - I/O: USB, I2C, Bluetooth-l2cap
+ - Transport: USB-HID, I2C-HID, BT-HIDP
Everything below "HID Core" is simplified in this graph as it is only of
interest to HID device drivers. Transport drivers do not need to know the
@@ -183,7 +187,7 @@ Other ctrl-channel requests are supported by USB-HID but are not available
-------------------
Transport drivers normally use the following procedure to register a new device
-with HID core:
+with HID core::
struct hid_device *hid;
int ret;
@@ -194,9 +198,9 @@ with HID core:
goto err_<...>;
}
- strlcpy(hid->name, <device-name-src>, 127);
- strlcpy(hid->phys, <device-phys-src>, 63);
- strlcpy(hid->uniq, <device-uniq-src>, 63);
+ strscpy(hid->name, <device-name-src>, sizeof(hid->name));
+ strscpy(hid->phys, <device-phys-src>, sizeof(hid->phys));
+ strscpy(hid->uniq, <device-uniq-src>, sizeof(hid->uniq));
hid->ll_driver = &custom_ll_driver;
hid->bus = <device-bus>;
@@ -215,7 +219,7 @@ Once hid_add_device() is entered, HID core might use the callbacks provided in
"custom_ll_driver". Note that fields like "country" can be ignored by underlying
transport-drivers if not supported.
-To unregister a device, use:
+To unregister a device, use::
hid_destroy_device(hid);
@@ -226,73 +230,110 @@ driver callbacks.
-----------------------------
The available HID callbacks are:
- - int (*start) (struct hid_device *hdev)
+
+ ::
+
+ int (*start) (struct hid_device *hdev)
+
Called from HID device drivers once they want to use the device. Transport
drivers can choose to setup their device in this callback. However, normally
devices are already set up before transport drivers register them to HID core
so this is mostly only used by USB-HID.
- - void (*stop) (struct hid_device *hdev)
+ ::
+
+ void (*stop) (struct hid_device *hdev)
+
Called from HID device drivers once they are done with a device. Transport
drivers can free any buffers and deinitialize the device. But note that
->start() might be called again if another HID device driver is loaded on the
device.
+
Transport drivers are free to ignore it and deinitialize devices after they
destroyed them via hid_destroy_device().
- - int (*open) (struct hid_device *hdev)
+ ::
+
+ int (*open) (struct hid_device *hdev)
+
Called from HID device drivers once they are interested in data reports.
Usually, while user-space didn't open any input API/etc., device drivers are
not interested in device data and transport drivers can put devices asleep.
However, once ->open() is called, transport drivers must be ready for I/O.
->open() calls are nested for each client that opens the HID device.
- - void (*close) (struct hid_device *hdev)
+ ::
+
+ void (*close) (struct hid_device *hdev)
+
Called from HID device drivers after ->open() was called but they are no
longer interested in device reports. (Usually if user-space closed any input
devices of the driver).
+
Transport drivers can put devices asleep and terminate any I/O of all
->open() calls have been followed by a ->close() call. However, ->start() may
be called again if the device driver is interested in input reports again.
- - int (*parse) (struct hid_device *hdev)
+ ::
+
+ int (*parse) (struct hid_device *hdev)
+
Called once during device setup after ->start() has been called. Transport
drivers must read the HID report-descriptor from the device and tell HID core
about it via hid_parse_report().
- - int (*power) (struct hid_device *hdev, int level)
+ ::
+
+ int (*power) (struct hid_device *hdev, int level)
+
Called by HID core to give PM hints to transport drivers. Usually this is
analogical to the ->open() and ->close() hints and redundant.
- - void (*request) (struct hid_device *hdev, struct hid_report *report,
- int reqtype)
+ ::
+
+ void (*request) (struct hid_device *hdev, struct hid_report *report,
+ int reqtype)
+
Send an HID request on the ctrl channel. "report" contains the report that
should be sent and "reqtype" the request type. Request-type can be
HID_REQ_SET_REPORT or HID_REQ_GET_REPORT.
+
This callback is optional. If not provided, HID core will assemble a raw
report following the HID specs and send it via the ->raw_request() callback.
The transport driver is free to implement this asynchronously.
- - int (*wait) (struct hid_device *hdev)
+ ::
+
+ int (*wait) (struct hid_device *hdev)
+
Used by HID core before calling ->request() again. A transport driver can use
it to wait for any pending requests to complete if only one request is
allowed at a time.
- - int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
- __u8 *buf, size_t count, unsigned char rtype,
- int reqtype)
+ ::
+
+ int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
+ __u8 *buf, size_t count, unsigned char rtype,
+ int reqtype)
+
Same as ->request() but provides the report as raw buffer. This request shall
be synchronous. A transport driver must not use ->wait() to complete such
requests. This request is mandatory and hid core will reject the device if
it is missing.
- - int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
+ ::
+
+ int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
+
Send raw output report via intr channel. Used by some HID device drivers
which require high throughput for outgoing requests on the intr channel. This
must not cause SET_REPORT calls! This must be implemented as asynchronous
output report on the intr channel!
- - int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
+ ::
+
+ int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
+
Perform SET/GET_IDLE request. Only used by USB-HID, do not implement!
2.3) Data Path
@@ -314,4 +355,5 @@ transport driver and not passed to hid_input_report().
Acknowledgements to SET_REPORT requests are not of interest to HID core.
----------------------------------------------------
+
Written 2013, David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/hid/hiddev.txt b/Documentation/hid/hiddev.rst
index 638448707aa2..209e6ba4e019 100644
--- a/Documentation/hid/hiddev.txt
+++ b/Documentation/hid/hiddev.rst
@@ -1,6 +1,9 @@
+================================================
Care and feeding of your Human Interface Devices
+================================================
-INTRODUCTION
+Introduction
+============
In addition to the normal input type HID devices, USB also uses the
human interface device protocols for things that are not really human
@@ -16,38 +19,40 @@ normalised event interface - see Documentation/input/input.rst
* the hiddev interface, which provides fairly raw HID events
The data flow for a HID event produced by a device is something like
-the following :
+the following::
usb.c ---> hid-core.c ----> hid-input.c ----> [keyboard/mouse/joystick/event]
|
|
- --> hiddev.c ----> POWER / MONITOR CONTROL
+ --> hiddev.c ----> POWER / MONITOR CONTROL
In addition, other subsystems (apart from USB) can potentially feed
events into the input subsystem, but these have no effect on the hid
device interface.
-USING THE HID DEVICE INTERFACE
+Using the HID Device Interface
+==============================
The hiddev interface is a char interface using the normal USB major,
with the minor numbers starting at 96 and finishing at 111. Therefore,
-you need the following commands:
-mknod /dev/usb/hiddev0 c 180 96
-mknod /dev/usb/hiddev1 c 180 97
-mknod /dev/usb/hiddev2 c 180 98
-mknod /dev/usb/hiddev3 c 180 99
-mknod /dev/usb/hiddev4 c 180 100
-mknod /dev/usb/hiddev5 c 180 101
-mknod /dev/usb/hiddev6 c 180 102
-mknod /dev/usb/hiddev7 c 180 103
-mknod /dev/usb/hiddev8 c 180 104
-mknod /dev/usb/hiddev9 c 180 105
-mknod /dev/usb/hiddev10 c 180 106
-mknod /dev/usb/hiddev11 c 180 107
-mknod /dev/usb/hiddev12 c 180 108
-mknod /dev/usb/hiddev13 c 180 109
-mknod /dev/usb/hiddev14 c 180 110
-mknod /dev/usb/hiddev15 c 180 111
+you need the following commands::
+
+ mknod /dev/usb/hiddev0 c 180 96
+ mknod /dev/usb/hiddev1 c 180 97
+ mknod /dev/usb/hiddev2 c 180 98
+ mknod /dev/usb/hiddev3 c 180 99
+ mknod /dev/usb/hiddev4 c 180 100
+ mknod /dev/usb/hiddev5 c 180 101
+ mknod /dev/usb/hiddev6 c 180 102
+ mknod /dev/usb/hiddev7 c 180 103
+ mknod /dev/usb/hiddev8 c 180 104
+ mknod /dev/usb/hiddev9 c 180 105
+ mknod /dev/usb/hiddev10 c 180 106
+ mknod /dev/usb/hiddev11 c 180 107
+ mknod /dev/usb/hiddev12 c 180 108
+ mknod /dev/usb/hiddev13 c 180 109
+ mknod /dev/usb/hiddev14 c 180 110
+ mknod /dev/usb/hiddev15 c 180 111
So you point your hiddev compliant user-space program at the correct
interface for your device, and it all just works.
@@ -56,7 +61,9 @@ Assuming that you have a hiddev compliant user-space program, of
course. If you need to write one, read on.
-THE HIDDEV API
+The HIDDEV API
+==============
+
This description should be read in conjunction with the HID
specification, freely available from http://www.usb.org, and
conveniently linked of http://www.linux-usb.org.
@@ -69,12 +76,14 @@ each of which can have one or more "usages". In the hid-core,
each one of these usages has a single signed 32 bit value.
read():
+-------
+
This is the event interface. When the HID device's state changes,
it performs an interrupt transfer containing a report which contains
the changed value. The hid-core.c module parses the report, and
returns to hiddev.c the individual usages that have changed within
the report. In its basic mode, the hiddev will make these individual
-usage changes available to the reader using a struct hiddev_event:
+usage changes available to the reader using a struct hiddev_event::
struct hiddev_event {
unsigned hid;
@@ -90,13 +99,19 @@ behavior of the read() function can be modified using the HIDIOCSFLAG
ioctl() described below.
-ioctl():
-This is the control interface. There are a number of controls:
+ioctl():
+--------
+
+This is the control interface. There are a number of controls:
+
+HIDIOCGVERSION
+ - int (read)
+
+ Gets the version code out of the hiddev driver.
-HIDIOCGVERSION - int (read)
-Gets the version code out of the hiddev driver.
+HIDIOCAPPLICATION
+ - (none)
-HIDIOCAPPLICATION - (none)
This ioctl call returns the HID application usage associated with the
hid device. The third argument to ioctl() specifies which application
index to get. This is useful when the device has more than one
@@ -104,25 +119,33 @@ application collection. If the index is invalid (greater or equal to
the number of application collections this device has) the ioctl
returns -1. You can find out beforehand how many application
collections the device has from the num_applications field from the
-hiddev_devinfo structure.
+hiddev_devinfo structure.
+
+HIDIOCGCOLLECTIONINFO
+ - struct hiddev_collection_info (read/write)
-HIDIOCGCOLLECTIONINFO - struct hiddev_collection_info (read/write)
This returns a superset of the information above, providing not only
application collections, but all the collections the device has. It
also returns the level the collection lives in the hierarchy.
-The user passes in a hiddev_collection_info struct with the index
-field set to the index that should be returned. The ioctl fills in
-the other fields. If the index is larger than the last collection
+The user passes in a hiddev_collection_info struct with the index
+field set to the index that should be returned. The ioctl fills in
+the other fields. If the index is larger than the last collection
index, the ioctl returns -1 and sets errno to -EINVAL.
-HIDIOCGDEVINFO - struct hiddev_devinfo (read)
+HIDIOCGDEVINFO
+ - struct hiddev_devinfo (read)
+
Gets a hiddev_devinfo structure which describes the device.
-HIDIOCGSTRING - struct hiddev_string_descriptor (read/write)
+HIDIOCGSTRING
+ - struct hiddev_string_descriptor (read/write)
+
Gets a string descriptor from the device. The caller must fill in the
"index" field to indicate which descriptor should be returned.
-HIDIOCINITREPORT - (none)
+HIDIOCINITREPORT
+ - (none)
+
Instructs the kernel to retrieve all input and feature report values
from the device. At this point, all the usage structures will contain
current values for the device, and will maintain it as the device
@@ -130,21 +153,29 @@ changes. Note that the use of this ioctl is unnecessary in general,
since later kernels automatically initialize the reports from the
device at attach time.
-HIDIOCGNAME - string (variable length)
+HIDIOCGNAME
+ - string (variable length)
+
Gets the device name
-HIDIOCGREPORT - struct hiddev_report_info (write)
+HIDIOCGREPORT
+ - struct hiddev_report_info (write)
+
Instructs the kernel to get a feature or input report from the device,
in order to selectively update the usage structures (in contrast to
INITREPORT).
-HIDIOCSREPORT - struct hiddev_report_info (write)
+HIDIOCSREPORT
+ - struct hiddev_report_info (write)
+
Instructs the kernel to send a report to the device. This report can
be filled in by the user through HIDIOCSUSAGE calls (below) to fill in
individual usage values in the report before sending the report in full
-to the device.
+to the device.
+
+HIDIOCGREPORTINFO
+ - struct hiddev_report_info (read/write)
-HIDIOCGREPORTINFO - struct hiddev_report_info (read/write)
Fills in a hiddev_report_info structure for the user. The report is
looked up by type (input, output or feature) and id, so these fields
must be filled in by the user. The ID can be absolute -- the actual
@@ -154,52 +185,67 @@ report_id) for the next report after report_id. Without a-priori
information about report ids, the right way to use this ioctl is to
use the relative IDs above to enumerate the valid IDs. The ioctl
returns non-zero when there is no more next ID. The real report ID is
-filled into the returned hiddev_report_info structure.
+filled into the returned hiddev_report_info structure.
+
+HIDIOCGFIELDINFO
+ - struct hiddev_field_info (read/write)
-HIDIOCGFIELDINFO - struct hiddev_field_info (read/write)
Returns the field information associated with a report in a
hiddev_field_info structure. The user must fill in report_id and
report_type in this structure, as above. The field_index should also
be filled in, which should be a number from 0 and maxfield-1, as
-returned from a previous HIDIOCGREPORTINFO call.
+returned from a previous HIDIOCGREPORTINFO call.
+
+HIDIOCGUCODE
+ - struct hiddev_usage_ref (read/write)
-HIDIOCGUCODE - struct hiddev_usage_ref (read/write)
Returns the usage_code in a hiddev_usage_ref structure, given that
given its report type, report id, field index, and index within the
field have already been filled into the structure.
-HIDIOCGUSAGE - struct hiddev_usage_ref (read/write)
+HIDIOCGUSAGE
+ - struct hiddev_usage_ref (read/write)
+
Returns the value of a usage in a hiddev_usage_ref structure. The
usage to be retrieved can be specified as above, or the user can
choose to fill in the report_type field and specify the report_id as
HID_REPORT_ID_UNKNOWN. In this case, the hiddev_usage_ref will be
filled in with the report and field information associated with this
-usage if it is found.
+usage if it is found.
+
+HIDIOCSUSAGE
+ - struct hiddev_usage_ref (write)
-HIDIOCSUSAGE - struct hiddev_usage_ref (write)
Sets the value of a usage in an output report. The user fills in
the hiddev_usage_ref structure as above, but additionally fills in
the value field.
-HIDIOGCOLLECTIONINDEX - struct hiddev_usage_ref (write)
+HIDIOGCOLLECTIONINDEX
+ - struct hiddev_usage_ref (write)
+
Returns the collection index associated with this usage. This
indicates where in the collection hierarchy this usage sits.
-HIDIOCGFLAG - int (read)
-HIDIOCSFLAG - int (write)
+HIDIOCGFLAG
+ - int (read)
+HIDIOCSFLAG
+ - int (write)
+
These operations respectively inspect and replace the mode flags
that influence the read() call above. The flags are as follows:
- HIDDEV_FLAG_UREF - read() calls will now return
+ HIDDEV_FLAG_UREF
+ - read() calls will now return
struct hiddev_usage_ref instead of struct hiddev_event.
This is a larger structure, but in situations where the
device has more than one usage in its reports with the
same usage code, this mode serves to resolve such
ambiguity.
- HIDDEV_FLAG_REPORT - This flag can only be used in conjunction
+ HIDDEV_FLAG_REPORT
+ - This flag can only be used in conjunction
with HIDDEV_FLAG_UREF. With this flag set, when the device
sends a report, a struct hiddev_usage_ref will be returned
- to read() filled in with the report_type and report_id, but
+ to read() filled in with the report_type and report_id, but
with field_index set to FIELD_INDEX_NONE. This serves as
additional notification when the device has sent a report.
diff --git a/Documentation/hid/hidraw.txt b/Documentation/hid/hidraw.rst
index c8436e354f44..4a4a0ba1f362 100644
--- a/Documentation/hid/hidraw.txt
+++ b/Documentation/hid/hidraw.rst
@@ -1,5 +1,6 @@
- HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
- ==================================================================
+================================================================
+HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
+================================================================
The hidraw driver provides a raw interface to USB and Bluetooth Human
Interface Devices (HIDs). It differs from hiddev in that reports sent and
@@ -31,6 +32,7 @@ directly under /dev (eg: /dev/hidraw0). As this location is distribution-
and udev rule-dependent, applications should use libudev to locate hidraw
devices attached to the system. There is a tutorial on libudev with a
working example at:
+
http://www.signal11.us/oss/udev/
The HIDRAW API
@@ -51,7 +53,7 @@ byte. For devices which do not use numbered reports, the report data
will begin at the first byte.
write()
---------
+-------
The write() function will write a report to the device. For USB devices, if
the device has an INTERRUPT OUT endpoint, the report will be sent on that
endpoint. If it does not, the report will be sent over the control endpoint,
@@ -62,38 +64,52 @@ number. If the device does not use numbered reports, the first byte should
be set to 0. The report data itself should begin at the second byte.
ioctl()
---------
+-------
Hidraw supports the following ioctls:
-HIDIOCGRDESCSIZE: Get Report Descriptor Size
+HIDIOCGRDESCSIZE:
+ Get Report Descriptor Size
+
This ioctl will get the size of the device's report descriptor.
-HIDIOCGRDESC: Get Report Descriptor
+HIDIOCGRDESC:
+ Get Report Descriptor
+
This ioctl returns the device's report descriptor using a
hidraw_report_descriptor struct. Make sure to set the size field of the
hidraw_report_descriptor struct to the size returned from HIDIOCGRDESCSIZE.
-HIDIOCGRAWINFO: Get Raw Info
+HIDIOCGRAWINFO:
+ Get Raw Info
+
This ioctl will return a hidraw_devinfo struct containing the bus type, the
vendor ID (VID), and product ID (PID) of the device. The bus type can be one
-of:
- BUS_USB
- BUS_HIL
- BUS_BLUETOOTH
- BUS_VIRTUAL
+of::
+
+ - BUS_USB
+ - BUS_HIL
+ - BUS_BLUETOOTH
+ - BUS_VIRTUAL
+
which are defined in uapi/linux/input.h.
-HIDIOCGRAWNAME(len): Get Raw Name
+HIDIOCGRAWNAME(len):
+ Get Raw Name
+
This ioctl returns a string containing the vendor and product strings of
the device. The returned string is Unicode, UTF-8 encoded.
-HIDIOCGRAWPHYS(len): Get Physical Address
+HIDIOCGRAWPHYS(len):
+ Get Physical Address
+
This ioctl returns a string representing the physical address of the device.
For USB devices, the string contains the physical path to the device (the
USB controller, hubs, ports, etc). For Bluetooth devices, the string
contains the hardware (MAC) address of the device.
-HIDIOCSFEATURE(len): Send a Feature Report
+HIDIOCSFEATURE(len):
+ Send a Feature Report
+
This ioctl will send a feature report to the device. Per the HID
specification, feature reports are always sent using the control endpoint.
Set the first byte of the supplied buffer to the report number. For devices
@@ -101,7 +117,9 @@ which do not use numbered reports, set the first byte to 0. The report data
begins in the second byte. Make sure to set len accordingly, to one more
than the length of the report (to account for the report number).
-HIDIOCGFEATURE(len): Get a Feature Report
+HIDIOCGFEATURE(len):
+ Get a Feature Report
+
This ioctl will request a feature report from the device using the control
endpoint. The first byte of the supplied buffer should be set to the report
number of the requested report. For devices which do not use numbered
@@ -109,11 +127,12 @@ reports, set the first byte to 0. The report will be returned starting at
the first byte of the buffer (ie: the report number is not returned).
Example
----------
+-------
In samples/, find hid-example.c, which shows examples of read(), write(),
and all the ioctls for hidraw. The code may be used by anyone for any
purpose, and can serve as a starting point for developing applications using
hidraw.
Document by:
+
Alan Ott <alan@signal11.us>, Signal 11 Software
diff --git a/Documentation/hid/index.rst b/Documentation/hid/index.rst
new file mode 100644
index 000000000000..737d66dc16a1
--- /dev/null
+++ b/Documentation/hid/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============================
+Human Interface Devices (HID)
+=============================
+
+.. toctree::
+ :maxdepth: 1
+
+ hiddev
+ hidraw
+ hid-sensor
+ hid-transport
+
+ uhid
+
+ hid-alps
+ intel-ish-hid
diff --git a/Documentation/hid/intel-ish-hid.rst b/Documentation/hid/intel-ish-hid.rst
new file mode 100644
index 000000000000..cccbf4be17d7
--- /dev/null
+++ b/Documentation/hid/intel-ish-hid.rst
@@ -0,0 +1,485 @@
+=================================
+Intel Integrated Sensor Hub (ISH)
+=================================
+
+A sensor hub enables the ability to offload sensor polling and algorithm
+processing to a dedicated low power co-processor. This allows the core
+processor to go into low power modes more often, resulting in the increased
+battery life.
+
+There are many vendors providing external sensor hubs confirming to HID
+Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
+and embedded products. Linux had this support since Linux 3.9.
+
+Intel® introduced integrated sensor hubs as a part of the SoC starting from
+Cherry Trail and now supported on multiple generations of CPU packages. There
+are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
+These ISH also comply to HID sensor specification, but the difference is the
+transport protocol used for communication. The current external sensor hubs
+mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB.
+
+1. Overview
+===========
+
+Using a analogy with a usbhid implementation, the ISH follows a similar model
+for a very high speed communication::
+
+ ----------------- ----------------------
+ | USB HID | --> | ISH HID |
+ ----------------- ----------------------
+ ----------------- ----------------------
+ | USB protocol | --> | ISH Transport |
+ ----------------- ----------------------
+ ----------------- ----------------------
+ | EHCI/XHCI | --> | ISH IPC |
+ ----------------- ----------------------
+ PCI PCI
+ ----------------- ----------------------
+ |Host controller| --> | ISH processor |
+ ----------------- ----------------------
+ USB Link
+ ----------------- ----------------------
+ | USB End points| --> | ISH Clients |
+ ----------------- ----------------------
+
+Like USB protocol provides a method for device enumeration, link management
+and user data encapsulation, the ISH also provides similar services. But it is
+very light weight tailored to manage and communicate with ISH client
+applications implemented in the firmware.
+
+The ISH allows multiple sensor management applications executing in the
+firmware. Like USB endpoints the messaging can be to/from a client. As part of
+enumeration process, these clients are identified. These clients can be simple
+HID sensor applications, sensor calibration application or senor firmware
+update application.
+
+The implementation model is similar, like USB bus, ISH transport is also
+implemented as a bus. Each client application executing in the ISH processor
+is registered as a device on this bus. The driver, which binds each device
+(ISH HID driver) identifies the device type and registers with the hid core.
+
+2. ISH Implementation: Block Diagram
+====================================
+
+::
+
+ ---------------------------
+ | User Space Applications |
+ ---------------------------
+
+ ----------------IIO ABI----------------
+ --------------------------
+ | IIO Sensor Drivers |
+ --------------------------
+ --------------------------
+ | IIO core |
+ --------------------------
+ --------------------------
+ | HID Sensor Hub MFD |
+ --------------------------
+ --------------------------
+ | HID Core |
+ --------------------------
+ --------------------------
+ | HID over ISH Client |
+ --------------------------
+ --------------------------
+ | ISH Transport (ISHTP) |
+ --------------------------
+ --------------------------
+ | IPC Drivers |
+ --------------------------
+ OS
+ ---------------- PCI -----------------
+ Hardware + Firmware
+ ----------------------------
+ | ISH Hardware/Firmware(FW) |
+ ----------------------------
+
+3. High level processing in above blocks
+========================================
+
+3.1 Hardware Interface
+----------------------
+
+The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI
+product and vendor IDs are changed from different generations of processors. So
+the source code which enumerate drivers needs to update from generation to
+generation.
+
+3.2 Inter Processor Communication (IPC) driver
+----------------------------------------------
+
+Location: drivers/hid/intel-ish-hid/ipc
+
+The IPC message used memory mapped I/O. The registers are defined in
+hw-ish-regs.h.
+
+3.2.1 IPC/FW message types
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+There are two types of messages, one for management of link and other messages
+are to and from transport layers.
+
+TX and RX of Transport messages
+...............................
+
+A set of memory mapped register offers support of multi byte messages TX and
+RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
+internal queues to sequence messages and send them in order to the FW.
+Optionally the caller can register handler to get notification of completion.
+A door bell mechanism is used in messaging to trigger processing in host and
+client firmware side. When ISH interrupt handler is called, the ISH2HOST
+doorbell register is used by host drivers to determine that the interrupt
+is for ISH.
+
+Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
+register has the following format:
+Bits 0..6: fragment length (7 bits are used)
+Bits 10..13: encapsulated protocol
+Bits 16..19: management command (for IPC management protocol)
+Bit 31: doorbell trigger (signal H/W interrupt to the other side)
+Other bits are reserved, should be 0.
+
+3.2.2 Transport layer interface
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+To abstract HW level IPC communication, a set of callbacks are registered.
+The transport layer uses them to send and receive messages.
+Refer to struct ishtp_hw_ops for callbacks.
+
+3.3 ISH Transport layer
+-----------------------
+
+Location: drivers/hid/intel-ish-hid/ishtp/
+
+3.3.1 A Generic Transport Layer
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The transport layer is a bi-directional protocol, which defines:
+- Set of commands to start, stop, connect, disconnect and flow control
+(ishtp/hbm.h) for details
+- A flow control mechanism to avoid buffer overflows
+
+This protocol resembles bus messages described in the following document:
+http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
+specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer"
+
+3.3.2 Connection and Flow Control Mechanism
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Each FW client and a protocol is identified by an UUID. In order to communicate
+to a FW client, a connection must be established using connect request and
+response bus messages. If successful, a pair (host_client_id and fw_client_id)
+will identify the connection.
+
+Once connection is established, peers send each other flow control bus messages
+independently. Every peer may send a message only if it has received a
+flow-control credit before. Once it sent a message, it may not send another one
+before receiving the next flow control credit.
+Either side can send disconnect request bus message to end communication. Also
+the link will be dropped if major FW reset occurs.
+
+3.3.3 Peer to Peer data transfer
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Peer to Peer data transfer can happen with or without using DMA. Depending on
+the sensor bandwidth requirement DMA can be enabled by using module parameter
+ishtp_use_dma under intel_ishtp.
+
+Each side (host and FW) manages its DMA transfer memory independently. When an
+ISHTP client from either host or FW side wants to send something, it decides
+whether to send over IPC or over DMA; for each transfer the decision is
+independent. The sending side sends DMA_XFER message when the message is in
+the respective host buffer (TX when host client sends, RX when FW client
+sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
+the sender that the memory region for that message may be reused.
+
+DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
+(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
+Additionally to DMA address communication, this sequence checks capabilities:
+if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't
+send DMA; if FW doesn't support DMA then it won't respond with
+DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
+Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
+it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
+that it already did DMA and the message resides at host. Thus, DMA_XFER
+and DMA_XFER_ACK act as ownership indicators.
+
+At initial state all outgoing memory belongs to the sender (TX to host, RX to
+FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
+the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
+needs not wait for previous DMA_XFER to be ack'ed, and may send another message
+as long as remaining continuous memory in its ownership is enough.
+In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
+(up to IPC MTU), thus allowing for interrupt throttling.
+Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
+fragments and via IPC otherwise.
+
+3.3.4 Ring Buffers
+^^^^^^^^^^^^^^^^^^
+
+When a client initiate a connection, a ring or RX and TX buffers are allocated.
+The size of ring can be specified by the client. HID client set 16 and 32 for
+TX and RX buffers respectively. On send request from client, the data to be
+sent is copied to one of the send ring buffer and scheduled to be sent using
+bus message protocol. These buffers are required because the FW may have not
+have processed the last message and may not have enough flow control credits
+to send. Same thing holds true on receive side and flow control is required.
+
+3.3.5 Host Enumeration
+^^^^^^^^^^^^^^^^^^^^^^
+
+The host enumeration bus command allow discovery of clients present in the FW.
+There can be multiple sensor clients and clients for calibration function.
+
+To ease in implantation and allow independent driver handle each client
+this transport layer takes advantage of Linux Bus driver model. Each
+client is registered as device on the the transport bus (ishtp bus).
+
+Enumeration sequence of messages:
+
+- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
+- FW responds with HOST_START_RES_CMD
+- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
+- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
+ client IDs
+- For each FW ID found in that bitmap host sends
+ HOST_CLIENT_PROPERTIES_REQ_CMD
+- FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
+ max ISHTP message size, etc.
+- Once host received properties for that last discovered client, it considers
+ ISHTP device fully functional (and allocates DMA buffers)
+
+3.4 HID over ISH Client
+-----------------------
+
+Location: drivers/hid/intel-ish-hid
+
+The ISHTP client driver is responsible for:
+
+- enumerate HID devices under FW ISH client
+- Get Report descriptor
+- Register with HID core as a LL driver
+- Process Get/Set feature request
+- Get input reports
+
+3.5 HID Sensor Hub MFD and IIO sensor drivers
+---------------------------------------------
+
+The functionality in these drivers is the same as an external sensor hub.
+Refer to
+Documentation/hid/hid-sensor.rst for HID sensor
+Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
+
+3.6 End to End HID transport Sequence Diagram
+---------------------------------------------
+
+::
+
+ HID-ISH-CLN ISHTP IPC HW
+ | | | |
+ | | |-----WAKE UP------------------>|
+ | | | |
+ | | |-----HOST READY--------------->|
+ | | | |
+ | | |<----MNG_RESET_NOTIFY_ACK----- |
+ | | | |
+ | |<----ISHTP_START------ | |
+ | | | |
+ | |<-----------------HOST_START_RES_CMD-------------------|
+ | | | |
+ | |------------------QUERY_SUBSCRIBER-------------------->|
+ | | | |
+ | |------------------HOST_ENUM_REQ_CMD------------------->|
+ | | | |
+ | |<-----------------HOST_ENUM_RES_CMD--------------------|
+ | | | |
+ | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
+ | | | |
+ | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
+ | Create new device on in ishtp bus | |
+ | | | |
+ | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
+ | | | |
+ | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
+ | Create new device on in ishtp bus | |
+ | | | |
+ | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--|
+ | | | |
+ probed()
+ |----ishtp_cl_connect--->|----------------- CLIENT_CONNECT_REQ_CMD-------------->|
+ | | | |
+ | |<----------------CLIENT_CONNECT_RES_CMD----------------|
+ | | | |
+ |register event callback | | |
+ | | | |
+ |ishtp_cl_send(
+ HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >|
+ | | | |
+ | | |<-----IRQ(IPC_PROTOCOL_ISHTP---|
+ | | | |
+ |<--ENUM_DEVICE RSP------| | |
+ | | | |
+ for each enumerated device
+ |ishtp_cl_send(
+ HOSTIF_GET_HID_DESCRIPTOR|----------fill ishtp_msg_hdr struct write to HW----- >|
+ | | | |
+ ...Response
+ | | | |
+ for each enumerated device
+ |ishtp_cl_send(
+ HOSTIF_GET_REPORT_DESCRIPTOR|--------------fill ishtp_msg_hdr struct write to HW-- >|
+ | | | |
+ | | | |
+ hid_allocate_device
+ | | | |
+ hid_add_device | | |
+ | | | |
+
+
+3.7 ISH Debugging
+-----------------
+
+To debug ISH, event tracing mechanism is used. To enable debug logs
+echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
+cat sys/kernel/debug/tracing/trace
+
+3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
+-----------------------------------------------------
+
+::
+
+ root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
+ /sys/bus/iio/devices/
+ ├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
+ │   ├── buffer
+ │   │   ├── enable
+ │   │   ├── length
+ │   │   └── watermark
+ ...
+ │   ├── in_accel_hysteresis
+ │   ├── in_accel_offset
+ │   ├── in_accel_sampling_frequency
+ │   ├── in_accel_scale
+ │   ├── in_accel_x_raw
+ │   ├── in_accel_y_raw
+ │   ├── in_accel_z_raw
+ │   ├── name
+ │   ├── scan_elements
+ │   │   ├── in_accel_x_en
+ │   │   ├── in_accel_x_index
+ │   │   ├── in_accel_x_type
+ │   │   ├── in_accel_y_en
+ │   │   ├── in_accel_y_index
+ │   │   ├── in_accel_y_type
+ │   │   ├── in_accel_z_en
+ │   │   ├── in_accel_z_index
+ │   │   └── in_accel_z_type
+ ...
+ │   │   ├── devices
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_intensity_both_raw
+ │   │   │   │   ├── in_intensity_hysteresis
+ │   │   │   │   ├── in_intensity_offset
+ │   │   │   │   ├── in_intensity_sampling_frequency
+ │   │   │   │   ├── in_intensity_scale
+ │   │   │   │   ├── name
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_intensity_both_en
+ │   │   │   │   │   ├── in_intensity_both_index
+ │   │   │   │   │   └── in_intensity_both_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_magn_hysteresis
+ │   │   │   │   ├── in_magn_offset
+ │   │   │   │   ├── in_magn_sampling_frequency
+ │   │   │   │   ├── in_magn_scale
+ │   │   │   │   ├── in_magn_x_raw
+ │   │   │   │   ├── in_magn_y_raw
+ │   │   │   │   ├── in_magn_z_raw
+ │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_raw
+ │   │   │   │   ├── in_rot_hysteresis
+ │   │   │   │   ├── in_rot_offset
+ │   │   │   │   ├── in_rot_sampling_frequency
+ │   │   │   │   ├── in_rot_scale
+ │   │   │   │   ├── name
+ ...
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_magn_x_en
+ │   │   │   │   │   ├── in_magn_x_index
+ │   │   │   │   │   ├── in_magn_x_type
+ │   │   │   │   │   ├── in_magn_y_en
+ │   │   │   │   │   ├── in_magn_y_index
+ │   │   │   │   │   ├── in_magn_y_type
+ │   │   │   │   │   ├── in_magn_z_en
+ │   │   │   │   │   ├── in_magn_z_index
+ │   │   │   │   │   ├── in_magn_z_type
+ │   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_en
+ │   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_index
+ │   │   │   │   │   └── in_rot_from_north_magnetic_tilt_comp_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_anglvel_hysteresis
+ │   │   │   │   ├── in_anglvel_offset
+ │   │   │   │   ├── in_anglvel_sampling_frequency
+ │   │   │   │   ├── in_anglvel_scale
+ │   │   │   │   ├── in_anglvel_x_raw
+ │   │   │   │   ├── in_anglvel_y_raw
+ │   │   │   │   ├── in_anglvel_z_raw
+ │   │   │   │   ├── name
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_anglvel_x_en
+ │   │   │   │   │   ├── in_anglvel_x_index
+ │   │   │   │   │   ├── in_anglvel_x_type
+ │   │   │   │   │   ├── in_anglvel_y_en
+ │   │   │   │   │   ├── in_anglvel_y_index
+ │   │   │   │   │   ├── in_anglvel_y_type
+ │   │   │   │   │   ├── in_anglvel_z_en
+ │   │   │   │   │   ├── in_anglvel_z_index
+ │   │   │   │   │   └── in_anglvel_z_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
+ │   │   │   │   ├── buffer
+ │   │   │   │   │   ├── enable
+ │   │   │   │   │   ├── length
+ │   │   │   │   │   └── watermark
+ │   │   │   │   ├── dev
+ │   │   │   │   ├── in_anglvel_hysteresis
+ │   │   │   │   ├── in_anglvel_offset
+ │   │   │   │   ├── in_anglvel_sampling_frequency
+ │   │   │   │   ├── in_anglvel_scale
+ │   │   │   │   ├── in_anglvel_x_raw
+ │   │   │   │   ├── in_anglvel_y_raw
+ │   │   │   │   ├── in_anglvel_z_raw
+ │   │   │   │   ├── name
+ │   │   │   │   ├── scan_elements
+ │   │   │   │   │   ├── in_anglvel_x_en
+ │   │   │   │   │   ├── in_anglvel_x_index
+ │   │   │   │   │   ├── in_anglvel_x_type
+ │   │   │   │   │   ├── in_anglvel_y_en
+ │   │   │   │   │   ├── in_anglvel_y_index
+ │   │   │   │   │   ├── in_anglvel_y_type
+ │   │   │   │   │   ├── in_anglvel_z_en
+ │   │   │   │   │   ├── in_anglvel_z_index
+ │   │   │   │   │   └── in_anglvel_z_type
+ │   │   │   │   ├── trigger
+ │   │   │   │   │   └── current_trigger
+ ...
diff --git a/Documentation/hid/intel-ish-hid.txt b/Documentation/hid/intel-ish-hid.txt
deleted file mode 100644
index d48b21c71ddd..000000000000
--- a/Documentation/hid/intel-ish-hid.txt
+++ /dev/null
@@ -1,454 +0,0 @@
-Intel Integrated Sensor Hub (ISH)
-===============================
-
-A sensor hub enables the ability to offload sensor polling and algorithm
-processing to a dedicated low power co-processor. This allows the core
-processor to go into low power modes more often, resulting in the increased
-battery life.
-
-There are many vendors providing external sensor hubs confirming to HID
-Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
-and embedded products. Linux had this support since Linux 3.9.
-
-Intel® introduced integrated sensor hubs as a part of the SoC starting from
-Cherry Trail and now supported on multiple generations of CPU packages. There
-are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
-These ISH also comply to HID sensor specification, but the difference is the
-transport protocol used for communication. The current external sensor hubs
-mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB.
-
-1. Overview
-
-Using a analogy with a usbhid implementation, the ISH follows a similar model
-for a very high speed communication:
-
- ----------------- ----------------------
- | USB HID | --> | ISH HID |
- ----------------- ----------------------
- ----------------- ----------------------
- | USB protocol | --> | ISH Transport |
- ----------------- ----------------------
- ----------------- ----------------------
- | EHCI/XHCI | --> | ISH IPC |
- ----------------- ----------------------
- PCI PCI
- ----------------- ----------------------
- |Host controller| --> | ISH processor |
- ----------------- ----------------------
- USB Link
- ----------------- ----------------------
- | USB End points| --> | ISH Clients |
- ----------------- ----------------------
-
-Like USB protocol provides a method for device enumeration, link management
-and user data encapsulation, the ISH also provides similar services. But it is
-very light weight tailored to manage and communicate with ISH client
-applications implemented in the firmware.
-
-The ISH allows multiple sensor management applications executing in the
-firmware. Like USB endpoints the messaging can be to/from a client. As part of
-enumeration process, these clients are identified. These clients can be simple
-HID sensor applications, sensor calibration application or senor firmware
-update application.
-
-The implementation model is similar, like USB bus, ISH transport is also
-implemented as a bus. Each client application executing in the ISH processor
-is registered as a device on this bus. The driver, which binds each device
-(ISH HID driver) identifies the device type and registers with the hid core.
-
-2. ISH Implementation: Block Diagram
-
- ---------------------------
- | User Space Applications |
- ---------------------------
-
-----------------IIO ABI----------------
- --------------------------
- | IIO Sensor Drivers |
- --------------------------
- --------------------------
- | IIO core |
- --------------------------
- --------------------------
- | HID Sensor Hub MFD |
- --------------------------
- --------------------------
- | HID Core |
- --------------------------
- --------------------------
- | HID over ISH Client |
- --------------------------
- --------------------------
- | ISH Transport (ISHTP) |
- --------------------------
- --------------------------
- | IPC Drivers |
- --------------------------
-OS
----------------- PCI -----------------
-Hardware + Firmware
- ----------------------------
- | ISH Hardware/Firmware(FW) |
- ----------------------------
-
-3. High level processing in above blocks
-
-3.1 Hardware Interface
-
-The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI
-product and vendor IDs are changed from different generations of processors. So
-the source code which enumerate drivers needs to update from generation to
-generation.
-
-3.2 Inter Processor Communication (IPC) driver
-Location: drivers/hid/intel-ish-hid/ipc
-
-The IPC message used memory mapped I/O. The registers are defined in
-hw-ish-regs.h.
-
-3.2.1 IPC/FW message types
-
-There are two types of messages, one for management of link and other messages
-are to and from transport layers.
-
-TX and RX of Transport messages
-
-A set of memory mapped register offers support of multi byte messages TX and
-RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
-internal queues to sequence messages and send them in order to the FW.
-Optionally the caller can register handler to get notification of completion.
-A door bell mechanism is used in messaging to trigger processing in host and
-client firmware side. When ISH interrupt handler is called, the ISH2HOST
-doorbell register is used by host drivers to determine that the interrupt
-is for ISH.
-
-Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
-register has the following format:
-Bits 0..6: fragment length (7 bits are used)
-Bits 10..13: encapsulated protocol
-Bits 16..19: management command (for IPC management protocol)
-Bit 31: doorbell trigger (signal H/W interrupt to the other side)
-Other bits are reserved, should be 0.
-
-3.2.2 Transport layer interface
-
-To abstract HW level IPC communication, a set of callbacks are registered.
-The transport layer uses them to send and receive messages.
-Refer to struct ishtp_hw_ops for callbacks.
-
-3.3 ISH Transport layer
-Location: drivers/hid/intel-ish-hid/ishtp/
-
-3.3.1 A Generic Transport Layer
-
-The transport layer is a bi-directional protocol, which defines:
-- Set of commands to start, stop, connect, disconnect and flow control
-(ishtp/hbm.h) for details
-- A flow control mechanism to avoid buffer overflows
-
-This protocol resembles bus messages described in the following document:
-http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
-specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer"
-
-3.3.2 Connection and Flow Control Mechanism
-
-Each FW client and a protocol is identified by an UUID. In order to communicate
-to a FW client, a connection must be established using connect request and
-response bus messages. If successful, a pair (host_client_id and fw_client_id)
-will identify the connection.
-
-Once connection is established, peers send each other flow control bus messages
-independently. Every peer may send a message only if it has received a
-flow-control credit before. Once it sent a message, it may not send another one
-before receiving the next flow control credit.
-Either side can send disconnect request bus message to end communication. Also
-the link will be dropped if major FW reset occurs.
-
-3.3.3 Peer to Peer data transfer
-
-Peer to Peer data transfer can happen with or without using DMA. Depending on
-the sensor bandwidth requirement DMA can be enabled by using module parameter
-ishtp_use_dma under intel_ishtp.
-
-Each side (host and FW) manages its DMA transfer memory independently. When an
-ISHTP client from either host or FW side wants to send something, it decides
-whether to send over IPC or over DMA; for each transfer the decision is
-independent. The sending side sends DMA_XFER message when the message is in
-the respective host buffer (TX when host client sends, RX when FW client
-sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
-the sender that the memory region for that message may be reused.
-
-DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
-(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
-Additionally to DMA address communication, this sequence checks capabilities:
-if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't
-send DMA; if FW doesn't support DMA then it won't respond with
-DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
-Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
-it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
-that it already did DMA and the message resides at host. Thus, DMA_XFER
-and DMA_XFER_ACK act as ownership indicators.
-
-At initial state all outgoing memory belongs to the sender (TX to host, RX to
-FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
-the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
-needs not wait for previous DMA_XFER to be ack'ed, and may send another message
-as long as remaining continuous memory in its ownership is enough.
-In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
-(up to IPC MTU), thus allowing for interrupt throttling.
-Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
-fragments and via IPC otherwise.
-
-3.3.4 Ring Buffers
-
-When a client initiate a connection, a ring or RX and TX buffers are allocated.
-The size of ring can be specified by the client. HID client set 16 and 32 for
-TX and RX buffers respectively. On send request from client, the data to be
-sent is copied to one of the send ring buffer and scheduled to be sent using
-bus message protocol. These buffers are required because the FW may have not
-have processed the last message and may not have enough flow control credits
-to send. Same thing holds true on receive side and flow control is required.
-
-3.3.5 Host Enumeration
-
-The host enumeration bus command allow discovery of clients present in the FW.
-There can be multiple sensor clients and clients for calibration function.
-
-To ease in implantation and allow independent driver handle each client
-this transport layer takes advantage of Linux Bus driver model. Each
-client is registered as device on the the transport bus (ishtp bus).
-
-Enumeration sequence of messages:
-- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
-- FW responds with HOST_START_RES_CMD
-- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
-- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
-client IDs
-- For each FW ID found in that bitmap host sends
-HOST_CLIENT_PROPERTIES_REQ_CMD
-- FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
-max ISHTP message size, etc.
-- Once host received properties for that last discovered client, it considers
-ISHTP device fully functional (and allocates DMA buffers)
-
-3.4 HID over ISH Client
-Location: drivers/hid/intel-ish-hid
-
-The ISHTP client driver is responsible for:
-- enumerate HID devices under FW ISH client
-- Get Report descriptor
-- Register with HID core as a LL driver
-- Process Get/Set feature request
-- Get input reports
-
-3.5 HID Sensor Hub MFD and IIO sensor drivers
-
-The functionality in these drivers is the same as an external sensor hub.
-Refer to
-Documentation/hid/hid-sensor.txt for HID sensor
-Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
-
-3.6 End to End HID transport Sequence Diagram
-
-HID-ISH-CLN ISHTP IPC HW
- | | | |
- | | |-----WAKE UP------------------>|
- | | | |
- | | |-----HOST READY--------------->|
- | | | |
- | | |<----MNG_RESET_NOTIFY_ACK----- |
- | | | |
- | |<----ISHTP_START------ | |
- | | | |
- | |<-----------------HOST_START_RES_CMD-------------------|
- | | | |
- | |------------------QUERY_SUBSCRIBER-------------------->|
- | | | |
- | |------------------HOST_ENUM_REQ_CMD------------------->|
- | | | |
- | |<-----------------HOST_ENUM_RES_CMD--------------------|
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--|
- | | | |
- probed()
- |----ishtp_cl_connect-->|----------------- CLIENT_CONNECT_REQ_CMD-------------->|
- | | | |
- | |<----------------CLIENT_CONNECT_RES_CMD----------------|
- | | | |
- |register event callback| | |
- | | | |
- |ishtp_cl_send(
- HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >|
- | | | |
- | | |<-----IRQ(IPC_PROTOCOL_ISHTP---|
- | | | |
- |<--ENUM_DEVICE RSP-----| | |
- | | | |
-for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_HID_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW--- >|
- | | | |
- ...Response
- | | | |
-for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_REPORT_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW- >|
- | | | |
- | | | |
- hid_allocate_device
- | | | |
- hid_add_device | | |
- | | | |
-
-
-3.7 ISH Debugging
-
-To debug ISH, event tracing mechanism is used. To enable debug logs
-echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
-cat sys/kernel/debug/tracing/trace
-
-3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
-
-root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
-/sys/bus/iio/devices/
-├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
-│   ├── buffer
-│   │   ├── enable
-│   │   ├── length
-│   │   └── watermark
-...
-│   ├── in_accel_hysteresis
-│   ├── in_accel_offset
-│   ├── in_accel_sampling_frequency
-│   ├── in_accel_scale
-│   ├── in_accel_x_raw
-│   ├── in_accel_y_raw
-│   ├── in_accel_z_raw
-│   ├── name
-│   ├── scan_elements
-│   │   ├── in_accel_x_en
-│   │   ├── in_accel_x_index
-│   │   ├── in_accel_x_type
-│   │   ├── in_accel_y_en
-│   │   ├── in_accel_y_index
-│   │   ├── in_accel_y_type
-│   │   ├── in_accel_z_en
-│   │   ├── in_accel_z_index
-│   │   └── in_accel_z_type
-...
-│   │   ├── devices
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_intensity_both_raw
-│   │   │   │   ├── in_intensity_hysteresis
-│   │   │   │   ├── in_intensity_offset
-│   │   │   │   ├── in_intensity_sampling_frequency
-│   │   │   │   ├── in_intensity_scale
-│   │   │   │   ├── name
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_intensity_both_en
-│   │   │   │   │   ├── in_intensity_both_index
-│   │   │   │   │   └── in_intensity_both_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_magn_hysteresis
-│   │   │   │   ├── in_magn_offset
-│   │   │   │   ├── in_magn_sampling_frequency
-│   │   │   │   ├── in_magn_scale
-│   │   │   │   ├── in_magn_x_raw
-│   │   │   │   ├── in_magn_y_raw
-│   │   │   │   ├── in_magn_z_raw
-│   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_raw
-│   │   │   │   ├── in_rot_hysteresis
-│   │   │   │   ├── in_rot_offset
-│   │   │   │   ├── in_rot_sampling_frequency
-│   │   │   │   ├── in_rot_scale
-│   │   │   │   ├── name
-...
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_magn_x_en
-│   │   │   │   │   ├── in_magn_x_index
-│   │   │   │   │   ├── in_magn_x_type
-│   │   │   │   │   ├── in_magn_y_en
-│   │   │   │   │   ├── in_magn_y_index
-│   │   │   │   │   ├── in_magn_y_type
-│   │   │   │   │   ├── in_magn_z_en
-│   │   │   │   │   ├── in_magn_z_index
-│   │   │   │   │   ├── in_magn_z_type
-│   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_en
-│   │   │   │   │   ├── in_rot_from_north_magnetic_tilt_comp_index
-│   │   │   │   │   └── in_rot_from_north_magnetic_tilt_comp_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_anglvel_hysteresis
-│   │   │   │   ├── in_anglvel_offset
-│   │   │   │   ├── in_anglvel_sampling_frequency
-│   │   │   │   ├── in_anglvel_scale
-│   │   │   │   ├── in_anglvel_x_raw
-│   │   │   │   ├── in_anglvel_y_raw
-│   │   │   │   ├── in_anglvel_z_raw
-│   │   │   │   ├── name
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_anglvel_x_en
-│   │   │   │   │   ├── in_anglvel_x_index
-│   │   │   │   │   ├── in_anglvel_x_type
-│   │   │   │   │   ├── in_anglvel_y_en
-│   │   │   │   │   ├── in_anglvel_y_index
-│   │   │   │   │   ├── in_anglvel_y_type
-│   │   │   │   │   ├── in_anglvel_z_en
-│   │   │   │   │   ├── in_anglvel_z_index
-│   │   │   │   │   └── in_anglvel_z_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
-│   │   │   │   ├── buffer
-│   │   │   │   │   ├── enable
-│   │   │   │   │   ├── length
-│   │   │   │   │   └── watermark
-│   │   │   │   ├── dev
-│   │   │   │   ├── in_anglvel_hysteresis
-│   │   │   │   ├── in_anglvel_offset
-│   │   │   │   ├── in_anglvel_sampling_frequency
-│   │   │   │   ├── in_anglvel_scale
-│   │   │   │   ├── in_anglvel_x_raw
-│   │   │   │   ├── in_anglvel_y_raw
-│   │   │   │   ├── in_anglvel_z_raw
-│   │   │   │   ├── name
-│   │   │   │   ├── scan_elements
-│   │   │   │   │   ├── in_anglvel_x_en
-│   │   │   │   │   ├── in_anglvel_x_index
-│   │   │   │   │   ├── in_anglvel_x_type
-│   │   │   │   │   ├── in_anglvel_y_en
-│   │   │   │   │   ├── in_anglvel_y_index
-│   │   │   │   │   ├── in_anglvel_y_type
-│   │   │   │   │   ├── in_anglvel_z_en
-│   │   │   │   │   ├── in_anglvel_z_index
-│   │   │   │   │   └── in_anglvel_z_type
-│   │   │   │   ├── trigger
-│   │   │   │   │   └── current_trigger
-...
diff --git a/Documentation/hid/uhid.txt b/Documentation/hid/uhid.rst
index 958fff945304..b18cb96c885f 100644
--- a/Documentation/hid/uhid.txt
+++ b/Documentation/hid/uhid.rst
@@ -1,5 +1,6 @@
- UHID - User-space I/O driver support for HID subsystem
- ========================================================
+======================================================
+UHID - User-space I/O driver support for HID subsystem
+======================================================
UHID allows user-space to implement HID transport drivers. Please see
hid-transport.txt for an introduction into HID transport drivers. This document
@@ -22,9 +23,9 @@ If a new device is detected by your HID I/O Driver and you want to register this
device with the HID subsystem, then you need to open /dev/uhid once for each
device you want to register. All further communication is done by read()'ing or
write()'ing "struct uhid_event" objects. Non-blocking operations are supported
-by setting O_NONBLOCK.
+by setting O_NONBLOCK::
-struct uhid_event {
+ struct uhid_event {
__u32 type;
union {
struct uhid_create2_req create2;
@@ -32,7 +33,7 @@ struct uhid_event {
struct uhid_input2_req input2;
...
} u;
-};
+ };
The "type" field contains the ID of the event. Depending on the ID different
payloads are sent. You must not split a single event across multiple read()'s or
@@ -86,31 +87,31 @@ the request was handled successfully. O_NONBLOCK does not affect write() as
writes are always handled immediately in a non-blocking fashion. Future requests
might make use of O_NONBLOCK, though.
- UHID_CREATE2:
+UHID_CREATE2:
This creates the internal HID device. No I/O is possible until you send this
event to the kernel. The payload is of type struct uhid_create2_req and
contains information about your device. You can start I/O now.
- UHID_DESTROY:
+UHID_DESTROY:
This destroys the internal HID device. No further I/O will be accepted. There
may still be pending messages that you can receive with read() but no further
UHID_INPUT events can be sent to the kernel.
You can create a new device by sending UHID_CREATE2 again. There is no need to
reopen the character device.
- UHID_INPUT2:
+UHID_INPUT2:
You must send UHID_CREATE2 before sending input to the kernel! This event
contains a data-payload. This is the raw data that you read from your device
on the interrupt channel. The kernel will parse the HID reports.
- UHID_GET_REPORT_REPLY:
+UHID_GET_REPORT_REPLY:
If you receive a UHID_GET_REPORT request you must answer with this request.
You must copy the "id" field from the request into the answer. Set the "err"
field to 0 if no error occurred or to EIO if an I/O error occurred.
If "err" is 0 then you should fill the buffer of the answer with the results
of the GET_REPORT request and set "size" correspondingly.
- UHID_SET_REPORT_REPLY:
+UHID_SET_REPORT_REPLY:
This is the SET_REPORT equivalent of UHID_GET_REPORT_REPLY. Unlike GET_REPORT,
SET_REPORT never returns a data buffer, therefore, it's sufficient to set the
"id" and "err" fields correctly.
@@ -120,16 +121,18 @@ read()
read() will return a queued output report. No reaction is required to any of
them but you should handle them according to your needs.
- UHID_START:
+UHID_START:
This is sent when the HID device is started. Consider this as an answer to
UHID_CREATE2. This is always the first event that is sent. Note that this
event might not be available immediately after write(UHID_CREATE2) returns.
Device drivers might required delayed setups.
This event contains a payload of type uhid_start_req. The "dev_flags" field
describes special behaviors of a device. The following flags are defined:
- UHID_DEV_NUMBERED_FEATURE_REPORTS:
- UHID_DEV_NUMBERED_OUTPUT_REPORTS:
- UHID_DEV_NUMBERED_INPUT_REPORTS:
+
+ - UHID_DEV_NUMBERED_FEATURE_REPORTS
+ - UHID_DEV_NUMBERED_OUTPUT_REPORTS
+ - UHID_DEV_NUMBERED_INPUT_REPORTS
+
Each of these flags defines whether a given report-type uses numbered
reports. If numbered reports are used for a type, all messages from
the kernel already have the report-number as prefix. Otherwise, no
@@ -137,33 +140,35 @@ them but you should handle them according to your needs.
For messages sent by user-space to the kernel, you must adjust the
prefixes according to these flags.
- UHID_STOP:
+UHID_STOP:
This is sent when the HID device is stopped. Consider this as an answer to
UHID_DESTROY.
+
If you didn't destroy your device via UHID_DESTROY, but the kernel sends an
UHID_STOP event, this should usually be ignored. It means that the kernel
reloaded/changed the device driver loaded on your HID device (or some other
maintenance actions happened).
+
You can usually ignored any UHID_STOP events safely.
- UHID_OPEN:
+UHID_OPEN:
This is sent when the HID device is opened. That is, the data that the HID
device provides is read by some other process. You may ignore this event but
it is useful for power-management. As long as you haven't received this event
there is actually no other process that reads your data so there is no need to
send UHID_INPUT2 events to the kernel.
- UHID_CLOSE:
+UHID_CLOSE:
This is sent when there are no more processes which read the HID data. It is
the counterpart of UHID_OPEN and you may as well ignore this event.
- UHID_OUTPUT:
+UHID_OUTPUT:
This is sent if the HID device driver wants to send raw data to the I/O
device on the interrupt channel. You should read the payload and forward it to
the device. The payload is of type "struct uhid_output_req".
This may be received even though you haven't received UHID_OPEN, yet.
- UHID_GET_REPORT:
+UHID_GET_REPORT:
This event is sent if the kernel driver wants to perform a GET_REPORT request
on the control channeld as described in the HID specs. The report-type and
report-number are available in the payload.
@@ -177,11 +182,12 @@ them but you should handle them according to your needs.
timed out, the kernel will ignore the response silently. The "id" field is
never re-used, so conflicts cannot happen.
- UHID_SET_REPORT:
+UHID_SET_REPORT:
This is the SET_REPORT equivalent of UHID_GET_REPORT. On receipt, you shall
send a SET_REPORT request to your hid device. Once it replies, you must tell
the kernel about it via UHID_SET_REPORT_REPLY.
The same restrictions as for UHID_GET_REPORT apply.
----------------------------------------------------
+
Written 2012, David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/hwmon/adm1021.rst b/Documentation/hwmon/adm1021.rst
index 6cbb0f75fe00..116fb2019956 100644
--- a/Documentation/hwmon/adm1021.rst
+++ b/Documentation/hwmon/adm1021.rst
@@ -142,7 +142,7 @@ loading the adm1021 module, then things are good.
If nothing happens when loading the adm1021 module, and you are certain
that your specific Xeon processor model includes compatible sensors, you
will have to explicitly instantiate the sensor chips from user-space. See
-method 4 in Documentation/i2c/instantiating-devices. Possible slave
+method 4 in Documentation/i2c/instantiating-devices.rst. Possible slave
addresses are 0x18, 0x1a, 0x29, 0x2b, 0x4c, or 0x4e. It is likely that
only temp2 will be correct and temp1 will have to be ignored.
diff --git a/Documentation/hwmon/adm1275.rst b/Documentation/hwmon/adm1275.rst
index 9a1913e5b4d9..49966ed70ec6 100644
--- a/Documentation/hwmon/adm1275.rst
+++ b/Documentation/hwmon/adm1275.rst
@@ -75,7 +75,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
The ADM1075, unlike many other PMBus devices, does not support internal voltage
diff --git a/Documentation/hwmon/ads1015.rst b/Documentation/hwmon/ads1015.rst
deleted file mode 100644
index e0951c4e57bb..000000000000
--- a/Documentation/hwmon/ads1015.rst
+++ /dev/null
@@ -1,90 +0,0 @@
-Kernel driver ads1015
-=====================
-
-Supported chips:
-
- * Texas Instruments ADS1015
-
- Prefix: 'ads1015'
-
- Datasheet: Publicly available at the Texas Instruments website:
-
- http://focus.ti.com/lit/ds/symlink/ads1015.pdf
-
- * Texas Instruments ADS1115
-
- Prefix: 'ads1115'
-
- Datasheet: Publicly available at the Texas Instruments website:
-
- http://focus.ti.com/lit/ds/symlink/ads1115.pdf
-
-Authors:
- Dirk Eibach, Guntermann & Drunck GmbH <eibach@gdsys.de>
-
-Description
------------
-
-This driver implements support for the Texas Instruments ADS1015/ADS1115.
-
-This device is a 12/16-bit A-D converter with 4 inputs.
-
-The inputs can be used single ended or in certain differential combinations.
-
-The inputs can be made available by 8 sysfs input files in0_input - in7_input:
-
- - in0: Voltage over AIN0 and AIN1.
- - in1: Voltage over AIN0 and AIN3.
- - in2: Voltage over AIN1 and AIN3.
- - in3: Voltage over AIN2 and AIN3.
- - in4: Voltage over AIN0 and GND.
- - in5: Voltage over AIN1 and GND.
- - in6: Voltage over AIN2 and GND.
- - in7: Voltage over AIN3 and GND.
-
-Which inputs are available can be configured using platform data or devicetree.
-
-By default all inputs are exported.
-
-Platform Data
--------------
-
-In linux/platform_data/ads1015.h platform data is defined, channel_data contains
-configuration data for the used input combinations:
-
-- pga is the programmable gain amplifier (values are full scale)
-
- - 0: +/- 6.144 V
- - 1: +/- 4.096 V
- - 2: +/- 2.048 V
- - 3: +/- 1.024 V
- - 4: +/- 0.512 V
- - 5: +/- 0.256 V
-
-- data_rate in samples per second
-
- - 0: 128
- - 1: 250
- - 2: 490
- - 3: 920
- - 4: 1600
- - 5: 2400
- - 6: 3300
-
-Example::
-
- struct ads1015_platform_data data = {
- .channel_data = {
- [2] = { .enabled = true, .pga = 1, .data_rate = 0 },
- [4] = { .enabled = true, .pga = 4, .data_rate = 5 },
- }
- };
-
-In this case only in2_input (FS +/- 4.096 V, 128 SPS) and in4_input
-(FS +/- 0.512 V, 2400 SPS) would be created.
-
-Devicetree
-----------
-
-Configuration is also possible via devicetree:
-Documentation/devicetree/bindings/hwmon/ads1015.txt
diff --git a/Documentation/hwmon/hih6130.rst b/Documentation/hwmon/hih6130.rst
index 649bd4be4fc2..e95d373eb693 100644
--- a/Documentation/hwmon/hih6130.rst
+++ b/Documentation/hwmon/hih6130.rst
@@ -27,7 +27,7 @@ The devices communicate with the I2C protocol. All sensors are set to the same
I2C address 0x27 by default, so an entry with I2C_BOARD_INFO("hih6130", 0x27)
can be used in the board setup code.
-Please see Documentation/i2c/instantiating-devices for details on how to
+Please see Documentation/i2c/instantiating-devices.rst for details on how to
instantiate I2C devices.
sysfs-Interface
diff --git a/Documentation/hwmon/ibm-cffps.rst b/Documentation/hwmon/ibm-cffps.rst
index 52e74e39463a..ef8f3f806968 100644
--- a/Documentation/hwmon/ibm-cffps.rst
+++ b/Documentation/hwmon/ibm-cffps.rst
@@ -17,7 +17,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
Sysfs entries
diff --git a/Documentation/hwmon/index.rst b/Documentation/hwmon/index.rst
index ee090e51653a..8147c3f218bf 100644
--- a/Documentation/hwmon/index.rst
+++ b/Documentation/hwmon/index.rst
@@ -30,7 +30,6 @@ Hardware Monitoring Kernel Drivers
adm1031
adm1275
adm9240
- ads1015
ads7828
adt7410
adt7411
@@ -130,6 +129,7 @@ Hardware Monitoring Kernel Drivers
pcf8591
pmbus
powr1220
+ pxe1610
pwm-fan
raspberrypi-hwmon
sch5627
diff --git a/Documentation/hwmon/inspur-ipsps1.rst b/Documentation/hwmon/inspur-ipsps1.rst
new file mode 100644
index 000000000000..2b871ae3448f
--- /dev/null
+++ b/Documentation/hwmon/inspur-ipsps1.rst
@@ -0,0 +1,79 @@
+Kernel driver inspur-ipsps1
+=======================
+
+Supported chips:
+
+ * Inspur Power System power supply unit
+
+Author: John Wang <wangzqbj@inspur.com>
+
+Description
+-----------
+
+This driver supports Inspur Power System power supplies. This driver
+is a client to the core PMBus driver.
+
+Usage Notes
+-----------
+
+This driver does not auto-detect devices. You will have to instantiate the
+devices explicitly. Please see Documentation/i2c/instantiating-devices for
+details.
+
+Sysfs entries
+-------------
+
+The following attributes are supported:
+
+======================= ======================================================
+curr1_input Measured input current
+curr1_label "iin"
+curr1_max Maximum current
+curr1_max_alarm Current high alarm
+curr2_input Measured output current in mA.
+curr2_label "iout1"
+curr2_crit Critical maximum current
+curr2_crit_alarm Current critical high alarm
+curr2_max Maximum current
+curr2_max_alarm Current high alarm
+
+fan1_alarm Fan 1 warning.
+fan1_fault Fan 1 fault.
+fan1_input Fan 1 speed in RPM.
+
+in1_alarm Input voltage under-voltage alarm.
+in1_input Measured input voltage in mV.
+in1_label "vin"
+in2_input Measured output voltage in mV.
+in2_label "vout1"
+in2_lcrit Critical minimum output voltage
+in2_lcrit_alarm Output voltage critical low alarm
+in2_max Maximum output voltage
+in2_max_alarm Output voltage high alarm
+in2_min Minimum output voltage
+in2_min_alarm Output voltage low alarm
+
+power1_alarm Input fault or alarm.
+power1_input Measured input power in uW.
+power1_label "pin"
+power1_max Input power limit
+power2_max_alarm Output power high alarm
+power2_max Output power limit
+power2_input Measured output power in uW.
+power2_label "pout"
+
+temp[1-3]_input Measured temperature
+temp[1-2]_max Maximum temperature
+temp[1-3]_max_alarm Temperature high alarm
+
+vendor Manufacturer name
+model Product model
+part_number Product part number
+serial_number Product serial number
+fw_version Firmware version
+hw_version Hardware version
+mode Work mode. Can be set to active or
+ standby, when set to standby, PSU will
+ automatically switch between standby
+ and redundancy mode.
+======================= ======================================================
diff --git a/Documentation/hwmon/k8temp.rst b/Documentation/hwmon/k8temp.rst
index 72da12aa17e5..fe9109521056 100644
--- a/Documentation/hwmon/k8temp.rst
+++ b/Documentation/hwmon/k8temp.rst
@@ -9,7 +9,7 @@ Supported chips:
Addresses scanned: PCI space
- Datasheet: http://support.amd.com/us/Processor_TechDocs/32559.pdf
+ Datasheet: http://www.amd.com/system/files/TechDocs/32559.pdf
Author: Rudolf Marek
diff --git a/Documentation/hwmon/lm25066.rst b/Documentation/hwmon/lm25066.rst
index da15e3094c8c..30e6e77fb3c8 100644
--- a/Documentation/hwmon/lm25066.rst
+++ b/Documentation/hwmon/lm25066.rst
@@ -76,7 +76,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
diff --git a/Documentation/hwmon/lm75.rst b/Documentation/hwmon/lm75.rst
index ba8acbd2a6cb..e749f827c002 100644
--- a/Documentation/hwmon/lm75.rst
+++ b/Documentation/hwmon/lm75.rst
@@ -119,9 +119,9 @@ Supported chips:
http://www.ti.com/product/tmp275
- * NXP LM75B
+ * NXP LM75B, PCT2075
- Prefix: 'lm75b'
+ Prefix: 'lm75b', 'pct2075'
Addresses scanned: none
@@ -129,6 +129,8 @@ Supported chips:
http://www.nxp.com/documents/data_sheet/LM75B.pdf
+ http://www.nxp.com/docs/en/data-sheet/PCT2075.pdf
+
Author: Frodo Looijaard <frodol@dds.nl>
Description
diff --git a/Documentation/hwmon/max16064.rst b/Documentation/hwmon/max16064.rst
index 6d5e9538991f..c06249292557 100644
--- a/Documentation/hwmon/max16064.rst
+++ b/Documentation/hwmon/max16064.rst
@@ -28,7 +28,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
diff --git a/Documentation/hwmon/max16065.rst b/Documentation/hwmon/max16065.rst
index fa5c852a178c..45f69f334f25 100644
--- a/Documentation/hwmon/max16065.rst
+++ b/Documentation/hwmon/max16065.rst
@@ -79,7 +79,7 @@ Usage Notes
This driver does not probe for devices, since there is no register which
can be safely used to identify the chip. You will have to instantiate
-the devices explicitly. Please see Documentation/i2c/instantiating-devices for
+the devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
WARNING: Do not access chip registers using the i2cdump command, and do not use
diff --git a/Documentation/hwmon/max20751.rst b/Documentation/hwmon/max20751.rst
index aa4469be6674..fe701e07eaf5 100644
--- a/Documentation/hwmon/max20751.rst
+++ b/Documentation/hwmon/max20751.rst
@@ -30,7 +30,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
diff --git a/Documentation/hwmon/max34440.rst b/Documentation/hwmon/max34440.rst
index 939138e12b02..5744df100a5d 100644
--- a/Documentation/hwmon/max34440.rst
+++ b/Documentation/hwmon/max34440.rst
@@ -83,7 +83,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
For MAX34446, the value of the currX_crit attribute determines if current or
diff --git a/Documentation/hwmon/max6650.rst b/Documentation/hwmon/max6650.rst
index 253482add082..7952b6ecaa2d 100644
--- a/Documentation/hwmon/max6650.rst
+++ b/Documentation/hwmon/max6650.rst
@@ -55,7 +55,7 @@ Usage notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
Module parameters
diff --git a/Documentation/hwmon/max8688.rst b/Documentation/hwmon/max8688.rst
index 009487759c61..71e7f2cbe2e2 100644
--- a/Documentation/hwmon/max8688.rst
+++ b/Documentation/hwmon/max8688.rst
@@ -28,7 +28,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
diff --git a/Documentation/hwmon/menf21bmc.rst b/Documentation/hwmon/menf21bmc.rst
index 1f0c6b2235ab..978691d5956d 100644
--- a/Documentation/hwmon/menf21bmc.rst
+++ b/Documentation/hwmon/menf21bmc.rst
@@ -28,7 +28,7 @@ Usage Notes
This driver is part of the MFD driver named "menf21bmc" and does
not auto-detect devices.
You will have to instantiate the MFD driver explicitly.
-Please see Documentation/i2c/instantiating-devices for
+Please see Documentation/i2c/instantiating-devices.rst for
details.
Sysfs entries
diff --git a/Documentation/hwmon/pcf8591.rst b/Documentation/hwmon/pcf8591.rst
index e98bd542a441..5c4e85f53177 100644
--- a/Documentation/hwmon/pcf8591.rst
+++ b/Documentation/hwmon/pcf8591.rst
@@ -68,7 +68,7 @@ Accessing PCF8591 via /sys interface
The PCF8591 is plainly impossible to detect! Thus the driver won't even
try. You have to explicitly instantiate the device at the relevant
address (in the interval [0x48..0x4f]) either through platform data, or
-using the sysfs interface. See Documentation/i2c/instantiating-devices
+using the sysfs interface. See Documentation/i2c/instantiating-devices.rst
for details.
Directories are being created for each instantiated PCF8591:
diff --git a/Documentation/hwmon/pxe1610.rst b/Documentation/hwmon/pxe1610.rst
new file mode 100644
index 000000000000..4f2388840d06
--- /dev/null
+++ b/Documentation/hwmon/pxe1610.rst
@@ -0,0 +1,107 @@
+Kernel driver pxe1610
+=====================
+
+Supported chips:
+
+ * Infineon PXE1610
+
+ Prefix: 'pxe1610'
+
+ Addresses scanned: -
+
+ Datasheet: Datasheet is not publicly available.
+
+ * Infineon PXE1110
+
+ Prefix: 'pxe1110'
+
+ Addresses scanned: -
+
+ Datasheet: Datasheet is not publicly available.
+
+ * Infineon PXM1310
+
+ Prefix: 'pxm1310'
+
+ Addresses scanned: -
+
+ Datasheet: Datasheet is not publicly available.
+
+Author: Vijay Khemka <vijaykhemka@fb.com>
+
+
+Description
+-----------
+
+PXE1610/PXE1110 are Multi-rail/Multiphase Digital Controllers
+and compliant to
+
+ - Intel VR13 DC-DC converter specifications.
+ - Intel SVID protocol.
+
+Used for Vcore power regulation for Intel VR13 based microprocessors
+
+ - Servers, Workstations, and High-end desktops
+
+PXM1310 is a Multi-rail Controller and it is compliant to
+
+ - Intel VR13 DC-DC converter specifications.
+ - Intel SVID protocol.
+
+Used for DDR3/DDR4 Memory power regulation for Intel VR13 and
+IMVP8 based systems
+
+
+Usage Notes
+-----------
+
+This driver does not probe for PMBus devices. You will have
+to instantiate devices explicitly.
+
+Example: the following commands will load the driver for an PXE1610
+at address 0x70 on I2C bus #4::
+
+ # modprobe pxe1610
+ # echo pxe1610 0x70 > /sys/bus/i2c/devices/i2c-4/new_device
+
+It can also be instantiated by declaring in device tree
+
+
+Sysfs attributes
+----------------
+
+====================== ====================================
+curr1_label "iin"
+curr1_input Measured input current
+curr1_alarm Current high alarm
+
+curr[2-4]_label "iout[1-3]"
+curr[2-4]_input Measured output current
+curr[2-4]_crit Critical maximum current
+curr[2-4]_crit_alarm Current critical high alarm
+
+in1_label "vin"
+in1_input Measured input voltage
+in1_crit Critical maximum input voltage
+in1_crit_alarm Input voltage critical high alarm
+
+in[2-4]_label "vout[1-3]"
+in[2-4]_input Measured output voltage
+in[2-4]_lcrit Critical minimum output voltage
+in[2-4]_lcrit_alarm Output voltage critical low alarm
+in[2-4]_crit Critical maximum output voltage
+in[2-4]_crit_alarm Output voltage critical high alarm
+
+power1_label "pin"
+power1_input Measured input power
+power1_alarm Input power high alarm
+
+power[2-4]_label "pout[1-3]"
+power[2-4]_input Measured output power
+
+temp[1-3]_input Measured temperature
+temp[1-3]_crit Critical high temperature
+temp[1-3]_crit_alarm Chip temperature critical high alarm
+temp[1-3]_max Maximum temperature
+temp[1-3]_max_alarm Chip temperature high alarm
+====================== ====================================
diff --git a/Documentation/hwmon/sht3x.rst b/Documentation/hwmon/sht3x.rst
index 978a7117e4b2..95a850d5b2c1 100644
--- a/Documentation/hwmon/sht3x.rst
+++ b/Documentation/hwmon/sht3x.rst
@@ -26,7 +26,7 @@ scaled by 1000, i.e. the value for 31.5 degrees celsius is 31500.
The device communicates with the I2C protocol. Sensors can have the I2C
addresses 0x44 or 0x45, depending on the wiring. See
-Documentation/i2c/instantiating-devices for methods to instantiate the device.
+Documentation/i2c/instantiating-devices.rst for methods to instantiate the device.
There are two options configurable by means of sht3x_platform_data:
diff --git a/Documentation/hwmon/shtc1.rst b/Documentation/hwmon/shtc1.rst
index aa116332ba26..08380f21ab6a 100644
--- a/Documentation/hwmon/shtc1.rst
+++ b/Documentation/hwmon/shtc1.rst
@@ -19,7 +19,17 @@ Supported chips:
Addresses scanned: none
- Datasheet: Not publicly available
+ Datasheet: http://www.sensirion.com/file/datasheet_shtw1
+
+
+
+ * Sensirion SHTC3
+
+ Prefix: 'shtc3'
+
+ Addresses scanned: none
+
+ Datasheet: http://www.sensirion.com/file/datasheet_shtc3
@@ -30,13 +40,12 @@ Author:
Description
-----------
-This driver implements support for the Sensirion SHTC1 chip, a humidity and
-temperature sensor. Temperature is measured in degrees celsius, relative
-humidity is expressed as a percentage. Driver can be used as well for SHTW1
-chip, which has the same electrical interface.
+This driver implements support for the Sensirion SHTC1, SHTW1, and SHTC3
+chips, a humidity and temperature sensor. Temperature is measured in degrees
+celsius, relative humidity is expressed as a percentage.
The device communicates with the I2C protocol. All sensors are set to I2C
-address 0x70. See Documentation/i2c/instantiating-devices for methods to
+address 0x70. See Documentation/i2c/instantiating-devices.rst for methods to
instantiate the device.
There are two options configurable by means of shtc1_platform_data:
diff --git a/Documentation/hwmon/submitting-patches.rst b/Documentation/hwmon/submitting-patches.rst
index f9796b9d9db6..9a218ea996d8 100644
--- a/Documentation/hwmon/submitting-patches.rst
+++ b/Documentation/hwmon/submitting-patches.rst
@@ -20,6 +20,10 @@ increase the chances of your change being accepted.
errors, no warnings, and few if any check messages. If there are any
messages, please be prepared to explain.
+* Please use the standard multi-line comment style. Do not mix C and C++
+ style comments in a single driver (with the exception of the SPDX license
+ identifier).
+
* If your patch generates checkpatch errors, warnings, or check messages,
please refrain from explanations such as "I prefer that coding style".
Keep in mind that each unnecessary message helps hiding a real problem,
@@ -89,7 +93,7 @@ increase the chances of your change being accepted.
console. Excessive logging can seriously affect system performance.
* Use devres functions whenever possible to allocate resources. For rationale
- and supported functions, please see Documentation/driver-model/devres.txt.
+ and supported functions, please see Documentation/driver-api/driver-model/devres.rst.
If a function is not supported by devres, consider using devm_add_action().
* If the driver has a detect function, make sure it is silent. Debug messages
@@ -120,8 +124,8 @@ increase the chances of your change being accepted.
completely initialize your chip and your driver first, then register with
the hwmon subsystem.
-* Use devm_hwmon_device_register_with_groups() or, if your driver needs a remove
- function, hwmon_device_register_with_groups() to register your driver with the
+* Use devm_hwmon_device_register_with_info() or, if your driver needs a remove
+ function, hwmon_device_register_with_info() to register your driver with the
hwmon subsystem. Try using devm_add_action() instead of a remove function if
possible. Do not use hwmon_device_register().
diff --git a/Documentation/hwmon/tmp103.rst b/Documentation/hwmon/tmp103.rst
index 15d25806d585..205de6148fcb 100644
--- a/Documentation/hwmon/tmp103.rst
+++ b/Documentation/hwmon/tmp103.rst
@@ -30,4 +30,4 @@ The driver provides the common sysfs-interface for temperatures (see
Documentation/hwmon/sysfs-interface.rst under Temperatures).
Please refer how to instantiate this driver:
-Documentation/i2c/instantiating-devices
+Documentation/i2c/instantiating-devices.rst
diff --git a/Documentation/hwmon/tps40422.rst b/Documentation/hwmon/tps40422.rst
index b691e30479dd..8fe3e1c3572e 100644
--- a/Documentation/hwmon/tps40422.rst
+++ b/Documentation/hwmon/tps40422.rst
@@ -28,7 +28,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
diff --git a/Documentation/hwmon/ucd9000.rst b/Documentation/hwmon/ucd9000.rst
index ebc4f2b3bfea..746f21fcb48c 100644
--- a/Documentation/hwmon/ucd9000.rst
+++ b/Documentation/hwmon/ucd9000.rst
@@ -64,7 +64,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
diff --git a/Documentation/hwmon/ucd9200.rst b/Documentation/hwmon/ucd9200.rst
index b819dfd75f71..4f0e7c3ca6f4 100644
--- a/Documentation/hwmon/ucd9200.rst
+++ b/Documentation/hwmon/ucd9200.rst
@@ -40,7 +40,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
diff --git a/Documentation/hwmon/via686a.rst b/Documentation/hwmon/via686a.rst
index a343c35df740..7ab9ddebcf79 100644
--- a/Documentation/hwmon/via686a.rst
+++ b/Documentation/hwmon/via686a.rst
@@ -40,7 +40,7 @@ all as a 686A.
The Via 686a southbridge has integrated hardware monitor functionality.
It also has an I2C bus, but this driver only supports the hardware monitor.
-For the I2C bus driver, see <file:Documentation/i2c/busses/i2c-viapro>
+For the I2C bus driver, see <file:Documentation/i2c/busses/i2c-viapro.rst>
The Via 686a implements three temperature sensors, two fan rotation speed
sensors, five voltage sensors and alarms.
diff --git a/Documentation/hwmon/zl6100.rst b/Documentation/hwmon/zl6100.rst
index 41513bb7fe51..968aff10ce0a 100644
--- a/Documentation/hwmon/zl6100.rst
+++ b/Documentation/hwmon/zl6100.rst
@@ -121,7 +121,7 @@ Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
-devices explicitly. Please see Documentation/i2c/instantiating-devices for
+devices explicitly. Please see Documentation/i2c/instantiating-devices.rst for
details.
.. warning::
diff --git a/Documentation/hwspinlock.txt b/Documentation/hwspinlock.txt
index ed640a278185..6f03713b7003 100644
--- a/Documentation/hwspinlock.txt
+++ b/Documentation/hwspinlock.txt
@@ -136,6 +136,39 @@ The function will never sleep.
::
+ int hwspin_lock_timeout_raw(struct hwspinlock *hwlock, unsigned int timeout);
+
+Lock a previously-assigned hwspinlock with a timeout limit (specified in
+msecs). If the hwspinlock is already taken, the function will busy loop
+waiting for it to be released, but give up when the timeout elapses.
+
+Caution: User must protect the routine of getting hardware lock with mutex
+or spinlock to avoid dead-lock, that will let user can do some time-consuming
+or sleepable operations under the hardware lock.
+
+Returns 0 when successful and an appropriate error code otherwise (most
+notably -ETIMEDOUT if the hwspinlock is still busy after timeout msecs).
+
+The function will never sleep.
+
+::
+
+ int hwspin_lock_timeout_in_atomic(struct hwspinlock *hwlock, unsigned int to);
+
+Lock a previously-assigned hwspinlock with a timeout limit (specified in
+msecs). If the hwspinlock is already taken, the function will busy loop
+waiting for it to be released, but give up when the timeout elapses.
+
+This function shall be called only from an atomic context and the timeout
+value shall not exceed a few msecs.
+
+Returns 0 when successful and an appropriate error code otherwise (most
+notably -ETIMEDOUT if the hwspinlock is still busy after timeout msecs).
+
+The function will never sleep.
+
+::
+
int hwspin_trylock(struct hwspinlock *hwlock);
@@ -186,6 +219,34 @@ The function will never sleep.
::
+ int hwspin_trylock_raw(struct hwspinlock *hwlock);
+
+Attempt to lock a previously-assigned hwspinlock, but immediately fail if
+it is already taken.
+
+Caution: User must protect the routine of getting hardware lock with mutex
+or spinlock to avoid dead-lock, that will let user can do some time-consuming
+or sleepable operations under the hardware lock.
+
+Returns 0 on success and an appropriate error code otherwise (most
+notably -EBUSY if the hwspinlock was already taken).
+The function will never sleep.
+
+::
+
+ int hwspin_trylock_in_atomic(struct hwspinlock *hwlock);
+
+Attempt to lock a previously-assigned hwspinlock, but immediately fail if
+it is already taken.
+
+This function shall be called only from an atomic context.
+
+Returns 0 on success and an appropriate error code otherwise (most
+notably -EBUSY if the hwspinlock was already taken).
+The function will never sleep.
+
+::
+
void hwspin_unlock(struct hwspinlock *hwlock);
Unlock a previously-locked hwspinlock. Always succeed, and can be called
@@ -222,6 +283,26 @@ the given flags. This function will never sleep.
::
+ void hwspin_unlock_raw(struct hwspinlock *hwlock);
+
+Unlock a previously-locked hwspinlock.
+
+The caller should **never** unlock an hwspinlock which is already unlocked.
+Doing so is considered a bug (there is no protection against this).
+This function will never sleep.
+
+::
+
+ void hwspin_unlock_in_atomic(struct hwspinlock *hwlock);
+
+Unlock a previously-locked hwspinlock.
+
+The caller should **never** unlock an hwspinlock which is already unlocked.
+Doing so is considered a bug (there is no protection against this).
+This function will never sleep.
+
+::
+
int hwspin_lock_get_id(struct hwspinlock *hwlock);
Retrieve id number of a given hwspinlock. This is needed when an
diff --git a/Documentation/i2c/busses/i2c-ali1535 b/Documentation/i2c/busses/i2c-ali1535.rst
index 5d46342e486a..6941064730dc 100644
--- a/Documentation/i2c/busses/i2c-ali1535
+++ b/Documentation/i2c/busses/i2c-ali1535.rst
@@ -1,16 +1,19 @@
+=========================
Kernel driver i2c-ali1535
+=========================
Supported adapters:
* Acer Labs, Inc. ALI 1535 (south bridge)
+
Datasheet: Now under NDA
http://www.ali.com.tw/
Authors:
- Frodo Looijaard <frodol@dds.nl>,
- Philip Edelbrock <phil@netroedge.com>,
- Mark D. Studebaker <mdsxyz123@yahoo.com>,
- Dan Eaton <dan.eaton@rocketlogix.com>,
- Stephen Rousset<stephen.rousset@rocketlogix.com>
+ - Frodo Looijaard <frodol@dds.nl>,
+ - Philip Edelbrock <phil@netroedge.com>,
+ - Mark D. Studebaker <mdsxyz123@yahoo.com>,
+ - Dan Eaton <dan.eaton@rocketlogix.com>,
+ - Stephen Rousset<stephen.rousset@rocketlogix.com>
Description
-----------
diff --git a/Documentation/i2c/busses/i2c-ali1563 b/Documentation/i2c/busses/i2c-ali1563.rst
index 41b1a077e4c7..eec32c3ba92a 100644
--- a/Documentation/i2c/busses/i2c-ali1563
+++ b/Documentation/i2c/busses/i2c-ali1563.rst
@@ -1,7 +1,10 @@
+=========================
Kernel driver i2c-ali1563
+=========================
Supported adapters:
* Acer Labs, Inc. ALI 1563 (south bridge)
+
Datasheet: Now under NDA
http://www.ali.com.tw/
diff --git a/Documentation/i2c/busses/i2c-ali15x3 b/Documentation/i2c/busses/i2c-ali15x3.rst
index 42888d8ac124..d4c1a2a419cb 100644
--- a/Documentation/i2c/busses/i2c-ali15x3
+++ b/Documentation/i2c/busses/i2c-ali15x3.rst
@@ -1,20 +1,23 @@
+=========================
Kernel driver i2c-ali15x3
+=========================
Supported adapters:
* Acer Labs, Inc. ALI 1533 and 1543C (south bridge)
+
Datasheet: Now under NDA
http://www.ali.com.tw/
Authors:
- Frodo Looijaard <frodol@dds.nl>,
- Philip Edelbrock <phil@netroedge.com>,
- Mark D. Studebaker <mdsxyz123@yahoo.com>
+ - Frodo Looijaard <frodol@dds.nl>,
+ - Philip Edelbrock <phil@netroedge.com>,
+ - Mark D. Studebaker <mdsxyz123@yahoo.com>
Module Parameters
-----------------
* force_addr: int
- Initialize the base address of the i2c controller
+ Initialize the base address of the i2c controller
Notes
@@ -25,7 +28,9 @@ the BIOS. Does not do a PCI force; the device must still be present in
lspci. Don't use this unless the driver complains that the base address is
not set.
-Example: 'modprobe i2c-ali15x3 force_addr=0xe800'
+Example::
+
+ modprobe i2c-ali15x3 force_addr=0xe800
SMBus periodically hangs on ASUS P5A motherboards and can only be cleared
by a power cycle. Cause unknown (see Issues below).
@@ -38,47 +43,53 @@ This is the driver for the SMB Host controller on Acer Labs Inc. (ALI)
M1541 and M1543C South Bridges.
The M1543C is a South bridge for desktop systems.
+
The M1541 is a South bridge for portable systems.
+
They are part of the following ALI chipsets:
* "Aladdin Pro 2" includes the M1621 Slot 1 North bridge with AGP and
- 100MHz CPU Front Side bus
+ 100MHz CPU Front Side bus
* "Aladdin V" includes the M1541 Socket 7 North bridge with AGP and 100MHz
- CPU Front Side bus
+ CPU Front Side bus
+
Some Aladdin V motherboards:
- Asus P5A
- Atrend ATC-5220
- BCM/GVC VP1541
- Biostar M5ALA
- Gigabyte GA-5AX (** Generally doesn't work because the BIOS doesn't
- enable the 7101 device! **)
- Iwill XA100 Plus
- Micronics C200
- Microstar (MSI) MS-5169
+ - Asus P5A
+ - Atrend ATC-5220
+ - BCM/GVC VP1541
+ - Biostar M5ALA
+ - Gigabyte GA-5AX (Generally doesn't work because the BIOS doesn't
+ enable the 7101 device!)
+ - Iwill XA100 Plus
+ - Micronics C200
+ - Microstar (MSI) MS-5169
* "Aladdin IV" includes the M1541 Socket 7 North bridge
- with host bus up to 83.3 MHz.
+ with host bus up to 83.3 MHz.
For an overview of these chips see http://www.acerlabs.com. At this time the
full data sheets on the web site are password protected, however if you
contact the ALI office in San Jose they may give you the password.
The M1533/M1543C devices appear as FOUR separate devices on the PCI bus. An
-output of lspci will show something similar to the following:
+output of lspci will show something similar to the following::
00:02.0 USB Controller: Acer Laboratories Inc. M5237 (rev 03)
00:03.0 Bridge: Acer Laboratories Inc. M7101 <= THIS IS THE ONE WE NEED
00:07.0 ISA bridge: Acer Laboratories Inc. M1533 (rev c3)
00:0f.0 IDE interface: Acer Laboratories Inc. M5229 (rev c1)
-** IMPORTANT **
-** If you have a M1533 or M1543C on the board and you get
-** "ali15x3: Error: Can't detect ali15x3!"
-** then run lspci.
-** If you see the 1533 and 5229 devices but NOT the 7101 device,
-** then you must enable ACPI, the PMU, SMB, or something similar
-** in the BIOS.
-** The driver won't work if it can't find the M7101 device.
+.. important::
+
+ If you have a M1533 or M1543C on the board and you get
+ "ali15x3: Error: Can't detect ali15x3!"
+ then run lspci.
+
+ If you see the 1533 and 5229 devices but NOT the 7101 device,
+ then you must enable ACPI, the PMU, SMB, or something similar
+ in the BIOS.
+
+ The driver won't work if it can't find the M7101 device.
The SMB controller is part of the M7101 device, which is an ACPI-compliant
Power Management Unit (PMU).
@@ -109,4 +120,3 @@ There may be electrical problems on this board.
On the P5A, the W83781D sensor chip is on both the ISA and
SMBus. Therefore the SMBus hangs can generally be avoided
by accessing the W83781D on the ISA bus only.
-
diff --git a/Documentation/i2c/busses/i2c-amd-mp2 b/Documentation/i2c/busses/i2c-amd-mp2
deleted file mode 100644
index 6571487171f4..000000000000
--- a/Documentation/i2c/busses/i2c-amd-mp2
+++ /dev/null
@@ -1,23 +0,0 @@
-Kernel driver i2c-amd-mp2
-
-Supported adapters:
- * AMD MP2 PCIe interface
-
-Datasheet: not publicly available.
-
-Authors:
- Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
- Nehal Shah <nehal-bakulchandra.shah@amd.com>
- Elie Morisse <syniurge@gmail.com>
-
-Description
------------
-
-The MP2 is an ARM processor programmed as an I2C controller and communicating
-with the x86 host through PCI.
-
-If you see something like this:
-
-03:00.7 MP2 I2C controller: Advanced Micro Devices, Inc. [AMD] Device 15e6
-
-in your 'lspci -v', then this driver is for your device.
diff --git a/Documentation/i2c/busses/i2c-amd-mp2.rst b/Documentation/i2c/busses/i2c-amd-mp2.rst
new file mode 100644
index 000000000000..ebc2fa899325
--- /dev/null
+++ b/Documentation/i2c/busses/i2c-amd-mp2.rst
@@ -0,0 +1,25 @@
+=========================
+Kernel driver i2c-amd-mp2
+=========================
+
+Supported adapters:
+ * AMD MP2 PCIe interface
+
+Datasheet: not publicly available.
+
+Authors:
+ - Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
+ - Nehal Shah <nehal-bakulchandra.shah@amd.com>
+ - Elie Morisse <syniurge@gmail.com>
+
+Description
+-----------
+
+The MP2 is an ARM processor programmed as an I2C controller and communicating
+with the x86 host through PCI.
+
+If you see something like this::
+
+ 03:00.7 MP2 I2C controller: Advanced Micro Devices, Inc. [AMD] Device 15e6
+
+in your ``lspci -v``, then this driver is for your device.
diff --git a/Documentation/i2c/busses/i2c-amd756 b/Documentation/i2c/busses/i2c-amd756.rst
index 67f30874d0bf..bc93f392a4fc 100644
--- a/Documentation/i2c/busses/i2c-amd756
+++ b/Documentation/i2c/busses/i2c-amd756.rst
@@ -1,18 +1,22 @@
+========================
Kernel driver i2c-amd756
+========================
Supported adapters:
* AMD 756
* AMD 766
* AMD 768
* AMD 8111
+
Datasheets: Publicly available on AMD website
* nVidia nForce
+
Datasheet: Unavailable
Authors:
- Frodo Looijaard <frodol@dds.nl>,
- Philip Edelbrock <phil@netroedge.com>
+ - Frodo Looijaard <frodol@dds.nl>,
+ - Philip Edelbrock <phil@netroedge.com>
Description
-----------
diff --git a/Documentation/i2c/busses/i2c-amd8111 b/Documentation/i2c/busses/i2c-amd8111.rst
index 460dd6635fd2..d08bf0a7f0ac 100644
--- a/Documentation/i2c/busses/i2c-amd8111
+++ b/Documentation/i2c/busses/i2c-amd8111.rst
@@ -1,4 +1,6 @@
+=========================
Kernel driver i2c-adm8111
+=========================
Supported adapters:
* AMD-8111 SMBus 2.0 PCI interface
@@ -13,14 +15,14 @@ Author: Vojtech Pavlik <vojtech@suse.cz>
Description
-----------
-If you see something like this:
+If you see something like this::
-00:07.2 SMBus: Advanced Micro Devices [AMD] AMD-8111 SMBus 2.0 (rev 02)
- Subsystem: Advanced Micro Devices [AMD] AMD-8111 SMBus 2.0
- Flags: medium devsel, IRQ 19
- I/O ports at d400 [size=32]
+ 00:07.2 SMBus: Advanced Micro Devices [AMD] AMD-8111 SMBus 2.0 (rev 02)
+ Subsystem: Advanced Micro Devices [AMD] AMD-8111 SMBus 2.0
+ Flags: medium devsel, IRQ 19
+ I/O ports at d400 [size=32]
-in your 'lspci -v', then this driver is for your chipset.
+in your ``lspci -v``, then this driver is for your chipset.
Process Call Support
--------------------
diff --git a/Documentation/i2c/busses/i2c-diolan-u2c b/Documentation/i2c/busses/i2c-diolan-u2c.rst
index 0d6018c316c7..c18cbdcdf73c 100644
--- a/Documentation/i2c/busses/i2c-diolan-u2c
+++ b/Documentation/i2c/busses/i2c-diolan-u2c.rst
@@ -1,7 +1,10 @@
+============================
Kernel driver i2c-diolan-u2c
+============================
Supported adapters:
* Diolan U2C-12 I2C-USB adapter
+
Documentation:
http://www.diolan.com/i2c/u2c12.html
diff --git a/Documentation/i2c/busses/i2c-i801 b/Documentation/i2c/busses/i2c-i801.rst
index ee9984f35868..2a570c214880 100644
--- a/Documentation/i2c/busses/i2c-i801
+++ b/Documentation/i2c/busses/i2c-i801.rst
@@ -1,4 +1,7 @@
+======================
Kernel driver i2c-i801
+======================
+
Supported adapters:
* Intel 82801AA and 82801AB (ICH and ICH0 - part of the
@@ -37,27 +40,35 @@ Supported adapters:
* Intel Cedar Fork (PCH)
* Intel Ice Lake (PCH)
* Intel Comet Lake (PCH)
+ * Intel Elkhart Lake (PCH)
+ * Intel Tiger Lake (PCH)
+
Datasheets: Publicly available at the Intel website
On Intel Patsburg and later chipsets, both the normal host SMBus controller
and the additional 'Integrated Device Function' controllers are supported.
-Authors:
- Mark Studebaker <mdsxyz123@yahoo.com>
- Jean Delvare <jdelvare@suse.de>
+Authors:
+ - Mark Studebaker <mdsxyz123@yahoo.com>
+ - Jean Delvare <jdelvare@suse.de>
Module Parameters
-----------------
* disable_features (bit vector)
+
Disable selected features normally supported by the device. This makes it
possible to work around possible driver or hardware bugs if the feature in
question doesn't work as intended for whatever reason. Bit values:
+
+ ==== =========================================
0x01 disable SMBus PEC
0x02 disable the block buffer
0x08 disable the I2C block read functionality
0x10 don't use interrupts
+ 0x20 disable SMBus Host Notify
+ ==== =========================================
Description
@@ -70,7 +81,7 @@ Pentium-based PCs, '815E' chipset, and others.
The ICH chips contain at least SEVEN separate PCI functions in TWO logical
PCI devices. An output of lspci will show something similar to the
-following:
+following::
00:1e.0 PCI bridge: Intel Corporation: Unknown device 2418 (rev 01)
00:1f.0 ISA bridge: Intel Corporation: Unknown device 2410 (rev 01)
@@ -88,7 +99,7 @@ SMBus controller.
Process Call Support
--------------------
-Not supported.
+Block process call is supported on the 82801EB (ICH5) and later chips.
I2C Block Read Support
@@ -118,16 +129,15 @@ BIOS to enable it, it means it has been hidden by the BIOS code. Asus is
well known for first doing this on their P4B motherboard, and many other
boards after that. Some vendor machines are affected as well.
-The first thing to try is the "i2c_ec" ACPI driver. It could be that the
+The first thing to try is the "i2c-scmi" ACPI driver. It could be that the
SMBus was hidden on purpose because it'll be driven by ACPI. If the
-i2c_ec driver works for you, just forget about the i2c-i801 driver and
-don't try to unhide the ICH SMBus. Even if i2c_ec doesn't work, you
+i2c-scmi driver works for you, just forget about the i2c-i801 driver and
+don't try to unhide the ICH SMBus. Even if i2c-scmi doesn't work, you
better make sure that the SMBus isn't used by the ACPI code. Try loading
-the "fan" and "thermal" drivers, and check in /proc/acpi/fan and
-/proc/acpi/thermal_zone. If you find anything there, it's likely that
-the ACPI is accessing the SMBus and it's safer not to unhide it. Only
-once you are certain that ACPI isn't using the SMBus, you can attempt
-to unhide it.
+the "fan" and "thermal" drivers, and check in /sys/class/thermal. If you
+find a thermal zone with type "acpitz", it's likely that the ACPI is
+accessing the SMBus and it's safer not to unhide it. Only once you are
+certain that ACPI isn't using the SMBus, you can attempt to unhide it.
In order to unhide the SMBus, we need to change the value of a PCI
register before the kernel enumerates the PCI devices. This is done in
@@ -137,14 +147,14 @@ and you think there's something interesting on the SMBus (e.g. a
hardware monitoring chip), you need to add your board to the list.
The motherboard is identified using the subvendor and subdevice IDs of the
-host bridge PCI device. Get yours with "lspci -n -v -s 00:00.0":
+host bridge PCI device. Get yours with ``lspci -n -v -s 00:00.0``::
-00:00.0 Class 0600: 8086:2570 (rev 02)
- Subsystem: 1043:80f2
- Flags: bus master, fast devsel, latency 0
- Memory at fc000000 (32-bit, prefetchable) [size=32M]
- Capabilities: [e4] #09 [2106]
- Capabilities: [a0] AGP version 3.0
+ 00:00.0 Class 0600: 8086:2570 (rev 02)
+ Subsystem: 1043:80f2
+ Flags: bus master, fast devsel, latency 0
+ Memory at fc000000 (32-bit, prefetchable) [size=32M]
+ Capabilities: [e4] #09 [2106]
+ Capabilities: [a0] AGP version 3.0
Here the host bridge ID is 2570 (82865G/PE/P), the subvendor ID is 1043
(Asus) and the subdevice ID is 80f2 (P4P800-X). You can find the symbolic
@@ -163,7 +173,8 @@ kernel. It's very convenient if you just want to check if there's
anything interesting on your hidden ICH SMBus.
-**********************
+----------------------------------------------------------------------------
+
The lm_sensors project gratefully acknowledges the support of Texas
Instruments in the initial development of this driver.
diff --git a/Documentation/i2c/busses/i2c-ismt b/Documentation/i2c/busses/i2c-ismt.rst
index 737355822c0b..8e74919a3fdf 100644
--- a/Documentation/i2c/busses/i2c-ismt
+++ b/Documentation/i2c/busses/i2c-ismt.rst
@@ -1,4 +1,7 @@
+======================
Kernel driver i2c-ismt
+======================
+
Supported adapters:
* Intel S12xx series SOCs
@@ -11,16 +14,21 @@ Module Parameters
-----------------
* bus_speed (unsigned int)
+
Allows changing of the bus speed. Normally, the bus speed is set by the BIOS
and never needs to be changed. However, some SMBus analyzers are too slow for
monitoring the bus during debug, thus the need for this module parameter.
Specify the bus speed in kHz.
+
Available bus frequency settings:
- 0 no change
- 80 kHz
- 100 kHz
- 400 kHz
- 1000 kHz
+
+ ==== =========
+ 0 no change
+ 80 kHz
+ 100 kHz
+ 400 kHz
+ 1000 kHz
+ ==== =========
Description
@@ -30,7 +38,7 @@ The S12xx series of SOCs have a pair of integrated SMBus 2.0 controllers
targeted primarily at the microserver and storage markets.
The S12xx series contain a pair of PCI functions. An output of lspci will show
-something similar to the following:
+something similar to the following::
00:13.0 System peripheral: Intel Corporation Centerton SMBus 2.0 Controller 0
00:13.1 System peripheral: Intel Corporation Centerton SMBus 2.0 Controller 1
diff --git a/Documentation/i2c/busses/i2c-mlxcpld b/Documentation/i2c/busses/i2c-mlxcpld.rst
index 925904aa9b57..9a0b2916aa71 100644
--- a/Documentation/i2c/busses/i2c-mlxcpld
+++ b/Documentation/i2c/busses/i2c-mlxcpld.rst
@@ -1,9 +1,12 @@
+==================
Driver i2c-mlxcpld
+==================
Author: Michael Shych <michaelsh@mellanox.com>
This is the Mellanox I2C controller logic, implemented in Lattice CPLD
device.
+
Device supports:
- Master mode.
- One physical bus.
@@ -20,6 +23,8 @@ The next transaction types are supported:
- Write Byte/Block.
Registers:
+
+=============== === =======================================================================
CPBLTY 0x0 - capability reg.
Bits [6:5] - transaction length. b01 - 72B is supported,
36B in other case.
@@ -49,3 +54,4 @@ DATAx 0xa - 0x54 - 68 bytes data buffer regs.
For read transactions address is sent in a separate transaction and
specified in the four first bytes (DATA0 - DATA3). Data is read
starting from DATA0.
+=============== === =======================================================================
diff --git a/Documentation/i2c/busses/i2c-nforce2 b/Documentation/i2c/busses/i2c-nforce2.rst
index 9698c396b830..83181445268f 100644
--- a/Documentation/i2c/busses/i2c-nforce2
+++ b/Documentation/i2c/busses/i2c-nforce2.rst
@@ -1,10 +1,12 @@
+=========================
Kernel driver i2c-nforce2
+=========================
Supported adapters:
- * nForce2 MCP 10de:0064
- * nForce2 Ultra 400 MCP 10de:0084
- * nForce3 Pro150 MCP 10de:00D4
- * nForce3 250Gb MCP 10de:00E4
+ * nForce2 MCP 10de:0064
+ * nForce2 Ultra 400 MCP 10de:0084
+ * nForce3 Pro150 MCP 10de:00D4
+ * nForce3 250Gb MCP 10de:00E4
* nForce4 MCP 10de:0052
* nForce4 MCP-04 10de:0034
* nForce MCP51 10de:0264
@@ -16,26 +18,27 @@ Supported adapters:
* nForce MCP78S 10de:0752
* nForce MCP79 10de:0AA2
-Datasheet: not publicly available, but seems to be similar to the
+Datasheet:
+ not publicly available, but seems to be similar to the
AMD-8111 SMBus 2.0 adapter.
Authors:
- Hans-Frieder Vogt <hfvogt@gmx.net>,
- Thomas Leibold <thomas@plx.com>,
- Patrick Dreker <patrick@dreker.de>
-
+ - Hans-Frieder Vogt <hfvogt@gmx.net>,
+ - Thomas Leibold <thomas@plx.com>,
+ - Patrick Dreker <patrick@dreker.de>
+
Description
-----------
i2c-nforce2 is a driver for the SMBuses included in the nVidia nForce2 MCP.
-If your 'lspci -v' listing shows something like the following,
+If your ``lspci -v`` listing shows something like the following::
-00:01.1 SMBus: nVidia Corporation: Unknown device 0064 (rev a2)
- Subsystem: Asustek Computer, Inc.: Unknown device 0c11
- Flags: 66Mhz, fast devsel, IRQ 5
- I/O ports at c000 [size=32]
- Capabilities: <available only to root>
+ 00:01.1 SMBus: nVidia Corporation: Unknown device 0064 (rev a2)
+ Subsystem: Asustek Computer, Inc.: Unknown device 0c11
+ Flags: 66Mhz, fast devsel, IRQ 5
+ I/O ports at c000 [size=32]
+ Capabilities: <available only to root>
then this driver should support the SMBuses of your motherboard.
diff --git a/Documentation/i2c/busses/i2c-nvidia-gpu b/Documentation/i2c/busses/i2c-nvidia-gpu.rst
index 31884d2b2eb5..38fb8a4c8756 100644
--- a/Documentation/i2c/busses/i2c-nvidia-gpu
+++ b/Documentation/i2c/busses/i2c-nvidia-gpu.rst
@@ -1,4 +1,6 @@
+============================
Kernel driver i2c-nvidia-gpu
+============================
Datasheet: not publicly available.
@@ -11,8 +13,8 @@ Description
i2c-nvidia-gpu is a driver for I2C controller included in NVIDIA Turing
and later GPUs and it is used to communicate with Type-C controller on GPUs.
-If your 'lspci -v' listing shows something like the following,
+If your ``lspci -v`` listing shows something like the following::
-01:00.3 Serial bus controller [0c80]: NVIDIA Corporation Device 1ad9 (rev a1)
+ 01:00.3 Serial bus controller [0c80]: NVIDIA Corporation Device 1ad9 (rev a1)
then this driver should support the I2C controller of your GPU.
diff --git a/Documentation/i2c/busses/i2c-ocores b/Documentation/i2c/busses/i2c-ocores.rst
index 9caaf7df1b2f..f5e175f2a2a6 100644
--- a/Documentation/i2c/busses/i2c-ocores
+++ b/Documentation/i2c/busses/i2c-ocores.rst
@@ -1,4 +1,6 @@
+========================
Kernel driver i2c-ocores
+========================
Supported adapters:
* OpenCores.org I2C controller by Richard Herveille (see datasheet link)
@@ -23,9 +25,9 @@ distance between registers and the input clock speed.
There is also a possibility to attach a list of i2c_board_info which
the i2c-ocores driver will add to the bus upon creation.
-E.G. something like:
+E.G. something like::
-static struct resource ocores_resources[] = {
+ static struct resource ocores_resources[] = {
[0] = {
.start = MYI2C_BASEADDR,
.end = MYI2C_BASEADDR + 8,
@@ -36,10 +38,10 @@ static struct resource ocores_resources[] = {
.end = MYI2C_IRQ,
.flags = IORESOURCE_IRQ,
},
-};
+ };
-/* optional board info */
-struct i2c_board_info ocores_i2c_board_info[] = {
+ /* optional board info */
+ struct i2c_board_info ocores_i2c_board_info[] = {
{
I2C_BOARD_INFO("tsc2003", 0x48),
.platform_data = &tsc2003_platform_data,
@@ -49,20 +51,20 @@ struct i2c_board_info ocores_i2c_board_info[] = {
I2C_BOARD_INFO("adv7180", 0x42 >> 1),
.irq = ADV_IRQ
}
-};
+ };
-static struct ocores_i2c_platform_data myi2c_data = {
+ static struct ocores_i2c_platform_data myi2c_data = {
.regstep = 2, /* two bytes between registers */
.clock_khz = 50000, /* input clock of 50MHz */
.devices = ocores_i2c_board_info, /* optional table of devices */
.num_devices = ARRAY_SIZE(ocores_i2c_board_info), /* table size */
-};
+ };
-static struct platform_device myi2c = {
+ static struct platform_device myi2c = {
.name = "ocores-i2c",
.dev = {
.platform_data = &myi2c_data,
},
.num_resources = ARRAY_SIZE(ocores_resources),
.resource = ocores_resources,
-};
+ };
diff --git a/Documentation/i2c/busses/i2c-parport b/Documentation/i2c/busses/i2c-parport
deleted file mode 100644
index c3dbb3bfd814..000000000000
--- a/Documentation/i2c/busses/i2c-parport
+++ /dev/null
@@ -1,178 +0,0 @@
-Kernel driver i2c-parport
-
-Author: Jean Delvare <jdelvare@suse.de>
-
-This is a unified driver for several i2c-over-parallel-port adapters,
-such as the ones made by Philips, Velleman or ELV. This driver is
-meant as a replacement for the older, individual drivers:
- * i2c-philips-par
- * i2c-elv
- * i2c-velleman
- * video/i2c-parport (NOT the same as this one, dedicated to home brew
- teletext adapters)
-
-It currently supports the following devices:
- * (type=0) Philips adapter
- * (type=1) home brew teletext adapter
- * (type=2) Velleman K8000 adapter
- * (type=3) ELV adapter
- * (type=4) Analog Devices ADM1032 evaluation board
- * (type=5) Analog Devices evaluation boards: ADM1025, ADM1030, ADM1031
- * (type=6) Barco LPT->DVI (K5800236) adapter
- * (type=7) One For All JP1 parallel port adapter
- * (type=8) VCT-jig
-
-These devices use different pinout configurations, so you have to tell
-the driver what you have, using the type module parameter. There is no
-way to autodetect the devices. Support for different pinout configurations
-can be easily added when needed.
-
-Earlier kernels defaulted to type=0 (Philips). But now, if the type
-parameter is missing, the driver will simply fail to initialize.
-
-SMBus alert support is available on adapters which have this line properly
-connected to the parallel port's interrupt pin.
-
-
-Building your own adapter
--------------------------
-
-If you want to build you own i2c-over-parallel-port adapter, here is
-a sample electronics schema (credits go to Sylvain Munaut):
-
-Device PC
-Side ___________________Vdd (+) Side
- | | |
- --- --- ---
- | | | | | |
- |R| |R| |R|
- | | | | | |
- --- --- ---
- | | |
- | | /| |
-SCL ----------x--------o |-----------x------------------- pin 2
- | \| | |
- | | |
- | |\ | |
-SDA ----------x----x---| o---x--------------------------- pin 13
- | |/ |
- | |
- | /| |
- ---------o |----------------x-------------- pin 3
- \| | |
- | |
- --- ---
- | | | |
- |R| |R|
- | | | |
- --- ---
- | |
- ### ###
- GND GND
-
-Remarks:
- - This is the exact pinout and electronics used on the Analog Devices
- evaluation boards.
- /|
- - All inverters -o |- must be 74HC05, they must be open collector output.
- \|
- - All resitors are 10k.
- - Pins 18-25 of the parallel port connected to GND.
- - Pins 4-9 (D2-D7) could be used as VDD is the driver drives them high.
- The ADM1032 evaluation board uses D4-D7. Beware that the amount of
- current you can draw from the parallel port is limited. Also note that
- all connected lines MUST BE driven at the same state, else you'll short
- circuit the output buffers! So plugging the I2C adapter after loading
- the i2c-parport module might be a good safety since data line state
- prior to init may be unknown.
- - This is 5V!
- - Obviously you cannot read SCL (so it's not really standard-compliant).
- Pretty easy to add, just copy the SDA part and use another input pin.
- That would give (ELV compatible pinout):
-
-
-Device PC
-Side ______________________________Vdd (+) Side
- | | | |
- --- --- --- ---
- | | | | | | | |
- |R| |R| |R| |R|
- | | | | | | | |
- --- --- --- ---
- | | | |
- | | |\ | |
-SCL ----------x--------x--| o---x------------------------ pin 15
- | | |/ |
- | | |
- | | /| |
- | ---o |-------------x-------------- pin 2
- | \| | |
- | | |
- | | |
- | |\ | |
-SDA ---------------x---x--| o--------x------------------- pin 10
- | |/ |
- | |
- | /| |
- ---o |------------------x--------- pin 3
- \| | |
- | |
- --- ---
- | | | |
- |R| |R|
- | | | |
- --- ---
- | |
- ### ###
- GND GND
-
-
-If possible, you should use the same pinout configuration as existing
-adapters do, so you won't even have to change the code.
-
-
-Similar (but different) drivers
--------------------------------
-
-This driver is NOT the same as the i2c-pport driver found in the i2c
-package. The i2c-pport driver makes use of modern parallel port features so
-that you don't need additional electronics. It has other restrictions
-however, and was not ported to Linux 2.6 (yet).
-
-This driver is also NOT the same as the i2c-pcf-epp driver found in the
-lm_sensors package. The i2c-pcf-epp driver doesn't use the parallel port as
-an I2C bus directly. Instead, it uses it to control an external I2C bus
-master. That driver was not ported to Linux 2.6 (yet) either.
-
-
-Legacy documentation for Velleman adapter
------------------------------------------
-
-Useful links:
-Velleman http://www.velleman.be/
-Velleman K8000 Howto http://howto.htlw16.ac.at/k8000-howto.html
-
-The project has lead to new libs for the Velleman K8000 and K8005:
- LIBK8000 v1.99.1 and LIBK8005 v0.21
-With these libs, you can control the K8000 interface card and the K8005
-stepper motor card with the simple commands which are in the original
-Velleman software, like SetIOchannel, ReadADchannel, SendStepCCWFull and
-many more, using /dev/velleman.
- http://home.wanadoo.nl/hihihi/libk8000.htm
- http://home.wanadoo.nl/hihihi/libk8005.htm
- http://struyve.mine.nu:8080/index.php?block=k8000
- http://sourceforge.net/projects/libk8005/
-
-
-One For All JP1 parallel port adapter
--------------------------------------
-
-The JP1 project revolves around a set of remote controls which expose
-the I2C bus their internal configuration EEPROM lives on via a 6 pin
-jumper in the battery compartment. More details can be found at:
-
-http://www.hifi-remote.com/jp1/
-
-Details of the simple parallel port hardware can be found at:
-
-http://www.hifi-remote.com/jp1/hardware.shtml
diff --git a/Documentation/i2c/busses/i2c-parport-light b/Documentation/i2c/busses/i2c-parport-light.rst
index 7071b8ba0af4..e73af975d2c8 100644
--- a/Documentation/i2c/busses/i2c-parport-light
+++ b/Documentation/i2c/busses/i2c-parport-light.rst
@@ -1,13 +1,15 @@
+===============================
Kernel driver i2c-parport-light
+===============================
Author: Jean Delvare <jdelvare@suse.de>
-This driver is a light version of i2c-parport. It doesn't depend
+This driver is a light version of i2c-parport. It doesn't depend
on the parport driver, and uses direct I/O access instead. This might be
preferred on embedded systems where wasting memory for the clean but heavy
parport handling is not an option. The drawback is a reduced portability
-and the impossibility to daisy-chain other parallel port devices.
-
+and the impossibility to daisy-chain other parallel port devices.
+
Please see i2c-parport for documentation.
Module parameters:
diff --git a/Documentation/i2c/busses/i2c-parport.rst b/Documentation/i2c/busses/i2c-parport.rst
new file mode 100644
index 000000000000..a9b4e8133700
--- /dev/null
+++ b/Documentation/i2c/busses/i2c-parport.rst
@@ -0,0 +1,190 @@
+=========================
+Kernel driver i2c-parport
+=========================
+
+Author: Jean Delvare <jdelvare@suse.de>
+
+This is a unified driver for several i2c-over-parallel-port adapters,
+such as the ones made by Philips, Velleman or ELV. This driver is
+meant as a replacement for the older, individual drivers:
+
+ * i2c-philips-par
+ * i2c-elv
+ * i2c-velleman
+ * video/i2c-parport
+ (NOT the same as this one, dedicated to home brew teletext adapters)
+
+It currently supports the following devices:
+
+ * (type=0) Philips adapter
+ * (type=1) home brew teletext adapter
+ * (type=2) Velleman K8000 adapter
+ * (type=3) ELV adapter
+ * (type=4) Analog Devices ADM1032 evaluation board
+ * (type=5) Analog Devices evaluation boards: ADM1025, ADM1030, ADM1031
+ * (type=6) Barco LPT->DVI (K5800236) adapter
+ * (type=7) One For All JP1 parallel port adapter
+ * (type=8) VCT-jig
+
+These devices use different pinout configurations, so you have to tell
+the driver what you have, using the type module parameter. There is no
+way to autodetect the devices. Support for different pinout configurations
+can be easily added when needed.
+
+Earlier kernels defaulted to type=0 (Philips). But now, if the type
+parameter is missing, the driver will simply fail to initialize.
+
+SMBus alert support is available on adapters which have this line properly
+connected to the parallel port's interrupt pin.
+
+
+Building your own adapter
+-------------------------
+
+If you want to build you own i2c-over-parallel-port adapter, here is
+a sample electronics schema (credits go to Sylvain Munaut)::
+
+ Device PC
+ Side ___________________Vdd (+) Side
+ | | |
+ --- --- ---
+ | | | | | |
+ |R| |R| |R|
+ | | | | | |
+ --- --- ---
+ | | |
+ | | /| |
+ SCL ----------x--------o |-----------x------------------- pin 2
+ | \| | |
+ | | |
+ | |\ | |
+ SDA ----------x----x---| o---x--------------------------- pin 13
+ | |/ |
+ | |
+ | /| |
+ ---------o |----------------x-------------- pin 3
+ \| | |
+ | |
+ --- ---
+ | | | |
+ |R| |R|
+ | | | |
+ --- ---
+ | |
+ ### ###
+ GND GND
+
+Remarks:
+ - This is the exact pinout and electronics used on the Analog Devices
+ evaluation boards.
+ - All inverters::
+
+ /|
+ -o |-
+ \|
+
+ must be 74HC05, they must be open collector output.
+ - All resitors are 10k.
+ - Pins 18-25 of the parallel port connected to GND.
+ - Pins 4-9 (D2-D7) could be used as VDD is the driver drives them high.
+ The ADM1032 evaluation board uses D4-D7. Beware that the amount of
+ current you can draw from the parallel port is limited. Also note that
+ all connected lines MUST BE driven at the same state, else you'll short
+ circuit the output buffers! So plugging the I2C adapter after loading
+ the i2c-parport module might be a good safety since data line state
+ prior to init may be unknown.
+ - This is 5V!
+ - Obviously you cannot read SCL (so it's not really standard-compliant).
+ Pretty easy to add, just copy the SDA part and use another input pin.
+ That would give (ELV compatible pinout)::
+
+
+ Device PC
+ Side ______________________________Vdd (+) Side
+ | | | |
+ --- --- --- ---
+ | | | | | | | |
+ |R| |R| |R| |R|
+ | | | | | | | |
+ --- --- --- ---
+ | | | |
+ | | |\ | |
+ SCL ----------x--------x--| o---x------------------------ pin 15
+ | | |/ |
+ | | |
+ | | /| |
+ | ---o |-------------x-------------- pin 2
+ | \| | |
+ | | |
+ | | |
+ | |\ | |
+ SDA ---------------x---x--| o--------x------------------- pin 10
+ | |/ |
+ | |
+ | /| |
+ ---o |------------------x--------- pin 3
+ \| | |
+ | |
+ --- ---
+ | | | |
+ |R| |R|
+ | | | |
+ --- ---
+ | |
+ ### ###
+ GND GND
+
+
+If possible, you should use the same pinout configuration as existing
+adapters do, so you won't even have to change the code.
+
+
+Similar (but different) drivers
+-------------------------------
+
+This driver is NOT the same as the i2c-pport driver found in the i2c
+package. The i2c-pport driver makes use of modern parallel port features so
+that you don't need additional electronics. It has other restrictions
+however, and was not ported to Linux 2.6 (yet).
+
+This driver is also NOT the same as the i2c-pcf-epp driver found in the
+lm_sensors package. The i2c-pcf-epp driver doesn't use the parallel port as
+an I2C bus directly. Instead, it uses it to control an external I2C bus
+master. That driver was not ported to Linux 2.6 (yet) either.
+
+
+Legacy documentation for Velleman adapter
+-----------------------------------------
+
+Useful links:
+
+- Velleman http://www.velleman.be/
+- Velleman K8000 Howto http://howto.htlw16.ac.at/k8000-howto.html
+
+The project has lead to new libs for the Velleman K8000 and K8005:
+
+ LIBK8000 v1.99.1 and LIBK8005 v0.21
+
+With these libs, you can control the K8000 interface card and the K8005
+stepper motor card with the simple commands which are in the original
+Velleman software, like SetIOchannel, ReadADchannel, SendStepCCWFull and
+many more, using /dev/velleman.
+
+ - http://home.wanadoo.nl/hihihi/libk8000.htm
+ - http://home.wanadoo.nl/hihihi/libk8005.htm
+ - http://struyve.mine.nu:8080/index.php?block=k8000
+ - http://sourceforge.net/projects/libk8005/
+
+
+One For All JP1 parallel port adapter
+-------------------------------------
+
+The JP1 project revolves around a set of remote controls which expose
+the I2C bus their internal configuration EEPROM lives on via a 6 pin
+jumper in the battery compartment. More details can be found at:
+
+http://www.hifi-remote.com/jp1/
+
+Details of the simple parallel port hardware can be found at:
+
+http://www.hifi-remote.com/jp1/hardware.shtml
diff --git a/Documentation/i2c/busses/i2c-pca-isa b/Documentation/i2c/busses/i2c-pca-isa.rst
index b044e5265488..a254010c8055 100644
--- a/Documentation/i2c/busses/i2c-pca-isa
+++ b/Documentation/i2c/busses/i2c-pca-isa.rst
@@ -1,6 +1,9 @@
+=========================
Kernel driver i2c-pca-isa
+=========================
Supported adapters:
+
This driver supports ISA boards using the Philips PCA 9564
Parallel bus to I2C bus controller
@@ -10,11 +13,11 @@ Module Parameters
-----------------
* base int
- I/O base address
+ I/O base address
* irq int
- IRQ interrupt
+ IRQ interrupt
* clock int
- Clock rate as described in table 1 of PCA9564 datasheet
+ Clock rate as described in table 1 of PCA9564 datasheet
Description
-----------
diff --git a/Documentation/i2c/busses/i2c-piix4 b/Documentation/i2c/busses/i2c-piix4.rst
index 2703bc3acad0..cc9000259223 100644
--- a/Documentation/i2c/busses/i2c-piix4
+++ b/Documentation/i2c/busses/i2c-piix4.rst
@@ -1,4 +1,6 @@
+=======================
Kernel driver i2c-piix4
+=======================
Supported adapters:
* Intel 82371AB PIIX4 and PIIX4E
@@ -20,9 +22,9 @@ Supported adapters:
* Standard Microsystems (SMSC) SLC90E66 (Victory66) southbridge
Datasheet: Publicly available at the SMSC website http://www.smsc.com
-Authors:
- Frodo Looijaard <frodol@dds.nl>
- Philip Edelbrock <phil@netroedge.com>
+Authors:
+ - Frodo Looijaard <frodol@dds.nl>
+ - Philip Edelbrock <phil@netroedge.com>
Module Parameters
@@ -39,16 +41,16 @@ Description
The PIIX4 (properly known as the 82371AB) is an Intel chip with a lot of
functionality. Among other things, it implements the PCI bus. One of its
-minor functions is implementing a System Management Bus. This is a true
+minor functions is implementing a System Management Bus. This is a true
SMBus - you can not access it on I2C levels. The good news is that it
natively understands SMBus commands and you do not have to worry about
timing problems. The bad news is that non-SMBus devices connected to it can
confuse it mightily. Yes, this is known to happen...
-Do 'lspci -v' and see whether it contains an entry like this:
+Do ``lspci -v`` and see whether it contains an entry like this::
-0000:00:02.3 Bridge: Intel Corp. 82371AB/EB/MB PIIX4 ACPI (rev 02)
- Flags: medium devsel, IRQ 9
+ 0000:00:02.3 Bridge: Intel Corp. 82371AB/EB/MB PIIX4 ACPI (rev 02)
+ Flags: medium devsel, IRQ 9
Bus and device numbers may differ, but the function number must be
identical (like many PCI devices, the PIIX4 incorporates a number of
@@ -91,7 +93,7 @@ the SMI mode.
device is located at 00:0f.0.
2) Now you just need to change the value in 0xD2 register. Get it first with
command: lspci -xxx -s 00:0f.0
- If the value is 0x3 then you need to change it to 0x1
+ If the value is 0x3 then you need to change it to 0x1:
setpci -s 00:0f.0 d2.b=1
Please note that you don't need to do that in all cases, just when the SMBus is
diff --git a/Documentation/i2c/busses/i2c-sis5595 b/Documentation/i2c/busses/i2c-sis5595.rst
index ecd21fb49a8f..b85630c84a96 100644
--- a/Documentation/i2c/busses/i2c-sis5595
+++ b/Documentation/i2c/busses/i2c-sis5595.rst
@@ -1,9 +1,11 @@
+=========================
Kernel driver i2c-sis5595
+=========================
Authors:
- Frodo Looijaard <frodol@dds.nl>,
- Mark D. Studebaker <mdsxyz123@yahoo.com>,
- Philip Edelbrock <phil@netroedge.com>
+ - Frodo Looijaard <frodol@dds.nl>,
+ - Mark D. Studebaker <mdsxyz123@yahoo.com>,
+ - Philip Edelbrock <phil@netroedge.com>
Supported adapters:
* Silicon Integrated Systems Corp. SiS5595 Southbridge
@@ -11,14 +13,19 @@ Supported adapters:
Note: all have mfr. ID 0x1039.
+ ========= ======
SUPPORTED PCI ID
+ ========= ======
5595 0008
+ ========= ======
Note: these chips contain a 0008 device which is incompatible with the
5595. We recognize these by the presence of the listed
"blacklist" PCI ID and refuse to load.
+ ============= ====== ================
NOT SUPPORTED PCI ID BLACKLIST PCI ID
+ ============= ====== ================
540 0008 0540
550 0008 0550
5513 0008 5511
@@ -36,15 +43,18 @@ Note: all have mfr. ID 0x1039.
735 0008 0735
745 0008 0745
746 0008 0746
+ ============= ====== ================
Module Parameters
-----------------
-* force_addr=0xaddr Set the I/O base address. Useful for boards
+================== =====================================================
+force_addr=0xaddr Set the I/O base address. Useful for boards
that don't set the address in the BIOS. Does not do a
PCI force; the device must still be present in lspci.
Don't use this unless the driver complains that the
base address is not set.
+================== =====================================================
Description
-----------
@@ -56,4 +66,3 @@ WARNING: If you are trying to access the integrated sensors on the SiS5595
chip, you want the sis5595 driver for those, not this driver. This driver
is a BUS driver, not a CHIP driver. A BUS driver is used by other CHIP
drivers to access chips on the bus.
-
diff --git a/Documentation/i2c/busses/i2c-sis630 b/Documentation/i2c/busses/i2c-sis630
deleted file mode 100644
index ee7943631074..000000000000
--- a/Documentation/i2c/busses/i2c-sis630
+++ /dev/null
@@ -1,58 +0,0 @@
-Kernel driver i2c-sis630
-
-Supported adapters:
- * Silicon Integrated Systems Corp (SiS)
- 630 chipset (Datasheet: available at http://www.sfr-fresh.com/linux)
- 730 chipset
- 964 chipset
- * Possible other SiS chipsets ?
-
-Author: Alexander Malysh <amalysh@web.de>
- Amaury Decrême <amaury.decreme@gmail.com> - SiS964 support
-
-Module Parameters
------------------
-
-* force = [1|0] Forcibly enable the SIS630. DANGEROUS!
- This can be interesting for chipsets not named
- above to check if it works for you chipset, but DANGEROUS!
-
-* high_clock = [1|0] Forcibly set Host Master Clock to 56KHz (default,
- what your BIOS use). DANGEROUS! This should be a bit
- faster, but freeze some systems (i.e. my Laptop).
- SIS630/730 chip only.
-
-
-Description
------------
-
-This SMBus only driver is known to work on motherboards with the above
-named chipsets.
-
-If you see something like this:
-
-00:00.0 Host bridge: Silicon Integrated Systems [SiS] 630 Host (rev 31)
-00:01.0 ISA bridge: Silicon Integrated Systems [SiS] 85C503/5513
-
-or like this:
-
-00:00.0 Host bridge: Silicon Integrated Systems [SiS] 730 Host (rev 02)
-00:01.0 ISA bridge: Silicon Integrated Systems [SiS] 85C503/5513
-
-or like this:
-
-00:00.0 Host bridge: Silicon Integrated Systems [SiS] 760/M760 Host (rev 02)
-00:02.0 ISA bridge: Silicon Integrated Systems [SiS] SiS964 [MuTIOL Media IO]
- LPC Controller (rev 36)
-
-in your 'lspci' output , then this driver is for your chipset.
-
-Thank You
----------
-Philip Edelbrock <phil@netroedge.com>
-- testing SiS730 support
-Mark M. Hoffman <mhoffman@lightlink.com>
-- bug fixes
-
-To anyone else which I forgot here ;), thanks!
-
diff --git a/Documentation/i2c/busses/i2c-sis630.rst b/Documentation/i2c/busses/i2c-sis630.rst
new file mode 100644
index 000000000000..9fcd74b18781
--- /dev/null
+++ b/Documentation/i2c/busses/i2c-sis630.rst
@@ -0,0 +1,63 @@
+========================
+Kernel driver i2c-sis630
+========================
+
+Supported adapters:
+ * Silicon Integrated Systems Corp (SiS)
+ 630 chipset (Datasheet: available at http://www.sfr-fresh.com/linux)
+ 730 chipset
+ 964 chipset
+ * Possible other SiS chipsets ?
+
+Author:
+ - Alexander Malysh <amalysh@web.de>
+ - Amaury Decrême <amaury.decreme@gmail.com> - SiS964 support
+
+Module Parameters
+-----------------
+
+================== =====================================================
+force = [1|0] Forcibly enable the SIS630. DANGEROUS!
+ This can be interesting for chipsets not named
+ above to check if it works for you chipset,
+ but DANGEROUS!
+
+high_clock = [1|0] Forcibly set Host Master Clock to 56KHz (default,
+ what your BIOS use). DANGEROUS! This should be a bit
+ faster, but freeze some systems (i.e. my Laptop).
+ SIS630/730 chip only.
+================== =====================================================
+
+
+Description
+-----------
+
+This SMBus only driver is known to work on motherboards with the above
+named chipsets.
+
+If you see something like this::
+
+ 00:00.0 Host bridge: Silicon Integrated Systems [SiS] 630 Host (rev 31)
+ 00:01.0 ISA bridge: Silicon Integrated Systems [SiS] 85C503/5513
+
+or like this::
+
+ 00:00.0 Host bridge: Silicon Integrated Systems [SiS] 730 Host (rev 02)
+ 00:01.0 ISA bridge: Silicon Integrated Systems [SiS] 85C503/5513
+
+or like this::
+
+ 00:00.0 Host bridge: Silicon Integrated Systems [SiS] 760/M760 Host (rev 02)
+ 00:02.0 ISA bridge: Silicon Integrated Systems [SiS] SiS964 [MuTIOL Media IO]
+ LPC Controller (rev 36)
+
+in your ``lspci`` output , then this driver is for your chipset.
+
+Thank You
+---------
+Philip Edelbrock <phil@netroedge.com>
+- testing SiS730 support
+Mark M. Hoffman <mhoffman@lightlink.com>
+- bug fixes
+
+To anyone else which I forgot here ;), thanks!
diff --git a/Documentation/i2c/busses/i2c-sis96x b/Documentation/i2c/busses/i2c-sis96x.rst
index 0b979f3252a4..437cc1d89588 100644
--- a/Documentation/i2c/busses/i2c-sis96x
+++ b/Documentation/i2c/busses/i2c-sis96x.rst
@@ -1,13 +1,18 @@
+========================
Kernel driver i2c-sis96x
+========================
Replaces 2.4.x i2c-sis645
Supported adapters:
+
* Silicon Integrated Systems Corp (SiS)
+
Any combination of these host bridges:
645, 645DX (aka 646), 648, 650, 651, 655, 735, 745, 746
+
and these south bridges:
- 961, 962, 963(L)
+ 961, 962, 963(L)
Author: Mark M. Hoffman <mhoffman@lightlink.com>
@@ -21,17 +26,17 @@ those of the SiS630, although they are located in a completely different
place. Thanks to Alexander Malysh <amalysh@web.de> for providing the
SiS630 datasheet (and driver).
-The command "lspci" as root should produce something like these lines:
+The command ``lspci`` as root should produce something like these lines::
-00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
-00:02.0 ISA bridge: Silicon Integrated Systems [SiS] 85C503/5513
-00:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016
+ 00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
+ 00:02.0 ISA bridge: Silicon Integrated Systems [SiS] 85C503/5513
+ 00:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016
-or perhaps this...
+or perhaps this::
-00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
-00:02.0 ISA bridge: Silicon Integrated Systems [SiS]: Unknown device 0961
-00:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016
+ 00:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
+ 00:02.0 ISA bridge: Silicon Integrated Systems [SiS]: Unknown device 0961
+ 00:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016
(kernel versions later than 2.4.18 may fill in the "Unknown"s)
@@ -50,7 +55,7 @@ TO DOs
------
* The driver does not support SMBus block reads/writes; I may add them if a
-scenario is found where they're needed.
+ scenario is found where they're needed.
Thank You
@@ -58,16 +63,20 @@ Thank You
Mark D. Studebaker <mdsxyz123@yahoo.com>
- design hints and bug fixes
+
Alexander Maylsh <amalysh@web.de>
- ditto, plus an important datasheet... almost the one I really wanted
+
Hans-Günter Lütke Uphues <hg_lu@t-online.de>
- patch for SiS735
+
Robert Zwerus <arzie@dds.nl>
- testing for SiS645DX
+
Kianusch Sayah Karadji <kianusch@sk-tech.net>
- patch for SiS645DX/962
+
Ken Healy
- patch for SiS655
To anyone else who has written w/ feedback, thanks!
-
diff --git a/Documentation/i2c/busses/i2c-taos-evm b/Documentation/i2c/busses/i2c-taos-evm.rst
index 60299555dcf0..f342e313ee3d 100644
--- a/Documentation/i2c/busses/i2c-taos-evm
+++ b/Documentation/i2c/busses/i2c-taos-evm.rst
@@ -1,4 +1,6 @@
+==========================
Kernel driver i2c-taos-evm
+==========================
Author: Jean Delvare <jdelvare@suse.de>
@@ -23,10 +25,10 @@ Using this driver
In order to use this driver, you'll need the serport driver, and the
inputattach tool, which is part of the input-utils package. The following
commands will tell the kernel that you have a TAOS EVM on the first
-serial port:
+serial port::
-# modprobe serport
-# inputattach --taos-evm /dev/ttyS0
+ # modprobe serport
+ # inputattach --taos-evm /dev/ttyS0
Technical details
diff --git a/Documentation/i2c/busses/i2c-via b/Documentation/i2c/busses/i2c-via.rst
index 343870661ac3..846aa17d80a2 100644
--- a/Documentation/i2c/busses/i2c-via
+++ b/Documentation/i2c/busses/i2c-via.rst
@@ -1,4 +1,6 @@
+=====================
Kernel driver i2c-via
+=====================
Supported adapters:
* VIA Technologies, InC. VT82C586B
@@ -12,23 +14,27 @@ Description
i2c-via is an i2c bus driver for motherboards with VIA chipset.
The following VIA pci chipsets are supported:
- - MVP3, VP3, VP2/97, VPX/97
+ - MVP3, VP3, VP2/97, VPX/97
- others with South bridge VT82C586B
-Your lspci listing must show this :
+Your ``lspci`` listing must show this ::
Bridge: VIA Technologies, Inc. VT82C586B ACPI (rev 10)
- Problems?
-
- Q: You have VT82C586B on the motherboard, but not in the listing.
-
- A: Go to your BIOS setup, section PCI devices or similar.
- Turn USB support on, and try again.
+Problems?
+---------
- Q: No error messages, but still i2c doesn't seem to work.
+ Q:
+ You have VT82C586B on the motherboard, but not in the listing.
- A: This can happen. This driver uses the pins VIA recommends in their
+ A:
+ Go to your BIOS setup, section PCI devices or similar.
+ Turn USB support on, and try again.
+
+ Q:
+ No error messages, but still i2c doesn't seem to work.
+
+ A:
+ This can happen. This driver uses the pins VIA recommends in their
datasheets, but there are several ways the motherboard manufacturer
can actually wire the lines.
-
diff --git a/Documentation/i2c/busses/i2c-viapro b/Documentation/i2c/busses/i2c-viapro.rst
index ab64ce21c254..1762f0cf93d0 100644
--- a/Documentation/i2c/busses/i2c-viapro
+++ b/Documentation/i2c/busses/i2c-viapro.rst
@@ -1,4 +1,6 @@
+========================
Kernel driver i2c-viapro
+========================
Supported adapters:
* VIA Technologies, Inc. VT82C596A/B
@@ -26,9 +28,9 @@ Supported adapters:
Datasheet: available on http://linux.via.com.tw
Authors:
- Kyösti Mälkki <kmalkki@cc.hut.fi>,
- Mark D. Studebaker <mdsxyz123@yahoo.com>,
- Jean Delvare <jdelvare@suse.de>
+ - Kyösti Mälkki <kmalkki@cc.hut.fi>,
+ - Mark D. Studebaker <mdsxyz123@yahoo.com>,
+ - Jean Delvare <jdelvare@suse.de>
Module Parameters
-----------------
@@ -44,8 +46,9 @@ Description
i2c-viapro is a true SMBus host driver for motherboards with one of the
supported VIA south bridges.
-Your lspci -n listing must show one of these :
+Your ``lspci -n`` listing must show one of these :
+ ================ ======================
device 1106:3050 (VT82C596A function 3)
device 1106:3051 (VT82C596B function 3)
device 1106:3057 (VT82C686 function 4)
@@ -61,6 +64,7 @@ Your lspci -n listing must show one of these :
device 1106:8353 (VX800/VX820)
device 1106:8409 (VX855/VX875)
device 1106:8410 (VX900)
+ ================ ======================
If none of these show up, you should look in the BIOS for settings like
enable ACPI / SMBus or even USB.
diff --git a/Documentation/i2c/busses/index.rst b/Documentation/i2c/busses/index.rst
new file mode 100644
index 000000000000..97ca4d510816
--- /dev/null
+++ b/Documentation/i2c/busses/index.rst
@@ -0,0 +1,33 @@
+. SPDX-License-Identifier: GPL-2.0
+
+===============
+I2C Bus Drivers
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+ i2c-ali1535
+ i2c-ali1563
+ i2c-ali15x3
+ i2c-amd756
+ i2c-amd8111
+ i2c-amd-mp2
+ i2c-diolan-u2c
+ i2c-i801
+ i2c-ismt
+ i2c-mlxcpld
+ i2c-nforce2
+ i2c-nvidia-gpu
+ i2c-ocores
+ i2c-parport-light
+ i2c-parport
+ i2c-pca-isa
+ i2c-piix4
+ i2c-sis5595
+ i2c-sis630
+ i2c-sis96x
+ i2c-taos-evm
+ i2c-viapro
+ i2c-via
+ scx200_acb
diff --git a/Documentation/i2c/busses/scx200_acb b/Documentation/i2c/busses/scx200_acb.rst
index ce83c871fe95..8dc7c352508c 100644
--- a/Documentation/i2c/busses/scx200_acb
+++ b/Documentation/i2c/busses/scx200_acb.rst
@@ -1,4 +1,6 @@
+========================
Kernel driver scx200_acb
+========================
Author: Christer Weinigel <wingel@nano-system.com>
@@ -25,8 +27,11 @@ Device-specific notes
The SC1100 WRAP boards are known to use base addresses 0x810 and 0x820.
If the scx200_acb driver is built into the kernel, add the following
-parameter to your boot command line:
+parameter to your boot command line::
+
scx200_acb.base=0x810,0x820
+
If the scx200_acb driver is built as a module, add the following line to
-a configuration file in /etc/modprobe.d/ instead:
+a configuration file in /etc/modprobe.d/ instead::
+
options scx200_acb base=0x810,0x820
diff --git a/Documentation/i2c/dev-interface b/Documentation/i2c/dev-interface.rst
index fbed645ccd75..69c23a3c2b1b 100644
--- a/Documentation/i2c/dev-interface
+++ b/Documentation/i2c/dev-interface.rst
@@ -1,3 +1,7 @@
+====================
+I2C Device Interface
+====================
+
Usually, i2c devices are controlled by a kernel driver. But it is also
possible to access all devices on an adapter from userspace, through
the /dev interface. You need to load module i2c-dev for this.
@@ -18,7 +22,7 @@ C example
=========
So let's say you want to access an i2c adapter from a C program.
-First, you need to include these two headers:
+First, you need to include these two headers::
#include <linux/i2c-dev.h>
#include <i2c/smbus.h>
@@ -28,7 +32,7 @@ inspect /sys/class/i2c-dev/ or run "i2cdetect -l" to decide this.
Adapter numbers are assigned somewhat dynamically, so you can not
assume much about them. They can even change from one boot to the next.
-Next thing, open the device file, as follows:
+Next thing, open the device file, as follows::
int file;
int adapter_nr = 2; /* probably dynamically determined */
@@ -42,7 +46,7 @@ Next thing, open the device file, as follows:
}
When you have opened the device, you must specify with what device
-address you want to communicate:
+address you want to communicate::
int addr = 0x40; /* The I2C address */
@@ -53,7 +57,7 @@ address you want to communicate:
Well, you are all set up now. You can now use SMBus commands or plain
I2C to communicate with your device. SMBus commands are preferred if
-the device supports them. Both are illustrated below.
+the device supports them. Both are illustrated below::
__u8 reg = 0x10; /* Device register to access */
__s32 res;
@@ -100,35 +104,35 @@ Full interface description
The following IOCTLs are defined:
-ioctl(file, I2C_SLAVE, long addr)
+``ioctl(file, I2C_SLAVE, long addr)``
Change slave address. The address is passed in the 7 lower bits of the
argument (except for 10 bit addresses, passed in the 10 lower bits in this
case).
-ioctl(file, I2C_TENBIT, long select)
+``ioctl(file, I2C_TENBIT, long select)``
Selects ten bit addresses if select not equals 0, selects normal 7 bit
addresses if select equals 0. Default 0. This request is only valid
if the adapter has I2C_FUNC_10BIT_ADDR.
-ioctl(file, I2C_PEC, long select)
+``ioctl(file, I2C_PEC, long select)``
Selects SMBus PEC (packet error checking) generation and verification
if select not equals 0, disables if select equals 0. Default 0.
Used only for SMBus transactions. This request only has an effect if the
the adapter has I2C_FUNC_SMBUS_PEC; it is still safe if not, it just
doesn't have any effect.
-ioctl(file, I2C_FUNCS, unsigned long *funcs)
- Gets the adapter functionality and puts it in *funcs.
+``ioctl(file, I2C_FUNCS, unsigned long *funcs)``
+ Gets the adapter functionality and puts it in ``*funcs``.
-ioctl(file, I2C_RDWR, struct i2c_rdwr_ioctl_data *msgset)
+``ioctl(file, I2C_RDWR, struct i2c_rdwr_ioctl_data *msgset)``
Do combined read/write transaction without stop in between.
Only valid if the adapter has I2C_FUNC_I2C. The argument is
- a pointer to a
+ a pointer to a::
- struct i2c_rdwr_ioctl_data {
+ struct i2c_rdwr_ioctl_data {
struct i2c_msg *msgs; /* ptr to array of simple messages */
int nmsgs; /* number of messages to exchange */
- }
+ }
The msgs[] themselves contain further pointers into data buffers.
The function will write or read data to or from that buffers depending
@@ -136,8 +140,8 @@ ioctl(file, I2C_RDWR, struct i2c_rdwr_ioctl_data *msgset)
The slave address and whether to use ten bit address mode has to be
set in each message, overriding the values set with the above ioctl's.
-ioctl(file, I2C_SMBUS, struct i2c_smbus_ioctl_data *args)
- If possible, use the provided i2c_smbus_* methods described below instead
+``ioctl(file, I2C_SMBUS, struct i2c_smbus_ioctl_data *args)``
+ If possible, use the provided ``i2c_smbus_*`` methods described below instead
of issuing direct ioctls.
You can do plain i2c transactions by using read(2) and write(2) calls.
@@ -145,7 +149,8 @@ You do not need to pass the address byte; instead, set it through
ioctl I2C_SLAVE before you try to access the device.
You can do SMBus level transactions (see documentation file smbus-protocol
-for details) through the following functions:
+for details) through the following functions::
+
__s32 i2c_smbus_write_quick(int file, __u8 value);
__s32 i2c_smbus_read_byte(int file);
__s32 i2c_smbus_write_byte(int file, __u8 value);
@@ -157,6 +162,7 @@ for details) through the following functions:
__s32 i2c_smbus_read_block_data(int file, __u8 command, __u8 *values);
__s32 i2c_smbus_write_block_data(int file, __u8 command, __u8 length,
__u8 *values);
+
All these transactions return -1 on failure; you can read errno to see
what happened. The 'write' transactions return 0 on success; the
'read' transactions return the read value, except for read_block, which
@@ -174,39 +180,39 @@ Implementation details
For the interested, here's the code flow which happens inside the kernel
when you use the /dev interface to I2C:
-1* Your program opens /dev/i2c-N and calls ioctl() on it, as described in
-section "C example" above.
-
-2* These open() and ioctl() calls are handled by the i2c-dev kernel
-driver: see i2c-dev.c:i2cdev_open() and i2c-dev.c:i2cdev_ioctl(),
-respectively. You can think of i2c-dev as a generic I2C chip driver
-that can be programmed from user-space.
-
-3* Some ioctl() calls are for administrative tasks and are handled by
-i2c-dev directly. Examples include I2C_SLAVE (set the address of the
-device you want to access) and I2C_PEC (enable or disable SMBus error
-checking on future transactions.)
-
-4* Other ioctl() calls are converted to in-kernel function calls by
-i2c-dev. Examples include I2C_FUNCS, which queries the I2C adapter
-functionality using i2c.h:i2c_get_functionality(), and I2C_SMBUS, which
-performs an SMBus transaction using i2c-core-smbus.c:i2c_smbus_xfer().
-
-The i2c-dev driver is responsible for checking all the parameters that
-come from user-space for validity. After this point, there is no
-difference between these calls that came from user-space through i2c-dev
-and calls that would have been performed by kernel I2C chip drivers
-directly. This means that I2C bus drivers don't need to implement
-anything special to support access from user-space.
-
-5* These i2c.h functions are wrappers to the actual implementation of
-your I2C bus driver. Each adapter must declare callback functions
-implementing these standard calls. i2c.h:i2c_get_functionality() calls
-i2c_adapter.algo->functionality(), while
-i2c-core-smbus.c:i2c_smbus_xfer() calls either
-adapter.algo->smbus_xfer() if it is implemented, or if not,
-i2c-core-smbus.c:i2c_smbus_xfer_emulated() which in turn calls
-i2c_adapter.algo->master_xfer().
+1) Your program opens /dev/i2c-N and calls ioctl() on it, as described in
+ section "C example" above.
+
+2) These open() and ioctl() calls are handled by the i2c-dev kernel
+ driver: see i2c-dev.c:i2cdev_open() and i2c-dev.c:i2cdev_ioctl(),
+ respectively. You can think of i2c-dev as a generic I2C chip driver
+ that can be programmed from user-space.
+
+3) Some ioctl() calls are for administrative tasks and are handled by
+ i2c-dev directly. Examples include I2C_SLAVE (set the address of the
+ device you want to access) and I2C_PEC (enable or disable SMBus error
+ checking on future transactions.)
+
+4) Other ioctl() calls are converted to in-kernel function calls by
+ i2c-dev. Examples include I2C_FUNCS, which queries the I2C adapter
+ functionality using i2c.h:i2c_get_functionality(), and I2C_SMBUS, which
+ performs an SMBus transaction using i2c-core-smbus.c:i2c_smbus_xfer().
+
+ The i2c-dev driver is responsible for checking all the parameters that
+ come from user-space for validity. After this point, there is no
+ difference between these calls that came from user-space through i2c-dev
+ and calls that would have been performed by kernel I2C chip drivers
+ directly. This means that I2C bus drivers don't need to implement
+ anything special to support access from user-space.
+
+5) These i2c.h functions are wrappers to the actual implementation of
+ your I2C bus driver. Each adapter must declare callback functions
+ implementing these standard calls. i2c.h:i2c_get_functionality() calls
+ i2c_adapter.algo->functionality(), while
+ i2c-core-smbus.c:i2c_smbus_xfer() calls either
+ adapter.algo->smbus_xfer() if it is implemented, or if not,
+ i2c-core-smbus.c:i2c_smbus_xfer_emulated() which in turn calls
+ i2c_adapter.algo->master_xfer().
After your I2C bus driver has processed these requests, execution runs
up the call chain, with almost no processing done, except by i2c-dev to
diff --git a/Documentation/i2c/DMA-considerations b/Documentation/i2c/dma-considerations.rst
index 203002054120..203002054120 100644
--- a/Documentation/i2c/DMA-considerations
+++ b/Documentation/i2c/dma-considerations.rst
diff --git a/Documentation/i2c/fault-codes b/Documentation/i2c/fault-codes.rst
index 0cee0fc545b4..80b14e718b52 100644
--- a/Documentation/i2c/fault-codes
+++ b/Documentation/i2c/fault-codes.rst
@@ -1,3 +1,7 @@
+=====================
+I2C/SMBUS Fault Codes
+=====================
+
This is a summary of the most important conventions for use of fault
codes in the I2C/SMBus stack.
@@ -125,4 +129,3 @@ ETIMEDOUT
when a slave stretches clocks too far. I2C has no such
timeouts, but it's normal for I2C adapters to impose some
arbitrary limits (much longer than SMBus!) too.
-
diff --git a/Documentation/i2c/functionality b/Documentation/i2c/functionality.rst
index 4aae8ed15873..377507c56162 100644
--- a/Documentation/i2c/functionality
+++ b/Documentation/i2c/functionality.rst
@@ -1,11 +1,15 @@
+=======================
+I2C/SMBus Functionality
+=======================
+
INTRODUCTION
------------
-Because not every I2C or SMBus adapter implements everything in the
+Because not every I2C or SMBus adapter implements everything in the
I2C specifications, a client can not trust that everything it needs
is implemented when it is given the option to attach to an adapter:
the client needs some way to check whether an adapter has the needed
-functionality.
+functionality.
FUNCTIONALITY CONSTANTS
@@ -14,6 +18,7 @@ FUNCTIONALITY CONSTANTS
For the most up-to-date list of functionality constants, please check
<uapi/linux/i2c.h>!
+ =============================== ==============================================
I2C_FUNC_I2C Plain i2c-level commands (Pure SMBus
adapters typically can not do these)
I2C_FUNC_10BIT_ADDR Handles the 10-bit address extensions
@@ -33,9 +38,11 @@ For the most up-to-date list of functionality constants, please check
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA Handles the SMBus write_block_data command
I2C_FUNC_SMBUS_READ_I2C_BLOCK Handles the SMBus read_i2c_block_data command
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK Handles the SMBus write_i2c_block_data command
+ =============================== ==============================================
A few combinations of the above flags are also defined for your convenience:
+ ========================= ======================================
I2C_FUNC_SMBUS_BYTE Handles the SMBus read_byte
and write_byte commands
I2C_FUNC_SMBUS_BYTE_DATA Handles the SMBus read_byte_data
@@ -49,6 +56,7 @@ A few combinations of the above flags are also defined for your convenience:
I2C_FUNC_SMBUS_EMUL Handles all SMBus commands that can be
emulated by a real I2C adapter (using
the transparent emulation layer)
+ ========================= ======================================
In kernel versions prior to 3.5 I2C_FUNC_NOSTART was implemented as
part of I2C_FUNC_PROTOCOL_MANGLING.
@@ -58,11 +66,11 @@ ADAPTER IMPLEMENTATION
----------------------
When you write a new adapter driver, you will have to implement a
-function callback `functionality'. Typical implementations are given
+function callback ``functionality``. Typical implementations are given
below.
A typical SMBus-only adapter would list all the SMBus transactions it
-supports. This example comes from the i2c-piix4 driver:
+supports. This example comes from the i2c-piix4 driver::
static u32 piix4_func(struct i2c_adapter *adapter)
{
@@ -72,7 +80,7 @@ supports. This example comes from the i2c-piix4 driver:
}
A typical full-I2C adapter would use the following (from the i2c-pxa
-driver):
+driver)::
static u32 i2c_pxa_functionality(struct i2c_adapter *adap)
{
@@ -94,7 +102,7 @@ CLIENT CHECKING
Before a client tries to attach to an adapter, or even do tests to check
whether one of the devices it supports is present on an adapter, it should
check whether the needed functionality is present. The typical way to do
-this is (from the lm75 driver):
+this is (from the lm75 driver)::
static int lm75_detect(...)
{
@@ -129,7 +137,7 @@ If you try to access an adapter from a userspace program, you will have
to use the /dev interface. You will still have to check whether the
functionality you need is supported, of course. This is done using
the I2C_FUNCS ioctl. An example, adapted from the i2cdetect program, is
-below:
+below::
int file;
if (file = open("/dev/i2c-0", O_RDWR) < 0) {
diff --git a/Documentation/i2c/gpio-fault-injection b/Documentation/i2c/gpio-fault-injection.rst
index c87f416d53dd..9dca6ec7d266 100644
--- a/Documentation/i2c/gpio-fault-injection
+++ b/Documentation/i2c/gpio-fault-injection.rst
@@ -104,10 +104,10 @@ There doesn't need to be a device at this address because arbitration lost
should be detected beforehand. Also note, that SCL going down is monitored
using interrupts, so the interrupt latency might cause the first bits to be not
corrupted. A good starting point for using this fault injector on an otherwise
-idle bus is:
+idle bus is::
-# echo 200 > lose_arbitration &
-# i2cget -y <bus_to_test> 0x3f
+ # echo 200 > lose_arbitration &
+ # i2cget -y <bus_to_test> 0x3f
Panic during transfer
=====================
@@ -127,10 +127,10 @@ The calling process will then sleep and wait for the next bus clock. The
process is interruptible, though.
Start of a transfer is detected by waiting for SCL going down by the master
-under test. A good starting point for using this fault injector is:
+under test. A good starting point for using this fault injector is::
-# echo 0 > inject_panic &
-# i2cget -y <bus_to_test> <some_address>
+ # echo 0 > inject_panic &
+ # i2cget -y <bus_to_test> <some_address>
Note that there doesn't need to be a device listening to the address you are
using. Results may vary depending on that, though.
diff --git a/Documentation/i2c/i2c-protocol b/Documentation/i2c/i2c-protocol.rst
index ff6d6cee6c7e..2f8fcf671b2e 100644
--- a/Documentation/i2c/i2c-protocol
+++ b/Documentation/i2c/i2c-protocol.rst
@@ -1,8 +1,13 @@
+============
+I2C Protocol
+============
+
This document describes the i2c protocol. Or will, when it is finished :-)
Key to symbols
==============
+=============== =============================================================
S (1 bit) : Start bit
P (1 bit) : Stop bit
Rd/Wr (1 bit) : Read/Write bit. Rd equals 1, Wr equals 0.
@@ -15,33 +20,35 @@ Data (8 bits): A plain data byte. Sometimes, I write DataLow, DataHigh
for 16 bit data.
Count (8 bits): A data byte containing the length of a block operation.
-[..]: Data sent by I2C device, as opposed to data sent by the host adapter.
+[..]: Data sent by I2C device, as opposed to data sent by the
+ host adapter.
+=============== =============================================================
Simple send transaction
-======================
+=======================
-This corresponds to i2c_master_send.
+This corresponds to i2c_master_send::
S Addr Wr [A] Data [A] Data [A] ... [A] Data [A] P
Simple receive transaction
-===========================
+==========================
-This corresponds to i2c_master_recv
+This corresponds to i2c_master_recv::
S Addr Rd [A] [Data] A [Data] A ... A [Data] NA P
Combined transactions
-====================
+=====================
This corresponds to i2c_transfer
They are just like the above transactions, but instead of a stop bit P
a start bit S is sent and the transaction continues. An example of
-a byte read, followed by a byte write:
+a byte read, followed by a byte write::
S Addr Rd [A] [Data] NA S Addr Wr [A] Data [A] P
@@ -65,8 +72,10 @@ I2C_M_NO_RD_ACK:
I2C_M_NOSTART:
In a combined transaction, no 'S Addr Wr/Rd [A]' is generated at some
point. For example, setting I2C_M_NOSTART on the second partial message
- generates something like:
+ generates something like::
+
S Addr Rd [A] [Data] NA Data [A] P
+
If you set the I2C_M_NOSTART variable for the first partial message,
we do not generate Addr, but we do generate the startbit S. This will
probably confuse all other clients on your bus, so don't try this.
@@ -79,7 +88,8 @@ I2C_M_NOSTART:
I2C_M_REV_DIR_ADDR:
This toggles the Rd/Wr flag. That is, if you want to do a write, but
need to emit an Rd instead of a Wr, or vice versa, you set this
- flag. For example:
+ flag. For example::
+
S Addr Rd [A] Data [A] Data [A] ... [A] Data [A] P
I2C_M_STOP:
diff --git a/Documentation/i2c/i2c-stub b/Documentation/i2c/i2c-stub.rst
index a16924fbd289..a6fc6916d6bc 100644
--- a/Documentation/i2c/i2c-stub
+++ b/Documentation/i2c/i2c-stub.rst
@@ -1,6 +1,9 @@
-MODULE: i2c-stub
+========
+i2c-stub
+========
-DESCRIPTION:
+Description
+===========
This module is a very simple fake I2C/SMBus driver. It implements six
types of SMBus commands: write quick, (r/w) byte, (r/w) byte data, (r/w)
@@ -28,6 +31,7 @@ SMBus block operations. Writes can be partial. Block read commands always
return the number of bytes selected with the largest write so far.
The typical use-case is like this:
+
1. load this module
2. use i2cset (from the i2c-tools project) to pre-load some data
3. load the target chip driver module
@@ -36,7 +40,8 @@ The typical use-case is like this:
There's a script named i2c-stub-from-dump in the i2c-tools package which
can load register values automatically from a chip dump.
-PARAMETERS:
+Parameters
+==========
int chip_addr[10]:
The SMBus addresses to emulate chips at.
@@ -47,18 +52,15 @@ unsigned long functionality:
value 0x1f0000 would only enable the quick, byte and byte data
commands.
-u8 bank_reg[10]
-u8 bank_mask[10]
-u8 bank_start[10]
-u8 bank_end[10]:
+u8 bank_reg[10], u8 bank_mask[10], u8 bank_start[10], u8 bank_end[10]:
Optional bank settings. They tell which bits in which register
select the active bank, as well as the range of banked registers.
-CAVEATS:
+Caveats
+=======
If your target driver polls some byte or word waiting for it to change, the
stub could lock it up. Use i2cset to unlock it.
If you spam it hard enough, printk can be lossy. This module really wants
something like relayfs.
-
diff --git a/Documentation/i2c/i2c-topology b/Documentation/i2c/i2c-topology.rst
index f74d78b53d4d..0c1ae95f6a97 100644
--- a/Documentation/i2c/i2c-topology
+++ b/Documentation/i2c/i2c-topology.rst
@@ -1,3 +1,4 @@
+============
I2C topology
============
@@ -14,6 +15,7 @@ than a straight-forward i2c bus with one adapter and one or more devices.
that has to be operated before the device can be accessed.
Etc
+===
These constructs are represented as i2c adapter trees by Linux, where
each adapter has a parent adapter (except the root adapter) and zero or
@@ -37,7 +39,9 @@ mux-locked or parent-locked muxes. As is evident from below, it can be
useful to know if a mux is mux-locked or if it is parent-locked. The
following list was correct at the time of writing:
-In drivers/i2c/muxes/
+In drivers/i2c/muxes/:
+
+====================== =============================================
i2c-arb-gpio-challenge Parent-locked
i2c-mux-gpio Normally parent-locked, mux-locked iff
all involved gpio pins are controlled by the
@@ -52,18 +56,25 @@ i2c-mux-pinctrl Normally parent-locked, mux-locked iff
all involved pinctrl devices are controlled
by the same i2c root adapter that they mux.
i2c-mux-reg Parent-locked
+====================== =============================================
+
+In drivers/iio/:
-In drivers/iio/
+====================== =============================================
gyro/mpu3050 Mux-locked
imu/inv_mpu6050/ Mux-locked
+====================== =============================================
-In drivers/media/
+In drivers/media/:
+
+======================= =============================================
dvb-frontends/lgdt3306a Mux-locked
dvb-frontends/m88ds3103 Parent-locked
dvb-frontends/rtl2830 Parent-locked
dvb-frontends/rtl2832 Mux-locked
dvb-frontends/si2168 Mux-locked
usb/cx231xx/ Parent-locked
+======================= =============================================
Mux-locked muxes
@@ -78,6 +89,7 @@ full transaction, unrelated i2c transfers may interleave the different
stages of the transaction. This has the benefit that the mux driver
may be easier and cleaner to implement, but it has some caveats.
+==== =====================================================================
ML1. If you build a topology with a mux-locked mux being the parent
of a parent-locked mux, this might break the expectation from the
parent-locked mux that the root adapter is locked during the
@@ -105,11 +117,15 @@ ML4. If any non-i2c operation in the mux driver changes the i2c mux state,
Otherwise garbage may appear on the bus as seen from devices
behind the mux, when an unrelated i2c transfer is in flight during
the non-i2c mux-changing operation.
+==== =====================================================================
Mux-locked Example
------------------
+
+::
+
.----------. .--------.
.--------. | mux- |-----| dev D1 |
| root |--+--| locked | '--------'
@@ -148,6 +164,7 @@ adapter during the transaction are unlocked i2c transfers (using e.g.
__i2c_transfer), or a deadlock will follow. There are a couple of
caveats.
+==== ====================================================================
PL1. If you build a topology with a parent-locked mux being the child
of another mux, this might break a possible assumption from the
child mux that the root adapter is unused between its select op
@@ -161,11 +178,14 @@ PL2. If select/deselect calls out to other subsystems such as gpio,
caused by these subsystems are unlocked. This can be convoluted to
accomplish, maybe even impossible if an acceptably clean solution
is sought.
+==== ====================================================================
Parent-locked Example
---------------------
+::
+
.----------. .--------.
.--------. | parent- |-----| dev D1 |
| root |--+--| locked | '--------'
@@ -177,20 +197,20 @@ Parent-locked Example
When there is an access to D1, this happens:
- 1. Someone issues an i2c-transfer to D1.
- 2. M1 locks muxes on its parent (the root adapter in this case).
- 3. M1 locks its parent adapter.
- 4. M1 calls ->select to ready the mux.
- 5. If M1 does any i2c-transfers (on this root adapter) as part of
- its select, those transfers must be unlocked i2c-transfers so
- that they do not deadlock the root adapter.
- 6. M1 feeds the i2c-transfer from step 1 to the root adapter as an
- unlocked i2c-transfer, so that it does not deadlock the parent
- adapter.
- 7. M1 calls ->deselect, if it has one.
- 8. Same rules as in step 5, but for ->deselect.
- 9. M1 unlocks its parent adapter.
-10. M1 unlocks muxes on its parent.
+ 1. Someone issues an i2c-transfer to D1.
+ 2. M1 locks muxes on its parent (the root adapter in this case).
+ 3. M1 locks its parent adapter.
+ 4. M1 calls ->select to ready the mux.
+ 5. If M1 does any i2c-transfers (on this root adapter) as part of
+ its select, those transfers must be unlocked i2c-transfers so
+ that they do not deadlock the root adapter.
+ 6. M1 feeds the i2c-transfer from step 1 to the root adapter as an
+ unlocked i2c-transfer, so that it does not deadlock the parent
+ adapter.
+ 7. M1 calls ->deselect, if it has one.
+ 8. Same rules as in step 5, but for ->deselect.
+ 9. M1 unlocks its parent adapter.
+ 10. M1 unlocks muxes on its parent.
This means that accesses to both D2 and D3 are locked out for the full
@@ -203,7 +223,7 @@ Complex Examples
Parent-locked mux as parent of parent-locked mux
------------------------------------------------
-This is a useful topology, but it can be bad.
+This is a useful topology, but it can be bad::
.----------. .----------. .--------.
.--------. | parent- |-----| parent- |-----| dev D1 |
@@ -227,7 +247,7 @@ through and be seen by the M2 adapter, thus closing M2 prematurely.
Mux-locked mux as parent of mux-locked mux
------------------------------------------
-This is a good topology.
+This is a good topology::
.----------. .----------. .--------.
.--------. | mux- |-----| mux- |-----| dev D1 |
@@ -248,7 +268,7 @@ are still possibly interleaved.
Mux-locked mux as parent of parent-locked mux
---------------------------------------------
-This is probably a bad topology.
+This is probably a bad topology::
.----------. .----------. .--------.
.--------. | mux- |-----| parent- |-----| dev D1 |
@@ -282,7 +302,7 @@ auto-closing, the topology is fine.
Parent-locked mux as parent of mux-locked mux
---------------------------------------------
-This is a good topology.
+This is a good topology::
.----------. .----------. .--------.
.--------. | parent- |-----| mux- |-----| dev D1 |
@@ -306,7 +326,7 @@ adapter is locked directly.
Two mux-locked sibling muxes
----------------------------
-This is a good topology.
+This is a good topology::
.--------.
.----------. .--| dev D1 |
@@ -330,7 +350,7 @@ accesses to D5 may be interleaved at any time.
Two parent-locked sibling muxes
-------------------------------
-This is a good topology.
+This is a good topology::
.--------.
.----------. .--| dev D1 |
@@ -354,7 +374,7 @@ out.
Mux-locked and parent-locked sibling muxes
------------------------------------------
-This is a good topology.
+This is a good topology::
.--------.
.----------. .--| dev D1 |
diff --git a/Documentation/i2c/index.rst b/Documentation/i2c/index.rst
new file mode 100644
index 000000000000..cd8d020f7ac5
--- /dev/null
+++ b/Documentation/i2c/index.rst
@@ -0,0 +1,37 @@
+. SPDX-License-Identifier: GPL-2.0
+
+===================
+I2C/SMBus Subsystem
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ dev-interface
+ dma-considerations
+ fault-codes
+ functionality
+ gpio-fault-injection
+ i2c-protocol
+ i2c-stub
+ i2c-topology
+ instantiating-devices
+ old-module-parameters
+ slave-eeprom-backend
+ slave-interface
+ smbus-protocol
+ summary
+ ten-bit-addresses
+ upgrading-clients
+ writing-clients
+
+ muxes/i2c-mux-gpio
+
+ busses/index
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/i2c/instantiating-devices b/Documentation/i2c/instantiating-devices.rst
index 0d85ac1935b7..1238f1fa3382 100644
--- a/Documentation/i2c/instantiating-devices
+++ b/Documentation/i2c/instantiating-devices.rst
@@ -1,3 +1,4 @@
+==============================
How to instantiate I2C devices
==============================
@@ -17,9 +18,9 @@ which is known in advance. It is thus possible to pre-declare the I2C
devices which live on this bus. This is done with an array of struct
i2c_board_info which is registered by calling i2c_register_board_info().
-Example (from omap2 h4):
+Example (from omap2 h4)::
-static struct i2c_board_info h4_i2c_board_info[] __initdata = {
+ static struct i2c_board_info h4_i2c_board_info[] __initdata = {
{
I2C_BOARD_INFO("isp1301_omap", 0x2d),
.irq = OMAP_GPIO_IRQ(125),
@@ -32,15 +33,15 @@ static struct i2c_board_info h4_i2c_board_info[] __initdata = {
I2C_BOARD_INFO("24c01", 0x57),
.platform_data = &m24c01,
},
-};
+ };
-static void __init omap_h4_init(void)
-{
+ static void __init omap_h4_init(void)
+ {
(...)
i2c_register_board_info(1, h4_i2c_board_info,
ARRAY_SIZE(h4_i2c_board_info));
(...)
-}
+ }
The above code declares 3 devices on I2C bus 1, including their respective
addresses and custom data needed by their drivers. When the I2C bus in
@@ -57,7 +58,7 @@ Method 1b: Declare the I2C devices via devicetree
This method has the same implications as method 1a. The declaration of I2C
devices is here done via devicetree as subnodes of the master controller.
-Example:
+Example::
i2c1: i2c@400a0000 {
/* ... master properties skipped ... */
@@ -85,7 +86,7 @@ Method 1c: Declare the I2C devices via ACPI
-------------------------------------------
ACPI can also describe I2C devices. There is special documentation for this
-which is currently located at Documentation/acpi/enumeration.txt.
+which is currently located at Documentation/firmware-guide/acpi/enumeration.rst.
Method 2: Instantiate the devices explicitly
@@ -99,20 +100,20 @@ bus in advance, so the method 1 described above can't be used. Instead,
you can instantiate your I2C devices explicitly. This is done by filling
a struct i2c_board_info and calling i2c_new_device().
-Example (from the sfe4001 network driver):
+Example (from the sfe4001 network driver)::
-static struct i2c_board_info sfe4001_hwmon_info = {
+ static struct i2c_board_info sfe4001_hwmon_info = {
I2C_BOARD_INFO("max6647", 0x4e),
-};
+ };
-int sfe4001_init(struct efx_nic *efx)
-{
+ int sfe4001_init(struct efx_nic *efx)
+ {
(...)
efx->board_info.hwmon_client =
i2c_new_device(&efx->i2c_adap, &sfe4001_hwmon_info);
(...)
-}
+ }
The above code instantiates 1 I2C device on the I2C bus which is on the
network adapter in question.
@@ -124,12 +125,12 @@ it may have different addresses from one board to the next (manufacturer
changing its design without notice). In this case, you can call
i2c_new_probed_device() instead of i2c_new_device().
-Example (from the nxp OHCI driver):
+Example (from the nxp OHCI driver)::
-static const unsigned short normal_i2c[] = { 0x2c, 0x2d, I2C_CLIENT_END };
+ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, I2C_CLIENT_END };
-static int usb_hcd_nxp_probe(struct platform_device *pdev)
-{
+ static int usb_hcd_nxp_probe(struct platform_device *pdev)
+ {
(...)
struct i2c_adapter *i2c_adap;
struct i2c_board_info i2c_info;
@@ -137,12 +138,12 @@ static int usb_hcd_nxp_probe(struct platform_device *pdev)
(...)
i2c_adap = i2c_get_adapter(2);
memset(&i2c_info, 0, sizeof(struct i2c_board_info));
- strlcpy(i2c_info.type, "isp1301_nxp", I2C_NAME_SIZE);
+ strscpy(i2c_info.type, "isp1301_nxp", sizeof(i2c_info.type));
isp1301_i2c_client = i2c_new_probed_device(i2c_adap, &i2c_info,
normal_i2c, NULL);
i2c_put_adapter(i2c_adap);
(...)
-}
+ }
The above code instantiates up to 1 I2C device on the I2C bus which is on
the OHCI adapter in question. It first tries at address 0x2c, if nothing
@@ -172,6 +173,7 @@ explicitly. Instead, i2c-core will probe for such devices as soon as their
drivers are loaded, and if any is found, an I2C device will be
instantiated automatically. In order to prevent any misbehavior of this
mechanism, the following restrictions apply:
+
* The I2C device driver must implement the detect() method, which
identifies a supported device by reading from arbitrary registers.
* Only buses which are likely to have a supported device and agree to be
@@ -189,6 +191,7 @@ first.
Those of you familiar with the i2c subsystem of 2.4 kernels and early 2.6
kernels will find out that this method 3 is essentially similar to what
was done there. Two significant differences are:
+
* Probing is only one way to instantiate I2C devices now, while it was the
only way back then. Where possible, methods 1 and 2 should be preferred.
Method 3 should only be used when there is no other way, as it can have
@@ -224,11 +227,13 @@ device. As no two devices can live at the same address on a given I2C
segment, the address is sufficient to uniquely identify the device to be
deleted.
-Example:
-# echo eeprom 0x50 > /sys/bus/i2c/devices/i2c-3/new_device
+Example::
+
+ # echo eeprom 0x50 > /sys/bus/i2c/devices/i2c-3/new_device
While this interface should only be used when in-kernel device declaration
can't be done, there is a variety of cases where it can be helpful:
+
* The I2C driver usually detects devices (method 3 above) but the bus
segment your device lives on doesn't have the proper class bit set and
thus detection doesn't trigger.
diff --git a/Documentation/i2c/muxes/i2c-mux-gpio b/Documentation/i2c/muxes/i2c-mux-gpio.rst
index 893ecdfe6e43..7d27444035c3 100644
--- a/Documentation/i2c/muxes/i2c-mux-gpio
+++ b/Documentation/i2c/muxes/i2c-mux-gpio.rst
@@ -1,4 +1,6 @@
+==========================
Kernel driver i2c-mux-gpio
+==========================
Author: Peter Korsgaard <peter.korsgaard@barco.com>
@@ -8,7 +10,7 @@ Description
i2c-mux-gpio is an i2c mux driver providing access to I2C bus segments
from a master I2C bus and a hardware MUX controlled through GPIO pins.
-E.G.:
+E.G.::
---------- ---------- Bus segment 1 - - - - -
| | SCL/SDA | |-------------- | |
@@ -33,20 +35,20 @@ bus, the number of bus segments to create and the GPIO pins used
to control it. See include/linux/platform_data/i2c-mux-gpio.h for details.
E.G. something like this for a MUX providing 4 bus segments
-controlled through 3 GPIO pins:
+controlled through 3 GPIO pins::
-#include <linux/platform_data/i2c-mux-gpio.h>
-#include <linux/platform_device.h>
+ #include <linux/platform_data/i2c-mux-gpio.h>
+ #include <linux/platform_device.h>
-static const unsigned myboard_gpiomux_gpios[] = {
+ static const unsigned myboard_gpiomux_gpios[] = {
AT91_PIN_PC26, AT91_PIN_PC25, AT91_PIN_PC24
-};
+ };
-static const unsigned myboard_gpiomux_values[] = {
+ static const unsigned myboard_gpiomux_values[] = {
0, 1, 2, 3
-};
+ };
-static struct i2c_mux_gpio_platform_data myboard_i2cmux_data = {
+ static struct i2c_mux_gpio_platform_data myboard_i2cmux_data = {
.parent = 1,
.base_nr = 2, /* optional */
.values = myboard_gpiomux_values,
@@ -54,15 +56,15 @@ static struct i2c_mux_gpio_platform_data myboard_i2cmux_data = {
.gpios = myboard_gpiomux_gpios,
.n_gpios = ARRAY_SIZE(myboard_gpiomux_gpios),
.idle = 4, /* optional */
-};
+ };
-static struct platform_device myboard_i2cmux = {
+ static struct platform_device myboard_i2cmux = {
.name = "i2c-mux-gpio",
.id = 0,
.dev = {
.platform_data = &myboard_i2cmux_data,
},
-};
+ };
If you don't know the absolute GPIO pin numbers at registration time,
you can instead provide a chip name (.chip_name) and relative GPIO pin
diff --git a/Documentation/i2c/old-module-parameters b/Documentation/i2c/old-module-parameters.rst
index 8e2b629d533c..a1939512ad66 100644
--- a/Documentation/i2c/old-module-parameters
+++ b/Documentation/i2c/old-module-parameters.rst
@@ -1,3 +1,4 @@
+=================================================
I2C device driver binding control from user-space
=================================================
@@ -19,23 +20,27 @@ Below is a mapping from the old module parameters to the new interface.
Attaching a driver to an I2C device
-----------------------------------
-Old method (module parameters):
-# modprobe <driver> probe=1,0x2d
-# modprobe <driver> force=1,0x2d
-# modprobe <driver> force_<device>=1,0x2d
+Old method (module parameters)::
+
+ # modprobe <driver> probe=1,0x2d
+ # modprobe <driver> force=1,0x2d
+ # modprobe <driver> force_<device>=1,0x2d
+
+New method (sysfs interface)::
-New method (sysfs interface):
-# echo <device> 0x2d > /sys/bus/i2c/devices/i2c-1/new_device
+ # echo <device> 0x2d > /sys/bus/i2c/devices/i2c-1/new_device
Preventing a driver from attaching to an I2C device
---------------------------------------------------
-Old method (module parameters):
-# modprobe <driver> ignore=1,0x2f
+Old method (module parameters)::
+
+ # modprobe <driver> ignore=1,0x2f
+
+New method (sysfs interface)::
-New method (sysfs interface):
-# echo dummy 0x2f > /sys/bus/i2c/devices/i2c-1/new_device
-# modprobe <driver>
+ # echo dummy 0x2f > /sys/bus/i2c/devices/i2c-1/new_device
+ # modprobe <driver>
Of course, it is important to instantiate the "dummy" device before loading
the driver. The dummy device will be handled by i2c-core itself, preventing
diff --git a/Documentation/i2c/slave-eeprom-backend b/Documentation/i2c/slave-eeprom-backend.rst
index 04f8d8a9b817..0b8cd83698e0 100644
--- a/Documentation/i2c/slave-eeprom-backend
+++ b/Documentation/i2c/slave-eeprom-backend.rst
@@ -1,3 +1,4 @@
+==============================
Linux I2C slave eeprom backend
==============================
@@ -5,10 +6,9 @@ by Wolfram Sang <wsa@sang-engineering.com> in 2014-15
This is a proof-of-concept backend which acts like an EEPROM on the connected
I2C bus. The memory contents can be modified from userspace via this file
-located in sysfs:
+located in sysfs::
/sys/bus/i2c/devices/<device-directory>/slave-eeprom
As of 2015, Linux doesn't support poll on binary sysfs files, so there is no
notification when another master changed the content.
-
diff --git a/Documentation/i2c/slave-interface b/Documentation/i2c/slave-interface.rst
index 7e2a228f21bc..c769bd6a15bf 100644
--- a/Documentation/i2c/slave-interface
+++ b/Documentation/i2c/slave-interface.rst
@@ -1,3 +1,4 @@
+=====================================
Linux I2C slave interface description
=====================================
@@ -12,7 +13,7 @@ EEPROM, the Linux I2C slave can access the content via sysfs and handle data as
needed. The backend driver and the I2C bus driver communicate via events. Here
is a small graph visualizing the data flow and the means by which data is
transported. The dotted line marks only one example. The backend could also
-use a character device, be in-kernel only, or something completely different:
+use a character device, be in-kernel only, or something completely different::
e.g. sysfs I2C slave events I/O registers
@@ -35,7 +36,7 @@ them as described in the document 'instantiating-devices'. The only difference
is that i2c slave backends have their own address space. So, you have to add
0x1000 to the address you would originally request. An example for
instantiating the slave-eeprom driver from userspace at the 7 bit address 0x64
-on bus 1:
+on bus 1::
# echo slave-24c02 0x1064 > /sys/bus/i2c/devices/i2c-1/new_device
@@ -54,7 +55,7 @@ drivers and writing backends will be given.
I2C slave events
----------------
-The bus driver sends an event to the backend using the following function:
+The bus driver sends an event to the backend using the following function::
ret = i2c_slave_event(client, event, &val)
@@ -69,8 +70,9 @@ Event types:
* I2C_SLAVE_WRITE_REQUESTED (mandatory)
-'val': unused
-'ret': always 0
+ 'val': unused
+
+ 'ret': always 0
Another I2C master wants to write data to us. This event should be sent once
our own address and the write bit was detected. The data did not arrive yet, so
@@ -79,8 +81,9 @@ to be done, though.
* I2C_SLAVE_READ_REQUESTED (mandatory)
-'val': backend returns first byte to be sent
-'ret': always 0
+ 'val': backend returns first byte to be sent
+
+ 'ret': always 0
Another I2C master wants to read data from us. This event should be sent once
our own address and the read bit was detected. After returning, the bus driver
@@ -88,8 +91,9 @@ should transmit the first byte.
* I2C_SLAVE_WRITE_RECEIVED (mandatory)
-'val': bus driver delivers received byte
-'ret': 0 if the byte should be acked, some errno if the byte should be nacked
+ 'val': bus driver delivers received byte
+
+ 'ret': 0 if the byte should be acked, some errno if the byte should be nacked
Another I2C master has sent a byte to us which needs to be set in 'val'. If 'ret'
is zero, the bus driver should ack this byte. If 'ret' is an errno, then the byte
@@ -97,8 +101,9 @@ should be nacked.
* I2C_SLAVE_READ_PROCESSED (mandatory)
-'val': backend returns next byte to be sent
-'ret': always 0
+ 'val': backend returns next byte to be sent
+
+ 'ret': always 0
The bus driver requests the next byte to be sent to another I2C master in
'val'. Important: This does not mean that the previous byte has been acked, it
@@ -111,8 +116,9 @@ your backend, though.
* I2C_SLAVE_STOP (mandatory)
-'val': unused
-'ret': always 0
+ 'val': unused
+
+ 'ret': always 0
A stop condition was received. This can happen anytime and the backend should
reset its state machine for I2C transfers to be able to receive new requests.
@@ -190,4 +196,3 @@ this time of writing. Some points to keep in mind when using buffers:
* A master can send STOP at any time. For partially transferred buffers, this
means additional code to handle this exception. Such code tends to be
error-prone.
-
diff --git a/Documentation/i2c/smbus-protocol b/Documentation/i2c/smbus-protocol.rst
index 092d474f5843..e30eb1d274c6 100644
--- a/Documentation/i2c/smbus-protocol
+++ b/Documentation/i2c/smbus-protocol.rst
@@ -1,3 +1,4 @@
+======================
SMBus Protocol Summary
======================
@@ -27,17 +28,18 @@ Each transaction type corresponds to a functionality flag. Before calling a
transaction function, a device driver should always check (just once) for
the corresponding functionality flag to ensure that the underlying I2C
adapter supports the transaction in question. See
-<file:Documentation/i2c/functionality> for the details.
+<file:Documentation/i2c/functionality.rst> for the details.
Key to symbols
==============
+=============== =============================================================
S (1 bit) : Start bit
P (1 bit) : Stop bit
Rd/Wr (1 bit) : Read/Write bit. Rd equals 1, Wr equals 0.
-A, NA (1 bit) : Accept and reverse accept bit.
-Addr (7 bits): I2C 7 bit address. Note that this can be expanded as usual to
+A, NA (1 bit) : Accept and reverse accept bit.
+Addr (7 bits): I2C 7 bit address. Note that this can be expanded as usual to
get a 10 bit I2C address.
Comm (8 bits): Command byte, a data byte which often selects a register on
the device.
@@ -45,15 +47,17 @@ Data (8 bits): A plain data byte. Sometimes, I write DataLow, DataHigh
for 16 bit data.
Count (8 bits): A data byte containing the length of a block operation.
-[..]: Data sent by I2C device, as opposed to data sent by the host adapter.
+[..]: Data sent by I2C device, as opposed to data sent by the host
+ adapter.
+=============== =============================================================
SMBus Quick Command
===================
-This sends a single bit to the device, at the place of the Rd/Wr bit.
+This sends a single bit to the device, at the place of the Rd/Wr bit::
-A Addr Rd/Wr [A] P
+ A Addr Rd/Wr [A] P
Functionality flag: I2C_FUNC_SMBUS_QUICK
@@ -64,9 +68,9 @@ SMBus Receive Byte: i2c_smbus_read_byte()
This reads a single byte from a device, without specifying a device
register. Some devices are so simple that this interface is enough; for
others, it is a shorthand if you want to read the same register as in
-the previous SMBus command.
+the previous SMBus command::
-S Addr Rd [A] [Data] NA P
+ S Addr Rd [A] [Data] NA P
Functionality flag: I2C_FUNC_SMBUS_READ_BYTE
@@ -77,7 +81,9 @@ SMBus Send Byte: i2c_smbus_write_byte()
This operation is the reverse of Receive Byte: it sends a single byte
to a device. See Receive Byte for more information.
-S Addr Wr [A] Data [A] P
+::
+
+ S Addr Wr [A] Data [A] P
Functionality flag: I2C_FUNC_SMBUS_WRITE_BYTE
@@ -86,9 +92,9 @@ SMBus Read Byte: i2c_smbus_read_byte_data()
============================================
This reads a single byte from a device, from a designated register.
-The register is specified through the Comm byte.
+The register is specified through the Comm byte::
-S Addr Wr [A] Comm [A] S Addr Rd [A] [Data] NA P
+ S Addr Wr [A] Comm [A] S Addr Rd [A] [Data] NA P
Functionality flag: I2C_FUNC_SMBUS_READ_BYTE_DATA
@@ -98,9 +104,9 @@ SMBus Read Word: i2c_smbus_read_word_data()
This operation is very like Read Byte; again, data is read from a
device, from a designated register that is specified through the Comm
-byte. But this time, the data is a complete word (16 bits).
+byte. But this time, the data is a complete word (16 bits)::
-S Addr Wr [A] Comm [A] S Addr Rd [A] [DataLow] A [DataHigh] NA P
+ S Addr Wr [A] Comm [A] S Addr Rd [A] [DataLow] A [DataHigh] NA P
Functionality flag: I2C_FUNC_SMBUS_READ_WORD_DATA
@@ -116,7 +122,9 @@ This writes a single byte to a device, to a designated register. The
register is specified through the Comm byte. This is the opposite of
the Read Byte operation.
-S Addr Wr [A] Comm [A] Data [A] P
+::
+
+ S Addr Wr [A] Comm [A] Data [A] P
Functionality flag: I2C_FUNC_SMBUS_WRITE_BYTE_DATA
@@ -126,9 +134,9 @@ SMBus Write Word: i2c_smbus_write_word_data()
This is the opposite of the Read Word operation. 16 bits
of data is written to a device, to the designated register that is
-specified through the Comm byte.
+specified through the Comm byte.::
-S Addr Wr [A] Comm [A] DataLow [A] DataHigh [A] P
+ S Addr Wr [A] Comm [A] DataLow [A] DataHigh [A] P
Functionality flag: I2C_FUNC_SMBUS_WRITE_WORD_DATA
@@ -141,10 +149,10 @@ SMBus Process Call:
===================
This command selects a device register (through the Comm byte), sends
-16 bits of data to it, and reads 16 bits of data in return.
+16 bits of data to it, and reads 16 bits of data in return::
-S Addr Wr [A] Comm [A] DataLow [A] DataHigh [A]
- S Addr Rd [A] [DataLow] A [DataHigh] NA P
+ S Addr Wr [A] Comm [A] DataLow [A] DataHigh [A]
+ S Addr Rd [A] [DataLow] A [DataHigh] NA P
Functionality flag: I2C_FUNC_SMBUS_PROC_CALL
@@ -152,12 +160,14 @@ Functionality flag: I2C_FUNC_SMBUS_PROC_CALL
SMBus Block Read: i2c_smbus_read_block_data()
==============================================
-This command reads a block of up to 32 bytes from a device, from a
+This command reads a block of up to 32 bytes from a device, from a
designated register that is specified through the Comm byte. The amount
of data is specified by the device in the Count byte.
-S Addr Wr [A] Comm [A]
- S Addr Rd [A] [Count] A [Data] A [Data] A ... A [Data] NA P
+::
+
+ S Addr Wr [A] Comm [A]
+ S Addr Rd [A] [Count] A [Data] A [Data] A ... A [Data] NA P
Functionality flag: I2C_FUNC_SMBUS_READ_BLOCK_DATA
@@ -165,11 +175,13 @@ Functionality flag: I2C_FUNC_SMBUS_READ_BLOCK_DATA
SMBus Block Write: i2c_smbus_write_block_data()
================================================
-The opposite of the Block Read command, this writes up to 32 bytes to
+The opposite of the Block Read command, this writes up to 32 bytes to
a device, to a designated register that is specified through the
Comm byte. The amount of data is specified in the Count byte.
-S Addr Wr [A] Comm [A] Count [A] Data [A] Data [A] ... [A] Data [A] P
+::
+
+ S Addr Wr [A] Comm [A] Count [A] Data [A] Data [A] ... [A] Data [A] P
Functionality flag: I2C_FUNC_SMBUS_WRITE_BLOCK_DATA
@@ -181,10 +193,10 @@ SMBus Block Write - Block Read Process Call was introduced in
Revision 2.0 of the specification.
This command selects a device register (through the Comm byte), sends
-1 to 31 bytes of data to it, and reads 1 to 31 bytes of data in return.
+1 to 31 bytes of data to it, and reads 1 to 31 bytes of data in return::
-S Addr Wr [A] Comm [A] Count [A] Data [A] ...
- S Addr Rd [A] [Count] A [Data] ... A P
+ S Addr Wr [A] Comm [A] Count [A] Data [A] ...
+ S Addr Rd [A] [Count] A [Data] ... A P
Functionality flag: I2C_FUNC_SMBUS_BLOCK_PROC_CALL
@@ -197,9 +209,12 @@ SMBus host acting as a slave.
It is the same form as Write Word, with the command code replaced by the
alerting device's address.
-[S] [HostAddr] [Wr] A [DevAddr] A [DataLow] A [DataHigh] A [P]
+::
+
+ [S] [HostAddr] [Wr] A [DevAddr] A [DataLow] A [DataHigh] A [P]
This is implemented in the following way in the Linux kernel:
+
* I2C bus drivers which support SMBus Host Notify should report
I2C_FUNC_SMBUS_HOST_NOTIFY.
* I2C bus drivers trigger SMBus Host Notify by a call to
@@ -241,6 +256,7 @@ single interrupt pin on the SMBus master, while still allowing the master
to know which slave triggered the interrupt.
This is implemented the following way in the Linux kernel:
+
* I2C bus drivers which support SMBus alert should call
i2c_setup_smbus_alert() to setup SMBus alert support.
* I2C drivers for devices which can trigger SMBus alerts should implement
@@ -261,11 +277,11 @@ but the SMBus layer places a limit of 32 bytes.
I2C Block Read: i2c_smbus_read_i2c_block_data()
================================================
-This command reads a block of bytes from a device, from a
-designated register that is specified through the Comm byte.
+This command reads a block of bytes from a device, from a
+designated register that is specified through the Comm byte::
-S Addr Wr [A] Comm [A]
- S Addr Rd [A] [Data] A [Data] A ... A [Data] NA P
+ S Addr Wr [A] Comm [A]
+ S Addr Rd [A] [Data] A [Data] A ... A [Data] NA P
Functionality flag: I2C_FUNC_SMBUS_READ_I2C_BLOCK
@@ -273,11 +289,13 @@ Functionality flag: I2C_FUNC_SMBUS_READ_I2C_BLOCK
I2C Block Write: i2c_smbus_write_i2c_block_data()
==================================================
-The opposite of the Block Read command, this writes bytes to
+The opposite of the Block Read command, this writes bytes to
a device, to a designated register that is specified through the
Comm byte. Note that command lengths of 0, 2, or more bytes are
supported as they are indistinguishable from data.
-S Addr Wr [A] Comm [A] Data [A] Data [A] ... [A] Data [A] P
+::
+
+ S Addr Wr [A] Comm [A] Data [A] Data [A] ... [A] Data [A] P
Functionality flag: I2C_FUNC_SMBUS_WRITE_I2C_BLOCK
diff --git a/Documentation/i2c/summary b/Documentation/i2c/summary.rst
index 809541ab352f..3a24eac17375 100644
--- a/Documentation/i2c/summary
+++ b/Documentation/i2c/summary.rst
@@ -1,7 +1,8 @@
+=============
I2C and SMBus
=============
-I2C (pronounce: I squared C) is a protocol developed by Philips. It is a
+I2C (pronounce: I squared C) is a protocol developed by Philips. It is a
slow two-wire protocol (variable speed, up to 400 kHz), with a high speed
extension (3.4 MHz). It provides an inexpensive bus for connecting many
types of devices with infrequent or low bandwidth communications needs.
@@ -24,7 +25,8 @@ implement all the common SMBus protocol semantics or messages.
Terminology
===========
-When we talk about I2C, we use the following terms:
+When we talk about I2C, we use the following terms::
+
Bus -> Algorithm
Adapter
Device -> Driver
diff --git a/Documentation/i2c/ten-bit-addresses b/Documentation/i2c/ten-bit-addresses.rst
index 7b2d11e53a49..5c765aff16d5 100644
--- a/Documentation/i2c/ten-bit-addresses
+++ b/Documentation/i2c/ten-bit-addresses.rst
@@ -1,3 +1,7 @@
+=====================
+I2C Ten-bit Addresses
+=====================
+
The I2C protocol knows about two kinds of device addresses: normal 7 bit
addresses, and an extended set of 10 bit addresses. The sets of addresses
do not intersect: the 7 bit address 0x10 is not the same as the 10 bit
@@ -12,6 +16,7 @@ See the I2C specification for the details.
The current 10 bit address support is minimal. It should work, however
you can expect some problems along the way:
+
* Not all bus drivers support 10-bit addresses. Some don't because the
hardware doesn't support them (SMBus doesn't require 10-bit address
support for example), some don't because nobody bothered adding the
diff --git a/Documentation/i2c/upgrading-clients b/Documentation/i2c/upgrading-clients.rst
index ccba3ffd6e80..27d29032c138 100644
--- a/Documentation/i2c/upgrading-clients
+++ b/Documentation/i2c/upgrading-clients.rst
@@ -1,3 +1,4 @@
+=================================================
Upgrading I2C Drivers to the new 2.6 Driver Model
=================================================
@@ -13,21 +14,22 @@ the old to the new new binding methods.
Example old-style driver
------------------------
+::
-struct example_state {
+ struct example_state {
struct i2c_client client;
....
-};
+ };
-static struct i2c_driver example_driver;
+ static struct i2c_driver example_driver;
-static unsigned short ignore[] = { I2C_CLIENT_END };
-static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
+ static unsigned short ignore[] = { I2C_CLIENT_END };
+ static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
-I2C_CLIENT_INSMOD;
+ I2C_CLIENT_INSMOD;
-static int example_attach(struct i2c_adapter *adap, int addr, int kind)
-{
+ static int example_attach(struct i2c_adapter *adap, int addr, int kind)
+ {
struct example_state *state;
struct device *dev = &adap->dev; /* to use for dev_ reports */
int ret;
@@ -43,7 +45,7 @@ static int example_attach(struct i2c_adapter *adap, int addr, int kind)
example->client.adapter = adap;
i2c_set_clientdata(&state->i2c_client, state);
- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+ strscpy(client->i2c_client.name, "example", sizeof(client->i2c_client.name));
ret = i2c_attach_client(&state->i2c_client);
if (ret < 0) {
@@ -59,31 +61,31 @@ static int example_attach(struct i2c_adapter *adap, int addr, int kind)
dev_info(dev, "example client created\n");
return 0;
-}
+ }
-static int example_detach(struct i2c_client *client)
-{
+ static int example_detach(struct i2c_client *client)
+ {
struct example_state *state = i2c_get_clientdata(client);
i2c_detach_client(client);
kfree(state);
return 0;
-}
+ }
-static int example_attach_adapter(struct i2c_adapter *adap)
-{
+ static int example_attach_adapter(struct i2c_adapter *adap)
+ {
return i2c_probe(adap, &addr_data, example_attach);
-}
+ }
-static struct i2c_driver example_driver = {
- .driver = {
+ static struct i2c_driver example_driver = {
+ .driver = {
.owner = THIS_MODULE,
.name = "example",
.pm = &example_pm_ops,
},
.attach_adapter = example_attach_adapter,
.detach_client = example_detach,
-};
+ };
Updating the client
@@ -93,38 +95,38 @@ The new style binding model will check against a list of supported
devices and their associated address supplied by the code registering
the busses. This means that the driver .attach_adapter and
.detach_client methods can be removed, along with the addr_data,
-as follows:
+as follows::
-- static struct i2c_driver example_driver;
+ - static struct i2c_driver example_driver;
-- static unsigned short ignore[] = { I2C_CLIENT_END };
-- static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
+ - static unsigned short ignore[] = { I2C_CLIENT_END };
+ - static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
-- I2C_CLIENT_INSMOD;
+ - I2C_CLIENT_INSMOD;
-- static int example_attach_adapter(struct i2c_adapter *adap)
-- {
-- return i2c_probe(adap, &addr_data, example_attach);
-- }
+ - static int example_attach_adapter(struct i2c_adapter *adap)
+ - {
+ - return i2c_probe(adap, &addr_data, example_attach);
+ - }
- static struct i2c_driver example_driver = {
-- .attach_adapter = example_attach_adapter,
-- .detach_client = example_detach,
- }
+ static struct i2c_driver example_driver = {
+ - .attach_adapter = example_attach_adapter,
+ - .detach_client = example_detach,
+ }
-Add the probe and remove methods to the i2c_driver, as so:
+Add the probe and remove methods to the i2c_driver, as so::
- static struct i2c_driver example_driver = {
-+ .probe = example_probe,
-+ .remove = example_remove,
- }
+ static struct i2c_driver example_driver = {
+ + .probe = example_probe,
+ + .remove = example_remove,
+ }
Change the example_attach method to accept the new parameters
-which include the i2c_client that it will be working with:
+which include the i2c_client that it will be working with::
-- static int example_attach(struct i2c_adapter *adap, int addr, int kind)
-+ static int example_probe(struct i2c_client *client,
-+ const struct i2c_device_id *id)
+ - static int example_attach(struct i2c_adapter *adap, int addr, int kind)
+ + static int example_probe(struct i2c_client *client,
+ + const struct i2c_device_id *id)
Change the name of example_attach to example_probe to align it with the
i2c_driver entry names. The rest of the probe routine will now need to be
@@ -132,57 +134,59 @@ changed as the i2c_client has already been setup for use.
The necessary client fields have already been setup before
the probe function is called, so the following client setup
-can be removed:
+can be removed::
-- example->client.addr = addr;
-- example->client.flags = 0;
-- example->client.adapter = adap;
--
-- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+ - example->client.addr = addr;
+ - example->client.flags = 0;
+ - example->client.adapter = adap;
+ -
+ - strscpy(client->i2c_client.name, "example", sizeof(client->i2c_client.name));
-The i2c_set_clientdata is now:
+The i2c_set_clientdata is now::
-- i2c_set_clientdata(&state->client, state);
-+ i2c_set_clientdata(client, state);
+ - i2c_set_clientdata(&state->client, state);
+ + i2c_set_clientdata(client, state);
The call to i2c_attach_client is no longer needed, if the probe
routine exits successfully, then the driver will be automatically
-attached by the core. Change the probe routine as so:
+attached by the core. Change the probe routine as so::
-- ret = i2c_attach_client(&state->i2c_client);
-- if (ret < 0) {
-- dev_err(dev, "failed to attach client\n");
-- kfree(state);
-- return ret;
-- }
+ - ret = i2c_attach_client(&state->i2c_client);
+ - if (ret < 0) {
+ - dev_err(dev, "failed to attach client\n");
+ - kfree(state);
+ - return ret;
+ - }
Remove the storage of 'struct i2c_client' from the 'struct example_state'
as we are provided with the i2c_client in our example_probe. Instead we
store a pointer to it for when it is needed.
-struct example_state {
-- struct i2c_client client;
-+ struct i2c_client *client;
+::
+
+ struct example_state {
+ - struct i2c_client client;
+ + struct i2c_client *client;
-the new i2c client as so:
+the new i2c client as so::
-- struct device *dev = &adap->dev; /* to use for dev_ reports */
-+ struct device *dev = &i2c_client->dev; /* to use for dev_ reports */
+ - struct device *dev = &adap->dev; /* to use for dev_ reports */
+ + struct device *dev = &i2c_client->dev; /* to use for dev_ reports */
And remove the change after our client is attached, as the driver no
-longer needs to register a new client structure with the core:
+longer needs to register a new client structure with the core::
-- dev = &state->i2c_client.dev;
+ - dev = &state->i2c_client.dev;
In the probe routine, ensure that the new state has the client stored
-in it:
+in it::
-static int example_probe(struct i2c_client *i2c_client,
+ static int example_probe(struct i2c_client *i2c_client,
const struct i2c_device_id *id)
-{
+ {
struct example_state *state;
- struct device *dev = &i2c_client->dev;
+ struct device *dev = &i2c_client->dev;
int ret;
state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
@@ -191,48 +195,50 @@ static int example_probe(struct i2c_client *i2c_client,
return -ENOMEM;
}
-+ state->client = i2c_client;
+ + state->client = i2c_client;
Update the detach method, by changing the name to _remove and
to delete the i2c_detach_client call. It is possible that you
can also remove the ret variable as it is not needed for any
of the core functions.
-- static int example_detach(struct i2c_client *client)
-+ static int example_remove(struct i2c_client *client)
-{
+::
+
+ - static int example_detach(struct i2c_client *client)
+ + static int example_remove(struct i2c_client *client)
+ {
struct example_state *state = i2c_get_clientdata(client);
-- i2c_detach_client(client);
+ - i2c_detach_client(client);
And finally ensure that we have the correct ID table for the i2c-core
-and other utilities:
+and other utilities::
-+ struct i2c_device_id example_idtable[] = {
-+ { "example", 0 },
-+ { }
-+};
-+
-+MODULE_DEVICE_TABLE(i2c, example_idtable);
+ + struct i2c_device_id example_idtable[] = {
+ + { "example", 0 },
+ + { }
+ +};
+ +
+ +MODULE_DEVICE_TABLE(i2c, example_idtable);
-static struct i2c_driver example_driver = {
- .driver = {
+ static struct i2c_driver example_driver = {
+ .driver = {
.owner = THIS_MODULE,
.name = "example",
},
-+ .id_table = example_ids,
+ + .id_table = example_ids,
-Our driver should now look like this:
+Our driver should now look like this::
-struct example_state {
+ struct example_state {
struct i2c_client *client;
....
-};
+ };
-static int example_probe(struct i2c_client *client,
- const struct i2c_device_id *id)
-{
+ static int example_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+ {
struct example_state *state;
struct device *dev = &client->dev;
@@ -250,25 +256,25 @@ static int example_probe(struct i2c_client *client,
dev_info(dev, "example client created\n");
return 0;
-}
+ }
-static int example_remove(struct i2c_client *client)
-{
+ static int example_remove(struct i2c_client *client)
+ {
struct example_state *state = i2c_get_clientdata(client);
kfree(state);
return 0;
-}
+ }
-static struct i2c_device_id example_idtable[] = {
+ static struct i2c_device_id example_idtable[] = {
{ "example", 0 },
{ }
-};
+ };
-MODULE_DEVICE_TABLE(i2c, example_idtable);
+ MODULE_DEVICE_TABLE(i2c, example_idtable);
-static struct i2c_driver example_driver = {
- .driver = {
+ static struct i2c_driver example_driver = {
+ .driver = {
.owner = THIS_MODULE,
.name = "example",
.pm = &example_pm_ops,
@@ -276,4 +282,4 @@ static struct i2c_driver example_driver = {
.id_table = example_idtable,
.probe = example_probe,
.remove = example_remove,
-};
+ };
diff --git a/Documentation/i2c/writing-clients b/Documentation/i2c/writing-clients.rst
index a755b141fa4a..dddf0a14ab7c 100644
--- a/Documentation/i2c/writing-clients
+++ b/Documentation/i2c/writing-clients.rst
@@ -1,3 +1,7 @@
+===================
+Writing I2C Clients
+===================
+
This is a small guide for those who want to write kernel drivers for I2C
or SMBus devices, using Linux as the protocol host/master (not slave).
@@ -12,7 +16,7 @@ General remarks
Try to keep the kernel namespace as clean as possible. The best way to
do this is to use a unique prefix for all global symbols. This is
especially important for exported symbols, but it is a good idea to do
-it for non-exported symbols too. We will use the prefix `foo_' in this
+it for non-exported symbols too. We will use the prefix ``foo_`` in this
tutorial.
@@ -25,15 +29,17 @@ routines, and should be zero-initialized except for fields with data you
provide. A client structure holds device-specific information like the
driver model device node, and its I2C address.
-static struct i2c_device_id foo_idtable[] = {
+::
+
+ static struct i2c_device_id foo_idtable[] = {
{ "foo", my_id_for_foo },
{ "bar", my_id_for_bar },
{ }
-};
+ };
-MODULE_DEVICE_TABLE(i2c, foo_idtable);
+ MODULE_DEVICE_TABLE(i2c, foo_idtable);
-static struct i2c_driver foo_driver = {
+ static struct i2c_driver foo_driver = {
.driver = {
.name = "foo",
.pm = &foo_pm_ops, /* optional */
@@ -49,7 +55,7 @@ static struct i2c_driver foo_driver = {
.shutdown = foo_shutdown, /* optional */
.command = foo_command, /* optional, deprecated */
-}
+ }
The name field is the driver name, and must not contain spaces. It
should match the module name (if the driver can be compiled as a module),
@@ -64,16 +70,18 @@ below.
Extra client data
=================
-Each client structure has a special `data' field that can point to any
+Each client structure has a special ``data`` field that can point to any
structure at all. You should use this to keep device-specific data.
+::
+
/* store the value */
void i2c_set_clientdata(struct i2c_client *client, void *data);
/* retrieve the value */
void *i2c_get_clientdata(const struct i2c_client *client);
-Note that starting with kernel 2.6.34, you don't have to set the `data' field
+Note that starting with kernel 2.6.34, you don't have to set the ``data`` field
to NULL in remove() or if probe() failed anymore. The i2c-core does this
automatically on these occasions. Those are also the only times the core will
touch this field.
@@ -92,25 +100,25 @@ but many chips have some kind of register-value idea that can easily
be encapsulated.
The below functions are simple examples, and should not be copied
-literally.
+literally::
-int foo_read_value(struct i2c_client *client, u8 reg)
-{
+ int foo_read_value(struct i2c_client *client, u8 reg)
+ {
if (reg < 0x10) /* byte-sized register */
return i2c_smbus_read_byte_data(client, reg);
else /* word-sized register */
return i2c_smbus_read_word_data(client, reg);
-}
+ }
-int foo_write_value(struct i2c_client *client, u8 reg, u16 value)
-{
+ int foo_write_value(struct i2c_client *client, u8 reg, u16 value)
+ {
if (reg == 0x10) /* Impossible to write - driver error! */
return -EINVAL;
else if (reg < 0x10) /* byte-sized register */
return i2c_smbus_write_byte_data(client, reg, value);
else /* word-sized register */
return i2c_smbus_write_word_data(client, reg, value);
-}
+ }
Probing and attaching
@@ -145,6 +153,8 @@ I2C device drivers using this binding model work just like any other
kind of driver in Linux: they provide a probe() method to bind to
those devices, and a remove() method to unbind.
+::
+
static int foo_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int foo_remove(struct i2c_client *client);
@@ -240,37 +250,41 @@ When the kernel is booted, or when your foo driver module is inserted,
you have to do some initializing. Fortunately, just registering the
driver module is usually enough.
-static int __init foo_init(void)
-{
+::
+
+ static int __init foo_init(void)
+ {
return i2c_add_driver(&foo_driver);
-}
-module_init(foo_init);
+ }
+ module_init(foo_init);
-static void __exit foo_cleanup(void)
-{
+ static void __exit foo_cleanup(void)
+ {
i2c_del_driver(&foo_driver);
-}
-module_exit(foo_cleanup);
+ }
+ module_exit(foo_cleanup);
-The module_i2c_driver() macro can be used to reduce above code.
+ The module_i2c_driver() macro can be used to reduce above code.
-module_i2c_driver(foo_driver);
+ module_i2c_driver(foo_driver);
-Note that some functions are marked by `__init'. These functions can
+Note that some functions are marked by ``__init``. These functions can
be removed after kernel booting (or module loading) is completed.
-Likewise, functions marked by `__exit' are dropped by the compiler when
+Likewise, functions marked by ``__exit`` are dropped by the compiler when
the code is built into the kernel, as they would never be called.
Driver Information
==================
-/* Substitute your own name and email address */
-MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>"
-MODULE_DESCRIPTION("Driver for Barf Inc. Foo I2C devices");
+::
-/* a few non-GPL license types are also allowed */
-MODULE_LICENSE("GPL");
+ /* Substitute your own name and email address */
+ MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>"
+ MODULE_DESCRIPTION("Driver for Barf Inc. Foo I2C devices");
+
+ /* a few non-GPL license types are also allowed */
+ MODULE_LICENSE("GPL");
Power Management
@@ -323,6 +337,8 @@ commands, but only some of them understand plain I2C!
Plain I2C communication
-----------------------
+::
+
int i2c_master_send(struct i2c_client *client, const char *buf,
int count);
int i2c_master_recv(struct i2c_client *client, char *buf, int count);
@@ -334,6 +350,8 @@ to read/write (must be less than the length of the buffer, also should be
less than 64k since msg.len is u16.) Returned is the actual number of bytes
read/written.
+::
+
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,
int num);
@@ -343,13 +361,15 @@ stop bit is sent between transaction. The i2c_msg structure contains
for each message the client address, the number of bytes of the message
and the message data itself.
-You can read the file `i2c-protocol' for more information about the
+You can read the file ``i2c-protocol`` for more information about the
actual I2C protocol.
SMBus communication
-------------------
+::
+
s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char read_write, u8 command,
int size, union i2c_smbus_data *data);
@@ -357,6 +377,8 @@ SMBus communication
This is the generic SMBus function. All functions below are implemented
in terms of it. Never use this function directly!
+::
+
s32 i2c_smbus_read_byte(struct i2c_client *client);
s32 i2c_smbus_write_byte(struct i2c_client *client, u8 value);
s32 i2c_smbus_read_byte_data(struct i2c_client *client, u8 command);
@@ -376,7 +398,7 @@ in terms of it. Never use this function directly!
const u8 *values);
These ones were removed from i2c-core because they had no users, but could
-be added back later if needed:
+be added back later if needed::
s32 i2c_smbus_write_quick(struct i2c_client *client, u8 value);
s32 i2c_smbus_process_call(struct i2c_client *client,
@@ -389,7 +411,7 @@ transactions return 0 on success; the 'read' transactions return the read
value, except for block transactions, which return the number of values
read. The block buffers need not be longer than 32 bytes.
-You can read the file `smbus-protocol' for more information about the
+You can read the file ``smbus-protocol`` for more information about the
actual SMBus protocol.
@@ -397,7 +419,7 @@ General purpose routines
========================
Below all general purpose routines are listed, that were not mentioned
-before.
+before::
/* Return the adapter number for a specific adapter */
int i2c_adapter_id(struct i2c_adapter *adap);
diff --git a/Documentation/ia64/aliasing.txt b/Documentation/ia64/aliasing.rst
index 5a4dea6abebd..a08b36aba015 100644
--- a/Documentation/ia64/aliasing.txt
+++ b/Documentation/ia64/aliasing.rst
@@ -1,20 +1,25 @@
- MEMORY ATTRIBUTE ALIASING ON IA-64
+==================================
+Memory Attribute Aliasing on IA-64
+==================================
- Bjorn Helgaas
- <bjorn.helgaas@hp.com>
- May 4, 2006
+Bjorn Helgaas <bjorn.helgaas@hp.com>
+May 4, 2006
-MEMORY ATTRIBUTES
+
+Memory Attributes
+=================
Itanium supports several attributes for virtual memory references.
The attribute is part of the virtual translation, i.e., it is
contained in the TLB entry. The ones of most interest to the Linux
kernel are:
- WB Write-back (cacheable)
+ == ======================
+ WB Write-back (cacheable)
UC Uncacheable
WC Write-coalescing
+ == ======================
System memory typically uses the WB attribute. The UC attribute is
used for memory-mapped I/O devices. The WC attribute is uncacheable
@@ -29,7 +34,8 @@ MEMORY ATTRIBUTES
support either WB or UC access to main memory, while others support
only WB access.
-MEMORY MAP
+Memory Map
+==========
Platform firmware describes the physical memory map and the
supported attributes for each region. At boot-time, the kernel uses
@@ -55,7 +61,8 @@ MEMORY MAP
The efi_memmap table is preserved unmodified because the original
boot-time information is required for kexec.
-KERNEL IDENTITY MAPPINGS
+Kernel Identify Mappings
+========================
Linux/ia64 identity mappings are done with large pages, currently
either 16MB or 64MB, referred to as "granules." Cacheable mappings
@@ -74,17 +81,20 @@ KERNEL IDENTITY MAPPINGS
are only partially populated, or populated with a combination of UC
and WB regions.
-USER MAPPINGS
+User Mappings
+=============
User mappings are typically done with 16K or 64K pages. The smaller
page size allows more flexibility because only 16K or 64K has to be
homogeneous with respect to memory attributes.
-POTENTIAL ATTRIBUTE ALIASING CASES
+Potential Attribute Aliasing Cases
+==================================
There are several ways the kernel creates new mappings:
- mmap of /dev/mem
+mmap of /dev/mem
+----------------
This uses remap_pfn_range(), which creates user mappings. These
mappings may be either WB or UC. If the region being mapped
@@ -98,7 +108,8 @@ POTENTIAL ATTRIBUTE ALIASING CASES
Since the EFI memory map does not describe MMIO on some
machines, this should use an uncacheable mapping as a fallback.
- mmap of /sys/class/pci_bus/.../legacy_mem
+mmap of /sys/class/pci_bus/.../legacy_mem
+-----------------------------------------
This is very similar to mmap of /dev/mem, except that legacy_mem
only allows mmap of the one megabyte "legacy MMIO" area for a
@@ -112,9 +123,10 @@ POTENTIAL ATTRIBUTE ALIASING CASES
The /dev/mem mmap constraints apply.
- mmap of /proc/bus/pci/.../??.?
+mmap of /proc/bus/pci/.../??.?
+------------------------------
- This is an MMIO mmap of PCI functions, which additionally may or
+ This is an MMIO mmap of PCI functions, which additionally may or
may not be requested as using the WC attribute.
If WC is requested, and the region in kern_memmap is either WC
@@ -124,7 +136,8 @@ POTENTIAL ATTRIBUTE ALIASING CASES
Otherwise, the user mapping must use the same attribute as the
kernel mapping.
- read/write of /dev/mem
+read/write of /dev/mem
+----------------------
This uses copy_from_user(), which implicitly uses a kernel
identity mapping. This is obviously safe for things in
@@ -138,7 +151,8 @@ POTENTIAL ATTRIBUTE ALIASING CASES
eight-byte accesses, and the copy_from_user() path doesn't allow
any control over the access size, so this would be dangerous.
- ioremap()
+ioremap()
+---------
This returns a mapping for use inside the kernel.
@@ -155,9 +169,11 @@ POTENTIAL ATTRIBUTE ALIASING CASES
Failing all of the above, we have to fall back to a UC mapping.
-PAST PROBLEM CASES
+Past Problem Cases
+==================
- mmap of various MMIO regions from /dev/mem by "X" on Intel platforms
+mmap of various MMIO regions from /dev/mem by "X" on Intel platforms
+--------------------------------------------------------------------
The EFI memory map may not report these MMIO regions.
@@ -166,12 +182,16 @@ PAST PROBLEM CASES
succeed. It may create either WB or UC user mappings, depending
on whether the region is in kern_memmap or the EFI memory map.
- mmap of 0x0-0x9FFFF /dev/mem by "hwinfo" on HP sx1000 with VGA enabled
+mmap of 0x0-0x9FFFF /dev/mem by "hwinfo" on HP sx1000 with VGA enabled
+----------------------------------------------------------------------
The EFI memory map reports the following attributes:
+
+ =============== ======= ==================
0x00000-0x9FFFF WB only
0xA0000-0xBFFFF UC only (VGA frame buffer)
0xC0000-0xFFFFF WB only
+ =============== ======= ==================
This mmap is done with user pages, not kernel identity mappings,
so it is safe to use WB mappings.
@@ -182,7 +202,8 @@ PAST PROBLEM CASES
never generate an uncacheable reference to the WB-only areas unless
the driver explicitly touches them.
- mmap of 0x0-0xFFFFF legacy_mem by "X"
+mmap of 0x0-0xFFFFF legacy_mem by "X"
+-------------------------------------
If the EFI memory map reports that the entire range supports the
same attributes, we can allow the mmap (and we will prefer WB if
@@ -197,15 +218,18 @@ PAST PROBLEM CASES
that doesn't report the VGA frame buffer at all), we should fail the
mmap and force the user to map just the specific region of interest.
- mmap of 0xA0000-0xBFFFF legacy_mem by "X" on HP sx1000 with VGA disabled
+mmap of 0xA0000-0xBFFFF legacy_mem by "X" on HP sx1000 with VGA disabled
+------------------------------------------------------------------------
+
+ The EFI memory map reports the following attributes::
- The EFI memory map reports the following attributes:
0x00000-0xFFFFF WB only (no VGA MMIO hole)
This is a special case of the previous case, and the mmap should
fail for the same reason as above.
- read of /sys/devices/.../rom
+read of /sys/devices/.../rom
+----------------------------
For VGA devices, this may cause an ioremap() of 0xC0000. This
used to be done with a UC mapping, because the VGA frame buffer
@@ -215,7 +239,8 @@ PAST PROBLEM CASES
We should use WB page table mappings to avoid covering the VGA
frame buffer.
-NOTES
+Notes
+=====
[1] SDM rev 2.2, vol 2, sec 4.4.1.
[2] SDM rev 2.2, vol 2, sec 4.4.6.
diff --git a/Documentation/ia64/efirtc.txt b/Documentation/ia64/efirtc.rst
index 057e6bebda8f..2f7ff5026308 100644
--- a/Documentation/ia64/efirtc.txt
+++ b/Documentation/ia64/efirtc.rst
@@ -1,12 +1,16 @@
+==========================
EFI Real Time Clock driver
--------------------------------
+==========================
+
S. Eranian <eranian@hpl.hp.com>
+
March 2000
-I/ Introduction
+1. Introduction
+===============
This document describes the efirtc.c driver has provided for
-the IA-64 platform.
+the IA-64 platform.
The purpose of this driver is to supply an API for kernel and user applications
to get access to the Time Service offered by EFI version 0.92.
@@ -16,112 +20,124 @@ SetTime(), GetWakeupTime(), SetWakeupTime() which are all supported by this
driver. We describe those calls as well the design of the driver in the
following sections.
-II/ Design Decisions
+2. Design Decisions
+===================
-The original ideas was to provide a very simple driver to get access to,
-at first, the time of day service. This is required in order to access, in a
-portable way, the CMOS clock. A program like /sbin/hwclock uses such a clock
+The original ideas was to provide a very simple driver to get access to,
+at first, the time of day service. This is required in order to access, in a
+portable way, the CMOS clock. A program like /sbin/hwclock uses such a clock
to initialize the system view of the time during boot.
Because we wanted to minimize the impact on existing user-level apps using
the CMOS clock, we decided to expose an API that was very similar to the one
-used today with the legacy RTC driver (driver/char/rtc.c). However, because
+used today with the legacy RTC driver (driver/char/rtc.c). However, because
EFI provides a simpler services, not all ioctl() are available. Also
-new ioctl()s have been introduced for things that EFI provides but not the
+new ioctl()s have been introduced for things that EFI provides but not the
legacy.
EFI uses a slightly different way of representing the time, noticeably
the reference date is different. Year is the using the full 4-digit format.
The Epoch is January 1st 1998. For backward compatibility reasons we don't
-expose this new way of representing time. Instead we use something very
+expose this new way of representing time. Instead we use something very
similar to the struct tm, i.e. struct rtc_time, as used by hwclock.
One of the reasons for doing it this way is to allow for EFI to still evolve
without necessarily impacting any of the user applications. The decoupling
enables flexibility and permits writing wrapper code is ncase things change.
The driver exposes two interfaces, one via the device file and a set of
-ioctl()s. The other is read-only via the /proc filesystem.
+ioctl()s. The other is read-only via the /proc filesystem.
As of today we don't offer a /proc/sys interface.
To allow for a uniform interface between the legacy RTC and EFI time service,
-we have created the include/linux/rtc.h header file to contain only the
-"public" API of the two drivers. The specifics of the legacy RTC are still
+we have created the include/linux/rtc.h header file to contain only the
+"public" API of the two drivers. The specifics of the legacy RTC are still
in include/linux/mc146818rtc.h.
-
-III/ Time of day service
+
+3. Time of day service
+======================
The part of the driver gives access to the time of day service of EFI.
Two ioctl()s, compatible with the legacy RTC calls:
- Read the CMOS clock: ioctl(d, RTC_RD_TIME, &rtc);
+ Read the CMOS clock::
+
+ ioctl(d, RTC_RD_TIME, &rtc);
+
+ Write the CMOS clock::
- Write the CMOS clock: ioctl(d, RTC_SET_TIME, &rtc);
+ ioctl(d, RTC_SET_TIME, &rtc);
The rtc is a pointer to a data structure defined in rtc.h which is close
-to a struct tm:
-
-struct rtc_time {
- int tm_sec;
- int tm_min;
- int tm_hour;
- int tm_mday;
- int tm_mon;
- int tm_year;
- int tm_wday;
- int tm_yday;
- int tm_isdst;
-};
+to a struct tm::
+
+ struct rtc_time {
+ int tm_sec;
+ int tm_min;
+ int tm_hour;
+ int tm_mday;
+ int tm_mon;
+ int tm_year;
+ int tm_wday;
+ int tm_yday;
+ int tm_isdst;
+ };
The driver takes care of converting back an forth between the EFI time and
this format.
Those two ioctl()s can be exercised with the hwclock command:
-For reading:
-# /sbin/hwclock --show
-Mon Mar 6 15:32:32 2000 -0.910248 seconds
+For reading::
-For setting:
-# /sbin/hwclock --systohc
+ # /sbin/hwclock --show
+ Mon Mar 6 15:32:32 2000 -0.910248 seconds
+
+For setting::
+
+ # /sbin/hwclock --systohc
Root privileges are required to be able to set the time of day.
-IV/ Wakeup Alarm service
+4. Wakeup Alarm service
+=======================
EFI provides an API by which one can program when a machine should wakeup,
i.e. reboot. This is very different from the alarm provided by the legacy
RTC which is some kind of interval timer alarm. For this reason we don't use
the same ioctl()s to get access to the service. Instead we have
-introduced 2 news ioctl()s to the interface of an RTC.
+introduced 2 news ioctl()s to the interface of an RTC.
We have added 2 new ioctl()s that are specific to the EFI driver:
- Read the current state of the alarm
- ioctl(d, RTC_WKLAM_RD, &wkt)
+ Read the current state of the alarm::
+
+ ioctl(d, RTC_WKLAM_RD, &wkt)
+
+ Set the alarm or change its status::
+
+ ioctl(d, RTC_WKALM_SET, &wkt)
- Set the alarm or change its status
- ioctl(d, RTC_WKALM_SET, &wkt)
+The wkt structure encapsulates a struct rtc_time + 2 extra fields to get
+status information::
-The wkt structure encapsulates a struct rtc_time + 2 extra fields to get
-status information:
-
-struct rtc_wkalrm {
+ struct rtc_wkalrm {
- unsigned char enabled; /* =1 if alarm is enabled */
- unsigned char pending; /* =1 if alarm is pending */
+ unsigned char enabled; /* =1 if alarm is enabled */
+ unsigned char pending; /* =1 if alarm is pending */
- struct rtc_time time;
-}
+ struct rtc_time time;
+ }
As of today, none of the existing user-level apps supports this feature.
-However writing such a program should be hard by simply using those two
-ioctl().
+However writing such a program should be hard by simply using those two
+ioctl().
Root privileges are required to be able to set the alarm.
-V/ References.
+5. References
+=============
Checkout the following Web site for more information on EFI:
diff --git a/Documentation/ia64/err_inject.txt b/Documentation/ia64/err_inject.rst
index 9f651c181429..900f71e93a29 100644
--- a/Documentation/ia64/err_inject.txt
+++ b/Documentation/ia64/err_inject.rst
@@ -1,4 +1,4 @@
-
+========================================
IPF Machine Check (MC) error inject tool
========================================
@@ -32,94 +32,94 @@ Errata: Itanium 2 Processors Specification Update lists some errata against
the pal_mc_error_inject PAL procedure. The following err.conf has been tested
on latest Montecito PAL.
-err.conf:
+err.conf::
-#This is configuration file for err_inject_tool.
-#The format of the each line is:
-#cpu, loop, interval, err_type_info, err_struct_info, err_data_buffer
-#where
-# cpu: logical cpu number the error will be inject in.
-# loop: times the error will be injected.
-# interval: In second. every so often one error is injected.
-# err_type_info, err_struct_info: PAL parameters.
-#
-#Note: All values are hex w/o or w/ 0x prefix.
+ #This is configuration file for err_inject_tool.
+ #The format of the each line is:
+ #cpu, loop, interval, err_type_info, err_struct_info, err_data_buffer
+ #where
+ # cpu: logical cpu number the error will be inject in.
+ # loop: times the error will be injected.
+ # interval: In second. every so often one error is injected.
+ # err_type_info, err_struct_info: PAL parameters.
+ #
+ #Note: All values are hex w/o or w/ 0x prefix.
-#On cpu2, inject only total 0x10 errors, interval 5 seconds
-#corrected, data cache, hier-2, physical addr(assigned by tool code).
-#working on Montecito latest PAL.
-2, 10, 5, 4101, 95
+ #On cpu2, inject only total 0x10 errors, interval 5 seconds
+ #corrected, data cache, hier-2, physical addr(assigned by tool code).
+ #working on Montecito latest PAL.
+ 2, 10, 5, 4101, 95
-#On cpu4, inject and consume total 0x10 errors, interval 5 seconds
-#corrected, data cache, hier-2, physical addr(assigned by tool code).
-#working on Montecito latest PAL.
-4, 10, 5, 4109, 95
+ #On cpu4, inject and consume total 0x10 errors, interval 5 seconds
+ #corrected, data cache, hier-2, physical addr(assigned by tool code).
+ #working on Montecito latest PAL.
+ 4, 10, 5, 4109, 95
-#On cpu15, inject and consume total 0x10 errors, interval 5 seconds
-#recoverable, DTR0, hier-2.
-#working on Montecito latest PAL.
-0xf, 0x10, 5, 4249, 15
+ #On cpu15, inject and consume total 0x10 errors, interval 5 seconds
+ #recoverable, DTR0, hier-2.
+ #working on Montecito latest PAL.
+ 0xf, 0x10, 5, 4249, 15
The sample application source code:
-err_injection_tool.c:
-
-/*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * Copyright (C) 2006 Intel Co
- * Fenghua Yu <fenghua.yu@intel.com>
- *
- */
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <stdio.h>
-#include <sched.h>
-#include <unistd.h>
-#include <stdlib.h>
-#include <stdarg.h>
-#include <string.h>
-#include <errno.h>
-#include <time.h>
-#include <sys/ipc.h>
-#include <sys/sem.h>
-#include <sys/wait.h>
-#include <sys/mman.h>
-#include <sys/shm.h>
-
-#define MAX_FN_SIZE 256
-#define MAX_BUF_SIZE 256
-#define DATA_BUF_SIZE 256
-#define NR_CPUS 512
-#define MAX_TASK_NUM 2048
-#define MIN_INTERVAL 5 // seconds
-#define ERR_DATA_BUFFER_SIZE 3 // Three 8-byte.
-#define PARA_FIELD_NUM 5
-#define MASK_SIZE (NR_CPUS/64)
-#define PATH_FORMAT "/sys/devices/system/cpu/cpu%d/err_inject/"
-
-int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);
-
-int verbose;
-#define vbprintf if (verbose) printf
-
-int log_info(int cpu, const char *fmt, ...)
-{
+err_injection_tool.c::
+
+ /*
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ * NON INFRINGEMENT. See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * Copyright (C) 2006 Intel Co
+ * Fenghua Yu <fenghua.yu@intel.com>
+ *
+ */
+ #include <sys/types.h>
+ #include <sys/stat.h>
+ #include <fcntl.h>
+ #include <stdio.h>
+ #include <sched.h>
+ #include <unistd.h>
+ #include <stdlib.h>
+ #include <stdarg.h>
+ #include <string.h>
+ #include <errno.h>
+ #include <time.h>
+ #include <sys/ipc.h>
+ #include <sys/sem.h>
+ #include <sys/wait.h>
+ #include <sys/mman.h>
+ #include <sys/shm.h>
+
+ #define MAX_FN_SIZE 256
+ #define MAX_BUF_SIZE 256
+ #define DATA_BUF_SIZE 256
+ #define NR_CPUS 512
+ #define MAX_TASK_NUM 2048
+ #define MIN_INTERVAL 5 // seconds
+ #define ERR_DATA_BUFFER_SIZE 3 // Three 8-byte.
+ #define PARA_FIELD_NUM 5
+ #define MASK_SIZE (NR_CPUS/64)
+ #define PATH_FORMAT "/sys/devices/system/cpu/cpu%d/err_inject/"
+
+ int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);
+
+ int verbose;
+ #define vbprintf if (verbose) printf
+
+ int log_info(int cpu, const char *fmt, ...)
+ {
FILE *log;
char fn[MAX_FN_SIZE];
char buf[MAX_BUF_SIZE];
@@ -142,12 +142,12 @@ int log_info(int cpu, const char *fmt, ...)
fclose(log);
return 0;
-}
+ }
-typedef unsigned long u64;
-typedef unsigned int u32;
+ typedef unsigned long u64;
+ typedef unsigned int u32;
-typedef union err_type_info_u {
+ typedef union err_type_info_u {
struct {
u64 mode : 3, /* 0-2 */
err_inj : 3, /* 3-5 */
@@ -157,9 +157,9 @@ typedef union err_type_info_u {
reserved : 48; /* 16-63 */
} err_type_info_u;
u64 err_type_info;
-} err_type_info_t;
+ } err_type_info_t;
-typedef union err_struct_info_u {
+ typedef union err_struct_info_u {
struct {
u64 siv : 1, /* 0 */
c_t : 2, /* 1-2 */
@@ -197,9 +197,9 @@ typedef union err_struct_info_u {
u64 reserved;
} err_struct_info_bus_processor_interconnect;
u64 err_struct_info;
-} err_struct_info_t;
+ } err_struct_info_t;
-typedef union err_data_buffer_u {
+ typedef union err_data_buffer_u {
struct {
u64 trigger_addr; /* 0-63 */
u64 inj_addr; /* 64-127 */
@@ -221,9 +221,9 @@ typedef union err_data_buffer_u {
u64 reserved; /* 0-63 */
} err_data_buffer_bus_processor_interconnect;
u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];
-} err_data_buffer_t;
+ } err_data_buffer_t;
-typedef union capabilities_u {
+ typedef union capabilities_u {
struct {
u64 i : 1,
d : 1,
@@ -276,9 +276,9 @@ typedef union capabilities_u {
struct {
u64 reserved;
} capabilities_bus_processor_interconnect;
-} capabilities_t;
+ } capabilities_t;
-typedef struct resources_s {
+ typedef struct resources_s {
u64 ibr0 : 1,
ibr2 : 1,
ibr4 : 1,
@@ -288,24 +288,24 @@ typedef struct resources_s {
dbr4 : 1,
dbr6 : 1,
reserved : 48;
-} resources_t;
+ } resources_t;
-long get_page_size(void)
-{
+ long get_page_size(void)
+ {
long page_size=sysconf(_SC_PAGESIZE);
return page_size;
-}
+ }
-#define PAGE_SIZE (get_page_size()==-1?0x4000:get_page_size())
-#define SHM_SIZE (2*PAGE_SIZE*NR_CPUS)
-#define SHM_VA 0x2000000100000000
+ #define PAGE_SIZE (get_page_size()==-1?0x4000:get_page_size())
+ #define SHM_SIZE (2*PAGE_SIZE*NR_CPUS)
+ #define SHM_VA 0x2000000100000000
-int shmid;
-void *shmaddr;
+ int shmid;
+ void *shmaddr;
-int create_shm(void)
-{
+ int create_shm(void)
+ {
key_t key;
char fn[MAX_FN_SIZE];
@@ -343,34 +343,34 @@ int create_shm(void)
mlock(shmaddr, SHM_SIZE);
return 0;
-}
+ }
-int free_shm()
-{
+ int free_shm()
+ {
munlock(shmaddr, SHM_SIZE);
- shmdt(shmaddr);
+ shmdt(shmaddr);
semctl(shmid, 0, IPC_RMID);
return 0;
-}
+ }
-#ifdef _SEM_SEMUN_UNDEFINED
-union semun
-{
+ #ifdef _SEM_SEMUN_UNDEFINED
+ union semun
+ {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;
-};
-#endif
+ };
+ #endif
-u32 mode=1; /* 1: physical mode; 2: virtual mode. */
-int one_lock=1;
-key_t key[NR_CPUS];
-int semid[NR_CPUS];
+ u32 mode=1; /* 1: physical mode; 2: virtual mode. */
+ int one_lock=1;
+ key_t key[NR_CPUS];
+ int semid[NR_CPUS];
-int create_sem(int cpu)
-{
+ int create_sem(int cpu)
+ {
union semun arg;
char fn[MAX_FN_SIZE];
int sid;
@@ -407,37 +407,37 @@ int create_sem(int cpu)
}
return 0;
-}
+ }
-static int lock(int cpu)
-{
+ static int lock(int cpu)
+ {
struct sembuf lock;
lock.sem_num = cpu;
lock.sem_op = 1;
semop(semid[cpu], &lock, 1);
- return 0;
-}
+ return 0;
+ }
-static int unlock(int cpu)
-{
+ static int unlock(int cpu)
+ {
struct sembuf unlock;
unlock.sem_num = cpu;
unlock.sem_op = -1;
semop(semid[cpu], &unlock, 1);
- return 0;
-}
+ return 0;
+ }
-void free_sem(int cpu)
-{
+ void free_sem(int cpu)
+ {
semctl(semid[cpu], 0, IPC_RMID);
-}
+ }
-int wr_multi(char *fn, unsigned long *data, int size)
-{
+ int wr_multi(char *fn, unsigned long *data, int size)
+ {
int fd;
char buf[MAX_BUF_SIZE];
int ret;
@@ -459,15 +459,15 @@ int wr_multi(char *fn, unsigned long *data, int size)
ret=write(fd, buf, sizeof(buf));
close(fd);
return ret;
-}
+ }
-int wr(char *fn, unsigned long data)
-{
+ int wr(char *fn, unsigned long data)
+ {
return wr_multi(fn, &data, 1);
-}
+ }
-int rd(char *fn, unsigned long *data)
-{
+ int rd(char *fn, unsigned long *data)
+ {
int fd;
char buf[MAX_BUF_SIZE];
@@ -480,10 +480,10 @@ int rd(char *fn, unsigned long *data)
*data=strtoul(buf, NULL, 16);
close(fd);
return 0;
-}
+ }
-int rd_status(char *path, int *status)
-{
+ int rd_status(char *path, int *status)
+ {
char fn[MAX_FN_SIZE];
sprintf(fn, "%s/status", path);
if (rd(fn, (u64*)status)<0) {
@@ -492,10 +492,10 @@ int rd_status(char *path, int *status)
}
return 0;
-}
+ }
-int rd_capabilities(char *path, u64 *capabilities)
-{
+ int rd_capabilities(char *path, u64 *capabilities)
+ {
char fn[MAX_FN_SIZE];
sprintf(fn, "%s/capabilities", path);
if (rd(fn, capabilities)<0) {
@@ -504,10 +504,10 @@ int rd_capabilities(char *path, u64 *capabilities)
}
return 0;
-}
+ }
-int rd_all(char *path)
-{
+ int rd_all(char *path)
+ {
unsigned long err_type_info, err_struct_info, err_data_buffer;
int status;
unsigned long capabilities, resources;
@@ -556,11 +556,11 @@ int rd_all(char *path)
printf("resources=%lx\n", resources);
return 0;
-}
+ }
-int query_capabilities(char *path, err_type_info_t err_type_info,
+ int query_capabilities(char *path, err_type_info_t err_type_info,
u64 *capabilities)
-{
+ {
char fn[MAX_FN_SIZE];
err_struct_info_t err_struct_info;
err_data_buffer_t err_data_buffer;
@@ -583,10 +583,10 @@ int query_capabilities(char *path, err_type_info_t err_type_info,
return -1;
return 0;
-}
+ }
-int query_all_capabilities()
-{
+ int query_all_capabilities()
+ {
int status;
err_type_info_t err_type_info;
int err_sev, err_struct, struct_hier;
@@ -629,12 +629,12 @@ int query_all_capabilities()
}
return 0;
-}
+ }
-int err_inject(int cpu, char *path, err_type_info_t err_type_info,
+ int err_inject(int cpu, char *path, err_type_info_t err_type_info,
err_struct_info_t err_struct_info,
err_data_buffer_t err_data_buffer)
-{
+ {
int status;
char fn[MAX_FN_SIZE];
@@ -667,13 +667,13 @@ int err_inject(int cpu, char *path, err_type_info_t err_type_info,
}
return status;
-}
+ }
-static int construct_data_buf(char *path, err_type_info_t err_type_info,
+ static int construct_data_buf(char *path, err_type_info_t err_type_info,
err_struct_info_t err_struct_info,
err_data_buffer_t *err_data_buffer,
void *va1)
-{
+ {
char fn[MAX_FN_SIZE];
u64 virt_addr=0, phys_addr=0;
@@ -710,22 +710,22 @@ static int construct_data_buf(char *path, err_type_info_t err_type_info,
}
return 0;
-}
+ }
-typedef struct {
+ typedef struct {
u64 cpu;
u64 loop;
u64 interval;
u64 err_type_info;
u64 err_struct_info;
u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];
-} parameters_t;
+ } parameters_t;
-parameters_t line_para;
-int para;
+ parameters_t line_para;
+ int para;
-static int empty_data_buffer(u64 *err_data_buffer)
-{
+ static int empty_data_buffer(u64 *err_data_buffer)
+ {
int empty=1;
int i;
@@ -734,10 +734,10 @@ static int empty_data_buffer(u64 *err_data_buffer)
empty=0;
return empty;
-}
+ }
-int err_inj()
-{
+ int err_inj()
+ {
err_type_info_t err_type_info;
err_struct_info_t err_struct_info;
err_data_buffer_t err_data_buffer;
@@ -951,10 +951,10 @@ int err_inj()
printf("All done.\n");
return 0;
-}
+ }
-void help()
-{
+ void help()
+ {
printf("err_inject_tool:\n");
printf("\t-q: query all capabilities. default: off\n");
printf("\t-m: procedure mode. 1: physical 2: virtual. default: 1\n");
@@ -977,10 +977,10 @@ void help()
printf("The tool will take err.conf file as ");
printf("input to inject single or multiple errors ");
printf("on one or multiple cpus in parallel.\n");
-}
+ }
-int main(int argc, char **argv)
-{
+ int main(int argc, char **argv)
+ {
char c;
int do_err_inj=0;
int do_query_all=0;
@@ -1031,7 +1031,7 @@ int main(int argc, char **argv)
if (count!=PARA_FIELD_NUM+3) {
line_para.err_data_buffer[0]=-1,
line_para.err_data_buffer[1]=-1,
- line_para.err_data_buffer[2]=-1;
+ line_para.err_data_buffer[2]=-1;
count=sscanf(optarg, "%lx, %lx, %lx, %lx, %lx\n",
&line_para.cpu,
&line_para.loop,
@@ -1064,5 +1064,4 @@ int main(int argc, char **argv)
help();
return 0;
-}
-
+ }
diff --git a/Documentation/ia64/fsys.txt b/Documentation/ia64/fsys.rst
index 59dd689d9b86..a702d2cc94b6 100644
--- a/Documentation/ia64/fsys.txt
+++ b/Documentation/ia64/fsys.rst
@@ -1,9 +1,9 @@
--*-Mode: outline-*-
-
- Light-weight System Calls for IA-64
- -----------------------------------
+===================================
+Light-weight System Calls for IA-64
+===================================
Started: 13-Jan-2003
+
Last update: 27-Sep-2003
David Mosberger-Tang
@@ -52,12 +52,13 @@ privilege level is at level 0, this means that fsys-mode requires some
care (see below).
-* How to tell fsys-mode
+How to tell fsys-mode
+=====================
Linux operates in fsys-mode when (a) the privilege level is 0 (most
privileged) and (b) the stacks have NOT been switched to kernel memory
yet. For convenience, the header file <asm-ia64/ptrace.h> provides
-three macros:
+three macros::
user_mode(regs)
user_stack(task,regs)
@@ -70,11 +71,12 @@ to by "regs" was executing in user mode (privilege level 3).
user_stack() returns TRUE if the state pointed to by "regs" was
executing on the user-level stack(s). Finally, fsys_mode() returns
TRUE if the CPU state pointed to by "regs" was executing in fsys-mode.
-The fsys_mode() macro is equivalent to the expression:
+The fsys_mode() macro is equivalent to the expression::
!user_mode(regs) && user_stack(task,regs)
-* How to write an fsyscall handler
+How to write an fsyscall handler
+================================
The file arch/ia64/kernel/fsys.S contains a table of fsyscall-handlers
(fsyscall_table). This table contains one entry for each system call.
@@ -87,66 +89,72 @@ of the getpid() system call.
The entry and exit-state of an fsyscall handler is as follows:
-** Machine state on entry to fsyscall handler:
-
- - r10 = 0
- - r11 = saved ar.pfs (a user-level value)
- - r15 = system call number
- - r16 = "current" task pointer (in normal kernel-mode, this is in r13)
- - r32-r39 = system call arguments
- - b6 = return address (a user-level value)
- - ar.pfs = previous frame-state (a user-level value)
- - PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
- - all other registers may contain values passed in from user-mode
-
-** Required machine state on exit to fsyscall handler:
-
- - r11 = saved ar.pfs (as passed into the fsyscall handler)
- - r15 = system call number (as passed into the fsyscall handler)
- - r32-r39 = system call arguments (as passed into the fsyscall handler)
- - b6 = return address (as passed into the fsyscall handler)
- - ar.pfs = previous frame-state (as passed into the fsyscall handler)
+Machine state on entry to fsyscall handler
+------------------------------------------
+
+ ========= ===============================================================
+ r10 0
+ r11 saved ar.pfs (a user-level value)
+ r15 system call number
+ r16 "current" task pointer (in normal kernel-mode, this is in r13)
+ r32-r39 system call arguments
+ b6 return address (a user-level value)
+ ar.pfs previous frame-state (a user-level value)
+ PSR.be cleared to zero (i.e., little-endian byte order is in effect)
+ - all other registers may contain values passed in from user-mode
+ ========= ===============================================================
+
+Required machine state on exit to fsyscall handler
+--------------------------------------------------
+
+ ========= ===========================================================
+ r11 saved ar.pfs (as passed into the fsyscall handler)
+ r15 system call number (as passed into the fsyscall handler)
+ r32-r39 system call arguments (as passed into the fsyscall handler)
+ b6 return address (as passed into the fsyscall handler)
+ ar.pfs previous frame-state (as passed into the fsyscall handler)
+ ========= ===========================================================
Fsyscall handlers can execute with very little overhead, but with that
speed comes a set of restrictions:
- o Fsyscall-handlers MUST check for any pending work in the flags
+ * Fsyscall-handlers MUST check for any pending work in the flags
member of the thread-info structure and if any of the
TIF_ALLWORK_MASK flags are set, the handler needs to fall back on
doing a full system call (by calling fsys_fallback_syscall).
- o Fsyscall-handlers MUST preserve incoming arguments (r32-r39, r11,
+ * Fsyscall-handlers MUST preserve incoming arguments (r32-r39, r11,
r15, b6, and ar.pfs) because they will be needed in case of a
system call restart. Of course, all "preserved" registers also
must be preserved, in accordance to the normal calling conventions.
- o Fsyscall-handlers MUST check argument registers for containing a
+ * Fsyscall-handlers MUST check argument registers for containing a
NaT value before using them in any way that could trigger a
NaT-consumption fault. If a system call argument is found to
contain a NaT value, an fsyscall-handler may return immediately
with r8=EINVAL, r10=-1.
- o Fsyscall-handlers MUST NOT use the "alloc" instruction or perform
+ * Fsyscall-handlers MUST NOT use the "alloc" instruction or perform
any other operation that would trigger mandatory RSE
(register-stack engine) traffic.
- o Fsyscall-handlers MUST NOT write to any stacked registers because
+ * Fsyscall-handlers MUST NOT write to any stacked registers because
it is not safe to assume that user-level called a handler with the
proper number of arguments.
- o Fsyscall-handlers need to be careful when accessing per-CPU variables:
+ * Fsyscall-handlers need to be careful when accessing per-CPU variables:
unless proper safe-guards are taken (e.g., interruptions are avoided),
execution may be pre-empted and resumed on another CPU at any given
time.
- o Fsyscall-handlers must be careful not to leak sensitive kernel'
+ * Fsyscall-handlers must be careful not to leak sensitive kernel'
information back to user-level. In particular, before returning to
user-level, care needs to be taken to clear any scratch registers
that could contain sensitive information (note that the current
task pointer is not considered sensitive: it's already exposed
through ar.k6).
- o Fsyscall-handlers MUST NOT access user-memory without first
+ * Fsyscall-handlers MUST NOT access user-memory without first
validating access-permission (this can be done typically via
probe.r.fault and/or probe.w.fault) and without guarding against
memory access exceptions (this can be done with the EX() macros
@@ -162,7 +170,8 @@ fast system call execution (while fully preserving system call
semantics), but there is also a lot of flexibility in handling more
complicated cases.
-* Signal handling
+Signal handling
+===============
The delivery of (asynchronous) signals must be delayed until fsys-mode
is exited. This is accomplished with the help of the lower-privilege
@@ -173,7 +182,8 @@ PSR.lp and returns immediately. When fsys-mode is exited via the
occur. The trap handler clears PSR.lp again and returns immediately.
The kernel exit path then checks for and delivers any pending signals.
-* PSR Handling
+PSR Handling
+============
The "epc" instruction doesn't change the contents of PSR at all. This
is in contrast to a regular interruption, which clears almost all
@@ -181,6 +191,7 @@ bits. Because of that, some care needs to be taken to ensure things
work as expected. The following discussion describes how each PSR bit
is handled.
+======= =======================================================================
PSR.be Cleared when entering fsys-mode. A srlz.d instruction is used
to ensure the CPU is in little-endian mode before the first
load/store instruction is executed. PSR.be is normally NOT
@@ -202,7 +213,8 @@ PSR.pp Unchanged.
PSR.di Unchanged.
PSR.si Unchanged.
PSR.db Unchanged. The kernel prevents user-level from setting a hardware
- breakpoint that triggers at any privilege level other than 3 (user-mode).
+ breakpoint that triggers at any privilege level other than
+ 3 (user-mode).
PSR.lp Unchanged.
PSR.tb Lazy redirect. If a taken-branch trap occurs while in
fsys-mode, the trap-handler modifies the saved machine state
@@ -235,47 +247,52 @@ PSR.ed Unchanged. Note: This bit could only have an effect if an fsys-mode
PSR.bn Unchanged. Note: fsys-mode handlers may clear the bit, if needed.
Doing so requires clearing PSR.i and PSR.ic as well.
PSR.ia Unchanged. Note: the ia64 linux kernel never sets this bit.
+======= =======================================================================
-* Using fast system calls
+Using fast system calls
+=======================
To use fast system calls, userspace applications need simply call
__kernel_syscall_via_epc(). For example
-- example fgettimeofday() call --
+
-- fgettimeofday.S --
-#include <asm/asmmacro.h>
+::
+
+ #include <asm/asmmacro.h>
-GLOBAL_ENTRY(fgettimeofday)
-.prologue
-.save ar.pfs, r11
-mov r11 = ar.pfs
-.body
+ GLOBAL_ENTRY(fgettimeofday)
+ .prologue
+ .save ar.pfs, r11
+ mov r11 = ar.pfs
+ .body
-mov r2 = 0xa000000000020660;; // gate address
- // found by inspection of System.map for the
+ mov r2 = 0xa000000000020660;; // gate address
+ // found by inspection of System.map for the
// __kernel_syscall_via_epc() function. See
// below for how to do this for real.
-mov b7 = r2
-mov r15 = 1087 // gettimeofday syscall
-;;
-br.call.sptk.many b6 = b7
-;;
+ mov b7 = r2
+ mov r15 = 1087 // gettimeofday syscall
+ ;;
+ br.call.sptk.many b6 = b7
+ ;;
-.restore sp
+ .restore sp
-mov ar.pfs = r11
-br.ret.sptk.many rp;; // return to caller
-END(fgettimeofday)
+ mov ar.pfs = r11
+ br.ret.sptk.many rp;; // return to caller
+ END(fgettimeofday)
-- end fgettimeofday.S --
In reality, getting the gate address is accomplished by two extra
values passed via the ELF auxiliary vector (include/asm-ia64/elf.h)
- o AT_SYSINFO : is the address of __kernel_syscall_via_epc()
- o AT_SYSINFO_EHDR : is the address of the kernel gate ELF DSO
+ * AT_SYSINFO : is the address of __kernel_syscall_via_epc()
+ * AT_SYSINFO_EHDR : is the address of the kernel gate ELF DSO
The ELF DSO is a pre-linked library that is mapped in by the kernel at
the gate page. It is a proper ELF shared object so, with a dynamic
diff --git a/Documentation/ia64/README b/Documentation/ia64/ia64.rst
index aa17f2154cba..b725019a9492 100644
--- a/Documentation/ia64/README
+++ b/Documentation/ia64/ia64.rst
@@ -1,43 +1,49 @@
- Linux kernel release 2.4.xx for the IA-64 Platform
+===========================================
+Linux kernel release for the IA-64 Platform
+===========================================
- These are the release notes for Linux version 2.4 for IA-64
+ These are the release notes for Linux since version 2.4 for IA-64
platform. This document provides information specific to IA-64
ONLY, to get additional information about the Linux kernel also
read the original Linux README provided with the kernel.
-INSTALLING the kernel:
+Installing the Kernel
+=====================
- IA-64 kernel installation is the same as the other platforms, see
original README for details.
-SOFTWARE REQUIREMENTS
+Software Requirements
+=====================
Compiling and running this kernel requires an IA-64 compliant GCC
compiler. And various software packages also compiled with an
IA-64 compliant GCC compiler.
-CONFIGURING the kernel:
+Configuring the Kernel
+======================
Configuration is the same, see original README for details.
-COMPILING the kernel:
+Compiling the Kernel:
- Compiling this kernel doesn't differ from other platform so read
the original README for details BUT make sure you have an IA-64
compliant GCC compiler.
-IA-64 SPECIFICS
+IA-64 Specifics
+===============
- General issues:
- o Hardly any performance tuning has been done. Obvious targets
+ * Hardly any performance tuning has been done. Obvious targets
include the library routines (IP checksum, etc.). Less
obvious targets include making sure we don't flush the TLB
needlessly, etc.
- o SMP locks cleanup/optimization
+ * SMP locks cleanup/optimization
- o IA32 support. Currently experimental. It mostly works.
+ * IA32 support. Currently experimental. It mostly works.
diff --git a/Documentation/ia64/index.rst b/Documentation/ia64/index.rst
new file mode 100644
index 000000000000..0436e1034115
--- /dev/null
+++ b/Documentation/ia64/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================
+IA-64 Architecture
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ ia64
+ aliasing
+ efirtc
+ err_inject
+ fsys
+ irq-redir
+ mca
+ serial
+ xen
diff --git a/Documentation/ia64/IRQ-redir.txt b/Documentation/ia64/irq-redir.rst
index f7bd72261283..39bf94484a15 100644
--- a/Documentation/ia64/IRQ-redir.txt
+++ b/Documentation/ia64/irq-redir.rst
@@ -1,6 +1,8 @@
+==============================
IRQ affinity on IA64 platforms
-------------------------------
- 07.01.2002, Erich Focht <efocht@ess.nec.de>
+==============================
+
+07.01.2002, Erich Focht <efocht@ess.nec.de>
By writing to /proc/irq/IRQ#/smp_affinity the interrupt routing can be
@@ -12,22 +14,27 @@ IRQ target is one particular CPU and cannot be a mask of several
CPUs. Only the first non-zero bit is taken into account.
-Usage examples:
+Usage examples
+==============
The target CPU has to be specified as a hexadecimal CPU mask. The
first non-zero bit is the selected CPU. This format has been kept for
compatibility reasons with i386.
Set the delivery mode of interrupt 41 to fixed and route the
-interrupts to CPU #3 (logical CPU number) (2^3=0x08):
+interrupts to CPU #3 (logical CPU number) (2^3=0x08)::
+
echo "8" >/proc/irq/41/smp_affinity
Set the default route for IRQ number 41 to CPU 6 in lowest priority
-delivery mode (redirectable):
+delivery mode (redirectable)::
+
echo "r 40" >/proc/irq/41/smp_affinity
-The output of the command
+The output of the command::
+
cat /proc/irq/IRQ#/smp_affinity
+
gives the target CPU mask for the specified interrupt vector. If the CPU
mask is preceded by the character "r", the interrupt is redirectable
(i.e. lowest priority mode routing is used), otherwise its route is
@@ -35,7 +42,8 @@ fixed.
-Initialization and default behavior:
+Initialization and default behavior
+===================================
If the platform features IRQ redirection (info provided by SAL) all
IO-SAPIC interrupts are initialized with CPU#0 as their default target
@@ -43,9 +51,11 @@ and the routing is the so called "lowest priority mode" (actually
fixed SAPIC mode with hint). The XTP chipset registers are used as hints
for the IRQ routing. Currently in Linux XTP registers can have three
values:
+
- minimal for an idle task,
- normal if any other task runs,
- maximal if the CPU is going to be switched off.
+
The IRQ is routed to the CPU with lowest XTP register value, the
search begins at the default CPU. Therefore most of the interrupts
will be handled by CPU #0.
@@ -53,12 +63,14 @@ will be handled by CPU #0.
If the platform doesn't feature interrupt redirection IOSAPIC fixed
routing is used. The target CPUs are distributed in a round robin
manner. IRQs will be routed only to the selected target CPUs. Check
-with
+with::
+
cat /proc/interrupts
-Comments:
+Comments
+========
On large (multi-node) systems it is recommended to route the IRQs to
the node to which the corresponding device is connected.
@@ -66,4 +78,3 @@ For systems like the NEC AzusA we get IRQ node-affinity for free. This
is because usually the chipsets on each node redirect the interrupts
only to their own CPUs (as they cannot see the XTP registers on the
other nodes).
-
diff --git a/Documentation/ia64/mca.txt b/Documentation/ia64/mca.rst
index f097c60cba1b..08270bba44a4 100644
--- a/Documentation/ia64/mca.txt
+++ b/Documentation/ia64/mca.rst
@@ -1,5 +1,8 @@
-An ad-hoc collection of notes on IA64 MCA and INIT processing. Feel
-free to update it with notes about any area that is not clear.
+=============================================================
+An ad-hoc collection of notes on IA64 MCA and INIT processing
+=============================================================
+
+Feel free to update it with notes about any area that is not clear.
---
@@ -82,7 +85,8 @@ if we have a choice here.
own stack as running on that cpu. Then a recursive error gets a
trace of the failing handler's "task".
-[1] My (Keith Owens) original design called for ia64 to separate its
+[1]
+ My (Keith Owens) original design called for ia64 to separate its
struct task and the kernel stacks. Then the MCA/INIT data would be
chained stacks like i386 interrupt stacks. But that required
radical surgery on the rest of ia64, plus extra hard wired TLB
diff --git a/Documentation/ia64/serial.txt b/Documentation/ia64/serial.rst
index a63d2c54329b..1de70c305a79 100644
--- a/Documentation/ia64/serial.txt
+++ b/Documentation/ia64/serial.rst
@@ -1,4 +1,9 @@
-SERIAL DEVICE NAMING
+==============
+Serial Devices
+==============
+
+Serial Device Naming
+====================
As of 2.6.10, serial devices on ia64 are named based on the
order of ACPI and PCI enumeration. The first device in the
@@ -30,17 +35,21 @@ SERIAL DEVICE NAMING
(described in the ACPI namespace) plus an MP[2] (a PCI device) has
these ports:
- pre-2.6.10 pre-2.6.10
- MMIO (EFI console (EFI console
- address on builtin) on MP port) 2.6.10
- ========== ========== ========== ======
+ ========== ========== ============ ============ =======
+ Type MMIO pre-2.6.10 pre-2.6.10 2.6.10+
+ address
+ (EFI console (EFI console
+ on builtin) on MP port)
+ ========== ========== ============ ============ =======
builtin 0xff5e0000 ttyS0 ttyS1 ttyS0
MP UPS 0xf8031000 ttyS1 ttyS2 ttyS1
MP Console 0xf8030000 ttyS2 ttyS0 ttyS2
MP 2 0xf8030010 ttyS3 ttyS3 ttyS3
MP 3 0xf8030038 ttyS4 ttyS4 ttyS4
+ ========== ========== ============ ============ =======
-CONSOLE SELECTION
+Console Selection
+=================
EFI knows what your console devices are, but it doesn't tell the
kernel quite enough to actually locate them. The DIG64 HCDP
@@ -67,7 +76,8 @@ CONSOLE SELECTION
entries in /etc/inittab (for getty) and /etc/securetty (to allow
root login).
-EARLY SERIAL CONSOLE
+Early Serial Console
+====================
The kernel can't start using a serial console until it knows where
the device lives. Normally this happens when the driver enumerates
@@ -80,7 +90,8 @@ EARLY SERIAL CONSOLE
or if the EFI console path contains only a UART device and the
firmware supplies an HCDP.
-TROUBLESHOOTING SERIAL CONSOLE PROBLEMS
+Troubleshooting Serial Console Problems
+=======================================
No kernel output after elilo prints "Uncompressing Linux... done":
@@ -133,19 +144,22 @@ TROUBLESHOOTING SERIAL CONSOLE PROBLEMS
-[1] http://www.dig64.org/specifications/agreement
+[1]
+ http://www.dig64.org/specifications/agreement
The table was originally defined as the "HCDP" for "Headless
Console/Debug Port." The current version is the "PCDP" for
"Primary Console and Debug Port Devices."
-[2] The HP MP (management processor) is a PCI device that provides
+[2]
+ The HP MP (management processor) is a PCI device that provides
several UARTs. One of the UARTs is often used as a console; the
EFI Boot Manager identifies it as "Acpi(HWP0002,700)/Pci(...)/Uart".
The external connection is usually a 25-pin connector, and a
special dongle converts that to three 9-pin connectors, one of
which is labelled "Console."
-[3] EFI console devices are configured using the EFI Boot Manager
+[3]
+ EFI console devices are configured using the EFI Boot Manager
"Boot option maintenance" menu. You may have to interrupt the
boot sequence to use this menu, and you will have to reset the
box after changing console configuration.
diff --git a/Documentation/ia64/xen.rst b/Documentation/ia64/xen.rst
new file mode 100644
index 000000000000..831339c74441
--- /dev/null
+++ b/Documentation/ia64/xen.rst
@@ -0,0 +1,206 @@
+********************************************************
+Recipe for getting/building/running Xen/ia64 with pv_ops
+********************************************************
+This recipe describes how to get xen-ia64 source and build it,
+and run domU with pv_ops.
+
+Requirements
+============
+
+ - python
+ - mercurial
+ it (aka "hg") is an open-source source code
+ management software. See the below.
+ http://www.selenic.com/mercurial/wiki/
+ - git
+ - bridge-utils
+
+Getting and Building Xen and Dom0
+=================================
+
+ My environment is:
+
+ - Machine : Tiger4
+ - Domain0 OS : RHEL5
+ - DomainU OS : RHEL5
+
+ 1. Download source::
+
+ # hg clone http://xenbits.xensource.com/ext/ia64/xen-unstable.hg
+ # cd xen-unstable.hg
+ # hg clone http://xenbits.xensource.com/ext/ia64/linux-2.6.18-xen.hg
+
+ 2. # make world
+
+ 3. # make install-tools
+
+ 4. copy kernels and xen::
+
+ # cp xen/xen.gz /boot/efi/efi/redhat/
+ # cp build-linux-2.6.18-xen_ia64/vmlinux.gz \
+ /boot/efi/efi/redhat/vmlinuz-2.6.18.8-xen
+
+ 5. make initrd for Dom0/DomU::
+
+ # make -C linux-2.6.18-xen.hg ARCH=ia64 modules_install \
+ O=$(pwd)/build-linux-2.6.18-xen_ia64
+ # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6.18.8-xen.img \
+ 2.6.18.8-xen --builtin mptspi --builtin mptbase \
+ --builtin mptscsih --builtin uhci-hcd --builtin ohci-hcd \
+ --builtin ehci-hcd
+
+Making a disk image for guest OS
+================================
+
+ 1. make file::
+
+ # dd if=/dev/zero of=/root/rhel5.img bs=1M seek=4096 count=0
+ # mke2fs -F -j /root/rhel5.img
+ # mount -o loop /root/rhel5.img /mnt
+ # cp -ax /{dev,var,etc,usr,bin,sbin,lib} /mnt
+ # mkdir /mnt/{root,proc,sys,home,tmp}
+
+ Note: You may miss some device files. If so, please create them
+ with mknod. Or you can use tar instead of cp.
+
+ 2. modify DomU's fstab::
+
+ # vi /mnt/etc/fstab
+ /dev/xvda1 / ext3 defaults 1 1
+ none /dev/pts devpts gid=5,mode=620 0 0
+ none /dev/shm tmpfs defaults 0 0
+ none /proc proc defaults 0 0
+ none /sys sysfs defaults 0 0
+
+ 3. modify inittab
+
+ set runlevel to 3 to avoid X trying to start::
+
+ # vi /mnt/etc/inittab
+ id:3:initdefault:
+
+ Start a getty on the hvc0 console::
+
+ X0:2345:respawn:/sbin/mingetty hvc0
+
+ tty1-6 mingetty can be commented out
+
+ 4. add hvc0 into /etc/securetty::
+
+ # vi /mnt/etc/securetty (add hvc0)
+
+ 5. umount::
+
+ # umount /mnt
+
+FYI, virt-manager can also make a disk image for guest OS.
+It's GUI tools and easy to make it.
+
+Boot Xen & Domain0
+==================
+
+ 1. replace elilo
+ elilo of RHEL5 can boot Xen and Dom0.
+ If you use old elilo (e.g RHEL4), please download from the below
+ http://elilo.sourceforge.net/cgi-bin/blosxom
+ and copy into /boot/efi/efi/redhat/::
+
+ # cp elilo-3.6-ia64.efi /boot/efi/efi/redhat/elilo.efi
+
+ 2. modify elilo.conf (like the below)::
+
+ # vi /boot/efi/efi/redhat/elilo.conf
+ prompt
+ timeout=20
+ default=xen
+ relocatable
+
+ image=vmlinuz-2.6.18.8-xen
+ label=xen
+ vmm=xen.gz
+ initrd=initrd-2.6.18.8-xen.img
+ read-only
+ append=" -- rhgb root=/dev/sda2"
+
+The append options before "--" are for xen hypervisor,
+the options after "--" are for dom0.
+
+FYI, your machine may need console options like
+"com1=19200,8n1 console=vga,com1". For example,
+append="com1=19200,8n1 console=vga,com1 -- rhgb console=tty0 \
+console=ttyS0 root=/dev/sda2"
+
+Getting and Building domU with pv_ops
+=====================================
+
+ 1. get pv_ops tree::
+
+ # git clone http://people.valinux.co.jp/~yamahata/xen-ia64/linux-2.6-xen-ia64.git/
+
+ 2. git branch (if necessary)::
+
+ # cd linux-2.6-xen-ia64/
+ # git checkout -b your_branch origin/xen-ia64-domu-minimal-2008may19
+
+ Note:
+ The current branch is xen-ia64-domu-minimal-2008may19.
+ But you would find the new branch. You can see with
+ "git branch -r" to get the branch lists.
+
+ http://people.valinux.co.jp/~yamahata/xen-ia64/for_eagl/linux-2.6-ia64-pv-ops.git/
+
+ is also available.
+
+ The tree is based on
+
+ git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6 test)
+
+ 3. copy .config for pv_ops of domU::
+
+ # cp arch/ia64/configs/xen_domu_wip_defconfig .config
+
+ 4. make kernel with pv_ops::
+
+ # make oldconfig
+ # make
+
+ 5. install the kernel and initrd::
+
+ # cp vmlinux.gz /boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU
+ # make modules_install
+ # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img \
+ 2.6.26-rc3xen-ia64-08941-g1b12161 --builtin mptspi \
+ --builtin mptbase --builtin mptscsih --builtin uhci-hcd \
+ --builtin ohci-hcd --builtin ehci-hcd
+
+Boot DomainU with pv_ops
+========================
+
+ 1. make config of DomU::
+
+ # vi /etc/xen/rhel5
+ kernel = "/boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU"
+ ramdisk = "/boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img"
+ vcpus = 1
+ memory = 512
+ name = "rhel5"
+ disk = [ 'file:/root/rhel5.img,xvda1,w' ]
+ root = "/dev/xvda1 ro"
+ extra= "rhgb console=hvc0"
+
+ 2. After boot xen and dom0, start xend::
+
+ # /etc/init.d/xend start
+
+ ( In the debugging case, `# XEND_DEBUG=1 xend trace_start` )
+
+ 3. start domU::
+
+ # xm create -c rhel5
+
+Reference
+=========
+- Wiki of Xen/IA64 upstream merge
+ http://wiki.xensource.com/xenwiki/XenIA64/UpstreamMerge
+
+Written by Akio Takebe <takebe_akio@jp.fujitsu.com> on 28 May 2008
diff --git a/Documentation/ia64/xen.txt b/Documentation/ia64/xen.txt
deleted file mode 100644
index a12c74ce2773..000000000000
--- a/Documentation/ia64/xen.txt
+++ /dev/null
@@ -1,183 +0,0 @@
- Recipe for getting/building/running Xen/ia64 with pv_ops
- --------------------------------------------------------
-
-This recipe describes how to get xen-ia64 source and build it,
-and run domU with pv_ops.
-
-============
-Requirements
-============
-
- - python
- - mercurial
- it (aka "hg") is an open-source source code
- management software. See the below.
- http://www.selenic.com/mercurial/wiki/
- - git
- - bridge-utils
-
-=================================
-Getting and Building Xen and Dom0
-=================================
-
- My environment is;
- Machine : Tiger4
- Domain0 OS : RHEL5
- DomainU OS : RHEL5
-
- 1. Download source
- # hg clone http://xenbits.xensource.com/ext/ia64/xen-unstable.hg
- # cd xen-unstable.hg
- # hg clone http://xenbits.xensource.com/ext/ia64/linux-2.6.18-xen.hg
-
- 2. # make world
-
- 3. # make install-tools
-
- 4. copy kernels and xen
- # cp xen/xen.gz /boot/efi/efi/redhat/
- # cp build-linux-2.6.18-xen_ia64/vmlinux.gz \
- /boot/efi/efi/redhat/vmlinuz-2.6.18.8-xen
-
- 5. make initrd for Dom0/DomU
- # make -C linux-2.6.18-xen.hg ARCH=ia64 modules_install \
- O=$(pwd)/build-linux-2.6.18-xen_ia64
- # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6.18.8-xen.img \
- 2.6.18.8-xen --builtin mptspi --builtin mptbase \
- --builtin mptscsih --builtin uhci-hcd --builtin ohci-hcd \
- --builtin ehci-hcd
-
-================================
-Making a disk image for guest OS
-================================
-
- 1. make file
- # dd if=/dev/zero of=/root/rhel5.img bs=1M seek=4096 count=0
- # mke2fs -F -j /root/rhel5.img
- # mount -o loop /root/rhel5.img /mnt
- # cp -ax /{dev,var,etc,usr,bin,sbin,lib} /mnt
- # mkdir /mnt/{root,proc,sys,home,tmp}
-
- Note: You may miss some device files. If so, please create them
- with mknod. Or you can use tar instead of cp.
-
- 2. modify DomU's fstab
- # vi /mnt/etc/fstab
- /dev/xvda1 / ext3 defaults 1 1
- none /dev/pts devpts gid=5,mode=620 0 0
- none /dev/shm tmpfs defaults 0 0
- none /proc proc defaults 0 0
- none /sys sysfs defaults 0 0
-
- 3. modify inittab
- set runlevel to 3 to avoid X trying to start
- # vi /mnt/etc/inittab
- id:3:initdefault:
- Start a getty on the hvc0 console
- X0:2345:respawn:/sbin/mingetty hvc0
- tty1-6 mingetty can be commented out
-
- 4. add hvc0 into /etc/securetty
- # vi /mnt/etc/securetty (add hvc0)
-
- 5. umount
- # umount /mnt
-
-FYI, virt-manager can also make a disk image for guest OS.
-It's GUI tools and easy to make it.
-
-==================
-Boot Xen & Domain0
-==================
-
- 1. replace elilo
- elilo of RHEL5 can boot Xen and Dom0.
- If you use old elilo (e.g RHEL4), please download from the below
- http://elilo.sourceforge.net/cgi-bin/blosxom
- and copy into /boot/efi/efi/redhat/
- # cp elilo-3.6-ia64.efi /boot/efi/efi/redhat/elilo.efi
-
- 2. modify elilo.conf (like the below)
- # vi /boot/efi/efi/redhat/elilo.conf
- prompt
- timeout=20
- default=xen
- relocatable
-
- image=vmlinuz-2.6.18.8-xen
- label=xen
- vmm=xen.gz
- initrd=initrd-2.6.18.8-xen.img
- read-only
- append=" -- rhgb root=/dev/sda2"
-
-The append options before "--" are for xen hypervisor,
-the options after "--" are for dom0.
-
-FYI, your machine may need console options like
-"com1=19200,8n1 console=vga,com1". For example,
-append="com1=19200,8n1 console=vga,com1 -- rhgb console=tty0 \
-console=ttyS0 root=/dev/sda2"
-
-=====================================
-Getting and Building domU with pv_ops
-=====================================
-
- 1. get pv_ops tree
- # git clone http://people.valinux.co.jp/~yamahata/xen-ia64/linux-2.6-xen-ia64.git/
-
- 2. git branch (if necessary)
- # cd linux-2.6-xen-ia64/
- # git checkout -b your_branch origin/xen-ia64-domu-minimal-2008may19
- (Note: The current branch is xen-ia64-domu-minimal-2008may19.
- But you would find the new branch. You can see with
- "git branch -r" to get the branch lists.
- http://people.valinux.co.jp/~yamahata/xen-ia64/for_eagl/linux-2.6-ia64-pv-ops.git/
- is also available. The tree is based on
- git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6 test)
-
-
- 3. copy .config for pv_ops of domU
- # cp arch/ia64/configs/xen_domu_wip_defconfig .config
-
- 4. make kernel with pv_ops
- # make oldconfig
- # make
-
- 5. install the kernel and initrd
- # cp vmlinux.gz /boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU
- # make modules_install
- # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img \
- 2.6.26-rc3xen-ia64-08941-g1b12161 --builtin mptspi \
- --builtin mptbase --builtin mptscsih --builtin uhci-hcd \
- --builtin ohci-hcd --builtin ehci-hcd
-
-========================
-Boot DomainU with pv_ops
-========================
-
- 1. make config of DomU
- # vi /etc/xen/rhel5
- kernel = "/boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU"
- ramdisk = "/boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img"
- vcpus = 1
- memory = 512
- name = "rhel5"
- disk = [ 'file:/root/rhel5.img,xvda1,w' ]
- root = "/dev/xvda1 ro"
- extra= "rhgb console=hvc0"
-
- 2. After boot xen and dom0, start xend
- # /etc/init.d/xend start
- ( In the debugging case, # XEND_DEBUG=1 xend trace_start )
-
- 3. start domU
- # xm create -c rhel5
-
-=========
-Reference
-=========
-- Wiki of Xen/IA64 upstream merge
- http://wiki.xensource.com/xenwiki/XenIA64/UpstreamMerge
-
-Written by Akio Takebe <takebe_akio@jp.fujitsu.com> on 28 May 2008
diff --git a/Documentation/ide/changelogs.rst b/Documentation/ide/changelogs.rst
new file mode 100644
index 000000000000..fdf9d0fb8027
--- /dev/null
+++ b/Documentation/ide/changelogs.rst
@@ -0,0 +1,17 @@
+Changelog for ide cd
+--------------------
+
+ .. include:: ChangeLog.ide-cd.1994-2004
+ :literal:
+
+Changelog for ide floppy
+------------------------
+
+ .. include:: ChangeLog.ide-floppy.1996-2002
+ :literal:
+
+Changelog for ide tape
+----------------------
+
+ .. include:: ChangeLog.ide-tape.1995-2002
+ :literal:
diff --git a/Documentation/ide/ide-tape.txt b/Documentation/ide/ide-tape.rst
index 3f348a0b21d8..3e061d9c0e38 100644
--- a/Documentation/ide/ide-tape.txt
+++ b/Documentation/ide/ide-tape.rst
@@ -1,4 +1,6 @@
-IDE ATAPI streaming tape driver.
+===============================
+IDE ATAPI streaming tape driver
+===============================
This driver is a part of the Linux ide driver.
@@ -10,14 +12,14 @@ to the request-list of the block device, and waits for their completion.
The block device major and minor numbers are determined from the
tape's relative position in the ide interfaces, as explained in ide.c.
-The character device interface consists of the following devices:
+The character device interface consists of the following devices::
-ht0 major 37, minor 0 first IDE tape, rewind on close.
-ht1 major 37, minor 1 second IDE tape, rewind on close.
-...
-nht0 major 37, minor 128 first IDE tape, no rewind on close.
-nht1 major 37, minor 129 second IDE tape, no rewind on close.
-...
+ ht0 major 37, minor 0 first IDE tape, rewind on close.
+ ht1 major 37, minor 1 second IDE tape, rewind on close.
+ ...
+ nht0 major 37, minor 128 first IDE tape, no rewind on close.
+ nht1 major 37, minor 129 second IDE tape, no rewind on close.
+ ...
The general magnetic tape commands compatible interface, as defined by
include/linux/mtio.h, is accessible through the character device.
@@ -40,9 +42,10 @@ Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
Here are some words from the first releases of hd.c, which are quoted
in ide.c and apply here as well:
-| Special care is recommended. Have Fun!
+* Special care is recommended. Have Fun!
-Possible improvements:
+Possible improvements
+=====================
1. Support for the ATAPI overlap protocol.
diff --git a/Documentation/ide/ide.txt b/Documentation/ide/ide.rst
index 7aca987c23d9..88bdcba92f7d 100644
--- a/Documentation/ide/ide.txt
+++ b/Documentation/ide/ide.rst
@@ -1,41 +1,43 @@
-
- Information regarding the Enhanced IDE drive in Linux 2.6
-
-==============================================================================
-
+============================================
+Information regarding the Enhanced IDE drive
+============================================
The hdparm utility can be used to control various IDE features on a
running system. It is packaged separately. Please Look for it on popular
linux FTP sites.
+-------------------------------------------------------------------------------
+
+.. important::
+
+ BUGGY IDE CHIPSETS CAN CORRUPT DATA!!
+
+ PCI versions of the CMD640 and RZ1000 interfaces are now detected
+ automatically at startup when PCI BIOS support is configured.
+
+ Linux disables the "prefetch" ("readahead") mode of the RZ1000
+ to prevent data corruption possible due to hardware design flaws.
+
+ For the CMD640, linux disables "IRQ unmasking" (hdparm -u1) on any
+ drive for which the "prefetch" mode of the CMD640 is turned on.
+ If "prefetch" is disabled (hdparm -p8), then "IRQ unmasking" can be
+ used again.
+
+ For the CMD640, linux disables "32bit I/O" (hdparm -c1) on any drive
+ for which the "prefetch" mode of the CMD640 is turned off.
+ If "prefetch" is enabled (hdparm -p9), then "32bit I/O" can be
+ used again.
+
+ The CMD640 is also used on some Vesa Local Bus (VLB) cards, and is *NOT*
+ automatically detected by Linux. For safe, reliable operation with such
+ interfaces, one *MUST* use the "cmd640.probe_vlb" kernel option.
+
+ Use of the "serialize" option is no longer necessary.
+-------------------------------------------------------------------------------
-*** IMPORTANT NOTICES: BUGGY IDE CHIPSETS CAN CORRUPT DATA!!
-*** =================
-*** PCI versions of the CMD640 and RZ1000 interfaces are now detected
-*** automatically at startup when PCI BIOS support is configured.
-***
-*** Linux disables the "prefetch" ("readahead") mode of the RZ1000
-*** to prevent data corruption possible due to hardware design flaws.
-***
-*** For the CMD640, linux disables "IRQ unmasking" (hdparm -u1) on any
-*** drive for which the "prefetch" mode of the CMD640 is turned on.
-*** If "prefetch" is disabled (hdparm -p8), then "IRQ unmasking" can be
-*** used again.
-***
-*** For the CMD640, linux disables "32bit I/O" (hdparm -c1) on any drive
-*** for which the "prefetch" mode of the CMD640 is turned off.
-*** If "prefetch" is enabled (hdparm -p9), then "32bit I/O" can be
-*** used again.
-***
-*** The CMD640 is also used on some Vesa Local Bus (VLB) cards, and is *NOT*
-*** automatically detected by Linux. For safe, reliable operation with such
-*** interfaces, one *MUST* use the "cmd640.probe_vlb" kernel option.
-***
-*** Use of the "serialize" option is no longer necessary.
-
-================================================================================
-Common pitfalls:
+Common pitfalls
+===============
- 40-conductor IDE cables are capable of transferring data in DMA modes up to
udma2, but no faster.
@@ -49,19 +51,18 @@ Common pitfalls:
- Even better try to stick to the same vendor and device type on the same
cable.
-================================================================================
-
-This is the multiple IDE interface driver, as evolved from hd.c.
+This is the multiple IDE interface driver, as evolved from hd.c
+===============================================================
It supports up to 9 IDE interfaces per default, on one or more IRQs (usually
-14 & 15). There can be up to two drives per interface, as per the ATA-6 spec.
+14 & 15). There can be up to two drives per interface, as per the ATA-6 spec.::
-Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64
-Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64
-Tertiary: ide2, port 0x1e8; major=33; hde is minor=0; hdf is minor=64
-Quaternary: ide3, port 0x168; major=34; hdg is minor=0; hdh is minor=64
-fifth.. ide4, usually PCI, probed
-sixth.. ide5, usually PCI, probed
+ Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64
+ Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64
+ Tertiary: ide2, port 0x1e8; major=33; hde is minor=0; hdf is minor=64
+ Quaternary: ide3, port 0x168; major=34; hdg is minor=0; hdh is minor=64
+ fifth.. ide4, usually PCI, probed
+ sixth.. ide5, usually PCI, probed
To access devices on interfaces > ide0, device entries please make sure that
device files for them are present in /dev. If not, please create such
@@ -80,12 +81,15 @@ seldom occurs. Be careful, and if in doubt, don't do it!
Drives are normally found by auto-probing and/or examining the CMOS/BIOS data.
For really weird situations, the apparent (fdisk) geometry can also be specified
-on the kernel "command line" using LILO. The format of such lines is:
+on the kernel "command line" using LILO. The format of such lines is::
ide_core.chs=[interface_number.device_number]:cyls,heads,sects
-or ide_core.cdrom=[interface_number.device_number]
-For example:
+or::
+
+ ide_core.cdrom=[interface_number.device_number]
+
+For example::
ide_core.chs=1.0:1050,32,64 ide_core.cdrom=1.1
@@ -96,10 +100,12 @@ geometry for partitioning purposes (fdisk).
If the auto-probing during boot time confuses a drive (ie. the drive works
with hd.c but not with ide.c), then an command line option may be specified
for each drive for which you'd like the drive to skip the hardware
-probe/identification sequence. For example:
+probe/identification sequence. For example::
ide_core.noprobe=0.1
-or
+
+or::
+
ide_core.chs=1.0:768,16,32
ide_core.noprobe=1.0
@@ -115,22 +121,24 @@ Such drives will be identified at boot time, just like a hard disk.
If for some reason your cdrom drive is *not* found at boot time, you can force
the probe to look harder by supplying a kernel command line parameter
-via LILO, such as:
+via LILO, such as:::
ide_core.cdrom=1.0 /* "master" on second interface (hdc) */
-or
+
+or::
+
ide_core.cdrom=1.1 /* "slave" on second interface (hdd) */
For example, a GW2000 system might have a hard drive on the primary
interface (/dev/hda) and an IDE cdrom drive on the secondary interface
-(/dev/hdc). To mount a CD in the cdrom drive, one would use something like:
+(/dev/hdc). To mount a CD in the cdrom drive, one would use something like::
ln -sf /dev/hdc /dev/cdrom
mkdir /mnt/cdrom
mount /dev/cdrom /mnt/cdrom -t iso9660 -o ro
If, after doing all of the above, mount doesn't work and you see
-errors from the driver (with dmesg) complaining about `status=0xff',
+errors from the driver (with dmesg) complaining about `status=0xff`,
this means that the hardware is not responding to the driver's attempts
to read it. One of the following is probably the problem:
@@ -165,7 +173,7 @@ drivers can always be compiled as loadable modules, the chipset drivers
can only be compiled into the kernel, and the core code (ide.c) can be
compiled as a loadable module provided no chipset support is needed.
-When using ide.c as a module in combination with kmod, add:
+When using ide.c as a module in combination with kmod, add::
alias block-major-3 ide-probe
@@ -176,10 +184,8 @@ driver using the "options=" keyword to insmod, while replacing any ',' with
';'.
-================================================================================
-
Summary of ide driver parameters for kernel command line
---------------------------------------------------------
+========================================================
For legacy IDE VLB host drivers (ali14xx/dtc2278/ht6560b/qd65xx/umc8672)
you need to explicitly enable probing by using "probe" kernel parameter,
@@ -226,28 +232,31 @@ Other kernel parameters for ide_core are:
* "chs=[interface_number.device_number]" to force device as a disk (using CHS)
-================================================================================
Some Terminology
-----------------
-IDE = Integrated Drive Electronics, meaning that each drive has a built-in
-controller, which is why an "IDE interface card" is not a "controller card".
+================
-ATA = AT (the old IBM 286 computer) Attachment Interface, a draft American
-National Standard for connecting hard drives to PCs. This is the official
-name for "IDE".
+IDE
+ Integrated Drive Electronics, meaning that each drive has a built-in
+ controller, which is why an "IDE interface card" is not a "controller card".
-The latest standards define some enhancements, known as the ATA-6 spec,
-which grew out of vendor-specific "Enhanced IDE" (EIDE) implementations.
+ATA
+ AT (the old IBM 286 computer) Attachment Interface, a draft American
+ National Standard for connecting hard drives to PCs. This is the official
+ name for "IDE".
-ATAPI = ATA Packet Interface, a new protocol for controlling the drives,
-similar to SCSI protocols, created at the same time as the ATA2 standard.
-ATAPI is currently used for controlling CDROM, TAPE and FLOPPY (ZIP or
-LS120/240) devices, removable R/W cartridges, and for high capacity hard disk
-drives.
+ The latest standards define some enhancements, known as the ATA-6 spec,
+ which grew out of vendor-specific "Enhanced IDE" (EIDE) implementations.
+
+ATAPI
+ ATA Packet Interface, a new protocol for controlling the drives,
+ similar to SCSI protocols, created at the same time as the ATA2 standard.
+ ATAPI is currently used for controlling CDROM, TAPE and FLOPPY (ZIP or
+ LS120/240) devices, removable R/W cartridges, and for high capacity hard disk
+ drives.
mlord@pobox.com
---
+
Wed Apr 17 22:52:44 CEST 2002 edited by Marcin Dalecki, the current
maintainer.
diff --git a/Documentation/ide/index.rst b/Documentation/ide/index.rst
new file mode 100644
index 000000000000..813dfe611a31
--- /dev/null
+++ b/Documentation/ide/index.rst
@@ -0,0 +1,21 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================================
+Integrated Drive Electronics (IDE)
+==================================
+
+.. toctree::
+ :maxdepth: 1
+
+ ide
+ ide-tape
+ warm-plug-howto
+
+ changelogs
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/ide/warm-plug-howto.txt b/Documentation/ide/warm-plug-howto.rst
index 98152bcd515a..c245242ef2f1 100644
--- a/Documentation/ide/warm-plug-howto.txt
+++ b/Documentation/ide/warm-plug-howto.rst
@@ -1,14 +1,14 @@
-
+===================
IDE warm-plug HOWTO
===================
-To warm-plug devices on a port 'idex':
+To warm-plug devices on a port 'idex'::
-# echo -n "1" > /sys/class/ide_port/idex/delete_devices
+ # echo -n "1" > /sys/class/ide_port/idex/delete_devices
-unplug old device(s) and plug new device(s)
+unplug old device(s) and plug new device(s)::
-# echo -n "1" > /sys/class/ide_port/idex/scan
+ # echo -n "1" > /sys/class/ide_port/idex/scan
done
diff --git a/Documentation/iio/ep93xx_adc.txt b/Documentation/iio/ep93xx_adc.rst
index 23053e7817bd..4fd8dea3f6b8 100644
--- a/Documentation/iio/ep93xx_adc.txt
+++ b/Documentation/iio/ep93xx_adc.rst
@@ -1,12 +1,16 @@
-Cirrus Logic EP93xx ADC driver.
+==============================
+Cirrus Logic EP93xx ADC driver
+==============================
1. Overview
+===========
The driver is intended to work on both low-end (EP9301, EP9302) devices with
5-channel ADC and high-end (EP9307, EP9312, EP9315) devices with 10-channel
touchscreen/ADC module.
2. Channel numbering
+====================
Numbering scheme for channels 0..4 is defined in EP9301 and EP9302 datasheets.
EP9307, EP9312 and EP9312 have 3 channels more (total 8), but the numbering is
@@ -17,13 +21,20 @@ Assuming ep93xx_adc is IIO device0, you'd find the following entries under
+-----------------+---------------+
| sysfs entry | ball/pin name |
- +-----------------+---------------+
+ +=================+===============+
| in_voltage0_raw | YM |
+ +-----------------+---------------+
| in_voltage1_raw | SXP |
+ +-----------------+---------------+
| in_voltage2_raw | SXM |
+ +-----------------+---------------+
| in_voltage3_raw | SYP |
+ +-----------------+---------------+
| in_voltage4_raw | SYM |
+ +-----------------+---------------+
| in_voltage5_raw | XP |
+ +-----------------+---------------+
| in_voltage6_raw | XM |
+ +-----------------+---------------+
| in_voltage7_raw | YP |
+-----------------+---------------+
diff --git a/Documentation/iio/iio_configfs.txt b/Documentation/iio/iio_configfs.rst
index 4e5f101837a8..ecbfdb3afef7 100644
--- a/Documentation/iio/iio_configfs.txt
+++ b/Documentation/iio/iio_configfs.rst
@@ -1,6 +1,9 @@
+===============================
Industrial IIO configfs support
+===============================
1. Overview
+===========
Configfs is a filesystem-based manager of kernel objects. IIO uses some
objects that could be easily configured using configfs (e.g.: devices,
@@ -10,20 +13,22 @@ See Documentation/filesystems/configfs/configfs.txt for more information
about how configfs works.
2. Usage
+========
In order to use configfs support in IIO we need to select it at compile
time via CONFIG_IIO_CONFIGFS config option.
-Then, mount the configfs filesystem (usually under /config directory):
+Then, mount the configfs filesystem (usually under /config directory)::
-$ mkdir /config
-$ mount -t configfs none /config
+ $ mkdir /config
+ $ mount -t configfs none /config
At this point, all default IIO groups will be created and can be accessed
under /config/iio. Next chapters will describe available IIO configuration
objects.
3. Software triggers
+====================
One of the IIO default configfs groups is the "triggers" group. It is
automagically accessible when the configfs is mounted and can be found
@@ -31,40 +36,40 @@ under /config/iio/triggers.
IIO software triggers implementation offers support for creating multiple
trigger types. A new trigger type is usually implemented as a separate
-kernel module following the interface in include/linux/iio/sw_trigger.h:
+kernel module following the interface in include/linux/iio/sw_trigger.h::
-/*
- * drivers/iio/trigger/iio-trig-sample.c
- * sample kernel module implementing a new trigger type
- */
-#include <linux/iio/sw_trigger.h>
+ /*
+ * drivers/iio/trigger/iio-trig-sample.c
+ * sample kernel module implementing a new trigger type
+ */
+ #include <linux/iio/sw_trigger.h>
-static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
-{
+ static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
+ {
/*
* This allocates and registers an IIO trigger plus other
* trigger type specific initialization.
*/
-}
+ }
-static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
-{
+ static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
+ {
/*
* This undoes the actions in iio_trig_sample_probe
*/
-}
+ }
-static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
+ static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
.probe = iio_trig_sample_probe,
.remove = iio_trig_sample_remove,
-};
+ };
-static struct iio_sw_trigger_type iio_trig_sample = {
+ static struct iio_sw_trigger_type iio_trig_sample = {
.name = "trig-sample",
.owner = THIS_MODULE,
.ops = &iio_trig_sample_ops,
-};
+ };
module_iio_sw_trigger_driver(iio_trig_sample);
@@ -73,21 +78,24 @@ iio-trig-sample module will create 'trig-sample' trigger type directory
/config/iio/triggers/trig-sample.
We support the following interrupt sources (trigger types):
+
* hrtimer, uses high resolution timers as interrupt source
3.1 Hrtimer triggers creation and destruction
+---------------------------------------------
Loading iio-trig-hrtimer module will register hrtimer trigger types allowing
users to create hrtimer triggers under /config/iio/triggers/hrtimer.
-e.g:
+e.g::
-$ mkdir /config/iio/triggers/hrtimer/instance1
-$ rmdir /config/iio/triggers/hrtimer/instance1
+ $ mkdir /config/iio/triggers/hrtimer/instance1
+ $ rmdir /config/iio/triggers/hrtimer/instance1
Each trigger can have one or more attributes specific to the trigger type.
3.2 "hrtimer" trigger types attributes
+--------------------------------------
"hrtimer" trigger type doesn't have any configurable attribute from /config dir.
It does introduce the sampling_frequency attribute to trigger directory.
diff --git a/Documentation/iio/index.rst b/Documentation/iio/index.rst
new file mode 100644
index 000000000000..58b7a4ebac51
--- /dev/null
+++ b/Documentation/iio/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============
+Industrial I/O
+==============
+
+.. toctree::
+ :maxdepth: 1
+
+ iio_configfs
+
+ ep93xx_adc
diff --git a/Documentation/index.rst b/Documentation/index.rst
index a7566ef62411..b843e313d2f2 100644
--- a/Documentation/index.rst
+++ b/Documentation/index.rst
@@ -1,3 +1,4 @@
+
.. The Linux Kernel documentation master file, created by
sphinx-quickstart on Fri Feb 12 13:51:46 2016.
You can adapt this file completely to your liking, but it should at least
@@ -34,6 +35,7 @@ trying to get it to work optimally on a given system.
:maxdepth: 2
admin-guide/index
+ kbuild/index
Firmware-related documentation
------------------------------
@@ -55,6 +57,7 @@ the kernel interface as seen by application developers.
:maxdepth: 2
userspace-api/index
+ ioctl/index
Introduction to kernel development
@@ -75,6 +78,9 @@ merged much easier.
kernel-hacking/index
trace/index
maintainer/index
+ fault-injection/index
+ livepatch/index
+
Kernel API documentation
------------------------
@@ -90,8 +96,30 @@ needed).
driver-api/index
core-api/index
+ locking/index
+ accounting/index
+ block/index
+ cdrom/index
+ ide/index
+ fb/index
+ fpga/index
+ hid/index
+ i2c/index
+ iio/index
+ isdn/index
+ infiniband/index
+ leds/index
media/index
+ netlabel/index
networking/index
+ pcmcia/index
+ power/index
+ target/index
+ timers/index
+ spi/index
+ w1/index
+ watchdog/index
+ virt/index
input/index
hwmon/index
gpu/index
@@ -101,7 +129,11 @@ needed).
filesystems/index
vm/index
bpf/index
+ usb/index
+ PCI/index
misc-devices/index
+ mic/index
+ scheduler/index
Architecture-specific documentation
-----------------------------------
@@ -112,9 +144,21 @@ implementation.
.. toctree::
:maxdepth: 2
- x86/index
+ arm/index
+ arm64/index
+ ia64/index
+ m68k/index
+ mips/index
+ nios2/nios2
+ openrisc/index
+ parisc/index
+ powerpc/index
+ riscv/index
+ s390/index
sh/index
+ sparc/index
x86/index
+ xtensa/index
Filesystem Documentation
------------------------
diff --git a/Documentation/infiniband/core_locking.txt b/Documentation/infiniband/core_locking.rst
index 4b1f36b6ada0..8f76a8a5a38f 100644
--- a/Documentation/infiniband/core_locking.txt
+++ b/Documentation/infiniband/core_locking.rst
@@ -1,4 +1,6 @@
-INFINIBAND MIDLAYER LOCKING
+===========================
+InfiniBand Midlayer Locking
+===========================
This guide is an attempt to make explicit the locking assumptions
made by the InfiniBand midlayer. It describes the requirements on
@@ -6,45 +8,47 @@ INFINIBAND MIDLAYER LOCKING
protocols that use the midlayer.
Sleeping and interrupt context
+==============================
With the following exceptions, a low-level driver implementation of
all of the methods in struct ib_device may sleep. The exceptions
are any methods from the list:
- create_ah
- modify_ah
- query_ah
- destroy_ah
- post_send
- post_recv
- poll_cq
- req_notify_cq
- map_phys_fmr
+ - create_ah
+ - modify_ah
+ - query_ah
+ - destroy_ah
+ - post_send
+ - post_recv
+ - poll_cq
+ - req_notify_cq
+ - map_phys_fmr
which may not sleep and must be callable from any context.
The corresponding functions exported to upper level protocol
consumers:
- ib_create_ah
- ib_modify_ah
- ib_query_ah
- ib_destroy_ah
- ib_post_send
- ib_post_recv
- ib_req_notify_cq
- ib_map_phys_fmr
+ - rdma_create_ah
+ - rdma_modify_ah
+ - rdma_query_ah
+ - rdma_destroy_ah
+ - ib_post_send
+ - ib_post_recv
+ - ib_req_notify_cq
+ - ib_map_phys_fmr
are therefore safe to call from any context.
In addition, the function
- ib_dispatch_event
+ - ib_dispatch_event
used by low-level drivers to dispatch asynchronous events through
the midlayer is also safe to call from any context.
Reentrancy
+----------
All of the methods in struct ib_device exported by a low-level
driver must be fully reentrant. The low-level driver is required to
@@ -62,6 +66,7 @@ Reentrancy
information between different calls of ib_poll_cq() is not defined.
Callbacks
+---------
A low-level driver must not perform a callback directly from the
same callchain as an ib_device method call. For example, it is not
@@ -74,18 +79,18 @@ Callbacks
completion event handlers for the same CQ are not called
simultaneously. The driver must guarantee that only one CQ event
handler for a given CQ is running at a time. In other words, the
- following situation is not allowed:
+ following situation is not allowed::
- CPU1 CPU2
+ CPU1 CPU2
- low-level driver ->
- consumer CQ event callback:
- /* ... */
- ib_req_notify_cq(cq, ...);
- low-level driver ->
- /* ... */ consumer CQ event callback:
- /* ... */
- return from CQ event handler
+ low-level driver ->
+ consumer CQ event callback:
+ /* ... */
+ ib_req_notify_cq(cq, ...);
+ low-level driver ->
+ /* ... */ consumer CQ event callback:
+ /* ... */
+ return from CQ event handler
The context in which completion event and asynchronous event
callbacks run is not defined. Depending on the low-level driver, it
@@ -93,6 +98,7 @@ Callbacks
Upper level protocol consumers may not sleep in a callback.
Hot-plug
+--------
A low-level driver announces that a device is ready for use by
consumers when it calls ib_register_device(), all initialization
diff --git a/Documentation/infiniband/index.rst b/Documentation/infiniband/index.rst
new file mode 100644
index 000000000000..9cd7615438b9
--- /dev/null
+++ b/Documentation/infiniband/index.rst
@@ -0,0 +1,23 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========
+InfiniBand
+==========
+
+.. toctree::
+ :maxdepth: 1
+
+ core_locking
+ ipoib
+ opa_vnic
+ sysfs
+ tag_matching
+ user_mad
+ user_verbs
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/infiniband/ipoib.txt b/Documentation/infiniband/ipoib.rst
index 47c1dd9818f2..0dd36154c0c9 100644
--- a/Documentation/infiniband/ipoib.txt
+++ b/Documentation/infiniband/ipoib.rst
@@ -1,4 +1,6 @@
-IP OVER INFINIBAND
+==================
+IP over InfiniBand
+==================
The ib_ipoib driver is an implementation of the IP over InfiniBand
protocol as specified by RFC 4391 and 4392, issued by the IETF ipoib
@@ -8,16 +10,17 @@ IP OVER INFINIBAND
masqueraded to the kernel as ethernet interfaces).
Partitions and P_Keys
+=====================
When the IPoIB driver is loaded, it creates one interface for each
port using the P_Key at index 0. To create an interface with a
different P_Key, write the desired P_Key into the main interface's
- /sys/class/net/<intf name>/create_child file. For example:
+ /sys/class/net/<intf name>/create_child file. For example::
echo 0x8001 > /sys/class/net/ib0/create_child
This will create an interface named ib0.8001 with P_Key 0x8001. To
- remove a subinterface, use the "delete_child" file:
+ remove a subinterface, use the "delete_child" file::
echo 0x8001 > /sys/class/net/ib0/delete_child
@@ -28,6 +31,7 @@ Partitions and P_Keys
rtnl_link_ops, where children created using either way behave the same.
Datagram vs Connected modes
+===========================
The IPoIB driver supports two modes of operation: datagram and
connected. The mode is set and read through an interface's
@@ -51,6 +55,7 @@ Datagram vs Connected modes
networking stack to use the smaller UD MTU for these neighbours.
Stateless offloads
+==================
If the IB HW supports IPoIB stateless offloads, IPoIB advertises
TCP/IP checksum and/or Large Send (LSO) offloading capability to the
@@ -60,9 +65,10 @@ Stateless offloads
on/off using ethtool calls. Currently LRO is supported only for
checksum offload capable devices.
- Stateless offloads are supported only in datagram mode.
+ Stateless offloads are supported only in datagram mode.
Interrupt moderation
+====================
If the underlying IB device supports CQ event moderation, one can
use ethtool to set interrupt mitigation parameters and thus reduce
@@ -71,6 +77,7 @@ Interrupt moderation
moderation is supported.
Debugging Information
+=====================
By compiling the IPoIB driver with CONFIG_INFINIBAND_IPOIB_DEBUG set
to 'y', tracing messages are compiled into the driver. They are
@@ -79,7 +86,7 @@ Debugging Information
runtime through files in /sys/module/ib_ipoib/.
CONFIG_INFINIBAND_IPOIB_DEBUG also enables files in the debugfs
- virtual filesystem. By mounting this filesystem, for example with
+ virtual filesystem. By mounting this filesystem, for example with::
mount -t debugfs none /sys/kernel/debug
@@ -96,10 +103,13 @@ Debugging Information
performance, because it adds tests to the fast path.
References
+==========
Transmission of IP over InfiniBand (IPoIB) (RFC 4391)
- http://ietf.org/rfc/rfc4391.txt
+ http://ietf.org/rfc/rfc4391.txt
+
IP over InfiniBand (IPoIB) Architecture (RFC 4392)
- http://ietf.org/rfc/rfc4392.txt
+ http://ietf.org/rfc/rfc4392.txt
+
IP over InfiniBand: Connected Mode (RFC 4755)
http://ietf.org/rfc/rfc4755.txt
diff --git a/Documentation/infiniband/opa_vnic.txt b/Documentation/infiniband/opa_vnic.rst
index 282e17be798a..2f888d9ffec0 100644
--- a/Documentation/infiniband/opa_vnic.txt
+++ b/Documentation/infiniband/opa_vnic.rst
@@ -1,3 +1,7 @@
+=================================================================
+Intel Omni-Path (OPA) Virtual Network Interface Controller (VNIC)
+=================================================================
+
Intel Omni-Path (OPA) Virtual Network Interface Controller (VNIC) feature
supports Ethernet functionality over Omni-Path fabric by encapsulating
the Ethernet packets between HFI nodes.
@@ -17,70 +21,72 @@ an independent Ethernet network. The configuration is performed by an
Ethernet Manager (EM) which is part of the trusted Fabric Manager (FM)
application. HFI nodes can have multiple VNICs each connected to a
different virtual Ethernet switch. The below diagram presents a case
-of two virtual Ethernet switches with two HFI nodes.
-
- +-------------------+
- | Subnet/ |
- | Ethernet |
- | Manager |
- +-------------------+
- / /
- / /
- / /
- / /
-+-----------------------------+ +------------------------------+
-| Virtual Ethernet Switch | | Virtual Ethernet Switch |
-| +---------+ +---------+ | | +---------+ +---------+ |
-| | VPORT | | VPORT | | | | VPORT | | VPORT | |
-+--+---------+----+---------+-+ +-+---------+----+---------+---+
- | \ / |
- | \ / |
- | \/ |
- | / \ |
- | / \ |
- +-----------+------------+ +-----------+------------+
- | VNIC | VNIC | | VNIC | VNIC |
- +-----------+------------+ +-----------+------------+
- | HFI | | HFI |
- +------------------------+ +------------------------+
+of two virtual Ethernet switches with two HFI nodes::
+
+ +-------------------+
+ | Subnet/ |
+ | Ethernet |
+ | Manager |
+ +-------------------+
+ / /
+ / /
+ / /
+ / /
+ +-----------------------------+ +------------------------------+
+ | Virtual Ethernet Switch | | Virtual Ethernet Switch |
+ | +---------+ +---------+ | | +---------+ +---------+ |
+ | | VPORT | | VPORT | | | | VPORT | | VPORT | |
+ +--+---------+----+---------+-+ +-+---------+----+---------+---+
+ | \ / |
+ | \ / |
+ | \/ |
+ | / \ |
+ | / \ |
+ +-----------+------------+ +-----------+------------+
+ | VNIC | VNIC | | VNIC | VNIC |
+ +-----------+------------+ +-----------+------------+
+ | HFI | | HFI |
+ +------------------------+ +------------------------+
The Omni-Path encapsulated Ethernet packet format is as described below.
-Bits Field
-------------------------------------
+==================== ================================
+Bits Field
+==================== ================================
Quad Word 0:
-0-19 SLID (lower 20 bits)
-20-30 Length (in Quad Words)
-31 BECN bit
-32-51 DLID (lower 20 bits)
-52-56 SC (Service Class)
-57-59 RC (Routing Control)
-60 FECN bit
-61-62 L2 (=10, 16B format)
-63 LT (=1, Link Transfer Head Flit)
+0-19 SLID (lower 20 bits)
+20-30 Length (in Quad Words)
+31 BECN bit
+32-51 DLID (lower 20 bits)
+52-56 SC (Service Class)
+57-59 RC (Routing Control)
+60 FECN bit
+61-62 L2 (=10, 16B format)
+63 LT (=1, Link Transfer Head Flit)
Quad Word 1:
-0-7 L4 type (=0x78 ETHERNET)
-8-11 SLID[23:20]
-12-15 DLID[23:20]
-16-31 PKEY
-32-47 Entropy
-48-63 Reserved
+0-7 L4 type (=0x78 ETHERNET)
+8-11 SLID[23:20]
+12-15 DLID[23:20]
+16-31 PKEY
+32-47 Entropy
+48-63 Reserved
Quad Word 2:
-0-15 Reserved
-16-31 L4 header
-32-63 Ethernet Packet
+0-15 Reserved
+16-31 L4 header
+32-63 Ethernet Packet
Quad Words 3 to N-1:
-0-63 Ethernet packet (pad extended)
+0-63 Ethernet packet (pad extended)
Quad Word N (last):
-0-23 Ethernet packet (pad extended)
-24-55 ICRC
-56-61 Tail
-62-63 LT (=01, Link Transfer Tail Flit)
+0-23 Ethernet packet (pad extended)
+24-55 ICRC
+56-61 Tail
+62-63 LT (=01, Link Transfer Tail Flit)
+==================== ================================
Ethernet packet is padded on the transmit side to ensure that the VNIC OPA
packet is quad word aligned. The 'Tail' field contains the number of bytes
@@ -123,7 +129,7 @@ operation. It also handles the encapsulation of Ethernet packets with an
Omni-Path header in the transmit path. For each VNIC interface, the
information required for encapsulation is configured by the EM via VEMA MAD
interface. It also passes any control information to the HW dependent driver
-by invoking the RDMA netdev control operations.
+by invoking the RDMA netdev control operations::
+-------------------+ +----------------------+
| | | Linux |
diff --git a/Documentation/infiniband/sysfs.txt b/Documentation/infiniband/sysfs.rst
index 9fab5062f84b..f0abd6fa48f4 100644
--- a/Documentation/infiniband/sysfs.txt
+++ b/Documentation/infiniband/sysfs.rst
@@ -1,4 +1,6 @@
-SYSFS FILES
+===========
+Sysfs files
+===========
The sysfs interface has moved to
Documentation/ABI/stable/sysfs-class-infiniband.
diff --git a/Documentation/infiniband/tag_matching.txt b/Documentation/infiniband/tag_matching.rst
index d2a3bf819226..ef56ea585f92 100644
--- a/Documentation/infiniband/tag_matching.txt
+++ b/Documentation/infiniband/tag_matching.rst
@@ -1,12 +1,16 @@
+==================
Tag matching logic
+==================
The MPI standard defines a set of rules, known as tag-matching, for matching
source send operations to destination receives. The following parameters must
match the following source and destination parameters:
+
* Communicator
* User tag - wild card may be specified by the receiver
* Source rank – wild car may be specified by the receiver
* Destination rank – wild
+
The ordering rules require that when more than one pair of send and receive
message envelopes may match, the pair that includes the earliest posted-send
and the earliest posted-receive is the pair that must be used to satisfy the
@@ -35,6 +39,7 @@ the header to initiate an RDMA READ operation directly to the matching buffer.
A fin message needs to be received in order for the buffer to be reused.
Tag matching implementation
+===========================
There are two types of matching objects used, the posted receive list and the
unexpected message list. The application posts receive buffers through calls
diff --git a/Documentation/infiniband/user_mad.txt b/Documentation/infiniband/user_mad.rst
index 7aca13a54a3a..d88abfc0e370 100644
--- a/Documentation/infiniband/user_mad.txt
+++ b/Documentation/infiniband/user_mad.rst
@@ -1,6 +1,9 @@
-USERSPACE MAD ACCESS
+====================
+Userspace MAD access
+====================
Device files
+============
Each port of each InfiniBand device has a "umad" device and an
"issm" device attached. For example, a two-port HCA will have two
@@ -8,12 +11,13 @@ Device files
device of each type (for switch port 0).
Creating MAD agents
+===================
A MAD agent can be created by filling in a struct ib_user_mad_reg_req
and then calling the IB_USER_MAD_REGISTER_AGENT ioctl on a file
descriptor for the appropriate device file. If the registration
request succeeds, a 32-bit id will be returned in the structure.
- For example:
+ For example::
struct ib_user_mad_reg_req req = { /* ... */ };
ret = ioctl(fd, IB_USER_MAD_REGISTER_AGENT, (char *) &req);
@@ -26,12 +30,14 @@ Creating MAD agents
ioctl. Also, all agents registered through a file descriptor will
be unregistered when the descriptor is closed.
- 2014 -- a new registration ioctl is now provided which allows additional
+ 2014
+ a new registration ioctl is now provided which allows additional
fields to be provided during registration.
Users of this registration call are implicitly setting the use of
pkey_index (see below).
Receiving MADs
+==============
MADs are received using read(). The receive side now supports
RMPP. The buffer passed to read() must be at least one
@@ -41,7 +47,8 @@ Receiving MADs
MAD (RMPP), the errno is set to ENOSPC and the length of the
buffer needed is set in mad.length.
- Example for normal MAD (non RMPP) reads:
+ Example for normal MAD (non RMPP) reads::
+
struct ib_user_mad *mad;
mad = malloc(sizeof *mad + 256);
ret = read(fd, mad, sizeof *mad + 256);
@@ -50,7 +57,8 @@ Receiving MADs
free(mad);
}
- Example for RMPP reads:
+ Example for RMPP reads::
+
struct ib_user_mad *mad;
mad = malloc(sizeof *mad + 256);
ret = read(fd, mad, sizeof *mad + 256);
@@ -76,11 +84,12 @@ Receiving MADs
poll()/select() may be used to wait until a MAD can be read.
Sending MADs
+============
MADs are sent using write(). The agent ID for sending should be
filled into the id field of the MAD, the destination LID should be
filled into the lid field, and so on. The send side does support
- RMPP so arbitrary length MAD can be sent. For example:
+ RMPP so arbitrary length MAD can be sent. For example::
struct ib_user_mad *mad;
@@ -97,6 +106,7 @@ Sending MADs
perror("write");
Transaction IDs
+===============
Users of the umad devices can use the lower 32 bits of the
transaction ID field (that is, the least significant half of the
@@ -105,6 +115,7 @@ Transaction IDs
the kernel and will be overwritten before a MAD is sent.
P_Key Index Handling
+====================
The old ib_umad interface did not allow setting the P_Key index for
MADs that are sent and did not provide a way for obtaining the P_Key
@@ -119,6 +130,7 @@ P_Key Index Handling
default, and the IB_USER_MAD_ENABLE_PKEY ioctl will be removed.
Setting IsSM Capability Bit
+===========================
To set the IsSM capability bit for a port, simply open the
corresponding issm device file. If the IsSM bit is already set,
@@ -129,25 +141,26 @@ Setting IsSM Capability Bit
the issm file.
/dev files
+==========
To create the appropriate character device files automatically with
- udev, a rule like
+ udev, a rule like::
KERNEL=="umad*", NAME="infiniband/%k"
KERNEL=="issm*", NAME="infiniband/%k"
- can be used. This will create device nodes named
+ can be used. This will create device nodes named::
/dev/infiniband/umad0
/dev/infiniband/issm0
for the first port, and so on. The InfiniBand device and port
- associated with these devices can be determined from the files
+ associated with these devices can be determined from the files::
/sys/class/infiniband_mad/umad0/ibdev
/sys/class/infiniband_mad/umad0/port
- and
+ and::
/sys/class/infiniband_mad/issm0/ibdev
/sys/class/infiniband_mad/issm0/port
diff --git a/Documentation/infiniband/user_verbs.txt b/Documentation/infiniband/user_verbs.rst
index 47ebf2f80b2b..8ddc4b1cfef2 100644
--- a/Documentation/infiniband/user_verbs.txt
+++ b/Documentation/infiniband/user_verbs.rst
@@ -1,4 +1,6 @@
-USERSPACE VERBS ACCESS
+======================
+Userspace verbs access
+======================
The ib_uverbs module, built by enabling CONFIG_INFINIBAND_USER_VERBS,
enables direct userspace access to IB hardware via "verbs," as
@@ -13,6 +15,7 @@ USERSPACE VERBS ACCESS
libmthca userspace driver be installed.
User-kernel communication
+=========================
Userspace communicates with the kernel for slow path, resource
management operations via the /dev/infiniband/uverbsN character
@@ -28,6 +31,7 @@ User-kernel communication
system call.
Resource management
+===================
Since creation and destruction of all IB resources is done by
commands passed through a file descriptor, the kernel can keep track
@@ -41,6 +45,7 @@ Resource management
prevent one process from touching another process's resources.
Memory pinning
+==============
Direct userspace I/O requires that memory regions that are potential
I/O targets be kept resident at the same physical address. The
@@ -54,13 +59,14 @@ Memory pinning
number of pages pinned by a process.
/dev files
+==========
To create the appropriate character device files automatically with
- udev, a rule like
+ udev, a rule like::
KERNEL=="uverbs*", NAME="infiniband/%k"
- can be used. This will create device nodes named
+ can be used. This will create device nodes named::
/dev/infiniband/uverbs0
diff --git a/Documentation/input/conf.py b/Documentation/input/conf.py
deleted file mode 100644
index d2352fdc92ed..000000000000
--- a/Documentation/input/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "The Linux input driver subsystem"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'linux-input.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/input/input.rst b/Documentation/input/input.rst
index 47f86a4bf16c..0eb61e67a7b7 100644
--- a/Documentation/input/input.rst
+++ b/Documentation/input/input.rst
@@ -188,7 +188,7 @@ LCDs and many other purposes.
The monitor and speaker controls should be easy to add to the hid/input
interface, but for the UPSs and LCDs it doesn't make much sense. For this,
-the hiddev interface was designed. See Documentation/hid/hiddev.txt
+the hiddev interface was designed. See Documentation/hid/hiddev.rst
for more information about it.
The usage of the usbhid module is very simple, it takes no parameters,
diff --git a/Documentation/input/multi-touch-protocol.rst b/Documentation/input/multi-touch-protocol.rst
index 6be70342e709..307fe22d9668 100644
--- a/Documentation/input/multi-touch-protocol.rst
+++ b/Documentation/input/multi-touch-protocol.rst
@@ -23,7 +23,7 @@ devices capable of tracking identifiable contacts (type B), the protocol
describes how to send updates for individual contacts via event slots.
.. note::
- MT potocol type A is obsolete, all kernel drivers have been
+ MT protocol type A is obsolete, all kernel drivers have been
converted to use type B.
Protocol Usage
diff --git a/Documentation/ioctl/botching-up-ioctls.txt b/Documentation/ioctl/botching-up-ioctls.rst
index 883fb034bd04..ac697fef3545 100644
--- a/Documentation/ioctl/botching-up-ioctls.txt
+++ b/Documentation/ioctl/botching-up-ioctls.rst
@@ -1,3 +1,4 @@
+=================================
(How to avoid) Botching up ioctls
=================================
diff --git a/Documentation/ioctl/cdrom.rst b/Documentation/ioctl/cdrom.rst
new file mode 100644
index 000000000000..3b4c0506de46
--- /dev/null
+++ b/Documentation/ioctl/cdrom.rst
@@ -0,0 +1,1233 @@
+============================
+Summary of CDROM ioctl calls
+============================
+
+- Edward A. Falk <efalk@google.com>
+
+November, 2004
+
+This document attempts to describe the ioctl(2) calls supported by
+the CDROM layer. These are by-and-large implemented (as of Linux 2.6)
+in drivers/cdrom/cdrom.c and drivers/block/scsi_ioctl.c
+
+ioctl values are listed in <linux/cdrom.h>. As of this writing, they
+are as follows:
+
+ ====================== ===============================================
+ CDROMPAUSE Pause Audio Operation
+ CDROMRESUME Resume paused Audio Operation
+ CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
+ CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
+ CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
+ CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
+ CDROMSTOP Stop the cdrom drive
+ CDROMSTART Start the cdrom drive
+ CDROMEJECT Ejects the cdrom media
+ CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
+ CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
+ CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
+ (struct cdrom_read)
+ CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
+ (struct cdrom_read)
+ CDROMREADAUDIO (struct cdrom_read_audio)
+ CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
+ CDROMMULTISESSION Obtain the start-of-last-session
+ address of multi session disks
+ (struct cdrom_multisession)
+ CDROM_GET_MCN Obtain the "Universal Product Code"
+ if available (struct cdrom_mcn)
+ CDROM_GET_UPC Deprecated, use CDROM_GET_MCN instead.
+ CDROMRESET hard-reset the drive
+ CDROMVOLREAD Get the drive's volume setting
+ (struct cdrom_volctrl)
+ CDROMREADRAW read data in raw mode (2352 Bytes)
+ (struct cdrom_read)
+ CDROMREADCOOKED read data in cooked mode
+ CDROMSEEK seek msf address
+ CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
+ CDROMREADALL read all 2646 bytes
+ CDROMGETSPINDOWN return 4-bit spindown value
+ CDROMSETSPINDOWN set 4-bit spindown value
+ CDROMCLOSETRAY pendant of CDROMEJECT
+ CDROM_SET_OPTIONS Set behavior options
+ CDROM_CLEAR_OPTIONS Clear behavior options
+ CDROM_SELECT_SPEED Set the CD-ROM speed
+ CDROM_SELECT_DISC Select disc (for juke-boxes)
+ CDROM_MEDIA_CHANGED Check is media changed
+ CDROM_DRIVE_STATUS Get tray position, etc.
+ CDROM_DISC_STATUS Get disc type, etc.
+ CDROM_CHANGER_NSLOTS Get number of slots
+ CDROM_LOCKDOOR lock or unlock door
+ CDROM_DEBUG Turn debug messages on/off
+ CDROM_GET_CAPABILITY get capabilities
+ CDROMAUDIOBUFSIZ set the audio buffer size
+ DVD_READ_STRUCT Read structure
+ DVD_WRITE_STRUCT Write structure
+ DVD_AUTH Authentication
+ CDROM_SEND_PACKET send a packet to the drive
+ CDROM_NEXT_WRITABLE get next writable block
+ CDROM_LAST_WRITTEN get last block written on disc
+ ====================== ===============================================
+
+
+The information that follows was determined from reading kernel source
+code. It is likely that some corrections will be made over time.
+
+------------------------------------------------------------------------------
+
+General:
+
+ Unless otherwise specified, all ioctl calls return 0 on success
+ and -1 with errno set to an appropriate value on error. (Some
+ ioctls return non-negative data values.)
+
+ Unless otherwise specified, all ioctl calls return -1 and set
+ errno to EFAULT on a failed attempt to copy data to or from user
+ address space.
+
+ Individual drivers may return error codes not listed here.
+
+ Unless otherwise specified, all data structures and constants
+ are defined in <linux/cdrom.h>
+
+------------------------------------------------------------------------------
+
+
+CDROMPAUSE
+ Pause Audio Operation
+
+
+ usage::
+
+ ioctl(fd, CDROMPAUSE, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+CDROMRESUME
+ Resume paused Audio Operation
+
+
+ usage::
+
+ ioctl(fd, CDROMRESUME, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+CDROMPLAYMSF
+ Play Audio MSF
+
+ (struct cdrom_msf)
+
+
+ usage::
+
+ struct cdrom_msf msf;
+
+ ioctl(fd, CDROMPLAYMSF, &msf);
+
+ inputs:
+ cdrom_msf structure, describing a segment of music to play
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - MSF stands for minutes-seconds-frames
+ - LBA stands for logical block address
+ - Segment is described as start and end times, where each time
+ is described as minutes:seconds:frames.
+ A frame is 1/75 of a second.
+
+
+CDROMPLAYTRKIND
+ Play Audio Track/index
+
+ (struct cdrom_ti)
+
+
+ usage::
+
+ struct cdrom_ti ti;
+
+ ioctl(fd, CDROMPLAYTRKIND, &ti);
+
+ inputs:
+ cdrom_ti structure, describing a segment of music to play
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - Segment is described as start and end times, where each time
+ is described as a track and an index.
+
+
+
+CDROMREADTOCHDR
+ Read TOC header
+
+ (struct cdrom_tochdr)
+
+
+ usage::
+
+ cdrom_tochdr header;
+
+ ioctl(fd, CDROMREADTOCHDR, &header);
+
+ inputs:
+ cdrom_tochdr structure
+
+
+ outputs:
+ cdrom_tochdr structure
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+
+CDROMREADTOCENTRY
+ Read TOC entry
+
+ (struct cdrom_tocentry)
+
+
+ usage::
+
+ struct cdrom_tocentry entry;
+
+ ioctl(fd, CDROMREADTOCENTRY, &entry);
+
+ inputs:
+ cdrom_tocentry structure
+
+
+ outputs:
+ cdrom_tocentry structure
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+ - EINVAL entry.cdte_format not CDROM_MSF or CDROM_LBA
+ - EINVAL requested track out of bounds
+ - EIO I/O error reading TOC
+
+ notes:
+ - TOC stands for Table Of Contents
+ - MSF stands for minutes-seconds-frames
+ - LBA stands for logical block address
+
+
+
+CDROMSTOP
+ Stop the cdrom drive
+
+
+ usage::
+
+ ioctl(fd, CDROMSTOP, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - Exact interpretation of this ioctl depends on the device,
+ but most seem to spin the drive down.
+
+
+CDROMSTART
+ Start the cdrom drive
+
+
+ usage::
+
+ ioctl(fd, CDROMSTART, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - Exact interpretation of this ioctl depends on the device,
+ but most seem to spin the drive up and/or close the tray.
+ Other devices ignore the ioctl completely.
+
+
+CDROMEJECT
+ - Ejects the cdrom media
+
+
+ usage::
+
+ ioctl(fd, CDROMEJECT, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error returns:
+ - ENOSYS cd drive not capable of ejecting
+ - EBUSY other processes are accessing drive, or door is locked
+
+ notes:
+ - See CDROM_LOCKDOOR, below.
+
+
+
+
+CDROMCLOSETRAY
+ pendant of CDROMEJECT
+
+
+ usage::
+
+ ioctl(fd, CDROMCLOSETRAY, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error returns:
+ - ENOSYS cd drive not capable of closing the tray
+ - EBUSY other processes are accessing drive, or door is locked
+
+ notes:
+ - See CDROM_LOCKDOOR, below.
+
+
+
+
+CDROMVOLCTRL
+ Control output volume (struct cdrom_volctrl)
+
+
+ usage::
+
+ struct cdrom_volctrl volume;
+
+ ioctl(fd, CDROMVOLCTRL, &volume);
+
+ inputs:
+ cdrom_volctrl structure containing volumes for up to 4
+ channels.
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+
+CDROMVOLREAD
+ Get the drive's volume setting
+
+ (struct cdrom_volctrl)
+
+
+ usage::
+
+ struct cdrom_volctrl volume;
+
+ ioctl(fd, CDROMVOLREAD, &volume);
+
+ inputs:
+ none
+
+
+ outputs:
+ The current volume settings.
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+
+CDROMSUBCHNL
+ Read subchannel data
+
+ (struct cdrom_subchnl)
+
+
+ usage::
+
+ struct cdrom_subchnl q;
+
+ ioctl(fd, CDROMSUBCHNL, &q);
+
+ inputs:
+ cdrom_subchnl structure
+
+
+ outputs:
+ cdrom_subchnl structure
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+ - EINVAL format not CDROM_MSF or CDROM_LBA
+
+ notes:
+ - Format is converted to CDROM_MSF or CDROM_LBA
+ as per user request on return
+
+
+
+CDROMREADRAW
+ read data in raw mode (2352 Bytes)
+
+ (struct cdrom_read)
+
+ usage::
+
+ union {
+
+ struct cdrom_msf msf; /* input */
+ char buffer[CD_FRAMESIZE_RAW]; /* return */
+ } arg;
+ ioctl(fd, CDROMREADRAW, &arg);
+
+ inputs:
+ cdrom_msf structure indicating an address to read.
+
+ Only the start values are significant.
+
+ outputs:
+ Data written to address provided by user.
+
+
+ error return:
+ - EINVAL address less than 0, or msf less than 0:2:0
+ - ENOMEM out of memory
+
+ notes:
+ - As of 2.6.8.1, comments in <linux/cdrom.h> indicate that this
+ ioctl accepts a cdrom_read structure, but actual source code
+ reads a cdrom_msf structure and writes a buffer of data to
+ the same address.
+
+ - MSF values are converted to LBA values via this formula::
+
+ lba = (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_MSF_OFFSET;
+
+
+
+
+CDROMREADMODE1
+ Read CDROM mode 1 data (2048 Bytes)
+
+ (struct cdrom_read)
+
+ notes:
+ Identical to CDROMREADRAW except that block size is
+ CD_FRAMESIZE (2048) bytes
+
+
+
+CDROMREADMODE2
+ Read CDROM mode 2 data (2336 Bytes)
+
+ (struct cdrom_read)
+
+ notes:
+ Identical to CDROMREADRAW except that block size is
+ CD_FRAMESIZE_RAW0 (2336) bytes
+
+
+
+CDROMREADAUDIO
+ (struct cdrom_read_audio)
+
+ usage::
+
+ struct cdrom_read_audio ra;
+
+ ioctl(fd, CDROMREADAUDIO, &ra);
+
+ inputs:
+ cdrom_read_audio structure containing read start
+ point and length
+
+ outputs:
+ audio data, returned to buffer indicated by ra
+
+
+ error return:
+ - EINVAL format not CDROM_MSF or CDROM_LBA
+ - EINVAL nframes not in range [1 75]
+ - ENXIO drive has no queue (probably means invalid fd)
+ - ENOMEM out of memory
+
+
+CDROMEJECT_SW
+ enable(1)/disable(0) auto-ejecting
+
+
+ usage::
+
+ int val;
+
+ ioctl(fd, CDROMEJECT_SW, val);
+
+ inputs:
+ Flag specifying auto-eject flag.
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS Drive is not capable of ejecting.
+ - EBUSY Door is locked
+
+
+
+
+CDROMMULTISESSION
+ Obtain the start-of-last-session address of multi session disks
+
+ (struct cdrom_multisession)
+
+ usage::
+
+ struct cdrom_multisession ms_info;
+
+ ioctl(fd, CDROMMULTISESSION, &ms_info);
+
+ inputs:
+ cdrom_multisession structure containing desired
+
+ format.
+
+ outputs:
+ cdrom_multisession structure is filled with last_session
+ information.
+
+ error return:
+ - EINVAL format not CDROM_MSF or CDROM_LBA
+
+
+CDROM_GET_MCN
+ Obtain the "Universal Product Code"
+ if available
+
+ (struct cdrom_mcn)
+
+
+ usage::
+
+ struct cdrom_mcn mcn;
+
+ ioctl(fd, CDROM_GET_MCN, &mcn);
+
+ inputs:
+ none
+
+
+ outputs:
+ Universal Product Code
+
+
+ error return:
+ - ENOSYS Drive is not capable of reading MCN data.
+
+ notes:
+ - Source code comments state::
+
+ The following function is implemented, although very few
+ audio discs give Universal Product Code information, which
+ should just be the Medium Catalog Number on the box. Note,
+ that the way the code is written on the CD is /not/ uniform
+ across all discs!
+
+
+
+
+CDROM_GET_UPC
+ CDROM_GET_MCN (deprecated)
+
+
+ Not implemented, as of 2.6.8.1
+
+
+
+CDROMRESET
+ hard-reset the drive
+
+
+ usage::
+
+ ioctl(fd, CDROMRESET, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - ENOSYS Drive is not capable of resetting.
+
+
+
+
+CDROMREADCOOKED
+ read data in cooked mode
+
+
+ usage::
+
+ u8 buffer[CD_FRAMESIZE]
+
+ ioctl(fd, CDROMREADCOOKED, buffer);
+
+ inputs:
+ none
+
+
+ outputs:
+ 2048 bytes of data, "cooked" mode.
+
+
+ notes:
+ Not implemented on all drives.
+
+
+
+
+
+CDROMREADALL
+ read all 2646 bytes
+
+
+ Same as CDROMREADCOOKED, but reads 2646 bytes.
+
+
+
+CDROMSEEK
+ seek msf address
+
+
+ usage::
+
+ struct cdrom_msf msf;
+
+ ioctl(fd, CDROMSEEK, &msf);
+
+ inputs:
+ MSF address to seek to.
+
+
+ outputs:
+ none
+
+
+
+
+CDROMPLAYBLK
+ scsi-cd only
+
+ (struct cdrom_blk)
+
+
+ usage::
+
+ struct cdrom_blk blk;
+
+ ioctl(fd, CDROMPLAYBLK, &blk);
+
+ inputs:
+ Region to play
+
+
+ outputs:
+ none
+
+
+
+
+CDROMGETSPINDOWN
+ usage::
+
+ char spindown;
+
+ ioctl(fd, CDROMGETSPINDOWN, &spindown);
+
+ inputs:
+ none
+
+
+ outputs:
+ The value of the current 4-bit spindown value.
+
+
+
+
+
+CDROMSETSPINDOWN
+ usage::
+
+ char spindown
+
+ ioctl(fd, CDROMSETSPINDOWN, &spindown);
+
+ inputs:
+ 4-bit value used to control spindown (TODO: more detail here)
+
+
+ outputs:
+ none
+
+
+
+
+
+
+CDROM_SET_OPTIONS
+ Set behavior options
+
+
+ usage::
+
+ int options;
+
+ ioctl(fd, CDROM_SET_OPTIONS, options);
+
+ inputs:
+ New values for drive options. The logical 'or' of:
+
+ ============== ==================================
+ CDO_AUTO_CLOSE close tray on first open(2)
+ CDO_AUTO_EJECT open tray on last release
+ CDO_USE_FFLAGS use O_NONBLOCK information on open
+ CDO_LOCK lock tray on open files
+ CDO_CHECK_TYPE check type on open for data
+ ============== ==================================
+
+ outputs:
+ Returns the resulting options settings in the
+ ioctl return value. Returns -1 on error.
+
+ error return:
+ - ENOSYS selected option(s) not supported by drive.
+
+
+
+
+CDROM_CLEAR_OPTIONS
+ Clear behavior options
+
+
+ Same as CDROM_SET_OPTIONS, except that selected options are
+ turned off.
+
+
+
+CDROM_SELECT_SPEED
+ Set the CD-ROM speed
+
+
+ usage::
+
+ int speed;
+
+ ioctl(fd, CDROM_SELECT_SPEED, speed);
+
+ inputs:
+ New drive speed.
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS speed selection not supported by drive.
+
+
+
+CDROM_SELECT_DISC
+ Select disc (for juke-boxes)
+
+
+ usage::
+
+ int disk;
+
+ ioctl(fd, CDROM_SELECT_DISC, disk);
+
+ inputs:
+ Disk to load into drive.
+
+
+ outputs:
+ none
+
+
+ error return:
+ - EINVAL Disk number beyond capacity of drive
+
+
+
+CDROM_MEDIA_CHANGED
+ Check is media changed
+
+
+ usage::
+
+ int slot;
+
+ ioctl(fd, CDROM_MEDIA_CHANGED, slot);
+
+ inputs:
+ Slot number to be tested, always zero except for jukeboxes.
+
+ May also be special values CDSL_NONE or CDSL_CURRENT
+
+ outputs:
+ Ioctl return value is 0 or 1 depending on whether the media
+
+ has been changed, or -1 on error.
+
+ error returns:
+ - ENOSYS Drive can't detect media change
+ - EINVAL Slot number beyond capacity of drive
+ - ENOMEM Out of memory
+
+
+
+CDROM_DRIVE_STATUS
+ Get tray position, etc.
+
+
+ usage::
+
+ int slot;
+
+ ioctl(fd, CDROM_DRIVE_STATUS, slot);
+
+ inputs:
+ Slot number to be tested, always zero except for jukeboxes.
+
+ May also be special values CDSL_NONE or CDSL_CURRENT
+
+ outputs:
+ Ioctl return value will be one of the following values
+
+ from <linux/cdrom.h>:
+
+ =================== ==========================
+ CDS_NO_INFO Information not available.
+ CDS_NO_DISC
+ CDS_TRAY_OPEN
+ CDS_DRIVE_NOT_READY
+ CDS_DISC_OK
+ -1 error
+ =================== ==========================
+
+ error returns:
+ - ENOSYS Drive can't detect drive status
+ - EINVAL Slot number beyond capacity of drive
+ - ENOMEM Out of memory
+
+
+
+
+CDROM_DISC_STATUS
+ Get disc type, etc.
+
+
+ usage::
+
+ ioctl(fd, CDROM_DISC_STATUS, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ Ioctl return value will be one of the following values
+
+ from <linux/cdrom.h>:
+
+ - CDS_NO_INFO
+ - CDS_AUDIO
+ - CDS_MIXED
+ - CDS_XA_2_2
+ - CDS_XA_2_1
+ - CDS_DATA_1
+
+ error returns:
+ none at present
+
+ notes:
+ - Source code comments state::
+
+
+ Ok, this is where problems start. The current interface for
+ the CDROM_DISC_STATUS ioctl is flawed. It makes the false
+ assumption that CDs are all CDS_DATA_1 or all CDS_AUDIO, etc.
+ Unfortunately, while this is often the case, it is also
+ very common for CDs to have some tracks with data, and some
+ tracks with audio. Just because I feel like it, I declare
+ the following to be the best way to cope. If the CD has
+ ANY data tracks on it, it will be returned as a data CD.
+ If it has any XA tracks, I will return it as that. Now I
+ could simplify this interface by combining these returns with
+ the above, but this more clearly demonstrates the problem
+ with the current interface. Too bad this wasn't designed
+ to use bitmasks... -Erik
+
+ Well, now we have the option CDS_MIXED: a mixed-type CD.
+ User level programmers might feel the ioctl is not very
+ useful.
+ ---david
+
+
+
+
+CDROM_CHANGER_NSLOTS
+ Get number of slots
+
+
+ usage::
+
+ ioctl(fd, CDROM_CHANGER_NSLOTS, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ The ioctl return value will be the number of slots in a
+ CD changer. Typically 1 for non-multi-disk devices.
+
+ error returns:
+ none
+
+
+
+CDROM_LOCKDOOR
+ lock or unlock door
+
+
+ usage::
+
+ int lock;
+
+ ioctl(fd, CDROM_LOCKDOOR, lock);
+
+ inputs:
+ Door lock flag, 1=lock, 0=unlock
+
+
+ outputs:
+ none
+
+
+ error returns:
+ - EDRIVE_CANT_DO_THIS
+
+ Door lock function not supported.
+ - EBUSY
+
+ Attempt to unlock when multiple users
+ have the drive open and not CAP_SYS_ADMIN
+
+ notes:
+ As of 2.6.8.1, the lock flag is a global lock, meaning that
+ all CD drives will be locked or unlocked together. This is
+ probably a bug.
+
+ The EDRIVE_CANT_DO_THIS value is defined in <linux/cdrom.h>
+ and is currently (2.6.8.1) the same as EOPNOTSUPP
+
+
+
+CDROM_DEBUG
+ Turn debug messages on/off
+
+
+ usage::
+
+ int debug;
+
+ ioctl(fd, CDROM_DEBUG, debug);
+
+ inputs:
+ Cdrom debug flag, 0=disable, 1=enable
+
+
+ outputs:
+ The ioctl return value will be the new debug flag.
+
+
+ error return:
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+
+
+
+CDROM_GET_CAPABILITY
+ get capabilities
+
+
+ usage::
+
+ ioctl(fd, CDROM_GET_CAPABILITY, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ The ioctl return value is the current device capability
+ flags. See CDC_CLOSE_TRAY, CDC_OPEN_TRAY, etc.
+
+
+
+CDROMAUDIOBUFSIZ
+ set the audio buffer size
+
+
+ usage::
+
+ int arg;
+
+ ioctl(fd, CDROMAUDIOBUFSIZ, val);
+
+ inputs:
+ New audio buffer size
+
+
+ outputs:
+ The ioctl return value is the new audio buffer size, or -1
+ on error.
+
+ error return:
+ - ENOSYS Not supported by this driver.
+
+ notes:
+ Not supported by all drivers.
+
+
+
+
+DVD_READ_STRUCT Read structure
+
+ usage::
+
+ dvd_struct s;
+
+ ioctl(fd, DVD_READ_STRUCT, &s);
+
+ inputs:
+ dvd_struct structure, containing:
+
+ =================== ==========================================
+ type specifies the information desired, one of
+ DVD_STRUCT_PHYSICAL, DVD_STRUCT_COPYRIGHT,
+ DVD_STRUCT_DISCKEY, DVD_STRUCT_BCA,
+ DVD_STRUCT_MANUFACT
+ physical.layer_num desired layer, indexed from 0
+ copyright.layer_num desired layer, indexed from 0
+ disckey.agid
+ =================== ==========================================
+
+ outputs:
+ dvd_struct structure, containing:
+
+ =================== ================================
+ physical for type == DVD_STRUCT_PHYSICAL
+ copyright for type == DVD_STRUCT_COPYRIGHT
+ disckey.value for type == DVD_STRUCT_DISCKEY
+ bca.{len,value} for type == DVD_STRUCT_BCA
+ manufact.{len,valu} for type == DVD_STRUCT_MANUFACT
+ =================== ================================
+
+ error returns:
+ - EINVAL physical.layer_num exceeds number of layers
+ - EIO Received invalid response from drive
+
+
+
+DVD_WRITE_STRUCT Write structure
+
+ Not implemented, as of 2.6.8.1
+
+
+
+DVD_AUTH Authentication
+
+ usage::
+
+ dvd_authinfo ai;
+
+ ioctl(fd, DVD_AUTH, &ai);
+
+ inputs:
+ dvd_authinfo structure. See <linux/cdrom.h>
+
+
+ outputs:
+ dvd_authinfo structure.
+
+
+ error return:
+ - ENOTTY ai.type not recognized.
+
+
+
+CDROM_SEND_PACKET
+ send a packet to the drive
+
+
+ usage::
+
+ struct cdrom_generic_command cgc;
+
+ ioctl(fd, CDROM_SEND_PACKET, &cgc);
+
+ inputs:
+ cdrom_generic_command structure containing the packet to send.
+
+
+ outputs:
+ none
+
+ cdrom_generic_command structure containing results.
+
+ error return:
+ - EIO
+
+ command failed.
+ - EPERM
+
+ Operation not permitted, either because a
+ write command was attempted on a drive which
+ is opened read-only, or because the command
+ requires CAP_SYS_RAWIO
+ - EINVAL
+
+ cgc.data_direction not set
+
+
+
+CDROM_NEXT_WRITABLE
+ get next writable block
+
+
+ usage::
+
+ long next;
+
+ ioctl(fd, CDROM_NEXT_WRITABLE, &next);
+
+ inputs:
+ none
+
+
+ outputs:
+ The next writable block.
+
+
+ notes:
+ If the device does not support this ioctl directly, the
+
+ ioctl will return CDROM_LAST_WRITTEN + 7.
+
+
+
+CDROM_LAST_WRITTEN
+ get last block written on disc
+
+
+ usage::
+
+ long last;
+
+ ioctl(fd, CDROM_LAST_WRITTEN, &last);
+
+ inputs:
+ none
+
+
+ outputs:
+ The last block written on disc
+
+
+ notes:
+ If the device does not support this ioctl directly, the
+ result is derived from the disc's table of contents. If the
+ table of contents can't be read, this ioctl returns an
+ error.
diff --git a/Documentation/ioctl/cdrom.txt b/Documentation/ioctl/cdrom.txt
deleted file mode 100644
index a4d62a9d6771..000000000000
--- a/Documentation/ioctl/cdrom.txt
+++ /dev/null
@@ -1,967 +0,0 @@
- Summary of CDROM ioctl calls.
- ============================
-
- Edward A. Falk <efalk@google.com>
-
- November, 2004
-
-This document attempts to describe the ioctl(2) calls supported by
-the CDROM layer. These are by-and-large implemented (as of Linux 2.6)
-in drivers/cdrom/cdrom.c and drivers/block/scsi_ioctl.c
-
-ioctl values are listed in <linux/cdrom.h>. As of this writing, they
-are as follows:
-
- CDROMPAUSE Pause Audio Operation
- CDROMRESUME Resume paused Audio Operation
- CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
- CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
- CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
- CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
- CDROMSTOP Stop the cdrom drive
- CDROMSTART Start the cdrom drive
- CDROMEJECT Ejects the cdrom media
- CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
- CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
- CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
- (struct cdrom_read)
- CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
- (struct cdrom_read)
- CDROMREADAUDIO (struct cdrom_read_audio)
- CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
- CDROMMULTISESSION Obtain the start-of-last-session
- address of multi session disks
- (struct cdrom_multisession)
- CDROM_GET_MCN Obtain the "Universal Product Code"
- if available (struct cdrom_mcn)
- CDROM_GET_UPC Deprecated, use CDROM_GET_MCN instead.
- CDROMRESET hard-reset the drive
- CDROMVOLREAD Get the drive's volume setting
- (struct cdrom_volctrl)
- CDROMREADRAW read data in raw mode (2352 Bytes)
- (struct cdrom_read)
- CDROMREADCOOKED read data in cooked mode
- CDROMSEEK seek msf address
- CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
- CDROMREADALL read all 2646 bytes
- CDROMGETSPINDOWN return 4-bit spindown value
- CDROMSETSPINDOWN set 4-bit spindown value
- CDROMCLOSETRAY pendant of CDROMEJECT
- CDROM_SET_OPTIONS Set behavior options
- CDROM_CLEAR_OPTIONS Clear behavior options
- CDROM_SELECT_SPEED Set the CD-ROM speed
- CDROM_SELECT_DISC Select disc (for juke-boxes)
- CDROM_MEDIA_CHANGED Check is media changed
- CDROM_DRIVE_STATUS Get tray position, etc.
- CDROM_DISC_STATUS Get disc type, etc.
- CDROM_CHANGER_NSLOTS Get number of slots
- CDROM_LOCKDOOR lock or unlock door
- CDROM_DEBUG Turn debug messages on/off
- CDROM_GET_CAPABILITY get capabilities
- CDROMAUDIOBUFSIZ set the audio buffer size
- DVD_READ_STRUCT Read structure
- DVD_WRITE_STRUCT Write structure
- DVD_AUTH Authentication
- CDROM_SEND_PACKET send a packet to the drive
- CDROM_NEXT_WRITABLE get next writable block
- CDROM_LAST_WRITTEN get last block written on disc
-
-
-The information that follows was determined from reading kernel source
-code. It is likely that some corrections will be made over time.
-
-
-
-
-
-
-
-General:
-
- Unless otherwise specified, all ioctl calls return 0 on success
- and -1 with errno set to an appropriate value on error. (Some
- ioctls return non-negative data values.)
-
- Unless otherwise specified, all ioctl calls return -1 and set
- errno to EFAULT on a failed attempt to copy data to or from user
- address space.
-
- Individual drivers may return error codes not listed here.
-
- Unless otherwise specified, all data structures and constants
- are defined in <linux/cdrom.h>
-
-
-
-
-CDROMPAUSE Pause Audio Operation
-
- usage:
-
- ioctl(fd, CDROMPAUSE, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-CDROMRESUME Resume paused Audio Operation
-
- usage:
-
- ioctl(fd, CDROMRESUME, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
-
- usage:
-
- struct cdrom_msf msf;
- ioctl(fd, CDROMPLAYMSF, &msf);
-
- inputs:
- cdrom_msf structure, describing a segment of music to play
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- MSF stands for minutes-seconds-frames
- LBA stands for logical block address
-
- Segment is described as start and end times, where each time
- is described as minutes:seconds:frames. A frame is 1/75 of
- a second.
-
-
-CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
-
- usage:
-
- struct cdrom_ti ti;
- ioctl(fd, CDROMPLAYTRKIND, &ti);
-
- inputs:
- cdrom_ti structure, describing a segment of music to play
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- Segment is described as start and end times, where each time
- is described as a track and an index.
-
-
-
-CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
-
- usage:
-
- cdrom_tochdr header;
- ioctl(fd, CDROMREADTOCHDR, &header);
-
- inputs:
- cdrom_tochdr structure
-
- outputs:
- cdrom_tochdr structure
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-
-CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
-
- usage:
-
- struct cdrom_tocentry entry;
- ioctl(fd, CDROMREADTOCENTRY, &entry);
-
- inputs:
- cdrom_tocentry structure
-
- outputs:
- cdrom_tocentry structure
-
- error return:
- ENOSYS cd drive not audio-capable.
- EINVAL entry.cdte_format not CDROM_MSF or CDROM_LBA
- EINVAL requested track out of bounds
- EIO I/O error reading TOC
-
- notes:
- TOC stands for Table Of Contents
- MSF stands for minutes-seconds-frames
- LBA stands for logical block address
-
-
-
-CDROMSTOP Stop the cdrom drive
-
- usage:
-
- ioctl(fd, CDROMSTOP, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- Exact interpretation of this ioctl depends on the device,
- but most seem to spin the drive down.
-
-
-CDROMSTART Start the cdrom drive
-
- usage:
-
- ioctl(fd, CDROMSTART, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- Exact interpretation of this ioctl depends on the device,
- but most seem to spin the drive up and/or close the tray.
- Other devices ignore the ioctl completely.
-
-
-CDROMEJECT Ejects the cdrom media
-
- usage:
-
- ioctl(fd, CDROMEJECT, 0);
-
- inputs: none
-
- outputs: none
-
- error returns:
- ENOSYS cd drive not capable of ejecting
- EBUSY other processes are accessing drive, or door is locked
-
- notes:
- See CDROM_LOCKDOOR, below.
-
-
-
-CDROMCLOSETRAY pendant of CDROMEJECT
-
- usage:
-
- ioctl(fd, CDROMCLOSETRAY, 0);
-
- inputs: none
-
- outputs: none
-
- error returns:
- ENOSYS cd drive not capable of closing the tray
- EBUSY other processes are accessing drive, or door is locked
-
- notes:
- See CDROM_LOCKDOOR, below.
-
-
-
-CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
-
- usage:
-
- struct cdrom_volctrl volume;
- ioctl(fd, CDROMVOLCTRL, &volume);
-
- inputs:
- cdrom_volctrl structure containing volumes for up to 4
- channels.
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-
-CDROMVOLREAD Get the drive's volume setting
- (struct cdrom_volctrl)
-
- usage:
-
- struct cdrom_volctrl volume;
- ioctl(fd, CDROMVOLREAD, &volume);
-
- inputs: none
-
- outputs:
- The current volume settings.
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-
-CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
-
- usage:
-
- struct cdrom_subchnl q;
- ioctl(fd, CDROMSUBCHNL, &q);
-
- inputs:
- cdrom_subchnl structure
-
- outputs:
- cdrom_subchnl structure
-
- error return:
- ENOSYS cd drive not audio-capable.
- EINVAL format not CDROM_MSF or CDROM_LBA
-
- notes:
- Format is converted to CDROM_MSF or CDROM_LBA
- as per user request on return
-
-
-
-CDROMREADRAW read data in raw mode (2352 Bytes)
- (struct cdrom_read)
-
- usage:
-
- union {
- struct cdrom_msf msf; /* input */
- char buffer[CD_FRAMESIZE_RAW]; /* return */
- } arg;
- ioctl(fd, CDROMREADRAW, &arg);
-
- inputs:
- cdrom_msf structure indicating an address to read.
- Only the start values are significant.
-
- outputs:
- Data written to address provided by user.
-
- error return:
- EINVAL address less than 0, or msf less than 0:2:0
- ENOMEM out of memory
-
- notes:
- As of 2.6.8.1, comments in <linux/cdrom.h> indicate that this
- ioctl accepts a cdrom_read structure, but actual source code
- reads a cdrom_msf structure and writes a buffer of data to
- the same address.
-
- MSF values are converted to LBA values via this formula:
-
- lba = (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_MSF_OFFSET;
-
-
-
-
-CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
- (struct cdrom_read)
-
- notes:
- Identical to CDROMREADRAW except that block size is
- CD_FRAMESIZE (2048) bytes
-
-
-
-CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
- (struct cdrom_read)
-
- notes:
- Identical to CDROMREADRAW except that block size is
- CD_FRAMESIZE_RAW0 (2336) bytes
-
-
-
-CDROMREADAUDIO (struct cdrom_read_audio)
-
- usage:
-
- struct cdrom_read_audio ra;
- ioctl(fd, CDROMREADAUDIO, &ra);
-
- inputs:
- cdrom_read_audio structure containing read start
- point and length
-
- outputs:
- audio data, returned to buffer indicated by ra
-
- error return:
- EINVAL format not CDROM_MSF or CDROM_LBA
- EINVAL nframes not in range [1 75]
- ENXIO drive has no queue (probably means invalid fd)
- ENOMEM out of memory
-
-
-CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
-
- usage:
-
- int val;
- ioctl(fd, CDROMEJECT_SW, val);
-
- inputs:
- Flag specifying auto-eject flag.
-
- outputs: none
-
- error return:
- ENOSYS Drive is not capable of ejecting.
- EBUSY Door is locked
-
-
-
-
-CDROMMULTISESSION Obtain the start-of-last-session
- address of multi session disks
- (struct cdrom_multisession)
- usage:
-
- struct cdrom_multisession ms_info;
- ioctl(fd, CDROMMULTISESSION, &ms_info);
-
- inputs:
- cdrom_multisession structure containing desired
- format.
-
- outputs:
- cdrom_multisession structure is filled with last_session
- information.
-
- error return:
- EINVAL format not CDROM_MSF or CDROM_LBA
-
-
-CDROM_GET_MCN Obtain the "Universal Product Code"
- if available (struct cdrom_mcn)
-
- usage:
-
- struct cdrom_mcn mcn;
- ioctl(fd, CDROM_GET_MCN, &mcn);
-
- inputs: none
-
- outputs:
- Universal Product Code
-
- error return:
- ENOSYS Drive is not capable of reading MCN data.
-
- notes:
- Source code comments state:
-
- The following function is implemented, although very few
- audio discs give Universal Product Code information, which
- should just be the Medium Catalog Number on the box. Note,
- that the way the code is written on the CD is /not/ uniform
- across all discs!
-
-
-
-
-CDROM_GET_UPC CDROM_GET_MCN (deprecated)
-
- Not implemented, as of 2.6.8.1
-
-
-
-CDROMRESET hard-reset the drive
-
- usage:
-
- ioctl(fd, CDROMRESET, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- EACCES Access denied: requires CAP_SYS_ADMIN
- ENOSYS Drive is not capable of resetting.
-
-
-
-
-CDROMREADCOOKED read data in cooked mode
-
- usage:
-
- u8 buffer[CD_FRAMESIZE]
- ioctl(fd, CDROMREADCOOKED, buffer);
-
- inputs: none
-
- outputs:
- 2048 bytes of data, "cooked" mode.
-
- notes:
- Not implemented on all drives.
-
-
-
-
-CDROMREADALL read all 2646 bytes
-
- Same as CDROMREADCOOKED, but reads 2646 bytes.
-
-
-
-CDROMSEEK seek msf address
-
- usage:
-
- struct cdrom_msf msf;
- ioctl(fd, CDROMSEEK, &msf);
-
- inputs:
- MSF address to seek to.
-
- outputs: none
-
-
-
-CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
-
- usage:
-
- struct cdrom_blk blk;
- ioctl(fd, CDROMPLAYBLK, &blk);
-
- inputs:
- Region to play
-
- outputs: none
-
-
-
-CDROMGETSPINDOWN
-
- usage:
-
- char spindown;
- ioctl(fd, CDROMGETSPINDOWN, &spindown);
-
- inputs: none
-
- outputs:
- The value of the current 4-bit spindown value.
-
-
-
-
-CDROMSETSPINDOWN
-
- usage:
-
- char spindown
- ioctl(fd, CDROMSETSPINDOWN, &spindown);
-
- inputs:
- 4-bit value used to control spindown (TODO: more detail here)
-
- outputs: none
-
-
-
-
-
-CDROM_SET_OPTIONS Set behavior options
-
- usage:
-
- int options;
- ioctl(fd, CDROM_SET_OPTIONS, options);
-
- inputs:
- New values for drive options. The logical 'or' of:
- CDO_AUTO_CLOSE close tray on first open(2)
- CDO_AUTO_EJECT open tray on last release
- CDO_USE_FFLAGS use O_NONBLOCK information on open
- CDO_LOCK lock tray on open files
- CDO_CHECK_TYPE check type on open for data
-
- outputs:
- Returns the resulting options settings in the
- ioctl return value. Returns -1 on error.
-
- error return:
- ENOSYS selected option(s) not supported by drive.
-
-
-
-
-CDROM_CLEAR_OPTIONS Clear behavior options
-
- Same as CDROM_SET_OPTIONS, except that selected options are
- turned off.
-
-
-
-CDROM_SELECT_SPEED Set the CD-ROM speed
-
- usage:
-
- int speed;
- ioctl(fd, CDROM_SELECT_SPEED, speed);
-
- inputs:
- New drive speed.
-
- outputs: none
-
- error return:
- ENOSYS speed selection not supported by drive.
-
-
-
-CDROM_SELECT_DISC Select disc (for juke-boxes)
-
- usage:
-
- int disk;
- ioctl(fd, CDROM_SELECT_DISC, disk);
-
- inputs:
- Disk to load into drive.
-
- outputs: none
-
- error return:
- EINVAL Disk number beyond capacity of drive
-
-
-
-CDROM_MEDIA_CHANGED Check is media changed
-
- usage:
-
- int slot;
- ioctl(fd, CDROM_MEDIA_CHANGED, slot);
-
- inputs:
- Slot number to be tested, always zero except for jukeboxes.
- May also be special values CDSL_NONE or CDSL_CURRENT
-
- outputs:
- Ioctl return value is 0 or 1 depending on whether the media
- has been changed, or -1 on error.
-
- error returns:
- ENOSYS Drive can't detect media change
- EINVAL Slot number beyond capacity of drive
- ENOMEM Out of memory
-
-
-
-CDROM_DRIVE_STATUS Get tray position, etc.
-
- usage:
-
- int slot;
- ioctl(fd, CDROM_DRIVE_STATUS, slot);
-
- inputs:
- Slot number to be tested, always zero except for jukeboxes.
- May also be special values CDSL_NONE or CDSL_CURRENT
-
- outputs:
- Ioctl return value will be one of the following values
- from <linux/cdrom.h>:
-
- CDS_NO_INFO Information not available.
- CDS_NO_DISC
- CDS_TRAY_OPEN
- CDS_DRIVE_NOT_READY
- CDS_DISC_OK
- -1 error
-
- error returns:
- ENOSYS Drive can't detect drive status
- EINVAL Slot number beyond capacity of drive
- ENOMEM Out of memory
-
-
-
-
-CDROM_DISC_STATUS Get disc type, etc.
-
- usage:
-
- ioctl(fd, CDROM_DISC_STATUS, 0);
-
- inputs: none
-
- outputs:
- Ioctl return value will be one of the following values
- from <linux/cdrom.h>:
- CDS_NO_INFO
- CDS_AUDIO
- CDS_MIXED
- CDS_XA_2_2
- CDS_XA_2_1
- CDS_DATA_1
-
- error returns: none at present
-
- notes:
- Source code comments state:
-
- Ok, this is where problems start. The current interface for
- the CDROM_DISC_STATUS ioctl is flawed. It makes the false
- assumption that CDs are all CDS_DATA_1 or all CDS_AUDIO, etc.
- Unfortunately, while this is often the case, it is also
- very common for CDs to have some tracks with data, and some
- tracks with audio. Just because I feel like it, I declare
- the following to be the best way to cope. If the CD has
- ANY data tracks on it, it will be returned as a data CD.
- If it has any XA tracks, I will return it as that. Now I
- could simplify this interface by combining these returns with
- the above, but this more clearly demonstrates the problem
- with the current interface. Too bad this wasn't designed
- to use bitmasks... -Erik
-
- Well, now we have the option CDS_MIXED: a mixed-type CD.
- User level programmers might feel the ioctl is not very
- useful.
- ---david
-
-
-
-
-CDROM_CHANGER_NSLOTS Get number of slots
-
- usage:
-
- ioctl(fd, CDROM_CHANGER_NSLOTS, 0);
-
- inputs: none
-
- outputs:
- The ioctl return value will be the number of slots in a
- CD changer. Typically 1 for non-multi-disk devices.
-
- error returns: none
-
-
-
-CDROM_LOCKDOOR lock or unlock door
-
- usage:
-
- int lock;
- ioctl(fd, CDROM_LOCKDOOR, lock);
-
- inputs:
- Door lock flag, 1=lock, 0=unlock
-
- outputs: none
-
- error returns:
- EDRIVE_CANT_DO_THIS Door lock function not supported.
- EBUSY Attempt to unlock when multiple users
- have the drive open and not CAP_SYS_ADMIN
-
- notes:
- As of 2.6.8.1, the lock flag is a global lock, meaning that
- all CD drives will be locked or unlocked together. This is
- probably a bug.
-
- The EDRIVE_CANT_DO_THIS value is defined in <linux/cdrom.h>
- and is currently (2.6.8.1) the same as EOPNOTSUPP
-
-
-
-CDROM_DEBUG Turn debug messages on/off
-
- usage:
-
- int debug;
- ioctl(fd, CDROM_DEBUG, debug);
-
- inputs:
- Cdrom debug flag, 0=disable, 1=enable
-
- outputs:
- The ioctl return value will be the new debug flag.
-
- error return:
- EACCES Access denied: requires CAP_SYS_ADMIN
-
-
-
-CDROM_GET_CAPABILITY get capabilities
-
- usage:
-
- ioctl(fd, CDROM_GET_CAPABILITY, 0);
-
- inputs: none
-
- outputs:
- The ioctl return value is the current device capability
- flags. See CDC_CLOSE_TRAY, CDC_OPEN_TRAY, etc.
-
-
-
-CDROMAUDIOBUFSIZ set the audio buffer size
-
- usage:
-
- int arg;
- ioctl(fd, CDROMAUDIOBUFSIZ, val);
-
- inputs:
- New audio buffer size
-
- outputs:
- The ioctl return value is the new audio buffer size, or -1
- on error.
-
- error return:
- ENOSYS Not supported by this driver.
-
- notes:
- Not supported by all drivers.
-
-
-
-DVD_READ_STRUCT Read structure
-
- usage:
-
- dvd_struct s;
- ioctl(fd, DVD_READ_STRUCT, &s);
-
- inputs:
- dvd_struct structure, containing:
- type specifies the information desired, one of
- DVD_STRUCT_PHYSICAL, DVD_STRUCT_COPYRIGHT,
- DVD_STRUCT_DISCKEY, DVD_STRUCT_BCA,
- DVD_STRUCT_MANUFACT
- physical.layer_num desired layer, indexed from 0
- copyright.layer_num desired layer, indexed from 0
- disckey.agid
-
- outputs:
- dvd_struct structure, containing:
- physical for type == DVD_STRUCT_PHYSICAL
- copyright for type == DVD_STRUCT_COPYRIGHT
- disckey.value for type == DVD_STRUCT_DISCKEY
- bca.{len,value} for type == DVD_STRUCT_BCA
- manufact.{len,valu} for type == DVD_STRUCT_MANUFACT
-
- error returns:
- EINVAL physical.layer_num exceeds number of layers
- EIO Received invalid response from drive
-
-
-
-DVD_WRITE_STRUCT Write structure
-
- Not implemented, as of 2.6.8.1
-
-
-
-DVD_AUTH Authentication
-
- usage:
-
- dvd_authinfo ai;
- ioctl(fd, DVD_AUTH, &ai);
-
- inputs:
- dvd_authinfo structure. See <linux/cdrom.h>
-
- outputs:
- dvd_authinfo structure.
-
- error return:
- ENOTTY ai.type not recognized.
-
-
-
-CDROM_SEND_PACKET send a packet to the drive
-
- usage:
-
- struct cdrom_generic_command cgc;
- ioctl(fd, CDROM_SEND_PACKET, &cgc);
-
- inputs:
- cdrom_generic_command structure containing the packet to send.
-
- outputs: none
- cdrom_generic_command structure containing results.
-
- error return:
- EIO command failed.
- EPERM Operation not permitted, either because a
- write command was attempted on a drive which
- is opened read-only, or because the command
- requires CAP_SYS_RAWIO
- EINVAL cgc.data_direction not set
-
-
-
-CDROM_NEXT_WRITABLE get next writable block
-
- usage:
-
- long next;
- ioctl(fd, CDROM_NEXT_WRITABLE, &next);
-
- inputs: none
-
- outputs:
- The next writable block.
-
- notes:
- If the device does not support this ioctl directly, the
- ioctl will return CDROM_LAST_WRITTEN + 7.
-
-
-
-CDROM_LAST_WRITTEN get last block written on disc
-
- usage:
-
- long last;
- ioctl(fd, CDROM_LAST_WRITTEN, &last);
-
- inputs: none
-
- outputs:
- The last block written on disc
-
- notes:
- If the device does not support this ioctl directly, the
- result is derived from the disc's table of contents. If the
- table of contents can't be read, this ioctl returns an
- error.
diff --git a/Documentation/ioctl/hdio.txt b/Documentation/ioctl/hdio.rst
index 18eb98c44ffe..e822e3dff176 100644
--- a/Documentation/ioctl/hdio.txt
+++ b/Documentation/ioctl/hdio.rst
@@ -1,9 +1,10 @@
- Summary of HDIO_ ioctl calls.
- ============================
+==============================
+Summary of `HDIO_` ioctl calls
+==============================
- Edward A. Falk <efalk@google.com>
+- Edward A. Falk <efalk@google.com>
- November, 2004
+November, 2004
This document attempts to describe the ioctl(2) calls supported by
the HD/IDE layer. These are by-and-large implemented (as of Linux 2.6)
@@ -14,6 +15,7 @@ are as follows:
ioctls that pass argument pointers to user space:
+ ======================= =======================================
HDIO_GETGEO get device geometry
HDIO_GET_UNMASKINTR get current unmask setting
HDIO_GET_MULTCOUNT get current IDE blockmode setting
@@ -36,9 +38,11 @@ are as follows:
HDIO_DRIVE_TASK execute task and special drive command
HDIO_DRIVE_CMD execute a special drive command
HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK
+ ======================= =======================================
ioctls that pass non-pointer values:
+ ======================= =======================================
HDIO_SET_MULTCOUNT change IDE blockmode
HDIO_SET_UNMASKINTR permit other irqs during I/O
HDIO_SET_KEEPSETTINGS keep ioctl settings on reset
@@ -57,16 +61,13 @@ are as follows:
HDIO_SET_IDE_SCSI Set scsi emulation mode on/off
HDIO_SET_SCSI_IDE not implemented yet
+ ======================= =======================================
The information that follows was determined from reading kernel source
code. It is likely that some corrections will be made over time.
-
-
-
-
-
+------------------------------------------------------------------------------
General:
@@ -80,459 +81,610 @@ General:
Unless otherwise specified, all data structures and constants
are defined in <linux/hdreg.h>
+------------------------------------------------------------------------------
+HDIO_GETGEO
+ get device geometry
-HDIO_GETGEO get device geometry
- usage:
+ usage::
struct hd_geometry geom;
+
ioctl(fd, HDIO_GETGEO, &geom);
- inputs: none
+ inputs:
+ none
+
+
outputs:
+ hd_geometry structure containing:
- hd_geometry structure containing:
+ ========= ==================================
heads number of heads
sectors number of sectors/track
cylinders number of cylinders, mod 65536
start starting sector of this partition.
+ ========= ==================================
error returns:
- EINVAL if the device is not a disk drive or floppy drive,
- or if the user passes a null pointer
+ - EINVAL
+
+ if the device is not a disk drive or floppy drive,
+ or if the user passes a null pointer
notes:
+ Not particularly useful with modern disk drives, whose geometry
+ is a polite fiction anyway. Modern drives are addressed
+ purely by sector number nowadays (lba addressing), and the
+ drive geometry is an abstraction which is actually subject
+ to change. Currently (as of Nov 2004), the geometry values
+ are the "bios" values -- presumably the values the drive had
+ when Linux first booted.
- Not particularly useful with modern disk drives, whose geometry
- is a polite fiction anyway. Modern drives are addressed
- purely by sector number nowadays (lba addressing), and the
- drive geometry is an abstraction which is actually subject
- to change. Currently (as of Nov 2004), the geometry values
- are the "bios" values -- presumably the values the drive had
- when Linux first booted.
+ In addition, the cylinders field of the hd_geometry is an
+ unsigned short, meaning that on most architectures, this
+ ioctl will not return a meaningful value on drives with more
+ than 65535 tracks.
- In addition, the cylinders field of the hd_geometry is an
- unsigned short, meaning that on most architectures, this
- ioctl will not return a meaningful value on drives with more
- than 65535 tracks.
+ The start field is unsigned long, meaning that it will not
+ contain a meaningful value for disks over 219 Gb in size.
- The start field is unsigned long, meaning that it will not
- contain a meaningful value for disks over 219 Gb in size.
+HDIO_GET_UNMASKINTR
+ get current unmask setting
-HDIO_GET_UNMASKINTR get current unmask setting
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_UNMASKINTR, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the drive's current unmask setting
+ The value of the drive's current unmask setting
-HDIO_SET_UNMASKINTR permit other irqs during I/O
- usage:
+
+HDIO_SET_UNMASKINTR
+ permit other irqs during I/O
+
+
+ usage::
unsigned long val;
+
ioctl(fd, HDIO_SET_UNMASKINTR, val);
inputs:
- New value for unmask flag
+ New value for unmask flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
+
+HDIO_GET_MULTCOUNT
+ get current IDE blockmode setting
-HDIO_GET_MULTCOUNT get current IDE blockmode setting
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_MULTCOUNT, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current IDE block mode setting. This
- controls how many sectors the drive will transfer per
- interrupt.
+ The value of the current IDE block mode setting. This
+ controls how many sectors the drive will transfer per
+ interrupt.
+
+HDIO_SET_MULTCOUNT
+ change IDE blockmode
-HDIO_SET_MULTCOUNT change IDE blockmode
- usage:
+ usage::
int val;
+
ioctl(fd, HDIO_SET_MULTCOUNT, val);
inputs:
- New value for IDE block mode setting. This controls how many
- sectors the drive will transfer per interrupt.
+ New value for IDE block mode setting. This controls how many
+ sectors the drive will transfer per interrupt.
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range supported by disk.
- EBUSY Controller busy or blockmode already set.
- EIO Drive did not accept new block mode.
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range supported by disk.
+ - EBUSY Controller busy or blockmode already set.
+ - EIO Drive did not accept new block mode.
notes:
-
- Source code comments read:
+ Source code comments read::
This is tightly woven into the driver->do_special cannot
touch. DON'T do it again until a total personality rewrite
is committed.
If blockmode has already been set, this ioctl will fail with
- EBUSY
+ -EBUSY
-HDIO_GET_QDMA get use-qdma flag
+HDIO_GET_QDMA
+ get use-qdma flag
+
Not implemented, as of 2.6.8.1
-HDIO_SET_XFER set transfer rate via proc
+HDIO_SET_XFER
+ set transfer rate via proc
+
Not implemented, as of 2.6.8.1
-HDIO_OBSOLETE_IDENTITY OBSOLETE, DO NOT USE
+HDIO_OBSOLETE_IDENTITY
+ OBSOLETE, DO NOT USE
+
Same as HDIO_GET_IDENTITY (see below), except that it only
returns the first 142 bytes of drive identity information.
-HDIO_GET_IDENTITY get IDE identification info
+HDIO_GET_IDENTITY
+ get IDE identification info
+
- usage:
+ usage::
unsigned char identity[512];
+
ioctl(fd, HDIO_GET_IDENTITY, identity);
- inputs: none
+ inputs:
+ none
- outputs:
- ATA drive identity information. For full description, see
- the IDENTIFY DEVICE and IDENTIFY PACKET DEVICE commands in
- the ATA specification.
+
+ outputs:
+ ATA drive identity information. For full description, see
+ the IDENTIFY DEVICE and IDENTIFY PACKET DEVICE commands in
+ the ATA specification.
error returns:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- ENOMSG IDENTIFY DEVICE information not available
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - ENOMSG IDENTIFY DEVICE information not available
notes:
+ Returns information that was obtained when the drive was
+ probed. Some of this information is subject to change, and
+ this ioctl does not re-probe the drive to update the
+ information.
- Returns information that was obtained when the drive was
- probed. Some of this information is subject to change, and
- this ioctl does not re-probe the drive to update the
- information.
+ This information is also available from /proc/ide/hdX/identify
- This information is also available from /proc/ide/hdX/identify
+HDIO_GET_KEEPSETTINGS
+ get keep-settings-on-reset flag
-HDIO_GET_KEEPSETTINGS get keep-settings-on-reset flag
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_KEEPSETTINGS, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current "keep settings" flag
+ The value of the current "keep settings" flag
+
+
notes:
+ When set, indicates that kernel should restore settings
+ after a drive reset.
- When set, indicates that kernel should restore settings
- after a drive reset.
+HDIO_SET_KEEPSETTINGS
+ keep ioctl settings on reset
-HDIO_SET_KEEPSETTINGS keep ioctl settings on reset
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_SET_KEEPSETTINGS, val);
inputs:
- New value for keep_settings flag
+ New value for keep_settings flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
+
+HDIO_GET_32BIT
+ get current io_32bit setting
-HDIO_GET_32BIT get current io_32bit setting
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_32BIT, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current io_32bit setting
+ The value of the current io_32bit setting
+
+
notes:
+ 0=16-bit, 1=32-bit, 2,3 = 32bit+sync
+
- 0=16-bit, 1=32-bit, 2,3 = 32bit+sync
-HDIO_GET_NOWERR get ignore-write-error flag
+HDIO_GET_NOWERR
+ get ignore-write-error flag
- usage:
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_NOWERR, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current ignore-write-error flag
+ The value of the current ignore-write-error flag
-HDIO_GET_DMA get use-dma flag
- usage:
+
+HDIO_GET_DMA
+ get use-dma flag
+
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_DMA, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current use-dma flag
+ The value of the current use-dma flag
-HDIO_GET_NICE get nice flags
- usage:
+
+HDIO_GET_NICE
+ get nice flags
+
+
+ usage::
long nice;
+
ioctl(fd, HDIO_GET_NICE, &nice);
- inputs: none
+ inputs:
+ none
+
+
outputs:
+ The drive's "nice" values.
+
- The drive's "nice" values.
notes:
+ Per-drive flags which determine when the system will give more
+ bandwidth to other devices sharing the same IDE bus.
- Per-drive flags which determine when the system will give more
- bandwidth to other devices sharing the same IDE bus.
- See <linux/hdreg.h>, near symbol IDE_NICE_DSC_OVERLAP.
+ See <linux/hdreg.h>, near symbol IDE_NICE_DSC_OVERLAP.
-HDIO_SET_NICE set nice flags
+HDIO_SET_NICE
+ set nice flags
- usage:
+
+ usage::
unsigned long nice;
+
...
ioctl(fd, HDIO_SET_NICE, nice);
inputs:
- bitmask of nice flags.
+ bitmask of nice flags.
+
+
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_ADMIN
- EPERM Flags other than DSC_OVERLAP and NICE_1 set.
- EPERM DSC_OVERLAP specified but not supported by drive
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EPERM Flags other than DSC_OVERLAP and NICE_1 set.
+ - EPERM DSC_OVERLAP specified but not supported by drive
notes:
+ This ioctl sets the DSC_OVERLAP and NICE_1 flags from values
+ provided by the user.
- This ioctl sets the DSC_OVERLAP and NICE_1 flags from values
- provided by the user.
+ Nice flags are listed in <linux/hdreg.h>, starting with
+ IDE_NICE_DSC_OVERLAP. These values represent shifts.
- Nice flags are listed in <linux/hdreg.h>, starting with
- IDE_NICE_DSC_OVERLAP. These values represent shifts.
+HDIO_GET_WCACHE
+ get write cache mode on|off
-HDIO_GET_WCACHE get write cache mode on|off
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_WCACHE, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current write cache mode
+ The value of the current write cache mode
-HDIO_GET_ACOUSTIC get acoustic value
- usage:
+
+HDIO_GET_ACOUSTIC
+ get acoustic value
+
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_ACOUSTIC, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current acoustic settings
+ The value of the current acoustic settings
+
+
notes:
+ See HDIO_SET_ACOUSTIC
+
- See HDIO_SET_ACOUSTIC
HDIO_GET_ADDRESS
+ usage::
- usage:
long val;
+
ioctl(fd, HDIO_GET_ADDRESS, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current addressing mode:
- 0 = 28-bit
- 1 = 48-bit
- 2 = 48-bit doing 28-bit
- 3 = 64-bit
+ The value of the current addressing mode:
+
+ = ===================
+ 0 28-bit
+ 1 48-bit
+ 2 48-bit doing 28-bit
+ 3 64-bit
+ = ===================
-HDIO_GET_BUSSTATE get the bus state of the hwif
+HDIO_GET_BUSSTATE
+ get the bus state of the hwif
- usage:
+
+ usage::
long state;
+
ioctl(fd, HDIO_SCAN_HWIF, &state);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- Current power state of the IDE bus. One of BUSSTATE_OFF,
- BUSSTATE_ON, or BUSSTATE_TRISTATE
+ Current power state of the IDE bus. One of BUSSTATE_OFF,
+ BUSSTATE_ON, or BUSSTATE_TRISTATE
error returns:
- EACCES Access denied: requires CAP_SYS_ADMIN
+ - EACCES Access denied: requires CAP_SYS_ADMIN
-HDIO_SET_BUSSTATE set the bus state of the hwif
+HDIO_SET_BUSSTATE
+ set the bus state of the hwif
- usage:
+
+ usage::
int state;
+
...
ioctl(fd, HDIO_SCAN_HWIF, state);
inputs:
- Desired IDE power state. One of BUSSTATE_OFF, BUSSTATE_ON,
- or BUSSTATE_TRISTATE
+ Desired IDE power state. One of BUSSTATE_OFF, BUSSTATE_ON,
+ or BUSSTATE_TRISTATE
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- EOPNOTSUPP Hardware interface does not support bus power control
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - EOPNOTSUPP Hardware interface does not support bus power control
+
+HDIO_TRISTATE_HWIF
+ execute a channel tristate
-HDIO_TRISTATE_HWIF execute a channel tristate
Not implemented, as of 2.6.8.1. See HDIO_SET_BUSSTATE
-HDIO_DRIVE_RESET execute a device reset
+HDIO_DRIVE_RESET
+ execute a device reset
+
- usage:
+ usage::
int args[3]
+
...
ioctl(fd, HDIO_DRIVE_RESET, args);
- inputs: none
+ inputs:
+ none
+
+
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_ADMIN
- ENXIO No such device: phy dead or ctl_addr == 0
- EIO I/O error: reset timed out or hardware error
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - ENXIO No such device: phy dead or ctl_addr == 0
+ - EIO I/O error: reset timed out or hardware error
notes:
- Execute a reset on the device as soon as the current IO
- operation has completed.
+ - Execute a reset on the device as soon as the current IO
+ operation has completed.
- Executes an ATAPI soft reset if applicable, otherwise
- executes an ATA soft reset on the controller.
+ - Executes an ATAPI soft reset if applicable, otherwise
+ executes an ATA soft reset on the controller.
-HDIO_DRIVE_TASKFILE execute raw taskfile
+HDIO_DRIVE_TASKFILE
+ execute raw taskfile
- Note: If you don't have a copy of the ANSI ATA specification
- handy, you should probably ignore this ioctl.
- Execute an ATA disk command directly by writing the "taskfile"
- registers of the drive. Requires ADMIN and RAWIO access
- privileges.
+ Note:
+ If you don't have a copy of the ANSI ATA specification
+ handy, you should probably ignore this ioctl.
+
+ - Execute an ATA disk command directly by writing the "taskfile"
+ registers of the drive. Requires ADMIN and RAWIO access
+ privileges.
- usage:
+ usage::
struct {
+
ide_task_request_t req_task;
u8 outbuf[OUTPUT_SIZE];
u8 inbuf[INPUT_SIZE];
@@ -548,6 +700,7 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
(See below for details on memory area passed to ioctl.)
+ ============ ===================================================
io_ports[8] values to be written to taskfile registers
hob_ports[8] high-order bytes, for extended commands.
out_flags flags indicating which registers are valid
@@ -557,24 +710,29 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
out_size size of output buffer
outbuf buffer of data to be transmitted to disk
inbuf buffer of data to be received from disk (see [1])
+ ============ ===================================================
outputs:
+ =========== ====================================================
io_ports[] values returned in the taskfile registers
hob_ports[] high-order bytes, for extended commands.
out_flags flags indicating which registers are valid (see [2])
in_flags flags indicating which registers should be returned
outbuf buffer of data to be transmitted to disk (see [1])
inbuf buffer of data to be received from disk
+ =========== ====================================================
error returns:
- EACCES CAP_SYS_ADMIN or CAP_SYS_RAWIO privilege not set.
- ENOMSG Device is not a disk drive.
- ENOMEM Unable to allocate memory for task
- EFAULT req_cmd == TASKFILE_IN_OUT (not implemented as of 2.6.8)
- EPERM req_cmd == TASKFILE_MULTI_OUT and drive
- multi-count not yet set.
- EIO Drive failed the command.
+ - EACCES CAP_SYS_ADMIN or CAP_SYS_RAWIO privilege not set.
+ - ENOMSG Device is not a disk drive.
+ - ENOMEM Unable to allocate memory for task
+ - EFAULT req_cmd == TASKFILE_IN_OUT (not implemented as of 2.6.8)
+ - EPERM
+
+ req_cmd == TASKFILE_MULTI_OUT and drive
+ multi-count not yet set.
+ - EIO Drive failed the command.
notes:
@@ -615,22 +773,25 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
Command is passed to the disk drive via the ide_task_request_t
structure, which contains these fields:
+ ============ ===============================================
io_ports[8] values for the taskfile registers
hob_ports[8] high-order bytes, for extended commands
out_flags flags indicating which entries in the
- io_ports[] and hob_ports[] arrays
+ io_ports[] and hob_ports[] arrays
contain valid values. Type ide_reg_valid_t.
in_flags flags indicating which entries in the
- io_ports[] and hob_ports[] arrays
+ io_ports[] and hob_ports[] arrays
are expected to contain valid values
on return.
data_phase See below
req_cmd Command type, see below
out_size output (user->drive) buffer size, bytes
in_size input (drive->user) buffer size, bytes
+ ============ ===============================================
When out_flags is zero, the following registers are loaded.
+ ============ ===============================================
HOB_FEATURE If the drive supports LBA48
HOB_NSECTOR If the drive supports LBA48
HOB_SECTOR If the drive supports LBA48
@@ -644,9 +805,11 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
SELECT First, masked with 0xE0 if LBA48, 0xEF
otherwise; then, or'ed with the default
value of SELECT.
+ ============ ===============================================
If any bit in out_flags is set, the following registers are loaded.
+ ============ ===============================================
HOB_DATA If out_flags.b.data is set. HOB_DATA will
travel on DD8-DD15 on little endian machines
and on DD0-DD7 on big endian machines.
@@ -664,6 +827,7 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
HCYL If out_flags.b.hcyl is set
SELECT Or'ed with the default value of SELECT and
loaded regardless of out_flags.b.select.
+ ============ ===============================================
Taskfile registers are read back from the drive into
{io|hob}_ports[] after the command completes iff one of the
@@ -674,6 +838,7 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
2. One or more than one bits are set in out_flags.
3. The requested data_phase is TASKFILE_NO_DATA.
+ ============ ===============================================
HOB_DATA If in_flags.b.data is set. It will contain
DD8-DD15 on little endian machines and
DD0-DD7 on big endian machines.
@@ -689,10 +854,12 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
SECTOR
LCYL
HCYL
+ ============ ===============================================
The data_phase field describes the data transfer to be
performed. Value is one of:
+ =================== ========================================
TASKFILE_IN
TASKFILE_MULTI_IN
TASKFILE_OUT
@@ -708,15 +875,18 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
TASKFILE_P_OUT unimplemented
TASKFILE_P_OUT_DMA unimplemented
TASKFILE_P_OUT_DMAQ unimplemented
+ =================== ========================================
The req_cmd field classifies the command type. It may be
one of:
+ ======================== =======================================
IDE_DRIVE_TASK_NO_DATA
IDE_DRIVE_TASK_SET_XFER unimplemented
IDE_DRIVE_TASK_IN
IDE_DRIVE_TASK_OUT unimplemented
IDE_DRIVE_TASK_RAW_WRITE
+ ======================== =======================================
[6] Do not access {in|out}_flags->all except for resetting
all the bits. Always access individual bit fields. ->all
@@ -726,45 +896,57 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
-HDIO_DRIVE_CMD execute a special drive command
+HDIO_DRIVE_CMD
+ execute a special drive command
+
Note: If you don't have a copy of the ANSI ATA specification
handy, you should probably ignore this ioctl.
- usage:
+ usage::
u8 args[4+XFER_SIZE];
+
...
ioctl(fd, HDIO_DRIVE_CMD, args);
inputs:
+ Commands other than WIN_SMART:
- Commands other than WIN_SMART
+ ======= =======
args[0] COMMAND
args[1] NSECTOR
args[2] FEATURE
args[3] NSECTOR
+ ======= =======
+
+ WIN_SMART:
- WIN_SMART
+ ======= =======
args[0] COMMAND
args[1] SECTOR
args[2] FEATURE
args[3] NSECTOR
+ ======= =======
outputs:
+ args[] buffer is filled with register values followed by any
+
- args[] buffer is filled with register values followed by any
data returned by the disk.
+
+ ======== ====================================================
args[0] status
args[1] error
args[2] NSECTOR
args[3] undefined
args[4+] NSECTOR * 512 bytes of data returned by the command.
+ ======== ====================================================
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- ENOMEM Unable to allocate memory for task
- EIO Drive reports error
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - ENOMEM Unable to allocate memory for task
+ - EIO Drive reports error
notes:
@@ -789,20 +971,24 @@ HDIO_DRIVE_CMD execute a special drive command
-HDIO_DRIVE_TASK execute task and special drive command
+HDIO_DRIVE_TASK
+ execute task and special drive command
+
Note: If you don't have a copy of the ANSI ATA specification
handy, you should probably ignore this ioctl.
- usage:
+ usage::
u8 args[7];
+
...
ioctl(fd, HDIO_DRIVE_TASK, args);
inputs:
+ Taskfile register values:
- Taskfile register values:
+ ======= =======
args[0] COMMAND
args[1] FEATURE
args[2] NSECTOR
@@ -810,10 +996,13 @@ HDIO_DRIVE_TASK execute task and special drive command
args[4] LCYL
args[5] HCYL
args[6] SELECT
+ ======= =======
outputs:
+ Taskfile register values:
+
- Taskfile register values:
+ ======= =======
args[0] status
args[1] error
args[2] NSECTOR
@@ -821,12 +1010,13 @@ HDIO_DRIVE_TASK execute task and special drive command
args[4] LCYL
args[5] HCYL
args[6] SELECT
+ ======= =======
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- ENOMEM Unable to allocate memory for task
- ENOMSG Device is not a disk drive.
- EIO Drive failed the command.
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - ENOMEM Unable to allocate memory for task
+ - ENOMSG Device is not a disk drive.
+ - EIO Drive failed the command.
notes:
@@ -836,236 +1026,317 @@ HDIO_DRIVE_TASK execute task and special drive command
-HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK
+HDIO_DRIVE_CMD_AEB
+ HDIO_DRIVE_TASK
+
Not implemented, as of 2.6.8.1
-HDIO_SET_32BIT change io_32bit flags
+HDIO_SET_32BIT
+ change io_32bit flags
+
- usage:
+ usage::
int val;
+
ioctl(fd, HDIO_SET_32BIT, val);
inputs:
- New value for io_32bit flag
+ New value for io_32bit flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 3]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 3]
+ - EBUSY Controller busy
-HDIO_SET_NOWERR change ignore-write-error flag
+HDIO_SET_NOWERR
+ change ignore-write-error flag
- usage:
+
+ usage::
int val;
+
ioctl(fd, HDIO_SET_NOWERR, val);
inputs:
- New value for ignore-write-error flag. Used for ignoring
+ New value for ignore-write-error flag. Used for ignoring
+
+
WRERR_STAT
- outputs: none
+ outputs:
+ none
+
+
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
+
+HDIO_SET_DMA
+ change use-dma flag
-HDIO_SET_DMA change use-dma flag
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_SET_DMA, val);
inputs:
- New value for use-dma flag
+ New value for use-dma flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
+
+HDIO_SET_PIO_MODE
+ reconfig interface to new speed
-HDIO_SET_PIO_MODE reconfig interface to new speed
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_SET_PIO_MODE, val);
inputs:
- New interface speed.
+ New interface speed.
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 255]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 255]
+ - EBUSY Controller busy
+
+HDIO_SCAN_HWIF
+ register and (re)scan interface
-HDIO_SCAN_HWIF register and (re)scan interface
- usage:
+ usage::
int args[3]
+
...
ioctl(fd, HDIO_SCAN_HWIF, args);
inputs:
+
+ ======= =========================
args[0] io address to probe
+
+
args[1] control address to probe
args[2] irq number
+ ======= =========================
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- EIO Probe failed.
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - EIO Probe failed.
notes:
+ This ioctl initializes the addresses and irq for a disk
+ controller, probes for drives, and creates /proc/ide
+ interfaces as appropriate.
- This ioctl initializes the addresses and irq for a disk
- controller, probes for drives, and creates /proc/ide
- interfaces as appropriate.
+HDIO_UNREGISTER_HWIF
+ unregister interface
-HDIO_UNREGISTER_HWIF unregister interface
- usage:
+ usage::
int index;
+
ioctl(fd, HDIO_UNREGISTER_HWIF, index);
inputs:
- index index of hardware interface to unregister
+ index index of hardware interface to unregister
+
+
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
+ - EACCES Access denied: requires CAP_SYS_RAWIO
notes:
+ This ioctl removes a hardware interface from the kernel.
- This ioctl removes a hardware interface from the kernel.
+ Currently (2.6.8) this ioctl silently fails if any drive on
+ the interface is busy.
- Currently (2.6.8) this ioctl silently fails if any drive on
- the interface is busy.
+HDIO_SET_WCACHE
+ change write cache enable-disable
-HDIO_SET_WCACHE change write cache enable-disable
- usage:
+ usage::
int val;
+
ioctl(fd, HDIO_SET_WCACHE, val);
inputs:
- New value for write cache enable
+ New value for write cache enable
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
+
+HDIO_SET_ACOUSTIC
+ change acoustic behavior
-HDIO_SET_ACOUSTIC change acoustic behavior
- usage:
+ usage::
int val;
+
ioctl(fd, HDIO_SET_ACOUSTIC, val);
inputs:
- New value for drive acoustic settings
+ New value for drive acoustic settings
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 254]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 254]
+ - EBUSY Controller busy
-HDIO_SET_QDMA change use-qdma flag
+HDIO_SET_QDMA
+ change use-qdma flag
+
Not implemented, as of 2.6.8.1
-HDIO_SET_ADDRESS change lba addressing modes
+HDIO_SET_ADDRESS
+ change lba addressing modes
+
- usage:
+ usage::
int val;
+
ioctl(fd, HDIO_SET_ADDRESS, val);
inputs:
- New value for addressing mode
- 0 = 28-bit
- 1 = 48-bit
- 2 = 48-bit doing 28-bit
+ New value for addressing mode
+
+ = ===================
+ 0 28-bit
+ 1 48-bit
+ 2 48-bit doing 28-bit
+ = ===================
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 2]
- EBUSY Controller busy
- EIO Drive does not support lba48 mode.
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 2]
+ - EBUSY Controller busy
+ - EIO Drive does not support lba48 mode.
HDIO_SET_IDE_SCSI
+ usage::
- usage:
long val;
+
ioctl(fd, HDIO_SET_IDE_SCSI, val);
inputs:
- New value for scsi emulation mode (?)
+ New value for scsi emulation mode (?)
- outputs: none
- error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ outputs:
+ none
-HDIO_SET_SCSI_IDE
- Not implemented, as of 2.6.8.1
+ error return:
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
+
+HDIO_SET_SCSI_IDE
+ Not implemented, as of 2.6.8.1
diff --git a/Documentation/ioctl/index.rst b/Documentation/ioctl/index.rst
new file mode 100644
index 000000000000..0f0a857f6615
--- /dev/null
+++ b/Documentation/ioctl/index.rst
@@ -0,0 +1,16 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======
+IOCTLs
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ ioctl-number
+
+ botching-up-ioctls
+ ioctl-decoding
+
+ cdrom
+ hdio
diff --git a/Documentation/ioctl/ioctl-decoding.txt b/Documentation/ioctl/ioctl-decoding.rst
index e35efb0cec2e..380d6bb3e3ea 100644
--- a/Documentation/ioctl/ioctl-decoding.txt
+++ b/Documentation/ioctl/ioctl-decoding.rst
@@ -1,10 +1,16 @@
+==============================
+Decoding an IOCTL Magic Number
+==============================
+
To decode a hex IOCTL code:
Most architectures use this generic format, but check
include/ARCH/ioctl.h for specifics, e.g. powerpc
uses 3 bits to encode read/write and 13 bits for size.
- bits meaning
+ ====== ==================================
+ bits meaning
+ ====== ==================================
31-30 00 - no parameters: uses _IO macro
10 - read: _IOR
01 - write: _IOW
@@ -16,9 +22,10 @@ uses 3 bits to encode read/write and 13 bits for size.
unique to each driver
7-0 function #
+ ====== ==================================
So for example 0x82187201 is a read with arg length of 0x218,
-character 'r' function 1. Grepping the source reveals this is:
+character 'r' function 1. Grepping the source reveals this is::
-#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])
+ #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])
diff --git a/Documentation/ioctl/ioctl-number.rst b/Documentation/ioctl/ioctl-number.rst
new file mode 100644
index 000000000000..bef79cd4c6b4
--- /dev/null
+++ b/Documentation/ioctl/ioctl-number.rst
@@ -0,0 +1,362 @@
+=============
+Ioctl Numbers
+=============
+
+19 October 1999
+
+Michael Elizabeth Chastain
+<mec@shout.net>
+
+If you are adding new ioctl's to the kernel, you should use the _IO
+macros defined in <linux/ioctl.h>:
+
+ ====== == ============================================
+ _IO an ioctl with no parameters
+ _IOW an ioctl with write parameters (copy_from_user)
+ _IOR an ioctl with read parameters (copy_to_user)
+ _IOWR an ioctl with both write and read parameters.
+ ====== == ============================================
+
+'Write' and 'read' are from the user's point of view, just like the
+system calls 'write' and 'read'. For example, a SET_FOO ioctl would
+be _IOW, although the kernel would actually read data from user space;
+a GET_FOO ioctl would be _IOR, although the kernel would actually write
+data to user space.
+
+The first argument to _IO, _IOW, _IOR, or _IOWR is an identifying letter
+or number from the table below. Because of the large number of drivers,
+many drivers share a partial letter with other drivers.
+
+If you are writing a driver for a new device and need a letter, pick an
+unused block with enough room for expansion: 32 to 256 ioctl commands.
+You can register the block by patching this file and submitting the
+patch to Linus Torvalds. Or you can e-mail me at <mec@shout.net> and
+I'll register one for you.
+
+The second argument to _IO, _IOW, _IOR, or _IOWR is a sequence number
+to distinguish ioctls from each other. The third argument to _IOW,
+_IOR, or _IOWR is the type of the data going into the kernel or coming
+out of the kernel (e.g. 'int' or 'struct foo'). NOTE! Do NOT use
+sizeof(arg) as the third argument as this results in your ioctl thinking
+it passes an argument of type size_t.
+
+Some devices use their major number as the identifier; this is OK, as
+long as it is unique. Some devices are irregular and don't follow any
+convention at all.
+
+Following this convention is good because:
+
+(1) Keeping the ioctl's globally unique helps error checking:
+ if a program calls an ioctl on the wrong device, it will get an
+ error rather than some unexpected behaviour.
+
+(2) The 'strace' build procedure automatically finds ioctl numbers
+ defined with _IO, _IOW, _IOR, or _IOWR.
+
+(3) 'strace' can decode numbers back into useful names when the
+ numbers are unique.
+
+(4) People looking for ioctls can grep for them more easily when
+ this convention is used to define the ioctl numbers.
+
+(5) When following the convention, the driver code can use generic
+ code to copy the parameters between user and kernel space.
+
+This table lists ioctls visible from user land for Linux/x86. It contains
+most drivers up to 2.6.31, but I know I am missing some. There has been
+no attempt to list non-X86 architectures or ioctls from drivers/staging/.
+
+==== ===== ======================================================= ================================================================
+Code Seq# Include File Comments
+ (hex)
+==== ===== ======================================================= ================================================================
+0x00 00-1F linux/fs.h conflict!
+0x00 00-1F scsi/scsi_ioctl.h conflict!
+0x00 00-1F linux/fb.h conflict!
+0x00 00-1F linux/wavefront.h conflict!
+0x02 all linux/fd.h
+0x03 all linux/hdreg.h
+0x04 D2-DC linux/umsdos_fs.h Dead since 2.6.11, but don't reuse these.
+0x06 all linux/lp.h
+0x09 all linux/raid/md_u.h
+0x10 00-0F drivers/char/s390/vmcp.h
+0x10 10-1F arch/s390/include/uapi/sclp_ctl.h
+0x10 20-2F arch/s390/include/uapi/asm/hypfs.h
+0x12 all linux/fs.h
+ linux/blkpg.h
+0x1b all InfiniBand Subsystem
+ <http://infiniband.sourceforge.net/>
+0x20 all drivers/cdrom/cm206.h
+0x22 all scsi/sg.h
+'!' 00-1F uapi/linux/seccomp.h
+'#' 00-3F IEEE 1394 Subsystem
+ Block for the entire subsystem
+'$' 00-0F linux/perf_counter.h, linux/perf_event.h
+'%' 00-0F include/uapi/linux/stm.h System Trace Module subsystem
+ <mailto:alexander.shishkin@linux.intel.com>
+'&' 00-07 drivers/firewire/nosy-user.h
+'1' 00-1F linux/timepps.h PPS kit from Ulrich Windl
+ <ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/>
+'2' 01-04 linux/i2o.h
+'3' 00-0F drivers/s390/char/raw3270.h conflict!
+'3' 00-1F linux/suspend_ioctls.h, conflict!
+ kernel/power/user.c
+'8' all SNP8023 advanced NIC card
+ <mailto:mcr@solidum.com>
+';' 64-7F linux/vfio.h
+'@' 00-0F linux/radeonfb.h conflict!
+'@' 00-0F drivers/video/aty/aty128fb.c conflict!
+'A' 00-1F linux/apm_bios.h conflict!
+'A' 00-0F linux/agpgart.h, conflict!
+ drivers/char/agp/compat_ioctl.h
+'A' 00-7F sound/asound.h conflict!
+'B' 00-1F linux/cciss_ioctl.h conflict!
+'B' 00-0F include/linux/pmu.h conflict!
+'B' C0-FF advanced bbus <mailto:maassen@uni-freiburg.de>
+'C' all linux/soundcard.h conflict!
+'C' 01-2F linux/capi.h conflict!
+'C' F0-FF drivers/net/wan/cosa.h conflict!
+'D' all arch/s390/include/asm/dasd.h
+'D' 40-5F drivers/scsi/dpt/dtpi_ioctl.h
+'D' 05 drivers/scsi/pmcraid.h
+'E' all linux/input.h conflict!
+'E' 00-0F xen/evtchn.h conflict!
+'F' all linux/fb.h conflict!
+'F' 01-02 drivers/scsi/pmcraid.h conflict!
+'F' 20 drivers/video/fsl-diu-fb.h conflict!
+'F' 20 drivers/video/intelfb/intelfb.h conflict!
+'F' 20 linux/ivtvfb.h conflict!
+'F' 20 linux/matroxfb.h conflict!
+'F' 20 drivers/video/aty/atyfb_base.c conflict!
+'F' 00-0F video/da8xx-fb.h conflict!
+'F' 80-8F linux/arcfb.h conflict!
+'F' DD video/sstfb.h conflict!
+'G' 00-3F drivers/misc/sgi-gru/grulib.h conflict!
+'G' 00-0F linux/gigaset_dev.h conflict!
+'H' 00-7F linux/hiddev.h conflict!
+'H' 00-0F linux/hidraw.h conflict!
+'H' 01 linux/mei.h conflict!
+'H' 02 linux/mei.h conflict!
+'H' 03 linux/mei.h conflict!
+'H' 00-0F sound/asound.h conflict!
+'H' 20-40 sound/asound_fm.h conflict!
+'H' 80-8F sound/sfnt_info.h conflict!
+'H' 10-8F sound/emu10k1.h conflict!
+'H' 10-1F sound/sb16_csp.h conflict!
+'H' 10-1F sound/hda_hwdep.h conflict!
+'H' 40-4F sound/hdspm.h conflict!
+'H' 40-4F sound/hdsp.h conflict!
+'H' 90 sound/usb/usx2y/usb_stream.h
+'H' A0 uapi/linux/usb/cdc-wdm.h
+'H' C0-F0 net/bluetooth/hci.h conflict!
+'H' C0-DF net/bluetooth/hidp/hidp.h conflict!
+'H' C0-DF net/bluetooth/cmtp/cmtp.h conflict!
+'H' C0-DF net/bluetooth/bnep/bnep.h conflict!
+'H' F1 linux/hid-roccat.h <mailto:erazor_de@users.sourceforge.net>
+'H' F8-FA sound/firewire.h
+'I' all linux/isdn.h conflict!
+'I' 00-0F drivers/isdn/divert/isdn_divert.h conflict!
+'I' 40-4F linux/mISDNif.h conflict!
+'J' 00-1F drivers/scsi/gdth_ioctl.h
+'K' all linux/kd.h
+'L' 00-1F linux/loop.h conflict!
+'L' 10-1F drivers/scsi/mpt3sas/mpt3sas_ctl.h conflict!
+'L' 20-2F linux/lightnvm.h
+'L' E0-FF linux/ppdd.h encrypted disk device driver
+ <http://linux01.gwdg.de/~alatham/ppdd.html>
+'M' all linux/soundcard.h conflict!
+'M' 01-16 mtd/mtd-abi.h conflict!
+ and drivers/mtd/mtdchar.c
+'M' 01-03 drivers/scsi/megaraid/megaraid_sas.h
+'M' 00-0F drivers/video/fsl-diu-fb.h conflict!
+'N' 00-1F drivers/usb/scanner.h
+'N' 40-7F drivers/block/nvme.c
+'O' 00-06 mtd/ubi-user.h UBI
+'P' all linux/soundcard.h conflict!
+'P' 60-6F sound/sscape_ioctl.h conflict!
+'P' 00-0F drivers/usb/class/usblp.c conflict!
+'P' 01-09 drivers/misc/pci_endpoint_test.c conflict!
+'Q' all linux/soundcard.h
+'R' 00-1F linux/random.h conflict!
+'R' 01 linux/rfkill.h conflict!
+'R' C0-DF net/bluetooth/rfcomm.h
+'S' all linux/cdrom.h conflict!
+'S' 80-81 scsi/scsi_ioctl.h conflict!
+'S' 82-FF scsi/scsi.h conflict!
+'S' 00-7F sound/asequencer.h conflict!
+'T' all linux/soundcard.h conflict!
+'T' 00-AF sound/asound.h conflict!
+'T' all arch/x86/include/asm/ioctls.h conflict!
+'T' C0-DF linux/if_tun.h conflict!
+'U' all sound/asound.h conflict!
+'U' 00-CF linux/uinput.h conflict!
+'U' 00-EF linux/usbdevice_fs.h
+'U' C0-CF drivers/bluetooth/hci_uart.h
+'V' all linux/vt.h conflict!
+'V' all linux/videodev2.h conflict!
+'V' C0 linux/ivtvfb.h conflict!
+'V' C0 linux/ivtv.h conflict!
+'V' C0 media/davinci/vpfe_capture.h conflict!
+'V' C0 media/si4713.h conflict!
+'W' 00-1F linux/watchdog.h conflict!
+'W' 00-1F linux/wanrouter.h conflict! (pre 3.9)
+'W' 00-3F sound/asound.h conflict!
+'W' 40-5F drivers/pci/switch/switchtec.c
+'X' all fs/xfs/xfs_fs.h, conflict!
+ fs/xfs/linux-2.6/xfs_ioctl32.h,
+ include/linux/falloc.h,
+ linux/fs.h,
+'X' all fs/ocfs2/ocfs_fs.h conflict!
+'X' 01 linux/pktcdvd.h conflict!
+'Y' all linux/cyclades.h
+'Z' 14-15 drivers/message/fusion/mptctl.h
+'[' 00-3F linux/usb/tmc.h USB Test and Measurement Devices
+ <mailto:gregkh@linuxfoundation.org>
+'a' all linux/atm*.h, linux/sonet.h ATM on linux
+ <http://lrcwww.epfl.ch/>
+'a' 00-0F drivers/crypto/qat/qat_common/adf_cfg_common.h conflict! qat driver
+'b' 00-FF conflict! bit3 vme host bridge
+ <mailto:natalia@nikhefk.nikhef.nl>
+'c' all linux/cm4000_cs.h conflict!
+'c' 00-7F linux/comstats.h conflict!
+'c' 00-7F linux/coda.h conflict!
+'c' 00-1F linux/chio.h conflict!
+'c' 80-9F arch/s390/include/asm/chsc.h conflict!
+'c' A0-AF arch/x86/include/asm/msr.h conflict!
+'d' 00-FF linux/char/drm/drm.h conflict!
+'d' 02-40 pcmcia/ds.h conflict!
+'d' F0-FF linux/digi1.h
+'e' all linux/digi1.h conflict!
+'f' 00-1F linux/ext2_fs.h conflict!
+'f' 00-1F linux/ext3_fs.h conflict!
+'f' 00-0F fs/jfs/jfs_dinode.h conflict!
+'f' 00-0F fs/ext4/ext4.h conflict!
+'f' 00-0F linux/fs.h conflict!
+'f' 00-0F fs/ocfs2/ocfs2_fs.h conflict!
+'f' 81-8F linux/fsverity.h
+'g' 00-0F linux/usb/gadgetfs.h
+'g' 20-2F linux/usb/g_printer.h
+'h' 00-7F conflict! Charon filesystem
+ <mailto:zapman@interlan.net>
+'h' 00-1F linux/hpet.h conflict!
+'h' 80-8F fs/hfsplus/ioctl.c
+'i' 00-3F linux/i2o-dev.h conflict!
+'i' 0B-1F linux/ipmi.h conflict!
+'i' 80-8F linux/i8k.h
+'j' 00-3F linux/joystick.h
+'k' 00-0F linux/spi/spidev.h conflict!
+'k' 00-05 video/kyro.h conflict!
+'k' 10-17 linux/hsi/hsi_char.h HSI character device
+'l' 00-3F linux/tcfs_fs.h transparent cryptographic file system
+ <http://web.archive.org/web/%2A/http://mikonos.dia.unisa.it/tcfs>
+'l' 40-7F linux/udf_fs_i.h in development:
+ <http://sourceforge.net/projects/linux-udf/>
+'m' 00-09 linux/mmtimer.h conflict!
+'m' all linux/mtio.h conflict!
+'m' all linux/soundcard.h conflict!
+'m' all linux/synclink.h conflict!
+'m' 00-19 drivers/message/fusion/mptctl.h conflict!
+'m' 00 drivers/scsi/megaraid/megaraid_ioctl.h conflict!
+'n' 00-7F linux/ncp_fs.h and fs/ncpfs/ioctl.c
+'n' 80-8F uapi/linux/nilfs2_api.h NILFS2
+'n' E0-FF linux/matroxfb.h matroxfb
+'o' 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
+'o' 00-03 mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
+'o' 40-41 mtd/ubi-user.h UBI
+'o' 01-A1 `linux/dvb/*.h` DVB
+'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
+'p' 00-1F linux/rtc.h conflict!
+'p' 00-3F linux/mc146818rtc.h conflict!
+'p' 40-7F linux/nvram.h
+'p' 80-9F linux/ppdev.h user-space parport
+ <mailto:tim@cyberelk.net>
+'p' A1-A5 linux/pps.h LinuxPPS
+ <mailto:giometti@linux.it>
+'q' 00-1F linux/serio.h
+'q' 80-FF linux/telephony.h Internet PhoneJACK, Internet LineJACK
+ linux/ixjuser.h <http://web.archive.org/web/%2A/http://www.quicknet.net>
+'r' 00-1F linux/msdos_fs.h and fs/fat/dir.c
+'s' all linux/cdk.h
+'t' 00-7F linux/ppp-ioctl.h
+'t' 80-8F linux/isdn_ppp.h
+'t' 90-91 linux/toshiba.h toshiba and toshiba_acpi SMM
+'u' 00-1F linux/smb_fs.h gone
+'u' 20-3F linux/uvcvideo.h USB video class host driver
+'u' 40-4f linux/udmabuf.h userspace dma-buf misc device
+'v' 00-1F linux/ext2_fs.h conflict!
+'v' 00-1F linux/fs.h conflict!
+'v' 00-0F linux/sonypi.h conflict!
+'v' 00-0F media/v4l2-subdev.h conflict!
+'v' C0-FF linux/meye.h conflict!
+'w' all CERN SCI driver
+'y' 00-1F packet based user level communications
+ <mailto:zapman@interlan.net>
+'z' 00-3F CAN bus card conflict!
+ <mailto:hdstich@connectu.ulm.circular.de>
+'z' 40-7F CAN bus card conflict!
+ <mailto:oe@port.de>
+'z' 10-4F drivers/s390/crypto/zcrypt_api.h conflict!
+'|' 00-7F linux/media.h
+0x80 00-1F linux/fb.h
+0x89 00-06 arch/x86/include/asm/sockios.h
+0x89 0B-DF linux/sockios.h
+0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
+0x89 E0-EF linux/dn.h PROTOPRIVATE range
+0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range
+0x8B all linux/wireless.h
+0x8C 00-3F WiNRADiO driver
+ <http://www.winradio.com.au/>
+0x90 00 drivers/cdrom/sbpcd.h
+0x92 00-0F drivers/usb/mon/mon_bin.c
+0x93 60-7F linux/auto_fs.h
+0x94 all fs/btrfs/ioctl.h Btrfs filesystem
+ and linux/fs.h some lifted to vfs/generic
+0x97 00-7F fs/ceph/ioctl.h Ceph file system
+0x99 00-0F 537-Addinboard driver
+ <mailto:buk@buks.ipn.de>
+0xA0 all linux/sdp/sdp.h Industrial Device Project
+ <mailto:kenji@bitgate.com>
+0xA1 0 linux/vtpm_proxy.h TPM Emulator Proxy Driver
+0xA3 80-8F Port ACL in development:
+ <mailto:tlewis@mindspring.com>
+0xA3 90-9F linux/dtlk.h
+0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
+0xAA 00-3F linux/uapi/linux/userfaultfd.h
+0xAB 00-1F linux/nbd.h
+0xAC 00-1F linux/raw.h
+0xAD 00 Netfilter device in development:
+ <mailto:rusty@rustcorp.com.au>
+0xAE all linux/kvm.h Kernel-based Virtual Machine
+ <mailto:kvm@vger.kernel.org>
+0xAF 00-1F linux/fsl_hypervisor.h Freescale hypervisor
+0xB0 all RATIO devices in development:
+ <mailto:vgo@ratio.de>
+0xB1 00-1F PPPoX
+ <mailto:mostrows@styx.uwaterloo.ca>
+0xB3 00 linux/mmc/ioctl.h
+0xB4 00-0F linux/gpio.h <mailto:linux-gpio@vger.kernel.org>
+0xB5 00-0F uapi/linux/rpmsg.h <mailto:linux-remoteproc@vger.kernel.org>
+0xB6 all linux/fpga-dfl.h
+0xC0 00-0F linux/usb/iowarrior.h
+0xCA 00-0F uapi/misc/cxl.h
+0xCA 10-2F uapi/misc/ocxl.h
+0xCA 80-BF uapi/scsi/cxlflash_ioctl.h
+0xCB 00-1F CBM serial IEC bus in development:
+ <mailto:michael.klein@puffin.lb.shuttle.de>
+0xCC 00-0F drivers/misc/ibmvmc.h pseries VMC driver
+0xCD 01 linux/reiserfs_fs.h
+0xCF 02 fs/cifs/ioctl.c
+0xDB 00-0F drivers/char/mwave/mwavepub.h
+0xDD 00-3F ZFCP device driver see drivers/s390/scsi/
+ <mailto:aherrman@de.ibm.com>
+0xE5 00-3F linux/fuse.h
+0xEC 00-01 drivers/platform/chrome/cros_ec_dev.h ChromeOS EC driver
+0xF3 00-3F drivers/usb/misc/sisusbvga/sisusb.h sisfb (in development)
+ <mailto:thomas@winischhofer.net>
+0xF4 00-1F video/mbxfb.h mbxfb
+ <mailto:raph@8d.com>
+0xF6 all LTTng Linux Trace Toolkit Next Generation
+ <mailto:mathieu.desnoyers@efficios.com>
+0xFD all linux/dm-ioctl.h
+0xFE all linux/isst_if.h
+==== ===== ======================================================= ================================================================
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
deleted file mode 100644
index c9558146ac58..000000000000
--- a/Documentation/ioctl/ioctl-number.txt
+++ /dev/null
@@ -1,350 +0,0 @@
-Ioctl Numbers
-19 October 1999
-Michael Elizabeth Chastain
-<mec@shout.net>
-
-If you are adding new ioctl's to the kernel, you should use the _IO
-macros defined in <linux/ioctl.h>:
-
- _IO an ioctl with no parameters
- _IOW an ioctl with write parameters (copy_from_user)
- _IOR an ioctl with read parameters (copy_to_user)
- _IOWR an ioctl with both write and read parameters.
-
-'Write' and 'read' are from the user's point of view, just like the
-system calls 'write' and 'read'. For example, a SET_FOO ioctl would
-be _IOW, although the kernel would actually read data from user space;
-a GET_FOO ioctl would be _IOR, although the kernel would actually write
-data to user space.
-
-The first argument to _IO, _IOW, _IOR, or _IOWR is an identifying letter
-or number from the table below. Because of the large number of drivers,
-many drivers share a partial letter with other drivers.
-
-If you are writing a driver for a new device and need a letter, pick an
-unused block with enough room for expansion: 32 to 256 ioctl commands.
-You can register the block by patching this file and submitting the
-patch to Linus Torvalds. Or you can e-mail me at <mec@shout.net> and
-I'll register one for you.
-
-The second argument to _IO, _IOW, _IOR, or _IOWR is a sequence number
-to distinguish ioctls from each other. The third argument to _IOW,
-_IOR, or _IOWR is the type of the data going into the kernel or coming
-out of the kernel (e.g. 'int' or 'struct foo'). NOTE! Do NOT use
-sizeof(arg) as the third argument as this results in your ioctl thinking
-it passes an argument of type size_t.
-
-Some devices use their major number as the identifier; this is OK, as
-long as it is unique. Some devices are irregular and don't follow any
-convention at all.
-
-Following this convention is good because:
-
-(1) Keeping the ioctl's globally unique helps error checking:
- if a program calls an ioctl on the wrong device, it will get an
- error rather than some unexpected behaviour.
-
-(2) The 'strace' build procedure automatically finds ioctl numbers
- defined with _IO, _IOW, _IOR, or _IOWR.
-
-(3) 'strace' can decode numbers back into useful names when the
- numbers are unique.
-
-(4) People looking for ioctls can grep for them more easily when
- this convention is used to define the ioctl numbers.
-
-(5) When following the convention, the driver code can use generic
- code to copy the parameters between user and kernel space.
-
-This table lists ioctls visible from user land for Linux/x86. It contains
-most drivers up to 2.6.31, but I know I am missing some. There has been
-no attempt to list non-X86 architectures or ioctls from drivers/staging/.
-
-Code Seq#(hex) Include File Comments
-========================================================
-0x00 00-1F linux/fs.h conflict!
-0x00 00-1F scsi/scsi_ioctl.h conflict!
-0x00 00-1F linux/fb.h conflict!
-0x00 00-1F linux/wavefront.h conflict!
-0x02 all linux/fd.h
-0x03 all linux/hdreg.h
-0x04 D2-DC linux/umsdos_fs.h Dead since 2.6.11, but don't reuse these.
-0x06 all linux/lp.h
-0x09 all linux/raid/md_u.h
-0x10 00-0F drivers/char/s390/vmcp.h
-0x10 10-1F arch/s390/include/uapi/sclp_ctl.h
-0x10 20-2F arch/s390/include/uapi/asm/hypfs.h
-0x12 all linux/fs.h
- linux/blkpg.h
-0x1b all InfiniBand Subsystem <http://infiniband.sourceforge.net/>
-0x20 all drivers/cdrom/cm206.h
-0x22 all scsi/sg.h
-'!' 00-1F uapi/linux/seccomp.h
-'#' 00-3F IEEE 1394 Subsystem Block for the entire subsystem
-'$' 00-0F linux/perf_counter.h, linux/perf_event.h
-'%' 00-0F include/uapi/linux/stm.h
- System Trace Module subsystem
- <mailto:alexander.shishkin@linux.intel.com>
-'&' 00-07 drivers/firewire/nosy-user.h
-'1' 00-1F <linux/timepps.h> PPS kit from Ulrich Windl
- <ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/>
-'2' 01-04 linux/i2o.h
-'3' 00-0F drivers/s390/char/raw3270.h conflict!
-'3' 00-1F linux/suspend_ioctls.h conflict!
- and kernel/power/user.c
-'8' all SNP8023 advanced NIC card
- <mailto:mcr@solidum.com>
-';' 64-7F linux/vfio.h
-'@' 00-0F linux/radeonfb.h conflict!
-'@' 00-0F drivers/video/aty/aty128fb.c conflict!
-'A' 00-1F linux/apm_bios.h conflict!
-'A' 00-0F linux/agpgart.h conflict!
- and drivers/char/agp/compat_ioctl.h
-'A' 00-7F sound/asound.h conflict!
-'B' 00-1F linux/cciss_ioctl.h conflict!
-'B' 00-0F include/linux/pmu.h conflict!
-'B' C0-FF advanced bbus
- <mailto:maassen@uni-freiburg.de>
-'C' all linux/soundcard.h conflict!
-'C' 01-2F linux/capi.h conflict!
-'C' F0-FF drivers/net/wan/cosa.h conflict!
-'D' all arch/s390/include/asm/dasd.h
-'D' 40-5F drivers/scsi/dpt/dtpi_ioctl.h
-'D' 05 drivers/scsi/pmcraid.h
-'E' all linux/input.h conflict!
-'E' 00-0F xen/evtchn.h conflict!
-'F' all linux/fb.h conflict!
-'F' 01-02 drivers/scsi/pmcraid.h conflict!
-'F' 20 drivers/video/fsl-diu-fb.h conflict!
-'F' 20 drivers/video/intelfb/intelfb.h conflict!
-'F' 20 linux/ivtvfb.h conflict!
-'F' 20 linux/matroxfb.h conflict!
-'F' 20 drivers/video/aty/atyfb_base.c conflict!
-'F' 00-0F video/da8xx-fb.h conflict!
-'F' 80-8F linux/arcfb.h conflict!
-'F' DD video/sstfb.h conflict!
-'G' 00-3F drivers/misc/sgi-gru/grulib.h conflict!
-'G' 00-0F linux/gigaset_dev.h conflict!
-'H' 00-7F linux/hiddev.h conflict!
-'H' 00-0F linux/hidraw.h conflict!
-'H' 01 linux/mei.h conflict!
-'H' 02 linux/mei.h conflict!
-'H' 03 linux/mei.h conflict!
-'H' 00-0F sound/asound.h conflict!
-'H' 20-40 sound/asound_fm.h conflict!
-'H' 80-8F sound/sfnt_info.h conflict!
-'H' 10-8F sound/emu10k1.h conflict!
-'H' 10-1F sound/sb16_csp.h conflict!
-'H' 10-1F sound/hda_hwdep.h conflict!
-'H' 40-4F sound/hdspm.h conflict!
-'H' 40-4F sound/hdsp.h conflict!
-'H' 90 sound/usb/usx2y/usb_stream.h
-'H' A0 uapi/linux/usb/cdc-wdm.h
-'H' C0-F0 net/bluetooth/hci.h conflict!
-'H' C0-DF net/bluetooth/hidp/hidp.h conflict!
-'H' C0-DF net/bluetooth/cmtp/cmtp.h conflict!
-'H' C0-DF net/bluetooth/bnep/bnep.h conflict!
-'H' F1 linux/hid-roccat.h <mailto:erazor_de@users.sourceforge.net>
-'H' F8-FA sound/firewire.h
-'I' all linux/isdn.h conflict!
-'I' 00-0F drivers/isdn/divert/isdn_divert.h conflict!
-'I' 40-4F linux/mISDNif.h conflict!
-'J' 00-1F drivers/scsi/gdth_ioctl.h
-'K' all linux/kd.h
-'L' 00-1F linux/loop.h conflict!
-'L' 10-1F drivers/scsi/mpt3sas/mpt3sas_ctl.h conflict!
-'L' 20-2F linux/lightnvm.h
-'L' E0-FF linux/ppdd.h encrypted disk device driver
- <http://linux01.gwdg.de/~alatham/ppdd.html>
-'M' all linux/soundcard.h conflict!
-'M' 01-16 mtd/mtd-abi.h conflict!
- and drivers/mtd/mtdchar.c
-'M' 01-03 drivers/scsi/megaraid/megaraid_sas.h
-'M' 00-0F drivers/video/fsl-diu-fb.h conflict!
-'N' 00-1F drivers/usb/scanner.h
-'N' 40-7F drivers/block/nvme.c
-'O' 00-06 mtd/ubi-user.h UBI
-'P' all linux/soundcard.h conflict!
-'P' 60-6F sound/sscape_ioctl.h conflict!
-'P' 00-0F drivers/usb/class/usblp.c conflict!
-'P' 01-09 drivers/misc/pci_endpoint_test.c conflict!
-'Q' all linux/soundcard.h
-'R' 00-1F linux/random.h conflict!
-'R' 01 linux/rfkill.h conflict!
-'R' C0-DF net/bluetooth/rfcomm.h
-'S' all linux/cdrom.h conflict!
-'S' 80-81 scsi/scsi_ioctl.h conflict!
-'S' 82-FF scsi/scsi.h conflict!
-'S' 00-7F sound/asequencer.h conflict!
-'T' all linux/soundcard.h conflict!
-'T' 00-AF sound/asound.h conflict!
-'T' all arch/x86/include/asm/ioctls.h conflict!
-'T' C0-DF linux/if_tun.h conflict!
-'U' all sound/asound.h conflict!
-'U' 00-CF linux/uinput.h conflict!
-'U' 00-EF linux/usbdevice_fs.h
-'U' C0-CF drivers/bluetooth/hci_uart.h
-'V' all linux/vt.h conflict!
-'V' all linux/videodev2.h conflict!
-'V' C0 linux/ivtvfb.h conflict!
-'V' C0 linux/ivtv.h conflict!
-'V' C0 media/davinci/vpfe_capture.h conflict!
-'V' C0 media/si4713.h conflict!
-'W' 00-1F linux/watchdog.h conflict!
-'W' 00-1F linux/wanrouter.h conflict! (pre 3.9)
-'W' 00-3F sound/asound.h conflict!
-'W' 40-5F drivers/pci/switch/switchtec.c
-'X' all fs/xfs/xfs_fs.h conflict!
- and fs/xfs/linux-2.6/xfs_ioctl32.h
- and include/linux/falloc.h
- and linux/fs.h
-'X' all fs/ocfs2/ocfs_fs.h conflict!
-'X' 01 linux/pktcdvd.h conflict!
-'Y' all linux/cyclades.h
-'Z' 14-15 drivers/message/fusion/mptctl.h
-'[' 00-3F linux/usb/tmc.h USB Test and Measurement Devices
- <mailto:gregkh@linuxfoundation.org>
-'a' all linux/atm*.h, linux/sonet.h ATM on linux
- <http://lrcwww.epfl.ch/>
-'a' 00-0F drivers/crypto/qat/qat_common/adf_cfg_common.h conflict! qat driver
-'b' 00-FF conflict! bit3 vme host bridge
- <mailto:natalia@nikhefk.nikhef.nl>
-'c' all linux/cm4000_cs.h conflict!
-'c' 00-7F linux/comstats.h conflict!
-'c' 00-7F linux/coda.h conflict!
-'c' 00-1F linux/chio.h conflict!
-'c' 80-9F arch/s390/include/asm/chsc.h conflict!
-'c' A0-AF arch/x86/include/asm/msr.h conflict!
-'d' 00-FF linux/char/drm/drm.h conflict!
-'d' 02-40 pcmcia/ds.h conflict!
-'d' F0-FF linux/digi1.h
-'e' all linux/digi1.h conflict!
-'f' 00-1F linux/ext2_fs.h conflict!
-'f' 00-1F linux/ext3_fs.h conflict!
-'f' 00-0F fs/jfs/jfs_dinode.h conflict!
-'f' 00-0F fs/ext4/ext4.h conflict!
-'f' 00-0F linux/fs.h conflict!
-'f' 00-0F fs/ocfs2/ocfs2_fs.h conflict!
-'g' 00-0F linux/usb/gadgetfs.h
-'g' 20-2F linux/usb/g_printer.h
-'h' 00-7F conflict! Charon filesystem
- <mailto:zapman@interlan.net>
-'h' 00-1F linux/hpet.h conflict!
-'h' 80-8F fs/hfsplus/ioctl.c
-'i' 00-3F linux/i2o-dev.h conflict!
-'i' 0B-1F linux/ipmi.h conflict!
-'i' 80-8F linux/i8k.h
-'j' 00-3F linux/joystick.h
-'k' 00-0F linux/spi/spidev.h conflict!
-'k' 00-05 video/kyro.h conflict!
-'k' 10-17 linux/hsi/hsi_char.h HSI character device
-'l' 00-3F linux/tcfs_fs.h transparent cryptographic file system
- <http://web.archive.org/web/*/http://mikonos.dia.unisa.it/tcfs>
-'l' 40-7F linux/udf_fs_i.h in development:
- <http://sourceforge.net/projects/linux-udf/>
-'m' 00-09 linux/mmtimer.h conflict!
-'m' all linux/mtio.h conflict!
-'m' all linux/soundcard.h conflict!
-'m' all linux/synclink.h conflict!
-'m' 00-19 drivers/message/fusion/mptctl.h conflict!
-'m' 00 drivers/scsi/megaraid/megaraid_ioctl.h conflict!
-'n' 00-7F linux/ncp_fs.h and fs/ncpfs/ioctl.c
-'n' 80-8F uapi/linux/nilfs2_api.h NILFS2
-'n' E0-FF linux/matroxfb.h matroxfb
-'o' 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
-'o' 00-03 mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
-'o' 40-41 mtd/ubi-user.h UBI
-'o' 01-A1 linux/dvb/*.h DVB
-'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
-'p' 00-1F linux/rtc.h conflict!
-'p' 00-3F linux/mc146818rtc.h conflict!
-'p' 40-7F linux/nvram.h
-'p' 80-9F linux/ppdev.h user-space parport
- <mailto:tim@cyberelk.net>
-'p' A1-A5 linux/pps.h LinuxPPS
- <mailto:giometti@linux.it>
-'q' 00-1F linux/serio.h
-'q' 80-FF linux/telephony.h Internet PhoneJACK, Internet LineJACK
- linux/ixjuser.h <http://web.archive.org/web/*/http://www.quicknet.net>
-'r' 00-1F linux/msdos_fs.h and fs/fat/dir.c
-'s' all linux/cdk.h
-'t' 00-7F linux/ppp-ioctl.h
-'t' 80-8F linux/isdn_ppp.h
-'t' 90-91 linux/toshiba.h toshiba and toshiba_acpi SMM
-'u' 00-1F linux/smb_fs.h gone
-'u' 20-3F linux/uvcvideo.h USB video class host driver
-'u' 40-4f linux/udmabuf.h userspace dma-buf misc device
-'v' 00-1F linux/ext2_fs.h conflict!
-'v' 00-1F linux/fs.h conflict!
-'v' 00-0F linux/sonypi.h conflict!
-'v' 00-0F media/v4l2-subdev.h conflict!
-'v' C0-FF linux/meye.h conflict!
-'w' all CERN SCI driver
-'y' 00-1F packet based user level communications
- <mailto:zapman@interlan.net>
-'z' 00-3F CAN bus card conflict!
- <mailto:hdstich@connectu.ulm.circular.de>
-'z' 40-7F CAN bus card conflict!
- <mailto:oe@port.de>
-'z' 10-4F drivers/s390/crypto/zcrypt_api.h conflict!
-'|' 00-7F linux/media.h
-0x80 00-1F linux/fb.h
-0x89 00-06 arch/x86/include/asm/sockios.h
-0x89 0B-DF linux/sockios.h
-0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
-0x89 E0-EF linux/dn.h PROTOPRIVATE range
-0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range
-0x8B all linux/wireless.h
-0x8C 00-3F WiNRADiO driver
- <http://www.winradio.com.au/>
-0x90 00 drivers/cdrom/sbpcd.h
-0x92 00-0F drivers/usb/mon/mon_bin.c
-0x93 60-7F linux/auto_fs.h
-0x94 all fs/btrfs/ioctl.h Btrfs filesystem
- and linux/fs.h some lifted to vfs/generic
-0x97 00-7F fs/ceph/ioctl.h Ceph file system
-0x99 00-0F 537-Addinboard driver
- <mailto:buk@buks.ipn.de>
-0xA0 all linux/sdp/sdp.h Industrial Device Project
- <mailto:kenji@bitgate.com>
-0xA1 0 linux/vtpm_proxy.h TPM Emulator Proxy Driver
-0xA3 80-8F Port ACL in development:
- <mailto:tlewis@mindspring.com>
-0xA3 90-9F linux/dtlk.h
-0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
-0xAA 00-3F linux/uapi/linux/userfaultfd.h
-0xAB 00-1F linux/nbd.h
-0xAC 00-1F linux/raw.h
-0xAD 00 Netfilter device in development:
- <mailto:rusty@rustcorp.com.au>
-0xAE all linux/kvm.h Kernel-based Virtual Machine
- <mailto:kvm@vger.kernel.org>
-0xAF 00-1F linux/fsl_hypervisor.h Freescale hypervisor
-0xB0 all RATIO devices in development:
- <mailto:vgo@ratio.de>
-0xB1 00-1F PPPoX <mailto:mostrows@styx.uwaterloo.ca>
-0xB3 00 linux/mmc/ioctl.h
-0xB4 00-0F linux/gpio.h <mailto:linux-gpio@vger.kernel.org>
-0xB5 00-0F uapi/linux/rpmsg.h <mailto:linux-remoteproc@vger.kernel.org>
-0xB6 all linux/fpga-dfl.h
-0xC0 00-0F linux/usb/iowarrior.h
-0xCA 00-0F uapi/misc/cxl.h
-0xCA 10-2F uapi/misc/ocxl.h
-0xCA 80-BF uapi/scsi/cxlflash_ioctl.h
-0xCB 00-1F CBM serial IEC bus in development:
- <mailto:michael.klein@puffin.lb.shuttle.de>
-0xCC 00-0F drivers/misc/ibmvmc.h pseries VMC driver
-0xCD 01 linux/reiserfs_fs.h
-0xCF 02 fs/cifs/ioctl.c
-0xDB 00-0F drivers/char/mwave/mwavepub.h
-0xDD 00-3F ZFCP device driver see drivers/s390/scsi/
- <mailto:aherrman@de.ibm.com>
-0xE5 00-3F linux/fuse.h
-0xEC 00-01 drivers/platform/chrome/cros_ec_dev.h ChromeOS EC driver
-0xF3 00-3F drivers/usb/misc/sisusbvga/sisusb.h sisfb (in development)
- <mailto:thomas@winischhofer.net>
-0xF4 00-1F video/mbxfb.h mbxfb
- <mailto:raph@8d.com>
-0xF6 all LTTng Linux Trace Toolkit Next Generation
- <mailto:mathieu.desnoyers@efficios.com>
-0xFD all linux/dm-ioctl.h
diff --git a/Documentation/isdn/HiSax.cert b/Documentation/isdn/HiSax.cert
deleted file mode 100644
index f2a6fcb8efee..000000000000
--- a/Documentation/isdn/HiSax.cert
+++ /dev/null
@@ -1,96 +0,0 @@
------BEGIN PGP SIGNED MESSAGE-----
-
-First:
-
- HiSax is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
-However, if you wish to modify the HiSax sources, please note the following:
-
-HiSax has passed the ITU approval test suite with ELSA Quickstep ISDN cards
-and Eicon Technology Diva 2.01 PCI card.
-The certification is only valid for the combination of the tested software
-version and the tested hardware. Any changes to the HiSax source code may
-therefore affect the certification.
-
-Additional ITU approval tests have been carried out for all generic cards
-using Colognechip single chip solutions HFC-S PCI A for PCI cards as well
-as HFC-S USB based USB ISDN ta adapters.
-These tests included all layers 1-3 and as well all functional tests for
-the layer 1. Because all hardware based on these chips are complete ISDN
-solutions in one chip all cards and USB-TAs using these chips are to be
-regarded as approved for those tests. Some additional electrical tests
-of the layer 1 which are independent of the driver and related to a
-special hardware used will be regarded as approved if at least one
-solution has been tested including those electrical tests. So if cards
-or tas have been completely approved for any other os, the approval
-for those electrical tests is valid for linux, too.
-Please send any questions regarding this drivers or approval abouts to
-werner@isdn-development.de
-Additional information and the type approval documents will be found
-shortly on the Colognechip website www.colognechip.com
-
-If you change the main files of the HiSax ISDN stack, the certification will
-become invalid. Because in most countries it is illegal to connect
-unapproved ISDN equipment to the public network, I have to guarantee that
-changes in HiSax do not affect the certification.
-
-In order to make a valid certification apparent to the user, I have built in
-some validation checks that are made during the make process. The HiSax main
-files are protected by md5 checksums and the md5sum file is pgp signed by
-myself:
-
-KeyID 1024/FF992F6D 1997/01/16 Karsten Keil <kkeil@suse.de>
-Key fingerprint = 92 6B F7 58 EE 86 28 C8 C4 1A E6 DC 39 89 F2 AA
-
-Only if the checksums are OK, and the signature of the file
-"drivers/isdn/hisax/md5sums.asc" match, is the certification valid; a
-message confirming this is then displayed during the hisax init process.
-
-The affected files are:
-
-drivers/isdn/hisax/isac.c
-drivers/isdn/hisax/isdnl1.c
-drivers/isdn/hisax/isdnl2.c
-drivers/isdn/hisax/isdnl3.c
-drivers/isdn/hisax/tei.c
-drivers/isdn/hisax/callc.c
-drivers/isdn/hisax/l3dss1.c
-drivers/isdn/hisax/l3_1tr6.c
-drivers/isdn/hisax/cert.c
-drivers/isdn/hisax/elsa.c
-drivers/isdn/hisax/diva.c
-drivers/isdn/hisax/hfc_pci.c
-
-Please send any changes, bugfixes and patches to me rather than implementing
-them directly into the HiSax sources.
-
-This does not reduce your rights granted by the GNU General Public License.
-If you wish to change the sources, go ahead; but note that then the
-certification is invalid even if you use one of the approved cards.
-
-Here are the certification registration numbers for ELSA Quickstep cards:
-German D133361J CETECOM ICT Services GmbH 0682
-European D133362J CETECOM ICT Services GmbH 0682
-
-
-Karsten Keil
-keil@isdn4linux.de
-
------BEGIN PGP SIGNATURE-----
-Version: 2.6.3i
-Charset: noconv
-
-iQCVAwUBOFAwqTpxHvX/mS9tAQFI2QP9GLDK2iy/KBhwReE3F7LeO+tVhffTVZ3a
-20q5/z/WcIg/pnH0uTkl2UgDXBFXYl45zJyDGNpAposIFmT+Edd14o7Vj1w/BBdn
-Y+5rBmJf+gyBu61da5d6bv0lpymwRa/um+ri+ilYnZ/XPfg5JKhdjGSBCJuJAElM
-d2jFbTrsMYw=
-=LNf9
------END PGP SIGNATURE-----
diff --git a/Documentation/isdn/INTERFACE b/Documentation/isdn/INTERFACE
deleted file mode 100644
index 5df17e5b25c8..000000000000
--- a/Documentation/isdn/INTERFACE
+++ /dev/null
@@ -1,759 +0,0 @@
-$Id: INTERFACE,v 1.15.8.2 2001/03/13 16:17:07 kai Exp $
-
-Description of the Interface between Linklevel and Hardwarelevel
- of isdn4linux:
-
-
- The Communication between Linklevel (LL) and Hardwarelevel (HL)
- is based on the struct isdn_if (defined in isdnif.h).
-
- An HL-driver can register itself at LL by calling the function
- register_isdn() with a pointer to that struct. Prior to that, it has
- to preset some of the fields of isdn_if. The LL sets the rest of
- the fields. All further communication is done via callbacks using
- the function-pointers defined in isdn_if.
-
- Changes/Version numbering:
-
- During development of the ISDN subsystem, several changes have been
- made to the interface. Before it went into kernel, the package
- had a unique version number. The last version, distributed separately
- was 0.7.4. When the subsystem went into kernel, every functional unit
- got a separate version number. These numbers are shown at initialization,
- separated by slashes:
-
- c.c/t.t/n.n/p.p/a.a/v.v
-
- where
-
- c.c is the revision of the common code.
- t.t is the revision of the tty related code.
- n.n is the revision of the network related code.
- p.p is the revision of the ppp related code.
- a.a is the revision of the audio related code.
- v.v is the revision of the V.110 related code.
-
- Changes in this document are marked with '***CHANGEx' where x representing
- the version number. If that number starts with 0, it refers to the old,
- separately distributed package. If it starts with one of the letters
- above, it refers to the revision of the corresponding module.
- ***CHANGEIx refers to the revision number of the isdnif.h
-
-1. Description of the fields of isdn_if:
-
- int channels;
-
- This field has to be set by the HL-driver to the number of channels
- supported prior to calling register_isdn(). Upon return of the call,
- the LL puts an id there, which has to be used by the HL-driver when
- invoking the other callbacks.
-
- int maxbufsize;
-
- ***CHANGE0.6: New since this version.
-
- Also to be preset by the HL-driver. With this value the HL-driver
- tells the LL the maximum size of a data-packet it will accept.
-
- unsigned long features;
-
- To be preset by the HL-driver. Using this field, the HL-driver
- announces the features supported. At the moment this is limited to
- report the supported layer2 and layer3-protocols. For setting this
- field the constants ISDN_FEATURE..., declared in isdnif.h have to be
- used.
-
- ***CHANGE0.7.1: The line type (1TR6, EDSS1) has to be set.
-
- unsigned short hl_hdrlen;
-
- ***CHANGE0.7.4: New field.
-
- To be preset by the HL-driver, if it supports sk_buff's. The driver
- should put here the amount of additional space needed in sk_buff's for
- its internal purposes. Drivers not supporting sk_buff's should
- initialize this field to 0.
-
- void (*rcvcallb_skb)(int, int, struct sk_buff *)
-
- ***CHANGE0.7.4: New field.
-
- This field will be set by LL. The HL-driver delivers received data-
- packets by calling this function. Upon calling, the HL-driver must
- already have its private data pulled off the head of the sk_buff.
-
- Parameter:
- int driver-Id
- int Channel-number locally to the driver. (starting with 0)
- struct sk_buff * Pointer to sk_buff, containing received data.
-
- int (*statcallb)(isdn_ctrl*);
-
- This field will be set by LL. This function has to be called by the
- HL-driver for signaling status-changes or other events to the LL.
-
- Parameter:
- isdn_ctrl*
-
- The struct isdn_ctrl also defined in isdn_if. The exact meanings of its
- fields are described together with the descriptions of the possible
- events. Here is only a short description of the fields:
-
- driver = driver Id.
- command = event-type. (one of the constants ISDN_STAT_...)
- arg = depends on event-type.
- num = depends on event-type.
-
- Returnvalue:
- 0 on success, else -1
-
- int (*command)(isdn_ctrl*);
-
- This field has to be preset by the HL-driver. It points to a function,
- to be called by LL to perform functions like dialing, B-channel
- setup, etc. The exact meaning of the parameters is described with the
- descriptions of the possible commands.
-
- Parameter:
- isdn_ctrl*
- driver = driver-Id
- command = command to perform. (one of the constants ISDN_CMD_...)
- arg = depends on command.
- num = depends on command.
-
- Returnvalue:
- >=0 on success, else error-code (-ENODEV etc.)
-
- int (*writebuf_skb)(int, int, int, struct sk_buff *)
-
- ***CHANGE0.7.4: New field.
- ***CHANGEI.1.21: New field.
-
- This field has to be preset by the HL-driver. The given function will
- be called by the LL for delivering data to be send via B-Channel.
-
-
- Parameter:
- int driver-Id ***CHANGE0.7.4: New parameter.
- int channel-number locally to the HL-driver. (starts with 0)
- int ack ***ChangeI1.21: New parameter
- If this is !0, the driver has to signal the delivery
- by sending an ISDN_STAT_BSENT. If this is 0, the driver
- MUST NOT send an ISDN_STAT_BSENT.
- struct sk_buff * Pointer to sk_buff containing data to be send via
- B-channel.
-
- Returnvalue:
- Length of data accepted on success, else error-code (-EINVAL on
- oversized packets etc.)
-
- int (*writecmd)(u_char*, int, int, int, int);
-
- This field has to be preset by the HL-driver. The given function will be
- called to perform write-requests on /dev/isdnctrl (i.e. sending commands
- to the card) The data-format is hardware-specific. This function is
- intended for debugging only. It is not necessary for normal operation
- and never will be called by the tty-emulation- or network-code. If
- this function is not supported, the driver has to set NULL here.
-
- Parameter:
- u_char* pointer to data.
- int length of data.
- int flag: 0 = call from within kernel-space. (HL-driver must use
- memcpy, may NOT use schedule())
- 1 = call from user-space. (HL-driver must use
- memcpy_fromfs, use of schedule() allowed)
- int driver-Id.
- int channel-number locally to the HL-driver. (starts with 0)
-
-***CHANGEI1.14: The driver-Id and channel-number are new since this revision.
-
- Returnvalue:
- Length of data accepted on success, else error-code (-EINVAL etc.)
-
- int (*readstat)(u_char*, int, int, int, int);
-
- This field has to be preset by the HL-driver. The given function will be
- called to perform read-requests on /dev/isdnctrl (i.e. reading replies
- from the card) The data-format is hardware-specific. This function is
- intended for debugging only. It is not necessary for normal operation
- and never will be called by the tty-emulation- or network-code. If
- this function is not supported, the driver has to set NULL here.
-
- Parameter:
- u_char* pointer to data.
- int length of data.
- int flag: 0 = call from within kernel-space. (HL-driver must use
- memcpy, may NOT use schedule())
- 1 = call from user-space. (HL-driver must use
- memcpy_fromfs, use of schedule() allowed)
- int driver-Id.
- int channel-number locally to the HL-driver. (starts with 0)
-
-***CHANGEI1.14: The driver-Id and channel-number are new since this revision.
-
- Returnvalue:
- Length of data on success, else error-code (-EINVAL etc.)
-
- char id[20];
- ***CHANGE0.7: New since this version.
-
- This string has to be preset by the HL-driver. Its purpose is for
- identification of the driver by the user. Eg.: it is shown in the
- status-info of /dev/isdninfo. Furthermore it is used as Id for binding
- net-interfaces to a specific channel. If a string of length zero is
- given, upon return, isdn4linux will replace it by a generic name. (line0,
- line1 etc.) It is recommended to make this string configurable during
- module-load-time. (copy a global variable to this string.) For doing that,
- modules 1.2.8 or newer are necessary.
-
-2. Description of the commands, a HL-driver has to support:
-
- All commands will be performed by calling the function command() described
- above from within the LL. The field command of the struct-parameter will
- contain the desired command, the field driver is always set to the
- appropriate driver-Id.
-
- Until now, the following commands are defined:
-
-***CHANGEI1.34: The parameter "num" has been replaced by a union "parm" containing
- the old "num" and a new setup_type struct used for ISDN_CMD_DIAL
- and ISDN_STAT_ICALL callback.
-
- ISDN_CMD_IOCTL:
-
- This command is intended for performing ioctl-calls for configuring
- hardware or similar purposes (setting port-addresses, loading firmware
- etc.) For this purpose, in the LL all ioctl-calls with an argument
- >= IIOCDRVCTL (0x100) will be handed transparently to this
- function after subtracting 0x100 and placing the result in arg.
- Example:
- If a userlevel-program calls ioctl(0x101,...) the function gets
- called with the field command set to 1.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_IOCTL
- arg = Original ioctl-cmd - IIOCDRVCTL
- parm.num = first bytes filled with (unsigned long)arg
-
- Returnvalue:
- Depending on driver.
-
-
- ISDN_CMD_DIAL:
-
- This command is used to tell the HL-driver it should dial a given
- number.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_DIAL
- arg = channel-number locally to the driver. (starting with 0)
-
- parm.setup.phone = An ASCII-String containing the number to dial.
- parm.setup.eazmsn = An ASCII-Sting containing the own EAZ or MSN.
- parm.setup.si1 = The Service-Indicator.
- parm.setup.si2 = Additional Service-Indicator.
-
- If the Line has been designed as SPV (a special german
- feature, meaning semi-leased-line) the phone has to
- start with an "S".
- ***CHANGE0.6: In previous versions the EAZ has been given in the
- highbyte of arg.
- ***CHANGE0.7.1: New since this version: ServiceIndicator and AddInfo.
-
- ISDN_CMD_ACCEPTD:
-
- With this command, the HL-driver is told to accept a D-Channel-setup.
- (Response to an incoming call)
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_ACCEPTD
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_ACCEPTB:
-
- With this command, the HL-driver is told to perform a B-Channel-setup.
- (after establishing D-Channel-Connection)
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_ACCEPTB
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_HANGUP:
-
- With this command, the HL-driver is told to hangup (B-Channel if
- established first, then D-Channel). This command is also used for
- actively rejecting an incoming call.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_HANGUP
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_CLREAZ:
-
- With this command, the HL-driver is told not to signal incoming
- calls to the LL.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_CLREAZ
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_CMD_SETEAZ:
-
- With this command, the HL-driver is told to signal incoming calls for
- the given EAZs/MSNs to the LL.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETEAZ
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the desired EAZ's/MSN's
- (comma-separated). If an empty String is given, the
- HL-driver should respond to ALL incoming calls,
- regardless of the destination-address.
- ***CHANGE0.6: New since this version the "empty-string"-feature.
-
- ISDN_CMD_GETEAZ: (currently unused)
-
- With this command, the HL-driver is told to report the current setting
- given with ISDN_CMD_SETEAZ.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_GETEAZ
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the current EAZ's/MSN's
-
- ISDN_CMD_SETSIL: (currently unused)
-
- With this command, the HL-driver is told to signal only incoming
- calls with the given Service-Indicators.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETSIL
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the desired Service-Indicators.
-
- ISDN_CMD_GETSIL: (currently unused)
-
- With this command, the HL-driver is told to return the current
- Service-Indicators it will respond to.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETSIL
- arg = channel-number locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing the current Service-Indicators.
-
- ISDN_CMD_SETL2:
-
- With this command, the HL-driver is told to select the given Layer-2-
- protocol. This command is issued by the LL prior to ISDN_CMD_DIAL or
- ISDN_CMD_ACCEPTD.
-
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETL2
- arg = channel-number locally to the driver. (starting with 0)
- logical or'ed with (protocol-Id << 8)
- protocol-Id is one of the constants ISDN_PROTO_L2...
- parm = unused.
-
- ISDN_CMD_GETL2: (currently unused)
-
- With this command, the HL-driver is told to return the current
- setting of the Layer-2-protocol.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_GETL2
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
- Returnvalue:
- current protocol-Id (one of the constants ISDN_L2_PROTO)
-
- ISDN_CMD_SETL3:
-
- With this command, the HL-driver is told to select the given Layer-3-
- protocol. This command is issued by the LL prior to ISDN_CMD_DIAL or
- ISDN_CMD_ACCEPTD.
-
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_SETL3
- arg = channel-number locally to the driver. (starting with 0)
- logical or'ed with (protocol-Id << 8)
- protocol-Id is one of the constants ISDN_PROTO_L3...
- parm.fax = Pointer to T30_s fax struct. (fax usage only)
-
- ISDN_CMD_GETL2: (currently unused)
-
- With this command, the HL-driver is told to return the current
- setting of the Layer-3-protocol.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_GETL3
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
- Returnvalue:
- current protocol-Id (one of the constants ISDN_L3_PROTO)
-
- ISDN_CMD_PROCEED:
-
- With this command, the HL-driver is told to proceed with a incoming call.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_PROCEED
- arg = channel-number locally to the driver. (starting with 0)
- setup.eazmsn= empty string or string send as uus1 in DSS1 with
- PROCEED message
-
- ISDN_CMD_ALERT:
-
- With this command, the HL-driver is told to alert a proceeding call.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_ALERT
- arg = channel-number locally to the driver. (starting with 0)
- setup.eazmsn= empty string or string send as uus1 in DSS1 with
- ALERT message
-
- ISDN_CMD_REDIR:
-
- With this command, the HL-driver is told to redirect a call in proceeding
- or alerting state.
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_REDIR
- arg = channel-number locally to the driver. (starting with 0)
- setup.eazmsn= empty string or string send as uus1 in DSS1 protocol
- setup.screen= screening indicator
- setup.phone = redirected to party number
-
- ISDN_CMD_PROT_IO:
-
- With this call, the LL-driver invokes protocol specific features through
- the LL.
- The call is not implicitely bound to a connection.
-
- Parameter:
- driver = driver-Id
- command = ISDN_CMD_PROT_IO
- arg = The lower 8 Bits define the addressed protocol as defined
- in ISDN_PTYPE..., the upper bits are used to differentiate
- the protocol specific CMD.
-
- para = protocol and function specific. See isdnif.h for detail.
-
-
- ISDN_CMD_FAXCMD:
-
- With this command the HL-driver receives a fax sub-command.
- For details refer to INTERFACE.fax
-
- Parameter:
- driver = driver-Id.
- command = ISDN_CMD_FAXCMD
- arg = channel-number locally to the driver. (starting with 0)
- parm = unused.
-
-
-3. Description of the events to be signaled by the HL-driver to the LL.
-
- All status-changes are signaled via calling the previously described
- function statcallb(). The field command of the struct isdn_cmd has
- to be set by the HL-driver with the appropriate Status-Id (event-number).
- The field arg has to be set to the channel-number (locally to the driver,
- starting with 0) to which this event applies. (Exception: STAVAIL-event)
-
- Until now, the following Status-Ids are defined:
-
- ISDN_STAT_AVAIL:
-
- With this call, the HL-driver signals the availability of new data
- for readstat(). Used only for debugging-purposes, see description
- of readstat().
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_STAVAIL
- arg = length of available data.
- parm = unused.
-
- ISDN_STAT_ICALL:
- ISDN_STAT_ICALLW:
-
- With this call, the HL-driver signals an incoming call to the LL.
- If ICALLW is signalled the incoming call is a waiting call without
- a available B-chan.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_ICALL
- arg = channel-number, locally to the driver. (starting with 0)
- para.setup.phone = Callernumber.
- para.setup.eazmsn = CalledNumber.
- para.setup.si1 = Service Indicator.
- para.setup.si2 = Additional Service Indicator.
- para.setup.plan = octet 3 from Calling party number Information Element.
- para.setup.screen = octet 3a from Calling party number Information Element.
-
- Return:
- 0 = No device matching this call.
- 1 = At least one device matching this call (RING on ttyI).
- HL-driver may send ALERTING on the D-channel in this case.
- 2 = Call will be rejected.
- 3 = Incoming called party number is currently incomplete.
- Additional digits are required.
- Used for signalling with PtP connections.
- 4 = Call will be held in a proceeding state
- (HL driver sends PROCEEDING)
- Used when a user space prog needs time to interpret a call
- para.setup.eazmsn may be filled with an uus1 message of
- 30 octets maximum. Empty string if no uus.
- 5 = Call will be actively deflected to another party
- Only available in DSS1/EURO protocol
- para.setup.phone must be set to destination party number
- para.setup.eazmsn may be filled with an uus1 message of
- 30 octets maximum. Empty string if no uus.
- -1 = An error happened. (Invalid parameters for example.)
- The keypad support now is included in the dial command.
-
-
- ISDN_STAT_RUN:
-
- With this call, the HL-driver signals availability of the ISDN-card.
- (after initializing, loading firmware)
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_RUN
- arg = unused.
- parm = unused.
-
- ISDN_STAT_STOP:
-
- With this call, the HL-driver signals unavailability of the ISDN-card.
- (before unloading, while resetting/reconfiguring the card)
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_STOP
- arg = unused.
- parm = unused.
-
- ISDN_STAT_DCONN:
-
- With this call, the HL-driver signals the successful establishment of
- a D-Channel-connection. (Response to ISDN_CMD_ACCEPTD or ISDN_CMD_DIAL)
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DCONN
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_BCONN:
-
- With this call, the HL-driver signals the successful establishment of
- a B-Channel-connection. (Response to ISDN_CMD_ACCEPTB or because the
- remote-station has initiated establishment)
-
- The HL driver should call this when the logical l2/l3 protocol
- connection on top of the physical B-channel is established.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_BCONN
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num = ASCII-String, containing type of connection (for analog
- modem only). This will be appended to the CONNECT message
- e.g. 14400/V.32bis
-
- ISDN_STAT_DHUP:
-
- With this call, the HL-driver signals the shutdown of a
- D-Channel-connection. This could be a response to a prior ISDN_CMD_HANGUP,
- or caused by a remote-hangup or if the remote-station has actively
- rejected a call.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DHUP
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_BHUP:
-
- With this call, the HL-driver signals the shutdown of a
- B-Channel-connection. This could be a response to a prior ISDN_CMD_HANGUP,
- or caused by a remote-hangup.
-
- The HL driver should call this as soon as the logical l2/l3 protocol
- connection on top of the physical B-channel is released.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_BHUP
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_CINF:
-
- With this call, the HL-driver delivers charge-unit information to the
- LL.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_CINF
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num = ASCII string containing charge-units (digits only).
-
- ISDN_STAT_LOAD: (currently unused)
-
- ISDN_STAT_UNLOAD:
-
- With this call, the HL-driver signals that it will be unloaded now. This
- tells the LL to release all corresponding data-structures.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_UNLOAD
- arg = unused.
- parm = unused.
-
- ISDN_STAT_BSENT:
-
- With this call the HL-driver signals the delivery of a data-packet.
- This callback is used by the network-interfaces only, tty-Emulation
- does not need this call.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_BSENT
- arg = channel-number, locally to the driver. (starting with 0)
- parm.length = ***CHANGEI.1.21: New field.
- the driver has to set this to the original length
- of the skb at the time of receiving it from the linklevel.
-
- ISDN_STAT_NODCH:
-
- With this call, the driver has to respond to a prior ISDN_CMD_DIAL, if
- no D-Channel is available.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_NODCH
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
- ISDN_STAT_ADDCH:
-
- This call is for HL-drivers, which are unable to check card-type
- or numbers of supported channels before they have loaded any firmware
- using ioctl. Those HL-driver simply set the channel-parameter to a
- minimum channel-number when registering, and later if they know
- the real amount, perform this call, allocating additional channels.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_ADDCH
- arg = number of channels to be added.
- parm = unused.
-
- ISDN_STAT_CAUSE:
-
- With this call, the HL-driver delivers CAUSE-messages to the LL.
- Currently the LL does not use this messages. Their contents is simply
- logged via kernel-messages. Therefore, currently the format of the
- messages is completely free. However they should be printable.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_NODCH
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num = ASCII string containing CAUSE-message.
-
- ISDN_STAT_DISPLAY:
-
- With this call, the HL-driver delivers DISPLAY-messages to the LL.
- Currently the LL does not use this messages.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DISPLAY
- arg = channel-number, locally to the driver. (starting with 0)
- para.display= string containing DISPLAY-message.
-
- ISDN_STAT_PROT:
-
- With this call, the HL-driver delivers protocol specific infos to the LL.
- The call is not implicitely bound to a connection.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_PROT
- arg = The lower 8 Bits define the addressed protocol as defined
- in ISDN_PTYPE..., the upper bits are used to differentiate
- the protocol specific STAT.
-
- para = protocol and function specific. See isdnif.h for detail.
-
- ISDN_STAT_DISCH:
-
- With this call, the HL-driver signals the LL to disable or enable the
- use of supplied channel and driver.
- The call may be used to reduce the available number of B-channels after
- loading the driver. The LL has to ignore a disabled channel when searching
- for free channels. The HL driver itself never delivers STAT callbacks for
- disabled channels.
- The LL returns a nonzero code if the operation was not successful or the
- selected channel is actually regarded as busy.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_DISCH
- arg = channel-number, locally to the driver. (starting with 0)
- parm.num[0] = 0 if channel shall be disabled, else enabled.
-
- ISDN_STAT_L1ERR:
-
- ***CHANGEI1.21 new status message.
- A signal can be sent to the linklevel if an Layer1-error results in
- packet-loss on receive or send. The field errcode of the cmd.parm
- union describes the error more precisely.
-
- Parameter:
- driver = driver-Id
- command = ISDN_STAT_L1ERR
- arg = channel-number, locally to the driver. (starting with 0)
- parm.errcode= ISDN_STAT_L1ERR_SEND: Packet lost while sending.
- ISDN_STAT_L1ERR_RECV: Packet lost while receiving.
- ISDN_STAT_FAXIND:
-
- With this call the HL-driver signals a fax sub-command to the LL.
- For details refer to INTERFACE.fax
-
- Parameter:
- driver = driver-Id.
- command = ISDN_STAT_FAXIND
- arg = channel-number, locally to the driver. (starting with 0)
- parm = unused.
-
diff --git a/Documentation/isdn/INTERFACE.fax b/Documentation/isdn/INTERFACE.fax
deleted file mode 100644
index 9c8c6d914ec7..000000000000
--- a/Documentation/isdn/INTERFACE.fax
+++ /dev/null
@@ -1,163 +0,0 @@
-$Id: INTERFACE.fax,v 1.2 2000/08/06 09:22:50 armin Exp $
-
-
-Description of the fax-subinterface between linklevel and hardwarelevel of
- isdn4linux.
-
- The communication between linklevel (LL) and hardwarelevel (HL) for fax
- is based on the struct T30_s (defined in isdnif.h).
- This struct is allocated in the LL.
- In order to use fax, the LL provides the pointer to this struct with the
- command ISDN_CMD_SETL3 (parm.fax). This pointer expires in case of hangup
- and when a new channel to a new connection is assigned.
-
-
-Data handling:
- In send-mode the HL-driver has to handle the <DLE> codes and the bit-order
- conversion by itself.
- In receive-mode the LL-driver takes care of the bit-order conversion
- (specified by +FBOR)
-
-Structure T30_s description:
-
- This structure stores the values (set by AT-commands), the remote-
- capability-values and the command-codes between LL and HL.
-
- If the HL-driver receives ISDN_CMD_FAXCMD, all needed information
- is in this struct set by the LL.
- To signal information to the LL, the HL-driver has to set the
- parameters and use ISDN_STAT_FAXIND.
- (Please refer to INTERFACE)
-
-Structure T30_s:
-
- All members are 8-bit unsigned (__u8)
-
- - resolution
- - rate
- - width
- - length
- - compression
- - ecm
- - binary
- - scantime
- - id[]
- Local faxmachine's parameters, set by +FDIS, +FDCS, +FLID, ...
-
- - r_resolution
- - r_rate
- - r_width
- - r_length
- - r_compression
- - r_ecm
- - r_binary
- - r_scantime
- - r_id[]
- Remote faxmachine's parameters. To be set by HL-driver.
-
- - phase
- Defines the actual state of fax connection. Set by HL or LL
- depending on progress and type of connection.
- If the phase changes because of an AT command, the LL driver
- changes this value. Otherwise the HL-driver takes care of it, but
- only necessary on call establishment (from IDLE to PHASE_A).
- (one of the constants ISDN_FAX_PHASE_[IDLE,A,B,C,D,E])
-
- - direction
- Defines outgoing/send or incoming/receive connection.
- (ISDN_TTY_FAX_CONN_[IN,OUT])
-
- - code
- Commands from LL to HL; possible constants :
- ISDN_TTY_FAX_DR signals +FDR command to HL
-
- ISDN_TTY_FAX_DT signals +FDT command to HL
-
- ISDN_TTY_FAX_ET signals +FET command to HL
-
-
- Other than that the "code" is set with the hangup-code value at
- the end of connection for the +FHNG message.
-
- - r_code
- Commands from HL to LL; possible constants :
- ISDN_TTY_FAX_CFR output of +FCFR message.
-
- ISDN_TTY_FAX_RID output of remote ID set in r_id[]
- (+FCSI/+FTSI on send/receive)
-
- ISDN_TTY_FAX_DCS output of +FDCS and CONNECT message,
- switching to phase C.
-
- ISDN_TTY_FAX_ET signals end of data,
- switching to phase D.
-
- ISDN_TTY_FAX_FCON signals the established, outgoing connection,
- switching to phase B.
-
- ISDN_TTY_FAX_FCON_I signals the established, incoming connection,
- switching to phase B.
-
- ISDN_TTY_FAX_DIS output of +FDIS message and values.
-
- ISDN_TTY_FAX_SENT signals that all data has been sent
- and <DLE><ETX> is acknowledged,
- OK message will be sent.
-
- ISDN_TTY_FAX_PTS signals a msg-confirmation (page sent successful),
- depending on fet value:
- 0: output OK message (more pages follow)
- 1: switching to phase B (next document)
-
- ISDN_TTY_FAX_TRAIN_OK output of +FDCS and OK message (for receive mode).
-
- ISDN_TTY_FAX_EOP signals end of data in receive mode,
- switching to phase D.
-
- ISDN_TTY_FAX_HNG output of the +FHNG and value set by code and
- OK message, switching to phase E.
-
-
- - badlin
- Value of +FBADLIN
-
- - badmul
- Value of +FBADMUL
-
- - bor
- Value of +FBOR
-
- - fet
- Value of +FET command in send-mode.
- Set by HL in receive-mode for +FET message.
-
- - pollid[]
- ID-string, set by +FCIG
-
- - cq
- Value of +FCQ
-
- - cr
- Value of +FCR
-
- - ctcrty
- Value of +FCTCRTY
-
- - minsp
- Value of +FMINSP
-
- - phcto
- Value of +FPHCTO
-
- - rel
- Value of +FREL
-
- - nbc
- Value of +FNBC (0,1)
- (+FNBC is not a known class 2 fax command, I added this to change the
- automatic "best capabilities" connection in the eicon HL-driver)
-
-
-Armin
-mac@melware.de
-
diff --git a/Documentation/isdn/README b/Documentation/isdn/README
deleted file mode 100644
index 74bd2bdb455b..000000000000
--- a/Documentation/isdn/README
+++ /dev/null
@@ -1,599 +0,0 @@
-README for the ISDN-subsystem
-
-1. Preface
-
- 1.1 Introduction
-
- This README describes how to set up and how to use the different parts
- of the ISDN-subsystem.
-
- For using the ISDN-subsystem, some additional userlevel programs are
- necessary. Those programs and some contributed utilities are available
- at
-
- ftp.isdn4linux.de
-
- /pub/isdn4linux/isdn4k-utils-<VersionNumber>.tar.gz
-
-
- We also have set up a mailing-list:
-
- The isdn4linux-project originates in Germany, and therefore by historical
- reasons, the mailing-list's primary language is german. However mails
- written in english have been welcome all the time.
-
- to subscribe: write a email to majordomo@listserv.isdn4linux.de,
- Subject irrelevant, in the message body:
- subscribe isdn4linux <your_email_address>
-
- To write to the mailing-list, write to isdn4linux@listserv.isdn4linux.de
-
- This mailinglist is bidirectionally gated to the newsgroup
-
- de.alt.comm.isdn4linux
-
- There is also a well maintained FAQ in English available at
- https://www.mhessler.de/i4lfaq/
- It can be viewed online, or downloaded in sgml/text/html format.
- The FAQ can also be viewed online at
- https://www.isdn4linux.de/faq/i4lfaq.html
- or downloaded from
- ftp://ftp.isdn4linux.de/pub/isdn4linux/FAQ/
-
- 1.1 Technical details
-
- In the following Text, the terms MSN and EAZ are used.
-
- MSN is the abbreviation for (M)ultiple(S)ubscriber(N)umber, and applies
- to Euro(EDSS1)-type lines. Usually it is simply the phone number.
-
- EAZ is the abbreviation of (E)ndgeraete(A)uswahl(Z)iffer and
- applies to German 1TR6-type lines. This is a one-digit string,
- simply appended to the base phone number
-
- The internal handling is nearly identical, so replace the appropriate
- term to that one, which applies to your local ISDN-environment.
-
- When the link-level-module isdn.o is loaded, it supports up to 16
- low-level-modules with up to 64 channels. (The number 64 is arbitrarily
- chosen and can be configured at compile-time --ISDN_MAX in isdn.h).
- A low-level-driver can register itself through an interface (which is
- defined in isdnif.h) and gets assigned a slot.
- The following char-devices are made available for each channel:
-
- A raw-control-device with the following functions:
- write: raw D-channel-messages (format: depends on driver).
- read: raw D-channel-messages (format: depends on driver).
- ioctl: depends on driver, i.e. for the ICN-driver, the base-address of
- the ports and the shared memory on the card can be set and read
- also the boot-code and the protocol software can be loaded into
- the card.
-
- O N L Y !!! for debugging (no locking against other devices):
- One raw-data-device with the following functions:
- write: data to B-channel.
- read: data from B-channel.
-
- In addition the following devices are made available:
-
- 128 tty-devices (64 cuix and 64 ttyIx) with integrated modem-emulator:
- The functionality is almost the same as that of a serial device
- (the line-discs are handled by the kernel), which lets you run
- SLIP, CSLIP and asynchronous PPP through the devices. We have tested
- Seyon, minicom, CSLIP (uri-dip) PPP, mgetty, XCept and Hylafax.
-
- The modem-emulation supports the following:
- 1.3.1 Commands:
-
- ATA Answer incoming call.
- ATD<No.> Dial, the number may contain:
- [0-9] and [,#.*WPT-S]
- the latter are ignored until 'S'.
- The 'S' must precede the number, if
- the line is a SPV (German 1TR6).
- ATE0 Echo off.
- ATE1 Echo on (default).
- ATH Hang-up.
- ATH1 Off hook (ignored).
- ATH0 Hang-up.
- ATI Return "ISDN for Linux...".
- ATI0 "
- ATI1 "
- ATI2 Report of last connection.
- ATO On line (data mode).
- ATQ0 Enable result codes (default).
- ATQ1 Disable result codes (default).
- ATSx=y Set register x to y.
- ATSx? Show contents of register x.
- ATV0 Numeric responses.
- ATV1 English responses (default).
- ATZ Load registers and EAZ/MSN from Profile.
- AT&Bx Set Send-Packet-size to x (max. 4000)
- The real packet-size may be limited by the
- low-level-driver used. e.g. the HiSax-Module-
- limit is 2000. You will get NO Error-Message,
- if you set it to higher values, because at the
- time of giving this command the corresponding
- driver may not be selected (see "Automatic
- Assignment") however the size of outgoing packets
- will be limited correctly.
- AT&D0 Ignore DTR
- AT&D2 DTR-low-edge: Hang up and return to
- command mode (default).
- AT&D3 Same as AT&D2 but also resets all registers.
- AT&Ex Set the EAZ/MSN for this channel to x.
- AT&F Reset all registers and profile to "factory-defaults"
- AT&Lx Set list of phone numbers to listen on. x is a
- list of wildcard patterns separated by semicolon.
- If this is set, it has precedence over the MSN set
- by AT&E.
- AT&Rx Select V.110 bitrate adaption.
- This command enables V.110 protocol with 9600 baud
- (x=9600), 19200 baud (x=19200) or 38400 baud
- (x=38400). A value of x=0 disables V.110 switching
- back to default X.75. This command sets the following
- Registers:
- Reg 14 (Layer-2 protocol):
- x = 0: 0
- x = 9600: 7
- x = 19200: 8
- x = 38400: 9
- Reg 18.2 = 1
- Reg 19 (Additional Service Indicator):
- x = 0: 0
- x = 9600: 197
- x = 19200: 199
- x = 38400: 198
- Note on value in Reg 19:
- There is _NO_ common convention for 38400 baud.
- The value 198 is chosen arbitrarily. Users
- _MUST_ negotiate this value before establishing
- a connection.
- AT&Sx Set window-size (x = 1..8) (not yet implemented)
- AT&V Show all settings.
- AT&W0 Write registers and EAZ/MSN to profile. See also
- iprofd (5.c in this README).
- AT&X0 BTX-mode and T.70-mode off (default)
- AT&X1 BTX-mode on. (S13.1=1, S13.5=0 S14=0, S16=7, S18=7, S19=0)
- AT&X2 T.70-mode on. (S13.1=1, S13.5=1, S14=0, S16=7, S18=7, S19=0)
- AT+Rx Resume a suspended call with CallID x (x = 1,2,3...)
- AT+Sx Suspend a call with CallID x (x = 1,2,3...)
-
- For voice-mode commands refer to README.audio
-
- 1.3.2 Escape sequence:
- During a connection, the emulation reacts just like
- a normal modem to the escape sequence <DELAY>+++<DELAY>.
- (The escape character - default '+' - can be set in the
- register 2).
- The DELAY must at least be 1.5 seconds long and delay
- between the escape characters must not exceed 0.5 seconds.
-
- 1.3.3 Registers:
-
- Nr. Default Description
- 0 0 Answer on ring number.
- (no auto-answer if S0=0).
- 1 0 Count of rings.
- 2 43 Escape character.
- (a value >= 128 disables the escape sequence).
- 3 13 Carriage return character (ASCII).
- 4 10 Line feed character (ASCII).
- 5 8 Backspace character (ASCII).
- 6 3 Delay in seconds before dialing.
- 7 60 Wait for carrier.
- 8 2 Pause time for comma (ignored)
- 9 6 Carrier detect time (ignored)
- 10 7 Carrier loss to disconnect time (ignored).
- 11 70 Touch tone timing (ignored).
- 12 69 Bit coded register:
- Bit 0: 0 = Suppress response messages.
- 1 = Show response messages.
- Bit 1: 0 = English response messages.
- 1 = Numeric response messages.
- Bit 2: 0 = Echo off.
- 1 = Echo on.
- Bit 3 0 = DCD always on.
- 1 = DCD follows carrier.
- Bit 4 0 = CTS follows RTS
- 1 = Ignore RTS, CTS always on.
- Bit 5 0 = return to command mode on DTR low.
- 1 = Same as 0 but also resets all
- registers.
- See also register 13, bit 2
- Bit 6 0 = DSR always on.
- 1 = DSR only on if channel is available.
- Bit 7 0 = Cisco-PPP-flag-hack off (default).
- 1 = Cisco-PPP-flag-hack on.
- 13 0 Bit coded register:
- Bit 0: 0 = Use delayed tty-send-algorithm
- 1 = Direct tty-send.
- Bit 1: 0 = T.70 protocol (Only for BTX!) off
- 1 = T.70 protocol (Only for BTX!) on
- Bit 2: 0 = Don't hangup on DTR low.
- 1 = Hangup on DTR low.
- Bit 3: 0 = Standard response messages
- 1 = Extended response messages
- Bit 4: 0 = CALLER NUMBER before every RING.
- 1 = CALLER NUMBER after first RING.
- Bit 5: 0 = T.70 extended protocol off
- 1 = T.70 extended protocol on
- Bit 6: 0 = Special RUNG Message off
- 1 = Special RUNG Message on
- "RUNG" is delivered on a ttyI, if
- an incoming call happened (RING) and
- the remote party hung up before any
- local ATA was given.
- Bit 7: 0 = Don't show display messages from net
- 1 = Show display messages from net
- (S12 Bit 1 must be 0 too)
- 14 0 Layer-2 protocol:
- 0 = X75/LAPB with I-frames
- 1 = X75/LAPB with UI-frames
- 2 = X75/LAPB with BUI-frames
- 3 = HDLC
- 4 = Transparent (audio)
- 7 = V.110, 9600 baud
- 8 = V.110, 19200 baud
- 9 = V.110, 38400 baud
- 10 = Analog Modem (only if hardware supports this)
- 11 = Fax G3 (only if hardware supports this)
- 15 0 Layer-3 protocol:
- 0 = transparent
- 1 = transparent with audio features (e.g. DSP)
- 2 = Fax G3 Class 2 commands (S14 has to be set to 11)
- 3 = Fax G3 Class 1 commands (S14 has to be set to 11)
- 16 250 Send-Packet-size/16
- 17 8 Window-size (not yet implemented)
- 18 4 Bit coded register, Service-Octet-1 to accept,
- or to be used on dialout:
- Bit 0: Service 1 (audio) when set.
- Bit 1: Service 5 (BTX) when set.
- Bit 2: Service 7 (data) when set.
- Note: It is possible to set more than one
- bit. In this case, on incoming calls
- the selected services are accepted,
- and if the service is "audio", the
- Layer-2-protocol is automatically
- changed to 4 regardless of the setting
- of register 14. On outgoing calls,
- the most significant 1-bit is chosen to
- select the outgoing service octet.
- 19 0 Service-Octet-2
- 20 0 Bit coded register (readonly)
- Service-Octet-1 of last call.
- Bit mapping is the same as register 18
- 21 0 Bit coded register (readonly)
- Set on incoming call (during RING) to
- octet 3 of calling party number IE (Numbering plan)
- See section 4.5.10 of ITU Q.931
- 22 0 Bit coded register (readonly)
- Set on incoming call (during RING) to
- octet 3a of calling party number IE (Screening info)
- See section 4.5.10 of ITU Q.931
- 23 0 Bit coded register:
- Bit 0: 0 = Add CPN to RING message off
- 1 = Add CPN to RING message on
- Bit 1: 0 = Add CPN to FCON message off
- 1 = Add CPN to FCON message on
- Bit 2: 0 = Add CDN to RING/FCON message off
- 1 = Add CDN to RING/FCON message on
-
- Last but not least a (at the moment fairly primitive) device to request
- the line-status (/dev/isdninfo) is made available.
-
- Automatic assignment of devices to lines:
-
- All inactive physical lines are listening to all EAZs for incoming
- calls and are NOT assigned to a specific tty or network interface.
- When an incoming call is detected, the driver looks first for a network
- interface and then for an opened tty which:
-
- 1. is configured for the same EAZ.
- 2. has the same protocol settings for the B-channel.
- 3. (only for network interfaces if the security flag is set)
- contains the caller number in its access list.
- 4. Either the channel is not bound exclusively to another Net-interface, or
- it is bound AND the other checks apply to exactly this interface.
- (For usage of the bind-features, refer to the isdnctrl-man-page)
-
- Only when a matching interface or tty is found is the call accepted
- and the "connection" between the low-level-layer and the link-level-layer
- is established and kept until the end of the connection.
- In all other cases no connection is established. Isdn4linux can be
- configured to either do NOTHING in this case (which is useful, if
- other, external devices with the same EAZ/MSN are connected to the bus)
- or to reject the call actively. (isdnctrl busreject ...)
-
- For an outgoing call, the inactive physical lines are searched.
- The call is placed on the first physical line, which supports the
- requested protocols for the B-channel. If a net-interface, however
- is pre-bound to a channel, this channel is used directly.
-
- This makes it possible to configure several network interfaces and ttys
- for one EAZ, if the network interfaces are set to secure operation.
- If an incoming call matches one network interface, it gets connected to it.
- If another incoming call for the same EAZ arrives, which does not match
- a network interface, the first tty gets a "RING" and so on.
-
-2 System prerequisites:
-
- ATTENTION!
-
- Always use the latest module utilities. The current version is
- named in Documentation/Changes. Some old versions of insmod
- are not capable of setting the driver-Ids correctly.
-
-3. Lowlevel-driver configuration.
-
- Configuration depends on how the drivers are built. See the
- README.<yourDriver> for information on driver-specific setup.
-
-4. Device-inodes
-
- The major and minor numbers and their names are described in
- Documentation/admin-guide/devices.rst. The major numbers are:
-
- 43 for the ISDN-tty's.
- 44 for the ISDN-callout-tty's.
- 45 for control/info/debug devices.
-
-5. Application
-
- a) For some card-types, firmware has to be loaded into the cards, before
- proceeding with device-independent setup. See README.<yourDriver>
- for how to do that.
-
- b) If you only intend to use ttys, you are nearly ready now.
-
- c) If you want to have really permanent "Modem"-settings on disk, you
- can start the daemon iprofd. Give it a path to a file at the command-
- line. It will store the profile-settings in this file every time
- an AT&W0 is performed on any ISDN-tty. If the file already exists,
- all profiles are initialized from this file. If you want to unload
- any of the modules, kill iprofd first.
-
- d) For networking, continue: Create an interface:
- isdnctrl addif isdn0
-
- e) Set the EAZ (or MSN for Euro-ISDN):
- isdnctrl eaz isdn0 2
-
- (For 1TR6 a single digit is allowed, for Euro-ISDN the number is your
- real MSN e.g.: Phone-Number)
-
- f) Set the number for outgoing calls on the interface:
- isdnctrl addphone isdn0 out 1234567
- ... (this can be executed more than once, all assigned numbers are
- tried in order)
- and the number(s) for incoming calls:
- isdnctrl addphone isdn0 in 1234567
-
- g) Set the timeout for hang-up:
- isdnctrl huptimeout isdn0 <timeout_in_seconds>
-
- h) additionally you may activate charge-hang-up (= Hang up before
- next charge-info, this only works, if your isdn-provider transmits
- the charge-info during and after the connection):
- isdnctrl chargehup isdn0 on
-
- i) Set the dial mode of the interface:
- isdnctrl dialmode isdn0 auto
- "off" means that you (or the system) cannot make any connection
- (neither incoming or outgoing connections are possible). Use
- this if you want to be sure that no connections will be made.
- "auto" means that the interface is in auto-dial mode, and will
- attempt to make a connection whenever a network data packet needs
- the interface's link. Note that this can cause unexpected dialouts,
- and lead to a high phone bill! Some daemons or other pc's that use
- this interface can cause this.
- Incoming connections are also possible.
- "manual" is a dial mode created to prevent the unexpected dialouts.
- In this mode, the interface will never make any connections on its
- own. You must explicitly initiate a connection with "isdnctrl dial
- isdn0". However, after an idle time of no traffic as configured for
- the huptimeout value with isdnctrl, the connection _will_ be ended.
- If you don't want any automatic hangup, set the huptimeout value to 0.
- "manual" is the default.
-
- j) Setup the interface with ifconfig as usual, and set a route to it.
-
- k) (optional) If you run X11 and have Tcl/Tk-wish version 4.0, you can use
- the script tools/tcltk/isdnmon. You can add actions for line-status
- changes. See the comments at the beginning of the script for how to
- do that. There are other tty-based tools in the tools-subdirectory
- contributed by Michael Knigge (imon), Volker Götz (imontty) and
- Andreas Kool (isdnmon).
-
- l) For initial testing, you can set the verbose-level to 2 (default: 0).
- Then all incoming calls are logged, even if they are not addressed
- to one of the configured net-interfaces:
- isdnctrl verbose 2
-
- Now you are ready! A ping to the set address should now result in an
- automatic dial-out (look at syslog kernel-messages).
- The phone numbers and EAZs can be assigned at any time with isdnctrl.
- You can add as many interfaces as you like with addif following the
- directions above. Of course, there may be some limitations. But we have
- tested as many as 20 interfaces without any problem. However, if you
- don't give an interface name to addif, the kernel will assign a name
- which starts with "eth". The number of "eth"-interfaces is limited by
- the kernel.
-
-5. Additional options for isdnctrl:
-
- "isdnctrl secure <InterfaceName> on"
- Only incoming calls, for which the caller-id is listed in the access
- list of the interface are accepted. You can add caller-id's With the
- command "isdnctrl addphone <InterfaceName> in <caller-id>"
- Euro-ISDN does not transmit the leading '0' of the caller-id for an
- incoming call, therefore you should configure it accordingly.
- If the real number for the dialout e.g. is "09311234567" the number
- to configure here is "9311234567". The pattern-match function
- works similar to the shell mechanism.
-
- ? one arbitrary digit
- * zero or arbitrary many digits
- [123] one of the digits in the list
- [1-5] one digit between '1' and '5'
- a '^' as the first character in a list inverts the list
-
-
- "isdnctrl secure <InterfaceName> off"
- Switch off secure operation (default).
-
- "isdnctrl ihup <InterfaceName> [on|off]"
- Switch the hang-up-timer for incoming calls on or off.
-
- "isdnctrl eaz <InterfaceName>"
- Returns the EAZ of an interface.
-
- "isdnctrl delphone <InterfaceName> in|out <number>"
- Deletes a number from one of the access-lists of the interface.
-
- "isdnctrl delif <InterfaceName>"
- Removes the interface (and possible slaves) from the kernel.
- (You have to unregister it with "ifconfig <InterfaceName> down" before).
-
- "isdnctrl callback <InterfaceName> [on|off]"
- Switches an interface to callback-mode. In this mode, an incoming call
- will be rejected and after this the remote-station will be called. If
- you test this feature by using ping, some routers will re-dial very
- quickly, so that the callback from isdn4linux may not be recognized.
- In this case use ping with the option -i <sec> to increase the interval
- between echo-packets.
-
- "isdnctrl cbdelay <InterfaceName> [seconds]"
- Sets the delay (default 5 sec) between an incoming call and start of
- dialing when callback is enabled.
-
- "isdnctrl cbhup <InterfaceName> [on|off]"
- This enables (default) or disables an active hangup (reject) when getting an
- incoming call for an interface which is configured for callback.
-
- "isdnctrl encap <InterfaceName> <EncapType>"
- Selects the type of packet-encapsulation. The encapsulation can be changed
- only while an interface is down.
-
- At the moment the following values are supported:
-
- rawip (Default) Selects raw-IP-encapsulation. This means, MAC-headers
- are stripped off.
- ip IP with type-field. Same as IP but the type-field of the MAC-header
- is preserved.
- x25iface X.25 interface encapsulation (first byte semantics as defined in
- ../networking/x25-iface.txt). Use this for running the linux
- X.25 network protocol stack (AF_X25 sockets) on top of isdn.
- cisco-h A special-mode for communicating with a Cisco, which is configured
- to do "hdlc"
- ethernet No stripping. Packets are sent with full MAC-header.
- The Ethernet-address of the interface is faked, from its
- IP-address: fc:fc:i1:i2:i3:i4, where i1-4 are the IP-addr.-values.
- syncppp Synchronous PPP
-
- uihdlc HDLC with UI-frame-header (for use with DOS ISPA, option -h1)
-
-
- NOTE: x25iface encapsulation is currently experimental. Please
- read README.x25 for further details
-
-
- Watching packets, using standard-tcpdump will fail for all encapsulations
- except ethernet because tcpdump does not know how to handle packets
- without MAC-header. A patch for tcpdump is included in the utility-package
- mentioned above.
-
- "isdnctrl l2_prot <InterfaceName> <L2-ProtocolName>"
- Selects a layer-2-protocol.
- (With the ICN-driver and the HiSax-driver, "x75i" and "hdlc" is available.
- With other drivers, "x75ui", "x75bui", "x25dte", "x25dce" may be
- possible too. See README.x25 for x25 related l2 protocols.)
-
- isdnctrl l3_prot <InterfaceName> <L3-ProtocolName>
- The same for layer-3. (At the moment only "trans" is allowed)
-
- "isdnctrl list <InterfaceName>"
- Shows all parameters of an interface and the charge-info.
- Try "all" as the interface name.
-
- "isdnctrl hangup <InterfaceName>"
- Forces hangup of an interface.
-
- "isdnctrl bind <InterfaceName> <DriverId>,<ChannelNumber> [exclusive]"
- If you are using more than one ISDN card, it is sometimes necessary to
- dial out using a specific card or even preserve a specific channel for
- dialout of a specific net-interface. This can be done with the above
- command. Replace <DriverId> by whatever you assigned while loading the
- module. The <ChannelNumber> is counted from zero. The upper limit
- depends on the card used. At the moment no card supports more than
- 2 channels, so the upper limit is one.
-
- "isdnctrl unbind <InterfaceName>"
- unbinds a previously bound interface.
-
- "isdnctrl busreject <DriverId> on|off"
- If switched on, isdn4linux replies a REJECT to incoming calls, it
- cannot match to any configured interface.
- If switched off, nothing happens in this case.
- You normally should NOT enable this feature, if the ISDN adapter is not
- the only device connected to the S0-bus. Otherwise it could happen that
- isdn4linux rejects an incoming call, which belongs to another device on
- the bus.
-
- "isdnctrl addslave <InterfaceName> <SlaveName>
- Creates a slave interface for channel-bundling. Slave interfaces are
- not seen by the kernel, but their ISDN-part can be configured with
- isdnctrl as usual. (Phone numbers, EAZ/MSN, timeouts etc.) If more
- than two channels are to be bundled, feel free to create as many as you
- want. InterfaceName must be a real interface, NOT a slave. Slave interfaces
- start dialing, if the master interface resp. the previous slave interface
- has a load of more than 7000 cps. They hangup if the load goes under 7000
- cps, according to their "huptimeout"-parameter.
-
- "isdnctrl sdelay <InterfaceName> secs."
- This sets the minimum time an Interface has to be fully loaded, until
- it sends a dial-request to its slave.
-
- "isdnctrl dial <InterfaceName>"
- Forces an interface to start dialing even if no packets are to be
- transferred.
-
- "isdnctrl mapping <DriverId> MSN0,MSN1,MSN2,...MSN9"
- This installs a mapping table for EAZ<->MSN-mapping for a single line.
- Missing MSN's have to be given as "-" or can be omitted, if at the end
- of the commandline.
- With this command, it's now possible to have an interface listening to
- mixed 1TR6- and Euro-Type lines. In this case, the interface has to be
- configured to a 1TR6-type EAZ (one digit). The mapping is also valid
- for tty-emulation. Seen from the interface/tty-level the mapping
- CAN be used, however it's possible to use single tty's/interfaces with
- real MSN's (more digits) also, in which case the mapping will be ignored.
- Here is an example:
-
- You have a 1TR6-type line with base-nr. 1234567 and a Euro-line with
- MSN's 987654, 987655 and 987656. The DriverId for the Euro-line is "EURO".
-
- isdnctrl mapping EURO -,987654,987655,987656,-,987655
- ...
- isdnctrl eaz isdn0 1 # listen on 12345671(1tr6) and 987654(euro)
- ...
- isdnctrl eaz isdn1 4 # listen on 12345674(1tr6) only.
- ...
- isdnctrl eaz isdn2 987654 # listen on 987654(euro) only.
-
- Same scheme is used with AT&E... at the tty's.
-
-6. If you want to write a new low-level-driver, you are welcome.
- The interface to the link-level-module is described in the file INTERFACE.
- If the interface should be expanded for any reason, don't do it
- on your own, send me a mail containing the proposed changes and
- some reasoning about them.
- If other drivers will not be affected, I will include the changes
- in the next release.
- For developers only, there is a second mailing-list. Write to me
- (fritz@isdn4linux.de), if you want to join that list.
-
-Have fun!
-
- -Fritz
-
diff --git a/Documentation/isdn/README.FAQ b/Documentation/isdn/README.FAQ
deleted file mode 100644
index e5dd1addacdd..000000000000
--- a/Documentation/isdn/README.FAQ
+++ /dev/null
@@ -1,26 +0,0 @@
-
-The FAQ for isdn4linux
-======================
-
-Please note that there is a big FAQ available in the isdn4k-utils.
-You find it in:
- isdn4k-utils/FAQ/i4lfaq.sgml
-
-In case you just want to see the FAQ online, or download the newest version,
-you can have a look at my website:
-https://www.mhessler.de/i4lfaq/ (view + download)
-or:
-https://www.isdn4linux.de/faq/4lfaq.html (view)
-
-As the extension tells, the FAQ is in SGML format, and you can convert it
-into text/html/... format by using the sgml2txt/sgml2html/... tools.
-Alternatively, you can also do a 'configure; make all' in the FAQ directory.
-
-
-Please have a look at the FAQ before posting anything in the Mailinglist,
-or the newsgroup!
-
-
-Matthias Hessler
-hessler@isdn4linux.de
-
diff --git a/Documentation/isdn/README.HiSax b/Documentation/isdn/README.HiSax
deleted file mode 100644
index b1a573cf4472..000000000000
--- a/Documentation/isdn/README.HiSax
+++ /dev/null
@@ -1,659 +0,0 @@
-HiSax is a Linux hardware-level driver for passive ISDN cards with Siemens
-chipset (ISAC_S 2085/2086/2186, HSCX SAB 82525). It is based on the Teles
-driver from Jan den Ouden.
-It is meant to be used with isdn4linux, an ISDN link-level module for Linux
-written by Fritz Elfert.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-
-
-Supported cards
----------------
-
-Teles 8.0/16.0/16.3 and compatible ones
-Teles 16.3c
-Teles S0/PCMCIA
-Teles PCI
-Teles S0Box
-Creatix S0Box
-Creatix PnP S0
-Compaq ISDN S0 ISA card
-AVM A1 (Fritz, Teledat 150)
-AVM Fritz PCMCIA
-AVM Fritz PnP
-AVM Fritz PCI
-ELSA Microlink PCC-16, PCF, PCF-Pro, PCC-8
-ELSA Quickstep 1000
-ELSA Quickstep 1000PCI
-ELSA Quickstep 3000 (same settings as QS1000)
-ELSA Quickstep 3000PCI
-ELSA PCMCIA
-ITK ix1-micro Rev.2
-Eicon Diva 2.0 ISA and PCI (S0 and U interface, no PRO version)
-Eicon Diva 2.01 ISA and PCI
-Eicon Diva 2.02 PCI
-Eicon Diva Piccola
-ASUSCOM NETWORK INC. ISDNLink 128K PC adapter (order code I-IN100-ST-D)
-Dynalink IS64PH (OEM version of ASUSCOM NETWORK INC. ISDNLink 128K adapter)
-PCBIT-DP (OEM version of ASUSCOM NETWORK INC. ISDNLink)
-HFC-2BS0 based cards (TeleInt SA1)
-Sedlbauer Speed Card (Speed Win, Teledat 100, PCI, Fax+)
-Sedlbauer Speed Star/Speed Star2 (PCMCIA)
-Sedlbauer ISDN-Controller PC/104
-USR Sportster internal TA (compatible Stollmann tina-pp V3)
-USR internal TA PCI
-ith Kommunikationstechnik GmbH MIC 16 ISA card
-Traverse Technologie NETjet PCI S0 card and NETspider U card
-Ovislink ISDN sc100-p card (NETjet driver)
-Dr. Neuhaus Niccy PnP/PCI
-Siemens I-Surf 1.0
-Siemens I-Surf 2.0 (with IPAC, try type 12 asuscom)
-ACER P10
-HST Saphir
-Berkom Telekom A4T
-Scitel Quadro
-Gazel ISDN cards
-HFC-PCI based cards
-Winbond W6692 based cards
-HFC-S+, HFC-SP/PCMCIA cards
-formula-n enternow
-Gerdes Power ISDN
-
-Note: PCF, PCF-Pro: up to now, only the ISDN part is supported
- PCC-8: not tested yet
- Eicon.Diehl Diva U interface not tested
-
-If you know other passive cards with the Siemens chipset, please let me know.
-You can combine any card, if there is no conflict between the resources
-(io, mem, irq).
-
-
-Configuring the driver
-----------------------
-
-The HiSax driver can either be built directly into the kernel or as a module.
-It can be configured using the command line feature while loading the kernel
-with LILO or LOADLIN or, if built as a module, using insmod/modprobe with
-parameters.
-There is also some config needed before you compile the kernel and/or
-modules. It is included in the normal "make [menu]config" target at the
-kernel. Don't forget it, especially to select the right D-channel protocol.
-
-Please note: In older versions of the HiSax driver, all PnP cards
-needed to be configured with isapnp and worked only with the HiSax
-driver used as a module.
-
-In the current version, HiSax will automatically use the in-kernel
-ISAPnP support, provided you selected it during kernel configuration
-(CONFIG_ISAPNP), if you don't give the io=, irq= command line parameters.
-
-The affected card types are: 4,7,12,14,19,27-30
-
-a) when built as a module
--------------------------
-
-insmod/modprobe hisax.o \
- io=iobase irq=IRQ mem=membase type=card_type \
- protocol=D_channel_protocol id=idstring
-
-or, if several cards are installed:
-
-insmod/modprobe hisax.o \
- io=iobase1,iobase2,... irq=IRQ1,IRQ2,... mem=membase1,membase2,... \
- type=card_type1,card_type2,... \
- protocol=D_channel_protocol1,D_channel_protocol2,... \
- id=idstring1%idstring2 ...
-
-where "iobaseN" represents the I/O base address of the Nth card, "membaseN"
-the memory base address of the Nth card, etc.
-
-The reason for the delimiter "%" being used in the idstrings is that ","
-won't work with the current modules package.
-
-The parameters may be specified in any order. For example, the "io"
-parameter may precede the "irq" parameter, or vice versa. If several
-cards are installed, the ordering within the comma separated parameter
-lists must of course be consistent.
-
-Only parameters applicable to the card type need to be specified. For
-example, the Teles 16.3 card is not memory-mapped, so the "mem"
-parameter may be omitted for this card. Sometimes it may be necessary
-to specify a dummy parameter, however. This is the case when there is
-a card of a different type later in the list that needs a parameter
-which the preceding card does not. For instance, if a Teles 16.0 card
-is listed after a Teles 16.3 card, a dummy memory base parameter of 0
-must be specified for the 16.3. Instead of a dummy value, the parameter
-can also be skipped by simply omitting the value. For example:
-mem=,0xd0000. See example 6 below.
-
-The parameter for the D-Channel protocol may be omitted if you selected the
-correct one during kernel config. Valid values are "1" for German 1TR6,
-"2" for EDSS1 (Euro ISDN), "3" for leased lines (no D-Channel) and "4"
-for US NI1.
-With US NI1 you have to include your SPID into the MSN setting in the form
-<MSN>:<SPID> for example (your phonenumber is 1234 your SPID 5678):
-AT&E1234:5678 on ttyI interfaces
-isdnctrl eaz ippp0 1234:5678 on network devices
-
-The Creatix/Teles PnP cards use io1= and io2= instead of io= for specifying
-the I/O addresses of the ISAC and HSCX chips, respectively.
-
-Card types:
-
- Type Required parameters (in addition to type and protocol)
-
- 1 Teles 16.0 irq, mem, io
- 2 Teles 8.0 irq, mem
- 3 Teles 16.3 (non PnP) irq, io
- 4 Creatix/Teles PnP irq, io0 (ISAC), io1 (HSCX)
- 5 AVM A1 (Fritz) irq, io
- 6 ELSA PCC/PCF cards io or nothing for autodetect (the iobase is
- required only if you have more than one ELSA
- card in your PC)
- 7 ELSA Quickstep 1000 irq, io (from isapnp setup)
- 8 Teles 16.3 PCMCIA irq, io
- 9 ITK ix1-micro Rev.2 irq, io
- 10 ELSA PCMCIA irq, io (set with card manager)
- 11 Eicon.Diehl Diva ISA PnP irq, io
- 11 Eicon.Diehl Diva PCI no parameter
- 12 ASUS COM ISDNLink irq, io (from isapnp setup)
- 13 HFC-2BS0 based cards irq, io
- 14 Teles 16.3c PnP irq, io
- 15 Sedlbauer Speed Card irq, io
- 15 Sedlbauer PC/104 irq, io
- 15 Sedlbauer Speed PCI no parameter
- 16 USR Sportster internal irq, io
- 17 MIC card irq, io
- 18 ELSA Quickstep 1000PCI no parameter
- 19 Compaq ISDN S0 ISA card irq, io0, io1, io (from isapnp setup io=IO2)
- 20 NETjet PCI card no parameter
- 21 Teles PCI no parameter
- 22 Sedlbauer Speed Star (PCMCIA) irq, io (set with card manager)
- 24 Dr. Neuhaus Niccy PnP irq, io0, io1 (from isapnp setup)
- 24 Dr. Neuhaus Niccy PCI no parameter
- 25 Teles S0Box irq, io (of the used lpt port)
- 26 AVM A1 PCMCIA (Fritz!) irq, io (set with card manager)
- 27 AVM PnP (Fritz!PnP) irq, io (from isapnp setup)
- 27 AVM PCI (Fritz!PCI) no parameter
- 28 Sedlbauer Speed Fax+ irq, io (from isapnp setup)
- 29 Siemens I-Surf 1.0 irq, io, memory (from isapnp setup)
- 30 ACER P10 irq, io (from isapnp setup)
- 31 HST Saphir irq, io
- 32 Telekom A4T none
- 33 Scitel Quadro subcontroller (4*S0, subctrl 1...4)
- 34 Gazel ISDN cards (ISA) irq,io
- 34 Gazel ISDN cards (PCI) none
- 35 HFC 2BDS0 PCI none
- 36 W6692 based PCI cards none
- 37 HFC 2BDS0 S+, SP irq,io
- 38 NETspider U PCI card none
- 39 HFC 2BDS0 SP/PCMCIA irq,io (set with cardmgr)
- 40 hotplug interface
- 41 Formula-n enter:now PCI none
-
-At the moment IRQ sharing is only possible with PCI cards. Please make sure
-that your IRQ is free and enabled for ISA use.
-
-
-Examples for module loading
-
-1. Teles 16.3, Euro ISDN, I/O base 280 hex, IRQ 10
- modprobe hisax type=3 protocol=2 io=0x280 irq=10
-
-2. Teles 16.0, 1TR6 ISDN, I/O base d80 hex, IRQ 5, Memory d0000 hex
- modprobe hisax protocol=1 type=1 io=0xd80 mem=0xd0000 irq=5
-
-3. Fritzcard, Euro ISDN, I/O base 340 hex, IRQ 10 and ELSA PCF, Euro ISDN
- modprobe hisax type=5,6 protocol=2,2 io=0x340 irq=10 id=Fritz%Elsa
-
-4. Any ELSA PCC/PCF card, Euro ISDN
- modprobe hisax type=6 protocol=2
-
-5. Teles 16.3 PnP, Euro ISDN, with isapnp configured
- isapnp config: (INT 0 (IRQ 10 (MODE +E)))
- (IO 0 (BASE 0x0580))
- (IO 1 (BASE 0x0180))
- modprobe hisax type=4 protocol=2 irq=10 io0=0x580 io1=0x180
-
- In the current version of HiSax, you can instead simply use
-
- modprobe hisax type=4 protocol=2
-
- if you configured your kernel for ISAPnP. Don't run isapnp in
- this case!
-
-6. Teles 16.3, Euro ISDN, I/O base 280 hex, IRQ 12 and
- Teles 16.0, 1TR6, IRQ 5, Memory d0000 hex
- modprobe hisax type=3,1 protocol=2,1 io=0x280 mem=0,0xd0000
-
- Please note the dummy 0 memory address for the Teles 16.3, used as a
- placeholder as described above, in the last example.
-
-7. Teles PCMCIA, Euro ISDN, I/O base 180 hex, IRQ 15 (default values)
- modprobe hisax type=8 protocol=2 io=0x180 irq=15
-
-
-b) using LILO/LOADLIN, with the driver compiled directly into the kernel
-------------------------------------------------------------------------
-
-hisax=typ1,dp1,pa_1,pb_1,pc_1[,typ2,dp2,pa_2 ... \
- typn,dpn,pa_n,pb_n,pc_n][,idstring1[,idstring2,...,idstringn]]
-
-where
- typ1 = type of 1st card (default depends on kernel settings)
- dp1 = D-Channel protocol of 1st card. 1=1TR6, 2=EDSS1, 3=leased
- pa_1 = 1st parameter (depending on the type of the card)
- pb_1 = 2nd parameter ( " " " " " " " )
- pc_1 = 3rd parameter ( " " " " " " " )
-
- typ2,dp2,pa_2,pb_2,pc_2 = Parameters of the second card (defaults: none)
- typn,dpn,pa_n,pb_n,pc_n = Parameters of the n'th card (up to 16 cards are
- supported)
-
- idstring = Driver ID for accessing the particular card with utility
- programs and for identification when using a line monitor
- (default: "HiSax")
-
- Note: the ID string must start with an alphabetical character!
-
-Card types:
-
-type
- 1 Teles 16.0 pa=irq pb=membase pc=iobase
- 2 Teles 8.0 pa=irq pb=membase
- 3 Teles 16.3 pa=irq pb=iobase
- 4 Creatix/Teles PNP ONLY WORKS AS A MODULE !
- 5 AVM A1 (Fritz) pa=irq pb=iobase
- 6 ELSA PCC/PCF cards pa=iobase or nothing for autodetect
- 7 ELSA Quickstep 1000 ONLY WORKS AS A MODULE !
- 8 Teles S0 PCMCIA pa=irq pb=iobase
- 9 ITK ix1-micro Rev.2 pa=irq pb=iobase
- 10 ELSA PCMCIA pa=irq, pb=io (set with card manager)
- 11 Eicon.Diehl Diva ISAPnP ONLY WORKS AS A MODULE !
- 11 Eicon.Diehl Diva PCI no parameter
- 12 ASUS COM ISDNLink ONLY WORKS AS A MODULE !
- 13 HFC-2BS0 based cards pa=irq pb=io
- 14 Teles 16.3c PnP ONLY WORKS AS A MODULE !
- 15 Sedlbauer Speed Card pa=irq pb=io (Speed Win only as module !)
- 15 Sedlbauer PC/104 pa=irq pb=io
- 15 Sedlbauer Speed PCI no parameter
- 16 USR Sportster internal pa=irq pb=io
- 17 MIC card pa=irq pb=io
- 18 ELSA Quickstep 1000PCI no parameter
- 19 Compaq ISDN S0 ISA card ONLY WORKS AS A MODULE !
- 20 NETjet PCI card no parameter
- 21 Teles PCI no parameter
- 22 Sedlbauer Speed Star (PCMCIA) pa=irq, pb=io (set with card manager)
- 24 Dr. Neuhaus Niccy PnP ONLY WORKS AS A MODULE !
- 24 Dr. Neuhaus Niccy PCI no parameter
- 25 Teles S0Box pa=irq, pb=io (of the used lpt port)
- 26 AVM A1 PCMCIA (Fritz!) pa=irq, pb=io (set with card manager)
- 27 AVM PnP (Fritz!PnP) ONLY WORKS AS A MODULE !
- 27 AVM PCI (Fritz!PCI) no parameter
- 28 Sedlbauer Speed Fax+ ONLY WORKS AS A MODULE !
- 29 Siemens I-Surf 1.0 ONLY WORKS AS A MODULE !
- 30 ACER P10 ONLY WORKS AS A MODULE !
- 31 HST Saphir pa=irq, pb=io
- 32 Telekom A4T no parameter
- 33 Scitel Quadro subcontroller (4*S0, subctrl 1...4)
- 34 Gazel ISDN cards (ISA) pa=irq, pb=io
- 34 Gazel ISDN cards (PCI) no parameter
- 35 HFC 2BDS0 PCI no parameter
- 36 W6692 based PCI cards none
- 37 HFC 2BDS0 S+,SP/PCMCIA ONLY WORKS AS A MODULE !
- 38 NETspider U PCI card none
- 39 HFC 2BDS0 SP/PCMCIA ONLY WORKS AS A MODULE !
- 40 hotplug interface ONLY WORKS AS A MODULE !
- 41 Formula-n enter:now PCI none
-
-Running the driver
-------------------
-
-When you insmod isdn.o and hisax.o (or with the in-kernel version, during
-boot time), a few lines should appear in your syslog. Look for something like:
-
-Apr 13 21:01:59 kke01 kernel: HiSax: Driver for Siemens chip set ISDN cards
-Apr 13 21:01:59 kke01 kernel: HiSax: Version 2.9
-Apr 13 21:01:59 kke01 kernel: HiSax: Revisions 1.14/1.9/1.10/1.25/1.8
-Apr 13 21:01:59 kke01 kernel: HiSax: Total 1 card defined
-Apr 13 21:01:59 kke01 kernel: HiSax: Card 1 Protocol EDSS1 Id=HiSax1 (0)
-Apr 13 21:01:59 kke01 kernel: HiSax: Elsa driver Rev. 1.13
-...
-Apr 13 21:01:59 kke01 kernel: Elsa: PCF-Pro found at 0x360 Rev.:C IRQ 10
-Apr 13 21:01:59 kke01 kernel: Elsa: timer OK; resetting card
-Apr 13 21:01:59 kke01 kernel: Elsa: HSCX version A: V2.1 B: V2.1
-Apr 13 21:01:59 kke01 kernel: Elsa: ISAC 2086/2186 V1.1
-...
-Apr 13 21:01:59 kke01 kernel: HiSax: DSS1 Rev. 1.14
-Apr 13 21:01:59 kke01 kernel: HiSax: 2 channels added
-
-This means that the card is ready for use.
-Cabling problems or line-downs are not detected, and only some ELSA cards can
-detect the S0 power.
-
-Remember that, according to the new strategy for accessing low-level drivers
-from within isdn4linux, you should also define a driver ID while doing
-insmod: Simply append hisax_id=<SomeString> to the insmod command line. This
-string MUST NOT start with a digit or a small 'x'!
-
-At this point you can run a 'cat /dev/isdnctrl0' and view debugging messages.
-
-At the moment, debugging messages are enabled with the hisaxctrl tool:
-
- hisaxctrl <DriverId> DebugCmd <debugging_flags>
-
-<DriverId> default is HiSax, if you didn't specify one.
-
-DebugCmd is 1 for generic debugging
- 11 for layer 1 development debugging
- 13 for layer 3 development debugging
-
-where <debugging_flags> is the integer sum of the following debugging
-options you wish enabled:
-
-With DebugCmd set to 1:
-
- 0x0001 Link-level <--> hardware-level communication
- 0x0002 Top state machine
- 0x0004 D-Channel Frames for isdnlog
- 0x0008 D-Channel Q.921
- 0x0010 B-Channel X.75
- 0x0020 D-Channel l2
- 0x0040 B-Channel l2
- 0x0080 D-Channel link state debugging
- 0x0100 B-Channel link state debugging
- 0x0200 TEI debug
- 0x0400 LOCK debug in callc.c
- 0x0800 More paranoid debug in callc.c (not for normal use)
- 0x1000 D-Channel l1 state debugging
- 0x2000 B-Channel l1 state debugging
-
-With DebugCmd set to 11:
-
- 0x0001 Warnings (default: on)
- 0x0002 IRQ status
- 0x0004 ISAC
- 0x0008 ISAC FIFO
- 0x0010 HSCX
- 0x0020 HSCX FIFO (attention: full B-Channel output!)
- 0x0040 D-Channel LAPD frame types
- 0x0080 IPAC debug
- 0x0100 HFC receive debug
- 0x0200 ISAC monitor debug
- 0x0400 D-Channel frames for isdnlog (set with 1 0x4 too)
- 0x0800 D-Channel message verbose
-
-With DebugCmd set to 13:
-
- 1 Warnings (default: on)
- 2 l3 protocol descriptor errors
- 4 l3 state machine
- 8 charge info debugging (1TR6)
-
-For example, 'hisaxctrl HiSax 1 0x3ff' enables full generic debugging.
-
-Because of some obscure problems with some switch equipment, the delay
-between the CONNECT message and sending the first data on the B-channel is now
-configurable with
-
-hisaxctrl <DriverId> 2 <delay>
-<delay> in ms Value between 50 and 800 ms is recommended.
-
-Downloading Firmware
---------------------
-At the moment, the Sedlbauer speed fax+ is the only card, which
-needs to download firmware.
-The firmware is downloaded with the hisaxctrl tool:
-
- hisaxctrl <DriverId> 9 <firmware_filename>
-
-<DriverId> default is HiSax, if you didn't specify one,
-
-where <firmware_filename> is the filename of the firmware file.
-
-For example, 'hisaxctrl HiSax 9 ISAR.BIN' downloads the firmware for
-ISAR based cards (like the Sedlbauer speed fax+).
-
-Warning
--------
-HiSax is a work in progress and may crash your machine.
-For certification look at HiSax.cert file.
-
-Limitations
------------
-At this time, HiSax only works on Euro ISDN lines and German 1TR6 lines.
-For leased lines see appendix.
-
-Bugs
-----
-If you find any, please let me know.
-
-
-Thanks
-------
-Special thanks to:
-
- Emil Stephan for the name HiSax which is a mix of HSCX and ISAC.
-
- Fritz Elfert, Jan den Ouden, Michael Hipp, Michael Wein,
- Andreas Kool, Pekka Sarnila, Sim Yskes, Johan Myrre'en,
- Klaus-Peter Nischke (ITK AG), Christof Petig, Werner Fehn (ELSA GmbH),
- Volker Schmidt
- Edgar Toernig and Marcus Niemann for the Sedlbauer driver
- Stephan von Krawczynski
- Juergen Quade for the Leased Line part
- Klaus Lichtenwalder (Klaus.Lichtenwalder@WebForum.DE), for ELSA PCMCIA support
- Enrik Berkhan (enrik@starfleet.inka.de) for S0BOX specific stuff
- Ton van Rosmalen for Teles PCI
- Petr Novak <petr.novak@i.cz> for Winbond W6692 support
- Werner Cornelius <werner@isdn4linux.de> for HFC-PCI, HFC-S(+/P) and supplementary services support
- and more people who are hunting bugs. (If I forgot somebody, please
- send me a mail).
-
- Firma ELSA GmbH
- Firma Eicon.Diehl GmbH
- Firma Dynalink NL
- Firma ASUSCOM NETWORK INC. Taiwan
- Firma S.u.S.E
- Firma ith Kommunikationstechnik GmbH
- Firma Traverse Technologie Australia
- Firma Medusa GmbH (www.medusa.de).
- Firma Quant-X Austria for sponsoring a DEC Alpha board+CPU
- Firma Cologne Chip Designs GmbH
-
- My girl friend and partner in life Ute for her patience with me.
-
-
-Enjoy,
-
-Karsten Keil
-keil@isdn4linux.de
-
-
-Appendix: Teles PCMCIA driver
------------------------------
-
-See
- http://www.linux.no/teles_cs.txt
-for instructions.
-
-Appendix: Linux and ISDN-leased lines
--------------------------------------
-
-Original from Juergen Quade, new version KKe.
-
-Attention NEW VERSION, the old leased line syntax won't work !!!
-
-You can use HiSax to connect your Linux-Box via an ISDN leased line
-to e.g. the Internet:
-
-1. Build a kernel which includes the HiSax driver either as a module
- or as part of the kernel.
- cd /usr/src/linux
- make menuconfig
- <ISDN subsystem - ISDN support -- HiSax>
- make clean; make zImage; make modules; make modules_install
-2. Install the new kernel
- cp /usr/src/linux/arch/x86/boot/zImage /etc/kernel/linux.isdn
- vi /etc/lilo.conf
- <add new kernel in the bootable image section>
- lilo
-3. in case the hisax driver is a "fixed" part of the kernel, configure
- the driver with lilo:
- vi /etc/lilo.conf
- <add HiSax driver parameter in the global section (see below)>
- lilo
- Your lilo.conf _might_ look like the following:
-
- # LILO configuration-file
- # global section
- # teles 16.0 on IRQ=5, MEM=0xd8000, PORT=0xd80
- append="hisax=1,3,5,0xd8000,0xd80,HiSax"
- # teles 16.3 (non pnp) on IRQ=15, PORT=0xd80
- # append="hisax=3,3,5,0xd8000,0xd80,HiSax"
- boot=/dev/sda
- compact # faster, but won't work on all systems.
- linear
- read-only
- prompt
- timeout=100
- vga = normal # force sane state
- # Linux bootable partition config begins
- image = /etc/kernel/linux.isdn
- root = /dev/sda1
- label = linux.isdn
- #
- image = /etc/kernel/linux-2.0.30
- root = /dev/sda1
- label = linux.secure
-
- In the line starting with "append" you have to adapt the parameters
- according to your card (see above in this file)
-
-3. boot the new linux.isdn kernel
-4. start the ISDN subsystem:
- a) load - if necessary - the modules (depends, whether you compiled
- the ISDN driver as module or not)
- According to the type of card you have to specify the necessary
- driver parameter (irq, io, mem, type, protocol).
- For the leased line the protocol is "3". See the table above for
- the parameters, which you have to specify depending on your card.
- b) configure i4l
- /sbin/isdnctrl addif isdn0
- # EAZ 1 -- B1 channel 2 --B2 channel
- /sbin/isdnctrl eaz isdn0 1
- /sbin/isdnctrl secure isdn0 on
- /sbin/isdnctrl huptimeout isdn0 0
- /sbin/isdnctrl l2_prot isdn0 hdlc
- # Attention you must not set an outgoing number !!! This won't work !!!
- # The incoming number is LEASED0 for the first card, LEASED1 for the
- # second and so on.
- /sbin/isdnctrl addphone isdn0 in LEASED0
- # Here is no need to bind the channel.
- c) in case the remote partner is a CISCO:
- /sbin/isdnctrl encap isdn0 cisco-h
- d) configure the interface
- /sbin/ifconfig isdn0 ${LOCAL_IP} pointopoint ${REMOTE_IP}
- e) set the routes
- /sbin/route add -host ${REMOTE_IP} isdn0
- /sbin/route add default gw ${REMOTE_IP}
- f) switch the card into leased mode for each used B-channel
- /sbin/hisaxctrl HiSax 5 1
-
-Remarks:
-a) Use state of the art isdn4k-utils
-
-Here an example script:
-#!/bin/sh
-# Start/Stop ISDN leased line connection
-
-I4L_AS_MODULE=yes
-I4L_REMOTE_IS_CISCO=no
-I4L_MODULE_PARAMS="type=16 io=0x268 irq=7 "
-I4L_DEBUG=no
-I4L_LEASED_128K=yes
-LOCAL_IP=192.168.1.1
-REMOTE_IP=192.168.2.1
-
-case "$1" in
- start)
- echo "Starting ISDN ..."
- if [ ${I4L_AS_MODULE} = "yes" ]; then
- echo "loading modules..."
- /sbin/modprobe hisax ${I4L_MODULE_PARAMS}
- fi
- # configure interface
- /sbin/isdnctrl addif isdn0
- /sbin/isdnctrl secure isdn0 on
- if [ ${I4L_DEBUG} = "yes" ]; then
- /sbin/isdnctrl verbose 7
- /sbin/hisaxctrl HiSax 1 0xffff
- /sbin/hisaxctrl HiSax 11 0xff
- cat /dev/isdnctrl >/tmp/lea.log &
- fi
- if [ ${I4L_REMOTE_IS_CISCO} = "yes" ]; then
- /sbin/isdnctrl encap isdn0 cisco-h
- fi
- /sbin/isdnctrl huptimeout isdn0 0
- # B-CHANNEL 1
- /sbin/isdnctrl eaz isdn0 1
- /sbin/isdnctrl l2_prot isdn0 hdlc
- # 1. card
- /sbin/isdnctrl addphone isdn0 in LEASED0
- if [ ${I4L_LEASED_128K} = "yes" ]; then
- /sbin/isdnctrl addslave isdn0 isdn0s
- /sbin/isdnctrl secure isdn0s on
- /sbin/isdnctrl huptimeout isdn0s 0
- # B-CHANNEL 2
- /sbin/isdnctrl eaz isdn0s 2
- /sbin/isdnctrl l2_prot isdn0s hdlc
- # 1. card
- /sbin/isdnctrl addphone isdn0s in LEASED0
- if [ ${I4L_REMOTE_IS_CISCO} = "yes" ]; then
- /sbin/isdnctrl encap isdn0s cisco-h
- fi
- fi
- /sbin/isdnctrl dialmode isdn0 manual
- # configure tcp/ip
- /sbin/ifconfig isdn0 ${LOCAL_IP} pointopoint ${REMOTE_IP}
- /sbin/route add -host ${REMOTE_IP} isdn0
- /sbin/route add default gw ${REMOTE_IP}
- # switch to leased mode
- # B-CHANNEL 1
- /sbin/hisaxctrl HiSax 5 1
- if [ ${I4L_LEASED_128K} = "yes" ]; then
- # B-CHANNEL 2
- sleep 10; /* Wait for master */
- /sbin/hisaxctrl HiSax 5 2
- fi
- ;;
- stop)
- /sbin/ifconfig isdn0 down
- /sbin/isdnctrl delif isdn0
- if [ ${I4L_DEBUG} = "yes" ]; then
- killall cat
- fi
- if [ ${I4L_AS_MODULE} = "yes" ]; then
- /sbin/rmmod hisax
- /sbin/rmmod isdn
- /sbin/rmmod ppp
- /sbin/rmmod slhc
- fi
- ;;
- *)
- echo "Usage: $0 {start|stop}"
- exit 1
-esac
-exit 0
diff --git a/Documentation/isdn/README.audio b/Documentation/isdn/README.audio
deleted file mode 100644
index 8ebca19290d9..000000000000
--- a/Documentation/isdn/README.audio
+++ /dev/null
@@ -1,138 +0,0 @@
-$Id: README.audio,v 1.8 1999/07/11 17:17:29 armin Exp $
-
-ISDN subsystem for Linux.
- Description of audio mode.
-
-When enabled during kernel configuration, the tty emulator of the ISDN
-subsystem is capable of a reduced set of commands to support audio.
-This document describes the commands supported and the format of
-audio data.
-
-Commands for enabling/disabling audio mode:
-
- AT+FCLASS=8 Enable audio mode.
- This affects the following registers:
- S18: Bits 0 and 2 are set.
- S16: Set to 48 and any further change to
- larger values is blocked.
- AT+FCLASS=0 Disable audio mode.
- Register 18 is set to 4.
- AT+FCLASS=? Show possible modes.
- AT+FCLASS? Report current mode (0 or 8).
-
-Commands supported in audio mode:
-
-All audio mode commands have one of the following forms:
-
- AT+Vxx? Show current setting.
- AT+Vxx=? Show possible settings.
- AT+Vxx=v Set simple parameter.
- AT+Vxx=v,v ... Set complex parameter.
-
-where xx is a two-character code and v are alphanumerical parameters.
-The following commands are supported:
-
- AT+VNH=x Auto hangup setting. NO EFFECT, supported
- for compatibility only.
- AT+VNH? Always reporting "1"
- AT+VNH=? Always reporting "1"
-
- AT+VIP Reset all audio parameters.
-
- AT+VLS=x Line select. x is one of the following:
- 0 = No device.
- 2 = Phone line.
- AT+VLS=? Always reporting "0,2"
- AT+VLS? Show current line.
-
- AT+VRX Start recording. Emulator responds with
- CONNECT and starts sending audio data to
- the application. See below for data format
-
- AT+VSD=x,y Set silence-detection parameters.
- Possible parameters:
- x = 0 ... 31 sensitivity threshold level.
- (default 0 , deactivated)
- y = 0 ... 255 range of interval in units
- of 0.1 second. (default 70)
- AT+VSD=? Report possible parameters.
- AT+VSD? Show current parameters.
-
- AT+VDD=x,y Set DTMF-detection parameters.
- Only possible if online and during this connection.
- Possible parameters:
- x = 0 ... 15 sensitivity threshold level.
- (default 0 , I4L soft-decode)
- (1-15 soft-decode off, hardware on)
- y = 0 ... 255 tone duration in units of 5ms.
- Not for I4L soft decode (default 8, 40ms)
- AT+VDD=? Report possible parameters.
- AT+VDD? Show current parameters.
-
- AT+VSM=x Select audio data format.
- Possible parameters:
- 2 = ADPCM-2
- 3 = ADPCM-3
- 4 = ADPCM-4
- 5 = aLAW
- 6 = uLAW
- AT+VSM=? Show possible audio formats.
-
- AT+VTX Start audio playback. Emulator responds
- with CONNECT and starts sending audio data
- received from the application via phone line.
-General behavior and description of data formats/protocol.
- when a connection is made:
-
- On incoming calls, if the application responds to a RING
- with ATA, depending on the calling service, the emulator
- responds with either CONNECT (data call) or VCON (voice call).
-
- On outgoing voice calls, the emulator responds with VCON
- upon connection setup.
-
- Audio recording.
-
- When receiving audio data, a kind of bisync protocol is used.
- Upon AT+VRX command, the emulator responds with CONNECT, and
- starts sending audio data to the application. There are several
- escape sequences defined, all using DLE (0x10) as Escape char:
-
- <DLE><ETX> End of audio data. (i.e. caused by a
- hangup of the remote side) Emulator stops
- recording, responding with VCON.
- <DLE><DC4> Abort recording, (send by appl.) Emulator
- stops recording, sends DLE,ETX.
- <DLE><DLE> Escape sequence for DLE in data stream.
- <DLE>0 Touchtone "0" received.
- ...
- <DLE>9 Touchtone "9" received.
- <DLE># Touchtone "#" received.
- <DLE>* Touchtone "*" received.
- <DLE>A Touchtone "A" received.
- <DLE>B Touchtone "B" received.
- <DLE>C Touchtone "C" received.
- <DLE>D Touchtone "D" received.
-
- <DLE>q quiet. Silence detected after non-silence.
- <DLE>s silence. Silence detected from the
- start of recording.
-
- Currently unsupported DLE sequences:
-
- <DLE>c FAX calling tone received.
- <DLE>b busy tone received.
-
- Audio playback.
-
- When sending audio data, upon AT+VTX command, emulator responds with
- CONNECT, and starts transferring data from application to the phone line.
- The same DLE sequences apply to this mode.
-
- Full-Duplex-Audio:
-
- When _both_ commands for recording and playback are given in _one_
- AT-command-line (i.e.: "AT+VTX+VRX"), full-duplex-mode is selected.
- In this mode, the only way to stop recording is sending <DLE><DC4>
- and the only way to stop playback is to send <DLE><ETX>.
-
diff --git a/Documentation/isdn/README.concap b/Documentation/isdn/README.concap
deleted file mode 100644
index a76d74845a4c..000000000000
--- a/Documentation/isdn/README.concap
+++ /dev/null
@@ -1,259 +0,0 @@
-Description of the "concap" encapsulation protocol interface
-============================================================
-
-The "concap" interface is intended to be used by network device
-drivers that need to process an encapsulation protocol.
-It is assumed that the protocol interacts with a linux network device by
-- data transmission
-- connection control (establish, release)
-Thus, the mnemonic: "CONnection CONtrolling eNCAPsulation Protocol".
-
-This is currently only used inside the isdn subsystem. But it might
-also be useful to other kinds of network devices. Thus, if you want
-to suggest changes that improve usability or performance of the
-interface, please let me know. I'm willing to include them in future
-releases (even if I needed to adapt the current isdn code to the
-changed interface).
-
-
-Why is this useful?
-===================
-
-The encapsulation protocol used on top of WAN connections or permanent
-point-to-point links are frequently chosen upon bilateral agreement.
-Thus, a device driver for a certain type of hardware must support
-several different encapsulation protocols at once.
-
-The isdn device driver did already support several different
-encapsulation protocols. The encapsulation protocol is configured by a
-user space utility (isdnctrl). The isdn network interface code then
-uses several case statements which select appropriate actions
-depending on the currently configured encapsulation protocol.
-
-In contrast, LAN network interfaces always used a single encapsulation
-protocol which is unique to the hardware type of the interface. The LAN
-encapsulation is usually done by just sticking a header on the data. Thus,
-traditional linux network device drivers used to process the
-encapsulation protocol directly (usually by just providing a hard_header()
-method in the device structure) using some hardware type specific support
-functions. This is simple, direct and efficient. But it doesn't fit all
-the requirements for complex WAN encapsulations.
-
-
- The configurability of the encapsulation protocol to be used
- makes isdn network interfaces more flexible, but also much more
- complex than traditional lan network interfaces.
-
-
-Many Encapsulation protocols used on top of WAN connections will not just
-stick a header on the data. They also might need to set up or release
-the WAN connection. They also might want to send other data for their
-private purpose over the wire, e.g. ppp does a lot of link level
-negotiation before the first piece of user data can be transmitted.
-Such encapsulation protocols for WAN devices are typically more complex
-than encapsulation protocols for lan devices. Thus, network interface
-code for typical WAN devices also tends to be more complex.
-
-
-In order to support Linux' x25 PLP implementation on top of
-isdn network interfaces I could have introduced yet another branch to
-the various case statements inside drivers/isdn/isdn_net.c.
-This eventually made isdn_net.c even more complex. In addition, it made
-isdn_net.c harder to maintain. Thus, by identifying an abstract
-interface between the network interface code and the encapsulation
-protocol, complexity could be reduced and maintainability could be
-increased.
-
-
-Likewise, a similar encapsulation protocol will frequently be needed by
-several different interfaces of even different hardware type, e.g. the
-synchronous ppp implementation used by the isdn driver and the
-asynchronous ppp implementation used by the ppp driver have a lot of
-similar code in them. By cleanly separating the encapsulation protocol
-from the hardware specific interface stuff such code could be shared
-better in future.
-
-
-When operating over dial-up-connections (e.g. telephone lines via modem,
-non-permanent virtual circuits of wide area networks, ISDN) many
-encapsulation protocols will need to control the connection. Therefore,
-some basic connection control primitives are supported. The type and
-semantics of the connection (i.e the ISO layer where connection service
-is provided) is outside our scope and might be different depending on
-the encapsulation protocol used, e.g. for a ppp module using our service
-on top of a modem connection a connect_request will result in dialing
-a (somewhere else configured) remote phone number. For an X25-interface
-module (LAPB semantics, as defined in Documentation/networking/x25-iface.txt)
-a connect_request will ask for establishing a reliable lapb
-datalink connection.
-
-
-The encapsulation protocol currently provides the following
-service primitives to the network device.
-
-- create a new encapsulation protocol instance
-- delete encapsulation protocol instance and free all its resources
-- initialize (open) the encapsulation protocol instance for use.
-- deactivate (close) an encapsulation protocol instance.
-- process (xmit) data handed down by upper protocol layer
-- receive data from lower (hardware) layer
-- process connect indication from lower (hardware) layer
-- process disconnect indication from lower (hardware) layer
-
-
-The network interface driver accesses those primitives via callbacks
-provided by the encapsulation protocol instance within a
-struct concap_proto_ops.
-
-struct concap_proto_ops{
-
- /* create a new encapsulation protocol instance of same type */
- struct concap_proto * (*proto_new) (void);
-
- /* delete encapsulation protocol instance and free all its resources.
- cprot may no longer be referenced after calling this */
- void (*proto_del)(struct concap_proto *cprot);
-
- /* initialize the protocol's data. To be called at interface startup
- or when the device driver resets the interface. All services of the
- encapsulation protocol may be used after this*/
- int (*restart)(struct concap_proto *cprot,
- struct net_device *ndev,
- struct concap_device_ops *dops);
-
- /* deactivate an encapsulation protocol instance. The encapsulation
- protocol may not call any *dops methods after this. */
- int (*close)(struct concap_proto *cprot);
-
- /* process a frame handed down to us by upper layer */
- int (*encap_and_xmit)(struct concap_proto *cprot, struct sk_buff *skb);
-
- /* to be called for each data entity received from lower layer*/
- int (*data_ind)(struct concap_proto *cprot, struct sk_buff *skb);
-
- /* to be called when a connection was set up/down.
- Protocols that don't process these primitives might fill in
- dummy methods here */
- int (*connect_ind)(struct concap_proto *cprot);
- int (*disconn_ind)(struct concap_proto *cprot);
-};
-
-
-The data structures are defined in the header file include/linux/concap.h.
-
-
-A Network interface using encapsulation protocols must also provide
-some service primitives to the encapsulation protocol:
-
-- request data being submitted by lower layer (device hardware)
-- request a connection being set up by lower layer
-- request a connection being released by lower layer
-
-The encapsulation protocol accesses those primitives via callbacks
-provided by the network interface within a struct concap_device_ops.
-
-struct concap_device_ops{
-
- /* to request data be submitted by device */
- int (*data_req)(struct concap_proto *, struct sk_buff *);
-
- /* Control methods must be set to NULL by devices which do not
- support connection control. */
- /* to request a connection be set up */
- int (*connect_req)(struct concap_proto *);
-
- /* to request a connection be released */
- int (*disconn_req)(struct concap_proto *);
-};
-
-The network interface does not explicitly provide a receive service
-because the encapsulation protocol directly calls netif_rx().
-
-
-
-
-An encapsulation protocol itself is actually the
-struct concap_proto{
- struct net_device *net_dev; /* net device using our service */
- struct concap_device_ops *dops; /* callbacks provided by device */
- struct concap_proto_ops *pops; /* callbacks provided by us */
- int flags;
- void *proto_data; /* protocol specific private data, to
- be accessed via *pops methods only*/
- /*
- :
- whatever
- :
- */
-};
-
-Most of this is filled in when the device requests the protocol to
-be reset (opend). The network interface must provide the net_dev and
-dops pointers. Other concap_proto members should be considered private
-data that are only accessed by the pops callback functions. Likewise,
-a concap proto should access the network device's private data
-only by means of the callbacks referred to by the dops pointer.
-
-
-A possible extended device structure which uses the connection controlling
-encapsulation services could look like this:
-
-struct concap_device{
- struct net_device net_dev;
- struct my_priv /* device->local stuff */
- /* the my_priv struct might contain a
- struct concap_device_ops *dops;
- to provide the device specific callbacks
- */
- struct concap_proto *cprot; /* callbacks provided by protocol */
-};
-
-
-
-Misc Thoughts
-=============
-
-The concept of the concap proto might help to reuse protocol code and
-reduce the complexity of certain network interface implementations.
-The trade off is that it introduces yet another procedure call layer
-when processing the protocol. This has of course some impact on
-performance. However, typically the concap interface will be used by
-devices attached to slow lines (like telephone, isdn, leased synchronous
-lines). For such slow lines, the overhead is probably negligible.
-This might no longer hold for certain high speed WAN links (like
-ATM).
-
-
-If general linux network interfaces explicitly supported concap
-protocols (e.g. by a member struct concap_proto* in struct net_device)
-then the interface of the service function could be changed
-by passing a pointer of type (struct net_device*) instead of
-type (struct concap_proto*). Doing so would make many of the service
-functions compatible to network device support functions.
-
-e.g. instead of the concap protocol's service function
-
- int (*encap_and_xmit)(struct concap_proto *cprot, struct sk_buff *skb);
-
-we could have
-
- int (*encap_and_xmit)(struct net_device *ndev, struct sk_buff *skb);
-
-As this is compatible to the dev->hard_start_xmit() method, the device
-driver could directly register the concap protocol's encap_and_xmit()
-function as its hard_start_xmit() method. This would eliminate one
-procedure call layer.
-
-
-The device's data request function could also be defined as
-
- int (*data_req)(struct net_device *ndev, struct sk_buff *skb);
-
-This might even allow for some protocol stacking. And the network
-interface might even register the same data_req() function directly
-as its hard_start_xmit() method when a zero layer encapsulation
-protocol is configured. Thus, eliminating the performance penalty
-of the concap interface when a trivial concap protocol is used.
-Nevertheless, the device remains able to support encapsulation
-protocol configuration.
-
diff --git a/Documentation/isdn/README.diversion b/Documentation/isdn/README.diversion
deleted file mode 100644
index bddcd5fb86ff..000000000000
--- a/Documentation/isdn/README.diversion
+++ /dev/null
@@ -1,127 +0,0 @@
-The isdn diversion services are a supporting module working together with
-the isdn4linux and the HiSax module for passive cards.
-Active cards, TAs and cards using a own or other driver than the HiSax
-module need to be adapted to the HL<->LL interface described in a separate
-document. The diversion services may be used with all cards supported by
-the HiSax driver.
-The diversion kernel interface and controlling tool divertctrl were written
-by Werner Cornelius (werner@isdn4linux.de or werner@titro.de) under the
-GNU General Public License.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-
-Table of contents
-=================
-
-1. Features of the i4l diversion services
- (Or what can the i4l diversion services do for me)
-
-2. Required hard- and software
-
-3. Compiling, installing and loading/unloading the module
- Tracing calling and diversion information
-
-4. Tracing calling and diversion information
-
-5. Format of the divert device ASCII output
-
-
-1. Features of the i4l diversion services
- (Or what can the i4l diversion services do for me)
-
- The i4l diversion services offers call forwarding and logging normally
- only supported by isdn phones. Incoming calls may be diverted
- unconditionally (CFU), when not reachable (CFNR) or on busy condition
- (CFB).
- The diversions may be invoked statically in the providers exchange
- as normally done by isdn phones. In this case all incoming calls
- with a special (or all) service identifiers are forwarded if the
- forwarding reason is met. Activated static services may also be
- interrogated (queried).
- The i4l diversion services additionally offers a dynamic version of
- call forwarding which is not preprogrammed inside the providers exchange
- but dynamically activated by i4l.
- In this case all incoming calls are checked by rules that may be
- compared to the mechanism of ipfwadm or ipchains. If a given rule matches
- the checking process is finished and the rule matching will be applied
- to the call.
- The rules include primary and secondary service identifiers, called
- number and subaddress, callers number and subaddress and whether the rule
- matches to all filtered calls or only those when all B-channel resources
- are exhausted.
- Actions that may be invoked by a rule are ignore, proceed, reject,
- direct divert or delayed divert of a call.
- All incoming calls matching a rule except the ignore rule a reported and
- logged as ASCII via the proc filesystem (/proc/net/isdn/divert). If proceed
- is selected the call will be held in a proceeding state (without ringing)
- for a certain amount of time to let an external program or client decide
- how to handle the call.
-
-
-2. Required hard- and software
-
- For using the i4l diversion services the isdn line must be of a EURO/DSS1
- type. Additionally the i4l services only work together with the HiSax
- driver for passive isdn cards. All HiSax supported cards may be used for
- the diversion purposes.
- The static diversion services require the provider having static services
- CFU, CFNR, CFB activated on an MSN-line. The static services may not be
- used on a point-to-point connection. Further the static services are only
- available in some countries (for example germany). Countries requiring the
- keypad protocol for activating static diversions (like the netherlands) are
- not supported but may use the tty devices for this purpose.
- The dynamic diversion services may be used in all countries if the provider
- enables the feature CF (call forwarding). This should work on both MSN- and
- point-to-point lines.
- To add and delete rules the additional divertctrl program is needed. This
- program is part of the isdn4kutils package.
-
-3. Compiling, installing and loading/unloading the module
- Tracing calling and diversion information
-
-
- To compile the i4l code with diversion support you need to say yes to the
- DSS1 diversion services when selecting the i4l options in the kernel
- config (menuconfig or config).
- After having properly activated a make modules and make modules_install all
- required modules will be correctly installed in the needed modules dirs.
- As the diversion services are currently not included in the scripts of most
- standard distributions you will have to add a "insmod dss1_divert" after
- having loaded the global isdn module.
- The module can be loaded without any command line parameters.
- If the module is actually loaded and active may be checked with a
- "cat /proc/modules" or "ls /proc/net/isdn/divert". The divert file is
- dynamically created by the diversion module and removed when the module is
- unloaded.
-
-
-4. Tracing calling and diversion information
-
- You also may put a "cat /proc/net/isdn/divert" in the background with the
- output redirected to a file. Then all actions of the module are logged.
- The divert file in the proc system may be opened more than once, so in
- conjunction with inetd and a small remote client on other machines inside
- your network incoming calls and reactions by the module may be shown on
- every listening machine.
- If a call is reported as proceeding an external program or client may
- specify during a certain amount of time (normally 4 to 10 seconds) what
- to do with that call.
- To unload the module all open files to the device in the proc system must
- be closed. Otherwise the module (and isdn.o) may not be unloaded.
-
-5. Format of the divert device ASCII output
-
- To be done later
-
diff --git a/Documentation/isdn/README.fax b/Documentation/isdn/README.fax
deleted file mode 100644
index 5314958a8a6e..000000000000
--- a/Documentation/isdn/README.fax
+++ /dev/null
@@ -1,45 +0,0 @@
-
-Fax with isdn4linux
-===================
-
-When enabled during kernel configuration, the tty emulator
-of the ISDN subsystem is capable of the Fax Class 2 commands.
-
-This only makes sense under the following conditions :
-
-- You need the commands as dummy, because you are using
- hylafax (with patch) for AVM capi.
-- You want to use the fax capabilities of your isdn-card.
- (supported cards are listed below)
-
-
-NOTE: This implementation does *not* support fax with passive
- ISDN-cards (known as softfax). The low-level driver of
- the ISDN-card and/or the card itself must support this.
-
-
-Supported ISDN-Cards
---------------------
-
-Eicon DIVA Server BRI/PCI
- - full support with both B-channels.
-
-Eicon DIVA Server 4BRI/PCI
- - full support with all B-channels.
-
-Eicon DIVA Server PRI/PCI
- - full support on amount of B-channels
- depending on DSPs on board.
-
-
-
-The command set is known as Class 2 (not Class 2.0) and
-can be activated by AT+FCLASS=2
-
-
-The interface between the link-level-module and the hardware-level driver
-is described in the files INTERFACE.fax and INTERFACE.
-
-Armin
-mac@melware.de
-
diff --git a/Documentation/isdn/README.hfc-pci b/Documentation/isdn/README.hfc-pci
deleted file mode 100644
index e8a4ef0226e8..000000000000
--- a/Documentation/isdn/README.hfc-pci
+++ /dev/null
@@ -1,41 +0,0 @@
-The driver for the HFC-PCI and HFC-PCI-A chips from CCD may be used
-for many OEM cards using this chips.
-Additionally the driver has a special feature which makes it possible
-to read the echo-channel of the isdn bus. So all frames in both directions
-may be logged.
-When the echo logging feature is used the number of available B-channels
-for a HFC-PCI card is reduced to 1. Of course this is only relevant to
-the card, not to the isdn line.
-To activate the echo mode the following ioctls must be entered:
-
-hisaxctrl <driver/cardname> 10 1
-
-This reduces the available channels to 1. There must not be open connections
-through this card when entering the command.
-And then:
-
-hisaxctrl <driver/cardname> 12 1
-
-This enables the echo mode. If Hex logging is activated the isdnctrlx
-devices show a output with a line beginning of HEX: for the providers
-exchange and ECHO: for isdn devices sending to the provider.
-
-If more than one HFC-PCI cards are installed, a specific card may be selected
-at the hisax module load command line. Supply the load command with the desired
-IO-address of the desired card.
-Example:
-There tree cards installed in your machine at IO-base addresses 0xd000, 0xd400
-and 0xdc00
-If you want to use the card at 0xd400 standalone you should supply the insmod
-or depmod with type=35 io=0xd400.
-If you want to use all three cards, but the order needs to be at 0xdc00,0xd400,
-0xd000 you may give the parameters type=35,35,35 io=0xdc00,0xd400,0xd00
-Then the desired card will be the initialised in the desired order.
-If the io parameter is used the io addresses of all used cards should be
-supplied else the parameter is assumed 0 and a auto search for a free card is
-invoked which may not give the wanted result.
-
-Comments and reports to werner@isdn4linux.de or werner@isdn-development.de
-
-
-
diff --git a/Documentation/isdn/README.syncppp b/Documentation/isdn/README.syncppp
deleted file mode 100644
index 27d260095cce..000000000000
--- a/Documentation/isdn/README.syncppp
+++ /dev/null
@@ -1,58 +0,0 @@
-Some additional information for setting up a syncPPP
-connection using network interfaces.
----------------------------------------------------------------
-
-You need one thing beside the isdn4linux package:
-
- a patched pppd .. (I called it ipppd to show the difference)
-
-Compiling isdn4linux with sync PPP:
------------------------------------
-To compile isdn4linux with the sync PPP part, you have
-to answer the appropriate question when doing a "make config"
-Don't forget to load the slhc.o
-module before the isdn.o module, if VJ-compression support
-is not compiled into your kernel. (e.g if you have no PPP or
-CSLIP in the kernel)
-
-Using isdn4linux with sync PPP:
--------------------------------
-Sync PPP is just another encapsulation for isdn4linux. The
-name to enable sync PPP encapsulation is 'syncppp' .. e.g:
-
- /sbin/isdnctrl encap ippp0 syncppp
-
-The name of the interface is here 'ippp0'. You need
-one interface with the name 'ippp0' to saturate the
-ipppd, which checks the ppp version via this interface.
-Currently, all devices must have the name ipppX where
-'X' is a decimal value.
-
-To set up a PPP connection you need the ipppd .. You must start
-the ipppd once after installing the modules. The ipppd
-communicates with the isdn4linux link-level driver using the
-/dev/ippp0 to /dev/ippp15 devices. One ipppd can handle
-all devices at once. If you want to use two PPP connections
-at the same time, you have to connect the ipppd to two
-devices .. and so on.
-I've implemented one additional option for the ipppd:
- 'useifip' will get (if set to not 0.0.0.0) the IP address
- for the negotiation from the attached network-interface.
-(also: ipppd will try to negotiate pointopoint IP as remote IP)
-You must disable BSD-compression, this implementation can't
-handle compressed packets.
-
-Check the etc/rc.isdn.syncppp in the isdn4kernel-util package
-for an example setup script.
-
-To use the MPPP stuff, you must configure a slave device
-with isdn4linux. Now call the ipppd with the '+mp' option.
-To increase the number of links, you must use the
-'addlink' option of the isdnctrl tool. (rc.isdn.syncppp.MPPP is
-an example script)
-
-enjoy it,
- michael
-
-
-
diff --git a/Documentation/isdn/README.x25 b/Documentation/isdn/README.x25
deleted file mode 100644
index e561a77c4e22..000000000000
--- a/Documentation/isdn/README.x25
+++ /dev/null
@@ -1,184 +0,0 @@
-
-X.25 support within isdn4linux
-==============================
-
-This is alpha/beta test code. Use it completely at your own risk.
-As new versions appear, the stuff described here might suddenly change
-or become invalid without notice.
-
-Keep in mind:
-
-You are using several new parts of the 2.2.x kernel series which
-have not been tested in a large scale. Therefore, you might encounter
-more bugs as usual.
-
-- If you connect to an X.25 neighbour not operated by yourself, ASK the
- other side first. Be prepared that bugs in the protocol implementation
- might result in problems.
-
-- This implementation has never wiped out my whole hard disk yet. But as
- this is experimental code, don't blame me if that happened to you.
- Backing up important data will never harm.
-
-- Monitor your isdn connections while using this software. This should
- prevent you from undesired phone bills in case of driver problems.
-
-
-
-
-How to configure the kernel
-===========================
-
-The ITU-T (former CCITT) X.25 network protocol layer has been implemented
-in the Linux source tree since version 2.1.16. The isdn subsystem might be
-useful to run X.25 on top of ISDN. If you want to try it, select
-
- "CCITT X.25 Packet Layer"
-
-from the networking options as well as
-
- "ISDN Support" and "X.25 PLP on Top of ISDN"
-
-from the ISDN subsystem options when you configure your kernel for
-compilation. You currently also need to enable
-"Prompt for development and/or incomplete code/drivers" from the
-"Code maturity level options" menu. For the x25trace utility to work
-you also need to enable "Packet socket".
-
-For local testing it is also recommended to enable the isdnloop driver
-from the isdn subsystem's configuration menu.
-
-For testing, it is recommended that all isdn drivers and the X.25 PLP
-protocol are compiled as loadable modules. Like this, you can recover
-from certain errors by simply unloading and reloading the modules.
-
-
-
-What's it for? How to use it?
-=============================
-
-X.25 on top of isdn might be useful with two different scenarios:
-
-- You might want to access a public X.25 data network from your Linux box.
- You can use i4l if you were physically connected to the X.25 switch
- by an ISDN B-channel (leased line as well as dial up connection should
- work).
-
- This corresponds to ITU-T recommendation X.31 Case A (circuit-mode
- access to PSPDN [packet switched public data network]).
-
- NOTE: X.31 also covers a Case B (access to PSPDN via virtual
- circuit / packet mode service). The latter mode (which in theory
- also allows using the D-channel) is not supported by isdn4linux.
- It should however be possible to establish such packet mode connections
- with certain active isdn cards provided that the firmware supports X.31
- and the driver exports this functionality to the user. Currently,
- the AVM B1 driver is the only driver which does so. (It should be
- possible to access D-channel X.31 with active AVM cards using the
- CAPI interface of the AVM-B1 driver).
-
-- Or you might want to operate certain ISDN teleservices on your linux
- box. A lot of those teleservices run on top of the ISO-8208
- (DTE-DTE mode) network layer protocol. ISO-8208 is essentially the
- same as ITU-T X.25.
-
- Popular candidates of such teleservices are EUROfile transfer or any
- teleservice applying ITU-T recommendation T.90.
-
-To use the X.25 protocol on top of isdn, just create an isdn network
-interface as usual, configure your own and/or peer's ISDN numbers,
-and choose x25iface encapsulation by
-
- isdnctrl encap <iface-name> x25iface.
-
-Once encap is set like this, the device can be used by the X.25 packet layer.
-
-All the stuff needed for X.25 is implemented inside the isdn link
-level (mainly isdn_net.c and some new source files). Thus, it should
-work with every existing HL driver. I was able to successfully open X.25
-connections on top of the isdnloop driver and the hisax driver.
-"x25iface"-encapsulation bypasses demand dialing. Dialing will be
-initiated when the upper (X.25 packet) layer requests the lapb datalink to
-be established. But hangup timeout is still active. Whenever a hangup
-occurs, all existing X.25 connections on that link will be cleared
-It is recommended to use sufficiently large hangup-timeouts for the
-isdn interfaces.
-
-
-In order to set up a conforming protocol stack you also need to
-specify the proper l2_prot parameter:
-
-To operate in ISO-8208 X.25 DTE-DTE mode, use
-
- isdnctrl l2_prot <iface-name> x75i
-
-To access an X.25 network switch via isdn (your linux box is the DTE), use
-
- isdnctrl l2_prot <iface-name> x25dte
-
-To mimic an X.25 network switch (DCE side of the connection), use
-
- isdnctrl l2_prot <iface-name> x25dce
-
-However, x25dte or x25dce is currently not supported by any real HL
-level driver. The main difference between x75i and x25dte/dce is that
-x25d[tc]e uses fixed lap_b addresses. With x75i, the side which
-initiates the isdn connection uses the DTE's lap_b address while the
-called side used the DCE's lap_b address. Thus, l2_prot x75i might
-probably work if you access a public X.25 network as long as the
-corresponding isdn connection is set up by you. At least one test
-was successful to connect via isdn4linux to an X.25 switch using this
-trick. At the switch side, a terminal adapter X.21 was used to connect
-it to the isdn.
-
-
-How to set up a test installation?
-==================================
-
-To test X.25 on top of isdn, you need to get
-
-- a recent version of the "isdnctrl" program that supports setting the new
- X.25 specific parameters.
-
-- the x25-utils-2.X package from
- ftp://ftp.hes.iki.fi/pub/ham/linux/ax25/x25utils-*
- (don't confuse the x25-utils with the ax25-utils)
-
-- an application program that uses linux PF_X25 sockets (some are
- contained in the x25-util package).
-
-Before compiling the user level utilities make sure that the compiler/
-preprocessor will fetch the proper kernel header files of this kernel
-source tree. Either make /usr/include/linux a symbolic link pointing to
-this kernel's include/linux directory or set the appropriate compiler flags.
-
-When all drivers and interfaces are loaded and configured you need to
-ifconfig the network interfaces up and add X.25-routes to them. Use
-the usual ifconfig tool.
-
-ifconfig <iface-name> up
-
-But a special x25route tool (distributed with the x25-util package)
-is needed to set up X.25 routes. I.e.
-
-x25route add 01 <iface-name>
-
-will cause all x.25 connections to the destination X.25-address
-"01" to be routed to your created isdn network interface.
-
-There are currently no real X.25 applications available. However, for
-tests, the x25-utils package contains a modified version of telnet
-and telnetd that uses X.25 sockets instead of tcp/ip sockets. You can
-use those for your first tests. Furthermore, you might check
-ftp://ftp.hamburg.pop.de/pub/LOCAL/linux/i4l-eft/ which contains some
-alpha-test implementation ("eftp4linux") of the EUROfile transfer
-protocol.
-
-The scripts distributed with the eftp4linux test releases might also
-provide useful examples for setting up X.25 on top of isdn.
-
-The x25-utility package also contains an x25trace tool that can be
-used to monitor X.25 packets received by the network interfaces.
-The /proc/net/x25* files also contain useful information.
-
-- Henner
diff --git a/Documentation/isdn/README.avmb1 b/Documentation/isdn/avmb1.rst
index 9e075484ef1e..de3961e67553 100644
--- a/Documentation/isdn/README.avmb1
+++ b/Documentation/isdn/avmb1.rst
@@ -1,4 +1,6 @@
-Driver for active AVM Controller.
+================================
+Driver for active AVM Controller
+================================
The driver provides a kernel capi2.0 Interface (kernelcapi) and
on top of this a User-Level-CAPI2.0-interface (capi)
@@ -11,25 +13,28 @@ The command avmcapictrl is part of the isdn4k-utils.
t4-files can be found at ftp://ftp.avm.de/cardware/b1/linux/firmware
Currently supported cards:
- B1 ISA (all versions)
- B1 PCI
- T1/T1B (HEMA card)
- M1
- M2
- B1 PCMCIA
+
+ - B1 ISA (all versions)
+ - B1 PCI
+ - T1/T1B (HEMA card)
+ - M1
+ - M2
+ - B1 PCMCIA
Installing
----------
You need at least /dev/capi20 to load the firmware.
-mknod /dev/capi20 c 68 0
-mknod /dev/capi20.00 c 68 1
-mknod /dev/capi20.01 c 68 2
-.
-.
-.
-mknod /dev/capi20.19 c 68 20
+::
+
+ mknod /dev/capi20 c 68 0
+ mknod /dev/capi20.00 c 68 1
+ mknod /dev/capi20.01 c 68 2
+ .
+ .
+ .
+ mknod /dev/capi20.19 c 68 20
Running
-------
@@ -38,45 +43,58 @@ To use the card you need the t4-files to download the firmware.
AVM GmbH provides several t4-files for the different D-channel
protocols (b1.t4 for Euro-ISDN). Install these file in /lib/isdn.
-if you configure as modules load the modules this way:
+if you configure as modules load the modules this way::
+
+ insmod /lib/modules/current/misc/capiutil.o
+ insmod /lib/modules/current/misc/b1.o
+ insmod /lib/modules/current/misc/kernelcapi.o
+ insmod /lib/modules/current/misc/capidrv.o
+ insmod /lib/modules/current/misc/capi.o
-insmod /lib/modules/current/misc/capiutil.o
-insmod /lib/modules/current/misc/b1.o
-insmod /lib/modules/current/misc/kernelcapi.o
-insmod /lib/modules/current/misc/capidrv.o
-insmod /lib/modules/current/misc/capi.o
+if you have an B1-PCI card load the module b1pci.o::
-if you have an B1-PCI card load the module b1pci.o
-insmod /lib/modules/current/misc/b1pci.o
-and load the firmware with
-avmcapictrl load /lib/isdn/b1.t4 1
+ insmod /lib/modules/current/misc/b1pci.o
+
+and load the firmware with::
+
+ avmcapictrl load /lib/isdn/b1.t4 1
if you have an B1-ISA card load the module b1isa.o
-and add the card by calling
-avmcapictrl add 0x150 15
-and load the firmware by calling
-avmcapictrl load /lib/isdn/b1.t4 1
+and add the card by calling::
+
+ avmcapictrl add 0x150 15
+
+and load the firmware by calling::
+
+ avmcapictrl load /lib/isdn/b1.t4 1
if you have an T1-ISA card load the module t1isa.o
-and add the card by calling
-avmcapictrl add 0x450 15 T1 0
-and load the firmware by calling
-avmcapictrl load /lib/isdn/t1.t4 1
+and add the card by calling::
+
+ avmcapictrl add 0x450 15 T1 0
+
+and load the firmware by calling::
+
+ avmcapictrl load /lib/isdn/t1.t4 1
if you have an PCMCIA card (B1/M1/M2) load the module b1pcmcia.o
before you insert the card.
Leased Lines with B1
--------------------
+
Init card and load firmware.
+
For an D64S use "FV: 1" as phone number
+
For an D64S2 use "FV: 1" and "FV: 2" for multilink
or "FV: 1,2" to use CAPI channel bundling.
/proc-Interface
-----------------
-/proc/capi:
+/proc/capi::
+
dr-xr-xr-x 2 root root 0 Jul 1 14:03 .
dr-xr-xr-x 82 root root 0 Jun 30 19:08 ..
-r--r--r-- 1 root root 0 Jul 1 14:03 applications
@@ -91,84 +109,124 @@ or "FV: 1,2" to use CAPI channel bundling.
/proc/capi/applications:
applid level3cnt datablkcnt datablklen ncci-cnt recvqueuelen
- level3cnt: capi_register parameter
- datablkcnt: capi_register parameter
- ncci-cnt: current number of nccis (connections)
- recvqueuelen: number of messages on receive queue
- for example:
-1 -2 16 2048 1 0
-2 2 7 2048 1 0
+ level3cnt:
+ capi_register parameter
+ datablkcnt:
+ capi_register parameter
+ ncci-cnt:
+ current number of nccis (connections)
+ recvqueuelen:
+ number of messages on receive queue
+
+ for example::
+
+ 1 -2 16 2048 1 0
+ 2 2 7 2048 1 0
/proc/capi/applstats:
applid recvctlmsg nrecvdatamsg nsentctlmsg nsentdatamsg
- recvctlmsg: capi messages received without DATA_B3_IND
- recvdatamsg: capi DATA_B3_IND received
- sentctlmsg: capi messages sent without DATA_B3_REQ
- sentdatamsg: capi DATA_B3_REQ sent
- for example:
-1 2057 1699 1721 1699
+ recvctlmsg:
+ capi messages received without DATA_B3_IND
+ recvdatamsg:
+ capi DATA_B3_IND received
+ sentctlmsg:
+ capi messages sent without DATA_B3_REQ
+ sentdatamsg:
+ capi DATA_B3_REQ sent
+
+ for example::
+
+ 1 2057 1699 1721 1699
/proc/capi/capi20: statistics of capi.o (/dev/capi20)
minor nopen nrecvdropmsg nrecvctlmsg nrecvdatamsg sentctlmsg sentdatamsg
- minor: minor device number of capi device
- nopen: number of calls to devices open
- nrecvdropmsg: capi messages dropped (messages in recvqueue in close)
- nrecvctlmsg: capi messages received without DATA_B3_IND
- nrecvdatamsg: capi DATA_B3_IND received
- nsentctlmsg: capi messages sent without DATA_B3_REQ
- nsentdatamsg: capi DATA_B3_REQ sent
-
- for example:
-1 2 18 0 16 2
+ minor:
+ minor device number of capi device
+ nopen:
+ number of calls to devices open
+ nrecvdropmsg:
+ capi messages dropped (messages in recvqueue in close)
+ nrecvctlmsg:
+ capi messages received without DATA_B3_IND
+ nrecvdatamsg:
+ capi DATA_B3_IND received
+ nsentctlmsg:
+ capi messages sent without DATA_B3_REQ
+ nsentdatamsg:
+ capi DATA_B3_REQ sent
+
+ for example::
+
+ 1 2 18 0 16 2
/proc/capi/capidrv: statistics of capidrv.o (capi messages)
nrecvctlmsg nrecvdatamsg sentctlmsg sentdatamsg
- nrecvctlmsg: capi messages received without DATA_B3_IND
- nrecvdatamsg: capi DATA_B3_IND received
- nsentctlmsg: capi messages sent without DATA_B3_REQ
- nsentdatamsg: capi DATA_B3_REQ sent
+ nrecvctlmsg:
+ capi messages received without DATA_B3_IND
+ nrecvdatamsg:
+ capi DATA_B3_IND received
+ nsentctlmsg:
+ capi messages sent without DATA_B3_REQ
+ nsentdatamsg:
+ capi DATA_B3_REQ sent
+
for example:
-2780 2226 2256 2226
+ 2780 2226 2256 2226
/proc/capi/controller:
controller drivername state cardname controllerinfo
- for example:
-1 b1pci running b1pci-e000 B1 3.07-01 0xe000 19
-2 t1isa running t1isa-450 B1 3.07-01 0x450 11 0
-3 b1pcmcia running m2-150 B1 3.07-01 0x150 5
+
+ for example::
+
+ 1 b1pci running b1pci-e000 B1 3.07-01 0xe000 19
+ 2 t1isa running t1isa-450 B1 3.07-01 0x450 11 0
+ 3 b1pcmcia running m2-150 B1 3.07-01 0x150 5
/proc/capi/contrstats:
controller nrecvctlmsg nrecvdatamsg sentctlmsg sentdatamsg
- nrecvctlmsg: capi messages received without DATA_B3_IND
- nrecvdatamsg: capi DATA_B3_IND received
- nsentctlmsg: capi messages sent without DATA_B3_REQ
- nsentdatamsg: capi DATA_B3_REQ sent
- for example:
-1 2845 2272 2310 2274
-2 2 0 2 0
-3 2 0 2 0
+ nrecvctlmsg:
+ capi messages received without DATA_B3_IND
+ nrecvdatamsg:
+ capi DATA_B3_IND received
+ nsentctlmsg:
+ capi messages sent without DATA_B3_REQ
+ nsentdatamsg:
+ capi DATA_B3_REQ sent
+
+ for example::
+
+ 1 2845 2272 2310 2274
+ 2 2 0 2 0
+ 3 2 0 2 0
/proc/capi/driver:
drivername ncontroller
- for example:
-b1pci 1
-t1isa 1
-b1pcmcia 1
-b1isa 0
+
+ for example::
+
+ b1pci 1
+ t1isa 1
+ b1pcmcia 1
+ b1isa 0
/proc/capi/ncci:
apllid ncci winsize sendwindow
- for example:
-1 0x10101 8 0
+
+ for example::
+
+ 1 0x10101 8 0
/proc/capi/users: kernelmodules that use the kernelcapi.
name
- for example:
-capidrv
-capi20
+
+ for example::
+
+ capidrv
+ capi20
Questions
---------
+
Check out the FAQ (ftp.isdn4linux.de) or subscribe to the
linux-avmb1@calle.in-berlin.de mailing list by sending
a mail to majordomo@calle.in-berlin.de with
@@ -178,9 +236,10 @@ in the body.
German documentation and several scripts can be found at
ftp://ftp.avm.de/cardware/b1/linux/
-Bugs
+Bugs
----
-If you find any please let me know.
+
+If you find any please let me know.
Enjoy,
diff --git a/Documentation/isdn/CREDITS b/Documentation/isdn/credits.rst
index c1679e913fca..319323f2091f 100644
--- a/Documentation/isdn/CREDITS
+++ b/Documentation/isdn/credits.rst
@@ -1,3 +1,7 @@
+=======
+Credits
+=======
+
I want to thank all who contributed to this project and especially to:
(in alphabetical order)
@@ -19,7 +23,7 @@ Matthias Hessler (hessler@isdn4linux.de)
For creating and maintaining the FAQ.
Bernhard Hailer (Bernhard.Hailer@lrz.uni-muenchen.de)
- For creating the FAQ, and the leafsite HOWTO.
+ For creating the FAQ, and the leafsite HOWTO.
Michael 'Ghandi' Herold (michael@abadonna.franken.de)
For contribution of the vbox answering machine.
@@ -67,4 +71,3 @@ Gerhard 'Fido' Schneider (fido@wuff.mayn.de)
Thomas Uhl (uhl@think.de)
For distributing the cards.
For pushing me to work ;-)
-
diff --git a/Documentation/isdn/README.gigaset b/Documentation/isdn/gigaset.rst
index 9b1ce277ca3d..98b4ec521c51 100644
--- a/Documentation/isdn/README.gigaset
+++ b/Documentation/isdn/gigaset.rst
@@ -1,33 +1,36 @@
+==========================
GigaSet 307x Device Driver
==========================
1. Requirements
- ------------
+=================
+
1.1. Hardware
- --------
+-------------
+
This driver supports the connection of the Gigaset 307x/417x family of
ISDN DECT bases via Gigaset M101 Data, Gigaset M105 Data or direct USB
connection. The following devices are reported to be compatible:
Bases:
- Siemens Gigaset 3070/3075 isdn
- Siemens Gigaset 4170/4175 isdn
- Siemens Gigaset SX205/255
- Siemens Gigaset SX353
- T-Com Sinus 45 [AB] isdn
- T-Com Sinus 721X[A] [SE]
- Vox Chicago 390 ISDN (KPN Telecom)
+ - Siemens Gigaset 3070/3075 isdn
+ - Siemens Gigaset 4170/4175 isdn
+ - Siemens Gigaset SX205/255
+ - Siemens Gigaset SX353
+ - T-Com Sinus 45 [AB] isdn
+ - T-Com Sinus 721X[A] [SE]
+ - Vox Chicago 390 ISDN (KPN Telecom)
RS232 data boxes:
- Siemens Gigaset M101 Data
- T-Com Sinus 45 Data 1
+ - Siemens Gigaset M101 Data
+ - T-Com Sinus 45 Data 1
USB data boxes:
- Siemens Gigaset M105 Data
- Siemens Gigaset USB Adapter DECT
- T-Com Sinus 45 Data 2
- T-Com Sinus 721 data
- Chicago 390 USB (KPN)
+ - Siemens Gigaset M105 Data
+ - Siemens Gigaset USB Adapter DECT
+ - T-Com Sinus 45 Data 2
+ - T-Com Sinus 721 data
+ - Chicago 390 USB (KPN)
See also http://www.erbze.info/sinus_gigaset.htm
(archived at https://web.archive.org/web/20100717020421/http://www.erbze.info:80/sinus_gigaset.htm ) and
@@ -37,20 +40,23 @@ GigaSet 307x Device Driver
with SX 100 and CX 100 ISDN bases (only in unimodem mode, see section 2.5.)
If you have another device that works with our driver, please let us know.
- Chances of getting an USB device to work are good if the output of
- lsusb
- at the command line contains one of the following:
- ID 0681:0001
- ID 0681:0002
- ID 0681:0009
- ID 0681:0021
- ID 0681:0022
+ Chances of getting an USB device to work are good if the output of::
+
+ lsusb
+
+ at the command line contains one of the following::
+
+ ID 0681:0001
+ ID 0681:0002
+ ID 0681:0009
+ ID 0681:0021
+ ID 0681:0022
1.2. Software
- --------
- The driver works with the Kernel CAPI subsystem as well as the old
- ISDN4Linux subsystem, so it can be used with any software which is able
- to use CAPI 2.0 or ISDN4Linux for ISDN connections (voice or data).
+-------------
+
+ The driver works with the Kernel CAPI subsystem and can be used with any
+ software which is able to use CAPI 2.0 for ISDN connections (voice or data).
There are some user space tools available at
https://sourceforge.net/projects/gigaset307x/
@@ -59,9 +65,11 @@ GigaSet 307x Device Driver
2. How to use the driver
- ---------------------
+==========================
+
2.1. Modules
- -------
+------------
+
For the devices to work, the proper kernel modules have to be loaded.
This normally happens automatically when the system detects the USB
device (base, M105) or when the line discipline is attached (M101). It
@@ -72,13 +80,17 @@ GigaSet 307x Device Driver
which uses the regular serial port driver to access the device, and must
therefore be attached to the serial device to which the M101 is connected.
The ldattach(8) command (included in util-linux-ng release 2.14 or later)
- can be used for that purpose, for example:
+ can be used for that purpose, for example::
+
ldattach GIGASET_M101 /dev/ttyS1
+
This will open the device file, attach the line discipline to it, and
then sleep in the background, keeping the device open so that the line
discipline remains active. To deactivate it, kill the daemon, for example
- with
+ with::
+
killall ldattach
+
before disconnecting the device. To have this happen automatically at
system startup/shutdown on an LSB compatible system, create and activate
an appropriate LSB startup script /etc/init.d/gigaset. (The init name
@@ -87,21 +99,25 @@ GigaSet 307x Device Driver
The modules accept the following parameters:
- Module Parameter Meaning
+ =============== ========== ==========================================
+ Module Parameter Meaning
- gigaset debug debug level (see section 3.2.)
+ gigaset debug debug level (see section 3.2.)
startmode initial operation mode (see section 2.5.):
- bas_gigaset ) 1=ISDN4linux/CAPI (default), 0=Unimodem
+ bas_gigaset ) 1=CAPI (default), 0=Unimodem
ser_gigaset )
usb_gigaset ) cidmode initial Call-ID mode setting (see section
2.5.): 1=on (default), 0=off
+ =============== ========== ==========================================
+
Depending on your distribution you may want to create a separate module
configuration file like /etc/modprobe.d/gigaset.conf for these.
2.2. Device nodes for user space programs
- ------------------------------------
+-----------------------------------------
+
The device can be accessed from user space (eg. by the user space tools
mentioned in 1.2.) through the device nodes:
@@ -114,58 +130,60 @@ GigaSet 307x Device Driver
You can also set a "default device" for the user space tools to use when
no device node is given as parameter, by creating a symlink /dev/ttyG to
- one of them, eg.:
+ one of them, eg.::
ln -s /dev/ttyGB0 /dev/ttyG
The devices accept the following device specific ioctl calls
(defined in gigaset_dev.h):
- ioctl(int fd, GIGASET_REDIR, int *cmd);
+ ``ioctl(int fd, GIGASET_REDIR, int *cmd);``
+
If cmd==1, the device is set to be controlled exclusively through the
character device node; access from the ISDN subsystem is blocked.
+
If cmd==0, the device is set to be used from the ISDN subsystem and does
not communicate through the character device node.
- ioctl(int fd, GIGASET_CONFIG, int *cmd);
+ ``ioctl(int fd, GIGASET_CONFIG, int *cmd);``
+
(ser_gigaset and usb_gigaset only)
+
If cmd==1, the device is set to adapter configuration mode where commands
are interpreted by the M10x DECT adapter itself instead of being
forwarded to the base station. In this mode, the device accepts the
commands described in Siemens document "AT-Kommando Alignment M10x Data"
for setting the operation mode, associating with a base station and
querying parameters like field strengh and signal quality.
+
Note that there is no ioctl command for leaving adapter configuration
mode and returning to regular operation. In order to leave adapter
configuration mode, write the command ATO to the device.
- ioctl(int fd, GIGASET_BRKCHARS, unsigned char brkchars[6]);
+ ``ioctl(int fd, GIGASET_BRKCHARS, unsigned char brkchars[6]);``
+
(usb_gigaset only)
+
Set the break characters on an M105's internal serial adapter to the six
bytes stored in brkchars[]. Unused bytes should be set to zero.
ioctl(int fd, GIGASET_VERSION, unsigned version[4]);
Retrieve version information from the driver. version[0] must be set to
one of:
+
- GIGVER_DRIVER: retrieve driver version
- GIGVER_COMPAT: retrieve interface compatibility version
- GIGVER_FWBASE: retrieve the firmware version of the base
+
Upon return, version[] is filled with the requested version information.
2.3. CAPI
- ----
- If the driver is compiled with CAPI support (kernel configuration option
- GIGASET_CAPI) the devices will show up as CAPI controllers as soon as the
- corresponding driver module is loaded, and can then be used with CAPI 2.0
- kernel and user space applications. For user space access, the module
- capi.ko must be loaded.
-
- Legacy ISDN4Linux applications are supported via the capidrv
- compatibility driver. The kernel module capidrv.ko must be loaded
- explicitly with the command
- modprobe capidrv
- if needed, and cannot be unloaded again without unloading the driver
- first. (These are limitations of capidrv.)
+---------
+
+ The devices will show up as CAPI controllers as soon as the
+ corresponding driver module is loaded, and can then be used with
+ CAPI 2.0 kernel and user space applications. For user space access,
+ the module capi.ko must be loaded.
Most distributions handle loading and unloading of the various CAPI
modules automatically via the command capiinit(1) from the capi4k-utils
@@ -173,32 +191,23 @@ GigaSet 307x Device Driver
Gigaset drivers because it doesn't support more than one module per
driver.
-2.4. ISDN4Linux
- ----------
- If the driver is compiled without CAPI support (native ISDN4Linux
- variant), it registers the device with the legacy ISDN4Linux subsystem
- after loading the module. It can then be used with ISDN4Linux
- applications only. Most distributions provide some configuration utility
- for setting up that subsystem. Otherwise you can use some HOWTOs like
- http://www.linuxhaven.de/dlhp/HOWTO/DE-ISDN-HOWTO-5.html
-
-
2.5. Unimodem mode
- -------------
+------------------
+
In this mode the device works like a modem connected to a serial port
- (the /dev/ttyGU0, ... mentioned above) which understands the commands
-
- ATZ init, reset
- => OK or ERROR
- ATD
- ATDT dial
- => OK, CONNECT,
- BUSY,
- NO DIAL TONE,
- NO CARRIER,
- NO ANSWER
- <pause>+++<pause> change to command mode when connected
- ATH hangup
+ (the /dev/ttyGU0, ... mentioned above) which understands the commands::
+
+ ATZ init, reset
+ => OK or ERROR
+ ATD
+ ATDT dial
+ => OK, CONNECT,
+ BUSY,
+ NO DIAL TONE,
+ NO CARRIER,
+ NO ANSWER
+ <pause>+++<pause> change to command mode when connected
+ ATH hangup
You can use some configuration tool of your distribution to configure this
"modem" or configure pppd/wvdial manually. There are some example ppp
@@ -208,40 +217,52 @@ GigaSet 307x Device Driver
control lines. This means you must use "Stupid Mode" if you are using
wvdial or you should use the nocrtscts option of pppd.
You must also assure that the ppp_async module is loaded with the parameter
- flag_time=0. You can do this e.g. by adding a line like
+ flag_time=0. You can do this e.g. by adding a line like::
+
+ options ppp_async flag_time=0
- options ppp_async flag_time=0
+ to an appropriate module configuration file, like::
- to an appropriate module configuration file, like
- /etc/modprobe.d/gigaset.conf.
+ /etc/modprobe.d/gigaset.conf.
Unimodem mode is needed for making some devices [e.g. SX100] work which
do not support the regular Gigaset command set. If debug output (see
- section 3.2.) shows something like this when dialing:
- CMD Received: ERROR
- Available Params: 0
- Connection State: 0, Response: -1
- gigaset_process_response: resp_code -1 in ConState 0 !
- Timeout occurred
+ section 3.2.) shows something like this when dialing::
+
+ CMD Received: ERROR
+ Available Params: 0
+ Connection State: 0, Response: -1
+ gigaset_process_response: resp_code -1 in ConState 0 !
+ Timeout occurred
+
then switching to unimodem mode may help.
If you have installed the command line tool gigacontr, you can enter
- unimodem mode using
- gigacontr --mode unimodem
- You can switch back using
- gigacontr --mode isdn
+ unimodem mode using::
+
+ gigacontr --mode unimodem
+
+ You can switch back using::
+
+ gigacontr --mode isdn
You can also put the driver directly into Unimodem mode when it's loaded,
by passing the module parameter startmode=0 to the hardware specific
- module, e.g.
+ module, e.g.::
+
modprobe usb_gigaset startmode=0
- or by adding a line like
+
+ or by adding a line like::
+
options usb_gigaset startmode=0
- to an appropriate module configuration file, like
- /etc/modprobe.d/gigaset.conf
+
+ to an appropriate module configuration file, like::
+
+ /etc/modprobe.d/gigaset.conf
2.6. Call-ID (CID) mode
- ------------------
+-----------------------
+
Call-IDs are numbers used to tag commands to, and responses from, the
Gigaset base in order to support the simultaneous handling of multiple
ISDN calls. Their use can be enabled ("CID mode") or disabled ("Unimodem
@@ -257,6 +278,7 @@ GigaSet 307x Device Driver
During active operation, the driver switches to the necessary mode
automatically. However, for the reasons above, the mode chosen when
the device is not in use (idle) can be selected by the user.
+
- If you want to receive incoming calls, you can use the default
settings (CID mode).
- If you have several DECT data devices (M10x) which you want to use
@@ -266,26 +288,27 @@ GigaSet 307x Device Driver
If you want both of these at once, you are out of luck.
You can also use the tty class parameter "cidmode" of the device to
- change its CID mode while the driver is loaded, eg.
- echo 0 > /sys/class/tty/ttyGU0/cidmode
+ change its CID mode while the driver is loaded, eg.::
+
+ echo 0 > /sys/class/tty/ttyGU0/cidmode
2.7. Dialing Numbers
- ---------------
- The called party number provided by an application for dialing out must
+--------------------
+provided by an application for dialing out must
be a public network number according to the local dialing plan, without
any dial prefix for getting an outside line.
Internal calls can be made by providing an internal extension number
- prefixed with "**" (two asterisks) as the called party number. So to dial
- eg. the first registered DECT handset, give "**11" as the called party
- number. Dialing "***" (three asterisks) calls all extensions
+ prefixed with ``**`` (two asterisks) as the called party number. So to dial
+ eg. the first registered DECT handset, give ``**11`` as the called party
+ number. Dialing ``***`` (three asterisks) calls all extensions
simultaneously (global call).
- This holds for both CAPI 2.0 and ISDN4Linux applications. Unimodem mode
- does not support internal calls.
+ Unimodem mode does not support internal calls.
2.8. Unregistered Wireless Devices (M101/M105)
- -----------------------------------------
+----------------------------------------------
+
The main purpose of the ser_gigaset and usb_gigaset drivers is to allow
the M101 and M105 wireless devices to be used as ISDN devices for ISDN
connections through a Gigaset base. Therefore they assume that the device
@@ -299,73 +322,91 @@ GigaSet 307x Device Driver
modes. See the gigacontr(8) manpage for details.
3. Troubleshooting
- ---------------
+====================
+
3.1. Solutions to frequently reported problems
- -----------------------------------------
+----------------------------------------------
+
Problem:
- You have a slow provider and isdn4linux gives up dialing too early.
+ You have a slow provider and isdn4linux gives up dialing too early.
Solution:
- Load the isdn module using the dialtimeout option. You can do this e.g.
- by adding a line like
+ Load the isdn module using the dialtimeout option. You can do this e.g.
+ by adding a line like::
- options isdn dialtimeout=15
+ options isdn dialtimeout=15
- to /etc/modprobe.d/gigaset.conf or a similar file.
+ to /etc/modprobe.d/gigaset.conf or a similar file.
Problem:
- The isdnlog program emits error messages or just doesn't work.
+ The isdnlog program emits error messages or just doesn't work.
Solution:
- Isdnlog supports only the HiSax driver. Do not attempt to use it with
+ Isdnlog supports only the HiSax driver. Do not attempt to use it with
other drivers such as Gigaset.
Problem:
- You have two or more DECT data adapters (M101/M105) and only the
- first one you turn on works.
+ You have two or more DECT data adapters (M101/M105) and only the
+ first one you turn on works.
Solution:
- Select Unimodem mode for all DECT data adapters. (see section 2.5.)
+ Select Unimodem mode for all DECT data adapters. (see section 2.5.)
Problem:
- Messages like this:
+ Messages like this::
+
usb_gigaset 3-2:1.0: Could not initialize the device.
+
appear in your syslog.
Solution:
Check whether your M10x wireless device is correctly registered to the
Gigaset base. (see section 2.7.)
3.2. Telling the driver to provide more information
- ----------------------------------------------
+---------------------------------------------------
Building the driver with the "Gigaset debugging" kernel configuration
option (CONFIG_GIGASET_DEBUG) gives it the ability to produce additional
information useful for debugging.
You can control the amount of debugging information the driver produces by
- writing an appropriate value to /sys/module/gigaset/parameters/debug, e.g.
- echo 0 > /sys/module/gigaset/parameters/debug
+ writing an appropriate value to /sys/module/gigaset/parameters/debug,
+ e.g.::
+
+ echo 0 > /sys/module/gigaset/parameters/debug
+
switches off debugging output completely,
- echo 0x302020 > /sys/module/gigaset/parameters/debug
+
+ ::
+
+ echo 0x302020 > /sys/module/gigaset/parameters/debug
+
enables a reasonable set of debugging output messages. These values are
bit patterns where every bit controls a certain type of debugging output.
See the constants DEBUG_* in the source file gigaset.h for details.
The initial value can be set using the debug parameter when loading the
- module "gigaset", e.g. by adding a line
- options gigaset debug=0
+ module "gigaset", e.g. by adding a line::
+
+ options gigaset debug=0
+
to your module configuration file, eg. /etc/modprobe.d/gigaset.conf
Generated debugging information can be found
- - as output of the command
- dmesg
+ - as output of the command::
+
+ dmesg
+
- in system log files written by your syslog daemon, usually
in /var/log/, e.g. /var/log/messages.
3.3. Reporting problems and bugs
- ---------------------------
+--------------------------------
If you can't solve problems with the driver on your own, feel free to
use one of the forums, bug trackers, or mailing lists on
- https://sourceforge.net/projects/gigaset307x
+
+ https://sourceforge.net/projects/gigaset307x
+
or write an electronic mail to the maintainers.
Try to provide as much information as possible, such as
+
- distribution
- kernel version (uname -r)
- gcc version (gcc --version)
@@ -382,7 +423,7 @@ GigaSet 307x Device Driver
appropriate forums and newsgroups.
3.4. Reporting problem solutions
- ---------------------------
+--------------------------------
If you solved a problem with our drivers, wrote startup scripts for your
distribution, ... feel free to contact us (using one of the places
mentioned in 3.3.). We'd like to add scripts, hints, documentation
@@ -390,34 +431,35 @@ GigaSet 307x Device Driver
4. Links, other software
- ---------------------
+==========================
+
- Sourceforge project developing this driver and associated tools
- https://sourceforge.net/projects/gigaset307x
+ https://sourceforge.net/projects/gigaset307x
- Yahoo! Group on the Siemens Gigaset family of devices
- https://de.groups.yahoo.com/group/Siemens-Gigaset
+ https://de.groups.yahoo.com/group/Siemens-Gigaset
- Siemens Gigaset/T-Sinus compatibility table
- http://www.erbze.info/sinus_gigaset.htm
+ http://www.erbze.info/sinus_gigaset.htm
(archived at https://web.archive.org/web/20100717020421/http://www.erbze.info:80/sinus_gigaset.htm )
5. Credits
- -------
+============
+
Thanks to
Karsten Keil
- for his help with isdn4linux
+ for his help with isdn4linux
Deti Fliegl
- for his base driver code
+ for his base driver code
Dennis Dietrich
- for his kernel 2.6 patches
+ for his kernel 2.6 patches
Andreas Rummel
- for his work and logs to get unimodem mode working
+ for his work and logs to get unimodem mode working
Andreas Degert
- for his logs and patches to get cx 100 working
+ for his logs and patches to get cx 100 working
Dietrich Feist
- for his generous donation of one M105 and two M101 cordless adapters
+ for his generous donation of one M105 and two M101 cordless adapters
Christoph Schweers
- for his generous donation of a M34 device
+ for his generous donation of a M34 device
and all the other people who sent logs and other information.
-
diff --git a/Documentation/isdn/README.hysdn b/Documentation/isdn/hysdn.rst
index eeca11f00ccd..0a168d1cbffc 100644
--- a/Documentation/isdn/README.hysdn
+++ b/Documentation/isdn/hysdn.rst
@@ -1,4 +1,7 @@
-$Id: README.hysdn,v 1.3.6.1 2001/02/10 14:41:19 kai Exp $
+============
+Hysdn Driver
+============
+
The hysdn driver has been written by
Werner Cornelius (werner@isdn4linux.de or werner@titro.de)
for Hypercope GmbH Aachen Germany. Hypercope agreed to publish this driver
@@ -22,28 +25,28 @@ for Hypercope GmbH Aachen, Germany.
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-Table of contents
-=================
+.. Table of contents
-1. About the driver
+ 1. About the driver
-2. Loading/Unloading the driver
+ 2. Loading/Unloading the driver
-3. Entries in the /proc filesystem
+ 3. Entries in the /proc filesystem
-4. The /proc/net/hysdn/cardconfX file
+ 4. The /proc/net/hysdn/cardconfX file
-5. The /proc/net/hysdn/cardlogX file
+ 5. The /proc/net/hysdn/cardlogX file
-6. Where to get additional info and help
+ 6. Where to get additional info and help
1. About the driver
+===================
- The drivers/isdn/hysdn subdir contains a driver for HYPERCOPEs active
+ The drivers/isdn/hysdn subdir contains a driver for HYPERCOPEs active
PCI isdn cards Champ, Ergo and Metro. To enable support for this cards
enable ISDN support in the kernel config and support for HYSDN cards in
- the active cards submenu. The driver may only be compiled and used if
+ the active cards submenu. The driver may only be compiled and used if
support for loadable modules and the process filesystem have been enabled.
These cards provide two different interfaces to the kernel. Without the
@@ -52,22 +55,23 @@ Table of contents
handlers for various protocols like ppp and others as well as config info
and firmware may be fetched from Hypercopes WWW-Site www.hypercope.de.
- With CAPI 2.0 support enabled, the card can also be used as a CAPI 2.0
- compliant devices with either CAPI 2.0 applications
+ With CAPI 2.0 support enabled, the card can also be used as a CAPI 2.0
+ compliant devices with either CAPI 2.0 applications
(check isdn4k-utils) or -using the capidrv module- as a regular
- isdn4linux device. This is done via the same mechanism as with the
+ isdn4linux device. This is done via the same mechanism as with the
active AVM cards and in fact uses the same module.
-
+
2. Loading/Unloading the driver
+===============================
The module has no command line parameters and auto detects up to 10 cards
in the id-range 0-9.
If a loaded driver shall be unloaded all open files in the /proc/net/hysdn
- subdir need to be closed and all ethernet interfaces allocated by this
+ subdir need to be closed and all ethernet interfaces allocated by this
driver must be shut down. Otherwise the module counter will avoid a module
unload.
-
+
If you are using the CAPI 2.0-interface, make sure to load/modprobe the
kernelcapi-module first.
@@ -76,52 +80,57 @@ Table of contents
any avm-specific modules).
3. Entries in the /proc filesystem
+==================================
- When the module has been loaded it adds the directory hysdn in the
- /proc/net tree. This directory contains exactly 2 file entries for each
+ When the module has been loaded it adds the directory hysdn in the
+ /proc/net tree. This directory contains exactly 2 file entries for each
card. One is called cardconfX and the other cardlogX, where X is the
- card id number from 0 to 9.
+ card id number from 0 to 9.
The cards are numbered in the order found in the PCI config data.
4. The /proc/net/hysdn/cardconfX file
+=====================================
- This file may be read to get by everyone to get info about the cards type,
+ This file may be read to get by everyone to get info about the cards type,
actual state, available features and used resources.
The first 3 entries (id, bus and slot) are PCI info fields, the following
type field gives the information about the cards type:
- 4 -> Ergo card (server card with 2 b-chans)
- 5 -> Metro card (server card with 4 or 8 b-chans)
- 6 -> Champ card (client card with 2 b-chans)
+ - 4 -> Ergo card (server card with 2 b-chans)
+ - 5 -> Metro card (server card with 4 or 8 b-chans)
+ - 6 -> Champ card (client card with 2 b-chans)
The following 3 fields show the hardware assignments for irq, iobase and the
dual ported memory (dp-mem).
+
The fields b-chans and fax-chans announce the available card resources of
this types for the user.
+
The state variable indicates the actual drivers state for this card with the
following assignments.
- 0 -> card has not been booted since driver load
- 1 -> card booting is actually in progess
- 2 -> card is in an error state due to a previous boot failure
- 3 -> card is booted and active
+ - 0 -> card has not been booted since driver load
+ - 1 -> card booting is actually in progess
+ - 2 -> card is in an error state due to a previous boot failure
+ - 3 -> card is booted and active
And the last field (device) shows the name of the ethernet device assigned
to this card. Up to the first successful boot this field only shows a -
to tell that no net device has been allocated up to now. Once a net device
has been allocated it remains assigned to this card, even if a card is
- rebooted and an boot error occurs.
+ rebooted and an boot error occurs.
- Writing to the cardconfX file boots the card or transfers config lines to
- the cards firmware. The type of data is automatically detected when the
+ Writing to the cardconfX file boots the card or transfers config lines to
+ the cards firmware. The type of data is automatically detected when the
first data is written. Only root has write access to this file.
The firmware boot files are normally called hyclient.pof for client cards
and hyserver.pof for server cards.
After successfully writing the boot file, complete config files or single
config lines may be copied to this file.
- If an error occurs the return value given to the writing process has the
+ If an error occurs the return value given to the writing process has the
following additional codes (decimal):
+ ==== ============================================
1000 Another process is currently bootng the card
1001 Invalid firmware header
1002 Boards dual-port RAM test failed
@@ -131,34 +140,39 @@ Table of contents
1006 Second boot stage failure
1007 Timeout waiting for card ready during boot
1008 Operation only allowed in booted state
- 1009 Config line too long
- 1010 Invalid channel number
+ 1009 Config line too long
+ 1010 Invalid channel number
1011 Timeout sending config data
+ ==== ============================================
- Additional info about error reasons may be fetched from the log output.
+ Additional info about error reasons may be fetched from the log output.
5. The /proc/net/hysdn/cardlogX file
-
- The cardlogX file entry may be opened multiple for reading by everyone to
+====================================
+
+ The cardlogX file entry may be opened multiple for reading by everyone to
get the cards and drivers log data. Card messages always start with the
- keyword LOG. All other lines are output from the driver.
- The driver log data may be redirected to the syslog by selecting the
+ keyword LOG. All other lines are output from the driver.
+ The driver log data may be redirected to the syslog by selecting the
appropriate bitmask. The cards log messages will always be send to this
interface but never to the syslog.
A root user may write a decimal or hex (with 0x) value t this file to select
- desired output options. As mentioned above the cards log dat is always
+ desired output options. As mentioned above the cards log dat is always
written to the cardlog file independent of the following options only used
to check and debug the driver itself:
- For example:
- echo "0x34560078" > /proc/net/hysdn/cardlog0
+ For example::
+
+ echo "0x34560078" > /proc/net/hysdn/cardlog0
+
to output the hex log mask 34560078 for card 0.
-
- The written value is regarded as an unsigned 32-Bit value, bit ored for
+
+ The written value is regarded as an unsigned 32-Bit value, bit ored for
desired output. The following bits are already assigned:
- 0x80000000 All driver log data is alternatively via syslog
+ ========== ============================================================
+ 0x80000000 All driver log data is alternatively via syslog
0x00000001 Log memory allocation errors
0x00000010 Firmware load start and close are logged
0x00000020 Log firmware record parser
@@ -171,25 +185,12 @@ Table of contents
0x00100000 Log all open and close actions to /proc/net/hysdn/card files
0x00200000 Log all actions from /proc file entries
0x00010000 Log network interface init and deinit
-
+ ========== ============================================================
+
6. Where to get additional info and help
+========================================
- If you have any problems concerning the driver or configuration contact
+ If you have any problems concerning the driver or configuration contact
the Hypercope support team (support@hypercope.de) and or the authors
Werner Cornelius (werner@isdn4linux or cornelius@titro.de) or
Ulrich Albrecht (ualbrecht@hypercope.de).
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/Documentation/isdn/index.rst b/Documentation/isdn/index.rst
new file mode 100644
index 000000000000..407e74b78372
--- /dev/null
+++ b/Documentation/isdn/index.rst
@@ -0,0 +1,24 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====
+ISDN
+====
+
+.. toctree::
+ :maxdepth: 2
+
+ interface_capi
+
+ avmb1
+ gigaset
+ hysdn
+ m_isdn
+
+ credits
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/isdn/INTERFACE.CAPI b/Documentation/isdn/interface_capi.rst
index 021aa9cf139d..01a4b5ade9a4 100644
--- a/Documentation/isdn/INTERFACE.CAPI
+++ b/Documentation/isdn/interface_capi.rst
@@ -1,7 +1,9 @@
+=========================================
Kernel CAPI Interface to Hardware Drivers
------------------------------------------
+=========================================
1. Overview
+===========
From the CAPI 2.0 specification:
COMMON-ISDN-API (CAPI) is an application programming interface standard used
@@ -22,6 +24,7 @@ This standard is freely available from https://www.capi.org.
2. Driver and Device Registration
+=================================
CAPI drivers optionally register themselves with Kernel CAPI by calling the
Kernel CAPI function register_capi_driver() with a pointer to a struct
@@ -50,6 +53,7 @@ callback functions by Kernel CAPI.
3. Application Registration and Communication
+=============================================
Kernel CAPI forwards registration requests from applications (calls to CAPI
operation CAPI_REGISTER) to an appropriate hardware driver by calling its
@@ -71,23 +75,26 @@ messages for that application may be passed to or from the device anymore.
4. Data Structures
+==================
4.1 struct capi_driver
+----------------------
This structure describes a Kernel CAPI driver itself. It is used in the
register_capi_driver() and unregister_capi_driver() functions, and contains
the following non-private fields, all to be set by the driver before calling
register_capi_driver():
-char name[32]
+``char name[32]``
the name of the driver, as a zero-terminated ASCII string
-char revision[32]
+``char revision[32]``
the revision number of the driver, as a zero-terminated ASCII string
-int (*add_card)(struct capi_driver *driver, capicardparams *data)
+``int (*add_card)(struct capi_driver *driver, capicardparams *data)``
a callback function pointer (may be NULL)
4.2 struct capi_ctr
+-------------------
This structure describes an ISDN device (controller) handled by a Kernel CAPI
driver. After registration via the attach_capi_ctr() function it is passed to
@@ -96,88 +103,109 @@ identify the controller to operate on.
It contains the following non-private fields:
-- to be set by the driver before calling attach_capi_ctr():
+to be set by the driver before calling attach_capi_ctr():
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-struct module *owner
+``struct module *owner``
pointer to the driver module owning the device
-void *driverdata
+``void *driverdata``
an opaque pointer to driver specific data, not touched by Kernel CAPI
-char name[32]
+``char name[32]``
the name of the controller, as a zero-terminated ASCII string
-char *driver_name
+``char *driver_name``
the name of the driver, as a zero-terminated ASCII string
-int (*load_firmware)(struct capi_ctr *ctrlr, capiloaddata *ldata)
+``int (*load_firmware)(struct capi_ctr *ctrlr, capiloaddata *ldata)``
(optional) pointer to a callback function for sending firmware and
configuration data to the device
+
The function may return before the operation has completed.
+
Completion must be signalled by a call to capi_ctr_ready().
+
Return value: 0 on success, error code on error
Called in process context.
-void (*reset_ctr)(struct capi_ctr *ctrlr)
+``void (*reset_ctr)(struct capi_ctr *ctrlr)``
(optional) pointer to a callback function for stopping the device,
releasing all registered applications
+
The function may return before the operation has completed.
+
Completion must be signalled by a call to capi_ctr_down().
+
Called in process context.
-void (*register_appl)(struct capi_ctr *ctrlr, u16 applid,
- capi_register_params *rparam)
-void (*release_appl)(struct capi_ctr *ctrlr, u16 applid)
- pointers to callback functions for registration and deregistration of
+``void (*register_appl)(struct capi_ctr *ctrlr, u16 applid, capi_register_params *rparam)``
+ pointers to callback function for registration of
applications with the device
+
Calls to these functions are serialized by Kernel CAPI so that only
one call to any of them is active at any time.
-u16 (*send_message)(struct capi_ctr *ctrlr, struct sk_buff *skb)
+``void (*release_appl)(struct capi_ctr *ctrlr, u16 applid)``
+ pointers to callback functions deregistration of
+ applications with the device
+
+ Calls to these functions are serialized by Kernel CAPI so that only
+ one call to any of them is active at any time.
+
+``u16 (*send_message)(struct capi_ctr *ctrlr, struct sk_buff *skb)``
pointer to a callback function for sending a CAPI message to the
device
+
Return value: CAPI error code
+
If the method returns 0 (CAPI_NOERROR) the driver has taken ownership
of the skb and the caller may no longer access it. If it returns a
non-zero (error) value then ownership of the skb returns to the caller
who may reuse or free it.
+
The return value should only be used to signal problems with respect
to accepting or queueing the message. Errors occurring during the
actual processing of the message should be signaled with an
appropriate reply message.
+
May be called in process or interrupt context.
+
Calls to this function are not serialized by Kernel CAPI, ie. it must
be prepared to be re-entered.
-char *(*procinfo)(struct capi_ctr *ctrlr)
+``char *(*procinfo)(struct capi_ctr *ctrlr)``
pointer to a callback function returning the entry for the device in
the CAPI controller info table, /proc/capi/controller
-const struct file_operations *proc_fops
+``const struct file_operations *proc_fops``
pointers to callback functions for the device's proc file
system entry, /proc/capi/controllers/<n>; pointer to the device's
capi_ctr structure is available from struct proc_dir_entry::data
which is available from struct inode.
-Note: Callback functions except send_message() are never called in interrupt
-context.
+Note:
+ Callback functions except send_message() are never called in interrupt
+ context.
-- to be filled in before calling capi_ctr_ready():
+to be filled in before calling capi_ctr_ready():
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-u8 manu[CAPI_MANUFACTURER_LEN]
+``u8 manu[CAPI_MANUFACTURER_LEN]``
value to return for CAPI_GET_MANUFACTURER
-capi_version version
+``capi_version version``
value to return for CAPI_GET_VERSION
-capi_profile profile
+``capi_profile profile``
value to return for CAPI_GET_PROFILE
-u8 serial[CAPI_SERIAL_LEN]
+``u8 serial[CAPI_SERIAL_LEN]``
value to return for CAPI_GET_SERIAL
4.3 SKBs
+--------
CAPI messages are passed between Kernel CAPI and the driver via send_message()
and capi_ctr_handle_message(), stored in the data portion of a socket buffer
@@ -192,6 +220,7 @@ instead of 30.
4.4 The _cmsg Structure
+-----------------------
(declared in <linux/isdn/capiutil.h>)
@@ -216,6 +245,7 @@ Members are named after the CAPI 2.0 standard names of the parameters they
represent. See <linux/isdn/capiutil.h> for the exact spelling. Member data
types are:
+=========== =================================================================
u8 for CAPI parameters of type 'byte'
u16 for CAPI parameters of type 'word'
@@ -235,6 +265,7 @@ _cmstruct alternative representation for CAPI parameters of type 'struct'
CAPI_COMPOSE: The parameter is present.
Subparameter values are stored individually in the corresponding
_cmsg structure members.
+=========== =================================================================
Functions capi_cmsg2message() and capi_message2cmsg() are provided to convert
messages between their transport encoding described in the CAPI 2.0 standard
@@ -244,51 +275,71 @@ sure it is big enough to accommodate the resulting CAPI message.
5. Lower Layer Interface Functions
+==================================
(declared in <linux/isdn/capilli.h>)
-void register_capi_driver(struct capi_driver *drvr)
-void unregister_capi_driver(struct capi_driver *drvr)
- register/unregister a driver with Kernel CAPI
+::
+
+ void register_capi_driver(struct capi_driver *drvr)
+ void unregister_capi_driver(struct capi_driver *drvr)
+
+register/unregister a driver with Kernel CAPI
+
+::
+
+ int attach_capi_ctr(struct capi_ctr *ctrlr)
+ int detach_capi_ctr(struct capi_ctr *ctrlr)
+
+register/unregister a device (controller) with Kernel CAPI
-int attach_capi_ctr(struct capi_ctr *ctrlr)
-int detach_capi_ctr(struct capi_ctr *ctrlr)
- register/unregister a device (controller) with Kernel CAPI
+::
-void capi_ctr_ready(struct capi_ctr *ctrlr)
-void capi_ctr_down(struct capi_ctr *ctrlr)
- signal controller ready/not ready
+ void capi_ctr_ready(struct capi_ctr *ctrlr)
+ void capi_ctr_down(struct capi_ctr *ctrlr)
-void capi_ctr_suspend_output(struct capi_ctr *ctrlr)
-void capi_ctr_resume_output(struct capi_ctr *ctrlr)
- signal suspend/resume
+signal controller ready/not ready
-void capi_ctr_handle_message(struct capi_ctr * ctrlr, u16 applid,
- struct sk_buff *skb)
- pass a received CAPI message to Kernel CAPI
- for forwarding to the specified application
+::
+
+ void capi_ctr_suspend_output(struct capi_ctr *ctrlr)
+ void capi_ctr_resume_output(struct capi_ctr *ctrlr)
+
+signal suspend/resume
+
+::
+
+ void capi_ctr_handle_message(struct capi_ctr * ctrlr, u16 applid,
+ struct sk_buff *skb)
+
+pass a received CAPI message to Kernel CAPI
+for forwarding to the specified application
6. Helper Functions and Macros
+==============================
Library functions (from <linux/isdn/capilli.h>):
-void capilib_new_ncci(struct list_head *head, u16 applid,
+::
+
+ void capilib_new_ncci(struct list_head *head, u16 applid,
u32 ncci, u32 winsize)
-void capilib_free_ncci(struct list_head *head, u16 applid, u32 ncci)
-void capilib_release_appl(struct list_head *head, u16 applid)
-void capilib_release(struct list_head *head)
-void capilib_data_b3_conf(struct list_head *head, u16 applid,
+ void capilib_free_ncci(struct list_head *head, u16 applid, u32 ncci)
+ void capilib_release_appl(struct list_head *head, u16 applid)
+ void capilib_release(struct list_head *head)
+ void capilib_data_b3_conf(struct list_head *head, u16 applid,
u32 ncci, u16 msgid)
-u16 capilib_data_b3_req(struct list_head *head, u16 applid,
+ u16 capilib_data_b3_req(struct list_head *head, u16 applid,
u32 ncci, u16 msgid)
Macros to extract/set element values from/in a CAPI message header
(from <linux/isdn/capiutil.h>):
+====================== ============================= ====================
Get Macro Set Macro Element (Type)
-
+====================== ============================= ====================
CAPIMSG_LEN(m) CAPIMSG_SETLEN(m, len) Total Length (u16)
CAPIMSG_APPID(m) CAPIMSG_SETAPPID(m, applid) ApplID (u16)
CAPIMSG_COMMAND(m) CAPIMSG_SETCOMMAND(m,cmd) Command (u8)
@@ -300,31 +351,31 @@ CAPIMSG_MSGID(m) CAPIMSG_SETMSGID(m, msgid) Message Number (u16)
CAPIMSG_CONTROL(m) CAPIMSG_SETCONTROL(m, contr) Controller/PLCI/NCCI
(u32)
CAPIMSG_DATALEN(m) CAPIMSG_SETDATALEN(m, len) Data Length (u16)
+====================== ============================= ====================
Library functions for working with _cmsg structures
(from <linux/isdn/capiutil.h>):
-unsigned capi_cmsg2message(_cmsg *cmsg, u8 *msg)
- Assembles a CAPI 2.0 message from the parameters in *cmsg, storing the
- result in *msg.
+``unsigned capi_cmsg2message(_cmsg *cmsg, u8 *msg)``
+ Assembles a CAPI 2.0 message from the parameters in ``*cmsg``,
+ storing the result in ``*msg``.
-unsigned capi_message2cmsg(_cmsg *cmsg, u8 *msg)
- Disassembles the CAPI 2.0 message in *msg, storing the parameters in
- *cmsg.
+``unsigned capi_message2cmsg(_cmsg *cmsg, u8 *msg)``
+ Disassembles the CAPI 2.0 message in ``*msg``, storing the parameters
+ in ``*cmsg``.
-unsigned capi_cmsg_header(_cmsg *cmsg, u16 ApplId, u8 Command, u8 Subcommand,
- u16 Messagenumber, u32 Controller)
- Fills the header part and address field of the _cmsg structure *cmsg
+``unsigned capi_cmsg_header(_cmsg *cmsg, u16 ApplId, u8 Command, u8 Subcommand, u16 Messagenumber, u32 Controller)``
+ Fills the header part and address field of the _cmsg structure ``*cmsg``
with the given values, zeroing the remainder of the structure so only
parameters with non-default values need to be changed before sending
the message.
-void capi_cmsg_answer(_cmsg *cmsg)
- Sets the low bit of the Subcommand field in *cmsg, thereby converting
- _REQ to _CONF and _IND to _RESP.
+``void capi_cmsg_answer(_cmsg *cmsg)``
+ Sets the low bit of the Subcommand field in ``*cmsg``, thereby
+ converting ``_REQ`` to ``_CONF`` and ``_IND`` to ``_RESP``.
-char *capi_cmd2str(u8 Command, u8 Subcommand)
+``char *capi_cmd2str(u8 Command, u8 Subcommand)``
Returns the CAPI 2.0 message name corresponding to the given command
and subcommand values, as a static ASCII string. The return value may
be NULL if the command/subcommand is not one of those defined in the
@@ -332,6 +383,7 @@ char *capi_cmd2str(u8 Command, u8 Subcommand)
7. Debugging
+============
The module kernelcapi has a module parameter showcapimsgs controlling some
debugging output produced by the module. It can only be set when the module is
diff --git a/Documentation/isdn/README.mISDN b/Documentation/isdn/m_isdn.rst
index cd8bf920e77b..9957de349e69 100644
--- a/Documentation/isdn/README.mISDN
+++ b/Documentation/isdn/m_isdn.rst
@@ -1,6 +1,9 @@
+============
+mISDN Driver
+============
+
mISDN is a new modular ISDN driver, in the long term it should replace
the old I4L driver architecture for passiv ISDN cards.
It was designed to allow a broad range of applications and interfaces
but only have the basic function in kernel, the interface to the user
space is based on sockets with a own address family AF_ISDN.
-
diff --git a/Documentation/isdn/syncPPP.FAQ b/Documentation/isdn/syncPPP.FAQ
deleted file mode 100644
index 3257a4bc0786..000000000000
--- a/Documentation/isdn/syncPPP.FAQ
+++ /dev/null
@@ -1,224 +0,0 @@
-simple isdn4linux PPP FAQ .. to be continued .. not 'debugged'
--------------------------------------------------------------------
-
-Q01: what's pppd, ipppd, syncPPP, asyncPPP ??
-Q02: error message "this system lacks PPP support"
-Q03: strange information using 'ifconfig'
-Q04: MPPP?? What's that and how can I use it ...
-Q05: I tried MPPP but it doesn't work
-Q06: can I use asynchronous PPP encapsulation with network devices
-Q07: A SunISDN machine can't connect to my i4l system
-Q08: I wanna talk to several machines, which need different configs
-Q09: Starting the ipppd, I get only error messages from i4l
-Q10: I wanna use dynamic IP address assignment
-Q11: I can't connect. How can I check where the problem is.
-Q12: How can I reduce login delay?
-
--------------------------------------------------------------------
-
-Q01: pppd, ipppd, syncPPP, asyncPPP .. what is that ?
- what should I use?
-A: The pppd is for asynchronous PPP .. asynchronous means
- here, the framing is character based. (e.g when
- using ttyI* or tty* devices)
-
- The ipppd handles PPP packets coming in HDLC
- frames (bit based protocol) ... The PPP driver
- in isdn4linux pushes all IP packets direct
- to the network layer and all PPP protocol
- frames to the /dev/ippp* device.
- So, the ipppd is a simple external network
- protocol handler.
-
- If you login into a remote machine using the
- /dev/ttyI* devices and then enable PPP on the
- remote terminal server -> use the 'old' pppd
-
- If your remote side immediately starts to send
- frames ... you probably connect to a
- syncPPP machine .. use the network device part
- of isdn4linux with the 'syncppp' encapsulation
- and make sure, that the ipppd is running and
- connected to at least one /dev/ippp*. Check the
- isdn4linux manual on how to configure a network device.
-
---
-
-Q02: when I start the ipppd .. I only get the
- error message "this system lacks PPP support"
-A: check that at least the device 'ippp0' exists.
- (you can check this e.g with the program 'ifconfig')
- The ipppd NEEDS this device under THIS name ..
- If this device doesn't exists, use:
- isdnctrl addif ippp0
- isdnctrl encap ippp0 syncppp
- ... (see isdn4linux doc for more) ...
-A: Maybe you have compiled the ipppd with another
- kernel source tree than the kernel you currently
- run ...
-
---
-
-Q03: when I list the netdevices with ifconfig I see, that
- my ISDN interface has a HWaddr and IRQ=0 and Base
- address = 0
-A: The device is a fake ethernet device .. ignore IRQ and baseaddr
- You need the HWaddr only for ethernet encapsulation.
-
---
-
-Q04: MPPP?? What's that and how can I use it ...
-
-A: MPPP or MP or MPP (Warning: MP is also an
- acronym for 'Multi Processor') stands for
- Multi Point to Point and means bundling
- of several channels to one logical stream.
- To enable MPPP negotiation you must call the
- ipppd with the '+mp' option.
- You must also configure a slave device for
- every additional channel. (see the i4l manual
- for more)
- To use channel bundling you must first activate
- the 'master' or initial call. Now you can add
- the slave channels with the command:
- isdnctrl addlink <device>
- e.g:
- isdnctrl addlink ippp0
- This is different from other encapsulations of
- isdn4linux! With syncPPP, there is no automatic
- activation of slave devices.
-
---
-
-Q05: I tried MPPP but it doesn't work .. the ipppd
- writes in the debug log something like:
- .. rcvd [0][proto=0x3d] c0 00 00 00 80 fd 01 01 00 0a ...
- .. sent [0][LCP ProtRej id=0x2 00 3d c0 00 00 00 80 fd 01 ...
-
-A: you forgot to compile MPPP/RFC1717 support into the
- ISDN Subsystem. Recompile with this option enabled.
-
---
-
-Q06: can I use asynchronous PPP encapsulation
- over the network interface of isdn4linux ..
-
-A: No .. that's not possible .. Use the standard
- PPP package over the /dev/ttyI* devices. You
- must not use the ipppd for this.
-
---
-
-Q07: A SunISDN machine tries to connect my i4l system,
- which doesn't work.
- Checking the debug log I just saw garbage like:
-!![ ... fill in the line ... ]!!
-
-A: The Sun tries to talk asynchronous PPP ... i4l
- can't understand this ... try to use the ttyI*
- devices with the standard PPP/pppd package
-
-A: (from Alexanter Strauss: )
-!![ ... fill in mail ]!!
-
---
-
-Q08: I wanna talk to remote machines, which need
- a different configuration. The only way
- I found to do this is to kill the ipppd and
- start a new one with another config to connect
- to the second machine.
-
-A: you must bind a network interface explicitly to
- an ippp device, where you can connect a (for this
- interface) individually configured ipppd.
-
---
-
-Q09: When I start the ipppd I only get error messages
- from the i4l driver ..
-
-A: When starting, the ipppd calls functions which may
- trigger a network packet. (e.g gethostbyname()).
- Without the ipppd (at this moment, it is not
- fully started) we can't handle this network request.
- Try to configure hostnames necessary for the ipppd
- in your local /etc/hosts file or in a way, that
- your system can resolve it without using an
- isdn/ippp network-interface.
-
---
-
-Q10: I wanna use dynamic IP address assignment ... How
- must I configure the network device.
-
-A: At least you must have a route which forwards
- a packet to the ippp network-interface to trigger
- the dial-on-demand.
- A default route to the ippp-interface will work.
- Now you must choose a dummy IP address for your
- interface.
- If for some reason you can't set the default
- route to the ippp interface, you may take any
- address of the subnet from which you expect your
- dynamic IP number and set a 'network route' for
- this subnet to the ippp interface.
- To allow overriding of the dummy address you
- must call the ipppd with the 'ipcp-accept-local' option.
-
-A: You must know, how the ipppd gets the addresses it wanna
- configure. If you don't give any option, the ipppd
- tries to negotiate the local host address!
- With the option 'noipdefault' it requests an address
- from the remote machine. With 'useifip' it gets the
- addresses from the net interface. Or you set the address
- on the option line with the <a.b.c.d:e.f.g.h> option.
- Note: the IP address of the remote machine must be configured
- locally or the remote machine must send it in an IPCP request.
- If your side doesn't know the IP address after negotiation, it
- closes the connection!
- You must allow overriding of address with the 'ipcp-accept-*'
- options, if you have set your own or the remote address
- explicitly.
-
-A: Maybe you try these options .. e.g:
-
- /sbin/ipppd :$REMOTE noipdefault /dev/ippp0
-
- where REMOTE must be the address of the remote machine (the
- machine, which gives you your address)
-
---
-
-Q11: I can't connect. How can I check where the problem is.
-
-A: A good help log is the debug output from the ipppd...
- Check whether you can find there:
- - only a few LCP-conf-req SENT messages (less then 10)
- and then a Term-REQ:
- -> check whether your ISDN card is well configured
- it seems, that your machine doesn't dial
- (IRQ,IO,Proto, etc problems)
- Configure your ISDN card to print debug messages and
- check the /dev/isdnctrl output next time. There
- you can see, whether there is activity on the card/line.
- - there are at least a few RECV messages in the log:
- -> fine: your card is dialing and your remote machine
- tries to talk with you. Maybe only a missing
- authentication. Check your ipppd configuration again.
- - the ipppd exits for some reason:
- -> not good ... check /var/adm/syslog and /var/adm/daemon.
- Could be a bug in the ipppd.
-
---
-
-Q12: How can I reduce login delay?
-
-A: Log a login session ('debug' log) and check which options
- your remote side rejects. Next time configure your ipppd
- to not negotiate these options. Another 'side effect' is, that
- this increases redundancy. (e.g your remote side is buggy and
- rejects options in a wrong way).
-
-
-
diff --git a/Documentation/kbuild/headers_install.txt b/Documentation/kbuild/headers_install.rst
index f0153adb95e2..f6c6b74a609c 100644
--- a/Documentation/kbuild/headers_install.txt
+++ b/Documentation/kbuild/headers_install.rst
@@ -1,3 +1,4 @@
+=============================================
Exporting kernel headers for use by userspace
=============================================
@@ -22,14 +23,14 @@ older kernel.
The "make headers_install" command can be run in the top level directory of the
kernel source code (or using a standard out-of-tree build). It takes two
-optional arguments:
+optional arguments::
make headers_install ARCH=i386 INSTALL_HDR_PATH=/usr
ARCH indicates which architecture to produce headers for, and defaults to the
current architecture. The linux/asm directory of the exported kernel headers
is platform-specific, to see a complete list of supported architectures use
-the command:
+the command::
ls -d include/asm-* | sed 's/.*-//'
@@ -39,12 +40,5 @@ INSTALL_HDR_PATH indicates where to install the headers. It defaults to
An 'include' directory is automatically created inside INSTALL_HDR_PATH and
headers are installed in 'INSTALL_HDR_PATH/include'.
-The command "make headers_install_all" exports headers for all architectures
-simultaneously. (This is mostly of interest to distribution maintainers,
-who create an architecture-independent tarball from the resulting include
-directory.) You also can use HDR_ARCH_LIST to specify list of architectures.
-Remember to provide the appropriate linux/asm directory via "mv" or "ln -s"
-before building a C library with headers exported this way.
-
The kernel header export infrastructure is maintained by David Woodhouse
<dwmw2@infradead.org>.
diff --git a/Documentation/kbuild/index.rst b/Documentation/kbuild/index.rst
new file mode 100644
index 000000000000..0f144fad99a6
--- /dev/null
+++ b/Documentation/kbuild/index.rst
@@ -0,0 +1,28 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================
+Kernel Build System
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ kconfig-language
+ kconfig-macro-language
+
+ kbuild
+ kconfig
+ makefiles
+ modules
+
+ headers_install
+
+ issues
+ reproducible-builds
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/kbuild/issues.rst b/Documentation/kbuild/issues.rst
new file mode 100644
index 000000000000..bdab01f733f6
--- /dev/null
+++ b/Documentation/kbuild/issues.rst
@@ -0,0 +1,15 @@
+================
+Recursion issues
+================
+
+issue #1
+--------
+
+.. literalinclude:: Kconfig.recursion-issue-01
+ :language: kconfig
+
+issue #2
+--------
+
+.. literalinclude:: Kconfig.recursion-issue-02
+ :language: kconfig
diff --git a/Documentation/kbuild/kbuild.txt b/Documentation/kbuild/kbuild.rst
index 9c230ea71963..f1e5dce86af7 100644
--- a/Documentation/kbuild/kbuild.txt
+++ b/Documentation/kbuild/kbuild.rst
@@ -1,101 +1,121 @@
+======
+Kbuild
+======
+
+
Output files
+============
modules.order
---------------------------------------------------
+-------------
This file records the order in which modules appear in Makefiles. This
is used by modprobe to deterministically resolve aliases that match
multiple modules.
modules.builtin
---------------------------------------------------
+---------------
This file lists all modules that are built into the kernel. This is used
by modprobe to not fail when trying to load something builtin.
modules.builtin.modinfo
---------------------------------------------------
+-----------------------
This file contains modinfo from all modules that are built into the kernel.
Unlike modinfo of a separate module, all fields are prefixed with module name.
Environment variables
+=====================
KCPPFLAGS
---------------------------------------------------
+---------
Additional options to pass when preprocessing. The preprocessing options
will be used in all cases where kbuild does preprocessing including
building C files and assembler files.
KAFLAGS
---------------------------------------------------
+-------
Additional options to the assembler (for built-in and modules).
AFLAGS_MODULE
---------------------------------------------------
-Additional module specific options to use for $(AS).
+-------------
+Additional assembler options for modules.
AFLAGS_KERNEL
---------------------------------------------------
-Additional options for $(AS) when used for assembler
-code for code that is compiled as built-in.
+-------------
+Additional assembler options for built-in.
KCFLAGS
---------------------------------------------------
+-------
Additional options to the C compiler (for built-in and modules).
CFLAGS_KERNEL
---------------------------------------------------
+-------------
Additional options for $(CC) when used to compile
code that is compiled as built-in.
CFLAGS_MODULE
---------------------------------------------------
+-------------
Additional module specific options to use for $(CC).
LDFLAGS_MODULE
---------------------------------------------------
+--------------
Additional options used for $(LD) when linking modules.
HOSTCFLAGS
---------------------------------------------------
+----------
Additional flags to be passed to $(HOSTCC) when building host programs.
HOSTCXXFLAGS
---------------------------------------------------
+------------
Additional flags to be passed to $(HOSTCXX) when building host programs.
HOSTLDFLAGS
---------------------------------------------------
+-----------
Additional flags to be passed when linking host programs.
HOSTLDLIBS
---------------------------------------------------
+----------
Additional libraries to link against when building host programs.
KBUILD_KCONFIG
---------------------------------------------------
+--------------
Set the top-level Kconfig file to the value of this environment
variable. The default name is "Kconfig".
KBUILD_VERBOSE
---------------------------------------------------
+--------------
Set the kbuild verbosity. Can be assigned same values as "V=...".
+
See make help for the full list.
+
Setting "V=..." takes precedence over KBUILD_VERBOSE.
KBUILD_EXTMOD
---------------------------------------------------
+-------------
Set the directory to look for the kernel source when building external
modules.
+
Setting "M=..." takes precedence over KBUILD_EXTMOD.
KBUILD_OUTPUT
---------------------------------------------------
+-------------
Specify the output directory when building the kernel.
+
The output directory can also be specified using "O=...".
+
Setting "O=..." takes precedence over KBUILD_OUTPUT.
+KBUILD_EXTRA_WARN
+-----------------
+Specify the extra build checks. The same value can be assigned by passing
+W=... from the command line.
+
+See `make help` for the list of the supported values.
+
+Setting "W=..." takes precedence over KBUILD_EXTRA_WARN.
+
KBUILD_DEBARCH
---------------------------------------------------
+--------------
For the deb-pkg target, allows overriding the normal heuristics deployed by
deb-pkg. Normally deb-pkg attempts to guess the right architecture based on
the UTS_MACHINE variable, and on some architectures also the kernel config.
@@ -103,44 +123,49 @@ The value of KBUILD_DEBARCH is assumed (not checked) to be a valid Debian
architecture.
ARCH
---------------------------------------------------
+----
Set ARCH to the architecture to be built.
+
In most cases the name of the architecture is the same as the
directory name found in the arch/ directory.
+
But some architectures such as x86 and sparc have aliases.
-x86: i386 for 32 bit, x86_64 for 64 bit
-sh: sh for 32 bit, sh64 for 64 bit
-sparc: sparc32 for 32 bit, sparc64 for 64 bit
+
+- x86: i386 for 32 bit, x86_64 for 64 bit
+- sh: sh for 32 bit, sh64 for 64 bit
+- sparc: sparc32 for 32 bit, sparc64 for 64 bit
CROSS_COMPILE
---------------------------------------------------
+-------------
Specify an optional fixed part of the binutils filename.
CROSS_COMPILE can be a part of the filename or the full path.
CROSS_COMPILE is also used for ccache in some setups.
CF
---------------------------------------------------
+--
Additional options for sparse.
-CF is often used on the command-line like this:
+
+CF is often used on the command-line like this::
make CF=-Wbitwise C=2
INSTALL_PATH
---------------------------------------------------
+------------
INSTALL_PATH specifies where to place the updated kernel and system map
images. Default is /boot, but you can set it to other values.
INSTALLKERNEL
---------------------------------------------------
+-------------
Install script called when using "make install".
The default name is "installkernel".
The script will be called with the following arguments:
- $1 - kernel version
- $2 - kernel image file
- $3 - kernel map file
- $4 - default install path (use root directory if blank)
+
+ - $1 - kernel version
+ - $2 - kernel image file
+ - $3 - kernel map file
+ - $4 - default install path (use root directory if blank)
The implementation of "make install" is architecture specific
and it may differ from the above.
@@ -149,32 +174,33 @@ INSTALLKERNEL is provided to enable the possibility to
specify a custom installer when cross compiling a kernel.
MODLIB
---------------------------------------------------
+------
Specify where to install modules.
-The default value is:
+The default value is::
$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE)
The value can be overridden in which case the default value is ignored.
INSTALL_MOD_PATH
---------------------------------------------------
+----------------
INSTALL_MOD_PATH specifies a prefix to MODLIB for module directory
relocations required by build roots. This is not defined in the
makefile but the argument can be passed to make if needed.
INSTALL_MOD_STRIP
---------------------------------------------------
+-----------------
INSTALL_MOD_STRIP, if defined, will cause modules to be
stripped after they are installed. If INSTALL_MOD_STRIP is '1', then
the default option --strip-debug will be used. Otherwise,
INSTALL_MOD_STRIP value will be used as the options to the strip command.
INSTALL_HDR_PATH
---------------------------------------------------
+----------------
INSTALL_HDR_PATH specifies where to install user space headers when
executing "make headers_*".
-The default value is:
+
+The default value is::
$(objtree)/usr
@@ -183,66 +209,56 @@ The output directory is often set using "O=..." on the commandline.
The value can be overridden in which case the default value is ignored.
-KBUILD_SIGN_PIN
+KBUILD_ABS_SRCTREE
--------------------------------------------------
+Kbuild uses a relative path to point to the tree when possible. For instance,
+when building in the source tree, the source tree path is '.'
+
+Setting this flag requests Kbuild to use absolute path to the source tree.
+There are some useful cases to do so, like when generating tag files with
+absolute path entries etc.
+
+KBUILD_SIGN_PIN
+---------------
This variable allows a passphrase or PIN to be passed to the sign-file
utility when signing kernel modules, if the private key requires such.
KBUILD_MODPOST_WARN
---------------------------------------------------
+-------------------
KBUILD_MODPOST_WARN can be set to avoid errors in case of undefined
symbols in the final module linking stage. It changes such errors
into warnings.
KBUILD_MODPOST_NOFINAL
---------------------------------------------------
+----------------------
KBUILD_MODPOST_NOFINAL can be set to skip the final link of modules.
This is solely useful to speed up test compiles.
KBUILD_EXTRA_SYMBOLS
---------------------------------------------------
+--------------------
For modules that use symbols from other modules.
See more details in modules.txt.
ALLSOURCE_ARCHS
---------------------------------------------------
+---------------
For tags/TAGS/cscope targets, you can specify more than one arch
-to be included in the databases, separated by blank space. E.g.:
+to be included in the databases, separated by blank space. E.g.::
$ make ALLSOURCE_ARCHS="x86 mips arm" tags
-To get all available archs you can also specify all. E.g.:
+To get all available archs you can also specify all. E.g.::
$ make ALLSOURCE_ARCHS=all tags
-KBUILD_ENABLE_EXTRA_GCC_CHECKS
---------------------------------------------------
-If enabled over the make command line with "W=1", it turns on additional
-gcc -W... options for more extensive build-time checking.
-
KBUILD_BUILD_TIMESTAMP
---------------------------------------------------
+----------------------
Setting this to a date string overrides the timestamp used in the
UTS_VERSION definition (uname -v in the running kernel). The value has to
be a string that can be passed to date -d. The default value
is the output of the date command at one point during build.
KBUILD_BUILD_USER, KBUILD_BUILD_HOST
---------------------------------------------------
+------------------------------------
These two variables allow to override the user@host string displayed during
boot and in /proc/version. The default value is the output of the commands
whoami and host, respectively.
-
-KBUILD_LDS
---------------------------------------------------
-The linker script with full path. Assigned by the top-level Makefile.
-
-KBUILD_VMLINUX_OBJS
---------------------------------------------------
-All object files for vmlinux. They are linked to vmlinux in the same
-order as listed in KBUILD_VMLINUX_OBJS.
-
-KBUILD_VMLINUX_LIBS
---------------------------------------------------
-All .a "lib" files for vmlinux. KBUILD_VMLINUX_OBJS and KBUILD_VMLINUX_LIBS
-together specify all the object files used to link vmlinux.
diff --git a/Documentation/kbuild/kconfig-language.txt b/Documentation/kbuild/kconfig-language.rst
index 864e740811da..74bef19f69f0 100644
--- a/Documentation/kbuild/kconfig-language.txt
+++ b/Documentation/kbuild/kconfig-language.rst
@@ -1,8 +1,12 @@
+================
+Kconfig Language
+================
+
Introduction
------------
The configuration database is a collection of configuration options
-organized in a tree structure:
+organized in a tree structure::
+- Code maturity level options
| +- Prompt for development and/or incomplete code/drivers
@@ -25,9 +29,9 @@ Menu entries
------------
Most entries define a config option; all other entries help to organize
-them. A single configuration option is defined like this:
+them. A single configuration option is defined like this::
-config MODVERSIONS
+ config MODVERSIONS
bool "Set version information on all module symbols"
depends on MODULES
help
@@ -49,22 +53,27 @@ A menu entry can have a number of attributes. Not all of them are
applicable everywhere (see syntax).
- type definition: "bool"/"tristate"/"string"/"hex"/"int"
+
Every config option must have a type. There are only two basic types:
tristate and string; the other types are based on these two. The type
definition optionally accepts an input prompt, so these two examples
- are equivalent:
+ are equivalent::
bool "Networking support"
- and
+
+ and::
+
bool
prompt "Networking support"
- input prompt: "prompt" <prompt> ["if" <expr>]
+
Every menu entry can have at most one prompt, which is used to display
to the user. Optionally dependencies only for this prompt can be added
with "if".
- default value: "default" <expr> ["if" <expr>]
+
A config option can have any number of default values. If multiple
default values are visible, only the first defined one is active.
Default values are not limited to the menu entry where they are
@@ -98,25 +107,31 @@ applicable everywhere (see syntax).
d) Hardware or infrastructure that everybody expects, such as CONFIG_NET
or CONFIG_BLOCK. These are rare exceptions.
-- type definition + default value:
+- type definition + default value::
+
"def_bool"/"def_tristate" <expr> ["if" <expr>]
+
This is a shorthand notation for a type definition plus a value.
Optionally dependencies for this default value can be added with "if".
- dependencies: "depends on" <expr>
+
This defines a dependency for this menu entry. If multiple
dependencies are defined, they are connected with '&&'. Dependencies
are applied to all other options within this menu entry (which also
- accept an "if" expression), so these two examples are equivalent:
+ accept an "if" expression), so these two examples are equivalent::
bool "foo" if BAR
default y if BAR
- and
+
+ and::
+
depends on BAR
bool "foo"
default y
- reverse dependencies: "select" <symbol> ["if" <expr>]
+
While normal dependencies reduce the upper limit of a symbol (see
below), reverse dependencies can be used to force a lower limit of
another symbol. The value of the current menu symbol is used as the
@@ -124,6 +139,7 @@ applicable everywhere (see syntax).
times, the limit is set to the largest selection.
Reverse dependencies can only be used with boolean or tristate
symbols.
+
Note:
select should be used with care. select will force
a symbol to a value without visiting the dependencies.
@@ -135,34 +151,38 @@ applicable everywhere (see syntax).
the illegal configurations all over.
- weak reverse dependencies: "imply" <symbol> ["if" <expr>]
+
This is similar to "select" as it enforces a lower limit on another
symbol except that the "implied" symbol's value may still be set to n
from a direct dependency or with a visible prompt.
- Given the following example:
+ Given the following example::
- config FOO
+ config FOO
tristate
imply BAZ
- config BAZ
+ config BAZ
tristate
depends on BAR
The following values are possible:
+ === === ============= ==============
FOO BAR BAZ's default choice for BAZ
- --- --- ------------- --------------
+ === === ============= ==============
n y n N/m/y
m y m M/y/n
y y y Y/n
y n * N
+ === === ============= ==============
This is useful e.g. with multiple drivers that want to indicate their
ability to hook into a secondary subsystem while allowing the user to
configure that subsystem out without also having to unset these drivers.
- limiting menu display: "visible if" <expr>
+
This attribute is only applicable to menu blocks, if the condition is
false, the menu block is not displayed to the user (the symbols
contained there can still be selected by other symbols, though). It is
@@ -170,12 +190,14 @@ applicable everywhere (see syntax).
entries. Default value of "visible" is true.
- numerical ranges: "range" <symbol> <symbol> ["if" <expr>]
+
This allows to limit the range of possible input values for int
and hex symbols. The user can only input a value which is larger than
or equal to the first symbol and smaller than or equal to the second
symbol.
- help text: "help" or "---help---"
+
This defines a help text. The end of the help text is determined by
the indentation level, this means it ends at the first line which has
a smaller indentation than the first line of the help text.
@@ -184,6 +206,7 @@ applicable everywhere (see syntax).
the file as an aid to developers.
- misc options: "option" <symbol>[=<value>]
+
Various less common options can be defined via this option syntax,
which can modify the behaviour of the menu entry and its config
symbol. These options are currently possible:
@@ -208,9 +231,9 @@ Menu dependencies
Dependencies define the visibility of a menu entry and can also reduce
the input range of tristate symbols. The tristate logic used in the
expressions uses one more state than normal boolean logic to express the
-module state. Dependency expressions have the following syntax:
+module state. Dependency expressions have the following syntax::
-<expr> ::= <symbol> (1)
+ <expr> ::= <symbol> (1)
<symbol> '=' <symbol> (2)
<symbol> '!=' <symbol> (3)
<symbol1> '<' <symbol2> (4)
@@ -222,7 +245,7 @@ module state. Dependency expressions have the following syntax:
<expr> '&&' <expr> (7)
<expr> '||' <expr> (8)
-Expressions are listed in decreasing order of precedence.
+Expressions are listed in decreasing order of precedence.
(1) Convert the symbol into an expression. Boolean and tristate symbols
are simply converted into the respective expression values. All
@@ -255,15 +278,15 @@ Menu structure
--------------
The position of a menu entry in the tree is determined in two ways. First
-it can be specified explicitly:
+it can be specified explicitly::
-menu "Network device support"
+ menu "Network device support"
depends on NET
-config NETDEVICES
+ config NETDEVICES
...
-endmenu
+ endmenu
All entries within the "menu" ... "endmenu" block become a submenu of
"Network device support". All subentries inherit the dependencies from
@@ -275,17 +298,18 @@ dependencies. If a menu entry somehow depends on the previous entry, it
can be made a submenu of it. First, the previous (parent) symbol must
be part of the dependency list and then one of these two conditions
must be true:
+
- the child entry must become invisible, if the parent is set to 'n'
-- the child entry must only be visible, if the parent is visible
+- the child entry must only be visible, if the parent is visible::
-config MODULES
+ config MODULES
bool "Enable loadable module support"
-config MODVERSIONS
+ config MODVERSIONS
bool "Set version information on all module symbols"
depends on MODULES
-comment "module support disabled"
+ comment "module support disabled"
depends on !MODULES
MODVERSIONS directly depends on MODULES, this means it's only visible if
@@ -299,6 +323,7 @@ Kconfig syntax
The configuration file describes a series of menu entries, where every
line starts with a keyword (except help texts). The following keywords
end a menu entry:
+
- config
- menuconfig
- choice/endchoice
@@ -306,9 +331,10 @@ end a menu entry:
- menu/endmenu
- if/endif
- source
+
The first five also start the definition of a menu entry.
-config:
+config::
"config" <symbol>
<config options>
@@ -316,7 +342,8 @@ config:
This defines a config symbol <symbol> and accepts any of above
attributes as options.
-menuconfig:
+menuconfig::
+
"menuconfig" <symbol>
<config options>
@@ -325,43 +352,43 @@ hint to front ends, that all suboptions should be displayed as a
separate list of options. To make sure all the suboptions will really
show up under the menuconfig entry and not outside of it, every item
from the <config options> list must depend on the menuconfig symbol.
-In practice, this is achieved by using one of the next two constructs:
-
-(1):
-menuconfig M
-if M
- config C1
- config C2
-endif
-
-(2):
-menuconfig M
-config C1
- depends on M
-config C2
- depends on M
+In practice, this is achieved by using one of the next two constructs::
+
+ (1):
+ menuconfig M
+ if M
+ config C1
+ config C2
+ endif
+
+ (2):
+ menuconfig M
+ config C1
+ depends on M
+ config C2
+ depends on M
In the following examples (3) and (4), C1 and C2 still have the M
dependency, but will not appear under menuconfig M anymore, because
-of C0, which doesn't depend on M:
-
-(3):
-menuconfig M
- config C0
-if M
- config C1
- config C2
-endif
-
-(4):
-menuconfig M
-config C0
-config C1
- depends on M
-config C2
- depends on M
-
-choices:
+of C0, which doesn't depend on M::
+
+ (3):
+ menuconfig M
+ config C0
+ if M
+ config C1
+ config C2
+ endif
+
+ (4):
+ menuconfig M
+ config C0
+ config C1
+ depends on M
+ config C2
+ depends on M
+
+choices::
"choice" [symbol]
<choice options>
@@ -387,7 +414,7 @@ definitions of that choice. If a [symbol] is associated to the choice,
then you may define the same choice (i.e. with the same entries) in another
place.
-comment:
+comment::
"comment" <prompt>
<comment options>
@@ -396,7 +423,7 @@ This defines a comment which is displayed to the user during the
configuration process and is also echoed to the output files. The only
possible options are dependencies.
-menu:
+menu::
"menu" <prompt>
<menu options>
@@ -407,7 +434,7 @@ This defines a menu block, see "Menu structure" above for more
information. The only possible options are dependencies and "visible"
attributes.
-if:
+if::
"if" <expr>
<if block>
@@ -416,13 +443,13 @@ if:
This defines an if block. The dependency expression <expr> is appended
to all enclosed menu entries.
-source:
+source::
"source" <prompt>
This reads the specified configuration file. This file is always parsed.
-mainmenu:
+mainmenu::
"mainmenu" <prompt>
@@ -452,20 +479,21 @@ that is defined in a common Kconfig file and selected by the relevant
architectures.
An example is the generic IOMAP functionality.
-We would in lib/Kconfig see:
+We would in lib/Kconfig see::
-# Generic IOMAP is used to ...
-config HAVE_GENERIC_IOMAP
+ # Generic IOMAP is used to ...
+ config HAVE_GENERIC_IOMAP
-config GENERIC_IOMAP
+ config GENERIC_IOMAP
depends on HAVE_GENERIC_IOMAP && FOO
-And in lib/Makefile we would see:
-obj-$(CONFIG_GENERIC_IOMAP) += iomap.o
+And in lib/Makefile we would see::
+
+ obj-$(CONFIG_GENERIC_IOMAP) += iomap.o
-For each architecture using the generic IOMAP functionality we would see:
+For each architecture using the generic IOMAP functionality we would see::
-config X86
+ config X86
select ...
select HAVE_GENERIC_IOMAP
select ...
@@ -484,25 +512,25 @@ Adding features that need compiler support
There are several features that need compiler support. The recommended way
to describe the dependency on the compiler feature is to use "depends on"
-followed by a test macro.
+followed by a test macro::
-config STACKPROTECTOR
+ config STACKPROTECTOR
bool "Stack Protector buffer overflow detection"
depends on $(cc-option,-fstack-protector)
...
If you need to expose a compiler capability to makefiles and/or C source files,
-CC_HAS_ is the recommended prefix for the config option.
+`CC_HAS_` is the recommended prefix for the config option::
-config CC_HAS_STACKPROTECTOR_NONE
+ config CC_HAS_STACKPROTECTOR_NONE
def_bool $(cc-option,-fno-stack-protector)
Build as module only
~~~~~~~~~~~~~~~~~~~~
To restrict a component build to module-only, qualify its config symbol
-with "depends on m". E.g.:
+with "depends on m". E.g.::
-config FOO
+ config FOO
depends on BAR && m
limits FOO to module (=m) or disabled (=n).
@@ -529,18 +557,18 @@ Simple Kconfig recursive issue
Read: Documentation/kbuild/Kconfig.recursion-issue-01
-Test with:
+Test with::
-make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-01 allnoconfig
+ make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-01 allnoconfig
Cumulative Kconfig recursive issue
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Read: Documentation/kbuild/Kconfig.recursion-issue-02
-Test with:
+Test with::
-make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-02 allnoconfig
+ make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-02 allnoconfig
Practical solutions to kconfig recursive issue
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -551,7 +579,9 @@ historical issues resolved through these different solutions.
a) Remove any superfluous "select FOO" or "depends on FOO"
b) Match dependency semantics:
+
b1) Swap all "select FOO" to "depends on FOO" or,
+
b2) Swap all "depends on FOO" to "select FOO"
The resolution to a) can be tested with the sample Kconfig file
@@ -566,8 +596,9 @@ Documentation/kbuild/Kconfig.recursion-issue-02.
Below is a list of examples of prior fixes for these types of recursive issues;
all errors appear to involve one or more select's and one or more "depends on".
+============ ===================================
commit fix
-====== ===
+============ ===================================
06b718c01208 select A -> depends on A
c22eacfe82f9 depends on A -> depends on B
6a91e854442c select A -> depends on A
@@ -590,6 +621,7 @@ d9f9ab51e55e select A -> depends on A
0c51a4d8abd6 depends on A -> select A (3)
e98062ed6dc4 select A -> depends on A (3)
91e5d284a7f1 select A -> (null)
+============ ===================================
(1) Partial (or no) quote of error.
(2) That seems to be the gist of that fix.
@@ -616,11 +648,11 @@ Semantics of Kconfig
~~~~~~~~~~~~~~~~~~~~
The use of Kconfig is broad, Linux is now only one of Kconfig's users:
-one study has completed a broad analysis of Kconfig use in 12 projects [0].
+one study has completed a broad analysis of Kconfig use in 12 projects [0]_.
Despite its widespread use, and although this document does a reasonable job
in documenting basic Kconfig syntax a more precise definition of Kconfig
semantics is welcomed. One project deduced Kconfig semantics through
-the use of the xconfig configurator [1]. Work should be done to confirm if
+the use of the xconfig configurator [1]_. Work should be done to confirm if
the deduced semantics matches our intended Kconfig design goals.
Having well defined semantics can be useful for tools for practical
@@ -628,42 +660,42 @@ evaluation of depenencies, for instance one such use known case was work to
express in boolean abstraction of the inferred semantics of Kconfig to
translate Kconfig logic into boolean formulas and run a SAT solver on this to
find dead code / features (always inactive), 114 dead features were found in
-Linux using this methodology [1] (Section 8: Threats to validity).
+Linux using this methodology [1]_ (Section 8: Threats to validity).
Confirming this could prove useful as Kconfig stands as one of the the leading
-industrial variability modeling languages [1] [2]. Its study would help
+industrial variability modeling languages [1]_ [2]_. Its study would help
evaluate practical uses of such languages, their use was only theoretical
and real world requirements were not well understood. As it stands though
only reverse engineering techniques have been used to deduce semantics from
-variability modeling languages such as Kconfig [3].
+variability modeling languages such as Kconfig [3]_.
-[0] http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
-[1] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
-[2] http://gsd.uwaterloo.ca/sites/default/files/ase241-berger_0.pdf
-[3] http://gsd.uwaterloo.ca/sites/default/files/icse2011.pdf
+.. [0] http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf
+.. [1] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
+.. [2] http://gsd.uwaterloo.ca/sites/default/files/ase241-berger_0.pdf
+.. [3] http://gsd.uwaterloo.ca/sites/default/files/icse2011.pdf
Full SAT solver for Kconfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Although SAT solvers [0] haven't yet been used by Kconfig directly, as noted in
-the previous subsection, work has been done however to express in boolean
+Although SAT solvers [4]_ haven't yet been used by Kconfig directly, as noted
+in the previous subsection, work has been done however to express in boolean
abstraction the inferred semantics of Kconfig to translate Kconfig logic into
-boolean formulas and run a SAT solver on it [1]. Another known related project
-is CADOS [2] (former VAMOS [3]) and the tools, mainly undertaker [4], which has
-been introduced first with [5]. The basic concept of undertaker is to exract
-variability models from Kconfig, and put them together with a propositional
-formula extracted from CPP #ifdefs and build-rules into a SAT solver in order
-to find dead code, dead files, and dead symbols. If using a SAT solver is
-desirable on Kconfig one approach would be to evaluate repurposing such efforts
-somehow on Kconfig. There is enough interest from mentors of existing projects
-to not only help advise how to integrate this work upstream but also help
-maintain it long term. Interested developers should visit:
+boolean formulas and run a SAT solver on it [5]_. Another known related project
+is CADOS [6]_ (former VAMOS [7]_) and the tools, mainly undertaker [8]_, which
+has been introduced first with [9]_. The basic concept of undertaker is to
+exract variability models from Kconfig, and put them together with a
+propositional formula extracted from CPP #ifdefs and build-rules into a SAT
+solver in order to find dead code, dead files, and dead symbols. If using a SAT
+solver is desirable on Kconfig one approach would be to evaluate repurposing
+such efforts somehow on Kconfig. There is enough interest from mentors of
+existing projects to not only help advise how to integrate this work upstream
+but also help maintain it long term. Interested developers should visit:
http://kernelnewbies.org/KernelProjects/kconfig-sat
-[0] http://www.cs.cornell.edu/~sabhar/chapters/SATSolvers-KR-Handbook.pdf
-[1] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
-[2] https://cados.cs.fau.de
-[3] https://vamos.cs.fau.de
-[4] https://undertaker.cs.fau.de
-[5] https://www4.cs.fau.de/Publications/2011/tartler_11_eurosys.pdf
+.. [4] http://www.cs.cornell.edu/~sabhar/chapters/SATSolvers-KR-Handbook.pdf
+.. [5] http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf
+.. [6] https://cados.cs.fau.de
+.. [7] https://vamos.cs.fau.de
+.. [8] https://undertaker.cs.fau.de
+.. [9] https://www4.cs.fau.de/Publications/2011/tartler_11_eurosys.pdf
diff --git a/Documentation/kbuild/kconfig-macro-language.txt b/Documentation/kbuild/kconfig-macro-language.rst
index 07da2ea68dce..35b3263b7e40 100644
--- a/Documentation/kbuild/kconfig-macro-language.txt
+++ b/Documentation/kbuild/kconfig-macro-language.rst
@@ -1,3 +1,7 @@
+======================
+Kconfig macro language
+======================
+
Concept
-------
@@ -7,7 +11,7 @@ targets and prerequisites. The other is a macro language for performing textual
substitution.
There is clear distinction between the two language stages. For example, you
-can write a makefile like follows:
+can write a makefile like follows::
APP := foo
SRC := foo.c
@@ -17,7 +21,7 @@ can write a makefile like follows:
$(CC) -o $(APP) $(SRC)
The macro language replaces the variable references with their expanded form,
-and handles as if the source file were input like follows:
+and handles as if the source file were input like follows::
foo: foo.c
gcc -o foo foo.c
@@ -26,7 +30,7 @@ Then, Make analyzes the dependency graph and determines the targets to be
updated.
The idea is quite similar in Kconfig - it is possible to describe a Kconfig
-file like this:
+file like this::
CC := gcc
@@ -34,7 +38,7 @@ file like this:
def_bool $(shell, $(srctree)/scripts/gcc-check-foo.sh $(CC))
The macro language in Kconfig processes the source file into the following
-intermediate:
+intermediate::
config CC_HAS_FOO
def_bool y
@@ -69,7 +73,7 @@ variable. The righthand side of += is expanded immediately if the lefthand
side was originally defined as a simple variable. Otherwise, its evaluation is
deferred.
-The variable reference can take parameters, in the following form:
+The variable reference can take parameters, in the following form::
$(name,arg1,arg2,arg3)
@@ -141,7 +145,7 @@ Make vs Kconfig
Kconfig adopts Make-like macro language, but the function call syntax is
slightly different.
-A function call in Make looks like this:
+A function call in Make looks like this::
$(func-name arg1,arg2,arg3)
@@ -149,14 +153,14 @@ The function name and the first argument are separated by at least one
whitespace. Then, leading whitespaces are trimmed from the first argument,
while whitespaces in the other arguments are kept. You need to use a kind of
trick to start the first parameter with spaces. For example, if you want
-to make "info" function print " hello", you can write like follows:
+to make "info" function print " hello", you can write like follows::
empty :=
space := $(empty) $(empty)
$(info $(space)$(space)hello)
Kconfig uses only commas for delimiters, and keeps all whitespaces in the
-function call. Some people prefer putting a space after each comma delimiter:
+function call. Some people prefer putting a space after each comma delimiter::
$(func-name, arg1, arg2, arg3)
@@ -166,7 +170,7 @@ Make - for example, $(subst .c, .o, $(sources)) is a typical mistake; it
replaces ".c" with " .o".
In Make, a user-defined function is referenced by using a built-in function,
-'call', like this:
+'call', like this::
$(call my-func,arg1,arg2,arg3)
@@ -179,12 +183,12 @@ Likewise, $(info hello, world) prints "hello, world" to stdout. You could say
this is _useful_ inconsistency.
In Kconfig, for simpler implementation and grammatical consistency, commas that
-appear in the $( ) context are always delimiters. It means
+appear in the $( ) context are always delimiters. It means::
$(shell, echo hello, world)
is an error because it is passing two parameters where the 'shell' function
-accepts only one. To pass commas in arguments, you can use the following trick:
+accepts only one. To pass commas in arguments, you can use the following trick::
comma := ,
$(shell, echo hello$(comma) world)
@@ -195,7 +199,7 @@ Caveats
A variable (or function) cannot be expanded across tokens. So, you cannot use
a variable as a shorthand for an expression that consists of multiple tokens.
-The following works:
+The following works::
RANGE_MIN := 1
RANGE_MAX := 3
@@ -204,7 +208,7 @@ The following works:
int "foo"
range $(RANGE_MIN) $(RANGE_MAX)
-But, the following does not work:
+But, the following does not work::
RANGES := 1 3
@@ -213,7 +217,7 @@ But, the following does not work:
range $(RANGES)
A variable cannot be expanded to any keyword in Kconfig. The following does
-not work:
+not work::
MY_TYPE := tristate
@@ -223,7 +227,8 @@ not work:
Obviously from the design, $(shell command) is expanded in the textual
substitution phase. You cannot pass symbols to the 'shell' function.
-The following does not work as expected.
+
+The following does not work as expected::
config ENDIAN_FLAG
string
@@ -234,7 +239,7 @@ The following does not work as expected.
def_bool $(shell $(srctree)/scripts/gcc-check-flag ENDIAN_FLAG)
Instead, you can do like follows so that any function call is statically
-expanded.
+expanded::
config CC_HAS_ENDIAN_FLAG
bool
diff --git a/Documentation/kbuild/kconfig.txt b/Documentation/kbuild/kconfig.rst
index 68c82914c0f3..a9a855f894b3 100644
--- a/Documentation/kbuild/kconfig.txt
+++ b/Documentation/kbuild/kconfig.rst
@@ -1,4 +1,8 @@
-This file contains some assistance for using "make *config".
+===================
+Kconfig make config
+===================
+
+This file contains some assistance for using `make *config`.
Use "make help" to list all of the possible configuration targets.
@@ -6,9 +10,8 @@ The xconfig ('qconf'), menuconfig ('mconf'), and nconfig ('nconf')
programs also have embedded help text. Be sure to check that for
navigation, search, and other general help text.
-======================================================================
General
---------------------------------------------------
+-------
New kernel releases often introduce new config symbols. Often more
important, new kernel releases may rename config symbols. When
@@ -17,51 +20,55 @@ this happens, using a previously working .config file and running
for you, so you may find that you need to see what NEW kernel
symbols have been introduced.
-To see a list of new config symbols, use
+To see a list of new config symbols, use::
cp user/some/old.config .config
make listnewconfig
and the config program will list any new symbols, one per line.
-Alternatively, you can use the brute force method:
+Alternatively, you can use the brute force method::
make oldconfig
scripts/diffconfig .config.old .config | less
-______________________________________________________________________
-Environment variables for '*config'
+----------------------------------------------------------------------
+
+Environment variables for `*config`
KCONFIG_CONFIG
---------------------------------------------------
+--------------
This environment variable can be used to specify a default kernel config
file name to override the default name of ".config".
KCONFIG_OVERWRITECONFIG
---------------------------------------------------
+-----------------------
If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not
break symlinks when .config is a symlink to somewhere else.
-CONFIG_
---------------------------------------------------
-If you set CONFIG_ in the environment, Kconfig will prefix all symbols
+`CONFIG_`
+---------
+If you set `CONFIG_` in the environment, Kconfig will prefix all symbols
with its value when saving the configuration, instead of using the default,
-"CONFIG_".
+`CONFIG_`.
+
+----------------------------------------------------------------------
-______________________________________________________________________
Environment variables for '{allyes/allmod/allno/rand}config'
KCONFIG_ALLCONFIG
---------------------------------------------------
+-----------------
(partially based on lkml email from/by Rob Landley, re: miniconfig)
+
--------------------------------------------------
+
The allyesconfig/allmodconfig/allnoconfig/randconfig variants can also
use the environment variable KCONFIG_ALLCONFIG as a flag or a filename
that contains config symbols that the user requires to be set to a
specific value. If KCONFIG_ALLCONFIG is used without a filename where
-KCONFIG_ALLCONFIG == "" or KCONFIG_ALLCONFIG == "1", "make *config"
+KCONFIG_ALLCONFIG == "" or KCONFIG_ALLCONFIG == "1", `make *config`
checks for a file named "all{yes/mod/no/def/random}.config"
-(corresponding to the *config command that was used) for symbol values
+(corresponding to the `*config` command that was used) for symbol values
that are to be forced. If this file is not found, it checks for a
file named "all.config" to contain forced values.
@@ -74,43 +81,55 @@ This 'KCONFIG_ALLCONFIG' file is a config file which contains
(usually a subset of all) preset config symbols. These variable
settings are still subject to normal dependency checks.
-Examples:
+Examples::
+
KCONFIG_ALLCONFIG=custom-notebook.config make allnoconfig
-or
+
+or::
+
KCONFIG_ALLCONFIG=mini.config make allnoconfig
-or
+
+or::
+
make KCONFIG_ALLCONFIG=mini.config allnoconfig
These examples will disable most options (allnoconfig) but enable or
disable the options that are explicitly listed in the specified
mini-config files.
-______________________________________________________________________
+----------------------------------------------------------------------
+
Environment variables for 'randconfig'
KCONFIG_SEED
---------------------------------------------------
+------------
You can set this to the integer value used to seed the RNG, if you want
to somehow debug the behaviour of the kconfig parser/frontends.
If not set, the current time will be used.
KCONFIG_PROBABILITY
---------------------------------------------------
+-------------------
This variable can be used to skew the probabilities. This variable can
be unset or empty, or set to three different formats:
+
+ ======================= ================== =====================
KCONFIG_PROBABILITY y:n split y:m:n split
- -----------------------------------------------------------------
+ ======================= ================== =====================
unset or empty 50 : 50 33 : 33 : 34
N N : 100-N N/2 : N/2 : 100-N
[1] N:M N+M : 100-(N+M) N : M : 100-(N+M)
[2] N:M:L N : 100-N M : L : 100-(M+L)
+ ======================= ================== =====================
where N, M and L are integers (in base 10) in the range [0,100], and so
that:
+
[1] N+M is in the range [0,100]
+
[2] M+L is in the range [0,100]
-Examples:
+Examples::
+
KCONFIG_PROBABILITY=10
10% of booleans will be set to 'y', 90% to 'n'
5% of tristates will be set to 'y', 5% to 'm', 90% to 'n'
@@ -121,34 +140,36 @@ Examples:
10% of booleans will be set to 'y', 90% to 'n'
15% of tristates will be set to 'y', 15% to 'm', 70% to 'n'
-______________________________________________________________________
+----------------------------------------------------------------------
+
Environment variables for 'syncconfig'
KCONFIG_NOSILENTUPDATE
---------------------------------------------------
+----------------------
If this variable has a non-blank value, it prevents silent kernel
config updates (requires explicit updates).
KCONFIG_AUTOCONFIG
---------------------------------------------------
+------------------
This environment variable can be set to specify the path & name of the
"auto.conf" file. Its default value is "include/config/auto.conf".
KCONFIG_TRISTATE
---------------------------------------------------
+----------------
This environment variable can be set to specify the path & name of the
"tristate.conf" file. Its default value is "include/config/tristate.conf".
KCONFIG_AUTOHEADER
---------------------------------------------------
+------------------
This environment variable can be set to specify the path & name of the
"autoconf.h" (header) file.
Its default value is "include/generated/autoconf.h".
-======================================================================
+----------------------------------------------------------------------
+
menuconfig
---------------------------------------------------
+----------
SEARCHING for CONFIG symbols
@@ -158,7 +179,8 @@ Searching in menuconfig:
names, so you have to know something close to what you are
looking for.
- Example:
+ Example::
+
/hotplug
This lists all config symbols that contain "hotplug",
e.g., HOTPLUG_CPU, MEMORY_HOTPLUG.
@@ -166,48 +188,55 @@ Searching in menuconfig:
For search help, enter / followed by TAB-TAB (to highlight
<Help>) and Enter. This will tell you that you can also use
regular expressions (regexes) in the search string, so if you
- are not interested in MEMORY_HOTPLUG, you could try
+ are not interested in MEMORY_HOTPLUG, you could try::
/^hotplug
When searching, symbols are sorted thus:
+
- first, exact matches, sorted alphabetically (an exact match
is when the search matches the complete symbol name);
- then, other matches, sorted alphabetically.
+
For example: ^ATH.K matches:
+
ATH5K ATH9K ATH5K_AHB ATH5K_DEBUG [...] ATH6KL ATH6KL_DEBUG
[...] ATH9K_AHB ATH9K_BTCOEX_SUPPORT ATH9K_COMMON [...]
+
of which only ATH5K and ATH9K match exactly and so are sorted
first (and in alphabetical order), then come all other symbols,
sorted in alphabetical order.
-______________________________________________________________________
+----------------------------------------------------------------------
+
User interface options for 'menuconfig'
MENUCONFIG_COLOR
---------------------------------------------------
+----------------
It is possible to select different color themes using the variable
-MENUCONFIG_COLOR. To select a theme use:
+MENUCONFIG_COLOR. To select a theme use::
make MENUCONFIG_COLOR=<theme> menuconfig
-Available themes are:
- mono => selects colors suitable for monochrome displays
- blackbg => selects a color scheme with black background
- classic => theme with blue background. The classic look
- bluetitle => a LCD friendly version of classic. (default)
+Available themes are::
+
+ - mono => selects colors suitable for monochrome displays
+ - blackbg => selects a color scheme with black background
+ - classic => theme with blue background. The classic look
+ - bluetitle => a LCD friendly version of classic. (default)
MENUCONFIG_MODE
---------------------------------------------------
+---------------
This mode shows all sub-menus in one large tree.
-Example:
+Example::
+
make MENUCONFIG_MODE=single_menu menuconfig
+----------------------------------------------------------------------
-======================================================================
nconfig
---------------------------------------------------
+-------
nconfig is an alternate text-based configurator. It lists function
keys across the bottom of the terminal (window) that execute commands.
@@ -231,16 +260,17 @@ Searching in nconfig:
given string or regular expression (regex).
NCONFIG_MODE
---------------------------------------------------
+------------
This mode shows all sub-menus in one large tree.
-Example:
+Example::
+
make NCONFIG_MODE=single_menu nconfig
+----------------------------------------------------------------------
-======================================================================
xconfig
---------------------------------------------------
+-------
Searching in xconfig:
@@ -248,9 +278,12 @@ Searching in xconfig:
names, so you have to know something close to what you are
looking for.
- Example:
+ Example::
+
Ctrl-F hotplug
- or
+
+ or::
+
Menu: File, Search, hotplug
lists all config symbol entries that contain "hotplug" in
@@ -260,13 +293,12 @@ Searching in xconfig:
to return to the main menu.
-======================================================================
+----------------------------------------------------------------------
+
gconfig
---------------------------------------------------
+-------
Searching in gconfig:
There is no search command in gconfig. However, gconfig does
have several different viewing choices, modes, and options.
-
-###
diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.rst
index d65ad5746f94..6ba9d5365ff3 100644
--- a/Documentation/kbuild/makefiles.txt
+++ b/Documentation/kbuild/makefiles.rst
@@ -1,8 +1,10 @@
+======================
Linux Kernel Makefiles
+======================
This document describes the Linux kernel Makefiles.
-=== Table of Contents
+.. Table of Contents
=== 1 Overview
=== 2 Who does what
@@ -54,9 +56,10 @@ This document describes the Linux kernel Makefiles.
=== 10 Credits
=== 11 TODO
-=== 1 Overview
+1 Overview
+==========
-The Makefiles have five parts:
+The Makefiles have five parts::
Makefile the top Makefile.
.config the kernel configuration file.
@@ -85,7 +88,8 @@ scripts/Makefile.* contains all the definitions/rules etc. that
are used to build the kernel based on the kbuild makefiles.
-=== 2 Who does what
+2 Who does what
+===============
People have four different relationships with the kernel Makefiles.
@@ -110,7 +114,8 @@ These people need to know about all aspects of the kernel Makefiles.
This document is aimed towards normal developers and arch developers.
-=== 3 The kbuild files
+3 The kbuild files
+==================
Most Makefiles within the kernel are kbuild Makefiles that use the
kbuild infrastructure. This chapter introduces the syntax used in the
@@ -122,7 +127,8 @@ file will be used.
Section 3.1 "Goal definitions" is a quick intro, further chapters provide
more details, with real examples.
---- 3.1 Goal definitions
+3.1 Goal definitions
+--------------------
Goal definitions are the main part (heart) of the kbuild Makefile.
These lines define the files to be built, any special compilation
@@ -130,7 +136,8 @@ more details, with real examples.
The most simple kbuild makefile contains one line:
- Example:
+ Example::
+
obj-y += foo.o
This tells kbuild that there is one object in that directory, named
@@ -139,14 +146,16 @@ more details, with real examples.
If foo.o shall be built as a module, the variable obj-m is used.
Therefore the following pattern is often used:
- Example:
+ Example::
+
obj-$(CONFIG_FOO) += foo.o
$(CONFIG_FOO) evaluates to either y (for built-in) or m (for module).
If CONFIG_FOO is neither y nor m, then the file will not be compiled
nor linked.
---- 3.2 Built-in object goals - obj-y
+3.2 Built-in object goals - obj-y
+---------------------------------
The kbuild Makefile specifies object files for vmlinux
in the $(obj-y) lists. These lists depend on the kernel
@@ -167,14 +176,16 @@ more details, with real examples.
order may e.g. change the order in which your SCSI
controllers are detected, and thus your disks are renumbered.
- Example:
+ Example::
+
#drivers/isdn/i4l/Makefile
# Makefile for the kernel ISDN subsystem and device drivers.
# Each configuration option enables a list of files.
obj-$(CONFIG_ISDN_I4L) += isdn.o
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o
---- 3.3 Loadable module goals - obj-m
+3.3 Loadable module goals - obj-m
+---------------------------------
$(obj-m) specifies object files which are built as loadable
kernel modules.
@@ -183,7 +194,8 @@ more details, with real examples.
files. In the case of one source file, the kbuild makefile
simply adds the file to $(obj-m).
- Example:
+ Example::
+
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_PPP_BSDCOMP) += isdn_bsdcomp.o
@@ -195,7 +207,8 @@ more details, with real examples.
module from, so you have to tell it by setting a $(<module_name>-y)
variable.
- Example:
+ Example::
+
#drivers/isdn/i4l/Makefile
obj-$(CONFIG_ISDN_I4L) += isdn.o
isdn-y := isdn_net_lib.o isdn_v110.o isdn_common.o
@@ -205,10 +218,11 @@ more details, with real examples.
"$(LD) -r" on the list of these files to generate isdn.o.
Due to kbuild recognizing $(<module_name>-y) for composite objects,
- you can use the value of a CONFIG_ symbol to optionally include an
+ you can use the value of a `CONFIG_` symbol to optionally include an
object file as part of a composite object.
- Example:
+ Example::
+
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
ext2-y := balloc.o dir.o file.o ialloc.o inode.o ioctl.o \
@@ -225,12 +239,14 @@ more details, with real examples.
kbuild will build an ext2.o file for you out of the individual
parts and then link this into built-in.a, as you would expect.
---- 3.4 Objects which export symbols
+3.4 Objects which export symbols
+--------------------------------
No special notation is required in the makefiles for
modules exporting symbols.
---- 3.5 Library file goals - lib-y
+3.5 Library file goals - lib-y
+------------------------------
Objects listed with obj-* are used for modules, or
combined in a built-in.a for that specific directory.
@@ -247,18 +263,21 @@ more details, with real examples.
and to be part of a library. Therefore the same directory
may contain both a built-in.a and a lib.a file.
- Example:
+ Example::
+
#arch/x86/lib/Makefile
lib-y := delay.o
This will create a library lib.a based on delay.o. For kbuild to
actually recognize that there is a lib.a being built, the directory
shall be listed in libs-y.
+
See also "6.4 List directories to visit when descending".
- Use of lib-y is normally restricted to lib/ and arch/*/lib.
+ Use of lib-y is normally restricted to `lib/` and `arch/*/lib`.
---- 3.6 Descending down in directories
+3.6 Descending down in directories
+----------------------------------
A Makefile is only responsible for building objects in its own
directory. Files in subdirectories should be taken care of by
@@ -270,7 +289,8 @@ more details, with real examples.
ext2 lives in a separate directory, and the Makefile present in fs/
tells kbuild to descend down using the following assignment.
- Example:
+ Example::
+
#fs/Makefile
obj-$(CONFIG_EXT2_FS) += ext2/
@@ -281,11 +301,12 @@ more details, with real examples.
the directory, it is the Makefile in the subdirectory that
specifies what is modular and what is built-in.
- It is good practice to use a CONFIG_ variable when assigning directory
+ It is good practice to use a `CONFIG_` variable when assigning directory
names. This allows kbuild to totally skip the directory if the
- corresponding CONFIG_ option is neither 'y' nor 'm'.
+ corresponding `CONFIG_` option is neither 'y' nor 'm'.
---- 3.7 Compilation flags
+3.7 Compilation flags
+---------------------
ccflags-y, asflags-y and ldflags-y
These three flags apply only to the kbuild makefile in which they
@@ -297,7 +318,8 @@ more details, with real examples.
ccflags-y specifies options for compiling with $(CC).
- Example:
+ Example::
+
# drivers/acpi/acpica/Makefile
ccflags-y := -Os -D_LINUX -DBUILDING_ACPICA
ccflags-$(CONFIG_ACPI_DEBUG) += -DACPI_DEBUG_OUTPUT
@@ -306,15 +328,17 @@ more details, with real examples.
variable $(KBUILD_CFLAGS) and uses it for compilation flags for the
entire tree.
- asflags-y specifies options for assembling with $(AS).
+ asflags-y specifies assembler options.
+
+ Example::
- Example:
#arch/sparc/kernel/Makefile
asflags-y := -ansi
ldflags-y specifies options for linking with $(LD).
- Example:
+ Example::
+
#arch/cris/boot/compressed/Makefile
ldflags-y += -T $(srctree)/$(src)/decompress_$(arch-y).lds
@@ -325,18 +349,19 @@ more details, with real examples.
Options specified using subdir-* are added to the commandline before
the options specified using the non-subdir variants.
- Example:
+ Example::
+
subdir-ccflags-y := -Werror
CFLAGS_$@, AFLAGS_$@
-
CFLAGS_$@ and AFLAGS_$@ only apply to commands in current
kbuild makefile.
$(CFLAGS_$@) specifies per-file options for $(CC). The $@
part has a literal value which specifies the file that it is for.
- Example:
+ Example::
+
# drivers/scsi/Makefile
CFLAGS_aha152x.o = -DAHA152X_STAT -DAUTOCONF
CFLAGS_gdth.o = # -DDEBUG_GDTH=2 -D__SERIAL__ -D__COM2__ \
@@ -347,24 +372,28 @@ more details, with real examples.
$(AFLAGS_$@) is a similar feature for source files in assembly
languages.
- Example:
+ Example::
+
# arch/arm/kernel/Makefile
AFLAGS_head.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
AFLAGS_crunch-bits.o := -Wa,-mcpu=ep9312
AFLAGS_iwmmxt.o := -Wa,-mcpu=iwmmxt
---- 3.9 Dependency tracking
+3.9 Dependency tracking
+-----------------------
Kbuild tracks dependencies on the following:
- 1) All prerequisite files (both *.c and *.h)
- 2) CONFIG_ options used in all prerequisite files
+
+ 1) All prerequisite files (both `*.c` and `*.h`)
+ 2) `CONFIG_` options used in all prerequisite files
3) Command-line used to compile target
Thus, if you change an option to $(CC) all affected files will
be re-compiled.
---- 3.10 Special Rules
+3.10 Special Rules
+------------------
Special rules are used when the kbuild infrastructure does
not provide the required support. A typical example is
@@ -379,43 +408,47 @@ more details, with real examples.
Two variables are used when defining special rules:
- $(src)
- $(src) is a relative path which points to the directory
- where the Makefile is located. Always use $(src) when
- referring to files located in the src tree.
+ $(src)
+ $(src) is a relative path which points to the directory
+ where the Makefile is located. Always use $(src) when
+ referring to files located in the src tree.
+
+ $(obj)
+ $(obj) is a relative path which points to the directory
+ where the target is saved. Always use $(obj) when
+ referring to generated files.
- $(obj)
- $(obj) is a relative path which points to the directory
- where the target is saved. Always use $(obj) when
- referring to generated files.
+ Example::
- Example:
#drivers/scsi/Makefile
$(obj)/53c8xx_d.h: $(src)/53c7,8xx.scr $(src)/script_asm.pl
$(CPP) -DCHIP=810 - < $< | ... $(src)/script_asm.pl
- This is a special rule, following the normal syntax
- required by make.
- The target file depends on two prerequisite files. References
- to the target file are prefixed with $(obj), references
- to prerequisites are referenced with $(src) (because they are not
- generated files).
-
- $(kecho)
- echoing information to user in a rule is often a good practice
- but when execution "make -s" one does not expect to see any output
- except for warnings/errors.
- To support this kbuild defines $(kecho) which will echo out the
- text following $(kecho) to stdout except if "make -s" is used.
-
- Example:
+ This is a special rule, following the normal syntax
+ required by make.
+
+ The target file depends on two prerequisite files. References
+ to the target file are prefixed with $(obj), references
+ to prerequisites are referenced with $(src) (because they are not
+ generated files).
+
+ $(kecho)
+ echoing information to user in a rule is often a good practice
+ but when execution "make -s" one does not expect to see any output
+ except for warnings/errors.
+ To support this kbuild defines $(kecho) which will echo out the
+ text following $(kecho) to stdout except if "make -s" is used.
+
+ Example::
+
#arch/blackfin/boot/Makefile
$(obj)/vmImage: $(obj)/vmlinux.gz
$(call if_changed,uimage)
@$(kecho) 'Kernel: $@ is ready'
---- 3.11 $(CC) support functions
+3.11 $(CC) support functions
+----------------------------
The kernel may be built with several different versions of
$(CC), each supporting a unique set of features and options.
@@ -425,10 +458,11 @@ more details, with real examples.
as-option
as-option is used to check if $(CC) -- when used to compile
- assembler (*.S) files -- supports the given option. An optional
+ assembler (`*.S`) files -- supports the given option. An optional
second option may be specified if the first option is not supported.
- Example:
+ Example::
+
#arch/sh/Makefile
cflags-y += $(call as-option,-Wa$(comma)-isa=$(isa-y),)
@@ -441,13 +475,14 @@ more details, with real examples.
as-instr checks if the assembler reports a specific instruction
and then outputs either option1 or option2
C escapes are supported in the test instruction
- Note: as-instr-option uses KBUILD_AFLAGS for $(AS) options
+ Note: as-instr-option uses KBUILD_AFLAGS for assembler options
cc-option
cc-option is used to check if $(CC) supports a given option, and if
not supported to use an optional second option.
- Example:
+ Example::
+
#arch/x86/Makefile
cflags-y += $(call cc-option,-march=pentium-mmx,-march=i586)
@@ -461,7 +496,8 @@ more details, with real examples.
cc-option-yn is used to check if gcc supports a given option
and return 'y' if supported, otherwise 'n'.
- Example:
+ Example::
+
#arch/ppc/Makefile
biarch := $(call cc-option-yn, -m32)
aflags-$(biarch) += -a32
@@ -479,7 +515,8 @@ more details, with real examples.
because gcc 4.4 and later accept any unknown -Wno-* option and only
warn about it if there is another warning in the source file.
- Example:
+ Example::
+
KBUILD_CFLAGS += $(call cc-disable-warning, unused-but-set-variable)
In the above example, -Wno-unused-but-set-variable will be added to
@@ -490,7 +527,8 @@ more details, with real examples.
if version expression is true, or the fifth (if given) if the version
expression is false.
- Example:
+ Example::
+
#fs/reiserfs/Makefile
ccflags-y := $(call cc-ifversion, -lt, 0402, -O1)
@@ -515,7 +553,8 @@ more details, with real examples.
build (host arch is different from target arch). And if CROSS_COMPILE
is already set then leave it with the old value.
- Example:
+ Example::
+
#arch/m68k/Makefile
ifneq ($(SUBARCH),$(ARCH))
ifeq ($(CROSS_COMPILE),)
@@ -523,7 +562,8 @@ more details, with real examples.
endif
endif
---- 3.12 $(LD) support functions
+3.12 $(LD) support functions
+----------------------------
ld-option
ld-option is used to check if $(LD) supports the supplied option.
@@ -531,12 +571,14 @@ more details, with real examples.
The second argument is an optional option that can be used if the
first option is not supported by $(LD).
- Example:
+ Example::
+
#Makefile
LDFLAGS_vmlinux += $(call ld-option, -X)
-=== 4 Host Program support
+4 Host Program support
+======================
Kbuild supports building executables on the host for use during the
compilation stage.
@@ -550,21 +592,24 @@ This can be done in two ways. Either add the dependency in a rule,
or utilise the variable $(always).
Both possibilities are described in the following.
---- 4.1 Simple Host Program
+4.1 Simple Host Program
+-----------------------
In some cases there is a need to compile and run a program on the
computer where the build is running.
The following line tells kbuild that the program bin2hex shall be
built on the build host.
- Example:
+ Example::
+
hostprogs-y := bin2hex
Kbuild assumes in the above example that bin2hex is made from a single
c-source file named bin2hex.c located in the same directory as
the Makefile.
---- 4.2 Composite Host Programs
+4.2 Composite Host Programs
+---------------------------
Host programs can be made up based on composite objects.
The syntax used to define composite objects for host programs is
@@ -572,7 +617,8 @@ Both possibilities are described in the following.
$(<executable>-objs) lists all objects used to link the final
executable.
- Example:
+ Example::
+
#scripts/lxdialog/Makefile
hostprogs-y := lxdialog
lxdialog-objs := checklist.o lxdialog.o
@@ -580,16 +626,19 @@ Both possibilities are described in the following.
Objects with extension .o are compiled from the corresponding .c
files. In the above example, checklist.c is compiled to checklist.o
and lxdialog.c is compiled to lxdialog.o.
+
Finally, the two .o files are linked to the executable, lxdialog.
Note: The syntax <executable>-y is not permitted for host-programs.
---- 4.3 Using C++ for host programs
+4.3 Using C++ for host programs
+-------------------------------
kbuild offers support for host programs written in C++. This was
introduced solely to support kconfig, and is not recommended
for general use.
- Example:
+ Example::
+
#scripts/kconfig/Makefile
hostprogs-y := qconf
qconf-cxxobjs := qconf.o
@@ -600,13 +649,15 @@ Both possibilities are described in the following.
If qconf is composed of a mixture of .c and .cc files, then an
additional line can be used to identify this.
- Example:
+ Example::
+
#scripts/kconfig/Makefile
hostprogs-y := qconf
qconf-cxxobjs := qconf.o
qconf-objs := check.o
---- 4.4 Controlling compiler options for host programs
+4.4 Controlling compiler options for host programs
+--------------------------------------------------
When compiling host programs, it is possible to set specific flags.
The programs will always be compiled utilising $(HOSTCC) passed
@@ -614,27 +665,31 @@ Both possibilities are described in the following.
To set flags that will take effect for all host programs created
in that Makefile, use the variable HOST_EXTRACFLAGS.
- Example:
+ Example::
+
#scripts/lxdialog/Makefile
HOST_EXTRACFLAGS += -I/usr/include/ncurses
To set specific flags for a single file the following construction
is used:
- Example:
+ Example::
+
#arch/ppc64/boot/Makefile
HOSTCFLAGS_piggyback.o := -DKERNELBASE=$(KERNELBASE)
It is also possible to specify additional options to the linker.
- Example:
+ Example::
+
#scripts/kconfig/Makefile
HOSTLDLIBS_qconf := -L$(QTDIR)/lib
When linking qconf, it will be passed the extra option
"-L$(QTDIR)/lib".
---- 4.5 When host programs are actually built
+4.5 When host programs are actually built
+-----------------------------------------
Kbuild will only build host-programs when they are referenced
as a prerequisite.
@@ -642,7 +697,8 @@ Both possibilities are described in the following.
(1) List the prerequisite explicitly in a special rule.
- Example:
+ Example::
+
#drivers/pci/Makefile
hostprogs-y := gen-devlist
$(obj)/devlist.h: $(src)/pci.ids $(obj)/gen-devlist
@@ -653,11 +709,13 @@ Both possibilities are described in the following.
the host programs in special rules must be prefixed with $(obj).
(2) Use $(always)
+
When there is no suitable special rule, and the host program
shall be built when a makefile is entered, the $(always)
variable shall be used.
- Example:
+ Example::
+
#scripts/lxdialog/Makefile
hostprogs-y := lxdialog
always := $(hostprogs-y)
@@ -665,11 +723,13 @@ Both possibilities are described in the following.
This will tell kbuild to build lxdialog even if not referenced in
any rule.
---- 4.6 Using hostprogs-$(CONFIG_FOO)
+4.6 Using hostprogs-$(CONFIG_FOO)
+---------------------------------
A typical pattern in a Kbuild file looks like this:
- Example:
+ Example::
+
#scripts/Makefile
hostprogs-$(CONFIG_KALLSYMS) += kallsyms
@@ -679,7 +739,8 @@ Both possibilities are described in the following.
like hostprogs-y. But only hostprogs-y is recommended to be used
when no CONFIG symbols are involved.
-=== 5 Kbuild clean infrastructure
+5 Kbuild clean infrastructure
+=============================
"make clean" deletes most generated files in the obj tree where the kernel
is compiled. This includes generated files such as host programs.
@@ -689,9 +750,11 @@ Files matching the patterns "*.[oas]", "*.ko", plus some additional files
generated by kbuild are deleted all over the kernel src tree when
"make clean" is executed.
-Additional files can be specified in kbuild makefiles by use of $(clean-files).
+Additional files or directories can be specified in kbuild makefiles by use of
+$(clean-files).
+
+ Example::
- Example:
#lib/Makefile
clean-files := crc32table.h
@@ -699,27 +762,15 @@ When executing "make clean", the file "crc32table.h" will be deleted.
Kbuild will assume files to be in the same relative directory as the
Makefile, except if prefixed with $(objtree).
-To delete a directory hierarchy use:
-
- Example:
- #scripts/package/Makefile
- clean-dirs := $(objtree)/debian/
-
-This will delete the directory debian in the toplevel directory, including all
-subdirectories.
-
-To exclude certain files from make clean, use the $(no-clean-files) variable.
-This is only a special case used in the top level Kbuild file:
-
- Example:
- #Kbuild
- no-clean-files := $(bounds-file) $(offsets-file)
+To exclude certain files or directories from make clean, use the
+$(no-clean-files) variable.
Usually kbuild descends down in subdirectories due to "obj-* := dir/",
but in the architecture makefiles where the kbuild infrastructure
is not sufficient this sometimes needs to be explicit.
- Example:
+ Example::
+
#arch/x86/boot/Makefile
subdir- := compressed/
@@ -729,7 +780,8 @@ directory compressed/ when "make clean" is executed.
To support the clean infrastructure in the Makefiles that build the
final bootimage there is an optional target named archclean:
- Example:
+ Example::
+
#arch/x86/Makefile
archclean:
$(Q)$(MAKE) $(clean)=arch/x86/boot
@@ -745,7 +797,8 @@ is not operational at that point.
Note 2: All directories listed in core-y, libs-y, drivers-y and net-y will
be visited during "make clean".
-=== 6 Architecture Makefiles
+6 Architecture Makefiles
+========================
The top level Makefile sets up the environment and does the preparation,
before starting to descend down in the individual directories.
@@ -756,6 +809,7 @@ To do so, arch/$(ARCH)/Makefile sets up a number of variables and defines
a few targets.
When kbuild executes, the following steps are followed (roughly):
+
1) Configuration of the kernel => produce .config
2) Store kernel version in include/linux/version.h
3) Updating all other prerequisites to the target prepare:
@@ -773,37 +827,45 @@ When kbuild executes, the following steps are followed (roughly):
- Preparing initrd images and the like
---- 6.1 Set variables to tweak the build to the architecture
+6.1 Set variables to tweak the build to the architecture
+--------------------------------------------------------
- LDFLAGS Generic $(LD) options
+ LDFLAGS
+ Generic $(LD) options
Flags used for all invocations of the linker.
Often specifying the emulation is sufficient.
- Example:
+ Example::
+
#arch/s390/Makefile
LDFLAGS := -m elf_s390
+
Note: ldflags-y can be used to further customise
the flags used. See chapter 3.7.
- LDFLAGS_vmlinux Options for $(LD) when linking vmlinux
+ LDFLAGS_vmlinux
+ Options for $(LD) when linking vmlinux
LDFLAGS_vmlinux is used to specify additional flags to pass to
the linker when linking the final vmlinux image.
LDFLAGS_vmlinux uses the LDFLAGS_$@ support.
- Example:
+ Example::
+
#arch/x86/Makefile
LDFLAGS_vmlinux := -e stext
- OBJCOPYFLAGS objcopy flags
+ OBJCOPYFLAGS
+ objcopy flags
When $(call if_changed,objcopy) is used to translate a .o file,
the flags specified in OBJCOPYFLAGS will be used.
$(call if_changed,objcopy) is often used to generate raw binaries on
vmlinux.
- Example:
+ Example::
+
#arch/s390/Makefile
OBJCOPYFLAGS := -O binary
@@ -814,30 +876,34 @@ When kbuild executes, the following steps are followed (roughly):
In this example, the binary $(obj)/image is a binary version of
vmlinux. The usage of $(call if_changed,xxx) will be described later.
- KBUILD_AFLAGS $(AS) assembler flags
+ KBUILD_AFLAGS
+ Assembler flags
Default value - see top level Makefile
Append or modify as required per architecture.
- Example:
+ Example::
+
#arch/sparc64/Makefile
KBUILD_AFLAGS += -m64 -mcpu=ultrasparc
- KBUILD_CFLAGS $(CC) compiler flags
+ KBUILD_CFLAGS
+ $(CC) compiler flags
Default value - see top level Makefile
Append or modify as required per architecture.
Often, the KBUILD_CFLAGS variable depends on the configuration.
- Example:
+ Example::
+
#arch/x86/boot/compressed/Makefile
cflags-$(CONFIG_X86_32) := -march=i386
cflags-$(CONFIG_X86_64) := -mcmodel=small
KBUILD_CFLAGS += $(cflags-y)
Many arch Makefiles dynamically run the target C compiler to
- probe supported options:
+ probe supported options::
#arch/x86/Makefile
@@ -853,32 +919,39 @@ When kbuild executes, the following steps are followed (roughly):
The first example utilises the trick that a config option expands
to 'y' when selected.
- KBUILD_AFLAGS_KERNEL $(AS) options specific for built-in
+ KBUILD_AFLAGS_KERNEL
+ Assembler options specific for built-in
$(KBUILD_AFLAGS_KERNEL) contains extra C compiler flags used to compile
resident kernel code.
- KBUILD_AFLAGS_MODULE Options for $(AS) when building modules
+ KBUILD_AFLAGS_MODULE
+ Assembler options specific for modules
$(KBUILD_AFLAGS_MODULE) is used to add arch-specific options that
- are used for $(AS).
+ are used for assembler.
+
From commandline AFLAGS_MODULE shall be used (see kbuild.txt).
- KBUILD_CFLAGS_KERNEL $(CC) options specific for built-in
+ KBUILD_CFLAGS_KERNEL
+ $(CC) options specific for built-in
$(KBUILD_CFLAGS_KERNEL) contains extra C compiler flags used to compile
resident kernel code.
- KBUILD_CFLAGS_MODULE Options for $(CC) when building modules
+ KBUILD_CFLAGS_MODULE
+ Options for $(CC) when building modules
$(KBUILD_CFLAGS_MODULE) is used to add arch-specific options that
are used for $(CC).
From commandline CFLAGS_MODULE shall be used (see kbuild.txt).
- KBUILD_LDFLAGS_MODULE Options for $(LD) when linking modules
+ KBUILD_LDFLAGS_MODULE
+ Options for $(LD) when linking modules
$(KBUILD_LDFLAGS_MODULE) is used to add arch-specific options
used when linking modules. This is often a linker script.
+
From commandline LDFLAGS_MODULE shall be used (see kbuild.txt).
KBUILD_ARFLAGS Options for $(AR) when creating archives
@@ -886,34 +959,45 @@ When kbuild executes, the following steps are followed (roughly):
$(KBUILD_ARFLAGS) set by the top level Makefile to "D" (deterministic
mode) if this option is supported by $(AR).
- ARCH_CPPFLAGS, ARCH_AFLAGS, ARCH_CFLAGS Overrides the kbuild defaults
+ KBUILD_LDS
+
+ The linker script with full path. Assigned by the top-level Makefile.
+
+ KBUILD_LDS_MODULE
+
+ The module linker script with full path. Assigned by the top-level
+ Makefile and additionally by the arch Makefile.
+
+ KBUILD_VMLINUX_OBJS
- These variables are appended to the KBUILD_CPPFLAGS,
- KBUILD_AFLAGS, and KBUILD_CFLAGS, respectively, after the
- top-level Makefile has set any other flags. This provides a
- means for an architecture to override the defaults.
+ All object files for vmlinux. They are linked to vmlinux in the same
+ order as listed in KBUILD_VMLINUX_OBJS.
+ KBUILD_VMLINUX_LIBS
---- 6.2 Add prerequisites to archheaders:
+ All .a "lib" files for vmlinux. KBUILD_VMLINUX_OBJS and
+ KBUILD_VMLINUX_LIBS together specify all the object files used to
+ link vmlinux.
+
+6.2 Add prerequisites to archheaders
+------------------------------------
The archheaders: rule is used to generate header files that
- may be installed into user space by "make header_install" or
- "make headers_install_all". In order to support
- "make headers_install_all", this target has to be able to run
- on an unconfigured tree, or a tree configured for another
- architecture.
+ may be installed into user space by "make header_install".
It is run before "make archprepare" when run on the
architecture itself.
---- 6.3 Add prerequisites to archprepare:
+6.3 Add prerequisites to archprepare
+------------------------------------
The archprepare: rule is used to list prerequisites that need to be
built before starting to descend down in the subdirectories.
This is usually used for header files containing assembler constants.
- Example:
+ Example::
+
#arch/arm/Makefile
archprepare: maketools
@@ -923,7 +1007,8 @@ When kbuild executes, the following steps are followed (roughly):
generating offset header files.
---- 6.4 List directories to visit when descending
+6.4 List directories to visit when descending
+---------------------------------------------
An arch Makefile cooperates with the top Makefile to define variables
which specify how to build the vmlinux file. Note that there is no
@@ -931,28 +1016,34 @@ When kbuild executes, the following steps are followed (roughly):
machinery is all architecture-independent.
- head-y, init-y, core-y, libs-y, drivers-y, net-y
+ head-y, init-y, core-y, libs-y, drivers-y, net-y
+ $(head-y) lists objects to be linked first in vmlinux.
+
+ $(libs-y) lists directories where a lib.a archive can be located.
+
+ The rest list directories where a built-in.a object file can be
+ located.
- $(head-y) lists objects to be linked first in vmlinux.
- $(libs-y) lists directories where a lib.a archive can be located.
- The rest list directories where a built-in.a object file can be
- located.
+ $(init-y) objects will be located after $(head-y).
- $(init-y) objects will be located after $(head-y).
- Then the rest follows in this order:
- $(core-y), $(libs-y), $(drivers-y) and $(net-y).
+ Then the rest follows in this order:
- The top level Makefile defines values for all generic directories,
- and arch/$(ARCH)/Makefile only adds architecture-specific directories.
+ $(core-y), $(libs-y), $(drivers-y) and $(net-y).
+
+ The top level Makefile defines values for all generic directories,
+ and arch/$(ARCH)/Makefile only adds architecture-specific
+ directories.
+
+ Example::
- Example:
#arch/sparc64/Makefile
core-y += arch/sparc64/kernel/
libs-y += arch/sparc64/prom/ arch/sparc64/lib/
drivers-$(CONFIG_OPROFILE) += arch/sparc64/oprofile/
---- 6.5 Architecture-specific boot images
+6.5 Architecture-specific boot images
+-------------------------------------
An arch Makefile specifies goals that take the vmlinux file, compress
it, wrap it in bootstrapping code, and copy the resulting files
@@ -970,7 +1061,8 @@ When kbuild executes, the following steps are followed (roughly):
arch/$(ARCH)/Makefile, and use the full path when calling down
into the arch/$(ARCH)/boot/Makefile.
- Example:
+ Example::
+
#arch/x86/Makefile
boot := arch/x86/boot
bzImage: vmlinux
@@ -983,7 +1075,8 @@ When kbuild executes, the following steps are followed (roughly):
but executing "make help" will list all relevant targets.
To support this, $(archhelp) must be defined.
- Example:
+ Example::
+
#arch/x86/Makefile
define archhelp
echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)'
@@ -997,42 +1090,64 @@ When kbuild executes, the following steps are followed (roughly):
Add a new prerequisite to all: to select a default goal different
from vmlinux.
- Example:
+ Example::
+
#arch/x86/Makefile
all: bzImage
When "make" is executed without arguments, bzImage will be built.
---- 6.6 Building non-kbuild targets
+6.6 Building non-kbuild targets
+-------------------------------
extra-y
-
extra-y specifies additional targets created in the current
- directory, in addition to any targets specified by obj-*.
+ directory, in addition to any targets specified by `obj-*`.
Listing all targets in extra-y is required for two purposes:
+
1) Enable kbuild to check changes in command lines
+
- When $(call if_changed,xxx) is used
+
2) kbuild knows what files to delete during "make clean"
- Example:
+ Example::
+
#arch/x86/kernel/Makefile
extra-y := head.o init_task.o
In this example, extra-y is used to list object files that
shall be built, but shall not be linked as part of built-in.a.
+ header-test-y
---- 6.7 Commands useful for building a boot image
+ header-test-y specifies headers (`*.h`) in the current directory that
+ should be compile tested to ensure they are self-contained,
+ i.e. compilable as standalone units. If CONFIG_HEADER_TEST is enabled,
+ this builds them as part of extra-y.
- Kbuild provides a few macros that are useful when building a
- boot image.
+ header-test-pattern-y
- if_changed
+ This works as a weaker version of header-test-y, and accepts wildcard
+ patterns. The typical usage is::
+
+ header-test-pattern-y += *.h
+
+ This specifies all the files that matches to `*.h` in the current
+ directory, but the files in 'header-test-' are excluded.
+6.7 Commands useful for building a boot image
+---------------------------------------------
+
+ Kbuild provides a few macros that are useful when building a
+ boot image.
+
+ if_changed
if_changed is the infrastructure used for the following commands.
- Usage:
+ Usage::
+
target: source(s) FORCE
$(call if_changed,ld/objcopy/gzip/...)
@@ -1050,12 +1165,16 @@ When kbuild executes, the following steps are followed (roughly):
Note: It is a typical mistake to forget the FORCE prerequisite.
Another common pitfall is that whitespace is sometimes
significant; for instance, the below will fail (note the extra space
- after the comma):
+ after the comma)::
+
target: source(s) FORCE
- #WRONG!# $(call if_changed, ld/objcopy/gzip/...)
- Note: if_changed should not be used more than once per target.
+ **WRONG!** $(call if_changed, ld/objcopy/gzip/...)
+
+ Note:
+ if_changed should not be used more than once per target.
It stores the executed command in a corresponding .cmd
+
file and multiple calls would result in overwrites and
unwanted results when the target is up to date and only the
tests on changed commands trigger execution of commands.
@@ -1063,7 +1182,8 @@ When kbuild executes, the following steps are followed (roughly):
ld
Link target. Often, LDFLAGS_$@ is used to set specific options to ld.
- Example:
+ Example::
+
#arch/x86/boot/Makefile
LDFLAGS_bootsect := -Ttext 0x0 -s --oformat binary
LDFLAGS_setup := -Ttext 0x0 -s --oformat binary -e begtext
@@ -1077,12 +1197,15 @@ When kbuild executes, the following steps are followed (roughly):
LDFLAGS_$@ syntax - one for each potential target.
$(targets) are assigned all potential targets, by which kbuild knows
the targets and will:
+
1) check for commandline changes
2) delete target during make clean
The ": %: %.o" part of the prerequisite is a shorthand that
frees us from listing the setup.o and bootsect.o files.
- Note: It is a common mistake to forget the "targets :=" assignment,
+
+ Note:
+ It is a common mistake to forget the "targets :=" assignment,
resulting in the target file being recompiled for no
obvious reason.
@@ -1094,7 +1217,8 @@ When kbuild executes, the following steps are followed (roughly):
gzip
Compress target. Use maximum compression to compress target.
- Example:
+ Example::
+
#arch/x86/boot/compressed/Makefile
$(obj)/vmlinux.bin.gz: $(vmlinux.bin.all-y) FORCE
$(call if_changed,gzip)
@@ -1105,26 +1229,30 @@ When kbuild executes, the following steps are followed (roughly):
in an init section in the image. Platform code *must* copy the
blob to non-init memory prior to calling unflatten_device_tree().
- To use this command, simply add *.dtb into obj-y or targets, or make
- some other target depend on %.dtb
+ To use this command, simply add `*.dtb` into obj-y or targets, or make
+ some other target depend on `%.dtb`
- A central rule exists to create $(obj)/%.dtb from $(src)/%.dts;
+ A central rule exists to create `$(obj)/%.dtb` from `$(src)/%.dts`;
architecture Makefiles do no need to explicitly write out that rule.
- Example:
+ Example::
+
targets += $(dtb-y)
DTC_FLAGS ?= -p 1024
---- 6.8 Custom kbuild commands
+6.8 Custom kbuild commands
+--------------------------
When kbuild is executing with KBUILD_VERBOSE=0, then only a shorthand
of a command is normally displayed.
To enable this behaviour for custom commands kbuild requires
- two variables to be set:
- quiet_cmd_<command> - what shall be echoed
- cmd_<command> - the command to execute
+ two variables to be set::
+
+ quiet_cmd_<command> - what shall be echoed
+ cmd_<command> - the command to execute
+
+ Example::
- Example:
#
quiet_cmd_image = BUILD $@
cmd_image = $(obj)/tools/build $(BUILDFLAGS) \
@@ -1135,9 +1263,9 @@ When kbuild executes, the following steps are followed (roughly):
$(call if_changed,image)
@echo 'Kernel: $@ is ready'
- When updating the $(obj)/bzImage target, the line
+ When updating the $(obj)/bzImage target, the line:
- BUILD arch/x86/boot/bzImage
+ BUILD arch/x86/boot/bzImage
will be displayed with "make KBUILD_VERBOSE=0".
@@ -1148,9 +1276,10 @@ When kbuild executes, the following steps are followed (roughly):
arch/$(ARCH)/kernel/vmlinux.lds is used.
The script is a preprocessed variant of the file vmlinux.lds.S
located in the same directory.
- kbuild knows .lds files and includes a rule *lds.S -> *lds.
+ kbuild knows .lds files and includes a rule `*lds.S` -> `*lds`.
+
+ Example::
- Example:
#arch/x86/kernel/Makefile
always := vmlinux.lds
@@ -1162,17 +1291,19 @@ When kbuild executes, the following steps are followed (roughly):
The assignment to $(CPPFLAGS_vmlinux.lds) tells kbuild to use the
specified options when building the target vmlinux.lds.
- When building the *.lds target, kbuild uses the variables:
- KBUILD_CPPFLAGS : Set in top-level Makefile
- cppflags-y : May be set in the kbuild makefile
- CPPFLAGS_$(@F) : Target-specific flags.
- Note that the full filename is used in this
- assignment.
+ When building the `*.lds` target, kbuild uses the variables::
+
+ KBUILD_CPPFLAGS : Set in top-level Makefile
+ cppflags-y : May be set in the kbuild makefile
+ CPPFLAGS_$(@F) : Target-specific flags.
+ Note that the full filename is used in this
+ assignment.
- The kbuild infrastructure for *lds files is used in several
+ The kbuild infrastructure for `*lds` files is used in several
architecture-specific files.
---- 6.10 Generic header files
+6.10 Generic header files
+-------------------------
The directory include/asm-generic contains the header files
that may be shared between individual architectures.
@@ -1180,7 +1311,8 @@ When kbuild executes, the following steps are followed (roughly):
to list the file in the Kbuild file.
See "7.2 generic-y" for further info on syntax etc.
---- 6.11 Post-link pass
+6.11 Post-link pass
+-------------------
If the file arch/xxx/Makefile.postlink exists, this makefile
will be invoked for post-link objects (vmlinux and modules.ko)
@@ -1195,15 +1327,17 @@ When kbuild executes, the following steps are followed (roughly):
For example, powerpc uses this to check relocation sanity of
the linked vmlinux file.
-=== 7 Kbuild syntax for exported headers
+7 Kbuild syntax for exported headers
+------------------------------------
The kernel includes a set of headers that is exported to userspace.
Many headers can be exported as-is but other headers require a
minimal pre-processing before they are ready for user-space.
The pre-processing does:
+
- drop kernel-specific annotations
- drop include of compiler.h
-- drop all sections that are kernel internal (guarded by ifdef __KERNEL__)
+- drop all sections that are kernel internal (guarded by `ifdef __KERNEL__`)
All headers under include/uapi/, include/generated/uapi/,
arch/<arch>/include/uapi/ and arch/<arch>/include/generated/uapi/
@@ -1213,40 +1347,45 @@ A Kbuild file may be defined under arch/<arch>/include/uapi/asm/ and
arch/<arch>/include/asm/ to list asm files coming from asm-generic.
See subsequent chapter for the syntax of the Kbuild file.
---- 7.1 no-export-headers
+7.1 no-export-headers
+---------------------
no-export-headers is essentially used by include/uapi/linux/Kbuild to
avoid exporting specific headers (e.g. kvm.h) on architectures that do
not support it. It should be avoided as much as possible.
---- 7.2 generic-y
+7.2 generic-y
+-------------
If an architecture uses a verbatim copy of a header from
include/asm-generic then this is listed in the file
arch/$(ARCH)/include/asm/Kbuild like this:
- Example:
+ Example::
+
#arch/x86/include/asm/Kbuild
generic-y += termios.h
generic-y += rtc.h
During the prepare phase of the build a wrapper include
- file is generated in the directory:
+ file is generated in the directory::
arch/$(ARCH)/include/generated/asm
When a header is exported where the architecture uses
the generic header a similar wrapper is generated as part
- of the set of exported headers in the directory:
+ of the set of exported headers in the directory::
usr/include/asm
The generated wrapper will in both cases look like the following:
- Example: termios.h
+ Example: termios.h::
+
#include <asm-generic/termios.h>
---- 7.3 generated-y
+7.3 generated-y
+---------------
If an architecture generates other header files alongside generic-y
wrappers, generated-y specifies them.
@@ -1254,11 +1393,13 @@ See subsequent chapter for the syntax of the Kbuild file.
This prevents them being treated as stale asm-generic wrappers and
removed.
- Example:
+ Example::
+
#arch/x86/include/asm/Kbuild
generated-y += syscalls_32.h
---- 7.4 mandatory-y
+7.4 mandatory-y
+---------------
mandatory-y is essentially used by include/(uapi/)asm-generic/Kbuild
to define the minimum set of ASM headers that all architectures must have.
@@ -1270,12 +1411,12 @@ See subsequent chapter for the syntax of the Kbuild file.
The convention is to list one subdir per line and
preferably in alphabetic order.
-=== 8 Kbuild Variables
+8 Kbuild Variables
+==================
The top Makefile exports the following variables:
VERSION, PATCHLEVEL, SUBLEVEL, EXTRAVERSION
-
These variables define the current kernel version. A few arch
Makefiles actually use these values directly; they should use
$(KERNELRELEASE) instead.
@@ -1289,32 +1430,28 @@ The top Makefile exports the following variables:
such as "-pre4", and is often blank.
KERNELRELEASE
-
$(KERNELRELEASE) is a single string such as "2.4.0-pre4", suitable
for constructing installation directory names or showing in
version strings. Some arch Makefiles use it for this purpose.
ARCH
-
This variable defines the target architecture, such as "i386",
"arm", or "sparc". Some kbuild Makefiles test $(ARCH) to
determine which files to compile.
By default, the top Makefile sets $(ARCH) to be the same as the
host system architecture. For a cross build, a user may
- override the value of $(ARCH) on the command line:
+ override the value of $(ARCH) on the command line::
make ARCH=m68k ...
INSTALL_PATH
-
This variable defines a place for the arch Makefiles to install
the resident kernel image and System.map file.
Use this for architecture-specific install targets.
INSTALL_MOD_PATH, MODLIB
-
$(INSTALL_MOD_PATH) specifies a prefix to $(MODLIB) for module
installation. This variable is not defined in the Makefile but
may be passed in by the user if desired.
@@ -1325,7 +1462,6 @@ The top Makefile exports the following variables:
override this value on the command line if desired.
INSTALL_MOD_STRIP
-
If this variable is specified, it will cause modules to be stripped
after they are installed. If INSTALL_MOD_STRIP is '1', then the
default option --strip-debug will be used. Otherwise, the
@@ -1333,7 +1469,8 @@ The top Makefile exports the following variables:
command.
-=== 9 Makefile language
+9 Makefile language
+===================
The kernel Makefiles are designed to be run with GNU Make. The Makefiles
use only the documented features of GNU Make, but they do use many
@@ -1352,18 +1489,17 @@ time the left-hand side is used.
There are some cases where "=" is appropriate. Usually, though, ":="
is the right choice.
-=== 10 Credits
+10 Credits
+==========
-Original version made by Michael Elizabeth Chastain, <mailto:mec@shout.net>
-Updates by Kai Germaschewski <kai@tp1.ruhr-uni-bochum.de>
-Updates by Sam Ravnborg <sam@ravnborg.org>
-Language QA by Jan Engelhardt <jengelh@gmx.de>
+- Original version made by Michael Elizabeth Chastain, <mailto:mec@shout.net>
+- Updates by Kai Germaschewski <kai@tp1.ruhr-uni-bochum.de>
+- Updates by Sam Ravnborg <sam@ravnborg.org>
+- Language QA by Jan Engelhardt <jengelh@gmx.de>
-=== 11 TODO
+11 TODO
+=======
- Describe how kbuild supports shipped files with _shipped.
- Generating offset header files.
- Add more variables to section 7?
-
-
-
diff --git a/Documentation/kbuild/modules.txt b/Documentation/kbuild/modules.rst
index 80295c613e37..d2ae799237fd 100644
--- a/Documentation/kbuild/modules.txt
+++ b/Documentation/kbuild/modules.rst
@@ -1,8 +1,10 @@
+=========================
Building External Modules
+=========================
This document describes how to build an out-of-tree kernel module.
-=== Table of Contents
+.. Table of Contents
=== 1 Introduction
=== 2 How to Build External Modules
@@ -31,7 +33,8 @@ This document describes how to build an out-of-tree kernel module.
-=== 1. Introduction
+1. Introduction
+===============
"kbuild" is the build system used by the Linux kernel. Modules must use
kbuild to stay compatible with changes in the build infrastructure and
@@ -48,7 +51,8 @@ easily accomplished, and a complete example will be presented in
section 3.
-=== 2. How to Build External Modules
+2. How to Build External Modules
+================================
To build external modules, you must have a prebuilt kernel available
that contains the configuration and header files used in the build.
@@ -65,25 +69,27 @@ NOTE: "modules_prepare" will not build Module.symvers even if
CONFIG_MODVERSIONS is set; therefore, a full kernel build needs to be
executed to make module versioning work.
---- 2.1 Command Syntax
+2.1 Command Syntax
+==================
- The command to build an external module is:
+ The command to build an external module is::
$ make -C <path_to_kernel_src> M=$PWD
The kbuild system knows that an external module is being built
due to the "M=<dir>" option given in the command.
- To build against the running kernel use:
+ To build against the running kernel use::
$ make -C /lib/modules/`uname -r`/build M=$PWD
Then to install the module(s) just built, add the target
- "modules_install" to the command:
+ "modules_install" to the command::
$ make -C /lib/modules/`uname -r`/build M=$PWD modules_install
---- 2.2 Options
+2.2 Options
+===========
($KDIR refers to the path of the kernel source directory.)
@@ -100,7 +106,8 @@ executed to make module versioning work.
directory where the external module (kbuild file) is
located.
---- 2.3 Targets
+2.3 Targets
+===========
When building an external module, only a subset of the "make"
targets are available.
@@ -130,26 +137,29 @@ executed to make module versioning work.
help
List the available targets for external modules.
---- 2.4 Building Separate Files
+2.4 Building Separate Files
+===========================
It is possible to build single files that are part of a module.
This works equally well for the kernel, a module, and even for
external modules.
- Example (The module foo.ko, consist of bar.o and baz.o):
+ Example (The module foo.ko, consist of bar.o and baz.o)::
+
make -C $KDIR M=$PWD bar.lst
make -C $KDIR M=$PWD baz.o
make -C $KDIR M=$PWD foo.ko
make -C $KDIR M=$PWD ./
-=== 3. Creating a Kbuild File for an External Module
+3. Creating a Kbuild File for an External Module
+================================================
In the last section we saw the command to build a module for the
running kernel. The module is not actually built, however, because a
build file is required. Contained in this file will be the name of
the module(s) being built, along with the list of requisite source
-files. The file may be as simple as a single line:
+files. The file may be as simple as a single line::
obj-m := <module_name>.o
@@ -157,15 +167,15 @@ The kbuild system will build <module_name>.o from <module_name>.c,
and, after linking, will result in the kernel module <module_name>.ko.
The above line can be put in either a "Kbuild" file or a "Makefile."
When the module is built from multiple sources, an additional line is
-needed listing the files:
+needed listing the files::
<module_name>-y := <src1>.o <src2>.o ...
NOTE: Further documentation describing the syntax used by kbuild is
-located in Documentation/kbuild/makefiles.txt.
+located in Documentation/kbuild/makefiles.rst.
The examples below demonstrate how to create a build file for the
-module 8123.ko, which is built from the following files:
+module 8123.ko, which is built from the following files::
8123_if.c
8123_if.h
@@ -181,7 +191,8 @@ module 8123.ko, which is built from the following files:
but should be filtered out from kbuild due to possible name
clashes.
- Example 1:
+ Example 1::
+
--> filename: Makefile
ifneq ($(KERNELRELEASE),)
# kbuild part of makefile
@@ -209,14 +220,16 @@ module 8123.ko, which is built from the following files:
line; the second pass is by the kbuild system, which is
initiated by the parameterized "make" in the default target.
---- 3.2 Separate Kbuild File and Makefile
+3.2 Separate Kbuild File and Makefile
+-------------------------------------
In newer versions of the kernel, kbuild will first look for a
file named "Kbuild," and only if that is not found, will it
then look for a makefile. Utilizing a "Kbuild" file allows us
to split up the makefile from example 1 into two files:
- Example 2:
+ Example 2::
+
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
@@ -238,7 +251,8 @@ module 8123.ko, which is built from the following files:
The next example shows a backward compatible version.
- Example 3:
+ Example 3::
+
--> filename: Kbuild
obj-m := 8123.o
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
@@ -266,7 +280,8 @@ module 8123.ko, which is built from the following files:
makefiles, to be used when the "make" and kbuild parts are
split into separate files.
---- 3.3 Binary Blobs
+3.3 Binary Blobs
+----------------
Some external modules need to include an object file as a blob.
kbuild has support for this, but requires the blob file to be
@@ -277,7 +292,7 @@ module 8123.ko, which is built from the following files:
Throughout this section, 8123_bin.o_shipped has been used to
build the kernel module 8123.ko; it has been included as
- 8123_bin.o.
+ 8123_bin.o::
8123-y := 8123_if.o 8123_pci.o 8123_bin.o
@@ -285,11 +300,12 @@ module 8123.ko, which is built from the following files:
files and the binary file, kbuild will pick up different rules
when creating the object file for the module.
---- 3.4 Building Multiple Modules
+3.4 Building Multiple Modules
+=============================
kbuild supports building multiple modules with a single build
file. For example, if you wanted to build two modules, foo.ko
- and bar.ko, the kbuild lines would be:
+ and bar.ko, the kbuild lines would be::
obj-m := foo.o bar.o
foo-y := <foo_srcs>
@@ -298,7 +314,8 @@ module 8123.ko, which is built from the following files:
It is that simple!
-=== 4. Include Files
+4. Include Files
+================
Within the kernel, header files are kept in standard locations
according to the following rule:
@@ -310,22 +327,25 @@ according to the following rule:
of the kernel that are located in different directories, then
the file is placed in include/linux/.
- NOTE: There are two notable exceptions to this rule: larger
- subsystems have their own directory under include/, such as
- include/scsi; and architecture specific headers are located
- under arch/$(ARCH)/include/.
+ NOTE:
+ There are two notable exceptions to this rule: larger
+ subsystems have their own directory under include/, such as
+ include/scsi; and architecture specific headers are located
+ under arch/$(ARCH)/include/.
---- 4.1 Kernel Includes
+4.1 Kernel Includes
+-------------------
To include a header file located under include/linux/, simply
- use:
+ use::
#include <linux/module.h>
kbuild will add options to "gcc" so the relevant directories
are searched.
---- 4.2 Single Subdirectory
+4.2 Single Subdirectory
+-----------------------
External modules tend to place header files in a separate
include/ directory where their source is located, although this
@@ -334,7 +354,7 @@ according to the following rule:
Using the example from section 3, if we moved 8123_if.h to a
subdirectory named include, the resulting kbuild file would
- look like:
+ look like::
--> filename: Kbuild
obj-m := 8123.o
@@ -346,23 +366,24 @@ according to the following rule:
the path. This is a limitation of kbuild: there must be no
space present.
---- 4.3 Several Subdirectories
+4.3 Several Subdirectories
+--------------------------
kbuild can handle files that are spread over several directories.
- Consider the following example:
-
- .
- |__ src
- | |__ complex_main.c
- | |__ hal
- | |__ hardwareif.c
- | |__ include
- | |__ hardwareif.h
- |__ include
- |__ complex.h
+ Consider the following example::
+
+ .
+ |__ src
+ | |__ complex_main.c
+ | |__ hal
+ | |__ hardwareif.c
+ | |__ include
+ | |__ hardwareif.h
+ |__ include
+ |__ complex.h
To build the module complex.ko, we then need the following
- kbuild file:
+ kbuild file::
--> filename: Kbuild
obj-m := complex.o
@@ -385,7 +406,8 @@ according to the following rule:
file is located.
-=== 5. Module Installation
+5. Module Installation
+======================
Modules which are included in the kernel are installed in the
directory:
@@ -396,11 +418,12 @@ And external modules are installed in:
/lib/modules/$(KERNELRELEASE)/extra/
---- 5.1 INSTALL_MOD_PATH
+5.1 INSTALL_MOD_PATH
+--------------------
Above are the default directories but as always some level of
customization is possible. A prefix can be added to the
- installation path using the variable INSTALL_MOD_PATH:
+ installation path using the variable INSTALL_MOD_PATH::
$ make INSTALL_MOD_PATH=/frodo modules_install
=> Install dir: /frodo/lib/modules/$(KERNELRELEASE)/kernel/
@@ -410,20 +433,22 @@ And external modules are installed in:
calling "make." This has effect when installing both in-tree
and out-of-tree modules.
---- 5.2 INSTALL_MOD_DIR
+5.2 INSTALL_MOD_DIR
+-------------------
External modules are by default installed to a directory under
/lib/modules/$(KERNELRELEASE)/extra/, but you may wish to
locate modules for a specific functionality in a separate
directory. For this purpose, use INSTALL_MOD_DIR to specify an
- alternative name to "extra."
+ alternative name to "extra."::
$ make INSTALL_MOD_DIR=gandalf -C $KDIR \
M=$PWD modules_install
=> Install dir: /lib/modules/$(KERNELRELEASE)/gandalf/
-=== 6. Module Versioning
+6. Module Versioning
+====================
Module versioning is enabled by the CONFIG_MODVERSIONS tag, and is used
as a simple ABI consistency check. A CRC value of the full prototype
@@ -435,26 +460,33 @@ module.
Module.symvers contains a list of all exported symbols from a kernel
build.
---- 6.1 Symbols From the Kernel (vmlinux + modules)
+6.1 Symbols From the Kernel (vmlinux + modules)
+-----------------------------------------------
During a kernel build, a file named Module.symvers will be
generated. Module.symvers contains all exported symbols from
the kernel and compiled modules. For each symbol, the
corresponding CRC value is also stored.
- The syntax of the Module.symvers file is:
- <CRC> <Symbol> <module>
+ The syntax of the Module.symvers file is::
- 0x2d036834 scsi_remove_host drivers/scsi/scsi_mod
+ <CRC> <Symbol> <Namespace> <Module> <Export Type>
+
+ 0xe1cc2a05 usb_stor_suspend USB_STORAGE drivers/usb/storage/usb-storage EXPORT_SYMBOL_GPL
+
+ The fields are separated by tabs and values may be empty (e.g.
+ if no namespace is defined for an exported symbol).
For a kernel build without CONFIG_MODVERSIONS enabled, the CRC
would read 0x00000000.
Module.symvers serves two purposes:
+
1) It lists all exported symbols from vmlinux and all modules.
2) It lists the CRC if CONFIG_MODVERSIONS is enabled.
---- 6.2 Symbols and External Modules
+6.2 Symbols and External Modules
+--------------------------------
When building an external module, the build system needs access
to the symbols from the kernel to check if all external symbols
@@ -481,17 +513,17 @@ build.
foo.ko needs symbols from bar.ko, you can use a
common top-level kbuild file so both modules are
compiled in the same build. Consider the following
- directory layout:
+ directory layout::
- ./foo/ <= contains foo.ko
- ./bar/ <= contains bar.ko
+ ./foo/ <= contains foo.ko
+ ./bar/ <= contains bar.ko
- The top-level kbuild file would then look like:
+ The top-level kbuild file would then look like::
- #./Kbuild (or ./Makefile):
- obj-y := foo/ bar/
+ #./Kbuild (or ./Makefile):
+ obj-y := foo/ bar/
- And executing
+ And executing::
$ make -C $KDIR M=$PWD
@@ -518,14 +550,16 @@ build.
initialization of its symbol tables.
-=== 7. Tips & Tricks
+7. Tips & Tricks
+================
---- 7.1 Testing for CONFIG_FOO_BAR
+7.1 Testing for CONFIG_FOO_BAR
+------------------------------
- Modules often need to check for certain CONFIG_ options to
+ Modules often need to check for certain `CONFIG_` options to
decide if a specific feature is included in the module. In
- kbuild this is done by referencing the CONFIG_ variable
- directly.
+ kbuild this is done by referencing the `CONFIG_` variable
+ directly::
#fs/ext2/Makefile
obj-$(CONFIG_EXT2_FS) += ext2.o
@@ -534,8 +568,7 @@ build.
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o
External modules have traditionally used "grep" to check for
- specific CONFIG_ settings directly in .config. This usage is
+ specific `CONFIG_` settings directly in .config. This usage is
broken. As introduced before, external modules should use
kbuild for building and can therefore use the same methods as
- in-tree modules when testing for CONFIG_ definitions.
-
+ in-tree modules when testing for `CONFIG_` definitions.
diff --git a/Documentation/kbuild/namespaces.rst b/Documentation/kbuild/namespaces.rst
new file mode 100644
index 000000000000..982ed7b568ac
--- /dev/null
+++ b/Documentation/kbuild/namespaces.rst
@@ -0,0 +1,154 @@
+=================
+Symbol Namespaces
+=================
+
+The following document describes how to use Symbol Namespaces to structure the
+export surface of in-kernel symbols exported through the family of
+EXPORT_SYMBOL() macros.
+
+.. Table of Contents
+
+ === 1 Introduction
+ === 2 How to define Symbol Namespaces
+ --- 2.1 Using the EXPORT_SYMBOL macros
+ --- 2.2 Using the DEFAULT_SYMBOL_NAMESPACE define
+ === 3 How to use Symbols exported in Namespaces
+ === 4 Loading Modules that use namespaced Symbols
+ === 5 Automatically creating MODULE_IMPORT_NS statements
+
+1. Introduction
+===============
+
+Symbol Namespaces have been introduced as a means to structure the export
+surface of the in-kernel API. It allows subsystem maintainers to partition
+their exported symbols into separate namespaces. That is useful for
+documentation purposes (think of the SUBSYSTEM_DEBUG namespace) as well as for
+limiting the availability of a set of symbols for use in other parts of the
+kernel. As of today, modules that make use of symbols exported into namespaces,
+are required to import the namespace. Otherwise the kernel will, depending on
+its configuration, reject loading the module or warn about a missing import.
+
+2. How to define Symbol Namespaces
+==================================
+
+Symbols can be exported into namespace using different methods. All of them are
+changing the way EXPORT_SYMBOL and friends are instrumented to create ksymtab
+entries.
+
+2.1 Using the EXPORT_SYMBOL macros
+==================================
+
+In addition to the macros EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL(), that allow
+exporting of kernel symbols to the kernel symbol table, variants of these are
+available to export symbols into a certain namespace: EXPORT_SYMBOL_NS() and
+EXPORT_SYMBOL_NS_GPL(). They take one additional argument: the namespace.
+Please note that due to macro expansion that argument needs to be a
+preprocessor symbol. E.g. to export the symbol `usb_stor_suspend` into the
+namespace `USB_STORAGE`, use::
+
+ EXPORT_SYMBOL_NS(usb_stor_suspend, USB_STORAGE);
+
+The corresponding ksymtab entry struct `kernel_symbol` will have the member
+`namespace` set accordingly. A symbol that is exported without a namespace will
+refer to `NULL`. There is no default namespace if none is defined. `modpost`
+and kernel/module.c make use the namespace at build time or module load time,
+respectively.
+
+2.2 Using the DEFAULT_SYMBOL_NAMESPACE define
+=============================================
+
+Defining namespaces for all symbols of a subsystem can be very verbose and may
+become hard to maintain. Therefore a default define (DEFAULT_SYMBOL_NAMESPACE)
+is been provided, that, if set, will become the default for all EXPORT_SYMBOL()
+and EXPORT_SYMBOL_GPL() macro expansions that do not specify a namespace.
+
+There are multiple ways of specifying this define and it depends on the
+subsystem and the maintainer's preference, which one to use. The first option
+is to define the default namespace in the `Makefile` of the subsystem. E.g. to
+export all symbols defined in usb-common into the namespace USB_COMMON, add a
+line like this to drivers/usb/common/Makefile::
+
+ ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE=USB_COMMON
+
+That will affect all EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL() statements. A
+symbol exported with EXPORT_SYMBOL_NS() while this definition is present, will
+still be exported into the namespace that is passed as the namespace argument
+as this argument has preference over a default symbol namespace.
+
+A second option to define the default namespace is directly in the compilation
+unit as preprocessor statement. The above example would then read::
+
+ #undef DEFAULT_SYMBOL_NAMESPACE
+ #define DEFAULT_SYMBOL_NAMESPACE USB_COMMON
+
+within the corresponding compilation unit before any EXPORT_SYMBOL macro is
+used.
+
+3. How to use Symbols exported in Namespaces
+============================================
+
+In order to use symbols that are exported into namespaces, kernel modules need
+to explicitly import these namespaces. Otherwise the kernel might reject to
+load the module. The module code is required to use the macro MODULE_IMPORT_NS
+for the namespaces it uses symbols from. E.g. a module using the
+usb_stor_suspend symbol from above, needs to import the namespace USB_STORAGE
+using a statement like::
+
+ MODULE_IMPORT_NS(USB_STORAGE);
+
+This will create a `modinfo` tag in the module for each imported namespace.
+This has the side effect, that the imported namespaces of a module can be
+inspected with modinfo::
+
+ $ modinfo drivers/usb/storage/ums-karma.ko
+ [...]
+ import_ns: USB_STORAGE
+ [...]
+
+
+It is advisable to add the MODULE_IMPORT_NS() statement close to other module
+metadata definitions like MODULE_AUTHOR() or MODULE_LICENSE(). Refer to section
+5. for a way to create missing import statements automatically.
+
+4. Loading Modules that use namespaced Symbols
+==============================================
+
+At module loading time (e.g. `insmod`), the kernel will check each symbol
+referenced from the module for its availability and whether the namespace it
+might be exported to has been imported by the module. The default behaviour of
+the kernel is to reject loading modules that don't specify sufficient imports.
+An error will be logged and loading will be failed with EINVAL. In order to
+allow loading of modules that don't satisfy this precondition, a configuration
+option is available: Setting MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS=y will
+enable loading regardless, but will emit a warning.
+
+5. Automatically creating MODULE_IMPORT_NS statements
+=====================================================
+
+Missing namespaces imports can easily be detected at build time. In fact,
+modpost will emit a warning if a module uses a symbol from a namespace
+without importing it.
+MODULE_IMPORT_NS() statements will usually be added at a definite location
+(along with other module meta data). To make the life of module authors (and
+subsystem maintainers) easier, a script and make target is available to fixup
+missing imports. Fixing missing imports can be done with::
+
+ $ make nsdeps
+
+A typical scenario for module authors would be::
+
+ - write code that depends on a symbol from a not imported namespace
+ - `make`
+ - notice the warning of modpost telling about a missing import
+ - run `make nsdeps` to add the import to the correct code location
+
+For subsystem maintainers introducing a namespace, the steps are very similar.
+Again, `make nsdeps` will eventually add the missing namespace imports for
+in-tree modules::
+
+ - move or add symbols to a namespace (e.g. with EXPORT_SYMBOL_NS())
+ - `make` (preferably with an allmodconfig to cover all in-kernel
+ modules)
+ - notice the warning of modpost telling about a missing import
+ - run `make nsdeps` to add the import to the correct code location
+
diff --git a/Documentation/kbuild/reproducible-builds.rst b/Documentation/kbuild/reproducible-builds.rst
new file mode 100644
index 000000000000..ab92e98c89c8
--- /dev/null
+++ b/Documentation/kbuild/reproducible-builds.rst
@@ -0,0 +1,122 @@
+===================
+Reproducible builds
+===================
+
+It is generally desirable that building the same source code with
+the same set of tools is reproducible, i.e. the output is always
+exactly the same. This makes it possible to verify that the build
+infrastructure for a binary distribution or embedded system has not
+been subverted. This can also make it easier to verify that a source
+or tool change does not make any difference to the resulting binaries.
+
+The `Reproducible Builds project`_ has more information about this
+general topic. This document covers the various reasons why building
+the kernel may be unreproducible, and how to avoid them.
+
+Timestamps
+----------
+
+The kernel embeds a timestamp in two places:
+
+* The version string exposed by ``uname()`` and included in
+ ``/proc/version``
+
+* File timestamps in the embedded initramfs
+
+By default the timestamp is the current time. This must be overridden
+using the `KBUILD_BUILD_TIMESTAMP`_ variable. If you are building
+from a git commit, you could use its commit date.
+
+The kernel does *not* use the ``__DATE__`` and ``__TIME__`` macros,
+and enables warnings if they are used. If you incorporate external
+code that does use these, you must override the timestamp they
+correspond to by setting the `SOURCE_DATE_EPOCH`_ environment
+variable.
+
+User, host
+----------
+
+The kernel embeds the building user and host names in
+``/proc/version``. These must be overridden using the
+`KBUILD_BUILD_USER and KBUILD_BUILD_HOST`_ variables. If you are
+building from a git commit, you could use its committer address.
+
+Absolute filenames
+------------------
+
+When the kernel is built out-of-tree, debug information may include
+absolute filenames for the source files. This must be overridden by
+including the ``-fdebug-prefix-map`` option in the `KCFLAGS`_ variable.
+
+Depending on the compiler used, the ``__FILE__`` macro may also expand
+to an absolute filename in an out-of-tree build. Kbuild automatically
+uses the ``-fmacro-prefix-map`` option to prevent this, if it is
+supported.
+
+The Reproducible Builds web site has more information about these
+`prefix-map options`_.
+
+Generated files in source packages
+----------------------------------
+
+The build processes for some programs under the ``tools/``
+subdirectory do not completely support out-of-tree builds. This may
+cause a later source package build using e.g. ``make rpm-pkg`` to
+include generated files. You should ensure the source tree is
+pristine by running ``make mrproper`` or ``git clean -d -f -x`` before
+building a source package.
+
+Module signing
+--------------
+
+If you enable ``CONFIG_MODULE_SIG_ALL``, the default behaviour is to
+generate a different temporary key for each build, resulting in the
+modules being unreproducible. However, including a signing key with
+your source would presumably defeat the purpose of signing modules.
+
+One approach to this is to divide up the build process so that the
+unreproducible parts can be treated as sources:
+
+1. Generate a persistent signing key. Add the certificate for the key
+ to the kernel source.
+
+2. Set the ``CONFIG_SYSTEM_TRUSTED_KEYS`` symbol to include the
+ signing key's certificate, set ``CONFIG_MODULE_SIG_KEY`` to an
+ empty string, and disable ``CONFIG_MODULE_SIG_ALL``.
+ Build the kernel and modules.
+
+3. Create detached signatures for the modules, and publish them as
+ sources.
+
+4. Perform a second build that attaches the module signatures. It
+ can either rebuild the modules or use the output of step 2.
+
+Structure randomisation
+-----------------------
+
+If you enable ``CONFIG_GCC_PLUGIN_RANDSTRUCT``, you will need to
+pre-generate the random seed in
+``scripts/gcc-plgins/randomize_layout_seed.h`` so the same value
+is used in rebuilds.
+
+Debug info conflicts
+--------------------
+
+This is not a problem of unreproducibility, but of generated files
+being *too* reproducible.
+
+Once you set all the necessary variables for a reproducible build, a
+vDSO's debug information may be identical even for different kernel
+versions. This can result in file conflicts between debug information
+packages for the different kernel versions.
+
+To avoid this, you can make the vDSO different for different
+kernel versions by including an arbitrary string of "salt" in it.
+This is specified by the Kconfig symbol ``CONFIG_BUILD_SALT``.
+
+.. _KBUILD_BUILD_TIMESTAMP: kbuild.html#kbuild-build-timestamp
+.. _KBUILD_BUILD_USER and KBUILD_BUILD_HOST: kbuild.html#kbuild-build-user-kbuild-build-host
+.. _KCFLAGS: kbuild.html#kcflags
+.. _prefix-map options: https://reproducible-builds.org/docs/build-path/
+.. _Reproducible Builds project: https://reproducible-builds.org/
+.. _SOURCE_DATE_EPOCH: https://reproducible-builds.org/docs/source-date-epoch/
diff --git a/Documentation/kernel-hacking/conf.py b/Documentation/kernel-hacking/conf.py
deleted file mode 100644
index 3d8acf0f33ad..000000000000
--- a/Documentation/kernel-hacking/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Kernel Hacking Guides"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'kernel-hacking.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/kernel-hacking/hacking.rst b/Documentation/kernel-hacking/hacking.rst
index d824e4feaff3..a3ddb213a5e1 100644
--- a/Documentation/kernel-hacking/hacking.rst
+++ b/Documentation/kernel-hacking/hacking.rst
@@ -594,6 +594,24 @@ internal implementation issue, and not really an interface. Some
maintainers and developers may however require EXPORT_SYMBOL_GPL()
when adding any new APIs or functionality.
+:c:func:`EXPORT_SYMBOL_NS()`
+----------------------------
+
+Defined in ``include/linux/export.h``
+
+This is the variant of `EXPORT_SYMBOL()` that allows specifying a symbol
+namespace. Symbol Namespaces are documented in
+``Documentation/kbuild/namespaces.rst``.
+
+:c:func:`EXPORT_SYMBOL_NS_GPL()`
+--------------------------------
+
+Defined in ``include/linux/export.h``
+
+This is the variant of `EXPORT_SYMBOL_GPL()` that allows specifying a symbol
+namespace. Symbol Namespaces are documented in
+``Documentation/kbuild/namespaces.rst``.
+
Routines and Conventions
========================
@@ -718,7 +736,7 @@ make a neat patch, there's administrative work to be done:
- Usually you want a configuration option for your kernel hack. Edit
``Kconfig`` in the appropriate directory. The Config language is
simple to use by cut and paste, and there's complete documentation in
- ``Documentation/kbuild/kconfig-language.txt``.
+ ``Documentation/kbuild/kconfig-language.rst``.
In your description of the option, make sure you address both the
expert user and the user who knows nothing about your feature.
@@ -728,7 +746,7 @@ make a neat patch, there's administrative work to be done:
- Edit the ``Makefile``: the CONFIG variables are exported here so you
can usually just add a "obj-$(CONFIG_xxx) += xxx.o" line. The syntax
- is documented in ``Documentation/kbuild/makefiles.txt``.
+ is documented in ``Documentation/kbuild/makefiles.rst``.
- Put yourself in ``CREDITS`` if you've done something noteworthy,
usually beyond a single file (your name should be at the top of the
diff --git a/Documentation/kernel-hacking/locking.rst b/Documentation/kernel-hacking/locking.rst
index 519673df0e82..a8518ac0d31d 100644
--- a/Documentation/kernel-hacking/locking.rst
+++ b/Documentation/kernel-hacking/locking.rst
@@ -451,7 +451,7 @@ to protect the cache and all the objects within it. Here's the code::
if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
return -ENOMEM;
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
@@ -660,7 +660,7 @@ Here is the code::
}
@@ -63,6 +94,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
+ obj->refcnt = 1; /* The cache holds a reference */
@@ -774,7 +774,7 @@ the lock is no longer used to protect the reference count itself.
}
@@ -94,7 +76,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
- obj->refcnt = 1; /* The cache holds a reference */
@@ -1364,7 +1364,7 @@ Futex API reference
Further reading
===============
-- ``Documentation/locking/spinlocks.txt``: Linus Torvalds' spinlocking
+- ``Documentation/locking/spinlocks.rst``: Linus Torvalds' spinlocking
tutorial in the kernel sources.
- Unix Systems for Modern Architectures: Symmetric Multiprocessing and
diff --git a/Documentation/leds/index.rst b/Documentation/leds/index.rst
new file mode 100644
index 000000000000..060f4e485897
--- /dev/null
+++ b/Documentation/leds/index.rst
@@ -0,0 +1,25 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====
+LEDs
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ leds-class
+ leds-class-flash
+ ledtrig-oneshot
+ ledtrig-transient
+ ledtrig-usbport
+
+ uleds
+
+ leds-blinkm
+ leds-lm3556
+ leds-lp3944
+ leds-lp5521
+ leds-lp5523
+ leds-lp5562
+ leds-lp55xx
+ leds-mlxcpld
diff --git a/Documentation/leds/leds-blinkm.txt b/Documentation/leds/leds-blinkm.rst
index 9dd92f4cf4e1..c74b5bc877b1 100644
--- a/Documentation/leds/leds-blinkm.txt
+++ b/Documentation/leds/leds-blinkm.rst
@@ -1,3 +1,7 @@
+==================
+Leds BlinkM driver
+==================
+
The leds-blinkm driver supports the devices of the BlinkM family.
They are RGB-LED modules driven by a (AT)tiny microcontroller and
@@ -14,35 +18,36 @@ The interface this driver provides is 2-fold:
a) LED class interface for use with triggers
############################################
-The registration follows the scheme:
-blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
+The registration follows the scheme::
+
+ blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
-$ ls -h /sys/class/leds/blinkm-6-*
-/sys/class/leds/blinkm-6-9-blue:
-brightness device max_brightness power subsystem trigger uevent
+ $ ls -h /sys/class/leds/blinkm-6-*
+ /sys/class/leds/blinkm-6-9-blue:
+ brightness device max_brightness power subsystem trigger uevent
-/sys/class/leds/blinkm-6-9-green:
-brightness device max_brightness power subsystem trigger uevent
+ /sys/class/leds/blinkm-6-9-green:
+ brightness device max_brightness power subsystem trigger uevent
-/sys/class/leds/blinkm-6-9-red:
-brightness device max_brightness power subsystem trigger uevent
+ /sys/class/leds/blinkm-6-9-red:
+ brightness device max_brightness power subsystem trigger uevent
(same is /sys/bus/i2c/devices/6-0009/leds)
We can control the colors separated into red, green and blue and
assign triggers on each color.
-E.g.:
+E.g.::
-$ cat blinkm-6-9-blue/brightness
-05
+ $ cat blinkm-6-9-blue/brightness
+ 05
-$ echo 200 > blinkm-6-9-blue/brightness
-$
+ $ echo 200 > blinkm-6-9-blue/brightness
+ $
-$ modprobe ledtrig-heartbeat
-$ echo heartbeat > blinkm-6-9-green/trigger
-$
+ $ modprobe ledtrig-heartbeat
+ $ echo heartbeat > blinkm-6-9-green/trigger
+ $
b) Sysfs group to control rgb, fade, hsb, scripts ...
@@ -52,29 +57,28 @@ This extended interface is available as folder blinkm
in the sysfs folder of the I2C device.
E.g. below /sys/bus/i2c/devices/6-0009/blinkm
-$ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
-blue green red test
+ $ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
+ blue green red test
Currently supported is just setting red, green, blue
and a test sequence.
-E.g.:
+E.g.::
-$ cat *
-00
-00
-00
-#Write into test to start test sequence!#
+ $ cat *
+ 00
+ 00
+ 00
+ #Write into test to start test sequence!#
-$ echo 1 > test
-$
+ $ echo 1 > test
+ $
-$ echo 255 > red
-$
+ $ echo 255 > red
+ $
as of 6/2012
dl9pf <at> gmx <dot> de
-
diff --git a/Documentation/leds/leds-class-flash.txt b/Documentation/leds/leds-class-flash.rst
index 8da3c6f4b60b..6ec12c5a1a0e 100644
--- a/Documentation/leds/leds-class-flash.txt
+++ b/Documentation/leds/leds-class-flash.rst
@@ -1,9 +1,9 @@
-
+==============================
Flash LED handling under Linux
==============================
Some LED devices provide two modes - torch and flash. In the LED subsystem
-those modes are supported by LED class (see Documentation/leds/leds-class.txt)
+those modes are supported by LED class (see Documentation/leds/leds-class.rst)
and LED Flash class respectively. The torch mode related features are enabled
by default and the flash ones only if a driver declares it by setting
LED_DEV_CAP_FLASH flag.
@@ -14,6 +14,7 @@ registered in the LED subsystem with led_classdev_flash_register function.
Following sysfs attributes are exposed for controlling flash LED devices:
(see Documentation/ABI/testing/sysfs-class-led-flash)
+
- flash_brightness
- max_flash_brightness
- flash_timeout
@@ -31,30 +32,46 @@ be defined in the kernel config.
The driver must call the v4l2_flash_init function to get registered in the
V4L2 subsystem. The function takes six arguments:
-- dev : flash device, e.g. an I2C device
-- of_node : of_node of the LED, may be NULL if the same as device's
-- fled_cdev : LED flash class device to wrap
-- iled_cdev : LED flash class device representing indicator LED associated with
- fled_cdev, may be NULL
-- ops : V4L2 specific ops
- * external_strobe_set - defines the source of the flash LED strobe -
+
+- dev:
+ flash device, e.g. an I2C device
+- of_node:
+ of_node of the LED, may be NULL if the same as device's
+- fled_cdev:
+ LED flash class device to wrap
+- iled_cdev:
+ LED flash class device representing indicator LED associated with
+ fled_cdev, may be NULL
+- ops:
+ V4L2 specific ops
+
+ * external_strobe_set
+ defines the source of the flash LED strobe -
V4L2_CID_FLASH_STROBE control or external source, typically
a sensor, which makes it possible to synchronise the flash
strobe start with exposure start,
- * intensity_to_led_brightness and led_brightness_to_intensity - perform
+ * intensity_to_led_brightness and led_brightness_to_intensity
+ perform
enum led_brightness <-> V4L2 intensity conversion in a device
specific manner - they can be used for devices with non-linear
LED current scale.
-- config : configuration for V4L2 Flash sub-device
- * dev_name - the name of the media entity, unique in the system,
- * flash_faults - bitmask of flash faults that the LED flash class
+- config:
+ configuration for V4L2 Flash sub-device
+
+ * dev_name
+ the name of the media entity, unique in the system,
+ * flash_faults
+ bitmask of flash faults that the LED flash class
device can report; corresponding LED_FAULT* bit definitions are
available in <linux/led-class-flash.h>,
- * torch_intensity - constraints for the LED in TORCH mode
+ * torch_intensity
+ constraints for the LED in TORCH mode
in microamperes,
- * indicator_intensity - constraints for the indicator LED
+ * indicator_intensity
+ constraints for the indicator LED
in microamperes,
- * has_external_strobe - determines whether the flash strobe source
+ * has_external_strobe
+ determines whether the flash strobe source
can be switched to external,
On remove the v4l2_flash_release function has to be called, which takes one
diff --git a/Documentation/leds/leds-class.txt b/Documentation/leds/leds-class.rst
index 8b39cc6b03ee..a0708d3f3d0b 100644
--- a/Documentation/leds/leds-class.txt
+++ b/Documentation/leds/leds-class.rst
@@ -1,4 +1,4 @@
-
+========================
LED handling under Linux
========================
@@ -43,9 +43,73 @@ LED Device Naming
Is currently of the form:
-"devicename:colour:function"
-
-There have been calls for LED properties such as colour to be exported as
+ "devicename:color:function"
+
+- devicename:
+ it should refer to a unique identifier created by the kernel,
+ like e.g. phyN for network devices or inputN for input devices, rather
+ than to the hardware; the information related to the product and the bus
+ to which given device is hooked is available in sysfs and can be
+ retrieved using get_led_device_info.sh script from tools/leds; generally
+ this section is expected mostly for LEDs that are somehow associated with
+ other devices.
+
+- color:
+ one of LED_COLOR_ID_* definitions from the header
+ include/dt-bindings/leds/common.h.
+
+- function:
+ one of LED_FUNCTION_* definitions from the header
+ include/dt-bindings/leds/common.h.
+
+If required color or function is missing, please submit a patch
+to linux-leds@vger.kernel.org.
+
+It is possible that more than one LED with the same color and function will
+be required for given platform, differing only with an ordinal number.
+In this case it is preferable to just concatenate the predefined LED_FUNCTION_*
+name with required "-N" suffix in the driver. fwnode based drivers can use
+function-enumerator property for that and then the concatenation will be handled
+automatically by the LED core upon LED class device registration.
+
+LED subsystem has also a protection against name clash, that may occur
+when LED class device is created by a driver of hot-pluggable device and
+it doesn't provide unique devicename section. In this case numerical
+suffix (e.g. "_1", "_2", "_3" etc.) is added to the requested LED class
+device name.
+
+There might be still LED class drivers around using vendor or product name
+for devicename, but this approach is now deprecated as it doesn't convey
+any added value. Product information can be found in other places in sysfs
+(see tools/leds/get_led_device_info.sh).
+
+Examples of proper LED names:
+
+ - "red:disk"
+ - "white:flash"
+ - "red:indicator"
+ - "phy1:green:wlan"
+ - "phy3::wlan"
+ - ":kbd_backlight"
+ - "input5::kbd_backlight"
+ - "input3::numlock"
+ - "input3::scrolllock"
+ - "input3::capslock"
+ - "mmc1::status"
+ - "white:status"
+
+get_led_device_info.sh script can be used for verifying if the LED name
+meets the requirements pointed out here. It performs validation of the LED class
+devicename sections and gives hints on expected value for a section in case
+the validation fails for it. So far the script supports validation
+of associations between LEDs and following types of devices:
+
+ - input devices
+ - ieee80211 compliant USB devices
+
+The script is open to extensions.
+
+There have been calls for LED properties such as color to be exported as
individual led class attributes. As a solution which doesn't incur as much
overhead, I suggest these become part of the device name. The naming scheme
above leaves scope for further attributes should they be needed. If sections
@@ -57,9 +121,12 @@ Brightness setting API
LED subsystem core exposes following API for setting brightness:
- - led_set_brightness : it is guaranteed not to sleep, passing LED_OFF stops
+ - led_set_brightness:
+ it is guaranteed not to sleep, passing LED_OFF stops
blinking,
- - led_set_brightness_sync : for use cases when immediate effect is desired -
+
+ - led_set_brightness_sync:
+ for use cases when immediate effect is desired -
it can block the caller for the time required for accessing
device registers and can sleep, passing LED_OFF stops hardware
blinking, returns -EBUSY if software blink fallback is enabled.
@@ -70,7 +137,7 @@ LED registration API
A driver wanting to register a LED classdev for use by other drivers /
userspace needs to allocate and fill a led_classdev struct and then call
-[devm_]led_classdev_register. If the non devm version is used the driver
+`[devm_]led_classdev_register`. If the non devm version is used the driver
must call led_classdev_unregister from its remove function before
free-ing the led_classdev struct.
@@ -94,7 +161,7 @@ with brightness value LED_OFF, which should stop any software
timers that may have been required for blinking.
The blink_set() function should choose a user friendly blinking value
-if it is called with *delay_on==0 && *delay_off==0 parameters. In this
+if it is called with `*delay_on==0` && `*delay_off==0` parameters. In this
case the driver should give back the chosen value through delay_on and
delay_off parameters to the leds subsystem.
diff --git a/Documentation/leds/leds-lm3556.txt b/Documentation/leds/leds-lm3556.rst
index 62278e871b50..1ef17d7d800e 100644
--- a/Documentation/leds/leds-lm3556.txt
+++ b/Documentation/leds/leds-lm3556.rst
@@ -1,68 +1,118 @@
+========================
Kernel driver for lm3556
========================
-*Texas Instrument:
- 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
+* Texas Instrument:
+ 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
* Datasheet: http://www.national.com/ds/LM/LM3556.pdf
Authors:
- Daniel Jeong
+ - Daniel Jeong
+
Contact:Daniel Jeong(daniel.jeong-at-ti.com, gshark.jeong-at-gmail.com)
Description
-----------
There are 3 functions in LM3556, Flash, Torch and Indicator.
-FLASH MODE
+Flash Mode
+^^^^^^^^^^
+
In Flash Mode, the LED current source(LED) provides 16 target current levels
from 93.75 mA to 1500 mA.The Flash currents are adjusted via the CURRENT
CONTROL REGISTER(0x09).Flash mode is activated by the ENABLE REGISTER(0x0A),
or by pulling the STROBE pin HIGH.
+
LM3556 Flash can be controlled through sys/class/leds/flash/brightness file
+
* if STROBE pin is enabled, below example control brightness only, and
-ON / OFF will be controlled by STROBE pin.
+ ON / OFF will be controlled by STROBE pin.
Flash Example:
-OFF : #echo 0 > sys/class/leds/flash/brightness
-93.75 mA: #echo 1 > sys/class/leds/flash/brightness
-... .....
-1500 mA: #echo 16 > sys/class/leds/flash/brightness
-TORCH MODE
+OFF::
+
+ #echo 0 > sys/class/leds/flash/brightness
+
+93.75 mA::
+
+ #echo 1 > sys/class/leds/flash/brightness
+
+...
+
+1500 mA::
+
+ #echo 16 > sys/class/leds/flash/brightness
+
+Torch Mode
+^^^^^^^^^^
+
In Torch Mode, the current source(LED) is programmed via the CURRENT CONTROL
REGISTER(0x09).Torch Mode is activated by the ENABLE REGISTER(0x0A) or by the
hardware TORCH input.
+
LM3556 torch can be controlled through sys/class/leds/torch/brightness file.
* if TORCH pin is enabled, below example control brightness only,
and ON / OFF will be controlled by TORCH pin.
Torch Example:
-OFF : #echo 0 > sys/class/leds/torch/brightness
-46.88 mA: #echo 1 > sys/class/leds/torch/brightness
-... .....
-375 mA : #echo 8 > sys/class/leds/torch/brightness
-INDICATOR MODE
+OFF::
+
+ #echo 0 > sys/class/leds/torch/brightness
+
+46.88 mA::
+
+ #echo 1 > sys/class/leds/torch/brightness
+
+...
+
+375 mA::
+
+ #echo 8 > sys/class/leds/torch/brightness
+
+Indicator Mode
+^^^^^^^^^^^^^^
+
Indicator pattern can be set through sys/class/leds/indicator/pattern file,
and 4 patterns are pre-defined in indicator_pattern array.
+
According to N-lank, Pulse time and N Period values, different pattern wiill
be generated.If you want new patterns for your own device, change
indicator_pattern array with your own values and INDIC_PATTERN_SIZE.
+
Please refer datasheet for more detail about N-Blank, Pulse time and N Period.
Indicator pattern example:
-pattern 0: #echo 0 > sys/class/leds/indicator/pattern
-....
-pattern 3: #echo 3 > sys/class/leds/indicator/pattern
+
+pattern 0::
+
+ #echo 0 > sys/class/leds/indicator/pattern
+
+...
+
+pattern 3::
+
+ #echo 3 > sys/class/leds/indicator/pattern
Indicator brightness can be controlled through
sys/class/leds/indicator/brightness file.
Example:
-OFF : #echo 0 > sys/class/leds/indicator/brightness
-5.86 mA : #echo 1 > sys/class/leds/indicator/brightness
-........
-46.875mA : #echo 8 > sys/class/leds/indicator/brightness
+
+OFF::
+
+ #echo 0 > sys/class/leds/indicator/brightness
+
+5.86 mA::
+
+ #echo 1 > sys/class/leds/indicator/brightness
+
+...
+
+46.875mA::
+
+ #echo 8 > sys/class/leds/indicator/brightness
Notes
-----
@@ -70,7 +120,8 @@ Driver expects it is registered using the i2c_board_info mechanism.
To register the chip at address 0x63 on specific adapter, set the platform data
according to include/linux/platform_data/leds-lm3556.h, set the i2c board info
-Example:
+Example::
+
static struct i2c_board_info board_i2c_ch4[] __initdata = {
{
I2C_BOARD_INFO(LM3556_NAME, 0x63),
@@ -80,6 +131,7 @@ Example:
and register it in the platform init function
-Example:
+Example::
+
board_register_i2c_bus(4, 400,
board_i2c_ch4, ARRAY_SIZE(board_i2c_ch4));
diff --git a/Documentation/leds/leds-lp3944.txt b/Documentation/leds/leds-lp3944.rst
index e88ac3b60c08..c2f87dc1a3a9 100644
--- a/Documentation/leds/leds-lp3944.txt
+++ b/Documentation/leds/leds-lp3944.rst
@@ -1,14 +1,20 @@
+====================
Kernel driver lp3944
====================
* National Semiconductor LP3944 Fun-light Chip
+
Prefix: 'lp3944'
+
Addresses scanned: None (see the Notes section below)
- Datasheet: Publicly available at the National Semiconductor website
- http://www.national.com/pf/LP/LP3944.html
+
+ Datasheet:
+
+ Publicly available at the National Semiconductor website
+ http://www.national.com/pf/LP/LP3944.html
Authors:
- Antonio Ospite <ospite@studenti.unina.it>
+ Antonio Ospite <ospite@studenti.unina.it>
Description
@@ -19,8 +25,11 @@ is used as a led controller.
The DIM modes are used to set _blink_ patterns for leds, the pattern is
specified supplying two parameters:
- - period: from 0s to 1.6s
- - duty cycle: percentage of the period the led is on, from 0 to 100
+
+ - period:
+ from 0s to 1.6s
+ - duty cycle:
+ percentage of the period the led is on, from 0 to 100
Setting a led in DIM0 or DIM1 mode makes it blink according to the pattern.
See the datasheet for details.
@@ -35,7 +44,7 @@ The chip is used mainly in embedded contexts, so this driver expects it is
registered using the i2c_board_info mechanism.
To register the chip at address 0x60 on adapter 0, set the platform data
-according to include/linux/leds-lp3944.h, set the i2c board info:
+according to include/linux/leds-lp3944.h, set the i2c board info::
static struct i2c_board_info a910_i2c_board_info[] __initdata = {
{
@@ -44,7 +53,7 @@ according to include/linux/leds-lp3944.h, set the i2c board info:
},
};
-and register it in the platform init function
+and register it in the platform init function::
i2c_register_board_info(0, a910_i2c_board_info,
ARRAY_SIZE(a910_i2c_board_info));
diff --git a/Documentation/leds/leds-lp5521.rst b/Documentation/leds/leds-lp5521.rst
new file mode 100644
index 000000000000..0432615b083d
--- /dev/null
+++ b/Documentation/leds/leds-lp5521.rst
@@ -0,0 +1,115 @@
+========================
+Kernel driver for lp5521
+========================
+
+* National Semiconductor LP5521 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5521.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+
+LP5521 can drive up to 3 channels. Leds can be controlled directly via
+the led class control interface. Channels have generic names:
+lp5521:channelx, where x is 0 .. 2
+
+All three channels can be also controlled using the engine micro programs.
+More details of the instructions can be found from the public data sheet.
+
+LP5521 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode and enginex_load
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ store program (visible only in engine load mode)
+
+ Example (start to blink the channel 2 led)::
+
+ cd /sys/class/leds/lp5521:channel2/device
+ echo "load" > engine3_mode
+ echo "037f4d0003ff6000" > engine3_load
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+sysfs contains a selftest entry.
+
+The test communicates with the chip and checks that
+the clock mode is automatically set to the requested one.
+
+Each channel has its own led current settings.
+
+- /sys/class/leds/lp5521:channel0/led_current - RW
+- /sys/class/leds/lp5521:channel0/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+example platform data::
+
+ static struct lp55xx_led_config lp5521_led_config[] = {
+ {
+ .name = "red",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ }, {
+ .name = "green",
+ .chan_nr = 1,
+ .led_current = 0,
+ .max_current = 130,
+ }, {
+ .name = "blue",
+ .chan_nr = 2,
+ .led_current = 0,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5521_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5521_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5521_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5521_platform_data = {
+ .led_config = lp5521_led_config,
+ .num_channels = ARRAY_SIZE(lp5521_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5521_setup,
+ .release_resources = lp5521_release,
+ .enable = lp5521_enable,
+ };
+
+Note:
+ chan_nr can have values between 0 and 2.
+ The name of each channel can be configurable.
+ If the name field is not defined, the default name will be set to 'xxxx:channelN'
+ (XXXX : pdata->label or i2c client name, N : channel number)
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5521.txt b/Documentation/leds/leds-lp5521.txt
deleted file mode 100644
index d08d8c179f85..000000000000
--- a/Documentation/leds/leds-lp5521.txt
+++ /dev/null
@@ -1,101 +0,0 @@
-Kernel driver for lp5521
-========================
-
-* National Semiconductor LP5521 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5521.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-
-LP5521 can drive up to 3 channels. Leds can be controlled directly via
-the led class control interface. Channels have generic names:
-lp5521:channelx, where x is 0 .. 2
-
-All three channels can be also controlled using the engine micro programs.
-More details of the instructions can be found from the public data sheet.
-
-LP5521 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode and enginex_load
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : store program (visible only in engine load mode)
-
- Example (start to blink the channel 2 led):
- cd /sys/class/leds/lp5521:channel2/device
- echo "load" > engine3_mode
- echo "037f4d0003ff6000" > engine3_load
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-sysfs contains a selftest entry.
-The test communicates with the chip and checks that
-the clock mode is automatically set to the requested one.
-
-Each channel has its own led current settings.
-/sys/class/leds/lp5521:channel0/led_current - RW
-/sys/class/leds/lp5521:channel0/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-example platform data:
-
-Note: chan_nr can have values between 0 and 2.
-The name of each channel can be configurable.
-If the name field is not defined, the default name will be set to 'xxxx:channelN'
-(XXXX : pdata->label or i2c client name, N : channel number)
-
-static struct lp55xx_led_config lp5521_led_config[] = {
- {
- .name = "red",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- }, {
- .name = "green",
- .chan_nr = 1,
- .led_current = 0,
- .max_current = 130,
- }, {
- .name = "blue",
- .chan_nr = 2,
- .led_current = 0,
- .max_current = 130,
- }
-};
-
-static int lp5521_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5521_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5521_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5521_platform_data = {
- .led_config = lp5521_led_config,
- .num_channels = ARRAY_SIZE(lp5521_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5521_setup,
- .release_resources = lp5521_release,
- .enable = lp5521_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5523.rst b/Documentation/leds/leds-lp5523.rst
new file mode 100644
index 000000000000..7d7362a1dd57
--- /dev/null
+++ b/Documentation/leds/leds-lp5523.rst
@@ -0,0 +1,147 @@
+========================
+Kernel driver for lp5523
+========================
+
+* National Semiconductor LP5523 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5523.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+LP5523 can drive up to 9 channels. Leds can be controlled directly via
+the led class control interface.
+The name of each channel is configurable in the platform data - name and label.
+There are three options to make the channel name.
+
+a) Define the 'name' in the platform data
+
+To make specific channel name, then use 'name' platform data.
+
+- /sys/class/leds/R1 (name: 'R1')
+- /sys/class/leds/B1 (name: 'B1')
+
+b) Use the 'label' with no 'name' field
+
+For one device name with channel number, then use 'label'.
+- /sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
+
+c) Default
+
+If both fields are NULL, 'lp5523' is used by default.
+- /sys/class/leds/lp5523:channelN (N: 0 ~ 8)
+
+LP5523 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode, enginex_load and enginex_leds
+
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ microcode load
+ enginex_leds:
+ led mux control
+
+ ::
+
+ cd /sys/class/leds/lp5523:channel2/device
+ echo "load" > engine3_mode
+ echo "9d80400004ff05ff437f0000" > engine3_load
+ echo "111111111" > engine3_leds
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+LP5523 has three master faders. If a channel is mapped to one of
+the master faders, its output is dimmed based on the value of the master
+fader.
+
+For example::
+
+ echo "123000123" > master_fader_leds
+
+creates the following channel-fader mappings::
+
+ channel 0,6 to master_fader1
+ channel 1,7 to master_fader2
+ channel 2,8 to master_fader3
+
+Then, to have 25% of the original output on channel 0,6::
+
+ echo 64 > master_fader1
+
+To have 0% of the original output (i.e. no output) channel 1,7::
+
+ echo 0 > master_fader2
+
+To have 100% of the original output (i.e. no dimming) on channel 2,8::
+
+ echo 255 > master_fader3
+
+To clear all master fader controls::
+
+ echo "000000000" > master_fader_leds
+
+Selftest uses always the current from the platform data.
+
+Each channel contains led current settings.
+- /sys/class/leds/lp5523:channel2/led_current - RW
+- /sys/class/leds/lp5523:channel2/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+Example platform data::
+
+ static struct lp55xx_led_config lp5523_led_config[] = {
+ {
+ .name = "D1",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ },
+ ...
+ {
+ .chan_nr = 8,
+ .led_current = 50,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5523_setup(void)
+ {
+ /* Setup HW resources */
+ }
+
+ static void lp5523_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5523_enable(bool state)
+ {
+ /* Control chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5523_platform_data = {
+ .led_config = lp5523_led_config,
+ .num_channels = ARRAY_SIZE(lp5523_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5523_setup,
+ .release_resources = lp5523_release,
+ .enable = lp5523_enable,
+ };
+
+Note
+ chan_nr can have values between 0 and 8.
diff --git a/Documentation/leds/leds-lp5523.txt b/Documentation/leds/leds-lp5523.txt
deleted file mode 100644
index 0961a060fc4d..000000000000
--- a/Documentation/leds/leds-lp5523.txt
+++ /dev/null
@@ -1,130 +0,0 @@
-Kernel driver for lp5523
-========================
-
-* National Semiconductor LP5523 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5523.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-LP5523 can drive up to 9 channels. Leds can be controlled directly via
-the led class control interface.
-The name of each channel is configurable in the platform data - name and label.
-There are three options to make the channel name.
-
-a) Define the 'name' in the platform data
-To make specific channel name, then use 'name' platform data.
-/sys/class/leds/R1 (name: 'R1')
-/sys/class/leds/B1 (name: 'B1')
-
-b) Use the 'label' with no 'name' field
-For one device name with channel number, then use 'label'.
-/sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
-
-c) Default
-If both fields are NULL, 'lp5523' is used by default.
-/sys/class/leds/lp5523:channelN (N: 0 ~ 8)
-
-LP5523 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode, enginex_load and enginex_leds
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : microcode load
- enginex_leds : led mux control
-
- cd /sys/class/leds/lp5523:channel2/device
- echo "load" > engine3_mode
- echo "9d80400004ff05ff437f0000" > engine3_load
- echo "111111111" > engine3_leds
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-LP5523 has three master faders. If a channel is mapped to one of
-the master faders, its output is dimmed based on the value of the master
-fader.
-
-For example,
-
- echo "123000123" > master_fader_leds
-
-creates the following channel-fader mappings:
-
- channel 0,6 to master_fader1
- channel 1,7 to master_fader2
- channel 2,8 to master_fader3
-
-Then, to have 25% of the original output on channel 0,6:
-
- echo 64 > master_fader1
-
-To have 0% of the original output (i.e. no output) channel 1,7:
-
- echo 0 > master_fader2
-
-To have 100% of the original output (i.e. no dimming) on channel 2,8:
-
- echo 255 > master_fader3
-
-To clear all master fader controls:
-
- echo "000000000" > master_fader_leds
-
-Selftest uses always the current from the platform data.
-
-Each channel contains led current settings.
-/sys/class/leds/lp5523:channel2/led_current - RW
-/sys/class/leds/lp5523:channel2/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-Example platform data:
-
-Note - chan_nr can have values between 0 and 8.
-
-static struct lp55xx_led_config lp5523_led_config[] = {
- {
- .name = "D1",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- },
-...
- {
- .chan_nr = 8,
- .led_current = 50,
- .max_current = 130,
- }
-};
-
-static int lp5523_setup(void)
-{
- /* Setup HW resources */
-}
-
-static void lp5523_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5523_enable(bool state)
-{
- /* Control chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5523_platform_data = {
- .led_config = lp5523_led_config,
- .num_channels = ARRAY_SIZE(lp5523_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5523_setup,
- .release_resources = lp5523_release,
- .enable = lp5523_enable,
-};
diff --git a/Documentation/leds/leds-lp5562.rst b/Documentation/leds/leds-lp5562.rst
new file mode 100644
index 000000000000..79bbb2487ff6
--- /dev/null
+++ b/Documentation/leds/leds-lp5562.rst
@@ -0,0 +1,137 @@
+========================
+Kernel driver for lp5562
+========================
+
+* TI LP5562 LED Driver
+
+Author: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+===========
+
+ LP5562 can drive up to 4 channels. R/G/B and White.
+ LEDs can be controlled directly via the led class control interface.
+
+ All four channels can be also controlled using the engine micro programs.
+ LP5562 has the internal program memory for running various LED patterns.
+ For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+Device attribute
+================
+
+engine_mux
+ 3 Engines are allocated in LP5562, but the number of channel is 4.
+ Therefore each channel should be mapped to the engine number.
+
+ Value: RGB or W
+
+ This attribute is used for programming LED data with the firmware interface.
+ Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
+ so additional sysfs is required
+
+ LED Map
+
+ ===== === ===============================
+ Red ... Engine 1 (fixed)
+ Green ... Engine 2 (fixed)
+ Blue ... Engine 3 (fixed)
+ White ... Engine 1 or 2 or 3 (selective)
+ ===== === ===============================
+
+How to load the program data using engine_mux
+=============================================
+
+ Before loading the LP5562 program data, engine_mux should be written between
+ the engine selection and loading the firmware.
+ Engine mux has two different mode, RGB and W.
+ RGB is used for loading RGB program data, W is used for W program data.
+
+ For example, run blinking green channel pattern::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
+ echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+ To run a blinking white pattern::
+
+ echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+How to load the predefined patterns
+===================================
+
+ Please refer to 'leds-lp55xx.txt"
+
+Setting Current of Each Channel
+===============================
+
+ Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
+ The 'led_current' and 'max_current' are used.
+
+Example of Platform data
+========================
+
+::
+
+ static struct lp55xx_led_config lp5562_led_config[] = {
+ {
+ .name = "R",
+ .chan_nr = 0,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "G",
+ .chan_nr = 1,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "B",
+ .chan_nr = 2,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "W",
+ .chan_nr = 3,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ };
+
+ static int lp5562_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5562_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5562_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5562_platform_data = {
+ .led_config = lp5562_led_config,
+ .num_channels = ARRAY_SIZE(lp5562_led_config),
+ .setup_resources = lp5562_setup,
+ .release_resources = lp5562_release,
+ .enable = lp5562_enable,
+ };
+
+To configure the platform specific data, lp55xx_platform_data structure is used
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5562.txt b/Documentation/leds/leds-lp5562.txt
deleted file mode 100644
index 5a823ff6b393..000000000000
--- a/Documentation/leds/leds-lp5562.txt
+++ /dev/null
@@ -1,120 +0,0 @@
-Kernel driver for LP5562
-========================
-
-* TI LP5562 LED Driver
-
-Author: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
-
- LP5562 can drive up to 4 channels. R/G/B and White.
- LEDs can be controlled directly via the led class control interface.
-
- All four channels can be also controlled using the engine micro programs.
- LP5562 has the internal program memory for running various LED patterns.
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-Device attribute: engine_mux
-
- 3 Engines are allocated in LP5562, but the number of channel is 4.
- Therefore each channel should be mapped to the engine number.
- Value : RGB or W
-
- This attribute is used for programming LED data with the firmware interface.
- Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
- so additional sysfs is required.
-
- LED Map
- Red ... Engine 1 (fixed)
- Green ... Engine 2 (fixed)
- Blue ... Engine 3 (fixed)
- White ... Engine 1 or 2 or 3 (selective)
-
-How to load the program data using engine_mux
-
- Before loading the LP5562 program data, engine_mux should be written between
- the engine selection and loading the firmware.
- Engine mux has two different mode, RGB and W.
- RGB is used for loading RGB program data, W is used for W program data.
-
- For example, run blinking green channel pattern,
- echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
- echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
- To run a blinking white pattern,
- echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
- echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-How to load the predefined patterns
-
- Please refer to 'leds-lp55xx.txt"
-
-Setting Current of Each Channel
-
- Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
- The 'led_current' and 'max_current' are used.
-
-(Example of Platform data)
-
-To configure the platform specific data, lp55xx_platform_data structure is used.
-
-static struct lp55xx_led_config lp5562_led_config[] = {
- {
- .name = "R",
- .chan_nr = 0,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "G",
- .chan_nr = 1,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "B",
- .chan_nr = 2,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "W",
- .chan_nr = 3,
- .led_current = 20,
- .max_current = 40,
- },
-};
-
-static int lp5562_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5562_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5562_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5562_platform_data = {
- .led_config = lp5562_led_config,
- .num_channels = ARRAY_SIZE(lp5562_led_config),
- .setup_resources = lp5562_setup,
- .release_resources = lp5562_release,
- .enable = lp5562_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp55xx.rst b/Documentation/leds/leds-lp55xx.rst
new file mode 100644
index 000000000000..632e41cec0b5
--- /dev/null
+++ b/Documentation/leds/leds-lp55xx.rst
@@ -0,0 +1,224 @@
+=================================================
+LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
+=================================================
+
+Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+-----------
+LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
+
+ Register access via the I2C
+ Device initialization/deinitialization
+ Create LED class devices for multiple output channels
+ Device attributes for user-space interface
+ Program memory for running LED patterns
+
+The LP55xx common driver provides these features using exported functions.
+
+ lp55xx_init_device() / lp55xx_deinit_device()
+ lp55xx_register_leds() / lp55xx_unregister_leds()
+ lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
+
+( Driver Structure Data )
+
+In lp55xx common driver, two different data structure is used.
+
+* lp55xx_led
+ control multi output LED channels such as led current, channel index.
+* lp55xx_chip
+ general chip control such like the I2C and platform data.
+
+For example, LP5521 has maximum 3 LED channels.
+LP5523/55231 has 9 output channels::
+
+ lp55xx_chip for LP5521 ... lp55xx_led #1
+ lp55xx_led #2
+ lp55xx_led #3
+
+ lp55xx_chip for LP5523 ... lp55xx_led #1
+ lp55xx_led #2
+ .
+ .
+ lp55xx_led #9
+
+( Chip Dependent Code )
+
+To support device specific configurations, special structure
+'lpxx_device_config' is used.
+
+ - Maximum number of channels
+ - Reset command, chip enable command
+ - Chip specific initialization
+ - Brightness control register access
+ - Setting LED output current
+ - Program memory address access for running patterns
+ - Additional device specific attributes
+
+( Firmware Interface )
+
+LP55xx family devices have the internal program memory for running
+various LED patterns.
+
+This pattern data is saved as a file in the user-land or
+hex byte string is written into the memory through the I2C.
+
+LP55xx common driver supports the firmware interface.
+
+LP55xx chips have three program engines.
+
+To load and run the pattern, the programming sequence is following.
+
+ (1) Select an engine number (1/2/3)
+ (2) Mode change to load
+ (3) Write pattern data into selected area
+ (4) Mode change to run
+
+The LP55xx common driver provides simple interfaces as below.
+
+select_engine:
+ Select which engine is used for running program
+run_engine:
+ Start program which is loaded via the firmware interface
+firmware:
+ Load program data
+
+In case of LP5523, one more command is required, 'enginex_leds'.
+It is used for selecting LED output(s) at each engine number.
+In more details, please refer to 'leds-lp5523.txt'.
+
+For example, run blinking pattern in engine #1 of LP5521::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+For example, run blinking pattern in engine #3 of LP55231
+
+Two LEDs are configured as pattern output channels::
+
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp55231/loading
+ echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
+ echo 0 > /sys/class/firmware/lp55231/loading
+ echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+To start blinking patterns in engine #2 and #3 simultaneously::
+
+ for idx in 2 3
+ do
+ echo $idx > /sys/class/leds/red/device/select_engine
+ sleep 0.1
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ done
+ echo 1 > /sys/class/leds/red/device/run_engine
+
+Here is another example for LP5523.
+
+Full LED strings are selected by 'engine2_leds'::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5523/loading
+ echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
+ echo 0 > /sys/class/firmware/lp5523/loading
+ echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+As soon as 'loading' is set to 0, registered callback is called.
+Inside the callback, the selected engine is loaded and memory is updated.
+To run programmed pattern, 'run_engine' attribute should be enabled.
+
+The pattern sequence of LP8501 is similar to LP5523.
+
+However pattern data is specific.
+
+Ex 1) Engine 1 is used::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+Ex 2) Engine 2 and 3 are used at the same time::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 1 > /sys/class/leds/d1/device/run_engine
+
+( 'run_engine' and 'firmware_cb' )
+
+The sequence of running the program data is common.
+
+But each device has own specific register addresses for commands.
+
+To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
+
+run_engine:
+ Control the selected engine
+firmware_cb:
+ The callback function after loading the firmware is done.
+
+ Chip specific commands for loading and updating program memory.
+
+( Predefined pattern data )
+
+Without the firmware interface, LP55xx driver provides another method for
+loading a LED pattern. That is 'predefined' pattern.
+
+A predefined pattern is defined in the platform data and load it(or them)
+via the sysfs if needed.
+
+To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
+configured.
+
+Example of predefined pattern data::
+
+ /* mode_1: blinking data */
+ static const u8 mode_1[] = {
+ 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
+ };
+
+ /* mode_2: always on */
+ static const u8 mode_2[] = { 0x40, 0xFF, };
+
+ struct lp55xx_predef_pattern board_led_patterns[] = {
+ {
+ .r = mode_1,
+ .size_r = ARRAY_SIZE(mode_1),
+ },
+ {
+ .b = mode_2,
+ .size_b = ARRAY_SIZE(mode_2),
+ },
+ }
+
+ struct lp55xx_platform_data lp5562_pdata = {
+ ...
+ .patterns = board_led_patterns,
+ .num_patterns = ARRAY_SIZE(board_led_patterns),
+ };
+
+Then, mode_1 and mode_2 can be run via through the sysfs::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
+ echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
+
+To stop running pattern::
+
+ echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-lp55xx.txt b/Documentation/leds/leds-lp55xx.txt
deleted file mode 100644
index e23fa91ea722..000000000000
--- a/Documentation/leds/leds-lp55xx.txt
+++ /dev/null
@@ -1,194 +0,0 @@
-LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
-=================================================
-
-Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
------------
-LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
-
- Register access via the I2C
- Device initialization/deinitialization
- Create LED class devices for multiple output channels
- Device attributes for user-space interface
- Program memory for running LED patterns
-
-The LP55xx common driver provides these features using exported functions.
- lp55xx_init_device() / lp55xx_deinit_device()
- lp55xx_register_leds() / lp55xx_unregister_leds()
- lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
-
-( Driver Structure Data )
-
-In lp55xx common driver, two different data structure is used.
-
-o lp55xx_led
- control multi output LED channels such as led current, channel index.
-o lp55xx_chip
- general chip control such like the I2C and platform data.
-
-For example, LP5521 has maximum 3 LED channels.
-LP5523/55231 has 9 output channels.
-
-lp55xx_chip for LP5521 ... lp55xx_led #1
- lp55xx_led #2
- lp55xx_led #3
-
-lp55xx_chip for LP5523 ... lp55xx_led #1
- lp55xx_led #2
- .
- .
- lp55xx_led #9
-
-( Chip Dependent Code )
-
-To support device specific configurations, special structure
-'lpxx_device_config' is used.
-
- Maximum number of channels
- Reset command, chip enable command
- Chip specific initialization
- Brightness control register access
- Setting LED output current
- Program memory address access for running patterns
- Additional device specific attributes
-
-( Firmware Interface )
-
-LP55xx family devices have the internal program memory for running
-various LED patterns.
-This pattern data is saved as a file in the user-land or
-hex byte string is written into the memory through the I2C.
-LP55xx common driver supports the firmware interface.
-
-LP55xx chips have three program engines.
-To load and run the pattern, the programming sequence is following.
- (1) Select an engine number (1/2/3)
- (2) Mode change to load
- (3) Write pattern data into selected area
- (4) Mode change to run
-
-The LP55xx common driver provides simple interfaces as below.
-select_engine : Select which engine is used for running program
-run_engine : Start program which is loaded via the firmware interface
-firmware : Load program data
-
-In case of LP5523, one more command is required, 'enginex_leds'.
-It is used for selecting LED output(s) at each engine number.
-In more details, please refer to 'leds-lp5523.txt'.
-
-For example, run blinking pattern in engine #1 of LP5521
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5521/loading
-echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
-echo 0 > /sys/class/firmware/lp5521/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-For example, run blinking pattern in engine #3 of LP55231
-Two LEDs are configured as pattern output channels.
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp55231/loading
-echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
-echo 0 > /sys/class/firmware/lp55231/loading
-echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-To start blinking patterns in engine #2 and #3 simultaneously,
-for idx in 2 3
-do
- echo $idx > /sys/class/leds/red/device/select_engine
- sleep 0.1
- echo 1 > /sys/class/firmware/lp5521/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
- echo 0 > /sys/class/firmware/lp5521/loading
-done
-echo 1 > /sys/class/leds/red/device/run_engine
-
-Here is another example for LP5523.
-Full LED strings are selected by 'engine2_leds'.
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5523/loading
-echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
-echo 0 > /sys/class/firmware/lp5523/loading
-echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-As soon as 'loading' is set to 0, registered callback is called.
-Inside the callback, the selected engine is loaded and memory is updated.
-To run programmed pattern, 'run_engine' attribute should be enabled.
-
-The pattern sequence of LP8501 is similar to LP5523.
-However pattern data is specific.
-Ex 1) Engine 1 is used
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-Ex 2) Engine 2 and 3 are used at the same time
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 1 > /sys/class/leds/d1/device/run_engine
-
-( 'run_engine' and 'firmware_cb' )
-The sequence of running the program data is common.
-But each device has own specific register addresses for commands.
-To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
-run_engine : Control the selected engine
-firmware_cb : The callback function after loading the firmware is done.
- Chip specific commands for loading and updating program memory.
-
-( Predefined pattern data )
-
-Without the firmware interface, LP55xx driver provides another method for
-loading a LED pattern. That is 'predefined' pattern.
-A predefined pattern is defined in the platform data and load it(or them)
-via the sysfs if needed.
-To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
-configured.
-
- Example of predefined pattern data:
-
- /* mode_1: blinking data */
- static const u8 mode_1[] = {
- 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
- };
-
- /* mode_2: always on */
- static const u8 mode_2[] = { 0x40, 0xFF, };
-
- struct lp55xx_predef_pattern board_led_patterns[] = {
- {
- .r = mode_1,
- .size_r = ARRAY_SIZE(mode_1),
- },
- {
- .b = mode_2,
- .size_b = ARRAY_SIZE(mode_2),
- },
- }
-
- struct lp55xx_platform_data lp5562_pdata = {
- ...
- .patterns = board_led_patterns,
- .num_patterns = ARRAY_SIZE(board_led_patterns),
- };
-
-Then, mode_1 and mode_2 can be run via through the sysfs.
-
- echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
- echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
-
-To stop running pattern,
- echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-mlxcpld.rst b/Documentation/leds/leds-mlxcpld.rst
new file mode 100644
index 000000000000..528582429e0b
--- /dev/null
+++ b/Documentation/leds/leds-mlxcpld.rst
@@ -0,0 +1,118 @@
+=======================================
+Kernel driver for Mellanox systems LEDs
+=======================================
+
+Provide system LED support for the nex Mellanox systems:
+"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
+"msn2410", "msb7800", "msn2740", "msn2100".
+
+Description
+-----------
+Driver provides the following LEDs for the systems "msx6710", "msx6720",
+"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
+
+ - mlxcpld:fan1:green
+ - mlxcpld:fan1:red
+ - mlxcpld:fan2:green
+ - mlxcpld:fan2:red
+ - mlxcpld:fan3:green
+ - mlxcpld:fan3:red
+ - mlxcpld:fan4:green
+ - mlxcpld:fan4:red
+ - mlxcpld:psu:green
+ - mlxcpld:psu:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "psu"
+ - CPLD reg offset: 0x20
+ - Bits [7:4]
+
+ "fan1"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "fan2"
+ - CPLD reg offset: 0x21
+ - Bits [7:4]
+
+ "fan3"
+ - CPLD reg offset: 0x22
+ - Bits [3:0]
+
+ "fan4"
+ - CPLD reg offset: 0x22
+ - Bits [7:4]
+
+ Color mask for all the above LEDs:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+Driver provides the following LEDs for the system "msn2100":
+
+ - mlxcpld:fan:green
+ - mlxcpld:fan:red
+ - mlxcpld:psu1:green
+ - mlxcpld:psu1:red
+ - mlxcpld:psu2:green
+ - mlxcpld:psu2:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+ - mlxcpld:uid:blue
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "fan"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "psu1"
+ - CPLD reg offset: 0x23
+ - Bits [3:0]
+
+ "psu2"
+ - CPLD reg offset: 0x23
+ - Bits [7:4]
+
+ "uid"
+ - CPLD reg offset: 0x24
+ - Bits [3:0]
+
+ Color mask for all the above LEDs, excepted uid:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+ Color mask for uid LED:
+ [bit3,bit2,bit1,bit0]:
+
+ - [0,0,0,0] = LED OFF
+ - [1,1,0,1] = Blue static ON
+ - [1,1,1,0] = Blue blink 3Hz
+ - [1,1,1,1] = Blue blink 6Hz
+
+Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
+For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/leds-mlxcpld.txt b/Documentation/leds/leds-mlxcpld.txt
deleted file mode 100644
index a0e8fd457117..000000000000
--- a/Documentation/leds/leds-mlxcpld.txt
+++ /dev/null
@@ -1,110 +0,0 @@
-Kernel driver for Mellanox systems LEDs
-=======================================
-
-Provide system LED support for the nex Mellanox systems:
-"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
-"msn2410", "msb7800", "msn2740", "msn2100".
-
-Description
------------
-Driver provides the following LEDs for the systems "msx6710", "msx6720",
-"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
- mlxcpld:fan1:green
- mlxcpld:fan1:red
- mlxcpld:fan2:green
- mlxcpld:fan2:red
- mlxcpld:fan3:green
- mlxcpld:fan3:red
- mlxcpld:fan4:green
- mlxcpld:fan4:red
- mlxcpld:psu:green
- mlxcpld:psu:red
- mlxcpld:status:green
- mlxcpld:status:red
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "psu"
- CPLD reg offset: 0x20
- Bits [7:4]
-
- "fan1"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "fan2"
- CPLD reg offset: 0x21
- Bits [7:4]
-
- "fan3"
- CPLD reg offset: 0x22
- Bits [3:0]
-
- "fan4"
- CPLD reg offset: 0x22
- Bits [7:4]
-
- Color mask for all the above LEDs:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
-Driver provides the following LEDs for the system "msn2100":
- mlxcpld:fan:green
- mlxcpld:fan:red
- mlxcpld:psu1:green
- mlxcpld:psu1:red
- mlxcpld:psu2:green
- mlxcpld:psu2:red
- mlxcpld:status:green
- mlxcpld:status:red
- mlxcpld:uid:blue
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "fan"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "psu1"
- CPLD reg offset: 0x23
- Bits [3:0]
-
- "psu2"
- CPLD reg offset: 0x23
- Bits [7:4]
-
- "uid"
- CPLD reg offset: 0x24
- Bits [3:0]
-
- Color mask for all the above LEDs, excepted uid:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
- Color mask for uid LED:
- [bit3,bit2,bit1,bit0]:
- [0,0,0,0] = LED OFF
- [1,1,0,1] = Blue static ON
- [1,1,1,0] = Blue blink 3Hz
- [1,1,1,1] = Blue blink 6Hz
-
-Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
-For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/ledtrig-oneshot.txt b/Documentation/leds/ledtrig-oneshot.rst
index fe57474a12e2..69fa3ea1d554 100644
--- a/Documentation/leds/ledtrig-oneshot.txt
+++ b/Documentation/leds/ledtrig-oneshot.rst
@@ -1,3 +1,4 @@
+====================
One-shot LED Trigger
====================
@@ -17,27 +18,27 @@ additional "invert" property specifies if the LED has to stay off (normal) or
on (inverted) when not rearmed.
The trigger can be activated from user space on led class devices as shown
-below:
+below::
echo oneshot > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-oneshot
-Example use-case: network devices, initialization:
+Example use-case: network devices, initialization::
echo oneshot > trigger # set trigger for this led
echo 33 > delay_on # blink at 1 / (33 + 33) Hz on continuous traffic
echo 33 > delay_off
-interface goes up:
+interface goes up::
echo 1 > invert # set led as normally-on, turn the led on
-packet received/transmitted:
+packet received/transmitted::
echo 1 > shot # led starts blinking, ignored if already blinking
-interface goes down
+interface goes down::
echo 0 > invert # set led as normally-off, turn the led off
diff --git a/Documentation/leds/ledtrig-transient.txt b/Documentation/leds/ledtrig-transient.rst
index 3bd38b487df1..d921dc830cd0 100644
--- a/Documentation/leds/ledtrig-transient.txt
+++ b/Documentation/leds/ledtrig-transient.rst
@@ -1,3 +1,4 @@
+=====================
LED Transient Trigger
=====================
@@ -62,12 +63,13 @@ non-transient state. When driver gets suspended, irrespective of the transient
state, the LED state changes to LED_OFF.
Transient trigger can be enabled and disabled from user space on led class
-devices, that support this trigger as shown below:
+devices, that support this trigger as shown below::
-echo transient > trigger
-echo none > trigger
+ echo transient > trigger
+ echo none > trigger
-NOTE: Add a new property trigger state to control the state.
+NOTE:
+ Add a new property trigger state to control the state.
This trigger exports three properties, activate, state, and duration. When
transient trigger is activated these properties are set to default values.
@@ -79,7 +81,8 @@ transient trigger is activated these properties are set to default values.
- state allows user to specify a transient state to be held for the specified
duration.
- activate - one shot timer activate mechanism.
+ activate
+ - one shot timer activate mechanism.
1 when activated, 0 when deactivated.
default value is zero when transient trigger is enabled,
to allow duration to be set.
@@ -89,12 +92,14 @@ transient trigger is activated these properties are set to default values.
deactivated state indicates that there is no active timer
running.
- duration - one shot timer value. When activate is set, duration value
+ duration
+ - one shot timer value. When activate is set, duration value
is used to start a timer that runs once. This value doesn't
get changed by the trigger unless user does a set via
echo new_value > duration
- state - transient state to be held. It has two values 0 or 1. 0 maps
+ state
+ - transient state to be held. It has two values 0 or 1. 0 maps
to LED_OFF and 1 maps to LED_FULL. The specified state is
held for the duration of the one shot timer and then the
state gets changed to the non-transient state which is the
@@ -114,39 +119,49 @@ When timer expires activate goes back to deactivated state, duration is left
at the set value to be used when activate is set at a future time. This will
allow user app to set the time once and activate it to run it once for the
specified value as needed. When timer expires, state is restored to the
-non-transient state which is the inverse of the transient state.
-
- echo 1 > activate - starts timer = duration when duration is not 0.
- echo 0 > activate - cancels currently running timer.
- echo n > duration - stores timer value to be used upon next
- activate. Currently active timer if
- any, continues to run for the specified time.
- echo 0 > duration - stores timer value to be used upon next
- activate. Currently active timer if any,
- continues to run for the specified time.
- echo 1 > state - stores desired transient state LED_FULL to be
+non-transient state which is the inverse of the transient state:
+
+ ================= ===============================================
+ echo 1 > activate starts timer = duration when duration is not 0.
+ echo 0 > activate cancels currently running timer.
+ echo n > duration stores timer value to be used upon next
+ activate. Currently active timer if
+ any, continues to run for the specified time.
+ echo 0 > duration stores timer value to be used upon next
+ activate. Currently active timer if any,
+ continues to run for the specified time.
+ echo 1 > state stores desired transient state LED_FULL to be
held for the specified duration.
- echo 0 > state - stores desired transient state LED_OFF to be
+ echo 0 > state stores desired transient state LED_OFF to be
held for the specified duration.
+ ================= ===============================================
+
+What is not supported
+=====================
-What is not supported:
-======================
- Timer activation is one shot and extending and/or shortening the timer
is not supported.
-Example use-case 1:
+Examples
+========
+
+use-case 1::
+
echo transient > trigger
echo n > duration
echo 1 > state
-repeat the following step as needed:
+
+repeat the following step as needed::
+
echo 1 > activate - start timer = duration to run once
echo 1 > activate - start timer = duration to run once
echo none > trigger
This trigger is intended to be used for for the following example use cases:
+
- Control of vibrate (phones, tablets etc.) hardware by user space app.
- Use of LED by user space app as activity indicator.
- Use of LED by user space app as a kind of watchdog indicator -- as
- long as the app is alive, it can keep the LED illuminated, if it dies
- the LED will be extinguished automatically.
+ long as the app is alive, it can keep the LED illuminated, if it dies
+ the LED will be extinguished automatically.
- Use by any user space app that needs a transient GPIO output.
diff --git a/Documentation/leds/ledtrig-usbport.txt b/Documentation/leds/ledtrig-usbport.rst
index 69f54bfb4789..37c2505bfd57 100644
--- a/Documentation/leds/ledtrig-usbport.txt
+++ b/Documentation/leds/ledtrig-usbport.rst
@@ -1,3 +1,4 @@
+====================
USB port LED trigger
====================
@@ -10,14 +11,18 @@ listed as separated entries in a "ports" subdirectory. Selecting is handled by
echoing "1" to a chosen port.
Please note that this trigger allows selecting multiple USB ports for a single
-LED. This can be useful in two cases:
+LED.
+
+This can be useful in two cases:
1) Device with single USB LED and few physical ports
+====================================================
In such a case LED will be turned on as long as there is at least one connected
USB device.
2) Device with a physical port handled by few controllers
+=========================================================
Some devices may have one controller per PHY standard. E.g. USB 3.0 physical
port may be handled by ohci-platform, ehci-platform and xhci-hcd. If there is
@@ -25,14 +30,14 @@ only one LED user will most likely want to assign ports from all 3 hubs.
This trigger can be activated from user space on led class devices as shown
-below:
+below::
echo usbport > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-usbport
-Example use-case:
+Example use-case::
echo usbport > trigger
echo 1 > ports/usb1-port1
diff --git a/Documentation/leds/uleds.txt b/Documentation/leds/uleds.rst
index 13e375a580f9..83221098009c 100644
--- a/Documentation/leds/uleds.txt
+++ b/Documentation/leds/uleds.rst
@@ -1,3 +1,4 @@
+==============
Userspace LEDs
==============
@@ -10,12 +11,12 @@ Usage
When the driver is loaded, a character device is created at /dev/uleds. To
create a new LED class device, open /dev/uleds and write a uleds_user_dev
-structure to it (found in kernel public header file linux/uleds.h).
+structure to it (found in kernel public header file linux/uleds.h)::
#define LED_MAX_NAME_SIZE 64
struct uleds_user_dev {
- char name[LED_MAX_NAME_SIZE];
+ char name[LED_MAX_NAME_SIZE];
};
A new LED class device will be created with the name given. The name can be
diff --git a/Documentation/livepatch/index.rst b/Documentation/livepatch/index.rst
index edd291d51847..17674a9e21b2 100644
--- a/Documentation/livepatch/index.rst
+++ b/Documentation/livepatch/index.rst
@@ -1,4 +1,4 @@
-:orphan:
+.. SPDX-License-Identifier: GPL-2.0
===================
Kernel Livepatching
diff --git a/Documentation/locking/index.rst b/Documentation/locking/index.rst
new file mode 100644
index 000000000000..626a463f7e42
--- /dev/null
+++ b/Documentation/locking/index.rst
@@ -0,0 +1,24 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======
+locking
+=======
+
+.. toctree::
+ :maxdepth: 1
+
+ lockdep-design
+ lockstat
+ locktorture
+ mutex-design
+ rt-mutex-design
+ rt-mutex
+ spinlocks
+ ww-mutex-design
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/locking/lockdep-design.txt b/Documentation/locking/lockdep-design.rst
index 39fae143c9cb..23fcbc4d3fc0 100644
--- a/Documentation/locking/lockdep-design.txt
+++ b/Documentation/locking/lockdep-design.rst
@@ -2,6 +2,7 @@ Runtime locking correctness validator
=====================================
started by Ingo Molnar <mingo@redhat.com>
+
additions by Arjan van de Ven <arjan@linux.intel.com>
Lock-class
@@ -15,34 +16,48 @@ tens of thousands of) instantiations. For example a lock in the inode
struct is one class, while each inode has its own instantiation of that
lock class.
-The validator tracks the 'state' of lock-classes, and it tracks
-dependencies between different lock-classes. The validator maintains a
-rolling proof that the state and the dependencies are correct.
-
-Unlike an lock instantiation, the lock-class itself never goes away: when
-a lock-class is used for the first time after bootup it gets registered,
-and all subsequent uses of that lock-class will be attached to this
-lock-class.
+The validator tracks the 'usage state' of lock-classes, and it tracks
+the dependencies between different lock-classes. Lock usage indicates
+how a lock is used with regard to its IRQ contexts, while lock
+dependency can be understood as lock order, where L1 -> L2 suggests that
+a task is attempting to acquire L2 while holding L1. From lockdep's
+perspective, the two locks (L1 and L2) are not necessarily related; that
+dependency just means the order ever happened. The validator maintains a
+continuing effort to prove lock usages and dependencies are correct or
+the validator will shoot a splat if incorrect.
+
+A lock-class's behavior is constructed by its instances collectively:
+when the first instance of a lock-class is used after bootup the class
+gets registered, then all (subsequent) instances will be mapped to the
+class and hence their usages and dependecies will contribute to those of
+the class. A lock-class does not go away when a lock instance does, but
+it can be removed if the memory space of the lock class (static or
+dynamic) is reclaimed, this happens for example when a module is
+unloaded or a workqueue is destroyed.
State
-----
-The validator tracks lock-class usage history into 4 * nSTATEs + 1 separate
-state bits:
+The validator tracks lock-class usage history and divides the usage into
+(4 usages * n STATEs + 1) categories:
+where the 4 usages can be:
- 'ever held in STATE context'
- 'ever held as readlock in STATE context'
- 'ever held with STATE enabled'
- 'ever held as readlock with STATE enabled'
-Where STATE can be either one of (kernel/locking/lockdep_states.h)
- - hardirq
- - softirq
+where the n STATEs are coded in kernel/locking/lockdep_states.h and as of
+now they include:
+- hardirq
+- softirq
+where the last 1 category is:
- 'ever used' [ == !unused ]
-When locking rules are violated, these state bits are presented in the
-locking error messages, inside curlies. A contrived example:
+When locking rules are violated, these usage bits are presented in the
+locking error messages, inside curlies, with a total of 2 * n STATEs bits.
+A contrived example::
modprobe/2287 is trying to acquire lock:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
@@ -51,28 +66,69 @@ locking error messages, inside curlies. A contrived example:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
-The bit position indicates STATE, STATE-read, for each of the states listed
-above, and the character displayed in each indicates:
+For a given lock, the bit positions from left to right indicate the usage
+of the lock and readlock (if exists), for each of the n STATEs listed
+above respectively, and the character displayed at each bit position
+indicates:
+ === ===================================================
'.' acquired while irqs disabled and not in irq context
'-' acquired in irq context
'+' acquired with irqs enabled
'?' acquired in irq context with irqs enabled.
+ === ===================================================
+
+The bits are illustrated with an example::
+
+ (&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
+ ||||
+ ||| \-> softirq disabled and not in softirq context
+ || \--> acquired in softirq context
+ | \---> hardirq disabled and not in hardirq context
+ \----> acquired in hardirq context
+
+
+For a given STATE, whether the lock is ever acquired in that STATE
+context and whether that STATE is enabled yields four possible cases as
+shown in the table below. The bit character is able to indicate which
+exact case is for the lock as of the reporting time.
-Unused mutexes cannot be part of the cause of an error.
+ +--------------+-------------+--------------+
+ | | irq enabled | irq disabled |
+ +--------------+-------------+--------------+
+ | ever in irq | ? | - |
+ +--------------+-------------+--------------+
+ | never in irq | + | . |
+ +--------------+-------------+--------------+
+
+The character '-' suggests irq is disabled because if otherwise the
+charactor '?' would have been shown instead. Similar deduction can be
+applied for '+' too.
+
+Unused locks (e.g., mutexes) cannot be part of the cause of an error.
Single-lock state rules:
------------------------
+A lock is irq-safe means it was ever used in an irq context, while a lock
+is irq-unsafe means it was ever acquired with irq enabled.
+
A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
-following states are exclusive, and only one of them is allowed to be
-set for any lock-class:
+following states must be exclusive: only one of them is allowed to be set
+for any lock-class based on its usage::
- <hardirq-safe> and <hardirq-unsafe>
- <softirq-safe> and <softirq-unsafe>
+ <hardirq-safe> or <hardirq-unsafe>
+ <softirq-safe> or <softirq-unsafe>
-The validator detects and reports lock usage that violate these
+This is because if a lock can be used in irq context (irq-safe) then it
+cannot be ever acquired with irq enabled (irq-unsafe). Otherwise, a
+deadlock may happen. For example, in the scenario that after this lock
+was acquired but before released, if the context is interrupted this
+lock will be attempted to acquire twice, which creates a deadlock,
+referred to as lock recursion deadlock.
+
+The validator detects and reports lock usage that violates these
single-lock state rules.
Multi-lock dependency rules:
@@ -81,18 +137,21 @@ Multi-lock dependency rules:
The same lock-class must not be acquired twice, because this could lead
to lock recursion deadlocks.
-Furthermore, two locks may not be taken in different order:
+Furthermore, two locks can not be taken in inverse order::
<L1> -> <L2>
<L2> -> <L1>
-because this could lead to lock inversion deadlocks. (The validator
-finds such dependencies in arbitrary complexity, i.e. there can be any
-other locking sequence between the acquire-lock operations, the
-validator will still track all dependencies between locks.)
+because this could lead to a deadlock - referred to as lock inversion
+deadlock - as attempts to acquire the two locks form a circle which
+could lead to the two contexts waiting for each other permanently. The
+validator will find such dependency circle in arbitrary complexity,
+i.e., there can be any other locking sequence between the acquire-lock
+operations; the validator will still find whether these locks can be
+acquired in a circular fashion.
Furthermore, the following usage based lock dependencies are not allowed
-between any two lock-classes:
+between any two lock-classes::
<hardirq-safe> -> <hardirq-unsafe>
<softirq-safe> -> <softirq-unsafe>
@@ -148,16 +207,16 @@ the ordering is not static.
In order to teach the validator about this correct usage model, new
versions of the various locking primitives were added that allow you to
specify a "nesting level". An example call, for the block device mutex,
-looks like this:
+looks like this::
-enum bdev_bd_mutex_lock_class
-{
+ enum bdev_bd_mutex_lock_class
+ {
BD_MUTEX_NORMAL,
BD_MUTEX_WHOLE,
BD_MUTEX_PARTITION
-};
+ };
- mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);
+mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);
In this case the locking is done on a bdev object that is known to be a
partition.
@@ -178,7 +237,7 @@ must be held: lockdep_assert_held*(&lock) and lockdep_*pin_lock(&lock).
As the name suggests, lockdep_assert_held* family of macros assert that a
particular lock is held at a certain time (and generate a WARN() otherwise).
This annotation is largely used all over the kernel, e.g. kernel/sched/
-core.c
+core.c::
void update_rq_clock(struct rq *rq)
{
@@ -197,7 +256,7 @@ out to be especially helpful to debug code with callbacks, where an upper
layer assumes a lock remains taken, but a lower layer thinks it can maybe drop
and reacquire the lock ("unwittingly" introducing races). lockdep_pin_lock()
returns a 'struct pin_cookie' that is then used by lockdep_unpin_lock() to check
-that nobody tampered with the lock, e.g. kernel/sched/sched.h
+that nobody tampered with the lock, e.g. kernel/sched/sched.h::
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
@@ -224,7 +283,7 @@ correctness) in the sense that for every simple, standalone single-task
locking sequence that occurred at least once during the lifetime of the
kernel, the validator proves it with a 100% certainty that no
combination and timing of these locking sequences can cause any class of
-lock related deadlock. [*]
+lock related deadlock. [1]_
I.e. complex multi-CPU and multi-task locking scenarios do not have to
occur in practice to prove a deadlock: only the simple 'component'
@@ -243,7 +302,9 @@ possible combination of locking interaction between CPUs, combined with
every possible hardirq and softirq nesting scenario (which is impossible
to do in practice).
-[*] assuming that the validator itself is 100% correct, and no other
+.. [1]
+
+ assuming that the validator itself is 100% correct, and no other
part of the system corrupts the state of the validator in any way.
We also assume that all NMI/SMM paths [which could interrupt
even hardirq-disabled codepaths] are correct and do not interfere
@@ -254,7 +315,7 @@ to do in practice).
Performance:
------------
-The above rules require _massive_ amounts of runtime checking. If we did
+The above rules require **massive** amounts of runtime checking. If we did
that for every lock taken and for every irqs-enable event, it would
render the system practically unusably slow. The complexity of checking
is O(N^2), so even with just a few hundred lock-classes we'd have to do
@@ -313,17 +374,17 @@ be harder to do than to say.
Of course, if you do run out of lock classes, the next thing to do is
to find the offending lock classes. First, the following command gives
-you the number of lock classes currently in use along with the maximum:
+you the number of lock classes currently in use along with the maximum::
grep "lock-classes" /proc/lockdep_stats
-This command produces the following output on a modest system:
+This command produces the following output on a modest system::
- lock-classes: 748 [max: 8191]
+ lock-classes: 748 [max: 8191]
If the number allocated (748 above) increases continually over time,
then there is likely a leak. The following command can be used to
-identify the leaking lock classes:
+identify the leaking lock classes::
grep "BD" /proc/lockdep
diff --git a/Documentation/locking/lockstat.rst b/Documentation/locking/lockstat.rst
new file mode 100644
index 000000000000..536eab8dbd99
--- /dev/null
+++ b/Documentation/locking/lockstat.rst
@@ -0,0 +1,204 @@
+===============
+Lock Statistics
+===============
+
+What
+====
+
+As the name suggests, it provides statistics on locks.
+
+
+Why
+===
+
+Because things like lock contention can severely impact performance.
+
+How
+===
+
+Lockdep already has hooks in the lock functions and maps lock instances to
+lock classes. We build on that (see Documentation/locking/lockdep-design.rst).
+The graph below shows the relation between the lock functions and the various
+hooks therein::
+
+ __acquire
+ |
+ lock _____
+ | \
+ | __contended
+ | |
+ | <wait>
+ | _______/
+ |/
+ |
+ __acquired
+ |
+ .
+ <hold>
+ .
+ |
+ __release
+ |
+ unlock
+
+ lock, unlock - the regular lock functions
+ __* - the hooks
+ <> - states
+
+With these hooks we provide the following statistics:
+
+ con-bounces
+ - number of lock contention that involved x-cpu data
+ contentions
+ - number of lock acquisitions that had to wait
+ wait time
+ min
+ - shortest (non-0) time we ever had to wait for a lock
+ max
+ - longest time we ever had to wait for a lock
+ total
+ - total time we spend waiting on this lock
+ avg
+ - average time spent waiting on this lock
+ acq-bounces
+ - number of lock acquisitions that involved x-cpu data
+ acquisitions
+ - number of times we took the lock
+ hold time
+ min
+ - shortest (non-0) time we ever held the lock
+ max
+ - longest time we ever held the lock
+ total
+ - total time this lock was held
+ avg
+ - average time this lock was held
+
+These numbers are gathered per lock class, per read/write state (when
+applicable).
+
+It also tracks 4 contention points per class. A contention point is a call site
+that had to wait on lock acquisition.
+
+Configuration
+-------------
+
+Lock statistics are enabled via CONFIG_LOCK_STAT.
+
+Usage
+-----
+
+Enable collection of statistics::
+
+ # echo 1 >/proc/sys/kernel/lock_stat
+
+Disable collection of statistics::
+
+ # echo 0 >/proc/sys/kernel/lock_stat
+
+Look at the current lock statistics::
+
+ ( line numbers not part of actual output, done for clarity in the explanation
+ below )
+
+ # less /proc/lock_stat
+
+ 01 lock_stat version 0.4
+ 02-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+ 03 class name con-bounces contentions waittime-min waittime-max waittime-total waittime-avg acq-bounces acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
+ 04-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+ 05
+ 06 &mm->mmap_sem-W: 46 84 0.26 939.10 16371.53 194.90 47291 2922365 0.16 2220301.69 17464026916.32 5975.99
+ 07 &mm->mmap_sem-R: 37 100 1.31 299502.61 325629.52 3256.30 212344 34316685 0.10 7744.91 95016910.20 2.77
+ 08 ---------------
+ 09 &mm->mmap_sem 1 [<ffffffff811502a7>] khugepaged_scan_mm_slot+0x57/0x280
+ 10 &mm->mmap_sem 96 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
+ 11 &mm->mmap_sem 34 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
+ 12 &mm->mmap_sem 17 [<ffffffff81127e71>] vm_munmap+0x41/0x80
+ 13 ---------------
+ 14 &mm->mmap_sem 1 [<ffffffff81046fda>] dup_mmap+0x2a/0x3f0
+ 15 &mm->mmap_sem 60 [<ffffffff81129e29>] SyS_mprotect+0xe9/0x250
+ 16 &mm->mmap_sem 41 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
+ 17 &mm->mmap_sem 68 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
+ 18
+ 19.............................................................................................................................................................................................................................
+ 20
+ 21 unix_table_lock: 110 112 0.21 49.24 163.91 1.46 21094 66312 0.12 624.42 31589.81 0.48
+ 22 ---------------
+ 23 unix_table_lock 45 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
+ 24 unix_table_lock 47 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
+ 25 unix_table_lock 15 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
+ 26 unix_table_lock 5 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
+ 27 ---------------
+ 28 unix_table_lock 39 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
+ 29 unix_table_lock 49 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
+ 30 unix_table_lock 20 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
+ 31 unix_table_lock 4 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
+
+
+This excerpt shows the first two lock class statistics. Line 01 shows the
+output version - each time the format changes this will be updated. Line 02-04
+show the header with column descriptions. Lines 05-18 and 20-31 show the actual
+statistics. These statistics come in two parts; the actual stats separated by a
+short separator (line 08, 13) from the contention points.
+
+Lines 09-12 show the first 4 recorded contention points (the code
+which tries to get the lock) and lines 14-17 show the first 4 recorded
+contended points (the lock holder). It is possible that the max
+con-bounces point is missing in the statistics.
+
+The first lock (05-18) is a read/write lock, and shows two lines above the
+short separator. The contention points don't match the column descriptors,
+they have two: contentions and [<IP>] symbol. The second set of contention
+points are the points we're contending with.
+
+The integer part of the time values is in us.
+
+Dealing with nested locks, subclasses may appear::
+
+ 32...........................................................................................................................................................................................................................
+ 33
+ 34 &rq->lock: 13128 13128 0.43 190.53 103881.26 7.91 97454 3453404 0.00 401.11 13224683.11 3.82
+ 35 ---------
+ 36 &rq->lock 645 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
+ 37 &rq->lock 297 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+ 38 &rq->lock 360 [<ffffffff8103c4c5>] select_task_rq_fair+0x1f0/0x74a
+ 39 &rq->lock 428 [<ffffffff81045f98>] scheduler_tick+0x46/0x1fb
+ 40 ---------
+ 41 &rq->lock 77 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
+ 42 &rq->lock 174 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+ 43 &rq->lock 4715 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
+ 44 &rq->lock 893 [<ffffffff81340524>] schedule+0x157/0x7b8
+ 45
+ 46...........................................................................................................................................................................................................................
+ 47
+ 48 &rq->lock/1: 1526 11488 0.33 388.73 136294.31 11.86 21461 38404 0.00 37.93 109388.53 2.84
+ 49 -----------
+ 50 &rq->lock/1 11526 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
+ 51 -----------
+ 52 &rq->lock/1 5645 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
+ 53 &rq->lock/1 1224 [<ffffffff81340524>] schedule+0x157/0x7b8
+ 54 &rq->lock/1 4336 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
+ 55 &rq->lock/1 181 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+
+Line 48 shows statistics for the second subclass (/1) of &rq->lock class
+(subclass starts from 0), since in this case, as line 50 suggests,
+double_rq_lock actually acquires a nested lock of two spinlocks.
+
+View the top contending locks::
+
+ # grep : /proc/lock_stat | head
+ clockevents_lock: 2926159 2947636 0.15 46882.81 1784540466.34 605.41 3381345 3879161 0.00 2260.97 53178395.68 13.71
+ tick_broadcast_lock: 346460 346717 0.18 2257.43 39364622.71 113.54 3642919 4242696 0.00 2263.79 49173646.60 11.59
+ &mapping->i_mmap_mutex: 203896 203899 3.36 645530.05 31767507988.39 155800.21 3361776 8893984 0.17 2254.15 14110121.02 1.59
+ &rq->lock: 135014 136909 0.18 606.09 842160.68 6.15 1540728 10436146 0.00 728.72 17606683.41 1.69
+ &(&zone->lru_lock)->rlock: 93000 94934 0.16 59.18 188253.78 1.98 1199912 3809894 0.15 391.40 3559518.81 0.93
+ tasklist_lock-W: 40667 41130 0.23 1189.42 428980.51 10.43 270278 510106 0.16 653.51 3939674.91 7.72
+ tasklist_lock-R: 21298 21305 0.20 1310.05 215511.12 10.12 186204 241258 0.14 1162.33 1179779.23 4.89
+ rcu_node_1: 47656 49022 0.16 635.41 193616.41 3.95 844888 1865423 0.00 764.26 1656226.96 0.89
+ &(&dentry->d_lockref.lock)->rlock: 39791 40179 0.15 1302.08 88851.96 2.21 2790851 12527025 0.10 1910.75 3379714.27 0.27
+ rcu_node_0: 29203 30064 0.16 786.55 1555573.00 51.74 88963 244254 0.00 398.87 428872.51 1.76
+
+Clear the statistics::
+
+ # echo 0 > /proc/lock_stat
diff --git a/Documentation/locking/lockstat.txt b/Documentation/locking/lockstat.txt
deleted file mode 100644
index fdbeb0c45ef3..000000000000
--- a/Documentation/locking/lockstat.txt
+++ /dev/null
@@ -1,183 +0,0 @@
-
-LOCK STATISTICS
-
-- WHAT
-
-As the name suggests, it provides statistics on locks.
-
-- WHY
-
-Because things like lock contention can severely impact performance.
-
-- HOW
-
-Lockdep already has hooks in the lock functions and maps lock instances to
-lock classes. We build on that (see Documentation/locking/lockdep-design.txt).
-The graph below shows the relation between the lock functions and the various
-hooks therein.
-
- __acquire
- |
- lock _____
- | \
- | __contended
- | |
- | <wait>
- | _______/
- |/
- |
- __acquired
- |
- .
- <hold>
- .
- |
- __release
- |
- unlock
-
-lock, unlock - the regular lock functions
-__* - the hooks
-<> - states
-
-With these hooks we provide the following statistics:
-
- con-bounces - number of lock contention that involved x-cpu data
- contentions - number of lock acquisitions that had to wait
- wait time min - shortest (non-0) time we ever had to wait for a lock
- max - longest time we ever had to wait for a lock
- total - total time we spend waiting on this lock
- avg - average time spent waiting on this lock
- acq-bounces - number of lock acquisitions that involved x-cpu data
- acquisitions - number of times we took the lock
- hold time min - shortest (non-0) time we ever held the lock
- max - longest time we ever held the lock
- total - total time this lock was held
- avg - average time this lock was held
-
-These numbers are gathered per lock class, per read/write state (when
-applicable).
-
-It also tracks 4 contention points per class. A contention point is a call site
-that had to wait on lock acquisition.
-
- - CONFIGURATION
-
-Lock statistics are enabled via CONFIG_LOCK_STAT.
-
- - USAGE
-
-Enable collection of statistics:
-
-# echo 1 >/proc/sys/kernel/lock_stat
-
-Disable collection of statistics:
-
-# echo 0 >/proc/sys/kernel/lock_stat
-
-Look at the current lock statistics:
-
-( line numbers not part of actual output, done for clarity in the explanation
- below )
-
-# less /proc/lock_stat
-
-01 lock_stat version 0.4
-02-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-03 class name con-bounces contentions waittime-min waittime-max waittime-total waittime-avg acq-bounces acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
-04-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-05
-06 &mm->mmap_sem-W: 46 84 0.26 939.10 16371.53 194.90 47291 2922365 0.16 2220301.69 17464026916.32 5975.99
-07 &mm->mmap_sem-R: 37 100 1.31 299502.61 325629.52 3256.30 212344 34316685 0.10 7744.91 95016910.20 2.77
-08 ---------------
-09 &mm->mmap_sem 1 [<ffffffff811502a7>] khugepaged_scan_mm_slot+0x57/0x280
-10 &mm->mmap_sem 96 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
-11 &mm->mmap_sem 34 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
-12 &mm->mmap_sem 17 [<ffffffff81127e71>] vm_munmap+0x41/0x80
-13 ---------------
-14 &mm->mmap_sem 1 [<ffffffff81046fda>] dup_mmap+0x2a/0x3f0
-15 &mm->mmap_sem 60 [<ffffffff81129e29>] SyS_mprotect+0xe9/0x250
-16 &mm->mmap_sem 41 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
-17 &mm->mmap_sem 68 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
-18
-19.............................................................................................................................................................................................................................
-20
-21 unix_table_lock: 110 112 0.21 49.24 163.91 1.46 21094 66312 0.12 624.42 31589.81 0.48
-22 ---------------
-23 unix_table_lock 45 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
-24 unix_table_lock 47 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
-25 unix_table_lock 15 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
-26 unix_table_lock 5 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
-27 ---------------
-28 unix_table_lock 39 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
-29 unix_table_lock 49 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
-30 unix_table_lock 20 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
-31 unix_table_lock 4 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
-
-
-This excerpt shows the first two lock class statistics. Line 01 shows the
-output version - each time the format changes this will be updated. Line 02-04
-show the header with column descriptions. Lines 05-18 and 20-31 show the actual
-statistics. These statistics come in two parts; the actual stats separated by a
-short separator (line 08, 13) from the contention points.
-
-Lines 09-12 show the first 4 recorded contention points (the code
-which tries to get the lock) and lines 14-17 show the first 4 recorded
-contended points (the lock holder). It is possible that the max
-con-bounces point is missing in the statistics.
-
-The first lock (05-18) is a read/write lock, and shows two lines above the
-short separator. The contention points don't match the column descriptors,
-they have two: contentions and [<IP>] symbol. The second set of contention
-points are the points we're contending with.
-
-The integer part of the time values is in us.
-
-Dealing with nested locks, subclasses may appear:
-
-32...........................................................................................................................................................................................................................
-33
-34 &rq->lock: 13128 13128 0.43 190.53 103881.26 7.91 97454 3453404 0.00 401.11 13224683.11 3.82
-35 ---------
-36 &rq->lock 645 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
-37 &rq->lock 297 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-38 &rq->lock 360 [<ffffffff8103c4c5>] select_task_rq_fair+0x1f0/0x74a
-39 &rq->lock 428 [<ffffffff81045f98>] scheduler_tick+0x46/0x1fb
-40 ---------
-41 &rq->lock 77 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
-42 &rq->lock 174 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-43 &rq->lock 4715 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
-44 &rq->lock 893 [<ffffffff81340524>] schedule+0x157/0x7b8
-45
-46...........................................................................................................................................................................................................................
-47
-48 &rq->lock/1: 1526 11488 0.33 388.73 136294.31 11.86 21461 38404 0.00 37.93 109388.53 2.84
-49 -----------
-50 &rq->lock/1 11526 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
-51 -----------
-52 &rq->lock/1 5645 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
-53 &rq->lock/1 1224 [<ffffffff81340524>] schedule+0x157/0x7b8
-54 &rq->lock/1 4336 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
-55 &rq->lock/1 181 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-
-Line 48 shows statistics for the second subclass (/1) of &rq->lock class
-(subclass starts from 0), since in this case, as line 50 suggests,
-double_rq_lock actually acquires a nested lock of two spinlocks.
-
-View the top contending locks:
-
-# grep : /proc/lock_stat | head
- clockevents_lock: 2926159 2947636 0.15 46882.81 1784540466.34 605.41 3381345 3879161 0.00 2260.97 53178395.68 13.71
- tick_broadcast_lock: 346460 346717 0.18 2257.43 39364622.71 113.54 3642919 4242696 0.00 2263.79 49173646.60 11.59
- &mapping->i_mmap_mutex: 203896 203899 3.36 645530.05 31767507988.39 155800.21 3361776 8893984 0.17 2254.15 14110121.02 1.59
- &rq->lock: 135014 136909 0.18 606.09 842160.68 6.15 1540728 10436146 0.00 728.72 17606683.41 1.69
- &(&zone->lru_lock)->rlock: 93000 94934 0.16 59.18 188253.78 1.98 1199912 3809894 0.15 391.40 3559518.81 0.93
- tasklist_lock-W: 40667 41130 0.23 1189.42 428980.51 10.43 270278 510106 0.16 653.51 3939674.91 7.72
- tasklist_lock-R: 21298 21305 0.20 1310.05 215511.12 10.12 186204 241258 0.14 1162.33 1179779.23 4.89
- rcu_node_1: 47656 49022 0.16 635.41 193616.41 3.95 844888 1865423 0.00 764.26 1656226.96 0.89
- &(&dentry->d_lockref.lock)->rlock: 39791 40179 0.15 1302.08 88851.96 2.21 2790851 12527025 0.10 1910.75 3379714.27 0.27
- rcu_node_0: 29203 30064 0.16 786.55 1555573.00 51.74 88963 244254 0.00 398.87 428872.51 1.76
-
-Clear the statistics:
-
-# echo 0 > /proc/lock_stat
diff --git a/Documentation/locking/locktorture.txt b/Documentation/locking/locktorture.rst
index 6a8df4cd19bf..e79eeeca3ac6 100644
--- a/Documentation/locking/locktorture.txt
+++ b/Documentation/locking/locktorture.rst
@@ -1,6 +1,9 @@
+==================================
Kernel Lock Torture Test Operation
+==================================
CONFIG_LOCK_TORTURE_TEST
+========================
The CONFIG LOCK_TORTURE_TEST config option provides a kernel module
that runs torture tests on core kernel locking primitives. The kernel
@@ -18,61 +21,77 @@ can be simulated by either enlarging this critical region hold time and/or
creating more kthreads.
-MODULE PARAMETERS
+Module Parameters
+=================
This module has the following parameters:
- ** Locktorture-specific **
+Locktorture-specific
+--------------------
-nwriters_stress Number of kernel threads that will stress exclusive lock
+nwriters_stress
+ Number of kernel threads that will stress exclusive lock
ownership (writers). The default value is twice the number
of online CPUs.
-nreaders_stress Number of kernel threads that will stress shared lock
+nreaders_stress
+ Number of kernel threads that will stress shared lock
ownership (readers). The default is the same amount of writer
locks. If the user did not specify nwriters_stress, then
both readers and writers be the amount of online CPUs.
-torture_type Type of lock to torture. By default, only spinlocks will
+torture_type
+ Type of lock to torture. By default, only spinlocks will
be tortured. This module can torture the following locks,
with string values as follows:
- o "lock_busted": Simulates a buggy lock implementation.
+ - "lock_busted":
+ Simulates a buggy lock implementation.
- o "spin_lock": spin_lock() and spin_unlock() pairs.
+ - "spin_lock":
+ spin_lock() and spin_unlock() pairs.
- o "spin_lock_irq": spin_lock_irq() and spin_unlock_irq()
- pairs.
+ - "spin_lock_irq":
+ spin_lock_irq() and spin_unlock_irq() pairs.
- o "rw_lock": read/write lock() and unlock() rwlock pairs.
+ - "rw_lock":
+ read/write lock() and unlock() rwlock pairs.
- o "rw_lock_irq": read/write lock_irq() and unlock_irq()
- rwlock pairs.
+ - "rw_lock_irq":
+ read/write lock_irq() and unlock_irq()
+ rwlock pairs.
- o "mutex_lock": mutex_lock() and mutex_unlock() pairs.
+ - "mutex_lock":
+ mutex_lock() and mutex_unlock() pairs.
- o "rtmutex_lock": rtmutex_lock() and rtmutex_unlock()
- pairs. Kernel must have CONFIG_RT_MUTEX=y.
+ - "rtmutex_lock":
+ rtmutex_lock() and rtmutex_unlock() pairs.
+ Kernel must have CONFIG_RT_MUTEX=y.
- o "rwsem_lock": read/write down() and up() semaphore pairs.
+ - "rwsem_lock":
+ read/write down() and up() semaphore pairs.
- ** Torture-framework (RCU + locking) **
+Torture-framework (RCU + locking)
+---------------------------------
-shutdown_secs The number of seconds to run the test before terminating
+shutdown_secs
+ The number of seconds to run the test before terminating
the test and powering off the system. The default is
zero, which disables test termination and system shutdown.
This capability is useful for automated testing.
-onoff_interval The number of seconds between each attempt to execute a
+onoff_interval
+ The number of seconds between each attempt to execute a
randomly selected CPU-hotplug operation. Defaults
to zero, which disables CPU hotplugging. In
CONFIG_HOTPLUG_CPU=n kernels, locktorture will silently
refuse to do any CPU-hotplug operations regardless of
what value is specified for onoff_interval.
-onoff_holdoff The number of seconds to wait until starting CPU-hotplug
+onoff_holdoff
+ The number of seconds to wait until starting CPU-hotplug
operations. This would normally only be used when
locktorture was built into the kernel and started
automatically at boot time, in which case it is useful
@@ -80,53 +99,59 @@ onoff_holdoff The number of seconds to wait until starting CPU-hotplug
coming and going. This parameter is only useful if
CONFIG_HOTPLUG_CPU is enabled.
-stat_interval Number of seconds between statistics-related printk()s.
+stat_interval
+ Number of seconds between statistics-related printk()s.
By default, locktorture will report stats every 60 seconds.
Setting the interval to zero causes the statistics to
be printed -only- when the module is unloaded, and this
is the default.
-stutter The length of time to run the test before pausing for this
+stutter
+ The length of time to run the test before pausing for this
same period of time. Defaults to "stutter=5", so as
to run and pause for (roughly) five-second intervals.
Specifying "stutter=0" causes the test to run continuously
without pausing, which is the old default behavior.
-shuffle_interval The number of seconds to keep the test threads affinitied
+shuffle_interval
+ The number of seconds to keep the test threads affinitied
to a particular subset of the CPUs, defaults to 3 seconds.
Used in conjunction with test_no_idle_hz.
-verbose Enable verbose debugging printing, via printk(). Enabled
+verbose
+ Enable verbose debugging printing, via printk(). Enabled
by default. This extra information is mostly related to
high-level errors and reports from the main 'torture'
framework.
-STATISTICS
+Statistics
+==========
-Statistics are printed in the following format:
+Statistics are printed in the following format::
-spin_lock-torture: Writes: Total: 93746064 Max/Min: 0/0 Fail: 0
- (A) (B) (C) (D) (E)
+ spin_lock-torture: Writes: Total: 93746064 Max/Min: 0/0 Fail: 0
+ (A) (B) (C) (D) (E)
-(A): Lock type that is being tortured -- torture_type parameter.
+ (A): Lock type that is being tortured -- torture_type parameter.
-(B): Number of writer lock acquisitions. If dealing with a read/write primitive
- a second "Reads" statistics line is printed.
+ (B): Number of writer lock acquisitions. If dealing with a read/write
+ primitive a second "Reads" statistics line is printed.
-(C): Number of times the lock was acquired.
+ (C): Number of times the lock was acquired.
-(D): Min and max number of times threads failed to acquire the lock.
+ (D): Min and max number of times threads failed to acquire the lock.
-(E): true/false values if there were errors acquiring the lock. This should
- -only- be positive if there is a bug in the locking primitive's
- implementation. Otherwise a lock should never fail (i.e., spin_lock()).
- Of course, the same applies for (C), above. A dummy example of this is
- the "lock_busted" type.
+ (E): true/false values if there were errors acquiring the lock. This should
+ -only- be positive if there is a bug in the locking primitive's
+ implementation. Otherwise a lock should never fail (i.e., spin_lock()).
+ Of course, the same applies for (C), above. A dummy example of this is
+ the "lock_busted" type.
-USAGE
+Usage
+=====
-The following script may be used to torture locks:
+The following script may be used to torture locks::
#!/bin/sh
diff --git a/Documentation/locking/mutex-design.txt b/Documentation/locking/mutex-design.rst
index 818aca19612f..4d8236b81fa5 100644
--- a/Documentation/locking/mutex-design.txt
+++ b/Documentation/locking/mutex-design.rst
@@ -1,6 +1,9 @@
+=======================
Generic Mutex Subsystem
+=======================
started by Ingo Molnar <mingo@redhat.com>
+
updated by Davidlohr Bueso <davidlohr@hp.com>
What are mutexes?
@@ -23,7 +26,7 @@ Implementation
Mutexes are represented by 'struct mutex', defined in include/linux/mutex.h
and implemented in kernel/locking/mutex.c. These locks use an atomic variable
(->owner) to keep track of the lock state during its lifetime. Field owner
-actually contains 'struct task_struct *' to the current lock owner and it is
+actually contains `struct task_struct *` to the current lock owner and it is
therefore NULL if not currently owned. Since task_struct pointers are aligned
at at least L1_CACHE_BYTES, low bits (3) are used to store extra state (e.g.,
if waiter list is non-empty). In its most basic form it also includes a
@@ -101,29 +104,36 @@ features that make lock debugging easier and faster:
Interfaces
----------
-Statically define the mutex:
+Statically define the mutex::
+
DEFINE_MUTEX(name);
-Dynamically initialize the mutex:
+Dynamically initialize the mutex::
+
mutex_init(mutex);
-Acquire the mutex, uninterruptible:
+Acquire the mutex, uninterruptible::
+
void mutex_lock(struct mutex *lock);
void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
int mutex_trylock(struct mutex *lock);
-Acquire the mutex, interruptible:
+Acquire the mutex, interruptible::
+
int mutex_lock_interruptible_nested(struct mutex *lock,
unsigned int subclass);
int mutex_lock_interruptible(struct mutex *lock);
-Acquire the mutex, interruptible, if dec to 0:
+Acquire the mutex, interruptible, if dec to 0::
+
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
-Unlock the mutex:
+Unlock the mutex::
+
void mutex_unlock(struct mutex *lock);
-Test if the mutex is taken:
+Test if the mutex is taken::
+
int mutex_is_locked(struct mutex *lock);
Disadvantages
diff --git a/Documentation/locking/rt-mutex-design.txt b/Documentation/locking/rt-mutex-design.rst
index 3d7b865539cc..59c2a64efb21 100644
--- a/Documentation/locking/rt-mutex-design.txt
+++ b/Documentation/locking/rt-mutex-design.rst
@@ -1,14 +1,15 @@
-#
-# Copyright (c) 2006 Steven Rostedt
-# Licensed under the GNU Free Documentation License, Version 1.2
-#
-
+==============================
RT-mutex implementation design
-------------------------------
+==============================
+
+Copyright (c) 2006 Steven Rostedt
+
+Licensed under the GNU Free Documentation License, Version 1.2
+
This document tries to describe the design of the rtmutex.c implementation.
It doesn't describe the reasons why rtmutex.c exists. For that please see
-Documentation/locking/rt-mutex.txt. Although this document does explain problems
+Documentation/locking/rt-mutex.rst. Although this document does explain problems
that happen without this code, but that is in the concept to understand
what the code actually is doing.
@@ -41,17 +42,17 @@ to release the lock, because for all we know, B is a CPU hog and will
never give C a chance to release the lock. This is called unbounded priority
inversion.
-Here's a little ASCII art to show the problem.
+Here's a little ASCII art to show the problem::
- grab lock L1 (owned by C)
- |
-A ---+
- C preempted by B
- |
-C +----+
+ grab lock L1 (owned by C)
+ |
+ A ---+
+ C preempted by B
+ |
+ C +----+
-B +-------->
- B now keeps A from running.
+ B +-------->
+ B now keeps A from running.
Priority Inheritance (PI)
@@ -75,24 +76,29 @@ Terminology
Here I explain some terminology that is used in this document to help describe
the design that is used to implement PI.
-PI chain - The PI chain is an ordered series of locks and processes that cause
+PI chain
+ - The PI chain is an ordered series of locks and processes that cause
processes to inherit priorities from a previous process that is
blocked on one of its locks. This is described in more detail
later in this document.
-mutex - In this document, to differentiate from locks that implement
+mutex
+ - In this document, to differentiate from locks that implement
PI and spin locks that are used in the PI code, from now on
the PI locks will be called a mutex.
-lock - In this document from now on, I will use the term lock when
+lock
+ - In this document from now on, I will use the term lock when
referring to spin locks that are used to protect parts of the PI
algorithm. These locks disable preemption for UP (when
CONFIG_PREEMPT is enabled) and on SMP prevents multiple CPUs from
entering critical sections simultaneously.
-spin lock - Same as lock above.
+spin lock
+ - Same as lock above.
-waiter - A waiter is a struct that is stored on the stack of a blocked
+waiter
+ - A waiter is a struct that is stored on the stack of a blocked
process. Since the scope of the waiter is within the code for
a process being blocked on the mutex, it is fine to allocate
the waiter on the process's stack (local variable). This
@@ -104,14 +110,18 @@ waiter - A waiter is a struct that is stored on the stack of a blocked
waiter is sometimes used in reference to the task that is waiting
on a mutex. This is the same as waiter->task.
-waiters - A list of processes that are blocked on a mutex.
+waiters
+ - A list of processes that are blocked on a mutex.
-top waiter - The highest priority process waiting on a specific mutex.
+top waiter
+ - The highest priority process waiting on a specific mutex.
-top pi waiter - The highest priority process waiting on one of the mutexes
+top pi waiter
+ - The highest priority process waiting on one of the mutexes
that a specific process owns.
-Note: task and process are used interchangeably in this document, mostly to
+Note:
+ task and process are used interchangeably in this document, mostly to
differentiate between two processes that are being described together.
@@ -123,7 +133,7 @@ inheritance to take place. Multiple chains may converge, but a chain
would never diverge, since a process can't be blocked on more than one
mutex at a time.
-Example:
+Example::
Process: A, B, C, D, E
Mutexes: L1, L2, L3, L4
@@ -137,21 +147,21 @@ Example:
D owns L4
E blocked on L4
-The chain would be:
+The chain would be::
E->L4->D->L3->C->L2->B->L1->A
To show where two chains merge, we could add another process F and
another mutex L5 where B owns L5 and F is blocked on mutex L5.
-The chain for F would be:
+The chain for F would be::
F->L5->B->L1->A
Since a process may own more than one mutex, but never be blocked on more than
one, the chains merge.
-Here we show both chains:
+Here we show both chains::
E->L4->D->L3->C->L2-+
|
@@ -165,12 +175,12 @@ than the processes to the left or below in the chain.
Also since a mutex may have more than one process blocked on it, we can
have multiple chains merge at mutexes. If we add another process G that is
-blocked on mutex L2:
+blocked on mutex L2::
G->L2->B->L1->A
And once again, to show how this can grow I will show the merging chains
-again.
+again::
E->L4->D->L3->C-+
+->L2-+
@@ -184,7 +194,7 @@ the chain (A and B in this example), must have their priorities increased
to that of G.
Mutex Waiters Tree
------------------
+------------------
Every mutex keeps track of all the waiters that are blocked on itself. The
mutex has a rbtree to store these waiters by priority. This tree is protected
@@ -219,19 +229,19 @@ defined. But is very complex to figure it out, since it depends on all
the nesting of mutexes. Let's look at the example where we have 3 mutexes,
L1, L2, and L3, and four separate functions func1, func2, func3 and func4.
The following shows a locking order of L1->L2->L3, but may not actually
-be directly nested that way.
+be directly nested that way::
-void func1(void)
-{
+ void func1(void)
+ {
mutex_lock(L1);
/* do anything */
mutex_unlock(L1);
-}
+ }
-void func2(void)
-{
+ void func2(void)
+ {
mutex_lock(L1);
mutex_lock(L2);
@@ -239,10 +249,10 @@ void func2(void)
mutex_unlock(L2);
mutex_unlock(L1);
-}
+ }
-void func3(void)
-{
+ void func3(void)
+ {
mutex_lock(L2);
mutex_lock(L3);
@@ -250,30 +260,30 @@ void func3(void)
mutex_unlock(L3);
mutex_unlock(L2);
-}
+ }
-void func4(void)
-{
+ void func4(void)
+ {
mutex_lock(L3);
/* do something again */
mutex_unlock(L3);
-}
+ }
Now we add 4 processes that run each of these functions separately.
Processes A, B, C, and D which run functions func1, func2, func3 and func4
respectively, and such that D runs first and A last. With D being preempted
-in func4 in the "do something again" area, we have a locking that follows:
+in func4 in the "do something again" area, we have a locking that follows::
-D owns L3
- C blocked on L3
- C owns L2
- B blocked on L2
- B owns L1
- A blocked on L1
+ D owns L3
+ C blocked on L3
+ C owns L2
+ B blocked on L2
+ B owns L1
+ A blocked on L1
-And thus we have the chain A->L1->B->L2->C->L3->D.
+ And thus we have the chain A->L1->B->L2->C->L3->D.
This gives us a PI depth of 4 (four processes), but looking at any of the
functions individually, it seems as though they only have at most a locking
@@ -298,7 +308,7 @@ not true, the rtmutex.c code will be broken!), this allows for the least
significant bit to be used as a flag. Bit 0 is used as the "Has Waiters"
flag. It's set whenever there are waiters on a mutex.
-See Documentation/locking/rt-mutex.txt for further details.
+See Documentation/locking/rt-mutex.rst for further details.
cmpxchg Tricks
--------------
@@ -307,17 +317,17 @@ Some architectures implement an atomic cmpxchg (Compare and Exchange). This
is used (when applicable) to keep the fast path of grabbing and releasing
mutexes short.
-cmpxchg is basically the following function performed atomically:
+cmpxchg is basically the following function performed atomically::
-unsigned long _cmpxchg(unsigned long *A, unsigned long *B, unsigned long *C)
-{
+ unsigned long _cmpxchg(unsigned long *A, unsigned long *B, unsigned long *C)
+ {
unsigned long T = *A;
if (*A == *B) {
*A = *C;
}
return T;
-}
-#define cmpxchg(a,b,c) _cmpxchg(&a,&b,&c)
+ }
+ #define cmpxchg(a,b,c) _cmpxchg(&a,&b,&c)
This is really nice to have, since it allows you to only update a variable
if the variable is what you expect it to be. You know if it succeeded if
@@ -352,9 +362,10 @@ Then rt_mutex_setprio is called to adjust the priority of the task to the
new priority. Note that rt_mutex_setprio is defined in kernel/sched/core.c
to implement the actual change in priority.
-(Note: For the "prio" field in task_struct, the lower the number, the
+Note:
+ For the "prio" field in task_struct, the lower the number, the
higher the priority. A "prio" of 5 is of higher priority than a
- "prio" of 10.)
+ "prio" of 10.
It is interesting to note that rt_mutex_adjust_prio can either increase
or decrease the priority of the task. In the case that a higher priority
@@ -439,6 +450,7 @@ wait_lock, which this code currently holds. So setting the "Has Waiters" flag
forces the current owner to synchronize with this code.
The lock is taken if the following are true:
+
1) The lock has no owner
2) The current task is the highest priority against all other
waiters of the lock
@@ -546,10 +558,13 @@ Credits
-------
Author: Steven Rostedt <rostedt@goodmis.org>
+
Updated: Alex Shi <alex.shi@linaro.org> - 7/6/2017
-Original Reviewers: Ingo Molnar, Thomas Gleixner, Thomas Duetsch, and
+Original Reviewers:
+ Ingo Molnar, Thomas Gleixner, Thomas Duetsch, and
Randy Dunlap
+
Update (7/6/2017) Reviewers: Steven Rostedt and Sebastian Siewior
Updates
diff --git a/Documentation/locking/rt-mutex.txt b/Documentation/locking/rt-mutex.rst
index 35793e003041..c365dc302081 100644
--- a/Documentation/locking/rt-mutex.txt
+++ b/Documentation/locking/rt-mutex.rst
@@ -1,5 +1,6 @@
+==================================
RT-mutex subsystem with PI support
-----------------------------------
+==================================
RT-mutexes with priority inheritance are used to support PI-futexes,
which enable pthread_mutex_t priority inheritance attributes
@@ -46,27 +47,30 @@ The state of the rt-mutex is tracked via the owner field of the rt-mutex
structure:
lock->owner holds the task_struct pointer of the owner. Bit 0 is used to
-keep track of the "lock has waiters" state.
+keep track of the "lock has waiters" state:
- owner bit0
+ ============ ======= ================================================
+ owner bit0 Notes
+ ============ ======= ================================================
NULL 0 lock is free (fast acquire possible)
NULL 1 lock is free and has waiters and the top waiter
- is going to take the lock*
+ is going to take the lock [1]_
taskpointer 0 lock is held (fast release possible)
- taskpointer 1 lock is held and has waiters**
+ taskpointer 1 lock is held and has waiters [2]_
+ ============ ======= ================================================
The fast atomic compare exchange based acquire and release is only
possible when bit 0 of lock->owner is 0.
-(*) It also can be a transitional state when grabbing the lock
-with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
-we need to set the bit0 before looking at the lock, and the owner may be
-NULL in this small time, hence this can be a transitional state.
+.. [1] It also can be a transitional state when grabbing the lock
+ with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
+ we need to set the bit0 before looking at the lock, and the owner may
+ be NULL in this small time, hence this can be a transitional state.
-(**) There is a small time when bit 0 is set but there are no
-waiters. This can happen when grabbing the lock in the slow path.
-To prevent a cmpxchg of the owner releasing the lock, we need to
-set this bit before looking at the lock.
+.. [2] There is a small time when bit 0 is set but there are no
+ waiters. This can happen when grabbing the lock in the slow path.
+ To prevent a cmpxchg of the owner releasing the lock, we need to
+ set this bit before looking at the lock.
BTW, there is still technically a "Pending Owner", it's just not called
that anymore. The pending owner happens to be the top_waiter of a lock
diff --git a/Documentation/locking/spinlocks.txt b/Documentation/locking/spinlocks.rst
index ff35e40bdf5b..66e3792f8a36 100644
--- a/Documentation/locking/spinlocks.txt
+++ b/Documentation/locking/spinlocks.rst
@@ -1,8 +1,13 @@
+===============
+Locking lessons
+===============
+
Lesson 1: Spin locks
+====================
-The most basic primitive for locking is spinlock.
+The most basic primitive for locking is spinlock::
-static DEFINE_SPINLOCK(xxx_lock);
+ static DEFINE_SPINLOCK(xxx_lock);
unsigned long flags;
@@ -19,23 +24,25 @@ worry about UP vs SMP issues: the spinlocks work correctly under both.
NOTE! Implications of spin_locks for memory are further described in:
Documentation/memory-barriers.txt
+
(5) LOCK operations.
+
(6) UNLOCK operations.
The above is usually pretty simple (you usually need and want only one
spinlock for most things - using more than one spinlock can make things a
lot more complex and even slower and is usually worth it only for
-sequences that you _know_ need to be split up: avoid it at all cost if you
+sequences that you **know** need to be split up: avoid it at all cost if you
aren't sure).
This is really the only really hard part about spinlocks: once you start
using spinlocks they tend to expand to areas you might not have noticed
before, because you have to make sure the spinlocks correctly protect the
-shared data structures _everywhere_ they are used. The spinlocks are most
+shared data structures **everywhere** they are used. The spinlocks are most
easily added to places that are completely independent of other code (for
example, internal driver data structures that nobody else ever touches).
- NOTE! The spin-lock is safe only when you _also_ use the lock itself
+ NOTE! The spin-lock is safe only when you **also** use the lock itself
to do locking across CPU's, which implies that EVERYTHING that
touches a shared variable has to agree about the spinlock they want
to use.
@@ -43,6 +50,7 @@ example, internal driver data structures that nobody else ever touches).
----
Lesson 2: reader-writer spinlocks.
+==================================
If your data accesses have a very natural pattern where you usually tend
to mostly read from the shared variables, the reader-writer locks
@@ -54,7 +62,7 @@ to change the variables it has to get an exclusive write lock.
simple spinlocks. Unless the reader critical section is long, you
are better off just using spinlocks.
-The routines look the same as above:
+The routines look the same as above::
rwlock_t xxx_lock = __RW_LOCK_UNLOCKED(xxx_lock);
@@ -71,10 +79,10 @@ The routines look the same as above:
The above kind of lock may be useful for complex data structures like
linked lists, especially searching for entries without changing the list
itself. The read lock allows many concurrent readers. Anything that
-_changes_ the list will have to get the write lock.
+**changes** the list will have to get the write lock.
NOTE! RCU is better for list traversal, but requires careful
- attention to design detail (see Documentation/RCU/listRCU.txt).
+ attention to design detail (see Documentation/RCU/listRCU.rst).
Also, you cannot "upgrade" a read-lock to a write-lock, so if you at _any_
time need to do any changes (even if you don't do it every time), you have
@@ -82,15 +90,16 @@ to get the write-lock at the very beginning.
NOTE! We are working hard to remove reader-writer spinlocks in most
cases, so please don't add a new one without consensus. (Instead, see
- Documentation/RCU/rcu.txt for complete information.)
+ Documentation/RCU/rcu.rst for complete information.)
----
Lesson 3: spinlocks revisited.
+==============================
The single spin-lock primitives above are by no means the only ones. They
are the most safe ones, and the ones that work under all circumstances,
-but partly _because_ they are safe they are also fairly slow. They are slower
+but partly **because** they are safe they are also fairly slow. They are slower
than they'd need to be, because they do have to disable interrupts
(which is just a single instruction on a x86, but it's an expensive one -
and on other architectures it can be worse).
@@ -98,7 +107,7 @@ and on other architectures it can be worse).
If you have a case where you have to protect a data structure across
several CPU's and you want to use spinlocks you can potentially use
cheaper versions of the spinlocks. IFF you know that the spinlocks are
-never used in interrupt handlers, you can use the non-irq versions:
+never used in interrupt handlers, you can use the non-irq versions::
spin_lock(&lock);
...
@@ -110,7 +119,7 @@ This is useful if you know that the data in question is only ever
manipulated from a "process context", ie no interrupts involved.
The reasons you mustn't use these versions if you have interrupts that
-play with the spinlock is that you can get deadlocks:
+play with the spinlock is that you can get deadlocks::
spin_lock(&lock);
...
@@ -130,26 +139,15 @@ on other CPU's, because an interrupt on another CPU doesn't interrupt the
CPU that holds the lock, so the lock-holder can continue and eventually
releases the lock).
-Note that you can be clever with read-write locks and interrupts. For
-example, if you know that the interrupt only ever gets a read-lock, then
-you can use a non-irq version of read locks everywhere - because they
-don't block on each other (and thus there is no dead-lock wrt interrupts.
-But when you do the write-lock, you have to use the irq-safe version.
-
-For an example of being clever with rw-locks, see the "waitqueue_lock"
-handling in kernel/sched/core.c - nothing ever _changes_ a wait-queue from
-within an interrupt, they only read the queue in order to know whom to
-wake up. So read-locks are safe (which is good: they are very common
-indeed), while write-locks need to protect themselves against interrupts.
-
Linus
----
Reference information:
+======================
For dynamic initialization, use spin_lock_init() or rwlock_init() as
-appropriate:
+appropriate::
spinlock_t xxx_lock;
rwlock_t xxx_rw_lock;
diff --git a/Documentation/locking/ww-mutex-design.txt b/Documentation/locking/ww-mutex-design.rst
index f0ed7c30e695..1846c199da23 100644
--- a/Documentation/locking/ww-mutex-design.txt
+++ b/Documentation/locking/ww-mutex-design.rst
@@ -1,3 +1,4 @@
+======================================
Wound/Wait Deadlock-Proof Mutex Design
======================================
@@ -85,6 +86,7 @@ Furthermore there are three different class of w/w lock acquire functions:
no deadlock potential and hence the ww_mutex_lock call will block and not
prematurely return -EDEADLK. The advantage of the _slow functions is in
interface safety:
+
- ww_mutex_lock has a __must_check int return type, whereas ww_mutex_lock_slow
has a void return type. Note that since ww mutex code needs loops/retries
anyway the __must_check doesn't result in spurious warnings, even though the
@@ -115,36 +117,36 @@ expect the number of simultaneous competing transactions to be typically small,
and you want to reduce the number of rollbacks.
Three different ways to acquire locks within the same w/w class. Common
-definitions for methods #1 and #2:
+definitions for methods #1 and #2::
-static DEFINE_WW_CLASS(ww_class);
+ static DEFINE_WW_CLASS(ww_class);
-struct obj {
+ struct obj {
struct ww_mutex lock;
/* obj data */
-};
+ };
-struct obj_entry {
+ struct obj_entry {
struct list_head head;
struct obj *obj;
-};
+ };
Method 1, using a list in execbuf->buffers that's not allowed to be reordered.
This is useful if a list of required objects is already tracked somewhere.
Furthermore the lock helper can use propagate the -EALREADY return code back to
the caller as a signal that an object is twice on the list. This is useful if
the list is constructed from userspace input and the ABI requires userspace to
-not have duplicate entries (e.g. for a gpu commandbuffer submission ioctl).
+not have duplicate entries (e.g. for a gpu commandbuffer submission ioctl)::
-int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj *res_obj = NULL;
struct obj_entry *contended_entry = NULL;
struct obj_entry *entry;
ww_acquire_init(ctx, &ww_class);
-retry:
+ retry:
list_for_each_entry (entry, list, head) {
if (entry->obj == res_obj) {
res_obj = NULL;
@@ -160,7 +162,7 @@ retry:
ww_acquire_done(ctx);
return 0;
-err:
+ err:
list_for_each_entry_continue_reverse (entry, list, head)
ww_mutex_unlock(&entry->obj->lock);
@@ -176,14 +178,14 @@ err:
ww_acquire_fini(ctx);
return ret;
-}
+ }
Method 2, using a list in execbuf->buffers that can be reordered. Same semantics
of duplicate entry detection using -EALREADY as method 1 above. But the
-list-reordering allows for a bit more idiomatic code.
+list-reordering allows for a bit more idiomatic code::
-int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj_entry *entry, *entry2;
ww_acquire_init(ctx, &ww_class);
@@ -216,24 +218,25 @@ int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
ww_acquire_done(ctx);
return 0;
-}
+ }
-Unlocking works the same way for both methods #1 and #2:
+Unlocking works the same way for both methods #1 and #2::
-void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj_entry *entry;
list_for_each_entry (entry, list, head)
ww_mutex_unlock(&entry->obj->lock);
ww_acquire_fini(ctx);
-}
+ }
Method 3 is useful if the list of objects is constructed ad-hoc and not upfront,
e.g. when adjusting edges in a graph where each node has its own ww_mutex lock,
and edges can only be changed when holding the locks of all involved nodes. w/w
mutexes are a natural fit for such a case for two reasons:
+
- They can handle lock-acquisition in any order which allows us to start walking
a graph from a starting point and then iteratively discovering new edges and
locking down the nodes those edges connect to.
@@ -243,6 +246,7 @@ mutexes are a natural fit for such a case for two reasons:
as a starting point).
Note that this approach differs in two important ways from the above methods:
+
- Since the list of objects is dynamically constructed (and might very well be
different when retrying due to hitting the -EDEADLK die condition) there's
no need to keep any object on a persistent list when it's not locked. We can
@@ -260,17 +264,17 @@ any interface misuse for these cases.
Also, method 3 can't fail the lock acquisition step since it doesn't return
-EALREADY. Of course this would be different when using the _interruptible
-variants, but that's outside of the scope of these examples here.
+variants, but that's outside of the scope of these examples here::
-struct obj {
+ struct obj {
struct ww_mutex ww_mutex;
struct list_head locked_list;
-};
+ };
-static DEFINE_WW_CLASS(ww_class);
+ static DEFINE_WW_CLASS(ww_class);
-void __unlock_objs(struct list_head *list)
-{
+ void __unlock_objs(struct list_head *list)
+ {
struct obj *entry, *temp;
list_for_each_entry_safe (entry, temp, list, locked_list) {
@@ -279,15 +283,15 @@ void __unlock_objs(struct list_head *list)
list_del(&entry->locked_list);
ww_mutex_unlock(entry->ww_mutex)
}
-}
+ }
-void lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ void lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj *obj;
ww_acquire_init(ctx, &ww_class);
-retry:
+ retry:
/* re-init loop start state */
loop {
/* magic code which walks over a graph and decides which objects
@@ -312,13 +316,13 @@ retry:
ww_acquire_done(ctx);
return 0;
-}
+ }
-void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
__unlock_objs(list);
ww_acquire_fini(ctx);
-}
+ }
Method 4: Only lock one single objects. In that case deadlock detection and
prevention is obviously overkill, since with grabbing just one lock you can't
@@ -329,11 +333,14 @@ Implementation Details
----------------------
Design:
+^^^^^^^
+
ww_mutex currently encapsulates a struct mutex, this means no extra overhead for
normal mutex locks, which are far more common. As such there is only a small
increase in code size if wait/wound mutexes are not used.
We maintain the following invariants for the wait list:
+
(1) Waiters with an acquire context are sorted by stamp order; waiters
without an acquire context are interspersed in FIFO order.
(2) For Wait-Die, among waiters with contexts, only the first one can have
@@ -355,6 +362,8 @@ Design:
therefore be directed towards the uncontended cases.
Lockdep:
+^^^^^^^^
+
Special care has been taken to warn for as many cases of api abuse
as possible. Some common api abuses will be caught with
CONFIG_DEBUG_MUTEXES, but CONFIG_PROVE_LOCKING is recommended.
@@ -379,5 +388,6 @@ Lockdep:
having called ww_acquire_fini on the first.
- 'normal' deadlocks that can occur.
-FIXME: Update this section once we have the TASK_DEADLOCK task state flag magic
-implemented.
+FIXME:
+ Update this section once we have the TASK_DEADLOCK task state flag magic
+ implemented.
diff --git a/Documentation/m68k/README.buddha b/Documentation/m68k/buddha-driver.rst
index 3ea9827ba3c7..20e401413991 100644
--- a/Documentation/m68k/README.buddha
+++ b/Documentation/m68k/buddha-driver.rst
@@ -1,3 +1,6 @@
+=====================================
+Amiga Buddha and Catweasel IDE Driver
+=====================================
The Amiga Buddha and Catweasel IDE Driver (part of ide.c) was written by
Geert Uytterhoeven based on the following specifications:
@@ -12,12 +15,12 @@ described in their manuals, no tricks have been used (for
example leaving some address lines out of the equations...).
If you want to configure the board yourself (for example let
a Linux kernel configure the card), look at the Commodore
-Docs. Reading the nibbles should give this information:
+Docs. Reading the nibbles should give this information::
-Vendor number: 4626 ($1212)
-product number: 0 (42 for Catweasel Z-II)
-Serial number: 0
-Rom-vector: $1000
+ Vendor number: 4626 ($1212)
+ product number: 0 (42 for Catweasel Z-II)
+ Serial number: 0
+ Rom-vector: $1000
The card should be a Z-II board, size 64K, not for freemem
list, Rom-Vektor is valid, no second Autoconfig-board on the
@@ -34,6 +37,7 @@ otherwise your chance is only 1:16 to find the board :-).
The local memory-map is even active when mapped to $e8:
+============== ===========================================
$0-$7e Autokonfig-space, see Z-II docs.
$80-$7fd reserved
@@ -50,50 +54,51 @@ $a00-$aff IDE-Select 2 (Port 1, Register set 0)
$b00-$bff IDE-Select 3 (Port 1, Register set 1)
$c00-$cff IDE-Select 4 (Port 2, Register set 0,
- Catweasel only!)
+ Catweasel only!)
$d00-$dff IDE-Select 5 (Port 3, Register set 1,
- Catweasel only!)
+ Catweasel only!)
-$e00-$eff local expansion port, on Catweasel Z-II the
+$e00-$eff local expansion port, on Catweasel Z-II the
Catweasel registers are also mapped here.
Never touch, use multidisk.device!
-
-$f00 read only, Byte-access: Bit 7 shows the
- level of the IRQ-line of IDE port 0.
+
+$f00 read only, Byte-access: Bit 7 shows the
+ level of the IRQ-line of IDE port 0.
$f01-$f3f mirror of $f00
-$f40 read only, Byte-access: Bit 7 shows the
- level of the IRQ-line of IDE port 1.
+$f40 read only, Byte-access: Bit 7 shows the
+ level of the IRQ-line of IDE port 1.
$f41-$f7f mirror of $f40
-$f80 read only, Byte-access: Bit 7 shows the
- level of the IRQ-line of IDE port 2.
+$f80 read only, Byte-access: Bit 7 shows the
+ level of the IRQ-line of IDE port 2.
(Catweasel only!)
$f81-$fbf mirror of $f80
$fc0 write-only: Writing any value to this
- register enables IRQs to be passed from the
- IDE ports to the Zorro bus. This mechanism
- has been implemented to be compatible with
+ register enables IRQs to be passed from the
+ IDE ports to the Zorro bus. This mechanism
+ has been implemented to be compatible with
harddisks that are either defective or have
- a buggy firmware and pull the IRQ line up
- while starting up. If interrupts would
- always be passed to the bus, the computer
- might not start up. Once enabled, this flag
- can not be disabled again. The level of the
- flag can not be determined by software
+ a buggy firmware and pull the IRQ line up
+ while starting up. If interrupts would
+ always be passed to the bus, the computer
+ might not start up. Once enabled, this flag
+ can not be disabled again. The level of the
+ flag can not be determined by software
(what for? Write to me if it's necessary!).
$fc1-$fff mirror of $fc0
$1000-$ffff Buddha-Rom with offset $1000 in the rom
- chip. The addresses $0 to $fff of the rom
+ chip. The addresses $0 to $fff of the rom
chip cannot be read. Rom is Byte-wide and
mapped to even addresses.
+============== ===========================================
The IDE ports issue an INT2. You can read the level of the
IRQ-lines of the IDE-ports by reading from the three (two
@@ -128,7 +133,8 @@ must always be set to 1 to be compatible with later Buddha
versions (if I'll ever update this one). I presume that
I'll never use the lower four bits, but they have to be set
to 1 by definition.
- The values in this table have to be shifted 5 bits to the
+
+The values in this table have to be shifted 5 bits to the
left and or'd with $1f (this sets the lower 5 bits).
All the timings have in common: Select and IOR/IOW rise at
@@ -138,44 +144,36 @@ values are no multiple of 71. One clock-cycle is 71ns long
(exactly 70,5 at 14,18 Mhz on PAL systems).
value 0 (Default after reset)
-
-497ns Select (7 clock cycles) , IOR/IOW after 172ns (2 clock cycles)
-(same timing as the Amiga 1200 does on it's IDE port without
-accelerator card)
+ 497ns Select (7 clock cycles) , IOR/IOW after 172ns (2 clock cycles)
+ (same timing as the Amiga 1200 does on it's IDE port without
+ accelerator card)
value 1
-
-639ns Select (9 clock cycles), IOR/IOW after 243ns (3 clock cycles)
+ 639ns Select (9 clock cycles), IOR/IOW after 243ns (3 clock cycles)
value 2
-
-781ns Select (11 clock cycles), IOR/IOW after 314ns (4 clock cycles)
+ 781ns Select (11 clock cycles), IOR/IOW after 314ns (4 clock cycles)
value 3
-
-355ns Select (5 clock cycles), IOR/IOW after 101ns (1 clock cycle)
+ 355ns Select (5 clock cycles), IOR/IOW after 101ns (1 clock cycle)
value 4
-
-355ns Select (5 clock cycles), IOR/IOW after 172ns (2 clock cycles)
+ 355ns Select (5 clock cycles), IOR/IOW after 172ns (2 clock cycles)
value 5
-
-355ns Select (5 clock cycles), IOR/IOW after 243ns (3 clock cycles)
+ 355ns Select (5 clock cycles), IOR/IOW after 243ns (3 clock cycles)
value 6
-
-1065ns Select (15 clock cycles), IOR/IOW after 314ns (4 clock cycles)
+ 1065ns Select (15 clock cycles), IOR/IOW after 314ns (4 clock cycles)
value 7
-
-355ns Select, (5 clock cycles), IOR/IOW after 101ns (1 clock cycle)
+ 355ns Select, (5 clock cycles), IOR/IOW after 101ns (1 clock cycle)
When accessing IDE registers with A6=1 (for example $84x),
the timing will always be mode 0 8-bit compatible, no matter
what you have selected in the speed register:
-781ns select, IOR/IOW after 4 clock cycles (=314ns) aktive.
+781ns select, IOR/IOW after 4 clock cycles (=314ns) aktive.
All the timings with a very short select-signal (the 355ns
fast accesses) depend on the accelerator card used in the
@@ -204,7 +202,8 @@ always shows a "no IRQ here" on the Buddha, and accesses to
the third IDE port are going into data's Nirwana on the
Buddha.
- Jens Schönfeld february 19th, 1997
- updated may 27th, 1997
- eMail: sysop@nostlgic.tng.oche.de
+Jens Schönfeld february 19th, 1997
+
+updated may 27th, 1997
+eMail: sysop@nostlgic.tng.oche.de
diff --git a/Documentation/m68k/index.rst b/Documentation/m68k/index.rst
new file mode 100644
index 000000000000..b89cb6a86d9b
--- /dev/null
+++ b/Documentation/m68k/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=================
+m68k Architecture
+=================
+
+.. toctree::
+ :maxdepth: 2
+
+ kernel-options
+ buddha-driver
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/m68k/kernel-options.txt b/Documentation/m68k/kernel-options.rst
index 79d21246c75a..cabd9419740d 100644
--- a/Documentation/m68k/kernel-options.txt
+++ b/Documentation/m68k/kernel-options.rst
@@ -1,22 +1,24 @@
-
-
- Command Line Options for Linux/m68k
- ===================================
+===================================
+Command Line Options for Linux/m68k
+===================================
Last Update: 2 May 1999
+
Linux/m68k version: 2.2.6
+
Author: Roman.Hodek@informatik.uni-erlangen.de (Roman Hodek)
+
Update: jds@kom.auc.dk (Jes Sorensen) and faq@linux-m68k.org (Chris Lawrence)
0) Introduction
===============
- Often I've been asked which command line options the Linux/m68k
+Often I've been asked which command line options the Linux/m68k
kernel understands, or how the exact syntax for the ... option is, or
... about the option ... . I hope, this document supplies all the
answers...
- Note that some options might be outdated, their descriptions being
+Note that some options might be outdated, their descriptions being
incomplete or missing. Please update the information and send in the
patches.
@@ -38,11 +40,11 @@ argument contains an '=', it is of class 2, and the definition is put
into init's environment. All other arguments are passed to init as
command line options.
- This document describes the valid kernel options for Linux/m68k in
+This document describes the valid kernel options for Linux/m68k in
the version mentioned at the start of this file. Later revisions may
add new such options, and some may be missing in older versions.
- In general, the value (the part after the '=') of an option is a
+In general, the value (the part after the '=') of an option is a
list of values separated by commas. The interpretation of these values
is up to the driver that "owns" the option. This association of
options with drivers is also the reason that some are further
@@ -55,21 +57,21 @@ subdivided.
2.1) root=
----------
-Syntax: root=/dev/<device>
- or: root=<hex_number>
+:Syntax: root=/dev/<device>
+:or: root=<hex_number>
This tells the kernel which device it should mount as the root
filesystem. The device must be a block device with a valid filesystem
on it.
- The first syntax gives the device by name. These names are converted
+The first syntax gives the device by name. These names are converted
into a major/minor number internally in the kernel in an unusual way.
Normally, this "conversion" is done by the device files in /dev, but
this isn't possible here, because the root filesystem (with /dev)
isn't mounted yet... So the kernel parses the name itself, with some
hardcoded name to number mappings. The name must always be a
combination of two or three letters, followed by a decimal number.
-Valid names are:
+Valid names are::
/dev/ram: -> 0x0100 (initial ramdisk)
/dev/hda: -> 0x0300 (first IDE disk)
@@ -81,7 +83,7 @@ Valid names are:
/dev/sde: -> 0x0840 (fifth SCSI disk)
/dev/fd : -> 0x0200 (floppy disk)
- The name must be followed by a decimal number, that stands for the
+The name must be followed by a decimal number, that stands for the
partition number. Internally, the value of the number is just
added to the device number mentioned in the table above. The
exceptions are /dev/ram and /dev/fd, where /dev/ram refers to an
@@ -100,12 +102,12 @@ the kernel command line.
[Strange and maybe uninteresting stuff ON]
- This unusual translation of device names has some strange
+This unusual translation of device names has some strange
consequences: If, for example, you have a symbolic link from /dev/fd
to /dev/fd0D720 as an abbreviation for floppy driver #0 in DD format,
you cannot use this name for specifying the root device, because the
kernel cannot see this symlink before mounting the root FS and it
-isn't in the table above. If you use it, the root device will not be
+isn't in the table above. If you use it, the root device will not be
set at all, without an error message. Another example: You cannot use a
partition on e.g. the sixth SCSI disk as the root filesystem, if you
want to specify it by name. This is, because only the devices up to
@@ -118,7 +120,7 @@ knowledge that each disk uses 16 minors, and write "root=/dev/sde17"
[Strange and maybe uninteresting stuff OFF]
- If the device containing your root partition isn't in the table
+If the device containing your root partition isn't in the table
above, you can also specify it by major and minor numbers. These are
written in hex, with no prefix and no separator between. E.g., if you
have a CD with contents appropriate as a root filesystem in the first
@@ -136,6 +138,7 @@ known partition UUID as the starting point. For example,
if partition 5 of the device has the UUID of
00112233-4455-6677-8899-AABBCCDDEEFF then partition 3 may be found as
follows:
+
PARTUUID=00112233-4455-6677-8899-AABBCCDDEEFF/PARTNROFF=-2
Authoritative information can be found in
@@ -145,8 +148,8 @@ Authoritative information can be found in
2.2) ro, rw
-----------
-Syntax: ro
- or: rw
+:Syntax: ro
+:or: rw
These two options tell the kernel whether it should mount the root
filesystem read-only or read-write. The default is read-only, except
@@ -156,7 +159,7 @@ for ramdisks, which default to read-write.
2.3) debug
----------
-Syntax: debug
+:Syntax: debug
This raises the kernel log level to 10 (the default is 7). This is the
same level as set by the "dmesg" command, just that the maximum level
@@ -166,7 +169,7 @@ selectable by dmesg is 8.
2.4) debug=
-----------
-Syntax: debug=<device>
+:Syntax: debug=<device>
This option causes certain kernel messages be printed to the selected
debugging device. This can aid debugging the kernel, since the
@@ -175,7 +178,7 @@ devices are possible depends on the machine type. There are no checks
for the validity of the device name. If the device isn't implemented,
nothing happens.
- Messages logged this way are in general stack dumps after kernel
+Messages logged this way are in general stack dumps after kernel
memory faults or bad kernel traps, and kernel panics. To be exact: all
messages of level 0 (panic messages) and all messages printed while
the log level is 8 or more (their level doesn't matter). Before stack
@@ -185,19 +188,27 @@ at least 8 can also be set by the "debug" command line option (see
Devices possible for Amiga:
- - "ser": built-in serial port; parameters: 9600bps, 8N1
- - "mem": Save the messages to a reserved area in chip mem. After
+ - "ser":
+ built-in serial port; parameters: 9600bps, 8N1
+ - "mem":
+ Save the messages to a reserved area in chip mem. After
rebooting, they can be read under AmigaOS with the tool
'dmesg'.
Devices possible for Atari:
- - "ser1": ST-MFP serial port ("Modem1"); parameters: 9600bps, 8N1
- - "ser2": SCC channel B serial port ("Modem2"); parameters: 9600bps, 8N1
- - "ser" : default serial port
+ - "ser1":
+ ST-MFP serial port ("Modem1"); parameters: 9600bps, 8N1
+ - "ser2":
+ SCC channel B serial port ("Modem2"); parameters: 9600bps, 8N1
+ - "ser" :
+ default serial port
This is "ser2" for a Falcon, and "ser1" for any other machine
- - "midi": The MIDI port; parameters: 31250bps, 8N1
- - "par" : parallel port
+ - "midi":
+ The MIDI port; parameters: 31250bps, 8N1
+ - "par" :
+ parallel port
+
The printing routine for this implements a timeout for the
case there's no printer connected (else the kernel would
lock up). The timeout is not exact, but usually a few
@@ -205,26 +216,29 @@ Devices possible for Atari:
2.6) ramdisk_size=
--------------
+------------------
-Syntax: ramdisk_size=<size>
+:Syntax: ramdisk_size=<size>
- This option instructs the kernel to set up a ramdisk of the given
+This option instructs the kernel to set up a ramdisk of the given
size in KBytes. Do not use this option if the ramdisk contents are
passed by bootstrap! In this case, the size is selected automatically
and should not be overwritten.
- The only application is for root filesystems on floppy disks, that
+The only application is for root filesystems on floppy disks, that
should be loaded into memory. To do that, select the corresponding
size of the disk as ramdisk size, and set the root device to the disk
drive (with "root=").
2.7) swap=
+
+ I can't find any sign of this option in 2.2.6.
+
2.8) buff=
-----------
- I can't find any sign of these options in 2.2.6.
+ I can't find any sign of this option in 2.2.6.
3) General Device Options (Amiga and Atari)
@@ -233,13 +247,13 @@ drive (with "root=").
3.1) ether=
-----------
-Syntax: ether=[<irq>[,<base_addr>[,<mem_start>[,<mem_end>]]]],<dev-name>
+:Syntax: ether=[<irq>[,<base_addr>[,<mem_start>[,<mem_end>]]]],<dev-name>
- <dev-name> is the name of a net driver, as specified in
+<dev-name> is the name of a net driver, as specified in
drivers/net/Space.c in the Linux source. Most prominent are eth0, ...
eth3, sl0, ... sl3, ppp0, ..., ppp3, dummy, and lo.
- The non-ethernet drivers (sl, ppp, dummy, lo) obviously ignore the
+The non-ethernet drivers (sl, ppp, dummy, lo) obviously ignore the
settings by this options. Also, the existing ethernet drivers for
Linux/m68k (ariadne, a2065, hydra) don't use them because Zorro boards
are really Plug-'n-Play, so the "ether=" option is useless altogether
@@ -249,9 +263,9 @@ for Linux/m68k.
3.2) hd=
--------
-Syntax: hd=<cylinders>,<heads>,<sectors>
+:Syntax: hd=<cylinders>,<heads>,<sectors>
- This option sets the disk geometry of an IDE disk. The first hd=
+This option sets the disk geometry of an IDE disk. The first hd=
option is for the first IDE disk, the second for the second one.
(I.e., you can give this option twice.) In most cases, you won't have
to use this option, since the kernel can obtain the geometry data
@@ -262,9 +276,9 @@ disks.
3.3) max_scsi_luns=
-------------------
-Syntax: max_scsi_luns=<n>
+:Syntax: max_scsi_luns=<n>
- Sets the maximum number of LUNs (logical units) of SCSI devices to
+Sets the maximum number of LUNs (logical units) of SCSI devices to
be scanned. Valid values for <n> are between 1 and 8. Default is 8 if
"Probe all LUNs on each SCSI device" was selected during the kernel
configuration, else 1.
@@ -273,9 +287,9 @@ configuration, else 1.
3.4) st=
--------
-Syntax: st=<buffer_size>,[<write_thres>,[<max_buffers>]]
+:Syntax: st=<buffer_size>,[<write_thres>,[<max_buffers>]]
- Sets several parameters of the SCSI tape driver. <buffer_size> is
+Sets several parameters of the SCSI tape driver. <buffer_size> is
the number of 512-byte buffers reserved for tape operations for each
device. <write_thres> sets the number of blocks which must be filled
to start an actual write operation to the tape. Maximum value is the
@@ -286,9 +300,9 @@ buffers allocated for all tape devices.
3.5) dmasound=
--------------
-Syntax: dmasound=[<buffers>,<buffer-size>[,<catch-radius>]]
+:Syntax: dmasound=[<buffers>,<buffer-size>[,<catch-radius>]]
- This option controls some configurations of the Linux/m68k DMA sound
+This option controls some configurations of the Linux/m68k DMA sound
driver (Amiga and Atari): <buffers> is the number of buffers you want
to use (minimum 4, default 4), <buffer-size> is the size of each
buffer in kilobytes (minimum 4, default 32) and <catch-radius> says
@@ -305,20 +319,22 @@ don't need to expand the sound.
4.1) video=
-----------
-Syntax: video=<fbname>:<sub-options...>
+:Syntax: video=<fbname>:<sub-options...>
The <fbname> parameter specifies the name of the frame buffer,
-eg. most atari users will want to specify `atafb' here. The
+eg. most atari users will want to specify `atafb` here. The
<sub-options> is a comma-separated list of the sub-options listed
below.
-NB: Please notice that this option was renamed from `atavideo' to
- `video' during the development of the 1.3.x kernels, thus you
+NB:
+ Please notice that this option was renamed from `atavideo` to
+ `video` during the development of the 1.3.x kernels, thus you
might need to update your boot-scripts if upgrading to 2.x from
an 1.2.x kernel.
-NBB: The behavior of video= was changed in 2.1.57 so the recommended
-option is to specify the name of the frame buffer.
+NBB:
+ The behavior of video= was changed in 2.1.57 so the recommended
+ option is to specify the name of the frame buffer.
4.1.1) Video Mode
-----------------
@@ -341,11 +357,11 @@ mode, if the hardware allows. Currently defined names are:
- falh2 : 896x608x1, Falcon only
- falh16 : 896x608x4, Falcon only
- If no video mode is given on the command line, the kernel tries the
+If no video mode is given on the command line, the kernel tries the
modes names "default<n>" in turn, until one is possible with the
hardware in use.
- A video mode setting doesn't make sense, if the external driver is
+A video mode setting doesn't make sense, if the external driver is
activated by a "external:" sub-option.
4.1.2) inverse
@@ -358,17 +374,17 @@ option, you can make the background white.
4.1.3) font
-----------
-Syntax: font:<fontname>
+:Syntax: font:<fontname>
Specify the font to use in text modes. Currently you can choose only
-between `VGA8x8', `VGA8x16' and `PEARL8x8'. `VGA8x8' is default, if the
+between `VGA8x8`, `VGA8x16` and `PEARL8x8`. `VGA8x8` is default, if the
vertical size of the display is less than 400 pixel rows. Otherwise, the
-`VGA8x16' font is the default.
+`VGA8x16` font is the default.
-4.1.4) hwscroll_
-----------------
+4.1.4) `hwscroll_`
+------------------
-Syntax: hwscroll_<n>
+:Syntax: `hwscroll_<n>`
The number of additional lines of video memory to reserve for
speeding up the scrolling ("hardware scrolling"). Hardware scrolling
@@ -378,7 +394,7 @@ possible with plain STs and graphics cards (The former because the
base address must be on a 256 byte boundary there, the latter because
the kernel doesn't know how to set the base address at all.)
- By default, <n> is set to the number of visible text lines on the
+By default, <n> is set to the number of visible text lines on the
display. Thus, the amount of video memory is doubled, compared to no
hardware scrolling. You can turn off the hardware scrolling altogether
by setting <n> to 0.
@@ -386,31 +402,31 @@ by setting <n> to 0.
4.1.5) internal:
----------------
-Syntax: internal:<xres>;<yres>[;<xres_max>;<yres_max>;<offset>]
+:Syntax: internal:<xres>;<yres>[;<xres_max>;<yres_max>;<offset>]
This option specifies the capabilities of some extended internal video
hardware, like e.g. OverScan. <xres> and <yres> give the (extended)
dimensions of the screen.
- If your OverScan needs a black border, you have to write the last
+If your OverScan needs a black border, you have to write the last
three arguments of the "internal:". <xres_max> is the maximum line
length the hardware allows, <yres_max> the maximum number of lines.
<offset> is the offset of the visible part of the screen memory to its
physical start, in bytes.
- Often, extended interval video hardware has to be activated somehow.
+Often, extended interval video hardware has to be activated somehow.
For this, see the "sw_*" options below.
4.1.6) external:
----------------
-Syntax:
- external:<xres>;<yres>;<depth>;<org>;<scrmem>[;<scrlen>[;<vgabase>\
- [;<colw>[;<coltype>[;<xres_virtual>]]]]]
+:Syntax:
+ external:<xres>;<yres>;<depth>;<org>;<scrmem>[;<scrlen>[;<vgabase>
+ [;<colw>[;<coltype>[;<xres_virtual>]]]]]
-[I had to break this line...]
+.. I had to break this line...
- This is probably the most complicated parameter... It specifies that
+This is probably the most complicated parameter... It specifies that
you have some external video hardware (a graphics board), and how to
use it under Linux/m68k. The kernel cannot know more about the hardware
than you tell it here! The kernel also is unable to set or change any
@@ -418,38 +434,44 @@ video modes, since it doesn't know about any board internal. So, you
have to switch to that video mode before you start Linux, and cannot
switch to another mode once Linux has started.
- The first 3 parameters of this sub-option should be obvious: <xres>,
+The first 3 parameters of this sub-option should be obvious: <xres>,
<yres> and <depth> give the dimensions of the screen and the number of
planes (depth). The depth is the logarithm to base 2 of the number
of colors possible. (Or, the other way round: The number of colors is
2^depth).
- You have to tell the kernel furthermore how the video memory is
+You have to tell the kernel furthermore how the video memory is
organized. This is done by a letter as <org> parameter:
- 'n': "normal planes", i.e. one whole plane after another
- 'i': "interleaved planes", i.e. 16 bit of the first plane, than 16 bit
+ 'n':
+ "normal planes", i.e. one whole plane after another
+ 'i':
+ "interleaved planes", i.e. 16 bit of the first plane, than 16 bit
of the next, and so on... This mode is used only with the
- built-in Atari video modes, I think there is no card that
- supports this mode.
- 'p': "packed pixels", i.e. <depth> consecutive bits stand for all
- planes of one pixel; this is the most common mode for 8 planes
- (256 colors) on graphic cards
- 't': "true color" (more or less packed pixels, but without a color
- lookup table); usually depth is 24
+ built-in Atari video modes, I think there is no card that
+ supports this mode.
+ 'p':
+ "packed pixels", i.e. <depth> consecutive bits stand for all
+ planes of one pixel; this is the most common mode for 8 planes
+ (256 colors) on graphic cards
+ 't':
+ "true color" (more or less packed pixels, but without a color
+ lookup table); usually depth is 24
For monochrome modes (i.e., <depth> is 1), the <org> letter has a
different meaning:
- 'n': normal colors, i.e. 0=white, 1=black
- 'i': inverted colors, i.e. 0=black, 1=white
+ 'n':
+ normal colors, i.e. 0=white, 1=black
+ 'i':
+ inverted colors, i.e. 0=black, 1=white
- The next important information about the video hardware is the base
+The next important information about the video hardware is the base
address of the video memory. That is given in the <scrmem> parameter,
as a hexadecimal number with a "0x" prefix. You have to find out this
address in the documentation of your hardware.
- The next parameter, <scrlen>, tells the kernel about the size of the
+The next parameter, <scrlen>, tells the kernel about the size of the
video memory. If it's missing, the size is calculated from <xres>,
<yres>, and <depth>. For now, it is not useful to write a value here.
It would be used only for hardware scrolling (which isn't possible
@@ -460,7 +482,7 @@ empty, either by ending the "external:" after the video address or by
writing two consecutive semicolons, if you want to give a <vgabase>
(it is allowed to leave this parameter empty).
- The <vgabase> parameter is optional. If it is not given, the kernel
+The <vgabase> parameter is optional. If it is not given, the kernel
cannot read or write any color registers of the video hardware, and
thus you have to set appropriate colors before you start Linux. But if
your card is somehow VGA compatible, you can tell the kernel the base
@@ -472,18 +494,18 @@ uses the addresses vgabase+0x3c7...vgabase+0x3c9. The <vgabase>
parameter is written in hexadecimal with a "0x" prefix, just as
<scrmem>.
- <colw> is meaningful only if <vgabase> is specified. It tells the
+<colw> is meaningful only if <vgabase> is specified. It tells the
kernel how wide each of the color register is, i.e. the number of bits
per single color (red/green/blue). Default is 6, another quite usual
value is 8.
- Also <coltype> is used together with <vgabase>. It tells the kernel
+Also <coltype> is used together with <vgabase>. It tells the kernel
about the color register model of your gfx board. Currently, the types
"vga" (which is also the default) and "mv300" (SANG MV300) are
implemented.
- Parameter <xres_virtual> is required for ProMST or ET4000 cards where
-the physical linelength differs from the visible length. With ProMST,
+Parameter <xres_virtual> is required for ProMST or ET4000 cards where
+the physical linelength differs from the visible length. With ProMST,
xres_virtual must be set to 2048. For ET4000, xres_virtual depends on the
initialisation of the video-card.
If you're missing a corresponding yres_virtual: the external part is legacy,
@@ -499,13 +521,13 @@ currently works only with the ScreenWonder!
4.1.8) monitorcap:
-------------------
-Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
+:Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
This describes the capabilities of a multisync monitor. Don't use it
with a fixed-frequency monitor! For now, only the Falcon frame buffer
uses the settings of "monitorcap:".
- <vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
+<vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
your monitor can work with, in Hz. <hmin> and <hmax> are the same for
the horizontal frequency, in kHz.
@@ -520,28 +542,28 @@ If this option is given, the framebuffer device doesn't do any video
mode calculations and settings on its own. The only Atari fb device
that does this currently is the Falcon.
- What you reach with this: Settings for unknown video extensions
+What you reach with this: Settings for unknown video extensions
aren't overridden by the driver, so you can still use the mode found
when booting, when the driver doesn't know to set this mode itself.
But this also means, that you can't switch video modes anymore...
- An example where you may want to use "keep" is the ScreenBlaster for
+An example where you may want to use "keep" is the ScreenBlaster for
the Falcon.
4.2) atamouse=
--------------
-Syntax: atamouse=<x-threshold>,[<y-threshold>]
+:Syntax: atamouse=<x-threshold>,[<y-threshold>]
- With this option, you can set the mouse movement reporting threshold.
+With this option, you can set the mouse movement reporting threshold.
This is the number of pixels of mouse movement that have to accumulate
before the IKBD sends a new mouse packet to the kernel. Higher values
reduce the mouse interrupt load and thus reduce the chance of keyboard
overruns. Lower values give a slightly faster mouse responses and
slightly better mouse tracking.
- You can set the threshold in x and y separately, but usually this is
+You can set the threshold in x and y separately, but usually this is
of little practical use. If there's just one number in the option, it
is used for both dimensions. The default value is 2 for both
thresholds.
@@ -550,7 +572,7 @@ thresholds.
4.3) ataflop=
-------------
-Syntax: ataflop=<drive type>[,<trackbuffering>[,<steprateA>[,<steprateB>]]]
+:Syntax: ataflop=<drive type>[,<trackbuffering>[,<steprateA>[,<steprateB>]]]
The drive type may be 0, 1, or 2, for DD, HD, and ED, resp. This
setting affects how many buffers are reserved and which formats are
@@ -563,15 +585,15 @@ Syntax: ataflop=<drive type>[,<trackbuffering>[,<steprateA>[,<steprateB>]]]
no for the Medusa and yes for all others.
With the two following parameters, you can change the default
- steprate used for drive A and B, resp.
+ steprate used for drive A and B, resp.
4.4) atascsi=
-------------
-Syntax: atascsi=<can_queue>[,<cmd_per_lun>[,<scat-gat>[,<host-id>[,<tagged>]]]]
+:Syntax: atascsi=<can_queue>[,<cmd_per_lun>[,<scat-gat>[,<host-id>[,<tagged>]]]]
- This option sets some parameters for the Atari native SCSI driver.
+This option sets some parameters for the Atari native SCSI driver.
Generally, any number of arguments can be omitted from the end. And
for each of the numbers, a negative value means "use default". The
defaults depend on whether TT-style or Falcon-style SCSI is used.
@@ -597,11 +619,14 @@ ignored (others aren't affected).
32). Default: 8/1. (Note: Values > 1 seem to cause problems on a
Falcon, cause not yet known.)
- The <cmd_per_lun> value at a great part determines the amount of
+ The <cmd_per_lun> value at a great part determines the amount of
memory SCSI reserves for itself. The formula is rather
complicated, but I can give you some hints:
- no scatter-gather : cmd_per_lun * 232 bytes
- full scatter-gather: cmd_per_lun * approx. 17 Kbytes
+
+ no scatter-gather:
+ cmd_per_lun * 232 bytes
+ full scatter-gather:
+ cmd_per_lun * approx. 17 Kbytes
<scat-gat>:
Size of the scatter-gather table, i.e. the number of requests
@@ -634,19 +659,23 @@ ignored (others aren't affected).
4.5 switches=
-------------
-Syntax: switches=<list of switches>
+:Syntax: switches=<list of switches>
- With this option you can switch some hardware lines that are often
+With this option you can switch some hardware lines that are often
used to enable/disable certain hardware extensions. Examples are
OverScan, overclocking, ...
- The <list of switches> is a comma-separated list of the following
+The <list of switches> is a comma-separated list of the following
items:
- ikbd: set RTS of the keyboard ACIA high
- midi: set RTS of the MIDI ACIA high
- snd6: set bit 6 of the PSG port A
- snd7: set bit 6 of the PSG port A
+ ikbd:
+ set RTS of the keyboard ACIA high
+ midi:
+ set RTS of the MIDI ACIA high
+ snd6:
+ set bit 6 of the PSG port A
+ snd7:
+ set bit 6 of the PSG port A
It doesn't make sense to mention a switch more than once (no
difference to only once), but you can give as many switches as you
@@ -654,16 +683,16 @@ want to enable different features. The switch lines are set as early
as possible during kernel initialization (even before determining the
present hardware.)
- All of the items can also be prefixed with "ov_", i.e. "ov_ikbd",
-"ov_midi", ... These options are meant for switching on an OverScan
+All of the items can also be prefixed with `ov_`, i.e. `ov_ikbd`,
+`ov_midi`, ... These options are meant for switching on an OverScan
video extension. The difference to the bare option is that the
switch-on is done after video initialization, and somehow synchronized
to the HBLANK. A speciality is that ov_ikbd and ov_midi are switched
off before rebooting, so that OverScan is disabled and TOS boots
correctly.
- If you give an option both, with and without the "ov_" prefix, the
-earlier initialization ("ov_"-less) takes precedence. But the
+If you give an option both, with and without the `ov_` prefix, the
+earlier initialization (`ov_`-less) takes precedence. But the
switching-off on reset still happens in this case.
5) Options for Amiga Only:
@@ -672,10 +701,10 @@ switching-off on reset still happens in this case.
5.1) video=
-----------
-Syntax: video=<fbname>:<sub-options...>
+:Syntax: video=<fbname>:<sub-options...>
The <fbname> parameter specifies the name of the frame buffer, valid
-options are `amifb', `cyber', 'virge', `retz3' and `clgen', provided
+options are `amifb`, `cyber`, 'virge', `retz3` and `clgen`, provided
that the respective frame buffer devices have been compiled into the
kernel (or compiled as loadable modules). The behavior of the <fbname>
option was changed in 2.1.57 so it is now recommended to specify this
@@ -697,9 +726,11 @@ predefined video modes are available:
NTSC modes:
- ntsc : 640x200, 15 kHz, 60 Hz
- ntsc-lace : 640x400, 15 kHz, 60 Hz interlaced
+
PAL modes:
- pal : 640x256, 15 kHz, 50 Hz
- pal-lace : 640x512, 15 kHz, 50 Hz interlaced
+
ECS modes:
- multiscan : 640x480, 29 kHz, 57 Hz
- multiscan-lace : 640x960, 29 kHz, 57 Hz interlaced
@@ -715,6 +746,7 @@ ECS modes:
- dblpal-lace : 640x1024, 27 kHz, 47 Hz interlaced
- dblntsc : 640x200, 27 kHz, 57 Hz doublescan
- dblpal : 640x256, 27 kHz, 47 Hz doublescan
+
VGA modes:
- vga : 640x480, 31 kHz, 60 Hz
- vga70 : 640x400, 31 kHz, 70 Hz
@@ -726,7 +758,7 @@ chipset and 8-bit color for the AGA chipset.
5.1.2) depth
------------
-Syntax: depth:<nr. of bit-planes>
+:Syntax: depth:<nr. of bit-planes>
Specify the number of bit-planes for the selected video-mode.
@@ -739,32 +771,32 @@ Use inverted display (black on white). Functionally the same as the
5.1.4) font
-----------
-Syntax: font:<fontname>
+:Syntax: font:<fontname>
Specify the font to use in text modes. Functionally the same as the
-"font" sub-option for the Atari, except that `PEARL8x8' is used instead
-of `VGA8x8' if the vertical size of the display is less than 400 pixel
+"font" sub-option for the Atari, except that `PEARL8x8` is used instead
+of `VGA8x8` if the vertical size of the display is less than 400 pixel
rows.
5.1.5) monitorcap:
-------------------
-Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
+:Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
This describes the capabilities of a multisync monitor. For now, only
the color frame buffer uses the settings of "monitorcap:".
- <vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
+<vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
your monitor can work with, in Hz. <hmin> and <hmax> are the same for
the horizontal frequency, in kHz.
- The defaults are 50;90;15;38 (Generic Amiga multisync monitor).
+The defaults are 50;90;15;38 (Generic Amiga multisync monitor).
5.2) fd_def_df0=
----------------
-Syntax: fd_def_df0=<value>
+:Syntax: fd_def_df0=<value>
Sets the df0 value for "silent" floppy drives. The value should be in
hexadecimal with "0x" prefix.
@@ -773,7 +805,7 @@ hexadecimal with "0x" prefix.
5.3) wd33c93=
-------------
-Syntax: wd33c93=<sub-options...>
+:Syntax: wd33c93=<sub-options...>
These options affect the A590/A2091, A3000 and GVP Series II SCSI
controllers.
@@ -784,9 +816,9 @@ below.
5.3.1) nosync
-------------
-Syntax: nosync:bitmask
+:Syntax: nosync:bitmask
- bitmask is a byte where the 1st 7 bits correspond with the 7
+bitmask is a byte where the 1st 7 bits correspond with the 7
possible SCSI devices. Set a bit to prevent sync negotiation on that
device. To maintain backwards compatibility, a command-line such as
"wd33c93=255" will be automatically translated to
@@ -796,35 +828,35 @@ all devices, eg. nosync:0xff.
5.3.2) period
-------------
-Syntax: period:ns
+:Syntax: period:ns
- `ns' is the minimum # of nanoseconds in a SCSI data transfer
+`ns` is the minimum # of nanoseconds in a SCSI data transfer
period. Default is 500; acceptable values are 250 - 1000.
5.3.3) disconnect
-----------------
-Syntax: disconnect:x
+:Syntax: disconnect:x
- Specify x = 0 to never allow disconnects, 2 to always allow them.
+Specify x = 0 to never allow disconnects, 2 to always allow them.
x = 1 does 'adaptive' disconnects, which is the default and generally
the best choice.
5.3.4) debug
------------
-Syntax: debug:x
+:Syntax: debug:x
- If `DEBUGGING_ON' is defined, x is a bit mask that causes various
+If `DEBUGGING_ON` is defined, x is a bit mask that causes various
types of debug output to printed - see the DB_xxx defines in
wd33c93.h.
5.3.5) clock
------------
-Syntax: clock:x
+:Syntax: clock:x
- x = clock input in MHz for WD33c93 chip. Normal values would be from
+x = clock input in MHz for WD33c93 chip. Normal values would be from
8 through 20. The default value depends on your hostadapter(s),
default for the A3000 internal controller is 14, for the A2091 it's 8
and for the GVP hostadapters it's either 8 or 14, depending on the
@@ -834,15 +866,15 @@ hostadapters.
5.3.6) next
-----------
- No argument. Used to separate blocks of keywords when there's more
+No argument. Used to separate blocks of keywords when there's more
than one wd33c93-based host adapter in the system.
5.3.7) nodma
------------
-Syntax: nodma:x
+:Syntax: nodma:x
- If x is 1 (or if the option is just written as "nodma"), the WD33c93
+If x is 1 (or if the option is just written as "nodma"), the WD33c93
controller will not use DMA (= direct memory access) to access the
Amiga's memory. This is useful for some systems (like A3000's and
A4000's with the A3640 accelerator, revision 3.0) that have problems
@@ -853,32 +885,27 @@ possible.
5.4) gvp11=
-----------
-Syntax: gvp11=<addr-mask>
+:Syntax: gvp11=<addr-mask>
- The earlier versions of the GVP driver did not handle DMA
+The earlier versions of the GVP driver did not handle DMA
address-mask settings correctly which made it necessary for some
people to use this option, in order to get their GVP controller
running under Linux. These problems have hopefully been solved and the
use of this option is now highly unrecommended!
- Incorrect use can lead to unpredictable behavior, so please only use
+Incorrect use can lead to unpredictable behavior, so please only use
this option if you *know* what you are doing and have a reason to do
so. In any case if you experience problems and need to use this
option, please inform us about it by mailing to the Linux/68k kernel
mailing list.
- The address mask set by this option specifies which addresses are
+The address mask set by this option specifies which addresses are
valid for DMA with the GVP Series II SCSI controller. An address is
valid, if no bits are set except the bits that are set in the mask,
too.
- Some versions of the GVP can only DMA into a 24 bit address range,
+Some versions of the GVP can only DMA into a 24 bit address range,
some can address a 25 bit address range while others can use the whole
32 bit address range for DMA. The correct setting depends on your
controller and should be autodetected by the driver. An example is the
24 bit region which is specified by a mask of 0x00fffffe.
-
-
-/* Local Variables: */
-/* mode: text */
-/* End: */
diff --git a/Documentation/maintainer/conf.py b/Documentation/maintainer/conf.py
deleted file mode 100644
index 81e9eb7a7884..000000000000
--- a/Documentation/maintainer/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = 'Linux Kernel Development Documentation'
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'maintainer.tex', 'Linux Kernel Development Documentation',
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/maintainer/index.rst b/Documentation/maintainer/index.rst
index 2a14916930cb..56e2c09dfa39 100644
--- a/Documentation/maintainer/index.rst
+++ b/Documentation/maintainer/index.rst
@@ -10,5 +10,6 @@ additions to this manual.
:maxdepth: 2
configure-git
+ rebasing-and-merging
pull-requests
diff --git a/Documentation/maintainer/pull-requests.rst b/Documentation/maintainer/pull-requests.rst
index 22b271de0304..1a2f99b67d25 100644
--- a/Documentation/maintainer/pull-requests.rst
+++ b/Documentation/maintainer/pull-requests.rst
@@ -29,7 +29,7 @@ request to.
In order to create the pull request you must first tag the branch that you
have just created. It is recommended that you choose a meaningful tag name,
in a way that you and others can understand, even after some time. A good
-practice is to include in the name an indicator of the sybsystem of origin
+practice is to include in the name an indicator of the subsystem of origin
and the target kernel version.
Greg offers the following. A pull request with miscellaneous stuff for
diff --git a/Documentation/maintainer/rebasing-and-merging.rst b/Documentation/maintainer/rebasing-and-merging.rst
new file mode 100644
index 000000000000..09f988e7fa71
--- /dev/null
+++ b/Documentation/maintainer/rebasing-and-merging.rst
@@ -0,0 +1,226 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================
+Rebasing and merging
+====================
+
+Maintaining a subsystem, as a general rule, requires a familiarity with the
+Git source-code management system. Git is a powerful tool with a lot of
+features; as is often the case with such tools, there are right and wrong
+ways to use those features. This document looks in particular at the use
+of rebasing and merging. Maintainers often get in trouble when they use
+those tools incorrectly, but avoiding problems is not actually all that
+hard.
+
+One thing to be aware of in general is that, unlike many other projects,
+the kernel community is not scared by seeing merge commits in its
+development history. Indeed, given the scale of the project, avoiding
+merges would be nearly impossible. Some problems encountered by
+maintainers result from a desire to avoid merges, while others come from
+merging a little too often.
+
+Rebasing
+========
+
+"Rebasing" is the process of changing the history of a series of commits
+within a repository. There are two different types of operations that are
+referred to as rebasing since both are done with the ``git rebase``
+command, but there are significant differences between them:
+
+ - Changing the parent (starting) commit upon which a series of patches is
+ built. For example, a rebase operation could take a patch set built on
+ the previous kernel release and base it, instead, on the current
+ release. We'll call this operation "reparenting" in the discussion
+ below.
+
+ - Changing the history of a set of patches by fixing (or deleting) broken
+ commits, adding patches, adding tags to commit changelogs, or changing
+ the order in which commits are applied. In the following text, this
+ type of operation will be referred to as "history modification"
+
+The term "rebasing" will be used to refer to both of the above operations.
+Used properly, rebasing can yield a cleaner and clearer development
+history; used improperly, it can obscure that history and introduce bugs.
+
+There are a few rules of thumb that can help developers to avoid the worst
+perils of rebasing:
+
+ - History that has been exposed to the world beyond your private system
+ should usually not be changed. Others may have pulled a copy of your
+ tree and built on it; modifying your tree will create pain for them. If
+ work is in need of rebasing, that is usually a sign that it is not yet
+ ready to be committed to a public repository.
+
+ That said, there are always exceptions. Some trees (linux-next being
+ a significant example) are frequently rebased by their nature, and
+ developers know not to base work on them. Developers will sometimes
+ expose an unstable branch for others to test with or for automated
+ testing services. If you do expose a branch that may be unstable in
+ this way, be sure that prospective users know not to base work on it.
+
+ - Do not rebase a branch that contains history created by others. If you
+ have pulled changes from another developer's repository, you are now a
+ custodian of their history. You should not change it. With few
+ exceptions, for example, a broken commit in a tree like this should be
+ explicitly reverted rather than disappeared via history modification.
+
+ - Do not reparent a tree without a good reason to do so. Just being on a
+ newer base or avoiding a merge with an upstream repository is not
+ generally a good reason.
+
+ - If you must reparent a repository, do not pick some random kernel commit
+ as the new base. The kernel is often in a relatively unstable state
+ between release points; basing development on one of those points
+ increases the chances of running into surprising bugs. When a patch
+ series must move to a new base, pick a stable point (such as one of
+ the -rc releases) to move to.
+
+ - Realize that reparenting a patch series (or making significant history
+ modifications) changes the environment in which it was developed and,
+ likely, invalidates much of the testing that was done. A reparented
+ patch series should, as a general rule, be treated like new code and
+ retested from the beginning.
+
+A frequent cause of merge-window trouble is when Linus is presented with a
+patch series that has clearly been reparented, often to a random commit,
+shortly before the pull request was sent. The chances of such a series
+having been adequately tested are relatively low - as are the chances of
+the pull request being acted upon.
+
+If, instead, rebasing is limited to private trees, commits are based on a
+well-known starting point, and they are well tested, the potential for
+trouble is low.
+
+Merging
+=======
+
+Merging is a common operation in the kernel development process; the 5.1
+development cycle included 1,126 merge commits - nearly 9% of the total.
+Kernel work is accumulated in over 100 different subsystem trees, each of
+which may contain multiple topic branches; each branch is usually developed
+independently of the others. So naturally, at least one merge will be
+required before any given branch finds its way into an upstream repository.
+
+Many projects require that branches in pull requests be based on the
+current trunk so that no merge commits appear in the history. The kernel
+is not such a project; any rebasing of branches to avoid merges will, most
+likely, lead to trouble.
+
+Subsystem maintainers find themselves having to do two types of merges:
+from lower-level subsystem trees and from others, either sibling trees or
+the mainline. The best practices to follow differ in those two situations.
+
+Merging from lower-level trees
+------------------------------
+
+Larger subsystems tend to have multiple levels of maintainers, with the
+lower-level maintainers sending pull requests to the higher levels. Acting
+on such a pull request will almost certainly generate a merge commit; that
+is as it should be. In fact, subsystem maintainers may want to use
+the --no-ff flag to force the addition of a merge commit in the rare cases
+where one would not normally be created so that the reasons for the merge
+can be recorded. The changelog for the merge should, for any kind of
+merge, say *why* the merge is being done. For a lower-level tree, "why" is
+usually a summary of the changes that will come with that pull.
+
+Maintainers at all levels should be using signed tags on their pull
+requests, and upstream maintainers should verify the tags when pulling
+branches. Failure to do so threatens the security of the development
+process as a whole.
+
+As per the rules outlined above, once you have merged somebody else's
+history into your tree, you cannot rebase that branch, even if you
+otherwise would be able to.
+
+Merging from sibling or upstream trees
+--------------------------------------
+
+While merges from downstream are common and unremarkable, merges from other
+trees tend to be a red flag when it comes time to push a branch upstream.
+Such merges need to be carefully thought about and well justified, or
+there's a good chance that a subsequent pull request will be rejected.
+
+It is natural to want to merge the master branch into a repository; this
+type of merge is often called a "back merge". Back merges can help to make
+sure that there are no conflicts with parallel development and generally
+gives a warm, fuzzy feeling of being up-to-date. But this temptation
+should be avoided almost all of the time.
+
+Why is that? Back merges will muddy the development history of your own
+branch. They will significantly increase your chances of encountering bugs
+from elsewhere in the community and make it hard to ensure that the work
+you are managing is stable and ready for upstream. Frequent merges can
+also obscure problems with the development process in your tree; they can
+hide interactions with other trees that should not be happening (often) in
+a well-managed branch.
+
+That said, back merges are occasionally required; when that happens, be
+sure to document *why* it was required in the commit message. As always,
+merge to a well-known stable point, rather than to some random commit.
+Even then, you should not back merge a tree above your immediate upstream
+tree; if a higher-level back merge is really required, the upstream tree
+should do it first.
+
+One of the most frequent causes of merge-related trouble is when a
+maintainer merges with the upstream in order to resolve merge conflicts
+before sending a pull request. Again, this temptation is easy enough to
+understand, but it should absolutely be avoided. This is especially true
+for the final pull request: Linus is adamant that he would much rather see
+merge conflicts than unnecessary back merges. Seeing the conflicts lets
+him know where potential problem areas are. He does a lot of merges (382
+in the 5.1 development cycle) and has gotten quite good at conflict
+resolution - often better than the developers involved.
+
+So what should a maintainer do when there is a conflict between their
+subsystem branch and the mainline? The most important step is to warn
+Linus in the pull request that the conflict will happen; if nothing else,
+that demonstrates an awareness of how your branch fits into the whole. For
+especially difficult conflicts, create and push a *separate* branch to show
+how you would resolve things. Mention that branch in your pull request,
+but the pull request itself should be for the unmerged branch.
+
+Even in the absence of known conflicts, doing a test merge before sending a
+pull request is a good idea. It may alert you to problems that you somehow
+didn't see from linux-next and helps to understand exactly what you are
+asking upstream to do.
+
+Another reason for doing merges of upstream or another subsystem tree is to
+resolve dependencies. These dependency issues do happen at times, and
+sometimes a cross-merge with another tree is the best way to resolve them;
+as always, in such situations, the merge commit should explain why the
+merge has been done. Take a moment to do it right; people will read those
+changelogs.
+
+Often, though, dependency issues indicate that a change of approach is
+needed. Merging another subsystem tree to resolve a dependency risks
+bringing in other bugs and should almost never be done. If that subsystem
+tree fails to be pulled upstream, whatever problems it had will block the
+merging of your tree as well. Preferable alternatives include agreeing
+with the maintainer to carry both sets of changes in one of the trees or
+creating a topic branch dedicated to the prerequisite commits that can be
+merged into both trees. If the dependency is related to major
+infrastructural changes, the right solution might be to hold the dependent
+commits for one development cycle so that those changes have time to
+stabilize in the mainline.
+
+Finally
+=======
+
+It is relatively common to merge with the mainline toward the beginning of
+the development cycle in order to pick up changes and fixes done elsewhere
+in the tree. As always, such a merge should pick a well-known release
+point rather than some random spot. If your upstream-bound branch has
+emptied entirely into the mainline during the merge window, you can pull it
+forward with a command like::
+
+ git merge v5.2-rc1^0
+
+The "^0" will cause Git to do a fast-forward merge (which should be
+possible in this situation), thus avoiding the addition of a spurious merge
+commit.
+
+The guidelines laid out above are just that: guidelines. There will always
+be situations that call out for a different solution, and these guidelines
+should not prevent developers from doing the right thing when the need
+arises. But one should always think about whether the need has truly
+arisen and be prepared to explain why something abnormal needs to be done.
diff --git a/Documentation/media/conf.py b/Documentation/media/conf.py
deleted file mode 100644
index 1f194fcd2cae..000000000000
--- a/Documentation/media/conf.py
+++ /dev/null
@@ -1,12 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-# SPDX-License-Identifier: GPL-2.0
-
-project = 'Linux Media Subsystem Documentation'
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'media.tex', 'Linux Media Subsystem Documentation',
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/media/kapi/csi2.rst b/Documentation/media/kapi/csi2.rst
index a7e75e2eba85..030a5c41ec75 100644
--- a/Documentation/media/kapi/csi2.rst
+++ b/Documentation/media/kapi/csi2.rst
@@ -49,9 +49,13 @@ where
The transmitter drivers must, if possible, configure the CSI-2
transmitter to *LP-11 mode* whenever the transmitter is powered on but
-not active. Some transmitters do this automatically but some have to
-be explicitly programmed to do so, and some are unable to do so
-altogether due to hardware constraints.
+not active, and maintain *LP-11 mode* until stream on. Only at stream
+on should the transmitter activate the clock on the clock lane and
+transition to *HS mode*.
+
+Some transmitters do this automatically but some have to be explicitly
+programmed to do so, and some are unable to do so altogether due to
+hardware constraints.
Stopping the transmitter
^^^^^^^^^^^^^^^^^^^^^^^^
@@ -72,3 +76,10 @@ the transmitter up by using the
:c:type:`v4l2_subdev_core_ops`->s_power() callback. This may take
place either indirectly by using :c:func:`v4l2_pipeline_pm_use` or
directly.
+
+Formats
+-------
+
+The media bus pixel codes document parallel formats. Should the pixel data be
+transported over a serial bus, the media bus pixel code that describes a
+parallel format that transfers a sample on a single clock cycle is used.
diff --git a/Documentation/media/kapi/dtv-core.rst b/Documentation/media/kapi/dtv-core.rst
index ac005b46f23e..82c5b85ed9b1 100644
--- a/Documentation/media/kapi/dtv-core.rst
+++ b/Documentation/media/kapi/dtv-core.rst
@@ -11,12 +11,12 @@ Digital TV devices are implemented by several different drivers:
- Frontend drivers that are usually implemented as two separate drivers:
- - A tuner driver that implements the logic with commands the part of the
- hardware with is responsible to tune into a digital TV transponder or
+ - A tuner driver that implements the logic which commands the part of
+ the hardware responsible for tuning into a digital TV transponder or
physical channel. The output of a tuner is usually a baseband or
Intermediate Frequency (IF) signal;
- - A demodulator driver (a.k.a "demod") that implements the logic with
+ - A demodulator driver (a.k.a "demod") that implements the logic which
commands the digital TV decoding hardware. The output of a demod is
a digital stream, with multiple audio, video and data channels typically
multiplexed using MPEG Transport Stream [#f1]_.
diff --git a/Documentation/media/kapi/v4l2-controls.rst b/Documentation/media/kapi/v4l2-controls.rst
index 64ab99abf0b6..ebe2a55908be 100644
--- a/Documentation/media/kapi/v4l2-controls.rst
+++ b/Documentation/media/kapi/v4l2-controls.rst
@@ -26,8 +26,9 @@ The control framework was created in order to implement all the rules of the
V4L2 specification with respect to controls in a central place. And to make
life as easy as possible for the driver developer.
-Note that the control framework relies on the presence of a struct v4l2_device
-for V4L2 drivers and struct v4l2_subdev for sub-device drivers.
+Note that the control framework relies on the presence of a struct
+:c:type:`v4l2_device` for V4L2 drivers and struct :c:type:`v4l2_subdev` for
+sub-device drivers.
Objects in the framework
@@ -35,12 +36,13 @@ Objects in the framework
There are two main objects:
-The v4l2_ctrl object describes the control properties and keeps track of the
-control's value (both the current value and the proposed new value).
+The :c:type:`v4l2_ctrl` object describes the control properties and keeps
+track of the control's value (both the current value and the proposed new
+value).
-v4l2_ctrl_handler is the object that keeps track of controls. It maintains a
-list of v4l2_ctrl objects that it owns and another list of references to
-controls, possibly to controls owned by other handlers.
+:c:type:`v4l2_ctrl_handler` is the object that keeps track of controls. It
+maintains a list of v4l2_ctrl objects that it owns and another list of
+references to controls, possibly to controls owned by other handlers.
Basic usage for V4L2 and sub-device drivers
@@ -48,21 +50,39 @@ Basic usage for V4L2 and sub-device drivers
1) Prepare the driver:
+.. code-block:: c
+
+ #include <media/v4l2-ctrls.h>
+
1.1) Add the handler to your driver's top-level struct:
-.. code-block:: none
+For V4L2 drivers:
+
+.. code-block:: c
struct foo_dev {
...
+ struct v4l2_device v4l2_dev;
+ ...
struct v4l2_ctrl_handler ctrl_handler;
...
};
- struct foo_dev *foo;
+For sub-device drivers:
+
+.. code-block:: c
+
+ struct foo_dev {
+ ...
+ struct v4l2_subdev sd;
+ ...
+ struct v4l2_ctrl_handler ctrl_handler;
+ ...
+ };
1.2) Initialize the handler:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
@@ -72,72 +92,48 @@ information. It is a hint only.
1.3) Hook the control handler into the driver:
-1.3.1) For V4L2 drivers do this:
+For V4L2 drivers:
-.. code-block:: none
-
- struct foo_dev {
- ...
- struct v4l2_device v4l2_dev;
- ...
- struct v4l2_ctrl_handler ctrl_handler;
- ...
- };
+.. code-block:: c
foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;
-Where foo->v4l2_dev is of type struct v4l2_device.
-
-Finally, remove all control functions from your v4l2_ioctl_ops (if any):
-vidioc_queryctrl, vidioc_query_ext_ctrl, vidioc_querymenu, vidioc_g_ctrl,
-vidioc_s_ctrl, vidioc_g_ext_ctrls, vidioc_try_ext_ctrls and vidioc_s_ext_ctrls.
-Those are now no longer needed.
-
-1.3.2) For sub-device drivers do this:
-
-.. code-block:: none
+For sub-device drivers:
- struct foo_dev {
- ...
- struct v4l2_subdev sd;
- ...
- struct v4l2_ctrl_handler ctrl_handler;
- ...
- };
+.. code-block:: c
foo->sd.ctrl_handler = &foo->ctrl_handler;
-Where foo->sd is of type struct v4l2_subdev.
-
1.4) Clean up the handler at the end:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_handler_free(&foo->ctrl_handler);
2) Add controls:
-You add non-menu controls by calling v4l2_ctrl_new_std:
+You add non-menu controls by calling :c:func:`v4l2_ctrl_new_std`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 min, s32 max, u32 step, s32 def);
-Menu and integer menu controls are added by calling v4l2_ctrl_new_std_menu:
+Menu and integer menu controls are added by calling
+:c:func:`v4l2_ctrl_new_std_menu`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 skip_mask, s32 def);
Menu controls with a driver specific menu are added by calling
-v4l2_ctrl_new_std_menu_items:
+:c:func:`v4l2_ctrl_new_std_menu_items`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_std_menu_items(
struct v4l2_ctrl_handler *hdl,
@@ -145,17 +141,18 @@ v4l2_ctrl_new_std_menu_items:
s32 skip_mask, s32 def, const char * const *qmenu);
Integer menu controls with a driver specific menu can be added by calling
-v4l2_ctrl_new_int_menu:
+:c:func:`v4l2_ctrl_new_int_menu`:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 def, const s64 *qmenu_int);
-These functions are typically called right after the v4l2_ctrl_handler_init:
+These functions are typically called right after the
+:c:func:`v4l2_ctrl_handler_init`:
-.. code-block:: none
+.. code-block:: c
static const s64 exp_bias_qmenu[] = {
-2, -1, 0, 1, 2
@@ -192,33 +189,34 @@ These functions are typically called right after the v4l2_ctrl_handler_init:
return err;
}
-The v4l2_ctrl_new_std function returns the v4l2_ctrl pointer to the new
-control, but if you do not need to access the pointer outside the control ops,
-then there is no need to store it.
-
-The v4l2_ctrl_new_std function will fill in most fields based on the control
-ID except for the min, max, step and default values. These are passed in the
-last four arguments. These values are driver specific while control attributes
-like type, name, flags are all global. The control's current value will be set
-to the default value.
-
-The v4l2_ctrl_new_std_menu function is very similar but it is used for menu
-controls. There is no min argument since that is always 0 for menu controls,
-and instead of a step there is a skip_mask argument: if bit X is 1, then menu
-item X is skipped.
-
-The v4l2_ctrl_new_int_menu function creates a new standard integer menu
-control with driver-specific items in the menu. It differs from
-v4l2_ctrl_new_std_menu in that it doesn't have the mask argument and takes
-as the last argument an array of signed 64-bit integers that form an exact
-menu item list.
-
-The v4l2_ctrl_new_std_menu_items function is very similar to
-v4l2_ctrl_new_std_menu but takes an extra parameter qmenu, which is the driver
-specific menu for an otherwise standard menu control. A good example for this
-control is the test pattern control for capture/display/sensors devices that
-have the capability to generate test patterns. These test patterns are hardware
-specific, so the contents of the menu will vary from device to device.
+The :c:func:`v4l2_ctrl_new_std` function returns the v4l2_ctrl pointer to
+the new control, but if you do not need to access the pointer outside the
+control ops, then there is no need to store it.
+
+The :c:func:`v4l2_ctrl_new_std` function will fill in most fields based on
+the control ID except for the min, max, step and default values. These are
+passed in the last four arguments. These values are driver specific while
+control attributes like type, name, flags are all global. The control's
+current value will be set to the default value.
+
+The :c:func:`v4l2_ctrl_new_std_menu` function is very similar but it is
+used for menu controls. There is no min argument since that is always 0 for
+menu controls, and instead of a step there is a skip_mask argument: if bit
+X is 1, then menu item X is skipped.
+
+The :c:func:`v4l2_ctrl_new_int_menu` function creates a new standard
+integer menu control with driver-specific items in the menu. It differs
+from v4l2_ctrl_new_std_menu in that it doesn't have the mask argument and
+takes as the last argument an array of signed 64-bit integers that form an
+exact menu item list.
+
+The :c:func:`v4l2_ctrl_new_std_menu_items` function is very similar to
+v4l2_ctrl_new_std_menu but takes an extra parameter qmenu, which is the
+driver specific menu for an otherwise standard menu control. A good example
+for this control is the test pattern control for capture/display/sensors
+devices that have the capability to generate test patterns. These test
+patterns are hardware specific, so the contents of the menu will vary from
+device to device.
Note that if something fails, the function will return NULL or an error and
set ctrl_handler->error to the error code. If ctrl_handler->error was already
@@ -233,7 +231,7 @@ a bit faster that way.
3) Optionally force initial control setup:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_handler_setup(&foo->ctrl_handler);
@@ -242,9 +240,9 @@ initializes the hardware to the default control values. It is recommended
that you do this as this ensures that both the internal data structures and
the hardware are in sync.
-4) Finally: implement the v4l2_ctrl_ops
+4) Finally: implement the :c:type:`v4l2_ctrl_ops`
-.. code-block:: none
+.. code-block:: c
static const struct v4l2_ctrl_ops foo_ctrl_ops = {
.s_ctrl = foo_s_ctrl,
@@ -252,7 +250,7 @@ the hardware are in sync.
Usually all you need is s_ctrl:
-.. code-block:: none
+.. code-block:: c
static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{
@@ -305,7 +303,7 @@ Accessing Control Values
The following union is used inside the control framework to access control
values:
-.. code-block:: none
+.. code-block:: c
union v4l2_ctrl_ptr {
s32 *p_s32;
@@ -317,7 +315,7 @@ values:
The v4l2_ctrl struct contains these fields that can be used to access both
current and new values:
-.. code-block:: none
+.. code-block:: c
s32 val;
struct {
@@ -330,7 +328,7 @@ current and new values:
If the control has a simple s32 type type, then:
-.. code-block:: none
+.. code-block:: c
&ctrl->val == ctrl->p_new.p_s32
&ctrl->cur.val == ctrl->p_cur.p_s32
@@ -354,7 +352,7 @@ exception is for controls that return a volatile register such as a signal
strength read-out that changes continuously. In that case you will need to
implement g_volatile_ctrl like this:
-.. code-block:: none
+.. code-block:: c
static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
@@ -372,7 +370,7 @@ changes.
To mark a control as volatile you have to set V4L2_CTRL_FLAG_VOLATILE:
-.. code-block:: none
+.. code-block:: c
ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
if (ctrl)
@@ -393,7 +391,7 @@ not to introduce deadlocks.
Outside of the control ops you have to go through to helper functions to get
or set a single control value safely in your driver:
-.. code-block:: none
+.. code-block:: c
s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);
@@ -404,7 +402,7 @@ will result in a deadlock since these helpers lock the handler as well.
You can also take the handler lock yourself:
-.. code-block:: none
+.. code-block:: c
mutex_lock(&state->ctrl_handler.lock);
pr_info("String value is '%s'\n", ctrl1->p_cur.p_char);
@@ -417,7 +415,7 @@ Menu Controls
The v4l2_ctrl struct contains this union:
-.. code-block:: none
+.. code-block:: c
union {
u32 step;
@@ -445,7 +443,7 @@ Custom Controls
Driver specific controls can be created using v4l2_ctrl_new_custom():
-.. code-block:: none
+.. code-block:: c
static const struct v4l2_ctrl_config ctrl_filter = {
.ops = &ctrl_custom_ops,
@@ -499,7 +497,7 @@ By default all controls are independent from the others. But in more
complex scenarios you can get dependencies from one control to another.
In that case you need to 'cluster' them:
-.. code-block:: none
+.. code-block:: c
struct foo {
struct v4l2_ctrl_handler ctrl_handler;
@@ -523,7 +521,7 @@ composite control. Similar to how a 'struct' works in C.
So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should set
all two controls belonging to the audio_cluster:
-.. code-block:: none
+.. code-block:: c
static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{
@@ -545,7 +543,7 @@ all two controls belonging to the audio_cluster:
In the example above the following are equivalent for the VOLUME case:
-.. code-block:: none
+.. code-block:: c
ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_VOLUME]
ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]
@@ -553,7 +551,7 @@ In the example above the following are equivalent for the VOLUME case:
In practice using cluster arrays like this becomes very tiresome. So instead
the following equivalent method is used:
-.. code-block:: none
+.. code-block:: c
struct {
/* audio cluster */
@@ -565,7 +563,7 @@ The anonymous struct is used to clearly 'cluster' these two control pointers,
but it serves no other purpose. The effect is the same as creating an
array with two control pointers. So you can just do:
-.. code-block:: none
+.. code-block:: c
state->volume = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
state->mute = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
@@ -621,7 +619,7 @@ changing that control affects the control flags of the manual controls.
In order to simplify this a special variation of v4l2_ctrl_cluster was
introduced:
-.. code-block:: none
+.. code-block:: c
void v4l2_ctrl_auto_cluster(unsigned ncontrols, struct v4l2_ctrl **controls,
u8 manual_val, bool set_volatile);
@@ -676,7 +674,7 @@ of another handler (e.g. for a video device node), then you should first add
the controls to the first handler, add the other controls to the second
handler and finally add the first handler to the second. For example:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
@@ -690,7 +688,7 @@ all controls.
Or you can add specific controls to a handler:
-.. code-block:: none
+.. code-block:: c
volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_VOLUME, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
@@ -699,7 +697,7 @@ Or you can add specific controls to a handler:
What you should not do is make two identical controls for two handlers.
For example:
-.. code-block:: none
+.. code-block:: c
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...);
@@ -720,7 +718,7 @@ not own. For example, if you have to find a volume control from a subdev.
You can do that by calling v4l2_ctrl_find:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl *volume;
@@ -729,7 +727,7 @@ You can do that by calling v4l2_ctrl_find:
Since v4l2_ctrl_find will lock the handler you have to be careful where you
use it. For example, this is not a good idea:
-.. code-block:: none
+.. code-block:: c
struct v4l2_ctrl_handler ctrl_handler;
@@ -738,7 +736,7 @@ use it. For example, this is not a good idea:
...and in video_ops.s_ctrl:
-.. code-block:: none
+.. code-block:: c
case V4L2_CID_BRIGHTNESS:
contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
@@ -760,7 +758,7 @@ not when it is used in consumer-level hardware. In that case you want to keep
those low-level controls local to the subdev. You can do this by simply
setting the 'is_private' flag of the control to 1:
-.. code-block:: none
+.. code-block:: c
static const struct v4l2_ctrl_config ctrl_private = {
.ops = &ctrl_custom_ops,
@@ -797,7 +795,7 @@ Sometimes the platform or bridge driver needs to be notified when a control
from a sub-device driver changes. You can set a notify callback by calling
this function:
-.. code-block:: none
+.. code-block:: c
void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl,
void (*notify)(struct v4l2_ctrl *ctrl, void *priv), void *priv);
diff --git a/Documentation/media/kapi/v4l2-dev.rst b/Documentation/media/kapi/v4l2-dev.rst
index b359f1804bbe..4c5a15c53dbf 100644
--- a/Documentation/media/kapi/v4l2-dev.rst
+++ b/Documentation/media/kapi/v4l2-dev.rst
@@ -288,6 +288,7 @@ Mask Description
0x08 Log the read and write file operations and the VIDIOC_QBUF and
VIDIOC_DQBUF ioctls.
0x10 Log the poll file operation.
+0x20 Log error and messages in the control operations.
===== ================================================================
Video device cleanup
diff --git a/Documentation/media/uapi/cec/cec-api.rst b/Documentation/media/uapi/cec/cec-api.rst
index b614bf81aa20..0780ba07995a 100644
--- a/Documentation/media/uapi/cec/cec-api.rst
+++ b/Documentation/media/uapi/cec/cec-api.rst
@@ -39,7 +39,7 @@ Revision and Copyright
**********************
Authors:
-- Verkuil, Hans <hans.verkuil@cisco.com>
+- Verkuil, Hans <hverkuil-cisco@xs4all.nl>
- Initial version.
diff --git a/Documentation/media/uapi/cec/cec-ioc-g-mode.rst b/Documentation/media/uapi/cec/cec-ioc-g-mode.rst
index c53bb5f73f0d..d0902f356d65 100644
--- a/Documentation/media/uapi/cec/cec-ioc-g-mode.rst
+++ b/Documentation/media/uapi/cec/cec-ioc-g-mode.rst
@@ -294,7 +294,8 @@ EINVAL
The requested mode is invalid.
EPERM
- Monitor mode is requested without having root permissions
+ Monitor mode is requested, but the process does have the ``CAP_NET_ADMIN``
+ capability.
EBUSY
Someone else is already an exclusive follower or initiator.
diff --git a/Documentation/media/uapi/cec/cec-ioc-receive.rst b/Documentation/media/uapi/cec/cec-ioc-receive.rst
index c3a685ff05cb..4137903d672e 100644
--- a/Documentation/media/uapi/cec/cec-ioc-receive.rst
+++ b/Documentation/media/uapi/cec/cec-ioc-receive.rst
@@ -223,6 +223,18 @@ View On' messages from initiator 0xf ('Unregistered') to destination 0 ('TV').
result of the :ref:`ioctl CEC_TRANSMIT <CEC_TRANSMIT>`, and once via
:ref:`ioctl CEC_RECEIVE <CEC_RECEIVE>`.
+ * .. _`CEC-MSG-FL-RAW`:
+
+ - ``CEC_MSG_FL_RAW``
+ - 2
+ - Normally CEC messages are validated before transmitting them. If this
+ flag is set when :ref:`ioctl CEC_TRANSMIT <CEC_TRANSMIT>` is called,
+ then no validation takes place and the message is transmitted as-is.
+ This is useful when debugging CEC issues.
+ This flag is only allowed if the process has the ``CAP_SYS_RAWIO``
+ capability. If that is not set, then the ``EPERM`` error code is
+ returned.
+
.. tabularcolumns:: |p{5.6cm}|p{0.9cm}|p{11.0cm}|
@@ -358,7 +370,8 @@ ENOTTY
EPERM
The CEC adapter is not configured, i.e. :ref:`ioctl CEC_ADAP_S_LOG_ADDRS <CEC_ADAP_S_LOG_ADDRS>`
- has never been called.
+ has never been called, or ``CEC_MSG_FL_RAW`` was used from a process that
+ did not have the ``CAP_SYS_RAWIO`` capability.
ENONET
The CEC adapter is not configured, i.e. :ref:`ioctl CEC_ADAP_S_LOG_ADDRS <CEC_ADAP_S_LOG_ADDRS>`
diff --git a/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst b/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst
index a982f16e55a4..b827ebc398f8 100644
--- a/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst
+++ b/Documentation/media/uapi/mediactl/media-ioc-enum-links.rst
@@ -84,6 +84,11 @@ returned during the enumeration process.
- Pointer to a links array allocated by the application. Ignored if
NULL.
+ * - __u32
+ - ``reserved[4]``
+ - Reserved for future extensions. Drivers and applications must set
+ the array to zero.
+
.. c:type:: media_pad_desc
@@ -135,7 +140,7 @@ returned during the enumeration process.
- Link flags, see :ref:`media-link-flag` for more details.
* - __u32
- - ``reserved[4]``
+ - ``reserved[2]``
- Reserved for future extensions. Drivers and applications must set
the array to zero.
diff --git a/Documentation/media/uapi/rc/lirc-dev-intro.rst b/Documentation/media/uapi/rc/lirc-dev-intro.rst
index 1a901d8e1797..b68c01693939 100644
--- a/Documentation/media/uapi/rc/lirc-dev-intro.rst
+++ b/Documentation/media/uapi/rc/lirc-dev-intro.rst
@@ -20,6 +20,9 @@ data between userspace and kernelspace. Fundamentally, it is just a chardev
file_operations defined on it. With respect to transporting raw IR and
decoded scancodes to and fro, the essential fops are read, write and ioctl.
+It is also possible to attach a BPF program to a LIRC device for decoding
+raw IR into scancodes.
+
Example dmesg output upon a driver registering w/LIRC:
.. code-block:: none
@@ -34,6 +37,16 @@ What you should see for a chardev:
$ ls -l /dev/lirc*
crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0
+Note that the package `v4l-utils <https://git.linuxtv.org/v4l-utils.git/>`_
+contains tools for working with LIRC devices:
+
+ - ir-ctl: can receive raw IR and transmit IR, as well as query LIRC
+ device features.
+
+ - ir-keytable: can load keymaps; allows you to set IR kernel protocols; load
+ BPF IR decoders and test IR decoding. Some BPF IR decoders are also
+ provided.
+
.. _lirc_modes:
**********
@@ -53,11 +66,12 @@ on the following table.
For transmitting (aka sending), create a ``struct lirc_scancode`` with
the desired scancode set in the ``scancode`` member, :c:type:`rc_proto`
- set the IR protocol, and all other members set to 0. Write this struct to
- the lirc device.
+ set to the :ref:`IR protocol <Remote_controllers_Protocols>`, and all other
+ members set to 0. Write this struct to the lirc device.
- For receiving, you read ``struct lirc_scancode`` from the lirc device,
- with ``scancode`` set to the received scancode and the IR protocol
+ For receiving, you read ``struct lirc_scancode`` from the LIRC device.
+ The ``scancode`` field is set to the received scancode and the
+ :ref:`IR protocol <Remote_controllers_Protocols>` is set in
:c:type:`rc_proto`. If the scancode maps to a valid key code, this is set
in the ``keycode`` field, else it is set to ``KEY_RESERVED``.
@@ -129,12 +143,29 @@ on the following table.
This mode is used only for IR send.
-
-**************************
-Remote Controller protocol
-**************************
-
-An enum :c:type:`rc_proto` in the :ref:`lirc_header` lists all the
-supported IR protocols:
-
-.. kernel-doc:: include/uapi/linux/lirc.h
+********************
+BPF based IR decoder
+********************
+
+The kernel has support for decoding the most common
+:ref:`IR protocols <Remote_controllers_Protocols>`, but there
+are many protocols which are not supported. To support these, it is possible
+to load an BPF program which does the decoding. This can only be done on
+LIRC devices which support reading raw IR.
+
+First, using the `bpf(2)`_ syscall with the ``BPF_LOAD_PROG`` argument,
+program must be loaded of type ``BPF_PROG_TYPE_LIRC_MODE2``. Once attached
+to the LIRC device, this program will be called for each pulse, space or
+timeout event on the LIRC device. The context for the BPF program is a
+pointer to a unsigned int, which is a :ref:`LIRC_MODE_MODE2 <lirc-mode-mode2>`
+value. When the program has decoded the scancode, it can be submitted using
+the BPF functions ``bpf_rc_keydown()`` or ``bpf_rc_repeat()``. Mouse or pointer
+movements can be reported using ``bpf_rc_pointer_rel()``.
+
+Once you have the file descriptor for the ``BPF_PROG_TYPE_LIRC_MODE2`` BPF
+program, it can be attached to the LIRC device using the `bpf(2)`_ syscall.
+The target must be the file descriptor for the LIRC device, and the
+attach type must be ``BPF_LIRC_MODE2``. No more than 64 BPF programs can be
+attached to a single LIRC device at a time.
+
+.. _bpf(2): http://man7.org/linux/man-pages/man2/bpf.2.html
diff --git a/Documentation/media/uapi/rc/lirc-read.rst b/Documentation/media/uapi/rc/lirc-read.rst
index a8fedfaaf0ab..256e520bc27e 100644
--- a/Documentation/media/uapi/rc/lirc-read.rst
+++ b/Documentation/media/uapi/rc/lirc-read.rst
@@ -62,7 +62,8 @@ read from the chardev.
Alternatively, :ref:`LIRC_MODE_SCANCODE <lirc-mode-scancode>` can be available,
in this mode scancodes which are either decoded by software decoders, or
by hardware decoders. The :c:type:`rc_proto` member is set to the
-protocol used for transmission, and ``scancode`` to the decoded scancode,
+:ref:`IR protocol <Remote_controllers_Protocols>`
+used for transmission, and ``scancode`` to the decoded scancode,
and the ``keycode`` set to the keycode or ``KEY_RESERVED``.
diff --git a/Documentation/media/uapi/rc/lirc-write.rst b/Documentation/media/uapi/rc/lirc-write.rst
index 6adf5ddbac99..eafe13203ea3 100644
--- a/Documentation/media/uapi/rc/lirc-write.rst
+++ b/Documentation/media/uapi/rc/lirc-write.rst
@@ -64,7 +64,8 @@ driver returns ``EINVAL``.
When in :ref:`LIRC_MODE_SCANCODE <lirc-mode-scancode>` mode, one
``struct lirc_scancode`` must be written to the chardev at a time, else
``EINVAL`` is returned. Set the desired scancode in the ``scancode`` member,
-and the protocol in the :c:type:`rc_proto`: member. All other members must be
+and the :ref:`IR protocol <Remote_controllers_Protocols>` in the
+:c:type:`rc_proto`: member. All other members must be
set to 0, else ``EINVAL`` is returned. If there is no protocol encoder
for the protocol or the scancode is not valid for the specified protocol,
``EINVAL`` is returned. The write function blocks until the scancode
diff --git a/Documentation/media/uapi/rc/rc-protos.rst b/Documentation/media/uapi/rc/rc-protos.rst
new file mode 100644
index 000000000000..b250ebe301d5
--- /dev/null
+++ b/Documentation/media/uapi/rc/rc-protos.rst
@@ -0,0 +1,456 @@
+.. SPDX-License-Identifier: GPL-2.0
+..
+.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
+
+.. _Remote_controllers_Protocols:
+
+*****************************************
+Remote Controller Protocols and Scancodes
+*****************************************
+
+IR is encoded as a series of pulses and spaces, using a protocol. These
+protocols can encode e.g. an address (which device should respond) and a
+command: what it should do. The values for these are not always consistent
+across different devices for a given protocol.
+
+Therefore out the output of the IR decoder is a scancode; a single u32
+value. Using keymap tables this can be mapped to linux key codes.
+
+Other things can be encoded too. Some IR protocols encode a toggle bit; this
+is to distinguish whether the same button is being held down, or has been
+released and pressed again. If has been released and pressed again, the
+toggle bit will invert from one IR message to the next.
+
+Some remotes have a pointer-type device which can used to control the
+mouse; some air conditioning systems can have their target temperature
+target set in IR.
+
+The following are the protocols the kernel knows about and also lists
+how scancodes are encoded for each protocol.
+
+rc-5 (RC_PROTO_RC5)
+-------------------
+
+This IR protocol uses manchester encoding to encode 14 bits. There is a
+detailed description here https://www.sbprojects.net/knowledge/ir/rc5.php.
+
+The scancode encoding is *not* consistent with the lirc daemon (lircd) rc5
+protocol, or the manchester BPF decoder.
+
+.. flat-table:: rc5 bits scancode mapping
+ :widths: 1 1 2
+
+ * - rc-5 bit
+
+ - scancode bit
+
+ - description
+
+ * - 1
+
+ - none
+
+ - Start bit, always set
+
+ * - 1
+
+ - 6 (inverted)
+
+ - 2nd start bit in rc5, re-used as 6th command bit
+
+ * - 1
+
+ - none
+
+ - Toggle bit
+
+ * - 5
+
+ - 8 to 13
+
+ - Address
+
+ * - 6
+
+ - 0 to 5
+
+ - Command
+
+There is a variant of rc5 called either rc5x or extended rc5
+where there the second stop bit is the 6th commmand bit, but inverted.
+This is done so it the scancodes and encoding is compatible with existing
+schemes. This bit is stored in bit 6 of the scancode, inverted. This is
+done to keep it compatible with plain rc-5 where there are two start bits.
+
+rc-5-sz (RC_PROTO_RC5_SZ)
+-------------------------
+This is much like rc-5 but one bit longer. The scancode is encoded
+differently.
+
+.. flat-table:: rc-5-sz bits scancode mapping
+ :widths: 1 1 2
+
+ * - rc-5-sz bits
+
+ - scancode bit
+
+ - description
+
+ * - 1
+
+ - none
+
+ - Start bit, always set
+
+ * - 1
+
+ - 13
+
+ - Address bit
+
+ * - 1
+
+ - none
+
+ - Toggle bit
+
+ * - 6
+
+ - 6 to 11
+
+ - Address
+
+ * - 6
+
+ - 0 to 5
+
+ - Command
+
+rc-5x-20 (RC_PROTO_RC5X_20)
+---------------------------
+
+This rc-5 extended to encoded 20 bits. The is a 3555 microseconds space
+after the 8th bit.
+
+.. flat-table:: rc-5x-20 bits scancode mapping
+ :widths: 1 1 2
+
+ * - rc-5-sz bits
+
+ - scancode bit
+
+ - description
+
+ * - 1
+
+ - none
+
+ - Start bit, always set
+
+ * - 1
+
+ - 14
+
+ - Address bit
+
+ * - 1
+
+ - none
+
+ - Toggle bit
+
+ * - 5
+
+ - 16 to 20
+
+ - Address
+
+ * - 6
+
+ - 8 to 13
+
+ - Address
+
+ * - 6
+
+ - 0 to 5
+
+ - Command
+
+
+jvc (RC_PROTO_JVC)
+------------------
+
+The jvc protocol is much like nec, without the inverted values. It is
+described here https://www.sbprojects.net/knowledge/ir/jvc.php.
+
+The scancode is a 16 bits value, where the address is the lower 8 bits
+and the command the higher 8 bits; this is reversed from IR order.
+
+sony-12 (RC_PROTO_SONY12)
+-------------------------
+
+The sony protocol is a pulse-width encoding. There are three variants,
+which just differ in number of bits and scancode encoding.
+
+.. flat-table:: sony-12 bits scancode mapping
+ :widths: 1 1 2
+
+ * - sony-12 bits
+
+ - scancode bit
+
+ - description
+
+ * - 5
+
+ - 16 to 20
+
+ - device
+
+ * - 7
+
+ - 0 to 6
+
+ - function
+
+sony-15 (RC_PROTO_SONY15)
+-------------------------
+
+The sony protocol is a pulse-width encoding. There are three variants,
+which just differ in number of bits and scancode encoding.
+
+.. flat-table:: sony-12 bits scancode mapping
+ :widths: 1 1 2
+
+ * - sony-12 bits
+
+ - scancode bit
+
+ - description
+
+ * - 8
+
+ - 16 to 23
+
+ - device
+
+ * - 7
+
+ - 0 to 6
+
+ - function
+
+sony-20 (RC_PROTO_SONY20)
+-------------------------
+
+The sony protocol is a pulse-width encoding. There are three variants,
+which just differ in number of bits and scancode encoding.
+
+.. flat-table:: sony-20 bits scancode mapping
+ :widths: 1 1 2
+
+ * - sony-20 bits
+
+ - scancode bit
+
+ - description
+
+ * - 5
+
+ - 16 to 20
+
+ - device
+
+ * - 7
+
+ - 0 to 7
+
+ - device
+
+ * - 8
+
+ - 8 to 15
+
+ - extended bits
+
+nec (RC_PROTO_NEC)
+------------------
+
+The nec protocol encodes an 8 bit address and an 8 bit command. It is
+described here https://www.sbprojects.net/knowledge/ir/nec.php. Note
+that the protocol sends least significant bit first.
+
+As a check, the nec protocol sends the address and command twice; the
+second time it is inverted. This is done for verification.
+
+A plain nec IR message has 16 bits; the high 8 bits are the address
+and the low 8 bits are the command.
+
+nec-x (RC_PROTO_NECX)
+---------------------
+
+Extended nec has a 16 bit address and a 8 bit command. This is encoded
+as a 24 bit value as you would expect, with the lower 8 bits the command
+and the upper 16 bits the address.
+
+nec-32 (RC_PROTO_NEC32)
+-----------------------
+
+nec-32 does not send an inverted address or an inverted command; the
+entire message, all 32 bits, are used.
+
+For this to be decoded correctly, the second 8 bits must not be the
+inverted value of the first, and also the last 8 bits must not be the
+inverted value of the third 8 bit value.
+
+The scancode has a somewhat unusual encoding.
+
+.. flat-table:: nec-32 bits scancode mapping
+
+ * - nec-32 bits
+
+ - scancode bit
+
+ * - First 8 bits
+
+ - 16 to 23
+
+ * - Second 8 bits
+
+ - 24 to 31
+
+ * - Third 8 bits
+
+ - 0 to 7
+
+ * - Fourth 8 bits
+
+ - 8 to 15
+
+sanyo (RC_PROTO_SANYO)
+----------------------
+
+The sanyo protocol is like the nec protocol, but with 13 bits address
+rather than 8 bits. Both the address and the command are followed by
+their inverted versions, but these are not present in the scancodes.
+
+Bis 8 to 20 of the scancode is the 13 bits address, and the lower 8
+bits are the command.
+
+mcir2-kbd (RC_PROTO_MCIR2_KBD)
+------------------------------
+
+This protocol is generated by the Microsoft MCE keyboard for keyboard
+events. Refer to the ir-mce_kbd-decoder.c to see how it is encoded.
+
+mcir2-mse (RC_PROTO_MCIR2_MSE)
+------------------------------
+
+This protocol is generated by the Microsoft MCE keyboard for pointer
+events. Refer to the ir-mce_kbd-decoder.c to see how it is encoded.
+
+rc-6-0 (RC_PROTO_RC6_0)
+-----------------------
+
+This is the rc-6 in mode 0. rc-6 is described here
+https://www.sbprojects.net/knowledge/ir/rc6.php.
+The scancode is the exact 16 bits as in the protocol. There is also a
+toggle bit.
+
+rc-6-6a-20 (RC_PROTO_RC6_6A_20)
+-------------------------------
+
+This is the rc-6 in mode 6a, 20 bits. rc-6 is described here
+https://www.sbprojects.net/knowledge/ir/rc6.php.
+The scancode is the exact 20 bits
+as in the protocol. There is also a toggle bit.
+
+rc-6-6a-24 (RC_PROTO_RC6_6A_24)
+-------------------------------
+
+This is the rc-6 in mode 6a, 24 bits. rc-6 is described here
+https://www.sbprojects.net/knowledge/ir/rc6.php.
+The scancode is the exact 24 bits
+as in the protocol. There is also a toggle bit.
+
+rc-6-6a-32 (RC_PROTO_RC6_6A_32)
+-------------------------------
+
+This is the rc-6 in mode 6a, 32 bits. rc-6 is described here
+https://www.sbprojects.net/knowledge/ir/rc6.php.
+The upper 16 bits are the vendor,
+and the lower 16 bits are the vendor-specific bits. This protocol is
+for the non-Microsoft MCE variant (vendor != 0x800f).
+
+
+rc-6-mce (RC_PROTO_RC6_MCE)
+---------------------------
+
+This is the rc-6 in mode 6a, 32 bits. The upper 16 bits are the vendor,
+and the lower 16 bits are the vendor-specific bits. This protocol is
+for the Microsoft MCE variant (vendor = 0x800f). The toggle bit in the
+protocol itself is ignored, and the 16th bit should be takes as the toggle
+bit.
+
+sharp (RC_PROTO_SHARP)
+----------------------
+
+This is a protocol used by Sharp VCRs, is described here
+https://www.sbprojects.net/knowledge/ir/sharp.php. There is a very long
+(40ms) space between the normal and inverted values, and some IR receivers
+cannot decode this.
+
+There is a 5 bit address and a 8 bit command. In the scancode the address is
+in bits 8 to 12, and the command in bits 0 to 7.
+
+xmp (RC_PROTO_XMP)
+------------------
+
+This protocol has several versions and only version 1 is supported. Refer
+to the decoder (ir-xmp-decoder.c) to see how it is encoded.
+
+
+cec (RC_PROTO_CEC)
+------------------
+
+This is not an IR protocol, this is a protocol over CEC. The CEC
+infrastructure uses rc-core for handling CEC commands, so that they
+can easily be remapped.
+
+imon (RC_PROTO_IMON)
+--------------------
+
+This protocol is used by Antec Veris/SoundGraph iMON remotes.
+
+The protocol
+describes both button presses and pointer movements. The protocol encodes
+31 bits, and the scancode is simply the 31 bits with the top bit always 0.
+
+rc-mm-12 (RC_PROTO_RCMM12)
+--------------------------
+
+The rc-mm protocol is described here
+https://www.sbprojects.net/knowledge/ir/rcmm.php. The scancode is simply
+the 12 bits.
+
+rc-mm-24 (RC_PROTO_RCMM24)
+--------------------------
+
+The rc-mm protocol is described here
+https://www.sbprojects.net/knowledge/ir/rcmm.php. The scancode is simply
+the 24 bits.
+
+rc-mm-32 (RC_PROTO_RCMM32)
+--------------------------
+
+The rc-mm protocol is described here
+https://www.sbprojects.net/knowledge/ir/rcmm.php. The scancode is simply
+the 32 bits.
+
+xbox-dvd (RC_PROTO_XBOX_DVD)
+----------------------------
+
+This protocol is used by XBox DVD Remote, which was made for the original
+XBox. There is no in-kernel decoder or encoder for this protocol. The usb
+device decodes the protocol. There is a BPF decoder available in v4l-utils.
diff --git a/Documentation/media/uapi/rc/rc-tables.rst b/Documentation/media/uapi/rc/rc-tables.rst
index 177ac44fa0fa..20d7c686922b 100644
--- a/Documentation/media/uapi/rc/rc-tables.rst
+++ b/Documentation/media/uapi/rc/rc-tables.rst
@@ -54,7 +54,7 @@ the remote via /dev/input/event devices.
- .. row 3
- - ``KEY_0``
+ - ``KEY_NUMERIC_0``
- Keyboard digit 0
@@ -62,7 +62,7 @@ the remote via /dev/input/event devices.
- .. row 4
- - ``KEY_1``
+ - ``KEY_NUMERIC_1``
- Keyboard digit 1
@@ -70,7 +70,7 @@ the remote via /dev/input/event devices.
- .. row 5
- - ``KEY_2``
+ - ``KEY_NUMERIC_2``
- Keyboard digit 2
@@ -78,7 +78,7 @@ the remote via /dev/input/event devices.
- .. row 6
- - ``KEY_3``
+ - ``KEY_NUMERIC_3``
- Keyboard digit 3
@@ -86,7 +86,7 @@ the remote via /dev/input/event devices.
- .. row 7
- - ``KEY_4``
+ - ``KEY_NUMERIC_4``
- Keyboard digit 4
@@ -94,7 +94,7 @@ the remote via /dev/input/event devices.
- .. row 8
- - ``KEY_5``
+ - ``KEY_NUMERIC_5``
- Keyboard digit 5
@@ -102,7 +102,7 @@ the remote via /dev/input/event devices.
- .. row 9
- - ``KEY_6``
+ - ``KEY_NUMERIC_6``
- Keyboard digit 6
@@ -110,7 +110,7 @@ the remote via /dev/input/event devices.
- .. row 10
- - ``KEY_7``
+ - ``KEY_NUMERIC_7``
- Keyboard digit 7
@@ -118,7 +118,7 @@ the remote via /dev/input/event devices.
- .. row 11
- - ``KEY_8``
+ - ``KEY_NUMERIC_8``
- Keyboard digit 8
@@ -126,7 +126,7 @@ the remote via /dev/input/event devices.
- .. row 12
- - ``KEY_9``
+ - ``KEY_NUMERIC_9``
- Keyboard digit 9
@@ -196,7 +196,7 @@ the remote via /dev/input/event devices.
- ``KEY_PAUSE``
- - Pause sroweam
+ - Pause stream
- PAUSE / FREEZE
@@ -220,7 +220,7 @@ the remote via /dev/input/event devices.
- ``KEY_STOP``
- - Stop sroweam
+ - Stop stream
- STOP
@@ -228,7 +228,7 @@ the remote via /dev/input/event devices.
- ``KEY_RECORD``
- - Start/stop recording sroweam
+ - Start/stop recording stream
- CAPTURE / REC / RECORD/PAUSE
@@ -577,7 +577,7 @@ the remote via /dev/input/event devices.
- ``KEY_CLEAR``
- - Stop sroweam and return to default input video/audio
+ - Stop stream and return to default input video/audio
- CLEAR / RESET / BOSS KEY
@@ -593,7 +593,7 @@ the remote via /dev/input/event devices.
- ``KEY_FAVORITES``
- - Open the favorites sroweam window
+ - Open the favorites stream window
- TV WALL / Favorites
diff --git a/Documentation/media/uapi/rc/remote_controllers.rst b/Documentation/media/uapi/rc/remote_controllers.rst
index 3051f7abe11d..20e0f986df49 100644
--- a/Documentation/media/uapi/rc/remote_controllers.rst
+++ b/Documentation/media/uapi/rc/remote_controllers.rst
@@ -27,6 +27,7 @@ Part III - Remote Controller API
rc-intro
rc-sysfs-nodes
+ rc-protos
rc-tables
rc-table-change
lirc-dev
diff --git a/Documentation/media/uapi/v4l/biblio.rst b/Documentation/media/uapi/v4l/biblio.rst
index ec33768c055e..ad2ff258afa8 100644
--- a/Documentation/media/uapi/v4l/biblio.rst
+++ b/Documentation/media/uapi/v4l/biblio.rst
@@ -122,6 +122,15 @@ ITU BT.1119
:author: International Telecommunication Union (http://www.itu.ch)
+.. _h264:
+
+ITU-T Rec. H.264 Specification (04/2017 Edition)
+================================================
+
+:title: ITU-T Recommendation H.264 "Advanced Video Coding for Generic Audiovisual Services"
+
+:author: International Telecommunication Union (http://www.itu.ch)
+
.. _jfif:
JFIF
@@ -386,3 +395,13 @@ colimg
:title: Color Imaging: Fundamentals and Applications
:author: Erik Reinhard et al.
+
+.. _vp8:
+
+VP8
+===
+
+
+:title: RFC 6386: "VP8 Data Format and Decoding Guide"
+
+:author: J. Bankoski et al.
diff --git a/Documentation/media/uapi/v4l/control.rst b/Documentation/media/uapi/v4l/control.rst
index 71417bba028c..ef62e088ff7a 100644
--- a/Documentation/media/uapi/v4l/control.rst
+++ b/Documentation/media/uapi/v4l/control.rst
@@ -295,7 +295,7 @@ Control IDs
Sets the alpha color component. When a capture device (or capture
queue of a mem-to-mem device) produces a frame format that includes
an alpha component (e.g.
- :ref:`packed RGB image formats <rgb-formats>`) and the alpha value
+ :ref:`packed RGB image formats <pixfmt-rgb>`) and the alpha value
is not defined by the device or the mem-to-mem input data this
control lets you select the alpha component value of all pixels.
When an output device (or output queue of a mem-to-mem device)
diff --git a/Documentation/media/uapi/v4l/dev-decoder.rst b/Documentation/media/uapi/v4l/dev-decoder.rst
new file mode 100644
index 000000000000..606b54947e10
--- /dev/null
+++ b/Documentation/media/uapi/v4l/dev-decoder.rst
@@ -0,0 +1,1101 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. _decoder:
+
+*************************************************
+Memory-to-Memory Stateful Video Decoder Interface
+*************************************************
+
+A stateful video decoder takes complete chunks of the bytestream (e.g. Annex-B
+H.264/HEVC stream, raw VP8/9 stream) and decodes them into raw video frames in
+display order. The decoder is expected not to require any additional information
+from the client to process these buffers.
+
+Performing software parsing, processing etc. of the stream in the driver in
+order to support this interface is strongly discouraged. In case such
+operations are needed, use of the Stateless Video Decoder Interface (in
+development) is strongly advised.
+
+Conventions and Notations Used in This Document
+===============================================
+
+1. The general V4L2 API rules apply if not specified in this document
+ otherwise.
+
+2. The meaning of words "must", "may", "should", etc. is as per `RFC
+ 2119 <https://tools.ietf.org/html/rfc2119>`_.
+
+3. All steps not marked "optional" are required.
+
+4. :c:func:`VIDIOC_G_EXT_CTRLS` and :c:func:`VIDIOC_S_EXT_CTRLS` may be used
+ interchangeably with :c:func:`VIDIOC_G_CTRL` and :c:func:`VIDIOC_S_CTRL`,
+ unless specified otherwise.
+
+5. Single-planar API (see :ref:`planar-apis`) and applicable structures may be
+ used interchangeably with multi-planar API, unless specified otherwise,
+ depending on decoder capabilities and following the general V4L2 guidelines.
+
+6. i = [a..b]: sequence of integers from a to b, inclusive, i.e. i =
+ [0..2]: i = 0, 1, 2.
+
+7. Given an ``OUTPUT`` buffer A, then A’ represents a buffer on the ``CAPTURE``
+ queue containing data that resulted from processing buffer A.
+
+.. _decoder-glossary:
+
+Glossary
+========
+
+CAPTURE
+ the destination buffer queue; for decoders, the queue of buffers containing
+ decoded frames; for encoders, the queue of buffers containing an encoded
+ bytestream; ``V4L2_BUF_TYPE_VIDEO_CAPTURE`` or
+ ``V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE``; data is captured from the hardware
+ into ``CAPTURE`` buffers.
+
+client
+ the application communicating with the decoder or encoder implementing
+ this interface.
+
+coded format
+ encoded/compressed video bytestream format (e.g. H.264, VP8, etc.); see
+ also: raw format.
+
+coded height
+ height for given coded resolution.
+
+coded resolution
+ stream resolution in pixels aligned to codec and hardware requirements;
+ typically visible resolution rounded up to full macroblocks;
+ see also: visible resolution.
+
+coded width
+ width for given coded resolution.
+
+decode order
+ the order in which frames are decoded; may differ from display order if the
+ coded format includes a feature of frame reordering; for decoders,
+ ``OUTPUT`` buffers must be queued by the client in decode order; for
+ encoders ``CAPTURE`` buffers must be returned by the encoder in decode order.
+
+destination
+ data resulting from the decode process; see ``CAPTURE``.
+
+display order
+ the order in which frames must be displayed; for encoders, ``OUTPUT``
+ buffers must be queued by the client in display order; for decoders,
+ ``CAPTURE`` buffers must be returned by the decoder in display order.
+
+DPB
+ Decoded Picture Buffer; an H.264/HEVC term for a buffer that stores a decoded
+ raw frame available for reference in further decoding steps.
+
+EOS
+ end of stream.
+
+IDR
+ Instantaneous Decoder Refresh; a type of a keyframe in an H.264/HEVC-encoded
+ stream, which clears the list of earlier reference frames (DPBs).
+
+keyframe
+ an encoded frame that does not reference frames decoded earlier, i.e.
+ can be decoded fully on its own.
+
+macroblock
+ a processing unit in image and video compression formats based on linear
+ block transforms (e.g. H.264, VP8, VP9); codec-specific, but for most of
+ popular codecs the size is 16x16 samples (pixels).
+
+OUTPUT
+ the source buffer queue; for decoders, the queue of buffers containing
+ an encoded bytestream; for encoders, the queue of buffers containing raw
+ frames; ``V4L2_BUF_TYPE_VIDEO_OUTPUT`` or
+ ``V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE``; the hardware is fed with data
+ from ``OUTPUT`` buffers.
+
+PPS
+ Picture Parameter Set; a type of metadata entity in an H.264/HEVC bytestream.
+
+raw format
+ uncompressed format containing raw pixel data (e.g. YUV, RGB formats).
+
+resume point
+ a point in the bytestream from which decoding may start/continue, without
+ any previous state/data present, e.g.: a keyframe (VP8/VP9) or
+ SPS/PPS/IDR sequence (H.264/HEVC); a resume point is required to start decode
+ of a new stream, or to resume decoding after a seek.
+
+source
+ data fed to the decoder or encoder; see ``OUTPUT``.
+
+source height
+ height in pixels for given source resolution; relevant to encoders only.
+
+source resolution
+ resolution in pixels of source frames being source to the encoder and
+ subject to further cropping to the bounds of visible resolution; relevant to
+ encoders only.
+
+source width
+ width in pixels for given source resolution; relevant to encoders only.
+
+SPS
+ Sequence Parameter Set; a type of metadata entity in an H.264/HEVC bytestream.
+
+stream metadata
+ additional (non-visual) information contained inside encoded bytestream;
+ for example: coded resolution, visible resolution, codec profile.
+
+visible height
+ height for given visible resolution; display height.
+
+visible resolution
+ stream resolution of the visible picture, in pixels, to be used for
+ display purposes; must be smaller or equal to coded resolution;
+ display resolution.
+
+visible width
+ width for given visible resolution; display width.
+
+State Machine
+=============
+
+.. kernel-render:: DOT
+ :alt: DOT digraph of decoder state machine
+ :caption: Decoder State Machine
+
+ digraph decoder_state_machine {
+ node [shape = doublecircle, label="Decoding"] Decoding;
+
+ node [shape = circle, label="Initialization"] Initialization;
+ node [shape = circle, label="Capture\nsetup"] CaptureSetup;
+ node [shape = circle, label="Dynamic\nResolution\nChange"] ResChange;
+ node [shape = circle, label="Stopped"] Stopped;
+ node [shape = circle, label="Drain"] Drain;
+ node [shape = circle, label="Seek"] Seek;
+ node [shape = circle, label="End of Stream"] EoS;
+
+ node [shape = point]; qi
+ qi -> Initialization [ label = "open()" ];
+
+ Initialization -> CaptureSetup [ label = "CAPTURE\nformat\nestablished" ];
+
+ CaptureSetup -> Stopped [ label = "CAPTURE\nbuffers\nready" ];
+
+ Decoding -> ResChange [ label = "Stream\nresolution\nchange" ];
+ Decoding -> Drain [ label = "V4L2_DEC_CMD_STOP" ];
+ Decoding -> EoS [ label = "EoS mark\nin the stream" ];
+ Decoding -> Seek [ label = "VIDIOC_STREAMOFF(OUTPUT)" ];
+ Decoding -> Stopped [ label = "VIDIOC_STREAMOFF(CAPTURE)" ];
+ Decoding -> Decoding;
+
+ ResChange -> CaptureSetup [ label = "CAPTURE\nformat\nestablished" ];
+ ResChange -> Seek [ label = "VIDIOC_STREAMOFF(OUTPUT)" ];
+
+ EoS -> Drain [ label = "Implicit\ndrain" ];
+
+ Drain -> Stopped [ label = "All CAPTURE\nbuffers dequeued\nor\nVIDIOC_STREAMOFF(CAPTURE)" ];
+ Drain -> Seek [ label = "VIDIOC_STREAMOFF(OUTPUT)" ];
+
+ Seek -> Decoding [ label = "VIDIOC_STREAMON(OUTPUT)" ];
+ Seek -> Initialization [ label = "VIDIOC_REQBUFS(OUTPUT, 0)" ];
+
+ Stopped -> Decoding [ label = "V4L2_DEC_CMD_START\nor\nVIDIOC_STREAMON(CAPTURE)" ];
+ Stopped -> Seek [ label = "VIDIOC_STREAMOFF(OUTPUT)" ];
+ }
+
+Querying Capabilities
+=====================
+
+1. To enumerate the set of coded formats supported by the decoder, the
+ client may call :c:func:`VIDIOC_ENUM_FMT` on ``OUTPUT``.
+
+ * The full set of supported formats will be returned, regardless of the
+ format set on ``CAPTURE``.
+ * Check the flags field of :c:type:`v4l2_fmtdesc` for more information
+ about the decoder's capabilities with respect to each coded format.
+ In particular whether or not the decoder has a full-fledged bytestream
+ parser and if the decoder supports dynamic resolution changes.
+
+2. To enumerate the set of supported raw formats, the client may call
+ :c:func:`VIDIOC_ENUM_FMT` on ``CAPTURE``.
+
+ * Only the formats supported for the format currently active on ``OUTPUT``
+ will be returned.
+
+ * In order to enumerate raw formats supported by a given coded format,
+ the client must first set that coded format on ``OUTPUT`` and then
+ enumerate formats on ``CAPTURE``.
+
+3. The client may use :c:func:`VIDIOC_ENUM_FRAMESIZES` to detect supported
+ resolutions for a given format, passing desired pixel format in
+ :c:type:`v4l2_frmsizeenum` ``pixel_format``.
+
+ * Values returned by :c:func:`VIDIOC_ENUM_FRAMESIZES` for a coded pixel
+ format will include all possible coded resolutions supported by the
+ decoder for given coded pixel format.
+
+ * Values returned by :c:func:`VIDIOC_ENUM_FRAMESIZES` for a raw pixel format
+ will include all possible frame buffer resolutions supported by the
+ decoder for given raw pixel format and the coded format currently set on
+ ``OUTPUT``.
+
+4. Supported profiles and levels for the coded format currently set on
+ ``OUTPUT``, if applicable, may be queried using their respective controls
+ via :c:func:`VIDIOC_QUERYCTRL`.
+
+Initialization
+==============
+
+1. Set the coded format on ``OUTPUT`` via :c:func:`VIDIOC_S_FMT`
+
+ * **Required fields:**
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``OUTPUT``.
+
+ ``pixelformat``
+ a coded pixel format.
+
+ ``width``, ``height``
+ coded resolution of the stream; required only if it cannot be parsed
+ from the stream for the given coded format; otherwise the decoder will
+ use this resolution as a placeholder resolution that will likely change
+ as soon as it can parse the actual coded resolution from the stream.
+
+ ``sizeimage``
+ desired size of ``OUTPUT`` buffers; the decoder may adjust it to
+ match hardware requirements.
+
+ other fields
+ follow standard semantics.
+
+ * **Return fields:**
+
+ ``sizeimage``
+ adjusted size of ``OUTPUT`` buffers.
+
+ * The ``CAPTURE`` format will be updated with an appropriate frame buffer
+ resolution instantly based on the width and height returned by
+ :c:func:`VIDIOC_S_FMT`.
+ However, for coded formats that include stream resolution information,
+ after the decoder is done parsing the information from the stream, it will
+ update the ``CAPTURE`` format with new values and signal a source change
+ event, regardless of whether they match the values set by the client or
+ not.
+
+ .. important::
+
+ Changing the ``OUTPUT`` format may change the currently set ``CAPTURE``
+ format. How the new ``CAPTURE`` format is determined is up to the decoder
+ and the client must ensure it matches its needs afterwards.
+
+2. Allocate source (bytestream) buffers via :c:func:`VIDIOC_REQBUFS` on
+ ``OUTPUT``.
+
+ * **Required fields:**
+
+ ``count``
+ requested number of buffers to allocate; greater than zero.
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``OUTPUT``.
+
+ ``memory``
+ follows standard semantics.
+
+ * **Return fields:**
+
+ ``count``
+ the actual number of buffers allocated.
+
+ .. warning::
+
+ The actual number of allocated buffers may differ from the ``count``
+ given. The client must check the updated value of ``count`` after the
+ call returns.
+
+ Alternatively, :c:func:`VIDIOC_CREATE_BUFS` on the ``OUTPUT`` queue can be
+ used to have more control over buffer allocation.
+
+ * **Required fields:**
+
+ ``count``
+ requested number of buffers to allocate; greater than zero.
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``OUTPUT``.
+
+ ``memory``
+ follows standard semantics.
+
+ ``format``
+ follows standard semantics.
+
+ * **Return fields:**
+
+ ``count``
+ adjusted to the number of allocated buffers.
+
+ .. warning::
+
+ The actual number of allocated buffers may differ from the ``count``
+ given. The client must check the updated value of ``count`` after the
+ call returns.
+
+3. Start streaming on the ``OUTPUT`` queue via :c:func:`VIDIOC_STREAMON`.
+
+4. **This step only applies to coded formats that contain resolution information
+ in the stream.** Continue queuing/dequeuing bytestream buffers to/from the
+ ``OUTPUT`` queue via :c:func:`VIDIOC_QBUF` and :c:func:`VIDIOC_DQBUF`. The
+ buffers will be processed and returned to the client in order, until
+ required metadata to configure the ``CAPTURE`` queue are found. This is
+ indicated by the decoder sending a ``V4L2_EVENT_SOURCE_CHANGE`` event with
+ ``changes`` set to ``V4L2_EVENT_SRC_CH_RESOLUTION``.
+
+ * It is not an error if the first buffer does not contain enough data for
+ this to occur. Processing of the buffers will continue as long as more
+ data is needed.
+
+ * If data in a buffer that triggers the event is required to decode the
+ first frame, it will not be returned to the client, until the
+ initialization sequence completes and the frame is decoded.
+
+ * If the client has not set the coded resolution of the stream on its own,
+ calling :c:func:`VIDIOC_G_FMT`, :c:func:`VIDIOC_S_FMT`,
+ :c:func:`VIDIOC_TRY_FMT` or :c:func:`VIDIOC_REQBUFS` on the ``CAPTURE``
+ queue will not return the real values for the stream until a
+ ``V4L2_EVENT_SOURCE_CHANGE`` event with ``changes`` set to
+ ``V4L2_EVENT_SRC_CH_RESOLUTION`` is signaled.
+
+ .. important::
+
+ Any client query issued after the decoder queues the event will return
+ values applying to the just parsed stream, including queue formats,
+ selection rectangles and controls.
+
+ .. note::
+
+ A client capable of acquiring stream parameters from the bytestream on
+ its own may attempt to set the width and height of the ``OUTPUT`` format
+ to non-zero values matching the coded size of the stream, skip this step
+ and continue with the `Capture Setup` sequence. However, it must not
+ rely on any driver queries regarding stream parameters, such as
+ selection rectangles and controls, since the decoder has not parsed them
+ from the stream yet. If the values configured by the client do not match
+ those parsed by the decoder, a `Dynamic Resolution Change` will be
+ triggered to reconfigure them.
+
+ .. note::
+
+ No decoded frames are produced during this phase.
+
+5. Continue with the `Capture Setup` sequence.
+
+Capture Setup
+=============
+
+1. Call :c:func:`VIDIOC_G_FMT` on the ``CAPTURE`` queue to get format for the
+ destination buffers parsed/decoded from the bytestream.
+
+ * **Required fields:**
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``CAPTURE``.
+
+ * **Return fields:**
+
+ ``width``, ``height``
+ frame buffer resolution for the decoded frames.
+
+ ``pixelformat``
+ pixel format for decoded frames.
+
+ ``num_planes`` (for _MPLANE ``type`` only)
+ number of planes for pixelformat.
+
+ ``sizeimage``, ``bytesperline``
+ as per standard semantics; matching frame buffer format.
+
+ .. note::
+
+ The value of ``pixelformat`` may be any pixel format supported by the
+ decoder for the current stream. The decoder should choose a
+ preferred/optimal format for the default configuration. For example, a
+ YUV format may be preferred over an RGB format if an additional
+ conversion step would be required for the latter.
+
+2. **Optional.** Acquire the visible resolution via
+ :c:func:`VIDIOC_G_SELECTION`.
+
+ * **Required fields:**
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``CAPTURE``.
+
+ ``target``
+ set to ``V4L2_SEL_TGT_COMPOSE``.
+
+ * **Return fields:**
+
+ ``r.left``, ``r.top``, ``r.width``, ``r.height``
+ the visible rectangle; it must fit within the frame buffer resolution
+ returned by :c:func:`VIDIOC_G_FMT` on ``CAPTURE``.
+
+ * The following selection targets are supported on ``CAPTURE``:
+
+ ``V4L2_SEL_TGT_CROP_BOUNDS``
+ corresponds to the coded resolution of the stream.
+
+ ``V4L2_SEL_TGT_CROP_DEFAULT``
+ the rectangle covering the part of the ``CAPTURE`` buffer that
+ contains meaningful picture data (visible area); width and height
+ will be equal to the visible resolution of the stream.
+
+ ``V4L2_SEL_TGT_CROP``
+ the rectangle within the coded resolution to be output to
+ ``CAPTURE``; defaults to ``V4L2_SEL_TGT_CROP_DEFAULT``; read-only on
+ hardware without additional compose/scaling capabilities.
+
+ ``V4L2_SEL_TGT_COMPOSE_BOUNDS``
+ the maximum rectangle within a ``CAPTURE`` buffer, which the cropped
+ frame can be composed into; equal to ``V4L2_SEL_TGT_CROP`` if the
+ hardware does not support compose/scaling.
+
+ ``V4L2_SEL_TGT_COMPOSE_DEFAULT``
+ equal to ``V4L2_SEL_TGT_CROP``.
+
+ ``V4L2_SEL_TGT_COMPOSE``
+ the rectangle inside a ``CAPTURE`` buffer into which the cropped
+ frame is written; defaults to ``V4L2_SEL_TGT_COMPOSE_DEFAULT``;
+ read-only on hardware without additional compose/scaling capabilities.
+
+ ``V4L2_SEL_TGT_COMPOSE_PADDED``
+ the rectangle inside a ``CAPTURE`` buffer which is overwritten by the
+ hardware; equal to ``V4L2_SEL_TGT_COMPOSE`` if the hardware does not
+ write padding pixels.
+
+ .. warning::
+
+ The values are guaranteed to be meaningful only after the decoder
+ successfully parses the stream metadata. The client must not rely on the
+ query before that happens.
+
+3. **Optional.** Enumerate ``CAPTURE`` formats via :c:func:`VIDIOC_ENUM_FMT` on
+ the ``CAPTURE`` queue. Once the stream information is parsed and known, the
+ client may use this ioctl to discover which raw formats are supported for
+ given stream and select one of them via :c:func:`VIDIOC_S_FMT`.
+
+ .. important::
+
+ The decoder will return only formats supported for the currently
+ established coded format, as per the ``OUTPUT`` format and/or stream
+ metadata parsed in this initialization sequence, even if more formats
+ may be supported by the decoder in general. In other words, the set
+ returned will be a subset of the initial query mentioned in the
+ `Querying Capabilities` section.
+
+ For example, a decoder may support YUV and RGB formats for resolutions
+ 1920x1088 and lower, but only YUV for higher resolutions (due to
+ hardware limitations). After parsing a resolution of 1920x1088 or lower,
+ :c:func:`VIDIOC_ENUM_FMT` may return a set of YUV and RGB pixel formats,
+ but after parsing resolution higher than 1920x1088, the decoder will not
+ return RGB, unsupported for this resolution.
+
+ However, subsequent resolution change event triggered after
+ discovering a resolution change within the same stream may switch
+ the stream into a lower resolution and :c:func:`VIDIOC_ENUM_FMT`
+ would return RGB formats again in that case.
+
+4. **Optional.** Set the ``CAPTURE`` format via :c:func:`VIDIOC_S_FMT` on the
+ ``CAPTURE`` queue. The client may choose a different format than
+ selected/suggested by the decoder in :c:func:`VIDIOC_G_FMT`.
+
+ * **Required fields:**
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``CAPTURE``.
+
+ ``pixelformat``
+ a raw pixel format.
+
+ ``width``, ``height``
+ frame buffer resolution of the decoded stream; typically unchanged from
+ what was returned with :c:func:`VIDIOC_G_FMT`, but it may be different
+ if the hardware supports composition and/or scaling.
+
+ * Setting the ``CAPTURE`` format will reset the compose selection rectangles
+ to their default values, based on the new resolution, as described in the
+ previous step.
+
+5. **Optional.** Set the compose rectangle via :c:func:`VIDIOC_S_SELECTION` on
+ the ``CAPTURE`` queue if it is desired and if the decoder has compose and/or
+ scaling capabilities.
+
+ * **Required fields:**
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``CAPTURE``.
+
+ ``target``
+ set to ``V4L2_SEL_TGT_COMPOSE``.
+
+ ``r.left``, ``r.top``, ``r.width``, ``r.height``
+ the rectangle inside a ``CAPTURE`` buffer into which the cropped
+ frame is written; defaults to ``V4L2_SEL_TGT_COMPOSE_DEFAULT``;
+ read-only on hardware without additional compose/scaling capabilities.
+
+ * **Return fields:**
+
+ ``r.left``, ``r.top``, ``r.width``, ``r.height``
+ the visible rectangle; it must fit within the frame buffer resolution
+ returned by :c:func:`VIDIOC_G_FMT` on ``CAPTURE``.
+
+ .. warning::
+
+ The decoder may adjust the compose rectangle to the nearest
+ supported one to meet codec and hardware requirements. The client needs
+ to check the adjusted rectangle returned by :c:func:`VIDIOC_S_SELECTION`.
+
+6. If all the following conditions are met, the client may resume the decoding
+ instantly:
+
+ * ``sizeimage`` of the new format (determined in previous steps) is less
+ than or equal to the size of currently allocated buffers,
+
+ * the number of buffers currently allocated is greater than or equal to the
+ minimum number of buffers acquired in previous steps. To fulfill this
+ requirement, the client may use :c:func:`VIDIOC_CREATE_BUFS` to add new
+ buffers.
+
+ In that case, the remaining steps do not apply and the client may resume
+ the decoding by one of the following actions:
+
+ * if the ``CAPTURE`` queue is streaming, call :c:func:`VIDIOC_DECODER_CMD`
+ with the ``V4L2_DEC_CMD_START`` command,
+
+ * if the ``CAPTURE`` queue is not streaming, call :c:func:`VIDIOC_STREAMON`
+ on the ``CAPTURE`` queue.
+
+ However, if the client intends to change the buffer set, to lower
+ memory usage or for any other reasons, it may be achieved by following
+ the steps below.
+
+7. **If the** ``CAPTURE`` **queue is streaming,** keep queuing and dequeuing
+ buffers on the ``CAPTURE`` queue until a buffer marked with the
+ ``V4L2_BUF_FLAG_LAST`` flag is dequeued.
+
+8. **If the** ``CAPTURE`` **queue is streaming,** call :c:func:`VIDIOC_STREAMOFF`
+ on the ``CAPTURE`` queue to stop streaming.
+
+ .. warning::
+
+ The ``OUTPUT`` queue must remain streaming. Calling
+ :c:func:`VIDIOC_STREAMOFF` on it would abort the sequence and trigger a
+ seek.
+
+9. **If the** ``CAPTURE`` **queue has buffers allocated,** free the ``CAPTURE``
+ buffers using :c:func:`VIDIOC_REQBUFS`.
+
+ * **Required fields:**
+
+ ``count``
+ set to 0.
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``CAPTURE``.
+
+ ``memory``
+ follows standard semantics.
+
+10. Allocate ``CAPTURE`` buffers via :c:func:`VIDIOC_REQBUFS` on the
+ ``CAPTURE`` queue.
+
+ * **Required fields:**
+
+ ``count``
+ requested number of buffers to allocate; greater than zero.
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``CAPTURE``.
+
+ ``memory``
+ follows standard semantics.
+
+ * **Return fields:**
+
+ ``count``
+ actual number of buffers allocated.
+
+ .. warning::
+
+ The actual number of allocated buffers may differ from the ``count``
+ given. The client must check the updated value of ``count`` after the
+ call returns.
+
+ .. note::
+
+ To allocate more than the minimum number of buffers (for pipeline
+ depth), the client may query the ``V4L2_CID_MIN_BUFFERS_FOR_CAPTURE``
+ control to get the minimum number of buffers required, and pass the
+ obtained value plus the number of additional buffers needed in the
+ ``count`` field to :c:func:`VIDIOC_REQBUFS`.
+
+ Alternatively, :c:func:`VIDIOC_CREATE_BUFS` on the ``CAPTURE`` queue can be
+ used to have more control over buffer allocation. For example, by
+ allocating buffers larger than the current ``CAPTURE`` format, future
+ resolution changes can be accommodated.
+
+ * **Required fields:**
+
+ ``count``
+ requested number of buffers to allocate; greater than zero.
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``CAPTURE``.
+
+ ``memory``
+ follows standard semantics.
+
+ ``format``
+ a format representing the maximum framebuffer resolution to be
+ accommodated by newly allocated buffers.
+
+ * **Return fields:**
+
+ ``count``
+ adjusted to the number of allocated buffers.
+
+ .. warning::
+
+ The actual number of allocated buffers may differ from the ``count``
+ given. The client must check the updated value of ``count`` after the
+ call returns.
+
+ .. note::
+
+ To allocate buffers for a format different than parsed from the stream
+ metadata, the client must proceed as follows, before the metadata
+ parsing is initiated:
+
+ * set width and height of the ``OUTPUT`` format to desired coded resolution to
+ let the decoder configure the ``CAPTURE`` format appropriately,
+
+ * query the ``CAPTURE`` format using :c:func:`VIDIOC_G_FMT` and save it
+ until this step.
+
+ The format obtained in the query may be then used with
+ :c:func:`VIDIOC_CREATE_BUFS` in this step to allocate the buffers.
+
+11. Call :c:func:`VIDIOC_STREAMON` on the ``CAPTURE`` queue to start decoding
+ frames.
+
+Decoding
+========
+
+This state is reached after the `Capture Setup` sequence finishes successfully.
+In this state, the client queues and dequeues buffers to both queues via
+:c:func:`VIDIOC_QBUF` and :c:func:`VIDIOC_DQBUF`, following the standard
+semantics.
+
+The content of the source ``OUTPUT`` buffers depends on the active coded pixel
+format and may be affected by codec-specific extended controls, as stated in
+the documentation of each format.
+
+Both queues operate independently, following the standard behavior of V4L2
+buffer queues and memory-to-memory devices. In addition, the order of decoded
+frames dequeued from the ``CAPTURE`` queue may differ from the order of queuing
+coded frames to the ``OUTPUT`` queue, due to properties of the selected coded
+format, e.g. frame reordering.
+
+The client must not assume any direct relationship between ``CAPTURE``
+and ``OUTPUT`` buffers and any specific timing of buffers becoming
+available to dequeue. Specifically:
+
+* a buffer queued to ``OUTPUT`` may result in no buffers being produced
+ on ``CAPTURE`` (e.g. if it does not contain encoded data, or if only
+ metadata syntax structures are present in it),
+
+* a buffer queued to ``OUTPUT`` may result in more than one buffer produced
+ on ``CAPTURE`` (if the encoded data contained more than one frame, or if
+ returning a decoded frame allowed the decoder to return a frame that
+ preceded it in decode, but succeeded it in the display order),
+
+* a buffer queued to ``OUTPUT`` may result in a buffer being produced on
+ ``CAPTURE`` later into decode process, and/or after processing further
+ ``OUTPUT`` buffers, or be returned out of order, e.g. if display
+ reordering is used,
+
+* buffers may become available on the ``CAPTURE`` queue without additional
+ buffers queued to ``OUTPUT`` (e.g. during drain or ``EOS``), because of the
+ ``OUTPUT`` buffers queued in the past whose decoding results are only
+ available at later time, due to specifics of the decoding process.
+
+.. note::
+
+ To allow matching decoded ``CAPTURE`` buffers with ``OUTPUT`` buffers they
+ originated from, the client can set the ``timestamp`` field of the
+ :c:type:`v4l2_buffer` struct when queuing an ``OUTPUT`` buffer. The
+ ``CAPTURE`` buffer(s), which resulted from decoding that ``OUTPUT`` buffer
+ will have their ``timestamp`` field set to the same value when dequeued.
+
+ In addition to the straightforward case of one ``OUTPUT`` buffer producing
+ one ``CAPTURE`` buffer, the following cases are defined:
+
+ * one ``OUTPUT`` buffer generates multiple ``CAPTURE`` buffers: the same
+ ``OUTPUT`` timestamp will be copied to multiple ``CAPTURE`` buffers.
+
+ * multiple ``OUTPUT`` buffers generate one ``CAPTURE`` buffer: timestamp of
+ the ``OUTPUT`` buffer queued first will be copied.
+
+ * the decoding order differs from the display order (i.e. the ``CAPTURE``
+ buffers are out-of-order compared to the ``OUTPUT`` buffers): ``CAPTURE``
+ timestamps will not retain the order of ``OUTPUT`` timestamps.
+
+During the decoding, the decoder may initiate one of the special sequences, as
+listed below. The sequences will result in the decoder returning all the
+``CAPTURE`` buffers that originated from all the ``OUTPUT`` buffers processed
+before the sequence started. Last of the buffers will have the
+``V4L2_BUF_FLAG_LAST`` flag set. To determine the sequence to follow, the client
+must check if there is any pending event and:
+
+* if a ``V4L2_EVENT_SOURCE_CHANGE`` event with ``changes`` set to
+ ``V4L2_EVENT_SRC_CH_RESOLUTION`` is pending, the `Dynamic Resolution
+ Change` sequence needs to be followed,
+
+* if a ``V4L2_EVENT_EOS`` event is pending, the `End of Stream` sequence needs
+ to be followed.
+
+Some of the sequences can be intermixed with each other and need to be handled
+as they happen. The exact operation is documented for each sequence.
+
+Should a decoding error occur, it will be reported to the client with the level
+of details depending on the decoder capabilities. Specifically:
+
+* the CAPTURE buffer that contains the results of the failed decode operation
+ will be returned with the V4L2_BUF_FLAG_ERROR flag set,
+
+* if the decoder is able to precisely report the OUTPUT buffer that triggered
+ the error, such buffer will be returned with the V4L2_BUF_FLAG_ERROR flag
+ set.
+
+In case of a fatal failure that does not allow the decoding to continue, any
+further operations on corresponding decoder file handle will return the -EIO
+error code. The client may close the file handle and open a new one, or
+alternatively reinitialize the instance by stopping streaming on both queues,
+releasing all buffers and performing the Initialization sequence again.
+
+Seek
+====
+
+Seek is controlled by the ``OUTPUT`` queue, as it is the source of coded data.
+The seek does not require any specific operation on the ``CAPTURE`` queue, but
+it may be affected as per normal decoder operation.
+
+1. Stop the ``OUTPUT`` queue to begin the seek sequence via
+ :c:func:`VIDIOC_STREAMOFF`.
+
+ * **Required fields:**
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``OUTPUT``.
+
+ * The decoder will drop all the pending ``OUTPUT`` buffers and they must be
+ treated as returned to the client (following standard semantics).
+
+2. Restart the ``OUTPUT`` queue via :c:func:`VIDIOC_STREAMON`
+
+ * **Required fields:**
+
+ ``type``
+ a ``V4L2_BUF_TYPE_*`` enum appropriate for ``OUTPUT``.
+
+ * The decoder will start accepting new source bytestream buffers after the
+ call returns.
+
+3. Start queuing buffers containing coded data after the seek to the ``OUTPUT``
+ queue until a suitable resume point is found.
+
+ .. note::
+
+ There is no requirement to begin queuing coded data starting exactly
+ from a resume point (e.g. SPS or a keyframe). Any queued ``OUTPUT``
+ buffers will be processed and returned to the client until a suitable
+ resume point is found. While looking for a resume point, the decoder
+ should not produce any decoded frames into ``CAPTURE`` buffers.
+
+ Some hardware is known to mishandle seeks to a non-resume point. Such an
+ operation may result in an unspecified number of corrupted decoded frames
+ being made available on the ``CAPTURE`` queue. Drivers must ensure that
+ no fatal decoding errors or crashes occur, and implement any necessary
+ handling and workarounds for hardware issues related to seek operations.
+
+ .. warning::
+
+ In case of the H.264/HEVC codec, the client must take care not to seek
+ over a change of SPS/PPS. Even though the target frame could be a
+ keyframe, the stale SPS/PPS inside decoder state would lead to undefined
+ results when decoding. Although the decoder must handle that case without
+ a crash or a fatal decode error, the client must not expect a sensible
+ decode output.
+
+ If the hardware can detect such corrupted decoded frames, then
+ corresponding buffers will be returned to the client with the
+ V4L2_BUF_FLAG_ERROR set. See the `Decoding` section for further
+ description of decode error reporting.
+
+4. After a resume point is found, the decoder will start returning ``CAPTURE``
+ buffers containing decoded frames.
+
+.. important::
+
+ A seek may result in the `Dynamic Resolution Change` sequence being
+ initiated, due to the seek target having decoding parameters different from
+ the part of the stream decoded before the seek. The sequence must be handled
+ as per normal decoder operation.
+
+.. warning::
+
+ It is not specified when the ``CAPTURE`` queue starts producing buffers
+ containing decoded data from the ``OUTPUT`` buffers queued after the seek,
+ as it operates independently from the ``OUTPUT`` queue.
+
+ The decoder may return a number of remaining ``CAPTURE`` buffers containing
+ decoded frames originating from the ``OUTPUT`` buffers queued before the
+ seek sequence is performed.
+
+ The ``VIDIOC_STREAMOFF`` operation discards any remaining queued
+ ``OUTPUT`` buffers, which means that not all of the ``OUTPUT`` buffers
+ queued before the seek sequence may have matching ``CAPTURE`` buffers
+ produced. For example, given the sequence of operations on the
+ ``OUTPUT`` queue:
+
+ QBUF(A), QBUF(B), STREAMOFF(), STREAMON(), QBUF(G), QBUF(H),
+
+ any of the following results on the ``CAPTURE`` queue is allowed:
+
+ {A’, B’, G’, H’}, {A’, G’, H’}, {G’, H’}.
+
+ To determine the CAPTURE buffer containing the first decoded frame after the
+ seek, the client may observe the timestamps to match the CAPTURE and OUTPUT
+ buffers or use V4L2_DEC_CMD_STOP and V4L2_DEC_CMD_START to drain the
+ decoder.
+
+.. note::
+
+ To achieve instantaneous seek, the client may restart streaming on the
+ ``CAPTURE`` queue too to discard decoded, but not yet dequeued buffers.
+
+Dynamic Resolution Change
+=========================
+
+Streams that include resolution metadata in the bytestream may require switching
+to a different resolution during the decoding.
+
+.. note::
+
+ Not all decoders can detect resolution changes. Those that do set the
+ ``V4L2_FMT_FLAG_DYN_RESOLUTION`` flag for the coded format when
+ :c:func:`VIDIOC_ENUM_FMT` is called.
+
+The sequence starts when the decoder detects a coded frame with one or more of
+the following parameters different from those previously established (and
+reflected by corresponding queries):
+
+* coded resolution (``OUTPUT`` width and height),
+
+* visible resolution (selection rectangles),
+
+* the minimum number of buffers needed for decoding.
+
+Whenever that happens, the decoder must proceed as follows:
+
+1. After encountering a resolution change in the stream, the decoder sends a
+ ``V4L2_EVENT_SOURCE_CHANGE`` event with ``changes`` set to
+ ``V4L2_EVENT_SRC_CH_RESOLUTION``.
+
+ .. important::
+
+ Any client query issued after the decoder queues the event will return
+ values applying to the stream after the resolution change, including
+ queue formats, selection rectangles and controls.
+
+2. The decoder will then process and decode all remaining buffers from before
+ the resolution change point.
+
+ * The last buffer from before the change must be marked with the
+ ``V4L2_BUF_FLAG_LAST`` flag, similarly to the `Drain` sequence above.
+
+ .. warning::
+
+ The last buffer may be empty (with :c:type:`v4l2_buffer` ``bytesused``
+ = 0) and in that case it must be ignored by the client, as it does not
+ contain a decoded frame.
+
+ .. note::
+
+ Any attempt to dequeue more ``CAPTURE`` buffers beyond the buffer marked
+ with ``V4L2_BUF_FLAG_LAST`` will result in a -EPIPE error from
+ :c:func:`VIDIOC_DQBUF`.
+
+The client must continue the sequence as described below to continue the
+decoding process.
+
+1. Dequeue the source change event.
+
+ .. important::
+
+ A source change triggers an implicit decoder drain, similar to the
+ explicit `Drain` sequence. The decoder is stopped after it completes.
+ The decoding process must be resumed with either a pair of calls to
+ :c:func:`VIDIOC_STREAMOFF` and :c:func:`VIDIOC_STREAMON` on the
+ ``CAPTURE`` queue, or a call to :c:func:`VIDIOC_DECODER_CMD` with the
+ ``V4L2_DEC_CMD_START`` command.
+
+2. Continue with the `Capture Setup` sequence.
+
+.. note::
+
+ During the resolution change sequence, the ``OUTPUT`` queue must remain
+ streaming. Calling :c:func:`VIDIOC_STREAMOFF` on the ``OUTPUT`` queue would
+ abort the sequence and initiate a seek.
+
+ In principle, the ``OUTPUT`` queue operates separately from the ``CAPTURE``
+ queue and this remains true for the duration of the entire resolution change
+ sequence as well.
+
+ The client should, for best performance and simplicity, keep queuing/dequeuing
+ buffers to/from the ``OUTPUT`` queue even while processing this sequence.
+
+Drain
+=====
+
+To ensure that all queued ``OUTPUT`` buffers have been processed and related
+``CAPTURE`` buffers are given to the client, the client must follow the drain
+sequence described below. After the drain sequence ends, the client has
+received all decoded frames for all ``OUTPUT`` buffers queued before the
+sequence was started.
+
+1. Begin drain by issuing :c:func:`VIDIOC_DECODER_CMD`.
+
+ * **Required fields:**
+
+ ``cmd``
+ set to ``V4L2_DEC_CMD_STOP``.
+
+ ``flags``
+ set to 0.
+
+ ``pts``
+ set to 0.
+
+ .. warning::
+
+ The sequence can be only initiated if both ``OUTPUT`` and ``CAPTURE``
+ queues are streaming. For compatibility reasons, the call to
+ :c:func:`VIDIOC_DECODER_CMD` will not fail even if any of the queues is
+ not streaming, but at the same time it will not initiate the `Drain`
+ sequence and so the steps described below would not be applicable.
+
+2. Any ``OUTPUT`` buffers queued by the client before the
+ :c:func:`VIDIOC_DECODER_CMD` was issued will be processed and decoded as
+ normal. The client must continue to handle both queues independently,
+ similarly to normal decode operation. This includes:
+
+ * handling any operations triggered as a result of processing those buffers,
+ such as the `Dynamic Resolution Change` sequence, before continuing with
+ the drain sequence,
+
+ * queuing and dequeuing ``CAPTURE`` buffers, until a buffer marked with the
+ ``V4L2_BUF_FLAG_LAST`` flag is dequeued,
+
+ .. warning::
+
+ The last buffer may be empty (with :c:type:`v4l2_buffer`
+ ``bytesused`` = 0) and in that case it must be ignored by the client,
+ as it does not contain a decoded frame.
+
+ .. note::
+
+ Any attempt to dequeue more ``CAPTURE`` buffers beyond the buffer
+ marked with ``V4L2_BUF_FLAG_LAST`` will result in a -EPIPE error from
+ :c:func:`VIDIOC_DQBUF`.
+
+ * dequeuing processed ``OUTPUT`` buffers, until all the buffers queued
+ before the ``V4L2_DEC_CMD_STOP`` command are dequeued,
+
+ * dequeuing the ``V4L2_EVENT_EOS`` event, if the client subscribed to it.
+
+ .. note::
+
+ For backwards compatibility, the decoder will signal a ``V4L2_EVENT_EOS``
+ event when the last frame has been decoded and all frames are ready to be
+ dequeued. It is a deprecated behavior and the client must not rely on it.
+ The ``V4L2_BUF_FLAG_LAST`` buffer flag should be used instead.
+
+3. Once all the ``OUTPUT`` buffers queued before the ``V4L2_DEC_CMD_STOP`` call
+ are dequeued and the last ``CAPTURE`` buffer is dequeued, the decoder is
+ stopped and it will accept, but not process, any newly queued ``OUTPUT``
+ buffers until the client issues any of the following operations:
+
+ * ``V4L2_DEC_CMD_START`` - the decoder will not be reset and will resume
+ operation normally, with all the state from before the drain,
+
+ * a pair of :c:func:`VIDIOC_STREAMOFF` and :c:func:`VIDIOC_STREAMON` on the
+ ``CAPTURE`` queue - the decoder will resume the operation normally,
+ however any ``CAPTURE`` buffers still in the queue will be returned to the
+ client,
+
+ * a pair of :c:func:`VIDIOC_STREAMOFF` and :c:func:`VIDIOC_STREAMON` on the
+ ``OUTPUT`` queue - any pending source buffers will be returned to the
+ client and the `Seek` sequence will be triggered.
+
+.. note::
+
+ Once the drain sequence is initiated, the client needs to drive it to
+ completion, as described by the steps above, unless it aborts the process by
+ issuing :c:func:`VIDIOC_STREAMOFF` on any of the ``OUTPUT`` or ``CAPTURE``
+ queues. The client is not allowed to issue ``V4L2_DEC_CMD_START`` or
+ ``V4L2_DEC_CMD_STOP`` again while the drain sequence is in progress and they
+ will fail with -EBUSY error code if attempted.
+
+ Although mandatory, the availability of decoder commands may be queried
+ using :c:func:`VIDIOC_TRY_DECODER_CMD`.
+
+End of Stream
+=============
+
+If the decoder encounters an end of stream marking in the stream, the decoder
+will initiate the `Drain` sequence, which the client must handle as described
+above, skipping the initial :c:func:`VIDIOC_DECODER_CMD`.
+
+Commit Points
+=============
+
+Setting formats and allocating buffers trigger changes in the behavior of the
+decoder.
+
+1. Setting the format on the ``OUTPUT`` queue may change the set of formats
+ supported/advertised on the ``CAPTURE`` queue. In particular, it also means
+ that the ``CAPTURE`` format may be reset and the client must not rely on the
+ previously set format being preserved.
+
+2. Enumerating formats on the ``CAPTURE`` queue always returns only formats
+ supported for the current ``OUTPUT`` format.
+
+3. Setting the format on the ``CAPTURE`` queue does not change the list of
+ formats available on the ``OUTPUT`` queue. An attempt to set a ``CAPTURE``
+ format that is not supported for the currently selected ``OUTPUT`` format
+ will result in the decoder adjusting the requested ``CAPTURE`` format to a
+ supported one.
+
+4. Enumerating formats on the ``OUTPUT`` queue always returns the full set of
+ supported coded formats, irrespectively of the current ``CAPTURE`` format.
+
+5. While buffers are allocated on any of the ``OUTPUT`` or ``CAPTURE`` queues,
+ the client must not change the format on the ``OUTPUT`` queue. Drivers will
+ return the -EBUSY error code for any such format change attempt.
+
+To summarize, setting formats and allocation must always start with the
+``OUTPUT`` queue and the ``OUTPUT`` queue is the master that governs the
+set of supported formats for the ``CAPTURE`` queue.
diff --git a/Documentation/media/uapi/v4l/dev-mem2mem.rst b/Documentation/media/uapi/v4l/dev-mem2mem.rst
index 67a980818dc8..caa05f5f6380 100644
--- a/Documentation/media/uapi/v4l/dev-mem2mem.rst
+++ b/Documentation/media/uapi/v4l/dev-mem2mem.rst
@@ -39,4 +39,10 @@ file handle is visible through another file handle).
One of the most common memory-to-memory device is the codec. Codecs
are more complicated than most and require additional setup for
their codec parameters. This is done through codec controls.
-See :ref:`mpeg-controls`.
+See :ref:`mpeg-controls`. More details on how to use codec memory-to-memory
+devices are given in the following sections.
+
+.. toctree::
+ :maxdepth: 1
+
+ dev-decoder
diff --git a/Documentation/media/uapi/v4l/ext-ctrls-codec.rst b/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
index 4a8446203085..bc5dd8e76567 100644
--- a/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
+++ b/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
@@ -759,6 +759,32 @@ enum v4l2_mpeg_video_h264_level -
+.. _v4l2-mpeg-video-mpeg2-level:
+
+``V4L2_CID_MPEG_VIDEO_MPEG2_LEVEL``
+ (enum)
+
+enum v4l2_mpeg_video_mpeg2_level -
+ The level information for the MPEG2 elementary stream. Applicable to
+ MPEG2 codecs. Possible values are:
+
+
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_LOW``
+ - Low Level (LL)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_MAIN``
+ - Main Level (ML)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH_1440``
+ - High-1440 Level (H-14)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH``
+ - High Level (HL)
+
+
+
.. _v4l2-mpeg-video-mpeg4-level:
``V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL``
@@ -845,6 +871,36 @@ enum v4l2_mpeg_video_h264_profile -
+.. _v4l2-mpeg-video-mpeg2-profile:
+
+``V4L2_CID_MPEG_VIDEO_MPEG2_PROFILE``
+ (enum)
+
+enum v4l2_mpeg_video_mpeg2_profile -
+ The profile information for MPEG2. Applicable to MPEG2 codecs.
+ Possible values are:
+
+
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_SIMPLE``
+ - Simple profile (SP)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_MAIN``
+ - Main profile (MP)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_SNR_SCALABLE``
+ - SNR Scalable profile (SNR)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_SPATIALLY_SCALABLE``
+ - Spatially Scalable profile (Spt)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_HIGH``
+ - High profile (HP)
+ * - ``V4L2_MPEG_VIDEO_MPEG2_PROFILE_MULTIVIEW``
+ - Multi-view profile (MVP)
+
+
+
.. _v4l2-mpeg-video-mpeg4-profile:
``V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE``
@@ -1395,6 +1451,654 @@ enum v4l2_mpeg_video_h264_hierarchical_coding_type -
- Layer number
+.. _v4l2-mpeg-h264:
+
+``V4L2_CID_MPEG_VIDEO_H264_SPS (struct)``
+ Specifies the sequence parameter set (as extracted from the
+ bitstream) for the associated H264 slice data. This includes the
+ necessary parameters for configuring a stateless hardware decoding
+ pipeline for H264. The bitstream parameters are defined according
+ to :ref:`h264`, section 7.4.2.1.1 "Sequence Parameter Set Data
+ Semantics". For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_sps
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_sps
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``profile_idc``
+ -
+ * - __u8
+ - ``constraint_set_flags``
+ - See :ref:`Sequence Parameter Set Constraints Set Flags <h264_sps_constraints_set_flags>`
+ * - __u8
+ - ``level_idc``
+ -
+ * - __u8
+ - ``seq_parameter_set_id``
+ -
+ * - __u8
+ - ``chroma_format_idc``
+ -
+ * - __u8
+ - ``bit_depth_luma_minus8``
+ -
+ * - __u8
+ - ``bit_depth_chroma_minus8``
+ -
+ * - __u8
+ - ``log2_max_frame_num_minus4``
+ -
+ * - __u8
+ - ``pic_order_cnt_type``
+ -
+ * - __u8
+ - ``log2_max_pic_order_cnt_lsb_minus4``
+ -
+ * - __u8
+ - ``max_num_ref_frames``
+ -
+ * - __u8
+ - ``num_ref_frames_in_pic_order_cnt_cycle``
+ -
+ * - __s32
+ - ``offset_for_ref_frame[255]``
+ -
+ * - __s32
+ - ``offset_for_non_ref_pic``
+ -
+ * - __s32
+ - ``offset_for_top_to_bottom_field``
+ -
+ * - __u16
+ - ``pic_width_in_mbs_minus1``
+ -
+ * - __u16
+ - ``pic_height_in_map_units_minus1``
+ -
+ * - __u32
+ - ``flags``
+ - See :ref:`Sequence Parameter Set Flags <h264_sps_flags>`
+
+.. _h264_sps_constraints_set_flags:
+
+``Sequence Parameter Set Constraints Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET0_FLAG``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET1_FLAG``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET2_FLAG``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET3_FLAG``
+ - 0x00000008
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET4_FLAG``
+ - 0x00000010
+ -
+ * - ``V4L2_H264_SPS_CONSTRAINT_SET5_FLAG``
+ - 0x00000020
+ -
+
+.. _h264_sps_flags:
+
+``Sequence Parameter Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZERO``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED``
+ - 0x00000008
+ -
+ * - ``V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY``
+ - 0x00000010
+ -
+ * - ``V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD``
+ - 0x00000020
+ -
+ * - ``V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE``
+ - 0x00000040
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_PPS (struct)``
+ Specifies the picture parameter set (as extracted from the
+ bitstream) for the associated H264 slice data. This includes the
+ necessary parameters for configuring a stateless hardware decoding
+ pipeline for H264. The bitstream parameters are defined according
+ to :ref:`h264`, section 7.4.2.2 "Picture Parameter Set RBSP
+ Semantics". For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_pps
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_pps
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``pic_parameter_set_id``
+ -
+ * - __u8
+ - ``seq_parameter_set_id``
+ -
+ * - __u8
+ - ``num_slice_groups_minus1``
+ -
+ * - __u8
+ - ``num_ref_idx_l0_default_active_minus1``
+ -
+ * - __u8
+ - ``num_ref_idx_l1_default_active_minus1``
+ -
+ * - __u8
+ - ``weighted_bipred_idc``
+ -
+ * - __s8
+ - ``pic_init_qp_minus26``
+ -
+ * - __s8
+ - ``pic_init_qs_minus26``
+ -
+ * - __s8
+ - ``chroma_qp_index_offset``
+ -
+ * - __s8
+ - ``second_chroma_qp_index_offset``
+ -
+ * - __u16
+ - ``flags``
+ - See :ref:`Picture Parameter Set Flags <h264_pps_flags>`
+
+.. _h264_pps_flags:
+
+``Picture Parameter Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_PPS_FLAG_WEIGHTED_PRED``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT``
+ - 0x00000008
+ -
+ * - ``V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED``
+ - 0x00000010
+ -
+ * - ``V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT``
+ - 0x00000020
+ -
+ * - ``V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE``
+ - 0x00000040
+ -
+ * - ``V4L2_H264_PPS_FLAG_PIC_SCALING_MATRIX_PRESENT``
+ - 0x00000080
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_SCALING_MATRIX (struct)``
+ Specifies the scaling matrix (as extracted from the bitstream) for
+ the associated H264 slice data. The bitstream parameters are
+ defined according to :ref:`h264`, section 7.4.2.1.1.1 "Scaling
+ List Semantics". For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_scaling_matrix
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_scaling_matrix
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``scaling_list_4x4[6][16]``
+ -
+ * - __u8
+ - ``scaling_list_8x8[6][64]``
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAMS (struct)``
+ Specifies the slice parameters (as extracted from the bitstream)
+ for the associated H264 slice data. This includes the necessary
+ parameters for configuring a stateless hardware decoding pipeline
+ for H264. The bitstream parameters are defined according to
+ :ref:`h264`, section 7.4.3 "Slice Header Semantics". For further
+ documentation, refer to the above specification, unless there is
+ an explicit comment stating otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API
+ and it is expected to change.
+
+ This structure is expected to be passed as an array, with one
+ entry for each slice included in the bitstream buffer.
+
+.. c:type:: v4l2_ctrl_h264_slice_params
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_slice_params
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u32
+ - ``size``
+ -
+ * - __u32
+ - ``start_byte_offset``
+ Offset (in bytes) from the beginning of the OUTPUT buffer to the start
+ of the slice. If the slice starts with a start code, then this is the
+ offset to such start code. When operating in slice-based decoding mode
+ (see :c:type:`v4l2_mpeg_video_h264_decode_mode`), this field should
+ be set to 0. When operating in frame-based decoding mode, this field
+ should be 0 for the first slice.
+ * - __u32
+ - ``header_bit_size``
+ -
+ * - __u16
+ - ``first_mb_in_slice``
+ -
+ * - __u8
+ - ``slice_type``
+ -
+ * - __u8
+ - ``pic_parameter_set_id``
+ -
+ * - __u8
+ - ``colour_plane_id``
+ -
+ * - __u8
+ - ``redundant_pic_cnt``
+ -
+ * - __u16
+ - ``frame_num``
+ -
+ * - __u16
+ - ``idr_pic_id``
+ -
+ * - __u16
+ - ``pic_order_cnt_lsb``
+ -
+ * - __s32
+ - ``delta_pic_order_cnt_bottom``
+ -
+ * - __s32
+ - ``delta_pic_order_cnt0``
+ -
+ * - __s32
+ - ``delta_pic_order_cnt1``
+ -
+ * - struct :c:type:`v4l2_h264_pred_weight_table`
+ - ``pred_weight_table``
+ -
+ * - __u32
+ - ``dec_ref_pic_marking_bit_size``
+ -
+ * - __u32
+ - ``pic_order_cnt_bit_size``
+ -
+ * - __u8
+ - ``cabac_init_idc``
+ -
+ * - __s8
+ - ``slice_qp_delta``
+ -
+ * - __s8
+ - ``slice_qs_delta``
+ -
+ * - __u8
+ - ``disable_deblocking_filter_idc``
+ -
+ * - __s8
+ - ``slice_alpha_c0_offset_div2``
+ -
+ * - __s8
+ - ``slice_beta_offset_div2``
+ -
+ * - __u8
+ - ``num_ref_idx_l0_active_minus1``
+ -
+ * - __u8
+ - ``num_ref_idx_l1_active_minus1``
+ -
+ * - __u32
+ - ``slice_group_change_cycle``
+ -
+ * - __u8
+ - ``ref_pic_list0[32]``
+ - Reference picture list after applying the per-slice modifications
+ * - __u8
+ - ``ref_pic_list1[32]``
+ - Reference picture list after applying the per-slice modifications
+ * - __u32
+ - ``flags``
+ - See :ref:`Slice Parameter Flags <h264_slice_flags>`
+
+.. _h264_slice_flags:
+
+``Slice Parameter Set Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_SLICE_FLAG_FIELD_PIC``
+ - 0x00000001
+ -
+ * - ``V4L2_H264_SLICE_FLAG_BOTTOM_FIELD``
+ - 0x00000002
+ -
+ * - ``V4L2_H264_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED``
+ - 0x00000004
+ -
+ * - ``V4L2_H264_SLICE_FLAG_SP_FOR_SWITCH``
+ - 0x00000008
+ -
+
+``Prediction Weight Table``
+
+ The bitstream parameters are defined according to :ref:`h264`,
+ section 7.4.3.2 "Prediction Weight Table Semantics". For further
+ documentation, refer to the above specification, unless there is
+ an explicit comment stating otherwise.
+
+.. c:type:: v4l2_h264_pred_weight_table
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_h264_pred_weight_table
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u16
+ - ``luma_log2_weight_denom``
+ -
+ * - __u16
+ - ``chroma_log2_weight_denom``
+ -
+ * - struct :c:type:`v4l2_h264_weight_factors`
+ - ``weight_factors[2]``
+ - The weight factors at index 0 are the weight factors for the reference
+ list 0, the one at index 1 for the reference list 1.
+
+.. c:type:: v4l2_h264_weight_factors
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_h264_weight_factors
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __s16
+ - ``luma_weight[32]``
+ -
+ * - __s16
+ - ``luma_offset[32]``
+ -
+ * - __s16
+ - ``chroma_weight[32][2]``
+ -
+ * - __s16
+ - ``chroma_offset[32][2]``
+ -
+
+``V4L2_CID_MPEG_VIDEO_H264_DECODE_PARAMS (struct)``
+ Specifies the decode parameters (as extracted from the bitstream)
+ for the associated H264 slice data. This includes the necessary
+ parameters for configuring a stateless hardware decoding pipeline
+ for H264. The bitstream parameters are defined according to
+ :ref:`h264`. For further documentation, refer to the above
+ specification, unless there is an explicit comment stating
+ otherwise.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_h264_decode_params
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_ctrl_h264_decode_params
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - struct :c:type:`v4l2_h264_dpb_entry`
+ - ``dpb[16]``
+ -
+ * - __u16
+ - ``num_slices``
+ - Number of slices needed to decode the current frame/field. When
+ operating in slice-based decoding mode (see
+ :c:type:`v4l2_mpeg_video_h264_decode_mode`), this field
+ should always be set to one.
+ * - __u16
+ - ``nal_ref_idc``
+ - NAL reference ID value coming from the NAL Unit header
+ * - __s32
+ - ``top_field_order_cnt``
+ - Picture Order Count for the coded top field
+ * - __s32
+ - ``bottom_field_order_cnt``
+ - Picture Order Count for the coded bottom field
+ * - __u32
+ - ``flags``
+ - See :ref:`Decode Parameters Flags <h264_decode_params_flags>`
+
+.. _h264_decode_params_flags:
+
+``Decode Parameters Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_DECODE_PARAM_FLAG_IDR_PIC``
+ - 0x00000001
+ - That picture is an IDR picture
+
+.. c:type:: v4l2_h264_dpb_entry
+
+.. cssclass:: longtable
+
+.. flat-table:: struct v4l2_h264_dpb_entry
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u64
+ - ``reference_ts``
+ - Timestamp of the V4L2 capture buffer to use as reference, used
+ with B-coded and P-coded frames. The timestamp refers to the
+ ``timestamp`` field in struct :c:type:`v4l2_buffer`. Use the
+ :c:func:`v4l2_timeval_to_ns()` function to convert the struct
+ :c:type:`timeval` in struct :c:type:`v4l2_buffer` to a __u64.
+ * - __u16
+ - ``frame_num``
+ -
+ * - __u16
+ - ``pic_num``
+ -
+ * - __s32
+ - ``top_field_order_cnt``
+ -
+ * - __s32
+ - ``bottom_field_order_cnt``
+ -
+ * - __u32
+ - ``flags``
+ - See :ref:`DPB Entry Flags <h264_dpb_flags>`
+
+.. _h264_dpb_flags:
+
+``DPB Entries Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_VALID``
+ - 0x00000001
+ - The DPB entry is valid and should be considered
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_ACTIVE``
+ - 0x00000002
+ - The DPB entry is currently being used as a reference frame
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM``
+ - 0x00000004
+ - The DPB entry is a long term reference frame
+
+``V4L2_CID_MPEG_VIDEO_H264_DECODE_MODE (enum)``
+ Specifies the decoding mode to use. Currently exposes slice-based and
+ frame-based decoding but new modes might be added later on.
+ This control is used as a modifier for V4L2_PIX_FMT_H264_SLICE
+ pixel format. Applications that support V4L2_PIX_FMT_H264_SLICE
+ are required to set this control in order to specify the decoding mode
+ that is expected for the buffer.
+ Drivers may expose a single or multiple decoding modes, depending
+ on what they can support.
+
+ .. note::
+
+ This menu control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_mpeg_video_h264_decode_mode
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_MPEG_VIDEO_H264_DECODE_MODE_SLICE_BASED``
+ - 0
+ - Decoding is done at the slice granularity.
+ In this mode, ``num_slices`` field in struct
+ :c:type:`v4l2_ctrl_h264_decode_params` should be set to 1,
+ and ``start_byte_offset`` in struct
+ :c:type:`v4l2_ctrl_h264_slice_params` should be set to 0.
+ The OUTPUT buffer must contain a single slice.
+ * - ``V4L2_MPEG_VIDEO_H264_DECODE_MODE_FRAME_BASED``
+ - 1
+ - Decoding is done at the frame granularity.
+ In this mode, ``num_slices`` field in struct
+ :c:type:`v4l2_ctrl_h264_decode_params` should be set to the number
+ of slices in the frame, and ``start_byte_offset`` in struct
+ :c:type:`v4l2_ctrl_h264_slice_params` should be set accordingly
+ for each slice. For the first slice, ``start_byte_offset`` should
+ be zero.
+ The OUTPUT buffer must contain all slices needed to decode the
+ frame. The OUTPUT buffer must also contain both fields.
+
+``V4L2_CID_MPEG_VIDEO_H264_START_CODE (enum)``
+ Specifies the H264 slice start code expected for each slice.
+ This control is used as a modifier for V4L2_PIX_FMT_H264_SLICE
+ pixel format. Applications that support V4L2_PIX_FMT_H264_SLICE
+ are required to set this control in order to specify the start code
+ that is expected for the buffer.
+ Drivers may expose a single or multiple start codes, depending
+ on what they can support.
+
+ .. note::
+
+ This menu control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_mpeg_video_h264_start_code
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_MPEG_VIDEO_H264_START_CODE_NONE``
+ - 0
+ - Selecting this value specifies that H264 slices are passed
+ to the driver without any start code.
+ * - ``V4L2_MPEG_VIDEO_H264_START_CODE_ANNEX_B``
+ - 1
+ - Selecting this value specifies that H264 slices are expected
+ to be prefixed by Annex B start codes. According to :ref:`h264`
+ valid start codes can be 3-bytes 0x000001 or 4-bytes 0x00000001.
.. _v4l2-mpeg-mpeg2:
@@ -1609,6 +2313,329 @@ enum v4l2_mpeg_video_h264_hierarchical_coding_type -
Quantization parameter for a P frame for FWHT. Valid range: from 1
to 31.
+.. _v4l2-mpeg-vp8:
+
+``V4L2_CID_MPEG_VIDEO_VP8_FRAME_HEADER (struct)``
+ Specifies the frame parameters for the associated VP8 parsed frame data.
+ This includes the necessary parameters for
+ configuring a stateless hardware decoding pipeline for VP8.
+ The bitstream parameters are defined according to :ref:`vp8`.
+
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
+.. c:type:: v4l2_ctrl_vp8_frame_header
+
+.. cssclass:: longtable
+
+.. tabularcolumns:: |p{5.8cm}|p{4.8cm}|p{6.6cm}|
+
+.. flat-table:: struct v4l2_ctrl_vp8_frame_header
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - struct :c:type:`v4l2_vp8_segment_header`
+ - ``segment_header``
+ - Structure with segment-based adjustments metadata.
+ * - struct :c:type:`v4l2_vp8_loopfilter_header`
+ - ``loopfilter_header``
+ - Structure with loop filter level adjustments metadata.
+ * - struct :c:type:`v4l2_vp8_quantization_header`
+ - ``quant_header``
+ - Structure with VP8 dequantization indices metadata.
+ * - struct :c:type:`v4l2_vp8_entropy_header`
+ - ``entropy_header``
+ - Structure with VP8 entropy coder probabilities metadata.
+ * - struct :c:type:`v4l2_vp8_entropy_coder_state`
+ - ``coder_state``
+ - Structure with VP8 entropy coder state.
+ * - __u16
+ - ``width``
+ - The width of the frame. Must be set for all frames.
+ * - __u16
+ - ``height``
+ - The height of the frame. Must be set for all frames.
+ * - __u8
+ - ``horizontal_scale``
+ - Horizontal scaling factor.
+ * - __u8
+ - ``vertical_scaling factor``
+ - Vertical scale.
+ * - __u8
+ - ``version``
+ - Bitstream version.
+ * - __u8
+ - ``prob_skip_false``
+ - Indicates the probability that the macroblock is not skipped.
+ * - __u8
+ - ``prob_intra``
+ - Indicates the probability that a macroblock is intra-predicted.
+ * - __u8
+ - ``prob_last``
+ - Indicates the probability that the last reference frame is used
+ for inter-prediction
+ * - __u8
+ - ``prob_gf``
+ - Indicates the probability that the golden reference frame is used
+ for inter-prediction
+ * - __u8
+ - ``num_dct_parts``
+ - Number of DCT coefficients partitions. Must be one of: 1, 2, 4, or 8.
+ * - __u32
+ - ``first_part_size``
+ - Size of the first partition, i.e. the control partition.
+ * - __u32
+ - ``first_part_header_bits``
+ - Size in bits of the first partition header portion.
+ * - __u32
+ - ``dct_part_sizes[8]``
+ - DCT coefficients sizes.
+ * - __u64
+ - ``last_frame_ts``
+ - Timestamp for the V4L2 capture buffer to use as last reference frame, used
+ with inter-coded frames. The timestamp refers to the ``timestamp`` field in
+ struct :c:type:`v4l2_buffer`. Use the :c:func:`v4l2_timeval_to_ns()`
+ function to convert the struct :c:type:`timeval` in struct
+ :c:type:`v4l2_buffer` to a __u64.
+ * - __u64
+ - ``golden_frame_ts``
+ - Timestamp for the V4L2 capture buffer to use as last reference frame, used
+ with inter-coded frames. The timestamp refers to the ``timestamp`` field in
+ struct :c:type:`v4l2_buffer`. Use the :c:func:`v4l2_timeval_to_ns()`
+ function to convert the struct :c:type:`timeval` in struct
+ :c:type:`v4l2_buffer` to a __u64.
+ * - __u64
+ - ``alt_frame_ts``
+ - Timestamp for the V4L2 capture buffer to use as alternate reference frame, used
+ with inter-coded frames. The timestamp refers to the ``timestamp`` field in
+ struct :c:type:`v4l2_buffer`. Use the :c:func:`v4l2_timeval_to_ns()`
+ function to convert the struct :c:type:`timeval` in struct
+ :c:type:`v4l2_buffer` to a __u64.
+ * - __u64
+ - ``flags``
+ - See :ref:`Frame Header Flags <vp8_frame_header_flags>`
+
+.. _vp8_frame_header_flags:
+
+``Frame Header Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_VP8_FRAME_HEADER_FLAG_KEY_FRAME``
+ - 0x01
+ - Indicates if the frame is a key frame.
+ * - ``V4L2_VP8_FRAME_HEADER_FLAG_EXPERIMENTAL``
+ - 0x02
+ - Experimental bitstream.
+ * - ``V4L2_VP8_FRAME_HEADER_FLAG_SHOW_FRAME``
+ - 0x04
+ - Show frame flag, indicates if the frame is for display.
+ * - ``V4L2_VP8_FRAME_HEADER_FLAG_MB_NO_SKIP_COEFF``
+ - 0x08
+ - Enable/disable skipping of macroblocks with no non-zero coefficients.
+ * - ``V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_GOLDEN``
+ - 0x10
+ - Sign of motion vectors when the golden frame is referenced.
+ * - ``V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_ALT``
+ - 0x20
+ - Sign of motion vectors when the alt frame is referenced.
+
+.. c:type:: v4l2_vp8_entropy_coder_state
+
+.. cssclass:: longtable
+
+.. tabularcolumns:: |p{1.5cm}|p{6.3cm}|p{9.4cm}|
+
+.. flat-table:: struct v4l2_vp8_entropy_coder_state
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``range``
+ -
+ * - __u8
+ - ``value``
+ -
+ * - __u8
+ - ``bit_count``
+ -
+ * - __u8
+ - ``padding``
+ - Applications and drivers must set this to zero.
+
+.. c:type:: v4l2_vp8_segment_header
+
+.. cssclass:: longtable
+
+.. tabularcolumns:: |p{1.5cm}|p{6.3cm}|p{9.4cm}|
+
+.. flat-table:: struct v4l2_vp8_segment_header
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __s8
+ - ``quant_update[4]``
+ - Signed quantizer value update.
+ * - __s8
+ - ``lf_update[4]``
+ - Signed loop filter level value update.
+ * - __u8
+ - ``segment_probs[3]``
+ - Segment probabilities.
+ * - __u8
+ - ``padding``
+ - Applications and drivers must set this to zero.
+ * - __u32
+ - ``flags``
+ - See :ref:`Segment Header Flags <vp8_segment_header_flags>`
+
+.. _vp8_segment_header_flags:
+
+``Segment Header Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED``
+ - 0x01
+ - Enable/disable segment-based adjustments.
+ * - ``V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_MAP``
+ - 0x02
+ - Indicates if the macroblock segmentation map is updated in this frame.
+ * - ``V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_FEATURE_DATA``
+ - 0x04
+ - Indicates if the segment feature data is updated in this frame.
+ * - ``V4L2_VP8_SEGMENT_HEADER_FLAG_DELTA_VALUE_MODE``
+ - 0x08
+ - If is set, the segment feature data mode is delta-value.
+ If cleared, it's absolute-value.
+
+.. c:type:: v4l2_vp8_loopfilter_header
+
+.. cssclass:: longtable
+
+.. tabularcolumns:: |p{1.5cm}|p{6.3cm}|p{9.4cm}|
+
+.. flat-table:: struct v4l2_vp8_loopfilter_header
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __s8
+ - ``ref_frm_delta[4]``
+ - Reference adjustment (signed) delta value.
+ * - __s8
+ - ``mb_mode_delta[4]``
+ - Macroblock prediction mode adjustment (signed) delta value.
+ * - __u8
+ - ``sharpness_level``
+ - Sharpness level
+ * - __u8
+ - ``level``
+ - Filter level
+ * - __u16
+ - ``padding``
+ - Applications and drivers must set this to zero.
+ * - __u32
+ - ``flags``
+ - See :ref:`Loopfilter Header Flags <vp8_loopfilter_header_flags>`
+
+.. _vp8_loopfilter_header_flags:
+
+``Loopfilter Header Flags``
+
+.. cssclass:: longtable
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - ``V4L2_VP8_LF_HEADER_ADJ_ENABLE``
+ - 0x01
+ - Enable/disable macroblock-level loop filter adjustment.
+ * - ``V4L2_VP8_LF_HEADER_DELTA_UPDATE``
+ - 0x02
+ - Indicates if the delta values used in an adjustment are updated.
+ * - ``V4L2_VP8_LF_FILTER_TYPE_SIMPLE``
+ - 0x04
+ - If set, indicates the filter type is simple.
+ If cleared, the filter type is normal.
+
+.. c:type:: v4l2_vp8_quantization_header
+
+.. cssclass:: longtable
+
+.. tabularcolumns:: |p{1.5cm}|p{6.3cm}|p{9.4cm}|
+
+.. flat-table:: struct v4l2_vp8_quantization_header
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``y_ac_qi``
+ - Luma AC coefficient table index.
+ * - __s8
+ - ``y_dc_delta``
+ - Luma DC delta vaue.
+ * - __s8
+ - ``y2_dc_delta``
+ - Y2 block DC delta value.
+ * - __s8
+ - ``y2_ac_delta``
+ - Y2 block AC delta value.
+ * - __s8
+ - ``uv_dc_delta``
+ - Chroma DC delta value.
+ * - __s8
+ - ``uv_ac_delta``
+ - Chroma AC delta value.
+ * - __u16
+ - ``padding``
+ - Applications and drivers must set this to zero.
+
+.. c:type:: v4l2_vp8_entropy_header
+
+.. cssclass:: longtable
+
+.. tabularcolumns:: |p{1.5cm}|p{6.3cm}|p{9.4cm}|
+
+.. flat-table:: struct v4l2_vp8_entropy_header
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 1 1 2
+
+ * - __u8
+ - ``coeff_probs[4][8][3][11]``
+ - Coefficient update probabilities.
+ * - __u8
+ - ``y_mode_probs[4]``
+ - Luma mode update probabilities.
+ * - __u8
+ - ``uv_mode_probs[3]``
+ - Chroma mode update probabilities.
+ * - __u8
+ - ``mv_probs[2][19]``
+ - MV decoding update probabilities.
+ * - __u8
+ - ``padding[3]``
+ - Applications and drivers must set this to zero.
+
.. raw:: latex
\normalsize
diff --git a/Documentation/media/uapi/v4l/extended-controls.rst b/Documentation/media/uapi/v4l/extended-controls.rst
index 24274b398e63..655362483730 100644
--- a/Documentation/media/uapi/v4l/extended-controls.rst
+++ b/Documentation/media/uapi/v4l/extended-controls.rst
@@ -85,20 +85,17 @@ be able to see such compound controls. In other words, these controls
with compound types should only be used programmatically.
Since such compound controls need to expose more information about
-themselves than is possible with
-:ref:`VIDIOC_QUERYCTRL` the
-:ref:`VIDIOC_QUERY_EXT_CTRL <VIDIOC_QUERYCTRL>` ioctl was added. In
-particular, this ioctl gives the dimensions of the N-dimensional array
-if this control consists of more than one element.
+themselves than is possible with :ref:`VIDIOC_QUERYCTRL <VIDIOC_QUERYCTRL>`
+the :ref:`VIDIOC_QUERY_EXT_CTRL <VIDIOC_QUERYCTRL>` ioctl was added. In
+particular, this ioctl gives the dimensions of the N-dimensional array if
+this control consists of more than one element.
.. note::
#. It is important to realize that due to the flexibility of controls it is
necessary to check whether the control you want to set actually is
supported in the driver and what the valid range of values is. So use
- the :ref:`VIDIOC_QUERYCTRL` (or :ref:`VIDIOC_QUERY_EXT_CTRL
- <VIDIOC_QUERYCTRL>`) and :ref:`VIDIOC_QUERYMENU <VIDIOC_QUERYCTRL>`
- ioctls to check this.
+ :ref:`VIDIOC_QUERYCTRL` to check this.
#. It is possible that some of the menu indices in a control of
type ``V4L2_CTRL_TYPE_MENU`` may not be supported (``VIDIOC_QUERYMENU``
@@ -144,7 +141,7 @@ control class is found:
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &qctrl)) {
if (V4L2_CTRL_ID2CLASS(qctrl.id) != V4L2_CTRL_CLASS_MPEG)
break;
- /* ... */
+ /* ... */
qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
diff --git a/Documentation/media/uapi/v4l/field-order.rst b/Documentation/media/uapi/v4l/field-order.rst
index d640e922a974..c422bebe4314 100644
--- a/Documentation/media/uapi/v4l/field-order.rst
+++ b/Documentation/media/uapi/v4l/field-order.rst
@@ -51,6 +51,11 @@ determined by the video standard. Hence the distinction between temporal
and spatial order of fields. The diagrams below should make this
clearer.
+In V4L it is assumed that all video cameras transmit fields on the media
+bus in the same order they were captured, so if the top field was
+captured first (is the older field), the top field is also transmitted
+first on the bus.
+
All video capture and output devices must report the current field
order. Some drivers may permit the selection of a different order, to
this end applications initialize the ``field`` field of struct
@@ -101,10 +106,10 @@ enum v4l2_field
* - ``V4L2_FIELD_INTERLACED``
- 4
- Images contain both fields, interleaved line by line. The temporal
- order of the fields (whether the top or bottom field is first
- transmitted) depends on the current video standard. M/NTSC
- transmits the bottom field first, all other standards the top
- field first.
+ order of the fields (whether the top or bottom field is older)
+ depends on the current video standard. In M/NTSC the bottom
+ field is the older field. In all other standards the top field
+ is the older field.
* - ``V4L2_FIELD_SEQ_TB``
- 5
- Images contain both fields, the top field lines are stored first
@@ -135,11 +140,11 @@ enum v4l2_field
* - ``V4L2_FIELD_INTERLACED_TB``
- 8
- Images contain both fields, interleaved line by line, top field
- first. The top field is transmitted first.
+ first. The top field is the older field.
* - ``V4L2_FIELD_INTERLACED_BT``
- 9
- Images contain both fields, interleaved line by line, top field
- first. The bottom field is transmitted first.
+ first. The bottom field is the older field.
diff --git a/Documentation/media/uapi/v4l/hist-v4l2.rst b/Documentation/media/uapi/v4l/hist-v4l2.rst
index 7d8e9efbeb1e..9e097f34cb74 100644
--- a/Documentation/media/uapi/v4l/hist-v4l2.rst
+++ b/Documentation/media/uapi/v4l/hist-v4l2.rst
@@ -900,7 +900,7 @@ V4L2 in Linux 2.6.19
:ref:`VIDIOC_ENUM_FRAMEINTERVALS`
were added.
-3. A new pixel format ``V4L2_PIX_FMT_RGB444`` (:ref:`rgb-formats`) was
+3. A new pixel format ``V4L2_PIX_FMT_RGB444`` (:ref:`pixfmt-rgb`) was
added.
diff --git a/Documentation/media/uapi/v4l/pixfmt-bayer.rst b/Documentation/media/uapi/v4l/pixfmt-bayer.rst
new file mode 100644
index 000000000000..cfa2f4e3e114
--- /dev/null
+++ b/Documentation/media/uapi/v4l/pixfmt-bayer.rst
@@ -0,0 +1,38 @@
+.. Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
+
+.. _pixfmt-bayer:
+
+*****************
+Raw Bayer Formats
+*****************
+
+Description
+===========
+
+The raw Bayer formats are used by image sensors before much if any processing is
+performed on the image. The formats contain green, red and blue components, with
+alternating lines of red and green, and blue and green pixels in different
+orders. See also `the Wikipedia article on Bayer filter
+<https://en.wikipedia.org/wiki/Bayer_filter>`__.
+
+
+.. toctree::
+ :maxdepth: 1
+
+ pixfmt-srggb8
+ pixfmt-srggb10
+ pixfmt-srggb10p
+ pixfmt-srggb10alaw8
+ pixfmt-srggb10dpcm8
+ pixfmt-srggb10-ipu3
+ pixfmt-srggb12
+ pixfmt-srggb12p
+ pixfmt-srggb14p
+ pixfmt-srggb16
diff --git a/Documentation/media/uapi/v4l/pixfmt-compressed.rst b/Documentation/media/uapi/v4l/pixfmt-compressed.rst
index 6c961cfb74da..292fdc116c77 100644
--- a/Documentation/media/uapi/v4l/pixfmt-compressed.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-compressed.rst
@@ -41,7 +41,12 @@ Compressed Formats
- ``V4L2_PIX_FMT_H264``
- 'H264'
- - H264 video elementary stream with start codes.
+ - H264 Access Unit.
+ The decoder expects one Access Unit per buffer.
+ The encoder generates one Access Unit per buffer.
+ If :ref:`VIDIOC_ENUM_FMT` reports ``V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM``
+ then the decoder has no requirements since it can parse all the
+ information from the raw bytestream.
* .. _V4L2-PIX-FMT-H264-NO-SC:
- ``V4L2_PIX_FMT_H264_NO_SC``
@@ -52,6 +57,34 @@ Compressed Formats
- ``V4L2_PIX_FMT_H264_MVC``
- 'M264'
- H264 MVC video elementary stream.
+ * .. _V4L2-PIX-FMT-H264-SLICE:
+
+ - ``V4L2_PIX_FMT_H264_SLICE``
+ - 'S264'
+ - H264 parsed slice data, without the start code and as
+ extracted from the H264 bitstream. This format is adapted for
+ stateless video decoders that implement an H264 pipeline
+ (using the :ref:`mem2mem` and :ref:`media-request-api`).
+ This pixelformat has two modifiers that must be set at least once
+ through the ``V4L2_CID_MPEG_VIDEO_H264_DECODE_MODE``
+ and ``V4L2_CID_MPEG_VIDEO_H264_START_CODE`` controls.
+ In addition, metadata associated with the frame to decode are
+ required to be passed through the ``V4L2_CID_MPEG_VIDEO_H264_SPS``,
+ ``V4L2_CID_MPEG_VIDEO_H264_PPS``,
+ ``V4L2_CID_MPEG_VIDEO_H264_SCALING_MATRIX``,
+ ``V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAMS`` and
+ ``V4L2_CID_MPEG_VIDEO_H264_DECODE_PARAMS`` controls. See the
+ :ref:`associated Codec Control IDs <v4l2-mpeg-h264>`. Exactly
+ one output and one capture buffer must be provided for use
+ with this pixel format. The output buffer must contain the
+ appropriate number of macroblocks to decode a full
+ corresponding frame to the matching capture buffer.
+
+ .. note::
+
+ This format is not yet part of the public kernel API and it
+ is expected to change.
+
* .. _V4L2-PIX-FMT-H263:
- ``V4L2_PIX_FMT_H263``
@@ -61,12 +94,20 @@ Compressed Formats
- ``V4L2_PIX_FMT_MPEG1``
- 'MPG1'
- - MPEG1 video elementary stream.
+ - MPEG1 Picture. Each buffer starts with a Picture header, followed
+ by other headers as needed and ending with the Picture data.
+ If :ref:`VIDIOC_ENUM_FMT` reports ``V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM``
+ then the decoder has no requirements since it can parse all the
+ information from the raw bytestream.
* .. _V4L2-PIX-FMT-MPEG2:
- ``V4L2_PIX_FMT_MPEG2``
- 'MPG2'
- - MPEG2 video elementary stream.
+ - MPEG2 Picture. Each buffer starts with a Picture header, followed
+ by other headers as needed and ending with the Picture data.
+ If :ref:`VIDIOC_ENUM_FMT` reports ``V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM``
+ then the decoder has no requirements since it can parse all the
+ information from the raw bytestream.
* .. _V4L2-PIX-FMT-MPEG2-SLICE:
- ``V4L2_PIX_FMT_MPEG2_SLICE``
@@ -107,17 +148,46 @@ Compressed Formats
- ``V4L2_PIX_FMT_VP8``
- 'VP80'
- - VP8 video elementary stream.
+ - VP8 compressed video frame. The encoder generates one
+ compressed frame per buffer, and the decoder requires one
+ compressed frame per buffer.
+ * .. _V4L2-PIX-FMT-VP8-FRAME:
+
+ - ``V4L2_PIX_FMT_VP8_FRAME``
+ - 'VP8F'
+ - VP8 parsed frame, as extracted from the container.
+ This format is adapted for stateless video decoders that implement a
+ VP8 pipeline (using the :ref:`mem2mem` and :ref:`media-request-api`).
+ Metadata associated with the frame to decode is required to be passed
+ through the ``V4L2_CID_MPEG_VIDEO_VP8_FRAME_HEADER`` control.
+ See the :ref:`associated Codec Control IDs <v4l2-mpeg-vp8>`.
+ Exactly one output and one capture buffer must be provided for use with
+ this pixel format. The output buffer must contain the appropriate number
+ of macroblocks to decode a full corresponding frame to the matching
+ capture buffer.
+
+ .. note::
+
+ This format is not yet part of the public kernel API and it
+ is expected to change.
+
* .. _V4L2-PIX-FMT-VP9:
- ``V4L2_PIX_FMT_VP9``
- 'VP90'
- - VP9 video elementary stream.
+ - VP9 compressed video frame. The encoder generates one
+ compressed frame per buffer, and the decoder requires one
+ compressed frame per buffer.
* .. _V4L2-PIX-FMT-HEVC:
- ``V4L2_PIX_FMT_HEVC``
- 'HEVC'
- - HEVC/H.265 video elementary stream.
+ - HEVC/H.265 Access Unit.
+ The decoder expects one Access Unit per buffer.
+ The encoder generates one Access Unit per buffer.
+ If :ref:`VIDIOC_ENUM_FMT` reports ``V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM``
+ then the decoder has no requirements since it can parse all the
+ information from the raw bytestream.
* .. _V4L2-PIX-FMT-FWHT:
- ``V4L2_PIX_FMT_FWHT``
@@ -125,6 +195,8 @@ Compressed Formats
- Video elementary stream using a codec based on the Fast Walsh Hadamard
Transform. This codec is implemented by the vicodec ('Virtual Codec')
driver. See the codec-fwht.h header for more details.
+ :ref:`VIDIOC_ENUM_FMT` reports ``V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM``
+ since the decoder can parse all the information from the raw bytestream.
* .. _V4L2-PIX-FMT-FWHT-STATELESS:
- ``V4L2_PIX_FMT_FWHT_STATELESS``
diff --git a/Documentation/media/uapi/v4l/pixfmt-packed-rgb.rst b/Documentation/media/uapi/v4l/pixfmt-packed-rgb.rst
deleted file mode 100644
index 738bb14c0ee2..000000000000
--- a/Documentation/media/uapi/v4l/pixfmt-packed-rgb.rst
+++ /dev/null
@@ -1,1306 +0,0 @@
-.. Permission is granted to copy, distribute and/or modify this
-.. document under the terms of the GNU Free Documentation License,
-.. Version 1.1 or any later version published by the Free Software
-.. Foundation, with no Invariant Sections, no Front-Cover Texts
-.. and no Back-Cover Texts. A copy of the license is included at
-.. Documentation/media/uapi/fdl-appendix.rst.
-..
-.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
-
-.. _packed-rgb:
-
-******************
-Packed RGB formats
-******************
-
-Description
-===========
-
-These formats are designed to match the pixel formats of typical PC
-graphics frame buffers. They occupy 8, 16, 24 or 32 bits per pixel.
-These are all packed-pixel formats, meaning all the data for a pixel lie
-next to each other in memory.
-
-.. raw:: latex
-
- \begingroup
- \tiny
- \setlength{\tabcolsep}{2pt}
-
-.. tabularcolumns:: |p{2.8cm}|p{2.0cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|
-
-
-.. _rgb-formats:
-
-.. flat-table:: Packed RGB Image Formats
- :header-rows: 2
- :stub-columns: 0
-
- * - Identifier
- - Code
- - :cspan:`7` Byte 0 in memory
- - :cspan:`7` Byte 1
- - :cspan:`7` Byte 2
- - :cspan:`7` Byte 3
- * -
- -
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
-
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
-
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
-
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
- * .. _V4L2-PIX-FMT-RGB332:
-
- - ``V4L2_PIX_FMT_RGB332``
- - 'RGB1'
-
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-ARGB444:
-
- - ``V4L2_PIX_FMT_ARGB444``
- - 'AR12'
-
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-XRGB444:
-
- - ``V4L2_PIX_FMT_XRGB444``
- - 'XR12'
-
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- -
- -
- -
- -
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-RGBA444:
-
- - ``V4L2_PIX_FMT_RGBA444``
- - 'RA12'
-
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
-
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-RGBX444:
-
- - ``V4L2_PIX_FMT_RGBX444``
- - 'RX12'
-
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- -
- -
- -
-
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-ABGR444:
-
- - ``V4L2_PIX_FMT_ABGR444``
- - 'AB12'
-
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-XBGR444:
-
- - ``V4L2_PIX_FMT_XBGR444``
- - 'XB12'
-
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- -
- -
- -
- -
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-BGRA444:
-
- - ``V4L2_PIX_FMT_BGRA444``
- - 'BA12'
-
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
-
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-BGRX444:
-
- - ``V4L2_PIX_FMT_BGRX444``
- - 'BX12'
-
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- -
- -
- -
- -
-
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-ARGB555:
-
- - ``V4L2_PIX_FMT_ARGB555``
- - 'AR15'
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - a
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- -
- * .. _V4L2-PIX-FMT-XRGB555:
-
- - ``V4L2_PIX_FMT_XRGB555``
- - 'XR15'
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- -
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- -
- * .. _V4L2-PIX-FMT-RGBA555:
-
- - ``V4L2_PIX_FMT_RGBA555``
- - 'RA15'
-
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - a
-
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- -
- * .. _V4L2-PIX-FMT-RGBX555:
-
- - ``V4L2_PIX_FMT_RGBX555``
- - 'RX15'
-
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
-
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- -
- * .. _V4L2-PIX-FMT-ABGR555:
-
- - ``V4L2_PIX_FMT_ABGR555``
- - 'AB15'
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - a
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- -
- * .. _V4L2-PIX-FMT-XBGR555:
-
- - ``V4L2_PIX_FMT_XBGR555``
- - 'XB15'
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- -
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- -
- * .. _V4L2-PIX-FMT-BGRA555:
-
- - ``V4L2_PIX_FMT_BGRA555``
- - 'BA15'
-
- - g\ :sub:`1`
- - g\ :sub:`0`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - a
-
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- -
- * .. _V4L2-PIX-FMT-BGRX555:
-
- - ``V4L2_PIX_FMT_BGRX555``
- - 'BX15'
-
- - g\ :sub:`1`
- - g\ :sub:`0`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- -
-
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- -
- * .. _V4L2-PIX-FMT-RGB565:
-
- - ``V4L2_PIX_FMT_RGB565``
- - 'RGBP'
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- -
- * .. _V4L2-PIX-FMT-ARGB555X:
-
- - ``V4L2_PIX_FMT_ARGB555X``
- - 'AR15' | (1 << 31)
-
- - a
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-XRGB555X:
-
- - ``V4L2_PIX_FMT_XRGB555X``
- - 'XR15' | (1 << 31)
-
- -
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-RGB565X:
-
- - ``V4L2_PIX_FMT_RGB565X``
- - 'RGBR'
-
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-BGR24:
-
- - ``V4L2_PIX_FMT_BGR24``
- - 'BGR3'
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-RGB24:
-
- - ``V4L2_PIX_FMT_RGB24``
- - 'RGB3'
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-BGR666:
-
- - ``V4L2_PIX_FMT_BGR666``
- - 'BGRH'
-
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- - g\ :sub:`5`
- - g\ :sub:`4`
-
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
-
- - r\ :sub:`1`
- - r\ :sub:`0`
- -
- -
- -
- -
- -
- -
-
- -
- -
- -
- -
- -
- -
- -
- -
- * .. _V4L2-PIX-FMT-ABGR32:
-
- - ``V4L2_PIX_FMT_ABGR32``
- - 'AR24'
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - a\ :sub:`7`
- - a\ :sub:`6`
- - a\ :sub:`5`
- - a\ :sub:`4`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
- * .. _V4L2-PIX-FMT-XBGR32:
-
- - ``V4L2_PIX_FMT_XBGR32``
- - 'XR24'
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- -
- -
- -
- -
- -
- -
- -
- -
- * .. _V4L2-PIX-FMT-BGRA32:
-
- - ``V4L2_PIX_FMT_BGRA32``
- - 'RA24'
-
- - a\ :sub:`7`
- - a\ :sub:`6`
- - a\ :sub:`5`
- - a\ :sub:`4`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- * .. _V4L2-PIX-FMT-BGRX32:
-
- - ``V4L2_PIX_FMT_BGRX32``
- - 'RX24'
-
- -
- -
- -
- -
- -
- -
- -
- -
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- * .. _V4L2-PIX-FMT-RGBA32:
-
- - ``V4L2_PIX_FMT_RGBA32``
- - 'AB24'
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - a\ :sub:`7`
- - a\ :sub:`6`
- - a\ :sub:`5`
- - a\ :sub:`4`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
- * .. _V4L2-PIX-FMT-RGBX32:
-
- - ``V4L2_PIX_FMT_RGBX32``
- - 'XB24'
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- -
- -
- -
- -
- -
- -
- -
- -
- * .. _V4L2-PIX-FMT-ARGB32:
-
- - ``V4L2_PIX_FMT_ARGB32``
- - 'BA24'
-
- - a\ :sub:`7`
- - a\ :sub:`6`
- - a\ :sub:`5`
- - a\ :sub:`4`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- * .. _V4L2-PIX-FMT-XRGB32:
-
- - ``V4L2_PIX_FMT_XRGB32``
- - 'BX24'
-
- -
- -
- -
- -
- -
- -
- -
- -
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
-.. raw:: latex
-
- \endgroup
-
-.. note:: Bit 7 is the most significant bit.
-
-The usage and value of the alpha bits (a) in the ARGB and ABGR formats
-(collectively referred to as alpha formats) depend on the device type
-and hardware operation. :ref:`Capture <capture>` devices (including
-capture queues of mem-to-mem devices) fill the alpha component in
-memory. When the device outputs an alpha channel the alpha component
-will have a meaningful value. Otherwise, when the device doesn't output
-an alpha channel but can set the alpha bit to a user-configurable value,
-the :ref:`V4L2_CID_ALPHA_COMPONENT <v4l2-alpha-component>` control
-is used to specify that alpha value, and the alpha component of all
-pixels will be set to the value specified by that control. Otherwise a
-corresponding format without an alpha component (XRGB or XBGR) must be
-used instead of an alpha format.
-
-:ref:`Output <output>` devices (including output queues of mem-to-mem
-devices and :ref:`video output overlay <osd>` devices) read the alpha
-component from memory. When the device processes the alpha channel the
-alpha component must be filled with meaningful values by applications.
-Otherwise a corresponding format without an alpha component (XRGB or
-XBGR) must be used instead of an alpha format.
-
-The XRGB and XBGR formats contain undefined bits (-). Applications,
-devices and drivers must ignore those bits, for both
-:ref:`capture` and :ref:`output` devices.
-
-**Byte Order.**
-Each cell is one byte.
-
-
-.. raw:: latex
-
- \small
-
-.. tabularcolumns:: |p{3.1cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|
-
-.. flat-table:: RGB byte order
- :header-rows: 0
- :stub-columns: 0
- :widths: 11 3 3 3 3 3 3 3 3 3 3 3 3
-
- * - start + 0:
- - B\ :sub:`00`
- - G\ :sub:`00`
- - R\ :sub:`00`
- - B\ :sub:`01`
- - G\ :sub:`01`
- - R\ :sub:`01`
- - B\ :sub:`02`
- - G\ :sub:`02`
- - R\ :sub:`02`
- - B\ :sub:`03`
- - G\ :sub:`03`
- - R\ :sub:`03`
- * - start + 12:
- - B\ :sub:`10`
- - G\ :sub:`10`
- - R\ :sub:`10`
- - B\ :sub:`11`
- - G\ :sub:`11`
- - R\ :sub:`11`
- - B\ :sub:`12`
- - G\ :sub:`12`
- - R\ :sub:`12`
- - B\ :sub:`13`
- - G\ :sub:`13`
- - R\ :sub:`13`
- * - start + 24:
- - B\ :sub:`20`
- - G\ :sub:`20`
- - R\ :sub:`20`
- - B\ :sub:`21`
- - G\ :sub:`21`
- - R\ :sub:`21`
- - B\ :sub:`22`
- - G\ :sub:`22`
- - R\ :sub:`22`
- - B\ :sub:`23`
- - G\ :sub:`23`
- - R\ :sub:`23`
- * - start + 36:
- - B\ :sub:`30`
- - G\ :sub:`30`
- - R\ :sub:`30`
- - B\ :sub:`31`
- - G\ :sub:`31`
- - R\ :sub:`31`
- - B\ :sub:`32`
- - G\ :sub:`32`
- - R\ :sub:`32`
- - B\ :sub:`33`
- - G\ :sub:`33`
- - R\ :sub:`33`
-
-.. raw:: latex
-
- \normalsize
-
-Formats defined in :ref:`rgb-formats-deprecated` are deprecated and
-must not be used by new drivers. They are documented here for reference.
-The meaning of their alpha bits ``(a)`` are ill-defined and interpreted as in
-either the corresponding ARGB or XRGB format, depending on the driver.
-
-
-.. raw:: latex
-
- \begingroup
- \tiny
- \setlength{\tabcolsep}{2pt}
-
-.. tabularcolumns:: |p{2.6cm}|p{0.70cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|
-
-.. _rgb-formats-deprecated:
-
-.. flat-table:: Deprecated Packed RGB Image Formats
- :header-rows: 2
- :stub-columns: 0
-
- * - Identifier
- - Code
- - :cspan:`7` Byte 0 in memory
-
- - :cspan:`7` Byte 1
-
- - :cspan:`7` Byte 2
-
- - :cspan:`7` Byte 3
- * -
- -
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
-
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
-
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
-
- - 7
- - 6
- - 5
- - 4
- - 3
- - 2
- - 1
- - 0
- * .. _V4L2-PIX-FMT-RGB444:
-
- - ``V4L2_PIX_FMT_RGB444``
- - 'R444'
-
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-RGB555:
-
- - ``V4L2_PIX_FMT_RGB555``
- - 'RGBO'
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - a
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
- -
- * .. _V4L2-PIX-FMT-RGB555X:
-
- - ``V4L2_PIX_FMT_RGB555X``
- - 'RGBQ'
-
- - a
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
- - g\ :sub:`4`
- - g\ :sub:`3`
-
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
- -
- * .. _V4L2-PIX-FMT-BGR32:
-
- - ``V4L2_PIX_FMT_BGR32``
- - 'BGR4'
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - a\ :sub:`7`
- - a\ :sub:`6`
- - a\ :sub:`5`
- - a\ :sub:`4`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
- * .. _V4L2-PIX-FMT-RGB32:
-
- - ``V4L2_PIX_FMT_RGB32``
- - 'RGB4'
-
- - a\ :sub:`7`
- - a\ :sub:`6`
- - a\ :sub:`5`
- - a\ :sub:`4`
- - a\ :sub:`3`
- - a\ :sub:`2`
- - a\ :sub:`1`
- - a\ :sub:`0`
-
- - r\ :sub:`7`
- - r\ :sub:`6`
- - r\ :sub:`5`
- - r\ :sub:`4`
- - r\ :sub:`3`
- - r\ :sub:`2`
- - r\ :sub:`1`
- - r\ :sub:`0`
-
- - g\ :sub:`7`
- - g\ :sub:`6`
- - g\ :sub:`5`
- - g\ :sub:`4`
- - g\ :sub:`3`
- - g\ :sub:`2`
- - g\ :sub:`1`
- - g\ :sub:`0`
-
- - b\ :sub:`7`
- - b\ :sub:`6`
- - b\ :sub:`5`
- - b\ :sub:`4`
- - b\ :sub:`3`
- - b\ :sub:`2`
- - b\ :sub:`1`
- - b\ :sub:`0`
-
-.. raw:: latex
-
- \endgroup
-
-A test utility to determine which RGB formats a driver actually supports
-is available from the LinuxTV v4l-dvb repository. See
-`https://linuxtv.org/repo/ <https://linuxtv.org/repo/>`__ for access
-instructions.
diff --git a/Documentation/media/uapi/v4l/pixfmt-rgb.rst b/Documentation/media/uapi/v4l/pixfmt-rgb.rst
index 48ab80024835..4ce305cc45da 100644
--- a/Documentation/media/uapi/v4l/pixfmt-rgb.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-rgb.rst
@@ -13,18 +13,1292 @@
RGB Formats
***********
+Description
+===========
-.. toctree::
- :maxdepth: 1
-
- pixfmt-packed-rgb
- pixfmt-srggb8
- pixfmt-srggb10
- pixfmt-srggb10p
- pixfmt-srggb10alaw8
- pixfmt-srggb10dpcm8
- pixfmt-srggb10-ipu3
- pixfmt-srggb12
- pixfmt-srggb12p
- pixfmt-srggb14p
- pixfmt-srggb16
+These formats are designed to match the pixel formats of typical PC
+graphics frame buffers. They occupy 8, 16, 24 or 32 bits per pixel.
+These are all packed-pixel formats, meaning all the data for a pixel lie
+next to each other in memory.
+
+.. raw:: latex
+
+ \begingroup
+ \tiny
+ \setlength{\tabcolsep}{2pt}
+
+.. tabularcolumns:: |p{2.8cm}|p{2.0cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|
+
+
+.. flat-table:: RGB Image Formats
+ :header-rows: 2
+ :stub-columns: 0
+
+ * - Identifier
+ - Code
+ - :cspan:`7` Byte 0 in memory
+ - :cspan:`7` Byte 1
+ - :cspan:`7` Byte 2
+ - :cspan:`7` Byte 3
+ * -
+ -
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+ * .. _V4L2-PIX-FMT-RGB332:
+
+ - ``V4L2_PIX_FMT_RGB332``
+ - 'RGB1'
+
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-ARGB444:
+
+ - ``V4L2_PIX_FMT_ARGB444``
+ - 'AR12'
+
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-XRGB444:
+
+ - ``V4L2_PIX_FMT_XRGB444``
+ - 'XR12'
+
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ -
+ -
+ -
+ -
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-RGBA444:
+
+ - ``V4L2_PIX_FMT_RGBA444``
+ - 'RA12'
+
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-RGBX444:
+
+ - ``V4L2_PIX_FMT_RGBX444``
+ - 'RX12'
+
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ -
+ -
+ -
+
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-ABGR444:
+
+ - ``V4L2_PIX_FMT_ABGR444``
+ - 'AB12'
+
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-XBGR444:
+
+ - ``V4L2_PIX_FMT_XBGR444``
+ - 'XB12'
+
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ -
+ -
+ -
+ -
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-BGRA444:
+
+ - ``V4L2_PIX_FMT_BGRA444``
+ - 'BA12'
+
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-BGRX444:
+
+ - ``V4L2_PIX_FMT_BGRX444``
+ - 'BX12'
+
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ -
+ -
+ -
+ -
+
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-ARGB555:
+
+ - ``V4L2_PIX_FMT_ARGB555``
+ - 'AR15'
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - a
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ -
+ * .. _V4L2-PIX-FMT-XRGB555:
+
+ - ``V4L2_PIX_FMT_XRGB555``
+ - 'XR15'
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ -
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ -
+ * .. _V4L2-PIX-FMT-RGBA555:
+
+ - ``V4L2_PIX_FMT_RGBA555``
+ - 'RA15'
+
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - a
+
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ -
+ * .. _V4L2-PIX-FMT-RGBX555:
+
+ - ``V4L2_PIX_FMT_RGBX555``
+ - 'RX15'
+
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ -
+ * .. _V4L2-PIX-FMT-ABGR555:
+
+ - ``V4L2_PIX_FMT_ABGR555``
+ - 'AB15'
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - a
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ -
+ * .. _V4L2-PIX-FMT-XBGR555:
+
+ - ``V4L2_PIX_FMT_XBGR555``
+ - 'XB15'
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ -
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ -
+ * .. _V4L2-PIX-FMT-BGRA555:
+
+ - ``V4L2_PIX_FMT_BGRA555``
+ - 'BA15'
+
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - a
+
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ -
+ * .. _V4L2-PIX-FMT-BGRX555:
+
+ - ``V4L2_PIX_FMT_BGRX555``
+ - 'BX15'
+
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ -
+
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ -
+ * .. _V4L2-PIX-FMT-RGB565:
+
+ - ``V4L2_PIX_FMT_RGB565``
+ - 'RGBP'
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ -
+ * .. _V4L2-PIX-FMT-ARGB555X:
+
+ - ``V4L2_PIX_FMT_ARGB555X``
+ - 'AR15' | (1 << 31)
+
+ - a
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-XRGB555X:
+
+ - ``V4L2_PIX_FMT_XRGB555X``
+ - 'XR15' | (1 << 31)
+
+ -
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-RGB565X:
+
+ - ``V4L2_PIX_FMT_RGB565X``
+ - 'RGBR'
+
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-BGR24:
+
+ - ``V4L2_PIX_FMT_BGR24``
+ - 'BGR3'
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-RGB24:
+
+ - ``V4L2_PIX_FMT_RGB24``
+ - 'RGB3'
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-BGR666:
+
+ - ``V4L2_PIX_FMT_BGR666``
+ - 'BGRH'
+
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ -
+ -
+ -
+ -
+ -
+ -
+
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ * .. _V4L2-PIX-FMT-ABGR32:
+
+ - ``V4L2_PIX_FMT_ABGR32``
+ - 'AR24'
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - a\ :sub:`7`
+ - a\ :sub:`6`
+ - a\ :sub:`5`
+ - a\ :sub:`4`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+ * .. _V4L2-PIX-FMT-XBGR32:
+
+ - ``V4L2_PIX_FMT_XBGR32``
+ - 'XR24'
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ * .. _V4L2-PIX-FMT-BGRA32:
+
+ - ``V4L2_PIX_FMT_BGRA32``
+ - 'RA24'
+
+ - a\ :sub:`7`
+ - a\ :sub:`6`
+ - a\ :sub:`5`
+ - a\ :sub:`4`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ * .. _V4L2-PIX-FMT-BGRX32:
+
+ - ``V4L2_PIX_FMT_BGRX32``
+ - 'RX24'
+
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ * .. _V4L2-PIX-FMT-RGBA32:
+
+ - ``V4L2_PIX_FMT_RGBA32``
+ - 'AB24'
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - a\ :sub:`7`
+ - a\ :sub:`6`
+ - a\ :sub:`5`
+ - a\ :sub:`4`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+ * .. _V4L2-PIX-FMT-RGBX32:
+
+ - ``V4L2_PIX_FMT_RGBX32``
+ - 'XB24'
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ * .. _V4L2-PIX-FMT-ARGB32:
+
+ - ``V4L2_PIX_FMT_ARGB32``
+ - 'BA24'
+
+ - a\ :sub:`7`
+ - a\ :sub:`6`
+ - a\ :sub:`5`
+ - a\ :sub:`4`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ * .. _V4L2-PIX-FMT-XRGB32:
+
+ - ``V4L2_PIX_FMT_XRGB32``
+ - 'BX24'
+
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+.. raw:: latex
+
+ \endgroup
+
+.. note:: Bit 7 is the most significant bit.
+
+The usage and value of the alpha bits (a) in the ARGB and ABGR formats
+(collectively referred to as alpha formats) depend on the device type
+and hardware operation. :ref:`Capture <capture>` devices (including
+capture queues of mem-to-mem devices) fill the alpha component in
+memory. When the device outputs an alpha channel the alpha component
+will have a meaningful value. Otherwise, when the device doesn't output
+an alpha channel but can set the alpha bit to a user-configurable value,
+the :ref:`V4L2_CID_ALPHA_COMPONENT <v4l2-alpha-component>` control
+is used to specify that alpha value, and the alpha component of all
+pixels will be set to the value specified by that control. Otherwise a
+corresponding format without an alpha component (XRGB or XBGR) must be
+used instead of an alpha format.
+
+:ref:`Output <output>` devices (including output queues of mem-to-mem
+devices and :ref:`video output overlay <osd>` devices) read the alpha
+component from memory. When the device processes the alpha channel the
+alpha component must be filled with meaningful values by applications.
+Otherwise a corresponding format without an alpha component (XRGB or
+XBGR) must be used instead of an alpha format.
+
+The XRGB and XBGR formats contain undefined bits (-). Applications,
+devices and drivers must ignore those bits, for both
+:ref:`capture` and :ref:`output` devices.
+
+**Byte Order.**
+Each cell is one byte.
+
+
+.. raw:: latex
+
+ \small
+
+.. tabularcolumns:: |p{3.1cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|
+
+.. flat-table:: RGB byte order
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 11 3 3 3 3 3 3 3 3 3 3 3 3
+
+ * - start + 0:
+ - B\ :sub:`00`
+ - G\ :sub:`00`
+ - R\ :sub:`00`
+ - B\ :sub:`01`
+ - G\ :sub:`01`
+ - R\ :sub:`01`
+ - B\ :sub:`02`
+ - G\ :sub:`02`
+ - R\ :sub:`02`
+ - B\ :sub:`03`
+ - G\ :sub:`03`
+ - R\ :sub:`03`
+ * - start + 12:
+ - B\ :sub:`10`
+ - G\ :sub:`10`
+ - R\ :sub:`10`
+ - B\ :sub:`11`
+ - G\ :sub:`11`
+ - R\ :sub:`11`
+ - B\ :sub:`12`
+ - G\ :sub:`12`
+ - R\ :sub:`12`
+ - B\ :sub:`13`
+ - G\ :sub:`13`
+ - R\ :sub:`13`
+ * - start + 24:
+ - B\ :sub:`20`
+ - G\ :sub:`20`
+ - R\ :sub:`20`
+ - B\ :sub:`21`
+ - G\ :sub:`21`
+ - R\ :sub:`21`
+ - B\ :sub:`22`
+ - G\ :sub:`22`
+ - R\ :sub:`22`
+ - B\ :sub:`23`
+ - G\ :sub:`23`
+ - R\ :sub:`23`
+ * - start + 36:
+ - B\ :sub:`30`
+ - G\ :sub:`30`
+ - R\ :sub:`30`
+ - B\ :sub:`31`
+ - G\ :sub:`31`
+ - R\ :sub:`31`
+ - B\ :sub:`32`
+ - G\ :sub:`32`
+ - R\ :sub:`32`
+ - B\ :sub:`33`
+ - G\ :sub:`33`
+ - R\ :sub:`33`
+
+.. raw:: latex
+
+ \normalsize
+
+Formats defined in :ref:`pixfmt-rgb-deprecated` are deprecated and
+must not be used by new drivers. They are documented here for reference.
+The meaning of their alpha bits ``(a)`` are ill-defined and interpreted as in
+either the corresponding ARGB or XRGB format, depending on the driver.
+
+
+.. raw:: latex
+
+ \begingroup
+ \tiny
+ \setlength{\tabcolsep}{2pt}
+
+.. tabularcolumns:: |p{2.6cm}|p{0.70cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|
+
+.. _pixfmt-rgb-deprecated:
+
+.. flat-table:: Deprecated Packed RGB Image Formats
+ :header-rows: 2
+ :stub-columns: 0
+
+ * - Identifier
+ - Code
+ - :cspan:`7` Byte 0 in memory
+
+ - :cspan:`7` Byte 1
+
+ - :cspan:`7` Byte 2
+
+ - :cspan:`7` Byte 3
+ * -
+ -
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+
+ - 7
+ - 6
+ - 5
+ - 4
+ - 3
+ - 2
+ - 1
+ - 0
+ * .. _V4L2-PIX-FMT-RGB444:
+
+ - ``V4L2_PIX_FMT_RGB444``
+ - 'R444'
+
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-RGB555:
+
+ - ``V4L2_PIX_FMT_RGB555``
+ - 'RGBO'
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - a
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ -
+ * .. _V4L2-PIX-FMT-RGB555X:
+
+ - ``V4L2_PIX_FMT_RGB555X``
+ - 'RGBQ'
+
+ - a
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+ -
+ * .. _V4L2-PIX-FMT-BGR32:
+
+ - ``V4L2_PIX_FMT_BGR32``
+ - 'BGR4'
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - a\ :sub:`7`
+ - a\ :sub:`6`
+ - a\ :sub:`5`
+ - a\ :sub:`4`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+ * .. _V4L2-PIX-FMT-RGB32:
+
+ - ``V4L2_PIX_FMT_RGB32``
+ - 'RGB4'
+
+ - a\ :sub:`7`
+ - a\ :sub:`6`
+ - a\ :sub:`5`
+ - a\ :sub:`4`
+ - a\ :sub:`3`
+ - a\ :sub:`2`
+ - a\ :sub:`1`
+ - a\ :sub:`0`
+
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
+
+.. raw:: latex
+
+ \endgroup
+
+A test utility to determine which RGB formats a driver actually supports
+is available from the LinuxTV v4l-dvb repository. See
+`https://linuxtv.org/repo/ <https://linuxtv.org/repo/>`__ for access
+instructions.
diff --git a/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst b/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
index 5688c816e334..db43dda5aafb 100644
--- a/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
@@ -31,7 +31,20 @@ describing all planes of that format.
* - __u32
- ``sizeimage``
- - Maximum size in bytes required for image data in this plane.
+ - Maximum size in bytes required for image data in this plane,
+ set by the driver. When the image consists of variable length
+ compressed data this is the number of bytes required by the
+ codec to support the worst-case compression scenario.
+
+ The driver will set the value for uncompressed images.
+
+ Clients are allowed to set the sizeimage field for variable length
+ compressed data flagged with ``V4L2_FMT_FLAG_COMPRESSED`` at
+ :ref:`VIDIOC_ENUM_FMT`, but the driver may ignore it and set the
+ value itself, or it may modify the provided value based on
+ alignment requirements or minimum/maximum size requirements.
+ If the client wants to leave this to the driver, then it should
+ set sizeimage to 0.
* - __u32
- ``bytesperline``
- Distance in bytes between the leftmost pixels in two adjacent
diff --git a/Documentation/media/uapi/v4l/pixfmt-v4l2.rst b/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
index 71eebfc6d853..a8321c348bf8 100644
--- a/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
@@ -39,12 +39,17 @@ Single-planar format structure
to a multiple of the scale factor of any smaller planes. For
example when the image format is YUV 4:2:0, ``width`` and
``height`` must be multiples of two.
+
+ For compressed formats that contain the resolution information encoded
+ inside the stream, when fed to a stateful mem2mem decoder, the fields
+ may be zero to rely on the decoder to detect the right values. For more
+ details see :ref:`decoder` and format descriptions.
* - __u32
- ``pixelformat``
- The pixel format or type of compression, set by the application.
This is a little endian
:ref:`four character code <v4l2-fourcc>`. V4L2 defines standard
- RGB formats in :ref:`rgb-formats`, YUV formats in
+ RGB formats in :ref:`pixfmt-rgb`, YUV formats in
:ref:`yuv-formats`, and reserved codes in
:ref:`reserved-formats`
* - __u32
@@ -89,7 +94,18 @@ Single-planar format structure
- Size in bytes of the buffer to hold a complete image, set by the
driver. Usually this is ``bytesperline`` times ``height``. When
the image consists of variable length compressed data this is the
- maximum number of bytes required to hold an image.
+ number of bytes required by the codec to support the worst-case
+ compression scenario.
+
+ The driver will set the value for uncompressed images.
+
+ Clients are allowed to set the sizeimage field for variable length
+ compressed data flagged with ``V4L2_FMT_FLAG_COMPRESSED`` at
+ :ref:`VIDIOC_ENUM_FMT`, but the driver may ignore it and set the
+ value itself, or it may modify the provided value based on
+ alignment requirements or minimum/maximum size requirements.
+ If the client wants to leave this to the driver, then it should
+ set sizeimage to 0.
* - __u32
- ``colorspace``
- Image colorspace, from enum :c:type:`v4l2_colorspace`.
diff --git a/Documentation/media/uapi/v4l/pixfmt.rst b/Documentation/media/uapi/v4l/pixfmt.rst
index 29be001796db..a7d4cd43a298 100644
--- a/Documentation/media/uapi/v4l/pixfmt.rst
+++ b/Documentation/media/uapi/v4l/pixfmt.rst
@@ -31,6 +31,7 @@ see also :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>`.)
pixfmt-intro
pixfmt-indexed
pixfmt-rgb
+ pixfmt-bayer
yuv-formats
hsv-formats
depth-formats
diff --git a/Documentation/media/uapi/v4l/subdev-formats.rst b/Documentation/media/uapi/v4l/subdev-formats.rst
index ab1a48a5ae80..15e11f27b4c8 100644
--- a/Documentation/media/uapi/v4l/subdev-formats.rst
+++ b/Documentation/media/uapi/v4l/subdev-formats.rst
@@ -85,6 +85,14 @@ formats in memory (a raw Bayer image won't be magically converted to
JPEG just by storing it to memory), there is no one-to-one
correspondence between them.
+The media bus pixel codes document parallel formats. Should the pixel data be
+transported over a serial bus, the media bus pixel code that describes a
+parallel format that transfers a sample on a single clock cycle is used. For
+instance, both MEDIA_BUS_FMT_BGR888_1X24 and MEDIA_BUS_FMT_BGR888_3X8 are used
+on parallel busses for transferring an 8 bits per sample BGR data, whereas on
+serial busses the data in this format is only referred to using
+MEDIA_BUS_FMT_BGR888_1X24. This is because there is effectively only a single
+way to transport that format on the serial busses.
Packed RGB Formats
^^^^^^^^^^^^^^^^^^
@@ -1305,6 +1313,113 @@ The following tables list existing packed RGB formats.
- g\ :sub:`6`
- g\ :sub:`5`
- g\ :sub:`4`
+ * .. _MEDIA-BUS-FMT-RGB888-3X8:
+
+ - MEDIA_BUS_FMT_RGB888_3X8
+ - 0x101c
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ - r\ :sub:`7`
+ - r\ :sub:`6`
+ - r\ :sub:`5`
+ - r\ :sub:`4`
+ - r\ :sub:`3`
+ - r\ :sub:`2`
+ - r\ :sub:`1`
+ - r\ :sub:`0`
+ * -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ - g\ :sub:`7`
+ - g\ :sub:`6`
+ - g\ :sub:`5`
+ - g\ :sub:`4`
+ - g\ :sub:`3`
+ - g\ :sub:`2`
+ - g\ :sub:`1`
+ - g\ :sub:`0`
+ * -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ - b\ :sub:`7`
+ - b\ :sub:`6`
+ - b\ :sub:`5`
+ - b\ :sub:`4`
+ - b\ :sub:`3`
+ - b\ :sub:`2`
+ - b\ :sub:`1`
+ - b\ :sub:`0`
* .. _MEDIA-BUS-FMT-ARGB888-1X32:
- MEDIA_BUS_FMT_ARGB888_1X32
diff --git a/Documentation/media/uapi/v4l/v4l2.rst b/Documentation/media/uapi/v4l/v4l2.rst
index 004ec00db6bd..97015b9b40b8 100644
--- a/Documentation/media/uapi/v4l/v4l2.rst
+++ b/Documentation/media/uapi/v4l/v4l2.rst
@@ -60,6 +60,10 @@ Authors, in alphabetical order:
- Original author of the V4L2 API and documentation.
+- Figa, Tomasz <tfiga@chromium.org>
+
+ - Documented the memory-to-memory decoder interface.
+
- H Schimek, Michael <mschimek@gmx.at>
- Original author of the V4L2 API and documentation.
@@ -68,6 +72,10 @@ Authors, in alphabetical order:
- Documented the Digital Video timings API.
+- Osciak, Pawel <posciak@chromium.org>
+
+ - Documented the memory-to-memory decoder interface.
+
- Osciak, Pawel <pawel@osciak.com>
- Designed and documented the multi-planar API.
@@ -92,7 +100,7 @@ Authors, in alphabetical order:
- Designed and documented the VIDIOC_LOG_STATUS ioctl, the extended control ioctls, major parts of the sliced VBI API, the MPEG encoder and decoder APIs and the DV Timings API.
-**Copyright** |copy| 1999-2016: Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab, Pawel Osciak, Sakari Ailus & Antti Palosaari.
+**Copyright** |copy| 1999-2018: Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab, Pawel Osciak, Sakari Ailus & Antti Palosaari, Tomasz Figa
Except when explicitly stated as GPL, programming examples within this
part can be used and distributed without restrictions.
diff --git a/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst b/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst
index ccf83b05afa7..57f0066f4cff 100644
--- a/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst
+++ b/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst
@@ -56,14 +56,16 @@ The ``cmd`` field must contain the command code. Some commands use the
A :ref:`write() <func-write>` or :ref:`VIDIOC_STREAMON`
call sends an implicit START command to the decoder if it has not been
-started yet.
+started yet. Applies to both queues of mem2mem decoders.
A :ref:`close() <func-close>` or :ref:`VIDIOC_STREAMOFF <VIDIOC_STREAMON>`
call of a streaming file descriptor sends an implicit immediate STOP
-command to the decoder, and all buffered data is discarded.
+command to the decoder, and all buffered data is discarded. Applies to both
+queues of mem2mem decoders.
-These ioctls are optional, not all drivers may support them. They were
-introduced in Linux 3.3.
+In principle, these ioctls are optional, not all drivers may support them. They were
+introduced in Linux 3.3. They are, however, mandatory for stateful mem2mem decoders
+(as further documented in :ref:`decoder`).
.. tabularcolumns:: |p{1.1cm}|p{2.4cm}|p{1.2cm}|p{1.6cm}|p{10.6cm}|
@@ -167,26 +169,32 @@ introduced in Linux 3.3.
``V4L2_DEC_CMD_RESUME`` for that. This command has one flag:
``V4L2_DEC_CMD_START_MUTE_AUDIO``. If set, then audio will be
muted when playing back at a non-standard speed.
+
+ For a device implementing the :ref:`decoder`, once the drain sequence
+ is initiated with the ``V4L2_DEC_CMD_STOP`` command, it must be driven
+ to completion before this command can be invoked. Any attempt to
+ invoke the command while the drain sequence is in progress will trigger
+ an ``EBUSY`` error code. The command may be also used to restart the
+ decoder in case of an implicit stop initiated by the decoder itself,
+ without the ``V4L2_DEC_CMD_STOP`` being called explicitly. See
+ :ref:`decoder` for more details.
* - ``V4L2_DEC_CMD_STOP``
- 1
- Stop the decoder. When the decoder is already stopped, this
command does nothing. This command has two flags: if
``V4L2_DEC_CMD_STOP_TO_BLACK`` is set, then the decoder will set
the picture to black after it stopped decoding. Otherwise the last
- image will repeat. mem2mem decoders will stop producing new frames
- altogether. They will send a ``V4L2_EVENT_EOS`` event when the
- last frame has been decoded and all frames are ready to be
- dequeued and will set the ``V4L2_BUF_FLAG_LAST`` buffer flag on
- the last buffer of the capture queue to indicate there will be no
- new buffers produced to dequeue. This buffer may be empty,
- indicated by the driver setting the ``bytesused`` field to 0. Once
- the ``V4L2_BUF_FLAG_LAST`` flag was set, the
- :ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl will not block anymore,
- but return an ``EPIPE`` error code. If
+ image will repeat. If
``V4L2_DEC_CMD_STOP_IMMEDIATELY`` is set, then the decoder stops
immediately (ignoring the ``pts`` value), otherwise it will keep
decoding until timestamp >= pts or until the last of the pending
data from its internal buffers was decoded.
+
+ For a device implementing the :ref:`decoder`, the command will initiate
+ the drain sequence as documented in :ref:`decoder`. No flags or other
+ arguments are accepted in this case. Any attempt to invoke the command
+ again before the sequence completes will trigger an ``EBUSY`` error
+ code.
* - ``V4L2_DEC_CMD_PAUSE``
- 2
- Pause the decoder. When the decoder has not been started yet, the
@@ -209,6 +217,11 @@ On success 0 is returned, on error -1 and the ``errno`` variable is set
appropriately. The generic error codes are described at the
:ref:`Generic Error Codes <gen-errors>` chapter.
+EBUSY
+ A drain sequence of a device implementing the :ref:`decoder` is still in
+ progress. It is not allowed to issue another decoder command until it
+ completes.
+
EINVAL
The ``cmd`` field is invalid.
diff --git a/Documentation/media/uapi/v4l/vidioc-dqevent.rst b/Documentation/media/uapi/v4l/vidioc-dqevent.rst
index dea9c0cc00ab..42659a3d1705 100644
--- a/Documentation/media/uapi/v4l/vidioc-dqevent.rst
+++ b/Documentation/media/uapi/v4l/vidioc-dqevent.rst
@@ -389,14 +389,19 @@ call.
decoder. Applications will have to query the new resolution (if
any, the signal may also have been lost).
+ For stateful decoders follow the guidelines in :ref:`decoder`.
+ Video Capture devices have to query the new timings using
+ :ref:`VIDIOC_QUERY_DV_TIMINGS` or
+ :ref:`VIDIOC_QUERYSTD <VIDIOC_QUERYSTD>`.
+
*Important*: even if the new video timings appear identical to the old
ones, receiving this event indicates that there was an issue with the
video signal and you must stop and restart streaming
(:ref:`VIDIOC_STREAMOFF <VIDIOC_STREAMON>`
followed by :ref:`VIDIOC_STREAMON <VIDIOC_STREAMON>`). The reason is
- that many devices are not able to recover from a temporary loss of
- signal and so restarting streaming I/O is required in order for the
- hardware to synchronize to the video signal.
+ that many Video Capture devices are not able to recover from a temporary
+ loss of signal and so restarting streaming I/O is required in order for
+ the hardware to synchronize to the video signal.
Return Value
diff --git a/Documentation/media/uapi/v4l/vidioc-enum-fmt.rst b/Documentation/media/uapi/v4l/vidioc-enum-fmt.rst
index 822d6730e7d2..399ef1062bac 100644
--- a/Documentation/media/uapi/v4l/vidioc-enum-fmt.rst
+++ b/Documentation/media/uapi/v4l/vidioc-enum-fmt.rst
@@ -127,6 +127,22 @@ one until ``EINVAL`` is returned.
- This format is not native to the device but emulated through
software (usually libv4l2), where possible try to use a native
format instead for better performance.
+ * - ``V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM``
+ - 0x0004
+ - The hardware decoder for this compressed bytestream format (aka coded
+ format) is capable of parsing a continuous bytestream. Applications do
+ not need to parse the bytestream themselves to find the boundaries
+ between frames/fields. This flag can only be used in combination with
+ the ``V4L2_FMT_FLAG_COMPRESSED`` flag, since this applies to compressed
+ formats only. This flag is valid for stateful decoders only.
+ * - ``V4L2_FMT_FLAG_DYN_RESOLUTION``
+ - 0x0008
+ - Dynamic resolution switching is supported by the device for this
+ compressed bytestream format (aka coded format). It will notify the user
+ via the event ``V4L2_EVENT_SOURCE_CHANGE`` when changes in the video
+ parameters are detected. This flag can only be used in combination
+ with the ``V4L2_FMT_FLAG_COMPRESSED`` flag, since this applies to
+ compressed formats only. It is also only applies to stateful codecs.
Return Value
diff --git a/Documentation/media/uapi/v4l/vidioc-qbuf.rst b/Documentation/media/uapi/v4l/vidioc-qbuf.rst
index dbf7b445a27b..407302d80684 100644
--- a/Documentation/media/uapi/v4l/vidioc-qbuf.rst
+++ b/Documentation/media/uapi/v4l/vidioc-qbuf.rst
@@ -139,6 +139,14 @@ may continue as normal, but should be aware that data in the dequeued
buffer might be corrupted. When using the multi-planar API, the planes
array must be passed in as well.
+If the application sets the ``memory`` field to ``V4L2_MEMORY_DMABUF`` to
+dequeue a :ref:`DMABUF <dmabuf>` buffer, the driver fills the ``m.fd`` field
+with a file descriptor numerically the same as the one given to ``VIDIOC_QBUF``
+when the buffer was enqueued. No new file descriptor is created at dequeue time
+and the value is only for the application convenience. When the multi-planar
+API is used the ``m.fd`` fields of the passed array of struct
+:c:type:`v4l2_plane` are filled instead.
+
By default ``VIDIOC_DQBUF`` blocks when no buffer is in the outgoing
queue. When the ``O_NONBLOCK`` flag was given to the
:ref:`open() <func-open>` function, ``VIDIOC_DQBUF`` returns
diff --git a/Documentation/media/uapi/v4l/vidioc-queryctrl.rst b/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
index f824162d0ea9..a3d56ffbf4cc 100644
--- a/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
+++ b/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
@@ -39,8 +39,8 @@ Arguments
File descriptor returned by :ref:`open() <func-open>`.
``argp``
- Pointer to struct :c:type:`v4l2_queryctl`, :c:type:`v4l2_query_ext_ctrl`
- or :c:type`v4l2_querymenu` (depending on the ioctl).
+ Pointer to struct :c:type:`v4l2_queryctrl`, :c:type:`v4l2_query_ext_ctrl`
+ or :c:type:`v4l2_querymenu` (depending on the ioctl).
Description
@@ -443,6 +443,36 @@ See also the examples in :ref:`control`.
- n/a
- A struct :c:type:`v4l2_ctrl_mpeg2_quantization`, containing MPEG-2
quantization matrices for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_SPS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_sps`, containing H264
+ sequence parameters for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_PPS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_pps`, containing H264
+ picture parameters for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_SCALING_MATRIX``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_scaling_matrix`, containing H264
+ scaling matrices for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_SLICE_PARAMS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_slice_params`, containing H264
+ slice parameters for stateless video decoders.
+ * - ``V4L2_CTRL_TYPE_H264_DECODE_PARAMS``
+ - n/a
+ - n/a
+ - n/a
+ - A struct :c:type:`v4l2_ctrl_h264_decode_params`, containing H264
+ decode parameters for stateless video decoders.
.. tabularcolumns:: |p{6.6cm}|p{2.2cm}|p{8.7cm}|
diff --git a/Documentation/media/v4l-drivers/imx7.rst b/Documentation/media/v4l-drivers/imx7.rst
index fe411f65c01c..1e442c97da47 100644
--- a/Documentation/media/v4l-drivers/imx7.rst
+++ b/Documentation/media/v4l-drivers/imx7.rst
@@ -41,7 +41,7 @@ data from MIPI CSI-2 camera sensor. It has one source pad, corresponding to the
virtual channel 0. This module is compliant to previous version of Samsung
D-phy, and supports two D-PHY Rx Data lanes.
-csi_mux
+csi-mux
-------
This is the video multiplexer. It has two sink pads to select from either camera
@@ -56,7 +56,7 @@ can interface directly with Parallel and MIPI CSI-2 buses. It has 256 x 64 FIFO
to store received image pixel data and embedded DMA controllers to transfer data
from the FIFO through AHB bus.
-This entity has one sink pad that receives from the csi_mux entity and a single
+This entity has one sink pad that receives from the csi-mux entity and a single
source pad that routes video frames directly to memory buffers. This pad is
routed to a capture device node.
@@ -81,14 +81,14 @@ an output of 800x600, and BGGR 10 bit bayer format:
# Setup links
media-ctl -l "'ov2680 1-0036':0 -> 'imx7-mipi-csis.0':0[1]"
- media-ctl -l "'imx7-mipi-csis.0':1 -> 'csi_mux':1[1]"
- media-ctl -l "'csi_mux':2 -> 'csi':0[1]"
+ media-ctl -l "'imx7-mipi-csis.0':1 -> 'csi-mux':1[1]"
+ media-ctl -l "'csi-mux':2 -> 'csi':0[1]"
media-ctl -l "'csi':1 -> 'csi capture':0[1]"
# Configure pads for pipeline
media-ctl -V "'ov2680 1-0036':0 [fmt:SBGGR10_1X10/800x600 field:none]"
- media-ctl -V "'csi_mux':1 [fmt:SBGGR10_1X10/800x600 field:none]"
- media-ctl -V "'csi_mux':2 [fmt:SBGGR10_1X10/800x600 field:none]"
+ media-ctl -V "'csi-mux':1 [fmt:SBGGR10_1X10/800x600 field:none]"
+ media-ctl -V "'csi-mux':2 [fmt:SBGGR10_1X10/800x600 field:none]"
media-ctl -V "'imx7-mipi-csis.0':0 [fmt:SBGGR10_1X10/800x600 field:none]"
media-ctl -V "'csi':0 [fmt:SBGGR10_1X10/800x600 field:none]"
@@ -97,64 +97,63 @@ the resolutions supported by the sensor.
.. code-block:: none
- root@imx7s-warp:~# media-ctl -p
- Media controller API version 4.17.0
-
- Media device information
- ------------------------
- driver imx-media
- model imx-media
- serial
- bus info
- hw revision 0x0
- driver version 4.17.0
-
- Device topology
- - entity 1: csi (2 pads, 2 links)
- type V4L2 subdev subtype Unknown flags 0
- device node name /dev/v4l-subdev0
- pad0: Sink
- [fmt:SBGGR10_1X10/800x600 field:none]
- <- "csi_mux":2 [ENABLED]
- pad1: Source
- [fmt:SBGGR10_1X10/800x600 field:none]
- -> "csi capture":0 [ENABLED]
-
- - entity 4: csi capture (1 pad, 1 link)
- type Node subtype V4L flags 0
- device node name /dev/video0
- pad0: Sink
- <- "csi":1 [ENABLED]
-
- - entity 10: csi_mux (3 pads, 2 links)
- type V4L2 subdev subtype Unknown flags 0
- device node name /dev/v4l-subdev1
- pad0: Sink
- [fmt:unknown/0x0]
- pad1: Sink
- [fmt:unknown/800x600 field:none]
- <- "imx7-mipi-csis.0":1 [ENABLED]
- pad2: Source
- [fmt:unknown/800x600 field:none]
- -> "csi":0 [ENABLED]
-
- - entity 14: imx7-mipi-csis.0 (2 pads, 2 links)
- type V4L2 subdev subtype Unknown flags 0
- device node name /dev/v4l-subdev2
- pad0: Sink
- [fmt:SBGGR10_1X10/800x600 field:none]
- <- "ov2680 1-0036":0 [ENABLED]
- pad1: Source
- [fmt:SBGGR10_1X10/800x600 field:none]
- -> "csi_mux":1 [ENABLED]
-
- - entity 17: ov2680 1-0036 (1 pad, 1 link)
- type V4L2 subdev subtype Sensor flags 0
- device node name /dev/v4l-subdev3
- pad0: Source
- [fmt:SBGGR10_1X10/800x600 field:none]
- -> "imx7-mipi-csis.0":0 [ENABLED]
-
+ # media-ctl -p
+ Media controller API version 5.2.0
+
+ Media device information
+ ------------------------
+ driver imx7-csi
+ model imx-media
+ serial
+ bus info
+ hw revision 0x0
+ driver version 5.2.0
+
+ Device topology
+ - entity 1: csi (2 pads, 2 links)
+ type V4L2 subdev subtype Unknown flags 0
+ device node name /dev/v4l-subdev0
+ pad0: Sink
+ [fmt:SBGGR10_1X10/800x600 field:none colorspace:srgb xfer:srgb ycbcr:601 quantization:full-range]
+ <- "csi-mux":2 [ENABLED]
+ pad1: Source
+ [fmt:SBGGR10_1X10/800x600 field:none colorspace:srgb xfer:srgb ycbcr:601 quantization:full-range]
+ -> "csi capture":0 [ENABLED]
+
+ - entity 4: csi capture (1 pad, 1 link)
+ type Node subtype V4L flags 0
+ device node name /dev/video0
+ pad0: Sink
+ <- "csi":1 [ENABLED]
+
+ - entity 10: csi-mux (3 pads, 2 links)
+ type V4L2 subdev subtype Unknown flags 0
+ device node name /dev/v4l-subdev1
+ pad0: Sink
+ [fmt:Y8_1X8/1x1 field:none]
+ pad1: Sink
+ [fmt:SBGGR10_1X10/800x600 field:none]
+ <- "imx7-mipi-csis.0":1 [ENABLED]
+ pad2: Source
+ [fmt:SBGGR10_1X10/800x600 field:none]
+ -> "csi":0 [ENABLED]
+
+ - entity 14: imx7-mipi-csis.0 (2 pads, 2 links)
+ type V4L2 subdev subtype Unknown flags 0
+ device node name /dev/v4l-subdev2
+ pad0: Sink
+ [fmt:SBGGR10_1X10/800x600 field:none]
+ <- "ov2680 1-0036":0 [ENABLED]
+ pad1: Source
+ [fmt:SBGGR10_1X10/800x600 field:none]
+ -> "csi-mux":1 [ENABLED]
+
+ - entity 17: ov2680 1-0036 (1 pad, 1 link)
+ type V4L2 subdev subtype Sensor flags 0
+ device node name /dev/v4l-subdev3
+ pad0: Source
+ [fmt:SBGGR10_1X10/800x600@1/30 field:none colorspace:srgb]
+ -> "imx7-mipi-csis.0":0 [ENABLED]
References
----------
diff --git a/Documentation/media/v4l-drivers/index.rst b/Documentation/media/v4l-drivers/index.rst
index 33a055907258..c4c78a28654c 100644
--- a/Documentation/media/v4l-drivers/index.rst
+++ b/Documentation/media/v4l-drivers/index.rst
@@ -64,5 +64,6 @@ For more details see the file COPYING in the source distribution of Linux.
si476x
soc-camera
uvcvideo
+ vimc
vivid
zr364xx
diff --git a/Documentation/media/v4l-drivers/vimc.dot b/Documentation/media/v4l-drivers/vimc.dot
new file mode 100644
index 000000000000..57863a13fa39
--- /dev/null
+++ b/Documentation/media/v4l-drivers/vimc.dot
@@ -0,0 +1,22 @@
+# SPDX-License-Identifier: GPL-2.0
+
+digraph board {
+ rankdir=TB
+ n00000001 [label="{{} | Sensor A\n/dev/v4l-subdev0 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000001:port0 -> n00000005:port0 [style=bold]
+ n00000001:port0 -> n0000000b [style=bold]
+ n00000003 [label="{{} | Sensor B\n/dev/v4l-subdev1 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000003:port0 -> n00000008:port0 [style=bold]
+ n00000003:port0 -> n0000000f [style=bold]
+ n00000005 [label="{{<port0> 0} | Debayer A\n/dev/v4l-subdev2 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000005:port1 -> n00000017:port0
+ n00000008 [label="{{<port0> 0} | Debayer B\n/dev/v4l-subdev3 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000008:port1 -> n00000017:port0 [style=dashed]
+ n0000000b [label="Raw Capture 0\n/dev/video0", shape=box, style=filled, fillcolor=yellow]
+ n0000000f [label="Raw Capture 1\n/dev/video1", shape=box, style=filled, fillcolor=yellow]
+ n00000013 [label="RGB/YUV Input\n/dev/video2", shape=box, style=filled, fillcolor=yellow]
+ n00000013 -> n00000017:port0 [style=dashed]
+ n00000017 [label="{{<port0> 0} | Scaler\n/dev/v4l-subdev4 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
+ n00000017:port1 -> n0000001a [style=bold]
+ n0000001a [label="RGB/YUV Capture\n/dev/video3", shape=box, style=filled, fillcolor=yellow]
+}
diff --git a/Documentation/media/v4l-drivers/vimc.rst b/Documentation/media/v4l-drivers/vimc.rst
new file mode 100644
index 000000000000..406417680db5
--- /dev/null
+++ b/Documentation/media/v4l-drivers/vimc.rst
@@ -0,0 +1,109 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The Virtual Media Controller Driver (vimc)
+==========================================
+
+The vimc driver emulates complex video hardware using the V4L2 API and the Media
+API. It has a capture device and three subdevices: sensor, debayer and scaler.
+
+Topology
+--------
+
+The topology is hardcoded, although you could modify it in vimc-core and
+recompile the driver to achieve your own topology. This is the default topology:
+
+.. _vimc_topology_graph:
+
+.. kernel-figure:: vimc.dot
+ :alt: Diagram of the default media pipeline topology
+ :align: center
+
+ Media pipeline graph on vimc
+
+Configuring the topology
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Each subdevice will come with its default configuration (pixelformat, height,
+width, ...). One needs to configure the topology in order to match the
+configuration on each linked subdevice to stream frames through the pipeline.
+If the configuration doesn't match, the stream will fail. The ``v4l-utils``
+package is a bundle of user-space applications, that comes with ``media-ctl`` and
+``v4l2-ctl`` that can be used to configure the vimc configuration. This sequence
+of commands fits for the default topology:
+
+.. code-block:: bash
+
+ media-ctl -d platform:vimc -V '"Sensor A":0[fmt:SBGGR8_1X8/640x480]'
+ media-ctl -d platform:vimc -V '"Debayer A":0[fmt:SBGGR8_1X8/640x480]'
+ media-ctl -d platform:vimc -V '"Sensor B":0[fmt:SBGGR8_1X8/640x480]'
+ media-ctl -d platform:vimc -V '"Debayer B":0[fmt:SBGGR8_1X8/640x480]'
+ v4l2-ctl -z platform:vimc -d "RGB/YUV Capture" -v width=1920,height=1440
+ v4l2-ctl -z platform:vimc -d "Raw Capture 0" -v pixelformat=BA81
+ v4l2-ctl -z platform:vimc -d "Raw Capture 1" -v pixelformat=BA81
+
+Subdevices
+----------
+
+Subdevices define the behavior of an entity in the topology. Depending on the
+subdevice, the entity can have multiple pads of type source or sink.
+
+vimc-sensor:
+ Generates images in several formats using video test pattern generator.
+ Exposes:
+
+ * 1 Pad source
+
+vimc-debayer:
+ Transforms images in bayer format into a non-bayer format.
+ Exposes:
+
+ * 1 Pad sink
+ * 1 Pad source
+
+vimc-scaler:
+ Scale up the image by a factor of 3. E.g.: a 640x480 image becomes a
+ 1920x1440 image. (this value can be configured, see at
+ `Module options`_).
+ Exposes:
+
+ * 1 Pad sink
+ * 1 Pad source
+
+vimc-capture:
+ Exposes node /dev/videoX to allow userspace to capture the stream.
+ Exposes:
+
+ * 1 Pad sink
+ * 1 Pad source
+
+Module options
+---------------
+
+Vimc has a few module parameters to configure the driver. You should pass
+those arguments to each subdevice, not to the vimc module. For example::
+
+ vimc_subdevice.param=value
+
+* ``vimc_scaler.sca_mult=<unsigned int>``
+
+ Image size multiplier factor to be used to multiply both width and
+ height, so the image size will be ``sca_mult^2`` bigger than the
+ original one. Currently, only supports scaling up (the default value
+ is 3).
+
+* ``vimc_debayer.deb_mean_win_size=<unsigned int>``
+
+ Window size to calculate the mean. Note: the window size needs to be an
+ odd number, as the main pixel stays in the center of the window,
+ otherwise the next odd number is considered (the default value is 3).
+
+Source code documentation
+-------------------------
+
+vimc-streamer
+~~~~~~~~~~~~~
+
+.. kernel-doc:: drivers/media/platform/vimc/vimc-streamer.h
+ :internal:
+
+.. kernel-doc:: drivers/media/platform/vimc/vimc-streamer.c
diff --git a/Documentation/media/v4l-drivers/vivid.rst b/Documentation/media/v4l-drivers/vivid.rst
index edb6f33e029c..7082fec4075d 100644
--- a/Documentation/media/v4l-drivers/vivid.rst
+++ b/Documentation/media/v4l-drivers/vivid.rst
@@ -941,6 +941,11 @@ Digital Video Controls
affects the reported colorspace since DVI_D outputs will always use
sRGB.
+- Display Present:
+
+ sets the presence of a "display" on the HDMI output. This affects
+ the tx_edid_present, tx_hotplug and tx_rxsense controls.
+
FM Radio Receiver Controls
~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/Documentation/media/videodev2.h.rst.exceptions b/Documentation/media/videodev2.h.rst.exceptions
index 64d348e67df9..adeb6b7a15cb 100644
--- a/Documentation/media/videodev2.h.rst.exceptions
+++ b/Documentation/media/videodev2.h.rst.exceptions
@@ -136,6 +136,11 @@ replace symbol V4L2_CTRL_TYPE_U32 :c:type:`v4l2_ctrl_type`
replace symbol V4L2_CTRL_TYPE_U8 :c:type:`v4l2_ctrl_type`
replace symbol V4L2_CTRL_TYPE_MPEG2_SLICE_PARAMS :c:type:`v4l2_ctrl_type`
replace symbol V4L2_CTRL_TYPE_MPEG2_QUANTIZATION :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_SPS :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_PPS :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_SCALING_MATRIX :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_SLICE_PARAMS :c:type:`v4l2_ctrl_type`
+replace symbol V4L2_CTRL_TYPE_H264_DECODE_PARAMS :c:type:`v4l2_ctrl_type`
# V4L2 capability defines
replace define V4L2_CAP_VIDEO_CAPTURE device-capabilities
@@ -175,15 +180,17 @@ replace define V4L2_PIX_FMT_FLAG_PREMUL_ALPHA reserved-formats
# V4L2 format flags
replace define V4L2_FMT_FLAG_COMPRESSED fmtdesc-flags
replace define V4L2_FMT_FLAG_EMULATED fmtdesc-flags
+replace define V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM fmtdesc-flags
+replace define V4L2_FMT_FLAG_DYN_RESOLUTION fmtdesc-flags
-# V4L2 tymecode types
+# V4L2 timecode types
replace define V4L2_TC_TYPE_24FPS timecode-type
replace define V4L2_TC_TYPE_25FPS timecode-type
replace define V4L2_TC_TYPE_30FPS timecode-type
replace define V4L2_TC_TYPE_50FPS timecode-type
replace define V4L2_TC_TYPE_60FPS timecode-type
-# V4L2 tymecode flags
+# V4L2 timecode flags
replace define V4L2_TC_FLAG_DROPFRAME timecode-flags
replace define V4L2_TC_FLAG_COLORFRAME timecode-flags
replace define V4L2_TC_USERBITS_field timecode-flags
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index f70ebcdfe592..1adbb8a371c7 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -3,7 +3,7 @@
============================
By: David Howells <dhowells@redhat.com>
- Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ Paul E. McKenney <paulmck@linux.ibm.com>
Will Deacon <will.deacon@arm.com>
Peter Zijlstra <peterz@infradead.org>
@@ -548,7 +548,7 @@ There are certain things that the Linux kernel memory barriers do not guarantee:
[*] For information on bus mastering DMA and coherency please read:
- Documentation/PCI/pci.txt
+ Documentation/driver-api/pci/pci.rst
Documentation/DMA-API-HOWTO.txt
Documentation/DMA-API.txt
diff --git a/Documentation/mic/index.rst b/Documentation/mic/index.rst
new file mode 100644
index 000000000000..3a8d06367ef1
--- /dev/null
+++ b/Documentation/mic/index.rst
@@ -0,0 +1,16 @@
+=============================================
+Intel Many Integrated Core (MIC) architecture
+=============================================
+
+.. toctree::
+ :maxdepth: 1
+
+ mic_overview
+ scif_overview
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/mic/mic_overview.txt b/Documentation/mic/mic_overview.rst
index 074adbdf83a4..17d956bdaf7c 100644
--- a/Documentation/mic/mic_overview.txt
+++ b/Documentation/mic/mic_overview.rst
@@ -1,3 +1,7 @@
+======================================================
+Intel Many Integrated Core (MIC) architecture overview
+======================================================
+
An Intel MIC X100 device is a PCIe form factor add-in coprocessor
card based on the Intel Many Integrated Core (MIC) architecture
that runs a Linux OS. It is a PCIe endpoint in a platform and therefore
@@ -45,7 +49,7 @@ Here is a block diagram of the various components described above. The
virtio backends are situated on the host rather than the card given better
single threaded performance for the host compared to MIC, the ability of
the host to initiate DMA's to/from the card using the MIC DMA engine and
-the fact that the virtio block storage backend can only be on the host.
+the fact that the virtio block storage backend can only be on the host::
+----------+ | +----------+
| Card OS | | | Host OS |
diff --git a/Documentation/mic/scif_overview.txt b/Documentation/mic/scif_overview.rst
index 0a280d986731..4c8ad9e43706 100644
--- a/Documentation/mic/scif_overview.txt
+++ b/Documentation/mic/scif_overview.rst
@@ -1,3 +1,7 @@
+========================================
+Symmetric Communication Interface (SCIF)
+========================================
+
The Symmetric Communication Interface (SCIF (pronounced as skiff)) is a low
level communications API across PCIe currently implemented for MIC. Currently
SCIF provides inter-node communication within a single host platform, where a
@@ -8,8 +12,11 @@ is to deliver the maximum possible performance given the communication
abilities of the hardware. SCIF has been used to implement an offload compiler
runtime and OFED support for MPI implementations for MIC coprocessors.
-==== SCIF API Components ====
+SCIF API Components
+===================
+
The SCIF API has the following parts:
+
1. Connection establishment using a client server model
2. Byte stream messaging intended for short messages
3. Node enumeration to determine online nodes
@@ -28,9 +35,12 @@ can also register local memory which is followed by data transfer using either
DMA, CPU copies or remote memory mapping via mmap. SCIF supports both user and
kernel mode clients which are functionally equivalent.
-==== SCIF Performance for MIC ====
+SCIF Performance for MIC
+========================
+
DMA bandwidth comparison between the TCP (over ethernet over PCIe) stack versus
-SCIF shows the performance advantages of SCIF for HPC applications and runtimes.
+SCIF shows the performance advantages of SCIF for HPC applications and
+runtimes::
Comparison of TCP and SCIF based BW
@@ -66,33 +76,33 @@ space API similar to the kernel API in scif.h. The SCIF user space library
is distributed @ https://software.intel.com/en-us/mic-developer
Here is some pseudo code for an example of how two applications on two PCIe
-nodes would typically use the SCIF API:
+nodes would typically use the SCIF API::
-Process A (on node A) Process B (on node B)
+ Process A (on node A) Process B (on node B)
-/* get online node information */
-scif_get_node_ids(..) scif_get_node_ids(..)
-scif_open(..) scif_open(..)
-scif_bind(..) scif_bind(..)
-scif_listen(..)
-scif_accept(..) scif_connect(..)
-/* SCIF connection established */
+ /* get online node information */
+ scif_get_node_ids(..) scif_get_node_ids(..)
+ scif_open(..) scif_open(..)
+ scif_bind(..) scif_bind(..)
+ scif_listen(..)
+ scif_accept(..) scif_connect(..)
+ /* SCIF connection established */
-/* Send and receive short messages */
-scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)
+ /* Send and receive short messages */
+ scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)
-/* Register memory */
-scif_register(..) scif_register(..)
+ /* Register memory */
+ scif_register(..) scif_register(..)
-/* RDMA */
-scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)
+ /* RDMA */
+ scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)
-/* Fence DMAs */
-scif_fence_signal(..) scif_fence_signal(..)
+ /* Fence DMAs */
+ scif_fence_signal(..) scif_fence_signal(..)
-mmap(..) mmap(..)
+ mmap(..) mmap(..)
-/* Access remote registered memory */
+ /* Access remote registered memory */
-/* Close the endpoints */
-scif_close(..) scif_close(..)
+ /* Close the endpoints */
+ scif_close(..) scif_close(..)
diff --git a/Documentation/mips/AU1xxx_IDE.README b/Documentation/mips/au1xxx_ide.rst
index ff675a1b1422..2f9c2cff6738 100644
--- a/Documentation/mips/AU1xxx_IDE.README
+++ b/Documentation/mips/au1xxx_ide.rst
@@ -1,7 +1,14 @@
-README for MIPS AU1XXX IDE driver - Released 2005-07-15
+.. include:: <isonum.txt>
+
+======================
+MIPS AU1XXX IDE driver
+======================
+
+Released 2005-07-15
+
+About
+=====
-ABOUT
------
This file describes the 'drivers/ide/au1xxx-ide.c', related files and the
services they provide.
@@ -10,17 +17,17 @@ the white or black list, go to the 'ADD NEW HARD DISC TO WHITE OR BLACK LIST'
section.
-LICENSE
--------
+License
+=======
-Copyright (c) 2003-2005 AMD, Personal Connectivity Solutions
+:Copyright: |copy| 2003-2005 AMD, Personal Connectivity Solutions
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
-THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
+THIS SOFTWARE IS PROVIDED ``AS IS`` AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
@@ -35,31 +42,35 @@ You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
675 Mass Ave, Cambridge, MA 02139, USA.
-Note: for more information, please refer "AMD Alchemy Au1200/Au1550 IDE
+Note:
+ for more information, please refer "AMD Alchemy Au1200/Au1550 IDE
Interface and Linux Device Driver" Application Note.
-FILES, CONFIGS AND COMPATIBILITY
---------------------------------
+Files, Configs and Compatibility
+================================
Two files are introduced:
a) 'arch/mips/include/asm/mach-au1x00/au1xxx_ide.h'
contains : struct _auide_hwif
- timing parameters for PIO mode 0/1/2/3/4
- timing parameters for MWDMA 0/1/2
+
+ - timing parameters for PIO mode 0/1/2/3/4
+ - timing parameters for MWDMA 0/1/2
b) 'drivers/ide/mips/au1xxx-ide.c'
contains the functionality of the AU1XXX IDE driver
Following extra configs variables are introduced:
- CONFIG_BLK_DEV_IDE_AU1XXX_PIO_DBDMA - enable the PIO+DBDMA mode
- CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA - enable the MWDMA mode
+ CONFIG_BLK_DEV_IDE_AU1XXX_PIO_DBDMA
+ - enable the PIO+DBDMA mode
+ CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA
+ - enable the MWDMA mode
-SUPPORTED IDE MODES
--------------------
+Supported IDE Modes
+===================
The AU1XXX IDE driver supported all PIO modes - PIO mode 0/1/2/3/4 - and all
MWDMA modes - MWDMA 0/1/2 -. There is no support for SWDMA and UDMA mode.
@@ -69,20 +80,21 @@ To change the PIO mode use the program hdparm with option -p, e.g.
-X, e.g. 'hdparm -X32 [device]' for MWDMA mode 0.
-PERFORMANCE CONFIGURATIONS
---------------------------
+Performance Configurations
+==========================
-If the used system doesn't need USB support enable the following kernel configs:
+If the used system doesn't need USB support enable the following kernel
+configs::
-CONFIG_IDE=y
-CONFIG_BLK_DEV_IDE=y
-CONFIG_IDE_GENERIC=y
-CONFIG_BLK_DEV_IDEPCI=y
-CONFIG_BLK_DEV_GENERIC=y
-CONFIG_BLK_DEV_IDEDMA_PCI=y
-CONFIG_BLK_DEV_IDE_AU1XXX=y
-CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y
-CONFIG_BLK_DEV_IDEDMA=y
+ CONFIG_IDE=y
+ CONFIG_BLK_DEV_IDE=y
+ CONFIG_IDE_GENERIC=y
+ CONFIG_BLK_DEV_IDEPCI=y
+ CONFIG_BLK_DEV_GENERIC=y
+ CONFIG_BLK_DEV_IDEDMA_PCI=y
+ CONFIG_BLK_DEV_IDE_AU1XXX=y
+ CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y
+ CONFIG_BLK_DEV_IDEDMA=y
Also define 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to enable
the burst support on DBDMA controller.
@@ -90,20 +102,22 @@ the burst support on DBDMA controller.
If the used system need the USB support enable the following kernel configs for
high IDE to USB throughput.
-CONFIG_IDE_GENERIC=y
-CONFIG_BLK_DEV_IDEPCI=y
-CONFIG_BLK_DEV_GENERIC=y
-CONFIG_BLK_DEV_IDEDMA_PCI=y
-CONFIG_BLK_DEV_IDE_AU1XXX=y
-CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y
-CONFIG_BLK_DEV_IDEDMA=y
+::
+
+ CONFIG_IDE_GENERIC=y
+ CONFIG_BLK_DEV_IDEPCI=y
+ CONFIG_BLK_DEV_GENERIC=y
+ CONFIG_BLK_DEV_IDEDMA_PCI=y
+ CONFIG_BLK_DEV_IDE_AU1XXX=y
+ CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y
+ CONFIG_BLK_DEV_IDEDMA=y
Also undefine 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to
disable the burst support on DBDMA controller.
-ACKNOWLEDGMENTS
----------------
+Acknowledgments
+===============
These drivers wouldn't have been done without the base of kernel 2.4.x AU1XXX
IDE driver from AMD.
@@ -112,4 +126,5 @@ Additional input also from:
Matthias Lenk <matthias.lenk@amd.com>
Happy hacking!
+
Enrico Walther <enrico.walther@amd.com>
diff --git a/Documentation/mips/index.rst b/Documentation/mips/index.rst
new file mode 100644
index 000000000000..a93c2f65884c
--- /dev/null
+++ b/Documentation/mips/index.rst
@@ -0,0 +1,20 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========================
+MIPS-specific Documentation
+===========================
+
+.. toctree::
+ :maxdepth: 2
+ :numbered:
+
+ ingenic-tcu
+
+ au1xxx_ide
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/mips/ingenic-tcu.rst b/Documentation/mips/ingenic-tcu.rst
new file mode 100644
index 000000000000..c4ef4c45aade
--- /dev/null
+++ b/Documentation/mips/ingenic-tcu.rst
@@ -0,0 +1,71 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============================================
+Ingenic JZ47xx SoCs Timer/Counter Unit hardware
+===============================================
+
+The Timer/Counter Unit (TCU) in Ingenic JZ47xx SoCs is a multi-function
+hardware block. It features up to to eight channels, that can be used as
+counters, timers, or PWM.
+
+- JZ4725B, JZ4750, JZ4755 only have six TCU channels. The other SoCs all
+ have eight channels.
+
+- JZ4725B introduced a separate channel, called Operating System Timer
+ (OST). It is a 32-bit programmable timer. On JZ4760B and above, it is
+ 64-bit.
+
+- Each one of the TCU channels has its own clock, which can be reparented to three
+ different clocks (pclk, ext, rtc), gated, and reclocked, through their TCSR register.
+
+ - The watchdog and OST hardware blocks also feature a TCSR register with the same
+ format in their register space.
+ - The TCU registers used to gate/ungate can also gate/ungate the watchdog and
+ OST clocks.
+
+- Each TCU channel works in one of two modes:
+
+ - mode TCU1: channels cannot work in sleep mode, but are easier to
+ operate.
+ - mode TCU2: channels can work in sleep mode, but the operation is a bit
+ more complicated than with TCU1 channels.
+
+- The mode of each TCU channel depends on the SoC used:
+
+ - On the oldest SoCs (up to JZ4740), all of the eight channels operate in
+ TCU1 mode.
+ - On JZ4725B, channel 5 operates as TCU2, the others operate as TCU1.
+ - On newest SoCs (JZ4750 and above), channels 1-2 operate as TCU2, the
+ others operate as TCU1.
+
+- Each channel can generate an interrupt. Some channels share an interrupt
+ line, some don't, and this changes between SoC versions:
+
+ - on older SoCs (JZ4740 and below), channel 0 and channel 1 have their
+ own interrupt line; channels 2-7 share the last interrupt line.
+ - On JZ4725B, channel 0 has its own interrupt; channels 1-5 share one
+ interrupt line; the OST uses the last interrupt line.
+ - on newer SoCs (JZ4750 and above), channel 5 has its own interrupt;
+ channels 0-4 and (if eight channels) 6-7 all share one interrupt line;
+ the OST uses the last interrupt line.
+
+Implementation
+==============
+
+The functionalities of the TCU hardware are spread across multiple drivers:
+
+=========== =====
+clocks drivers/clk/ingenic/tcu.c
+interrupts drivers/irqchip/irq-ingenic-tcu.c
+timers drivers/clocksource/ingenic-timer.c
+OST drivers/clocksource/ingenic-ost.c
+PWM drivers/pwm/pwm-jz4740.c
+watchdog drivers/watchdog/jz4740_wdt.c
+=========== =====
+
+Because various functionalities of the TCU that belong to different drivers
+and frameworks can be controlled from the same registers, all of these
+drivers access their registers through the same regmap.
+
+For more information regarding the devicetree bindings of the TCU drivers,
+have a look at Documentation/devicetree/bindings/mfd/ingenic,tcu.txt.
diff --git a/Documentation/misc-devices/eeprom b/Documentation/misc-devices/eeprom.rst
index ba692011f221..008249675ccc 100644
--- a/Documentation/misc-devices/eeprom
+++ b/Documentation/misc-devices/eeprom.rst
@@ -1,11 +1,17 @@
+====================
Kernel driver eeprom
====================
Supported chips:
+
* Any EEPROM chip in the designated address range
+
Prefix: 'eeprom'
+
Addresses scanned: I2C 0x50 - 0x57
+
Datasheets: Publicly available from:
+
Atmel (www.atmel.com),
Catalyst (www.catsemi.com),
Fairchild (www.fairchildsemi.com),
@@ -16,7 +22,9 @@ Supported chips:
Xicor (www.xicor.com),
and others.
- Chip Size (bits) Address
+ ========= ============= ============================================
+ Chip Size (bits) Address
+ ========= ============= ============================================
24C01 1K 0x50 (shadows at 0x51 - 0x57)
24C01A 1K 0x50 - 0x57 (Typical device on DIMMs)
24C02 2K 0x50 - 0x57
@@ -24,7 +32,7 @@ Supported chips:
(additional data at 0x51, 0x53, 0x55, 0x57)
24C08 8K 0x50, 0x54 (additional data at 0x51, 0x52,
0x53, 0x55, 0x56, 0x57)
- 24C16 16K 0x50 (additional data at 0x51 - 0x57)
+ 24C16 16K 0x50 (additional data at 0x51 - 0x57)
Sony 2K 0x57
Atmel 34C02B 2K 0x50 - 0x57, SW write protect at 0x30-37
@@ -33,14 +41,15 @@ Supported chips:
Fairchild 34W02 2K 0x50 - 0x57, SW write protect at 0x30-37
Microchip 24AA52 2K 0x50 - 0x57, SW write protect at 0x30-37
ST M34C02 2K 0x50 - 0x57, SW write protect at 0x30-37
+ ========= ============= ============================================
Authors:
- Frodo Looijaard <frodol@dds.nl>,
- Philip Edelbrock <phil@netroedge.com>,
- Jean Delvare <jdelvare@suse.de>,
- Greg Kroah-Hartman <greg@kroah.com>,
- IBM Corp.
+ - Frodo Looijaard <frodol@dds.nl>,
+ - Philip Edelbrock <phil@netroedge.com>,
+ - Jean Delvare <jdelvare@suse.de>,
+ - Greg Kroah-Hartman <greg@kroah.com>,
+ - IBM Corp.
Description
-----------
@@ -74,23 +83,25 @@ this address will write protect the memory array permanently, and the
device will no longer respond at the 0x30-37 address. The eeprom driver
does not support this register.
-Lacking functionality:
+Lacking functionality
+---------------------
* Full support for larger devices (24C04, 24C08, 24C16). These are not
-typically found on a PC. These devices will appear as separate devices at
-multiple addresses.
+ typically found on a PC. These devices will appear as separate devices at
+ multiple addresses.
* Support for really large devices (24C32, 24C64, 24C128, 24C256, 24C512).
-These devices require two-byte address fields and are not supported.
+ These devices require two-byte address fields and are not supported.
* Enable Writing. Again, no technical reason why not, but making it easy
-to change the contents of the EEPROMs (on DIMMs anyway) also makes it easy
-to disable the DIMMs (potentially preventing the computer from booting)
-until the values are restored somehow.
+ to change the contents of the EEPROMs (on DIMMs anyway) also makes it easy
+ to disable the DIMMs (potentially preventing the computer from booting)
+ until the values are restored somehow.
-Use:
+Use
+---
After inserting the module (and any other required SMBus/i2c modules), you
-should have some EEPROM directories in /sys/bus/i2c/devices/* of names such
+should have some EEPROM directories in ``/sys/bus/i2c/devices/*`` of names such
as "0-0050". Inside each of these is a series of files, the eeprom file
contains the binary data from EEPROM.
diff --git a/Documentation/misc-devices/ics932s401 b/Documentation/misc-devices/ics932s401.rst
index bdac67ff6e3f..613ee54a9c21 100644
--- a/Documentation/misc-devices/ics932s401
+++ b/Documentation/misc-devices/ics932s401.rst
@@ -1,10 +1,15 @@
+========================
Kernel driver ics932s401
-======================
+========================
Supported chips:
+
* IDT ICS932S401
+
Prefix: 'ics932s401'
+
Addresses scanned: I2C 0x69
+
Datasheet: Publicly available at the IDT website
Author: Darrick J. Wong
diff --git a/Documentation/misc-devices/index.rst b/Documentation/misc-devices/index.rst
index dfd1f45a3127..f11c5daeada5 100644
--- a/Documentation/misc-devices/index.rst
+++ b/Documentation/misc-devices/index.rst
@@ -14,4 +14,10 @@ fit into other categories.
.. toctree::
:maxdepth: 2
+ eeprom
ibmvmc
+ ics932s401
+ isl29003
+ lis3lv02d
+ max6875
+ xilinx_sdfec
diff --git a/Documentation/misc-devices/isl29003 b/Documentation/misc-devices/isl29003.rst
index 80b952fd32ff..0cc38aed6c00 100644
--- a/Documentation/misc-devices/isl29003
+++ b/Documentation/misc-devices/isl29003.rst
@@ -1,10 +1,15 @@
+======================
Kernel driver isl29003
-=====================
+======================
Supported chips:
+
* Intersil ISL29003
+
Prefix: 'isl29003'
+
Addresses scanned: none
+
Datasheet:
http://www.intersil.com/data/fn/fn7464.pdf
@@ -37,25 +42,33 @@ Sysfs entries
-------------
range:
+ == ===========================
0: 0 lux to 1000 lux (default)
1: 0 lux to 4000 lux
2: 0 lux to 16,000 lux
3: 0 lux to 64,000 lux
+ == ===========================
resolution:
+ == =====================
0: 2^16 cycles (default)
1: 2^12 cycles
2: 2^8 cycles
3: 2^4 cycles
+ == =====================
mode:
+ == =================================================
0: diode1's current (unsigned 16bit) (default)
1: diode1's current (unsigned 16bit)
2: difference between diodes (l1 - l2, signed 15bit)
+ == =================================================
power_state:
+ == =================================================
0: device is disabled (default)
1: device is enabled
+ == =================================================
lux (read only):
returns the value from the last sensor reading
diff --git a/Documentation/misc-devices/lis3lv02d b/Documentation/misc-devices/lis3lv02d.rst
index f89960a0ff95..959bd2b822cf 100644
--- a/Documentation/misc-devices/lis3lv02d
+++ b/Documentation/misc-devices/lis3lv02d.rst
@@ -1,3 +1,4 @@
+=======================
Kernel driver lis3lv02d
=======================
@@ -8,8 +9,8 @@ Supported chips:
LIS331DLH (16 bits)
Authors:
- Yan Burman <burman.yan@gmail.com>
- Eric Piel <eric.piel@tremplin-utc.net>
+ - Yan Burman <burman.yan@gmail.com>
+ - Eric Piel <eric.piel@tremplin-utc.net>
Description
@@ -25,11 +26,15 @@ neverball). The accelerometer data is readable via
to mg values (1/1000th of earth gravity).
Sysfs attributes under /sys/devices/platform/lis3lv02d/:
-position - 3D position that the accelerometer reports. Format: "(x,y,z)"
-rate - read reports the sampling rate of the accelerometer device in HZ.
+
+position
+ - 3D position that the accelerometer reports. Format: "(x,y,z)"
+rate
+ - read reports the sampling rate of the accelerometer device in HZ.
write changes sampling rate of the accelerometer device.
Only values which are supported by HW are accepted.
-selftest - performs selftest for the chip as specified by chip manufacturer.
+selftest
+ - performs selftest for the chip as specified by chip manufacturer.
This driver also provides an absolute input class device, allowing
the laptop to act as a pinball machine-esque joystick. Joystick device can be
@@ -69,11 +74,12 @@ Axes orientation
For better compatibility between the various laptops. The values reported by
the accelerometer are converted into a "standard" organisation of the axes
(aka "can play neverball out of the box"):
+
* When the laptop is horizontal the position reported is about 0 for X and Y
- and a positive value for Z
+ and a positive value for Z
* If the left side is elevated, X increases (becomes positive)
* If the front side (where the touchpad is) is elevated, Y decreases
- (becomes negative)
+ (becomes negative)
* If the laptop is put upside-down, Z becomes negative
If your laptop model is not recognized (cf "dmesg"), you can send an
diff --git a/Documentation/misc-devices/max6875 b/Documentation/misc-devices/max6875.rst
index 2f2bd0b17b5d..ad419ac22a5b 100644
--- a/Documentation/misc-devices/max6875
+++ b/Documentation/misc-devices/max6875.rst
@@ -1,12 +1,16 @@
+=====================
Kernel driver max6875
=====================
Supported chips:
+
* Maxim MAX6874, MAX6875
+
Prefix: 'max6875'
+
Addresses scanned: None (see below)
- Datasheet:
- http://pdfserv.maxim-ic.com/en/ds/MAX6874-MAX6875.pdf
+
+ Datasheet: http://pdfserv.maxim-ic.com/en/ds/MAX6874-MAX6875.pdf
Author: Ben Gardner <bgardner@wabtec.com>
@@ -24,9 +28,13 @@ registers.
The Maxim MAX6874 is a similar, mostly compatible device, with more inputs
and outputs:
- vin gpi vout
+
+=========== === === ====
+- vin gpi vout
+=========== === === ====
MAX6874 6 4 8
MAX6875 4 3 5
+=========== === === ====
See the datasheet for more information.
@@ -41,13 +49,16 @@ General Remarks
---------------
Valid addresses for the MAX6875 are 0x50 and 0x52.
+
Valid addresses for the MAX6874 are 0x50, 0x52, 0x54 and 0x56.
+
The driver does not probe any address, so you explicitly instantiate the
devices.
-Example:
-$ modprobe max6875
-$ echo max6875 0x50 > /sys/bus/i2c/devices/i2c-0/new_device
+Example::
+
+ $ modprobe max6875
+ $ echo max6875 0x50 > /sys/bus/i2c/devices/i2c-0/new_device
The MAX6874/MAX6875 ignores address bit 0, so this driver attaches to multiple
addresses. For example, for address 0x50, it also reserves 0x51.
@@ -58,52 +69,67 @@ Programming the chip using i2c-dev
----------------------------------
Use the i2c-dev interface to access and program the chips.
+
Reads and writes are performed differently depending on the address range.
The configuration registers are at addresses 0x00 - 0x45.
+
Use i2c_smbus_write_byte_data() to write a register and
i2c_smbus_read_byte_data() to read a register.
+
The command is the register number.
Examples:
-To write a 1 to register 0x45:
+
+To write a 1 to register 0x45::
+
i2c_smbus_write_byte_data(fd, 0x45, 1);
-To read register 0x45:
+To read register 0x45::
+
value = i2c_smbus_read_byte_data(fd, 0x45);
The configuration EEPROM is at addresses 0x8000 - 0x8045.
+
The user EEPROM is at addresses 0x8100 - 0x82ff.
Use i2c_smbus_write_word_data() to write a byte to EEPROM.
The command is the upper byte of the address: 0x80, 0x81, or 0x82.
-The data word is the lower part of the address or'd with data << 8.
+The data word is the lower part of the address or'd with data << 8::
+
cmd = address >> 8;
val = (address & 0xff) | (data << 8);
Example:
-To write 0x5a to address 0x8003:
+
+To write 0x5a to address 0x8003::
+
i2c_smbus_write_word_data(fd, 0x80, 0x5a03);
Reading data from the EEPROM is a little more complicated.
+
Use i2c_smbus_write_byte_data() to set the read address and then
i2c_smbus_read_byte() or i2c_smbus_read_i2c_block_data() to read the data.
Example:
-To read data starting at offset 0x8100, first set the address:
+
+To read data starting at offset 0x8100, first set the address::
+
i2c_smbus_write_byte_data(fd, 0x81, 0x00);
-And then read the data
+And then read the data::
+
value = i2c_smbus_read_byte(fd);
- or
+or::
count = i2c_smbus_read_i2c_block_data(fd, 0x84, 16, buffer);
The block read should read 16 bytes.
+
0x84 is the block read command.
See the datasheet for more details.
diff --git a/Documentation/misc-devices/mei/mei-client-bus.txt b/Documentation/misc-devices/mei/mei-client-bus.txt
deleted file mode 100644
index 743be4ec8989..000000000000
--- a/Documentation/misc-devices/mei/mei-client-bus.txt
+++ /dev/null
@@ -1,141 +0,0 @@
-Intel(R) Management Engine (ME) Client bus API
-==============================================
-
-
-Rationale
-=========
-
-MEI misc character device is useful for dedicated applications to send and receive
-data to the many FW appliance found in Intel's ME from the user space.
-However for some of the ME functionalities it make sense to leverage existing software
-stack and expose them through existing kernel subsystems.
-
-In order to plug seamlessly into the kernel device driver model we add kernel virtual
-bus abstraction on top of the MEI driver. This allows implementing linux kernel drivers
-for the various MEI features as a stand alone entities found in their respective subsystem.
-Existing device drivers can even potentially be re-used by adding an MEI CL bus layer to
-the existing code.
-
-
-MEI CL bus API
-==============
-
-A driver implementation for an MEI Client is very similar to existing bus
-based device drivers. The driver registers itself as an MEI CL bus driver through
-the mei_cl_driver structure:
-
-struct mei_cl_driver {
- struct device_driver driver;
- const char *name;
-
- const struct mei_cl_device_id *id_table;
-
- int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id *id);
- int (*remove)(struct mei_cl_device *dev);
-};
-
-struct mei_cl_id {
- char name[MEI_NAME_SIZE];
- kernel_ulong_t driver_info;
-};
-
-The mei_cl_id structure allows the driver to bind itself against a device name.
-
-To actually register a driver on the ME Client bus one must call the mei_cl_add_driver()
-API. This is typically called at module init time.
-
-Once registered on the ME Client bus, a driver will typically try to do some I/O on
-this bus and this should be done through the mei_cl_send() and mei_cl_recv()
-routines. The latter is synchronous (blocks and sleeps until data shows up).
-In order for drivers to be notified of pending events waiting for them (e.g.
-an Rx event) they can register an event handler through the
-mei_cl_register_event_cb() routine. Currently only the MEI_EVENT_RX event
-will trigger an event handler call and the driver implementation is supposed
-to call mei_recv() from the event handler in order to fetch the pending
-received buffers.
-
-
-Example
-=======
-
-As a theoretical example let's pretend the ME comes with a "contact" NFC IP.
-The driver init and exit routines for this device would look like:
-
-#define CONTACT_DRIVER_NAME "contact"
-
-static struct mei_cl_device_id contact_mei_cl_tbl[] = {
- { CONTACT_DRIVER_NAME, },
-
- /* required last entry */
- { }
-};
-MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl);
-
-static struct mei_cl_driver contact_driver = {
- .id_table = contact_mei_tbl,
- .name = CONTACT_DRIVER_NAME,
-
- .probe = contact_probe,
- .remove = contact_remove,
-};
-
-static int contact_init(void)
-{
- int r;
-
- r = mei_cl_driver_register(&contact_driver);
- if (r) {
- pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n");
- return r;
- }
-
- return 0;
-}
-
-static void __exit contact_exit(void)
-{
- mei_cl_driver_unregister(&contact_driver);
-}
-
-module_init(contact_init);
-module_exit(contact_exit);
-
-And the driver's simplified probe routine would look like that:
-
-int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id)
-{
- struct contact_driver *contact;
-
- [...]
- mei_cl_enable_device(dev);
-
- mei_cl_register_event_cb(dev, contact_event_cb, contact);
-
- return 0;
-}
-
-In the probe routine the driver first enable the MEI device and then registers
-an ME bus event handler which is as close as it can get to registering a
-threaded IRQ handler.
-The handler implementation will typically call some I/O routine depending on
-the pending events:
-
-#define MAX_NFC_PAYLOAD 128
-
-static void contact_event_cb(struct mei_cl_device *dev, u32 events,
- void *context)
-{
- struct contact_driver *contact = context;
-
- if (events & BIT(MEI_EVENT_RX)) {
- u8 payload[MAX_NFC_PAYLOAD];
- int payload_size;
-
- payload_size = mei_recv(dev, payload, MAX_NFC_PAYLOAD);
- if (payload_size <= 0)
- return;
-
- /* Hook to the NFC subsystem */
- nfc_hci_recv_frame(contact->hdev, payload, payload_size);
- }
-}
diff --git a/Documentation/misc-devices/mei/mei.txt b/Documentation/misc-devices/mei/mei.txt
deleted file mode 100644
index 2b80a0cd621f..000000000000
--- a/Documentation/misc-devices/mei/mei.txt
+++ /dev/null
@@ -1,266 +0,0 @@
-Intel(R) Management Engine Interface (Intel(R) MEI)
-===================================================
-
-Introduction
-============
-
-The Intel Management Engine (Intel ME) is an isolated and protected computing
-resource (Co-processor) residing inside certain Intel chipsets. The Intel ME
-provides support for computer/IT management features. The feature set
-depends on the Intel chipset SKU.
-
-The Intel Management Engine Interface (Intel MEI, previously known as HECI)
-is the interface between the Host and Intel ME. This interface is exposed
-to the host as a PCI device. The Intel MEI Driver is in charge of the
-communication channel between a host application and the Intel ME feature.
-
-Each Intel ME feature (Intel ME Client) is addressed by a GUID/UUID and
-each client has its own protocol. The protocol is message-based with a
-header and payload up to 512 bytes.
-
-Prominent usage of the Intel ME Interface is to communicate with Intel(R)
-Active Management Technology (Intel AMT) implemented in firmware running on
-the Intel ME.
-
-Intel AMT provides the ability to manage a host remotely out-of-band (OOB)
-even when the operating system running on the host processor has crashed or
-is in a sleep state.
-
-Some examples of Intel AMT usage are:
- - Monitoring hardware state and platform components
- - Remote power off/on (useful for green computing or overnight IT
- maintenance)
- - OS updates
- - Storage of useful platform information such as software assets
- - Built-in hardware KVM
- - Selective network isolation of Ethernet and IP protocol flows based
- on policies set by a remote management console
- - IDE device redirection from remote management console
-
-Intel AMT (OOB) communication is based on SOAP (deprecated
-starting with Release 6.0) over HTTP/S or WS-Management protocol over
-HTTP/S that are received from a remote management console application.
-
-For more information about Intel AMT:
-http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
-
-
-Intel MEI Driver
-================
-
-The driver exposes a misc device called /dev/mei.
-
-An application maintains communication with an Intel ME feature while
-/dev/mei is open. The binding to a specific feature is performed by calling
-MEI_CONNECT_CLIENT_IOCTL, which passes the desired UUID.
-The number of instances of an Intel ME feature that can be opened
-at the same time depends on the Intel ME feature, but most of the
-features allow only a single instance.
-
-The Intel AMT Host Interface (Intel AMTHI) feature supports multiple
-simultaneous user connected applications. The Intel MEI driver
-handles this internally by maintaining request queues for the applications.
-
-The driver is transparent to data that are passed between firmware feature
-and host application.
-
-Because some of the Intel ME features can change the system
-configuration, the driver by default allows only a privileged
-user to access it.
-
-A code snippet for an application communicating with Intel AMTHI client:
-
- struct mei_connect_client_data data;
- fd = open(MEI_DEVICE);
-
- data.d.in_client_uuid = AMTHI_UUID;
-
- ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &data);
-
- printf("Ver=%d, MaxLen=%ld\n",
- data.d.in_client_uuid.protocol_version,
- data.d.in_client_uuid.max_msg_length);
-
- [...]
-
- write(fd, amthi_req_data, amthi_req_data_len);
-
- [...]
-
- read(fd, &amthi_res_data, amthi_res_data_len);
-
- [...]
- close(fd);
-
-
-IOCTL
-=====
-
-The Intel MEI Driver supports the following IOCTL commands:
- IOCTL_MEI_CONNECT_CLIENT Connect to firmware Feature (client).
-
- usage:
- struct mei_connect_client_data clientData;
- ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &clientData);
-
- inputs:
- mei_connect_client_data struct contain the following
- input field:
-
- in_client_uuid - UUID of the FW Feature that needs
- to connect to.
- outputs:
- out_client_properties - Client Properties: MTU and Protocol Version.
-
- error returns:
- EINVAL Wrong IOCTL Number
- ENODEV Device or Connection is not initialized or ready.
- (e.g. Wrong UUID)
- ENOMEM Unable to allocate memory to client internal data.
- EFAULT Fatal Error (e.g. Unable to access user input data)
- EBUSY Connection Already Open
-
- Notes:
- max_msg_length (MTU) in client properties describes the maximum
- data that can be sent or received. (e.g. if MTU=2K, can send
- requests up to bytes 2k and received responses up to 2k bytes).
-
- IOCTL_MEI_NOTIFY_SET: enable or disable event notifications
-
- Usage:
- uint32_t enable;
- ioctl(fd, IOCTL_MEI_NOTIFY_SET, &enable);
-
- Inputs:
- uint32_t enable = 1;
- or
- uint32_t enable[disable] = 0;
-
- Error returns:
- EINVAL Wrong IOCTL Number
- ENODEV Device is not initialized or the client not connected
- ENOMEM Unable to allocate memory to client internal data.
- EFAULT Fatal Error (e.g. Unable to access user input data)
- EOPNOTSUPP if the device doesn't support the feature
-
- Notes:
- The client must be connected in order to enable notification events
-
-
- IOCTL_MEI_NOTIFY_GET : retrieve event
-
- Usage:
- uint32_t event;
- ioctl(fd, IOCTL_MEI_NOTIFY_GET, &event);
-
- Outputs:
- 1 - if an event is pending
- 0 - if there is no even pending
-
- Error returns:
- EINVAL Wrong IOCTL Number
- ENODEV Device is not initialized or the client not connected
- ENOMEM Unable to allocate memory to client internal data.
- EFAULT Fatal Error (e.g. Unable to access user input data)
- EOPNOTSUPP if the device doesn't support the feature
-
- Notes:
- The client must be connected and event notification has to be enabled
- in order to receive an event
-
-
-Intel ME Applications
-=====================
-
- 1) Intel Local Management Service (Intel LMS)
-
- Applications running locally on the platform communicate with Intel AMT Release
- 2.0 and later releases in the same way that network applications do via SOAP
- over HTTP (deprecated starting with Release 6.0) or with WS-Management over
- SOAP over HTTP. This means that some Intel AMT features can be accessed from a
- local application using the same network interface as a remote application
- communicating with Intel AMT over the network.
-
- When a local application sends a message addressed to the local Intel AMT host
- name, the Intel LMS, which listens for traffic directed to the host name,
- intercepts the message and routes it to the Intel MEI.
- For more information:
- http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
- Under "About Intel AMT" => "Local Access"
-
- For downloading Intel LMS:
- http://software.intel.com/en-us/articles/download-the-latest-intel-amt-open-source-drivers/
-
- The Intel LMS opens a connection using the Intel MEI driver to the Intel LMS
- firmware feature using a defined UUID and then communicates with the feature
- using a protocol called Intel AMT Port Forwarding Protocol (Intel APF protocol).
- The protocol is used to maintain multiple sessions with Intel AMT from a
- single application.
-
- See the protocol specification in the Intel AMT Software Development Kit (SDK)
- http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
- Under "SDK Resources" => "Intel(R) vPro(TM) Gateway (MPS)"
- => "Information for Intel(R) vPro(TM) Gateway Developers"
- => "Description of the Intel AMT Port Forwarding (APF) Protocol"
-
- 2) Intel AMT Remote configuration using a Local Agent
-
- A Local Agent enables IT personnel to configure Intel AMT out-of-the-box
- without requiring installing additional data to enable setup. The remote
- configuration process may involve an ISV-developed remote configuration
- agent that runs on the host.
- For more information:
- http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide
- Under "Setup and Configuration of Intel AMT" =>
- "SDK Tools Supporting Setup and Configuration" =>
- "Using the Local Agent Sample"
-
- An open source Intel AMT configuration utility, implementing a local agent
- that accesses the Intel MEI driver, can be found here:
- http://software.intel.com/en-us/articles/download-the-latest-intel-amt-open-source-drivers/
-
-
-Intel AMT OS Health Watchdog
-============================
-
-The Intel AMT Watchdog is an OS Health (Hang/Crash) watchdog.
-Whenever the OS hangs or crashes, Intel AMT will send an event
-to any subscriber to this event. This mechanism means that
-IT knows when a platform crashes even when there is a hard failure on the host.
-
-The Intel AMT Watchdog is composed of two parts:
- 1) Firmware feature - receives the heartbeats
- and sends an event when the heartbeats stop.
- 2) Intel MEI iAMT watchdog driver - connects to the watchdog feature,
- configures the watchdog and sends the heartbeats.
-
-The Intel iAMT watchdog MEI driver uses the kernel watchdog API to configure
-the Intel AMT Watchdog and to send heartbeats to it. The default timeout of the
-watchdog is 120 seconds.
-
-If the Intel AMT is not enabled in the firmware then the watchdog client won't enumerate
-on the me client bus and watchdog devices won't be exposed.
-
-
-Supported Chipsets
-==================
-
-7 Series Chipset Family
-6 Series Chipset Family
-5 Series Chipset Family
-4 Series Chipset Family
-Mobile 4 Series Chipset Family
-ICH9
-82946GZ/GL
-82G35 Express
-82Q963/Q965
-82P965/G965
-Mobile PM965/GM965
-Mobile GME965/GLE960
-82Q35 Express
-82G33/G31/P35/P31 Express
-82Q33 Express
-82X38/X48 Express
-
----
-linux-mei@linux.intel.com
diff --git a/Documentation/netlabel/cipso_ipv4.txt b/Documentation/netlabel/cipso_ipv4.rst
index a6075481fd60..cbd3f3231221 100644
--- a/Documentation/netlabel/cipso_ipv4.txt
+++ b/Documentation/netlabel/cipso_ipv4.rst
@@ -1,10 +1,13 @@
+===================================
NetLabel CIPSO/IPv4 Protocol Engine
-==============================================================================
+===================================
+
Paul Moore, paul.moore@hp.com
May 17, 2006
- * Overview
+Overview
+========
The NetLabel CIPSO/IPv4 protocol engine is based on the IETF Commercial
IP Security Option (CIPSO) draft from July 16, 1992. A copy of this
@@ -13,7 +16,8 @@ draft can be found in this directory
it to an RFC standard it has become a de-facto standard for labeled
networking and is used in many trusted operating systems.
- * Outbound Packet Processing
+Outbound Packet Processing
+==========================
The CIPSO/IPv4 protocol engine applies the CIPSO IP option to packets by
adding the CIPSO label to the socket. This causes all packets leaving the
@@ -24,7 +28,8 @@ label by using the NetLabel security module API; if the NetLabel "domain" is
configured to use CIPSO for packet labeling then a CIPSO IP option will be
generated and attached to the socket.
- * Inbound Packet Processing
+Inbound Packet Processing
+=========================
The CIPSO/IPv4 protocol engine validates every CIPSO IP option it finds at the
IP layer without any special handling required by the LSM. However, in order
@@ -33,7 +38,8 @@ NetLabel security module API to extract the security attributes of the packet.
This is typically done at the socket layer using the 'socket_sock_rcv_skb()'
LSM hook.
- * Label Translation
+Label Translation
+=================
The CIPSO/IPv4 protocol engine contains a mechanism to translate CIPSO security
attributes such as sensitivity level and category to values which are
@@ -42,7 +48,8 @@ Domain Of Interpretation (DOI) definition and are configured through the
NetLabel user space communication layer. Each DOI definition can have a
different security attribute mapping table.
- * Label Translation Cache
+Label Translation Cache
+=======================
The NetLabel system provides a framework for caching security attribute
mappings from the network labels to the corresponding LSM identifiers. The
diff --git a/Documentation/netlabel/draft_ietf.rst b/Documentation/netlabel/draft_ietf.rst
new file mode 100644
index 000000000000..5ed39ab8234b
--- /dev/null
+++ b/Documentation/netlabel/draft_ietf.rst
@@ -0,0 +1,5 @@
+Draft IETF CIPSO IP Security
+----------------------------
+
+ .. include:: draft-ietf-cipso-ipsecurity-01.txt
+ :literal:
diff --git a/Documentation/netlabel/index.rst b/Documentation/netlabel/index.rst
new file mode 100644
index 000000000000..984e1b191b12
--- /dev/null
+++ b/Documentation/netlabel/index.rst
@@ -0,0 +1,21 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========
+NetLabel
+========
+
+.. toctree::
+ :maxdepth: 1
+
+ introduction
+ cipso_ipv4
+ lsm_interface
+
+ draft_ietf
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/netlabel/introduction.txt b/Documentation/netlabel/introduction.rst
index 3caf77bcff0f..9333bbb0adc1 100644
--- a/Documentation/netlabel/introduction.txt
+++ b/Documentation/netlabel/introduction.rst
@@ -1,10 +1,13 @@
+=====================
NetLabel Introduction
-==============================================================================
+=====================
+
Paul Moore, paul.moore@hp.com
August 2, 2006
- * Overview
+Overview
+========
NetLabel is a mechanism which can be used by kernel security modules to attach
security attributes to outgoing network packets generated from user space
@@ -12,7 +15,8 @@ applications and read security attributes from incoming network packets. It
is composed of three main components, the protocol engines, the communication
layer, and the kernel security module API.
- * Protocol Engines
+Protocol Engines
+================
The protocol engines are responsible for both applying and retrieving the
network packet's security attributes. If any translation between the network
@@ -24,7 +28,8 @@ the NetLabel kernel security module API described below.
Detailed information about each NetLabel protocol engine can be found in this
directory.
- * Communication Layer
+Communication Layer
+===================
The communication layer exists to allow NetLabel configuration and monitoring
from user space. The NetLabel communication layer uses a message based
@@ -33,7 +38,8 @@ formatting of these NetLabel messages as well as the Generic NETLINK family
names can be found in the 'net/netlabel/' directory as comments in the
header files as well as in 'include/net/netlabel.h'.
- * Security Module API
+Security Module API
+===================
The purpose of the NetLabel security module API is to provide a protocol
independent interface to the underlying NetLabel protocol engines. In addition
diff --git a/Documentation/netlabel/lsm_interface.txt b/Documentation/netlabel/lsm_interface.rst
index 638c74f7de7f..026fc267f798 100644
--- a/Documentation/netlabel/lsm_interface.txt
+++ b/Documentation/netlabel/lsm_interface.rst
@@ -1,10 +1,13 @@
+========================================
NetLabel Linux Security Module Interface
-==============================================================================
+========================================
+
Paul Moore, paul.moore@hp.com
May 17, 2006
- * Overview
+Overview
+========
NetLabel is a mechanism which can set and retrieve security attributes from
network packets. It is intended to be used by LSM developers who want to make
@@ -12,7 +15,8 @@ use of a common code base for several different packet labeling protocols.
The NetLabel security module API is defined in 'include/net/netlabel.h' but a
brief overview is given below.
- * NetLabel Security Attributes
+NetLabel Security Attributes
+============================
Since NetLabel supports multiple different packet labeling protocols and LSMs
it uses the concept of security attributes to refer to the packet's security
@@ -24,7 +28,8 @@ configuration. It is up to the LSM developer to translate the NetLabel
security attributes into whatever security identifiers are in use for their
particular LSM.
- * NetLabel LSM Protocol Operations
+NetLabel LSM Protocol Operations
+================================
These are the functions which allow the LSM developer to manipulate the labels
on outgoing packets as well as read the labels on incoming packets. Functions
@@ -32,7 +37,8 @@ exist to operate both on sockets as well as the sk_buffs directly. These high
level functions are translated into low level protocol operations based on how
the administrator has configured the NetLabel subsystem.
- * NetLabel Label Mapping Cache Operations
+NetLabel Label Mapping Cache Operations
+=======================================
Depending on the exact configuration, translation between the network packet
label and the internal LSM security identifier can be time consuming. The
diff --git a/Documentation/networking/af_xdp.rst b/Documentation/networking/af_xdp.rst
index 50bccbf68308..83f7ae5fc045 100644
--- a/Documentation/networking/af_xdp.rst
+++ b/Documentation/networking/af_xdp.rst
@@ -153,10 +153,12 @@ an example, if the UMEM is 64k and each chunk is 4k, then the UMEM has
Frames passed to the kernel are used for the ingress path (RX rings).
-The user application produces UMEM addrs to this ring. Note that the
-kernel will mask the incoming addr. E.g. for a chunk size of 2k, the
-log2(2048) LSB of the addr will be masked off, meaning that 2048, 2050
-and 3000 refers to the same chunk.
+The user application produces UMEM addrs to this ring. Note that, if
+running the application with aligned chunk mode, the kernel will mask
+the incoming addr. E.g. for a chunk size of 2k, the log2(2048) LSB of
+the addr will be masked off, meaning that 2048, 2050 and 3000 refers
+to the same chunk. If the user application is run in the unaligned
+chunks mode, then the incoming addr will be left untouched.
UMEM Completion Ring
@@ -220,7 +222,21 @@ Usage
In order to use AF_XDP sockets there are two parts needed. The
user-space application and the XDP program. For a complete setup and
usage example, please refer to the sample application. The user-space
-side is xdpsock_user.c and the XDP side xdpsock_kern.c.
+side is xdpsock_user.c and the XDP side is part of libbpf.
+
+The XDP code sample included in tools/lib/bpf/xsk.c is the following::
+
+ SEC("xdp_sock") int xdp_sock_prog(struct xdp_md *ctx)
+ {
+ int index = ctx->rx_queue_index;
+
+ // A set entry here means that the correspnding queue_id
+ // has an active AF_XDP socket bound to it.
+ if (bpf_map_lookup_elem(&xsks_map, &index))
+ return bpf_redirect_map(&xsks_map, index, 0);
+
+ return XDP_PASS;
+ }
Naive ring dequeue and enqueue could look like this::
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt
index d3e5dd26db12..e3abfbd32f71 100644
--- a/Documentation/networking/bonding.txt
+++ b/Documentation/networking/bonding.txt
@@ -706,9 +706,9 @@ num_unsol_na
unsolicited IPv6 Neighbor Advertisements) to be issued after a
failover event. As soon as the link is up on the new slave
(possibly immediately) a peer notification is sent on the
- bonding device and each VLAN sub-device. This is repeated at
- each link monitor interval (arp_interval or miimon, whichever
- is active) if the number is greater than 1.
+ bonding device and each VLAN sub-device. This is repeated at
+ the rate specified by peer_notif_delay if the number is
+ greater than 1.
The valid range is 0 - 255; the default value is 1. These options
affect only the active-backup mode. These options were added for
@@ -727,6 +727,16 @@ packets_per_slave
The valid range is 0 - 65535; the default value is 1. This option
has effect only in balance-rr mode.
+peer_notif_delay
+
+ Specify the delay, in milliseconds, between each peer
+ notification (gratuitous ARP and unsolicited IPv6 Neighbor
+ Advertisement) when they are issued after a failover event.
+ This delay should be a multiple of the link monitor interval
+ (arp_interval or miimon, whichever is active). The default
+ value is 0 which means to match the value of the link monitor
+ interval.
+
primary
A string (eth0, eth2, etc) specifying which slave is the
diff --git a/Documentation/networking/caif/README b/Documentation/networking/caif/caif.rst
index 757ccfaa1385..07afc8063d4d 100644
--- a/Documentation/networking/caif/README
+++ b/Documentation/networking/caif/caif.rst
@@ -1,18 +1,31 @@
-Copyright (C) ST-Ericsson AB 2010
-Author: Sjur Brendeland/ sjur.brandeland@stericsson.com
-License terms: GNU General Public License (GPL) version 2
----------------------------------------------------------
+:orphan:
-=== Start ===
-If you have compiled CAIF for modules do:
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
-$modprobe crc_ccitt
-$modprobe caif
-$modprobe caif_socket
-$modprobe chnl_net
+================
+Using Linux CAIF
+================
-=== Preparing the setup with a STE modem ===
+
+:Copyright: |copy| ST-Ericsson AB 2010
+
+:Author: Sjur Brendeland/ sjur.brandeland@stericsson.com
+
+Start
+=====
+
+If you have compiled CAIF for modules do::
+
+ $modprobe crc_ccitt
+ $modprobe caif
+ $modprobe caif_socket
+ $modprobe chnl_net
+
+
+Preparing the setup with a STE modem
+====================================
If you are working on integration of CAIF you should make sure
that the kernel is built with module support.
@@ -32,24 +45,30 @@ module parameter "ser_use_stx".
Normally Frame Checksum is always used on UART, but this is also provided as a
module parameter "ser_use_fcs".
-$ modprobe caif_serial ser_ttyname=/dev/ttyS0 ser_use_stx=yes
-$ ifconfig caif_ttyS0 up
+::
+
+ $ modprobe caif_serial ser_ttyname=/dev/ttyS0 ser_use_stx=yes
+ $ ifconfig caif_ttyS0 up
-PLEASE NOTE: There is a limitation in Android shell.
+PLEASE NOTE:
+ There is a limitation in Android shell.
It only accepts one argument to insmod/modprobe!
-=== Trouble shooting ===
+Trouble shooting
+================
There are debugfs parameters provided for serial communication.
/sys/kernel/debug/caif_serial/<tty-name>/
* ser_state: Prints the bit-mask status where
+
- 0x02 means SENDING, this is a transient state.
- 0x10 means FLOW_OFF_SENT, i.e. the previous frame has not been sent
- and is blocking further send operation. Flow OFF has been propagated
- to all CAIF Channels using this TTY.
+ and is blocking further send operation. Flow OFF has been propagated
+ to all CAIF Channels using this TTY.
* tty_status: Prints the bit-mask tty status information
+
- 0x01 - tty->warned is on.
- 0x02 - tty->low_latency is on.
- 0x04 - tty->packed is on.
@@ -58,13 +77,17 @@ There are debugfs parameters provided for serial communication.
- 0x20 - tty->stopped is on.
* last_tx_msg: Binary blob Prints the last transmitted frame.
- This can be printed with
+
+ This can be printed with::
+
$od --format=x1 /sys/kernel/debug/caif_serial/<tty>/last_rx_msg.
- The first two tx messages sent look like this. Note: The initial
- byte 02 is start of frame extension (STX) used for re-syncing
- upon errors.
- - Enumeration:
+ The first two tx messages sent look like this. Note: The initial
+ byte 02 is start of frame extension (STX) used for re-syncing
+ upon errors.
+
+ - Enumeration::
+
0000000 02 05 00 00 03 01 d2 02
| | | | | |
STX(1) | | | |
@@ -73,7 +96,9 @@ There are debugfs parameters provided for serial communication.
Command:Enumeration(1)
Link-ID(1)
Checksum(2)
- - Channel Setup:
+
+ - Channel Setup::
+
0000000 02 07 00 00 00 21 a1 00 48 df
| | | | | | | |
STX(1) | | | | | |
@@ -86,13 +111,18 @@ There are debugfs parameters provided for serial communication.
Checksum(2)
* last_rx_msg: Prints the last transmitted frame.
- The RX messages for LinkSetup look almost identical but they have the
- bit 0x20 set in the command bit, and Channel Setup has added one byte
- before Checksum containing Channel ID.
- NOTE: Several CAIF Messages might be concatenated. The maximum debug
+
+ The RX messages for LinkSetup look almost identical but they have the
+ bit 0x20 set in the command bit, and Channel Setup has added one byte
+ before Checksum containing Channel ID.
+
+ NOTE:
+ Several CAIF Messages might be concatenated. The maximum debug
buffer size is 128 bytes.
-== Error Scenarios:
+Error Scenarios
+===============
+
- last_tx_msg contains channel setup message and last_rx_msg is empty ->
The host seems to be able to send over the UART, at least the CAIF ldisc get
notified that sending is completed.
@@ -103,7 +133,9 @@ There are debugfs parameters provided for serial communication.
- if /sys/kernel/debug/caif_serial/<tty>/tty_status is non-zero there
might be problems transmitting over UART.
+
E.g. host and modem wiring is not correct you will typically see
tty_status = 0x10 (hw_stopped) and ser_state = 0x10 (FLOW_OFF_SENT).
+
You will probably see the enumeration message in last_tx_message
and empty last_rx_message.
diff --git a/Documentation/networking/conf.py b/Documentation/networking/conf.py
deleted file mode 100644
index 40f69e67a883..000000000000
--- a/Documentation/networking/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Linux Networking Documentation"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'networking.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/networking/device_drivers/amazon/ena.txt b/Documentation/networking/device_drivers/amazon/ena.txt
index 2b4b6f57e549..1bb55c7b604c 100644
--- a/Documentation/networking/device_drivers/amazon/ena.txt
+++ b/Documentation/networking/device_drivers/amazon/ena.txt
@@ -73,7 +73,7 @@ operation.
AQ is used for submitting management commands, and the
results/responses are reported asynchronously through ACQ.
-ENA introduces a very small set of management commands with room for
+ENA introduces a small set of management commands with room for
vendor-specific extensions. Most of the management operations are
framed in a generic Get/Set feature command.
@@ -202,11 +202,14 @@ delay value to each level.
The user can enable/disable adaptive moderation, modify the interrupt
delay table and restore its default values through sysfs.
+RX copybreak:
+=============
The rx_copybreak is initialized by default to ENA_DEFAULT_RX_COPYBREAK
and can be configured by the ETHTOOL_STUNABLE command of the
SIOCETHTOOL ioctl.
SKB:
+====
The driver-allocated SKB for frames received from Rx handling using
NAPI context. The allocation method depends on the size of the packet.
If the frame length is larger than rx_copybreak, napi_get_frags()
diff --git a/Documentation/networking/device_drivers/aquantia/atlantic.txt b/Documentation/networking/device_drivers/aquantia/atlantic.txt
new file mode 100644
index 000000000000..d235cbaeccc6
--- /dev/null
+++ b/Documentation/networking/device_drivers/aquantia/atlantic.txt
@@ -0,0 +1,439 @@
+aQuantia AQtion Driver for the aQuantia Multi-Gigabit PCI Express Family of
+Ethernet Adapters
+=============================================================================
+
+Contents
+========
+
+- Identifying Your Adapter
+- Configuration
+- Supported ethtool options
+- Command Line Parameters
+- Config file parameters
+- Support
+- License
+
+Identifying Your Adapter
+========================
+
+The driver in this release is compatible with AQC-100, AQC-107, AQC-108 based ethernet adapters.
+
+
+SFP+ Devices (for AQC-100 based adapters)
+----------------------------------
+
+This release tested with passive Direct Attach Cables (DAC) and SFP+/LC Optical Transceiver.
+
+Configuration
+=========================
+ Viewing Link Messages
+ ---------------------
+ Link messages will not be displayed to the console if the distribution is
+ restricting system messages. In order to see network driver link messages on
+ your console, set dmesg to eight by entering the following:
+
+ dmesg -n 8
+
+ NOTE: This setting is not saved across reboots.
+
+ Jumbo Frames
+ ------------
+ The driver supports Jumbo Frames for all adapters. Jumbo Frames support is
+ enabled by changing the MTU to a value larger than the default of 1500.
+ The maximum value for the MTU is 16000. Use the `ip` command to
+ increase the MTU size. For example:
+
+ ip link set mtu 16000 dev enp1s0
+
+ ethtool
+ -------
+ The driver utilizes the ethtool interface for driver configuration and
+ diagnostics, as well as displaying statistical information. The latest
+ ethtool version is required for this functionality.
+
+ NAPI
+ ----
+ NAPI (Rx polling mode) is supported in the atlantic driver.
+
+Supported ethtool options
+============================
+ Viewing adapter settings
+ ---------------------
+ ethtool <ethX>
+
+ Output example:
+
+ Settings for enp1s0:
+ Supported ports: [ TP ]
+ Supported link modes: 100baseT/Full
+ 1000baseT/Full
+ 10000baseT/Full
+ 2500baseT/Full
+ 5000baseT/Full
+ Supported pause frame use: Symmetric
+ Supports auto-negotiation: Yes
+ Supported FEC modes: Not reported
+ Advertised link modes: 100baseT/Full
+ 1000baseT/Full
+ 10000baseT/Full
+ 2500baseT/Full
+ 5000baseT/Full
+ Advertised pause frame use: Symmetric
+ Advertised auto-negotiation: Yes
+ Advertised FEC modes: Not reported
+ Speed: 10000Mb/s
+ Duplex: Full
+ Port: Twisted Pair
+ PHYAD: 0
+ Transceiver: internal
+ Auto-negotiation: on
+ MDI-X: Unknown
+ Supports Wake-on: g
+ Wake-on: d
+ Link detected: yes
+
+ ---
+ Note: AQrate speeds (2.5/5 Gb/s) will be displayed only with linux kernels > 4.10.
+ But you can still use these speeds:
+ ethtool -s eth0 autoneg off speed 2500
+
+ Viewing adapter information
+ ---------------------
+ ethtool -i <ethX>
+
+ Output example:
+
+ driver: atlantic
+ version: 5.2.0-050200rc5-generic-kern
+ firmware-version: 3.1.78
+ expansion-rom-version:
+ bus-info: 0000:01:00.0
+ supports-statistics: yes
+ supports-test: no
+ supports-eeprom-access: no
+ supports-register-dump: yes
+ supports-priv-flags: no
+
+
+ Viewing Ethernet adapter statistics:
+ ---------------------
+ ethtool -S <ethX>
+
+ Output example:
+ NIC statistics:
+ InPackets: 13238607
+ InUCast: 13293852
+ InMCast: 52
+ InBCast: 3
+ InErrors: 0
+ OutPackets: 23703019
+ OutUCast: 23704941
+ OutMCast: 67
+ OutBCast: 11
+ InUCastOctects: 213182760
+ OutUCastOctects: 22698443
+ InMCastOctects: 6600
+ OutMCastOctects: 8776
+ InBCastOctects: 192
+ OutBCastOctects: 704
+ InOctects: 2131839552
+ OutOctects: 226938073
+ InPacketsDma: 95532300
+ OutPacketsDma: 59503397
+ InOctetsDma: 1137102462
+ OutOctetsDma: 2394339518
+ InDroppedDma: 0
+ Queue[0] InPackets: 23567131
+ Queue[0] OutPackets: 20070028
+ Queue[0] InJumboPackets: 0
+ Queue[0] InLroPackets: 0
+ Queue[0] InErrors: 0
+ Queue[1] InPackets: 45428967
+ Queue[1] OutPackets: 11306178
+ Queue[1] InJumboPackets: 0
+ Queue[1] InLroPackets: 0
+ Queue[1] InErrors: 0
+ Queue[2] InPackets: 3187011
+ Queue[2] OutPackets: 13080381
+ Queue[2] InJumboPackets: 0
+ Queue[2] InLroPackets: 0
+ Queue[2] InErrors: 0
+ Queue[3] InPackets: 23349136
+ Queue[3] OutPackets: 15046810
+ Queue[3] InJumboPackets: 0
+ Queue[3] InLroPackets: 0
+ Queue[3] InErrors: 0
+
+ Interrupt coalescing support
+ ---------------------------------
+ ITR mode, TX/RX coalescing timings could be viewed with:
+
+ ethtool -c <ethX>
+
+ and changed with:
+
+ ethtool -C <ethX> tx-usecs <usecs> rx-usecs <usecs>
+
+ To disable coalescing:
+
+ ethtool -C <ethX> tx-usecs 0 rx-usecs 0 tx-max-frames 1 tx-max-frames 1
+
+ Wake on LAN support
+ ---------------------------------
+
+ WOL support by magic packet:
+
+ ethtool -s <ethX> wol g
+
+ To disable WOL:
+
+ ethtool -s <ethX> wol d
+
+ Set and check the driver message level
+ ---------------------------------
+
+ Set message level
+
+ ethtool -s <ethX> msglvl <level>
+
+ Level values:
+
+ 0x0001 - general driver status.
+ 0x0002 - hardware probing.
+ 0x0004 - link state.
+ 0x0008 - periodic status check.
+ 0x0010 - interface being brought down.
+ 0x0020 - interface being brought up.
+ 0x0040 - receive error.
+ 0x0080 - transmit error.
+ 0x0200 - interrupt handling.
+ 0x0400 - transmit completion.
+ 0x0800 - receive completion.
+ 0x1000 - packet contents.
+ 0x2000 - hardware status.
+ 0x4000 - Wake-on-LAN status.
+
+ By default, the level of debugging messages is set 0x0001(general driver status).
+
+ Check message level
+
+ ethtool <ethX> | grep "Current message level"
+
+ If you want to disable the output of messages
+
+ ethtool -s <ethX> msglvl 0
+
+ RX flow rules (ntuple filters)
+ ---------------------------------
+ There are separate rules supported, that applies in that order:
+ 1. 16 VLAN ID rules
+ 2. 16 L2 EtherType rules
+ 3. 8 L3/L4 5-Tuple rules
+
+
+ The driver utilizes the ethtool interface for configuring ntuple filters,
+ via "ethtool -N <device> <filter>".
+
+ To enable or disable the RX flow rules:
+
+ ethtool -K ethX ntuple <on|off>
+
+ When disabling ntuple filters, all the user programed filters are
+ flushed from the driver cache and hardware. All needed filters must
+ be re-added when ntuple is re-enabled.
+
+ Because of the fixed order of the rules, the location of filters is also fixed:
+ - Locations 0 - 15 for VLAN ID filters
+ - Locations 16 - 31 for L2 EtherType filters
+ - Locations 32 - 39 for L3/L4 5-tuple filters (locations 32, 36 for IPv6)
+
+ The L3/L4 5-tuple (protocol, source and destination IP address, source and
+ destination TCP/UDP/SCTP port) is compared against 8 filters. For IPv4, up to
+ 8 source and destination addresses can be matched. For IPv6, up to 2 pairs of
+ addresses can be supported. Source and destination ports are only compared for
+ TCP/UDP/SCTP packets.
+
+ To add a filter that directs packet to queue 5, use <-N|-U|--config-nfc|--config-ntuple> switch:
+
+ ethtool -N <ethX> flow-type udp4 src-ip 10.0.0.1 dst-ip 10.0.0.2 src-port 2000 dst-port 2001 action 5 <loc 32>
+
+ - action is the queue number.
+ - loc is the rule number.
+
+ For "flow-type ip4|udp4|tcp4|sctp4|ip6|udp6|tcp6|sctp6" you must set the loc
+ number within 32 - 39.
+ For "flow-type ip4|udp4|tcp4|sctp4|ip6|udp6|tcp6|sctp6" you can set 8 rules
+ for traffic IPv4 or you can set 2 rules for traffic IPv6. Loc number traffic
+ IPv6 is 32 and 36.
+ At the moment you can not use IPv4 and IPv6 filters at the same time.
+
+ Example filter for IPv6 filter traffic:
+
+ sudo ethtool -N <ethX> flow-type tcp6 src-ip 2001:db8:0:f101::1 dst-ip 2001:db8:0:f101::2 action 1 loc 32
+ sudo ethtool -N <ethX> flow-type ip6 src-ip 2001:db8:0:f101::2 dst-ip 2001:db8:0:f101::5 action -1 loc 36
+
+ Example filter for IPv4 filter traffic:
+
+ sudo ethtool -N <ethX> flow-type udp4 src-ip 10.0.0.4 dst-ip 10.0.0.7 src-port 2000 dst-port 2001 loc 32
+ sudo ethtool -N <ethX> flow-type tcp4 src-ip 10.0.0.3 dst-ip 10.0.0.9 src-port 2000 dst-port 2001 loc 33
+ sudo ethtool -N <ethX> flow-type ip4 src-ip 10.0.0.6 dst-ip 10.0.0.4 loc 34
+
+ If you set action -1, then all traffic corresponding to the filter will be discarded.
+ The maximum value action is 31.
+
+
+ The VLAN filter (VLAN id) is compared against 16 filters.
+ VLAN id must be accompanied by mask 0xF000. That is to distinguish VLAN filter
+ from L2 Ethertype filter with UserPriority since both User Priority and VLAN ID
+ are passed in the same 'vlan' parameter.
+
+ To add a filter that directs packets from VLAN 2001 to queue 5:
+ ethtool -N <ethX> flow-type ip4 vlan 2001 m 0xF000 action 1 loc 0
+
+
+ L2 EtherType filters allows filter packet by EtherType field or both EtherType
+ and User Priority (PCP) field of 802.1Q.
+ UserPriority (vlan) parameter must be accompanied by mask 0x1FFF. That is to
+ distinguish VLAN filter from L2 Ethertype filter with UserPriority since both
+ User Priority and VLAN ID are passed in the same 'vlan' parameter.
+
+ To add a filter that directs IP4 packess of priority 3 to queue 3:
+ ethtool -N <ethX> flow-type ether proto 0x800 vlan 0x600 m 0x1FFF action 3 loc 16
+
+
+ To see the list of filters currently present:
+
+ ethtool <-u|-n|--show-nfc|--show-ntuple> <ethX>
+
+ Rules may be deleted from the table itself. This is done using:
+
+ sudo ethtool <-N|-U|--config-nfc|--config-ntuple> <ethX> delete <loc>
+
+ - loc is the rule number to be deleted.
+
+ Rx filters is an interface to load the filter table that funnels all flow
+ into queue 0 unless an alternative queue is specified using "action". In that
+ case, any flow that matches the filter criteria will be directed to the
+ appropriate queue. RX filters is supported on all kernels 2.6.30 and later.
+
+ RSS for UDP
+ ---------------------------------
+ Currently, NIC does not support RSS for fragmented IP packets, which leads to
+ incorrect working of RSS for fragmented UDP traffic. To disable RSS for UDP the
+ RX Flow L3/L4 rule may be used.
+
+ Example:
+ ethtool -N eth0 flow-type udp4 action 0 loc 32
+
+Command Line Parameters
+=======================
+The following command line parameters are available on atlantic driver:
+
+aq_itr -Interrupt throttling mode
+----------------------------------------
+Accepted values: 0, 1, 0xFFFF
+Default value: 0xFFFF
+0 - Disable interrupt throttling.
+1 - Enable interrupt throttling and use specified tx and rx rates.
+0xFFFF - Auto throttling mode. Driver will choose the best RX and TX
+ interrupt throtting settings based on link speed.
+
+aq_itr_tx - TX interrupt throttle rate
+----------------------------------------
+Accepted values: 0 - 0x1FF
+Default value: 0
+TX side throttling in microseconds. Adapter will setup maximum interrupt delay
+to this value. Minimum interrupt delay will be a half of this value
+
+aq_itr_rx - RX interrupt throttle rate
+----------------------------------------
+Accepted values: 0 - 0x1FF
+Default value: 0
+RX side throttling in microseconds. Adapter will setup maximum interrupt delay
+to this value. Minimum interrupt delay will be a half of this value
+
+Note: ITR settings could be changed in runtime by ethtool -c means (see below)
+
+Config file parameters
+=======================
+For some fine tuning and performance optimizations,
+some parameters can be changed in the {source_dir}/aq_cfg.h file.
+
+AQ_CFG_RX_PAGEORDER
+----------------------------------------
+Default value: 0
+RX page order override. Thats a power of 2 number of RX pages allocated for
+each descriptor. Received descriptor size is still limited by AQ_CFG_RX_FRAME_MAX.
+Increasing pageorder makes page reuse better (actual on iommu enabled systems).
+
+AQ_CFG_RX_REFILL_THRES
+----------------------------------------
+Default value: 32
+RX refill threshold. RX path will not refill freed descriptors until the
+specified number of free descriptors is observed. Larger values may help
+better page reuse but may lead to packet drops as well.
+
+AQ_CFG_VECS_DEF
+------------------------------------------------------------
+Number of queues
+Valid Range: 0 - 8 (up to AQ_CFG_VECS_MAX)
+Default value: 8
+Notice this value will be capped by the number of cores available on the system.
+
+AQ_CFG_IS_RSS_DEF
+------------------------------------------------------------
+Enable/disable Receive Side Scaling
+
+This feature allows the adapter to distribute receive processing
+across multiple CPU-cores and to prevent from overloading a single CPU core.
+
+Valid values
+0 - disabled
+1 - enabled
+
+Default value: 1
+
+AQ_CFG_NUM_RSS_QUEUES_DEF
+------------------------------------------------------------
+Number of queues for Receive Side Scaling
+Valid Range: 0 - 8 (up to AQ_CFG_VECS_DEF)
+
+Default value: AQ_CFG_VECS_DEF
+
+AQ_CFG_IS_LRO_DEF
+------------------------------------------------------------
+Enable/disable Large Receive Offload
+
+This offload enables the adapter to coalesce multiple TCP segments and indicate
+them as a single coalesced unit to the OS networking subsystem.
+The system consumes less energy but it also introduces more latency in packets processing.
+
+Valid values
+0 - disabled
+1 - enabled
+
+Default value: 1
+
+AQ_CFG_TX_CLEAN_BUDGET
+----------------------------------------
+Maximum descriptors to cleanup on TX at once.
+Default value: 256
+
+After the aq_cfg.h file changed the driver must be rebuilt to take effect.
+
+Support
+=======
+
+If an issue is identified with the released source code on the supported
+kernel with a supported adapter, email the specific information related
+to the issue to support@aquantia.com
+
+License
+=======
+
+aQuantia Corporation Network Driver
+Copyright(c) 2014 - 2019 aQuantia Corporation.
+
+This program is free software; you can redistribute it and/or modify it
+under the terms and conditions of the GNU General Public License,
+version 2, as published by the Free Software Foundation.
diff --git a/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst b/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst
index 5045df990a4c..17dbee1ac53e 100644
--- a/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst
+++ b/Documentation/networking/device_drivers/freescale/dpaa2/dpio-driver.rst
@@ -39,8 +39,7 @@ The Linux DPIO driver consists of 3 primary components--
DPIO service-- provides APIs to other Linux drivers for services
- QBman portal interface-- sends portal commands, gets responses
-::
+ QBman portal interface-- sends portal commands, gets responses::
fsl-mc other
bus drivers
@@ -60,6 +59,7 @@ The Linux DPIO driver consists of 3 primary components--
The diagram below shows how the DPIO driver components fit with the other
DPAA2 Linux driver components::
+
+------------+
| OS Network |
| Stack |
diff --git a/Documentation/networking/device_drivers/google/gve.rst b/Documentation/networking/device_drivers/google/gve.rst
new file mode 100644
index 000000000000..793693cef6e3
--- /dev/null
+++ b/Documentation/networking/device_drivers/google/gve.rst
@@ -0,0 +1,123 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+==============================================================
+Linux kernel driver for Compute Engine Virtual Ethernet (gve):
+==============================================================
+
+Supported Hardware
+===================
+The GVE driver binds to a single PCI device id used by the virtual
+Ethernet device found in some Compute Engine VMs.
+
++--------------+----------+---------+
+|Field | Value | Comments|
++==============+==========+=========+
+|Vendor ID | `0x1AE0` | Google |
++--------------+----------+---------+
+|Device ID | `0x0042` | |
++--------------+----------+---------+
+|Sub-vendor ID | `0x1AE0` | Google |
++--------------+----------+---------+
+|Sub-device ID | `0x0058` | |
++--------------+----------+---------+
+|Revision ID | `0x0` | |
++--------------+----------+---------+
+|Device Class | `0x200` | Ethernet|
++--------------+----------+---------+
+
+PCI Bars
+========
+The gVNIC PCI device exposes three 32-bit memory BARS:
+- Bar0 - Device configuration and status registers.
+- Bar1 - MSI-X vector table
+- Bar2 - IRQ, RX and TX doorbells
+
+Device Interactions
+===================
+The driver interacts with the device in the following ways:
+ - Registers
+ - A block of MMIO registers
+ - See gve_register.h for more detail
+ - Admin Queue
+ - See description below
+ - Reset
+ - At any time the device can be reset
+ - Interrupts
+ - See supported interrupts below
+ - Transmit and Receive Queues
+ - See description below
+
+Registers
+---------
+All registers are MMIO and big endian.
+
+The registers are used for initializing and configuring the device as well as
+querying device status in response to management interrupts.
+
+Admin Queue (AQ)
+----------------
+The Admin Queue is a PAGE_SIZE memory block, treated as an array of AQ
+commands, used by the driver to issue commands to the device and set up
+resources.The driver and the device maintain a count of how many commands
+have been submitted and executed. To issue AQ commands, the driver must do
+the following (with proper locking):
+
+1) Copy new commands into next available slots in the AQ array
+2) Increment its counter by he number of new commands
+3) Write the counter into the GVE_ADMIN_QUEUE_DOORBELL register
+4) Poll the ADMIN_QUEUE_EVENT_COUNTER register until it equals
+ the value written to the doorbell, or until a timeout.
+
+The device will update the status field in each AQ command reported as
+executed through the ADMIN_QUEUE_EVENT_COUNTER register.
+
+Device Resets
+-------------
+A device reset is triggered by writing 0x0 to the AQ PFN register.
+This causes the device to release all resources allocated by the
+driver, including the AQ itself.
+
+Interrupts
+----------
+The following interrupts are supported by the driver:
+
+Management Interrupt
+~~~~~~~~~~~~~~~~~~~~
+The management interrupt is used by the device to tell the driver to
+look at the GVE_DEVICE_STATUS register.
+
+The handler for the management irq simply queues the service task in
+the workqueue to check the register and acks the irq.
+
+Notification Block Interrupts
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The notification block interrupts are used to tell the driver to poll
+the queues associated with that interrupt.
+
+The handler for these irqs schedule the napi for that block to run
+and poll the queues.
+
+Traffic Queues
+--------------
+gVNIC's queues are composed of a descriptor ring and a buffer and are
+assigned to a notification block.
+
+The descriptor rings are power-of-two-sized ring buffers consisting of
+fixed-size descriptors. They advance their head pointer using a __be32
+doorbell located in Bar2. The tail pointers are advanced by consuming
+descriptors in-order and updating a __be32 counter. Both the doorbell
+and the counter overflow to zero.
+
+Each queue's buffers must be registered in advance with the device as a
+queue page list, and packet data can only be put in those pages.
+
+Transmit
+~~~~~~~~
+gve maps the buffers for transmit rings into a FIFO and copies the packets
+into the FIFO before sending them to the NIC.
+
+Receive
+~~~~~~~
+The buffers for receive rings are put into a data ring that is the same
+length as the descriptor ring and the head and tail pointers advance over
+the rings together.
diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst
index 75fa537763a4..f51f92571e39 100644
--- a/Documentation/networking/device_drivers/index.rst
+++ b/Documentation/networking/device_drivers/index.rst
@@ -21,8 +21,11 @@ Contents:
intel/i40e
intel/iavf
intel/ice
+ google/gve
+ mellanox/mlx5
+ pensando/ionic
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/networking/device_drivers/intel/iavf.rst b/Documentation/networking/device_drivers/intel/iavf.rst
index 2d0c3baa1752..cfc08842e32c 100644
--- a/Documentation/networking/device_drivers/intel/iavf.rst
+++ b/Documentation/networking/device_drivers/intel/iavf.rst
@@ -10,11 +10,15 @@ Copyright(c) 2013-2018 Intel Corporation.
Contents
========
+- Overview
- Identifying Your Adapter
- Additional Configurations
- Known Issues/Troubleshooting
- Support
+Overview
+========
+
This file describes the iavf Linux* Base Driver. This driver was formerly
called i40evf.
@@ -27,6 +31,7 @@ The guest OS loading the iavf driver must support MSI-X interrupts.
Identifying Your Adapter
========================
+
The driver in this kernel is compatible with devices based on the following:
* Intel(R) XL710 X710 Virtual Function
* Intel(R) X722 Virtual Function
@@ -50,9 +55,10 @@ Link messages will not be displayed to the console if the distribution is
restricting system messages. In order to see network driver link messages on
your console, set dmesg to eight by entering the following::
- dmesg -n 8
+ # dmesg -n 8
-NOTE: This setting is not saved across reboots.
+NOTE:
+ This setting is not saved across reboots.
ethtool
-------
@@ -72,11 +78,11 @@ then requests from that VF to set VLAN tag stripping will be ignored.
To enable/disable VLAN tag stripping for a VF, issue the following command
from inside the VM in which you are running the VF::
- ethtool -K <if_name> rxvlan on/off
+ # ethtool -K <if_name> rxvlan on/off
or alternatively::
- ethtool --offload <if_name> rxvlan on/off
+ # ethtool --offload <if_name> rxvlan on/off
Adaptive Virtual Function
-------------------------
@@ -91,21 +97,21 @@ additional features depending on what features are available in the PF with
which the AVF is associated. The following are base mode features:
- 4 Queue Pairs (QP) and associated Configuration Status Registers (CSRs)
- for Tx/Rx.
-- i40e descriptors and ring format.
-- Descriptor write-back completion.
-- 1 control queue, with i40e descriptors, CSRs and ring format.
-- 5 MSI-X interrupt vectors and corresponding i40e CSRs.
-- 1 Interrupt Throttle Rate (ITR) index.
-- 1 Virtual Station Interface (VSI) per VF.
+ for Tx/Rx
+- i40e descriptors and ring format
+- Descriptor write-back completion
+- 1 control queue, with i40e descriptors, CSRs and ring format
+- 5 MSI-X interrupt vectors and corresponding i40e CSRs
+- 1 Interrupt Throttle Rate (ITR) index
+- 1 Virtual Station Interface (VSI) per VF
- 1 Traffic Class (TC), TC0
- Receive Side Scaling (RSS) with 64 entry indirection table and key,
- configured through the PF.
-- 1 unicast MAC address reserved per VF.
-- 16 MAC address filters for each VF.
-- Stateless offloads - non-tunneled checksums.
-- AVF device ID.
-- HW mailbox is used for VF to PF communications (including on Windows).
+ configured through the PF
+- 1 unicast MAC address reserved per VF
+- 16 MAC address filters for each VF
+- Stateless offloads - non-tunneled checksums
+- AVF device ID
+- HW mailbox is used for VF to PF communications (including on Windows)
IEEE 802.1ad (QinQ) Support
---------------------------
@@ -117,8 +123,8 @@ VLAN ID, among other uses.
The following are examples of how to configure 802.1ad (QinQ)::
- ip link add link eth0 eth0.24 type vlan proto 802.1ad id 24
- ip link add link eth0.24 eth0.24.371 type vlan proto 802.1Q id 371
+ # ip link add link eth0 eth0.24 type vlan proto 802.1ad id 24
+ # ip link add link eth0.24 eth0.24.371 type vlan proto 802.1Q id 371
Where "24" and "371" are example VLAN IDs.
@@ -133,6 +139,19 @@ specific application. This can reduce latency for the specified application,
and allow Tx traffic to be rate limited per application. Follow the steps below
to set ADq.
+Requirements:
+
+- The sch_mqprio, act_mirred and cls_flower modules must be loaded
+- The latest version of iproute2
+- If another driver (for example, DPDK) has set cloud filters, you cannot
+ enable ADQ
+- Depending on the underlying PF device, ADQ cannot be enabled when the
+ following features are enabled:
+
+ + Data Center Bridging (DCB)
+ + Multiple Functions per Port (MFP)
+ + Sideband Filters
+
1. Create traffic classes (TCs). Maximum of 8 TCs can be created per interface.
The shaper bw_rlimit parameter is optional.
@@ -141,9 +160,9 @@ to 1Gbit for tc0 and 3Gbit for tc1.
::
- # tc qdisc add dev <interface> root mqprio num_tc 2 map 0 0 0 0 1 1 1 1
- queues 16@0 16@16 hw 1 mode channel shaper bw_rlimit min_rate 1Gbit 2Gbit
- max_rate 1Gbit 3Gbit
+ tc qdisc add dev <interface> root mqprio num_tc 2 map 0 0 0 0 1 1 1 1
+ queues 16@0 16@16 hw 1 mode channel shaper bw_rlimit min_rate 1Gbit 2Gbit
+ max_rate 1Gbit 3Gbit
map: priority mapping for up to 16 priorities to tcs (e.g. map 0 0 0 0 1 1 1 1
sets priorities 0-3 to use tc0 and 4-7 to use tc1)
@@ -162,6 +181,10 @@ Totals must be equal or less than port speed.
For example: min_rate 1Gbit 3Gbit: Verify bandwidth limit using network
monitoring tools such as ifstat or sar –n DEV [interval] [number of samples]
+NOTE:
+ Setting up channels via ethtool (ethtool -L) is not supported when the
+ TCs are configured using mqprio.
+
2. Enable HW TC offload on interface::
# ethtool -K <interface> hw-tc-offload on
@@ -171,16 +194,16 @@ monitoring tools such as ifstat or sar –n DEV [interval] [number of samples]
# tc qdisc add dev <interface> ingress
NOTES:
- - Run all tc commands from the iproute2 <pathtoiproute2>/tc/ directory.
- - ADq is not compatible with cloud filters.
+ - Run all tc commands from the iproute2 <pathtoiproute2>/tc/ directory
+ - ADq is not compatible with cloud filters
- Setting up channels via ethtool (ethtool -L) is not supported when the TCs
- are configured using mqprio.
+ are configured using mqprio
- You must have iproute2 latest version
- - NVM version 6.01 or later is required.
+ - NVM version 6.01 or later is required
- ADq cannot be enabled when any the following features are enabled: Data
- Center Bridging (DCB), Multiple Functions per Port (MFP), or Sideband Filters.
+ Center Bridging (DCB), Multiple Functions per Port (MFP), or Sideband Filters
- If another driver (for example, DPDK) has set cloud filters, you cannot
- enable ADq.
+ enable ADq
- Tunnel filters are not supported in ADq. If encapsulated packets do arrive
in non-tunnel mode, filtering will be done on the inner headers. For example,
for VXLAN traffic in non-tunnel mode, PCTYPE is identified as a VXLAN
@@ -198,6 +221,16 @@ NOTES:
Known Issues/Troubleshooting
============================
+Bonding fails with VFs bound to an Intel(R) Ethernet Controller 700 series device
+---------------------------------------------------------------------------------
+If you bind Virtual Functions (VFs) to an Intel(R) Ethernet Controller 700
+series based device, the VF slaves may fail when they become the active slave.
+If the MAC address of the VF is set by the PF (Physical Function) of the
+device, when you add a slave, or change the active-backup slave, Linux bonding
+tries to sync the backup slave's MAC address to the same MAC address as the
+active slave. Linux bonding will fail at this point. This issue will not occur
+if the VF's MAC address is not set by the PF.
+
Traffic Is Not Being Passed Between VM and Client
-------------------------------------------------
You may not be able to pass traffic between a client system and a
@@ -215,13 +248,28 @@ Do not unload a port's driver if a Virtual Function (VF) with an active Virtual
Machine (VM) is bound to it. Doing so will cause the port to appear to hang.
Once the VM shuts down, or otherwise releases the VF, the command will complete.
+Using four traffic classes fails
+--------------------------------
+Do not try to reserve more than three traffic classes in the iavf driver. Doing
+so will fail to set any traffic classes and will cause the driver to write
+errors to stdout. Use a maximum of three queues to avoid this issue.
+
+Multiple log error messages on iavf driver removal
+--------------------------------------------------
+If you have several VFs and you remove the iavf driver, several instances of
+the following log errors are written to the log::
+
+ Unable to send opcode 2 to PF, err I40E_ERR_QUEUE_EMPTY, aq_err ok
+ Unable to send the message to VF 2 aq_err 12
+ ARQ Overflow Error detected
+
Virtual machine does not get link
---------------------------------
If the virtual machine has more than one virtual port assigned to it, and those
virtual ports are bound to different physical ports, you may not get link on
all of the virtual ports. The following command may work around the issue::
- ethtool -r <PF>
+ # ethtool -r <PF>
Where <PF> is the PF interface in the host, for example: p5p1. You may need to
run the command more than once to get link on all virtual ports.
@@ -251,12 +299,13 @@ traffic.
If you have multiple interfaces in a server, either turn on ARP filtering by
entering::
- echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
+ # echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
-NOTE: This setting is not saved across reboots. The configuration change can be
-made permanent by adding the following line to the file /etc/sysctl.conf::
+NOTE:
+ This setting is not saved across reboots. The configuration change can be
+ made permanent by adding the following line to the file /etc/sysctl.conf::
- net.ipv4.conf.all.arp_filter = 1
+ net.ipv4.conf.all.arp_filter = 1
Another alternative is to install the interfaces in separate broadcast domains
(either in different switches or in a switch partitioned to VLANs).
diff --git a/Documentation/networking/device_drivers/mellanox/mlx5.rst b/Documentation/networking/device_drivers/mellanox/mlx5.rst
new file mode 100644
index 000000000000..d071c6b49e1f
--- /dev/null
+++ b/Documentation/networking/device_drivers/mellanox/mlx5.rst
@@ -0,0 +1,300 @@
+.. SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
+
+=================================================
+Mellanox ConnectX(R) mlx5 core VPI Network Driver
+=================================================
+
+Copyright (c) 2019, Mellanox Technologies LTD.
+
+Contents
+========
+
+- `Enabling the driver and kconfig options`_
+- `Devlink info`_
+- `Devlink parameters`_
+- `Devlink health reporters`_
+- `mlx5 tracepoints`_
+
+Enabling the driver and kconfig options
+================================================
+
+| mlx5 core is modular and most of the major mlx5 core driver features can be selected (compiled in/out)
+| at build time via kernel Kconfig flags.
+| Basic features, ethernet net device rx/tx offloads and XDP, are available with the most basic flags
+| CONFIG_MLX5_CORE=y/m and CONFIG_MLX5_CORE_EN=y.
+| For the list of advanced features please see below.
+
+**CONFIG_MLX5_CORE=(y/m/n)** (module mlx5_core.ko)
+
+| The driver can be enabled by choosing CONFIG_MLX5_CORE=y/m in kernel config.
+| This will provide mlx5 core driver for mlx5 ulps to interface with (mlx5e, mlx5_ib).
+
+
+**CONFIG_MLX5_CORE_EN=(y/n)**
+
+| Choosing this option will allow basic ethernet netdevice support with all of the standard rx/tx offloads.
+| mlx5e is the mlx5 ulp driver which provides netdevice kernel interface, when chosen, mlx5e will be
+| built-in into mlx5_core.ko.
+
+
+**CONFIG_MLX5_EN_ARFS=(y/n)**
+
+| Enables Hardware-accelerated receive flow steering (arfs) support, and ntuple filtering.
+| https://community.mellanox.com/s/article/howto-configure-arfs-on-connectx-4
+
+
+**CONFIG_MLX5_EN_RXNFC=(y/n)**
+
+| Enables ethtool receive network flow classification, which allows user defined
+| flow rules to direct traffic into arbitrary rx queue via ethtool set/get_rxnfc API.
+
+
+**CONFIG_MLX5_CORE_EN_DCB=(y/n)**:
+
+| Enables `Data Center Bridging (DCB) Support <https://community.mellanox.com/s/article/howto-auto-config-pfc-and-ets-on-connectx-4-via-lldp-dcbx>`_.
+
+
+**CONFIG_MLX5_MPFS=(y/n)**
+
+| Ethernet Multi-Physical Function Switch (MPFS) support in ConnectX NIC.
+| MPFs is required for when `Multi-Host <http://www.mellanox.com/page/multihost>`_ configuration is enabled to allow passing
+| user configured unicast MAC addresses to the requesting PF.
+
+
+**CONFIG_MLX5_ESWITCH=(y/n)**
+
+| Ethernet SRIOV E-Switch support in ConnectX NIC. E-Switch provides internal SRIOV packet steering
+| and switching for the enabled VFs and PF in two available modes:
+| 1) `Legacy SRIOV mode (L2 mac vlan steering based) <https://community.mellanox.com/s/article/howto-configure-sr-iov-for-connectx-4-connectx-5-with-kvm--ethernet-x>`_.
+| 2) `Switchdev mode (eswitch offloads) <https://www.mellanox.com/related-docs/prod_software/ASAP2_Hardware_Offloading_for_vSwitches_User_Manual_v4.4.pdf>`_.
+
+
+**CONFIG_MLX5_CORE_IPOIB=(y/n)**
+
+| IPoIB offloads & acceleration support.
+| Requires CONFIG_MLX5_CORE_EN to provide an accelerated interface for the rdma
+| IPoIB ulp netdevice.
+
+
+**CONFIG_MLX5_FPGA=(y/n)**
+
+| Build support for the Innova family of network cards by Mellanox Technologies.
+| Innova network cards are comprised of a ConnectX chip and an FPGA chip on one board.
+| If you select this option, the mlx5_core driver will include the Innova FPGA core and allow
+| building sandbox-specific client drivers.
+
+
+**CONFIG_MLX5_EN_IPSEC=(y/n)**
+
+| Enables `IPSec XFRM cryptography-offload accelaration <http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_IPsec_Ethernet_Adapter_Card_User_Manual.pdf>`_.
+
+**CONFIG_MLX5_EN_TLS=(y/n)**
+
+| TLS cryptography-offload accelaration.
+
+
+**CONFIG_MLX5_INFINIBAND=(y/n/m)** (module mlx5_ib.ko)
+
+| Provides low-level InfiniBand/RDMA and `RoCE <https://community.mellanox.com/s/article/recommended-network-configuration-examples-for-roce-deployment>`_ support.
+
+
+**External options** ( Choose if the corresponding mlx5 feature is required )
+
+- CONFIG_PTP_1588_CLOCK: When chosen, mlx5 ptp support will be enabled
+- CONFIG_VXLAN: When chosen, mlx5 vxaln support will be enabled.
+- CONFIG_MLXFW: When chosen, mlx5 firmware flashing support will be enabled (via devlink and ethtool).
+
+Devlink info
+============
+
+The devlink info reports the running and stored firmware versions on device.
+It also prints the device PSID which represents the HCA board type ID.
+
+User command example::
+
+ $ devlink dev info pci/0000:00:06.0
+ pci/0000:00:06.0:
+ driver mlx5_core
+ versions:
+ fixed:
+ fw.psid MT_0000000009
+ running:
+ fw.version 16.26.0100
+ stored:
+ fw.version 16.26.0100
+
+Devlink parameters
+==================
+
+flow_steering_mode: Device flow steering mode
+---------------------------------------------
+The flow steering mode parameter controls the flow steering mode of the driver.
+Two modes are supported:
+1. 'dmfs' - Device managed flow steering.
+2. 'smfs - Software/Driver managed flow steering.
+
+In DMFS mode, the HW steering entities are created and managed through the
+Firmware.
+In SMFS mode, the HW steering entities are created and managed though by
+the driver directly into Hardware without firmware intervention.
+
+SMFS mode is faster and provides better rule inserstion rate compared to default DMFS mode.
+
+User command examples:
+
+- Set SMFS flow steering mode::
+
+ $ devlink dev param set pci/0000:06:00.0 name flow_steering_mode value "smfs" cmode runtime
+
+- Read device flow steering mode::
+
+ $ devlink dev param show pci/0000:06:00.0 name flow_steering_mode
+ pci/0000:06:00.0:
+ name flow_steering_mode type driver-specific
+ values:
+ cmode runtime value smfs
+
+
+Devlink health reporters
+========================
+
+tx reporter
+-----------
+The tx reporter is responsible for reporting and recovering of the following two error scenarios:
+
+- TX timeout
+ Report on kernel tx timeout detection.
+ Recover by searching lost interrupts.
+- TX error completion
+ Report on error tx completion.
+ Recover by flushing the TX queue and reset it.
+
+TX reporter also support on demand diagnose callback, on which it provides
+real time information of its send queues status.
+
+User commands examples:
+
+- Diagnose send queues status::
+
+ $ devlink health diagnose pci/0000:82:00.0 reporter tx
+
+NOTE: This command has valid output only when interface is up, otherwise the command has empty output.
+
+- Show number of tx errors indicated, number of recover flows ended successfully,
+ is autorecover enabled and graceful period from last recover::
+
+ $ devlink health show pci/0000:82:00.0 reporter tx
+
+rx reporter
+-----------
+The rx reporter is responsible for reporting and recovering of the following two error scenarios:
+
+- RX queues initialization (population) timeout
+ RX queues descriptors population on ring initialization is done in
+ napi context via triggering an irq, in case of a failure to get
+ the minimum amount of descriptors, a timeout would occur and it
+ could be recoverable by polling the EQ (Event Queue).
+- RX completions with errors (reported by HW on interrupt context)
+ Report on rx completion error.
+ Recover (if needed) by flushing the related queue and reset it.
+
+RX reporter also supports on demand diagnose callback, on which it
+provides real time information of its receive queues status.
+
+- Diagnose rx queues status, and corresponding completion queue::
+
+ $ devlink health diagnose pci/0000:82:00.0 reporter rx
+
+NOTE: This command has valid output only when interface is up, otherwise the command has empty output.
+
+- Show number of rx errors indicated, number of recover flows ended successfully,
+ is autorecover enabled and graceful period from last recover::
+
+ $ devlink health show pci/0000:82:00.0 reporter rx
+
+fw reporter
+-----------
+The fw reporter implements diagnose and dump callbacks.
+It follows symptoms of fw error such as fw syndrome by triggering
+fw core dump and storing it into the dump buffer.
+The fw reporter diagnose command can be triggered any time by the user to check
+current fw status.
+
+User commands examples:
+
+- Check fw heath status::
+
+ $ devlink health diagnose pci/0000:82:00.0 reporter fw
+
+- Read FW core dump if already stored or trigger new one::
+
+ $ devlink health dump show pci/0000:82:00.0 reporter fw
+
+NOTE: This command can run only on the PF which has fw tracer ownership,
+running it on other PF or any VF will return "Operation not permitted".
+
+fw fatal reporter
+-----------------
+The fw fatal reporter implements dump and recover callbacks.
+It follows fatal errors indications by CR-space dump and recover flow.
+The CR-space dump uses vsc interface which is valid even if the FW command
+interface is not functional, which is the case in most FW fatal errors.
+The recover function runs recover flow which reloads the driver and triggers fw
+reset if needed.
+
+User commands examples:
+
+- Run fw recover flow manually::
+
+ $ devlink health recover pci/0000:82:00.0 reporter fw_fatal
+
+- Read FW CR-space dump if already strored or trigger new one::
+
+ $ devlink health dump show pci/0000:82:00.1 reporter fw_fatal
+
+NOTE: This command can run only on PF.
+
+mlx5 tracepoints
+================
+
+mlx5 driver provides internal trace points for tracking and debugging using
+kernel tracepoints interfaces (refer to Documentation/trace/ftrase.rst).
+
+For the list of support mlx5 events check /sys/kernel/debug/tracing/events/mlx5/
+
+tc and eswitch offloads tracepoints:
+
+- mlx5e_configure_flower: trace flower filter actions and cookies offloaded to mlx5::
+
+ $ echo mlx5:mlx5e_configure_flower >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ tc-6535 [019] ...1 2672.404466: mlx5e_configure_flower: cookie=0000000067874a55 actions= REDIRECT
+
+- mlx5e_delete_flower: trace flower filter actions and cookies deleted from mlx5::
+
+ $ echo mlx5:mlx5e_delete_flower >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ tc-6569 [010] .N.1 2686.379075: mlx5e_delete_flower: cookie=0000000067874a55 actions= NULL
+
+- mlx5e_stats_flower: trace flower stats request::
+
+ $ echo mlx5:mlx5e_stats_flower >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ tc-6546 [010] ...1 2679.704889: mlx5e_stats_flower: cookie=0000000060eb3d6a bytes=0 packets=0 lastused=4295560217
+
+- mlx5e_tc_update_neigh_used_value: trace tunnel rule neigh update value offloaded to mlx5::
+
+ $ echo mlx5:mlx5e_tc_update_neigh_used_value >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ kworker/u48:4-8806 [009] ...1 55117.882428: mlx5e_tc_update_neigh_used_value: netdev: ens1f0 IPv4: 1.1.1.10 IPv6: ::ffff:1.1.1.10 neigh_used=1
+
+- mlx5e_rep_neigh_update: trace neigh update tasks scheduled due to neigh state change events::
+
+ $ echo mlx5:mlx5e_rep_neigh_update >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ kworker/u48:7-2221 [009] ...1 1475.387435: mlx5e_rep_neigh_update: netdev: ens1f0 MAC: 24:8a:07:9a:17:9a IPv4: 1.1.1.10 IPv6: ::ffff:1.1.1.10 neigh_connected=1
diff --git a/Documentation/networking/device_drivers/netronome/nfp.rst b/Documentation/networking/device_drivers/netronome/nfp.rst
new file mode 100644
index 000000000000..6c08ac8b5147
--- /dev/null
+++ b/Documentation/networking/device_drivers/netronome/nfp.rst
@@ -0,0 +1,133 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+
+=============================================
+Netronome Flow Processor (NFP) Kernel Drivers
+=============================================
+
+Copyright (c) 2019, Netronome Systems, Inc.
+
+Contents
+========
+
+- `Overview`_
+- `Acquiring Firmware`_
+
+Overview
+========
+
+This driver supports Netronome's line of Flow Processor devices,
+including the NFP4000, NFP5000, and NFP6000 models, which are also
+incorporated in the company's family of Agilio SmartNICs. The SR-IOV
+physical and virtual functions for these devices are supported by
+the driver.
+
+Acquiring Firmware
+==================
+
+The NFP4000 and NFP6000 devices require application specific firmware
+to function. Application firmware can be located either on the host file system
+or in the device flash (if supported by management firmware).
+
+Firmware files on the host filesystem contain card type (`AMDA-*` string), media
+config etc. They should be placed in `/lib/firmware/netronome` directory to
+load firmware from the host file system.
+
+Firmware for basic NIC operation is available in the upstream
+`linux-firmware.git` repository.
+
+Firmware in NVRAM
+-----------------
+
+Recent versions of management firmware supports loading application
+firmware from flash when the host driver gets probed. The firmware loading
+policy configuration may be used to configure this feature appropriately.
+
+Devlink or ethtool can be used to update the application firmware on the device
+flash by providing the appropriate `nic_AMDA*.nffw` file to the respective
+command. Users need to take care to write the correct firmware image for the
+card and media configuration to flash.
+
+Available storage space in flash depends on the card being used.
+
+Dealing with multiple projects
+------------------------------
+
+NFP hardware is fully programmable therefore there can be different
+firmware images targeting different applications.
+
+When using application firmware from host, we recommend placing
+actual firmware files in application-named subdirectories in
+`/lib/firmware/netronome` and linking the desired files, e.g.::
+
+ $ tree /lib/firmware/netronome/
+ /lib/firmware/netronome/
+ ├── bpf
+ │   ├── nic_AMDA0081-0001_1x40.nffw
+ │   └── nic_AMDA0081-0001_4x10.nffw
+ ├── flower
+ │   ├── nic_AMDA0081-0001_1x40.nffw
+ │   └── nic_AMDA0081-0001_4x10.nffw
+ ├── nic
+ │   ├── nic_AMDA0081-0001_1x40.nffw
+ │   └── nic_AMDA0081-0001_4x10.nffw
+ ├── nic_AMDA0081-0001_1x40.nffw -> bpf/nic_AMDA0081-0001_1x40.nffw
+ └── nic_AMDA0081-0001_4x10.nffw -> bpf/nic_AMDA0081-0001_4x10.nffw
+
+ 3 directories, 8 files
+
+You may need to use hard instead of symbolic links on distributions
+which use old `mkinitrd` command instead of `dracut` (e.g. Ubuntu).
+
+After changing firmware files you may need to regenerate the initramfs
+image. Initramfs contains drivers and firmware files your system may
+need to boot. Refer to the documentation of your distribution to find
+out how to update initramfs. Good indication of stale initramfs
+is system loading wrong driver or firmware on boot, but when driver is
+later reloaded manually everything works correctly.
+
+Selecting firmware per device
+-----------------------------
+
+Most commonly all cards on the system use the same type of firmware.
+If you want to load specific firmware image for a specific card, you
+can use either the PCI bus address or serial number. Driver will print
+which files it's looking for when it recognizes a NFP device::
+
+ nfp: Looking for firmware file in order of priority:
+ nfp: netronome/serial-00-12-34-aa-bb-cc-10-ff.nffw: not found
+ nfp: netronome/pci-0000:02:00.0.nffw: not found
+ nfp: netronome/nic_AMDA0081-0001_1x40.nffw: found, loading...
+
+In this case if file (or link) called *serial-00-12-34-aa-bb-5d-10-ff.nffw*
+or *pci-0000:02:00.0.nffw* is present in `/lib/firmware/netronome` this
+firmware file will take precedence over `nic_AMDA*` files.
+
+Note that `serial-*` and `pci-*` files are **not** automatically included
+in initramfs, you will have to refer to documentation of appropriate tools
+to find out how to include them.
+
+Firmware loading policy
+-----------------------
+
+Firmware loading policy is controlled via three HWinfo parameters
+stored as key value pairs in the device flash:
+
+app_fw_from_flash
+ Defines which firmware should take precedence, 'Disk' (0), 'Flash' (1) or
+ the 'Preferred' (2) firmware. When 'Preferred' is selected, the management
+ firmware makes the decision over which firmware will be loaded by comparing
+ versions of the flash firmware and the host supplied firmware.
+ This variable is configurable using the 'fw_load_policy'
+ devlink parameter.
+
+abi_drv_reset
+ Defines if the driver should reset the firmware when
+ the driver is probed, either 'Disk' (0) if firmware was found on disk,
+ 'Always' (1) reset or 'Never' (2) reset. Note that the device is always
+ reset on driver unload if firmware was loaded when the driver was probed.
+ This variable is configurable using the 'reset_dev_on_drv_probe'
+ devlink parameter.
+
+abi_drv_load_ifc
+ Defines a list of PF devices allowed to load FW on the device.
+ This variable is not currently user configurable.
diff --git a/Documentation/networking/device_drivers/pensando/ionic.rst b/Documentation/networking/device_drivers/pensando/ionic.rst
new file mode 100644
index 000000000000..67b6839d516b
--- /dev/null
+++ b/Documentation/networking/device_drivers/pensando/ionic.rst
@@ -0,0 +1,43 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+==========================================================
+Linux* Driver for the Pensando(R) Ethernet adapter family
+==========================================================
+
+Pensando Linux Ethernet driver.
+Copyright(c) 2019 Pensando Systems, Inc
+
+Contents
+========
+
+- Identifying the Adapter
+- Support
+
+Identifying the Adapter
+=======================
+
+To find if one or more Pensando PCI Ethernet devices are installed on the
+host, check for the PCI devices::
+
+ $ lspci -d 1dd8:
+ b5:00.0 Ethernet controller: Device 1dd8:1002
+ b6:00.0 Ethernet controller: Device 1dd8:1002
+
+If such devices are listed as above, then the ionic.ko driver should find
+and configure them for use. There should be log entries in the kernel
+messages such as these::
+
+ $ dmesg | grep ionic
+ ionic Pensando Ethernet NIC Driver, ver 0.15.0-k
+ ionic 0000:b5:00.0 enp181s0: renamed from eth0
+ ionic 0000:b6:00.0 enp182s0: renamed from eth0
+
+Support
+=======
+For general Linux networking support, please use the netdev mailing
+list, which is monitored by Pensando personnel::
+ netdev@vger.kernel.org
+
+For more specific support needs, please use the Pensando driver support
+email::
+ drivers@pensando.io
diff --git a/Documentation/networking/devlink-info-versions.rst b/Documentation/networking/devlink-info-versions.rst
index 4316342b7746..4914f581b1fd 100644
--- a/Documentation/networking/devlink-info-versions.rst
+++ b/Documentation/networking/devlink-info-versions.rst
@@ -14,11 +14,27 @@ board.rev
Board design revision.
+asic.id
+=======
+
+ASIC design identifier.
+
+asic.rev
+========
+
+ASIC design revision.
+
board.manufacture
=================
An identifier of the company or the facility which produced the part.
+fw
+==
+
+Overall firmware version, often representing the collection of
+fw.mgmt, fw.app, etc.
+
fw.mgmt
=======
diff --git a/Documentation/networking/devlink-params-nfp.txt b/Documentation/networking/devlink-params-nfp.txt
new file mode 100644
index 000000000000..43e4d4034865
--- /dev/null
+++ b/Documentation/networking/devlink-params-nfp.txt
@@ -0,0 +1,5 @@
+fw_load_policy [DEVICE, GENERIC]
+ Configuration mode: permanent
+
+reset_dev_on_drv_probe [DEVICE, GENERIC]
+ Configuration mode: permanent
diff --git a/Documentation/networking/devlink-params.txt b/Documentation/networking/devlink-params.txt
index 2d26434ddcf8..ddba3e9b55b1 100644
--- a/Documentation/networking/devlink-params.txt
+++ b/Documentation/networking/devlink-params.txt
@@ -48,4 +48,20 @@ fw_load_policy [DEVICE, GENERIC]
Load firmware version preferred by the driver.
* DEVLINK_PARAM_FW_LOAD_POLICY_VALUE_FLASH (1)
Load firmware currently stored in flash.
+ * DEVLINK_PARAM_FW_LOAD_POLICY_VALUE_DISK (2)
+ Load firmware currently available on host's disk.
+ Type: u8
+
+reset_dev_on_drv_probe [DEVICE, GENERIC]
+ Controls the device's reset policy on driver probe.
+ Valid values:
+ * DEVLINK_PARAM_RESET_DEV_ON_DRV_PROBE_VALUE_UNKNOWN (0)
+ Unknown or invalid value.
+ * DEVLINK_PARAM_RESET_DEV_ON_DRV_PROBE_VALUE_ALWAYS (1)
+ Always reset device on driver probe.
+ * DEVLINK_PARAM_RESET_DEV_ON_DRV_PROBE_VALUE_NEVER (2)
+ Never reset device on driver probe.
+ * DEVLINK_PARAM_RESET_DEV_ON_DRV_PROBE_VALUE_DISK (3)
+ Reset only if device firmware can be found in the
+ filesystem.
Type: u8
diff --git a/Documentation/networking/devlink-trap-netdevsim.rst b/Documentation/networking/devlink-trap-netdevsim.rst
new file mode 100644
index 000000000000..b721c9415473
--- /dev/null
+++ b/Documentation/networking/devlink-trap-netdevsim.rst
@@ -0,0 +1,20 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================
+Devlink Trap netdevsim
+======================
+
+Driver-specific Traps
+=====================
+
+.. list-table:: List of Driver-specific Traps Registered by ``netdevsim``
+ :widths: 5 5 90
+
+ * - Name
+ - Type
+ - Description
+ * - ``fid_miss``
+ - ``exception``
+ - When a packet enters the device it is classified to a filtering
+ indentifier (FID) based on the ingress port and VLAN. This trap is used
+ to trap packets for which a FID could not be found
diff --git a/Documentation/networking/devlink-trap.rst b/Documentation/networking/devlink-trap.rst
new file mode 100644
index 000000000000..c20c7c483664
--- /dev/null
+++ b/Documentation/networking/devlink-trap.rst
@@ -0,0 +1,208 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============
+Devlink Trap
+============
+
+Background
+==========
+
+Devices capable of offloading the kernel's datapath and perform functions such
+as bridging and routing must also be able to send specific packets to the
+kernel (i.e., the CPU) for processing.
+
+For example, a device acting as a multicast-aware bridge must be able to send
+IGMP membership reports to the kernel for processing by the bridge module.
+Without processing such packets, the bridge module could never populate its
+MDB.
+
+As another example, consider a device acting as router which has received an IP
+packet with a TTL of 1. Upon routing the packet the device must send it to the
+kernel so that it will route it as well and generate an ICMP Time Exceeded
+error datagram. Without letting the kernel route such packets itself, utilities
+such as ``traceroute`` could never work.
+
+The fundamental ability of sending certain packets to the kernel for processing
+is called "packet trapping".
+
+Overview
+========
+
+The ``devlink-trap`` mechanism allows capable device drivers to register their
+supported packet traps with ``devlink`` and report trapped packets to
+``devlink`` for further analysis.
+
+Upon receiving trapped packets, ``devlink`` will perform a per-trap packets and
+bytes accounting and potentially report the packet to user space via a netlink
+event along with all the provided metadata (e.g., trap reason, timestamp, input
+port). This is especially useful for drop traps (see :ref:`Trap-Types`)
+as it allows users to obtain further visibility into packet drops that would
+otherwise be invisible.
+
+The following diagram provides a general overview of ``devlink-trap``::
+
+ Netlink event: Packet w/ metadata
+ Or a summary of recent drops
+ ^
+ |
+ Userspace |
+ +---------------------------------------------------+
+ Kernel |
+ |
+ +-------+--------+
+ | |
+ | drop_monitor |
+ | |
+ +-------^--------+
+ |
+ |
+ |
+ +----+----+
+ | | Kernel's Rx path
+ | devlink | (non-drop traps)
+ | |
+ +----^----+ ^
+ | |
+ +-----------+
+ |
+ +-------+-------+
+ | |
+ | Device driver |
+ | |
+ +-------^-------+
+ Kernel |
+ +---------------------------------------------------+
+ Hardware |
+ | Trapped packet
+ |
+ +--+---+
+ | |
+ | ASIC |
+ | |
+ +------+
+
+.. _Trap-Types:
+
+Trap Types
+==========
+
+The ``devlink-trap`` mechanism supports the following packet trap types:
+
+ * ``drop``: Trapped packets were dropped by the underlying device. Packets
+ are only processed by ``devlink`` and not injected to the kernel's Rx path.
+ The trap action (see :ref:`Trap-Actions`) can be changed.
+ * ``exception``: Trapped packets were not forwarded as intended by the
+ underlying device due to an exception (e.g., TTL error, missing neighbour
+ entry) and trapped to the control plane for resolution. Packets are
+ processed by ``devlink`` and injected to the kernel's Rx path. Changing the
+ action of such traps is not allowed, as it can easily break the control
+ plane.
+
+.. _Trap-Actions:
+
+Trap Actions
+============
+
+The ``devlink-trap`` mechanism supports the following packet trap actions:
+
+ * ``trap``: The sole copy of the packet is sent to the CPU.
+ * ``drop``: The packet is dropped by the underlying device and a copy is not
+ sent to the CPU.
+
+Generic Packet Traps
+====================
+
+Generic packet traps are used to describe traps that trap well-defined packets
+or packets that are trapped due to well-defined conditions (e.g., TTL error).
+Such traps can be shared by multiple device drivers and their description must
+be added to the following table:
+
+.. list-table:: List of Generic Packet Traps
+ :widths: 5 5 90
+
+ * - Name
+ - Type
+ - Description
+ * - ``source_mac_is_multicast``
+ - ``drop``
+ - Traps incoming packets that the device decided to drop because of a
+ multicast source MAC
+ * - ``vlan_tag_mismatch``
+ - ``drop``
+ - Traps incoming packets that the device decided to drop in case of VLAN
+ tag mismatch: The ingress bridge port is not configured with a PVID and
+ the packet is untagged or prio-tagged
+ * - ``ingress_vlan_filter``
+ - ``drop``
+ - Traps incoming packets that the device decided to drop in case they are
+ tagged with a VLAN that is not configured on the ingress bridge port
+ * - ``ingress_spanning_tree_filter``
+ - ``drop``
+ - Traps incoming packets that the device decided to drop in case the STP
+ state of the ingress bridge port is not "forwarding"
+ * - ``port_list_is_empty``
+ - ``drop``
+ - Traps packets that the device decided to drop in case they need to be
+ flooded and the flood list is empty
+ * - ``port_loopback_filter``
+ - ``drop``
+ - Traps packets that the device decided to drop in case after layer 2
+ forwarding the only port from which they should be transmitted through
+ is the port from which they were received
+ * - ``blackhole_route``
+ - ``drop``
+ - Traps packets that the device decided to drop in case they hit a
+ blackhole route
+ * - ``ttl_value_is_too_small``
+ - ``exception``
+ - Traps unicast packets that should be forwarded by the device whose TTL
+ was decremented to 0 or less
+ * - ``tail_drop``
+ - ``drop``
+ - Traps packets that the device decided to drop because they could not be
+ enqueued to a transmission queue which is full
+
+Driver-specific Packet Traps
+============================
+
+Device drivers can register driver-specific packet traps, but these must be
+clearly documented. Such traps can correspond to device-specific exceptions and
+help debug packet drops caused by these exceptions. The following list includes
+links to the description of driver-specific traps registered by various device
+drivers:
+
+ * :doc:`/devlink-trap-netdevsim`
+
+Generic Packet Trap Groups
+==========================
+
+Generic packet trap groups are used to aggregate logically related packet
+traps. These groups allow the user to batch operations such as setting the trap
+action of all member traps. In addition, ``devlink-trap`` can report aggregated
+per-group packets and bytes statistics, in case per-trap statistics are too
+narrow. The description of these groups must be added to the following table:
+
+.. list-table:: List of Generic Packet Trap Groups
+ :widths: 10 90
+
+ * - Name
+ - Description
+ * - ``l2_drops``
+ - Contains packet traps for packets that were dropped by the device during
+ layer 2 forwarding (i.e., bridge)
+ * - ``l3_drops``
+ - Contains packet traps for packets that were dropped by the device or hit
+ an exception (e.g., TTL error) during layer 3 forwarding
+ * - ``buffer_drops``
+ - Contains packet traps for packets that were dropped by the device due to
+ an enqueue decision
+
+Testing
+=======
+
+See ``tools/testing/selftests/drivers/net/netdevsim/devlink_trap.sh`` for a
+test covering the core infrastructure. Test cases should be added for any new
+functionality.
+
+Device drivers should focus their tests on device-specific functionality, such
+as the triggering of supported packet traps.
diff --git a/Documentation/networking/dsa/b53.rst b/Documentation/networking/dsa/b53.rst
new file mode 100644
index 000000000000..b41637cdb82b
--- /dev/null
+++ b/Documentation/networking/dsa/b53.rst
@@ -0,0 +1,183 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================================
+Broadcom RoboSwitch Ethernet switch driver
+==========================================
+
+The Broadcom RoboSwitch Ethernet switch family is used in quite a range of
+xDSL router, cable modems and other multimedia devices.
+
+The actual implementation supports the devices BCM5325E, BCM5365, BCM539x,
+BCM53115 and BCM53125 as well as BCM63XX.
+
+Implementation details
+======================
+
+The driver is located in ``drivers/net/dsa/b53/`` and is implemented as a
+DSA driver; see ``Documentation/networking/dsa/dsa.rst`` for details on the
+subsystem and what it provides.
+
+The switch is, if possible, configured to enable a Broadcom specific 4-bytes
+switch tag which gets inserted by the switch for every packet forwarded to the
+CPU interface, conversely, the CPU network interface should insert a similar
+tag for packets entering the CPU port. The tag format is described in
+``net/dsa/tag_brcm.c``.
+
+The configuration of the device depends on whether or not tagging is
+supported.
+
+The interface names and example network configuration are used according the
+configuration described in the :ref:`dsa-config-showcases`.
+
+Configuration with tagging support
+----------------------------------
+
+The tagging based configuration is desired. It is not specific to the b53
+DSA driver and will work like all DSA drivers which supports tagging.
+
+See :ref:`dsa-tagged-configuration`.
+
+Configuration without tagging support
+-------------------------------------
+
+Older models (5325, 5365) support a different tag format that is not supported
+yet. 539x and 531x5 require managed mode and some special handling, which is
+also not yet supported. The tagging support is disabled in these cases and the
+switch need a different configuration.
+
+The configuration slightly differ from the :ref:`dsa-vlan-configuration`.
+
+The b53 tags the CPU port in all VLANs, since otherwise any PVID untagged
+VLAN programming would basically change the CPU port's default PVID and make
+it untagged, undesirable.
+
+In difference to the configuration described in :ref:`dsa-vlan-configuration`
+the default VLAN 1 has to be removed from the slave interface configuration in
+single port and gateway configuration, while there is no need to add an extra
+VLAN configuration in the bridge showcase.
+
+single port
+~~~~~~~~~~~
+The configuration can only be set up via VLAN tagging and bridge setup.
+By default packages are tagged with vid 1:
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+ ip link add link eth0 name eth0.3 type vlan id 3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+ ip link set eth0.3 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 2 pvid untagged
+ bridge vlan del dev lan1 vid 1
+ bridge vlan add dev lan2 vid 3 pvid untagged
+ bridge vlan del dev lan2 vid 1
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.1
+ ip addr add 192.0.2.5/30 dev eth0.2
+ ip addr add 192.0.2.9/30 dev eth0.3
+
+ # bring up the bridge devices
+ ip link set br0 up
+
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridge
+ ip link set dev wan master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set eth0.1 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set eth0.1 master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev wan vid 2 pvid untagged
+ bridge vlan del dev wan vid 1
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.2
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge devices
+ ip link set br0 up
diff --git a/Documentation/networking/dsa/configuration.rst b/Documentation/networking/dsa/configuration.rst
new file mode 100644
index 000000000000..af029b3ca2ab
--- /dev/null
+++ b/Documentation/networking/dsa/configuration.rst
@@ -0,0 +1,292 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================
+DSA switch configuration from userspace
+=======================================
+
+The DSA switch configuration is not integrated into the main userspace
+network configuration suites by now and has to be performed manualy.
+
+.. _dsa-config-showcases:
+
+Configuration showcases
+-----------------------
+
+To configure a DSA switch a couple of commands need to be executed. In this
+documentation some common configuration scenarios are handled as showcases:
+
+*single port*
+ Every switch port acts as a different configurable Ethernet port
+
+*bridge*
+ Every switch port is part of one configurable Ethernet bridge
+
+*gateway*
+ Every switch port except one upstream port is part of a configurable
+ Ethernet bridge.
+ The upstream port acts as different configurable Ethernet port.
+
+All configurations are performed with tools from iproute2, which is available
+at https://www.kernel.org/pub/linux/utils/net/iproute2/
+
+Through DSA every port of a switch is handled like a normal linux Ethernet
+interface. The CPU port is the switch port connected to an Ethernet MAC chip.
+The corresponding linux Ethernet interface is called the master interface.
+All other corresponding linux interfaces are called slave interfaces.
+
+The slave interfaces depend on the master interface. They can only brought up,
+when the master interface is up.
+
+In this documentation the following Ethernet interfaces are used:
+
+*eth0*
+ the master interface
+
+*lan1*
+ a slave interface
+
+*lan2*
+ another slave interface
+
+*lan3*
+ a third slave interface
+
+*wan*
+ A slave interface dedicated for upstream traffic
+
+Further Ethernet interfaces can be configured similar.
+The configured IPs and networks are:
+
+*single port*
+ * lan1: 192.0.2.1/30 (192.0.2.0 - 192.0.2.3)
+ * lan2: 192.0.2.5/30 (192.0.2.4 - 192.0.2.7)
+ * lan3: 192.0.2.9/30 (192.0.2.8 - 192.0.2.11)
+
+*bridge*
+ * br0: 192.0.2.129/25 (192.0.2.128 - 192.0.2.255)
+
+*gateway*
+ * br0: 192.0.2.129/25 (192.0.2.128 - 192.0.2.255)
+ * wan: 192.0.2.1/30 (192.0.2.0 - 192.0.2.3)
+
+.. _dsa-tagged-configuration:
+
+Configuration with tagging support
+----------------------------------
+
+The tagging based configuration is desired and supported by the majority of
+DSA switches. These switches are capable to tag incoming and outgoing traffic
+without using a VLAN based configuration.
+
+single port
+~~~~~~~~~~~
+
+.. code-block:: sh
+
+ # configure each interface
+ ip addr add 192.0.2.1/30 dev lan1
+ ip addr add 192.0.2.5/30 dev lan2
+ ip addr add 192.0.2.9/30 dev lan3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # configure the upstream port
+ ip addr add 192.0.2.1/30 dev wan
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+.. _dsa-vlan-configuration:
+
+Configuration without tagging support
+-------------------------------------
+
+A minority of switches are not capable to use a taging protocol
+(DSA_TAG_PROTO_NONE). These switches can be configured by a VLAN based
+configuration.
+
+single port
+~~~~~~~~~~~
+The configuration can only be set up via VLAN tagging and bridge setup.
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+ ip link add link eth0 name eth0.3 type vlan id 3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+ ip link set eth0.3 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan1 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 2 pvid untagged
+ bridge vlan add dev lan3 vid 3 pvid untagged
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.1
+ ip addr add 192.0.2.5/30 dev eth0.2
+ ip addr add 192.0.2.9/30 dev eth0.3
+
+ # bring up the bridge devices
+ ip link set br0 up
+
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+ ip link set eth0.1 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 1 pvid untagged
+ bridge vlan add dev lan3 vid 1 pvid untagged
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set eth0.1 master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 1 pvid untagged
+ bridge vlan add dev wan vid 2 pvid untagged
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.2
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge devices
+ ip link set br0 up
diff --git a/Documentation/networking/dsa/dsa.rst b/Documentation/networking/dsa/dsa.rst
index ca87068b9ab9..563d56c6a25c 100644
--- a/Documentation/networking/dsa/dsa.rst
+++ b/Documentation/networking/dsa/dsa.rst
@@ -531,7 +531,7 @@ Bridge VLAN filtering
a software implementation.
.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
- of DSA, would be the its port-based VLAN, used by the associated bridge device.
+ of DSA, would be its port-based VLAN, used by the associated bridge device.
- ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a
Forwarding Database entry, the switch hardware should be programmed to delete
@@ -554,7 +554,7 @@ Bridge VLAN filtering
associated with this VLAN ID.
.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
- of DSA, would be the its port-based VLAN, used by the associated bridge device.
+ of DSA, would be its port-based VLAN, used by the associated bridge device.
- ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a
multicast database entry, the switch hardware should be programmed to delete
diff --git a/Documentation/networking/dsa/index.rst b/Documentation/networking/dsa/index.rst
index 0e5b7a9be406..ee631e2d646f 100644
--- a/Documentation/networking/dsa/index.rst
+++ b/Documentation/networking/dsa/index.rst
@@ -6,6 +6,8 @@ Distributed Switch Architecture
:maxdepth: 1
dsa
+ b53
bcm_sf2
lan9303
sja1105
+ configuration
diff --git a/Documentation/networking/dsa/sja1105.rst b/Documentation/networking/dsa/sja1105.rst
index ea7bac438cfd..eef20d0bcf7c 100644
--- a/Documentation/networking/dsa/sja1105.rst
+++ b/Documentation/networking/dsa/sja1105.rst
@@ -86,13 +86,13 @@ functionality.
The following traffic modes are supported over the switch netdevices:
+--------------------+------------+------------------+------------------+
-| | Standalone | Bridged with | Bridged with |
-| | ports | vlan_filtering 0 | vlan_filtering 1 |
+| | Standalone | Bridged with | Bridged with |
+| | ports | vlan_filtering 0 | vlan_filtering 1 |
+====================+============+==================+==================+
| Regular traffic | Yes | Yes | No (use master) |
+--------------------+------------+------------------+------------------+
| Management traffic | Yes | Yes | Yes |
-| (BPDU, PTP) | | | |
+| (BPDU, PTP) | | | |
+--------------------+------------+------------------+------------------+
Switching features
@@ -146,6 +146,96 @@ enslaves eth0 and eth1 (the DSA master of the switch ports). This is because in
this mode, the switch ports beneath br0 are not capable of regular traffic, and
are only used as a conduit for switchdev operations.
+Offloads
+========
+
+Time-aware scheduling
+---------------------
+
+The switch supports a variation of the enhancements for scheduled traffic
+specified in IEEE 802.1Q-2018 (formerly 802.1Qbv). This means it can be used to
+ensure deterministic latency for priority traffic that is sent in-band with its
+gate-open event in the network schedule.
+
+This capability can be managed through the tc-taprio offload ('flags 2'). The
+difference compared to the software implementation of taprio is that the latter
+would only be able to shape traffic originated from the CPU, but not
+autonomously forwarded flows.
+
+The device has 8 traffic classes, and maps incoming frames to one of them based
+on the VLAN PCP bits (if no VLAN is present, the port-based default is used).
+As described in the previous sections, depending on the value of
+``vlan_filtering``, the EtherType recognized by the switch as being VLAN can
+either be the typical 0x8100 or a custom value used internally by the driver
+for tagging. Therefore, the switch ignores the VLAN PCP if used in standalone
+or bridge mode with ``vlan_filtering=0``, as it will not recognize the 0x8100
+EtherType. In these modes, injecting into a particular TX queue can only be
+done by the DSA net devices, which populate the PCP field of the tagging header
+on egress. Using ``vlan_filtering=1``, the behavior is the other way around:
+offloaded flows can be steered to TX queues based on the VLAN PCP, but the DSA
+net devices are no longer able to do that. To inject frames into a hardware TX
+queue with VLAN awareness active, it is necessary to create a VLAN
+sub-interface on the DSA master port, and send normal (0x8100) VLAN-tagged
+towards the switch, with the VLAN PCP bits set appropriately.
+
+Management traffic (having DMAC 01-80-C2-xx-xx-xx or 01-19-1B-xx-xx-xx) is the
+notable exception: the switch always treats it with a fixed priority and
+disregards any VLAN PCP bits even if present. The traffic class for management
+traffic has a value of 7 (highest priority) at the moment, which is not
+configurable in the driver.
+
+Below is an example of configuring a 500 us cyclic schedule on egress port
+``swp5``. The traffic class gate for management traffic (7) is open for 100 us,
+and the gates for all other traffic classes are open for 400 us::
+
+ #!/bin/bash
+
+ set -e -u -o pipefail
+
+ NSEC_PER_SEC="1000000000"
+
+ gatemask() {
+ local tc_list="$1"
+ local mask=0
+
+ for tc in ${tc_list}; do
+ mask=$((${mask} | (1 << ${tc})))
+ done
+
+ printf "%02x" ${mask}
+ }
+
+ if ! systemctl is-active --quiet ptp4l; then
+ echo "Please start the ptp4l service"
+ exit
+ fi
+
+ now=$(phc_ctl /dev/ptp1 get | gawk '/clock time is/ { print $5; }')
+ # Phase-align the base time to the start of the next second.
+ sec=$(echo "${now}" | gawk -F. '{ print $1; }')
+ base_time="$(((${sec} + 1) * ${NSEC_PER_SEC}))"
+
+ tc qdisc add dev swp5 parent root handle 100 taprio \
+ num_tc 8 \
+ map 0 1 2 3 5 6 7 \
+ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
+ base-time ${base_time} \
+ sched-entry S $(gatemask 7) 100000 \
+ sched-entry S $(gatemask "0 1 2 3 4 5 6") 400000 \
+ flags 2
+
+It is possible to apply the tc-taprio offload on multiple egress ports. There
+are hardware restrictions related to the fact that no gate event may trigger
+simultaneously on two ports. The driver checks the consistency of the schedules
+against this restriction and errors out when appropriate. Schedule analysis is
+needed to avoid this, which is outside the scope of the document.
+
+At the moment, the time-aware scheduler can only be triggered based on a
+standalone clock and not based on PTP time. This means the base-time argument
+from tc-taprio is ignored and the schedule starts right away. It also means it
+is more difficult to phase-align the scheduler with the other devices in the
+network.
+
Device Tree bindings and board design
=====================================
diff --git a/Documentation/networking/index.rst b/Documentation/networking/index.rst
index a46fca264bee..d4dca42910d0 100644
--- a/Documentation/networking/index.rst
+++ b/Documentation/networking/index.rst
@@ -14,7 +14,10 @@ Contents:
device_drivers/index
dsa/index
devlink-info-versions
+ devlink-trap
+ devlink-trap-netdevsim
ieee802154
+ j1939
kapi
z8530book
msg_zerocopy
@@ -31,7 +34,7 @@ Contents:
tls
tls-offload
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index 22f6b8b1110a..49e95f438ed7 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -80,6 +80,7 @@ fib_multipath_hash_policy - INTEGER
Possible values:
0 - Layer 3
1 - Layer 4
+ 2 - Layer 3 or inner Layer 3 if present
fib_sync_mem - UNSIGNED INTEGER
Amount of dirty memory from fib entries that can be backlogged before
@@ -255,6 +256,12 @@ tcp_base_mss - INTEGER
Path MTU discovery (MTU probing). If MTU probing is enabled,
this is the initial MSS used by the connection.
+tcp_mtu_probe_floor - INTEGER
+ If MTU probing is enabled this caps the minimum MSS used for search_low
+ for the connection.
+
+ Default : 48
+
tcp_min_snd_mss - INTEGER
TCP SYN and SYNACK messages usually advertise an ADVMSS option,
as described in RFC 1122 and RFC 6691.
@@ -656,6 +663,26 @@ tcp_fastopen_blackhole_timeout_sec - INTEGER
0 to disable the blackhole detection.
By default, it is set to 1hr.
+tcp_fastopen_key - list of comma separated 32-digit hexadecimal INTEGERs
+ The list consists of a primary key and an optional backup key. The
+ primary key is used for both creating and validating cookies, while the
+ optional backup key is only used for validating cookies. The purpose of
+ the backup key is to maximize TFO validation when keys are rotated.
+
+ A randomly chosen primary key may be configured by the kernel if
+ the tcp_fastopen sysctl is set to 0x400 (see above), or if the
+ TCP_FASTOPEN setsockopt() optname is set and a key has not been
+ previously configured via sysctl. If keys are configured via
+ setsockopt() by using the TCP_FASTOPEN_KEY optname, then those
+ per-socket keys will be used instead of any keys that are specified via
+ sysctl.
+
+ A key is specified as 4 8-digit hexadecimal integers which are separated
+ by a '-' as: xxxxxxxx-xxxxxxxx-xxxxxxxx-xxxxxxxx. Leading zeros may be
+ omitted. A primary and a backup key may be specified by separating them
+ by a comma. If only one key is specified, it becomes the primary key and
+ any previously configured backup keys are removed.
+
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
will be retransmitted. Should not be higher than 127. Default value
@@ -1425,14 +1452,26 @@ flowlabel_state_ranges - BOOLEAN
FALSE: disabled
Default: true
-flowlabel_reflect - BOOLEAN
- Automatically reflect the flow label. Needed for Path MTU
+flowlabel_reflect - INTEGER
+ Control flow label reflection. Needed for Path MTU
Discovery to work with Equal Cost Multipath Routing in anycast
environments. See RFC 7690 and:
https://tools.ietf.org/html/draft-wang-6man-flow-label-reflection-01
- TRUE: enabled
- FALSE: disabled
- Default: FALSE
+
+ This is a bitmask.
+ 1: enabled for established flows
+
+ Note that this prevents automatic flowlabel changes, as done
+ in "tcp: change IPv6 flow-label upon receiving spurious retransmission"
+ and "tcp: Change txhash on every SYN and RTO retransmit"
+
+ 2: enabled for TCP RESET packets (no active listener)
+ If set, a RST packet sent in response to a SYN packet on a closed
+ port will reflect the incoming flow label.
+
+ 4: enabled for ICMPv6 echo reply messages.
+
+ Default: 0
fib_multipath_hash_policy - INTEGER
Controls which hash policy to use for multipath routes.
@@ -1440,6 +1479,7 @@ fib_multipath_hash_policy - INTEGER
Possible values:
0 - Layer 3 (source and destination addresses plus flow label)
1 - Layer 4 (standard 5-tuple)
+ 2 - Layer 3 or inner Layer 3 if present
anycast_src_echo_reply - BOOLEAN
Controls the use of anycast addresses as source addresses for ICMPv6
@@ -2253,7 +2293,7 @@ addr_scope_policy - INTEGER
/proc/sys/net/core/*
- Please see: Documentation/sysctl/net.txt for descriptions of these entries.
+ Please see: Documentation/admin-guide/sysctl/net.rst for descriptions of these entries.
/proc/sys/net/unix/*
diff --git a/Documentation/networking/j1939.rst b/Documentation/networking/j1939.rst
new file mode 100644
index 000000000000..ce7e7a044e08
--- /dev/null
+++ b/Documentation/networking/j1939.rst
@@ -0,0 +1,422 @@
+.. SPDX-License-Identifier: (GPL-2.0 OR MIT)
+
+===================
+J1939 Documentation
+===================
+
+Overview / What Is J1939
+========================
+
+SAE J1939 defines a higher layer protocol on CAN. It implements a more
+sophisticated addressing scheme and extends the maximum packet size above 8
+bytes. Several derived specifications exist, which differ from the original
+J1939 on the application level, like MilCAN A, NMEA2000 and especially
+ISO-11783 (ISOBUS). This last one specifies the so-called ETP (Extended
+Transport Protocol) which is has been included in this implementation. This
+results in a maximum packet size of ((2 ^ 24) - 1) * 7 bytes == 111 MiB.
+
+Specifications used
+-------------------
+
+* SAE J1939-21 : data link layer
+* SAE J1939-81 : network management
+* ISO 11783-6 : Virtual Terminal (Extended Transport Protocol)
+
+.. _j1939-motivation:
+
+Motivation
+==========
+
+Given the fact there's something like SocketCAN with an API similar to BSD
+sockets, we found some reasons to justify a kernel implementation for the
+addressing and transport methods used by J1939.
+
+* **Addressing:** when a process on an ECU communicates via J1939, it should
+ not necessarily know its source address. Although at least one process per
+ ECU should know the source address. Other processes should be able to reuse
+ that address. This way, address parameters for different processes
+ cooperating for the same ECU, are not duplicated. This way of working is
+ closely related to the UNIX concept where programs do just one thing, and do
+ it well.
+
+* **Dynamic addressing:** Address Claiming in J1939 is time critical.
+ Furthermore data transport should be handled properly during the address
+ negotiation. Putting this functionality in the kernel eliminates it as a
+ requirement for _every_ user space process that communicates via J1939. This
+ results in a consistent J1939 bus with proper addressing.
+
+* **Transport:** both TP & ETP reuse some PGNs to relay big packets over them.
+ Different processes may thus use the same TP & ETP PGNs without actually
+ knowing it. The individual TP & ETP sessions _must_ be serialized
+ (synchronized) between different processes. The kernel solves this problem
+ properly and eliminates the serialization (synchronization) as a requirement
+ for _every_ user space process that communicates via J1939.
+
+J1939 defines some other features (relaying, gateway, fast packet transport,
+...). In-kernel code for these would not contribute to protocol stability.
+Therefore, these parts are left to user space.
+
+The J1939 sockets operate on CAN network devices (see SocketCAN). Any J1939
+user space library operating on CAN raw sockets will still operate properly.
+Since such library does not communicate with the in-kernel implementation, care
+must be taken that these two do not interfere. In practice, this means they
+cannot share ECU addresses. A single ECU (or virtual ECU) address is used by
+the library exclusively, or by the in-kernel system exclusively.
+
+J1939 concepts
+==============
+
+PGN
+---
+
+The PGN (Parameter Group Number) is a number to identify a packet. The PGN
+is composed as follows:
+1 bit : Reserved Bit
+1 bit : Data Page
+8 bits : PF (PDU Format)
+8 bits : PS (PDU Specific)
+
+In J1939-21 distinction is made between PDU1 format (where PF < 240) and PDU2
+format (where PF >= 240). Furthermore, when using PDU2 format, the PS-field
+contains a so-called Group Extension, which is part of the PGN. When using PDU2
+format, the Group Extension is set in the PS-field.
+
+On the other hand, when using PDU1 format, the PS-field contains a so-called
+Destination Address, which is _not_ part of the PGN. When communicating a PGN
+from user space to kernel (or visa versa) and PDU2 format is used, the PS-field
+of the PGN shall be set to zero. The Destination Address shall be set
+elsewhere.
+
+Regarding PGN mapping to 29-bit CAN identifier, the Destination Address shall
+be get/set from/to the appropriate bits of the identifier by the kernel.
+
+
+Addressing
+----------
+
+Both static and dynamic addressing methods can be used.
+
+For static addresses, no extra checks are made by the kernel, and provided
+addresses are considered right. This responsibility is for the OEM or system
+integrator.
+
+For dynamic addressing, so-called Address Claiming, extra support is foreseen
+in the kernel. In J1939 any ECU is known by it's 64-bit NAME. At the moment of
+a successful address claim, the kernel keeps track of both NAME and source
+address being claimed. This serves as a base for filter schemes. By default,
+packets with a destination that is not locally, will be rejected.
+
+Mixed mode packets (from a static to a dynamic address or vice versa) are
+allowed. The BSD sockets define separate API calls for getting/setting the
+local & remote address and are applicable for J1939 sockets.
+
+Filtering
+---------
+
+J1939 defines white list filters per socket that a user can set in order to
+receive a subset of the J1939 traffic. Filtering can be based on:
+
+* SA
+* SOURCE_NAME
+* PGN
+
+When multiple filters are in place for a single socket, and a packet comes in
+that matches several of those filters, the packet is only received once for
+that socket.
+
+How to Use J1939
+================
+
+API Calls
+---------
+
+On CAN, you first need to open a socket for communicating over a CAN network.
+To use J1939, #include <linux/can/j1939.h>. From there, <linux/can.h> will be
+included too. To open a socket, use:
+
+.. code-block:: C
+
+ s = socket(PF_CAN, SOCK_DGRAM, CAN_J1939);
+
+J1939 does use SOCK_DGRAM sockets. In the J1939 specification, connections are
+mentioned in the context of transport protocol sessions. These still deliver
+packets to the other end (using several CAN packets). SOCK_STREAM is not
+supported.
+
+After the successful creation of the socket, you would normally use the bind(2)
+and/or connect(2) system call to bind the socket to a CAN interface. After
+binding and/or connecting the socket, you can read(2) and write(2) from/to the
+socket or use send(2), sendto(2), sendmsg(2) and the recv*() counterpart
+operations on the socket as usual. There are also J1939 specific socket options
+described below.
+
+In order to send data, a bind(2) must have been successful. bind(2) assigns a
+local address to a socket.
+
+Different from CAN is that the payload data is just the data that get send,
+without it's header info. The header info is derived from the sockaddr supplied
+to bind(2), connect(2), sendto(2) and recvfrom(2). A write(2) with size 4 will
+result in a packet with 4 bytes.
+
+The sockaddr structure has extensions for use with J1939 as specified below:
+
+.. code-block:: C
+
+ struct sockaddr_can {
+ sa_family_t can_family;
+ int can_ifindex;
+ union {
+ struct {
+ __u64 name;
+ /* pgn:
+ * 8 bit: PS in PDU2 case, else 0
+ * 8 bit: PF
+ * 1 bit: DP
+ * 1 bit: reserved
+ */
+ __u32 pgn;
+ __u8 addr;
+ } j1939;
+ } can_addr;
+ }
+
+can_family & can_ifindex serve the same purpose as for other SocketCAN sockets.
+
+can_addr.j1939.pgn specifies the PGN (max 0x3ffff). Individual bits are
+specified above.
+
+can_addr.j1939.name contains the 64-bit J1939 NAME.
+
+can_addr.j1939.addr contains the address.
+
+The bind(2) system call assigns the local address, i.e. the source address when
+sending packages. If a PGN during bind(2) is set, it's used as a RX filter.
+I.e. only packets with a matching PGN are received. If an ADDR or NAME is set
+it is used as a receive filter, too. It will match the destination NAME or ADDR
+of the incoming packet. The NAME filter will work only if appropriate Address
+Claiming for this name was done on the CAN bus and registered/cached by the
+kernel.
+
+On the other hand connect(2) assigns the remote address, i.e. the destination
+address. The PGN from connect(2) is used as the default PGN when sending
+packets. If ADDR or NAME is set it will be used as the default destination ADDR
+or NAME. Further a set ADDR or NAME during connect(2) is used as a receive
+filter. It will match the source NAME or ADDR of the incoming packet.
+
+Both write(2) and send(2) will send a packet with local address from bind(2) and
+the remote address from connect(2). Use sendto(2) to overwrite the destination
+address.
+
+If can_addr.j1939.name is set (!= 0) the NAME is looked up by the kernel and
+the corresponding ADDR is used. If can_addr.j1939.name is not set (== 0),
+can_addr.j1939.addr is used.
+
+When creating a socket, reasonable defaults are set. Some options can be
+modified with setsockopt(2) & getsockopt(2).
+
+RX path related options:
+
+- SO_J1939_FILTER - configure array of filters
+- SO_J1939_PROMISC - disable filters set by bind(2) and connect(2)
+
+By default no broadcast packets can be send or received. To enable sending or
+receiving broadcast packets use the socket option SO_BROADCAST:
+
+.. code-block:: C
+
+ int value = 1;
+ setsockopt(sock, SOL_SOCKET, SO_BROADCAST, &value, sizeof(value));
+
+The following diagram illustrates the RX path:
+
+.. code::
+
+ +--------------------+
+ | incoming packet |
+ +--------------------+
+ |
+ V
+ +--------------------+
+ | SO_J1939_PROMISC? |
+ +--------------------+
+ | |
+ no | | yes
+ | |
+ .---------' `---------.
+ | |
+ +---------------------------+ |
+ | bind() + connect() + | |
+ | SOCK_BROADCAST filter | |
+ +---------------------------+ |
+ | |
+ |<---------------------'
+ V
+ +---------------------------+
+ | SO_J1939_FILTER |
+ +---------------------------+
+ |
+ V
+ +---------------------------+
+ | socket recv() |
+ +---------------------------+
+
+TX path related options:
+SO_J1939_SEND_PRIO - change default send priority for the socket
+
+Message Flags during send() and Related System Calls
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+send(2), sendto(2) and sendmsg(2) take a 'flags' argument. Currently
+supported flags are:
+
+* MSG_DONTWAIT, i.e. non-blocking operation.
+
+recvmsg(2)
+^^^^^^^^^
+
+In most cases recvmsg(2) is needed if you want to extract more information than
+recvfrom(2) can provide. For example package priority and timestamp. The
+Destination Address, name and packet priority (if applicable) are attached to
+the msghdr in the recvmsg(2) call. They can be extracted using cmsg(3) macros,
+with cmsg_level == SOL_J1939 && cmsg_type == SCM_J1939_DEST_ADDR,
+SCM_J1939_DEST_NAME or SCM_J1939_PRIO. The returned data is a uint8_t for
+priority and dst_addr, and uint64_t for dst_name.
+
+.. code-block:: C
+
+ uint8_t priority, dst_addr;
+ uint64_t dst_name;
+
+ for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
+ switch (cmsg->cmsg_level) {
+ case SOL_CAN_J1939:
+ if (cmsg->cmsg_type == SCM_J1939_DEST_ADDR)
+ dst_addr = *CMSG_DATA(cmsg);
+ else if (cmsg->cmsg_type == SCM_J1939_DEST_NAME)
+ memcpy(&dst_name, CMSG_DATA(cmsg), cmsg->cmsg_len - CMSG_LEN(0));
+ else if (cmsg->cmsg_type == SCM_J1939_PRIO)
+ priority = *CMSG_DATA(cmsg);
+ break;
+ }
+ }
+
+Dynamic Addressing
+------------------
+
+Distinction has to be made between using the claimed address and doing an
+address claim. To use an already claimed address, one has to fill in the
+j1939.name member and provide it to bind(2). If the name had claimed an address
+earlier, all further messages being sent will use that address. And the
+j1939.addr member will be ignored.
+
+An exception on this is PGN 0x0ee00. This is the "Address Claim/Cannot Claim
+Address" message and the kernel will use the j1939.addr member for that PGN if
+necessary.
+
+To claim an address following code example can be used:
+
+.. code-block:: C
+
+ struct sockaddr_can baddr = {
+ .can_family = AF_CAN,
+ .can_addr.j1939 = {
+ .name = name,
+ .addr = J1939_IDLE_ADDR,
+ .pgn = J1939_NO_PGN, /* to disable bind() rx filter for PGN */
+ },
+ .can_ifindex = if_nametoindex("can0"),
+ };
+
+ bind(sock, (struct sockaddr *)&baddr, sizeof(baddr));
+
+ /* for Address Claiming broadcast must be allowed */
+ int value = 1;
+ setsockopt(sock, SOL_SOCKET, SO_BROADCAST, &value, sizeof(value));
+
+ /* configured advanced RX filter with PGN needed for Address Claiming */
+ const struct j1939_filter filt[] = {
+ {
+ .pgn = J1939_PGN_ADDRESS_CLAIMED,
+ .pgn_mask = J1939_PGN_PDU1_MAX,
+ }, {
+ .pgn = J1939_PGN_ADDRESS_REQUEST,
+ .pgn_mask = J1939_PGN_PDU1_MAX,
+ }, {
+ .pgn = J1939_PGN_ADDRESS_COMMANDED,
+ .pgn_mask = J1939_PGN_MAX,
+ },
+ };
+
+ setsockopt(sock, SOL_CAN_J1939, SO_J1939_FILTER, &filt, sizeof(filt));
+
+ uint64_t dat = htole64(name);
+ const struct sockaddr_can saddr = {
+ .can_family = AF_CAN,
+ .can_addr.j1939 = {
+ .pgn = J1939_PGN_ADDRESS_CLAIMED,
+ .addr = J1939_NO_ADDR,
+ },
+ };
+
+ /* Afterwards do a sendto(2) with data set to the NAME (Little Endian). If the
+ * NAME provided, does not match the j1939.name provided to bind(2), EPROTO
+ * will be returned.
+ */
+ sendto(sock, dat, sizeof(dat), 0, (const struct sockaddr *)&saddr, sizeof(saddr));
+
+If no-one else contests the address claim within 250ms after transmission, the
+kernel marks the NAME-SA assignment as valid. The valid assignment will be kept
+among other valid NAME-SA assignments. From that point, any socket bound to the
+NAME can send packets.
+
+If another ECU claims the address, the kernel will mark the NAME-SA expired.
+No socket bound to the NAME can send packets (other than address claims). To
+claim another address, some socket bound to NAME, must bind(2) again, but with
+only j1939.addr changed to the new SA, and must then send a valid address claim
+packet. This restarts the state machine in the kernel (and any other
+participant on the bus) for this NAME.
+
+can-utils also include the jacd tool, so it can be used as code example or as
+default Address Claiming daemon.
+
+Send Examples
+-------------
+
+Static Addressing
+^^^^^^^^^^^^^^^^^
+
+This example will send a PGN (0x12300) from SA 0x20 to DA 0x30.
+
+Bind:
+
+.. code-block:: C
+
+ struct sockaddr_can baddr = {
+ .can_family = AF_CAN,
+ .can_addr.j1939 = {
+ .name = J1939_NO_NAME,
+ .addr = 0x20,
+ .pgn = J1939_NO_PGN,
+ },
+ .can_ifindex = if_nametoindex("can0"),
+ };
+
+ bind(sock, (struct sockaddr *)&baddr, sizeof(baddr));
+
+Now, the socket 'sock' is bound to the SA 0x20. Since no connect(2) was called,
+at this point we can use only sendto(2) or sendmsg(2).
+
+Send:
+
+.. code-block:: C
+
+ const struct sockaddr_can saddr = {
+ .can_family = AF_CAN,
+ .can_addr.j1939 = {
+ .name = J1939_NO_NAME;
+ .pgn = 0x30,
+ .addr = 0x12300,
+ },
+ };
+
+ sendto(sock, dat, sizeof(dat), 0, (const struct sockaddr *)&saddr, sizeof(saddr));
diff --git a/Documentation/networking/mac80211_hwsim/README b/Documentation/networking/mac80211_hwsim/mac80211_hwsim.rst
index 3566a725d19c..d2266ce5534e 100644
--- a/Documentation/networking/mac80211_hwsim/README
+++ b/Documentation/networking/mac80211_hwsim/mac80211_hwsim.rst
@@ -1,5 +1,13 @@
+:orphan:
+
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+===================================================================
mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
-Copyright (c) 2008, Jouni Malinen <j@w1.fi>
+===================================================================
+
+:Copyright: |copy| 2008, Jouni Malinen <j@w1.fi>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
@@ -7,6 +15,7 @@ published by the Free Software Foundation.
Introduction
+============
mac80211_hwsim is a Linux kernel module that can be used to simulate
arbitrary number of IEEE 802.11 radios for mac80211. It can be used to
@@ -43,6 +52,7 @@ regardless of channel.
Simple example
+==============
This example shows how to use mac80211_hwsim to simulate two radios:
one to act as an access point and the other as a station that
@@ -50,17 +60,19 @@ associates with the AP. hostapd and wpa_supplicant are used to take
care of WPA2-PSK authentication. In addition, hostapd is also
processing access point side of association.
+::
+
-# Build mac80211_hwsim as part of kernel configuration
+ # Build mac80211_hwsim as part of kernel configuration
-# Load the module
-modprobe mac80211_hwsim
+ # Load the module
+ modprobe mac80211_hwsim
-# Run hostapd (AP) for wlan0
-hostapd hostapd.conf
+ # Run hostapd (AP) for wlan0
+ hostapd hostapd.conf
-# Run wpa_supplicant (station) for wlan1
-wpa_supplicant -Dnl80211 -iwlan1 -c wpa_supplicant.conf
+ # Run wpa_supplicant (station) for wlan1
+ wpa_supplicant -Dnl80211 -iwlan1 -c wpa_supplicant.conf
More test cases are available in hostap.git:
diff --git a/Documentation/networking/mpls-sysctl.txt b/Documentation/networking/mpls-sysctl.txt
index 2f24a1912a48..025cc9b96992 100644
--- a/Documentation/networking/mpls-sysctl.txt
+++ b/Documentation/networking/mpls-sysctl.txt
@@ -30,7 +30,7 @@ ip_ttl_propagate - BOOL
0 - disabled / RFC 3443 [Short] Pipe Model
1 - enabled / RFC 3443 Uniform Model (default)
-default_ttl - BOOL
+default_ttl - INTEGER
Default TTL value to use for MPLS packets where it cannot be
propagated from an IP header, either because one isn't present
or ip_ttl_propagate has been disabled.
diff --git a/Documentation/networking/phy.rst b/Documentation/networking/phy.rst
index 0dd90d7df5ec..a689966bc4be 100644
--- a/Documentation/networking/phy.rst
+++ b/Documentation/networking/phy.rst
@@ -202,7 +202,8 @@ the PHY/controller, of which the PHY needs to be aware.
*interface* is a u32 which specifies the connection type used
between the controller and the PHY. Examples are GMII, MII,
-RGMII, and SGMII. For a full list, see include/linux/phy.h
+RGMII, and SGMII. See "PHY interface mode" below. For a full
+list, see include/linux/phy.h
Now just make sure that phydev->supported and phydev->advertising have any
values pruned from them which don't make sense for your controller (a 10/100
@@ -225,6 +226,48 @@ When you want to disconnect from the network (even if just briefly), you call
phy_stop(phydev). This function also stops the phylib state machine and
disables PHY interrupts.
+PHY interface modes
+===================
+
+The PHY interface mode supplied in the phy_connect() family of functions
+defines the initial operating mode of the PHY interface. This is not
+guaranteed to remain constant; there are PHYs which dynamically change
+their interface mode without software interaction depending on the
+negotiation results.
+
+Some of the interface modes are described below:
+
+``PHY_INTERFACE_MODE_1000BASEX``
+ This defines the 1000BASE-X single-lane serdes link as defined by the
+ 802.3 standard section 36. The link operates at a fixed bit rate of
+ 1.25Gbaud using a 10B/8B encoding scheme, resulting in an underlying
+ data rate of 1Gbps. Embedded in the data stream is a 16-bit control
+ word which is used to negotiate the duplex and pause modes with the
+ remote end. This does not include "up-clocked" variants such as 2.5Gbps
+ speeds (see below.)
+
+``PHY_INTERFACE_MODE_2500BASEX``
+ This defines a variant of 1000BASE-X which is clocked 2.5 times faster,
+ than the 802.3 standard giving a fixed bit rate of 3.125Gbaud.
+
+``PHY_INTERFACE_MODE_SGMII``
+ This is used for Cisco SGMII, which is a modification of 1000BASE-X
+ as defined by the 802.3 standard. The SGMII link consists of a single
+ serdes lane running at a fixed bit rate of 1.25Gbaud with 10B/8B
+ encoding. The underlying data rate is 1Gbps, with the slower speeds of
+ 100Mbps and 10Mbps being achieved through replication of each data symbol.
+ The 802.3 control word is re-purposed to send the negotiated speed and
+ duplex information from to the MAC, and for the MAC to acknowledge
+ receipt. This does not include "up-clocked" variants such as 2.5Gbps
+ speeds.
+
+ Note: mismatched SGMII vs 1000BASE-X configuration on a link can
+ successfully pass data in some circumstances, but the 16-bit control
+ word will not be correctly interpreted, which may cause mismatches in
+ duplex, pause or other settings. This is dependent on the MAC and/or
+ PHY behaviour.
+
+
Pause frames / flow control
===========================
diff --git a/Documentation/networking/sfp-phylink.rst b/Documentation/networking/sfp-phylink.rst
index 5bd26cb07244..a5e00a159d21 100644
--- a/Documentation/networking/sfp-phylink.rst
+++ b/Documentation/networking/sfp-phylink.rst
@@ -8,7 +8,8 @@ Overview
========
phylink is a mechanism to support hot-pluggable networking modules
-without needing to re-initialise the adapter on hot-plug events.
+directly connected to a MAC without needing to re-initialise the
+adapter on hot-plug events.
phylink supports conventional phylib-based setups, fixed link setups
and SFP (Small Formfactor Pluggable) modules at present.
@@ -98,6 +99,7 @@ this documentation.
4. Add::
struct phylink *phylink;
+ struct phylink_config phylink_config;
to the driver's private data structure. We shall refer to the
driver's private data pointer as ``priv`` below, and the driver's
@@ -223,8 +225,10 @@ this documentation.
.. code-block:: c
struct phylink *phylink;
+ priv->phylink_config.dev = &dev.dev;
+ priv->phylink_config.type = PHYLINK_NETDEV;
- phylink = phylink_create(dev, node, phy_mode, &phylink_ops);
+ phylink = phylink_create(&priv->phylink_config, node, phy_mode, &phylink_ops);
if (IS_ERR(phylink)) {
err = PTR_ERR(phylink);
fail probe;
diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt
index bbdaf8990031..8dd6333c3270 100644
--- a/Documentation/networking/timestamping.txt
+++ b/Documentation/networking/timestamping.txt
@@ -368,7 +368,7 @@ ts[1] used to hold hardware timestamps converted to system time.
Instead, expose the hardware clock device on the NIC directly as
a HW PTP clock source, to allow time conversion in userspace and
optionally synchronize system time with a userspace PTP stack such
-as linuxptp. For the PTP clock API, see Documentation/ptp/ptp.txt.
+as linuxptp. For the PTP clock API, see Documentation/driver-api/ptp.rst.
Note that if the SO_TIMESTAMP or SO_TIMESTAMPNS option is enabled
together with SO_TIMESTAMPING using SOF_TIMESTAMPING_SOFTWARE, a false
diff --git a/Documentation/networking/tls-offload.rst b/Documentation/networking/tls-offload.rst
index cb85af559dff..0dd3f748239f 100644
--- a/Documentation/networking/tls-offload.rst
+++ b/Documentation/networking/tls-offload.rst
@@ -206,7 +206,11 @@ TX
Segments transmitted from an offloaded socket can get out of sync
in similar ways to the receive side-retransmissions - local drops
-are possible, though network reorders are not.
+are possible, though network reorders are not. There are currently
+two mechanisms for dealing with out of order segments.
+
+Crypto state rebuilding
+~~~~~~~~~~~~~~~~~~~~~~~
Whenever an out of order segment is transmitted the driver provides
the device with enough information to perform cryptographic operations.
@@ -225,6 +229,35 @@ was just a retransmission. The former is simpler, and does not require
retransmission detection therefore it is the recommended method until
such time it is proven inefficient.
+Next record sync
+~~~~~~~~~~~~~~~~
+
+Whenever an out of order segment is detected the driver requests
+that the ``ktls`` software fallback code encrypt it. If the segment's
+sequence number is lower than expected the driver assumes retransmission
+and doesn't change device state. If the segment is in the future, it
+may imply a local drop, the driver asks the stack to sync the device
+to the next record state and falls back to software.
+
+Resync request is indicated with:
+
+.. code-block:: c
+
+ void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
+
+Until resync is complete driver should not access its expected TCP
+sequence number (as it will be updated from a different context).
+Following helper should be used to test if resync is complete:
+
+.. code-block:: c
+
+ bool tls_offload_tx_resync_pending(struct sock *sk)
+
+Next time ``ktls`` pushes a record it will first send its TCP sequence number
+and TLS record number to the driver. Stack will also make sure that
+the new record will start on a segment boundary (like it does when
+the connection is initially added).
+
RX
--
@@ -268,6 +301,9 @@ Device can only detect that segment 4 also contains a TLS header
if it knows the length of the previous record from segment 2. In this case
the device will lose synchronization with the stream.
+Stream scan resynchronization
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
When the device gets out of sync and the stream reaches TCP sequence
numbers more than a max size record past the expected TCP sequence number,
the device starts scanning for a known header pattern. For example
@@ -298,6 +334,22 @@ Special care has to be taken if the confirmation request is passed
asynchronously to the packet stream and record may get processed
by the kernel before the confirmation request.
+Stack-driven resynchronization
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The driver may also request the stack to perform resynchronization
+whenever it sees the records are no longer getting decrypted.
+If the connection is configured in this mode the stack automatically
+schedules resynchronization after it has received two completely encrypted
+records.
+
+The stack waits for the socket to drain and informs the device about
+the next expected record number and its TCP sequence number. If the
+records continue to be received fully encrypted stack retries the
+synchronization with an exponential back off (first after 2 encrypted
+records, then after 4 records, after 8, after 16... up until every
+128 records).
+
Error handling
==============
@@ -372,14 +424,24 @@ Statistics
Following minimum set of TLS-related statistics should be reported
by the driver:
- * ``rx_tls_decrypted`` - number of successfully decrypted TLS segments
- * ``tx_tls_encrypted`` - number of in-order TLS segments passed to device
- for encryption
+ * ``rx_tls_decrypted_packets`` - number of successfully decrypted RX packets
+ which were part of a TLS stream.
+ * ``rx_tls_decrypted_bytes`` - number of TLS payload bytes in RX packets
+ which were successfully decrypted.
+ * ``tx_tls_encrypted_packets`` - number of TX packets passed to the device
+ for encryption of their TLS payload.
+ * ``tx_tls_encrypted_bytes`` - number of TLS payload bytes in TX packets
+ passed to the device for encryption.
+ * ``tx_tls_ctx`` - number of TLS TX HW offload contexts added to device for
+ encryption.
* ``tx_tls_ooo`` - number of TX packets which were part of a TLS stream
- but did not arrive in the expected order
- * ``tx_tls_drop_no_sync_data`` - number of TX packets dropped because
- they arrived out of order and associated record could not be found
- (see also :ref:`pre_tls_data`)
+ but did not arrive in the expected order.
+ * ``tx_tls_drop_no_sync_data`` - number of TX packets which were part of
+ a TLS stream dropped, because they arrived out of order and associated
+ record could not be found.
+ * ``tx_tls_drop_bypass_req`` - number of TX packets which were part of a TLS
+ stream dropped, because they contain both data that has been encrypted by
+ software and data that expects hardware crypto offload.
Notable corner cases, exceptions and additional requirements
============================================================
@@ -444,39 +506,3 @@ Drivers should ignore the changes to TLS the device feature flags.
These flags will be acted upon accordingly by the core ``ktls`` code.
TLS device feature flags only control adding of new TLS connection
offloads, old connections will remain active after flags are cleared.
-
-Known bugs
-==========
-
-skb_orphan() leaks clear text
------------------------------
-
-Currently drivers depend on the :c:member:`sk` member of
-:c:type:`struct sk_buff <sk_buff>` to identify segments requiring
-encryption. Any operation which removes or does not preserve the socket
-association such as :c:func:`skb_orphan` or :c:func:`skb_clone`
-will cause the driver to miss the packets and lead to clear text leaks.
-
-Redirects leak clear text
--------------------------
-
-In the RX direction, if segment has already been decrypted by the device
-and it gets redirected or mirrored - clear text will be transmitted out.
-
-.. _pre_tls_data:
-
-Transmission of pre-TLS data
-----------------------------
-
-User can enqueue some already encrypted and framed records before enabling
-``ktls`` on the socket. Those records have to get sent as they are. This is
-perfectly easy to handle in the software case - such data will be waiting
-in the TCP layer, TLS ULP won't see it. In the offloaded case when pre-queued
-segment reaches transmission point it appears to be out of order (before the
-expected TCP sequence number) and the stack does not have a record information
-associated.
-
-All segments without record information cannot, however, be assumed to be
-pre-queued data, because a race condition exists between TCP stack queuing
-a retransmission, the driver seeing the retransmission and TCP ACK arriving
-for the retransmitted data.
diff --git a/Documentation/networking/tuntap.txt b/Documentation/networking/tuntap.txt
index 949d5dcdd9a3..0104830d5075 100644
--- a/Documentation/networking/tuntap.txt
+++ b/Documentation/networking/tuntap.txt
@@ -204,8 +204,8 @@ Ethernet device, which instead of receiving packets from a physical
media, receives them from user space program and instead of sending
packets via physical media sends them to the user space program.
-Let's say that you configured IPX on the tap0, then whenever
-the kernel sends an IPX packet to tap0, it is passed to the application
+Let's say that you configured IPv6 on the tap0, then whenever
+the kernel sends an IPv6 packet to tap0, it is passed to the application
(VTun for example). The application encrypts, compresses and sends it to
the other side over TCP or UDP. The application on the other side decompresses
and decrypts the data received and writes the packet to the TAP device,
diff --git a/Documentation/nios2/README b/Documentation/nios2/nios2.rst
index 054a67d55563..43da3f7cee76 100644
--- a/Documentation/nios2/README
+++ b/Documentation/nios2/nios2.rst
@@ -1,3 +1,4 @@
+=================================
Linux on the Nios II architecture
=================================
diff --git a/Documentation/openrisc/index.rst b/Documentation/openrisc/index.rst
new file mode 100644
index 000000000000..748b3eea1707
--- /dev/null
+++ b/Documentation/openrisc/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================
+OpenRISC Architecture
+=====================
+
+.. toctree::
+ :maxdepth: 2
+
+ openrisc_port
+ todo
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/openrisc/README b/Documentation/openrisc/openrisc_port.rst
index 777a893d533d..a18747a8d191 100644
--- a/Documentation/openrisc/README
+++ b/Documentation/openrisc/openrisc_port.rst
@@ -1,3 +1,4 @@
+==============
OpenRISC Linux
==============
@@ -6,8 +7,10 @@ target architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k).
For information about OpenRISC processors and ongoing development:
+ ======= =============================
website http://openrisc.io
email openrisc@lists.librecores.org
+ ======= =============================
---------------------------------------------------------------------
@@ -24,13 +27,15 @@ Toolchain binaries can be obtained from openrisc.io or our github releases page.
Instructions for building the different toolchains can be found on openrisc.io
or Stafford's toolchain build and release scripts.
+ ========== =================================================
binaries https://github.com/openrisc/or1k-gcc/releases
toolchains https://openrisc.io/software
building https://github.com/stffrdhrn/or1k-toolchain-build
+ ========== =================================================
2) Building
-Build the Linux kernel as usual
+Build the Linux kernel as usual::
make ARCH=openrisc defconfig
make ARCH=openrisc
@@ -43,6 +48,8 @@ development board with the OpenRISC SoC. During the build FPGA RTL is code
downloaded from the FuseSoC IP cores repository and built using the FPGA vendor
tools. Binaries are loaded onto the board with openocd.
+::
+
git clone https://github.com/olofk/fusesoc
cd fusesoc
sudo pip install -e .
@@ -65,7 +72,9 @@ platform. Please follow the OpenRISC instructions on the QEMU website to get
Linux running on QEMU. You can build QEMU yourself, but your Linux distribution
likely provides binary packages to support OpenRISC.
+ ============= ======================================================
qemu openrisc https://wiki.qemu.org/Documentation/Platforms/OpenRISC
+ ============= ======================================================
---------------------------------------------------------------------
@@ -75,36 +84,38 @@ Terminology
In the code, the following particles are used on symbols to limit the scope
to more or less specific processor implementations:
+========= =======================================
openrisc: the OpenRISC class of processors
or1k: the OpenRISC 1000 family of processors
or1200: the OpenRISC 1200 processor
+========= =======================================
---------------------------------------------------------------------
History
========
-18. 11. 2003 Matjaz Breskvar (phoenix@bsemi.com)
+18-11-2003 Matjaz Breskvar (phoenix@bsemi.com)
initial port of linux to OpenRISC/or32 architecture.
all the core stuff is implemented and seams usable.
-08. 12. 2003 Matjaz Breskvar (phoenix@bsemi.com)
+08-12-2003 Matjaz Breskvar (phoenix@bsemi.com)
complete change of TLB miss handling.
rewrite of exceptions handling.
fully functional sash-3.6 in default initrd.
a much improved version with changes all around.
-10. 04. 2004 Matjaz Breskvar (phoenix@bsemi.com)
+10-04-2004 Matjaz Breskvar (phoenix@bsemi.com)
alot of bugfixes all over.
ethernet support, functional http and telnet servers.
running many standard linux apps.
-26. 06. 2004 Matjaz Breskvar (phoenix@bsemi.com)
+26-06-2004 Matjaz Breskvar (phoenix@bsemi.com)
port to 2.6.x
-30. 11. 2004 Matjaz Breskvar (phoenix@bsemi.com)
+30-11-2004 Matjaz Breskvar (phoenix@bsemi.com)
lots of bugfixes and enhancments.
added opencores framebuffer driver.
-09. 10. 2010 Jonas Bonn (jonas@southpole.se)
+09-10-2010 Jonas Bonn (jonas@southpole.se)
major rewrite to bring up to par with upstream Linux 2.6.36
diff --git a/Documentation/openrisc/TODO b/Documentation/openrisc/todo.rst
index c43d4e1d14eb..420b18b87eda 100644
--- a/Documentation/openrisc/TODO
+++ b/Documentation/openrisc/todo.rst
@@ -1,12 +1,15 @@
+====
+TODO
+====
+
The OpenRISC Linux port is fully functional and has been tracking upstream
since 2.6.35. There are, however, remaining items to be completed within
the coming months. Here's a list of known-to-be-less-than-stellar items
that are due for investigation shortly, i.e. our TODO list:
--- Implement the rest of the DMA API... dma_map_sg, etc.
+- Implement the rest of the DMA API... dma_map_sg, etc.
--- Finish the renaming cleanup... there are references to or32 in the code
+- Finish the renaming cleanup... there are references to or32 in the code
which was an older name for the architecture. The name we've settled on is
or1k and this change is slowly trickling through the stack. For the time
being, or32 is equivalent to or1k.
-
diff --git a/Documentation/padata.txt b/Documentation/padata.txt
index b103d0c82000..b37ba1eaace3 100644
--- a/Documentation/padata.txt
+++ b/Documentation/padata.txt
@@ -16,10 +16,12 @@ overall control of how tasks are to be run::
#include <linux/padata.h>
- struct padata_instance *padata_alloc(struct workqueue_struct *wq,
+ struct padata_instance *padata_alloc(const char *name,
const struct cpumask *pcpumask,
const struct cpumask *cbcpumask);
+'name' simply identifies the instance.
+
The pcpumask describes which processors will be used to execute work
submitted to this instance in parallel. The cbcpumask defines which
processors are allowed to be used as the serialization callback processor.
@@ -128,8 +130,7 @@ in that CPU mask or about a not running instance.
Each task submitted to padata_do_parallel() will, in turn, be passed to
exactly one call to the above-mentioned parallel() function, on one CPU, so
-true parallelism is achieved by submitting multiple tasks. Despite the
-fact that the workqueue is used to make these calls, parallel() is run with
+true parallelism is achieved by submitting multiple tasks. parallel() runs with
software interrupts disabled and thus cannot sleep. The parallel()
function gets the padata_priv structure pointer as its lone parameter;
information about the actual work to be done is probably obtained by using
@@ -148,7 +149,7 @@ fact with a call to::
At some point in the future, padata_do_serial() will trigger a call to the
serial() function in the padata_priv structure. That call will happen on
the CPU requested in the initial call to padata_do_parallel(); it, too, is
-done through the workqueue, but with local software interrupts disabled.
+run with local software interrupts disabled.
Note that this call may be deferred for a while since the padata code takes
pains to ensure that tasks are completed in the order in which they were
submitted.
@@ -159,5 +160,4 @@ when a padata instance is no longer needed::
void padata_free(struct padata_instance *pinst);
This function will busy-wait while any remaining tasks are completed, so it
-might be best not to call it while there is work outstanding. Shutting
-down the workqueue, if necessary, should be done separately.
+might be best not to call it while there is work outstanding.
diff --git a/Documentation/parisc/debugging b/Documentation/parisc/debugging.rst
index 7d75223fa18d..de1b60402c5b 100644
--- a/Documentation/parisc/debugging
+++ b/Documentation/parisc/debugging.rst
@@ -1,8 +1,13 @@
+=================
+PA-RISC Debugging
+=================
+
okay, here are some hints for debugging the lower-level parts of
linux/parisc.
1. Absolute addresses
+=====================
A lot of the assembly code currently runs in real mode, which means
absolute addresses are used instead of virtual addresses as in the
@@ -12,6 +17,7 @@ currently).
2. HPMCs
+========
When real-mode code tries to access non-existent memory, you'll get
an HPMC instead of a kernel oops. To debug an HPMC, try to find
@@ -27,6 +33,7 @@ access it.
3. Q bit fun
+============
Certain, very critical code has to clear the Q bit in the PSW. What
happens when the Q bit is cleared is the CPU does not update the
diff --git a/Documentation/parisc/index.rst b/Documentation/parisc/index.rst
new file mode 100644
index 000000000000..aa3ee0470425
--- /dev/null
+++ b/Documentation/parisc/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================
+PA-RISC Architecture
+====================
+
+.. toctree::
+ :maxdepth: 2
+
+ debugging
+ registers
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/parisc/registers b/Documentation/parisc/registers.rst
index 10c7d1730f5d..59c8ecf3e856 100644
--- a/Documentation/parisc/registers
+++ b/Documentation/parisc/registers.rst
@@ -1,11 +1,16 @@
+================================
Register Usage for Linux/PA-RISC
+================================
[ an asterisk is used for planned usage which is currently unimplemented ]
- General Registers as specified by ABI
+General Registers as specified by ABI
+=====================================
- Control Registers
+Control Registers
+-----------------
+=============================== ===============================================
CR 0 (Recovery Counter) used for ptrace
CR 1-CR 7(undefined) unused
CR 8 (Protection ID) per-process value*
@@ -29,26 +34,35 @@ CR28 (TR 4) not used
CR29 (TR 5) not used
CR30 (TR 6) current / 0
CR31 (TR 7) Temporary register, used in various places
+=============================== ===============================================
- Space Registers (kernel mode)
+Space Registers (kernel mode)
+-----------------------------
+=============================== ===============================================
SR0 temporary space register
SR4-SR7 set to 0
SR1 temporary space register
SR2 kernel should not clobber this
SR3 used for userspace accesses (current process)
+=============================== ===============================================
- Space Registers (user mode)
+Space Registers (user mode)
+---------------------------
+=============================== ===============================================
SR0 temporary space register
SR1 temporary space register
SR2 holds space of linux gateway page
SR3 holds user address space value while in kernel
SR4-SR7 Defines short address space for user/kernel
+=============================== ===============================================
- Processor Status Word
+Processor Status Word
+---------------------
+=============================== ===============================================
W (64-bit addresses) 0
E (Little-endian) 0
S (Secure Interval Timer) 0
@@ -69,15 +83,19 @@ Q (collect interruption state) 1 (0 in code directly preceding an rfi)
P (Protection Identifiers) 1*
D (Data address translation) 1, 0 while executing real-mode code
I (external interrupt mask) used by cli()/sti() macros
+=============================== ===============================================
- "Invisible" Registers
+"Invisible" Registers
+---------------------
+=============================== ===============================================
PSW default W value 0
PSW default E value 0
Shadow Registers used by interruption handler code
TOC enable bit 1
+=============================== ===============================================
-=========================================================================
+-------------------------------------------------------------------------
The PA-RISC architecture defines 7 registers as "shadow registers".
Those are used in RETURN FROM INTERRUPTION AND RESTORE instruction to reduce
@@ -85,7 +103,8 @@ the state save and restore time by eliminating the need for general register
(GR) saves and restores in interruption handlers.
Shadow registers are the GRs 1, 8, 9, 16, 17, 24, and 25.
-=========================================================================
+-------------------------------------------------------------------------
+
Register usage notes, originally from John Marvin, with some additional
notes from Randolph Chung.
@@ -96,10 +115,12 @@ course, you need to save them if you care about them, before calling
another procedure. Some of the above registers do have special meanings
that you should be aware of:
- r1: The addil instruction is hardwired to place its result in r1,
+ r1:
+ The addil instruction is hardwired to place its result in r1,
so if you use that instruction be aware of that.
- r2: This is the return pointer. In general you don't want to
+ r2:
+ This is the return pointer. In general you don't want to
use this, since you need the pointer to get back to your
caller. However, it is grouped with this set of registers
since the caller can't rely on the value being the same
@@ -107,23 +128,27 @@ that you should be aware of:
and return through that register after trashing r2, and
that should not cause a problem for the calling routine.
- r19-r22: these are generally regarded as temporary registers.
+ r19-r22:
+ these are generally regarded as temporary registers.
Note that in 64 bit they are arg7-arg4.
- r23-r26: these are arg3-arg0, i.e. you can use them if you
+ r23-r26:
+ these are arg3-arg0, i.e. you can use them if you
don't care about the values that were passed in anymore.
- r28,r29: are ret0 and ret1. They are what you pass return values
+ r28,r29:
+ are ret0 and ret1. They are what you pass return values
in. r28 is the primary return. When returning small structures
r29 may also be used to pass data back to the caller.
- r30: stack pointer
+ r30:
+ stack pointer
- r31: the ble instruction puts the return pointer in here.
+ r31:
+ the ble instruction puts the return pointer in here.
-r3-r18,r27,r30 need to be saved and restored. r3-r18 are just
+ r3-r18,r27,r30 need to be saved and restored. r3-r18 are just
general purpose registers. r27 is the data pointer, and is
used to make references to global variables easier. r30 is
the stack pointer.
-
diff --git a/Documentation/pcmcia/devicetable.txt b/Documentation/pcmcia/devicetable.rst
index 5f3e00ab54c4..fd1d60d12ca1 100644
--- a/Documentation/pcmcia/devicetable.txt
+++ b/Documentation/pcmcia/devicetable.rst
@@ -1,3 +1,7 @@
+============
+Device table
+============
+
Matching of PCMCIA devices to drivers is done using one or more of the
following criteria:
diff --git a/Documentation/pcmcia/driver-changes.txt b/Documentation/pcmcia/driver-changes.rst
index 78355c4c268a..33fe9ebec049 100644
--- a/Documentation/pcmcia/driver-changes.txt
+++ b/Documentation/pcmcia/driver-changes.rst
@@ -1,15 +1,21 @@
+==============
+Driver changes
+==============
+
This file details changes in 2.6 which affect PCMCIA card driver authors:
+
* pcmcia_loop_config() and autoconfiguration (as of 2.6.36)
- If struct pcmcia_device *p_dev->config_flags is set accordingly,
+ If `struct pcmcia_device *p_dev->config_flags` is set accordingly,
pcmcia_loop_config() now sets up certain configuration values
automatically, though the driver may still override the settings
in the callback function. The following autoconfiguration options
are provided at the moment:
- CONF_AUTO_CHECK_VCC : check for matching Vcc
- CONF_AUTO_SET_VPP : set Vpp
- CONF_AUTO_AUDIO : auto-enable audio line, if required
- CONF_AUTO_SET_IO : set ioport resources (->resource[0,1])
- CONF_AUTO_SET_IOMEM : set first iomem resource (->resource[2])
+
+ - CONF_AUTO_CHECK_VCC : check for matching Vcc
+ - CONF_AUTO_SET_VPP : set Vpp
+ - CONF_AUTO_AUDIO : auto-enable audio line, if required
+ - CONF_AUTO_SET_IO : set ioport resources (->resource[0,1])
+ - CONF_AUTO_SET_IOMEM : set first iomem resource (->resource[2])
* pcmcia_request_configuration -> pcmcia_enable_device (as of 2.6.36)
pcmcia_request_configuration() got renamed to pcmcia_enable_device(),
@@ -19,14 +25,14 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* pcmcia_request_window changes (as of 2.6.36)
Instead of win_req_t, drivers are now requested to fill out
- struct pcmcia_device *p_dev->resource[2,3,4,5] for up to four ioport
+ `struct pcmcia_device *p_dev->resource[2,3,4,5]` for up to four ioport
ranges. After a call to pcmcia_request_window(), the regions found there
are reserved and may be used immediately -- until pcmcia_release_window()
is called.
* pcmcia_request_io changes (as of 2.6.36)
Instead of io_req_t, drivers are now requested to fill out
- struct pcmcia_device *p_dev->resource[0,1] for up to two ioport
+ `struct pcmcia_device *p_dev->resource[0,1]` for up to two ioport
ranges. After a call to pcmcia_request_io(), the ports found there
are reserved, after calling pcmcia_request_configuration(), they may
be used.
@@ -42,7 +48,8 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* New IRQ request rules (as of 2.6.35)
Instead of the old pcmcia_request_irq() interface, drivers may now
choose between:
- - calling request_irq/free_irq directly. Use the IRQ from *p_dev->irq.
+
+ - calling request_irq/free_irq directly. Use the IRQ from `*p_dev->irq`.
- use pcmcia_request_irq(p_dev, handler_t); the PCMCIA core will
clean up automatically on calls to pcmcia_disable_device() or
device ejection.
@@ -72,13 +79,16 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
exports for them were removed.
* Unify detach and REMOVAL event code, as well as attach and INSERTION
- code (as of 2.6.16)
+ code (as of 2.6.16)::
+
void (*remove) (struct pcmcia_device *dev);
int (*probe) (struct pcmcia_device *dev);
-* Move suspend, resume and reset out of event handler (as of 2.6.16)
+* Move suspend, resume and reset out of event handler (as of 2.6.16)::
+
int (*suspend) (struct pcmcia_device *dev);
int (*resume) (struct pcmcia_device *dev);
+
should be initialized in struct pcmcia_driver, and handle
(SUSPEND == RESET_PHYSICAL) and (RESUME == CARD_RESET) events
@@ -117,7 +127,8 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* core functions no longer available (as of 2.6.11)
The following functions have been removed from the kernel source
because they are unused by all in-kernel drivers, and no external
- driver was reported to rely on them:
+ driver was reported to rely on them::
+
pcmcia_get_first_region()
pcmcia_get_next_region()
pcmcia_modify_window()
diff --git a/Documentation/pcmcia/driver.txt b/Documentation/pcmcia/driver.rst
index 0ac167920778..5c4fe84d51c1 100644
--- a/Documentation/pcmcia/driver.txt
+++ b/Documentation/pcmcia/driver.rst
@@ -1,16 +1,16 @@
+=============
PCMCIA Driver
--------------
-
+=============
sysfs
-----
New PCMCIA IDs may be added to a device driver pcmcia_device_id table at
-runtime as shown below:
+runtime as shown below::
-echo "match_flags manf_id card_id func_id function device_no \
-prod_id_hash[0] prod_id_hash[1] prod_id_hash[2] prod_id_hash[3]" > \
-/sys/bus/pcmcia/drivers/{driver}/new_id
+ echo "match_flags manf_id card_id func_id function device_no \
+ prod_id_hash[0] prod_id_hash[1] prod_id_hash[2] prod_id_hash[3]" > \
+ /sys/bus/pcmcia/drivers/{driver}/new_id
All fields are passed in as hexadecimal values (no leading 0x).
The meaning is described in the PCMCIA specification, the match_flags is
@@ -22,9 +22,9 @@ PCMCIA device listed in its (newly updated) pcmcia_device_id list.
A common use-case is to add a new device according to the manufacturer ID
and the card ID (form the manf_id and card_id file in the device tree).
-For this, just use:
+For this, just use::
-echo "0x3 manf_id card_id 0 0 0 0 0 0 0" > \
- /sys/bus/pcmcia/drivers/{driver}/new_id
+ echo "0x3 manf_id card_id 0 0 0 0 0 0 0" > \
+ /sys/bus/pcmcia/drivers/{driver}/new_id
after loading the driver.
diff --git a/Documentation/pcmcia/index.rst b/Documentation/pcmcia/index.rst
new file mode 100644
index 000000000000..7ae1f62fca14
--- /dev/null
+++ b/Documentation/pcmcia/index.rst
@@ -0,0 +1,20 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======
+pcmcia
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ driver
+ devicetable
+ locking
+ driver-changes
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/pcmcia/locking.txt b/Documentation/pcmcia/locking.rst
index b2c9b478906b..e35257139c89 100644
--- a/Documentation/pcmcia/locking.txt
+++ b/Documentation/pcmcia/locking.rst
@@ -1,3 +1,7 @@
+=======
+Locking
+=======
+
This file explains the locking and exclusion scheme used in the PCCARD
and PCMCIA subsystems.
@@ -5,16 +9,21 @@ and PCMCIA subsystems.
A) Overview, Locking Hierarchy:
===============================
-pcmcia_socket_list_rwsem - protects only the list of sockets
-- skt_mutex - serializes card insert / ejection
- - ops_mutex - serializes socket operation
+pcmcia_socket_list_rwsem
+ - protects only the list of sockets
+
+- skt_mutex
+ - serializes card insert / ejection
+
+ - ops_mutex
+ - serializes socket operation
B) Exclusion
============
The following functions and callbacks to struct pcmcia_socket must
-be called with "skt_mutex" held:
+be called with "skt_mutex" held::
socket_detect_change()
send_event()
@@ -31,7 +40,7 @@ be called with "skt_mutex" held:
struct pcmcia_callback *callback
The following functions and callbacks to struct pcmcia_socket must
-be called with "ops_mutex" held:
+be called with "ops_mutex" held::
socket_reset()
socket_setup()
@@ -39,7 +48,7 @@ be called with "ops_mutex" held:
struct pccard_operations *ops
struct pccard_resource_ops *resource_ops;
-Note that send_event() and struct pcmcia_callback *callback must not be
+Note that send_event() and `struct pcmcia_callback *callback` must not be
called with "ops_mutex" held.
@@ -60,19 +69,23 @@ The resource_ops and their data are protected by ops_mutex.
The "main" struct pcmcia_socket is protected as follows (read-only fields
or single-use fields not mentioned):
-- by pcmcia_socket_list_rwsem:
+- by pcmcia_socket_list_rwsem::
+
struct list_head socket_list;
-- by thread_lock:
+- by thread_lock::
+
unsigned int thread_events;
-- by skt_mutex:
+- by skt_mutex::
+
u_int suspended_state;
void (*tune_bridge);
struct pcmcia_callback *callback;
int resume_status;
-- by ops_mutex:
+- by ops_mutex::
+
socket_state_t socket;
u_int state;
u_short lock_count;
@@ -100,7 +113,8 @@ The "main" struct pcmcia_device is protected as follows (read-only fields
or single-use fields not mentioned):
-- by pcmcia_socket->ops_mutex:
+- by pcmcia_socket->ops_mutex::
+
struct list_head socket_device_list;
struct config_t *function_config;
u16 _irq:1;
@@ -111,7 +125,8 @@ or single-use fields not mentioned):
u16 suspended:1;
u16 _removed:1;
-- by the PCMCIA driver:
+- by the PCMCIA driver::
+
io_req_t io;
irq_req_t irq;
config_req_t conf;
diff --git a/Documentation/pi-futex.txt b/Documentation/pi-futex.txt
index b154f6c0c36e..c33ba2befbf8 100644
--- a/Documentation/pi-futex.txt
+++ b/Documentation/pi-futex.txt
@@ -119,4 +119,4 @@ properties of futexes, and all four combinations are possible: futex,
robust-futex, PI-futex, robust+PI-futex.
More details about priority inheritance can be found in
-Documentation/locking/rt-mutex.txt.
+Documentation/locking/rt-mutex.rst.
diff --git a/Documentation/platform/x86-laptop-drivers.txt b/Documentation/platform/x86-laptop-drivers.txt
deleted file mode 100644
index 01facd2590bb..000000000000
--- a/Documentation/platform/x86-laptop-drivers.txt
+++ /dev/null
@@ -1,18 +0,0 @@
-compal-laptop
-=============
-List of supported hardware:
-
-by Compal:
- Compal FL90/IFL90
- Compal FL91/IFL91
- Compal FL92/JFL92
- Compal FT00/IFT00
-
-by Dell:
- Dell Vostro 1200
- Dell Mini 9 (Inspiron 910)
- Dell Mini 10 (Inspiron 1010)
- Dell Mini 10v (Inspiron 1011)
- Dell Mini 1012 (Inspiron 1012)
- Dell Inspiron 11z (Inspiron 1110)
- Dell Mini 12 (Inspiron 1210)
diff --git a/Documentation/power/apm-acpi.txt b/Documentation/power/apm-acpi.rst
index 6cc423d3662e..5b90d947126d 100644
--- a/Documentation/power/apm-acpi.txt
+++ b/Documentation/power/apm-acpi.rst
@@ -1,5 +1,7 @@
+============
APM or ACPI?
-------------
+============
+
If you have a relatively recent x86 mobile, desktop, or server system,
odds are it supports either Advanced Power Management (APM) or
Advanced Configuration and Power Interface (ACPI). ACPI is the newer
@@ -28,5 +30,7 @@ and be sure that they are started sometime in the system boot process.
Go ahead and start both. If ACPI or APM is not available on your
system the associated daemon will exit gracefully.
- apmd: http://ftp.debian.org/pool/main/a/apmd/
- acpid: http://acpid.sf.net/
+ ===== =======================================
+ apmd http://ftp.debian.org/pool/main/a/apmd/
+ acpid http://acpid.sf.net/
+ ===== =======================================
diff --git a/Documentation/power/basic-pm-debugging.txt b/Documentation/power/basic-pm-debugging.rst
index 708f87f78a75..69862e759c30 100644
--- a/Documentation/power/basic-pm-debugging.txt
+++ b/Documentation/power/basic-pm-debugging.rst
@@ -1,12 +1,16 @@
+=================================
Debugging hibernation and suspend
+=================================
+
(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
1. Testing hibernation (aka suspend to disk or STD)
+===================================================
-To check if hibernation works, you can try to hibernate in the "reboot" mode:
+To check if hibernation works, you can try to hibernate in the "reboot" mode::
-# echo reboot > /sys/power/disk
-# echo disk > /sys/power/state
+ # echo reboot > /sys/power/disk
+ # echo disk > /sys/power/state
and the system should create a hibernation image, reboot, resume and get back to
the command prompt where you have started the transition. If that happens,
@@ -15,20 +19,21 @@ test at least a couple of times in a row for confidence. [This is necessary,
because some problems only show up on a second attempt at suspending and
resuming the system.] Moreover, hibernating in the "reboot" and "shutdown"
modes causes the PM core to skip some platform-related callbacks which on ACPI
-systems might be necessary to make hibernation work. Thus, if your machine fails
-to hibernate or resume in the "reboot" mode, you should try the "platform" mode:
+systems might be necessary to make hibernation work. Thus, if your machine
+fails to hibernate or resume in the "reboot" mode, you should try the
+"platform" mode::
-# echo platform > /sys/power/disk
-# echo disk > /sys/power/state
+ # echo platform > /sys/power/disk
+ # echo disk > /sys/power/state
which is the default and recommended mode of hibernation.
Unfortunately, the "platform" mode of hibernation does not work on some systems
with broken BIOSes. In such cases the "shutdown" mode of hibernation might
-work:
+work::
-# echo shutdown > /sys/power/disk
-# echo disk > /sys/power/state
+ # echo shutdown > /sys/power/disk
+ # echo disk > /sys/power/state
(it is similar to the "reboot" mode, but it requires you to press the power
button to make the system resume).
@@ -37,6 +42,7 @@ If neither "platform" nor "shutdown" hibernation mode works, you will need to
identify what goes wrong.
a) Test modes of hibernation
+----------------------------
To find out why hibernation fails on your system, you can use a special testing
facility available if the kernel is compiled with CONFIG_PM_DEBUG set. Then,
@@ -44,36 +50,38 @@ there is the file /sys/power/pm_test that can be used to make the hibernation
core run in a test mode. There are 5 test modes available:
freezer
-- test the freezing of processes
+ - test the freezing of processes
devices
-- test the freezing of processes and suspending of devices
+ - test the freezing of processes and suspending of devices
platform
-- test the freezing of processes, suspending of devices and platform
- global control methods(*)
+ - test the freezing of processes, suspending of devices and platform
+ global control methods [1]_
processors
-- test the freezing of processes, suspending of devices, platform
- global control methods(*) and the disabling of nonboot CPUs
+ - test the freezing of processes, suspending of devices, platform
+ global control methods [1]_ and the disabling of nonboot CPUs
core
-- test the freezing of processes, suspending of devices, platform global
- control methods(*), the disabling of nonboot CPUs and suspending of
- platform/system devices
+ - test the freezing of processes, suspending of devices, platform global
+ control methods\ [1]_, the disabling of nonboot CPUs and suspending
+ of platform/system devices
+
+.. [1]
-(*) the platform global control methods are only available on ACPI systems
+ the platform global control methods are only available on ACPI systems
and are only tested if the hibernation mode is set to "platform"
To use one of them it is necessary to write the corresponding string to
/sys/power/pm_test (eg. "devices" to test the freezing of processes and
suspending devices) and issue the standard hibernation commands. For example,
to use the "devices" test mode along with the "platform" mode of hibernation,
-you should do the following:
+you should do the following::
-# echo devices > /sys/power/pm_test
-# echo platform > /sys/power/disk
-# echo disk > /sys/power/state
+ # echo devices > /sys/power/pm_test
+ # echo platform > /sys/power/disk
+ # echo disk > /sys/power/state
Then, the kernel will try to freeze processes, suspend devices, wait a few
seconds (5 by default, but configurable by the suspend.pm_test_delay module
@@ -108,11 +116,12 @@ If the "devices" test fails, most likely there is a driver that cannot suspend
or resume its device (in the latter case the system may hang or become unstable
after the test, so please take that into consideration). To find this driver,
you can carry out a binary search according to the rules:
+
- if the test fails, unload a half of the drivers currently loaded and repeat
-(that would probably involve rebooting the system, so always note what drivers
-have been loaded before the test),
+ (that would probably involve rebooting the system, so always note what drivers
+ have been loaded before the test),
- if the test succeeds, load a half of the drivers you have unloaded most
-recently and repeat.
+ recently and repeat.
Once you have found the failing driver (there can be more than just one of
them), you have to unload it every time before hibernation. In that case please
@@ -146,6 +155,7 @@ indicates a serious problem that very well may be related to the hardware, but
please report it anyway.
b) Testing minimal configuration
+--------------------------------
If all of the hibernation test modes work, you can boot the system with the
"init=/bin/bash" command line parameter and attempt to hibernate in the
@@ -165,14 +175,15 @@ Again, if you find the offending module(s), it(they) must be unloaded every time
before hibernation, and please report the problem with it(them).
c) Using the "test_resume" hibernation option
+---------------------------------------------
/sys/power/disk generally tells the kernel what to do after creating a
hibernation image. One of the available options is "test_resume" which
causes the just created image to be used for immediate restoration. Namely,
-after doing:
+after doing::
-# echo test_resume > /sys/power/disk
-# echo disk > /sys/power/state
+ # echo test_resume > /sys/power/disk
+ # echo disk > /sys/power/state
a hibernation image will be created and a resume from it will be triggered
immediately without involving the platform firmware in any way.
@@ -190,6 +201,7 @@ to resume may be related to the differences between the restore and image
kernels.
d) Advanced debugging
+---------------------
In case that hibernation does not work on your system even in the minimal
configuration and compiling more drivers as modules is not practical or some
@@ -200,9 +212,10 @@ kernel messages using the serial console. This may provide you with some
information about the reasons of the suspend (resume) failure. Alternatively,
it may be possible to use a FireWire port for debugging with firescope
(http://v3.sk/~lkundrak/firescope/). On x86 it is also possible to
-use the PM_TRACE mechanism documented in Documentation/power/s2ram.txt .
+use the PM_TRACE mechanism documented in Documentation/power/s2ram.rst .
2. Testing suspend to RAM (STR)
+===============================
To verify that the STR works, it is generally more convenient to use the s2ram
tool available from http://suspend.sf.net and documented at
@@ -230,7 +243,8 @@ you will have to unload them every time before an STR transition (ie. before
you run s2ram), and please report the problems with them.
There is a debugfs entry which shows the suspend to RAM statistics. Here is an
-example of its output.
+example of its output::
+
# mount -t debugfs none /sys/kernel/debug
# cat /sys/kernel/debug/suspend_stats
success: 20
@@ -248,6 +262,7 @@ example of its output.
-16
last_failed_step: suspend
suspend
+
Field success means the success number of suspend to RAM, and field fail means
the failure number. Others are the failure number of different steps of suspend
to RAM. suspend_stats just lists the last 2 failed devices, error number and
diff --git a/Documentation/power/charger-manager.txt b/Documentation/power/charger-manager.rst
index 9ff1105e58d6..84fab9376792 100644
--- a/Documentation/power/charger-manager.txt
+++ b/Documentation/power/charger-manager.rst
@@ -1,4 +1,7 @@
+===============
Charger Manager
+===============
+
(C) 2011 MyungJoo Ham <myungjoo.ham@samsung.com>, GPL
Charger Manager provides in-kernel battery charger management that
@@ -55,41 +58,39 @@ Charger Manager supports the following:
notification to users with UEVENT.
2. Global Charger-Manager Data related with suspend_again
-========================================================
+=========================================================
In order to setup Charger Manager with suspend-again feature
(in-suspend monitoring), the user should provide charger_global_desc
-with setup_charger_manager(struct charger_global_desc *).
+with setup_charger_manager(`struct charger_global_desc *`).
This charger_global_desc data for in-suspend monitoring is global
as the name suggests. Thus, the user needs to provide only once even
if there are multiple batteries. If there are multiple batteries, the
multiple instances of Charger Manager share the same charger_global_desc
and it will manage in-suspend monitoring for all instances of Charger Manager.
-The user needs to provide all the three entries properly in order to activate
-in-suspend monitoring:
-
-struct charger_global_desc {
+The user needs to provide all the three entries to `struct charger_global_desc`
+properly in order to activate in-suspend monitoring:
-char *rtc_name;
- : The name of rtc (e.g., "rtc0") used to wakeup the system from
+`char *rtc_name;`
+ The name of rtc (e.g., "rtc0") used to wakeup the system from
suspend for Charger Manager. The alarm interrupt (AIE) of the rtc
should be able to wake up the system from suspend. Charger Manager
saves and restores the alarm value and use the previously-defined
alarm if it is going to go off earlier than Charger Manager so that
Charger Manager does not interfere with previously-defined alarms.
-bool (*rtc_only_wakeup)(void);
- : This callback should let CM know whether
+`bool (*rtc_only_wakeup)(void);`
+ This callback should let CM know whether
the wakeup-from-suspend is caused only by the alarm of "rtc" in the
same struct. If there is any other wakeup source triggered the
wakeup, it should return false. If the "rtc" is the only wakeup
reason, it should return true.
-bool assume_timer_stops_in_suspend;
- : if true, Charger Manager assumes that
+`bool assume_timer_stops_in_suspend;`
+ if true, Charger Manager assumes that
the timer (CM uses jiffies as timer) stops during suspend. Then, CM
assumes that the suspend-duration is same as the alarm length.
-};
+
3. How to setup suspend_again
=============================
@@ -109,26 +110,28 @@ if the system was woken up by Charger Manager and the polling
=============================================
For each battery charged independently from other batteries (if a series of
batteries are charged by a single charger, they are counted as one independent
-battery), an instance of Charger Manager is attached to it.
+battery), an instance of Charger Manager is attached to it. The following
-struct charger_desc {
+struct charger_desc elements:
-char *psy_name;
- : The power-supply-class name of the battery. Default is
+`char *psy_name;`
+ The power-supply-class name of the battery. Default is
"battery" if psy_name is NULL. Users can access the psy entries
at "/sys/class/power_supply/[psy_name]/".
-enum polling_modes polling_mode;
- : CM_POLL_DISABLE: do not poll this battery.
- CM_POLL_ALWAYS: always poll this battery.
- CM_POLL_EXTERNAL_POWER_ONLY: poll this battery if and only if
- an external power source is attached.
- CM_POLL_CHARGING_ONLY: poll this battery if and only if the
- battery is being charged.
-
-unsigned int fullbatt_vchkdrop_ms;
-unsigned int fullbatt_vchkdrop_uV;
- : If both have non-zero values, Charger Manager will check the
+`enum polling_modes polling_mode;`
+ CM_POLL_DISABLE:
+ do not poll this battery.
+ CM_POLL_ALWAYS:
+ always poll this battery.
+ CM_POLL_EXTERNAL_POWER_ONLY:
+ poll this battery if and only if an external power
+ source is attached.
+ CM_POLL_CHARGING_ONLY:
+ poll this battery if and only if the battery is being charged.
+
+`unsigned int fullbatt_vchkdrop_ms; / unsigned int fullbatt_vchkdrop_uV;`
+ If both have non-zero values, Charger Manager will check the
battery voltage drop fullbatt_vchkdrop_ms after the battery is fully
charged. If the voltage drop is over fullbatt_vchkdrop_uV, Charger
Manager will try to recharge the battery by disabling and enabling
@@ -136,50 +139,52 @@ unsigned int fullbatt_vchkdrop_uV;
condition) is needed to be implemented with hardware interrupts from
fuel gauges or charger devices/chips.
-unsigned int fullbatt_uV;
- : If specified with a non-zero value, Charger Manager assumes
+`unsigned int fullbatt_uV;`
+ If specified with a non-zero value, Charger Manager assumes
that the battery is full (capacity = 100) if the battery is not being
charged and the battery voltage is equal to or greater than
fullbatt_uV.
-unsigned int polling_interval_ms;
- : Required polling interval in ms. Charger Manager will poll
+`unsigned int polling_interval_ms;`
+ Required polling interval in ms. Charger Manager will poll
this battery every polling_interval_ms or more frequently.
-enum data_source battery_present;
- : CM_BATTERY_PRESENT: assume that the battery exists.
- CM_NO_BATTERY: assume that the battery does not exists.
- CM_FUEL_GAUGE: get battery presence information from fuel gauge.
- CM_CHARGER_STAT: get battery presence from chargers.
-
-char **psy_charger_stat;
- : An array ending with NULL that has power-supply-class names of
+`enum data_source battery_present;`
+ CM_BATTERY_PRESENT:
+ assume that the battery exists.
+ CM_NO_BATTERY:
+ assume that the battery does not exists.
+ CM_FUEL_GAUGE:
+ get battery presence information from fuel gauge.
+ CM_CHARGER_STAT:
+ get battery presence from chargers.
+
+`char **psy_charger_stat;`
+ An array ending with NULL that has power-supply-class names of
chargers. Each power-supply-class should provide "PRESENT" (if
battery_present is "CM_CHARGER_STAT"), "ONLINE" (shows whether an
external power source is attached or not), and "STATUS" (shows whether
the battery is {"FULL" or not FULL} or {"FULL", "Charging",
"Discharging", "NotCharging"}).
-int num_charger_regulators;
-struct regulator_bulk_data *charger_regulators;
- : Regulators representing the chargers in the form for
+`int num_charger_regulators; / struct regulator_bulk_data *charger_regulators;`
+ Regulators representing the chargers in the form for
regulator framework's bulk functions.
-char *psy_fuel_gauge;
- : Power-supply-class name of the fuel gauge.
+`char *psy_fuel_gauge;`
+ Power-supply-class name of the fuel gauge.
-int (*temperature_out_of_range)(int *mC);
-bool measure_battery_temp;
- : This callback returns 0 if the temperature is safe for charging,
+`int (*temperature_out_of_range)(int *mC); / bool measure_battery_temp;`
+ This callback returns 0 if the temperature is safe for charging,
a positive number if it is too hot to charge, and a negative number
if it is too cold to charge. With the variable mC, the callback returns
the temperature in 1/1000 of centigrade.
The source of temperature can be battery or ambient one according to
the value of measure_battery_temp.
-};
+
5. Notify Charger-Manager of charger events: cm_notify_event()
-=========================================================
+==============================================================
If there is an charger event is required to notify
Charger Manager, a charger device driver that triggers the event can call
cm_notify_event(psy, type, msg) to notify the corresponding Charger Manager.
diff --git a/Documentation/power/drivers-testing.txt b/Documentation/power/drivers-testing.rst
index 638afdf4d6b8..e53f1999fc39 100644
--- a/Documentation/power/drivers-testing.txt
+++ b/Documentation/power/drivers-testing.rst
@@ -1,7 +1,11 @@
+====================================================
Testing suspend and resume support in device drivers
+====================================================
+
(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
1. Preparing the test system
+============================
Unfortunately, to effectively test the support for the system-wide suspend and
resume transitions in a driver, it is necessary to suspend and resume a fully
@@ -14,19 +18,20 @@ the machine's BIOS.
Of course, for this purpose the test system has to be known to suspend and
resume without the driver being tested. Thus, if possible, you should first
resolve all suspend/resume-related problems in the test system before you start
-testing the new driver. Please see Documentation/power/basic-pm-debugging.txt
+testing the new driver. Please see Documentation/power/basic-pm-debugging.rst
for more information about the debugging of suspend/resume functionality.
2. Testing the driver
+=====================
Once you have resolved the suspend/resume-related problems with your test system
without the new driver, you are ready to test it:
a) Build the driver as a module, load it and try the test modes of hibernation
- (see: Documentation/power/basic-pm-debugging.txt, 1).
+ (see: Documentation/power/basic-pm-debugging.rst, 1).
b) Load the driver and attempt to hibernate in the "reboot", "shutdown" and
- "platform" modes (see: Documentation/power/basic-pm-debugging.txt, 1).
+ "platform" modes (see: Documentation/power/basic-pm-debugging.rst, 1).
c) Compile the driver directly into the kernel and try the test modes of
hibernation.
@@ -34,12 +39,12 @@ c) Compile the driver directly into the kernel and try the test modes of
d) Attempt to hibernate with the driver compiled directly into the kernel
in the "reboot", "shutdown" and "platform" modes.
-e) Try the test modes of suspend (see: Documentation/power/basic-pm-debugging.txt,
+e) Try the test modes of suspend (see: Documentation/power/basic-pm-debugging.rst,
2). [As far as the STR tests are concerned, it should not matter whether or
not the driver is built as a module.]
f) Attempt to suspend to RAM using the s2ram tool with the driver loaded
- (see: Documentation/power/basic-pm-debugging.txt, 2).
+ (see: Documentation/power/basic-pm-debugging.rst, 2).
Each of the above tests should be repeated several times and the STD tests
should be mixed with the STR tests. If any of them fails, the driver cannot be
diff --git a/Documentation/power/energy-model.txt b/Documentation/power/energy-model.rst
index a2b0ae4c76bd..90a345d57ae9 100644
--- a/Documentation/power/energy-model.txt
+++ b/Documentation/power/energy-model.rst
@@ -1,6 +1,6 @@
- ====================
- Energy Model of CPUs
- ====================
+====================
+Energy Model of CPUs
+====================
1. Overview
-----------
@@ -20,7 +20,7 @@ kernel, hence enabling to avoid redundant work.
The figure below depicts an example of drivers (Arm-specific here, but the
approach is applicable to any architecture) providing power costs to the EM
-framework, and interested clients reading the data from it.
+framework, and interested clients reading the data from it::
+---------------+ +-----------------+ +---------------+
| Thermal (IPA) | | Scheduler (EAS) | | Other |
@@ -58,15 +58,17 @@ micro-architectures.
2. Core APIs
------------
- 2.1 Config options
+2.1 Config options
+^^^^^^^^^^^^^^^^^^
CONFIG_ENERGY_MODEL must be enabled to use the EM framework.
- 2.2 Registration of performance domains
+2.2 Registration of performance domains
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Drivers are expected to register performance domains into the EM framework by
-calling the following API:
+calling the following API::
int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
struct em_data_callback *cb);
@@ -80,7 +82,8 @@ callback, and kernel/power/energy_model.c for further documentation on this
API.
- 2.3 Accessing performance domains
+2.3 Accessing performance domains
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Subsystems interested in the energy model of a CPU can retrieve it using the
em_cpu_get() API. The energy model tables are allocated once upon creation of
@@ -99,46 +102,46 @@ More details about the above APIs can be found in include/linux/energy_model.h.
This section provides a simple example of a CPUFreq driver registering a
performance domain in the Energy Model framework using the (fake) 'foo'
protocol. The driver implements an est_power() function to be provided to the
-EM framework.
-
- -> drivers/cpufreq/foo_cpufreq.c
-
-01 static int est_power(unsigned long *mW, unsigned long *KHz, int cpu)
-02 {
-03 long freq, power;
-04
-05 /* Use the 'foo' protocol to ceil the frequency */
-06 freq = foo_get_freq_ceil(cpu, *KHz);
-07 if (freq < 0);
-08 return freq;
-09
-10 /* Estimate the power cost for the CPU at the relevant freq. */
-11 power = foo_estimate_power(cpu, freq);
-12 if (power < 0);
-13 return power;
-14
-15 /* Return the values to the EM framework */
-16 *mW = power;
-17 *KHz = freq;
-18
-19 return 0;
-20 }
-21
-22 static int foo_cpufreq_init(struct cpufreq_policy *policy)
-23 {
-24 struct em_data_callback em_cb = EM_DATA_CB(est_power);
-25 int nr_opp, ret;
-26
-27 /* Do the actual CPUFreq init work ... */
-28 ret = do_foo_cpufreq_init(policy);
-29 if (ret)
-30 return ret;
-31
-32 /* Find the number of OPPs for this policy */
-33 nr_opp = foo_get_nr_opp(policy);
-34
-35 /* And register the new performance domain */
-36 em_register_perf_domain(policy->cpus, nr_opp, &em_cb);
-37
-38 return 0;
-39 }
+EM framework::
+
+ -> drivers/cpufreq/foo_cpufreq.c
+
+ 01 static int est_power(unsigned long *mW, unsigned long *KHz, int cpu)
+ 02 {
+ 03 long freq, power;
+ 04
+ 05 /* Use the 'foo' protocol to ceil the frequency */
+ 06 freq = foo_get_freq_ceil(cpu, *KHz);
+ 07 if (freq < 0);
+ 08 return freq;
+ 09
+ 10 /* Estimate the power cost for the CPU at the relevant freq. */
+ 11 power = foo_estimate_power(cpu, freq);
+ 12 if (power < 0);
+ 13 return power;
+ 14
+ 15 /* Return the values to the EM framework */
+ 16 *mW = power;
+ 17 *KHz = freq;
+ 18
+ 19 return 0;
+ 20 }
+ 21
+ 22 static int foo_cpufreq_init(struct cpufreq_policy *policy)
+ 23 {
+ 24 struct em_data_callback em_cb = EM_DATA_CB(est_power);
+ 25 int nr_opp, ret;
+ 26
+ 27 /* Do the actual CPUFreq init work ... */
+ 28 ret = do_foo_cpufreq_init(policy);
+ 29 if (ret)
+ 30 return ret;
+ 31
+ 32 /* Find the number of OPPs for this policy */
+ 33 nr_opp = foo_get_nr_opp(policy);
+ 34
+ 35 /* And register the new performance domain */
+ 36 em_register_perf_domain(policy->cpus, nr_opp, &em_cb);
+ 37
+ 38 return 0;
+ 39 }
diff --git a/Documentation/power/freezing-of-tasks.txt b/Documentation/power/freezing-of-tasks.rst
index cd283190855a..ef110fe55e82 100644
--- a/Documentation/power/freezing-of-tasks.txt
+++ b/Documentation/power/freezing-of-tasks.rst
@@ -1,13 +1,18 @@
+=================
Freezing of tasks
- (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
+=================
+
+(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
I. What is the freezing of tasks?
+=================================
The freezing of tasks is a mechanism by which user space processes and some
kernel threads are controlled during hibernation or system-wide suspend (on some
architectures).
II. How does it work?
+=====================
There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN
and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have
@@ -41,7 +46,7 @@ explicitly in suitable places or use the wait_event_freezable() or
wait_event_freezable_timeout() macros (defined in include/linux/freezer.h)
that combine interruptible sleep with checking if the task is to be frozen and
calling try_to_freeze(). The main loop of a freezable kernel thread may look
-like the following one:
+like the following one::
set_freezable();
do {
@@ -65,7 +70,7 @@ order to clear the PF_FROZEN flag for each frozen task. Then, the tasks that
have been frozen leave __refrigerator() and continue running.
-Rationale behind the functions dealing with freezing and thawing of tasks:
+Rationale behind the functions dealing with freezing and thawing of tasks
-------------------------------------------------------------------------
freeze_processes():
@@ -86,6 +91,7 @@ thaw_processes():
III. Which kernel threads are freezable?
+========================================
Kernel threads are not freezable by default. However, a kernel thread may clear
PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE
@@ -93,37 +99,39 @@ directly is not allowed). From this point it is regarded as freezable
and must call try_to_freeze() in a suitable place.
IV. Why do we do that?
+======================
Generally speaking, there is a couple of reasons to use the freezing of tasks:
1. The principal reason is to prevent filesystems from being damaged after
-hibernation. At the moment we have no simple means of checkpointing
-filesystems, so if there are any modifications made to filesystem data and/or
-metadata on disks, we cannot bring them back to the state from before the
-modifications. At the same time each hibernation image contains some
-filesystem-related information that must be consistent with the state of the
-on-disk data and metadata after the system memory state has been restored from
-the image (otherwise the filesystems will be damaged in a nasty way, usually
-making them almost impossible to repair). We therefore freeze tasks that might
-cause the on-disk filesystems' data and metadata to be modified after the
-hibernation image has been created and before the system is finally powered off.
-The majority of these are user space processes, but if any of the kernel threads
-may cause something like this to happen, they have to be freezable.
+ hibernation. At the moment we have no simple means of checkpointing
+ filesystems, so if there are any modifications made to filesystem data and/or
+ metadata on disks, we cannot bring them back to the state from before the
+ modifications. At the same time each hibernation image contains some
+ filesystem-related information that must be consistent with the state of the
+ on-disk data and metadata after the system memory state has been restored
+ from the image (otherwise the filesystems will be damaged in a nasty way,
+ usually making them almost impossible to repair). We therefore freeze
+ tasks that might cause the on-disk filesystems' data and metadata to be
+ modified after the hibernation image has been created and before the
+ system is finally powered off. The majority of these are user space
+ processes, but if any of the kernel threads may cause something like this
+ to happen, they have to be freezable.
2. Next, to create the hibernation image we need to free a sufficient amount of
-memory (approximately 50% of available RAM) and we need to do that before
-devices are deactivated, because we generally need them for swapping out. Then,
-after the memory for the image has been freed, we don't want tasks to allocate
-additional memory and we prevent them from doing that by freezing them earlier.
-[Of course, this also means that device drivers should not allocate substantial
-amounts of memory from their .suspend() callbacks before hibernation, but this
-is a separate issue.]
+ memory (approximately 50% of available RAM) and we need to do that before
+ devices are deactivated, because we generally need them for swapping out.
+ Then, after the memory for the image has been freed, we don't want tasks
+ to allocate additional memory and we prevent them from doing that by
+ freezing them earlier. [Of course, this also means that device drivers
+ should not allocate substantial amounts of memory from their .suspend()
+ callbacks before hibernation, but this is a separate issue.]
3. The third reason is to prevent user space processes and some kernel threads
-from interfering with the suspending and resuming of devices. A user space
-process running on a second CPU while we are suspending devices may, for
-example, be troublesome and without the freezing of tasks we would need some
-safeguards against race conditions that might occur in such a case.
+ from interfering with the suspending and resuming of devices. A user space
+ process running on a second CPU while we are suspending devices may, for
+ example, be troublesome and without the freezing of tasks we would need some
+ safeguards against race conditions that might occur in such a case.
Although Linus Torvalds doesn't like the freezing of tasks, he said this in one
of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608):
@@ -132,7 +140,7 @@ of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608):
Linus: In many ways, 'at all'.
-I _do_ realize the IO request queue issues, and that we cannot actually do
+I **do** realize the IO request queue issues, and that we cannot actually do
s2ram with some devices in the middle of a DMA. So we want to be able to
avoid *that*, there's no question about that. And I suspect that stopping
user threads and then waiting for a sync is practically one of the easier
@@ -150,17 +158,18 @@ thawed after the driver's .resume() callback has run, so it won't be accessing
the device while it's suspended.
4. Another reason for freezing tasks is to prevent user space processes from
-realizing that hibernation (or suspend) operation takes place. Ideally, user
-space processes should not notice that such a system-wide operation has occurred
-and should continue running without any problems after the restore (or resume
-from suspend). Unfortunately, in the most general case this is quite difficult
-to achieve without the freezing of tasks. Consider, for example, a process
-that depends on all CPUs being online while it's running. Since we need to
-disable nonboot CPUs during the hibernation, if this process is not frozen, it
-may notice that the number of CPUs has changed and may start to work incorrectly
-because of that.
+ realizing that hibernation (or suspend) operation takes place. Ideally, user
+ space processes should not notice that such a system-wide operation has
+ occurred and should continue running without any problems after the restore
+ (or resume from suspend). Unfortunately, in the most general case this
+ is quite difficult to achieve without the freezing of tasks. Consider,
+ for example, a process that depends on all CPUs being online while it's
+ running. Since we need to disable nonboot CPUs during the hibernation,
+ if this process is not frozen, it may notice that the number of CPUs has
+ changed and may start to work incorrectly because of that.
V. Are there any problems related to the freezing of tasks?
+===========================================================
Yes, there are.
@@ -172,11 +181,12 @@ may be undesirable. That's why kernel threads are not freezable by default.
Second, there are the following two problems related to the freezing of user
space processes:
+
1. Putting processes into an uninterruptible sleep distorts the load average.
2. Now that we have FUSE, plus the framework for doing device drivers in
-userspace, it gets even more complicated because some userspace processes are
-now doing the sorts of things that kernel threads do
-(https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html).
+ userspace, it gets even more complicated because some userspace processes are
+ now doing the sorts of things that kernel threads do
+ (https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html).
The problem 1. seems to be fixable, although it hasn't been fixed so far. The
other one is more serious, but it seems that we can work around it by using
@@ -201,6 +211,7 @@ requested early enough using the suspend notifier API described in
Documentation/driver-api/pm/notifiers.rst.
VI. Are there any precautions to be taken to prevent freezing failures?
+=======================================================================
Yes, there are.
@@ -226,6 +237,8 @@ So, to summarize, use [un]lock_system_sleep() instead of directly using
mutex_[un]lock(&system_transition_mutex). That would prevent freezing failures.
V. Miscellaneous
+================
+
/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze
all user space processes or all freezable kernel threads, in unit of millisecond.
The default value is 20000, with range of unsigned integer.
diff --git a/Documentation/power/index.rst b/Documentation/power/index.rst
new file mode 100644
index 000000000000..002e42745263
--- /dev/null
+++ b/Documentation/power/index.rst
@@ -0,0 +1,46 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================
+Power Management
+================
+
+.. toctree::
+ :maxdepth: 1
+
+ apm-acpi
+ basic-pm-debugging
+ charger-manager
+ drivers-testing
+ energy-model
+ freezing-of-tasks
+ interface
+ opp
+ pci
+ pm_qos_interface
+ power_supply_class
+ runtime_pm
+ s2ram
+ suspend-and-cpuhotplug
+ suspend-and-interrupts
+ swsusp-and-swap-files
+ swsusp-dmcrypt
+ swsusp
+ video
+ tricks
+
+ userland-swsusp
+
+ powercap/powercap
+
+ regulator/consumer
+ regulator/design
+ regulator/machine
+ regulator/overview
+ regulator/regulator
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/power/interface.txt b/Documentation/power/interface.rst
index 27df7f98668a..8d270ed27228 100644
--- a/Documentation/power/interface.txt
+++ b/Documentation/power/interface.rst
@@ -1,4 +1,6 @@
+===========================================
Power Management Interface for System Sleep
+===========================================
Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
@@ -11,10 +13,10 @@ mounted at /sys).
Reading from it returns a list of supported sleep states, encoded as:
-'freeze' (Suspend-to-Idle)
-'standby' (Power-On Suspend)
-'mem' (Suspend-to-RAM)
-'disk' (Suspend-to-Disk)
+- 'freeze' (Suspend-to-Idle)
+- 'standby' (Power-On Suspend)
+- 'mem' (Suspend-to-RAM)
+- 'disk' (Suspend-to-Disk)
Suspend-to-Idle is always supported. Suspend-to-Disk is always supported
too as long the kernel has been configured to support hibernation at all
@@ -32,18 +34,18 @@ Specifically, it tells the kernel what to do after creating a hibernation image.
Reading from it returns a list of supported options encoded as:
-'platform' (put the system into sleep using a platform-provided method)
-'shutdown' (shut the system down)
-'reboot' (reboot the system)
-'suspend' (trigger a Suspend-to-RAM transition)
-'test_resume' (resume-after-hibernation test mode)
+- 'platform' (put the system into sleep using a platform-provided method)
+- 'shutdown' (shut the system down)
+- 'reboot' (reboot the system)
+- 'suspend' (trigger a Suspend-to-RAM transition)
+- 'test_resume' (resume-after-hibernation test mode)
The currently selected option is printed in square brackets.
The 'platform' option is only available if the platform provides a special
mechanism to put the system to sleep after creating a hibernation image (ACPI
does that, for example). The 'suspend' option is available if Suspend-to-RAM
-is supported. Refer to Documentation/power/basic-pm-debugging.txt for the
+is supported. Refer to Documentation/power/basic-pm-debugging.rst for the
description of the 'test_resume' option.
To select an option, write the string representing it to /sys/power/disk.
@@ -71,7 +73,7 @@ If /sys/power/pm_trace contains '1', the fingerprint of each suspend/resume
event point in turn will be stored in the RTC memory (overwriting the actual
RTC information), so it will survive a system crash if one occurs right after
storing it and it can be used later to identify the driver that caused the crash
-to happen (see Documentation/power/s2ram.txt for more information).
+to happen (see Documentation/power/s2ram.rst for more information).
Initially it contains '0' which may be changed to '1' by writing a string
representing a nonzero integer into it.
diff --git a/Documentation/power/opp.txt b/Documentation/power/opp.rst
index 0c007e250cd1..209c7613f5a4 100644
--- a/Documentation/power/opp.txt
+++ b/Documentation/power/opp.rst
@@ -1,20 +1,23 @@
+==========================================
Operating Performance Points (OPP) Library
==========================================
(C) 2009-2010 Nishanth Menon <nm@ti.com>, Texas Instruments Incorporated
-Contents
---------
-1. Introduction
-2. Initial OPP List Registration
-3. OPP Search Functions
-4. OPP Availability Control Functions
-5. OPP Data Retrieval Functions
-6. Data Structures
+.. Contents
+
+ 1. Introduction
+ 2. Initial OPP List Registration
+ 3. OPP Search Functions
+ 4. OPP Availability Control Functions
+ 5. OPP Data Retrieval Functions
+ 6. Data Structures
1. Introduction
===============
+
1.1 What is an Operating Performance Point (OPP)?
+-------------------------------------------------
Complex SoCs of today consists of a multiple sub-modules working in conjunction.
In an operational system executing varied use cases, not all modules in the SoC
@@ -28,27 +31,31 @@ the device will support per domain are called Operating Performance Points or
OPPs.
As an example:
+
Let us consider an MPU device which supports the following:
{300MHz at minimum voltage of 1V}, {800MHz at minimum voltage of 1.2V},
{1GHz at minimum voltage of 1.3V}
We can represent these as three OPPs as the following {Hz, uV} tuples:
-{300000000, 1000000}
-{800000000, 1200000}
-{1000000000, 1300000}
+
+- {300000000, 1000000}
+- {800000000, 1200000}
+- {1000000000, 1300000}
1.2 Operating Performance Points Library
+----------------------------------------
OPP library provides a set of helper functions to organize and query the OPP
-information. The library is located in drivers/base/power/opp.c and the header
+information. The library is located in drivers/opp/ directory and the header
is located in include/linux/pm_opp.h. OPP library can be enabled by enabling
CONFIG_PM_OPP from power management menuconfig menu. OPP library depends on
CONFIG_PM as certain SoCs such as Texas Instrument's OMAP framework allows to
optionally boot at a certain OPP without needing cpufreq.
-Typical usage of the OPP library is as follows:
-(users) -> registers a set of default OPPs -> (library)
-SoC framework -> modifies on required cases certain OPPs -> OPP layer
+Typical usage of the OPP library is as follows::
+
+ (users) -> registers a set of default OPPs -> (library)
+ SoC framework -> modifies on required cases certain OPPs -> OPP layer
-> queries to search/retrieve information ->
OPP layer expects each domain to be represented by a unique device pointer. SoC
@@ -57,8 +64,9 @@ list is expected to be an optimally small number typically around 5 per device.
This initial list contains a set of OPPs that the framework expects to be safely
enabled by default in the system.
-Note on OPP Availability:
-------------------------
+Note on OPP Availability
+^^^^^^^^^^^^^^^^^^^^^^^^
+
As the system proceeds to operate, SoC framework may choose to make certain
OPPs available or not available on each device based on various external
factors. Example usage: Thermal management or other exceptional situations where
@@ -88,7 +96,8 @@ registering the OPPs is maintained by OPP library throughout the device
operation. The SoC framework can subsequently control the availability of the
OPPs dynamically using the dev_pm_opp_enable / disable functions.
-dev_pm_opp_add - Add a new OPP for a specific domain represented by the device pointer.
+dev_pm_opp_add
+ Add a new OPP for a specific domain represented by the device pointer.
The OPP is defined using the frequency and voltage. Once added, the OPP
is assumed to be available and control of it's availability can be done
with the dev_pm_opp_enable/disable functions. OPP library internally stores
@@ -96,9 +105,11 @@ dev_pm_opp_add - Add a new OPP for a specific domain represented by the device p
used by SoC framework to define a optimal list as per the demands of
SoC usage environment.
- WARNING: Do not use this function in interrupt context.
+ WARNING:
+ Do not use this function in interrupt context.
+
+ Example::
- Example:
soc_pm_init()
{
/* Do things */
@@ -125,12 +136,15 @@ Callers of these functions shall call dev_pm_opp_put() after they have used the
OPP. Otherwise the memory for the OPP will never get freed and result in
memleak.
-dev_pm_opp_find_freq_exact - Search for an OPP based on an *exact* frequency and
+dev_pm_opp_find_freq_exact
+ Search for an OPP based on an *exact* frequency and
availability. This function is especially useful to enable an OPP which
is not available by default.
Example: In a case when SoC framework detects a situation where a
higher frequency could be made available, it can use this function to
- find the OPP prior to call the dev_pm_opp_enable to actually make it available.
+ find the OPP prior to call the dev_pm_opp_enable to actually make
+ it available::
+
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
dev_pm_opp_put(opp);
/* dont operate on the pointer.. just do a sanity check.. */
@@ -141,27 +155,34 @@ dev_pm_opp_find_freq_exact - Search for an OPP based on an *exact* frequency and
dev_pm_opp_enable(dev,1000000000);
}
- NOTE: This is the only search function that operates on OPPs which are
- not available.
+ NOTE:
+ This is the only search function that operates on OPPs which are
+ not available.
-dev_pm_opp_find_freq_floor - Search for an available OPP which is *at most* the
+dev_pm_opp_find_freq_floor
+ Search for an available OPP which is *at most* the
provided frequency. This function is useful while searching for a lesser
match OR operating on OPP information in the order of decreasing
frequency.
- Example: To find the highest opp for a device:
+ Example: To find the highest opp for a device::
+
freq = ULONG_MAX;
opp = dev_pm_opp_find_freq_floor(dev, &freq);
dev_pm_opp_put(opp);
-dev_pm_opp_find_freq_ceil - Search for an available OPP which is *at least* the
+dev_pm_opp_find_freq_ceil
+ Search for an available OPP which is *at least* the
provided frequency. This function is useful while searching for a
higher match OR operating on OPP information in the order of increasing
frequency.
- Example 1: To find the lowest opp for a device:
+ Example 1: To find the lowest opp for a device::
+
freq = 0;
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
dev_pm_opp_put(opp);
- Example 2: A simplified implementation of a SoC cpufreq_driver->target:
+
+ Example 2: A simplified implementation of a SoC cpufreq_driver->target::
+
soc_cpufreq_target(..)
{
/* Do stuff like policy checks etc. */
@@ -184,12 +205,15 @@ fine grained dynamic control of which sets of OPPs are operationally available.
These functions are intended to *temporarily* remove an OPP in conditions such
as thermal considerations (e.g. don't use OPPx until the temperature drops).
-WARNING: Do not use these functions in interrupt context.
+WARNING:
+ Do not use these functions in interrupt context.
-dev_pm_opp_enable - Make a OPP available for operation.
+dev_pm_opp_enable
+ Make a OPP available for operation.
Example: Lets say that 1GHz OPP is to be made available only if the
SoC temperature is lower than a certain threshold. The SoC framework
- implementation might choose to do something as follows:
+ implementation might choose to do something as follows::
+
if (cur_temp < temp_low_thresh) {
/* Enable 1GHz if it was disabled */
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
@@ -201,10 +225,12 @@ dev_pm_opp_enable - Make a OPP available for operation.
goto try_something_else;
}
-dev_pm_opp_disable - Make an OPP to be not available for operation
+dev_pm_opp_disable
+ Make an OPP to be not available for operation
Example: Lets say that 1GHz OPP is to be disabled if the temperature
exceeds a threshold value. The SoC framework implementation might
- choose to do something as follows:
+ choose to do something as follows::
+
if (cur_temp > temp_high_thresh) {
/* Disable 1GHz if it was enabled */
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, true);
@@ -223,11 +249,13 @@ information from the OPP structure is necessary. Once an OPP pointer is
retrieved using the search functions, the following functions can be used by SoC
framework to retrieve the information represented inside the OPP layer.
-dev_pm_opp_get_voltage - Retrieve the voltage represented by the opp pointer.
+dev_pm_opp_get_voltage
+ Retrieve the voltage represented by the opp pointer.
Example: At a cpufreq transition to a different frequency, SoC
framework requires to set the voltage represented by the OPP using
the regulator framework to the Power Management chip providing the
- voltage.
+ voltage::
+
soc_switch_to_freq_voltage(freq)
{
/* do things */
@@ -239,10 +267,12 @@ dev_pm_opp_get_voltage - Retrieve the voltage represented by the opp pointer.
/* do other things */
}
-dev_pm_opp_get_freq - Retrieve the freq represented by the opp pointer.
+dev_pm_opp_get_freq
+ Retrieve the freq represented by the opp pointer.
Example: Lets say the SoC framework uses a couple of helper functions
we could pass opp pointers instead of doing additional parameters to
- handle quiet a bit of data parameters.
+ handle quiet a bit of data parameters::
+
soc_cpufreq_target(..)
{
/* do things.. */
@@ -264,9 +294,11 @@ dev_pm_opp_get_freq - Retrieve the freq represented by the opp pointer.
/* do things.. */
}
-dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
+dev_pm_opp_get_opp_count
+ Retrieve the number of available opps for a device
Example: Lets say a co-processor in the SoC needs to know the available
- frequencies in a table, the main processor can notify as following:
+ frequencies in a table, the main processor can notify as following::
+
soc_notify_coproc_available_frequencies()
{
/* Do things */
@@ -289,54 +321,59 @@ dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
==================
Typically an SoC contains multiple voltage domains which are variable. Each
domain is represented by a device pointer. The relationship to OPP can be
-represented as follows:
-SoC
- |- device 1
- | |- opp 1 (availability, freq, voltage)
- | |- opp 2 ..
- ... ...
- | `- opp n ..
- |- device 2
- ...
- `- device m
+represented as follows::
+
+ SoC
+ |- device 1
+ | |- opp 1 (availability, freq, voltage)
+ | |- opp 2 ..
+ ... ...
+ | `- opp n ..
+ |- device 2
+ ...
+ `- device m
OPP library maintains a internal list that the SoC framework populates and
accessed by various functions as described above. However, the structures
representing the actual OPPs and domains are internal to the OPP library itself
to allow for suitable abstraction reusable across systems.
-struct dev_pm_opp - The internal data structure of OPP library which is used to
+struct dev_pm_opp
+ The internal data structure of OPP library which is used to
represent an OPP. In addition to the freq, voltage, availability
information, it also contains internal book keeping information required
for the OPP library to operate on. Pointer to this structure is
provided back to the users such as SoC framework to be used as a
identifier for OPP in the interactions with OPP layer.
- WARNING: The struct dev_pm_opp pointer should not be parsed or modified by the
- users. The defaults of for an instance is populated by dev_pm_opp_add, but the
- availability of the OPP can be modified by dev_pm_opp_enable/disable functions.
+ WARNING:
+ The struct dev_pm_opp pointer should not be parsed or modified by the
+ users. The defaults of for an instance is populated by
+ dev_pm_opp_add, but the availability of the OPP can be modified
+ by dev_pm_opp_enable/disable functions.
-struct device - This is used to identify a domain to the OPP layer. The
+struct device
+ This is used to identify a domain to the OPP layer. The
nature of the device and it's implementation is left to the user of
OPP library such as the SoC framework.
Overall, in a simplistic view, the data structure operations is represented as
-following:
+following::
-Initialization / modification:
- +-----+ /- dev_pm_opp_enable
-dev_pm_opp_add --> | opp | <-------
- | +-----+ \- dev_pm_opp_disable
- \-------> domain_info(device)
+ Initialization / modification:
+ +-----+ /- dev_pm_opp_enable
+ dev_pm_opp_add --> | opp | <-------
+ | +-----+ \- dev_pm_opp_disable
+ \-------> domain_info(device)
-Search functions:
- /-- dev_pm_opp_find_freq_ceil ---\ +-----+
-domain_info<---- dev_pm_opp_find_freq_exact -----> | opp |
- \-- dev_pm_opp_find_freq_floor ---/ +-----+
+ Search functions:
+ /-- dev_pm_opp_find_freq_ceil ---\ +-----+
+ domain_info<---- dev_pm_opp_find_freq_exact -----> | opp |
+ \-- dev_pm_opp_find_freq_floor ---/ +-----+
-Retrieval functions:
-+-----+ /- dev_pm_opp_get_voltage
-| opp | <---
-+-----+ \- dev_pm_opp_get_freq
+ Retrieval functions:
+ +-----+ /- dev_pm_opp_get_voltage
+ | opp | <---
+ +-----+ \- dev_pm_opp_get_freq
-domain_info <- dev_pm_opp_get_opp_count
+ domain_info <- dev_pm_opp_get_opp_count
diff --git a/Documentation/power/pci.txt b/Documentation/power/pci.rst
index 8eaf9ee24d43..0e2ef7429304 100644
--- a/Documentation/power/pci.txt
+++ b/Documentation/power/pci.rst
@@ -1,4 +1,6 @@
+====================
PCI Power Management
+====================
Copyright (c) 2010 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
@@ -9,14 +11,14 @@ management. Based on previous work by Patrick Mochel <mochel@transmeta.com>
This document only covers the aspects of power management specific to PCI
devices. For general description of the kernel's interfaces related to device
power management refer to Documentation/driver-api/pm/devices.rst and
-Documentation/power/runtime_pm.txt.
+Documentation/power/runtime_pm.rst.
----------------------------------------------------------------------------
+.. contents:
-1. Hardware and Platform Support for PCI Power Management
-2. PCI Subsystem and Device Power Management
-3. PCI Device Drivers and Power Management
-4. Resources
+ 1. Hardware and Platform Support for PCI Power Management
+ 2. PCI Subsystem and Device Power Management
+ 3. PCI Device Drivers and Power Management
+ 4. Resources
1. Hardware and Platform Support for PCI Power Management
@@ -24,6 +26,7 @@ Documentation/power/runtime_pm.txt.
1.1. Native and Platform-Based Power Management
-----------------------------------------------
+
In general, power management is a feature allowing one to save energy by putting
devices into states in which they draw less power (low-power states) at the
price of reduced functionality or performance.
@@ -67,6 +70,7 @@ mechanisms have to be used simultaneously to obtain the desired result.
1.2. Native PCI Power Management
--------------------------------
+
The PCI Bus Power Management Interface Specification (PCI PM Spec) was
introduced between the PCI 2.1 and PCI 2.2 Specifications. It defined a
standard interface for performing various operations related to power
@@ -134,6 +138,7 @@ sufficiently active to generate a wakeup signal.
1.3. ACPI Device Power Management
---------------------------------
+
The platform firmware support for the power management of PCI devices is
system-specific. However, if the system in question is compliant with the
Advanced Configuration and Power Interface (ACPI) Specification, like the
@@ -194,6 +199,7 @@ enabled for the device to be able to generate wakeup signals.
1.4. Wakeup Signaling
---------------------
+
Wakeup signals generated by PCI devices, either as native PCI PMEs, or as
a result of the execution of the _DSW (or _PSW) ACPI control method before
putting the device into a low-power state, have to be caught and handled as
@@ -265,14 +271,15 @@ the native PCI Express PME signaling cannot be used by the kernel in that case.
2.1. Device Power Management Callbacks
--------------------------------------
+
The PCI Subsystem participates in the power management of PCI devices in a
number of ways. First of all, it provides an intermediate code layer between
the device power management core (PM core) and PCI device drivers.
Specifically, the pm field of the PCI subsystem's struct bus_type object,
pci_bus_type, points to a struct dev_pm_ops object, pci_dev_pm_ops, containing
-pointers to several device power management callbacks:
+pointers to several device power management callbacks::
-const struct dev_pm_ops pci_dev_pm_ops = {
+ const struct dev_pm_ops pci_dev_pm_ops = {
.prepare = pci_pm_prepare,
.complete = pci_pm_complete,
.suspend = pci_pm_suspend,
@@ -290,7 +297,7 @@ const struct dev_pm_ops pci_dev_pm_ops = {
.runtime_suspend = pci_pm_runtime_suspend,
.runtime_resume = pci_pm_runtime_resume,
.runtime_idle = pci_pm_runtime_idle,
-};
+ };
These callbacks are executed by the PM core in various situations related to
device power management and they, in turn, execute power management callbacks
@@ -299,9 +306,9 @@ involving some standard configuration registers of PCI devices that device
drivers need not know or care about.
The structure representing a PCI device, struct pci_dev, contains several fields
-that these callbacks operate on:
+that these callbacks operate on::
-struct pci_dev {
+ struct pci_dev {
...
pci_power_t current_state; /* Current operating state. */
int pm_cap; /* PM capability offset in the
@@ -315,13 +322,14 @@ struct pci_dev {
unsigned int wakeup_prepared:1; /* Device prepared for wake up */
unsigned int d3_delay; /* D3->D0 transition time in ms */
...
-};
+ };
They also indirectly use some fields of the struct device that is embedded in
struct pci_dev.
2.2. Device Initialization
--------------------------
+
The PCI subsystem's first task related to device power management is to
prepare the device for power management and initialize the fields of struct
pci_dev used for this purpose. This happens in two functions defined in
@@ -348,10 +356,11 @@ during system-wide transitions to a sleep state and back to the working state.
2.3. Runtime Device Power Management
------------------------------------
+
The PCI subsystem plays a vital role in the runtime power management of PCI
devices. For this purpose it uses the general runtime power management
-(runtime PM) framework described in Documentation/power/runtime_pm.txt.
-Namely, it provides subsystem-level callbacks:
+(runtime PM) framework described in Documentation/power/runtime_pm.rst.
+Namely, it provides subsystem-level callbacks::
pci_pm_runtime_suspend()
pci_pm_runtime_resume()
@@ -425,13 +434,14 @@ to the given subsystem before the next phase begins. These phases always run
after tasks have been frozen.
2.4.1. System Suspend
+^^^^^^^^^^^^^^^^^^^^^
When the system is going into a sleep state in which the contents of memory will
be preserved, such as one of the ACPI sleep states S1-S3, the phases are:
prepare, suspend, suspend_noirq.
-The following PCI bus type's callbacks, respectively, are used in these phases:
+The following PCI bus type's callbacks, respectively, are used in these phases::
pci_pm_prepare()
pci_pm_suspend()
@@ -492,6 +502,7 @@ this purpose). PCI device drivers are not encouraged to do that, but in some
rare cases doing that in the driver may be the optimum approach.
2.4.2. System Resume
+^^^^^^^^^^^^^^^^^^^^
When the system is undergoing a transition from a sleep state in which the
contents of memory have been preserved, such as one of the ACPI sleep states
@@ -500,7 +511,7 @@ S1-S3, into the working state (ACPI S0), the phases are:
resume_noirq, resume, complete.
The following PCI bus type's callbacks, respectively, are executed in these
-phases:
+phases::
pci_pm_resume_noirq()
pci_pm_resume()
@@ -539,6 +550,7 @@ The pci_pm_complete() routine only executes the device driver's pm->complete()
callback, if defined.
2.4.3. System Hibernation
+^^^^^^^^^^^^^^^^^^^^^^^^^
System hibernation is more complicated than system suspend, because it requires
a system image to be created and written into a persistent storage medium. The
@@ -551,7 +563,7 @@ to be free) in the following three phases:
prepare, freeze, freeze_noirq
-that correspond to the PCI bus type's callbacks:
+that correspond to the PCI bus type's callbacks::
pci_pm_prepare()
pci_pm_freeze()
@@ -580,7 +592,7 @@ back to the fully functional state and this is done in the following phases:
thaw_noirq, thaw, complete
-using the following PCI bus type's callbacks:
+using the following PCI bus type's callbacks::
pci_pm_thaw_noirq()
pci_pm_thaw()
@@ -608,7 +620,7 @@ three phases:
where the prepare phase is exactly the same as for system suspend. The other
two phases are analogous to the suspend and suspend_noirq phases, respectively.
-The PCI subsystem-level callbacks they correspond to
+The PCI subsystem-level callbacks they correspond to::
pci_pm_poweroff()
pci_pm_poweroff_noirq()
@@ -618,6 +630,7 @@ although they don't attempt to save the device's standard configuration
registers.
2.4.4. System Restore
+^^^^^^^^^^^^^^^^^^^^^
System restore requires a hibernation image to be loaded into memory and the
pre-hibernation memory contents to be restored before the pre-hibernation system
@@ -653,7 +666,7 @@ phases:
The first two of these are analogous to the resume_noirq and resume phases
described above, respectively, and correspond to the following PCI subsystem
-callbacks:
+callbacks::
pci_pm_restore_noirq()
pci_pm_restore()
@@ -671,6 +684,7 @@ resume.
3.1. Power Management Callbacks
-------------------------------
+
PCI device drivers participate in power management by providing callbacks to be
executed by the PCI subsystem's power management routines described above and by
controlling the runtime power management of their devices.
@@ -698,6 +712,7 @@ defined, though, they are expected to behave as described in the following
subsections.
3.1.1. prepare()
+^^^^^^^^^^^^^^^^
The prepare() callback is executed during system suspend, during hibernation
(when a hibernation image is about to be created), during power-off after
@@ -716,6 +731,7 @@ preallocated earlier, for example in a suspend/hibernate notifier as described
in Documentation/driver-api/pm/notifiers.rst).
3.1.2. suspend()
+^^^^^^^^^^^^^^^^
The suspend() callback is only executed during system suspend, after prepare()
callbacks have been executed for all devices in the system.
@@ -742,6 +758,7 @@ operations relying on the driver's ability to handle interrupts should be
carried out in this callback.
3.1.3. suspend_noirq()
+^^^^^^^^^^^^^^^^^^^^^^
The suspend_noirq() callback is only executed during system suspend, after
suspend() callbacks have been executed for all devices in the system and
@@ -753,6 +770,7 @@ suspend_noirq() can carry out operations that would cause race conditions to
arise if they were performed in suspend().
3.1.4. freeze()
+^^^^^^^^^^^^^^^
The freeze() callback is hibernation-specific and is executed in two situations,
during hibernation, after prepare() callbacks have been executed for all devices
@@ -770,6 +788,7 @@ or put it into a low-power state. Still, either it or freeze_noirq() should
save the device's standard configuration registers using pci_save_state().
3.1.5. freeze_noirq()
+^^^^^^^^^^^^^^^^^^^^^
The freeze_noirq() callback is hibernation-specific. It is executed during
hibernation, after prepare() and freeze() callbacks have been executed for all
@@ -786,6 +805,7 @@ The difference between freeze_noirq() and freeze() is analogous to the
difference between suspend_noirq() and suspend().
3.1.6. poweroff()
+^^^^^^^^^^^^^^^^^
The poweroff() callback is hibernation-specific. It is executed when the system
is about to be powered off after saving a hibernation image to a persistent
@@ -802,6 +822,7 @@ into a low-power state, respectively, but it need not save the device's standard
configuration registers.
3.1.7. poweroff_noirq()
+^^^^^^^^^^^^^^^^^^^^^^^
The poweroff_noirq() callback is hibernation-specific. It is executed after
poweroff() callbacks have been executed for all devices in the system.
@@ -814,6 +835,7 @@ The difference between poweroff_noirq() and poweroff() is analogous to the
difference between suspend_noirq() and suspend().
3.1.8. resume_noirq()
+^^^^^^^^^^^^^^^^^^^^^
The resume_noirq() callback is only executed during system resume, after the
PM core has enabled the non-boot CPUs. The driver's interrupt handler will not
@@ -827,6 +849,7 @@ it should only be used for performing operations that would lead to race
conditions if carried out by resume().
3.1.9. resume()
+^^^^^^^^^^^^^^^
The resume() callback is only executed during system resume, after
resume_noirq() callbacks have been executed for all devices in the system and
@@ -837,6 +860,7 @@ device and bringing it back to the fully functional state. The device should be
able to process I/O in a usual way after resume() has returned.
3.1.10. thaw_noirq()
+^^^^^^^^^^^^^^^^^^^^
The thaw_noirq() callback is hibernation-specific. It is executed after a
system image has been created and the non-boot CPUs have been enabled by the PM
@@ -851,6 +875,7 @@ freeze() and freeze_noirq(), so in general it does not need to modify the
contents of the device's registers.
3.1.11. thaw()
+^^^^^^^^^^^^^^
The thaw() callback is hibernation-specific. It is executed after thaw_noirq()
callbacks have been executed for all devices in the system and after device
@@ -860,6 +885,7 @@ This callback is responsible for restoring the pre-freeze configuration of
the device, so that it will work in a usual way after thaw() has returned.
3.1.12. restore_noirq()
+^^^^^^^^^^^^^^^^^^^^^^^
The restore_noirq() callback is hibernation-specific. It is executed in the
restore_noirq phase of hibernation, when the boot kernel has passed control to
@@ -875,6 +901,7 @@ For the vast majority of PCI device drivers there is no difference between
resume_noirq() and restore_noirq().
3.1.13. restore()
+^^^^^^^^^^^^^^^^^
The restore() callback is hibernation-specific. It is executed after
restore_noirq() callbacks have been executed for all devices in the system and
@@ -888,14 +915,17 @@ For the vast majority of PCI device drivers there is no difference between
resume() and restore().
3.1.14. complete()
+^^^^^^^^^^^^^^^^^^
The complete() callback is executed in the following situations:
+
- during system resume, after resume() callbacks have been executed for all
devices,
- during hibernation, before saving the system image, after thaw() callbacks
have been executed for all devices,
- during system restore, when the system is going back to its pre-hibernation
state, after restore() callbacks have been executed for all devices.
+
It also may be executed if the loading of a hibernation image into memory fails
(in that case it is run after thaw() callbacks have been executed for all
devices that have drivers in the boot kernel).
@@ -904,6 +934,7 @@ This callback is entirely optional, although it may be necessary if the
prepare() callback performs operations that need to be reversed.
3.1.15. runtime_suspend()
+^^^^^^^^^^^^^^^^^^^^^^^^^
The runtime_suspend() callback is specific to device runtime power management
(runtime PM). It is executed by the PM core's runtime PM framework when the
@@ -915,6 +946,7 @@ put into a low-power state, but it must allow the PCI subsystem to perform all
of the PCI-specific actions necessary for suspending the device.
3.1.16. runtime_resume()
+^^^^^^^^^^^^^^^^^^^^^^^^
The runtime_resume() callback is specific to device runtime PM. It is executed
by the PM core's runtime PM framework when the device is about to be resumed
@@ -927,6 +959,7 @@ The device is expected to be able to process I/O in the usual way after
runtime_resume() has returned.
3.1.17. runtime_idle()
+^^^^^^^^^^^^^^^^^^^^^^
The runtime_idle() callback is specific to device runtime PM. It is executed
by the PM core's runtime PM framework whenever it may be desirable to suspend
@@ -939,6 +972,7 @@ PCI subsystem will call pm_runtime_suspend() for the device, which in turn will
cause the driver's runtime_suspend() callback to be executed.
3.1.18. Pointing Multiple Callback Pointers to One Routine
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Although in principle each of the callbacks described in the previous
subsections can be defined as a separate function, it often is convenient to
@@ -962,6 +996,7 @@ dev_pm_ops to indicate that one suspend routine is to be pointed to by the
be pointed to by the .resume(), .thaw(), and .restore() members.
3.1.19. Driver Flags for Power Management
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The PM core allows device drivers to set flags that influence the handling of
power management for the devices by the core itself and by middle layer code
@@ -1007,6 +1042,7 @@ it.
3.2. Device Runtime Power Management
------------------------------------
+
In addition to providing device power management callbacks PCI device drivers
are responsible for controlling the runtime power management (runtime PM) of
their devices.
@@ -1073,22 +1109,27 @@ device the PM core automatically queues a request to check if the device is
idle), device drivers are generally responsible for queuing power management
requests for their devices. For this purpose they should use the runtime PM
helper functions provided by the PM core, discussed in
-Documentation/power/runtime_pm.txt.
+Documentation/power/runtime_pm.rst.
Devices can also be suspended and resumed synchronously, without placing a
request into pm_wq. In the majority of cases this also is done by their
drivers that use helper functions provided by the PM core for this purpose.
For more information on the runtime PM of devices refer to
-Documentation/power/runtime_pm.txt.
+Documentation/power/runtime_pm.rst.
4. Resources
============
PCI Local Bus Specification, Rev. 3.0
+
PCI Bus Power Management Interface Specification, Rev. 1.2
+
Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b
+
PCI Express Base Specification, Rev. 2.0
+
Documentation/driver-api/pm/devices.rst
-Documentation/power/runtime_pm.txt
+
+Documentation/power/runtime_pm.rst
diff --git a/Documentation/power/pm_qos_interface.txt b/Documentation/power/pm_qos_interface.rst
index 19c5f7b1a7ba..3097694fba69 100644
--- a/Documentation/power/pm_qos_interface.txt
+++ b/Documentation/power/pm_qos_interface.rst
@@ -1,16 +1,18 @@
-PM Quality Of Service Interface.
+===============================
+PM Quality Of Service Interface
+===============================
This interface provides a kernel and user mode interface for registering
performance expectations by drivers, subsystems and user space applications on
one of the parameters.
Two different PM QoS frameworks are available:
-1. PM QoS classes for cpu_dma_latency, network_latency, network_throughput,
-memory_bandwidth.
+1. PM QoS classes for cpu_dma_latency
2. the per-device PM QoS framework provides the API to manage the per-device latency
constraints and PM QoS flags.
Each parameters have defined units:
+
* latency: usec
* timeout: usec
* throughput: kbs (kilo bit / sec)
@@ -18,6 +20,7 @@ Each parameters have defined units:
1. PM QoS framework
+===================
The infrastructure exposes multiple misc device nodes one per implemented
parameter. The set of parameters implement is defined by pm_qos_power_init()
@@ -37,44 +40,45 @@ reading the aggregated value does not require any locking mechanism.
From kernel mode the use of this interface is simple:
void pm_qos_add_request(handle, param_class, target_value):
-Will insert an element into the list for that identified PM QoS class with the
-target value. Upon change to this list the new target is recomputed and any
-registered notifiers are called only if the target value is now different.
-Clients of pm_qos need to save the returned handle for future use in other
-pm_qos API functions.
+ Will insert an element into the list for that identified PM QoS class with the
+ target value. Upon change to this list the new target is recomputed and any
+ registered notifiers are called only if the target value is now different.
+ Clients of pm_qos need to save the returned handle for future use in other
+ pm_qos API functions.
void pm_qos_update_request(handle, new_target_value):
-Will update the list element pointed to by the handle with the new target value
-and recompute the new aggregated target, calling the notification tree if the
-target is changed.
+ Will update the list element pointed to by the handle with the new target value
+ and recompute the new aggregated target, calling the notification tree if the
+ target is changed.
void pm_qos_remove_request(handle):
-Will remove the element. After removal it will update the aggregate target and
-call the notification tree if the target was changed as a result of removing
-the request.
+ Will remove the element. After removal it will update the aggregate target and
+ call the notification tree if the target was changed as a result of removing
+ the request.
int pm_qos_request(param_class):
-Returns the aggregated value for a given PM QoS class.
+ Returns the aggregated value for a given PM QoS class.
int pm_qos_request_active(handle):
-Returns if the request is still active, i.e. it has not been removed from a
-PM QoS class constraints list.
+ Returns if the request is still active, i.e. it has not been removed from a
+ PM QoS class constraints list.
int pm_qos_add_notifier(param_class, notifier):
-Adds a notification callback function to the PM QoS class. The callback is
-called when the aggregated value for the PM QoS class is changed.
+ Adds a notification callback function to the PM QoS class. The callback is
+ called when the aggregated value for the PM QoS class is changed.
int pm_qos_remove_notifier(int param_class, notifier):
-Removes the notification callback function for the PM QoS class.
+ Removes the notification callback function for the PM QoS class.
From user mode:
+
Only processes can register a pm_qos request. To provide for automatic
cleanup of a process, the interface requires the process to register its
parameter requests in the following way:
To register the default pm_qos target for the specific parameter, the process
-must open one of /dev/[cpu_dma_latency, network_latency, network_throughput]
+must open /dev/cpu_dma_latency
As long as the device node is held open that process has a registered
request on the parameter.
@@ -89,6 +93,7 @@ node.
2. PM QoS per-device latency and flags framework
+================================================
For each device, there are three lists of PM QoS requests. Two of them are
maintained along with the aggregated targets of resume latency and active
@@ -107,73 +112,82 @@ the aggregated value does not require any locking mechanism.
From kernel mode the use of this interface is the following:
int dev_pm_qos_add_request(device, handle, type, value):
-Will insert an element into the list for that identified device with the
-target value. Upon change to this list the new target is recomputed and any
-registered notifiers are called only if the target value is now different.
-Clients of dev_pm_qos need to save the handle for future use in other
-dev_pm_qos API functions.
+ Will insert an element into the list for that identified device with the
+ target value. Upon change to this list the new target is recomputed and any
+ registered notifiers are called only if the target value is now different.
+ Clients of dev_pm_qos need to save the handle for future use in other
+ dev_pm_qos API functions.
int dev_pm_qos_update_request(handle, new_value):
-Will update the list element pointed to by the handle with the new target value
-and recompute the new aggregated target, calling the notification trees if the
-target is changed.
+ Will update the list element pointed to by the handle with the new target
+ value and recompute the new aggregated target, calling the notification
+ trees if the target is changed.
int dev_pm_qos_remove_request(handle):
-Will remove the element. After removal it will update the aggregate target and
-call the notification trees if the target was changed as a result of removing
-the request.
+ Will remove the element. After removal it will update the aggregate target
+ and call the notification trees if the target was changed as a result of
+ removing the request.
-s32 dev_pm_qos_read_value(device):
-Returns the aggregated value for a given device's constraints list.
+s32 dev_pm_qos_read_value(device, type):
+ Returns the aggregated value for a given device's constraints list.
enum pm_qos_flags_status dev_pm_qos_flags(device, mask)
-Check PM QoS flags of the given device against the given mask of flags.
-The meaning of the return values is as follows:
- PM_QOS_FLAGS_ALL: All flags from the mask are set
- PM_QOS_FLAGS_SOME: Some flags from the mask are set
- PM_QOS_FLAGS_NONE: No flags from the mask are set
- PM_QOS_FLAGS_UNDEFINED: The device's PM QoS structure has not been
- initialized or the list of requests is empty.
+ Check PM QoS flags of the given device against the given mask of flags.
+ The meaning of the return values is as follows:
+
+ PM_QOS_FLAGS_ALL:
+ All flags from the mask are set
+ PM_QOS_FLAGS_SOME:
+ Some flags from the mask are set
+ PM_QOS_FLAGS_NONE:
+ No flags from the mask are set
+ PM_QOS_FLAGS_UNDEFINED:
+ The device's PM QoS structure has not been initialized
+ or the list of requests is empty.
int dev_pm_qos_add_ancestor_request(dev, handle, type, value)
-Add a PM QoS request for the first direct ancestor of the given device whose
-power.ignore_children flag is unset (for DEV_PM_QOS_RESUME_LATENCY requests)
-or whose power.set_latency_tolerance callback pointer is not NULL (for
-DEV_PM_QOS_LATENCY_TOLERANCE requests).
+ Add a PM QoS request for the first direct ancestor of the given device whose
+ power.ignore_children flag is unset (for DEV_PM_QOS_RESUME_LATENCY requests)
+ or whose power.set_latency_tolerance callback pointer is not NULL (for
+ DEV_PM_QOS_LATENCY_TOLERANCE requests).
int dev_pm_qos_expose_latency_limit(device, value)
-Add a request to the device's PM QoS list of resume latency constraints and
-create a sysfs attribute pm_qos_resume_latency_us under the device's power
-directory allowing user space to manipulate that request.
+ Add a request to the device's PM QoS list of resume latency constraints and
+ create a sysfs attribute pm_qos_resume_latency_us under the device's power
+ directory allowing user space to manipulate that request.
void dev_pm_qos_hide_latency_limit(device)
-Drop the request added by dev_pm_qos_expose_latency_limit() from the device's
-PM QoS list of resume latency constraints and remove sysfs attribute
-pm_qos_resume_latency_us from the device's power directory.
+ Drop the request added by dev_pm_qos_expose_latency_limit() from the device's
+ PM QoS list of resume latency constraints and remove sysfs attribute
+ pm_qos_resume_latency_us from the device's power directory.
int dev_pm_qos_expose_flags(device, value)
-Add a request to the device's PM QoS list of flags and create sysfs attribute
-pm_qos_no_power_off under the device's power directory allowing user space to
-change the value of the PM_QOS_FLAG_NO_POWER_OFF flag.
+ Add a request to the device's PM QoS list of flags and create sysfs attribute
+ pm_qos_no_power_off under the device's power directory allowing user space to
+ change the value of the PM_QOS_FLAG_NO_POWER_OFF flag.
void dev_pm_qos_hide_flags(device)
-Drop the request added by dev_pm_qos_expose_flags() from the device's PM QoS list
-of flags and remove sysfs attribute pm_qos_no_power_off from the device's power
-directory.
+ Drop the request added by dev_pm_qos_expose_flags() from the device's PM QoS list
+ of flags and remove sysfs attribute pm_qos_no_power_off from the device's power
+ directory.
Notification mechanisms:
+
The per-device PM QoS framework has a per-device notification tree.
-int dev_pm_qos_add_notifier(device, notifier):
-Adds a notification callback function for the device.
-The callback is called when the aggregated value of the device constraints list
-is changed (for resume latency device PM QoS only).
+int dev_pm_qos_add_notifier(device, notifier, type):
+ Adds a notification callback function for the device for a particular request
+ type.
+
+ The callback is called when the aggregated value of the device constraints list
+ is changed.
-int dev_pm_qos_remove_notifier(device, notifier):
-Removes the notification callback function for the device.
+int dev_pm_qos_remove_notifier(device, notifier, type):
+ Removes the notification callback function for the device.
Active state latency tolerance
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This device PM QoS type is used to support systems in which hardware may switch
to energy-saving operation modes on the fly. In those systems, if the operation
diff --git a/Documentation/power/power_supply_class.rst b/Documentation/power/power_supply_class.rst
new file mode 100644
index 000000000000..7b8c42f8b1de
--- /dev/null
+++ b/Documentation/power/power_supply_class.rst
@@ -0,0 +1,288 @@
+========================
+Linux power supply class
+========================
+
+Synopsis
+~~~~~~~~
+Power supply class used to represent battery, UPS, AC or DC power supply
+properties to user-space.
+
+It defines core set of attributes, which should be applicable to (almost)
+every power supply out there. Attributes are available via sysfs and uevent
+interfaces.
+
+Each attribute has well defined meaning, up to unit of measure used. While
+the attributes provided are believed to be universally applicable to any
+power supply, specific monitoring hardware may not be able to provide them
+all, so any of them may be skipped.
+
+Power supply class is extensible, and allows to define drivers own attributes.
+The core attribute set is subject to the standard Linux evolution (i.e.
+if it will be found that some attribute is applicable to many power supply
+types or their drivers, it can be added to the core set).
+
+It also integrates with LED framework, for the purpose of providing
+typically expected feedback of battery charging/fully charged status and
+AC/USB power supply online status. (Note that specific details of the
+indication (including whether to use it at all) are fully controllable by
+user and/or specific machine defaults, per design principles of LED
+framework).
+
+
+Attributes/properties
+~~~~~~~~~~~~~~~~~~~~~
+Power supply class has predefined set of attributes, this eliminates code
+duplication across drivers. Power supply class insist on reusing its
+predefined attributes *and* their units.
+
+So, userspace gets predictable set of attributes and their units for any
+kind of power supply, and can process/present them to a user in consistent
+manner. Results for different power supplies and machines are also directly
+comparable.
+
+See drivers/power/supply/ds2760_battery.c and drivers/power/supply/pda_power.c
+for the example how to declare and handle attributes.
+
+
+Units
+~~~~~
+Quoting include/linux/power_supply.h:
+
+ All voltages, currents, charges, energies, time and temperatures in µV,
+ µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
+ stated. It's driver's job to convert its raw values to units in which
+ this class operates.
+
+
+Attributes/properties detailed
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
++--------------------------------------------------------------------------+
+| **Charge/Energy/Capacity - how to not confuse** |
++--------------------------------------------------------------------------+
+| **Because both "charge" (µAh) and "energy" (µWh) represents "capacity" |
+| of battery, this class distinguish these terms. Don't mix them!** |
+| |
+| - `CHARGE_*` |
+| attributes represents capacity in µAh only. |
+| - `ENERGY_*` |
+| attributes represents capacity in µWh only. |
+| - `CAPACITY` |
+| attribute represents capacity in *percents*, from 0 to 100. |
++--------------------------------------------------------------------------+
+
+Postfixes:
+
+_AVG
+ *hardware* averaged value, use it if your hardware is really able to
+ report averaged values.
+_NOW
+ momentary/instantaneous values.
+
+STATUS
+ this attribute represents operating status (charging, full,
+ discharging (i.e. powering a load), etc.). This corresponds to
+ `BATTERY_STATUS_*` values, as defined in battery.h.
+
+CHARGE_TYPE
+ batteries can typically charge at different rates.
+ This defines trickle and fast charges. For batteries that
+ are already charged or discharging, 'n/a' can be displayed (or
+ 'unknown', if the status is not known).
+
+AUTHENTIC
+ indicates the power supply (battery or charger) connected
+ to the platform is authentic(1) or non authentic(0).
+
+HEALTH
+ represents health of the battery, values corresponds to
+ POWER_SUPPLY_HEALTH_*, defined in battery.h.
+
+VOLTAGE_OCV
+ open circuit voltage of the battery.
+
+VOLTAGE_MAX_DESIGN, VOLTAGE_MIN_DESIGN
+ design values for maximal and minimal power supply voltages.
+ Maximal/minimal means values of voltages when battery considered
+ "full"/"empty" at normal conditions. Yes, there is no direct relation
+ between voltage and battery capacity, but some dumb
+ batteries use voltage for very approximated calculation of capacity.
+ Battery driver also can use this attribute just to inform userspace
+ about maximal and minimal voltage thresholds of a given battery.
+
+VOLTAGE_MAX, VOLTAGE_MIN
+ same as _DESIGN voltage values except that these ones should be used
+ if hardware could only guess (measure and retain) the thresholds of a
+ given power supply.
+
+VOLTAGE_BOOT
+ Reports the voltage measured during boot
+
+CURRENT_BOOT
+ Reports the current measured during boot
+
+CHARGE_FULL_DESIGN, CHARGE_EMPTY_DESIGN
+ design charge values, when battery considered full/empty.
+
+ENERGY_FULL_DESIGN, ENERGY_EMPTY_DESIGN
+ same as above but for energy.
+
+CHARGE_FULL, CHARGE_EMPTY
+ These attributes means "last remembered value of charge when battery
+ became full/empty". It also could mean "value of charge when battery
+ considered full/empty at given conditions (temperature, age)".
+ I.e. these attributes represents real thresholds, not design values.
+
+ENERGY_FULL, ENERGY_EMPTY
+ same as above but for energy.
+
+CHARGE_COUNTER
+ the current charge counter (in µAh). This could easily
+ be negative; there is no empty or full value. It is only useful for
+ relative, time-based measurements.
+
+PRECHARGE_CURRENT
+ the maximum charge current during precharge phase of charge cycle
+ (typically 20% of battery capacity).
+
+CHARGE_TERM_CURRENT
+ Charge termination current. The charge cycle terminates when battery
+ voltage is above recharge threshold, and charge current is below
+ this setting (typically 10% of battery capacity).
+
+CONSTANT_CHARGE_CURRENT
+ constant charge current programmed by charger.
+
+
+CONSTANT_CHARGE_CURRENT_MAX
+ maximum charge current supported by the power supply object.
+
+CONSTANT_CHARGE_VOLTAGE
+ constant charge voltage programmed by charger.
+CONSTANT_CHARGE_VOLTAGE_MAX
+ maximum charge voltage supported by the power supply object.
+
+INPUT_CURRENT_LIMIT
+ input current limit programmed by charger. Indicates
+ the current drawn from a charging source.
+INPUT_VOLTAGE_LIMIT
+ input voltage limit programmed by charger. Indicates
+ the voltage limit from a charging source.
+INPUT_POWER_LIMIT
+ input power limit programmed by charger. Indicates
+ the power limit from a charging source.
+
+CHARGE_CONTROL_LIMIT
+ current charge control limit setting
+CHARGE_CONTROL_LIMIT_MAX
+ maximum charge control limit setting
+
+CALIBRATE
+ battery or coulomb counter calibration status
+
+CAPACITY
+ capacity in percents.
+CAPACITY_ALERT_MIN
+ minimum capacity alert value in percents.
+CAPACITY_ALERT_MAX
+ maximum capacity alert value in percents.
+CAPACITY_LEVEL
+ capacity level. This corresponds to POWER_SUPPLY_CAPACITY_LEVEL_*.
+
+TEMP
+ temperature of the power supply.
+TEMP_ALERT_MIN
+ minimum battery temperature alert.
+TEMP_ALERT_MAX
+ maximum battery temperature alert.
+TEMP_AMBIENT
+ ambient temperature.
+TEMP_AMBIENT_ALERT_MIN
+ minimum ambient temperature alert.
+TEMP_AMBIENT_ALERT_MAX
+ maximum ambient temperature alert.
+TEMP_MIN
+ minimum operatable temperature
+TEMP_MAX
+ maximum operatable temperature
+
+TIME_TO_EMPTY
+ seconds left for battery to be considered empty
+ (i.e. while battery powers a load)
+TIME_TO_FULL
+ seconds left for battery to be considered full
+ (i.e. while battery is charging)
+
+
+Battery <-> external power supply interaction
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Often power supplies are acting as supplies and supplicants at the same
+time. Batteries are good example. So, batteries usually care if they're
+externally powered or not.
+
+For that case, power supply class implements notification mechanism for
+batteries.
+
+External power supply (AC) lists supplicants (batteries) names in
+"supplied_to" struct member, and each power_supply_changed() call
+issued by external power supply will notify supplicants via
+external_power_changed callback.
+
+
+Devicetree battery characteristics
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Drivers should call power_supply_get_battery_info() to obtain battery
+characteristics from a devicetree battery node, defined in
+Documentation/devicetree/bindings/power/supply/battery.txt. This is
+implemented in drivers/power/supply/bq27xxx_battery.c.
+
+Properties in struct power_supply_battery_info and their counterparts in the
+battery node have names corresponding to elements in enum power_supply_property,
+for naming consistency between sysfs attributes and battery node properties.
+
+
+QA
+~~
+
+Q:
+ Where is POWER_SUPPLY_PROP_XYZ attribute?
+A:
+ If you cannot find attribute suitable for your driver needs, feel free
+ to add it and send patch along with your driver.
+
+ The attributes available currently are the ones currently provided by the
+ drivers written.
+
+ Good candidates to add in future: model/part#, cycle_time, manufacturer,
+ etc.
+
+
+Q:
+ I have some very specific attribute (e.g. battery color), should I add
+ this attribute to standard ones?
+A:
+ Most likely, no. Such attribute can be placed in the driver itself, if
+ it is useful. Of course, if the attribute in question applicable to
+ large set of batteries, provided by many drivers, and/or comes from
+ some general battery specification/standard, it may be a candidate to
+ be added to the core attribute set.
+
+
+Q:
+ Suppose, my battery monitoring chip/firmware does not provides capacity
+ in percents, but provides charge_{now,full,empty}. Should I calculate
+ percentage capacity manually, inside the driver, and register CAPACITY
+ attribute? The same question about time_to_empty/time_to_full.
+A:
+ Most likely, no. This class is designed to export properties which are
+ directly measurable by the specific hardware available.
+
+ Inferring not available properties using some heuristics or mathematical
+ model is not subject of work for a battery driver. Such functionality
+ should be factored out, and in fact, apm_power, the driver to serve
+ legacy APM API on top of power supply class, uses a simple heuristic of
+ approximating remaining battery capacity based on its charge, current,
+ voltage and so on. But full-fledged battery model is likely not subject
+ for kernel at all, as it would require floating point calculation to deal
+ with things like differential equations and Kalman filters. This is
+ better be handled by batteryd/libbattery, yet to be written.
diff --git a/Documentation/power/power_supply_class.txt b/Documentation/power/power_supply_class.txt
deleted file mode 100644
index 300d37896e51..000000000000
--- a/Documentation/power/power_supply_class.txt
+++ /dev/null
@@ -1,231 +0,0 @@
-Linux power supply class
-========================
-
-Synopsis
-~~~~~~~~
-Power supply class used to represent battery, UPS, AC or DC power supply
-properties to user-space.
-
-It defines core set of attributes, which should be applicable to (almost)
-every power supply out there. Attributes are available via sysfs and uevent
-interfaces.
-
-Each attribute has well defined meaning, up to unit of measure used. While
-the attributes provided are believed to be universally applicable to any
-power supply, specific monitoring hardware may not be able to provide them
-all, so any of them may be skipped.
-
-Power supply class is extensible, and allows to define drivers own attributes.
-The core attribute set is subject to the standard Linux evolution (i.e.
-if it will be found that some attribute is applicable to many power supply
-types or their drivers, it can be added to the core set).
-
-It also integrates with LED framework, for the purpose of providing
-typically expected feedback of battery charging/fully charged status and
-AC/USB power supply online status. (Note that specific details of the
-indication (including whether to use it at all) are fully controllable by
-user and/or specific machine defaults, per design principles of LED
-framework).
-
-
-Attributes/properties
-~~~~~~~~~~~~~~~~~~~~~
-Power supply class has predefined set of attributes, this eliminates code
-duplication across drivers. Power supply class insist on reusing its
-predefined attributes *and* their units.
-
-So, userspace gets predictable set of attributes and their units for any
-kind of power supply, and can process/present them to a user in consistent
-manner. Results for different power supplies and machines are also directly
-comparable.
-
-See drivers/power/supply/ds2760_battery.c and drivers/power/supply/pda_power.c
-for the example how to declare and handle attributes.
-
-
-Units
-~~~~~
-Quoting include/linux/power_supply.h:
-
- All voltages, currents, charges, energies, time and temperatures in µV,
- µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
- stated. It's driver's job to convert its raw values to units in which
- this class operates.
-
-
-Attributes/properties detailed
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-~ ~ ~ ~ ~ ~ ~ Charge/Energy/Capacity - how to not confuse ~ ~ ~ ~ ~ ~ ~
-~ ~
-~ Because both "charge" (µAh) and "energy" (µWh) represents "capacity" ~
-~ of battery, this class distinguish these terms. Don't mix them! ~
-~ ~
-~ CHARGE_* attributes represents capacity in µAh only. ~
-~ ENERGY_* attributes represents capacity in µWh only. ~
-~ CAPACITY attribute represents capacity in *percents*, from 0 to 100. ~
-~ ~
-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
-
-Postfixes:
-_AVG - *hardware* averaged value, use it if your hardware is really able to
-report averaged values.
-_NOW - momentary/instantaneous values.
-
-STATUS - this attribute represents operating status (charging, full,
-discharging (i.e. powering a load), etc.). This corresponds to
-BATTERY_STATUS_* values, as defined in battery.h.
-
-CHARGE_TYPE - batteries can typically charge at different rates.
-This defines trickle and fast charges. For batteries that
-are already charged or discharging, 'n/a' can be displayed (or
-'unknown', if the status is not known).
-
-AUTHENTIC - indicates the power supply (battery or charger) connected
-to the platform is authentic(1) or non authentic(0).
-
-HEALTH - represents health of the battery, values corresponds to
-POWER_SUPPLY_HEALTH_*, defined in battery.h.
-
-VOLTAGE_OCV - open circuit voltage of the battery.
-
-VOLTAGE_MAX_DESIGN, VOLTAGE_MIN_DESIGN - design values for maximal and
-minimal power supply voltages. Maximal/minimal means values of voltages
-when battery considered "full"/"empty" at normal conditions. Yes, there is
-no direct relation between voltage and battery capacity, but some dumb
-batteries use voltage for very approximated calculation of capacity.
-Battery driver also can use this attribute just to inform userspace
-about maximal and minimal voltage thresholds of a given battery.
-
-VOLTAGE_MAX, VOLTAGE_MIN - same as _DESIGN voltage values except that
-these ones should be used if hardware could only guess (measure and
-retain) the thresholds of a given power supply.
-
-VOLTAGE_BOOT - Reports the voltage measured during boot
-
-CURRENT_BOOT - Reports the current measured during boot
-
-CHARGE_FULL_DESIGN, CHARGE_EMPTY_DESIGN - design charge values, when
-battery considered full/empty.
-
-ENERGY_FULL_DESIGN, ENERGY_EMPTY_DESIGN - same as above but for energy.
-
-CHARGE_FULL, CHARGE_EMPTY - These attributes means "last remembered value
-of charge when battery became full/empty". It also could mean "value of
-charge when battery considered full/empty at given conditions (temperature,
-age)". I.e. these attributes represents real thresholds, not design values.
-
-ENERGY_FULL, ENERGY_EMPTY - same as above but for energy.
-
-CHARGE_COUNTER - the current charge counter (in µAh). This could easily
-be negative; there is no empty or full value. It is only useful for
-relative, time-based measurements.
-
-PRECHARGE_CURRENT - the maximum charge current during precharge phase
-of charge cycle (typically 20% of battery capacity).
-CHARGE_TERM_CURRENT - Charge termination current. The charge cycle
-terminates when battery voltage is above recharge threshold, and charge
-current is below this setting (typically 10% of battery capacity).
-
-CONSTANT_CHARGE_CURRENT - constant charge current programmed by charger.
-CONSTANT_CHARGE_CURRENT_MAX - maximum charge current supported by the
-power supply object.
-
-CONSTANT_CHARGE_VOLTAGE - constant charge voltage programmed by charger.
-CONSTANT_CHARGE_VOLTAGE_MAX - maximum charge voltage supported by the
-power supply object.
-
-INPUT_CURRENT_LIMIT - input current limit programmed by charger. Indicates
-the current drawn from a charging source.
-
-CHARGE_CONTROL_LIMIT - current charge control limit setting
-CHARGE_CONTROL_LIMIT_MAX - maximum charge control limit setting
-
-CALIBRATE - battery or coulomb counter calibration status
-
-CAPACITY - capacity in percents.
-CAPACITY_ALERT_MIN - minimum capacity alert value in percents.
-CAPACITY_ALERT_MAX - maximum capacity alert value in percents.
-CAPACITY_LEVEL - capacity level. This corresponds to
-POWER_SUPPLY_CAPACITY_LEVEL_*.
-
-TEMP - temperature of the power supply.
-TEMP_ALERT_MIN - minimum battery temperature alert.
-TEMP_ALERT_MAX - maximum battery temperature alert.
-TEMP_AMBIENT - ambient temperature.
-TEMP_AMBIENT_ALERT_MIN - minimum ambient temperature alert.
-TEMP_AMBIENT_ALERT_MAX - maximum ambient temperature alert.
-TEMP_MIN - minimum operatable temperature
-TEMP_MAX - maximum operatable temperature
-
-TIME_TO_EMPTY - seconds left for battery to be considered empty (i.e.
-while battery powers a load)
-TIME_TO_FULL - seconds left for battery to be considered full (i.e.
-while battery is charging)
-
-
-Battery <-> external power supply interaction
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Often power supplies are acting as supplies and supplicants at the same
-time. Batteries are good example. So, batteries usually care if they're
-externally powered or not.
-
-For that case, power supply class implements notification mechanism for
-batteries.
-
-External power supply (AC) lists supplicants (batteries) names in
-"supplied_to" struct member, and each power_supply_changed() call
-issued by external power supply will notify supplicants via
-external_power_changed callback.
-
-
-Devicetree battery characteristics
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Drivers should call power_supply_get_battery_info() to obtain battery
-characteristics from a devicetree battery node, defined in
-Documentation/devicetree/bindings/power/supply/battery.txt. This is
-implemented in drivers/power/supply/bq27xxx_battery.c.
-
-Properties in struct power_supply_battery_info and their counterparts in the
-battery node have names corresponding to elements in enum power_supply_property,
-for naming consistency between sysfs attributes and battery node properties.
-
-
-QA
-~~
-Q: Where is POWER_SUPPLY_PROP_XYZ attribute?
-A: If you cannot find attribute suitable for your driver needs, feel free
- to add it and send patch along with your driver.
-
- The attributes available currently are the ones currently provided by the
- drivers written.
-
- Good candidates to add in future: model/part#, cycle_time, manufacturer,
- etc.
-
-
-Q: I have some very specific attribute (e.g. battery color), should I add
- this attribute to standard ones?
-A: Most likely, no. Such attribute can be placed in the driver itself, if
- it is useful. Of course, if the attribute in question applicable to
- large set of batteries, provided by many drivers, and/or comes from
- some general battery specification/standard, it may be a candidate to
- be added to the core attribute set.
-
-
-Q: Suppose, my battery monitoring chip/firmware does not provides capacity
- in percents, but provides charge_{now,full,empty}. Should I calculate
- percentage capacity manually, inside the driver, and register CAPACITY
- attribute? The same question about time_to_empty/time_to_full.
-A: Most likely, no. This class is designed to export properties which are
- directly measurable by the specific hardware available.
-
- Inferring not available properties using some heuristics or mathematical
- model is not subject of work for a battery driver. Such functionality
- should be factored out, and in fact, apm_power, the driver to serve
- legacy APM API on top of power supply class, uses a simple heuristic of
- approximating remaining battery capacity based on its charge, current,
- voltage and so on. But full-fledged battery model is likely not subject
- for kernel at all, as it would require floating point calculation to deal
- with things like differential equations and Kalman filters. This is
- better be handled by batteryd/libbattery, yet to be written.
diff --git a/Documentation/power/powercap/powercap.rst b/Documentation/power/powercap/powercap.rst
new file mode 100644
index 000000000000..7ae3b44c7624
--- /dev/null
+++ b/Documentation/power/powercap/powercap.rst
@@ -0,0 +1,257 @@
+=======================
+Power Capping Framework
+=======================
+
+The power capping framework provides a consistent interface between the kernel
+and the user space that allows power capping drivers to expose the settings to
+user space in a uniform way.
+
+Terminology
+===========
+
+The framework exposes power capping devices to user space via sysfs in the
+form of a tree of objects. The objects at the root level of the tree represent
+'control types', which correspond to different methods of power capping. For
+example, the intel-rapl control type represents the Intel "Running Average
+Power Limit" (RAPL) technology, whereas the 'idle-injection' control type
+corresponds to the use of idle injection for controlling power.
+
+Power zones represent different parts of the system, which can be controlled and
+monitored using the power capping method determined by the control type the
+given zone belongs to. They each contain attributes for monitoring power, as
+well as controls represented in the form of power constraints. If the parts of
+the system represented by different power zones are hierarchical (that is, one
+bigger part consists of multiple smaller parts that each have their own power
+controls), those power zones may also be organized in a hierarchy with one
+parent power zone containing multiple subzones and so on to reflect the power
+control topology of the system. In that case, it is possible to apply power
+capping to a set of devices together using the parent power zone and if more
+fine grained control is required, it can be applied through the subzones.
+
+
+Example sysfs interface tree::
+
+ /sys/devices/virtual/powercap
+ └──intel-rapl
+ ├──intel-rapl:0
+ │   ├──constraint_0_name
+ │   ├──constraint_0_power_limit_uw
+ │   ├──constraint_0_time_window_us
+ │   ├──constraint_1_name
+ │   ├──constraint_1_power_limit_uw
+ │   ├──constraint_1_time_window_us
+ │   ├──device -> ../../intel-rapl
+ │   ├──energy_uj
+ │   ├──intel-rapl:0:0
+ │   │   ├──constraint_0_name
+ │   │   ├──constraint_0_power_limit_uw
+ │   │   ├──constraint_0_time_window_us
+ │   │   ├──constraint_1_name
+ │   │   ├──constraint_1_power_limit_uw
+ │   │   ├──constraint_1_time_window_us
+ │   │   ├──device -> ../../intel-rapl:0
+ │   │   ├──energy_uj
+ │   │   ├──max_energy_range_uj
+ │   │   ├──name
+ │   │   ├──enabled
+ │   │   ├──power
+ │   │   │   ├──async
+ │   │   │   []
+ │   │   ├──subsystem -> ../../../../../../class/power_cap
+ │   │   └──uevent
+ │   ├──intel-rapl:0:1
+ │   │   ├──constraint_0_name
+ │   │   ├──constraint_0_power_limit_uw
+ │   │   ├──constraint_0_time_window_us
+ │   │   ├──constraint_1_name
+ │   │   ├──constraint_1_power_limit_uw
+ │   │   ├──constraint_1_time_window_us
+ │   │   ├──device -> ../../intel-rapl:0
+ │   │   ├──energy_uj
+ │   │   ├──max_energy_range_uj
+ │   │   ├──name
+ │   │   ├──enabled
+ │   │   ├──power
+ │   │   │   ├──async
+ │   │   │   []
+ │   │   ├──subsystem -> ../../../../../../class/power_cap
+ │   │   └──uevent
+ │   ├──max_energy_range_uj
+ │   ├──max_power_range_uw
+ │   ├──name
+ │   ├──enabled
+ │   ├──power
+ │   │   ├──async
+ │   │   []
+ │   ├──subsystem -> ../../../../../class/power_cap
+ │   ├──enabled
+ │   ├──uevent
+ ├──intel-rapl:1
+ │   ├──constraint_0_name
+ │   ├──constraint_0_power_limit_uw
+ │   ├──constraint_0_time_window_us
+ │   ├──constraint_1_name
+ │   ├──constraint_1_power_limit_uw
+ │   ├──constraint_1_time_window_us
+ │   ├──device -> ../../intel-rapl
+ │   ├──energy_uj
+ │   ├──intel-rapl:1:0
+ │   │   ├──constraint_0_name
+ │   │   ├──constraint_0_power_limit_uw
+ │   │   ├──constraint_0_time_window_us
+ │   │   ├──constraint_1_name
+ │   │   ├──constraint_1_power_limit_uw
+ │   │   ├──constraint_1_time_window_us
+ │   │   ├──device -> ../../intel-rapl:1
+ │   │   ├──energy_uj
+ │   │   ├──max_energy_range_uj
+ │   │   ├──name
+ │   │   ├──enabled
+ │   │   ├──power
+ │   │   │   ├──async
+ │   │   │   []
+ │   │   ├──subsystem -> ../../../../../../class/power_cap
+ │   │   └──uevent
+ │   ├──intel-rapl:1:1
+ │   │   ├──constraint_0_name
+ │   │   ├──constraint_0_power_limit_uw
+ │   │   ├──constraint_0_time_window_us
+ │   │   ├──constraint_1_name
+ │   │   ├──constraint_1_power_limit_uw
+ │   │   ├──constraint_1_time_window_us
+ │   │   ├──device -> ../../intel-rapl:1
+ │   │   ├──energy_uj
+ │   │   ├──max_energy_range_uj
+ │   │   ├──name
+ │   │   ├──enabled
+ │   │   ├──power
+ │   │   │   ├──async
+ │   │   │   []
+ │   │   ├──subsystem -> ../../../../../../class/power_cap
+ │   │   └──uevent
+ │   ├──max_energy_range_uj
+ │   ├──max_power_range_uw
+ │   ├──name
+ │   ├──enabled
+ │   ├──power
+ │   │   ├──async
+ │   │   []
+ │   ├──subsystem -> ../../../../../class/power_cap
+ │   ├──uevent
+ ├──power
+ │   ├──async
+ │   []
+ ├──subsystem -> ../../../../class/power_cap
+ ├──enabled
+ └──uevent
+
+The above example illustrates a case in which the Intel RAPL technology,
+available in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one
+control type called intel-rapl which contains two power zones, intel-rapl:0 and
+intel-rapl:1, representing CPU packages. Each of these power zones contains
+two subzones, intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the
+"core" and the "uncore" parts of the given CPU package, respectively. All of
+the zones and subzones contain energy monitoring attributes (energy_uj,
+max_energy_range_uj) and constraint attributes (constraint_*) allowing controls
+to be applied (the constraints in the 'package' power zones apply to the whole
+CPU packages and the subzone constraints only apply to the respective parts of
+the given package individually). Since Intel RAPL doesn't provide instantaneous
+power value, there is no power_uw attribute.
+
+In addition to that, each power zone contains a name attribute, allowing the
+part of the system represented by that zone to be identified.
+For example::
+
+ cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name
+
+package-0
+---------
+
+The Intel RAPL technology allows two constraints, short term and long term,
+with two different time windows to be applied to each power zone. Thus for
+each zone there are 2 attributes representing the constraint names, 2 power
+limits and 2 attributes representing the sizes of the time windows. Such that,
+constraint_j_* attributes correspond to the jth constraint (j = 0,1).
+
+For example::
+
+ constraint_0_name
+ constraint_0_power_limit_uw
+ constraint_0_time_window_us
+ constraint_1_name
+ constraint_1_power_limit_uw
+ constraint_1_time_window_us
+
+Power Zone Attributes
+=====================
+
+Monitoring attributes
+---------------------
+
+energy_uj (rw)
+ Current energy counter in micro joules. Write "0" to reset.
+ If the counter can not be reset, then this attribute is read only.
+
+max_energy_range_uj (ro)
+ Range of the above energy counter in micro-joules.
+
+power_uw (ro)
+ Current power in micro watts.
+
+max_power_range_uw (ro)
+ Range of the above power value in micro-watts.
+
+name (ro)
+ Name of this power zone.
+
+It is possible that some domains have both power ranges and energy counter ranges;
+however, only one is mandatory.
+
+Constraints
+-----------
+
+constraint_X_power_limit_uw (rw)
+ Power limit in micro watts, which should be applicable for the
+ time window specified by "constraint_X_time_window_us".
+
+constraint_X_time_window_us (rw)
+ Time window in micro seconds.
+
+constraint_X_name (ro)
+ An optional name of the constraint
+
+constraint_X_max_power_uw(ro)
+ Maximum allowed power in micro watts.
+
+constraint_X_min_power_uw(ro)
+ Minimum allowed power in micro watts.
+
+constraint_X_max_time_window_us(ro)
+ Maximum allowed time window in micro seconds.
+
+constraint_X_min_time_window_us(ro)
+ Minimum allowed time window in micro seconds.
+
+Except power_limit_uw and time_window_us other fields are optional.
+
+Common zone and control type attributes
+---------------------------------------
+
+enabled (rw): Enable/Disable controls at zone level or for all zones using
+a control type.
+
+Power Cap Client Driver Interface
+=================================
+
+The API summary:
+
+Call powercap_register_control_type() to register control type object.
+Call powercap_register_zone() to register a power zone (under a given
+control type), either as a top-level power zone or as a subzone of another
+power zone registered earlier.
+The number of constraints in a power zone and the corresponding callbacks have
+to be defined prior to calling powercap_register_zone() to register that zone.
+
+To Free a power zone call powercap_unregister_zone().
+To free a control type object call powercap_unregister_control_type().
+Detailed API can be generated using kernel-doc on include/linux/powercap.h.
diff --git a/Documentation/power/powercap/powercap.txt b/Documentation/power/powercap/powercap.txt
deleted file mode 100644
index 1e6ef164e07a..000000000000
--- a/Documentation/power/powercap/powercap.txt
+++ /dev/null
@@ -1,236 +0,0 @@
-Power Capping Framework
-==================================
-
-The power capping framework provides a consistent interface between the kernel
-and the user space that allows power capping drivers to expose the settings to
-user space in a uniform way.
-
-Terminology
-=========================
-The framework exposes power capping devices to user space via sysfs in the
-form of a tree of objects. The objects at the root level of the tree represent
-'control types', which correspond to different methods of power capping. For
-example, the intel-rapl control type represents the Intel "Running Average
-Power Limit" (RAPL) technology, whereas the 'idle-injection' control type
-corresponds to the use of idle injection for controlling power.
-
-Power zones represent different parts of the system, which can be controlled and
-monitored using the power capping method determined by the control type the
-given zone belongs to. They each contain attributes for monitoring power, as
-well as controls represented in the form of power constraints. If the parts of
-the system represented by different power zones are hierarchical (that is, one
-bigger part consists of multiple smaller parts that each have their own power
-controls), those power zones may also be organized in a hierarchy with one
-parent power zone containing multiple subzones and so on to reflect the power
-control topology of the system. In that case, it is possible to apply power
-capping to a set of devices together using the parent power zone and if more
-fine grained control is required, it can be applied through the subzones.
-
-
-Example sysfs interface tree:
-
-/sys/devices/virtual/powercap
-??? intel-rapl
- ??? intel-rapl:0
- ?   ??? constraint_0_name
- ?   ??? constraint_0_power_limit_uw
- ?   ??? constraint_0_time_window_us
- ?   ??? constraint_1_name
- ?   ??? constraint_1_power_limit_uw
- ?   ??? constraint_1_time_window_us
- ?   ??? device -> ../../intel-rapl
- ?   ??? energy_uj
- ?   ??? intel-rapl:0:0
- ?   ?   ??? constraint_0_name
- ?   ?   ??? constraint_0_power_limit_uw
- ?   ?   ??? constraint_0_time_window_us
- ?   ?   ??? constraint_1_name
- ?   ?   ??? constraint_1_power_limit_uw
- ?   ?   ??? constraint_1_time_window_us
- ?   ?   ??? device -> ../../intel-rapl:0
- ?   ?   ??? energy_uj
- ?   ?   ??? max_energy_range_uj
- ?   ?   ??? name
- ?   ?   ??? enabled
- ?   ?   ??? power
- ?   ?   ?   ??? async
- ?   ?   ?   []
- ?   ?   ??? subsystem -> ../../../../../../class/power_cap
- ?   ?   ??? uevent
- ?   ??? intel-rapl:0:1
- ?   ?   ??? constraint_0_name
- ?   ?   ??? constraint_0_power_limit_uw
- ?   ?   ??? constraint_0_time_window_us
- ?   ?   ??? constraint_1_name
- ?   ?   ??? constraint_1_power_limit_uw
- ?   ?   ??? constraint_1_time_window_us
- ?   ?   ??? device -> ../../intel-rapl:0
- ?   ?   ??? energy_uj
- ?   ?   ??? max_energy_range_uj
- ?   ?   ??? name
- ?   ?   ??? enabled
- ?   ?   ??? power
- ?   ?   ?   ??? async
- ?   ?   ?   []
- ?   ?   ??? subsystem -> ../../../../../../class/power_cap
- ?   ?   ??? uevent
- ?   ??? max_energy_range_uj
- ?   ??? max_power_range_uw
- ?   ??? name
- ?   ??? enabled
- ?   ??? power
- ?   ?   ??? async
- ?   ?   []
- ?   ??? subsystem -> ../../../../../class/power_cap
- ?   ??? enabled
- ?   ??? uevent
- ??? intel-rapl:1
- ?   ??? constraint_0_name
- ?   ??? constraint_0_power_limit_uw
- ?   ??? constraint_0_time_window_us
- ?   ??? constraint_1_name
- ?   ??? constraint_1_power_limit_uw
- ?   ??? constraint_1_time_window_us
- ?   ??? device -> ../../intel-rapl
- ?   ??? energy_uj
- ?   ??? intel-rapl:1:0
- ?   ?   ??? constraint_0_name
- ?   ?   ??? constraint_0_power_limit_uw
- ?   ?   ??? constraint_0_time_window_us
- ?   ?   ??? constraint_1_name
- ?   ?   ??? constraint_1_power_limit_uw
- ?   ?   ??? constraint_1_time_window_us
- ?   ?   ??? device -> ../../intel-rapl:1
- ?   ?   ??? energy_uj
- ?   ?   ??? max_energy_range_uj
- ?   ?   ??? name
- ?   ?   ??? enabled
- ?   ?   ??? power
- ?   ?   ?   ??? async
- ?   ?   ?   []
- ?   ?   ??? subsystem -> ../../../../../../class/power_cap
- ?   ?   ??? uevent
- ?   ??? intel-rapl:1:1
- ?   ?   ??? constraint_0_name
- ?   ?   ??? constraint_0_power_limit_uw
- ?   ?   ??? constraint_0_time_window_us
- ?   ?   ??? constraint_1_name
- ?   ?   ??? constraint_1_power_limit_uw
- ?   ?   ??? constraint_1_time_window_us
- ?   ?   ??? device -> ../../intel-rapl:1
- ?   ?   ??? energy_uj
- ?   ?   ??? max_energy_range_uj
- ?   ?   ??? name
- ?   ?   ??? enabled
- ?   ?   ??? power
- ?   ?   ?   ??? async
- ?   ?   ?   []
- ?   ?   ??? subsystem -> ../../../../../../class/power_cap
- ?   ?   ??? uevent
- ?   ??? max_energy_range_uj
- ?   ??? max_power_range_uw
- ?   ??? name
- ?   ??? enabled
- ?   ??? power
- ?   ?   ??? async
- ?   ?   []
- ?   ??? subsystem -> ../../../../../class/power_cap
- ?   ??? uevent
- ??? power
- ?   ??? async
- ?   []
- ??? subsystem -> ../../../../class/power_cap
- ??? enabled
- ??? uevent
-
-The above example illustrates a case in which the Intel RAPL technology,
-available in Intel® IA-64 and IA-32 Processor Architectures, is used. There is one
-control type called intel-rapl which contains two power zones, intel-rapl:0 and
-intel-rapl:1, representing CPU packages. Each of these power zones contains
-two subzones, intel-rapl:j:0 and intel-rapl:j:1 (j = 0, 1), representing the
-"core" and the "uncore" parts of the given CPU package, respectively. All of
-the zones and subzones contain energy monitoring attributes (energy_uj,
-max_energy_range_uj) and constraint attributes (constraint_*) allowing controls
-to be applied (the constraints in the 'package' power zones apply to the whole
-CPU packages and the subzone constraints only apply to the respective parts of
-the given package individually). Since Intel RAPL doesn't provide instantaneous
-power value, there is no power_uw attribute.
-
-In addition to that, each power zone contains a name attribute, allowing the
-part of the system represented by that zone to be identified.
-For example:
-
-cat /sys/class/power_cap/intel-rapl/intel-rapl:0/name
-package-0
-
-The Intel RAPL technology allows two constraints, short term and long term,
-with two different time windows to be applied to each power zone. Thus for
-each zone there are 2 attributes representing the constraint names, 2 power
-limits and 2 attributes representing the sizes of the time windows. Such that,
-constraint_j_* attributes correspond to the jth constraint (j = 0,1).
-
-For example:
- constraint_0_name
- constraint_0_power_limit_uw
- constraint_0_time_window_us
- constraint_1_name
- constraint_1_power_limit_uw
- constraint_1_time_window_us
-
-Power Zone Attributes
-=================================
-Monitoring attributes
-----------------------
-
-energy_uj (rw): Current energy counter in micro joules. Write "0" to reset.
-If the counter can not be reset, then this attribute is read only.
-
-max_energy_range_uj (ro): Range of the above energy counter in micro-joules.
-
-power_uw (ro): Current power in micro watts.
-
-max_power_range_uw (ro): Range of the above power value in micro-watts.
-
-name (ro): Name of this power zone.
-
-It is possible that some domains have both power ranges and energy counter ranges;
-however, only one is mandatory.
-
-Constraints
-----------------
-constraint_X_power_limit_uw (rw): Power limit in micro watts, which should be
-applicable for the time window specified by "constraint_X_time_window_us".
-
-constraint_X_time_window_us (rw): Time window in micro seconds.
-
-constraint_X_name (ro): An optional name of the constraint
-
-constraint_X_max_power_uw(ro): Maximum allowed power in micro watts.
-
-constraint_X_min_power_uw(ro): Minimum allowed power in micro watts.
-
-constraint_X_max_time_window_us(ro): Maximum allowed time window in micro seconds.
-
-constraint_X_min_time_window_us(ro): Minimum allowed time window in micro seconds.
-
-Except power_limit_uw and time_window_us other fields are optional.
-
-Common zone and control type attributes
-----------------------------------------
-enabled (rw): Enable/Disable controls at zone level or for all zones using
-a control type.
-
-Power Cap Client Driver Interface
-==================================
-The API summary:
-
-Call powercap_register_control_type() to register control type object.
-Call powercap_register_zone() to register a power zone (under a given
-control type), either as a top-level power zone or as a subzone of another
-power zone registered earlier.
-The number of constraints in a power zone and the corresponding callbacks have
-to be defined prior to calling powercap_register_zone() to register that zone.
-
-To Free a power zone call powercap_unregister_zone().
-To free a control type object call powercap_unregister_control_type().
-Detailed API can be generated using kernel-doc on include/linux/powercap.h.
diff --git a/Documentation/power/regulator/consumer.txt b/Documentation/power/regulator/consumer.rst
index e51564c1a140..0cd8cc1275a7 100644
--- a/Documentation/power/regulator/consumer.txt
+++ b/Documentation/power/regulator/consumer.rst
@@ -1,3 +1,4 @@
+===================================
Regulator Consumer Driver Interface
===================================
@@ -8,73 +9,77 @@ Please see overview.txt for a description of the terms used in this text.
1. Consumer Regulator Access (static & dynamic drivers)
=======================================================
-A consumer driver can get access to its supply regulator by calling :-
+A consumer driver can get access to its supply regulator by calling ::
-regulator = regulator_get(dev, "Vcc");
+ regulator = regulator_get(dev, "Vcc");
The consumer passes in its struct device pointer and power supply ID. The core
then finds the correct regulator by consulting a machine specific lookup table.
If the lookup is successful then this call will return a pointer to the struct
regulator that supplies this consumer.
-To release the regulator the consumer driver should call :-
+To release the regulator the consumer driver should call ::
-regulator_put(regulator);
+ regulator_put(regulator);
Consumers can be supplied by more than one regulator e.g. codec consumer with
-analog and digital supplies :-
+analog and digital supplies ::
-digital = regulator_get(dev, "Vcc"); /* digital core */
-analog = regulator_get(dev, "Avdd"); /* analog */
+ digital = regulator_get(dev, "Vcc"); /* digital core */
+ analog = regulator_get(dev, "Avdd"); /* analog */
The regulator access functions regulator_get() and regulator_put() will
usually be called in your device drivers probe() and remove() respectively.
2. Regulator Output Enable & Disable (static & dynamic drivers)
-====================================================================
+===============================================================
+
-A consumer can enable its power supply by calling:-
+A consumer can enable its power supply by calling::
-int regulator_enable(regulator);
+ int regulator_enable(regulator);
-NOTE: The supply may already be enabled before regulator_enabled() is called.
-This may happen if the consumer shares the regulator or the regulator has been
-previously enabled by bootloader or kernel board initialization code.
+NOTE:
+ The supply may already be enabled before regulator_enabled() is called.
+ This may happen if the consumer shares the regulator or the regulator has been
+ previously enabled by bootloader or kernel board initialization code.
-A consumer can determine if a regulator is enabled by calling :-
+A consumer can determine if a regulator is enabled by calling::
-int regulator_is_enabled(regulator);
+ int regulator_is_enabled(regulator);
This will return > zero when the regulator is enabled.
-A consumer can disable its supply when no longer needed by calling :-
+A consumer can disable its supply when no longer needed by calling::
-int regulator_disable(regulator);
+ int regulator_disable(regulator);
-NOTE: This may not disable the supply if it's shared with other consumers. The
-regulator will only be disabled when the enabled reference count is zero.
+NOTE:
+ This may not disable the supply if it's shared with other consumers. The
+ regulator will only be disabled when the enabled reference count is zero.
-Finally, a regulator can be forcefully disabled in the case of an emergency :-
+Finally, a regulator can be forcefully disabled in the case of an emergency::
-int regulator_force_disable(regulator);
+ int regulator_force_disable(regulator);
-NOTE: this will immediately and forcefully shutdown the regulator output. All
-consumers will be powered off.
+NOTE:
+ this will immediately and forcefully shutdown the regulator output. All
+ consumers will be powered off.
3. Regulator Voltage Control & Status (dynamic drivers)
-======================================================
+=======================================================
Some consumer drivers need to be able to dynamically change their supply
voltage to match system operating points. e.g. CPUfreq drivers can scale
voltage along with frequency to save power, SD drivers may need to select the
correct card voltage, etc.
-Consumers can control their supply voltage by calling :-
+Consumers can control their supply voltage by calling::
-int regulator_set_voltage(regulator, min_uV, max_uV);
+ int regulator_set_voltage(regulator, min_uV, max_uV);
Where min_uV and max_uV are the minimum and maximum acceptable voltages in
microvolts.
@@ -84,47 +89,50 @@ when enabled, then the voltage changes instantly, otherwise the voltage
configuration changes and the voltage is physically set when the regulator is
next enabled.
-The regulators configured voltage output can be found by calling :-
+The regulators configured voltage output can be found by calling::
-int regulator_get_voltage(regulator);
+ int regulator_get_voltage(regulator);
-NOTE: get_voltage() will return the configured output voltage whether the
-regulator is enabled or disabled and should NOT be used to determine regulator
-output state. However this can be used in conjunction with is_enabled() to
-determine the regulator physical output voltage.
+NOTE:
+ get_voltage() will return the configured output voltage whether the
+ regulator is enabled or disabled and should NOT be used to determine regulator
+ output state. However this can be used in conjunction with is_enabled() to
+ determine the regulator physical output voltage.
4. Regulator Current Limit Control & Status (dynamic drivers)
-===========================================================
+=============================================================
Some consumer drivers need to be able to dynamically change their supply
current limit to match system operating points. e.g. LCD backlight driver can
change the current limit to vary the backlight brightness, USB drivers may want
to set the limit to 500mA when supplying power.
-Consumers can control their supply current limit by calling :-
+Consumers can control their supply current limit by calling::
-int regulator_set_current_limit(regulator, min_uA, max_uA);
+ int regulator_set_current_limit(regulator, min_uA, max_uA);
Where min_uA and max_uA are the minimum and maximum acceptable current limit in
microamps.
-NOTE: this can be called when the regulator is enabled or disabled. If called
-when enabled, then the current limit changes instantly, otherwise the current
-limit configuration changes and the current limit is physically set when the
-regulator is next enabled.
+NOTE:
+ this can be called when the regulator is enabled or disabled. If called
+ when enabled, then the current limit changes instantly, otherwise the current
+ limit configuration changes and the current limit is physically set when the
+ regulator is next enabled.
-A regulators current limit can be found by calling :-
+A regulators current limit can be found by calling::
-int regulator_get_current_limit(regulator);
+ int regulator_get_current_limit(regulator);
-NOTE: get_current_limit() will return the current limit whether the regulator
-is enabled or disabled and should not be used to determine regulator current
-load.
+NOTE:
+ get_current_limit() will return the current limit whether the regulator
+ is enabled or disabled and should not be used to determine regulator current
+ load.
5. Regulator Operating Mode Control & Status (dynamic drivers)
-=============================================================
+==============================================================
Some consumers can further save system power by changing the operating mode of
their supply regulator to be more efficient when the consumers operating state
@@ -135,9 +143,9 @@ Regulator operating mode can be changed indirectly or directly.
Indirect operating mode control.
--------------------------------
Consumer drivers can request a change in their supply regulator operating mode
-by calling :-
+by calling::
-int regulator_set_load(struct regulator *regulator, int load_uA);
+ int regulator_set_load(struct regulator *regulator, int load_uA);
This will cause the core to recalculate the total load on the regulator (based
on all its consumers) and change operating mode (if necessary and permitted)
@@ -153,12 +161,13 @@ consumers.
Direct operating mode control.
------------------------------
+
Bespoke or tightly coupled drivers may want to directly control regulator
operating mode depending on their operating point. This can be achieved by
-calling :-
+calling::
-int regulator_set_mode(struct regulator *regulator, unsigned int mode);
-unsigned int regulator_get_mode(struct regulator *regulator);
+ int regulator_set_mode(struct regulator *regulator, unsigned int mode);
+ unsigned int regulator_get_mode(struct regulator *regulator);
Direct mode will only be used by consumers that *know* about the regulator and
are not sharing the regulator with other consumers.
@@ -166,24 +175,26 @@ are not sharing the regulator with other consumers.
6. Regulator Events
===================
+
Regulators can notify consumers of external events. Events could be received by
consumers under regulator stress or failure conditions.
-Consumers can register interest in regulator events by calling :-
+Consumers can register interest in regulator events by calling::
-int regulator_register_notifier(struct regulator *regulator,
- struct notifier_block *nb);
+ int regulator_register_notifier(struct regulator *regulator,
+ struct notifier_block *nb);
-Consumers can unregister interest by calling :-
+Consumers can unregister interest by calling::
-int regulator_unregister_notifier(struct regulator *regulator,
- struct notifier_block *nb);
+ int regulator_unregister_notifier(struct regulator *regulator,
+ struct notifier_block *nb);
Regulators use the kernel notifier framework to send event to their interested
consumers.
7. Regulator Direct Register Access
===================================
+
Some kinds of power management hardware or firmware are designed such that
they need to do low-level hardware access to regulators, with no involvement
from the kernel. Examples of such devices are:
@@ -199,20 +210,20 @@ to it. The regulator framework provides the following helpers for querying
these details.
Bus-specific details, like I2C addresses or transfer rates are handled by the
-regmap framework. To get the regulator's regmap (if supported), use :-
+regmap framework. To get the regulator's regmap (if supported), use::
-struct regmap *regulator_get_regmap(struct regulator *regulator);
+ struct regmap *regulator_get_regmap(struct regulator *regulator);
To obtain the hardware register offset and bitmask for the regulator's voltage
-selector register, use :-
+selector register, use::
-int regulator_get_hardware_vsel_register(struct regulator *regulator,
- unsigned *vsel_reg,
- unsigned *vsel_mask);
+ int regulator_get_hardware_vsel_register(struct regulator *regulator,
+ unsigned *vsel_reg,
+ unsigned *vsel_mask);
To convert a regulator framework voltage selector code (used by
regulator_list_voltage) to a hardware-specific voltage selector that can be
-directly written to the voltage selector register, use :-
+directly written to the voltage selector register, use::
-int regulator_list_hardware_vsel(struct regulator *regulator,
- unsigned selector);
+ int regulator_list_hardware_vsel(struct regulator *regulator,
+ unsigned selector);
diff --git a/Documentation/power/regulator/design.txt b/Documentation/power/regulator/design.rst
index fdd919b96830..3b09c6841dc4 100644
--- a/Documentation/power/regulator/design.txt
+++ b/Documentation/power/regulator/design.rst
@@ -1,3 +1,4 @@
+==========================
Regulator API design notes
==========================
@@ -14,7 +15,9 @@ Safety
have different power requirements, and not all components with power
requirements are visible to software.
- => The API should make no changes to the hardware state unless it has
+.. note::
+
+ The API should make no changes to the hardware state unless it has
specific knowledge that these changes are safe to perform on this
particular system.
@@ -28,6 +31,8 @@ Consumer use cases
- Many of the power supplies in the system will be shared between many
different consumers.
- => The consumer API should be structured so that these use cases are
+.. note::
+
+ The consumer API should be structured so that these use cases are
very easy to handle and so that consumers will work with shared
supplies without any additional effort.
diff --git a/Documentation/power/regulator/machine.txt b/Documentation/power/regulator/machine.rst
index eff4dcaaa252..22fffefaa3ad 100644
--- a/Documentation/power/regulator/machine.txt
+++ b/Documentation/power/regulator/machine.rst
@@ -1,10 +1,11 @@
+==================================
Regulator Machine Driver Interface
-===================================
+==================================
The regulator machine driver interface is intended for board/machine specific
initialisation code to configure the regulator subsystem.
-Consider the following machine :-
+Consider the following machine::
Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
|
@@ -13,31 +14,31 @@ Consider the following machine :-
The drivers for consumers A & B must be mapped to the correct regulator in
order to control their power supplies. This mapping can be achieved in machine
initialisation code by creating a struct regulator_consumer_supply for
-each regulator.
+each regulator::
-struct regulator_consumer_supply {
+ struct regulator_consumer_supply {
const char *dev_name; /* consumer dev_name() */
const char *supply; /* consumer supply - e.g. "vcc" */
-};
+ };
-e.g. for the machine above
+e.g. for the machine above::
-static struct regulator_consumer_supply regulator1_consumers[] = {
+ static struct regulator_consumer_supply regulator1_consumers[] = {
REGULATOR_SUPPLY("Vcc", "consumer B"),
-};
+ };
-static struct regulator_consumer_supply regulator2_consumers[] = {
+ static struct regulator_consumer_supply regulator2_consumers[] = {
REGULATOR_SUPPLY("Vcc", "consumer A"),
-};
+ };
This maps Regulator-1 to the 'Vcc' supply for Consumer B and maps Regulator-2
to the 'Vcc' supply for Consumer A.
Constraints can now be registered by defining a struct regulator_init_data
for each regulator power domain. This structure also maps the consumers
-to their supply regulators :-
+to their supply regulators::
-static struct regulator_init_data regulator1_data = {
+ static struct regulator_init_data regulator1_data = {
.constraints = {
.name = "Regulator-1",
.min_uV = 3300000,
@@ -46,7 +47,7 @@ static struct regulator_init_data regulator1_data = {
},
.num_consumer_supplies = ARRAY_SIZE(regulator1_consumers),
.consumer_supplies = regulator1_consumers,
-};
+ };
The name field should be set to something that is usefully descriptive
for the board for configuration of supplies for other regulators and
@@ -57,9 +58,9 @@ name is provided then the subsystem will choose one.
Regulator-1 supplies power to Regulator-2. This relationship must be registered
with the core so that Regulator-1 is also enabled when Consumer A enables its
supply (Regulator-2). The supply regulator is set by the supply_regulator
-field below and co:-
+field below and co::
-static struct regulator_init_data regulator2_data = {
+ static struct regulator_init_data regulator2_data = {
.supply_regulator = "Regulator-1",
.constraints = {
.min_uV = 1800000,
@@ -69,11 +70,11 @@ static struct regulator_init_data regulator2_data = {
},
.num_consumer_supplies = ARRAY_SIZE(regulator2_consumers),
.consumer_supplies = regulator2_consumers,
-};
+ };
-Finally the regulator devices must be registered in the usual manner.
+Finally the regulator devices must be registered in the usual manner::
-static struct platform_device regulator_devices[] = {
+ static struct platform_device regulator_devices[] = {
{
.name = "regulator",
.id = DCDC_1,
@@ -88,9 +89,9 @@ static struct platform_device regulator_devices[] = {
.platform_data = &regulator2_data,
},
},
-};
-/* register regulator 1 device */
-platform_device_register(&regulator_devices[0]);
+ };
+ /* register regulator 1 device */
+ platform_device_register(&regulator_devices[0]);
-/* register regulator 2 device */
-platform_device_register(&regulator_devices[1]);
+ /* register regulator 2 device */
+ platform_device_register(&regulator_devices[1]);
diff --git a/Documentation/power/regulator/overview.txt b/Documentation/power/regulator/overview.rst
index 721b4739ec32..ee494c70a7c4 100644
--- a/Documentation/power/regulator/overview.txt
+++ b/Documentation/power/regulator/overview.rst
@@ -1,3 +1,4 @@
+=============================================
Linux voltage and current regulator framework
=============================================
@@ -13,26 +14,30 @@ regulators (where voltage output is controllable) and current sinks (where
current limit is controllable).
(C) 2008 Wolfson Microelectronics PLC.
+
Author: Liam Girdwood <lrg@slimlogic.co.uk>
Nomenclature
============
-Some terms used in this document:-
+Some terms used in this document:
- o Regulator - Electronic device that supplies power to other devices.
+ - Regulator
+ - Electronic device that supplies power to other devices.
Most regulators can enable and disable their output while
some can control their output voltage and or current.
Input Voltage -> Regulator -> Output Voltage
- o PMIC - Power Management IC. An IC that contains numerous regulators
- and often contains other subsystems.
+ - PMIC
+ - Power Management IC. An IC that contains numerous
+ regulators and often contains other subsystems.
- o Consumer - Electronic device that is supplied power by a regulator.
+ - Consumer
+ - Electronic device that is supplied power by a regulator.
Consumers can be classified into two types:-
Static: consumer does not change its supply voltage or
@@ -44,46 +49,48 @@ Some terms used in this document:-
current limit to meet operation demands.
- o Power Domain - Electronic circuit that is supplied its input power by the
+ - Power Domain
+ - Electronic circuit that is supplied its input power by the
output power of a regulator, switch or by another power
domain.
- The supply regulator may be behind a switch(s). i.e.
+ The supply regulator may be behind a switch(s). i.e.::
- Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A]
- | |
- | +-> [Consumer B], [Consumer C]
- |
- +-> [Consumer D], [Consumer E]
+ Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A]
+ | |
+ | +-> [Consumer B], [Consumer C]
+ |
+ +-> [Consumer D], [Consumer E]
That is one regulator and three power domains:
- Domain 1: Switch-1, Consumers D & E.
- Domain 2: Switch-2, Consumers B & C.
- Domain 3: Consumer A.
+ - Domain 1: Switch-1, Consumers D & E.
+ - Domain 2: Switch-2, Consumers B & C.
+ - Domain 3: Consumer A.
and this represents a "supplies" relationship:
Domain-1 --> Domain-2 --> Domain-3.
A power domain may have regulators that are supplied power
- by other regulators. i.e.
+ by other regulators. i.e.::
- Regulator-1 -+-> Regulator-2 -+-> [Consumer A]
- |
- +-> [Consumer B]
+ Regulator-1 -+-> Regulator-2 -+-> [Consumer A]
+ |
+ +-> [Consumer B]
This gives us two regulators and two power domains:
- Domain 1: Regulator-2, Consumer B.
- Domain 2: Consumer A.
+ - Domain 1: Regulator-2, Consumer B.
+ - Domain 2: Consumer A.
and a "supplies" relationship:
Domain-1 --> Domain-2
- o Constraints - Constraints are used to define power levels for performance
+ - Constraints
+ - Constraints are used to define power levels for performance
and hardware protection. Constraints exist at three levels:
Regulator Level: This is defined by the regulator hardware
@@ -141,7 +148,7 @@ relevant to non SoC devices and is split into the following four interfaces:-
limit. This also compiles out if not in use so drivers can be reused in
systems with no regulator based power control.
- See Documentation/power/regulator/consumer.txt
+ See Documentation/power/regulator/consumer.rst
2. Regulator driver interface.
@@ -149,7 +156,7 @@ relevant to non SoC devices and is split into the following four interfaces:-
operations to the core. It also has a notifier call chain for propagating
regulator events to clients.
- See Documentation/power/regulator/regulator.txt
+ See Documentation/power/regulator/regulator.rst
3. Machine interface.
@@ -160,7 +167,7 @@ relevant to non SoC devices and is split into the following four interfaces:-
allows the creation of a regulator tree whereby some regulators are
supplied by others (similar to a clock tree).
- See Documentation/power/regulator/machine.txt
+ See Documentation/power/regulator/machine.rst
4. Userspace ABI.
diff --git a/Documentation/power/regulator/regulator.rst b/Documentation/power/regulator/regulator.rst
new file mode 100644
index 000000000000..794b3256fbb9
--- /dev/null
+++ b/Documentation/power/regulator/regulator.rst
@@ -0,0 +1,32 @@
+==========================
+Regulator Driver Interface
+==========================
+
+The regulator driver interface is relatively simple and designed to allow
+regulator drivers to register their services with the core framework.
+
+
+Registration
+============
+
+Drivers can register a regulator by calling::
+
+ struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
+ const struct regulator_config *config);
+
+This will register the regulator's capabilities and operations to the regulator
+core.
+
+Regulators can be unregistered by calling::
+
+ void regulator_unregister(struct regulator_dev *rdev);
+
+
+Regulator Events
+================
+
+Regulators can send events (e.g. overtemperature, undervoltage, etc) to
+consumer drivers by calling::
+
+ int regulator_notifier_call_chain(struct regulator_dev *rdev,
+ unsigned long event, void *data);
diff --git a/Documentation/power/regulator/regulator.txt b/Documentation/power/regulator/regulator.txt
deleted file mode 100644
index b17e5833ce21..000000000000
--- a/Documentation/power/regulator/regulator.txt
+++ /dev/null
@@ -1,30 +0,0 @@
-Regulator Driver Interface
-==========================
-
-The regulator driver interface is relatively simple and designed to allow
-regulator drivers to register their services with the core framework.
-
-
-Registration
-============
-
-Drivers can register a regulator by calling :-
-
-struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
- const struct regulator_config *config);
-
-This will register the regulator's capabilities and operations to the regulator
-core.
-
-Regulators can be unregistered by calling :-
-
-void regulator_unregister(struct regulator_dev *rdev);
-
-
-Regulator Events
-================
-Regulators can send events (e.g. overtemperature, undervoltage, etc) to
-consumer drivers by calling :-
-
-int regulator_notifier_call_chain(struct regulator_dev *rdev,
- unsigned long event, void *data);
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.rst
index 937e33c46211..2c2ec99b5088 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.rst
@@ -1,10 +1,15 @@
+==================================================
Runtime Power Management Framework for I/O Devices
+==================================================
(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
+
(C) 2010 Alan Stern <stern@rowland.harvard.edu>
+
(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1. Introduction
+===============
Support for runtime power management (runtime PM) of I/O devices is provided
at the power management core (PM core) level by means of:
@@ -33,16 +38,17 @@ fields of 'struct dev_pm_info' and the core helper functions provided for
runtime PM are described below.
2. Device Runtime PM Callbacks
+==============================
-There are three device runtime PM callbacks defined in 'struct dev_pm_ops':
+There are three device runtime PM callbacks defined in 'struct dev_pm_ops'::
-struct dev_pm_ops {
+ struct dev_pm_ops {
...
int (*runtime_suspend)(struct device *dev);
int (*runtime_resume)(struct device *dev);
int (*runtime_idle)(struct device *dev);
...
-};
+ };
The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks
are executed by the PM core for the device's subsystem that may be either of
@@ -112,7 +118,7 @@ low-power state during the execution of the suspend callback, it is expected
that remote wakeup will be enabled for the device. Generally, remote wakeup
should be enabled for all input devices put into low-power states at run time.
-The subsystem-level resume callback, if present, is _entirely_ _responsible_ for
+The subsystem-level resume callback, if present, is **entirely responsible** for
handling the resume of the device as appropriate, which may, but need not
include executing the device driver's own ->runtime_resume() callback (from the
PM core's point of view it is not necessary to implement a ->runtime_resume()
@@ -197,95 +203,96 @@ rules:
except for scheduled autosuspends.
3. Runtime PM Device Fields
+===========================
The following device runtime PM fields are present in 'struct dev_pm_info', as
defined in include/linux/pm.h:
- struct timer_list suspend_timer;
+ `struct timer_list suspend_timer;`
- timer used for scheduling (delayed) suspend and autosuspend requests
- unsigned long timer_expires;
+ `unsigned long timer_expires;`
- timer expiration time, in jiffies (if this is different from zero, the
timer is running and will expire at that time, otherwise the timer is not
running)
- struct work_struct work;
+ `struct work_struct work;`
- work structure used for queuing up requests (i.e. work items in pm_wq)
- wait_queue_head_t wait_queue;
+ `wait_queue_head_t wait_queue;`
- wait queue used if any of the helper functions needs to wait for another
one to complete
- spinlock_t lock;
+ `spinlock_t lock;`
- lock used for synchronization
- atomic_t usage_count;
+ `atomic_t usage_count;`
- the usage counter of the device
- atomic_t child_count;
+ `atomic_t child_count;`
- the count of 'active' children of the device
- unsigned int ignore_children;
+ `unsigned int ignore_children;`
- if set, the value of child_count is ignored (but still updated)
- unsigned int disable_depth;
+ `unsigned int disable_depth;`
- used for disabling the helper functions (they work normally if this is
equal to zero); the initial value of it is 1 (i.e. runtime PM is
initially disabled for all devices)
- int runtime_error;
+ `int runtime_error;`
- if set, there was a fatal error (one of the callbacks returned error code
as described in Section 2), so the helper functions will not work until
this flag is cleared; this is the error code returned by the failing
callback
- unsigned int idle_notification;
+ `unsigned int idle_notification;`
- if set, ->runtime_idle() is being executed
- unsigned int request_pending;
+ `unsigned int request_pending;`
- if set, there's a pending request (i.e. a work item queued up into pm_wq)
- enum rpm_request request;
+ `enum rpm_request request;`
- type of request that's pending (valid if request_pending is set)
- unsigned int deferred_resume;
+ `unsigned int deferred_resume;`
- set if ->runtime_resume() is about to be run while ->runtime_suspend() is
being executed for that device and it is not practical to wait for the
suspend to complete; means "start a resume as soon as you've suspended"
- enum rpm_status runtime_status;
+ `enum rpm_status runtime_status;`
- the runtime PM status of the device; this field's initial value is
RPM_SUSPENDED, which means that each device is initially regarded by the
PM core as 'suspended', regardless of its real hardware status
- unsigned int runtime_auto;
+ `unsigned int runtime_auto;`
- if set, indicates that the user space has allowed the device driver to
power manage the device at run time via the /sys/devices/.../power/control
- interface; it may only be modified with the help of the pm_runtime_allow()
+ `interface;` it may only be modified with the help of the pm_runtime_allow()
and pm_runtime_forbid() helper functions
- unsigned int no_callbacks;
+ `unsigned int no_callbacks;`
- indicates that the device does not use the runtime PM callbacks (see
Section 8); it may be modified only by the pm_runtime_no_callbacks()
helper function
- unsigned int irq_safe;
+ `unsigned int irq_safe;`
- indicates that the ->runtime_suspend() and ->runtime_resume() callbacks
will be invoked with the spinlock held and interrupts disabled
- unsigned int use_autosuspend;
+ `unsigned int use_autosuspend;`
- indicates that the device's driver supports delayed autosuspend (see
Section 9); it may be modified only by the
pm_runtime{_dont}_use_autosuspend() helper functions
- unsigned int timer_autosuspends;
+ `unsigned int timer_autosuspends;`
- indicates that the PM core should attempt to carry out an autosuspend
when the timer expires rather than a normal suspend
- int autosuspend_delay;
+ `int autosuspend_delay;`
- the delay time (in milliseconds) to be used for autosuspend
- unsigned long last_busy;
+ `unsigned long last_busy;`
- the time (in jiffies) when the pm_runtime_mark_last_busy() helper
function was last called for this device; used in calculating inactivity
periods for autosuspend
@@ -293,37 +300,38 @@ defined in include/linux/pm.h:
All of the above fields are members of the 'power' member of 'struct device'.
4. Runtime PM Device Helper Functions
+=====================================
The following runtime PM helper functions are defined in
drivers/base/power/runtime.c and include/linux/pm_runtime.h:
- void pm_runtime_init(struct device *dev);
+ `void pm_runtime_init(struct device *dev);`
- initialize the device runtime PM fields in 'struct dev_pm_info'
- void pm_runtime_remove(struct device *dev);
+ `void pm_runtime_remove(struct device *dev);`
- make sure that the runtime PM of the device will be disabled after
removing the device from device hierarchy
- int pm_runtime_idle(struct device *dev);
+ `int pm_runtime_idle(struct device *dev);`
- execute the subsystem-level idle callback for the device; returns an
error code on failure, where -EINPROGRESS means that ->runtime_idle() is
already being executed; if there is no callback or the callback returns 0
then run pm_runtime_autosuspend(dev) and return its result
- int pm_runtime_suspend(struct device *dev);
+ `int pm_runtime_suspend(struct device *dev);`
- execute the subsystem-level suspend callback for the device; returns 0 on
success, 1 if the device's runtime PM status was already 'suspended', or
error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt
to suspend the device again in future and -EACCES means that
'power.disable_depth' is different from 0
- int pm_runtime_autosuspend(struct device *dev);
+ `int pm_runtime_autosuspend(struct device *dev);`
- same as pm_runtime_suspend() except that the autosuspend delay is taken
- into account; if pm_runtime_autosuspend_expiration() says the delay has
+ `into account;` if pm_runtime_autosuspend_expiration() says the delay has
not yet expired then an autosuspend is scheduled for the appropriate time
and 0 is returned
- int pm_runtime_resume(struct device *dev);
+ `int pm_runtime_resume(struct device *dev);`
- execute the subsystem-level resume callback for the device; returns 0 on
success, 1 if the device's runtime PM status was already 'active' or
error code on failure, where -EAGAIN means it may be safe to attempt to
@@ -331,17 +339,17 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
checked additionally, and -EACCES means that 'power.disable_depth' is
different from 0
- int pm_request_idle(struct device *dev);
+ `int pm_request_idle(struct device *dev);`
- submit a request to execute the subsystem-level idle callback for the
device (the request is represented by a work item in pm_wq); returns 0 on
success or error code if the request has not been queued up
- int pm_request_autosuspend(struct device *dev);
+ `int pm_request_autosuspend(struct device *dev);`
- schedule the execution of the subsystem-level suspend callback for the
device when the autosuspend delay has expired; if the delay has already
expired then the work item is queued up immediately
- int pm_schedule_suspend(struct device *dev, unsigned int delay);
+ `int pm_schedule_suspend(struct device *dev, unsigned int delay);`
- schedule the execution of the subsystem-level suspend callback for the
device in future, where 'delay' is the time to wait before queuing up a
suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work
@@ -351,58 +359,58 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
->runtime_suspend() is already scheduled and not yet expired, the new
value of 'delay' will be used as the time to wait
- int pm_request_resume(struct device *dev);
+ `int pm_request_resume(struct device *dev);`
- submit a request to execute the subsystem-level resume callback for the
device (the request is represented by a work item in pm_wq); returns 0 on
success, 1 if the device's runtime PM status was already 'active', or
error code if the request hasn't been queued up
- void pm_runtime_get_noresume(struct device *dev);
+ `void pm_runtime_get_noresume(struct device *dev);`
- increment the device's usage counter
- int pm_runtime_get(struct device *dev);
+ `int pm_runtime_get(struct device *dev);`
- increment the device's usage counter, run pm_request_resume(dev) and
return its result
- int pm_runtime_get_sync(struct device *dev);
+ `int pm_runtime_get_sync(struct device *dev);`
- increment the device's usage counter, run pm_runtime_resume(dev) and
return its result
- int pm_runtime_get_if_in_use(struct device *dev);
+ `int pm_runtime_get_if_in_use(struct device *dev);`
- return -EINVAL if 'power.disable_depth' is nonzero; otherwise, if the
runtime PM status is RPM_ACTIVE and the runtime PM usage counter is
nonzero, increment the counter and return 1; otherwise return 0 without
changing the counter
- void pm_runtime_put_noidle(struct device *dev);
+ `void pm_runtime_put_noidle(struct device *dev);`
- decrement the device's usage counter
- int pm_runtime_put(struct device *dev);
+ `int pm_runtime_put(struct device *dev);`
- decrement the device's usage counter; if the result is 0 then run
pm_request_idle(dev) and return its result
- int pm_runtime_put_autosuspend(struct device *dev);
+ `int pm_runtime_put_autosuspend(struct device *dev);`
- decrement the device's usage counter; if the result is 0 then run
pm_request_autosuspend(dev) and return its result
- int pm_runtime_put_sync(struct device *dev);
+ `int pm_runtime_put_sync(struct device *dev);`
- decrement the device's usage counter; if the result is 0 then run
pm_runtime_idle(dev) and return its result
- int pm_runtime_put_sync_suspend(struct device *dev);
+ `int pm_runtime_put_sync_suspend(struct device *dev);`
- decrement the device's usage counter; if the result is 0 then run
pm_runtime_suspend(dev) and return its result
- int pm_runtime_put_sync_autosuspend(struct device *dev);
+ `int pm_runtime_put_sync_autosuspend(struct device *dev);`
- decrement the device's usage counter; if the result is 0 then run
pm_runtime_autosuspend(dev) and return its result
- void pm_runtime_enable(struct device *dev);
+ `void pm_runtime_enable(struct device *dev);`
- decrement the device's 'power.disable_depth' field; if that field is equal
to zero, the runtime PM helper functions can execute subsystem-level
callbacks described in Section 2 for the device
- int pm_runtime_disable(struct device *dev);
+ `int pm_runtime_disable(struct device *dev);`
- increment the device's 'power.disable_depth' field (if the value of that
field was previously zero, this prevents subsystem-level runtime PM
callbacks from being run for the device), make sure that all of the
@@ -411,7 +419,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
necessary to execute the subsystem-level resume callback for the device
to satisfy that request, otherwise 0 is returned
- int pm_runtime_barrier(struct device *dev);
+ `int pm_runtime_barrier(struct device *dev);`
- check if there's a resume request pending for the device and resume it
(synchronously) in that case, cancel any other pending runtime PM requests
regarding it and wait for all runtime PM operations on it in progress to
@@ -419,10 +427,10 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
necessary to execute the subsystem-level resume callback for the device to
satisfy that request, otherwise 0 is returned
- void pm_suspend_ignore_children(struct device *dev, bool enable);
+ `void pm_suspend_ignore_children(struct device *dev, bool enable);`
- set/unset the power.ignore_children flag of the device
- int pm_runtime_set_active(struct device *dev);
+ `int pm_runtime_set_active(struct device *dev);`
- clear the device's 'power.runtime_error' flag, set the device's runtime
PM status to 'active' and update its parent's counter of 'active'
children as appropriate (it is only valid to use this function if
@@ -430,61 +438,61 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
zero); it will fail and return error code if the device has a parent
which is not active and the 'power.ignore_children' flag of which is unset
- void pm_runtime_set_suspended(struct device *dev);
+ `void pm_runtime_set_suspended(struct device *dev);`
- clear the device's 'power.runtime_error' flag, set the device's runtime
PM status to 'suspended' and update its parent's counter of 'active'
children as appropriate (it is only valid to use this function if
'power.runtime_error' is set or 'power.disable_depth' is greater than
zero)
- bool pm_runtime_active(struct device *dev);
+ `bool pm_runtime_active(struct device *dev);`
- return true if the device's runtime PM status is 'active' or its
'power.disable_depth' field is not equal to zero, or false otherwise
- bool pm_runtime_suspended(struct device *dev);
+ `bool pm_runtime_suspended(struct device *dev);`
- return true if the device's runtime PM status is 'suspended' and its
'power.disable_depth' field is equal to zero, or false otherwise
- bool pm_runtime_status_suspended(struct device *dev);
+ `bool pm_runtime_status_suspended(struct device *dev);`
- return true if the device's runtime PM status is 'suspended'
- void pm_runtime_allow(struct device *dev);
+ `void pm_runtime_allow(struct device *dev);`
- set the power.runtime_auto flag for the device and decrease its usage
counter (used by the /sys/devices/.../power/control interface to
effectively allow the device to be power managed at run time)
- void pm_runtime_forbid(struct device *dev);
+ `void pm_runtime_forbid(struct device *dev);`
- unset the power.runtime_auto flag for the device and increase its usage
counter (used by the /sys/devices/.../power/control interface to
effectively prevent the device from being power managed at run time)
- void pm_runtime_no_callbacks(struct device *dev);
+ `void pm_runtime_no_callbacks(struct device *dev);`
- set the power.no_callbacks flag for the device and remove the runtime
PM attributes from /sys/devices/.../power (or prevent them from being
added when the device is registered)
- void pm_runtime_irq_safe(struct device *dev);
+ `void pm_runtime_irq_safe(struct device *dev);`
- set the power.irq_safe flag for the device, causing the runtime-PM
callbacks to be invoked with interrupts off
- bool pm_runtime_is_irq_safe(struct device *dev);
+ `bool pm_runtime_is_irq_safe(struct device *dev);`
- return true if power.irq_safe flag was set for the device, causing
the runtime-PM callbacks to be invoked with interrupts off
- void pm_runtime_mark_last_busy(struct device *dev);
+ `void pm_runtime_mark_last_busy(struct device *dev);`
- set the power.last_busy field to the current time
- void pm_runtime_use_autosuspend(struct device *dev);
+ `void pm_runtime_use_autosuspend(struct device *dev);`
- set the power.use_autosuspend flag, enabling autosuspend delays; call
pm_runtime_get_sync if the flag was previously cleared and
power.autosuspend_delay is negative
- void pm_runtime_dont_use_autosuspend(struct device *dev);
+ `void pm_runtime_dont_use_autosuspend(struct device *dev);`
- clear the power.use_autosuspend flag, disabling autosuspend delays;
decrement the device's usage counter if the flag was previously set and
power.autosuspend_delay is negative; call pm_runtime_idle
- void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);
+ `void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);`
- set the power.autosuspend_delay value to 'delay' (expressed in
milliseconds); if 'delay' is negative then runtime suspends are
prevented; if power.use_autosuspend is set, pm_runtime_get_sync may be
@@ -493,7 +501,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
changed to or from a negative value; if power.use_autosuspend is clear,
pm_runtime_idle is called
- unsigned long pm_runtime_autosuspend_expiration(struct device *dev);
+ `unsigned long pm_runtime_autosuspend_expiration(struct device *dev);`
- calculate the time when the current autosuspend delay period will expire,
based on power.last_busy and power.autosuspend_delay; if the delay time
is 1000 ms or larger then the expiration time is rounded up to the
@@ -503,36 +511,37 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
It is safe to execute the following helper functions from interrupt context:
-pm_request_idle()
-pm_request_autosuspend()
-pm_schedule_suspend()
-pm_request_resume()
-pm_runtime_get_noresume()
-pm_runtime_get()
-pm_runtime_put_noidle()
-pm_runtime_put()
-pm_runtime_put_autosuspend()
-pm_runtime_enable()
-pm_suspend_ignore_children()
-pm_runtime_set_active()
-pm_runtime_set_suspended()
-pm_runtime_suspended()
-pm_runtime_mark_last_busy()
-pm_runtime_autosuspend_expiration()
+- pm_request_idle()
+- pm_request_autosuspend()
+- pm_schedule_suspend()
+- pm_request_resume()
+- pm_runtime_get_noresume()
+- pm_runtime_get()
+- pm_runtime_put_noidle()
+- pm_runtime_put()
+- pm_runtime_put_autosuspend()
+- pm_runtime_enable()
+- pm_suspend_ignore_children()
+- pm_runtime_set_active()
+- pm_runtime_set_suspended()
+- pm_runtime_suspended()
+- pm_runtime_mark_last_busy()
+- pm_runtime_autosuspend_expiration()
If pm_runtime_irq_safe() has been called for a device then the following helper
functions may also be used in interrupt context:
-pm_runtime_idle()
-pm_runtime_suspend()
-pm_runtime_autosuspend()
-pm_runtime_resume()
-pm_runtime_get_sync()
-pm_runtime_put_sync()
-pm_runtime_put_sync_suspend()
-pm_runtime_put_sync_autosuspend()
+- pm_runtime_idle()
+- pm_runtime_suspend()
+- pm_runtime_autosuspend()
+- pm_runtime_resume()
+- pm_runtime_get_sync()
+- pm_runtime_put_sync()
+- pm_runtime_put_sync_suspend()
+- pm_runtime_put_sync_autosuspend()
5. Runtime PM Initialization, Device Probing and Removal
+========================================================
Initially, the runtime PM is disabled for all devices, which means that the
majority of the runtime PM helper functions described in Section 4 will return
@@ -608,6 +617,7 @@ manage the device at run time, the driver may confuse it by using
pm_runtime_forbid() this way.
6. Runtime PM and System Sleep
+==============================
Runtime PM and system sleep (i.e., system suspend and hibernation, also known
as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of
@@ -647,9 +657,9 @@ brought back to full power during resume, then its runtime PM status will have
to be updated to reflect the actual post-system sleep status. The way to do
this is:
- pm_runtime_disable(dev);
- pm_runtime_set_active(dev);
- pm_runtime_enable(dev);
+ - pm_runtime_disable(dev);
+ - pm_runtime_set_active(dev);
+ - pm_runtime_enable(dev);
The PM core always increments the runtime usage counter before calling the
->suspend() callback and decrements it after calling the ->resume() callback.
@@ -705,66 +715,66 @@ Subsystems may wish to conserve code space by using the set of generic power
management callbacks provided by the PM core, defined in
driver/base/power/generic_ops.c:
- int pm_generic_runtime_suspend(struct device *dev);
+ `int pm_generic_runtime_suspend(struct device *dev);`
- invoke the ->runtime_suspend() callback provided by the driver of this
device and return its result, or return 0 if not defined
- int pm_generic_runtime_resume(struct device *dev);
+ `int pm_generic_runtime_resume(struct device *dev);`
- invoke the ->runtime_resume() callback provided by the driver of this
device and return its result, or return 0 if not defined
- int pm_generic_suspend(struct device *dev);
+ `int pm_generic_suspend(struct device *dev);`
- if the device has not been suspended at run time, invoke the ->suspend()
callback provided by its driver and return its result, or return 0 if not
defined
- int pm_generic_suspend_noirq(struct device *dev);
+ `int pm_generic_suspend_noirq(struct device *dev);`
- if pm_runtime_suspended(dev) returns "false", invoke the ->suspend_noirq()
callback provided by the device's driver and return its result, or return
0 if not defined
- int pm_generic_resume(struct device *dev);
+ `int pm_generic_resume(struct device *dev);`
- invoke the ->resume() callback provided by the driver of this device and,
if successful, change the device's runtime PM status to 'active'
- int pm_generic_resume_noirq(struct device *dev);
+ `int pm_generic_resume_noirq(struct device *dev);`
- invoke the ->resume_noirq() callback provided by the driver of this device
- int pm_generic_freeze(struct device *dev);
+ `int pm_generic_freeze(struct device *dev);`
- if the device has not been suspended at run time, invoke the ->freeze()
callback provided by its driver and return its result, or return 0 if not
defined
- int pm_generic_freeze_noirq(struct device *dev);
+ `int pm_generic_freeze_noirq(struct device *dev);`
- if pm_runtime_suspended(dev) returns "false", invoke the ->freeze_noirq()
callback provided by the device's driver and return its result, or return
0 if not defined
- int pm_generic_thaw(struct device *dev);
+ `int pm_generic_thaw(struct device *dev);`
- if the device has not been suspended at run time, invoke the ->thaw()
callback provided by its driver and return its result, or return 0 if not
defined
- int pm_generic_thaw_noirq(struct device *dev);
+ `int pm_generic_thaw_noirq(struct device *dev);`
- if pm_runtime_suspended(dev) returns "false", invoke the ->thaw_noirq()
callback provided by the device's driver and return its result, or return
0 if not defined
- int pm_generic_poweroff(struct device *dev);
+ `int pm_generic_poweroff(struct device *dev);`
- if the device has not been suspended at run time, invoke the ->poweroff()
callback provided by its driver and return its result, or return 0 if not
defined
- int pm_generic_poweroff_noirq(struct device *dev);
+ `int pm_generic_poweroff_noirq(struct device *dev);`
- if pm_runtime_suspended(dev) returns "false", run the ->poweroff_noirq()
callback provided by the device's driver and return its result, or return
0 if not defined
- int pm_generic_restore(struct device *dev);
+ `int pm_generic_restore(struct device *dev);`
- invoke the ->restore() callback provided by the driver of this device and,
if successful, change the device's runtime PM status to 'active'
- int pm_generic_restore_noirq(struct device *dev);
+ `int pm_generic_restore_noirq(struct device *dev);`
- invoke the ->restore_noirq() callback provided by the device's driver
These functions are the defaults used by the PM core, if a subsystem doesn't
@@ -781,6 +791,7 @@ UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its
last argument to NULL).
8. "No-Callback" Devices
+========================
Some "devices" are only logical sub-devices of their parent and cannot be
power-managed on their own. (The prototype example is a USB interface. Entire
@@ -807,6 +818,7 @@ parent must take responsibility for telling the device's driver when the
parent's power state changes.
9. Autosuspend, or automatically-delayed suspends
+=================================================
Changing a device's power state isn't free; it requires both time and energy.
A device should be put in a low-power state only when there's some reason to
@@ -832,8 +844,8 @@ registration the length should be controlled by user space, using the
In order to use autosuspend, subsystems or drivers must call
pm_runtime_use_autosuspend() (preferably before registering the device), and
-thereafter they should use the various *_autosuspend() helper functions instead
-of the non-autosuspend counterparts:
+thereafter they should use the various `*_autosuspend()` helper functions
+instead of the non-autosuspend counterparts::
Instead of: pm_runtime_suspend use: pm_runtime_autosuspend;
Instead of: pm_schedule_suspend use: pm_request_autosuspend;
@@ -858,7 +870,7 @@ The implementation is well suited for asynchronous use in interrupt contexts.
However such use inevitably involves races, because the PM core can't
synchronize ->runtime_suspend() callbacks with the arrival of I/O requests.
This synchronization must be handled by the driver, using its private lock.
-Here is a schematic pseudo-code example:
+Here is a schematic pseudo-code example::
foo_read_or_write(struct foo_priv *foo, void *data)
{
diff --git a/Documentation/power/s2ram.txt b/Documentation/power/s2ram.rst
index 4685aee197fd..d739aa7c742c 100644
--- a/Documentation/power/s2ram.txt
+++ b/Documentation/power/s2ram.rst
@@ -1,7 +1,9 @@
- How to get s2ram working
- ~~~~~~~~~~~~~~~~~~~~~~~~
- 2006 Linus Torvalds
- 2006 Pavel Machek
+========================
+How to get s2ram working
+========================
+
+2006 Linus Torvalds
+2006 Pavel Machek
1) Check suspend.sf.net, program s2ram there has long whitelist of
"known ok" machines, along with tricks to use on each one.
@@ -12,8 +14,8 @@
3) You can use Linus' TRACE_RESUME infrastructure, described below.
- Using TRACE_RESUME
- ~~~~~~~~~~~~~~~~~~
+Using TRACE_RESUME
+~~~~~~~~~~~~~~~~~~
I've been working at making the machines I have able to STR, and almost
always it's a driver that is buggy. Thank God for the suspend/resume
@@ -27,7 +29,7 @@ machine that doesn't boot) is:
- enable PM_DEBUG, and PM_TRACE
- - use a script like this:
+ - use a script like this::
#!/bin/sh
sync
@@ -38,7 +40,7 @@ machine that doesn't boot) is:
- if it doesn't come back up (which is usually the problem), reboot by
holding the power button down, and look at the dmesg output for things
- like
+ like::
Magic number: 4:156:725
hash matches drivers/base/power/resume.c:28
@@ -52,7 +54,7 @@ machine that doesn't boot) is:
If no device matches the hash (or any matches appear to be false positives),
the culprit may be a device from a loadable kernel module that is not loaded
until after the hash is checked. You can check the hash against the current
- devices again after more modules are loaded using sysfs:
+ devices again after more modules are loaded using sysfs::
cat /sys/power/pm_trace_dev_match
diff --git a/Documentation/power/suspend-and-cpuhotplug.txt b/Documentation/power/suspend-and-cpuhotplug.rst
index a8751b8df10e..7ac8e1f549f4 100644
--- a/Documentation/power/suspend-and-cpuhotplug.txt
+++ b/Documentation/power/suspend-and-cpuhotplug.rst
@@ -1,10 +1,15 @@
+====================================================================
Interaction of Suspend code (S3) with the CPU hotplug infrastructure
+====================================================================
- (C) 2011 - 2014 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
+(C) 2011 - 2014 Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
-I. How does the regular CPU hotplug code differ from how the Suspend-to-RAM
- infrastructure uses it internally? And where do they share common code?
+I. Differences between CPU hotplug and Suspend-to-RAM
+======================================================
+
+How does the regular CPU hotplug code differ from how the Suspend-to-RAM
+infrastructure uses it internally? And where do they share common code?
Well, a picture is worth a thousand words... So ASCII art follows :-)
@@ -16,13 +21,13 @@ of describing where they take different paths and where they share code.
What happens when regular CPU hotplug and Suspend-to-RAM race with each other
is not depicted here.]
-On a high level, the suspend-resume cycle goes like this:
+On a high level, the suspend-resume cycle goes like this::
-|Freeze| -> |Disable nonboot| -> |Do suspend| -> |Enable nonboot| -> |Thaw |
-|tasks | | cpus | | | | cpus | |tasks|
+ |Freeze| -> |Disable nonboot| -> |Do suspend| -> |Enable nonboot| -> |Thaw |
+ |tasks | | cpus | | | | cpus | |tasks|
-More details follow:
+More details follow::
Suspend call path
-----------------
@@ -87,7 +92,9 @@ More details follow:
Resuming back is likewise, with the counterparts being (in the order of
execution during resume):
-* enable_nonboot_cpus() which involves:
+
+* enable_nonboot_cpus() which involves::
+
| Acquire cpu_add_remove_lock
| Decrease cpu_hotplug_disabled, thereby enabling regular cpu hotplug
| Call _cpu_up() [for all those cpus in the frozen_cpus mask, in a loop]
@@ -103,6 +110,8 @@ It is to be noted here that the system_transition_mutex lock is acquired at the
beginning, when we are just starting out to suspend, and then released only
after the entire cycle is complete (i.e., suspend + resume).
+::
+
Regular CPU hotplug call path
@@ -152,16 +161,16 @@ with the 'tasks_frozen' argument set to 1.
Important files and functions/entry points:
-------------------------------------------
+-------------------------------------------
-kernel/power/process.c : freeze_processes(), thaw_processes()
-kernel/power/suspend.c : suspend_prepare(), suspend_enter(), suspend_finish()
-kernel/cpu.c: cpu_[up|down](), _cpu_[up|down](), [disable|enable]_nonboot_cpus()
+- kernel/power/process.c : freeze_processes(), thaw_processes()
+- kernel/power/suspend.c : suspend_prepare(), suspend_enter(), suspend_finish()
+- kernel/cpu.c: cpu_[up|down](), _cpu_[up|down](), [disable|enable]_nonboot_cpus()
II. What are the issues involved in CPU hotplug?
- -------------------------------------------
+------------------------------------------------
There are some interesting situations involving CPU hotplug and microcode
update on the CPUs, as discussed below:
@@ -243,8 +252,11 @@ d. Handling microcode update during suspend/hibernate:
cycles).
-III. Are there any known problems when regular CPU hotplug and suspend race
- with each other?
+III. Known problems
+===================
+
+Are there any known problems when regular CPU hotplug and suspend race
+with each other?
Yes, they are listed below:
diff --git a/Documentation/power/suspend-and-interrupts.txt b/Documentation/power/suspend-and-interrupts.rst
index 8afb29a8604a..4cda6617709a 100644
--- a/Documentation/power/suspend-and-interrupts.txt
+++ b/Documentation/power/suspend-and-interrupts.rst
@@ -1,4 +1,6 @@
+====================================
System Suspend and Device Interrupts
+====================================
Copyright (C) 2014 Intel Corp.
Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
diff --git a/Documentation/power/swsusp-and-swap-files.txt b/Documentation/power/swsusp-and-swap-files.rst
index f281886de490..a33a2919dbe4 100644
--- a/Documentation/power/swsusp-and-swap-files.txt
+++ b/Documentation/power/swsusp-and-swap-files.rst
@@ -1,4 +1,7 @@
+===============================================
Using swap files with software suspend (swsusp)
+===============================================
+
(C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
The Linux kernel handles swap files almost in the same way as it handles swap
@@ -21,20 +24,20 @@ units.
In order to use a swap file with swsusp, you need to:
-1) Create the swap file and make it active, eg.
+1) Create the swap file and make it active, eg.::
-# dd if=/dev/zero of=<swap_file_path> bs=1024 count=<swap_file_size_in_k>
-# mkswap <swap_file_path>
-# swapon <swap_file_path>
+ # dd if=/dev/zero of=<swap_file_path> bs=1024 count=<swap_file_size_in_k>
+ # mkswap <swap_file_path>
+ # swapon <swap_file_path>
2) Use an application that will bmap the swap file with the help of the
FIBMAP ioctl and determine the location of the file's swap header, as the
offset, in <PAGE_SIZE> units, from the beginning of the partition which
holds the swap file.
-3) Add the following parameters to the kernel command line:
+3) Add the following parameters to the kernel command line::
-resume=<swap_file_partition> resume_offset=<swap_file_offset>
+ resume=<swap_file_partition> resume_offset=<swap_file_offset>
where <swap_file_partition> is the partition on which the swap file is located
and <swap_file_offset> is the offset of the swap header determined by the
@@ -46,7 +49,7 @@ OR
Use a userland suspend application that will set the partition and offset
with the help of the SNAPSHOT_SET_SWAP_AREA ioctl described in
-Documentation/power/userland-swsusp.txt (this is the only method to suspend
+Documentation/power/userland-swsusp.rst (this is the only method to suspend
to a swap file allowing the resume to be initiated from an initrd or initramfs
image).
diff --git a/Documentation/power/swsusp-dmcrypt.txt b/Documentation/power/swsusp-dmcrypt.rst
index b802fbfd95ef..426df59172cd 100644
--- a/Documentation/power/swsusp-dmcrypt.txt
+++ b/Documentation/power/swsusp-dmcrypt.rst
@@ -1,13 +1,15 @@
+=======================================
+How to use dm-crypt and swsusp together
+=======================================
+
Author: Andreas Steinmetz <ast@domdv.de>
-How to use dm-crypt and swsusp together:
-========================================
Some prerequisites:
You know how dm-crypt works. If not, visit the following web page:
http://www.saout.de/misc/dm-crypt/
-You have read Documentation/power/swsusp.txt and understand it.
+You have read Documentation/power/swsusp.rst and understand it.
You did read Documentation/admin-guide/initrd.rst and know how an initrd works.
You know how to create or how to modify an initrd.
@@ -29,23 +31,23 @@ a way that the swap device you suspend to/resume from has
always the same major/minor within the initrd as well as
within your running system. The easiest way to achieve this is
to always set up this swap device first with dmsetup, so that
-it will always look like the following:
+it will always look like the following::
-brw------- 1 root root 254, 0 Jul 28 13:37 /dev/mapper/swap0
+ brw------- 1 root root 254, 0 Jul 28 13:37 /dev/mapper/swap0
Now set up your kernel to use /dev/mapper/swap0 as the default
-resume partition, so your kernel .config contains:
+resume partition, so your kernel .config contains::
-CONFIG_PM_STD_PARTITION="/dev/mapper/swap0"
+ CONFIG_PM_STD_PARTITION="/dev/mapper/swap0"
Prepare your boot loader to use the initrd you will create or
modify. For lilo the simplest setup looks like the following
-lines:
+lines::
-image=/boot/vmlinuz
-initrd=/boot/initrd.gz
-label=linux
-append="root=/dev/ram0 init=/linuxrc rw"
+ image=/boot/vmlinuz
+ initrd=/boot/initrd.gz
+ label=linux
+ append="root=/dev/ram0 init=/linuxrc rw"
Finally you need to create or modify your initrd. Lets assume
you create an initrd that reads the required dm-crypt setup
@@ -53,66 +55,66 @@ from a pcmcia flash disk card. The card is formatted with an ext2
fs which resides on /dev/hde1 when the card is inserted. The
card contains at least the encrypted swap setup in a file
named "swapkey". /etc/fstab of your initrd contains something
-like the following:
+like the following::
-/dev/hda1 /mnt ext3 ro 0 0
-none /proc proc defaults,noatime,nodiratime 0 0
-none /sys sysfs defaults,noatime,nodiratime 0 0
+ /dev/hda1 /mnt ext3 ro 0 0
+ none /proc proc defaults,noatime,nodiratime 0 0
+ none /sys sysfs defaults,noatime,nodiratime 0 0
/dev/hda1 contains an unencrypted mini system that sets up all
of your crypto devices, again by reading the setup from the
pcmcia flash disk. What follows now is a /linuxrc for your
initrd that allows you to resume from encrypted swap and that
continues boot with your mini system on /dev/hda1 if resume
-does not happen:
-
-#!/bin/sh
-PATH=/sbin:/bin:/usr/sbin:/usr/bin
-mount /proc
-mount /sys
-mapped=0
-noresume=`grep -c noresume /proc/cmdline`
-if [ "$*" != "" ]
-then
- noresume=1
-fi
-dmesg -n 1
-/sbin/cardmgr -q
-for i in 1 2 3 4 5 6 7 8 9 0
-do
- if [ -f /proc/ide/hde/media ]
+does not happen::
+
+ #!/bin/sh
+ PATH=/sbin:/bin:/usr/sbin:/usr/bin
+ mount /proc
+ mount /sys
+ mapped=0
+ noresume=`grep -c noresume /proc/cmdline`
+ if [ "$*" != "" ]
then
- usleep 500000
- mount -t ext2 -o ro /dev/hde1 /mnt
- if [ -f /mnt/swapkey ]
+ noresume=1
+ fi
+ dmesg -n 1
+ /sbin/cardmgr -q
+ for i in 1 2 3 4 5 6 7 8 9 0
+ do
+ if [ -f /proc/ide/hde/media ]
then
- dmsetup create swap0 /mnt/swapkey > /dev/null 2>&1 && mapped=1
+ usleep 500000
+ mount -t ext2 -o ro /dev/hde1 /mnt
+ if [ -f /mnt/swapkey ]
+ then
+ dmsetup create swap0 /mnt/swapkey > /dev/null 2>&1 && mapped=1
+ fi
+ umount /mnt
+ break
fi
- umount /mnt
- break
- fi
- usleep 500000
-done
-killproc /sbin/cardmgr
-dmesg -n 6
-if [ $mapped = 1 ]
-then
- if [ $noresume != 0 ]
+ usleep 500000
+ done
+ killproc /sbin/cardmgr
+ dmesg -n 6
+ if [ $mapped = 1 ]
then
- mkswap /dev/mapper/swap0 > /dev/null 2>&1
+ if [ $noresume != 0 ]
+ then
+ mkswap /dev/mapper/swap0 > /dev/null 2>&1
+ fi
+ echo 254:0 > /sys/power/resume
+ dmsetup remove swap0
fi
- echo 254:0 > /sys/power/resume
- dmsetup remove swap0
-fi
-umount /sys
-mount /mnt
-umount /proc
-cd /mnt
-pivot_root . mnt
-mount /proc
-umount -l /mnt
-umount /proc
-exec chroot . /sbin/init $* < dev/console > dev/console 2>&1
+ umount /sys
+ mount /mnt
+ umount /proc
+ cd /mnt
+ pivot_root . mnt
+ mount /proc
+ umount -l /mnt
+ umount /proc
+ exec chroot . /sbin/init $* < dev/console > dev/console 2>&1
Please don't mind the weird loop above, busybox's msh doesn't know
the let statement. Now, what is happening in the script?
diff --git a/Documentation/power/swsusp.rst b/Documentation/power/swsusp.rst
new file mode 100644
index 000000000000..d000312f6965
--- /dev/null
+++ b/Documentation/power/swsusp.rst
@@ -0,0 +1,501 @@
+============
+Swap suspend
+============
+
+Some warnings, first.
+
+.. warning::
+
+ **BIG FAT WARNING**
+
+ If you touch anything on disk between suspend and resume...
+ ...kiss your data goodbye.
+
+ If you do resume from initrd after your filesystems are mounted...
+ ...bye bye root partition.
+
+ [this is actually same case as above]
+
+ If you have unsupported ( ) devices using DMA, you may have some
+ problems. If your disk driver does not support suspend... (IDE does),
+ it may cause some problems, too. If you change kernel command line
+ between suspend and resume, it may do something wrong. If you change
+ your hardware while system is suspended... well, it was not good idea;
+ but it will probably only crash.
+
+ ( ) suspend/resume support is needed to make it safe.
+
+ If you have any filesystems on USB devices mounted before software suspend,
+ they won't be accessible after resume and you may lose data, as though
+ you have unplugged the USB devices with mounted filesystems on them;
+ see the FAQ below for details. (This is not true for more traditional
+ power states like "standby", which normally don't turn USB off.)
+
+Swap partition:
+ You need to append resume=/dev/your_swap_partition to kernel command
+ line or specify it using /sys/power/resume.
+
+Swap file:
+ If using a swapfile you can also specify a resume offset using
+ resume_offset=<number> on the kernel command line or specify it
+ in /sys/power/resume_offset.
+
+After preparing then you suspend by::
+
+ echo shutdown > /sys/power/disk; echo disk > /sys/power/state
+
+- If you feel ACPI works pretty well on your system, you might try::
+
+ echo platform > /sys/power/disk; echo disk > /sys/power/state
+
+- If you would like to write hibernation image to swap and then suspend
+ to RAM (provided your platform supports it), you can try::
+
+ echo suspend > /sys/power/disk; echo disk > /sys/power/state
+
+- If you have SATA disks, you'll need recent kernels with SATA suspend
+ support. For suspend and resume to work, make sure your disk drivers
+ are built into kernel -- not modules. [There's way to make
+ suspend/resume with modular disk drivers, see FAQ, but you probably
+ should not do that.]
+
+If you want to limit the suspend image size to N bytes, do::
+
+ echo N > /sys/power/image_size
+
+before suspend (it is limited to around 2/5 of available RAM by default).
+
+- The resume process checks for the presence of the resume device,
+ if found, it then checks the contents for the hibernation image signature.
+ If both are found, it resumes the hibernation image.
+
+- The resume process may be triggered in two ways:
+
+ 1) During lateinit: If resume=/dev/your_swap_partition is specified on
+ the kernel command line, lateinit runs the resume process. If the
+ resume device has not been probed yet, the resume process fails and
+ bootup continues.
+ 2) Manually from an initrd or initramfs: May be run from
+ the init script by using the /sys/power/resume file. It is vital
+ that this be done prior to remounting any filesystems (even as
+ read-only) otherwise data may be corrupted.
+
+Article about goals and implementation of Software Suspend for Linux
+====================================================================
+
+Author: Gábor Kuti
+Last revised: 2003-10-20 by Pavel Machek
+
+Idea and goals to achieve
+-------------------------
+
+Nowadays it is common in several laptops that they have a suspend button. It
+saves the state of the machine to a filesystem or to a partition and switches
+to standby mode. Later resuming the machine the saved state is loaded back to
+ram and the machine can continue its work. It has two real benefits. First we
+save ourselves the time machine goes down and later boots up, energy costs
+are real high when running from batteries. The other gain is that we don't have
+to interrupt our programs so processes that are calculating something for a long
+time shouldn't need to be written interruptible.
+
+swsusp saves the state of the machine into active swaps and then reboots or
+powerdowns. You must explicitly specify the swap partition to resume from with
+`resume=` kernel option. If signature is found it loads and restores saved
+state. If the option `noresume` is specified as a boot parameter, it skips
+the resuming. If the option `hibernate=nocompress` is specified as a boot
+parameter, it saves hibernation image without compression.
+
+In the meantime while the system is suspended you should not add/remove any
+of the hardware, write to the filesystems, etc.
+
+Sleep states summary
+====================
+
+There are three different interfaces you can use, /proc/acpi should
+work like this:
+
+In a really perfect world::
+
+ echo 1 > /proc/acpi/sleep # for standby
+ echo 2 > /proc/acpi/sleep # for suspend to ram
+ echo 3 > /proc/acpi/sleep # for suspend to ram, but with more power conservative
+ echo 4 > /proc/acpi/sleep # for suspend to disk
+ echo 5 > /proc/acpi/sleep # for shutdown unfriendly the system
+
+and perhaps::
+
+ echo 4b > /proc/acpi/sleep # for suspend to disk via s4bios
+
+Frequently Asked Questions
+==========================
+
+Q:
+ well, suspending a server is IMHO a really stupid thing,
+ but... (Diego Zuccato):
+
+A:
+ You bought new UPS for your server. How do you install it without
+ bringing machine down? Suspend to disk, rearrange power cables,
+ resume.
+
+ You have your server on UPS. Power died, and UPS is indicating 30
+ seconds to failure. What do you do? Suspend to disk.
+
+
+Q:
+ Maybe I'm missing something, but why don't the regular I/O paths work?
+
+A:
+ We do use the regular I/O paths. However we cannot restore the data
+ to its original location as we load it. That would create an
+ inconsistent kernel state which would certainly result in an oops.
+ Instead, we load the image into unused memory and then atomically copy
+ it back to it original location. This implies, of course, a maximum
+ image size of half the amount of memory.
+
+ There are two solutions to this:
+
+ * require half of memory to be free during suspend. That way you can
+ read "new" data onto free spots, then cli and copy
+
+ * assume we had special "polling" ide driver that only uses memory
+ between 0-640KB. That way, I'd have to make sure that 0-640KB is free
+ during suspending, but otherwise it would work...
+
+ suspend2 shares this fundamental limitation, but does not include user
+ data and disk caches into "used memory" by saving them in
+ advance. That means that the limitation goes away in practice.
+
+Q:
+ Does linux support ACPI S4?
+
+A:
+ Yes. That's what echo platform > /sys/power/disk does.
+
+Q:
+ What is 'suspend2'?
+
+A:
+ suspend2 is 'Software Suspend 2', a forked implementation of
+ suspend-to-disk which is available as separate patches for 2.4 and 2.6
+ kernels from swsusp.sourceforge.net. It includes support for SMP, 4GB
+ highmem and preemption. It also has a extensible architecture that
+ allows for arbitrary transformations on the image (compression,
+ encryption) and arbitrary backends for writing the image (eg to swap
+ or an NFS share[Work In Progress]). Questions regarding suspend2
+ should be sent to the mailing list available through the suspend2
+ website, and not to the Linux Kernel Mailing List. We are working
+ toward merging suspend2 into the mainline kernel.
+
+Q:
+ What is the freezing of tasks and why are we using it?
+
+A:
+ The freezing of tasks is a mechanism by which user space processes and some
+ kernel threads are controlled during hibernation or system-wide suspend (on some
+ architectures). See freezing-of-tasks.txt for details.
+
+Q:
+ What is the difference between "platform" and "shutdown"?
+
+A:
+ shutdown:
+ save state in linux, then tell bios to powerdown
+
+ platform:
+ save state in linux, then tell bios to powerdown and blink
+ "suspended led"
+
+ "platform" is actually right thing to do where supported, but
+ "shutdown" is most reliable (except on ACPI systems).
+
+Q:
+ I do not understand why you have such strong objections to idea of
+ selective suspend.
+
+A:
+ Do selective suspend during runtime power management, that's okay. But
+ it's useless for suspend-to-disk. (And I do not see how you could use
+ it for suspend-to-ram, I hope you do not want that).
+
+ Lets see, so you suggest to
+
+ * SUSPEND all but swap device and parents
+ * Snapshot
+ * Write image to disk
+ * SUSPEND swap device and parents
+ * Powerdown
+
+ Oh no, that does not work, if swap device or its parents uses DMA,
+ you've corrupted data. You'd have to do
+
+ * SUSPEND all but swap device and parents
+ * FREEZE swap device and parents
+ * Snapshot
+ * UNFREEZE swap device and parents
+ * Write
+ * SUSPEND swap device and parents
+
+ Which means that you still need that FREEZE state, and you get more
+ complicated code. (And I have not yet introduce details like system
+ devices).
+
+Q:
+ There don't seem to be any generally useful behavioral
+ distinctions between SUSPEND and FREEZE.
+
+A:
+ Doing SUSPEND when you are asked to do FREEZE is always correct,
+ but it may be unnecessarily slow. If you want your driver to stay simple,
+ slowness may not matter to you. It can always be fixed later.
+
+ For devices like disk it does matter, you do not want to spindown for
+ FREEZE.
+
+Q:
+ After resuming, system is paging heavily, leading to very bad interactivity.
+
+A:
+ Try running::
+
+ cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while read file
+ do
+ test -f "$file" && cat "$file" > /dev/null
+ done
+
+ after resume. swapoff -a; swapon -a may also be useful.
+
+Q:
+ What happens to devices during swsusp? They seem to be resumed
+ during system suspend?
+
+A:
+ That's correct. We need to resume them if we want to write image to
+ disk. Whole sequence goes like
+
+ **Suspend part**
+
+ running system, user asks for suspend-to-disk
+
+ user processes are stopped
+
+ suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
+ with state snapshot
+
+ state snapshot: copy of whole used memory is taken with interrupts disabled
+
+ resume(): devices are woken up so that we can write image to swap
+
+ write image to swap
+
+ suspend(PMSG_SUSPEND): suspend devices so that we can power off
+
+ turn the power off
+
+ **Resume part**
+
+ (is actually pretty similar)
+
+ running system, user asks for suspend-to-disk
+
+ user processes are stopped (in common case there are none,
+ but with resume-from-initrd, no one knows)
+
+ read image from disk
+
+ suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
+ with image restoration
+
+ image restoration: rewrite memory with image
+
+ resume(): devices are woken up so that system can continue
+
+ thaw all user processes
+
+Q:
+ What is this 'Encrypt suspend image' for?
+
+A:
+ First of all: it is not a replacement for dm-crypt encrypted swap.
+ It cannot protect your computer while it is suspended. Instead it does
+ protect from leaking sensitive data after resume from suspend.
+
+ Think of the following: you suspend while an application is running
+ that keeps sensitive data in memory. The application itself prevents
+ the data from being swapped out. Suspend, however, must write these
+ data to swap to be able to resume later on. Without suspend encryption
+ your sensitive data are then stored in plaintext on disk. This means
+ that after resume your sensitive data are accessible to all
+ applications having direct access to the swap device which was used
+ for suspend. If you don't need swap after resume these data can remain
+ on disk virtually forever. Thus it can happen that your system gets
+ broken in weeks later and sensitive data which you thought were
+ encrypted and protected are retrieved and stolen from the swap device.
+ To prevent this situation you should use 'Encrypt suspend image'.
+
+ During suspend a temporary key is created and this key is used to
+ encrypt the data written to disk. When, during resume, the data was
+ read back into memory the temporary key is destroyed which simply
+ means that all data written to disk during suspend are then
+ inaccessible so they can't be stolen later on. The only thing that
+ you must then take care of is that you call 'mkswap' for the swap
+ partition used for suspend as early as possible during regular
+ boot. This asserts that any temporary key from an oopsed suspend or
+ from a failed or aborted resume is erased from the swap device.
+
+ As a rule of thumb use encrypted swap to protect your data while your
+ system is shut down or suspended. Additionally use the encrypted
+ suspend image to prevent sensitive data from being stolen after
+ resume.
+
+Q:
+ Can I suspend to a swap file?
+
+A:
+ Generally, yes, you can. However, it requires you to use the "resume=" and
+ "resume_offset=" kernel command line parameters, so the resume from a swap file
+ cannot be initiated from an initrd or initramfs image. See
+ swsusp-and-swap-files.txt for details.
+
+Q:
+ Is there a maximum system RAM size that is supported by swsusp?
+
+A:
+ It should work okay with highmem.
+
+Q:
+ Does swsusp (to disk) use only one swap partition or can it use
+ multiple swap partitions (aggregate them into one logical space)?
+
+A:
+ Only one swap partition, sorry.
+
+Q:
+ If my application(s) causes lots of memory & swap space to be used
+ (over half of the total system RAM), is it correct that it is likely
+ to be useless to try to suspend to disk while that app is running?
+
+A:
+ No, it should work okay, as long as your app does not mlock()
+ it. Just prepare big enough swap partition.
+
+Q:
+ What information is useful for debugging suspend-to-disk problems?
+
+A:
+ Well, last messages on the screen are always useful. If something
+ is broken, it is usually some kernel driver, therefore trying with as
+ little as possible modules loaded helps a lot. I also prefer people to
+ suspend from console, preferably without X running. Booting with
+ init=/bin/bash, then swapon and starting suspend sequence manually
+ usually does the trick. Then it is good idea to try with latest
+ vanilla kernel.
+
+Q:
+ How can distributions ship a swsusp-supporting kernel with modular
+ disk drivers (especially SATA)?
+
+A:
+ Well, it can be done, load the drivers, then do echo into
+ /sys/power/resume file from initrd. Be sure not to mount
+ anything, not even read-only mount, or you are going to lose your
+ data.
+
+Q:
+ How do I make suspend more verbose?
+
+A:
+ If you want to see any non-error kernel messages on the virtual
+ terminal the kernel switches to during suspend, you have to set the
+ kernel console loglevel to at least 4 (KERN_WARNING), for example by
+ doing::
+
+ # save the old loglevel
+ read LOGLEVEL DUMMY < /proc/sys/kernel/printk
+ # set the loglevel so we see the progress bar.
+ # if the level is higher than needed, we leave it alone.
+ if [ $LOGLEVEL -lt 5 ]; then
+ echo 5 > /proc/sys/kernel/printk
+ fi
+
+ IMG_SZ=0
+ read IMG_SZ < /sys/power/image_size
+ echo -n disk > /sys/power/state
+ RET=$?
+ #
+ # the logic here is:
+ # if image_size > 0 (without kernel support, IMG_SZ will be zero),
+ # then try again with image_size set to zero.
+ if [ $RET -ne 0 -a $IMG_SZ -ne 0 ]; then # try again with minimal image size
+ echo 0 > /sys/power/image_size
+ echo -n disk > /sys/power/state
+ RET=$?
+ fi
+
+ # restore previous loglevel
+ echo $LOGLEVEL > /proc/sys/kernel/printk
+ exit $RET
+
+Q:
+ Is this true that if I have a mounted filesystem on a USB device and
+ I suspend to disk, I can lose data unless the filesystem has been mounted
+ with "sync"?
+
+A:
+ That's right ... if you disconnect that device, you may lose data.
+ In fact, even with "-o sync" you can lose data if your programs have
+ information in buffers they haven't written out to a disk you disconnect,
+ or if you disconnect before the device finished saving data you wrote.
+
+ Software suspend normally powers down USB controllers, which is equivalent
+ to disconnecting all USB devices attached to your system.
+
+ Your system might well support low-power modes for its USB controllers
+ while the system is asleep, maintaining the connection, using true sleep
+ modes like "suspend-to-RAM" or "standby". (Don't write "disk" to the
+ /sys/power/state file; write "standby" or "mem".) We've not seen any
+ hardware that can use these modes through software suspend, although in
+ theory some systems might support "platform" modes that won't break the
+ USB connections.
+
+ Remember that it's always a bad idea to unplug a disk drive containing a
+ mounted filesystem. That's true even when your system is asleep! The
+ safest thing is to unmount all filesystems on removable media (such USB,
+ Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays)
+ before suspending; then remount them after resuming.
+
+ There is a work-around for this problem. For more information, see
+ Documentation/driver-api/usb/persist.rst.
+
+Q:
+ Can I suspend-to-disk using a swap partition under LVM?
+
+A:
+ Yes and No. You can suspend successfully, but the kernel will not be able
+ to resume on its own. You need an initramfs that can recognize the resume
+ situation, activate the logical volume containing the swap volume (but not
+ touch any filesystems!), and eventually call::
+
+ echo -n "$major:$minor" > /sys/power/resume
+
+ where $major and $minor are the respective major and minor device numbers of
+ the swap volume.
+
+ uswsusp works with LVM, too. See http://suspend.sourceforge.net/
+
+Q:
+ I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were
+ compiled with the similar configuration files. Anyway I found that
+ suspend to disk (and resume) is much slower on 2.6.16 compared to
+ 2.6.15. Any idea for why that might happen or how can I speed it up?
+
+A:
+ This is because the size of the suspend image is now greater than
+ for 2.6.15 (by saving more data we can get more responsive system
+ after resume).
+
+ There's the /sys/power/image_size knob that controls the size of the
+ image. If you set it to 0 (eg. by echo 0 > /sys/power/image_size as
+ root), the 2.6.15 behavior should be restored. If it is still too
+ slow, take a look at suspend.sf.net -- userland suspend is faster and
+ supports LZF compression to speed it up further.
diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt
deleted file mode 100644
index 236d1fb13640..000000000000
--- a/Documentation/power/swsusp.txt
+++ /dev/null
@@ -1,446 +0,0 @@
-Some warnings, first.
-
- * BIG FAT WARNING *********************************************************
- *
- * If you touch anything on disk between suspend and resume...
- * ...kiss your data goodbye.
- *
- * If you do resume from initrd after your filesystems are mounted...
- * ...bye bye root partition.
- * [this is actually same case as above]
- *
- * If you have unsupported (*) devices using DMA, you may have some
- * problems. If your disk driver does not support suspend... (IDE does),
- * it may cause some problems, too. If you change kernel command line
- * between suspend and resume, it may do something wrong. If you change
- * your hardware while system is suspended... well, it was not good idea;
- * but it will probably only crash.
- *
- * (*) suspend/resume support is needed to make it safe.
- *
- * If you have any filesystems on USB devices mounted before software suspend,
- * they won't be accessible after resume and you may lose data, as though
- * you have unplugged the USB devices with mounted filesystems on them;
- * see the FAQ below for details. (This is not true for more traditional
- * power states like "standby", which normally don't turn USB off.)
-
-Swap partition:
-You need to append resume=/dev/your_swap_partition to kernel command
-line or specify it using /sys/power/resume.
-
-Swap file:
-If using a swapfile you can also specify a resume offset using
-resume_offset=<number> on the kernel command line or specify it
-in /sys/power/resume_offset.
-
-After preparing then you suspend by
-
-echo shutdown > /sys/power/disk; echo disk > /sys/power/state
-
-. If you feel ACPI works pretty well on your system, you might try
-
-echo platform > /sys/power/disk; echo disk > /sys/power/state
-
-. If you would like to write hibernation image to swap and then suspend
-to RAM (provided your platform supports it), you can try
-
-echo suspend > /sys/power/disk; echo disk > /sys/power/state
-
-. If you have SATA disks, you'll need recent kernels with SATA suspend
-support. For suspend and resume to work, make sure your disk drivers
-are built into kernel -- not modules. [There's way to make
-suspend/resume with modular disk drivers, see FAQ, but you probably
-should not do that.]
-
-If you want to limit the suspend image size to N bytes, do
-
-echo N > /sys/power/image_size
-
-before suspend (it is limited to around 2/5 of available RAM by default).
-
-. The resume process checks for the presence of the resume device,
-if found, it then checks the contents for the hibernation image signature.
-If both are found, it resumes the hibernation image.
-
-. The resume process may be triggered in two ways:
- 1) During lateinit: If resume=/dev/your_swap_partition is specified on
- the kernel command line, lateinit runs the resume process. If the
- resume device has not been probed yet, the resume process fails and
- bootup continues.
- 2) Manually from an initrd or initramfs: May be run from
- the init script by using the /sys/power/resume file. It is vital
- that this be done prior to remounting any filesystems (even as
- read-only) otherwise data may be corrupted.
-
-Article about goals and implementation of Software Suspend for Linux
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Author: Gábor Kuti
-Last revised: 2003-10-20 by Pavel Machek
-
-Idea and goals to achieve
-
-Nowadays it is common in several laptops that they have a suspend button. It
-saves the state of the machine to a filesystem or to a partition and switches
-to standby mode. Later resuming the machine the saved state is loaded back to
-ram and the machine can continue its work. It has two real benefits. First we
-save ourselves the time machine goes down and later boots up, energy costs
-are real high when running from batteries. The other gain is that we don't have to
-interrupt our programs so processes that are calculating something for a long
-time shouldn't need to be written interruptible.
-
-swsusp saves the state of the machine into active swaps and then reboots or
-powerdowns. You must explicitly specify the swap partition to resume from with
-``resume='' kernel option. If signature is found it loads and restores saved
-state. If the option ``noresume'' is specified as a boot parameter, it skips
-the resuming. If the option ``hibernate=nocompress'' is specified as a boot
-parameter, it saves hibernation image without compression.
-
-In the meantime while the system is suspended you should not add/remove any
-of the hardware, write to the filesystems, etc.
-
-Sleep states summary
-====================
-
-There are three different interfaces you can use, /proc/acpi should
-work like this:
-
-In a really perfect world:
-echo 1 > /proc/acpi/sleep # for standby
-echo 2 > /proc/acpi/sleep # for suspend to ram
-echo 3 > /proc/acpi/sleep # for suspend to ram, but with more power conservative
-echo 4 > /proc/acpi/sleep # for suspend to disk
-echo 5 > /proc/acpi/sleep # for shutdown unfriendly the system
-
-and perhaps
-echo 4b > /proc/acpi/sleep # for suspend to disk via s4bios
-
-Frequently Asked Questions
-==========================
-
-Q: well, suspending a server is IMHO a really stupid thing,
-but... (Diego Zuccato):
-
-A: You bought new UPS for your server. How do you install it without
-bringing machine down? Suspend to disk, rearrange power cables,
-resume.
-
-You have your server on UPS. Power died, and UPS is indicating 30
-seconds to failure. What do you do? Suspend to disk.
-
-
-Q: Maybe I'm missing something, but why don't the regular I/O paths work?
-
-A: We do use the regular I/O paths. However we cannot restore the data
-to its original location as we load it. That would create an
-inconsistent kernel state which would certainly result in an oops.
-Instead, we load the image into unused memory and then atomically copy
-it back to it original location. This implies, of course, a maximum
-image size of half the amount of memory.
-
-There are two solutions to this:
-
-* require half of memory to be free during suspend. That way you can
-read "new" data onto free spots, then cli and copy
-
-* assume we had special "polling" ide driver that only uses memory
-between 0-640KB. That way, I'd have to make sure that 0-640KB is free
-during suspending, but otherwise it would work...
-
-suspend2 shares this fundamental limitation, but does not include user
-data and disk caches into "used memory" by saving them in
-advance. That means that the limitation goes away in practice.
-
-Q: Does linux support ACPI S4?
-
-A: Yes. That's what echo platform > /sys/power/disk does.
-
-Q: What is 'suspend2'?
-
-A: suspend2 is 'Software Suspend 2', a forked implementation of
-suspend-to-disk which is available as separate patches for 2.4 and 2.6
-kernels from swsusp.sourceforge.net. It includes support for SMP, 4GB
-highmem and preemption. It also has a extensible architecture that
-allows for arbitrary transformations on the image (compression,
-encryption) and arbitrary backends for writing the image (eg to swap
-or an NFS share[Work In Progress]). Questions regarding suspend2
-should be sent to the mailing list available through the suspend2
-website, and not to the Linux Kernel Mailing List. We are working
-toward merging suspend2 into the mainline kernel.
-
-Q: What is the freezing of tasks and why are we using it?
-
-A: The freezing of tasks is a mechanism by which user space processes and some
-kernel threads are controlled during hibernation or system-wide suspend (on some
-architectures). See freezing-of-tasks.txt for details.
-
-Q: What is the difference between "platform" and "shutdown"?
-
-A:
-
-shutdown: save state in linux, then tell bios to powerdown
-
-platform: save state in linux, then tell bios to powerdown and blink
- "suspended led"
-
-"platform" is actually right thing to do where supported, but
-"shutdown" is most reliable (except on ACPI systems).
-
-Q: I do not understand why you have such strong objections to idea of
-selective suspend.
-
-A: Do selective suspend during runtime power management, that's okay. But
-it's useless for suspend-to-disk. (And I do not see how you could use
-it for suspend-to-ram, I hope you do not want that).
-
-Lets see, so you suggest to
-
-* SUSPEND all but swap device and parents
-* Snapshot
-* Write image to disk
-* SUSPEND swap device and parents
-* Powerdown
-
-Oh no, that does not work, if swap device or its parents uses DMA,
-you've corrupted data. You'd have to do
-
-* SUSPEND all but swap device and parents
-* FREEZE swap device and parents
-* Snapshot
-* UNFREEZE swap device and parents
-* Write
-* SUSPEND swap device and parents
-
-Which means that you still need that FREEZE state, and you get more
-complicated code. (And I have not yet introduce details like system
-devices).
-
-Q: There don't seem to be any generally useful behavioral
-distinctions between SUSPEND and FREEZE.
-
-A: Doing SUSPEND when you are asked to do FREEZE is always correct,
-but it may be unnecessarily slow. If you want your driver to stay simple,
-slowness may not matter to you. It can always be fixed later.
-
-For devices like disk it does matter, you do not want to spindown for
-FREEZE.
-
-Q: After resuming, system is paging heavily, leading to very bad interactivity.
-
-A: Try running
-
-cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while read file
-do
- test -f "$file" && cat "$file" > /dev/null
-done
-
-after resume. swapoff -a; swapon -a may also be useful.
-
-Q: What happens to devices during swsusp? They seem to be resumed
-during system suspend?
-
-A: That's correct. We need to resume them if we want to write image to
-disk. Whole sequence goes like
-
- Suspend part
- ~~~~~~~~~~~~
- running system, user asks for suspend-to-disk
-
- user processes are stopped
-
- suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
- with state snapshot
-
- state snapshot: copy of whole used memory is taken with interrupts disabled
-
- resume(): devices are woken up so that we can write image to swap
-
- write image to swap
-
- suspend(PMSG_SUSPEND): suspend devices so that we can power off
-
- turn the power off
-
- Resume part
- ~~~~~~~~~~~
- (is actually pretty similar)
-
- running system, user asks for suspend-to-disk
-
- user processes are stopped (in common case there are none, but with resume-from-initrd, no one knows)
-
- read image from disk
-
- suspend(PMSG_FREEZE): devices are frozen so that they don't interfere
- with image restoration
-
- image restoration: rewrite memory with image
-
- resume(): devices are woken up so that system can continue
-
- thaw all user processes
-
-Q: What is this 'Encrypt suspend image' for?
-
-A: First of all: it is not a replacement for dm-crypt encrypted swap.
-It cannot protect your computer while it is suspended. Instead it does
-protect from leaking sensitive data after resume from suspend.
-
-Think of the following: you suspend while an application is running
-that keeps sensitive data in memory. The application itself prevents
-the data from being swapped out. Suspend, however, must write these
-data to swap to be able to resume later on. Without suspend encryption
-your sensitive data are then stored in plaintext on disk. This means
-that after resume your sensitive data are accessible to all
-applications having direct access to the swap device which was used
-for suspend. If you don't need swap after resume these data can remain
-on disk virtually forever. Thus it can happen that your system gets
-broken in weeks later and sensitive data which you thought were
-encrypted and protected are retrieved and stolen from the swap device.
-To prevent this situation you should use 'Encrypt suspend image'.
-
-During suspend a temporary key is created and this key is used to
-encrypt the data written to disk. When, during resume, the data was
-read back into memory the temporary key is destroyed which simply
-means that all data written to disk during suspend are then
-inaccessible so they can't be stolen later on. The only thing that
-you must then take care of is that you call 'mkswap' for the swap
-partition used for suspend as early as possible during regular
-boot. This asserts that any temporary key from an oopsed suspend or
-from a failed or aborted resume is erased from the swap device.
-
-As a rule of thumb use encrypted swap to protect your data while your
-system is shut down or suspended. Additionally use the encrypted
-suspend image to prevent sensitive data from being stolen after
-resume.
-
-Q: Can I suspend to a swap file?
-
-A: Generally, yes, you can. However, it requires you to use the "resume=" and
-"resume_offset=" kernel command line parameters, so the resume from a swap file
-cannot be initiated from an initrd or initramfs image. See
-swsusp-and-swap-files.txt for details.
-
-Q: Is there a maximum system RAM size that is supported by swsusp?
-
-A: It should work okay with highmem.
-
-Q: Does swsusp (to disk) use only one swap partition or can it use
-multiple swap partitions (aggregate them into one logical space)?
-
-A: Only one swap partition, sorry.
-
-Q: If my application(s) causes lots of memory & swap space to be used
-(over half of the total system RAM), is it correct that it is likely
-to be useless to try to suspend to disk while that app is running?
-
-A: No, it should work okay, as long as your app does not mlock()
-it. Just prepare big enough swap partition.
-
-Q: What information is useful for debugging suspend-to-disk problems?
-
-A: Well, last messages on the screen are always useful. If something
-is broken, it is usually some kernel driver, therefore trying with as
-little as possible modules loaded helps a lot. I also prefer people to
-suspend from console, preferably without X running. Booting with
-init=/bin/bash, then swapon and starting suspend sequence manually
-usually does the trick. Then it is good idea to try with latest
-vanilla kernel.
-
-Q: How can distributions ship a swsusp-supporting kernel with modular
-disk drivers (especially SATA)?
-
-A: Well, it can be done, load the drivers, then do echo into
-/sys/power/resume file from initrd. Be sure not to mount
-anything, not even read-only mount, or you are going to lose your
-data.
-
-Q: How do I make suspend more verbose?
-
-A: If you want to see any non-error kernel messages on the virtual
-terminal the kernel switches to during suspend, you have to set the
-kernel console loglevel to at least 4 (KERN_WARNING), for example by
-doing
-
- # save the old loglevel
- read LOGLEVEL DUMMY < /proc/sys/kernel/printk
- # set the loglevel so we see the progress bar.
- # if the level is higher than needed, we leave it alone.
- if [ $LOGLEVEL -lt 5 ]; then
- echo 5 > /proc/sys/kernel/printk
- fi
-
- IMG_SZ=0
- read IMG_SZ < /sys/power/image_size
- echo -n disk > /sys/power/state
- RET=$?
- #
- # the logic here is:
- # if image_size > 0 (without kernel support, IMG_SZ will be zero),
- # then try again with image_size set to zero.
- if [ $RET -ne 0 -a $IMG_SZ -ne 0 ]; then # try again with minimal image size
- echo 0 > /sys/power/image_size
- echo -n disk > /sys/power/state
- RET=$?
- fi
-
- # restore previous loglevel
- echo $LOGLEVEL > /proc/sys/kernel/printk
- exit $RET
-
-Q: Is this true that if I have a mounted filesystem on a USB device and
-I suspend to disk, I can lose data unless the filesystem has been mounted
-with "sync"?
-
-A: That's right ... if you disconnect that device, you may lose data.
-In fact, even with "-o sync" you can lose data if your programs have
-information in buffers they haven't written out to a disk you disconnect,
-or if you disconnect before the device finished saving data you wrote.
-
-Software suspend normally powers down USB controllers, which is equivalent
-to disconnecting all USB devices attached to your system.
-
-Your system might well support low-power modes for its USB controllers
-while the system is asleep, maintaining the connection, using true sleep
-modes like "suspend-to-RAM" or "standby". (Don't write "disk" to the
-/sys/power/state file; write "standby" or "mem".) We've not seen any
-hardware that can use these modes through software suspend, although in
-theory some systems might support "platform" modes that won't break the
-USB connections.
-
-Remember that it's always a bad idea to unplug a disk drive containing a
-mounted filesystem. That's true even when your system is asleep! The
-safest thing is to unmount all filesystems on removable media (such USB,
-Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays)
-before suspending; then remount them after resuming.
-
-There is a work-around for this problem. For more information, see
-Documentation/driver-api/usb/persist.rst.
-
-Q: Can I suspend-to-disk using a swap partition under LVM?
-
-A: Yes and No. You can suspend successfully, but the kernel will not be able
-to resume on its own. You need an initramfs that can recognize the resume
-situation, activate the logical volume containing the swap volume (but not
-touch any filesystems!), and eventually call
-
-echo -n "$major:$minor" > /sys/power/resume
-
-where $major and $minor are the respective major and minor device numbers of
-the swap volume.
-
-uswsusp works with LVM, too. See http://suspend.sourceforge.net/
-
-Q: I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were
-compiled with the similar configuration files. Anyway I found that
-suspend to disk (and resume) is much slower on 2.6.16 compared to
-2.6.15. Any idea for why that might happen or how can I speed it up?
-
-A: This is because the size of the suspend image is now greater than
-for 2.6.15 (by saving more data we can get more responsive system
-after resume).
-
-There's the /sys/power/image_size knob that controls the size of the
-image. If you set it to 0 (eg. by echo 0 > /sys/power/image_size as
-root), the 2.6.15 behavior should be restored. If it is still too
-slow, take a look at suspend.sf.net -- userland suspend is faster and
-supports LZF compression to speed it up further.
diff --git a/Documentation/power/tricks.txt b/Documentation/power/tricks.rst
index a1b8f7249f4c..ca787f142c3f 100644
--- a/Documentation/power/tricks.txt
+++ b/Documentation/power/tricks.rst
@@ -1,5 +1,7 @@
- swsusp/S3 tricks
- ~~~~~~~~~~~~~~~~
+================
+swsusp/S3 tricks
+================
+
Pavel Machek <pavel@ucw.cz>
If you want to trick swsusp/S3 into working, you might want to try:
diff --git a/Documentation/power/userland-swsusp.txt b/Documentation/power/userland-swsusp.rst
index bbfcd1bbedc5..a0fa51bb1a4d 100644
--- a/Documentation/power/userland-swsusp.txt
+++ b/Documentation/power/userland-swsusp.rst
@@ -1,4 +1,7 @@
+=====================================================
Documentation for userland software suspend interface
+=====================================================
+
(C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
First, the warnings at the beginning of swsusp.txt still apply.
@@ -30,13 +33,16 @@ called.
The ioctl() commands recognized by the device are:
-SNAPSHOT_FREEZE - freeze user space processes (the current process is
+SNAPSHOT_FREEZE
+ freeze user space processes (the current process is
not frozen); this is required for SNAPSHOT_CREATE_IMAGE
and SNAPSHOT_ATOMIC_RESTORE to succeed
-SNAPSHOT_UNFREEZE - thaw user space processes frozen by SNAPSHOT_FREEZE
+SNAPSHOT_UNFREEZE
+ thaw user space processes frozen by SNAPSHOT_FREEZE
-SNAPSHOT_CREATE_IMAGE - create a snapshot of the system memory; the
+SNAPSHOT_CREATE_IMAGE
+ create a snapshot of the system memory; the
last argument of ioctl() should be a pointer to an int variable,
the value of which will indicate whether the call returned after
creating the snapshot (1) or after restoring the system memory state
@@ -45,48 +51,59 @@ SNAPSHOT_CREATE_IMAGE - create a snapshot of the system memory; the
has been created the read() operation can be used to transfer
it out of the kernel
-SNAPSHOT_ATOMIC_RESTORE - restore the system memory state from the
+SNAPSHOT_ATOMIC_RESTORE
+ restore the system memory state from the
uploaded snapshot image; before calling it you should transfer
the system memory snapshot back to the kernel using the write()
operation; this call will not succeed if the snapshot
image is not available to the kernel
-SNAPSHOT_FREE - free memory allocated for the snapshot image
+SNAPSHOT_FREE
+ free memory allocated for the snapshot image
-SNAPSHOT_PREF_IMAGE_SIZE - set the preferred maximum size of the image
+SNAPSHOT_PREF_IMAGE_SIZE
+ set the preferred maximum size of the image
(the kernel will do its best to ensure the image size will not exceed
this number, but if it turns out to be impossible, the kernel will
create the smallest image possible)
-SNAPSHOT_GET_IMAGE_SIZE - return the actual size of the hibernation image
+SNAPSHOT_GET_IMAGE_SIZE
+ return the actual size of the hibernation image
-SNAPSHOT_AVAIL_SWAP_SIZE - return the amount of available swap in bytes (the
+SNAPSHOT_AVAIL_SWAP_SIZE
+ return the amount of available swap in bytes (the
last argument should be a pointer to an unsigned int variable that will
contain the result if the call is successful).
-SNAPSHOT_ALLOC_SWAP_PAGE - allocate a swap page from the resume partition
+SNAPSHOT_ALLOC_SWAP_PAGE
+ allocate a swap page from the resume partition
(the last argument should be a pointer to a loff_t variable that
will contain the swap page offset if the call is successful)
-SNAPSHOT_FREE_SWAP_PAGES - free all swap pages allocated by
+SNAPSHOT_FREE_SWAP_PAGES
+ free all swap pages allocated by
SNAPSHOT_ALLOC_SWAP_PAGE
-SNAPSHOT_SET_SWAP_AREA - set the resume partition and the offset (in <PAGE_SIZE>
+SNAPSHOT_SET_SWAP_AREA
+ set the resume partition and the offset (in <PAGE_SIZE>
units) from the beginning of the partition at which the swap header is
located (the last ioctl() argument should point to a struct
resume_swap_area, as defined in kernel/power/suspend_ioctls.h,
containing the resume device specification and the offset); for swap
partitions the offset is always 0, but it is different from zero for
- swap files (see Documentation/power/swsusp-and-swap-files.txt for
+ swap files (see Documentation/power/swsusp-and-swap-files.rst for
details).
-SNAPSHOT_PLATFORM_SUPPORT - enable/disable the hibernation platform support,
+SNAPSHOT_PLATFORM_SUPPORT
+ enable/disable the hibernation platform support,
depending on the argument value (enable, if the argument is nonzero)
-SNAPSHOT_POWER_OFF - make the kernel transition the system to the hibernation
+SNAPSHOT_POWER_OFF
+ make the kernel transition the system to the hibernation
state (eg. ACPI S4) using the platform (eg. ACPI) driver
-SNAPSHOT_S2RAM - suspend to RAM; using this call causes the kernel to
+SNAPSHOT_S2RAM
+ suspend to RAM; using this call causes the kernel to
immediately enter the suspend-to-RAM state, so this call must always
be preceded by the SNAPSHOT_FREEZE call and it is also necessary
to use the SNAPSHOT_UNFREEZE call after the system wakes up. This call
@@ -98,10 +115,11 @@ SNAPSHOT_S2RAM - suspend to RAM; using this call causes the kernel to
The device's read() operation can be used to transfer the snapshot image from
the kernel. It has the following limitations:
+
- you cannot read() more than one virtual memory page at a time
- read()s across page boundaries are impossible (ie. if you read() 1/2 of
- a page in the previous call, you will only be able to read()
- _at_ _most_ 1/2 of the page in the next call)
+ a page in the previous call, you will only be able to read()
+ **at most** 1/2 of the page in the next call)
The device's write() operation is used for uploading the system memory snapshot
into the kernel. It has the same limitations as the read() operation.
@@ -143,8 +161,10 @@ preferably using mlockall(), before calling SNAPSHOT_FREEZE.
The suspending utility MUST check the value stored by SNAPSHOT_CREATE_IMAGE
in the memory location pointed to by the last argument of ioctl() and proceed
in accordance with it:
+
1. If the value is 1 (ie. the system memory snapshot has just been
created and the system is ready for saving it):
+
(a) The suspending utility MUST NOT close the snapshot device
_unless_ the whole suspend procedure is to be cancelled, in
which case, if the snapshot image has already been saved, the
@@ -158,6 +178,7 @@ in accordance with it:
called. However, it MAY mount a file system that was not
mounted at that time and perform some operations on it (eg.
use it for saving the image).
+
2. If the value is 0 (ie. the system state has just been restored from
the snapshot image), the suspending utility MUST close the snapshot
device. Afterwards it will be treated as a regular userland process,
diff --git a/Documentation/power/video.txt b/Documentation/power/video.rst
index 3e6272bc4472..337a2ba9f32f 100644
--- a/Documentation/power/video.txt
+++ b/Documentation/power/video.rst
@@ -1,7 +1,8 @@
+===========================
+Video issues with S3 resume
+===========================
- Video issues with S3 resume
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 2003-2006, Pavel Machek
+2003-2006, Pavel Machek
During S3 resume, hardware needs to be reinitialized. For most
devices, this is easy, and kernel driver knows how to do
@@ -41,37 +42,37 @@ There are a few types of systems where video works after S3 resume:
(1) systems where video state is preserved over S3.
(2) systems where it is possible to call the video BIOS during S3
- resume. Unfortunately, it is not correct to call the video BIOS at
- that point, but it happens to work on some machines. Use
- acpi_sleep=s3_bios.
+ resume. Unfortunately, it is not correct to call the video BIOS at
+ that point, but it happens to work on some machines. Use
+ acpi_sleep=s3_bios.
(3) systems that initialize video card into vga text mode and where
- the BIOS works well enough to be able to set video mode. Use
- acpi_sleep=s3_mode on these.
+ the BIOS works well enough to be able to set video mode. Use
+ acpi_sleep=s3_mode on these.
(4) on some systems s3_bios kicks video into text mode, and
- acpi_sleep=s3_bios,s3_mode is needed.
+ acpi_sleep=s3_bios,s3_mode is needed.
(5) radeon systems, where X can soft-boot your video card. You'll need
- a new enough X, and a plain text console (no vesafb or radeonfb). See
- http://www.doesi.gmxhome.de/linux/tm800s3/s3.html for more information.
- Alternatively, you should use vbetool (6) instead.
+ a new enough X, and a plain text console (no vesafb or radeonfb). See
+ http://www.doesi.gmxhome.de/linux/tm800s3/s3.html for more information.
+ Alternatively, you should use vbetool (6) instead.
(6) other radeon systems, where vbetool is enough to bring system back
- to life. It needs text console to be working. Do vbetool vbestate
- save > /tmp/delme; echo 3 > /proc/acpi/sleep; vbetool post; vbetool
- vbestate restore < /tmp/delme; setfont <whatever>, and your video
- should work.
+ to life. It needs text console to be working. Do vbetool vbestate
+ save > /tmp/delme; echo 3 > /proc/acpi/sleep; vbetool post; vbetool
+ vbestate restore < /tmp/delme; setfont <whatever>, and your video
+ should work.
(7) on some systems, it is possible to boot most of kernel, and then
- POSTing bios works. Ole Rohne has patch to do just that at
- http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2.
+ POSTing bios works. Ole Rohne has patch to do just that at
+ http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2.
-(8) on some systems, you can use the video_post utility and or
- do echo 3 > /sys/power/state && /usr/sbin/video_post - which will
- initialize the display in console mode. If you are in X, you can switch
- to a virtual terminal and back to X using CTRL+ALT+F1 - CTRL+ALT+F7 to get
- the display working in graphical mode again.
+(8) on some systems, you can use the video_post utility and or
+ do echo 3 > /sys/power/state && /usr/sbin/video_post - which will
+ initialize the display in console mode. If you are in X, you can switch
+ to a virtual terminal and back to X using CTRL+ALT+F1 - CTRL+ALT+F7 to get
+ the display working in graphical mode again.
Now, if you pass acpi_sleep=something, and it does not work with your
bios, you'll get a hard crash during resume. Be careful. Also it is
@@ -87,99 +88,126 @@ chance of working.
Table of known working notebooks:
+
+=============================== ===============================================
Model hack (or "how to do it")
-------------------------------------------------------------------------------
+=============================== ===============================================
Acer Aspire 1406LC ole's late BIOS init (7), turn off DRI
Acer TM 230 s3_bios (2)
Acer TM 242FX vbetool (6)
Acer TM C110 video_post (8)
-Acer TM C300 vga=normal (only suspend on console, not in X), vbetool (6) or video_post (8)
+Acer TM C300 vga=normal (only suspend on console, not in X),
+ vbetool (6) or video_post (8)
Acer TM 4052LCi s3_bios (2)
Acer TM 636Lci s3_bios,s3_mode (4)
-Acer TM 650 (Radeon M7) vga=normal plus boot-radeon (5) gets text console back
-Acer TM 660 ??? (*)
-Acer TM 800 vga=normal, X patches, see webpage (5) or vbetool (6)
-Acer TM 803 vga=normal, X patches, see webpage (5) or vbetool (6)
+Acer TM 650 (Radeon M7) vga=normal plus boot-radeon (5) gets text
+ console back
+Acer TM 660 ??? [#f1]_
+Acer TM 800 vga=normal, X patches, see webpage (5)
+ or vbetool (6)
+Acer TM 803 vga=normal, X patches, see webpage (5)
+ or vbetool (6)
Acer TM 803LCi vga=normal, vbetool (6)
Arima W730a vbetool needed (6)
-Asus L2400D s3_mode (3)(***) (S1 also works OK)
+Asus L2400D s3_mode (3) [#f2]_ (S1 also works OK)
Asus L3350M (SiS 740) (6)
Asus L3800C (Radeon M7) s3_bios (2) (S1 also works OK)
-Asus M6887Ne vga=normal, s3_bios (2), use radeon driver instead of fglrx in x.org
+Asus M6887Ne vga=normal, s3_bios (2), use radeon driver
+ instead of fglrx in x.org
Athlon64 desktop prototype s3_bios (2)
-Compal CL-50 ??? (*)
+Compal CL-50 ??? [#f1]_
Compaq Armada E500 - P3-700 none (1) (S1 also works OK)
Compaq Evo N620c vga=normal, s3_bios (2)
Dell 600m, ATI R250 Lf none (1), but needs xorg-x11-6.8.1.902-1
Dell D600, ATI RV250 vga=normal and X, or try vbestate (6)
-Dell D610 vga=normal and X (possibly vbestate (6) too, but not tested)
-Dell Inspiron 4000 ??? (*)
-Dell Inspiron 500m ??? (*)
+Dell D610 vga=normal and X (possibly vbestate (6) too,
+ but not tested)
+Dell Inspiron 4000 ??? [#f1]_
+Dell Inspiron 500m ??? [#f1]_
Dell Inspiron 510m ???
Dell Inspiron 5150 vbetool needed (6)
-Dell Inspiron 600m ??? (*)
-Dell Inspiron 8200 ??? (*)
-Dell Inspiron 8500 ??? (*)
-Dell Inspiron 8600 ??? (*)
-eMachines athlon64 machines vbetool needed (6) (someone please get me model #s)
-HP NC6000 s3_bios, may not use radeonfb (2); or vbetool (6)
-HP NX7000 ??? (*)
-HP Pavilion ZD7000 vbetool post needed, need open-source nv driver for X
+Dell Inspiron 600m ??? [#f1]_
+Dell Inspiron 8200 ??? [#f1]_
+Dell Inspiron 8500 ??? [#f1]_
+Dell Inspiron 8600 ??? [#f1]_
+eMachines athlon64 machines vbetool needed (6) (someone please get
+ me model #s)
+HP NC6000 s3_bios, may not use radeonfb (2);
+ or vbetool (6)
+HP NX7000 ??? [#f1]_
+HP Pavilion ZD7000 vbetool post needed, need open-source nv
+ driver for X
HP Omnibook XE3 athlon version none (1)
HP Omnibook XE3GC none (1), video is S3 Savage/IX-MV
HP Omnibook XE3L-GF vbetool (6)
HP Omnibook 5150 none (1), (S1 also works OK)
-IBM TP T20, model 2647-44G none (1), video is S3 Inc. 86C270-294 Savage/IX-MV, vesafb gets "interesting" but X work.
-IBM TP A31 / Type 2652-M5G s3_mode (3) [works ok with BIOS 1.04 2002-08-23, but not at all with BIOS 1.11 2004-11-05 :-(]
+IBM TP T20, model 2647-44G none (1), video is S3 Inc. 86C270-294
+ Savage/IX-MV, vesafb gets "interesting"
+ but X work.
+IBM TP A31 / Type 2652-M5G s3_mode (3) [works ok with
+ BIOS 1.04 2002-08-23, but not at all with
+ BIOS 1.11 2004-11-05 :-(]
IBM TP R32 / Type 2658-MMG none (1)
-IBM TP R40 2722B3G ??? (*)
+IBM TP R40 2722B3G ??? [#f1]_
IBM TP R50p / Type 1832-22U s3_bios (2)
IBM TP R51 none (1)
-IBM TP T30 236681A ??? (*)
+IBM TP T30 236681A ??? [#f1]_
IBM TP T40 / Type 2373-MU4 none (1)
IBM TP T40p none (1)
IBM TP R40p s3_bios (2)
IBM TP T41p s3_bios (2), switch to X after resume
IBM TP T42 s3_bios (2)
IBM ThinkPad T42p (2373-GTG) s3_bios (2)
-IBM TP X20 ??? (*)
+IBM TP X20 ??? [#f1]_
IBM TP X30 s3_bios, s3_mode (4)
-IBM TP X31 / Type 2672-XXH none (1), use radeontool (http://fdd.com/software/radeon/) to turn off backlight.
-IBM TP X32 none (1), but backlight is on and video is trashed after long suspend. s3_bios,s3_mode (4) works too. Perhaps that gets better results?
+IBM TP X31 / Type 2672-XXH none (1), use radeontool
+ (http://fdd.com/software/radeon/) to
+ turn off backlight.
+IBM TP X32 none (1), but backlight is on and video is
+ trashed after long suspend. s3_bios,
+ s3_mode (4) works too. Perhaps that gets
+ better results?
IBM Thinkpad X40 Type 2371-7JG s3_bios,s3_mode (4)
-IBM TP 600e none(1), but a switch to console and back to X is needed
-Medion MD4220 ??? (*)
+IBM TP 600e none(1), but a switch to console and
+ back to X is needed
+Medion MD4220 ??? [#f1]_
Samsung P35 vbetool needed (6)
Sharp PC-AR10 (ATI rage) none (1), backlight does not switch off
Sony Vaio PCG-C1VRX/K s3_bios (2)
-Sony Vaio PCG-F403 ??? (*)
+Sony Vaio PCG-F403 ??? [#f1]_
Sony Vaio PCG-GRT995MP none (1), works with 'nv' X driver
-Sony Vaio PCG-GR7/K none (1), but needs radeonfb, use radeontool (http://fdd.com/software/radeon/) to turn off backlight.
-Sony Vaio PCG-N505SN ??? (*)
+Sony Vaio PCG-GR7/K none (1), but needs radeonfb, use
+ radeontool (http://fdd.com/software/radeon/)
+ to turn off backlight.
+Sony Vaio PCG-N505SN ??? [#f1]_
Sony Vaio vgn-s260 X or boot-radeon can init it (5)
-Sony Vaio vgn-S580BH vga=normal, but suspend from X. Console will be blank unless you return to X.
+Sony Vaio vgn-S580BH vga=normal, but suspend from X. Console will
+ be blank unless you return to X.
Sony Vaio vgn-FS115B s3_bios (2),s3_mode (4)
Toshiba Libretto L5 none (1)
Toshiba Libretto 100CT/110CT vbetool (6)
Toshiba Portege 3020CT s3_mode (3)
Toshiba Satellite 4030CDT s3_mode (3) (S1 also works OK)
Toshiba Satellite 4080XCDT s3_mode (3) (S1 also works OK)
-Toshiba Satellite 4090XCDT ??? (*)
-Toshiba Satellite P10-554 s3_bios,s3_mode (4)(****)
+Toshiba Satellite 4090XCDT ??? [#f1]_
+Toshiba Satellite P10-554 s3_bios,s3_mode (4)[#f3]_
Toshiba M30 (2) xor X with nvidia driver using internal AGP
-Uniwill 244IIO ??? (*)
+Uniwill 244IIO ??? [#f1]_
+=============================== ===============================================
Known working desktop systems
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+=================== ============================= ========================
Mainboard Graphics card hack (or "how to do it")
-------------------------------------------------------------------------------
+=================== ============================= ========================
Asus A7V8X nVidia RIVA TNT2 model 64 s3_bios,s3_mode (4)
+=================== ============================= ========================
-(*) from https://wiki.ubuntu.com/HoaryPMResults, not sure
- which options to use. If you know, please tell me.
+.. [#f1] from https://wiki.ubuntu.com/HoaryPMResults, not sure
+ which options to use. If you know, please tell me.
-(***) To be tested with a newer kernel.
+.. [#f2] To be tested with a newer kernel.
-(****) Not with SMP kernel, UP only.
+.. [#f3] Not with SMP kernel, UP only.
diff --git a/Documentation/powerpc/bootwrapper.txt b/Documentation/powerpc/bootwrapper.rst
index d60fced5e1cc..a6292afba573 100644
--- a/Documentation/powerpc/bootwrapper.txt
+++ b/Documentation/powerpc/bootwrapper.rst
@@ -1,5 +1,7 @@
+========================
The PowerPC boot wrapper
-------------------------
+========================
+
Copyright (C) Secret Lab Technologies Ltd.
PowerPC image targets compresses and wraps the kernel image (vmlinux) with
@@ -21,6 +23,7 @@ it uses the wrapper script (arch/powerpc/boot/wrapper) to generate target
image. The details of the build system is discussed in the next section.
Currently, the following image format targets exist:
+ ==================== ========================================================
cuImage.%: Backwards compatible uImage for older version of
U-Boot (for versions that don't understand the device
tree). This image embeds a device tree blob inside
@@ -29,31 +32,36 @@ Currently, the following image format targets exist:
with boot wrapper code that extracts data from the old
bd_info structure and loads the data into the device
tree before jumping into the kernel.
- Because of the series of #ifdefs found in the
+
+ Because of the series of #ifdefs found in the
bd_info structure used in the old U-Boot interfaces,
cuImages are platform specific. Each specific
U-Boot platform has a different platform init file
which populates the embedded device tree with data
from the platform specific bd_info file. The platform
specific cuImage platform init code can be found in
- arch/powerpc/boot/cuboot.*.c. Selection of the correct
+ `arch/powerpc/boot/cuboot.*.c`. Selection of the correct
cuImage init code for a specific board can be found in
the wrapper structure.
+
dtbImage.%: Similar to zImage, except device tree blob is embedded
inside the image instead of provided by firmware. The
output image file can be either an elf file or a flat
binary depending on the platform.
- dtbImages are used on systems which do not have an
+
+ dtbImages are used on systems which do not have an
interface for passing a device tree directly.
dtbImages are similar to simpleImages except that
dtbImages have platform specific code for extracting
data from the board firmware, but simpleImages do not
talk to the firmware at all.
- PlayStation 3 support uses dtbImage. So do Embedded
+
+ PlayStation 3 support uses dtbImage. So do Embedded
Planet boards using the PlanetCore firmware. Board
specific initialization code is typically found in a
file named arch/powerpc/boot/<platform>.c; but this
can be overridden by the wrapper script.
+
simpleImage.%: Firmware independent compressed image that does not
depend on any particular firmware interface and embeds
a device tree blob. This image is a flat binary that
@@ -61,14 +69,16 @@ Currently, the following image format targets exist:
Firmware cannot pass any configuration data to the
kernel with this image type and it depends entirely on
the embedded device tree for all information.
- The simpleImage is useful for booting systems with
+
+ The simpleImage is useful for booting systems with
an unknown firmware interface or for booting from
a debugger when no firmware is present (such as on
the Xilinx Virtex platform). The only assumption that
simpleImage makes is that RAM is correctly initialized
and that the MMU is either off or has RAM mapped to
base address 0.
- simpleImage also supports inserting special platform
+
+ simpleImage also supports inserting special platform
specific initialization code to the start of the bootup
sequence. The virtex405 platform uses this feature to
ensure that the cache is invalidated before caching
@@ -81,9 +91,11 @@ Currently, the following image format targets exist:
named (virtex405-<board>.dts). Search the wrapper
script for 'virtex405' and see the file
arch/powerpc/boot/virtex405-head.S for details.
+
treeImage.%; Image format for used with OpenBIOS firmware found
on some ppc4xx hardware. This image embeds a device
tree blob inside the image.
+
uImage: Native image format used by U-Boot. The uImage target
does not add any boot code. It just wraps a compressed
vmlinux in the uImage data structure. This image
@@ -91,12 +103,14 @@ Currently, the following image format targets exist:
a device tree to the kernel at boot. If using an older
version of U-Boot, then you need to use a cuImage
instead.
+
zImage.%: Image format which does not embed a device tree.
Used by OpenFirmware and other firmware interfaces
which are able to supply a device tree. This image
expects firmware to provide the device tree at boot.
Typically, if you have general purpose PowerPC
hardware then you want this image format.
+ ==================== ========================================================
Image types which embed a device tree blob (simpleImage, dtbImage, treeImage,
and cuImage) all generate the device tree blob from a file in the
diff --git a/Documentation/powerpc/cpu_families.txt b/Documentation/powerpc/cpu_families.rst
index fc08e22feb1a..1e063c5440c3 100644
--- a/Documentation/powerpc/cpu_families.txt
+++ b/Documentation/powerpc/cpu_families.rst
@@ -1,3 +1,4 @@
+============
CPU Families
============
@@ -8,8 +9,8 @@ and are supported by arch/powerpc.
Book3S (aka sPAPR)
------------------
- - Hash MMU
- - Mix of 32 & 64 bit
+- Hash MMU
+- Mix of 32 & 64 bit::
+--------------+ +----------------+
| Old POWER | --------------> | RS64 (threads) |
@@ -108,8 +109,8 @@ Book3S (aka sPAPR)
IBM BookE
---------
- - Software loaded TLB.
- - All 32 bit
+- Software loaded TLB.
+- All 32 bit::
+--------------+
| 401 |
@@ -155,8 +156,8 @@ IBM BookE
Motorola/Freescale 8xx
----------------------
- - Software loaded with hardware assist.
- - All 32 bit
+- Software loaded with hardware assist.
+- All 32 bit::
+-------------+
| MPC8xx Core |
@@ -166,9 +167,9 @@ Motorola/Freescale 8xx
Freescale BookE
---------------
- - Software loaded TLB.
- - e6500 adds HW loaded indirect TLB entries.
- - Mix of 32 & 64 bit
+- Software loaded TLB.
+- e6500 adds HW loaded indirect TLB entries.
+- Mix of 32 & 64 bit::
+--------------+
| e200 |
@@ -207,8 +208,8 @@ Freescale BookE
IBM A2 core
-----------
- - Book3E, software loaded TLB + HW loaded indirect TLB entries.
- - 64 bit
+- Book3E, software loaded TLB + HW loaded indirect TLB entries.
+- 64 bit::
+--------------+ +----------------+
| A2 core | --> | WSP |
diff --git a/Documentation/powerpc/cpu_features.txt b/Documentation/powerpc/cpu_features.rst
index ae09df8722c8..b7bcdd2f41bb 100644
--- a/Documentation/powerpc/cpu_features.txt
+++ b/Documentation/powerpc/cpu_features.rst
@@ -1,3 +1,7 @@
+============
+CPU Features
+============
+
Hollis Blanchard <hollis@austin.ibm.com>
5 Jun 2002
@@ -32,7 +36,7 @@ anyways).
After detecting the processor type, the kernel patches out sections of code
that shouldn't be used by writing nop's over it. Using cpufeatures requires
just 2 macros (found in arch/powerpc/include/asm/cputable.h), as seen in head.S
-transfer_to_handler:
+transfer_to_handler::
#ifdef CONFIG_ALTIVEC
BEGIN_FTR_SECTION
diff --git a/Documentation/powerpc/cxl.txt b/Documentation/powerpc/cxl.rst
index c5e8d5098ed3..920546d81326 100644
--- a/Documentation/powerpc/cxl.txt
+++ b/Documentation/powerpc/cxl.rst
@@ -1,3 +1,4 @@
+====================================
Coherent Accelerator Interface (CXL)
====================================
@@ -21,6 +22,8 @@ Introduction
Hardware overview
=================
+ ::
+
POWER8/9 FPGA
+----------+ +---------+
| | | |
@@ -59,14 +62,16 @@ Hardware overview
the fault. The context to which this fault is serviced is based on
who owns that acceleration function.
- POWER8 <-----> PSL Version 8 is compliant to the CAIA Version 1.0.
- POWER9 <-----> PSL Version 9 is compliant to the CAIA Version 2.0.
+ - POWER8 and PSL Version 8 are compliant to the CAIA Version 1.0.
+ - POWER9 and PSL Version 9 are compliant to the CAIA Version 2.0.
+
This PSL Version 9 provides new features such as:
+
* Interaction with the nest MMU on the P9 chip.
* Native DMA support.
* Supports sending ASB_Notify messages for host thread wakeup.
* Supports Atomic operations.
- * ....
+ * etc.
Cards with a PSL9 won't work on a POWER8 system and cards with a
PSL8 won't work on a POWER9 system.
@@ -147,7 +152,9 @@ User API
master devices.
A userspace library libcxl is available here:
+
https://github.com/ibm-capi/libcxl
+
This provides a C interface to this kernel API.
open
@@ -165,7 +172,8 @@ open
When all available contexts are allocated the open call will fail
and return -ENOSPC.
- Note: IRQs need to be allocated for each context, which may limit
+ Note:
+ IRQs need to be allocated for each context, which may limit
the number of contexts that can be created, and therefore
how many times the device can be opened. The POWER8 CAPP
supports 2040 IRQs and 3 are used by the kernel, so 2037 are
@@ -186,7 +194,9 @@ ioctl
updated as userspace allocates and frees memory. This ioctl
returns once the AFU context is started.
- Takes a pointer to a struct cxl_ioctl_start_work:
+ Takes a pointer to a struct cxl_ioctl_start_work
+
+ ::
struct cxl_ioctl_start_work {
__u64 flags;
@@ -269,7 +279,7 @@ read
The buffer passed to read() must be at least 4K bytes.
The result of the read will be a buffer of one or more events,
- each event is of type struct cxl_event, of varying size.
+ each event is of type struct cxl_event, of varying size::
struct cxl_event {
struct cxl_event_header header;
@@ -280,7 +290,9 @@ read
};
};
- The struct cxl_event_header is defined as:
+ The struct cxl_event_header is defined as
+
+ ::
struct cxl_event_header {
__u16 type;
@@ -307,7 +319,9 @@ read
For future extensions and padding.
If the event type is CXL_EVENT_AFU_INTERRUPT then the event
- structure is defined as:
+ structure is defined as
+
+ ::
struct cxl_event_afu_interrupt {
__u16 flags;
@@ -326,7 +340,9 @@ read
For future extensions and padding.
If the event type is CXL_EVENT_DATA_STORAGE then the event
- structure is defined as:
+ structure is defined as
+
+ ::
struct cxl_event_data_storage {
__u16 flags;
@@ -356,7 +372,9 @@ read
For future extensions
If the event type is CXL_EVENT_AFU_ERROR then the event structure
- is defined as:
+ is defined as
+
+ ::
struct cxl_event_afu_error {
__u16 flags;
@@ -393,15 +411,15 @@ open
ioctl
-----
-CXL_IOCTL_DOWNLOAD_IMAGE:
-CXL_IOCTL_VALIDATE_IMAGE:
+CXL_IOCTL_DOWNLOAD_IMAGE / CXL_IOCTL_VALIDATE_IMAGE:
Starts and controls flashing a new FPGA image. Partial
reconfiguration is not supported (yet), so the image must contain
a copy of the PSL and AFU(s). Since an image can be quite large,
the caller may have to iterate, splitting the image in smaller
chunks.
- Takes a pointer to a struct cxl_adapter_image:
+ Takes a pointer to a struct cxl_adapter_image::
+
struct cxl_adapter_image {
__u64 flags;
__u64 data;
@@ -442,7 +460,7 @@ Udev rules
The following udev rules could be used to create a symlink to the
most logical chardev to use in any programming mode (afuX.Yd for
dedicated, afuX.Ys for afu directed), since the API is virtually
- identical for each:
+ identical for each::
SUBSYSTEM=="cxl", ATTRS{mode}=="dedicated_process", SYMLINK="cxl/%b"
SUBSYSTEM=="cxl", ATTRS{mode}=="afu_directed", \
diff --git a/Documentation/powerpc/cxlflash.txt b/Documentation/powerpc/cxlflash.rst
index a64bdaa0a1cf..cea67931b3b9 100644
--- a/Documentation/powerpc/cxlflash.txt
+++ b/Documentation/powerpc/cxlflash.rst
@@ -1,3 +1,7 @@
+================================
+Coherent Accelerator (CXL) Flash
+================================
+
Introduction
============
@@ -28,7 +32,7 @@ Introduction
responsible for the initialization of the adapter, setting up the
special path for user space access, and performing error recovery. It
communicates directly the Flash Accelerator Functional Unit (AFU)
- as described in Documentation/powerpc/cxl.txt.
+ as described in Documentation/powerpc/cxl.rst.
The cxlflash driver supports two, mutually exclusive, modes of
operation at the device (LUN) level:
@@ -58,7 +62,7 @@ Overview
The CXL Flash Adapter Driver establishes a master context with the
AFU. It uses memory mapped I/O (MMIO) for this control and setup. The
- Adapter Problem Space Memory Map looks like this:
+ Adapter Problem Space Memory Map looks like this::
+-------------------------------+
| 512 * 64 KB User MMIO |
@@ -375,7 +379,7 @@ CXL Flash Driver Host IOCTLs
Each host adapter instance that is supported by the cxlflash driver
has a special character device associated with it to enable a set of
host management function. These character devices are hosted in a
- class dedicated for cxlflash and can be accessed via /dev/cxlflash/*.
+ class dedicated for cxlflash and can be accessed via `/dev/cxlflash/*`.
Applications can be written to perform various functions using the
host ioctl APIs below.
diff --git a/Documentation/powerpc/DAWR-POWER9.txt b/Documentation/powerpc/dawr-power9.rst
index ecdbb076438c..c96ab6befd9c 100644
--- a/Documentation/powerpc/DAWR-POWER9.txt
+++ b/Documentation/powerpc/dawr-power9.rst
@@ -1,10 +1,11 @@
+=====================
DAWR issues on POWER9
-============================
+=====================
On POWER9 the Data Address Watchpoint Register (DAWR) can cause a checkstop
if it points to cache inhibited (CI) memory. Currently Linux has no way to
disinguish CI memory when configuring the DAWR, so (for now) the DAWR is
-disabled by this commit:
+disabled by this commit::
commit 9654153158d3e0684a1bdb76dbababdb7111d5a0
Author: Michael Neuling <mikey@neuling.org>
@@ -12,7 +13,7 @@ disabled by this commit:
powerpc: Disable DAWR in the base POWER9 CPU features
Technical Details:
-============================
+==================
DAWR has 6 different ways of being set.
1) ptrace
@@ -37,7 +38,7 @@ DAWR on the migration.
For xmon, the 'bd' command will return an error on P9.
Consequences for users
-============================
+======================
For GDB watchpoints (ie 'watch' command) on POWER9 bare metal , GDB
will accept the command. Unfortunately since there is no hardware
@@ -57,8 +58,8 @@ trapped in GDB. The watchpoint is remembered, so if the guest is
migrated back to the POWER8 host, it will start working again.
Force enabling the DAWR
-=============================
-Kernels (since ~v5.2) have an option to force enable the DAWR via:
+=======================
+Kernels (since ~v5.2) have an option to force enable the DAWR via::
echo Y > /sys/kernel/debug/powerpc/dawr_enable_dangerous
@@ -86,5 +87,7 @@ dawr_enable_dangerous file will fail if the hypervisor doesn't support
writing the DAWR.
To double check the DAWR is working, run this kernel selftest:
+
tools/testing/selftests/powerpc/ptrace/ptrace-hwbreak.c
+
Any errors/failures/skips mean something is wrong.
diff --git a/Documentation/powerpc/dscr.txt b/Documentation/powerpc/dscr.rst
index ece300c64f76..2ab99006014c 100644
--- a/Documentation/powerpc/dscr.txt
+++ b/Documentation/powerpc/dscr.rst
@@ -1,5 +1,6 @@
- DSCR (Data Stream Control Register)
- ================================================
+===================================
+DSCR (Data Stream Control Register)
+===================================
DSCR register in powerpc allows user to have some control of prefetch of data
stream in the processor. Please refer to the ISA documents or related manual
@@ -10,14 +11,17 @@ user interface.
(A) Data Structures:
- (1) thread_struct:
+ (1) thread_struct::
+
dscr /* Thread DSCR value */
dscr_inherit /* Thread has changed default DSCR */
- (2) PACA:
+ (2) PACA::
+
dscr_default /* per-CPU DSCR default value */
- (3) sysfs.c:
+ (3) sysfs.c::
+
dscr_default /* System DSCR default value */
(B) Scheduler Changes:
@@ -35,8 +39,8 @@ user interface.
(C) SYSFS Interface:
- Global DSCR default: /sys/devices/system/cpu/dscr_default
- CPU specific DSCR default: /sys/devices/system/cpu/cpuN/dscr
+ - Global DSCR default: /sys/devices/system/cpu/dscr_default
+ - CPU specific DSCR default: /sys/devices/system/cpu/cpuN/dscr
Changing the global DSCR default in the sysfs will change all the CPU
specific DSCR defaults immediately in their PACA structures. Again if
diff --git a/Documentation/powerpc/eeh-pci-error-recovery.txt b/Documentation/powerpc/eeh-pci-error-recovery.rst
index 678189280bb4..438a87ebc095 100644
--- a/Documentation/powerpc/eeh-pci-error-recovery.txt
+++ b/Documentation/powerpc/eeh-pci-error-recovery.rst
@@ -1,10 +1,10 @@
+==========================
+PCI Bus EEH Error Recovery
+==========================
+Linas Vepstas <linas@austin.ibm.com>
- PCI Bus EEH Error Recovery
- --------------------------
- Linas Vepstas
- <linas@austin.ibm.com>
- 12 January 2005
+12 January 2005
Overview:
@@ -143,17 +143,17 @@ seen in /proc/ppc64/eeh (subject to change). Normally, almost
all of these occur during boot, when the PCI bus is scanned, where
a large number of 0xff reads are part of the bus scan procedure.
-If a frozen slot is detected, code in
-arch/powerpc/platforms/pseries/eeh.c will print a stack trace to
-syslog (/var/log/messages). This stack trace has proven to be very
-useful to device-driver authors for finding out at what point the EEH
-error was detected, as the error itself usually occurs slightly
+If a frozen slot is detected, code in
+arch/powerpc/platforms/pseries/eeh.c will print a stack trace to
+syslog (/var/log/messages). This stack trace has proven to be very
+useful to device-driver authors for finding out at what point the EEH
+error was detected, as the error itself usually occurs slightly
beforehand.
Next, it uses the Linux kernel notifier chain/work queue mechanism to
allow any interested parties to find out about the failure. Device
drivers, or other parts of the kernel, can use
-eeh_register_notifier(struct notifier_block *) to find out about EEH
+`eeh_register_notifier(struct notifier_block *)` to find out about EEH
events. The event will include a pointer to the pci device, the
device node and some state info. Receivers of the event can "do as
they wish"; the default handler will be described further in this
@@ -162,10 +162,13 @@ section.
To assist in the recovery of the device, eeh.c exports the
following functions:
-rtas_set_slot_reset() -- assert the PCI #RST line for 1/8th of a second
-rtas_configure_bridge() -- ask firmware to configure any PCI bridges
+rtas_set_slot_reset()
+ assert the PCI #RST line for 1/8th of a second
+rtas_configure_bridge()
+ ask firmware to configure any PCI bridges
located topologically under the pci slot.
-eeh_save_bars() and eeh_restore_bars(): save and restore the PCI
+eeh_save_bars() and eeh_restore_bars():
+ save and restore the PCI
config-space info for a device and any devices under it.
@@ -191,7 +194,7 @@ events get delivered to user-space scripts.
Following is an example sequence of events that cause a device driver
close function to be called during the first phase of an EEH reset.
-The following sequence is an example of the pcnet32 device driver.
+The following sequence is an example of the pcnet32 device driver::
rpa_php_unconfig_pci_adapter (struct slot *) // in rpaphp_pci.c
{
@@ -241,53 +244,54 @@ The following sequence is an example of the pcnet32 device driver.
}}}}}}
- in drivers/pci/pci_driver.c,
- struct device_driver->remove() is just pci_device_remove()
- which calls struct pci_driver->remove() which is pcnet32_remove_one()
- which calls unregister_netdev() (in net/core/dev.c)
- which calls dev_close() (in net/core/dev.c)
- which calls dev->stop() which is pcnet32_close()
- which then does the appropriate shutdown.
+in drivers/pci/pci_driver.c,
+struct device_driver->remove() is just pci_device_remove()
+which calls struct pci_driver->remove() which is pcnet32_remove_one()
+which calls unregister_netdev() (in net/core/dev.c)
+which calls dev_close() (in net/core/dev.c)
+which calls dev->stop() which is pcnet32_close()
+which then does the appropriate shutdown.
---
+
Following is the analogous stack trace for events sent to user-space
-when the pci device is unconfigured.
+when the pci device is unconfigured::
-rpa_php_unconfig_pci_adapter() { // in rpaphp_pci.c
- calls
- pci_remove_bus_device (struct pci_dev *) { // in /drivers/pci/remove.c
+ rpa_php_unconfig_pci_adapter() { // in rpaphp_pci.c
calls
- pci_destroy_dev (struct pci_dev *) {
+ pci_remove_bus_device (struct pci_dev *) { // in /drivers/pci/remove.c
calls
- device_unregister (&dev->dev) { // in /drivers/base/core.c
+ pci_destroy_dev (struct pci_dev *) {
calls
- device_del(struct device * dev) { // in /drivers/base/core.c
+ device_unregister (&dev->dev) { // in /drivers/base/core.c
calls
- kobject_del() { //in /libs/kobject.c
+ device_del(struct device * dev) { // in /drivers/base/core.c
calls
- kobject_uevent() { // in /libs/kobject.c
+ kobject_del() { //in /libs/kobject.c
calls
- kset_uevent() { // in /lib/kobject.c
+ kobject_uevent() { // in /libs/kobject.c
calls
- kset->uevent_ops->uevent() // which is really just
- a call to
- dev_uevent() { // in /drivers/base/core.c
+ kset_uevent() { // in /lib/kobject.c
calls
- dev->bus->uevent() which is really just a call to
- pci_uevent () { // in drivers/pci/hotplug.c
- which prints device name, etc....
+ kset->uevent_ops->uevent() // which is really just
+ a call to
+ dev_uevent() { // in /drivers/base/core.c
+ calls
+ dev->bus->uevent() which is really just a call to
+ pci_uevent () { // in drivers/pci/hotplug.c
+ which prints device name, etc....
+ }
}
- }
- then kobject_uevent() sends a netlink uevent to userspace
- --> userspace uevent
- (during early boot, nobody listens to netlink events and
- kobject_uevent() executes uevent_helper[], which runs the
- event process /sbin/hotplug)
+ then kobject_uevent() sends a netlink uevent to userspace
+ --> userspace uevent
+ (during early boot, nobody listens to netlink events and
+ kobject_uevent() executes uevent_helper[], which runs the
+ event process /sbin/hotplug)
+ }
}
- }
- kobject_del() then calls sysfs_remove_dir(), which would
- trigger any user-space daemon that was watching /sysfs,
- and notice the delete event.
+ kobject_del() then calls sysfs_remove_dir(), which would
+ trigger any user-space daemon that was watching /sysfs,
+ and notice the delete event.
Pro's and Con's of the Current Design
@@ -299,12 +303,12 @@ individual device drivers, so that the current design throws a wide net.
The biggest negative of the design is that it potentially disturbs
network daemons and file systems that didn't need to be disturbed.
--- A minor complaint is that resetting the network card causes
+- A minor complaint is that resetting the network card causes
user-space back-to-back ifdown/ifup burps that potentially disturb
network daemons, that didn't need to even know that the pci
card was being rebooted.
--- A more serious concern is that the same reset, for SCSI devices,
+- A more serious concern is that the same reset, for SCSI devices,
causes havoc to mounted file systems. Scripts cannot post-facto
unmount a file system without flushing pending buffers, but this
is impossible, because I/O has already been stopped. Thus,
@@ -322,7 +326,7 @@ network daemons and file systems that didn't need to be disturbed.
from the block layer. It would be very natural to add an EEH
reset into this chain of events.
--- If a SCSI error occurs for the root device, all is lost unless
+- If a SCSI error occurs for the root device, all is lost unless
the sysadmin had the foresight to run /bin, /sbin, /etc, /var
and so on, out of ramdisk/tmpfs.
@@ -330,5 +334,3 @@ network daemons and file systems that didn't need to be disturbed.
Conclusions
-----------
There's forward progress ...
-
-
diff --git a/Documentation/powerpc/elfnote.rst b/Documentation/powerpc/elfnote.rst
new file mode 100644
index 000000000000..06602248621c
--- /dev/null
+++ b/Documentation/powerpc/elfnote.rst
@@ -0,0 +1,41 @@
+==========================
+ELF Note PowerPC Namespace
+==========================
+
+The PowerPC namespace in an ELF Note of the kernel binary is used to store
+capabilities and information which can be used by a bootloader or userland.
+
+Types and Descriptors
+---------------------
+
+The types to be used with the "PowerPC" namesapce are defined in [#f1]_.
+
+ 1) PPC_ELFNOTE_CAPABILITIES
+
+Define the capabilities supported/required by the kernel. This type uses a
+bitmap as "descriptor" field. Each bit is described below:
+
+- Ultravisor-capable bit (PowerNV only).
+
+.. code-block:: c
+
+ #define PPCCAP_ULTRAVISOR_BIT (1 << 0)
+
+Indicate that the powerpc kernel binary knows how to run in an
+ultravisor-enabled system.
+
+In an ultravisor-enabled system, some machine resources are now controlled
+by the ultravisor. If the kernel is not ultravisor-capable, but it ends up
+being run on a machine with ultravisor, the kernel will probably crash
+trying to access ultravisor resources. For instance, it may crash in early
+boot trying to set the partition table entry 0.
+
+In an ultravisor-enabled system, a bootloader could warn the user or prevent
+the kernel from being run if the PowerPC ultravisor capability doesn't exist
+or the Ultravisor-capable bit is not set.
+
+References
+----------
+
+.. [#f1] arch/powerpc/include/asm/elfnote.h
+
diff --git a/Documentation/powerpc/firmware-assisted-dump.rst b/Documentation/powerpc/firmware-assisted-dump.rst
new file mode 100644
index 000000000000..0455a78486d5
--- /dev/null
+++ b/Documentation/powerpc/firmware-assisted-dump.rst
@@ -0,0 +1,361 @@
+======================
+Firmware-Assisted Dump
+======================
+
+July 2011
+
+The goal of firmware-assisted dump is to enable the dump of
+a crashed system, and to do so from a fully-reset system, and
+to minimize the total elapsed time until the system is back
+in production use.
+
+- Firmware-Assisted Dump (FADump) infrastructure is intended to replace
+ the existing phyp assisted dump.
+- Fadump uses the same firmware interfaces and memory reservation model
+ as phyp assisted dump.
+- Unlike phyp dump, FADump exports the memory dump through /proc/vmcore
+ in the ELF format in the same way as kdump. This helps us reuse the
+ kdump infrastructure for dump capture and filtering.
+- Unlike phyp dump, userspace tool does not need to refer any sysfs
+ interface while reading /proc/vmcore.
+- Unlike phyp dump, FADump allows user to release all the memory reserved
+ for dump, with a single operation of echo 1 > /sys/kernel/fadump_release_mem.
+- Once enabled through kernel boot parameter, FADump can be
+ started/stopped through /sys/kernel/fadump_registered interface (see
+ sysfs files section below) and can be easily integrated with kdump
+ service start/stop init scripts.
+
+Comparing with kdump or other strategies, firmware-assisted
+dump offers several strong, practical advantages:
+
+- Unlike kdump, the system has been reset, and loaded
+ with a fresh copy of the kernel. In particular,
+ PCI and I/O devices have been reinitialized and are
+ in a clean, consistent state.
+- Once the dump is copied out, the memory that held the dump
+ is immediately available to the running kernel. And therefore,
+ unlike kdump, FADump doesn't need a 2nd reboot to get back
+ the system to the production configuration.
+
+The above can only be accomplished by coordination with,
+and assistance from the Power firmware. The procedure is
+as follows:
+
+- The first kernel registers the sections of memory with the
+ Power firmware for dump preservation during OS initialization.
+ These registered sections of memory are reserved by the first
+ kernel during early boot.
+
+- When system crashes, the Power firmware will copy the registered
+ low memory regions (boot memory) from source to destination area.
+ It will also save hardware PTE's.
+
+ NOTE:
+ The term 'boot memory' means size of the low memory chunk
+ that is required for a kernel to boot successfully when
+ booted with restricted memory. By default, the boot memory
+ size will be the larger of 5% of system RAM or 256MB.
+ Alternatively, user can also specify boot memory size
+ through boot parameter 'crashkernel=' which will override
+ the default calculated size. Use this option if default
+ boot memory size is not sufficient for second kernel to
+ boot successfully. For syntax of crashkernel= parameter,
+ refer to Documentation/admin-guide/kdump/kdump.rst. If any
+ offset is provided in crashkernel= parameter, it will be
+ ignored as FADump uses a predefined offset to reserve memory
+ for boot memory dump preservation in case of a crash.
+
+- After the low memory (boot memory) area has been saved, the
+ firmware will reset PCI and other hardware state. It will
+ *not* clear the RAM. It will then launch the bootloader, as
+ normal.
+
+- The freshly booted kernel will notice that there is a new node
+ (rtas/ibm,kernel-dump on pSeries or ibm,opal/dump/mpipl-boot
+ on OPAL platform) in the device tree, indicating that
+ there is crash data available from a previous boot. During
+ the early boot OS will reserve rest of the memory above
+ boot memory size effectively booting with restricted memory
+ size. This will make sure that this kernel (also, referred
+ to as second kernel or capture kernel) will not touch any
+ of the dump memory area.
+
+- User-space tools will read /proc/vmcore to obtain the contents
+ of memory, which holds the previous crashed kernel dump in ELF
+ format. The userspace tools may copy this info to disk, or
+ network, nas, san, iscsi, etc. as desired.
+
+- Once the userspace tool is done saving dump, it will echo
+ '1' to /sys/kernel/fadump_release_mem to release the reserved
+ memory back to general use, except the memory required for
+ next firmware-assisted dump registration.
+
+ e.g.::
+
+ # echo 1 > /sys/kernel/fadump_release_mem
+
+Please note that the firmware-assisted dump feature
+is only available on POWER6 and above systems on pSeries
+(PowerVM) platform and POWER9 and above systems with OP940
+or later firmware versions on PowerNV (OPAL) platform.
+Note that, OPAL firmware exports ibm,opal/dump node when
+FADump is supported on PowerNV platform.
+
+On OPAL based machines, system first boots into an intermittent
+kernel (referred to as petitboot kernel) before booting into the
+capture kernel. This kernel would have minimal kernel and/or
+userspace support to process crash data. Such kernel needs to
+preserve previously crash'ed kernel's memory for the subsequent
+capture kernel boot to process this crash data. Kernel config
+option CONFIG_PRESERVE_FA_DUMP has to be enabled on such kernel
+to ensure that crash data is preserved to process later.
+
+-- On OPAL based machines (PowerNV), if the kernel is build with
+ CONFIG_OPAL_CORE=y, OPAL memory at the time of crash is also
+ exported as /sys/firmware/opal/core file. This procfs file is
+ helpful in debugging OPAL crashes with GDB. The kernel memory
+ used for exporting this procfs file can be released by echo'ing
+ '1' to /sys/kernel/fadump_release_opalcore node.
+
+ e.g.
+ # echo 1 > /sys/kernel/fadump_release_opalcore
+
+Implementation details:
+-----------------------
+
+During boot, a check is made to see if firmware supports
+this feature on that particular machine. If it does, then
+we check to see if an active dump is waiting for us. If yes
+then everything but boot memory size of RAM is reserved during
+early boot (See Fig. 2). This area is released once we finish
+collecting the dump from user land scripts (e.g. kdump scripts)
+that are run. If there is dump data, then the
+/sys/kernel/fadump_release_mem file is created, and the reserved
+memory is held.
+
+If there is no waiting dump data, then only the memory required to
+hold CPU state, HPTE region, boot memory dump, FADump header and
+elfcore header, is usually reserved at an offset greater than boot
+memory size (see Fig. 1). This area is *not* released: this region
+will be kept permanently reserved, so that it can act as a receptacle
+for a copy of the boot memory content in addition to CPU state and
+HPTE region, in the case a crash does occur.
+
+Since this reserved memory area is used only after the system crash,
+there is no point in blocking this significant chunk of memory from
+production kernel. Hence, the implementation uses the Linux kernel's
+Contiguous Memory Allocator (CMA) for memory reservation if CMA is
+configured for kernel. With CMA reservation this memory will be
+available for applications to use it, while kernel is prevented from
+using it. With this FADump will still be able to capture all of the
+kernel memory and most of the user space memory except the user pages
+that were present in CMA region::
+
+ o Memory Reservation during first kernel
+
+ Low memory Top of memory
+ 0 boot memory size |<--- Reserved dump area --->| |
+ | | | Permanent Reservation | |
+ V V | | V
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | | |///|////| DUMP | HDR | ELF |////| |
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | ^ ^ ^ ^ ^
+ | | | | | |
+ \ CPU HPTE / | |
+ ------------------------------ | |
+ Boot memory content gets transferred | |
+ to reserved area by firmware at the | |
+ time of crash. | |
+ FADump Header |
+ (meta area) |
+ |
+ |
+ Metadata: This area holds a metadata struture whose
+ address is registered with f/w and retrieved in the
+ second kernel after crash, on platforms that support
+ tags (OPAL). Having such structure with info needed
+ to process the crashdump eases dump capture process.
+
+ Fig. 1
+
+
+ o Memory Reservation during second kernel after crash
+
+ Low memory Top of memory
+ 0 boot memory size |
+ | |<------------ Crash preserved area ------------>|
+ V V |<--- Reserved dump area --->| |
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | | |///|////| DUMP | HDR | ELF |////| |
+ +-----------+-----/ /---+---+----+-------+-----+-----+----+--+
+ | |
+ V V
+ Used by second /proc/vmcore
+ kernel to boot
+
+ +---+
+ |///| -> Regions (CPU, HPTE & Metadata) marked like this in the above
+ +---+ figures are not always present. For example, OPAL platform
+ does not have CPU & HPTE regions while Metadata region is
+ not supported on pSeries currently.
+
+ Fig. 2
+
+
+Currently the dump will be copied from /proc/vmcore to a new file upon
+user intervention. The dump data available through /proc/vmcore will be
+in ELF format. Hence the existing kdump infrastructure (kdump scripts)
+to save the dump works fine with minor modifications. KDump scripts on
+major Distro releases have already been modified to work seemlessly (no
+user intervention in saving the dump) when FADump is used, instead of
+KDump, as dump mechanism.
+
+The tools to examine the dump will be same as the ones
+used for kdump.
+
+How to enable firmware-assisted dump (FADump):
+----------------------------------------------
+
+1. Set config option CONFIG_FA_DUMP=y and build kernel.
+2. Boot into linux kernel with 'fadump=on' kernel cmdline option.
+ By default, FADump reserved memory will be initialized as CMA area.
+ Alternatively, user can boot linux kernel with 'fadump=nocma' to
+ prevent FADump to use CMA.
+3. Optionally, user can also set 'crashkernel=' kernel cmdline
+ to specify size of the memory to reserve for boot memory dump
+ preservation.
+
+NOTE:
+ 1. 'fadump_reserve_mem=' parameter has been deprecated. Instead
+ use 'crashkernel=' to specify size of the memory to reserve
+ for boot memory dump preservation.
+ 2. If firmware-assisted dump fails to reserve memory then it
+ will fallback to existing kdump mechanism if 'crashkernel='
+ option is set at kernel cmdline.
+ 3. if user wants to capture all of user space memory and ok with
+ reserved memory not available to production system, then
+ 'fadump=nocma' kernel parameter can be used to fallback to
+ old behaviour.
+
+Sysfs/debugfs files:
+--------------------
+
+Firmware-assisted dump feature uses sysfs file system to hold
+the control files and debugfs file to display memory reserved region.
+
+Here is the list of files under kernel sysfs:
+
+ /sys/kernel/fadump_enabled
+ This is used to display the FADump status.
+
+ - 0 = FADump is disabled
+ - 1 = FADump is enabled
+
+ This interface can be used by kdump init scripts to identify if
+ FADump is enabled in the kernel and act accordingly.
+
+ /sys/kernel/fadump_registered
+ This is used to display the FADump registration status as well
+ as to control (start/stop) the FADump registration.
+
+ - 0 = FADump is not registered.
+ - 1 = FADump is registered and ready to handle system crash.
+
+ To register FADump echo 1 > /sys/kernel/fadump_registered and
+ echo 0 > /sys/kernel/fadump_registered for un-register and stop the
+ FADump. Once the FADump is un-registered, the system crash will not
+ be handled and vmcore will not be captured. This interface can be
+ easily integrated with kdump service start/stop.
+
+ /sys/kernel/fadump_release_mem
+ This file is available only when FADump is active during
+ second kernel. This is used to release the reserved memory
+ region that are held for saving crash dump. To release the
+ reserved memory echo 1 to it::
+
+ echo 1 > /sys/kernel/fadump_release_mem
+
+ After echo 1, the content of the /sys/kernel/debug/powerpc/fadump_region
+ file will change to reflect the new memory reservations.
+
+ The existing userspace tools (kdump infrastructure) can be easily
+ enhanced to use this interface to release the memory reserved for
+ dump and continue without 2nd reboot.
+
+ /sys/kernel/fadump_release_opalcore
+
+ This file is available only on OPAL based machines when FADump is
+ active during capture kernel. This is used to release the memory
+ used by the kernel to export /sys/firmware/opal/core file. To
+ release this memory, echo '1' to it:
+
+ echo 1 > /sys/kernel/fadump_release_opalcore
+
+Here is the list of files under powerpc debugfs:
+(Assuming debugfs is mounted on /sys/kernel/debug directory.)
+
+ /sys/kernel/debug/powerpc/fadump_region
+ This file shows the reserved memory regions if FADump is
+ enabled otherwise this file is empty. The output format
+ is::
+
+ <region>: [<start>-<end>] <reserved-size> bytes, Dumped: <dump-size>
+
+ and for kernel DUMP region is:
+
+ DUMP: Src: <src-addr>, Dest: <dest-addr>, Size: <size>, Dumped: # bytes
+
+ e.g.
+ Contents when FADump is registered during first kernel::
+
+ # cat /sys/kernel/debug/powerpc/fadump_region
+ CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x0
+ HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x0
+ DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x0
+
+ Contents when FADump is active during second kernel::
+
+ # cat /sys/kernel/debug/powerpc/fadump_region
+ CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x40020
+ HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x1000
+ DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x10000000
+ : [0x00000010000000-0x0000006ffaffff] 0x5ffb0000 bytes, Dumped: 0x5ffb0000
+
+
+NOTE:
+ Please refer to Documentation/filesystems/debugfs.txt on
+ how to mount the debugfs filesystem.
+
+
+TODO:
+-----
+ - Need to come up with the better approach to find out more
+ accurate boot memory size that is required for a kernel to
+ boot successfully when booted with restricted memory.
+ - The FADump implementation introduces a FADump crash info structure
+ in the scratch area before the ELF core header. The idea of introducing
+ this structure is to pass some important crash info data to the second
+ kernel which will help second kernel to populate ELF core header with
+ correct data before it gets exported through /proc/vmcore. The current
+ design implementation does not address a possibility of introducing
+ additional fields (in future) to this structure without affecting
+ compatibility. Need to come up with the better approach to address this.
+
+ The possible approaches are:
+
+ 1. Introduce version field for version tracking, bump up the version
+ whenever a new field is added to the structure in future. The version
+ field can be used to find out what fields are valid for the current
+ version of the structure.
+ 2. Reserve the area of predefined size (say PAGE_SIZE) for this
+ structure and have unused area as reserved (initialized to zero)
+ for future field additions.
+
+ The advantage of approach 1 over 2 is we don't need to reserve extra space.
+
+Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
+
+This document is based on the original documentation written for phyp
+
+assisted dump by Linas Vepstas and Manish Ahuja.
diff --git a/Documentation/powerpc/firmware-assisted-dump.txt b/Documentation/powerpc/firmware-assisted-dump.txt
deleted file mode 100644
index 18c5feef2577..000000000000
--- a/Documentation/powerpc/firmware-assisted-dump.txt
+++ /dev/null
@@ -1,292 +0,0 @@
-
- Firmware-Assisted Dump
- ------------------------
- July 2011
-
-The goal of firmware-assisted dump is to enable the dump of
-a crashed system, and to do so from a fully-reset system, and
-to minimize the total elapsed time until the system is back
-in production use.
-
-- Firmware assisted dump (fadump) infrastructure is intended to replace
- the existing phyp assisted dump.
-- Fadump uses the same firmware interfaces and memory reservation model
- as phyp assisted dump.
-- Unlike phyp dump, fadump exports the memory dump through /proc/vmcore
- in the ELF format in the same way as kdump. This helps us reuse the
- kdump infrastructure for dump capture and filtering.
-- Unlike phyp dump, userspace tool does not need to refer any sysfs
- interface while reading /proc/vmcore.
-- Unlike phyp dump, fadump allows user to release all the memory reserved
- for dump, with a single operation of echo 1 > /sys/kernel/fadump_release_mem.
-- Once enabled through kernel boot parameter, fadump can be
- started/stopped through /sys/kernel/fadump_registered interface (see
- sysfs files section below) and can be easily integrated with kdump
- service start/stop init scripts.
-
-Comparing with kdump or other strategies, firmware-assisted
-dump offers several strong, practical advantages:
-
--- Unlike kdump, the system has been reset, and loaded
- with a fresh copy of the kernel. In particular,
- PCI and I/O devices have been reinitialized and are
- in a clean, consistent state.
--- Once the dump is copied out, the memory that held the dump
- is immediately available to the running kernel. And therefore,
- unlike kdump, fadump doesn't need a 2nd reboot to get back
- the system to the production configuration.
-
-The above can only be accomplished by coordination with,
-and assistance from the Power firmware. The procedure is
-as follows:
-
--- The first kernel registers the sections of memory with the
- Power firmware for dump preservation during OS initialization.
- These registered sections of memory are reserved by the first
- kernel during early boot.
-
--- When a system crashes, the Power firmware will save
- the low memory (boot memory of size larger of 5% of system RAM
- or 256MB) of RAM to the previous registered region. It will
- also save system registers, and hardware PTE's.
-
- NOTE: The term 'boot memory' means size of the low memory chunk
- that is required for a kernel to boot successfully when
- booted with restricted memory. By default, the boot memory
- size will be the larger of 5% of system RAM or 256MB.
- Alternatively, user can also specify boot memory size
- through boot parameter 'crashkernel=' which will override
- the default calculated size. Use this option if default
- boot memory size is not sufficient for second kernel to
- boot successfully. For syntax of crashkernel= parameter,
- refer to Documentation/kdump/kdump.txt. If any offset is
- provided in crashkernel= parameter, it will be ignored
- as fadump uses a predefined offset to reserve memory
- for boot memory dump preservation in case of a crash.
-
--- After the low memory (boot memory) area has been saved, the
- firmware will reset PCI and other hardware state. It will
- *not* clear the RAM. It will then launch the bootloader, as
- normal.
-
--- The freshly booted kernel will notice that there is a new
- node (ibm,dump-kernel) in the device tree, indicating that
- there is crash data available from a previous boot. During
- the early boot OS will reserve rest of the memory above
- boot memory size effectively booting with restricted memory
- size. This will make sure that the second kernel will not
- touch any of the dump memory area.
-
--- User-space tools will read /proc/vmcore to obtain the contents
- of memory, which holds the previous crashed kernel dump in ELF
- format. The userspace tools may copy this info to disk, or
- network, nas, san, iscsi, etc. as desired.
-
--- Once the userspace tool is done saving dump, it will echo
- '1' to /sys/kernel/fadump_release_mem to release the reserved
- memory back to general use, except the memory required for
- next firmware-assisted dump registration.
-
- e.g.
- # echo 1 > /sys/kernel/fadump_release_mem
-
-Please note that the firmware-assisted dump feature
-is only available on Power6 and above systems with recent
-firmware versions.
-
-Implementation details:
-----------------------
-
-During boot, a check is made to see if firmware supports
-this feature on that particular machine. If it does, then
-we check to see if an active dump is waiting for us. If yes
-then everything but boot memory size of RAM is reserved during
-early boot (See Fig. 2). This area is released once we finish
-collecting the dump from user land scripts (e.g. kdump scripts)
-that are run. If there is dump data, then the
-/sys/kernel/fadump_release_mem file is created, and the reserved
-memory is held.
-
-If there is no waiting dump data, then only the memory required
-to hold CPU state, HPTE region, boot memory dump and elfcore
-header, is usually reserved at an offset greater than boot memory
-size (see Fig. 1). This area is *not* released: this region will
-be kept permanently reserved, so that it can act as a receptacle
-for a copy of the boot memory content in addition to CPU state
-and HPTE region, in the case a crash does occur. Since this reserved
-memory area is used only after the system crash, there is no point in
-blocking this significant chunk of memory from production kernel.
-Hence, the implementation uses the Linux kernel's Contiguous Memory
-Allocator (CMA) for memory reservation if CMA is configured for kernel.
-With CMA reservation this memory will be available for applications to
-use it, while kernel is prevented from using it. With this fadump will
-still be able to capture all of the kernel memory and most of the user
-space memory except the user pages that were present in CMA region.
-
- o Memory Reservation during first kernel
-
- Low memory Top of memory
- 0 boot memory size |
- | | |<--Reserved dump area -->| |
- V V | Permanent Reservation | V
- +-----------+----------/ /---+---+----+-----------+----+------+
- | | |CPU|HPTE| DUMP |ELF | |
- +-----------+----------/ /---+---+----+-----------+----+------+
- | ^
- | |
- \ /
- -------------------------------------------
- Boot memory content gets transferred to
- reserved area by firmware at the time of
- crash
- Fig. 1
-
- o Memory Reservation during second kernel after crash
-
- Low memory Top of memory
- 0 boot memory size |
- | |<------------- Reserved dump area ----------- -->|
- V V V
- +-----------+----------/ /---+---+----+-----------+----+------+
- | | |CPU|HPTE| DUMP |ELF | |
- +-----------+----------/ /---+---+----+-----------+----+------+
- | |
- V V
- Used by second /proc/vmcore
- kernel to boot
- Fig. 2
-
-Currently the dump will be copied from /proc/vmcore to a
-a new file upon user intervention. The dump data available through
-/proc/vmcore will be in ELF format. Hence the existing kdump
-infrastructure (kdump scripts) to save the dump works fine with
-minor modifications.
-
-The tools to examine the dump will be same as the ones
-used for kdump.
-
-How to enable firmware-assisted dump (fadump):
--------------------------------------
-
-1. Set config option CONFIG_FA_DUMP=y and build kernel.
-2. Boot into linux kernel with 'fadump=on' kernel cmdline option.
- By default, fadump reserved memory will be initialized as CMA area.
- Alternatively, user can boot linux kernel with 'fadump=nocma' to
- prevent fadump to use CMA.
-3. Optionally, user can also set 'crashkernel=' kernel cmdline
- to specify size of the memory to reserve for boot memory dump
- preservation.
-
-NOTE: 1. 'fadump_reserve_mem=' parameter has been deprecated. Instead
- use 'crashkernel=' to specify size of the memory to reserve
- for boot memory dump preservation.
- 2. If firmware-assisted dump fails to reserve memory then it
- will fallback to existing kdump mechanism if 'crashkernel='
- option is set at kernel cmdline.
- 3. if user wants to capture all of user space memory and ok with
- reserved memory not available to production system, then
- 'fadump=nocma' kernel parameter can be used to fallback to
- old behaviour.
-
-Sysfs/debugfs files:
-------------
-
-Firmware-assisted dump feature uses sysfs file system to hold
-the control files and debugfs file to display memory reserved region.
-
-Here is the list of files under kernel sysfs:
-
- /sys/kernel/fadump_enabled
-
- This is used to display the fadump status.
- 0 = fadump is disabled
- 1 = fadump is enabled
-
- This interface can be used by kdump init scripts to identify if
- fadump is enabled in the kernel and act accordingly.
-
- /sys/kernel/fadump_registered
-
- This is used to display the fadump registration status as well
- as to control (start/stop) the fadump registration.
- 0 = fadump is not registered.
- 1 = fadump is registered and ready to handle system crash.
-
- To register fadump echo 1 > /sys/kernel/fadump_registered and
- echo 0 > /sys/kernel/fadump_registered for un-register and stop the
- fadump. Once the fadump is un-registered, the system crash will not
- be handled and vmcore will not be captured. This interface can be
- easily integrated with kdump service start/stop.
-
- /sys/kernel/fadump_release_mem
-
- This file is available only when fadump is active during
- second kernel. This is used to release the reserved memory
- region that are held for saving crash dump. To release the
- reserved memory echo 1 to it:
-
- echo 1 > /sys/kernel/fadump_release_mem
-
- After echo 1, the content of the /sys/kernel/debug/powerpc/fadump_region
- file will change to reflect the new memory reservations.
-
- The existing userspace tools (kdump infrastructure) can be easily
- enhanced to use this interface to release the memory reserved for
- dump and continue without 2nd reboot.
-
-Here is the list of files under powerpc debugfs:
-(Assuming debugfs is mounted on /sys/kernel/debug directory.)
-
- /sys/kernel/debug/powerpc/fadump_region
-
- This file shows the reserved memory regions if fadump is
- enabled otherwise this file is empty. The output format
- is:
- <region>: [<start>-<end>] <reserved-size> bytes, Dumped: <dump-size>
-
- e.g.
- Contents when fadump is registered during first kernel
-
- # cat /sys/kernel/debug/powerpc/fadump_region
- CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x0
- HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x0
- DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x0
-
- Contents when fadump is active during second kernel
-
- # cat /sys/kernel/debug/powerpc/fadump_region
- CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x40020
- HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x1000
- DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x10000000
- : [0x00000010000000-0x0000006ffaffff] 0x5ffb0000 bytes, Dumped: 0x5ffb0000
-
-NOTE: Please refer to Documentation/filesystems/debugfs.txt on
- how to mount the debugfs filesystem.
-
-
-TODO:
------
- o Need to come up with the better approach to find out more
- accurate boot memory size that is required for a kernel to
- boot successfully when booted with restricted memory.
- o The fadump implementation introduces a fadump crash info structure
- in the scratch area before the ELF core header. The idea of introducing
- this structure is to pass some important crash info data to the second
- kernel which will help second kernel to populate ELF core header with
- correct data before it gets exported through /proc/vmcore. The current
- design implementation does not address a possibility of introducing
- additional fields (in future) to this structure without affecting
- compatibility. Need to come up with the better approach to address this.
- The possible approaches are:
- 1. Introduce version field for version tracking, bump up the version
- whenever a new field is added to the structure in future. The version
- field can be used to find out what fields are valid for the current
- version of the structure.
- 2. Reserve the area of predefined size (say PAGE_SIZE) for this
- structure and have unused area as reserved (initialized to zero)
- for future field additions.
- The advantage of approach 1 over 2 is we don't need to reserve extra space.
----
-Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
-This document is based on the original documentation written for phyp
-assisted dump by Linas Vepstas and Manish Ahuja.
diff --git a/Documentation/powerpc/hvcs.txt b/Documentation/powerpc/hvcs.rst
index a730ca5a07f8..6808acde672f 100644
--- a/Documentation/powerpc/hvcs.txt
+++ b/Documentation/powerpc/hvcs.rst
@@ -1,19 +1,22 @@
-===========================================================================
- HVCS
- IBM "Hypervisor Virtual Console Server" Installation Guide
- for Linux Kernel 2.6.4+
- Copyright (C) 2004 IBM Corporation
+===============================================================
+HVCS IBM "Hypervisor Virtual Console Server" Installation Guide
+===============================================================
-===========================================================================
-NOTE:Eight space tabs are the optimum editor setting for reading this file.
-===========================================================================
+for Linux Kernel 2.6.4+
- Author(s) : Ryan S. Arnold <rsa@us.ibm.com>
- Date Created: March, 02, 2004
- Last Changed: August, 24, 2004
+Copyright (C) 2004 IBM Corporation
----------------------------------------------------------------------------
-Table of contents:
+.. ===========================================================================
+.. NOTE:Eight space tabs are the optimum editor setting for reading this file.
+.. ===========================================================================
+
+
+Author(s): Ryan S. Arnold <rsa@us.ibm.com>
+
+Date Created: March, 02, 2004
+Last Changed: August, 24, 2004
+
+.. Table of contents:
1. Driver Introduction:
2. System Requirements
@@ -27,8 +30,8 @@ Table of contents:
8. Questions & Answers:
9. Reporting Bugs:
----------------------------------------------------------------------------
1. Driver Introduction:
+=======================
This is the device driver for the IBM Hypervisor Virtual Console Server,
"hvcs". The IBM hvcs provides a tty driver interface to allow Linux user
@@ -38,8 +41,8 @@ ppc64 system. Physical hardware consoles per partition are not practical
on this hardware so system consoles are accessed by this driver using
firmware interfaces to virtual terminal devices.
----------------------------------------------------------------------------
2. System Requirements:
+=======================
This device driver was written using 2.6.4 Linux kernel APIs and will only
build and run on kernels of this version or later.
@@ -52,8 +55,8 @@ Sysfs must be mounted on the system so that the user can determine which
major and minor numbers are associated with each vty-server. Directions
for sysfs mounting are outside the scope of this document.
----------------------------------------------------------------------------
3. Build Options:
+=================
The hvcs driver registers itself as a tty driver. The tty layer
dynamically allocates a block of major and minor numbers in a quantity
@@ -65,11 +68,11 @@ If the default number of device entries is adequate then this driver can be
built into the kernel. If not, the default can be over-ridden by inserting
the driver as a module with insmod parameters.
----------------------------------------------------------------------------
3.1 Built-in:
+-------------
The following menuconfig example demonstrates selecting to build this
-driver into the kernel.
+driver into the kernel::
Device Drivers --->
Character devices --->
@@ -77,11 +80,11 @@ driver into the kernel.
Begin the kernel make process.
----------------------------------------------------------------------------
3.2 Module:
+-----------
The following menuconfig example demonstrates selecting to build this
-driver as a kernel module.
+driver as a kernel module::
Device Drivers --->
Character devices --->
@@ -89,11 +92,11 @@ driver as a kernel module.
The make process will build the following kernel modules:
- hvcs.ko
- hvcserver.ko
+ - hvcs.ko
+ - hvcserver.ko
To insert the module with the default allocation execute the following
-commands in the order they appear:
+commands in the order they appear::
insmod hvcserver.ko
insmod hvcs.ko
@@ -103,7 +106,7 @@ be inserted first, otherwise the hvcs module will not find some of the
symbols it expects.
To override the default use an insmod parameter as follows (requesting 4
-tty devices as an example):
+tty devices as an example)::
insmod hvcs.ko hvcs_parm_num_devs=4
@@ -115,31 +118,31 @@ source file before building.
NOTE: The length of time it takes to insmod the driver seems to be related
to the number of tty interfaces the registering driver requests.
-In order to remove the driver module execute the following command:
+In order to remove the driver module execute the following command::
rmmod hvcs.ko
The recommended method for installing hvcs as a module is to use depmod to
build a current modules.dep file in /lib/modules/`uname -r` and then
-execute:
+execute::
-modprobe hvcs hvcs_parm_num_devs=4
+ modprobe hvcs hvcs_parm_num_devs=4
The modules.dep file indicates that hvcserver.ko needs to be inserted
before hvcs.ko and modprobe uses this file to smartly insert the modules in
the proper order.
The following modprobe command is used to remove hvcs and hvcserver in the
-proper order:
+proper order::
-modprobe -r hvcs
+ modprobe -r hvcs
----------------------------------------------------------------------------
4. Installation:
+================
The tty layer creates sysfs entries which contain the major and minor
numbers allocated for the hvcs driver. The following snippet of "tree"
-output of the sysfs directory shows where these numbers are presented:
+output of the sysfs directory shows where these numbers are presented::
sys/
|-- *other sysfs base dirs*
@@ -164,7 +167,7 @@ output of the sysfs directory shows where these numbers are presented:
|-- *other sysfs base dirs*
For the above examples the following output is a result of cat'ing the
-"dev" entry in the hvcs directory:
+"dev" entry in the hvcs directory::
Pow5:/sys/class/tty/hvcs0/ # cat dev
254:0
@@ -184,7 +187,7 @@ systems running hvcs will already have the device entries created or udev
will do it automatically.
Given the example output above, to manually create a /dev/hvcs* node entry
-mknod can be used as follows:
+mknod can be used as follows::
mknod /dev/hvcs0 c 254 0
mknod /dev/hvcs1 c 254 1
@@ -195,15 +198,15 @@ Using mknod to manually create the device entries makes these device nodes
persistent. Once created they will exist prior to the driver insmod.
Attempting to connect an application to /dev/hvcs* prior to insertion of
-the hvcs module will result in an error message similar to the following:
+the hvcs module will result in an error message similar to the following::
"/dev/hvcs*: No such device".
NOTE: Just because there is a device node present doesn't mean that there
is a vty-server device configured for that node.
----------------------------------------------------------------------------
5. Connection
+=============
Since this driver controls devices that provide a tty interface a user can
interact with the device node entries using any standard tty-interactive
@@ -249,7 +252,7 @@ vty-server adapter is associated with which /dev/hvcs* node a special sysfs
attribute has been added to each vty-server sysfs entry. This entry is
called "index" and showing it reveals an integer that refers to the
/dev/hvcs* entry to use to connect to that device. For instance cating the
-index attribute of vty-server adapter 30000004 shows the following.
+index attribute of vty-server adapter 30000004 shows the following::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat index
2
@@ -262,8 +265,8 @@ system the /dev/hvcs* entry that interacts with a particular vty-server
adapter is not guaranteed to remain the same across system reboots. Look
in the Q & A section for more on this issue.
----------------------------------------------------------------------------
6. Disconnection
+================
As a security feature to prevent the delivery of stale data to an
unintended target the Power5 system firmware disables the fetching of data
@@ -305,7 +308,7 @@ connection between the vty-server and target vty ONLY if the vterm_state
previously read '1'. The write directive is ignored if the vterm_state
read '0' or if any value other than '0' was written to the vterm_state
attribute. The following example will show the method used for verifying
-the vty-server connection status and disconnecting a vty-server connection.
+the vty-server connection status and disconnecting a vty-server connection::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat vterm_state
1
@@ -318,12 +321,12 @@ the vty-server connection status and disconnecting a vty-server connection.
All vty-server connections are automatically terminated when the device is
hotplug removed and when the module is removed.
----------------------------------------------------------------------------
7. Configuration
+================
Each vty-server has a sysfs entry in the /sys/devices/vio directory, which
is symlinked in several other sysfs tree directories, notably under the
-hvcs driver entry, which looks like the following example:
+hvcs driver entry, which looks like the following example::
Pow5:/sys/bus/vio/drivers/hvcs # ls
. .. 30000003 30000004 rescan
@@ -344,7 +347,7 @@ completed or was never executed.
Vty-server entries in this directory are a 32 bit partition unique unit
address that is created by firmware. An example vty-server sysfs entry
-looks like the following:
+looks like the following::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # ls
. current_vty devspec name partner_vtys
@@ -352,21 +355,21 @@ looks like the following:
Each entry is provided, by default with a "name" attribute. Reading the
"name" attribute will reveal the device type as shown in the following
-example:
+example::
Pow5:/sys/bus/vio/drivers/hvcs/30000003 # cat name
vty-server
Each entry is also provided, by default, with a "devspec" attribute which
reveals the full device specification when read, as shown in the following
-example:
+example::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat devspec
/vdevice/vty-server@30000004
Each vty-server sysfs dir is provided with two read-only attributes that
provide lists of easily parsed partner vty data: "partner_vtys" and
-"partner_clcs".
+"partner_clcs"::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat partner_vtys
30000000
@@ -396,7 +399,7 @@ A vty-server can only be connected to a single vty at a time. The entry,
read.
The current_vty can be changed by writing a valid partner clc to the entry
-as in the following example:
+as in the following example::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # echo U5112.428.10304
8A-V4-C0 > current_vty
@@ -408,9 +411,9 @@ currently open connection is freed.
Information on the "vterm_state" attribute was covered earlier on the
chapter entitled "disconnection".
----------------------------------------------------------------------------
8. Questions & Answers:
-===========================================================================
+=======================
+
Q: What are the security concerns involving hvcs?
A: There are three main security concerns:
@@ -429,6 +432,7 @@ A: There are three main security concerns:
partition) will experience the previously logged in session.
---------------------------------------------------------------------------
+
Q: How do I multiplex a console that I grab through hvcs so that other
people can see it:
@@ -440,6 +444,7 @@ term type "screen" to others. This means that curses based programs may
not display properly in screen sessions.
---------------------------------------------------------------------------
+
Q: Why are the colors all messed up?
Q: Why are the control characters acting strange or not working?
Q: Why is the console output all strange and unintelligible?
@@ -455,6 +460,7 @@ disconnect from the console. This will ensure that the next user gets
their own TERM type set when they login.
---------------------------------------------------------------------------
+
Q: When I try to CONNECT kermit to an hvcs device I get:
"Sorry, can't open connection: /dev/hvcs*"What is happening?
@@ -490,6 +496,7 @@ A: There is not a corresponding vty-server device that maps to an existing
/dev/hvcs* entry.
---------------------------------------------------------------------------
+
Q: When I try to CONNECT kermit to an hvcs device I get:
"Sorry, write access to UUCP lockfile directory denied."
@@ -497,6 +504,7 @@ A: The /dev/hvcs* entry you have specified doesn't exist where you said it
does? Maybe you haven't inserted the module (on systems with udev).
---------------------------------------------------------------------------
+
Q: If I already have one Linux partition installed can I use hvcs on said
partition to provide the console for the install of a second Linux
partition?
@@ -505,6 +513,7 @@ A: Yes granted that your are connected to the /dev/hvcs* device using
kermit or cu or some other program that doesn't provide terminal emulation.
---------------------------------------------------------------------------
+
Q: Can I connect to more than one partition's console at a time using this
driver?
@@ -512,6 +521,7 @@ A: Yes. Of course this means that there must be more than one vty-server
configured for this partition and each must point to a disconnected vty.
---------------------------------------------------------------------------
+
Q: Does the hvcs driver support dynamic (hotplug) addition of devices?
A: Yes, if you have dlpar and hotplug enabled for your system and it has
@@ -519,6 +529,7 @@ been built into the kernel the hvcs drivers is configured to dynamically
handle additions of new devices and removals of unused devices.
---------------------------------------------------------------------------
+
Q: For some reason /dev/hvcs* doesn't map to the same vty-server adapter
after a reboot. What happened?
@@ -533,6 +544,7 @@ on how to determine which vty-server goes with which /dev/hvcs* node.
Hint; look at the sysfs "index" attribute for the vty-server.
---------------------------------------------------------------------------
+
Q: Can I use /dev/hvcs* as a conduit to another partition and use a tty
device on that partition as the other end of the pipe?
@@ -554,7 +566,9 @@ read or write to /dev/hvcs*. Now you have a tty conduit between two
partitions.
---------------------------------------------------------------------------
+
9. Reporting Bugs:
+==================
The proper channel for reporting bugs is either through the Linux OS
distribution company that provided your OS or by posting issues to the
diff --git a/Documentation/powerpc/index.rst b/Documentation/powerpc/index.rst
new file mode 100644
index 000000000000..db7b6a880f52
--- /dev/null
+++ b/Documentation/powerpc/index.rst
@@ -0,0 +1,36 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======
+powerpc
+=======
+
+.. toctree::
+ :maxdepth: 1
+
+ bootwrapper
+ cpu_families
+ cpu_features
+ cxl
+ cxlflash
+ dawr-power9
+ dscr
+ eeh-pci-error-recovery
+ elfnote
+ firmware-assisted-dump
+ hvcs
+ isa-versions
+ mpc52xx
+ pci_iov_resource_on_powernv
+ pmu-ebb
+ ptrace
+ qe_firmware
+ syscall64-abi
+ transactional_memory
+ ultravisor
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/powerpc/isa-versions.rst b/Documentation/powerpc/isa-versions.rst
index 812e20cc898c..a363d8c1603c 100644
--- a/Documentation/powerpc/isa-versions.rst
+++ b/Documentation/powerpc/isa-versions.rst
@@ -1,11 +1,12 @@
+==========================
CPU to ISA Version Mapping
==========================
Mapping of some CPU versions to relevant ISA versions.
-========= ====================
+========= ====================================================================
CPU Architecture version
-========= ====================
+========= ====================================================================
Power9 Power ISA v3.0B
Power8 Power ISA v2.07
Power7 Power ISA v2.06
@@ -22,7 +23,7 @@ PPC970 - PowerPC User Instruction Set Architecture Book I v2.01
- PowerPC Virtual Environment Architecture Book II v2.01
- PowerPC Operating Environment Architecture Book III v2.01
- Plus Altivec/VMX ~= 2.03
-========= ====================
+========= ====================================================================
Key Features
@@ -58,9 +59,9 @@ Power5 No
PPC970 No
========== ====
-========== ====================
+========== ====================================
CPU Transactional Memory
-========== ====================
+========== ====================================
Power9 Yes (* see transactional_memory.txt)
Power8 Yes
Power7 No
@@ -71,4 +72,4 @@ Power5++ No
Power5+ No
Power5 No
PPC970 No
-========== ====================
+========== ====================================
diff --git a/Documentation/powerpc/mpc52xx.txt b/Documentation/powerpc/mpc52xx.rst
index 0d540a31ea1a..8676ac63e077 100644
--- a/Documentation/powerpc/mpc52xx.txt
+++ b/Documentation/powerpc/mpc52xx.rst
@@ -1,11 +1,13 @@
+=============================
Linux 2.6.x on MPC52xx family
------------------------------
+=============================
For the latest info, go to http://www.246tNt.com/mpc52xx/
To compile/use :
- - U-Boot:
+ - U-Boot::
+
# <edit Makefile to set ARCH=ppc & CROSS_COMPILE=... ( also EXTRAVERSION
if you wish to ).
# make lite5200_defconfig
@@ -16,7 +18,8 @@ To compile/use :
=> tftpboot 400000 pRamdisk
=> bootm 200000 400000
- - DBug:
+ - DBug::
+
# <edit Makefile to set ARCH=ppc & CROSS_COMPILE=... ( also EXTRAVERSION
if you wish to ).
# make lite5200_defconfig
@@ -28,7 +31,8 @@ To compile/use :
DBug> dn -i zImage.initrd.lite5200
-Some remarks :
+Some remarks:
+
- The port is named mpc52xxx, and config options are PPC_MPC52xx. The MGT5100
is not supported, and I'm not sure anyone is interesting in working on it
so. I didn't took 5xxx because there's apparently a lot of 5xxx that have
diff --git a/Documentation/powerpc/pci_iov_resource_on_powernv.txt b/Documentation/powerpc/pci_iov_resource_on_powernv.rst
index b55c5cd83f8d..f5a5793e1613 100644
--- a/Documentation/powerpc/pci_iov_resource_on_powernv.txt
+++ b/Documentation/powerpc/pci_iov_resource_on_powernv.rst
@@ -1,6 +1,13 @@
+===================================================
+PCI Express I/O Virtualization Resource on Powerenv
+===================================================
+
Wei Yang <weiyang@linux.vnet.ibm.com>
+
Benjamin Herrenschmidt <benh@au1.ibm.com>
+
Bjorn Helgaas <bhelgaas@google.com>
+
26 Aug 2014
This document describes the requirement from hardware for PCI MMIO resource
@@ -10,6 +17,7 @@ Endpoints and the implementation on P8 (IODA2). The next two sections talks
about considerations on enabling SRIOV on IODA2.
1. Introduction to Partitionable Endpoints
+==========================================
A Partitionable Endpoint (PE) is a way to group the various resources
associated with a device or a set of devices to provide isolation between
@@ -35,6 +43,7 @@ is a completely separate HW entity that replicates the entire logic, so has
its own set of PEs, etc.
2. Implementation of Partitionable Endpoints on P8 (IODA2)
+==========================================================
P8 supports up to 256 Partitionable Endpoints per PHB.
@@ -149,6 +158,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
sense, but we haven't done it yet.
3. Considerations for SR-IOV on PowerKVM
+========================================
* SR-IOV Background
@@ -224,7 +234,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
IODA supports 256 PEs, so segmented windows contain 256 segments, so if
total_VFs is less than 256, we have the situation in Figure 1.0, where
segments [total_VFs, 255] of the M64 window may map to some MMIO range on
- other devices:
+ other devices::
0 1 total_VFs - 1
+------+------+- -+------+------+
@@ -243,7 +253,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
Figure 1.0 Direct map VF(n) BAR space
Our current solution is to allocate 256 segments even if the VF(n) BAR
- space doesn't need that much, as shown in Figure 1.1:
+ space doesn't need that much, as shown in Figure 1.1::
0 1 total_VFs - 1 255
+------+------+- -+------+------+- -+------+------+
@@ -269,6 +279,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
responds to segments [total_VFs, 255].
4. Implications for the Generic PCI Code
+========================================
The PCIe SR-IOV spec requires that the base of the VF(n) BAR space be
aligned to the size of an individual VF BAR.
diff --git a/Documentation/powerpc/pmu-ebb.txt b/Documentation/powerpc/pmu-ebb.rst
index 73cd163dbfb8..4f474758eb55 100644
--- a/Documentation/powerpc/pmu-ebb.txt
+++ b/Documentation/powerpc/pmu-ebb.rst
@@ -1,3 +1,4 @@
+========================
PMU Event Based Branches
========================
diff --git a/Documentation/powerpc/ptrace.rst b/Documentation/powerpc/ptrace.rst
new file mode 100644
index 000000000000..864d4b6dddd1
--- /dev/null
+++ b/Documentation/powerpc/ptrace.rst
@@ -0,0 +1,156 @@
+======
+Ptrace
+======
+
+GDB intends to support the following hardware debug features of BookE
+processors:
+
+4 hardware breakpoints (IAC)
+2 hardware watchpoints (read, write and read-write) (DAC)
+2 value conditions for the hardware watchpoints (DVC)
+
+For that, we need to extend ptrace so that GDB can query and set these
+resources. Since we're extending, we're trying to create an interface
+that's extendable and that covers both BookE and server processors, so
+that GDB doesn't need to special-case each of them. We added the
+following 3 new ptrace requests.
+
+1. PTRACE_PPC_GETHWDEBUGINFO
+============================
+
+Query for GDB to discover the hardware debug features. The main info to
+be returned here is the minimum alignment for the hardware watchpoints.
+BookE processors don't have restrictions here, but server processors have
+an 8-byte alignment restriction for hardware watchpoints. We'd like to avoid
+adding special cases to GDB based on what it sees in AUXV.
+
+Since we're at it, we added other useful info that the kernel can return to
+GDB: this query will return the number of hardware breakpoints, hardware
+watchpoints and whether it supports a range of addresses and a condition.
+The query will fill the following structure provided by the requesting process::
+
+ struct ppc_debug_info {
+ unit32_t version;
+ unit32_t num_instruction_bps;
+ unit32_t num_data_bps;
+ unit32_t num_condition_regs;
+ unit32_t data_bp_alignment;
+ unit32_t sizeof_condition; /* size of the DVC register */
+ uint64_t features; /* bitmask of the individual flags */
+ };
+
+features will have bits indicating whether there is support for::
+
+ #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
+ #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
+ #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
+ #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
+ #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
+
+2. PTRACE_SETHWDEBUG
+
+Sets a hardware breakpoint or watchpoint, according to the provided structure::
+
+ struct ppc_hw_breakpoint {
+ uint32_t version;
+ #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
+ #define PPC_BREAKPOINT_TRIGGER_READ 0x2
+ #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
+ uint32_t trigger_type; /* only some combinations allowed */
+ #define PPC_BREAKPOINT_MODE_EXACT 0x0
+ #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
+ #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
+ #define PPC_BREAKPOINT_MODE_MASK 0x3
+ uint32_t addr_mode; /* address match mode */
+
+ #define PPC_BREAKPOINT_CONDITION_MODE 0x3
+ #define PPC_BREAKPOINT_CONDITION_NONE 0x0
+ #define PPC_BREAKPOINT_CONDITION_AND 0x1
+ #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 /* different name for the same thing as above */
+ #define PPC_BREAKPOINT_CONDITION_OR 0x2
+ #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
+ #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 /* byte enable bits */
+ #define PPC_BREAKPOINT_CONDITION_BE(n) (1<<((n)+16))
+ uint32_t condition_mode; /* break/watchpoint condition flags */
+
+ uint64_t addr;
+ uint64_t addr2;
+ uint64_t condition_value;
+ };
+
+A request specifies one event, not necessarily just one register to be set.
+For instance, if the request is for a watchpoint with a condition, both the
+DAC and DVC registers will be set in the same request.
+
+With this GDB can ask for all kinds of hardware breakpoints and watchpoints
+that the BookE supports. COMEFROM breakpoints available in server processors
+are not contemplated, but that is out of the scope of this work.
+
+ptrace will return an integer (handle) uniquely identifying the breakpoint or
+watchpoint just created. This integer will be used in the PTRACE_DELHWDEBUG
+request to ask for its removal. Return -ENOSPC if the requested breakpoint
+can't be allocated on the registers.
+
+Some examples of using the structure to:
+
+- set a breakpoint in the first breakpoint register::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) address;
+ p.addr2 = 0;
+ p.condition_value = 0;
+
+- set a watchpoint which triggers on reads in the second watchpoint register::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) address;
+ p.addr2 = 0;
+ p.condition_value = 0;
+
+- set a watchpoint which triggers only with a specific value::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_AND | PPC_BREAKPOINT_CONDITION_BE_ALL;
+ p.addr = (uint64_t) address;
+ p.addr2 = 0;
+ p.condition_value = (uint64_t) condition;
+
+- set a ranged hardware breakpoint::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
+ p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) begin_range;
+ p.addr2 = (uint64_t) end_range;
+ p.condition_value = 0;
+
+- set a watchpoint in server processors (BookS)::
+
+ p.version = 1;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_RW;
+ p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
+ or
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) begin_range;
+ /* For PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE addr2 needs to be specified, where
+ * addr2 - addr <= 8 Bytes.
+ */
+ p.addr2 = (uint64_t) end_range;
+ p.condition_value = 0;
+
+3. PTRACE_DELHWDEBUG
+
+Takes an integer which identifies an existing breakpoint or watchpoint
+(i.e., the value returned from PTRACE_SETHWDEBUG), and deletes the
+corresponding breakpoint or watchpoint..
diff --git a/Documentation/powerpc/ptrace.txt b/Documentation/powerpc/ptrace.txt
deleted file mode 100644
index 99c5ce88d0fe..000000000000
--- a/Documentation/powerpc/ptrace.txt
+++ /dev/null
@@ -1,151 +0,0 @@
-GDB intends to support the following hardware debug features of BookE
-processors:
-
-4 hardware breakpoints (IAC)
-2 hardware watchpoints (read, write and read-write) (DAC)
-2 value conditions for the hardware watchpoints (DVC)
-
-For that, we need to extend ptrace so that GDB can query and set these
-resources. Since we're extending, we're trying to create an interface
-that's extendable and that covers both BookE and server processors, so
-that GDB doesn't need to special-case each of them. We added the
-following 3 new ptrace requests.
-
-1. PTRACE_PPC_GETHWDEBUGINFO
-
-Query for GDB to discover the hardware debug features. The main info to
-be returned here is the minimum alignment for the hardware watchpoints.
-BookE processors don't have restrictions here, but server processors have
-an 8-byte alignment restriction for hardware watchpoints. We'd like to avoid
-adding special cases to GDB based on what it sees in AUXV.
-
-Since we're at it, we added other useful info that the kernel can return to
-GDB: this query will return the number of hardware breakpoints, hardware
-watchpoints and whether it supports a range of addresses and a condition.
-The query will fill the following structure provided by the requesting process:
-
-struct ppc_debug_info {
- unit32_t version;
- unit32_t num_instruction_bps;
- unit32_t num_data_bps;
- unit32_t num_condition_regs;
- unit32_t data_bp_alignment;
- unit32_t sizeof_condition; /* size of the DVC register */
- uint64_t features; /* bitmask of the individual flags */
-};
-
-features will have bits indicating whether there is support for:
-
-#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
-#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
-#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
-#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
-#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
-
-2. PTRACE_SETHWDEBUG
-
-Sets a hardware breakpoint or watchpoint, according to the provided structure:
-
-struct ppc_hw_breakpoint {
- uint32_t version;
-#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
-#define PPC_BREAKPOINT_TRIGGER_READ 0x2
-#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
- uint32_t trigger_type; /* only some combinations allowed */
-#define PPC_BREAKPOINT_MODE_EXACT 0x0
-#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
-#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
-#define PPC_BREAKPOINT_MODE_MASK 0x3
- uint32_t addr_mode; /* address match mode */
-
-#define PPC_BREAKPOINT_CONDITION_MODE 0x3
-#define PPC_BREAKPOINT_CONDITION_NONE 0x0
-#define PPC_BREAKPOINT_CONDITION_AND 0x1
-#define PPC_BREAKPOINT_CONDITION_EXACT 0x1 /* different name for the same thing as above */
-#define PPC_BREAKPOINT_CONDITION_OR 0x2
-#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
-#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 /* byte enable bits */
-#define PPC_BREAKPOINT_CONDITION_BE(n) (1<<((n)+16))
- uint32_t condition_mode; /* break/watchpoint condition flags */
-
- uint64_t addr;
- uint64_t addr2;
- uint64_t condition_value;
-};
-
-A request specifies one event, not necessarily just one register to be set.
-For instance, if the request is for a watchpoint with a condition, both the
-DAC and DVC registers will be set in the same request.
-
-With this GDB can ask for all kinds of hardware breakpoints and watchpoints
-that the BookE supports. COMEFROM breakpoints available in server processors
-are not contemplated, but that is out of the scope of this work.
-
-ptrace will return an integer (handle) uniquely identifying the breakpoint or
-watchpoint just created. This integer will be used in the PTRACE_DELHWDEBUG
-request to ask for its removal. Return -ENOSPC if the requested breakpoint
-can't be allocated on the registers.
-
-Some examples of using the structure to:
-
-- set a breakpoint in the first breakpoint register
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = 0;
-
-- set a watchpoint which triggers on reads in the second watchpoint register
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = 0;
-
-- set a watchpoint which triggers only with a specific value
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_AND | PPC_BREAKPOINT_CONDITION_BE_ALL;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = (uint64_t) condition;
-
-- set a ranged hardware breakpoint
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
- p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) begin_range;
- p.addr2 = (uint64_t) end_range;
- p.condition_value = 0;
-
-- set a watchpoint in server processors (BookS)
-
- p.version = 1;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_RW;
- p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
- or
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
-
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) begin_range;
- /* For PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE addr2 needs to be specified, where
- * addr2 - addr <= 8 Bytes.
- */
- p.addr2 = (uint64_t) end_range;
- p.condition_value = 0;
-
-3. PTRACE_DELHWDEBUG
-
-Takes an integer which identifies an existing breakpoint or watchpoint
-(i.e., the value returned from PTRACE_SETHWDEBUG), and deletes the
-corresponding breakpoint or watchpoint..
diff --git a/Documentation/powerpc/qe_firmware.txt b/Documentation/powerpc/qe_firmware.rst
index e7ac24aec4ff..42f5103140c9 100644
--- a/Documentation/powerpc/qe_firmware.txt
+++ b/Documentation/powerpc/qe_firmware.rst
@@ -1,23 +1,23 @@
- Freescale QUICC Engine Firmware Uploading
- -----------------------------------------
+=========================================
+Freescale QUICC Engine Firmware Uploading
+=========================================
(c) 2007 Timur Tabi <timur at freescale.com>,
Freescale Semiconductor
-Table of Contents
-=================
+.. Table of Contents
- I - Software License for Firmware
+ I - Software License for Firmware
- II - Microcode Availability
+ II - Microcode Availability
- III - Description and Terminology
+ III - Description and Terminology
- IV - Microcode Programming Details
+ IV - Microcode Programming Details
- V - Firmware Structure Layout
+ V - Firmware Structure Layout
- VI - Sample Code for Creating Firmware Files
+ VI - Sample Code for Creating Firmware Files
Revision Information
====================
@@ -39,7 +39,7 @@ http://opensource.freescale.com. For other firmware files, please contact
your Freescale representative or your operating system vendor.
III - Description and Terminology
-================================
+=================================
In this document, the term 'microcode' refers to the sequence of 32-bit
integers that compose the actual QE microcode.
@@ -89,7 +89,7 @@ being fixed in the RAM package utilizing they should be activated. This data
structure signals the microcode which of these virtual traps is active.
This structure contains 6 words that the application should copy to some
-specific been defined. This table describes the structure.
+specific been defined. This table describes the structure::
---------------------------------------------------------------
| Offset in | | Destination Offset | Size of |
@@ -119,7 +119,7 @@ Extended Modes
This is a double word bit array (64 bits) that defines special functionality
which has an impact on the software drivers. Each bit has its own impact
and has special instructions for the s/w associated with it. This structure is
-described in this table:
+described in this table::
-----------------------------------------------------------------------
| Bit # | Name | Description |
@@ -220,7 +220,8 @@ The 'model' field is a 16-bit number that matches the actual SOC. The
'major' and 'minor' fields are the major and minor revision numbers,
respectively, of the SOC.
-For example, to match the 8323, revision 1.0:
+For example, to match the 8323, revision 1.0::
+
soc.model = 8323
soc.major = 1
soc.minor = 0
@@ -273,10 +274,10 @@ library and available to any driver that calles qe_get_firmware_info().
'reserved'.
After the last microcode is a 32-bit CRC. It can be calculated using
-this algorithm:
+this algorithm::
-u32 crc32(const u8 *p, unsigned int len)
-{
+ u32 crc32(const u8 *p, unsigned int len)
+ {
unsigned int i;
u32 crc = 0;
@@ -286,7 +287,7 @@ u32 crc32(const u8 *p, unsigned int len)
crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320 : 0);
}
return crc;
-}
+ }
VI - Sample Code for Creating Firmware Files
============================================
diff --git a/Documentation/powerpc/syscall64-abi.txt b/Documentation/powerpc/syscall64-abi.rst
index fa716a0d88bd..e49f69f941b9 100644
--- a/Documentation/powerpc/syscall64-abi.txt
+++ b/Documentation/powerpc/syscall64-abi.rst
@@ -5,12 +5,12 @@ Power Architecture 64-bit Linux system call ABI
syscall
=======
-syscall calling sequence[*] matches the Power Architecture 64-bit ELF ABI
+syscall calling sequence\ [1]_ matches the Power Architecture 64-bit ELF ABI
specification C function calling sequence, including register preservation
rules, with the following differences.
-[*] Some syscalls (typically low-level management functions) may have
- different calling sequences (e.g., rt_sigreturn).
+.. [1] Some syscalls (typically low-level management functions) may have
+ different calling sequences (e.g., rt_sigreturn).
Parameters and return value
---------------------------
@@ -33,12 +33,14 @@ Register preservation rules
Register preservation rules match the ELF ABI calling sequence with the
following differences:
-r0: Volatile. (System call number.)
-r3: Volatile. (Parameter 1, and return value.)
-r4-r8: Volatile. (Parameters 2-6.)
-cr0: Volatile (cr0.SO is the return error condition)
-cr1, cr5-7: Nonvolatile.
-lr: Nonvolatile.
+=========== ============= ========================================
+r0 Volatile (System call number.)
+r3 Volatile (Parameter 1, and return value.)
+r4-r8 Volatile (Parameters 2-6.)
+cr0 Volatile (cr0.SO is the return error condition)
+cr1, cr5-7 Nonvolatile
+lr Nonvolatile
+=========== ============= ========================================
All floating point and vector data registers as well as control and status
registers are nonvolatile.
@@ -90,9 +92,12 @@ The vsyscall may or may not use the caller's stack frame save areas.
Register preservation rules
---------------------------
-r0: Volatile.
-cr1, cr5-7: Volatile.
-lr: Volatile.
+
+=========== ========
+r0 Volatile
+cr1, cr5-7 Volatile
+lr Volatile
+=========== ========
Invocation
----------
diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.rst
index 52c023e14f26..09955103acb4 100644
--- a/Documentation/powerpc/transactional_memory.txt
+++ b/Documentation/powerpc/transactional_memory.rst
@@ -1,3 +1,4 @@
+============================
Transactional Memory support
============================
@@ -17,29 +18,29 @@ instructions are presented to delimit transactions; transactions are
guaranteed to either complete atomically or roll back and undo any partial
changes.
-A simple transaction looks like this:
+A simple transaction looks like this::
-begin_move_money:
- tbegin
- beq abort_handler
+ begin_move_money:
+ tbegin
+ beq abort_handler
- ld r4, SAVINGS_ACCT(r3)
- ld r5, CURRENT_ACCT(r3)
- subi r5, r5, 1
- addi r4, r4, 1
- std r4, SAVINGS_ACCT(r3)
- std r5, CURRENT_ACCT(r3)
+ ld r4, SAVINGS_ACCT(r3)
+ ld r5, CURRENT_ACCT(r3)
+ subi r5, r5, 1
+ addi r4, r4, 1
+ std r4, SAVINGS_ACCT(r3)
+ std r5, CURRENT_ACCT(r3)
- tend
+ tend
- b continue
+ b continue
-abort_handler:
- ... test for odd failures ...
+ abort_handler:
+ ... test for odd failures ...
- /* Retry the transaction if it failed because it conflicted with
- * someone else: */
- b begin_move_money
+ /* Retry the transaction if it failed because it conflicted with
+ * someone else: */
+ b begin_move_money
The 'tbegin' instruction denotes the start point, and 'tend' the end point.
@@ -123,7 +124,7 @@ Transaction-aware signal handlers can read the transactional register state
from the second ucontext. This will be necessary for crash handlers to
determine, for example, the address of the instruction causing the SIGSEGV.
-Example signal handler:
+Example signal handler::
void crash_handler(int sig, siginfo_t *si, void *uc)
{
@@ -133,9 +134,9 @@ Example signal handler:
if (ucp_link) {
u64 msr = ucp->uc_mcontext.regs->msr;
/* May have transactional ucontext! */
-#ifndef __powerpc64__
+ #ifndef __powerpc64__
msr |= ((u64)transactional_ucp->uc_mcontext.regs->msr) << 32;
-#endif
+ #endif
if (MSR_TM_ACTIVE(msr)) {
/* Yes, we crashed during a transaction. Oops. */
fprintf(stderr, "Transaction to be restarted at 0x%llx, but "
@@ -176,6 +177,7 @@ Failure cause codes used by kernel
These are defined in <asm/reg.h>, and distinguish different reasons why the
kernel aborted a transaction:
+ ====================== ================================
TM_CAUSE_RESCHED Thread was rescheduled.
TM_CAUSE_TLBI Software TLB invalid.
TM_CAUSE_FAC_UNAV FP/VEC/VSX unavailable trap.
@@ -184,6 +186,7 @@ kernel aborted a transaction:
TM_CAUSE_MISC Currently unused.
TM_CAUSE_ALIGNMENT Alignment fault.
TM_CAUSE_EMULATE Emulation that touched memory.
+ ====================== ================================
These can be checked by the user program's abort handler as TEXASR[0:7]. If
bit 7 is set, it indicates that the error is consider persistent. For example
@@ -203,7 +206,7 @@ POWER9
======
TM on POWER9 has issues with storing the complete register state. This
-is described in this commit:
+is described in this commit::
commit 4bb3c7a0208fc13ca70598efd109901a7cd45ae7
Author: Paul Mackerras <paulus@ozlabs.org>
diff --git a/Documentation/powerpc/ultravisor.rst b/Documentation/powerpc/ultravisor.rst
new file mode 100644
index 000000000000..730854f73830
--- /dev/null
+++ b/Documentation/powerpc/ultravisor.rst
@@ -0,0 +1,1054 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. _ultravisor:
+
+============================
+Protected Execution Facility
+============================
+
+.. contents::
+ :depth: 3
+
+Protected Execution Facility
+############################
+
+ Protected Execution Facility (PEF) is an architectural change for
+ POWER 9 that enables Secure Virtual Machines (SVMs). DD2.3 chips
+ (PVR=0x004e1203) or greater will be PEF-capable. A new ISA release
+ will include the PEF RFC02487 changes.
+
+ When enabled, PEF adds a new higher privileged mode, called Ultravisor
+ mode, to POWER architecture. Along with the new mode there is new
+ firmware called the Protected Execution Ultravisor (or Ultravisor
+ for short). Ultravisor mode is the highest privileged mode in POWER
+ architecture.
+
+ +------------------+
+ | Privilege States |
+ +==================+
+ | Problem |
+ +------------------+
+ | Supervisor |
+ +------------------+
+ | Hypervisor |
+ +------------------+
+ | Ultravisor |
+ +------------------+
+
+ PEF protects SVMs from the hypervisor, privileged users, and other
+ VMs in the system. SVMs are protected while at rest and can only be
+ executed by an authorized machine. All virtual machines utilize
+ hypervisor services. The Ultravisor filters calls between the SVMs
+ and the hypervisor to assure that information does not accidentally
+ leak. All hypercalls except H_RANDOM are reflected to the hypervisor.
+ H_RANDOM is not reflected to prevent the hypervisor from influencing
+ random values in the SVM.
+
+ To support this there is a refactoring of the ownership of resources
+ in the CPU. Some of the resources which were previously hypervisor
+ privileged are now ultravisor privileged.
+
+Hardware
+========
+
+ The hardware changes include the following:
+
+ * There is a new bit in the MSR that determines whether the current
+ process is running in secure mode, MSR(S) bit 41. MSR(S)=1, process
+ is in secure mode, MSR(s)=0 process is in normal mode.
+
+ * The MSR(S) bit can only be set by the Ultravisor.
+
+ * HRFID cannot be used to set the MSR(S) bit. If the hypervisor needs
+ to return to a SVM it must use an ultracall. It can determine if
+ the VM it is returning to is secure.
+
+ * There is a new Ultravisor privileged register, SMFCTRL, which has an
+ enable/disable bit SMFCTRL(E).
+
+ * The privilege of a process is now determined by three MSR bits,
+ MSR(S, HV, PR). In each of the tables below the modes are listed
+ from least privilege to highest privilege. The higher privilege
+ modes can access all the resources of the lower privilege modes.
+
+ **Secure Mode MSR Settings**
+
+ +---+---+---+---------------+
+ | S | HV| PR|Privilege |
+ +===+===+===+===============+
+ | 1 | 0 | 1 | Problem |
+ +---+---+---+---------------+
+ | 1 | 0 | 0 | Privileged(OS)|
+ +---+---+---+---------------+
+ | 1 | 1 | 0 | Ultravisor |
+ +---+---+---+---------------+
+ | 1 | 1 | 1 | Reserved |
+ +---+---+---+---------------+
+
+ **Normal Mode MSR Settings**
+
+ +---+---+---+---------------+
+ | S | HV| PR|Privilege |
+ +===+===+===+===============+
+ | 0 | 0 | 1 | Problem |
+ +---+---+---+---------------+
+ | 0 | 0 | 0 | Privileged(OS)|
+ +---+---+---+---------------+
+ | 0 | 1 | 0 | Hypervisor |
+ +---+---+---+---------------+
+ | 0 | 1 | 1 | Problem (Host)|
+ +---+---+---+---------------+
+
+ * Memory is partitioned into secure and normal memory. Only processes
+ that are running in secure mode can access secure memory.
+
+ * The hardware does not allow anything that is not running secure to
+ access secure memory. This means that the Hypervisor cannot access
+ the memory of the SVM without using an ultracall (asking the
+ Ultravisor). The Ultravisor will only allow the hypervisor to see
+ the SVM memory encrypted.
+
+ * I/O systems are not allowed to directly address secure memory. This
+ limits the SVMs to virtual I/O only.
+
+ * The architecture allows the SVM to share pages of memory with the
+ hypervisor that are not protected with encryption. However, this
+ sharing must be initiated by the SVM.
+
+ * When a process is running in secure mode all hypercalls
+ (syscall lev=1) go to the Ultravisor.
+
+ * When a process is in secure mode all interrupts go to the
+ Ultravisor.
+
+ * The following resources have become Ultravisor privileged and
+ require an Ultravisor interface to manipulate:
+
+ * Processor configurations registers (SCOMs).
+
+ * Stop state information.
+
+ * The debug registers CIABR, DAWR, and DAWRX when SMFCTRL(D) is set.
+ If SMFCTRL(D) is not set they do not work in secure mode. When set,
+ reading and writing requires an Ultravisor call, otherwise that
+ will cause a Hypervisor Emulation Assistance interrupt.
+
+ * PTCR and partition table entries (partition table is in secure
+ memory). An attempt to write to PTCR will cause a Hypervisor
+ Emulation Assitance interrupt.
+
+ * LDBAR (LD Base Address Register) and IMC (In-Memory Collection)
+ non-architected registers. An attempt to write to them will cause a
+ Hypervisor Emulation Assistance interrupt.
+
+ * Paging for an SVM, sharing of memory with Hypervisor for an SVM.
+ (Including Virtual Processor Area (VPA) and virtual I/O).
+
+
+Software/Microcode
+==================
+
+ The software changes include:
+
+ * SVMs are created from normal VM using (open source) tooling supplied
+ by IBM.
+
+ * All SVMs start as normal VMs and utilize an ultracall, UV_ESM
+ (Enter Secure Mode), to make the transition.
+
+ * When the UV_ESM ultracall is made the Ultravisor copies the VM into
+ secure memory, decrypts the verification information, and checks the
+ integrity of the SVM. If the integrity check passes the Ultravisor
+ passes control in secure mode.
+
+ * The verification information includes the pass phrase for the
+ encrypted disk associated with the SVM. This pass phrase is given
+ to the SVM when requested.
+
+ * The Ultravisor is not involved in protecting the encrypted disk of
+ the SVM while at rest.
+
+ * For external interrupts the Ultravisor saves the state of the SVM,
+ and reflects the interrupt to the hypervisor for processing.
+ For hypercalls, the Ultravisor inserts neutral state into all
+ registers not needed for the hypercall then reflects the call to
+ the hypervisor for processing. The H_RANDOM hypercall is performed
+ by the Ultravisor and not reflected.
+
+ * For virtual I/O to work bounce buffering must be done.
+
+ * The Ultravisor uses AES (IAPM) for protection of SVM memory. IAPM
+ is a mode of AES that provides integrity and secrecy concurrently.
+
+ * The movement of data between normal and secure pages is coordinated
+ with the Ultravisor by a new HMM plug-in in the Hypervisor.
+
+ The Ultravisor offers new services to the hypervisor and SVMs. These
+ are accessed through ultracalls.
+
+Terminology
+===========
+
+ * Hypercalls: special system calls used to request services from
+ Hypervisor.
+
+ * Normal memory: Memory that is accessible to Hypervisor.
+
+ * Normal page: Page backed by normal memory and available to
+ Hypervisor.
+
+ * Shared page: A page backed by normal memory and available to both
+ the Hypervisor/QEMU and the SVM (i.e page has mappings in SVM and
+ Hypervisor/QEMU).
+
+ * Secure memory: Memory that is accessible only to Ultravisor and
+ SVMs.
+
+ * Secure page: Page backed by secure memory and only available to
+ Ultravisor and SVM.
+
+ * SVM: Secure Virtual Machine.
+
+ * Ultracalls: special system calls used to request services from
+ Ultravisor.
+
+
+Ultravisor calls API
+####################
+
+ This section describes Ultravisor calls (ultracalls) needed to
+ support Secure Virtual Machines (SVM)s and Paravirtualized KVM. The
+ ultracalls allow the SVMs and Hypervisor to request services from the
+ Ultravisor such as accessing a register or memory region that can only
+ be accessed when running in Ultravisor-privileged mode.
+
+ The specific service needed from an ultracall is specified in register
+ R3 (the first parameter to the ultracall). Other parameters to the
+ ultracall, if any, are specified in registers R4 through R12.
+
+ Return value of all ultracalls is in register R3. Other output values
+ from the ultracall, if any, are returned in registers R4 through R12.
+ The only exception to this register usage is the ``UV_RETURN``
+ ultracall described below.
+
+ Each ultracall returns specific error codes, applicable in the context
+ of the ultracall. However, like with the PowerPC Architecture Platform
+ Reference (PAPR), if no specific error code is defined for a
+ particular situation, then the ultracall will fallback to an erroneous
+ parameter-position based code. i.e U_PARAMETER, U_P2, U_P3 etc
+ depending on the ultracall parameter that may have caused the error.
+
+ Some ultracalls involve transferring a page of data between Ultravisor
+ and Hypervisor. Secure pages that are transferred from secure memory
+ to normal memory may be encrypted using dynamically generated keys.
+ When the secure pages are transferred back to secure memory, they may
+ be decrypted using the same dynamically generated keys. Generation and
+ management of these keys will be covered in a separate document.
+
+ For now this only covers ultracalls currently implemented and being
+ used by Hypervisor and SVMs but others can be added here when it
+ makes sense.
+
+ The full specification for all hypercalls/ultracalls will eventually
+ be made available in the public/OpenPower version of the PAPR
+ specification.
+
+ .. note::
+
+ If PEF is not enabled, the ultracalls will be redirected to the
+ Hypervisor which must handle/fail the calls.
+
+Ultracalls used by Hypervisor
+=============================
+
+ This section describes the virtual memory management ultracalls used
+ by the Hypervisor to manage SVMs.
+
+UV_PAGE_OUT
+-----------
+
+ Encrypt and move the contents of a page from secure memory to normal
+ memory.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_PAGE_OUT,
+ uint16_t lpid, /* LPAR ID */
+ uint64_t dest_ra, /* real address of destination page */
+ uint64_t src_gpa, /* source guest-physical-address */
+ uint8_t flags, /* flags */
+ uint64_t order) /* page size order */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_PARAMETER if ``lpid`` is invalid.
+ * U_P2 if ``dest_ra`` is invalid.
+ * U_P3 if the ``src_gpa`` address is invalid.
+ * U_P4 if any bit in the ``flags`` is unrecognized
+ * U_P5 if the ``order`` parameter is unsupported.
+ * U_FUNCTION if functionality is not supported.
+ * U_BUSY if page cannot be currently paged-out.
+
+Description
+~~~~~~~~~~~
+
+ Encrypt the contents of a secure-page and make it available to
+ Hypervisor in a normal page.
+
+ By default, the source page is unmapped from the SVM's partition-
+ scoped page table. But the Hypervisor can provide a hint to the
+ Ultravisor to retain the page mapping by setting the ``UV_SNAPSHOT``
+ flag in ``flags`` parameter.
+
+ If the source page is already a shared page the call returns
+ U_SUCCESS, without doing anything.
+
+Use cases
+~~~~~~~~~
+
+ #. QEMU attempts to access an address belonging to the SVM but the
+ page frame for that address is not mapped into QEMU's address
+ space. In this case, the Hypervisor will allocate a page frame,
+ map it into QEMU's address space and issue the ``UV_PAGE_OUT``
+ call to retrieve the encrypted contents of the page.
+
+ #. When Ultravisor runs low on secure memory and it needs to page-out
+ an LRU page. In this case, Ultravisor will issue the
+ ``H_SVM_PAGE_OUT`` hypercall to the Hypervisor. The Hypervisor will
+ then allocate a normal page and issue the ``UV_PAGE_OUT`` ultracall
+ and the Ultravisor will encrypt and move the contents of the secure
+ page into the normal page.
+
+ #. When Hypervisor accesses SVM data, the Hypervisor requests the
+ Ultravisor to transfer the corresponding page into a insecure page,
+ which the Hypervisor can access. The data in the normal page will
+ be encrypted though.
+
+UV_PAGE_IN
+----------
+
+ Move the contents of a page from normal memory to secure memory.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_PAGE_IN,
+ uint16_t lpid, /* the LPAR ID */
+ uint64_t src_ra, /* source real address of page */
+ uint64_t dest_gpa, /* destination guest physical address */
+ uint64_t flags, /* flags */
+ uint64_t order) /* page size order */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_BUSY if page cannot be currently paged-in.
+ * U_FUNCTION if functionality is not supported
+ * U_PARAMETER if ``lpid`` is invalid.
+ * U_P2 if ``src_ra`` is invalid.
+ * U_P3 if the ``dest_gpa`` address is invalid.
+ * U_P4 if any bit in the ``flags`` is unrecognized
+ * U_P5 if the ``order`` parameter is unsupported.
+
+Description
+~~~~~~~~~~~
+
+ Move the contents of the page identified by ``src_ra`` from normal
+ memory to secure memory and map it to the guest physical address
+ ``dest_gpa``.
+
+ If `dest_gpa` refers to a shared address, map the page into the
+ partition-scoped page-table of the SVM. If `dest_gpa` is not shared,
+ copy the contents of the page into the corresponding secure page.
+ Depending on the context, decrypt the page before being copied.
+
+ The caller provides the attributes of the page through the ``flags``
+ parameter. Valid values for ``flags`` are:
+
+ * CACHE_INHIBITED
+ * CACHE_ENABLED
+ * WRITE_PROTECTION
+
+ The Hypervisor must pin the page in memory before making
+ ``UV_PAGE_IN`` ultracall.
+
+Use cases
+~~~~~~~~~
+
+ #. When a normal VM switches to secure mode, all its pages residing
+ in normal memory, are moved into secure memory.
+
+ #. When an SVM requests to share a page with Hypervisor the Hypervisor
+ allocates a page and informs the Ultravisor.
+
+ #. When an SVM accesses a secure page that has been paged-out,
+ Ultravisor invokes the Hypervisor to locate the page. After
+ locating the page, the Hypervisor uses UV_PAGE_IN to make the
+ page available to Ultravisor.
+
+UV_PAGE_INVAL
+-------------
+
+ Invalidate the Ultravisor mapping of a page.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_PAGE_INVAL,
+ uint16_t lpid, /* the LPAR ID */
+ uint64_t guest_pa, /* destination guest-physical-address */
+ uint64_t order) /* page size order */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_PARAMETER if ``lpid`` is invalid.
+ * U_P2 if ``guest_pa`` is invalid (or corresponds to a secure
+ page mapping).
+ * U_P3 if the ``order`` is invalid.
+ * U_FUNCTION if functionality is not supported.
+ * U_BUSY if page cannot be currently invalidated.
+
+Description
+~~~~~~~~~~~
+
+ This ultracall informs Ultravisor that the page mapping in Hypervisor
+ corresponding to the given guest physical address has been invalidated
+ and that the Ultravisor should not access the page. If the specified
+ ``guest_pa`` corresponds to a secure page, Ultravisor will ignore the
+ attempt to invalidate the page and return U_P2.
+
+Use cases
+~~~~~~~~~
+
+ #. When a shared page is unmapped from the QEMU's page table, possibly
+ because it is paged-out to disk, Ultravisor needs to know that the
+ page should not be accessed from its side too.
+
+
+UV_WRITE_PATE
+-------------
+
+ Validate and write the partition table entry (PATE) for a given
+ partition.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_WRITE_PATE,
+ uint32_t lpid, /* the LPAR ID */
+ uint64_t dw0 /* the first double word to write */
+ uint64_t dw1) /* the second double word to write */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_BUSY if PATE cannot be currently written to.
+ * U_FUNCTION if functionality is not supported.
+ * U_PARAMETER if ``lpid`` is invalid.
+ * U_P2 if ``dw0`` is invalid.
+ * U_P3 if the ``dw1`` address is invalid.
+ * U_PERMISSION if the Hypervisor is attempting to change the PATE
+ of a secure virtual machine or if called from a
+ context other than Hypervisor.
+
+Description
+~~~~~~~~~~~
+
+ Validate and write a LPID and its partition-table-entry for the given
+ LPID. If the LPID is already allocated and initialized, this call
+ results in changing the partition table entry.
+
+Use cases
+~~~~~~~~~
+
+ #. The Partition table resides in Secure memory and its entries,
+ called PATE (Partition Table Entries), point to the partition-
+ scoped page tables for the Hypervisor as well as each of the
+ virtual machines (both secure and normal). The Hypervisor
+ operates in partition 0 and its partition-scoped page tables
+ reside in normal memory.
+
+ #. This ultracall allows the Hypervisor to register the partition-
+ scoped and process-scoped page table entries for the Hypervisor
+ and other partitions (virtual machines) with the Ultravisor.
+
+ #. If the value of the PATE for an existing partition (VM) changes,
+ the TLB cache for the partition is flushed.
+
+ #. The Hypervisor is responsible for allocating LPID. The LPID and
+ its PATE entry are registered together. The Hypervisor manages
+ the PATE entries for a normal VM and can change the PATE entry
+ anytime. Ultravisor manages the PATE entries for an SVM and
+ Hypervisor is not allowed to modify them.
+
+UV_RETURN
+---------
+
+ Return control from the Hypervisor back to the Ultravisor after
+ processing an hypercall or interrupt that was forwarded (aka
+ *reflected*) to the Hypervisor.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_RETURN)
+
+Return values
+~~~~~~~~~~~~~
+
+ This call never returns to Hypervisor on success. It returns
+ U_INVALID if ultracall is not made from a Hypervisor context.
+
+Description
+~~~~~~~~~~~
+
+ When an SVM makes an hypercall or incurs some other exception, the
+ Ultravisor usually forwards (aka *reflects*) the exceptions to the
+ Hypervisor. After processing the exception, Hypervisor uses the
+ ``UV_RETURN`` ultracall to return control back to the SVM.
+
+ The expected register state on entry to this ultracall is:
+
+ * Non-volatile registers are restored to their original values.
+ * If returning from an hypercall, register R0 contains the return
+ value (**unlike other ultracalls**) and, registers R4 through R12
+ contain any output values of the hypercall.
+ * R3 contains the ultracall number, i.e UV_RETURN.
+ * If returning with a synthesized interrupt, R2 contains the
+ synthesized interrupt number.
+
+Use cases
+~~~~~~~~~
+
+ #. Ultravisor relies on the Hypervisor to provide several services to
+ the SVM such as processing hypercall and other exceptions. After
+ processing the exception, Hypervisor uses UV_RETURN to return
+ control back to the Ultravisor.
+
+ #. Hypervisor has to use this ultracall to return control to the SVM.
+
+
+UV_REGISTER_MEM_SLOT
+--------------------
+
+ Register an SVM address-range with specified properties.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_REGISTER_MEM_SLOT,
+ uint64_t lpid, /* LPAR ID of the SVM */
+ uint64_t start_gpa, /* start guest physical address */
+ uint64_t size, /* size of address range in bytes */
+ uint64_t flags /* reserved for future expansion */
+ uint16_t slotid) /* slot identifier */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_PARAMETER if ``lpid`` is invalid.
+ * U_P2 if ``start_gpa`` is invalid.
+ * U_P3 if ``size`` is invalid.
+ * U_P4 if any bit in the ``flags`` is unrecognized.
+ * U_P5 if the ``slotid`` parameter is unsupported.
+ * U_PERMISSION if called from context other than Hypervisor.
+ * U_FUNCTION if functionality is not supported.
+
+
+Description
+~~~~~~~~~~~
+
+ Register a memory range for an SVM. The memory range starts at the
+ guest physical address ``start_gpa`` and is ``size`` bytes long.
+
+Use cases
+~~~~~~~~~
+
+
+ #. When a virtual machine goes secure, all the memory slots managed by
+ the Hypervisor move into secure memory. The Hypervisor iterates
+ through each of memory slots, and registers the slot with
+ Ultravisor. Hypervisor may discard some slots such as those used
+ for firmware (SLOF).
+
+ #. When new memory is hot-plugged, a new memory slot gets registered.
+
+
+UV_UNREGISTER_MEM_SLOT
+----------------------
+
+ Unregister an SVM address-range that was previously registered using
+ UV_REGISTER_MEM_SLOT.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_UNREGISTER_MEM_SLOT,
+ uint64_t lpid, /* LPAR ID of the SVM */
+ uint64_t slotid) /* reservation slotid */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_FUNCTION if functionality is not supported.
+ * U_PARAMETER if ``lpid`` is invalid.
+ * U_P2 if ``slotid`` is invalid.
+ * U_PERMISSION if called from context other than Hypervisor.
+
+Description
+~~~~~~~~~~~
+
+ Release the memory slot identified by ``slotid`` and free any
+ resources allocated towards the reservation.
+
+Use cases
+~~~~~~~~~
+
+ #. Memory hot-remove.
+
+
+UV_SVM_TERMINATE
+----------------
+
+ Terminate an SVM and release its resources.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_SVM_TERMINATE,
+ uint64_t lpid, /* LPAR ID of the SVM */)
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_FUNCTION if functionality is not supported.
+ * U_PARAMETER if ``lpid`` is invalid.
+ * U_INVALID if VM is not secure.
+ * U_PERMISSION if not called from a Hypervisor context.
+
+Description
+~~~~~~~~~~~
+
+ Terminate an SVM and release all its resources.
+
+Use cases
+~~~~~~~~~
+
+ #. Called by Hypervisor when terminating an SVM.
+
+
+Ultracalls used by SVM
+======================
+
+UV_SHARE_PAGE
+-------------
+
+ Share a set of guest physical pages with the Hypervisor.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_SHARE_PAGE,
+ uint64_t gfn, /* guest page frame number */
+ uint64_t num) /* number of pages of size PAGE_SIZE */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_FUNCTION if functionality is not supported.
+ * U_INVALID if the VM is not secure.
+ * U_PARAMETER if ``gfn`` is invalid.
+ * U_P2 if ``num`` is invalid.
+
+Description
+~~~~~~~~~~~
+
+ Share the ``num`` pages starting at guest physical frame number ``gfn``
+ with the Hypervisor. Assume page size is PAGE_SIZE bytes. Zero the
+ pages before returning.
+
+ If the address is already backed by a secure page, unmap the page and
+ back it with an insecure page, with the help of the Hypervisor. If it
+ is not backed by any page yet, mark the PTE as insecure and back it
+ with an insecure page when the address is accessed. If it is already
+ backed by an insecure page, zero the page and return.
+
+Use cases
+~~~~~~~~~
+
+ #. The Hypervisor cannot access the SVM pages since they are backed by
+ secure pages. Hence an SVM must explicitly request Ultravisor for
+ pages it can share with Hypervisor.
+
+ #. Shared pages are needed to support virtio and Virtual Processor Area
+ (VPA) in SVMs.
+
+
+UV_UNSHARE_PAGE
+---------------
+
+ Restore a shared SVM page to its initial state.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_UNSHARE_PAGE,
+ uint64_t gfn, /* guest page frame number */
+ uint73 num) /* number of pages of size PAGE_SIZE*/
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_FUNCTION if functionality is not supported.
+ * U_INVALID if VM is not secure.
+ * U_PARAMETER if ``gfn`` is invalid.
+ * U_P2 if ``num`` is invalid.
+
+Description
+~~~~~~~~~~~
+
+ Stop sharing ``num`` pages starting at ``gfn`` with the Hypervisor.
+ Assume that the page size is PAGE_SIZE. Zero the pages before
+ returning.
+
+ If the address is already backed by an insecure page, unmap the page
+ and back it with a secure page. Inform the Hypervisor to release
+ reference to its shared page. If the address is not backed by a page
+ yet, mark the PTE as secure and back it with a secure page when that
+ address is accessed. If it is already backed by an secure page zero
+ the page and return.
+
+Use cases
+~~~~~~~~~
+
+ #. The SVM may decide to unshare a page from the Hypervisor.
+
+
+UV_UNSHARE_ALL_PAGES
+--------------------
+
+ Unshare all pages the SVM has shared with Hypervisor.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_UNSHARE_ALL_PAGES)
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success.
+ * U_FUNCTION if functionality is not supported.
+ * U_INVAL if VM is not secure.
+
+Description
+~~~~~~~~~~~
+
+ Unshare all shared pages from the Hypervisor. All unshared pages are
+ zeroed on return. Only pages explicitly shared by the SVM with the
+ Hypervisor (using UV_SHARE_PAGE ultracall) are unshared. Ultravisor
+ may internally share some pages with the Hypervisor without explicit
+ request from the SVM. These pages will not be unshared by this
+ ultracall.
+
+Use cases
+~~~~~~~~~
+
+ #. This call is needed when ``kexec`` is used to boot a different
+ kernel. It may also be needed during SVM reset.
+
+UV_ESM
+------
+
+ Secure the virtual machine (*enter secure mode*).
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t ultracall(const uint64_t UV_ESM,
+ uint64_t esm_blob_addr, /* location of the ESM blob */
+ unint64_t fdt) /* Flattened device tree */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * U_SUCCESS on success (including if VM is already secure).
+ * U_FUNCTION if functionality is not supported.
+ * U_INVALID if VM is not secure.
+ * U_PARAMETER if ``esm_blob_addr`` is invalid.
+ * U_P2 if ``fdt`` is invalid.
+ * U_PERMISSION if any integrity checks fail.
+ * U_RETRY insufficient memory to create SVM.
+ * U_NO_KEY symmetric key unavailable.
+
+Description
+~~~~~~~~~~~
+
+ Secure the virtual machine. On successful completion, return
+ control to the virtual machine at the address specified in the
+ ESM blob.
+
+Use cases
+~~~~~~~~~
+
+ #. A normal virtual machine can choose to switch to a secure mode.
+
+Hypervisor Calls API
+####################
+
+ This document describes the Hypervisor calls (hypercalls) that are
+ needed to support the Ultravisor. Hypercalls are services provided by
+ the Hypervisor to virtual machines and Ultravisor.
+
+ Register usage for these hypercalls is identical to that of the other
+ hypercalls defined in the Power Architecture Platform Reference (PAPR)
+ document. i.e on input, register R3 identifies the specific service
+ that is being requested and registers R4 through R11 contain
+ additional parameters to the hypercall, if any. On output, register
+ R3 contains the return value and registers R4 through R9 contain any
+ other output values from the hypercall.
+
+ This document only covers hypercalls currently implemented/planned
+ for Ultravisor usage but others can be added here when it makes sense.
+
+ The full specification for all hypercalls/ultracalls will eventually
+ be made available in the public/OpenPower version of the PAPR
+ specification.
+
+Hypervisor calls to support Ultravisor
+======================================
+
+ Following are the set of hypercalls needed to support Ultravisor.
+
+H_SVM_INIT_START
+----------------
+
+ Begin the process of converting a normal virtual machine into an SVM.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t hypercall(const uint64_t H_SVM_INIT_START)
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * H_SUCCESS on success.
+
+Description
+~~~~~~~~~~~
+
+ Initiate the process of securing a virtual machine. This involves
+ coordinating with the Ultravisor, using ultracalls, to allocate
+ resources in the Ultravisor for the new SVM, transferring the VM's
+ pages from normal to secure memory etc. When the process is
+ completed, Ultravisor issues the H_SVM_INIT_DONE hypercall.
+
+Use cases
+~~~~~~~~~
+
+ #. Ultravisor uses this hypercall to inform Hypervisor that a VM
+ has initiated the process of switching to secure mode.
+
+
+H_SVM_INIT_DONE
+---------------
+
+ Complete the process of securing an SVM.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t hypercall(const uint64_t H_SVM_INIT_DONE)
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * H_SUCCESS on success.
+ * H_UNSUPPORTED if called from the wrong context (e.g.
+ from an SVM or before an H_SVM_INIT_START
+ hypercall).
+
+Description
+~~~~~~~~~~~
+
+ Complete the process of securing a virtual machine. This call must
+ be made after a prior call to ``H_SVM_INIT_START`` hypercall.
+
+Use cases
+~~~~~~~~~
+
+ On successfully securing a virtual machine, the Ultravisor informs
+ Hypervisor about it. Hypervisor can use this call to finish setting
+ up its internal state for this virtual machine.
+
+
+H_SVM_PAGE_IN
+-------------
+
+ Move the contents of a page from normal memory to secure memory.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t hypercall(const uint64_t H_SVM_PAGE_IN,
+ uint64_t guest_pa, /* guest-physical-address */
+ uint64_t flags, /* flags */
+ uint64_t order) /* page size order */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * H_SUCCESS on success.
+ * H_PARAMETER if ``guest_pa`` is invalid.
+ * H_P2 if ``flags`` is invalid.
+ * H_P3 if ``order`` of page is invalid.
+
+Description
+~~~~~~~~~~~
+
+ Retrieve the content of the page, belonging to the VM at the specified
+ guest physical address.
+
+ Only valid value(s) in ``flags`` are:
+
+ * H_PAGE_IN_SHARED which indicates that the page is to be shared
+ with the Ultravisor.
+
+ * H_PAGE_IN_NONSHARED indicates that the UV is not anymore
+ interested in the page. Applicable if the page is a shared page.
+
+ The ``order`` parameter must correspond to the configured page size.
+
+Use cases
+~~~~~~~~~
+
+ #. When a normal VM becomes a secure VM (using the UV_ESM ultracall),
+ the Ultravisor uses this hypercall to move contents of each page of
+ the VM from normal memory to secure memory.
+
+ #. Ultravisor uses this hypercall to ask Hypervisor to provide a page
+ in normal memory that can be shared between the SVM and Hypervisor.
+
+ #. Ultravisor uses this hypercall to page-in a paged-out page. This
+ can happen when the SVM touches a paged-out page.
+
+ #. If SVM wants to disable sharing of pages with Hypervisor, it can
+ inform Ultravisor to do so. Ultravisor will then use this hypercall
+ and inform Hypervisor that it has released access to the normal
+ page.
+
+H_SVM_PAGE_OUT
+---------------
+
+ Move the contents of the page to normal memory.
+
+Syntax
+~~~~~~
+
+.. code-block:: c
+
+ uint64_t hypercall(const uint64_t H_SVM_PAGE_OUT,
+ uint64_t guest_pa, /* guest-physical-address */
+ uint64_t flags, /* flags (currently none) */
+ uint64_t order) /* page size order */
+
+Return values
+~~~~~~~~~~~~~
+
+ One of the following values:
+
+ * H_SUCCESS on success.
+ * H_PARAMETER if ``guest_pa`` is invalid.
+ * H_P2 if ``flags`` is invalid.
+ * H_P3 if ``order`` is invalid.
+
+Description
+~~~~~~~~~~~
+
+ Move the contents of the page identified by ``guest_pa`` to normal
+ memory.
+
+ Currently ``flags`` is unused and must be set to 0. The ``order``
+ parameter must correspond to the configured page size.
+
+Use cases
+~~~~~~~~~
+
+ #. If Ultravisor is running low on secure pages, it can move the
+ contents of some secure pages, into normal pages using this
+ hypercall. The content will be encrypted.
+
+References
+##########
+
+- `Supporting Protected Computing on IBM Power Architecture <https://developer.ibm.com/articles/l-support-protected-computing/>`_
diff --git a/Documentation/powerpc/vcpudispatch_stats.txt b/Documentation/powerpc/vcpudispatch_stats.txt
new file mode 100644
index 000000000000..e21476bfd78c
--- /dev/null
+++ b/Documentation/powerpc/vcpudispatch_stats.txt
@@ -0,0 +1,68 @@
+VCPU Dispatch Statistics:
+=========================
+
+For Shared Processor LPARs, the POWER Hypervisor maintains a relatively
+static mapping of the LPAR processors (vcpus) to physical processor
+chips (representing the "home" node) and tries to always dispatch vcpus
+on their associated physical processor chip. However, under certain
+scenarios, vcpus may be dispatched on a different processor chip (away
+from its home node).
+
+/proc/powerpc/vcpudispatch_stats can be used to obtain statistics
+related to the vcpu dispatch behavior. Writing '1' to this file enables
+collecting the statistics, while writing '0' disables the statistics.
+By default, the DTLB log for each vcpu is processed 50 times a second so
+as not to miss any entries. This processing frequency can be changed
+through /proc/powerpc/vcpudispatch_stats_freq.
+
+The statistics themselves are available by reading the procfs file
+/proc/powerpc/vcpudispatch_stats. Each line in the output corresponds to
+a vcpu as represented by the first field, followed by 8 numbers.
+
+The first number corresponds to:
+1. total vcpu dispatches since the beginning of statistics collection
+
+The next 4 numbers represent vcpu dispatch dispersions:
+2. number of times this vcpu was dispatched on the same processor as last
+ time
+3. number of times this vcpu was dispatched on a different processor core
+ as last time, but within the same chip
+4. number of times this vcpu was dispatched on a different chip
+5. number of times this vcpu was dispatches on a different socket/drawer
+(next numa boundary)
+
+The final 3 numbers represent statistics in relation to the home node of
+the vcpu:
+6. number of times this vcpu was dispatched in its home node (chip)
+7. number of times this vcpu was dispatched in a different node
+8. number of times this vcpu was dispatched in a node further away (numa
+distance)
+
+An example output:
+ $ sudo cat /proc/powerpc/vcpudispatch_stats
+ cpu0 6839 4126 2683 30 0 6821 18 0
+ cpu1 2515 1274 1229 12 0 2509 6 0
+ cpu2 2317 1198 1109 10 0 2312 5 0
+ cpu3 2259 1165 1088 6 0 2256 3 0
+ cpu4 2205 1143 1056 6 0 2202 3 0
+ cpu5 2165 1121 1038 6 0 2162 3 0
+ cpu6 2183 1127 1050 6 0 2180 3 0
+ cpu7 2193 1133 1052 8 0 2187 6 0
+ cpu8 2165 1115 1032 18 0 2156 9 0
+ cpu9 2301 1252 1033 16 0 2293 8 0
+ cpu10 2197 1138 1041 18 0 2187 10 0
+ cpu11 2273 1185 1062 26 0 2260 13 0
+ cpu12 2186 1125 1043 18 0 2177 9 0
+ cpu13 2161 1115 1030 16 0 2153 8 0
+ cpu14 2206 1153 1033 20 0 2196 10 0
+ cpu15 2163 1115 1032 16 0 2155 8 0
+
+In the output above, for vcpu0, there have been 6839 dispatches since
+statistics were enabled. 4126 of those dispatches were on the same
+physical cpu as the last time. 2683 were on a different core, but within
+the same chip, while 30 dispatches were on a different chip compared to
+its last dispatch.
+
+Also, out of the total of 6839 dispatches, we see that there have been
+6821 dispatches on the vcpu's home node, while 18 dispatches were
+outside its home node, on a neighbouring chip.
diff --git a/Documentation/process/4.Coding.rst b/Documentation/process/4.Coding.rst
index 4b7a5ab3cec1..13dd893c9f88 100644
--- a/Documentation/process/4.Coding.rst
+++ b/Documentation/process/4.Coding.rst
@@ -298,7 +298,7 @@ enabled, a configurable percentage of memory allocations will be made to
fail; these failures can be restricted to a specific range of code.
Running with fault injection enabled allows the programmer to see how the
code responds when things go badly. See
-Documentation/fault-injection/fault-injection.txt for more information on
+Documentation/fault-injection/fault-injection.rst for more information on
how to use this facility.
Other kinds of errors can be found with the "sparse" static analysis tool.
diff --git a/Documentation/process/changes.rst b/Documentation/process/changes.rst
index 18735dc460a0..2284f2221f02 100644
--- a/Documentation/process/changes.rst
+++ b/Documentation/process/changes.rst
@@ -23,15 +23,15 @@ running, the suggested command should tell you.
Again, keep in mind that this list assumes you are already functionally
running a Linux kernel. Also, not all tools are necessary on all
-systems; obviously, if you don't have any ISDN hardware, for example,
-you probably needn't concern yourself with isdn4k-utils.
+systems; obviously, if you don't have any PC Card hardware, for example,
+you probably needn't concern yourself with pcmciautils.
====================== =============== ========================================
Program Minimal version Command to check the version
====================== =============== ========================================
GNU C 4.6 gcc --version
GNU make 3.81 make --version
-binutils 2.20 ld -v
+binutils 2.21 ld -v
flex 2.5.35 flex --version
bison 2.0 bison --version
util-linux 2.10o fdformat --version
@@ -45,7 +45,6 @@ btrfs-progs 0.18 btrfsck
pcmciautils 004 pccardctl -V
quota-tools 3.09 quota -V
PPP 2.4.0 pppd --version
-isdn4k-utils 3.1pre1 isdnctrl 2>&1|grep version
nfs-utils 1.0.5 showmount --version
procps 3.2.0 ps --version
oprofile 0.9 oprofiled --version
@@ -77,9 +76,7 @@ You will need GNU make 3.81 or later to build the kernel.
Binutils
--------
-The build system has, as of 4.13, switched to using thin archives (`ar T`)
-rather than incremental linking (`ld -r`) for built-in.a intermediate steps.
-This requires binutils 2.20 or newer.
+Binutils 2.21 or newer is needed to build the kernel.
pkg-config
----------
@@ -279,12 +276,6 @@ which can be made by::
as root.
-Isdn4k-utils
-------------
-
-Due to changes in the length of the phone number field, isdn4k-utils
-needs to be recompiled or (preferably) upgraded.
-
NFS-utils
---------
@@ -448,11 +439,6 @@ PPP
- <ftp://ftp.samba.org/pub/ppp/>
-Isdn4k-utils
-------------
-
-- <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>
-
NFS-utils
---------
diff --git a/Documentation/process/coding-style.rst b/Documentation/process/coding-style.rst
index fa864a51e6ea..f4a2198187f9 100644
--- a/Documentation/process/coding-style.rst
+++ b/Documentation/process/coding-style.rst
@@ -686,7 +686,7 @@ filesystems) should advertise this prominently in their prompt string::
...
For full documentation on the configuration files, see the file
-Documentation/kbuild/kconfig-language.txt.
+Documentation/kbuild/kconfig-language.rst.
11) Data structures
diff --git a/Documentation/process/conf.py b/Documentation/process/conf.py
deleted file mode 100644
index 1b01a80ad9ce..000000000000
--- a/Documentation/process/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = 'Linux Kernel Development Documentation'
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'process.tex', 'Linux Kernel Development Documentation',
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/process/deprecated.rst b/Documentation/process/deprecated.rst
index 49e0f64a3427..053b24a6dd38 100644
--- a/Documentation/process/deprecated.rst
+++ b/Documentation/process/deprecated.rst
@@ -119,3 +119,17 @@ array may exceed the remaining memory in the stack segment. This could
lead to a crash, possible overwriting sensitive contents at the end of the
stack (when built without `CONFIG_THREAD_INFO_IN_TASK=y`), or overwriting
memory adjacent to the stack (when built without `CONFIG_VMAP_STACK=y`)
+
+Implicit switch case fall-through
+---------------------------------
+The C language allows switch cases to "fall through" when
+a "break" statement is missing at the end of a case. This,
+however, introduces ambiguity in the code, as it's not always
+clear if the missing break is intentional or a bug. As there
+have been a long list of flaws `due to missing "break" statements
+<https://cwe.mitre.org/data/definitions/484.html>`_, we no longer allow
+"implicit fall-through". In order to identify an intentional fall-through
+case, we have adopted the marking used by static analyzers: a comment
+saying `/* Fall through */`. Once the C++17 `__attribute__((fallthrough))`
+is more widely handled by C compilers, static analyzers, and IDEs, we can
+switch to using that instead.
diff --git a/Documentation/process/email-clients.rst b/Documentation/process/email-clients.rst
index 07faa5457bcb..5273d06c8ff6 100644
--- a/Documentation/process/email-clients.rst
+++ b/Documentation/process/email-clients.rst
@@ -40,7 +40,7 @@ Emailed patches should be in ASCII or UTF-8 encoding only.
If you configure your email client to send emails with UTF-8 encoding,
you avoid some possible charset problems.
-Email clients should generate and maintain References: or In-Reply-To:
+Email clients should generate and maintain "References:" or "In-Reply-To:"
headers so that mail threading is not broken.
Copy-and-paste (or cut-and-paste) usually does not work for patches
@@ -89,7 +89,7 @@ Claws Mail (GUI)
Works. Some people use this successfully for patches.
-To insert a patch use :menuselection:`Message-->Insert` File (:kbd:`CTRL-I`)
+To insert a patch use :menuselection:`Message-->Insert File` (:kbd:`CTRL-I`)
or an external editor.
If the inserted patch has to be edited in the Claws composition window
@@ -132,8 +132,8 @@ wrapping.
At the bottom of your email, put the commonly-used patch delimiter before
inserting your patch: three hyphens (``---``).
-Then from the :menuselection:`Message` menu item, select insert file and
-choose your patch.
+Then from the :menuselection:`Message` menu item, select
+:menuselection:`insert file` and choose your patch.
As an added bonus you can customise the message creation toolbar menu
and put the :menuselection:`insert file` icon there.
@@ -149,18 +149,16 @@ patches so do not GPG sign them. Signing patches that have been inserted
as inlined text will make them tricky to extract from their 7-bit encoding.
If you absolutely must send patches as attachments instead of inlining
-them as text, right click on the attachment and select properties, and
-highlight :menuselection:`Suggest automatic display` to make the attachment
+them as text, right click on the attachment and select :menuselection:`properties`,
+and highlight :menuselection:`Suggest automatic display` to make the attachment
inlined to make it more viewable.
When saving patches that are sent as inlined text, select the email that
contains the patch from the message list pane, right click and select
:menuselection:`save as`. You can use the whole email unmodified as a patch
-if it was properly composed. There is no option currently to save the email
-when you are actually viewing it in its own window -- there has been a request
-filed at kmail's bugzilla and hopefully this will be addressed. Emails are
-saved as read-write for user only so you will have to chmod them to make them
-group and world readable if you copy them elsewhere.
+if it was properly composed. Emails are saved as read-write for user only so
+you will have to chmod them to make them group and world readable if you copy
+them elsewhere.
Lotus Notes (GUI)
*****************
diff --git a/Documentation/process/embargoed-hardware-issues.rst b/Documentation/process/embargoed-hardware-issues.rst
new file mode 100644
index 000000000000..402636356fbe
--- /dev/null
+++ b/Documentation/process/embargoed-hardware-issues.rst
@@ -0,0 +1,279 @@
+Embargoed hardware issues
+=========================
+
+Scope
+-----
+
+Hardware issues which result in security problems are a different category
+of security bugs than pure software bugs which only affect the Linux
+kernel.
+
+Hardware issues like Meltdown, Spectre, L1TF etc. must be treated
+differently because they usually affect all Operating Systems ("OS") and
+therefore need coordination across different OS vendors, distributions,
+hardware vendors and other parties. For some of the issues, software
+mitigations can depend on microcode or firmware updates, which need further
+coordination.
+
+.. _Contact:
+
+Contact
+-------
+
+The Linux kernel hardware security team is separate from the regular Linux
+kernel security team.
+
+The team only handles the coordination of embargoed hardware security
+issues. Reports of pure software security bugs in the Linux kernel are not
+handled by this team and the reporter will be guided to contact the regular
+Linux kernel security team (:ref:`Documentation/admin-guide/
+<securitybugs>`) instead.
+
+The team can be contacted by email at <hardware-security@kernel.org>. This
+is a private list of security officers who will help you to coordinate an
+issue according to our documented process.
+
+The list is encrypted and email to the list can be sent by either PGP or
+S/MIME encrypted and must be signed with the reporter's PGP key or S/MIME
+certificate. The list's PGP key and S/MIME certificate are available from
+https://www.kernel.org/....
+
+While hardware security issues are often handled by the affected hardware
+vendor, we welcome contact from researchers or individuals who have
+identified a potential hardware flaw.
+
+Hardware security officers
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The current team of hardware security officers:
+
+ - Linus Torvalds (Linux Foundation Fellow)
+ - Greg Kroah-Hartman (Linux Foundation Fellow)
+ - Thomas Gleixner (Linux Foundation Fellow)
+
+Operation of mailing-lists
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The encrypted mailing-lists which are used in our process are hosted on
+Linux Foundation's IT infrastructure. By providing this service Linux
+Foundation's director of IT Infrastructure security technically has the
+ability to access the embargoed information, but is obliged to
+confidentiality by his employment contract. Linux Foundation's director of
+IT Infrastructure security is also responsible for the kernel.org
+infrastructure.
+
+The Linux Foundation's current director of IT Infrastructure security is
+Konstantin Ryabitsev.
+
+
+Non-disclosure agreements
+-------------------------
+
+The Linux kernel hardware security team is not a formal body and therefore
+unable to enter into any non-disclosure agreements. The kernel community
+is aware of the sensitive nature of such issues and offers a Memorandum of
+Understanding instead.
+
+
+Memorandum of Understanding
+---------------------------
+
+The Linux kernel community has a deep understanding of the requirement to
+keep hardware security issues under embargo for coordination between
+different OS vendors, distributors, hardware vendors and other parties.
+
+The Linux kernel community has successfully handled hardware security
+issues in the past and has the necessary mechanisms in place to allow
+community compliant development under embargo restrictions.
+
+The Linux kernel community has a dedicated hardware security team for
+initial contact, which oversees the process of handling such issues under
+embargo rules.
+
+The hardware security team identifies the developers (domain experts) who
+will form the initial response team for a particular issue. The initial
+response team can bring in further developers (domain experts) to address
+the issue in the best technical way.
+
+All involved developers pledge to adhere to the embargo rules and to keep
+the received information confidential. Violation of the pledge will lead to
+immediate exclusion from the current issue and removal from all related
+mailing-lists. In addition, the hardware security team will also exclude
+the offender from future issues. The impact of this consequence is a highly
+effective deterrent in our community. In case a violation happens the
+hardware security team will inform the involved parties immediately. If you
+or anyone becomes aware of a potential violation, please report it
+immediately to the Hardware security officers.
+
+
+Process
+^^^^^^^
+
+Due to the globally distributed nature of Linux kernel development,
+face-to-face meetings are almost impossible to address hardware security
+issues. Phone conferences are hard to coordinate due to time zones and
+other factors and should be only used when absolutely necessary. Encrypted
+email has been proven to be the most effective and secure communication
+method for these types of issues.
+
+Start of Disclosure
+"""""""""""""""""""
+
+Disclosure starts by contacting the Linux kernel hardware security team by
+email. This initial contact should contain a description of the problem and
+a list of any known affected hardware. If your organization builds or
+distributes the affected hardware, we encourage you to also consider what
+other hardware could be affected.
+
+The hardware security team will provide an incident-specific encrypted
+mailing-list which will be used for initial discussion with the reporter,
+further disclosure and coordination.
+
+The hardware security team will provide the disclosing party a list of
+developers (domain experts) who should be informed initially about the
+issue after confirming with the developers that they will adhere to this
+Memorandum of Understanding and the documented process. These developers
+form the initial response team and will be responsible for handling the
+issue after initial contact. The hardware security team is supporting the
+response team, but is not necessarily involved in the mitigation
+development process.
+
+While individual developers might be covered by a non-disclosure agreement
+via their employer, they cannot enter individual non-disclosure agreements
+in their role as Linux kernel developers. They will, however, agree to
+adhere to this documented process and the Memorandum of Understanding.
+
+
+Disclosure
+""""""""""
+
+The disclosing party provides detailed information to the initial response
+team via the specific encrypted mailing-list.
+
+From our experience the technical documentation of these issues is usually
+a sufficient starting point and further technical clarification is best
+done via email.
+
+Mitigation development
+""""""""""""""""""""""
+
+The initial response team sets up an encrypted mailing-list or repurposes
+an existing one if appropriate. The disclosing party should provide a list
+of contacts for all other parties who have already been, or should be,
+informed about the issue. The response team contacts these parties so they
+can name experts who should be subscribed to the mailing-list.
+
+Using a mailing-list is close to the normal Linux development process and
+has been successfully used in developing mitigations for various hardware
+security issues in the past.
+
+The mailing-list operates in the same way as normal Linux development.
+Patches are posted, discussed and reviewed and if agreed on applied to a
+non-public git repository which is only accessible to the participating
+developers via a secure connection. The repository contains the main
+development branch against the mainline kernel and backport branches for
+stable kernel versions as necessary.
+
+The initial response team will identify further experts from the Linux
+kernel developer community as needed and inform the disclosing party about
+their participation. Bringing in experts can happen at any time of the
+development process and often needs to be handled in a timely manner.
+
+Coordinated release
+"""""""""""""""""""
+
+The involved parties will negotiate the date and time where the embargo
+ends. At that point the prepared mitigations are integrated into the
+relevant kernel trees and published.
+
+While we understand that hardware security issues need coordinated embargo
+time, the embargo time should be constrained to the minimum time which is
+required for all involved parties to develop, test and prepare the
+mitigations. Extending embargo time artificially to meet conference talk
+dates or other non-technical reasons is creating more work and burden for
+the involved developers and response teams as the patches need to be kept
+up to date in order to follow the ongoing upstream kernel development,
+which might create conflicting changes.
+
+CVE assignment
+""""""""""""""
+
+Neither the hardware security team nor the initial response team assign
+CVEs, nor are CVEs required for the development process. If CVEs are
+provided by the disclosing party they can be used for documentation
+purposes.
+
+Process ambassadors
+-------------------
+
+For assistance with this process we have established ambassadors in various
+organizations, who can answer questions about or provide guidance on the
+reporting process and further handling. Ambassadors are not involved in the
+disclosure of a particular issue, unless requested by a response team or by
+an involved disclosed party. The current ambassadors list:
+
+ ============= ========================================================
+ ARM
+ AMD
+ IBM
+ Intel
+ Qualcomm Trilok Soni <tsoni@codeaurora.org>
+
+ Microsoft Sasha Levin <sashal@kernel.org>
+ VMware
+ Xen Andrew Cooper <andrew.cooper3@citrix.com>
+
+ Canonical Tyler Hicks <tyhicks@canonical.com>
+ Debian Ben Hutchings <ben@decadent.org.uk>
+ Oracle Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+ Red Hat Josh Poimboeuf <jpoimboe@redhat.com>
+ SUSE Jiri Kosina <jkosina@suse.cz>
+
+ Amazon
+ Google Kees Cook <keescook@chromium.org>
+ ============= ========================================================
+
+If you want your organization to be added to the ambassadors list, please
+contact the hardware security team. The nominated ambassador has to
+understand and support our process fully and is ideally well connected in
+the Linux kernel community.
+
+Encrypted mailing-lists
+-----------------------
+
+We use encrypted mailing-lists for communication. The operating principle
+of these lists is that email sent to the list is encrypted either with the
+list's PGP key or with the list's S/MIME certificate. The mailing-list
+software decrypts the email and re-encrypts it individually for each
+subscriber with the subscriber's PGP key or S/MIME certificate. Details
+about the mailing-list software and the setup which is used to ensure the
+security of the lists and protection of the data can be found here:
+https://www.kernel.org/....
+
+List keys
+^^^^^^^^^
+
+For initial contact see :ref:`Contact`. For incident specific mailing-lists
+the key and S/MIME certificate are conveyed to the subscribers by email
+sent from the specific list.
+
+Subscription to incident specific lists
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Subscription is handled by the response teams. Disclosed parties who want
+to participate in the communication send a list of potential subscribers to
+the response team so the response team can validate subscription requests.
+
+Each subscriber needs to send a subscription request to the response team
+by email. The email must be signed with the subscriber's PGP key or S/MIME
+certificate. If a PGP key is used, it must be available from a public key
+server and is ideally connected to the Linux kernel's PGP web of trust. See
+also: https://www.kernel.org/signature.html.
+
+The response team verifies that the subscriber request is valid and adds
+the subscriber to the list. After subscription the subscriber will receive
+email from the mailing-list which is signed either with the list's PGP key
+or the list's S/MIME certificate. The subscriber's email client can extract
+the PGP key or the S/MIME certificate from the signature so the subscriber
+can send encrypted email to the list.
+
diff --git a/Documentation/process/howto.rst b/Documentation/process/howto.rst
index 6ab75c11d2c3..b6f5a379ad6c 100644
--- a/Documentation/process/howto.rst
+++ b/Documentation/process/howto.rst
@@ -123,7 +123,7 @@ required reading:
https://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
- http://linux.yyz.us/patch-format.html
+ https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html
:ref:`Documentation/process/stable-api-nonsense.rst <stable_api_nonsense>`
This file describes the rationale behind the conscious decision to
diff --git a/Documentation/process/index.rst b/Documentation/process/index.rst
index 878ebfda7eef..e2c9ffc682c5 100644
--- a/Documentation/process/index.rst
+++ b/Documentation/process/index.rst
@@ -45,6 +45,7 @@ Other guides to the community that are of interest to most developers are:
submit-checklist
kernel-docs
deprecated
+ embargoed-hardware-issues
These are some overall technical guides that have been put here for now for
lack of a better place.
diff --git a/Documentation/process/maintainer-pgp-guide.rst b/Documentation/process/maintainer-pgp-guide.rst
index 4bab7464ff8c..17db11b7ed48 100644
--- a/Documentation/process/maintainer-pgp-guide.rst
+++ b/Documentation/process/maintainer-pgp-guide.rst
@@ -238,7 +238,10 @@ your new subkey::
work.
If for some reason you prefer to stay with RSA subkeys, just replace
- "ed25519" with "rsa2048" in the above command.
+ "ed25519" with "rsa2048" in the above command. Additionally, if you
+ plan to use a hardware device that does not support ED25519 ECC
+ keys, like Nitrokey Pro or a Yubikey, then you should use
+ "nistp256" instead or "ed25519."
Back up your master key for disaster recovery
@@ -432,23 +435,23 @@ Available smartcard devices
Unless all your laptops and workstations have smartcard readers, the
easiest is to get a specialized USB device that implements smartcard
-functionality. There are several options available:
+functionality. There are several options available:
- `Nitrokey Start`_: Open hardware and Free Software, based on FSI
- Japan's `Gnuk`_. Offers support for ECC keys, but fewest security
- features (such as resistance to tampering or some side-channel
- attacks).
-- `Nitrokey Pro`_: Similar to the Nitrokey Start, but more
- tamper-resistant and offers more security features, but no ECC
- support.
-- `Yubikey 4`_: proprietary hardware and software, but cheaper than
+ Japan's `Gnuk`_. One of the few available commercial devices that
+ support ED25519 ECC keys, but offer fewest security features (such as
+ resistance to tampering or some side-channel attacks).
+- `Nitrokey Pro 2`_: Similar to the Nitrokey Start, but more
+ tamper-resistant and offers more security features. Pro 2 supports ECC
+ cryptography (NISTP).
+- `Yubikey 5`_: proprietary hardware and software, but cheaper than
Nitrokey Pro and comes available in the USB-C form that is more useful
with newer laptops. Offers additional security features such as FIDO
- U2F, but no ECC.
+ U2F, among others, and now finally supports ECC keys (NISTP).
`LWN has a good review`_ of some of the above models, as well as several
-others. If you want to use ECC keys, your best bet among commercially
-available devices is the Nitrokey Start.
+others. Your choice will depend on cost, shipping availability in your
+geographical region, and open/proprietary hardware considerations.
.. note::
@@ -457,8 +460,8 @@ available devices is the Nitrokey Start.
Foundation.
.. _`Nitrokey Start`: https://shop.nitrokey.com/shop/product/nitrokey-start-6
-.. _`Nitrokey Pro`: https://shop.nitrokey.com/shop/product/nitrokey-pro-3
-.. _`Yubikey 4`: https://www.yubico.com/product/yubikey-4-series/
+.. _`Nitrokey Pro 2`: https://shop.nitrokey.com/shop/product/nitrokey-pro-2-3
+.. _`Yubikey 5`: https://www.yubico.com/products/yubikey-5-overview/
.. _Gnuk: http://www.fsij.org/doc-gnuk/
.. _`LWN has a good review`: https://lwn.net/Articles/736231/
.. _`qualify for a free Nitrokey Start`: https://www.kernel.org/nitrokey-digital-tokens-for-kernel-developers.html
diff --git a/Documentation/process/submit-checklist.rst b/Documentation/process/submit-checklist.rst
index c88867b173d9..8e56337d422d 100644
--- a/Documentation/process/submit-checklist.rst
+++ b/Documentation/process/submit-checklist.rst
@@ -39,7 +39,7 @@ and elsewhere regarding submitting Linux kernel patches.
6) Any new or modified ``CONFIG`` options do not muck up the config menu and
default to off unless they meet the exception criteria documented in
- ``Documentation/kbuild/kconfig-language.txt`` Menu attributes: default value.
+ ``Documentation/kbuild/kconfig-language.rst`` Menu attributes: default value.
7) All new ``Kconfig`` options have help text.
@@ -107,7 +107,7 @@ and elsewhere regarding submitting Linux kernel patches.
and why.
26) If any ioctl's are added by the patch, then also update
- ``Documentation/ioctl/ioctl-number.txt``.
+ ``Documentation/ioctl/ioctl-number.rst``.
27) If your modified source code depends on or uses any of the kernel
APIs or features that are related to the following ``Kconfig`` symbols,
diff --git a/Documentation/process/submitting-drivers.rst b/Documentation/process/submitting-drivers.rst
index 58bc047e7b95..1acaa14903d6 100644
--- a/Documentation/process/submitting-drivers.rst
+++ b/Documentation/process/submitting-drivers.rst
@@ -117,7 +117,7 @@ PM support:
implemented") error. You should also try to make sure that your
driver uses as little power as possible when it's not doing
anything. For the driver testing instructions see
- Documentation/power/drivers-testing.txt and for a relatively
+ Documentation/power/drivers-testing.rst and for a relatively
complete overview of the power management issues related to
drivers see :ref:`Documentation/driver-api/pm/devices.rst <driverapi_pm_devices>`.
diff --git a/Documentation/process/submitting-patches.rst b/Documentation/process/submitting-patches.rst
index 9c4299293c72..fb56297f70dc 100644
--- a/Documentation/process/submitting-patches.rst
+++ b/Documentation/process/submitting-patches.rst
@@ -844,7 +844,7 @@ Andrew Morton, "The perfect patch" (tpp).
<http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, "Linux kernel patch submission format".
- <http://linux.yyz.us/patch-format.html>
+ <https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html>
Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/linux/maintainer.html>
diff --git a/Documentation/pti/pti_intel_mid.txt b/Documentation/pti/pti_intel_mid.txt
deleted file mode 100644
index e7a5b6d1f7a9..000000000000
--- a/Documentation/pti/pti_intel_mid.txt
+++ /dev/null
@@ -1,99 +0,0 @@
-The Intel MID PTI project is HW implemented in Intel Atom
-system-on-a-chip designs based on the Parallel Trace
-Interface for MIPI P1149.7 cJTAG standard. The kernel solution
-for this platform involves the following files:
-
-./include/linux/pti.h
-./drivers/.../n_tracesink.h
-./drivers/.../n_tracerouter.c
-./drivers/.../n_tracesink.c
-./drivers/.../pti.c
-
-pti.c is the driver that enables various debugging features
-popular on platforms from certain mobile manufacturers.
-n_tracerouter.c and n_tracesink.c allow extra system information to
-be collected and routed to the pti driver, such as trace
-debugging data from a modem. Although n_tracerouter
-and n_tracesink are a part of the complete PTI solution,
-these two line disciplines can work separately from
-pti.c and route any data stream from one /dev/tty node
-to another /dev/tty node via kernel-space. This provides
-a stable, reliable connection that will not break unless
-the user-space application shuts down (plus avoids
-kernel->user->kernel context switch overheads of routing
-data).
-
-An example debugging usage for this driver system:
- *Hook /dev/ttyPTI0 to syslogd. Opening this port will also start
- a console device to further capture debugging messages to PTI.
- *Hook /dev/ttyPTI1 to modem debugging data to write to PTI HW.
- This is where n_tracerouter and n_tracesink are used.
- *Hook /dev/pti to a user-level debugging application for writing
- to PTI HW.
- *Use mipi_* Kernel Driver API in other device drivers for
- debugging to PTI by first requesting a PTI write address via
- mipi_request_masterchannel(1).
-
-Below is example pseudo-code on how a 'privileged' application
-can hook up n_tracerouter and n_tracesink to any tty on
-a system. 'Privileged' means the application has enough
-privileges to successfully manipulate the ldisc drivers
-but is not just blindly executing as 'root'. Keep in mind
-the use of ioctl(,TIOCSETD,) is not specific to the n_tracerouter
-and n_tracesink line discpline drivers but is a generic
-operation for a program to use a line discpline driver
-on a tty port other than the default n_tty.
-
-/////////// To hook up n_tracerouter and n_tracesink /////////
-
-// Note that n_tracerouter depends on n_tracesink.
-#include <errno.h>
-#define ONE_TTY "/dev/ttyOne"
-#define TWO_TTY "/dev/ttyTwo"
-
-// needed global to hand onto ldisc connection
-static int g_fd_source = -1;
-static int g_fd_sink = -1;
-
-// these two vars used to grab LDISC values from loaded ldisc drivers
-// in OS. Look at /proc/tty/ldiscs to get the right numbers from
-// the ldiscs loaded in the system.
-int source_ldisc_num, sink_ldisc_num = -1;
-int retval;
-
-g_fd_source = open(ONE_TTY, O_RDWR); // must be R/W
-g_fd_sink = open(TWO_TTY, O_RDWR); // must be R/W
-
-if (g_fd_source <= 0) || (g_fd_sink <= 0) {
- // doubt you'll want to use these exact error lines of code
- printf("Error on open(). errno: %d\n",errno);
- return errno;
-}
-
-retval = ioctl(g_fd_sink, TIOCSETD, &sink_ldisc_num);
-if (retval < 0) {
- printf("Error on ioctl(). errno: %d\n", errno);
- return errno;
-}
-
-retval = ioctl(g_fd_source, TIOCSETD, &source_ldisc_num);
-if (retval < 0) {
- printf("Error on ioctl(). errno: %d\n", errno);
- return errno;
-}
-
-/////////// To disconnect n_tracerouter and n_tracesink ////////
-
-// First make sure data through the ldiscs has stopped.
-
-// Second, disconnect ldiscs. This provides a
-// little cleaner shutdown on tty stack.
-sink_ldisc_num = 0;
-source_ldisc_num = 0;
-ioctl(g_fd_uart, TIOCSETD, &sink_ldisc_num);
-ioctl(g_fd_gadget, TIOCSETD, &source_ldisc_num);
-
-// Three, program closes connection, and cleanup:
-close(g_fd_uart);
-close(g_fd_gadget);
-g_fd_uart = g_fd_gadget = NULL;
diff --git a/Documentation/rbtree.txt b/Documentation/rbtree.txt
index c42a21b99046..523d54b60087 100644
--- a/Documentation/rbtree.txt
+++ b/Documentation/rbtree.txt
@@ -204,21 +204,21 @@ potentially expensive tree iterations. This is done at negligible runtime
overhead for maintanence; albeit larger memory footprint.
Similar to the rb_root structure, cached rbtrees are initialized to be
-empty via:
+empty via::
struct rb_root_cached mytree = RB_ROOT_CACHED;
Cached rbtree is simply a regular rb_root with an extra pointer to cache the
leftmost node. This allows rb_root_cached to exist wherever rb_root does,
which permits augmented trees to be supported as well as only a few extra
-interfaces:
+interfaces::
struct rb_node *rb_first_cached(struct rb_root_cached *tree);
void rb_insert_color_cached(struct rb_node *, struct rb_root_cached *, bool);
void rb_erase_cached(struct rb_node *node, struct rb_root_cached *);
Both insert and erase calls have their respective counterpart of augmented
-trees:
+trees::
void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *,
bool, struct rb_augment_callbacks *);
diff --git a/Documentation/remoteproc.txt b/Documentation/remoteproc.txt
index 77fb03acdbb4..03c3d2e568b0 100644
--- a/Documentation/remoteproc.txt
+++ b/Documentation/remoteproc.txt
@@ -314,6 +314,8 @@ Here are the various resource types that are currently supported::
* @RSC_VDEV: declare support for a virtio device, and serve as its
* virtio header.
* @RSC_LAST: just keep this one at the end
+ * @RSC_VENDOR_START: start of the vendor specific resource types range
+ * @RSC_VENDOR_END: end of the vendor specific resource types range
*
* Please note that these values are used as indices to the rproc_handle_rsc
* lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
@@ -321,11 +323,13 @@ Here are the various resource types that are currently supported::
* please update it as needed.
*/
enum fw_resource_type {
- RSC_CARVEOUT = 0,
- RSC_DEVMEM = 1,
- RSC_TRACE = 2,
- RSC_VDEV = 3,
- RSC_LAST = 4,
+ RSC_CARVEOUT = 0,
+ RSC_DEVMEM = 1,
+ RSC_TRACE = 2,
+ RSC_VDEV = 3,
+ RSC_LAST = 4,
+ RSC_VENDOR_START = 128,
+ RSC_VENDOR_END = 512,
};
For more details regarding a specific resource type, please see its
diff --git a/Documentation/riscv/boot-image-header.rst b/Documentation/riscv/boot-image-header.rst
new file mode 100644
index 000000000000..7b4d1d747585
--- /dev/null
+++ b/Documentation/riscv/boot-image-header.rst
@@ -0,0 +1,62 @@
+=================================
+Boot image header in RISC-V Linux
+=================================
+
+:Author: Atish Patra <atish.patra@wdc.com>
+:Date: 20 May 2019
+
+This document only describes the boot image header details for RISC-V Linux.
+
+TODO:
+ Write a complete booting guide.
+
+The following 64-byte header is present in decompressed Linux kernel image::
+
+ u32 code0; /* Executable code */
+ u32 code1; /* Executable code */
+ u64 text_offset; /* Image load offset, little endian */
+ u64 image_size; /* Effective Image size, little endian */
+ u64 flags; /* kernel flags, little endian */
+ u32 version; /* Version of this header */
+ u32 res1 = 0; /* Reserved */
+ u64 res2 = 0; /* Reserved */
+ u64 magic = 0x5643534952; /* Magic number, little endian, "RISCV" */
+ u32 magic2 = 0x56534905; /* Magic number 2, little endian, "RSC\x05" */
+ u32 res4; /* Reserved for PE COFF offset */
+
+This header format is compliant with PE/COFF header and largely inspired from
+ARM64 header. Thus, both ARM64 & RISC-V header can be combined into one common
+header in future.
+
+Notes
+=====
+
+- This header can also be reused to support EFI stub for RISC-V in future. EFI
+ specification needs PE/COFF image header in the beginning of the kernel image
+ in order to load it as an EFI application. In order to support EFI stub,
+ code0 should be replaced with "MZ" magic string and res5(at offset 0x3c) should
+ point to the rest of the PE/COFF header.
+
+- version field indicate header version number
+
+ ========== =============
+ Bits 0:15 Minor version
+ Bits 16:31 Major version
+ ========== =============
+
+ This preserves compatibility across newer and older version of the header.
+ The current version is defined as 0.2.
+
+- The "magic" field is deprecated as of version 0.2. In a future
+ release, it may be removed. This originally should have matched up
+ with the ARM64 header "magic" field, but unfortunately does not.
+ The "magic2" field replaces it, matching up with the ARM64 header.
+
+- In current header, the flags field has only one field.
+
+ ===== ====================================
+ Bit 0 Kernel endianness. 1 if BE, 0 if LE.
+ ===== ====================================
+
+- Image size is mandatory for boot loader to load kernel image. Booting will
+ fail otherwise.
diff --git a/Documentation/riscv/index.rst b/Documentation/riscv/index.rst
new file mode 100644
index 000000000000..215fd3c1f2d5
--- /dev/null
+++ b/Documentation/riscv/index.rst
@@ -0,0 +1,16 @@
+===================
+RISC-V architecture
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ boot-image-header
+ pmu
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/riscv/pmu.txt b/Documentation/riscv/pmu.rst
index b29f03a6d82f..acb216b99c26 100644
--- a/Documentation/riscv/pmu.txt
+++ b/Documentation/riscv/pmu.rst
@@ -1,5 +1,7 @@
+===================================
Supporting PMUs on RISC-V platforms
-==========================================
+===================================
+
Alan Kao <alankao@andestech.com>, Mar 2018
Introduction
@@ -77,13 +79,13 @@ Note that some features can be done in this stage as well:
(2) privilege level setting (user space only, kernel space only, both);
(3) destructor setting. Normally it is sufficient to apply *riscv_destroy_event*;
(4) tweaks for non-sampling events, which will be utilized by functions such as
-*perf_adjust_period*, usually something like the follows:
+ *perf_adjust_period*, usually something like the follows::
-if (!is_sampling_event(event)) {
- hwc->sample_period = x86_pmu.max_period;
- hwc->last_period = hwc->sample_period;
- local64_set(&hwc->period_left, hwc->sample_period);
-}
+ if (!is_sampling_event(event)) {
+ hwc->sample_period = x86_pmu.max_period;
+ hwc->last_period = hwc->sample_period;
+ local64_set(&hwc->period_left, hwc->sample_period);
+ }
In the case of *riscv_base_pmu*, only (3) is provided for now.
@@ -94,10 +96,10 @@ In the case of *riscv_base_pmu*, only (3) is provided for now.
3.1. Interrupt Initialization
This often occurs at the beginning of the *event_init* method. In common
-practice, this should be a code segment like
+practice, this should be a code segment like::
-int x86_reserve_hardware(void)
-{
+ int x86_reserve_hardware(void)
+ {
int err = 0;
if (!atomic_inc_not_zero(&pmc_refcount)) {
@@ -114,7 +116,7 @@ int x86_reserve_hardware(void)
}
return err;
-}
+ }
And the magic is in *reserve_pmc_hardware*, which usually does atomic
operations to make implemented IRQ accessible from some global function pointer.
@@ -128,28 +130,28 @@ which will be introduced in the next section.)
3.2. IRQ Structure
-Basically, a IRQ runs the following pseudo code:
+Basically, a IRQ runs the following pseudo code::
-for each hardware counter that triggered this overflow
+ for each hardware counter that triggered this overflow
- get the event of this counter
+ get the event of this counter
- // following two steps are defined as *read()*,
- // check the section Reading/Writing Counters for details.
- count the delta value since previous interrupt
- update the event->count (# event occurs) by adding delta, and
- event->hw.period_left by subtracting delta
+ // following two steps are defined as *read()*,
+ // check the section Reading/Writing Counters for details.
+ count the delta value since previous interrupt
+ update the event->count (# event occurs) by adding delta, and
+ event->hw.period_left by subtracting delta
- if the event overflows
- sample data
- set the counter appropriately for the next overflow
+ if the event overflows
+ sample data
+ set the counter appropriately for the next overflow
- if the event overflows again
- too frequently, throttle this event
- fi
- fi
+ if the event overflows again
+ too frequently, throttle this event
+ fi
+ fi
-end for
+ end for
However as of this writing, none of the RISC-V implementations have designed an
interrupt for perf, so the details are to be completed in the future.
@@ -195,23 +197,26 @@ A normal flow of these state transitions are as follows:
At this stage, a general event is bound to a physical counter, if any.
The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, because it is now
stopped, and the (software) event count does not need updating.
-** *start* is then called, and the counter is enabled.
- With flag PERF_EF_RELOAD, it writes an appropriate value to the counter (check
- previous section for detail).
- Nothing is written if the flag does not contain PERF_EF_RELOAD.
- The state now is reset to none, because it is neither stopped nor updated
- (the counting already started)
+
+ - *start* is then called, and the counter is enabled.
+ With flag PERF_EF_RELOAD, it writes an appropriate value to the counter (check
+ previous section for detail).
+ Nothing is written if the flag does not contain PERF_EF_RELOAD.
+ The state now is reset to none, because it is neither stopped nor updated
+ (the counting already started)
+
* When being context-switched out, *del* is called. It then checks out all the
events in the PMU and calls *stop* to update their counts.
-** *stop* is called by *del*
- and the perf core with flag PERF_EF_UPDATE, and it often shares the same
- subroutine as *read* with the same logic.
- The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again.
-** Life cycle of these two pairs: *add* and *del* are called repeatedly as
- tasks switch in-and-out; *start* and *stop* is also called when the perf core
- needs a quick stop-and-start, for instance, when the interrupt period is being
- adjusted.
+ - *stop* is called by *del*
+ and the perf core with flag PERF_EF_UPDATE, and it often shares the same
+ subroutine as *read* with the same logic.
+ The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again.
+
+ - Life cycle of these two pairs: *add* and *del* are called repeatedly as
+ tasks switch in-and-out; *start* and *stop* is also called when the perf core
+ needs a quick stop-and-start, for instance, when the interrupt period is being
+ adjusted.
Current implementation is sufficient for now and can be easily extended to
features in the future.
@@ -225,25 +230,26 @@ A. Related Structures
Both structures are designed to be read-only.
*struct pmu* defines some function pointer interfaces, and most of them take
-*struct perf_event* as a main argument, dealing with perf events according to
-perf's internal state machine (check kernel/events/core.c for details).
+ *struct perf_event* as a main argument, dealing with perf events according to
+ perf's internal state machine (check kernel/events/core.c for details).
*struct riscv_pmu* defines PMU-specific parameters. The naming follows the
-convention of all other architectures.
+ convention of all other architectures.
* struct perf_event: include/linux/perf_event.h
* struct hw_perf_event
The generic structure that represents perf events, and the hardware-related
-details.
+ details.
* struct riscv_hw_events: arch/riscv/include/asm/perf_event.h
The structure that holds the status of events, has two fixed members:
-the number of events and the array of the events.
+ the number of events and the array of the events.
References
----------
[1] https://github.com/riscv/riscv-linux/pull/124
+
[2] https://groups.google.com/a/groups.riscv.org/forum/#!topic/sw-dev/f19TmCNP6yA
diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.rst
index 7c715de99774..e09e77954238 100644
--- a/Documentation/s390/3270.txt
+++ b/Documentation/s390/3270.rst
@@ -1,13 +1,17 @@
+===============================
IBM 3270 Display System support
+===============================
This file describes the driver that supports local channel attachment
of IBM 3270 devices. It consists of three sections:
+
* Introduction
* Installation
* Operation
-INTRODUCTION.
+Introduction
+============
This paper describes installing and operating 3270 devices under
Linux/390. A 3270 device is a block-mode rows-and-columns terminal of
@@ -17,12 +21,12 @@ twenty and thirty years ago.
You may have 3270s in-house and not know it. If you're using the
VM-ESA operating system, define a 3270 to your virtual machine by using
the command "DEF GRAF <hex-address>" This paper presumes you will be
-defining four 3270s with the CP/CMS commands
+defining four 3270s with the CP/CMS commands:
- DEF GRAF 620
- DEF GRAF 621
- DEF GRAF 622
- DEF GRAF 623
+ - DEF GRAF 620
+ - DEF GRAF 621
+ - DEF GRAF 622
+ - DEF GRAF 623
Your network connection from VM-ESA allows you to use x3270, tn3270, or
another 3270 emulator, started from an xterm window on your PC or
@@ -34,7 +38,8 @@ This paper covers installation of the driver and operation of a
dialed-in x3270.
-INSTALLATION.
+Installation
+============
You install the driver by installing a patch, doing a kernel build, and
running the configuration script (config3270.sh, in this directory).
@@ -59,13 +64,15 @@ Use #CP TERM CONMODE 3270 to change it to 3270. If you generate only
at boot time to a 3270 if it is a 3215.
In brief, these are the steps:
+
1. Install the tub3270 patch
- 2. (If a module) add a line to a file in /etc/modprobe.d/*.conf
+ 2. (If a module) add a line to a file in `/etc/modprobe.d/*.conf`
3. (If VM) define devices with DEF GRAF
4. Reboot
5. Configure
To test that everything works, assuming VM and x3270,
+
1. Bring up an x3270 window.
2. Use the DIAL command in that window.
3. You should immediately see a Linux login screen.
@@ -74,7 +81,8 @@ Here are the installation steps in detail:
1. The 3270 driver is a part of the official Linux kernel
source. Build a tree with the kernel source and any necessary
- patches. Then do
+ patches. Then do::
+
make oldconfig
(If you wish to disable 3215 console support, edit
.config; change CONFIG_TN3215's value to "n";
@@ -84,20 +92,22 @@ Here are the installation steps in detail:
make modules_install
2. (Perform this step only if you have configured tub3270 as a
- module.) Add a line to a file /etc/modprobe.d/*.conf to automatically
+ module.) Add a line to a file `/etc/modprobe.d/*.conf` to automatically
load the driver when it's needed. With this line added, you will see
login prompts appear on your 3270s as soon as boot is complete (or
with emulated 3270s, as soon as you dial into your vm guest using the
command "DIAL <vmguestname>"). Since the line-mode major number is
- 227, the line to add should be:
+ 227, the line to add should be::
+
alias char-major-227 tub3270
3. Define graphic devices to your vm guest machine, if you
haven't already. Define them before you reboot (reipl):
- DEFINE GRAF 620
- DEFINE GRAF 621
- DEFINE GRAF 622
- DEFINE GRAF 623
+
+ - DEFINE GRAF 620
+ - DEFINE GRAF 621
+ - DEFINE GRAF 622
+ - DEFINE GRAF 623
4. Reboot. The reboot process scans hardware devices, including
3270s, and this enables the tub3270 driver once loaded to respond
@@ -107,21 +117,23 @@ Here are the installation steps in detail:
5. Run the 3270 configuration script config3270. It is
distributed in this same directory, Documentation/s390, as
- config3270.sh. Inspect the output script it produces,
+ config3270.sh. Inspect the output script it produces,
/tmp/mkdev3270, and then run that script. This will create the
necessary character special device files and make the necessary
changes to /etc/inittab.
Then notify /sbin/init that /etc/inittab has changed, by issuing
- the telinit command with the q operand:
+ the telinit command with the q operand::
+
cd Documentation/s390
sh config3270.sh
sh /tmp/mkdev3270
telinit q
- This should be sufficient for your first time. If your 3270
+ This should be sufficient for your first time. If your 3270
configuration has changed and you're reusing config3270, you
- should follow these steps:
+ should follow these steps::
+
Change 3270 configuration
Reboot
Run config3270 and /tmp/mkdev3270
@@ -132,8 +144,10 @@ Here are the testing steps in detail:
1. Bring up an x3270 window, or use an actual hardware 3278 or
3279, or use the 3270 emulator of your choice. You would be
running the emulator on your PC or workstation. You would use
- the command, for example,
+ the command, for example::
+
x3270 vm-esa-domain-name &
+
if you wanted a 3278 Model 4 with 43 rows of 80 columns, the
default model number. The driver does not take advantage of
extended attributes.
@@ -144,7 +158,8 @@ Here are the testing steps in detail:
2. Use the DIAL command instead of the LOGIN command to connect
to one of the virtual 3270s you defined with the DEF GRAF
- commands:
+ commands::
+
dial my-vm-guest-name
3. You should immediately see a login prompt from your
@@ -171,14 +186,17 @@ Here are the testing steps in detail:
Wrong major number? Wrong minor number? There's your
problem!
- D. Do you get the message
+ D. Do you get the message::
+
"HCPDIA047E my-vm-guest-name 0620 does not exist"?
+
If so, you must issue the command "DEF GRAF 620" from your VM
3215 console and then reboot the system.
OPERATION.
+==========
The driver defines three areas on the 3270 screen: the log area, the
input area, and the status area.
@@ -203,8 +221,10 @@ which indicates no scrolling will occur. (If you hit ENTER with "Linux
Running" and nothing typed, the application receives a newline.)
You may change the scrolling timeout value. For example, the following
-command line:
+command line::
+
echo scrolltime=60 > /proc/tty/driver/tty3270
+
changes the scrolling timeout value to 60 sec. Set scrolltime to 0 if
you wish to prevent scrolling entirely.
@@ -228,7 +248,8 @@ cause an EOF also by typing "^D" and hitting ENTER.
No PF key is preassigned to cause a job suspension, but you may cause a
job suspension by typing "^Z" and hitting ENTER. You may wish to
assign this function to a PF key. To make PF7 cause job suspension,
-execute the command:
+execute the command::
+
echo pf7=^z > /proc/tty/driver/tty3270
If the input you type does not end with the two characters "^n", the
@@ -243,8 +264,10 @@ command is entered into the stack only when the input area is not made
invisible (such as for password entry) and it is not identical to the
current top entry. PF10 rotates backward through the command stack;
PF11 rotates forward. You may assign the backward function to any PF
-key (or PA key, for that matter), say, PA3, with the command:
+key (or PA key, for that matter), say, PA3, with the command::
+
echo -e pa3=\\033k > /proc/tty/driver/tty3270
+
This assigns the string ESC-k to PA3. Similarly, the string ESC-j
performs the forward function. (Rationale: In bash with vi-mode line
editing, ESC-k and ESC-j retrieve backward and forward history.
@@ -252,15 +275,19 @@ Suggestions welcome.)
Is a stack size of twenty commands not to your liking? Change it on
the fly. To change to saving the last 100 commands, execute the
-command:
+command::
+
echo recallsize=100 > /proc/tty/driver/tty3270
Have a command you issue frequently? Assign it to a PF or PA key! Use
-the command
- echo pf24="mkdir foobar; cd foobar" > /proc/tty/driver/tty3270
+the command::
+
+ echo pf24="mkdir foobar; cd foobar" > /proc/tty/driver/tty3270
+
to execute the commands mkdir foobar and cd foobar immediately when you
hit PF24. Want to see the command line first, before you execute it?
-Use the -n option of the echo command:
+Use the -n option of the echo command::
+
echo -n pf24="mkdir foo; cd foo" > /proc/tty/driver/tty3270
diff --git a/Documentation/s390/DASD b/Documentation/s390/DASD
deleted file mode 100644
index 9963f1e9c98a..000000000000
--- a/Documentation/s390/DASD
+++ /dev/null
@@ -1,73 +0,0 @@
-DASD device driver
-
-S/390's disk devices (DASDs) are managed by Linux via the DASD device
-driver. It is valid for all types of DASDs and represents them to
-Linux as block devices, namely "dd". Currently the DASD driver uses a
-single major number (254) and 4 minor numbers per volume (1 for the
-physical volume and 3 for partitions). With respect to partitions see
-below. Thus you may have up to 64 DASD devices in your system.
-
-The kernel parameter 'dasd=from-to,...' may be issued arbitrary times
-in the kernel's parameter line or not at all. The 'from' and 'to'
-parameters are to be given in hexadecimal notation without a leading
-0x.
-If you supply kernel parameters the different instances are processed
-in order of appearance and a minor number is reserved for any device
-covered by the supplied range up to 64 volumes. Additional DASDs are
-ignored. If you do not supply the 'dasd=' kernel parameter at all, the
-DASD driver registers all supported DASDs of your system to a minor
-number in ascending order of the subchannel number.
-
-The driver currently supports ECKD-devices and there are stubs for
-support of the FBA and CKD architectures. For the FBA architecture
-only some smart data structures are missing to make the support
-complete.
-We performed our testing on 3380 and 3390 type disks of different
-sizes, under VM and on the bare hardware (LPAR), using internal disks
-of the multiprise as well as a RAMAC virtual array. Disks exported by
-an Enterprise Storage Server (Seascape) should work fine as well.
-
-We currently implement one partition per volume, which is the whole
-volume, skipping the first blocks up to the volume label. These are
-reserved for IPL records and IBM's volume label to assure
-accessibility of the DASD from other OSs. In a later stage we will
-provide support of partitions, maybe VTOC oriented or using a kind of
-partition table in the label record.
-
-USAGE
-
--Low-level format (?CKD only)
-For using an ECKD-DASD as a Linux harddisk you have to low-level
-format the tracks by issuing the BLKDASDFORMAT-ioctl on that
-device. This will erase any data on that volume including IBM volume
-labels, VTOCs etc. The ioctl may take a 'struct format_data *' or
-'NULL' as an argument.
-typedef struct {
- int start_unit;
- int stop_unit;
- int blksize;
-} format_data_t;
-When a NULL argument is passed to the BLKDASDFORMAT ioctl the whole
-disk is formatted to a blocksize of 1024 bytes. Otherwise start_unit
-and stop_unit are the first and last track to be formatted. If
-stop_unit is -1 it implies that the DASD is formatted from start_unit
-up to the last track. blksize can be any power of two between 512 and
-4096. We recommend no blksize lower than 1024 because the ext2fs uses
-1kB blocks anyway and you gain approx. 50% of capacity increasing your
-blksize from 512 byte to 1kB.
-
--Make a filesystem
-Then you can mk??fs the filesystem of your choice on that volume or
-partition. For reasons of sanity you should build your filesystem on
-the partition /dev/dd?1 instead of the whole volume. You only lose 3kB
-but may be sure that you can reuse your data after introduction of a
-real partition table.
-
-BUGS:
-- Performance sometimes is rather low because we don't fully exploit clustering
-
-TODO-List:
-- Add IBM'S Disk layout to genhd
-- Enhance driver to use more than one major number
-- Enable usage as a module
-- Support Cache fast write and DASD fast write (ECKD)
diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/Debugging390.txt
deleted file mode 100644
index 5ae7f868a007..000000000000
--- a/Documentation/s390/Debugging390.txt
+++ /dev/null
@@ -1,2142 +0,0 @@
-
- Debugging on Linux for s/390 & z/Architecture
- by
- Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
- Copyright (C) 2000-2001 IBM Deutschland Entwicklung GmbH, IBM Corporation
- Best viewed with fixed width fonts
-
-Overview of Document:
-=====================
-This document is intended to give a good overview of how to debug Linux for
-s/390 and z/Architecture. It is not intended as a complete reference and not a
-tutorial on the fundamentals of C & assembly. It doesn't go into
-390 IO in any detail. It is intended to complement the documents in the
-reference section below & any other worthwhile references you get.
-
-It is intended like the Enterprise Systems Architecture/390 Reference Summary
-to be printed out & used as a quick cheat sheet self help style reference when
-problems occur.
-
-Contents
-========
-Register Set
-Address Spaces on Intel Linux
-Address Spaces on Linux for s/390 & z/Architecture
-The Linux for s/390 & z/Architecture Kernel Task Structure
-Register Usage & Stackframes on Linux for s/390 & z/Architecture
-A sample program with comments
-Compiling programs for debugging on Linux for s/390 & z/Architecture
-Debugging under VM
-s/390 & z/Architecture IO Overview
-Debugging IO on s/390 & z/Architecture under VM
-GDB on s/390 & z/Architecture
-Stack chaining in gdb by hand
-Examining core dumps
-ldd
-Debugging modules
-The proc file system
-SysRq
-References
-Special Thanks
-
-Register Set
-============
-The current architectures have the following registers.
-
-16 General propose registers, 32 bit on s/390 and 64 bit on z/Architecture,
-r0-r15 (or gpr0-gpr15), used for arithmetic and addressing.
-
-16 Control registers, 32 bit on s/390 and 64 bit on z/Architecture, cr0-cr15,
-kernel usage only, used for memory management, interrupt control, debugging
-control etc.
-
-16 Access registers (ar0-ar15), 32 bit on both s/390 and z/Architecture,
-normally not used by normal programs but potentially could be used as
-temporary storage. These registers have a 1:1 association with general
-purpose registers and are designed to be used in the so-called access
-register mode to select different address spaces.
-Access register 0 (and access register 1 on z/Architecture, which needs a
-64 bit pointer) is currently used by the pthread library as a pointer to
-the current running threads private area.
-
-16 64 bit floating point registers (fp0-fp15 ) IEEE & HFP floating
-point format compliant on G5 upwards & a Floating point control reg (FPC)
-4 64 bit registers (fp0,fp2,fp4 & fp6) HFP only on older machines.
-Note:
-Linux (currently) always uses IEEE & emulates G5 IEEE format on older machines,
-( provided the kernel is configured for this ).
-
-
-The PSW is the most important register on the machine it
-is 64 bit on s/390 & 128 bit on z/Architecture & serves the roles of
-a program counter (pc), condition code register,memory space designator.
-In IBM standard notation I am counting bit 0 as the MSB.
-It has several advantages over a normal program counter
-in that you can change address translation & program counter
-in a single instruction. To change address translation,
-e.g. switching address translation off requires that you
-have a logical=physical mapping for the address you are
-currently running at.
-
- Bit Value
-s/390 z/Architecture
-0 0 Reserved ( must be 0 ) otherwise specification exception occurs.
-
-1 1 Program Event Recording 1 PER enabled,
- PER is used to facilitate debugging e.g. single stepping.
-
-2-4 2-4 Reserved ( must be 0 ).
-
-5 5 Dynamic address translation 1=DAT on.
-
-6 6 Input/Output interrupt Mask
-
-7 7 External interrupt Mask used primarily for interprocessor
- signalling and clock interrupts.
-
-8-11 8-11 PSW Key used for complex memory protection mechanism
- (not used under linux)
-
-12 12 1 on s/390 0 on z/Architecture
-
-13 13 Machine Check Mask 1=enable machine check interrupts
-
-14 14 Wait State. Set this to 1 to stop the processor except for
- interrupts and give time to other LPARS. Used in CPU idle in
- the kernel to increase overall usage of processor resources.
-
-15 15 Problem state ( if set to 1 certain instructions are disabled )
- all linux user programs run with this bit 1
- ( useful info for debugging under VM ).
-
-16-17 16-17 Address Space Control
-
- 00 Primary Space Mode:
- The register CR1 contains the primary address-space control ele-
- ment (PASCE), which points to the primary space region/segment
- table origin.
-
- 01 Access register mode
-
- 10 Secondary Space Mode:
- The register CR7 contains the secondary address-space control
- element (SASCE), which points to the secondary space region or
- segment table origin.
-
- 11 Home Space Mode:
- The register CR13 contains the home space address-space control
- element (HASCE), which points to the home space region/segment
- table origin.
-
- See "Address Spaces on Linux for s/390 & z/Architecture" below
- for more information about address space usage in Linux.
-
-18-19 18-19 Condition codes (CC)
-
-20 20 Fixed point overflow mask if 1=FPU exceptions for this event
- occur ( normally 0 )
-
-21 21 Decimal overflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-22 22 Exponent underflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-23 23 Significance Mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-24-31 24-30 Reserved Must be 0.
-
- 31 Extended Addressing Mode
- 32 Basic Addressing Mode
- Used to set addressing mode
- PSW 31 PSW 32
- 0 0 24 bit
- 0 1 31 bit
- 1 1 64 bit
-
-32 1=31 bit addressing mode 0=24 bit addressing mode (for backward
- compatibility), linux always runs with this bit set to 1
-
-33-64 Instruction address.
- 33-63 Reserved must be 0
- 64-127 Address
- In 24 bits mode bits 64-103=0 bits 104-127 Address
- In 31 bits mode bits 64-96=0 bits 97-127 Address
- Note: unlike 31 bit mode on s/390 bit 96 must be zero
- when loading the address with LPSWE otherwise a
- specification exception occurs, LPSW is fully backward
- compatible.
-
-
-Prefix Page(s)
---------------
-This per cpu memory area is too intimately tied to the processor not to mention.
-It exists between the real addresses 0-4096 on s/390 and between 0-8192 on
-z/Architecture and is exchanged with one page on s/390 or two pages on
-z/Architecture in absolute storage by the set prefix instruction during Linux
-startup.
-This page is mapped to a different prefix for each processor in an SMP
-configuration (assuming the OS designer is sane of course).
-Bytes 0-512 (200 hex) on s/390 and 0-512, 4096-4544, 4604-5119 currently on
-z/Architecture are used by the processor itself for holding such information
-as exception indications and entry points for exceptions.
-Bytes after 0xc00 hex are used by linux for per processor globals on s/390 and
-z/Architecture (there is a gap on z/Architecture currently between 0xc00 and
-0x1000, too, which is used by Linux).
-The closest thing to this on traditional architectures is the interrupt
-vector table. This is a good thing & does simplify some of the kernel coding
-however it means that we now cannot catch stray NULL pointers in the
-kernel without hard coded checks.
-
-
-
-Address Spaces on Intel Linux
-=============================
-
-The traditional Intel Linux is approximately mapped as follows forgive
-the ascii art.
-0xFFFFFFFF 4GB Himem *****************
- * *
- * Kernel Space *
- * *
- ***************** ****************
-User Space Himem * User Stack * * *
-(typically 0xC0000000 3GB ) ***************** * *
- * Shared Libs * * Next Process *
- ***************** * to *
- * * <== * Run * <==
- * User Program * * *
- * Data BSS * * *
- * Text * * *
- * Sections * * *
-0x00000000 ***************** ****************
-
-Now it is easy to see that on Intel it is quite easy to recognise a kernel
-address as being one greater than user space himem (in this case 0xC0000000),
-and addresses of less than this are the ones in the current running program on
-this processor (if an smp box).
-If using the virtual machine ( VM ) as a debugger it is quite difficult to
-know which user process is running as the address space you are looking at
-could be from any process in the run queue.
-
-The limitation of Intels addressing technique is that the linux
-kernel uses a very simple real address to virtual addressing technique
-of Real Address=Virtual Address-User Space Himem.
-This means that on Intel the kernel linux can typically only address
-Himem=0xFFFFFFFF-0xC0000000=1GB & this is all the RAM these machines
-can typically use.
-They can lower User Himem to 2GB or lower & thus be
-able to use 2GB of RAM however this shrinks the maximum size
-of User Space from 3GB to 2GB they have a no win limit of 4GB unless
-they go to 64 Bit.
-
-
-On 390 our limitations & strengths make us slightly different.
-For backward compatibility we are only allowed use 31 bits (2GB)
-of our 32 bit addresses, however, we use entirely separate address
-spaces for the user & kernel.
-
-This means we can support 2GB of non Extended RAM on s/390, & more
-with the Extended memory management swap device &
-currently 4TB of physical memory currently on z/Architecture.
-
-
-Address Spaces on Linux for s/390 & z/Architecture
-==================================================
-
-Our addressing scheme is basically as follows:
-
- Primary Space Home Space
-Himem 0x7fffffff 2GB on s/390 ***************** ****************
-currently 0x3ffffffffff (2^42)-1 * User Stack * * *
-on z/Architecture. ***************** * *
- * Shared Libs * * *
- ***************** * *
- * * * Kernel *
- * User Program * * *
- * Data BSS * * *
- * Text * * *
- * Sections * * *
-0x00000000 ***************** ****************
-
-This also means that we need to look at the PSW problem state bit and the
-addressing mode to decide whether we are looking at user or kernel space.
-
-User space runs in primary address mode (or access register mode within
-the vdso code).
-
-The kernel usually also runs in home space mode, however when accessing
-user space the kernel switches to primary or secondary address mode if
-the mvcos instruction is not available or if a compare-and-swap (futex)
-instruction on a user space address is performed.
-
-When also looking at the ASCE control registers, this means:
-
-User space:
-- runs in primary or access register mode
-- cr1 contains the user asce
-- cr7 contains the user asce
-- cr13 contains the kernel asce
-
-Kernel space:
-- runs in home space mode
-- cr1 contains the user or kernel asce
- -> the kernel asce is loaded when a uaccess requires primary or
- secondary address mode
-- cr7 contains the user or kernel asce, (changed with set_fs())
-- cr13 contains the kernel asce
-
-In case of uaccess the kernel changes to:
-- primary space mode in case of a uaccess (copy_to_user) and uses
- e.g. the mvcp instruction to access user space. However the kernel
- will stay in home space mode if the mvcos instruction is available
-- secondary space mode in case of futex atomic operations, so that the
- instructions come from primary address space and data from secondary
- space
-
-In case of KVM, the kernel runs in home space mode, but cr1 gets switched
-to contain the gmap asce before the SIE instruction gets executed. When
-the SIE instruction is finished, cr1 will be switched back to contain the
-user asce.
-
-
-Virtual Addresses on s/390 & z/Architecture
-===========================================
-
-A virtual address on s/390 is made up of 3 parts
-The SX (segment index, roughly corresponding to the PGD & PMD in Linux
-terminology) being bits 1-11.
-The PX (page index, corresponding to the page table entry (pte) in Linux
-terminology) being bits 12-19.
-The remaining bits BX (the byte index are the offset in the page )
-i.e. bits 20 to 31.
-
-On z/Architecture in linux we currently make up an address from 4 parts.
-The region index bits (RX) 0-32 we currently use bits 22-32
-The segment index (SX) being bits 33-43
-The page index (PX) being bits 44-51
-The byte index (BX) being bits 52-63
-
-Notes:
-1) s/390 has no PMD so the PMD is really the PGD also.
-A lot of this stuff is defined in pgtable.h.
-
-2) Also seeing as s/390's page indexes are only 1k in size
-(bits 12-19 x 4 bytes per pte ) we use 1 ( page 4k )
-to make the best use of memory by updating 4 segment indices
-entries each time we mess with a PMD & use offsets
-0,1024,2048 & 3072 in this page as for our segment indexes.
-On z/Architecture our page indexes are now 2k in size
-( bits 12-19 x 8 bytes per pte ) we do a similar trick
-but only mess with 2 segment indices each time we mess with
-a PMD.
-
-3) As z/Architecture supports up to a massive 5-level page table lookup we
-can only use 3 currently on Linux ( as this is all the generic kernel
-currently supports ) however this may change in future
-this allows us to access ( according to my sums )
-4TB of virtual storage per process i.e.
-4096*512(PTES)*1024(PMDS)*2048(PGD) = 4398046511104 bytes,
-enough for another 2 or 3 of years I think :-).
-to do this we use a region-third-table designation type in
-our address space control registers.
-
-
-The Linux for s/390 & z/Architecture Kernel Task Structure
-==========================================================
-Each process/thread under Linux for S390 has its own kernel task_struct
-defined in linux/include/linux/sched.h
-The S390 on initialisation & resuming of a process on a cpu sets
-the __LC_KERNEL_STACK variable in the spare prefix area for this cpu
-(which we use for per-processor globals).
-
-The kernel stack pointer is intimately tied with the task structure for
-each processor as follows.
-
- s/390
- ************************
- * 1 page kernel stack *
- * ( 4K ) *
- ************************
- * 1 page task_struct *
- * ( 4K ) *
-8K aligned ************************
-
- z/Architecture
- ************************
- * 2 page kernel stack *
- * ( 8K ) *
- ************************
- * 2 page task_struct *
- * ( 8K ) *
-16K aligned ************************
-
-What this means is that we don't need to dedicate any register or global
-variable to point to the current running process & can retrieve it with the
-following very simple construct for s/390 & one very similar for z/Architecture.
-
-static inline struct task_struct * get_current(void)
-{
- struct task_struct *current;
- __asm__("lhi %0,-8192\n\t"
- "nr %0,15"
- : "=r" (current) );
- return current;
-}
-
-i.e. just anding the current kernel stack pointer with the mask -8192.
-Thankfully because Linux doesn't have support for nested IO interrupts
-& our devices have large buffers can survive interrupts being shut for
-short amounts of time we don't need a separate stack for interrupts.
-
-
-
-
-Register Usage & Stackframes on Linux for s/390 & z/Architecture
-=================================================================
-Overview:
----------
-This is the code that gcc produces at the top & the bottom of
-each function. It usually is fairly consistent & similar from
-function to function & if you know its layout you can probably
-make some headway in finding the ultimate cause of a problem
-after a crash without a source level debugger.
-
-Note: To follow stackframes requires a knowledge of C or Pascal &
-limited knowledge of one assembly language.
-
-It should be noted that there are some differences between the
-s/390 and z/Architecture stack layouts as the z/Architecture stack layout
-didn't have to maintain compatibility with older linkage formats.
-
-Glossary:
----------
-alloca:
-This is a built in compiler function for runtime allocation
-of extra space on the callers stack which is obviously freed
-up on function exit ( e.g. the caller may choose to allocate nothing
-of a buffer of 4k if required for temporary purposes ), it generates
-very efficient code ( a few cycles ) when compared to alternatives
-like malloc.
-
-automatics: These are local variables on the stack,
-i.e they aren't in registers & they aren't static.
-
-back-chain:
-This is a pointer to the stack pointer before entering a
-framed functions ( see frameless function ) prologue got by
-dereferencing the address of the current stack pointer,
- i.e. got by accessing the 32 bit value at the stack pointers
-current location.
-
-base-pointer:
-This is a pointer to the back of the literal pool which
-is an area just behind each procedure used to store constants
-in each function.
-
-call-clobbered: The caller probably needs to save these registers if there
-is something of value in them, on the stack or elsewhere before making a
-call to another procedure so that it can restore it later.
-
-epilogue:
-The code generated by the compiler to return to the caller.
-
-frameless-function
-A frameless function in Linux for s390 & z/Architecture is one which doesn't
-need more than the register save area (96 bytes on s/390, 160 on z/Architecture)
-given to it by the caller.
-A frameless function never:
-1) Sets up a back chain.
-2) Calls alloca.
-3) Calls other normal functions
-4) Has automatics.
-
-GOT-pointer:
-This is a pointer to the global-offset-table in ELF
-( Executable Linkable Format, Linux'es most common executable format ),
-all globals & shared library objects are found using this pointer.
-
-lazy-binding
-ELF shared libraries are typically only loaded when routines in the shared
-library are actually first called at runtime. This is lazy binding.
-
-procedure-linkage-table
-This is a table found from the GOT which contains pointers to routines
-in other shared libraries which can't be called to by easier means.
-
-prologue:
-The code generated by the compiler to set up the stack frame.
-
-outgoing-args:
-This is extra area allocated on the stack of the calling function if the
-parameters for the callee's cannot all be put in registers, the same
-area can be reused by each function the caller calls.
-
-routine-descriptor:
-A COFF executable format based concept of a procedure reference
-actually being 8 bytes or more as opposed to a simple pointer to the routine.
-This is typically defined as follows
-Routine Descriptor offset 0=Pointer to Function
-Routine Descriptor offset 4=Pointer to Table of Contents
-The table of contents/TOC is roughly equivalent to a GOT pointer.
-& it means that shared libraries etc. can be shared between several
-environments each with their own TOC.
-
-
-static-chain: This is used in nested functions a concept adopted from pascal
-by gcc not used in ansi C or C++ ( although quite useful ), basically it
-is a pointer used to reference local variables of enclosing functions.
-You might come across this stuff once or twice in your lifetime.
-
-e.g.
-The function below should return 11 though gcc may get upset & toss warnings
-about unused variables.
-int FunctionA(int a)
-{
- int b;
- FunctionC(int c)
- {
- b=c+1;
- }
- FunctionC(10);
- return(b);
-}
-
-
-s/390 & z/Architecture Register usage
-=====================================
-r0 used by syscalls/assembly call-clobbered
-r1 used by syscalls/assembly call-clobbered
-r2 argument 0 / return value 0 call-clobbered
-r3 argument 1 / return value 1 (if long long) call-clobbered
-r4 argument 2 call-clobbered
-r5 argument 3 call-clobbered
-r6 argument 4 saved
-r7 pointer-to arguments 5 to ... saved
-r8 this & that saved
-r9 this & that saved
-r10 static-chain ( if nested function ) saved
-r11 frame-pointer ( if function used alloca ) saved
-r12 got-pointer saved
-r13 base-pointer saved
-r14 return-address saved
-r15 stack-pointer saved
-
-f0 argument 0 / return value ( float/double ) call-clobbered
-f2 argument 1 call-clobbered
-f4 z/Architecture argument 2 saved
-f6 z/Architecture argument 3 saved
-The remaining floating points
-f1,f3,f5 f7-f15 are call-clobbered.
-
-Notes:
-------
-1) The only requirement is that registers which are used
-by the callee are saved, e.g. the compiler is perfectly
-capable of using r11 for purposes other than a frame a
-frame pointer if a frame pointer is not needed.
-2) In functions with variable arguments e.g. printf the calling procedure
-is identical to one without variable arguments & the same number of
-parameters. However, the prologue of this function is somewhat more
-hairy owing to it having to move these parameters to the stack to
-get va_start, va_arg & va_end to work.
-3) Access registers are currently unused by gcc but are used in
-the kernel. Possibilities exist to use them at the moment for
-temporary storage but it isn't recommended.
-4) Only 4 of the floating point registers are used for
-parameter passing as older machines such as G3 only have only 4
-& it keeps the stack frame compatible with other compilers.
-However with IEEE floating point emulation under linux on the
-older machines you are free to use the other 12.
-5) A long long or double parameter cannot be have the
-first 4 bytes in a register & the second four bytes in the
-outgoing args area. It must be purely in the outgoing args
-area if crossing this boundary.
-6) Floating point parameters are mixed with outgoing args
-on the outgoing args area in the order the are passed in as parameters.
-7) Floating point arguments 2 & 3 are saved in the outgoing args area for
-z/Architecture
-
-
-Stack Frame Layout
-------------------
-s/390 z/Architecture
-0 0 back chain ( a 0 here signifies end of back chain )
-4 8 eos ( end of stack, not used on Linux for S390 used in other linkage formats )
-8 16 glue used in other s/390 linkage formats for saved routine descriptors etc.
-12 24 glue used in other s/390 linkage formats for saved routine descriptors etc.
-16 32 scratch area
-20 40 scratch area
-24 48 saved r6 of caller function
-28 56 saved r7 of caller function
-32 64 saved r8 of caller function
-36 72 saved r9 of caller function
-40 80 saved r10 of caller function
-44 88 saved r11 of caller function
-48 96 saved r12 of caller function
-52 104 saved r13 of caller function
-56 112 saved r14 of caller function
-60 120 saved r15 of caller function
-64 128 saved f4 of caller function
-72 132 saved f6 of caller function
-80 undefined
-96 160 outgoing args passed from caller to callee
-96+x 160+x possible stack alignment ( 8 bytes desirable )
-96+x+y 160+x+y alloca space of caller ( if used )
-96+x+y+z 160+x+y+z automatics of caller ( if used )
-0 back-chain
-
-A sample program with comments.
-===============================
-
-Comments on the function test
------------------------------
-1) It didn't need to set up a pointer to the constant pool gpr13 as it is not
-used ( :-( ).
-2) This is a frameless function & no stack is bought.
-3) The compiler was clever enough to recognise that it could return the
-value in r2 as well as use it for the passed in parameter ( :-) ).
-4) The basr ( branch relative & save ) trick works as follows the instruction
-has a special case with r0,r0 with some instruction operands is understood as
-the literal value 0, some risc architectures also do this ). So now
-we are branching to the next address & the address new program counter is
-in r13,so now we subtract the size of the function prologue we have executed
-+ the size of the literal pool to get to the top of the literal pool
-0040037c int test(int b)
-{ # Function prologue below
- 40037c: 90 de f0 34 stm %r13,%r14,52(%r15) # Save registers r13 & r14
- 400380: 0d d0 basr %r13,%r0 # Set up pointer to constant pool using
- 400382: a7 da ff fa ahi %r13,-6 # basr trick
- return(5+b);
- # Huge main program
- 400386: a7 2a 00 05 ahi %r2,5 # add 5 to r2
-
- # Function epilogue below
- 40038a: 98 de f0 34 lm %r13,%r14,52(%r15) # restore registers r13 & 14
- 40038e: 07 fe br %r14 # return
-}
-
-Comments on the function main
------------------------------
-1) The compiler did this function optimally ( 8-) )
-
-Literal pool for main.
-400390: ff ff ff ec .long 0xffffffec
-main(int argc,char *argv[])
-{ # Function prologue below
- 400394: 90 bf f0 2c stm %r11,%r15,44(%r15) # Save necessary registers
- 400398: 18 0f lr %r0,%r15 # copy stack pointer to r0
- 40039a: a7 fa ff a0 ahi %r15,-96 # Make area for callee saving
- 40039e: 0d d0 basr %r13,%r0 # Set up r13 to point to
- 4003a0: a7 da ff f0 ahi %r13,-16 # literal pool
- 4003a4: 50 00 f0 00 st %r0,0(%r15) # Save backchain
-
- return(test(5)); # Main Program Below
- 4003a8: 58 e0 d0 00 l %r14,0(%r13) # load relative address of test from
- # literal pool
- 4003ac: a7 28 00 05 lhi %r2,5 # Set first parameter to 5
- 4003b0: 4d ee d0 00 bas %r14,0(%r14,%r13) # jump to test setting r14 as return
- # address using branch & save instruction.
-
- # Function Epilogue below
- 4003b4: 98 bf f0 8c lm %r11,%r15,140(%r15)# Restore necessary registers.
- 4003b8: 07 fe br %r14 # return to do program exit
-}
-
-
-Compiler updates
-----------------
-
-main(int argc,char *argv[])
-{
- 4004fc: 90 7f f0 1c stm %r7,%r15,28(%r15)
- 400500: a7 d5 00 04 bras %r13,400508 <main+0xc>
- 400504: 00 40 04 f4 .long 0x004004f4
- # compiler now puts constant pool in code to so it saves an instruction
- 400508: 18 0f lr %r0,%r15
- 40050a: a7 fa ff a0 ahi %r15,-96
- 40050e: 50 00 f0 00 st %r0,0(%r15)
- return(test(5));
- 400512: 58 10 d0 00 l %r1,0(%r13)
- 400516: a7 28 00 05 lhi %r2,5
- 40051a: 0d e1 basr %r14,%r1
- # compiler adds 1 extra instruction to epilogue this is done to
- # avoid processor pipeline stalls owing to data dependencies on g5 &
- # above as register 14 in the old code was needed directly after being loaded
- # by the lm %r11,%r15,140(%r15) for the br %14.
- 40051c: 58 40 f0 98 l %r4,152(%r15)
- 400520: 98 7f f0 7c lm %r7,%r15,124(%r15)
- 400524: 07 f4 br %r4
-}
-
-
-Hartmut ( our compiler developer ) also has been threatening to take out the
-stack backchain in optimised code as this also causes pipeline stalls, you
-have been warned.
-
-64 bit z/Architecture code disassembly
---------------------------------------
-
-If you understand the stuff above you'll understand the stuff
-below too so I'll avoid repeating myself & just say that
-some of the instructions have g's on the end of them to indicate
-they are 64 bit & the stack offsets are a bigger,
-the only other difference you'll find between 32 & 64 bit is that
-we now use f4 & f6 for floating point arguments on 64 bit.
-00000000800005b0 <test>:
-int test(int b)
-{
- return(5+b);
- 800005b0: a7 2a 00 05 ahi %r2,5
- 800005b4: b9 14 00 22 lgfr %r2,%r2 # downcast to integer
- 800005b8: 07 fe br %r14
- 800005ba: 07 07 bcr 0,%r7
-
-
-}
-
-00000000800005bc <main>:
-main(int argc,char *argv[])
-{
- 800005bc: eb bf f0 58 00 24 stmg %r11,%r15,88(%r15)
- 800005c2: b9 04 00 1f lgr %r1,%r15
- 800005c6: a7 fb ff 60 aghi %r15,-160
- 800005ca: e3 10 f0 00 00 24 stg %r1,0(%r15)
- return(test(5));
- 800005d0: a7 29 00 05 lghi %r2,5
- # brasl allows jumps > 64k & is overkill here bras would do fune
- 800005d4: c0 e5 ff ff ff ee brasl %r14,800005b0 <test>
- 800005da: e3 40 f1 10 00 04 lg %r4,272(%r15)
- 800005e0: eb bf f0 f8 00 04 lmg %r11,%r15,248(%r15)
- 800005e6: 07 f4 br %r4
-}
-
-
-
-Compiling programs for debugging on Linux for s/390 & z/Architecture
-====================================================================
--gdwarf-2 now works it should be considered the default debugging
-format for s/390 & z/Architecture as it is more reliable for debugging
-shared libraries, normal -g debugging works much better now
-Thanks to the IBM java compiler developers bug reports.
-
-This is typically done adding/appending the flags -g or -gdwarf-2 to the
-CFLAGS & LDFLAGS variables Makefile of the program concerned.
-
-If using gdb & you would like accurate displays of registers &
- stack traces compile without optimisation i.e make sure
-that there is no -O2 or similar on the CFLAGS line of the Makefile &
-the emitted gcc commands, obviously this will produce worse code
-( not advisable for shipment ) but it is an aid to the debugging process.
-
-This aids debugging because the compiler will copy parameters passed in
-in registers onto the stack so backtracing & looking at passed in
-parameters will work, however some larger programs which use inline functions
-will not compile without optimisation.
-
-Debugging with optimisation has since much improved after fixing
-some bugs, please make sure you are using gdb-5.0 or later developed
-after Nov'2000.
-
-
-
-Debugging under VM
-==================
-
-Notes
------
-Addresses & values in the VM debugger are always hex never decimal
-Address ranges are of the format <HexValue1>-<HexValue2> or
-<HexValue1>.<HexValue2>
-For example, the address range 0x2000 to 0x3000 can be described as 2000-3000
-or 2000.1000
-
-The VM Debugger is case insensitive.
-
-VM's strengths are usually other debuggers weaknesses you can get at any
-resource no matter how sensitive e.g. memory management resources, change
-address translation in the PSW. For kernel hacking you will reap dividends if
-you get good at it.
-
-The VM Debugger displays operators but not operands, and also the debugger
-displays useful information on the same line as the author of the code probably
-felt that it was a good idea not to go over the 80 columns on the screen.
-This isn't as unintuitive as it may seem as the s/390 instructions are easy to
-decode mentally and you can make a good guess at a lot of them as all the
-operands are nibble (half byte aligned).
-So if you have an objdump listing by hand, it is quite easy to follow, and if
-you don't have an objdump listing keep a copy of the s/390 Reference Summary
-or alternatively the s/390 principles of operation next to you.
-e.g. even I can guess that
-0001AFF8' LR 180F CC 0
-is a ( load register ) lr r0,r15
-
-Also it is very easy to tell the length of a 390 instruction from the 2 most
-significant bits in the instruction (not that this info is really useful except
-if you are trying to make sense of a hexdump of code).
-Here is a table
-Bits Instruction Length
-------------------------------------------
-00 2 Bytes
-01 4 Bytes
-10 4 Bytes
-11 6 Bytes
-
-The debugger also displays other useful info on the same line such as the
-addresses being operated on destination addresses of branches & condition codes.
-e.g.
-00019736' AHI A7DAFF0E CC 1
-000198BA' BRC A7840004 -> 000198C2' CC 0
-000198CE' STM 900EF068 >> 0FA95E78 CC 2
-
-
-
-Useful VM debugger commands
----------------------------
-
-I suppose I'd better mention this before I start
-to list the current active traces do
-Q TR
-there can be a maximum of 255 of these per set
-( more about trace sets later ).
-To stop traces issue a
-TR END.
-To delete a particular breakpoint issue
-TR DEL <breakpoint number>
-
-The PA1 key drops to CP mode so you can issue debugger commands,
-Doing alt c (on my 3270 console at least ) clears the screen.
-hitting b <enter> comes back to the running operating system
-from cp mode ( in our case linux ).
-It is typically useful to add shortcuts to your profile.exec file
-if you have one ( this is roughly equivalent to autoexec.bat in DOS ).
-file here are a few from mine.
-/* this gives me command history on issuing f12 */
-set pf12 retrieve
-/* this continues */
-set pf8 imm b
-/* goes to trace set a */
-set pf1 imm tr goto a
-/* goes to trace set b */
-set pf2 imm tr goto b
-/* goes to trace set c */
-set pf3 imm tr goto c
-
-
-
-Instruction Tracing
--------------------
-Setting a simple breakpoint
-TR I PSWA <address>
-To debug a particular function try
-TR I R <function address range>
-TR I on its own will single step.
-TR I DATA <MNEMONIC> <OPTIONAL RANGE> will trace for particular mnemonics
-e.g.
-TR I DATA 4D R 0197BC.4000
-will trace for BAS'es ( opcode 4D ) in the range 0197BC.4000
-if you were inclined you could add traces for all branch instructions &
-suffix them with the run prefix so you would have a backtrace on screen
-when a program crashes.
-TR BR <INTO OR FROM> will trace branches into or out of an address.
-e.g.
-TR BR INTO 0 is often quite useful if a program is getting awkward & deciding
-to branch to 0 & crashing as this will stop at the address before in jumps to 0.
-TR I R <address range> RUN cmd d g
-single steps a range of addresses but stays running &
-displays the gprs on each step.
-
-
-
-Displaying & modifying Registers
---------------------------------
-D G will display all the gprs
-Adding a extra G to all the commands is necessary to access the full 64 bit
-content in VM on z/Architecture. Obviously this isn't required for access
-registers as these are still 32 bit.
-e.g. DGG instead of DG
-D X will display all the control registers
-D AR will display all the access registers
-D AR4-7 will display access registers 4 to 7
-CPU ALL D G will display the GRPS of all CPUS in the configuration
-D PSW will display the current PSW
-st PSW 2000 will put the value 2000 into the PSW &
-cause crash your machine.
-D PREFIX displays the prefix offset
-
-
-Displaying Memory
------------------
-To display memory mapped using the current PSW's mapping try
-D <range>
-To make VM display a message each time it hits a particular address and
-continue try
-D I<range> will disassemble/display a range of instructions.
-ST addr 32 bit word will store a 32 bit aligned address
-D T<range> will display the EBCDIC in an address (if you are that way inclined)
-D R<range> will display real addresses ( without DAT ) but with prefixing.
-There are other complex options to display if you need to get at say home space
-but are in primary space the easiest thing to do is to temporarily
-modify the PSW to the other addressing mode, display the stuff & then
-restore it.
-
-
-
-Hints
------
-If you want to issue a debugger command without halting your virtual machine
-with the PA1 key try prefixing the command with #CP e.g.
-#cp tr i pswa 2000
-also suffixing most debugger commands with RUN will cause them not
-to stop just display the mnemonic at the current instruction on the console.
-If you have several breakpoints you want to put into your program &
-you get fed up of cross referencing with System.map
-you can do the following trick for several symbols.
-grep do_signal System.map
-which emits the following among other things
-0001f4e0 T do_signal
-now you can do
-
-TR I PSWA 0001f4e0 cmd msg * do_signal
-This sends a message to your own console each time do_signal is entered.
-( As an aside I wrote a perl script once which automatically generated a REXX
-script with breakpoints on every kernel procedure, this isn't a good idea
-because there are thousands of these routines & VM can only set 255 breakpoints
-at a time so you nearly had to spend as long pruning the file down as you would
-entering the msgs by hand), however, the trick might be useful for a single
-object file. In the 3270 terminal emulator x3270 there is a very useful option
-in the file menu called "Save Screen In File" - this is very good for keeping a
-copy of traces.
-
-From CMS help <command name> will give you online help on a particular command.
-e.g.
-HELP DISPLAY
-
-Also CP has a file called profile.exec which automatically gets called
-on startup of CMS ( like autoexec.bat ), keeping on a DOS analogy session
-CP has a feature similar to doskey, it may be useful for you to
-use profile.exec to define some keystrokes.
-e.g.
-SET PF9 IMM B
-This does a single step in VM on pressing F8.
-SET PF10 ^
-This sets up the ^ key.
-which can be used for ^c (ctrl-c),^z (ctrl-z) which can't be typed directly
-into some 3270 consoles.
-SET PF11 ^-
-This types the starting keystrokes for a sysrq see SysRq below.
-SET PF12 RETRIEVE
-This retrieves command history on pressing F12.
-
-
-Sometimes in VM the display is set up to scroll automatically this
-can be very annoying if there are messages you wish to look at
-to stop this do
-TERM MORE 255 255
-This will nearly stop automatic screen updates, however it will
-cause a denial of service if lots of messages go to the 3270 console,
-so it would be foolish to use this as the default on a production machine.
-
-
-Tracing particular processes
-----------------------------
-The kernel's text segment is intentionally at an address in memory that it will
-very seldom collide with text segments of user programs ( thanks Martin ),
-this simplifies debugging the kernel.
-However it is quite common for user processes to have addresses which collide
-this can make debugging a particular process under VM painful under normal
-circumstances as the process may change when doing a
-TR I R <address range>.
-Thankfully after reading VM's online help I figured out how to debug
-I particular process.
-
-Your first problem is to find the STD ( segment table designation )
-of the program you wish to debug.
-There are several ways you can do this here are a few
-1) objdump --syms <program to be debugged> | grep main
-To get the address of main in the program.
-tr i pswa <address of main>
-Start the program, if VM drops to CP on what looks like the entry
-point of the main function this is most likely the process you wish to debug.
-Now do a D X13 or D XG13 on z/Architecture.
-On 31 bit the STD is bits 1-19 ( the STO segment table origin )
-& 25-31 ( the STL segment table length ) of CR13.
-now type
-TR I R STD <CR13's value> 0.7fffffff
-e.g.
-TR I R STD 8F32E1FF 0.7fffffff
-Another very useful variation is
-TR STORE INTO STD <CR13's value> <address range>
-for finding out when a particular variable changes.
-
-An alternative way of finding the STD of a currently running process
-is to do the following, ( this method is more complex but
-could be quite convenient if you aren't updating the kernel much &
-so your kernel structures will stay constant for a reasonable period of
-time ).
-
-grep task /proc/<pid>/status
-from this you should see something like
-task: 0f160000 ksp: 0f161de8 pt_regs: 0f161f68
-This now gives you a pointer to the task structure.
-Now make CC:="s390-gcc -g" kernel/sched.s
-To get the task_struct stabinfo.
-( task_struct is defined in include/linux/sched.h ).
-Now we want to look at
-task->active_mm->pgd
-on my machine the active_mm in the task structure stab is
-active_mm:(4,12),672,32
-its offset is 672/8=84=0x54
-the pgd member in the mm_struct stab is
-pgd:(4,6)=*(29,5),96,32
-so its offset is 96/8=12=0xc
-
-so we'll
-hexdump -s 0xf160054 /dev/mem | more
-i.e. task_struct+active_mm offset
-to look at the active_mm member
-f160054 0fee cc60 0019 e334 0000 0000 0000 0011
-hexdump -s 0x0feecc6c /dev/mem | more
-i.e. active_mm+pgd offset
-feecc6c 0f2c 0000 0000 0001 0000 0001 0000 0010
-we get something like
-now do
-TR I R STD <pgd|0x7f> 0.7fffffff
-i.e. the 0x7f is added because the pgd only
-gives the page table origin & we need to set the low bits
-to the maximum possible segment table length.
-TR I R STD 0f2c007f 0.7fffffff
-on z/Architecture you'll probably need to do
-TR I R STD <pgd|0x7> 0.ffffffffffffffff
-to set the TableType to 0x1 & the Table length to 3.
-
-
-
-Tracing Program Exceptions
---------------------------
-If you get a crash which says something like
-illegal operation or specification exception followed by a register dump
-You can restart linux & trace these using the tr prog <range or value> trace
-option.
-
-
-The most common ones you will normally be tracing for is
-1=operation exception
-2=privileged operation exception
-4=protection exception
-5=addressing exception
-6=specification exception
-10=segment translation exception
-11=page translation exception
-
-The full list of these is on page 22 of the current s/390 Reference Summary.
-e.g.
-tr prog 10 will trace segment translation exceptions.
-tr prog on its own will trace all program interruption codes.
-
-Trace Sets
-----------
-On starting VM you are initially in the INITIAL trace set.
-You can do a Q TR to verify this.
-If you have a complex tracing situation where you wish to wait for instance
-till a driver is open before you start tracing IO, but know in your
-heart that you are going to have to make several runs through the code till you
-have a clue whats going on.
-
-What you can do is
-TR I PSWA <Driver open address>
-hit b to continue till breakpoint
-reach the breakpoint
-now do your
-TR GOTO B
-TR IO 7c08-7c09 inst int run
-or whatever the IO channels you wish to trace are & hit b
-
-To got back to the initial trace set do
-TR GOTO INITIAL
-& the TR I PSWA <Driver open address> will be the only active breakpoint again.
-
-
-Tracing linux syscalls under VM
--------------------------------
-Syscalls are implemented on Linux for S390 by the Supervisor call instruction
-(SVC). There 256 possibilities of these as the instruction is made up of a 0xA
-opcode and the second byte being the syscall number. They are traced using the
-simple command:
-TR SVC <Optional value or range>
-the syscalls are defined in linux/arch/s390/include/asm/unistd.h
-e.g. to trace all file opens just do
-TR SVC 5 ( as this is the syscall number of open )
-
-
-SMP Specific commands
----------------------
-To find out how many cpus you have
-Q CPUS displays all the CPU's available to your virtual machine
-To find the cpu that the current cpu VM debugger commands are being directed at
-do Q CPU to change the current cpu VM debugger commands are being directed at do
-CPU <desired cpu no>
-
-On a SMP guest issue a command to all CPUs try prefixing the command with cpu
-all. To issue a command to a particular cpu try cpu <cpu number> e.g.
-CPU 01 TR I R 2000.3000
-If you are running on a guest with several cpus & you have a IO related problem
-& cannot follow the flow of code but you know it isn't smp related.
-from the bash prompt issue
-shutdown -h now or halt.
-do a Q CPUS to find out how many cpus you have
-detach each one of them from cp except cpu 0
-by issuing a
-DETACH CPU 01-(number of cpus in configuration)
-& boot linux again.
-TR SIGP will trace inter processor signal processor instructions.
-DEFINE CPU 01-(number in configuration)
-will get your guests cpus back.
-
-
-Help for displaying ascii textstrings
--------------------------------------
-On the very latest VM Nucleus'es VM can now display ascii
-( thanks Neale for the hint ) by doing
-D TX<lowaddr>.<len>
-e.g.
-D TX0.100
-
-Alternatively
-=============
-Under older VM debuggers (I love EBDIC too) you can use following little
-program which converts a command line of hex digits to ascii text. It can be
-compiled under linux and you can copy the hex digits from your x3270 terminal
-to your xterm if you are debugging from a linuxbox.
-
-This is quite useful when looking at a parameter passed in as a text string
-under VM ( unless you are good at decoding ASCII in your head ).
-
-e.g. consider tracing an open syscall
-TR SVC 5
-We have stopped at a breakpoint
-000151B0' SVC 0A05 -> 0001909A' CC 0
-
-D 20.8 to check the SVC old psw in the prefix area and see was it from userspace
-(for the layout of the prefix area consult the "Fixed Storage Locations"
-chapter of the s/390 Reference Summary if you have it available).
-V00000020 070C2000 800151B2
-The problem state bit wasn't set & it's also too early in the boot sequence
-for it to be a userspace SVC if it was we would have to temporarily switch the
-psw to user space addressing so we could get at the first parameter of the open
-in gpr2.
-Next do a
-D G2
-GPR 2 = 00014CB4
-Now display what gpr2 is pointing to
-D 00014CB4.20
-V00014CB4 2F646576 2F636F6E 736F6C65 00001BF5
-V00014CC4 FC00014C B4001001 E0001000 B8070707
-Now copy the text till the first 00 hex ( which is the end of the string
-to an xterm & do hex2ascii on it.
-hex2ascii 2F646576 2F636F6E 736F6C65 00
-outputs
-Decoded Hex:=/ d e v / c o n s o l e 0x00
-We were opening the console device,
-
-You can compile the code below yourself for practice :-),
-/*
- * hex2ascii.c
- * a useful little tool for converting a hexadecimal command line to ascii
- *
- * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
- * (C) 2000 IBM Deutschland Entwicklung GmbH, IBM Corporation.
- */
-#include <stdio.h>
-
-int main(int argc,char *argv[])
-{
- int cnt1,cnt2,len,toggle=0;
- int startcnt=1;
- unsigned char c,hex;
-
- if(argc>1&&(strcmp(argv[1],"-a")==0))
- startcnt=2;
- printf("Decoded Hex:=");
- for(cnt1=startcnt;cnt1<argc;cnt1++)
- {
- len=strlen(argv[cnt1]);
- for(cnt2=0;cnt2<len;cnt2++)
- {
- c=argv[cnt1][cnt2];
- if(c>='0'&&c<='9')
- c=c-'0';
- if(c>='A'&&c<='F')
- c=c-'A'+10;
- if(c>='a'&&c<='f')
- c=c-'a'+10;
- switch(toggle)
- {
- case 0:
- hex=c<<4;
- toggle=1;
- break;
- case 1:
- hex+=c;
- if(hex<32||hex>127)
- {
- if(startcnt==1)
- printf("0x%02X ",(int)hex);
- else
- printf(".");
- }
- else
- {
- printf("%c",hex);
- if(startcnt==1)
- printf(" ");
- }
- toggle=0;
- break;
- }
- }
- }
- printf("\n");
-}
-
-
-
-
-Stack tracing under VM
-----------------------
-A basic backtrace
------------------
-
-Here are the tricks I use 9 out of 10 times it works pretty well,
-
-When your backchain reaches a dead end
---------------------------------------
-This can happen when an exception happens in the kernel and the kernel is
-entered twice. If you reach the NULL pointer at the end of the back chain you
-should be able to sniff further back if you follow the following tricks.
-1) A kernel address should be easy to recognise since it is in
-primary space & the problem state bit isn't set & also
-The Hi bit of the address is set.
-2) Another backchain should also be easy to recognise since it is an
-address pointing to another address approximately 100 bytes or 0x70 hex
-behind the current stackpointer.
-
-
-Here is some practice.
-boot the kernel & hit PA1 at some random time
-d g to display the gprs, this should display something like
-GPR 0 = 00000001 00156018 0014359C 00000000
-GPR 4 = 00000001 001B8888 000003E0 00000000
-GPR 8 = 00100080 00100084 00000000 000FE000
-GPR 12 = 00010400 8001B2DC 8001B36A 000FFED8
-Note that GPR14 is a return address but as we are real men we are going to
-trace the stack.
-display 0x40 bytes after the stack pointer.
-
-V000FFED8 000FFF38 8001B838 80014C8E 000FFF38
-V000FFEE8 00000000 00000000 000003E0 00000000
-V000FFEF8 00100080 00100084 00000000 000FE000
-V000FFF08 00010400 8001B2DC 8001B36A 000FFED8
-
-
-Ah now look at whats in sp+56 (sp+0x38) this is 8001B36A our saved r14 if
-you look above at our stackframe & also agrees with GPR14.
-
-now backchain
-d 000FFF38.40
-we now are taking the contents of SP to get our first backchain.
-
-V000FFF38 000FFFA0 00000000 00014995 00147094
-V000FFF48 00147090 001470A0 000003E0 00000000
-V000FFF58 00100080 00100084 00000000 001BF1D0
-V000FFF68 00010400 800149BA 80014CA6 000FFF38
-
-This displays a 2nd return address of 80014CA6
-
-now do d 000FFFA0.40 for our 3rd backchain
-
-V000FFFA0 04B52002 0001107F 00000000 00000000
-V000FFFB0 00000000 00000000 FF000000 0001107F
-V000FFFC0 00000000 00000000 00000000 00000000
-V000FFFD0 00010400 80010802 8001085A 000FFFA0
-
-
-our 3rd return address is 8001085A
-
-as the 04B52002 looks suspiciously like rubbish it is fair to assume that the
-kernel entry routines for the sake of optimisation don't set up a backchain.
-
-now look at System.map to see if the addresses make any sense.
-
-grep -i 0001b3 System.map
-outputs among other things
-0001b304 T cpu_idle
-so 8001B36A
-is cpu_idle+0x66 ( quiet the cpu is asleep, don't wake it )
-
-
-grep -i 00014 System.map
-produces among other things
-00014a78 T start_kernel
-so 0014CA6 is start_kernel+some hex number I can't add in my head.
-
-grep -i 00108 System.map
-this produces
-00010800 T _stext
-so 8001085A is _stext+0x5a
-
-Congrats you've done your first backchain.
-
-
-
-s/390 & z/Architecture IO Overview
-==================================
-
-I am not going to give a course in 390 IO architecture as this would take me
-quite a while and I'm no expert. Instead I'll give a 390 IO architecture
-summary for Dummies. If you have the s/390 principles of operation available
-read this instead. If nothing else you may find a few useful keywords in here
-and be able to use them on a web search engine to find more useful information.
-
-Unlike other bus architectures modern 390 systems do their IO using mostly
-fibre optics and devices such as tapes and disks can be shared between several
-mainframes. Also S390 can support up to 65536 devices while a high end PC based
-system might be choking with around 64.
-
-Here is some of the common IO terminology:
-
-Subchannel:
-This is the logical number most IO commands use to talk to an IO device. There
-can be up to 0x10000 (65536) of these in a configuration, typically there are a
-few hundred. Under VM for simplicity they are allocated contiguously, however
-on the native hardware they are not. They typically stay consistent between
-boots provided no new hardware is inserted or removed.
-Under Linux for s390 we use these as IRQ's and also when issuing an IO command
-(CLEAR SUBCHANNEL, HALT SUBCHANNEL, MODIFY SUBCHANNEL, RESUME SUBCHANNEL,
-START SUBCHANNEL, STORE SUBCHANNEL and TEST SUBCHANNEL). We use this as the ID
-of the device we wish to talk to. The most important of these instructions are
-START SUBCHANNEL (to start IO), TEST SUBCHANNEL (to check whether the IO
-completed successfully) and HALT SUBCHANNEL (to kill IO). A subchannel can have
-up to 8 channel paths to a device, this offers redundancy if one is not
-available.
-
-Device Number:
-This number remains static and is closely tied to the hardware. There are 65536
-of these, made up of a CHPID (Channel Path ID, the most significant 8 bits) and
-another lsb 8 bits. These remain static even if more devices are inserted or
-removed from the hardware. There is a 1 to 1 mapping between subchannels and
-device numbers, provided devices aren't inserted or removed.
-
-Channel Control Words:
-CCWs are linked lists of instructions initially pointed to by an operation
-request block (ORB), which is initially given to Start Subchannel (SSCH)
-command along with the subchannel number for the IO subsystem to process
-while the CPU continues executing normal code.
-CCWs come in two flavours, Format 0 (24 bit for backward compatibility) and
-Format 1 (31 bit). These are typically used to issue read and write (and many
-other) instructions. They consist of a length field and an absolute address
-field.
-Each IO typically gets 1 or 2 interrupts, one for channel end (primary status)
-when the channel is idle, and the second for device end (secondary status).
-Sometimes you get both concurrently. You check how the IO went on by issuing a
-TEST SUBCHANNEL at each interrupt, from which you receive an Interruption
-response block (IRB). If you get channel and device end status in the IRB
-without channel checks etc. your IO probably went okay. If you didn't you
-probably need to examine the IRB, extended status word etc.
-If an error occurs, more sophisticated control units have a facility known as
-concurrent sense. This means that if an error occurs Extended sense information
-will be presented in the Extended status word in the IRB. If not you have to
-issue a subsequent SENSE CCW command after the test subchannel.
-
-
-TPI (Test pending interrupt) can also be used for polled IO, but in
-multitasking multiprocessor systems it isn't recommended except for
-checking special cases (i.e. non looping checks for pending IO etc.).
-
-Store Subchannel and Modify Subchannel can be used to examine and modify
-operating characteristics of a subchannel (e.g. channel paths).
-
-Other IO related Terms:
-Sysplex: S390's Clustering Technology
-QDIO: S390's new high speed IO architecture to support devices such as gigabit
-ethernet, this architecture is also designed to be forward compatible with
-upcoming 64 bit machines.
-
-
-General Concepts
-
-Input Output Processors (IOP's) are responsible for communicating between
-the mainframe CPU's & the channel & relieve the mainframe CPU's from the
-burden of communicating with IO devices directly, this allows the CPU's to
-concentrate on data processing.
-
-IOP's can use one or more links ( known as channel paths ) to talk to each
-IO device. It first checks for path availability & chooses an available one,
-then starts ( & sometimes terminates IO ).
-There are two types of channel path: ESCON & the Parallel IO interface.
-
-IO devices are attached to control units, control units provide the
-logic to interface the channel paths & channel path IO protocols to
-the IO devices, they can be integrated with the devices or housed separately
-& often talk to several similar devices ( typical examples would be raid
-controllers or a control unit which connects to 1000 3270 terminals ).
-
-
- +---------------------------------------------------------------+
- | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
- | | CPU | | CPU | | CPU | | CPU | | Main | | Expanded | |
- | | | | | | | | | | Memory | | Storage | |
- | +-----+ +-----+ +-----+ +-----+ +----------+ +----------+ |
- |---------------------------------------------------------------+
- | IOP | IOP | IOP |
- |---------------------------------------------------------------
- | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C | C |
- ----------------------------------------------------------------
- || ||
- || Bus & Tag Channel Path || ESCON
- || ====================== || Channel
- || || || || Path
- +----------+ +----------+ +----------+
- | | | | | |
- | CU | | CU | | CU |
- | | | | | |
- +----------+ +----------+ +----------+
- | | | | |
-+----------+ +----------+ +----------+ +----------+ +----------+
-|I/O Device| |I/O Device| |I/O Device| |I/O Device| |I/O Device|
-+----------+ +----------+ +----------+ +----------+ +----------+
- CPU = Central Processing Unit
- C = Channel
- IOP = IP Processor
- CU = Control Unit
-
-The 390 IO systems come in 2 flavours the current 390 machines support both
-
-The Older 360 & 370 Interface,sometimes called the Parallel I/O interface,
-sometimes called Bus-and Tag & sometimes Original Equipment Manufacturers
-Interface (OEMI).
-
-This byte wide Parallel channel path/bus has parity & data on the "Bus" cable
-and control lines on the "Tag" cable. These can operate in byte multiplex mode
-for sharing between several slow devices or burst mode and monopolize the
-channel for the whole burst. Up to 256 devices can be addressed on one of these
-cables. These cables are about one inch in diameter. The maximum unextended
-length supported by these cables is 125 Meters but this can be extended up to
-2km with a fibre optic channel extended such as a 3044. The maximum burst speed
-supported is 4.5 megabytes per second. However, some really old processors
-support only transfer rates of 3.0, 2.0 & 1.0 MB/sec.
-One of these paths can be daisy chained to up to 8 control units.
-
-
-ESCON if fibre optic it is also called FICON
-Was introduced by IBM in 1990. Has 2 fibre optic cables and uses either leds or
-lasers for communication at a signaling rate of up to 200 megabits/sec. As
-10bits are transferred for every 8 bits info this drops to 160 megabits/sec
-and to 18.6 Megabytes/sec once control info and CRC are added. ESCON only
-operates in burst mode.
-
-ESCONs typical max cable length is 3km for the led version and 20km for the
-laser version known as XDF (extended distance facility). This can be further
-extended by using an ESCON director which triples the above mentioned ranges.
-Unlike Bus & Tag as ESCON is serial it uses a packet switching architecture,
-the standard Bus & Tag control protocol is however present within the packets.
-Up to 256 devices can be attached to each control unit that uses one of these
-interfaces.
-
-Common 390 Devices include:
-Network adapters typically OSA2,3172's,2116's & OSA-E gigabit ethernet adapters,
-Consoles 3270 & 3215 (a teletype emulated under linux for a line mode console).
-DASD's direct access storage devices ( otherwise known as hard disks ).
-Tape Drives.
-CTC ( Channel to Channel Adapters ),
-ESCON or Parallel Cables used as a very high speed serial link
-between 2 machines.
-
-
-Debugging IO on s/390 & z/Architecture under VM
-===============================================
-
-Now we are ready to go on with IO tracing commands under VM
-
-A few self explanatory queries:
-Q OSA
-Q CTC
-Q DISK ( This command is CMS specific )
-Q DASD
-
-
-
-
-
-
-Q OSA on my machine returns
-OSA 7C08 ON OSA 7C08 SUBCHANNEL = 0000
-OSA 7C09 ON OSA 7C09 SUBCHANNEL = 0001
-OSA 7C14 ON OSA 7C14 SUBCHANNEL = 0002
-OSA 7C15 ON OSA 7C15 SUBCHANNEL = 0003
-
-If you have a guest with certain privileges you may be able to see devices
-which don't belong to you. To avoid this, add the option V.
-e.g.
-Q V OSA
-
-Now using the device numbers returned by this command we will
-Trace the io starting up on the first device 7c08 & 7c09
-In our simplest case we can trace the
-start subchannels
-like TR SSCH 7C08-7C09
-or the halt subchannels
-or TR HSCH 7C08-7C09
-MSCH's ,STSCH's I think you can guess the rest
-
-A good trick is tracing all the IO's and CCWS and spooling them into the reader
-of another VM guest so he can ftp the logfile back to his own machine. I'll do
-a small bit of this and give you a look at the output.
-
-1) Spool stdout to VM reader
-SP PRT TO (another vm guest ) or * for the local vm guest
-2) Fill the reader with the trace
-TR IO 7c08-7c09 INST INT CCW PRT RUN
-3) Start up linux
-i 00c
-4) Finish the trace
-TR END
-5) close the reader
-C PRT
-6) list reader contents
-RDRLIST
-7) copy it to linux4's minidisk
-RECEIVE / LOG TXT A1 ( replace
-8)
-filel & press F11 to look at it
-You should see something like:
-
-00020942' SSCH B2334000 0048813C CC 0 SCH 0000 DEV 7C08
- CPA 000FFDF0 PARM 00E2C9C4 KEY 0 FPI C0 LPM 80
- CCW 000FFDF0 E4200100 00487FE8 0000 E4240100 ........
- IDAL 43D8AFE8
- IDAL 0FB76000
-00020B0A' I/O DEV 7C08 -> 000197BC' SCH 0000 PARM 00E2C9C4
-00021628' TSCH B2354000 >> 00488164 CC 0 SCH 0000 DEV 7C08
- CCWA 000FFDF8 DEV STS 0C SCH STS 00 CNT 00EC
- KEY 0 FPI C0 CC 0 CTLS 4007
-00022238' STSCH B2344000 >> 00488108 CC 0 SCH 0000 DEV 7C08
-
-If you don't like messing up your readed ( because you possibly booted from it )
-you can alternatively spool it to another readers guest.
-
-
-Other common VM device related commands
----------------------------------------------
-These commands are listed only because they have
-been of use to me in the past & may be of use to
-you too. For more complete info on each of the commands
-use type HELP <command> from CMS.
-detaching devices
-DET <devno range>
-ATT <devno range> <guest>
-attach a device to guest * for your own guest
-READY <devno> cause VM to issue a fake interrupt.
-
-The VARY command is normally only available to VM administrators.
-VARY ON PATH <path> TO <devno range>
-VARY OFF PATH <PATH> FROM <devno range>
-This is used to switch on or off channel paths to devices.
-
-Q CHPID <channel path ID>
-This displays state of devices using this channel path
-D SCHIB <subchannel>
-This displays the subchannel information SCHIB block for the device.
-this I believe is also only available to administrators.
-DEFINE CTC <devno>
-defines a virtual CTC channel to channel connection
-2 need to be defined on each guest for the CTC driver to use.
-COUPLE devno userid remote devno
-Joins a local virtual device to a remote virtual device
-( commonly used for the CTC driver ).
-
-Building a VM ramdisk under CMS which linux can use
-def vfb-<blocksize> <subchannel> <number blocks>
-blocksize is commonly 4096 for linux.
-Formatting it
-format <subchannel> <driver letter e.g. x> (blksize <blocksize>
-
-Sharing a disk between multiple guests
-LINK userid devno1 devno2 mode password
-
-
-
-GDB on S390
-===========
-N.B. if compiling for debugging gdb works better without optimisation
-( see Compiling programs for debugging )
-
-invocation
-----------
-gdb <victim program> <optional corefile>
-
-Online help
------------
-help: gives help on commands
-e.g.
-help
-help display
-Note gdb's online help is very good use it.
-
-
-Assembly
---------
-info registers: displays registers other than floating point.
-info all-registers: displays floating points as well.
-disassemble: disassembles
-e.g.
-disassemble without parameters will disassemble the current function
-disassemble $pc $pc+10
-
-Viewing & modifying variables
------------------------------
-print or p: displays variable or register
-e.g. p/x $sp will display the stack pointer
-
-display: prints variable or register each time program stops
-e.g.
-display/x $pc will display the program counter
-display argc
-
-undisplay : undo's display's
-
-info breakpoints: shows all current breakpoints
-
-info stack: shows stack back trace (if this doesn't work too well, I'll show
-you the stacktrace by hand below).
-
-info locals: displays local variables.
-
-info args: display current procedure arguments.
-
-set args: will set argc & argv each time the victim program is invoked.
-
-set <variable>=value
-set argc=100
-set $pc=0
-
-
-
-Modifying execution
--------------------
-step: steps n lines of sourcecode
-step steps 1 line.
-step 100 steps 100 lines of code.
-
-next: like step except this will not step into subroutines
-
-stepi: steps a single machine code instruction.
-e.g. stepi 100
-
-nexti: steps a single machine code instruction but will not step into
-subroutines.
-
-finish: will run until exit of the current routine
-
-run: (re)starts a program
-
-cont: continues a program
-
-quit: exits gdb.
-
-
-breakpoints
-------------
-
-break
-sets a breakpoint
-e.g.
-
-break main
-
-break *$pc
-
-break *0x400618
-
-Here's a really useful one for large programs
-rbr
-Set a breakpoint for all functions matching REGEXP
-e.g.
-rbr 390
-will set a breakpoint with all functions with 390 in their name.
-
-info breakpoints
-lists all breakpoints
-
-delete: delete breakpoint by number or delete them all
-e.g.
-delete 1 will delete the first breakpoint
-delete will delete them all
-
-watch: This will set a watchpoint ( usually hardware assisted ),
-This will watch a variable till it changes
-e.g.
-watch cnt, will watch the variable cnt till it changes.
-As an aside unfortunately gdb's, architecture independent watchpoint code
-is inconsistent & not very good, watchpoints usually work but not always.
-
-info watchpoints: Display currently active watchpoints
-
-condition: ( another useful one )
-Specify breakpoint number N to break only if COND is true.
-Usage is `condition N COND', where N is an integer and COND is an
-expression to be evaluated whenever breakpoint N is reached.
-
-
-
-User defined functions/macros
------------------------------
-define: ( Note this is very very useful,simple & powerful )
-usage define <name> <list of commands> end
-
-examples which you should consider putting into .gdbinit in your home directory
-define d
-stepi
-disassemble $pc $pc+10
-end
-
-define e
-nexti
-disassemble $pc $pc+10
-end
-
-
-Other hard to classify stuff
-----------------------------
-signal n:
-sends the victim program a signal.
-e.g. signal 3 will send a SIGQUIT.
-
-info signals:
-what gdb does when the victim receives certain signals.
-
-list:
-e.g.
-list lists current function source
-list 1,10 list first 10 lines of current file.
-list test.c:1,10
-
-
-directory:
-Adds directories to be searched for source if gdb cannot find the source.
-(note it is a bit sensitive about slashes)
-e.g. To add the root of the filesystem to the searchpath do
-directory //
-
-
-call <function>
-This calls a function in the victim program, this is pretty powerful
-e.g.
-(gdb) call printf("hello world")
-outputs:
-$1 = 11
-
-You might now be thinking that the line above didn't work, something extra had
-to be done.
-(gdb) call fflush(stdout)
-hello world$2 = 0
-As an aside the debugger also calls malloc & free under the hood
-to make space for the "hello world" string.
-
-
-
-hints
------
-1) command completion works just like bash
-( if you are a bad typist like me this really helps )
-e.g. hit br <TAB> & cursor up & down :-).
-
-2) if you have a debugging problem that takes a few steps to recreate
-put the steps into a file called .gdbinit in your current working directory
-if you have defined a few extra useful user defined commands put these in
-your home directory & they will be read each time gdb is launched.
-
-A typical .gdbinit file might be.
-break main
-run
-break runtime_exception
-cont
-
-
-stack chaining in gdb by hand
------------------------------
-This is done using a the same trick described for VM
-p/x (*($sp+56))&0x7fffffff get the first backchain.
-
-For z/Architecture
-Replace 56 with 112 & ignore the &0x7fffffff
-in the macros below & do nasty casts to longs like the following
-as gdb unfortunately deals with printed arguments as ints which
-messes up everything.
-i.e. here is a 3rd backchain dereference
-p/x *(long *)(***(long ***)$sp+112)
-
-
-this outputs
-$5 = 0x528f18
-on my machine.
-Now you can use
-info symbol (*($sp+56))&0x7fffffff
-you might see something like.
-rl_getc + 36 in section .text telling you what is located at address 0x528f18
-Now do.
-p/x (*(*$sp+56))&0x7fffffff
-This outputs
-$6 = 0x528ed0
-Now do.
-info symbol (*(*$sp+56))&0x7fffffff
-rl_read_key + 180 in section .text
-now do
-p/x (*(**$sp+56))&0x7fffffff
-& so on.
-
-Disassembling instructions without debug info
----------------------------------------------
-gdb typically complains if there is a lack of debugging
-symbols in the disassemble command with
-"No function contains specified address." To get around
-this do
-x/<number lines to disassemble>xi <address>
-e.g.
-x/20xi 0x400730
-
-
-
-Note: Remember gdb has history just like bash you don't need to retype the
-whole line just use the up & down arrows.
-
-
-
-For more info
--------------
-From your linuxbox do
-man gdb or info gdb.
-
-core dumps
-----------
-What a core dump ?,
-A core dump is a file generated by the kernel (if allowed) which contains the
-registers and all active pages of the program which has crashed.
-From this file gdb will allow you to look at the registers, stack trace and
-memory of the program as if it just crashed on your system. It is usually
-called core and created in the current working directory.
-This is very useful in that a customer can mail a core dump to a technical
-support department and the technical support department can reconstruct what
-happened. Provided they have an identical copy of this program with debugging
-symbols compiled in and the source base of this build is available.
-In short it is far more useful than something like a crash log could ever hope
-to be.
-
-Why have I never seen one ?.
-Probably because you haven't used the command
-ulimit -c unlimited in bash
-to allow core dumps, now do
-ulimit -a
-to verify that the limit was accepted.
-
-A sample core dump
-To create this I'm going to do
-ulimit -c unlimited
-gdb
-to launch gdb (my victim app. ) now be bad & do the following from another
-telnet/xterm session to the same machine
-ps -aux | grep gdb
-kill -SIGSEGV <gdb's pid>
-or alternatively use killall -SIGSEGV gdb if you have the killall command.
-Now look at the core dump.
-./gdb core
-Displays the following
-GNU gdb 4.18
-Copyright 1998 Free Software Foundation, Inc.
-GDB is free software, covered by the GNU General Public License, and you are
-welcome to change it and/or distribute copies of it under certain conditions.
-Type "show copying" to see the conditions.
-There is absolutely no warranty for GDB. Type "show warranty" for details.
-This GDB was configured as "s390-ibm-linux"...
-Core was generated by `./gdb'.
-Program terminated with signal 11, Segmentation fault.
-Reading symbols from /usr/lib/libncurses.so.4...done.
-Reading symbols from /lib/libm.so.6...done.
-Reading symbols from /lib/libc.so.6...done.
-Reading symbols from /lib/ld-linux.so.2...done.
-#0 0x40126d1a in read () from /lib/libc.so.6
-Setting up the environment for debugging gdb.
-Breakpoint 1 at 0x4dc6f8: file utils.c, line 471.
-Breakpoint 2 at 0x4d87a4: file top.c, line 2609.
-(top-gdb) info stack
-#0 0x40126d1a in read () from /lib/libc.so.6
-#1 0x528f26 in rl_getc (stream=0x7ffffde8) at input.c:402
-#2 0x528ed0 in rl_read_key () at input.c:381
-#3 0x5167e6 in readline_internal_char () at readline.c:454
-#4 0x5168ee in readline_internal_charloop () at readline.c:507
-#5 0x51692c in readline_internal () at readline.c:521
-#6 0x5164fe in readline (prompt=0x7ffff810)
- at readline.c:349
-#7 0x4d7a8a in command_line_input (prompt=0x564420 "(gdb) ", repeat=1,
- annotation_suffix=0x4d6b44 "prompt") at top.c:2091
-#8 0x4d6cf0 in command_loop () at top.c:1345
-#9 0x4e25bc in main (argc=1, argv=0x7ffffdf4) at main.c:635
-
-
-LDD
-===
-This is a program which lists the shared libraries which a library needs,
-Note you also get the relocations of the shared library text segments which
-help when using objdump --source.
-e.g.
- ldd ./gdb
-outputs
-libncurses.so.4 => /usr/lib/libncurses.so.4 (0x40018000)
-libm.so.6 => /lib/libm.so.6 (0x4005e000)
-libc.so.6 => /lib/libc.so.6 (0x40084000)
-/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
-
-
-Debugging shared libraries
-==========================
-Most programs use shared libraries, however it can be very painful
-when you single step instruction into a function like printf for the
-first time & you end up in functions like _dl_runtime_resolve this is
-the ld.so doing lazy binding, lazy binding is a concept in ELF where
-shared library functions are not loaded into memory unless they are
-actually used, great for saving memory but a pain to debug.
-To get around this either relink the program -static or exit gdb type
-export LD_BIND_NOW=true this will stop lazy binding & restart the gdb'ing
-the program in question.
-
-
-
-Debugging modules
-=================
-As modules are dynamically loaded into the kernel their address can be
-anywhere to get around this use the -m option with insmod to emit a load
-map which can be piped into a file if required.
-
-The proc file system
-====================
-What is it ?.
-It is a filesystem created by the kernel with files which are created on demand
-by the kernel if read, or can be used to modify kernel parameters,
-it is a powerful concept.
-
-e.g.
-
-cat /proc/sys/net/ipv4/ip_forward
-On my machine outputs
-0
-telling me ip_forwarding is not on to switch it on I can do
-echo 1 > /proc/sys/net/ipv4/ip_forward
-cat it again
-cat /proc/sys/net/ipv4/ip_forward
-On my machine now outputs
-1
-IP forwarding is on.
-There is a lot of useful info in here best found by going in and having a look
-around, so I'll take you through some entries I consider important.
-
-All the processes running on the machine have their own entry defined by
-/proc/<pid>
-So lets have a look at the init process
-cd /proc/1
-
-cat cmdline
-emits
-init [2]
-
-cd /proc/1/fd
-This contains numerical entries of all the open files,
-some of these you can cat e.g. stdout (2)
-
-cat /proc/29/maps
-on my machine emits
-
-00400000-00478000 r-xp 00000000 5f:00 4103 /bin/bash
-00478000-0047e000 rw-p 00077000 5f:00 4103 /bin/bash
-0047e000-00492000 rwxp 00000000 00:00 0
-40000000-40015000 r-xp 00000000 5f:00 14382 /lib/ld-2.1.2.so
-40015000-40016000 rw-p 00014000 5f:00 14382 /lib/ld-2.1.2.so
-40016000-40017000 rwxp 00000000 00:00 0
-40017000-40018000 rw-p 00000000 00:00 0
-40018000-4001b000 r-xp 00000000 5f:00 14435 /lib/libtermcap.so.2.0.8
-4001b000-4001c000 rw-p 00002000 5f:00 14435 /lib/libtermcap.so.2.0.8
-4001c000-4010d000 r-xp 00000000 5f:00 14387 /lib/libc-2.1.2.so
-4010d000-40111000 rw-p 000f0000 5f:00 14387 /lib/libc-2.1.2.so
-40111000-40114000 rw-p 00000000 00:00 0
-40114000-4011e000 r-xp 00000000 5f:00 14408 /lib/libnss_files-2.1.2.so
-4011e000-4011f000 rw-p 00009000 5f:00 14408 /lib/libnss_files-2.1.2.so
-7fffd000-80000000 rwxp ffffe000 00:00 0
-
-
-Showing us the shared libraries init uses where they are in memory
-& memory access permissions for each virtual memory area.
-
-/proc/1/cwd is a softlink to the current working directory.
-/proc/1/root is the root of the filesystem for this process.
-
-/proc/1/mem is the current running processes memory which you
-can read & write to like a file.
-strace uses this sometimes as it is a bit faster than the
-rather inefficient ptrace interface for peeking at DATA.
-
-
-cat status
-
-Name: init
-State: S (sleeping)
-Pid: 1
-PPid: 0
-Uid: 0 0 0 0
-Gid: 0 0 0 0
-Groups:
-VmSize: 408 kB
-VmLck: 0 kB
-VmRSS: 208 kB
-VmData: 24 kB
-VmStk: 8 kB
-VmExe: 368 kB
-VmLib: 0 kB
-SigPnd: 0000000000000000
-SigBlk: 0000000000000000
-SigIgn: 7fffffffd7f0d8fc
-SigCgt: 00000000280b2603
-CapInh: 00000000fffffeff
-CapPrm: 00000000ffffffff
-CapEff: 00000000fffffeff
-
-User PSW: 070de000 80414146
-task: 004b6000 tss: 004b62d8 ksp: 004b7ca8 pt_regs: 004b7f68
-User GPRS:
-00000400 00000000 0000000b 7ffffa90
-00000000 00000000 00000000 0045d9f4
-0045cafc 7ffffa90 7fffff18 0045cb08
-00010400 804039e8 80403af8 7ffff8b0
-User ACRS:
-00000000 00000000 00000000 00000000
-00000001 00000000 00000000 00000000
-00000000 00000000 00000000 00000000
-00000000 00000000 00000000 00000000
-Kernel BackChain CallChain BackChain CallChain
- 004b7ca8 8002bd0c 004b7d18 8002b92c
- 004b7db8 8005cd50 004b7e38 8005d12a
- 004b7f08 80019114
-Showing among other things memory usage & status of some signals &
-the processes'es registers from the kernel task_structure
-as well as a backchain which may be useful if a process crashes
-in the kernel for some unknown reason.
-
-Some driver debugging techniques
-================================
-debug feature
--------------
-Some of our drivers now support a "debug feature" in
-/proc/s390dbf see s390dbf.txt in the linux/Documentation directory
-for more info.
-e.g.
-to switch on the lcs "debug feature"
-echo 5 > /proc/s390dbf/lcs/level
-& then after the error occurred.
-cat /proc/s390dbf/lcs/sprintf >/logfile
-the logfile now contains some information which may help
-tech support resolve a problem in the field.
-
-
-
-high level debugging network drivers
-------------------------------------
-ifconfig is a quite useful command
-it gives the current state of network drivers.
-
-If you suspect your network device driver is dead
-one way to check is type
-ifconfig <network device>
-e.g. tr0
-You should see something like
-tr0 Link encap:16/4 Mbps Token Ring (New) HWaddr 00:04:AC:20:8E:48
- inet addr:9.164.185.132 Bcast:9.164.191.255 Mask:255.255.224.0
- UP BROADCAST RUNNING MULTICAST MTU:2000 Metric:1
- RX packets:246134 errors:0 dropped:0 overruns:0 frame:0
- TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
- collisions:0 txqueuelen:100
-
-if the device doesn't say up
-try
-/etc/rc.d/init.d/network start
-( this starts the network stack & hopefully calls ifconfig tr0 up ).
-ifconfig looks at the output of /proc/net/dev and presents it in a more
-presentable form.
-Now ping the device from a machine in the same subnet.
-if the RX packets count & TX packets counts don't increment you probably
-have problems.
-next
-cat /proc/net/arp
-Do you see any hardware addresses in the cache if not you may have problems.
-Next try
-ping -c 5 <broadcast_addr> i.e. the Bcast field above in the output of
-ifconfig. Do you see any replies from machines other than the local machine
-if not you may have problems. also if the TX packets count in ifconfig
-hasn't incremented either you have serious problems in your driver
-(e.g. the txbusy field of the network device being stuck on )
-or you may have multiple network devices connected.
-
-
-chandev
--------
-There is a new device layer for channel devices, some
-drivers e.g. lcs are registered with this layer.
-If the device uses the channel device layer you'll be
-able to find what interrupts it uses & the current state
-of the device.
-See the manpage chandev.8 &type cat /proc/chandev for more info.
-
-
-SysRq
-=====
-This is now supported by linux for s/390 & z/Architecture.
-To enable it do compile the kernel with
-Kernel Hacking -> Magic SysRq Key Enabled
-echo "1" > /proc/sys/kernel/sysrq
-also type
-echo "8" >/proc/sys/kernel/printk
-To make printk output go to console.
-On 390 all commands are prefixed with
-^-
-e.g.
-^-t will show tasks.
-^-? or some unknown command will display help.
-The sysrq key reading is very picky ( I have to type the keys in an
- xterm session & paste them into the x3270 console )
-& it may be wise to predefine the keys as described in the VM hints above
-
-This is particularly useful for syncing disks unmounting & rebooting
-if the machine gets partially hung.
-
-Read Documentation/admin-guide/sysrq.rst for more info
-
-References:
-===========
-Enterprise Systems Architecture Reference Summary
-Enterprise Systems Architecture Principles of Operation
-Hartmut Penners s390 stack frame sheet.
-IBM Mainframe Channel Attachment a technology brief from a CISCO webpage
-Various bits of man & info pages of Linux.
-Linux & GDB source.
-Various info & man pages.
-CMS Help on tracing commands.
-Linux for s/390 Elf Application Binary Interface
-Linux for z/Series Elf Application Binary Interface ( Both Highly Recommended )
-z/Architecture Principles of Operation SA22-7832-00
-Enterprise Systems Architecture/390 Reference Summary SA22-7209-01 & the
-Enterprise Systems Architecture/390 Principles of Operation SA22-7201-05
-
-Special Thanks
-==============
-Special thanks to Neale Ferguson who maintains a much
-prettier HTML version of this page at
-http://linuxvm.org/penguinvm/
-Bob Grainger Stefan Bader & others for reporting bugs
diff --git a/Documentation/s390/cds.txt b/Documentation/s390/cds.rst
index 480a78ef5a1e..7006d8209d2e 100644
--- a/Documentation/s390/cds.txt
+++ b/Documentation/s390/cds.rst
@@ -1,14 +1,18 @@
+===========================
Linux for S/390 and zSeries
+===========================
Common Device Support (CDS)
Device Driver I/O Support Routines
-Authors : Ingo Adlung
- Cornelia Huck
+Authors:
+ - Ingo Adlung
+ - Cornelia Huck
Copyright, IBM Corp. 1999-2002
Introduction
+============
This document describes the common device support routines for Linux/390.
Different than other hardware architectures, ESA/390 has defined a unified
@@ -27,18 +31,20 @@ Operation manual (IBM Form. No. SA22-7201).
In order to build common device support for ESA/390 I/O interfaces, a
functional layer was introduced that provides generic I/O access methods to
-the hardware.
+the hardware.
-The common device support layer comprises the I/O support routines defined
-below. Some of them implement common Linux device driver interfaces, while
+The common device support layer comprises the I/O support routines defined
+below. Some of them implement common Linux device driver interfaces, while
some of them are ESA/390 platform specific.
Note:
-In order to write a driver for S/390, you also need to look into the interface
-described in Documentation/s390/driver-model.txt.
+ In order to write a driver for S/390, you also need to look into the interface
+ described in Documentation/s390/driver-model.rst.
Note for porting drivers from 2.4:
+
The major changes are:
+
* The functions use a ccw_device instead of an irq (subchannel).
* All drivers must define a ccw_driver (see driver-model.txt) and the associated
functions.
@@ -57,19 +63,16 @@ The major changes are:
ccw_device_get_ciw()
get commands from extended sense data.
-ccw_device_start()
-ccw_device_start_timeout()
-ccw_device_start_key()
-ccw_device_start_key_timeout()
+ccw_device_start(), ccw_device_start_timeout(), ccw_device_start_key(), ccw_device_start_key_timeout()
initiate an I/O request.
ccw_device_resume()
resume channel program execution.
-ccw_device_halt()
+ccw_device_halt()
terminate the current I/O request processed on the device.
-do_IRQ()
+do_IRQ()
generic interrupt routine. This function is called by the interrupt entry
routine whenever an I/O interrupt is presented to the system. The do_IRQ()
routine determines the interrupt status and calls the device specific
@@ -82,12 +85,15 @@ first level interrupt handler only and does not comprise a device driver
callable interface. Instead, the functional description of do_IO() also
describes the input to the device specific interrupt handler.
-Note: All explanations apply also to the 64 bit architecture s390x.
+Note:
+ All explanations apply also to the 64 bit architecture s390x.
Common Device Support (CDS) for Linux/390 Device Drivers
+========================================================
General Information
+-------------------
The following chapters describe the I/O related interface routines the
Linux/390 common device support (CDS) provides to allow for device specific
@@ -101,6 +107,7 @@ can be found in the architecture specific C header file
linux/arch/s390/include/asm/irq.h.
Overview of CDS interface concepts
+----------------------------------
Different to other hardware platforms, the ESA/390 architecture doesn't define
interrupt lines managed by a specific interrupt controller and bus systems
@@ -126,7 +133,7 @@ has to call every single device driver registered on this IRQ in order to
determine the device driver owning the device that raised the interrupt.
Up to kernel 2.4, Linux/390 used to provide interfaces via the IRQ (subchannel).
-For internal use of the common I/O layer, these are still there. However,
+For internal use of the common I/O layer, these are still there. However,
device drivers should use the new calling interface via the ccw_device only.
During its startup the Linux/390 system checks for peripheral devices. Each
@@ -134,7 +141,7 @@ of those devices is uniquely defined by a so called subchannel by the ESA/390
channel subsystem. While the subchannel numbers are system generated, each
subchannel also takes a user defined attribute, the so called device number.
Both subchannel number and device number cannot exceed 65535. During sysfs
-initialisation, the information about control unit type and device types that
+initialisation, the information about control unit type and device types that
imply specific I/O commands (channel command words - CCWs) in order to operate
the device are gathered. Device drivers can retrieve this set of hardware
information during their initialization step to recognize the devices they
@@ -164,18 +171,26 @@ get_ciw() - get command information word
This call enables a device driver to get information about supported commands
from the extended SenseID data.
-struct ciw *
-ccw_device_get_ciw(struct ccw_device *cdev, __u32 cmd);
+::
-cdev - The ccw_device for which the command is to be retrieved.
-cmd - The command type to be retrieved.
+ struct ciw *
+ ccw_device_get_ciw(struct ccw_device *cdev, __u32 cmd);
+
+==== ========================================================
+cdev The ccw_device for which the command is to be retrieved.
+cmd The command type to be retrieved.
+==== ========================================================
ccw_device_get_ciw() returns:
-NULL - No extended data available, invalid device or command not found.
-!NULL - The command requested.
+===== ================================================================
+ NULL No extended data available, invalid device or command not found.
+!NULL The command requested.
+===== ================================================================
+
+::
-ccw_device_start() - Initiate I/O Request
+ ccw_device_start() - Initiate I/O Request
The ccw_device_start() routines is the I/O request front-end processor. All
device driver I/O requests must be issued using this routine. A device driver
@@ -186,93 +201,105 @@ This description also covers the status information passed to the device
driver's interrupt handler as this is related to the rules (flags) defined
with the associated I/O request when calling ccw_device_start().
-int ccw_device_start(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- unsigned long flags);
-int ccw_device_start_timeout(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- unsigned long flags,
- int expires);
-int ccw_device_start_key(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- __u8 key,
- unsigned long flags);
-int ccw_device_start_key_timeout(struct ccw_device *cdev,
- struct ccw1 *cpa,
- unsigned long intparm,
- __u8 lpm,
- __u8 key,
- unsigned long flags,
- int expires);
-
-cdev : ccw_device the I/O is destined for
-cpa : logical start address of channel program
-user_intparm : user specific interrupt information; will be presented
- back to the device driver's interrupt handler. Allows a
- device driver to associate the interrupt with a
- particular I/O request.
-lpm : defines the channel path to be used for a specific I/O
- request. A value of 0 will make cio use the opm.
-key : the storage key to use for the I/O (useful for operating on a
- storage with a storage key != default key)
-flag : defines the action to be performed for I/O processing
-expires : timeout value in jiffies. The common I/O layer will terminate
- the running program after this and call the interrupt handler
- with ERR_PTR(-ETIMEDOUT) as irb.
-
-Possible flag values are :
-
-DOIO_ALLOW_SUSPEND - channel program may become suspended
-DOIO_DENY_PREFETCH - don't allow for CCW prefetch; usually
- this implies the channel program might
- become modified
-DOIO_SUPPRESS_INTER - don't call the handler on intermediate status
-
-The cpa parameter points to the first format 1 CCW of a channel program :
-
-struct ccw1 {
- __u8 cmd_code;/* command code */
- __u8 flags; /* flags, like IDA addressing, etc. */
- __u16 count; /* byte count */
- __u32 cda; /* data address */
-} __attribute__ ((packed,aligned(8)));
-
-with the following CCW flags values defined :
-
-CCW_FLAG_DC - data chaining
-CCW_FLAG_CC - command chaining
-CCW_FLAG_SLI - suppress incorrect length
-CCW_FLAG_SKIP - skip
-CCW_FLAG_PCI - PCI
-CCW_FLAG_IDA - indirect addressing
-CCW_FLAG_SUSPEND - suspend
+::
+
+ int ccw_device_start(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ unsigned long flags);
+ int ccw_device_start_timeout(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ unsigned long flags,
+ int expires);
+ int ccw_device_start_key(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ __u8 key,
+ unsigned long flags);
+ int ccw_device_start_key_timeout(struct ccw_device *cdev,
+ struct ccw1 *cpa,
+ unsigned long intparm,
+ __u8 lpm,
+ __u8 key,
+ unsigned long flags,
+ int expires);
+
+============= =============================================================
+cdev ccw_device the I/O is destined for
+cpa logical start address of channel program
+user_intparm user specific interrupt information; will be presented
+ back to the device driver's interrupt handler. Allows a
+ device driver to associate the interrupt with a
+ particular I/O request.
+lpm defines the channel path to be used for a specific I/O
+ request. A value of 0 will make cio use the opm.
+key the storage key to use for the I/O (useful for operating on a
+ storage with a storage key != default key)
+flag defines the action to be performed for I/O processing
+expires timeout value in jiffies. The common I/O layer will terminate
+ the running program after this and call the interrupt handler
+ with ERR_PTR(-ETIMEDOUT) as irb.
+============= =============================================================
+
+Possible flag values are:
+
+========================= =============================================
+DOIO_ALLOW_SUSPEND channel program may become suspended
+DOIO_DENY_PREFETCH don't allow for CCW prefetch; usually
+ this implies the channel program might
+ become modified
+DOIO_SUPPRESS_INTER don't call the handler on intermediate status
+========================= =============================================
+
+The cpa parameter points to the first format 1 CCW of a channel program::
+
+ struct ccw1 {
+ __u8 cmd_code;/* command code */
+ __u8 flags; /* flags, like IDA addressing, etc. */
+ __u16 count; /* byte count */
+ __u32 cda; /* data address */
+ } __attribute__ ((packed,aligned(8)));
+
+with the following CCW flags values defined:
+
+=================== =========================
+CCW_FLAG_DC data chaining
+CCW_FLAG_CC command chaining
+CCW_FLAG_SLI suppress incorrect length
+CCW_FLAG_SKIP skip
+CCW_FLAG_PCI PCI
+CCW_FLAG_IDA indirect addressing
+CCW_FLAG_SUSPEND suspend
+=================== =========================
Via ccw_device_set_options(), the device driver may specify the following
options for the device:
-DOIO_EARLY_NOTIFICATION - allow for early interrupt notification
-DOIO_REPORT_ALL - report all interrupt conditions
+========================= ======================================
+DOIO_EARLY_NOTIFICATION allow for early interrupt notification
+DOIO_REPORT_ALL report all interrupt conditions
+========================= ======================================
-The ccw_device_start() function returns :
+The ccw_device_start() function returns:
- 0 - successful completion or request successfully initiated
--EBUSY - The device is currently processing a previous I/O request, or there is
- a status pending at the device.
--ENODEV - cdev is invalid, the device is not operational or the ccw_device is
- not online.
+======== ======================================================================
+ 0 successful completion or request successfully initiated
+ -EBUSY The device is currently processing a previous I/O request, or there is
+ a status pending at the device.
+-ENODEV cdev is invalid, the device is not operational or the ccw_device is
+ not online.
+======== ======================================================================
When the I/O request completes, the CDS first level interrupt handler will
accumulate the status in a struct irb and then call the device interrupt handler.
-The intparm field will contain the value the device driver has associated with a
-particular I/O request. If a pending device status was recognized,
+The intparm field will contain the value the device driver has associated with a
+particular I/O request. If a pending device status was recognized,
intparm will be set to 0 (zero). This may happen during I/O initiation or delayed
by an alert status notification. In any case this status is not related to the
current (last) I/O request. In case of a delayed status notification no special
@@ -282,9 +309,11 @@ never started, even though ccw_device_start() returned with successful completio
The irb may contain an error value, and the device driver should check for this
first:
--ETIMEDOUT: the common I/O layer terminated the request after the specified
- timeout value
--EIO: the common I/O layer terminated the request due to an error state
+========== =================================================================
+-ETIMEDOUT the common I/O layer terminated the request after the specified
+ timeout value
+-EIO the common I/O layer terminated the request due to an error state
+========== =================================================================
If the concurrent sense flag in the extended status word (esw) in the irb is
set, the field erw.scnt in the esw describes the number of device specific
@@ -294,6 +323,7 @@ sensing by the device driver itself is required.
The device interrupt handler can use the following definitions to investigate
the primary unit check source coded in sense byte 0 :
+======================= ====
SNS0_CMD_REJECT 0x80
SNS0_INTERVENTION_REQ 0x40
SNS0_BUS_OUT_CHECK 0x20
@@ -301,36 +331,41 @@ SNS0_EQUIPMENT_CHECK 0x10
SNS0_DATA_CHECK 0x08
SNS0_OVERRUN 0x04
SNS0_INCOMPL_DOMAIN 0x01
+======================= ====
Depending on the device status, multiple of those values may be set together.
Please refer to the device specific documentation for details.
The irb->scsw.cstat field provides the (accumulated) subchannel status :
-SCHN_STAT_PCI - program controlled interrupt
-SCHN_STAT_INCORR_LEN - incorrect length
-SCHN_STAT_PROG_CHECK - program check
-SCHN_STAT_PROT_CHECK - protection check
-SCHN_STAT_CHN_DATA_CHK - channel data check
-SCHN_STAT_CHN_CTRL_CHK - channel control check
-SCHN_STAT_INTF_CTRL_CHK - interface control check
-SCHN_STAT_CHAIN_CHECK - chaining check
+========================= ============================
+SCHN_STAT_PCI program controlled interrupt
+SCHN_STAT_INCORR_LEN incorrect length
+SCHN_STAT_PROG_CHECK program check
+SCHN_STAT_PROT_CHECK protection check
+SCHN_STAT_CHN_DATA_CHK channel data check
+SCHN_STAT_CHN_CTRL_CHK channel control check
+SCHN_STAT_INTF_CTRL_CHK interface control check
+SCHN_STAT_CHAIN_CHECK chaining check
+========================= ============================
The irb->scsw.dstat field provides the (accumulated) device status :
-DEV_STAT_ATTENTION - attention
-DEV_STAT_STAT_MOD - status modifier
-DEV_STAT_CU_END - control unit end
-DEV_STAT_BUSY - busy
-DEV_STAT_CHN_END - channel end
-DEV_STAT_DEV_END - device end
-DEV_STAT_UNIT_CHECK - unit check
-DEV_STAT_UNIT_EXCEP - unit exception
+===================== =================
+DEV_STAT_ATTENTION attention
+DEV_STAT_STAT_MOD status modifier
+DEV_STAT_CU_END control unit end
+DEV_STAT_BUSY busy
+DEV_STAT_CHN_END channel end
+DEV_STAT_DEV_END device end
+DEV_STAT_UNIT_CHECK unit check
+DEV_STAT_UNIT_EXCEP unit exception
+===================== =================
Please see the ESA/390 Principles of Operation manual for details on the
individual flag meanings.
-Usage Notes :
+Usage Notes:
ccw_device_start() must be called disabled and with the ccw device lock held.
@@ -374,32 +409,39 @@ secondary status without error (alert status) is presented, this indicates
successful completion for all overlapping ccw_device_start() requests that have
been issued since the last secondary (final) status.
-Channel programs that intend to set the suspend flag on a channel command word
-(CCW) must start the I/O operation with the DOIO_ALLOW_SUSPEND option or the
-suspend flag will cause a channel program check. At the time the channel program
-becomes suspended an intermediate interrupt will be generated by the channel
+Channel programs that intend to set the suspend flag on a channel command word
+(CCW) must start the I/O operation with the DOIO_ALLOW_SUSPEND option or the
+suspend flag will cause a channel program check. At the time the channel program
+becomes suspended an intermediate interrupt will be generated by the channel
subsystem.
-ccw_device_resume() - Resume Channel Program Execution
+ccw_device_resume() - Resume Channel Program Execution
-If a device driver chooses to suspend the current channel program execution by
-setting the CCW suspend flag on a particular CCW, the channel program execution
-is suspended. In order to resume channel program execution the CIO layer
-provides the ccw_device_resume() routine.
+If a device driver chooses to suspend the current channel program execution by
+setting the CCW suspend flag on a particular CCW, the channel program execution
+is suspended. In order to resume channel program execution the CIO layer
+provides the ccw_device_resume() routine.
-int ccw_device_resume(struct ccw_device *cdev);
+::
-cdev - ccw_device the resume operation is requested for
+ int ccw_device_resume(struct ccw_device *cdev);
+
+==== ================================================
+cdev ccw_device the resume operation is requested for
+==== ================================================
The ccw_device_resume() function returns:
- 0 - suspended channel program is resumed
--EBUSY - status pending
--ENODEV - cdev invalid or not-operational subchannel
--EINVAL - resume function not applicable
--ENOTCONN - there is no I/O request pending for completion
+========= ==============================================
+ 0 suspended channel program is resumed
+ -EBUSY status pending
+ -ENODEV cdev invalid or not-operational subchannel
+ -EINVAL resume function not applicable
+-ENOTCONN there is no I/O request pending for completion
+========= ==============================================
Usage Notes:
+
Please have a look at the ccw_device_start() usage notes for more details on
suspended channel programs.
@@ -412,22 +454,28 @@ command is provided.
ccw_device_halt() must be called disabled and with the ccw device lock held.
-int ccw_device_halt(struct ccw_device *cdev,
- unsigned long intparm);
+::
+
+ int ccw_device_halt(struct ccw_device *cdev,
+ unsigned long intparm);
-cdev : ccw_device the halt operation is requested for
-intparm : interruption parameter; value is only used if no I/O
- is outstanding, otherwise the intparm associated with
- the I/O request is returned
+======= =====================================================
+cdev ccw_device the halt operation is requested for
+intparm interruption parameter; value is only used if no I/O
+ is outstanding, otherwise the intparm associated with
+ the I/O request is returned
+======= =====================================================
-The ccw_device_halt() function returns :
+The ccw_device_halt() function returns:
- 0 - request successfully initiated
--EBUSY - the device is currently busy, or status pending.
--ENODEV - cdev invalid.
--EINVAL - The device is not operational or the ccw device is not online.
+======= ==============================================================
+ 0 request successfully initiated
+-EBUSY the device is currently busy, or status pending.
+-ENODEV cdev invalid.
+-EINVAL The device is not operational or the ccw device is not online.
+======= ==============================================================
-Usage Notes :
+Usage Notes:
A device driver may write a never-ending channel program by writing a channel
program that at its end loops back to its beginning by means of a transfer in
@@ -438,25 +486,34 @@ can then perform an appropriate action. Prior to interrupt of an outstanding
read to a network device (with or without PCI flag) a ccw_device_halt()
is required to end the pending operation.
-ccw_device_clear() - Terminage I/O Request Processing
+::
+
+ ccw_device_clear() - Terminage I/O Request Processing
In order to terminate all I/O processing at the subchannel, the clear subchannel
(CSCH) command is used. It can be issued via ccw_device_clear().
ccw_device_clear() must be called disabled and with the ccw device lock held.
-int ccw_device_clear(struct ccw_device *cdev, unsigned long intparm);
+::
+
+ int ccw_device_clear(struct ccw_device *cdev, unsigned long intparm);
-cdev: ccw_device the clear operation is requested for
-intparm: interruption parameter (see ccw_device_halt())
+======= ===============================================
+cdev ccw_device the clear operation is requested for
+intparm interruption parameter (see ccw_device_halt())
+======= ===============================================
The ccw_device_clear() function returns:
- 0 - request successfully initiated
--ENODEV - cdev invalid
--EINVAL - The device is not operational or the ccw device is not online.
+======= ==============================================================
+ 0 request successfully initiated
+-ENODEV cdev invalid
+-EINVAL The device is not operational or the ccw device is not online.
+======= ==============================================================
Miscellaneous Support Routines
+------------------------------
This chapter describes various routines to be used in a Linux/390 device
driver programming environment.
@@ -466,7 +523,8 @@ get_ccwdev_lock()
Get the address of the device specific lock. This is then used in
spin_lock() / spin_unlock() calls.
+::
-__u8 ccw_device_get_path_mask(struct ccw_device *cdev);
+ __u8 ccw_device_get_path_mask(struct ccw_device *cdev);
Get the mask of the path currently available for cdev.
diff --git a/Documentation/s390/CommonIO b/Documentation/s390/common_io.rst
index 6e0f63f343b4..846485681ce7 100644
--- a/Documentation/s390/CommonIO
+++ b/Documentation/s390/common_io.rst
@@ -1,5 +1,9 @@
-S/390 common I/O-Layer - command line parameters, procfs and debugfs entries
-============================================================================
+======================
+S/390 common I/O-Layer
+======================
+
+command line parameters, procfs and debugfs entries
+===================================================
Command line parameters
-----------------------
@@ -13,7 +17,7 @@ Command line parameters
device := {all | [!]ipldev | [!]condev | [!]<devno> | [!]<devno>-<devno>}
The given devices will be ignored by the common I/O-layer; no detection
- and device sensing will be done on any of those devices. The subchannel to
+ and device sensing will be done on any of those devices. The subchannel to
which the device in question is attached will be treated as if no device was
attached.
@@ -28,14 +32,20 @@ Command line parameters
keywords can be used to refer to the CCW based boot device and CCW console
device respectively (these are probably useful only when combined with the '!'
operator). The '!' operator will cause the I/O-layer to _not_ ignore a device.
- The command line is parsed from left to right.
+ The command line
+ is parsed from left to right.
+
+ For example::
- For example,
cio_ignore=0.0.0023-0.0.0042,0.0.4711
+
will ignore all devices ranging from 0.0.0023 to 0.0.0042 and the device
0.0.4711, if detected.
- As another example,
+
+ As another example::
+
cio_ignore=all,!0.0.4711,!0.0.fd00-0.0.fd02
+
will ignore all devices but 0.0.4711, 0.0.fd00, 0.0.fd01, 0.0.fd02.
By default, no devices are ignored.
@@ -48,40 +58,45 @@ Command line parameters
Lists the ranges of devices (by bus id) which are ignored by common I/O.
- You can un-ignore certain or all devices by piping to /proc/cio_ignore.
- "free all" will un-ignore all ignored devices,
+ You can un-ignore certain or all devices by piping to /proc/cio_ignore.
+ "free all" will un-ignore all ignored devices,
"free <device range>, <device range>, ..." will un-ignore the specified
devices.
For example, if devices 0.0.0023 to 0.0.0042 and 0.0.4711 are ignored,
+
- echo free 0.0.0030-0.0.0032 > /proc/cio_ignore
will un-ignore devices 0.0.0030 to 0.0.0032 and will leave devices 0.0.0023
to 0.0.002f, 0.0.0033 to 0.0.0042 and 0.0.4711 ignored;
- echo free 0.0.0041 > /proc/cio_ignore will furthermore un-ignore device
0.0.0041;
- - echo free all > /proc/cio_ignore will un-ignore all remaining ignored
+ - echo free all > /proc/cio_ignore will un-ignore all remaining ignored
devices.
- When a device is un-ignored, device recognition and sensing is performed and
+ When a device is un-ignored, device recognition and sensing is performed and
the device driver will be notified if possible, so the device will become
available to the system. Note that un-ignoring is performed asynchronously.
- You can also add ranges of devices to be ignored by piping to
+ You can also add ranges of devices to be ignored by piping to
/proc/cio_ignore; "add <device range>, <device range>, ..." will ignore the
specified devices.
Note: While already known devices can be added to the list of devices to be
- ignored, there will be no effect on then. However, if such a device
+ ignored, there will be no effect on then. However, if such a device
disappears and then reappears, it will then be ignored. To make
known devices go away, you need the "purge" command (see below).
- For example,
+ For example::
+
"echo add 0.0.a000-0.0.accc, 0.0.af00-0.0.afff > /proc/cio_ignore"
+
will add 0.0.a000-0.0.accc and 0.0.af00-0.0.afff to the list of ignored
devices.
- You can remove already known but now ignored devices via
+ You can remove already known but now ignored devices via::
+
"echo purge > /proc/cio_ignore"
+
All devices ignored but still registered and not online (= not in use)
will be deregistered and thus removed from the system.
@@ -115,11 +130,11 @@ debugfs entries
Various debug messages from the common I/O-layer.
- /sys/kernel/debug/s390dbf/cio_trace/hex_ascii
- Logs the calling of functions in the common I/O-layer and, if applicable,
+ Logs the calling of functions in the common I/O-layer and, if applicable,
which subchannel they were called for, as well as dumps of some data
structures (like irb in an error case).
- The level of logging can be changed to be more or less verbose by piping to
+ The level of logging can be changed to be more or less verbose by piping to
/sys/kernel/debug/s390dbf/cio_*/level a number between 0 and 6; see the
- documentation on the S/390 debug feature (Documentation/s390/s390dbf.txt)
+ documentation on the S/390 debug feature (Documentation/s390/s390dbf.rst)
for details.
diff --git a/Documentation/s390/driver-model.txt b/Documentation/s390/driver-model.rst
index ed265cf54cde..ad4bc2dbea43 100644
--- a/Documentation/s390/driver-model.txt
+++ b/Documentation/s390/driver-model.rst
@@ -1,5 +1,6 @@
+=============================
S/390 driver model interfaces
------------------------------
+=============================
1. CCW devices
--------------
@@ -7,13 +8,13 @@ S/390 driver model interfaces
All devices which can be addressed by means of ccws are called 'CCW devices' -
even if they aren't actually driven by ccws.
-All ccw devices are accessed via a subchannel, this is reflected in the
-structures under devices/:
+All ccw devices are accessed via a subchannel, this is reflected in the
+structures under devices/::
-devices/
+ devices/
- system/
- css0/
- - 0.0.0000/0.0.0815/
+ - 0.0.0000/0.0.0815/
- 0.0.0001/0.0.4711/
- 0.0.0002/
- 0.1.0000/0.1.1234/
@@ -35,14 +36,18 @@ be found under bus/ccw/devices/.
All ccw devices export some data via sysfs.
-cutype: The control unit type / model.
+cutype:
+ The control unit type / model.
-devtype: The device type / model, if applicable.
+devtype:
+ The device type / model, if applicable.
-availability: Can be 'good' or 'boxed'; 'no path' or 'no device' for
+availability:
+ Can be 'good' or 'boxed'; 'no path' or 'no device' for
disconnected devices.
-online: An interface to set the device online and offline.
+online:
+ An interface to set the device online and offline.
In the special case of the device being disconnected (see the
notify function under 1.2), piping 0 to online will forcibly delete
the device.
@@ -52,9 +57,11 @@ The device drivers can add entries to export per-device data and interfaces.
There is also some data exported on a per-subchannel basis (see under
bus/css/devices/):
-chpids: Via which chpids the device is connected.
+chpids:
+ Via which chpids the device is connected.
-pimpampom: The path installed, path available and path operational masks.
+pimpampom:
+ The path installed, path available and path operational masks.
There also might be additional data, for example for block devices.
@@ -74,77 +81,93 @@ b. After a. has been performed, if necessary, the device is finally brought up
------------------------------------
The basic struct ccw_device and struct ccw_driver data structures can be found
-under include/asm/ccwdev.h.
+under include/asm/ccwdev.h::
-struct ccw_device {
- spinlock_t *ccwlock;
- struct ccw_device_private *private;
- struct ccw_device_id id;
+ struct ccw_device {
+ spinlock_t *ccwlock;
+ struct ccw_device_private *private;
+ struct ccw_device_id id;
- struct ccw_driver *drv;
- struct device dev;
+ struct ccw_driver *drv;
+ struct device dev;
int online;
void (*handler) (struct ccw_device *dev, unsigned long intparm,
- struct irb *irb);
-};
+ struct irb *irb);
+ };
-struct ccw_driver {
- struct module *owner;
- struct ccw_device_id *ids;
- int (*probe) (struct ccw_device *);
+ struct ccw_driver {
+ struct module *owner;
+ struct ccw_device_id *ids;
+ int (*probe) (struct ccw_device *);
int (*remove) (struct ccw_device *);
int (*set_online) (struct ccw_device *);
int (*set_offline) (struct ccw_device *);
int (*notify) (struct ccw_device *, int);
struct device_driver driver;
char *name;
-};
+ };
The 'private' field contains data needed for internal i/o operation only, and
is not available to the device driver.
Each driver should declare in a MODULE_DEVICE_TABLE into which CU types/models
and/or device types/models it is interested. This information can later be found
-in the struct ccw_device_id fields:
+in the struct ccw_device_id fields::
-struct ccw_device_id {
- __u16 match_flags;
+ struct ccw_device_id {
+ __u16 match_flags;
- __u16 cu_type;
- __u16 dev_type;
- __u8 cu_model;
- __u8 dev_model;
+ __u16 cu_type;
+ __u16 dev_type;
+ __u8 cu_model;
+ __u8 dev_model;
unsigned long driver_info;
-};
+ };
The functions in ccw_driver should be used in the following way:
-probe: This function is called by the device layer for each device the driver
+
+probe:
+ This function is called by the device layer for each device the driver
is interested in. The driver should only allocate private structures
to put in dev->driver_data and create attributes (if needed). Also,
the interrupt handler (see below) should be set here.
-int (*probe) (struct ccw_device *cdev);
+::
+
+ int (*probe) (struct ccw_device *cdev);
-Parameters: cdev - the device to be probed.
+Parameters:
+ cdev
+ - the device to be probed.
-remove: This function is called by the device layer upon removal of the driver,
+remove:
+ This function is called by the device layer upon removal of the driver,
the device or the module. The driver should perform cleanups here.
-int (*remove) (struct ccw_device *cdev);
+::
-Parameters: cdev - the device to be removed.
+ int (*remove) (struct ccw_device *cdev);
+Parameters:
+ cdev
+ - the device to be removed.
-set_online: This function is called by the common I/O layer when the device is
+
+set_online:
+ This function is called by the common I/O layer when the device is
activated via the 'online' attribute. The driver should finally
setup and activate the device here.
-int (*set_online) (struct ccw_device *);
+::
+
+ int (*set_online) (struct ccw_device *);
-Parameters: cdev - the device to be activated. The common layer has
+Parameters:
+ cdev
+ - the device to be activated. The common layer has
verified that the device is not already online.
@@ -152,15 +175,22 @@ set_offline: This function is called by the common I/O layer when the device is
de-activated via the 'online' attribute. The driver should shut
down the device, but not de-allocate its private data.
-int (*set_offline) (struct ccw_device *);
+::
-Parameters: cdev - the device to be deactivated. The common layer has
+ int (*set_offline) (struct ccw_device *);
+
+Parameters:
+ cdev
+ - the device to be deactivated. The common layer has
verified that the device is online.
-notify: This function is called by the common I/O layer for some state changes
+notify:
+ This function is called by the common I/O layer for some state changes
of the device.
+
Signalled to the driver are:
+
* In online state, device detached (CIO_GONE) or last path gone
(CIO_NO_PATH). The driver must return !0 to keep the device; for
return code 0, the device will be deleted as usual (also when no
@@ -173,32 +203,40 @@ notify: This function is called by the common I/O layer for some state changes
return code of the notify function the device driver signals if it
wants the device back: !0 for keeping, 0 to make the device being
removed and re-registered.
-
-int (*notify) (struct ccw_device *, int);
-Parameters: cdev - the device whose state changed.
- event - the event that happened. This can be one of CIO_GONE,
- CIO_NO_PATH or CIO_OPER.
+::
+
+ int (*notify) (struct ccw_device *, int);
+
+Parameters:
+ cdev
+ - the device whose state changed.
+
+ event
+ - the event that happened. This can be one of CIO_GONE,
+ CIO_NO_PATH or CIO_OPER.
The handler field of the struct ccw_device is meant to be set to the interrupt
-handler for the device. In order to accommodate drivers which use several
+handler for the device. In order to accommodate drivers which use several
distinct handlers (e.g. multi subchannel devices), this is a member of ccw_device
instead of ccw_driver.
The handler is registered with the common layer during set_online() processing
before the driver is called, and is deregistered during set_offline() after the
-driver has been called. Also, after registering / before deregistering, path
+driver has been called. Also, after registering / before deregistering, path
grouping resp. disbanding of the path group (if applicable) are performed.
-void (*handler) (struct ccw_device *dev, unsigned long intparm, struct irb *irb);
+::
-Parameters: dev - the device the handler is called for
+ void (*handler) (struct ccw_device *dev, unsigned long intparm, struct irb *irb);
+
+Parameters: dev - the device the handler is called for
intparm - the intparm which allows the device driver to identify
- the i/o the interrupt is associated with, or to recognize
- the interrupt as unsolicited.
- irb - interruption response block which contains the accumulated
- status.
+ the i/o the interrupt is associated with, or to recognize
+ the interrupt as unsolicited.
+ irb - interruption response block which contains the accumulated
+ status.
-The device driver is called from the common ccw_device layer and can retrieve
+The device driver is called from the common ccw_device layer and can retrieve
information about the interrupt from the irb parameter.
@@ -237,23 +275,27 @@ only the logical state and not the physical state, since we cannot track the
latter consistently due to lacking machine support (we don't need to be aware
of it anyway).
-status - Can be 'online' or 'offline'.
+status
+ - Can be 'online' or 'offline'.
Piping 'on' or 'off' sets the chpid logically online/offline.
Piping 'on' to an online chpid triggers path reprobing for all devices
the chpid connects to. This can be used to force the kernel to re-use
a channel path the user knows to be online, but the machine hasn't
created a machine check for.
-type - The physical type of the channel path.
+type
+ - The physical type of the channel path.
-shared - Whether the channel path is shared.
+shared
+ - Whether the channel path is shared.
-cmg - The channel measurement group.
+cmg
+ - The channel measurement group.
3. System devices
-----------------
-3.1 xpram
+3.1 xpram
---------
xpram shows up under devices/system/ as 'xpram'.
@@ -279,9 +321,8 @@ Netiucv connections show up under devices/iucv/ as "netiucv<ifnum>". The interfa
number is assigned sequentially to the connections defined via the 'connection'
attribute.
-user - shows the connection partner.
-
-buffer - maximum buffer size.
- Pipe to it to change buffer size.
-
+user
+ - shows the connection partner.
+buffer
+ - maximum buffer size. Pipe to it to change buffer size.
diff --git a/Documentation/s390/index.rst b/Documentation/s390/index.rst
new file mode 100644
index 000000000000..f7af2061e406
--- /dev/null
+++ b/Documentation/s390/index.rst
@@ -0,0 +1,26 @@
+=================
+s390 Architecture
+=================
+
+.. toctree::
+ :maxdepth: 1
+
+ cds
+ 3270
+ driver-model
+ monreader
+ qeth
+ s390dbf
+ vfio-ap
+ vfio-ccw
+ zfcpdump
+ common_io
+
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/s390/monreader.txt b/Documentation/s390/monreader.rst
index d3729585fdb0..1e857575c113 100644
--- a/Documentation/s390/monreader.txt
+++ b/Documentation/s390/monreader.rst
@@ -1,24 +1,26 @@
+=================================================
+Linux API for read access to z/VM Monitor Records
+=================================================
Date : 2004-Nov-26
+
Author: Gerald Schaefer (geraldsc@de.ibm.com)
- Linux API for read access to z/VM Monitor Records
- =================================================
Description
===========
This item delivers a new Linux API in the form of a misc char device that is
usable from user space and allows read access to the z/VM Monitor Records
-collected by the *MONITOR System Service of z/VM.
+collected by the `*MONITOR` System Service of z/VM.
User Requirements
=================
The z/VM guest on which you want to access this API needs to be configured in
-order to allow IUCV connections to the *MONITOR service, i.e. it needs the
-IUCV *MONITOR statement in its user entry. If the monitor DCSS to be used is
+order to allow IUCV connections to the `*MONITOR` service, i.e. it needs the
+IUCV `*MONITOR` statement in its user entry. If the monitor DCSS to be used is
restricted (likely), you also need the NAMESAVE <DCSS NAME> statement.
This item will use the IUCV device driver to access the z/VM services, so you
need a kernel with IUCV support. You also need z/VM version 4.4 or 5.1.
@@ -50,7 +52,9 @@ Your guest virtual storage has to end below the starting address of the DCSS
and you have to specify the "mem=" kernel parameter in your parmfile with a
value greater than the ending address of the DCSS.
-Example: DEF STOR 140M
+Example::
+
+ DEF STOR 140M
This defines 140MB storage size for your guest, the parameter "mem=160M" is
added to the parmfile.
@@ -66,24 +70,27 @@ kernel, the kernel parameter "monreader.mondcss=<DCSS NAME>" can be specified
in the parmfile.
The default name for the DCSS is "MONDCSS" if none is specified. In case that
-there are other users already connected to the *MONITOR service (e.g.
+there are other users already connected to the `*MONITOR` service (e.g.
Performance Toolkit), the monitor DCSS is already defined and you have to use
the same DCSS. The CP command Q MONITOR (Class E privileged) shows the name
of the monitor DCSS, if already defined, and the users connected to the
-*MONITOR service.
+`*MONITOR` service.
Refer to the "z/VM Performance" book (SC24-6109-00) on how to create a monitor
DCSS if your z/VM doesn't have one already, you need Class E privileges to
define and save a DCSS.
Example:
--------
-modprobe monreader mondcss=MYDCSS
+
+::
+
+ modprobe monreader mondcss=MYDCSS
This loads the module and sets the DCSS name to "MYDCSS".
NOTE:
-----
-This API provides no interface to control the *MONITOR service, e.g. specify
+This API provides no interface to control the `*MONITOR` service, e.g. specify
which data should be collected. This can be done by the CP command MONITOR
(Class E privileged), see "CP Command and Utility Reference".
@@ -98,6 +105,7 @@ If your distribution does not support udev, a device node will not be created
automatically and you have to create it manually after loading the module.
Therefore you need to know the major and minor numbers of the device. These
numbers can be found in /sys/class/misc/monreader/dev.
+
Typing cat /sys/class/misc/monreader/dev will give an output of the form
<major>:<minor>. The device node can be created via the mknod command, enter
mknod <name> c <major> <minor>, where <name> is the name of the device node
@@ -105,10 +113,13 @@ to be created.
Example:
--------
-# modprobe monreader
-# cat /sys/class/misc/monreader/dev
-10:63
-# mknod /dev/monreader c 10 63
+
+::
+
+ # modprobe monreader
+ # cat /sys/class/misc/monreader/dev
+ 10:63
+ # mknod /dev/monreader c 10 63
This loads the module with the default monitor DCSS (MONDCSS) and creates a
device node.
@@ -133,20 +144,21 @@ last byte of data. The start address is needed to handle "end-of-frame" records
correctly (domain 1, record 13), i.e. it can be used to determine the record
start offset relative to a 4K page (frame) boundary.
-See "Appendix A: *MONITOR" in the "z/VM Performance" document for a description
+See "Appendix A: `*MONITOR`" in the "z/VM Performance" document for a description
of the monitor control element layout. The layout of the monitor records can
be found here (z/VM 5.1): http://www.vm.ibm.com/pubs/mon510/index.html
-The layout of the data stream provided by the monreader device is as follows:
-...
-<0 byte read>
-<first MCE> \
-<first set of records> |
-... |- data set
-<last MCE> |
-<last set of records> /
-<0 byte read>
-...
+The layout of the data stream provided by the monreader device is as follows::
+
+ ...
+ <0 byte read>
+ <first MCE> \
+ <first set of records> |
+ ... |- data set
+ <last MCE> |
+ <last set of records> /
+ <0 byte read>
+ ...
There may be more than one combination of MCE and corresponding record set
within one data set and the end of each data set is indicated by a successful
@@ -165,15 +177,19 @@ As with most char devices, error conditions are indicated by returning a
negative value for the number of bytes read. In this case, the errno variable
indicates the error condition:
-EIO: reply failed, read data is invalid and the application
+EIO:
+ reply failed, read data is invalid and the application
should discard the data read since the last successful read with 0 size.
-EFAULT: copy_to_user failed, read data is invalid and the application should
- discard the data read since the last successful read with 0 size.
-EAGAIN: occurs on a non-blocking read if there is no data available at the
- moment. There is no data missing or corrupted, just try again or rather
- use polling for non-blocking reads.
-EOVERFLOW: message limit reached, the data read since the last successful
- read with 0 size is valid but subsequent records may be missing.
+EFAULT:
+ copy_to_user failed, read data is invalid and the application should
+ discard the data read since the last successful read with 0 size.
+EAGAIN:
+ occurs on a non-blocking read if there is no data available at the
+ moment. There is no data missing or corrupted, just try again or rather
+ use polling for non-blocking reads.
+EOVERFLOW:
+ message limit reached, the data read since the last successful
+ read with 0 size is valid but subsequent records may be missing.
In the last case (EOVERFLOW) there may be missing data, in the first two cases
(EIO, EFAULT) there will be missing data. It's up to the application if it will
@@ -183,7 +199,7 @@ Open:
-----
Only one user is allowed to open the char device. If it is already in use, the
open function will fail (return a negative value) and set errno to EBUSY.
-The open function may also fail if an IUCV connection to the *MONITOR service
+The open function may also fail if an IUCV connection to the `*MONITOR` service
cannot be established. In this case errno will be set to EIO and an error
message with an IPUSER SEVER code will be printed into syslog. The IPUSER SEVER
codes are described in the "z/VM Performance" book, Appendix A.
@@ -194,4 +210,3 @@ As soon as the device is opened, incoming messages will be accepted and they
will account for the message limit, i.e. opening the device without reading
from it will provoke the "message limit reached" error (EOVERFLOW error code)
eventually.
-
diff --git a/Documentation/s390/qeth.txt b/Documentation/s390/qeth.rst
index aa06fcf5f8c2..f02fdaa68de0 100644
--- a/Documentation/s390/qeth.txt
+++ b/Documentation/s390/qeth.rst
@@ -1,8 +1,12 @@
+=============================
IBM s390 QDIO Ethernet Driver
+=============================
OSA and HiperSockets Bridge Port Support
+========================================
Uevents
+-------
To generate the events the device must be assigned a role of either
a primary or a secondary Bridge Port. For more information, see
@@ -13,12 +17,15 @@ of some configured Bridge Port device on the channel changes, a udev
event with ACTION=CHANGE is emitted on behalf of the corresponding
ccwgroup device. The event has the following attributes:
-BRIDGEPORT=statechange - indicates that the Bridge Port device changed
+BRIDGEPORT=statechange
+ indicates that the Bridge Port device changed
its state.
-ROLE={primary|secondary|none} - the role assigned to the port.
+ROLE={primary|secondary|none}
+ the role assigned to the port.
-STATE={active|standby|inactive} - the newly assumed state of the port.
+STATE={active|standby|inactive}
+ the newly assumed state of the port.
When run on HiperSockets Bridge Capable Port hardware with host address
notifications enabled, a udev event with ACTION=CHANGE is emitted.
@@ -26,25 +33,32 @@ It is emitted on behalf of the corresponding ccwgroup device when a host
or a VLAN is registered or unregistered on the network served by the device.
The event has the following attributes:
-BRIDGEDHOST={reset|register|deregister|abort} - host address
+BRIDGEDHOST={reset|register|deregister|abort}
+ host address
notifications are started afresh, a new host or VLAN is registered or
deregistered on the Bridge Port HiperSockets channel, or address
notifications are aborted.
-VLAN=numeric-vlan-id - VLAN ID on which the event occurred. Not included
+VLAN=numeric-vlan-id
+ VLAN ID on which the event occurred. Not included
if no VLAN is involved in the event.
-MAC=xx:xx:xx:xx:xx:xx - MAC address of the host that is being registered
+MAC=xx:xx:xx:xx:xx:xx
+ MAC address of the host that is being registered
or deregistered from the HiperSockets channel. Not reported if the
event reports the creation or destruction of a VLAN.
-NTOK_BUSID=x.y.zzzz - device bus ID (CSSID, SSID and device number).
+NTOK_BUSID=x.y.zzzz
+ device bus ID (CSSID, SSID and device number).
-NTOK_IID=xx - device IID.
+NTOK_IID=xx
+ device IID.
-NTOK_CHPID=xx - device CHPID.
+NTOK_CHPID=xx
+ device CHPID.
-NTOK_CHID=xxxx - device channel ID.
+NTOK_CHID=xxxx
+ device channel ID.
-Note that the NTOK_* attributes refer to devices other than the one
+Note that the `NTOK_*` attributes refer to devices other than the one
connected to the system on which the OS is running.
diff --git a/Documentation/s390/s390dbf.rst b/Documentation/s390/s390dbf.rst
new file mode 100644
index 000000000000..cdb36842b898
--- /dev/null
+++ b/Documentation/s390/s390dbf.rst
@@ -0,0 +1,487 @@
+==================
+S390 Debug Feature
+==================
+
+files:
+ - arch/s390/kernel/debug.c
+ - arch/s390/include/asm/debug.h
+
+Description:
+------------
+The goal of this feature is to provide a kernel debug logging API
+where log records can be stored efficiently in memory, where each component
+(e.g. device drivers) can have one separate debug log.
+One purpose of this is to inspect the debug logs after a production system crash
+in order to analyze the reason for the crash.
+
+If the system still runs but only a subcomponent which uses dbf fails,
+it is possible to look at the debug logs on a live system via the Linux
+debugfs filesystem.
+
+The debug feature may also very useful for kernel and driver development.
+
+Design:
+-------
+Kernel components (e.g. device drivers) can register themselves at the debug
+feature with the function call :c:func:`debug_register()`.
+This function initializes a
+debug log for the caller. For each debug log exists a number of debug areas
+where exactly one is active at one time. Each debug area consists of contiguous
+pages in memory. In the debug areas there are stored debug entries (log records)
+which are written by event- and exception-calls.
+
+An event-call writes the specified debug entry to the active debug
+area and updates the log pointer for the active area. If the end
+of the active debug area is reached, a wrap around is done (ring buffer)
+and the next debug entry will be written at the beginning of the active
+debug area.
+
+An exception-call writes the specified debug entry to the log and
+switches to the next debug area. This is done in order to be sure
+that the records which describe the origin of the exception are not
+overwritten when a wrap around for the current area occurs.
+
+The debug areas themselves are also ordered in form of a ring buffer.
+When an exception is thrown in the last debug area, the following debug
+entries are then written again in the very first area.
+
+There are four versions for the event- and exception-calls: One for
+logging raw data, one for text, one for numbers (unsigned int and long),
+and one for sprintf-like formatted strings.
+
+Each debug entry contains the following data:
+
+- Timestamp
+- Cpu-Number of calling task
+- Level of debug entry (0...6)
+- Return Address to caller
+- Flag, if entry is an exception or not
+
+The debug logs can be inspected in a live system through entries in
+the debugfs-filesystem. Under the toplevel directory "``s390dbf``" there is
+a directory for each registered component, which is named like the
+corresponding component. The debugfs normally should be mounted to
+``/sys/kernel/debug`` therefore the debug feature can be accessed under
+``/sys/kernel/debug/s390dbf``.
+
+The content of the directories are files which represent different views
+to the debug log. Each component can decide which views should be
+used through registering them with the function :c:func:`debug_register_view()`.
+Predefined views for hex/ascii, sprintf and raw binary data are provided.
+It is also possible to define other views. The content of
+a view can be inspected simply by reading the corresponding debugfs file.
+
+All debug logs have an actual debug level (range from 0 to 6).
+The default level is 3. Event and Exception functions have a :c:data:`level`
+parameter. Only debug entries with a level that is lower or equal
+than the actual level are written to the log. This means, when
+writing events, high priority log entries should have a low level
+value whereas low priority entries should have a high one.
+The actual debug level can be changed with the help of the debugfs-filesystem
+through writing a number string "x" to the ``level`` debugfs file which is
+provided for every debug log. Debugging can be switched off completely
+by using "-" on the ``level`` debugfs file.
+
+Example::
+
+ > echo "-" > /sys/kernel/debug/s390dbf/dasd/level
+
+It is also possible to deactivate the debug feature globally for every
+debug log. You can change the behavior using 2 sysctl parameters in
+``/proc/sys/s390dbf``:
+
+There are currently 2 possible triggers, which stop the debug feature
+globally. The first possibility is to use the ``debug_active`` sysctl. If
+set to 1 the debug feature is running. If ``debug_active`` is set to 0 the
+debug feature is turned off.
+
+The second trigger which stops the debug feature is a kernel oops.
+That prevents the debug feature from overwriting debug information that
+happened before the oops. After an oops you can reactivate the debug feature
+by piping 1 to ``/proc/sys/s390dbf/debug_active``. Nevertheless, it's not
+suggested to use an oopsed kernel in a production environment.
+
+If you want to disallow the deactivation of the debug feature, you can use
+the ``debug_stoppable`` sysctl. If you set ``debug_stoppable`` to 0 the debug
+feature cannot be stopped. If the debug feature is already stopped, it
+will stay deactivated.
+
+Kernel Interfaces:
+------------------
+
+.. kernel-doc:: arch/s390/kernel/debug.c
+.. kernel-doc:: arch/s390/include/asm/debug.h
+
+Predefined views:
+-----------------
+
+.. code-block:: c
+
+ extern struct debug_view debug_hex_ascii_view;
+
+ extern struct debug_view debug_raw_view;
+
+ extern struct debug_view debug_sprintf_view;
+
+Examples
+--------
+
+.. code-block:: c
+
+ /*
+ * hex_ascii- + raw-view Example
+ */
+
+ #include <linux/init.h>
+ #include <asm/debug.h>
+
+ static debug_info_t *debug_info;
+
+ static int init(void)
+ {
+ /* register 4 debug areas with one page each and 4 byte data field */
+
+ debug_info = debug_register("test", 1, 4, 4 );
+ debug_register_view(debug_info, &debug_hex_ascii_view);
+ debug_register_view(debug_info, &debug_raw_view);
+
+ debug_text_event(debug_info, 4 , "one ");
+ debug_int_exception(debug_info, 4, 4711);
+ debug_event(debug_info, 3, &debug_info, 4);
+
+ return 0;
+ }
+
+ static void cleanup(void)
+ {
+ debug_unregister(debug_info);
+ }
+
+ module_init(init);
+ module_exit(cleanup);
+
+.. code-block:: c
+
+ /*
+ * sprintf-view Example
+ */
+
+ #include <linux/init.h>
+ #include <asm/debug.h>
+
+ static debug_info_t *debug_info;
+
+ static int init(void)
+ {
+ /* register 4 debug areas with one page each and data field for */
+ /* format string pointer + 2 varargs (= 3 * sizeof(long)) */
+
+ debug_info = debug_register("test", 1, 4, sizeof(long) * 3);
+ debug_register_view(debug_info, &debug_sprintf_view);
+
+ debug_sprintf_event(debug_info, 2 , "first event in %s:%i\n",__FILE__,__LINE__);
+ debug_sprintf_exception(debug_info, 1, "pointer to debug info: %p\n",&debug_info);
+
+ return 0;
+ }
+
+ static void cleanup(void)
+ {
+ debug_unregister(debug_info);
+ }
+
+ module_init(init);
+ module_exit(cleanup);
+
+Debugfs Interface
+-----------------
+Views to the debug logs can be investigated through reading the corresponding
+debugfs-files:
+
+Example::
+
+ > ls /sys/kernel/debug/s390dbf/dasd
+ flush hex_ascii level pages raw
+ > cat /sys/kernel/debug/s390dbf/dasd/hex_ascii | sort -k2,2 -s
+ 00 00974733272:680099 2 - 02 0006ad7e 07 ea 4a 90 | ....
+ 00 00974733272:682210 2 - 02 0006ade6 46 52 45 45 | FREE
+ 00 00974733272:682213 2 - 02 0006adf6 07 ea 4a 90 | ....
+ 00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
+ 01 00974733272:682284 2 - 02 0006ab16 45 43 4b 44 | ECKD
+ 01 00974733272:682287 2 - 02 0006ab28 00 00 00 04 | ....
+ 01 00974733272:682289 2 - 02 0006ab3e 00 00 00 20 | ...
+ 01 00974733272:682297 2 - 02 0006ad7e 07 ea 4a 90 | ....
+ 01 00974733272:684384 2 - 00 0006ade6 46 52 45 45 | FREE
+ 01 00974733272:684388 2 - 00 0006adf6 07 ea 4a 90 | ....
+
+See section about predefined views for explanation of the above output!
+
+Changing the debug level
+------------------------
+
+Example::
+
+
+ > cat /sys/kernel/debug/s390dbf/dasd/level
+ 3
+ > echo "5" > /sys/kernel/debug/s390dbf/dasd/level
+ > cat /sys/kernel/debug/s390dbf/dasd/level
+ 5
+
+Flushing debug areas
+--------------------
+Debug areas can be flushed with piping the number of the desired
+area (0...n) to the debugfs file "flush". When using "-" all debug areas
+are flushed.
+
+Examples:
+
+1. Flush debug area 0::
+
+ > echo "0" > /sys/kernel/debug/s390dbf/dasd/flush
+
+2. Flush all debug areas::
+
+ > echo "-" > /sys/kernel/debug/s390dbf/dasd/flush
+
+Changing the size of debug areas
+------------------------------------
+It is possible the change the size of debug areas through piping
+the number of pages to the debugfs file "pages". The resize request will
+also flush the debug areas.
+
+Example:
+
+Define 4 pages for the debug areas of debug feature "dasd"::
+
+ > echo "4" > /sys/kernel/debug/s390dbf/dasd/pages
+
+Stopping the debug feature
+--------------------------
+Example:
+
+1. Check if stopping is allowed::
+
+ > cat /proc/sys/s390dbf/debug_stoppable
+
+2. Stop debug feature::
+
+ > echo 0 > /proc/sys/s390dbf/debug_active
+
+crash Interface
+----------------
+The ``crash`` tool since v5.1.0 has a built-in command
+``s390dbf`` to display all the debug logs or export them to the file system.
+With this tool it is possible
+to investigate the debug logs on a live system and with a memory dump after
+a system crash.
+
+Investigating raw memory
+------------------------
+One last possibility to investigate the debug logs at a live
+system and after a system crash is to look at the raw memory
+under VM or at the Service Element.
+It is possible to find the anchor of the debug-logs through
+the ``debug_area_first`` symbol in the System map. Then one has
+to follow the correct pointers of the data-structures defined
+in debug.h and find the debug-areas in memory.
+Normally modules which use the debug feature will also have
+a global variable with the pointer to the debug-logs. Following
+this pointer it will also be possible to find the debug logs in
+memory.
+
+For this method it is recommended to use '16 * x + 4' byte (x = 0..n)
+for the length of the data field in :c:func:`debug_register()` in
+order to see the debug entries well formatted.
+
+
+Predefined Views
+----------------
+
+There are three predefined views: hex_ascii, raw and sprintf.
+The hex_ascii view shows the data field in hex and ascii representation
+(e.g. ``45 43 4b 44 | ECKD``).
+The raw view returns a bytestream as the debug areas are stored in memory.
+
+The sprintf view formats the debug entries in the same way as the sprintf
+function would do. The sprintf event/exception functions write to the
+debug entry a pointer to the format string (size = sizeof(long))
+and for each vararg a long value. So e.g. for a debug entry with a format
+string plus two varargs one would need to allocate a (3 * sizeof(long))
+byte data area in the debug_register() function.
+
+IMPORTANT:
+ Using "%s" in sprintf event functions is dangerous. You can only
+ use "%s" in the sprintf event functions, if the memory for the passed string
+ is available as long as the debug feature exists. The reason behind this is
+ that due to performance considerations only a pointer to the string is stored
+ in the debug feature. If you log a string that is freed afterwards, you will
+ get an OOPS when inspecting the debug feature, because then the debug feature
+ will access the already freed memory.
+
+NOTE:
+ If using the sprintf view do NOT use other event/exception functions
+ than the sprintf-event and -exception functions.
+
+The format of the hex_ascii and sprintf view is as follows:
+
+- Number of area
+- Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated
+ Universal Time (UTC), January 1, 1970)
+- level of debug entry
+- Exception flag (* = Exception)
+- Cpu-Number of calling task
+- Return Address to caller
+- data field
+
+The format of the raw view is:
+
+- Header as described in debug.h
+- datafield
+
+A typical line of the hex_ascii view will look like the following (first line
+is only for explanation and will not be displayed when 'cating' the view)::
+
+ area time level exception cpu caller data (hex + ascii)
+ --------------------------------------------------------------------------
+ 00 00964419409:440690 1 - 00 88023fe
+
+
+Defining views
+--------------
+
+Views are specified with the 'debug_view' structure. There are defined
+callback functions which are used for reading and writing the debugfs files:
+
+.. code-block:: c
+
+ struct debug_view {
+ char name[DEBUG_MAX_PROCF_LEN];
+ debug_prolog_proc_t* prolog_proc;
+ debug_header_proc_t* header_proc;
+ debug_format_proc_t* format_proc;
+ debug_input_proc_t* input_proc;
+ void* private_data;
+ };
+
+where:
+
+.. code-block:: c
+
+ typedef int (debug_header_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ int area,
+ debug_entry_t* entry,
+ char* out_buf);
+
+ typedef int (debug_format_proc_t) (debug_info_t* id,
+ struct debug_view* view, char* out_buf,
+ const char* in_buf);
+ typedef int (debug_prolog_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ char* out_buf);
+ typedef int (debug_input_proc_t) (debug_info_t* id,
+ struct debug_view* view,
+ struct file* file, const char* user_buf,
+ size_t in_buf_size, loff_t* offset);
+
+
+The "private_data" member can be used as pointer to view specific data.
+It is not used by the debug feature itself.
+
+The output when reading a debugfs file is structured like this::
+
+ "prolog_proc output"
+
+ "header_proc output 1" "format_proc output 1"
+ "header_proc output 2" "format_proc output 2"
+ "header_proc output 3" "format_proc output 3"
+ ...
+
+When a view is read from the debugfs, the Debug Feature calls the
+'prolog_proc' once for writing the prolog.
+Then 'header_proc' and 'format_proc' are called for each
+existing debug entry.
+
+The input_proc can be used to implement functionality when it is written to
+the view (e.g. like with ``echo "0" > /sys/kernel/debug/s390dbf/dasd/level``).
+
+For header_proc there can be used the default function
+:c:func:`debug_dflt_header_fn()` which is defined in debug.h.
+and which produces the same header output as the predefined views.
+E.g::
+
+ 00 00964419409:440761 2 - 00 88023ec
+
+In order to see how to use the callback functions check the implementation
+of the default views!
+
+Example:
+
+.. code-block:: c
+
+ #include <asm/debug.h>
+
+ #define UNKNOWNSTR "data: %08x"
+
+ const char* messages[] =
+ {"This error...........\n",
+ "That error...........\n",
+ "Problem..............\n",
+ "Something went wrong.\n",
+ "Everything ok........\n",
+ NULL
+ };
+
+ static int debug_test_format_fn(
+ debug_info_t *id, struct debug_view *view,
+ char *out_buf, const char *in_buf
+ )
+ {
+ int i, rc = 0;
+
+ if (id->buf_size >= 4) {
+ int msg_nr = *((int*)in_buf);
+ if (msg_nr < sizeof(messages) / sizeof(char*) - 1)
+ rc += sprintf(out_buf, "%s", messages[msg_nr]);
+ else
+ rc += sprintf(out_buf, UNKNOWNSTR, msg_nr);
+ }
+ return rc;
+ }
+
+ struct debug_view debug_test_view = {
+ "myview", /* name of view */
+ NULL, /* no prolog */
+ &debug_dflt_header_fn, /* default header for each entry */
+ &debug_test_format_fn, /* our own format function */
+ NULL, /* no input function */
+ NULL /* no private data */
+ };
+
+test:
+=====
+
+.. code-block:: c
+
+ debug_info_t *debug_info;
+ int i;
+ ...
+ debug_info = debug_register("test", 0, 4, 4);
+ debug_register_view(debug_info, &debug_test_view);
+ for (i = 0; i < 10; i ++)
+ debug_int_event(debug_info, 1, i);
+
+::
+
+ > cat /sys/kernel/debug/s390dbf/test/myview
+ 00 00964419734:611402 1 - 00 88042ca This error...........
+ 00 00964419734:611405 1 - 00 88042ca That error...........
+ 00 00964419734:611408 1 - 00 88042ca Problem..............
+ 00 00964419734:611411 1 - 00 88042ca Something went wrong.
+ 00 00964419734:611414 1 - 00 88042ca Everything ok........
+ 00 00964419734:611417 1 - 00 88042ca data: 00000005
+ 00 00964419734:611419 1 - 00 88042ca data: 00000006
+ 00 00964419734:611422 1 - 00 88042ca data: 00000007
+ 00 00964419734:611425 1 - 00 88042ca data: 00000008
+ 00 00964419734:611428 1 - 00 88042ca data: 00000009
diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
deleted file mode 100644
index 61329fd62e89..000000000000
--- a/Documentation/s390/s390dbf.txt
+++ /dev/null
@@ -1,667 +0,0 @@
-S390 Debug Feature
-==================
-
-files: arch/s390/kernel/debug.c
- arch/s390/include/asm/debug.h
-
-Description:
-------------
-The goal of this feature is to provide a kernel debug logging API
-where log records can be stored efficiently in memory, where each component
-(e.g. device drivers) can have one separate debug log.
-One purpose of this is to inspect the debug logs after a production system crash
-in order to analyze the reason for the crash.
-If the system still runs but only a subcomponent which uses dbf fails,
-it is possible to look at the debug logs on a live system via the Linux
-debugfs filesystem.
-The debug feature may also very useful for kernel and driver development.
-
-Design:
--------
-Kernel components (e.g. device drivers) can register themselves at the debug
-feature with the function call debug_register(). This function initializes a
-debug log for the caller. For each debug log exists a number of debug areas
-where exactly one is active at one time. Each debug area consists of contiguous
-pages in memory. In the debug areas there are stored debug entries (log records)
-which are written by event- and exception-calls.
-
-An event-call writes the specified debug entry to the active debug
-area and updates the log pointer for the active area. If the end
-of the active debug area is reached, a wrap around is done (ring buffer)
-and the next debug entry will be written at the beginning of the active
-debug area.
-
-An exception-call writes the specified debug entry to the log and
-switches to the next debug area. This is done in order to be sure
-that the records which describe the origin of the exception are not
-overwritten when a wrap around for the current area occurs.
-
-The debug areas themselves are also ordered in form of a ring buffer.
-When an exception is thrown in the last debug area, the following debug
-entries are then written again in the very first area.
-
-There are three versions for the event- and exception-calls: One for
-logging raw data, one for text and one for numbers.
-
-Each debug entry contains the following data:
-
-- Timestamp
-- Cpu-Number of calling task
-- Level of debug entry (0...6)
-- Return Address to caller
-- Flag, if entry is an exception or not
-
-The debug logs can be inspected in a live system through entries in
-the debugfs-filesystem. Under the toplevel directory "s390dbf" there is
-a directory for each registered component, which is named like the
-corresponding component. The debugfs normally should be mounted to
-/sys/kernel/debug therefore the debug feature can be accessed under
-/sys/kernel/debug/s390dbf.
-
-The content of the directories are files which represent different views
-to the debug log. Each component can decide which views should be
-used through registering them with the function debug_register_view().
-Predefined views for hex/ascii, sprintf and raw binary data are provided.
-It is also possible to define other views. The content of
-a view can be inspected simply by reading the corresponding debugfs file.
-
-All debug logs have an actual debug level (range from 0 to 6).
-The default level is 3. Event and Exception functions have a 'level'
-parameter. Only debug entries with a level that is lower or equal
-than the actual level are written to the log. This means, when
-writing events, high priority log entries should have a low level
-value whereas low priority entries should have a high one.
-The actual debug level can be changed with the help of the debugfs-filesystem
-through writing a number string "x" to the 'level' debugfs file which is
-provided for every debug log. Debugging can be switched off completely
-by using "-" on the 'level' debugfs file.
-
-Example:
-
-> echo "-" > /sys/kernel/debug/s390dbf/dasd/level
-
-It is also possible to deactivate the debug feature globally for every
-debug log. You can change the behavior using 2 sysctl parameters in
-/proc/sys/s390dbf:
-There are currently 2 possible triggers, which stop the debug feature
-globally. The first possibility is to use the "debug_active" sysctl. If
-set to 1 the debug feature is running. If "debug_active" is set to 0 the
-debug feature is turned off.
-The second trigger which stops the debug feature is a kernel oops.
-That prevents the debug feature from overwriting debug information that
-happened before the oops. After an oops you can reactivate the debug feature
-by piping 1 to /proc/sys/s390dbf/debug_active. Nevertheless, its not
-suggested to use an oopsed kernel in a production environment.
-If you want to disallow the deactivation of the debug feature, you can use
-the "debug_stoppable" sysctl. If you set "debug_stoppable" to 0 the debug
-feature cannot be stopped. If the debug feature is already stopped, it
-will stay deactivated.
-
-Kernel Interfaces:
-------------------
-
-----------------------------------------------------------------------------
-debug_info_t *debug_register(char *name, int pages, int nr_areas,
- int buf_size);
-
-Parameter: name: Name of debug log (e.g. used for debugfs entry)
- pages: number of pages, which will be allocated per area
- nr_areas: number of debug areas
- buf_size: size of data area in each debug entry
-
-Return Value: Handle for generated debug area
- NULL if register failed
-
-Description: Allocates memory for a debug log
- Must not be called within an interrupt handler
-
-----------------------------------------------------------------------------
-debug_info_t *debug_register_mode(char *name, int pages, int nr_areas,
- int buf_size, mode_t mode, uid_t uid,
- gid_t gid);
-
-Parameter: name: Name of debug log (e.g. used for debugfs entry)
- pages: Number of pages, which will be allocated per area
- nr_areas: Number of debug areas
- buf_size: Size of data area in each debug entry
- mode: File mode for debugfs files. E.g. S_IRWXUGO
- uid: User ID for debugfs files. Currently only 0 is
- supported.
- gid: Group ID for debugfs files. Currently only 0 is
- supported.
-
-Return Value: Handle for generated debug area
- NULL if register failed
-
-Description: Allocates memory for a debug log
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-void debug_unregister (debug_info_t * id);
-
-Parameter: id: handle for debug log
-
-Return Value: none
-
-Description: frees memory for a debug log and removes all registered debug
- views.
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-void debug_set_level (debug_info_t * id, int new_level);
-
-Parameter: id: handle for debug log
- new_level: new debug level
-
-Return Value: none
-
-Description: Sets new actual debug level if new_level is valid.
-
----------------------------------------------------------------------------
-bool debug_level_enabled (debug_info_t * id, int level);
-
-Parameter: id: handle for debug log
- level: debug level
-
-Return Value: True if level is less or equal to the current debug level.
-
-Description: Returns true if debug events for the specified level would be
- logged. Otherwise returns false.
----------------------------------------------------------------------------
-void debug_stop_all(void);
-
-Parameter: none
-
-Return Value: none
-
-Description: stops the debug feature if stopping is allowed. Currently
- used in case of a kernel oops.
-
----------------------------------------------------------------------------
-debug_entry_t* debug_event (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter: id: handle for debug log
- level: debug level
- data: pointer to data for debug entry
- length: length of data in bytes
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_int_event (debug_info_t * id, int level,
- unsigned int data);
-debug_entry_t* debug_long_event(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: integer value for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_text_event (debug_info_t * id, int level,
- const char* data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: string for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry in ascii format to active debug area
- (if level <= actual debug level)
-
----------------------------------------------------------------------------
-debug_entry_t* debug_sprintf_event (debug_info_t * id, int level,
- char* string,...);
-
-Parameter: id: handle for debug log
- level: debug level
- string: format string for debug entry
- ...: varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level).
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-debug_entry_t* debug_exception (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter: id: handle for debug log
- level: debug level
- data: pointer to data for debug entry
- length: length of data in bytes
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_int_exception (debug_info_t * id, int level,
- unsigned int data);
-debug_entry_t* debug_long_exception(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: integer value for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_text_exception (debug_info_t * id, int level,
- const char* data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: string for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry in ascii format to active debug area
- (if level <= actual debug level) and switches to next debug
- area
-
----------------------------------------------------------------------------
-debug_entry_t* debug_sprintf_exception (debug_info_t * id, int level,
- char* string,...);
-
-Parameter: id: handle for debug log
- level: debug level
- string: format string for debug entry
- ...: varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level) and
- switches to next debug area.
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-int debug_register_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: registers new debug view and creates debugfs dir entry
-
----------------------------------------------------------------------------
-int debug_unregister_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: unregisters debug view and removes debugfs dir entry
-
-
-
-Predefined views:
------------------
-
-extern struct debug_view debug_hex_ascii_view;
-extern struct debug_view debug_raw_view;
-extern struct debug_view debug_sprintf_view;
-
-Examples
---------
-
-/*
- * hex_ascii- + raw-view Example
- */
-
-#include <linux/init.h>
-#include <asm/debug.h>
-
-static debug_info_t* debug_info;
-
-static int init(void)
-{
- /* register 4 debug areas with one page each and 4 byte data field */
-
- debug_info = debug_register ("test", 1, 4, 4 );
- debug_register_view(debug_info,&debug_hex_ascii_view);
- debug_register_view(debug_info,&debug_raw_view);
-
- debug_text_event(debug_info, 4 , "one ");
- debug_int_exception(debug_info, 4, 4711);
- debug_event(debug_info, 3, &debug_info, 4);
-
- return 0;
-}
-
-static void cleanup(void)
-{
- debug_unregister (debug_info);
-}
-
-module_init(init);
-module_exit(cleanup);
-
----------------------------------------------------------------------------
-
-/*
- * sprintf-view Example
- */
-
-#include <linux/init.h>
-#include <asm/debug.h>
-
-static debug_info_t* debug_info;
-
-static int init(void)
-{
- /* register 4 debug areas with one page each and data field for */
- /* format string pointer + 2 varargs (= 3 * sizeof(long)) */
-
- debug_info = debug_register ("test", 1, 4, sizeof(long) * 3);
- debug_register_view(debug_info,&debug_sprintf_view);
-
- debug_sprintf_event(debug_info, 2 , "first event in %s:%i\n",__FILE__,__LINE__);
- debug_sprintf_exception(debug_info, 1, "pointer to debug info: %p\n",&debug_info);
-
- return 0;
-}
-
-static void cleanup(void)
-{
- debug_unregister (debug_info);
-}
-
-module_init(init);
-module_exit(cleanup);
-
-
-
-Debugfs Interface
-----------------
-Views to the debug logs can be investigated through reading the corresponding
-debugfs-files:
-
-Example:
-
-> ls /sys/kernel/debug/s390dbf/dasd
-flush hex_ascii level pages raw
-> cat /sys/kernel/debug/s390dbf/dasd/hex_ascii | sort -k2,2 -s
-00 00974733272:680099 2 - 02 0006ad7e 07 ea 4a 90 | ....
-00 00974733272:682210 2 - 02 0006ade6 46 52 45 45 | FREE
-00 00974733272:682213 2 - 02 0006adf6 07 ea 4a 90 | ....
-00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
-01 00974733272:682284 2 - 02 0006ab16 45 43 4b 44 | ECKD
-01 00974733272:682287 2 - 02 0006ab28 00 00 00 04 | ....
-01 00974733272:682289 2 - 02 0006ab3e 00 00 00 20 | ...
-01 00974733272:682297 2 - 02 0006ad7e 07 ea 4a 90 | ....
-01 00974733272:684384 2 - 00 0006ade6 46 52 45 45 | FREE
-01 00974733272:684388 2 - 00 0006adf6 07 ea 4a 90 | ....
-
-See section about predefined views for explanation of the above output!
-
-Changing the debug level
-------------------------
-
-Example:
-
-
-> cat /sys/kernel/debug/s390dbf/dasd/level
-3
-> echo "5" > /sys/kernel/debug/s390dbf/dasd/level
-> cat /sys/kernel/debug/s390dbf/dasd/level
-5
-
-Flushing debug areas
---------------------
-Debug areas can be flushed with piping the number of the desired
-area (0...n) to the debugfs file "flush". When using "-" all debug areas
-are flushed.
-
-Examples:
-
-1. Flush debug area 0:
-> echo "0" > /sys/kernel/debug/s390dbf/dasd/flush
-
-2. Flush all debug areas:
-> echo "-" > /sys/kernel/debug/s390dbf/dasd/flush
-
-Changing the size of debug areas
-------------------------------------
-It is possible the change the size of debug areas through piping
-the number of pages to the debugfs file "pages". The resize request will
-also flush the debug areas.
-
-Example:
-
-Define 4 pages for the debug areas of debug feature "dasd":
-> echo "4" > /sys/kernel/debug/s390dbf/dasd/pages
-
-Stooping the debug feature
---------------------------
-Example:
-
-1. Check if stopping is allowed
-> cat /proc/sys/s390dbf/debug_stoppable
-2. Stop debug feature
-> echo 0 > /proc/sys/s390dbf/debug_active
-
-lcrash Interface
-----------------
-It is planned that the dump analysis tool lcrash gets an additional command
-'s390dbf' to display all the debug logs. With this tool it will be possible
-to investigate the debug logs on a live system and with a memory dump after
-a system crash.
-
-Investigating raw memory
-------------------------
-One last possibility to investigate the debug logs at a live
-system and after a system crash is to look at the raw memory
-under VM or at the Service Element.
-It is possible to find the anker of the debug-logs through
-the 'debug_area_first' symbol in the System map. Then one has
-to follow the correct pointers of the data-structures defined
-in debug.h and find the debug-areas in memory.
-Normally modules which use the debug feature will also have
-a global variable with the pointer to the debug-logs. Following
-this pointer it will also be possible to find the debug logs in
-memory.
-
-For this method it is recommended to use '16 * x + 4' byte (x = 0..n)
-for the length of the data field in debug_register() in
-order to see the debug entries well formatted.
-
-
-Predefined Views
-----------------
-
-There are three predefined views: hex_ascii, raw and sprintf.
-The hex_ascii view shows the data field in hex and ascii representation
-(e.g. '45 43 4b 44 | ECKD').
-The raw view returns a bytestream as the debug areas are stored in memory.
-
-The sprintf view formats the debug entries in the same way as the sprintf
-function would do. The sprintf event/exception functions write to the
-debug entry a pointer to the format string (size = sizeof(long))
-and for each vararg a long value. So e.g. for a debug entry with a format
-string plus two varargs one would need to allocate a (3 * sizeof(long))
-byte data area in the debug_register() function.
-
-IMPORTANT: Using "%s" in sprintf event functions is dangerous. You can only
-use "%s" in the sprintf event functions, if the memory for the passed string is
-available as long as the debug feature exists. The reason behind this is that
-due to performance considerations only a pointer to the string is stored in
-the debug feature. If you log a string that is freed afterwards, you will get
-an OOPS when inspecting the debug feature, because then the debug feature will
-access the already freed memory.
-
-NOTE: If using the sprintf view do NOT use other event/exception functions
-than the sprintf-event and -exception functions.
-
-The format of the hex_ascii and sprintf view is as follows:
-- Number of area
-- Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated
- Universal Time (UTC), January 1, 1970)
-- level of debug entry
-- Exception flag (* = Exception)
-- Cpu-Number of calling task
-- Return Address to caller
-- data field
-
-The format of the raw view is:
-- Header as described in debug.h
-- datafield
-
-A typical line of the hex_ascii view will look like the following (first line
-is only for explanation and will not be displayed when 'cating' the view):
-
-area time level exception cpu caller data (hex + ascii)
---------------------------------------------------------------------------
-00 00964419409:440690 1 - 00 88023fe
-
-
-Defining views
---------------
-
-Views are specified with the 'debug_view' structure. There are defined
-callback functions which are used for reading and writing the debugfs files:
-
-struct debug_view {
- char name[DEBUG_MAX_PROCF_LEN];
- debug_prolog_proc_t* prolog_proc;
- debug_header_proc_t* header_proc;
- debug_format_proc_t* format_proc;
- debug_input_proc_t* input_proc;
- void* private_data;
-};
-
-where
-
-typedef int (debug_header_proc_t) (debug_info_t* id,
- struct debug_view* view,
- int area,
- debug_entry_t* entry,
- char* out_buf);
-
-typedef int (debug_format_proc_t) (debug_info_t* id,
- struct debug_view* view, char* out_buf,
- const char* in_buf);
-typedef int (debug_prolog_proc_t) (debug_info_t* id,
- struct debug_view* view,
- char* out_buf);
-typedef int (debug_input_proc_t) (debug_info_t* id,
- struct debug_view* view,
- struct file* file, const char* user_buf,
- size_t in_buf_size, loff_t* offset);
-
-
-The "private_data" member can be used as pointer to view specific data.
-It is not used by the debug feature itself.
-
-The output when reading a debugfs file is structured like this:
-
-"prolog_proc output"
-
-"header_proc output 1" "format_proc output 1"
-"header_proc output 2" "format_proc output 2"
-"header_proc output 3" "format_proc output 3"
-...
-
-When a view is read from the debugfs, the Debug Feature calls the
-'prolog_proc' once for writing the prolog.
-Then 'header_proc' and 'format_proc' are called for each
-existing debug entry.
-
-The input_proc can be used to implement functionality when it is written to
-the view (e.g. like with 'echo "0" > /sys/kernel/debug/s390dbf/dasd/level).
-
-For header_proc there can be used the default function
-debug_dflt_header_fn() which is defined in debug.h.
-and which produces the same header output as the predefined views.
-E.g:
-00 00964419409:440761 2 - 00 88023ec
-
-In order to see how to use the callback functions check the implementation
-of the default views!
-
-Example
-
-#include <asm/debug.h>
-
-#define UNKNOWNSTR "data: %08x"
-
-const char* messages[] =
-{"This error...........\n",
- "That error...........\n",
- "Problem..............\n",
- "Something went wrong.\n",
- "Everything ok........\n",
- NULL
-};
-
-static int debug_test_format_fn(
- debug_info_t * id, struct debug_view *view,
- char *out_buf, const char *in_buf
-)
-{
- int i, rc = 0;
-
- if(id->buf_size >= 4) {
- int msg_nr = *((int*)in_buf);
- if(msg_nr < sizeof(messages)/sizeof(char*) - 1)
- rc += sprintf(out_buf, "%s", messages[msg_nr]);
- else
- rc += sprintf(out_buf, UNKNOWNSTR, msg_nr);
- }
- out:
- return rc;
-}
-
-struct debug_view debug_test_view = {
- "myview", /* name of view */
- NULL, /* no prolog */
- &debug_dflt_header_fn, /* default header for each entry */
- &debug_test_format_fn, /* our own format function */
- NULL, /* no input function */
- NULL /* no private data */
-};
-
-=====
-test:
-=====
-debug_info_t *debug_info;
-...
-debug_info = debug_register ("test", 0, 4, 4 ));
-debug_register_view(debug_info, &debug_test_view);
-for(i = 0; i < 10; i ++) debug_int_event(debug_info, 1, i);
-
-> cat /sys/kernel/debug/s390dbf/test/myview
-00 00964419734:611402 1 - 00 88042ca This error...........
-00 00964419734:611405 1 - 00 88042ca That error...........
-00 00964419734:611408 1 - 00 88042ca Problem..............
-00 00964419734:611411 1 - 00 88042ca Something went wrong.
-00 00964419734:611414 1 - 00 88042ca Everything ok........
-00 00964419734:611417 1 - 00 88042ca data: 00000005
-00 00964419734:611419 1 - 00 88042ca data: 00000006
-00 00964419734:611422 1 - 00 88042ca data: 00000007
-00 00964419734:611425 1 - 00 88042ca data: 00000008
-00 00964419734:611428 1 - 00 88042ca data: 00000009
diff --git a/Documentation/s390/text_files.rst b/Documentation/s390/text_files.rst
new file mode 100644
index 000000000000..c94d05d4fa17
--- /dev/null
+++ b/Documentation/s390/text_files.rst
@@ -0,0 +1,11 @@
+ibm 3270 changelog
+------------------
+
+.. include:: 3270.ChangeLog
+ :literal:
+
+ibm 3270 config3270.sh
+----------------------
+
+.. literalinclude:: config3270.sh
+ :language: shell
diff --git a/Documentation/s390/vfio-ap.txt b/Documentation/s390/vfio-ap.rst
index 65167cfe4485..b5c51f7c748d 100644
--- a/Documentation/s390/vfio-ap.txt
+++ b/Documentation/s390/vfio-ap.rst
@@ -1,4 +1,9 @@
-Introduction:
+===============================
+Adjunct Processor (AP) facility
+===============================
+
+
+Introduction
============
The Adjunct Processor (AP) facility is an IBM Z cryptographic facility comprised
of three AP instructions and from 1 up to 256 PCIe cryptographic adapter cards.
@@ -11,7 +16,7 @@ framework. This implementation relies considerably on the s390 virtualization
facilities which do most of the hard work of providing direct access to AP
devices.
-AP Architectural Overview:
+AP Architectural Overview
=========================
To facilitate the comprehension of the design, let's start with some
definitions:
@@ -31,13 +36,13 @@ definitions:
in the LPAR, the AP bus detects the AP adapter cards assigned to the LPAR and
creates a sysfs device for each assigned adapter. For example, if AP adapters
4 and 10 (0x0a) are assigned to the LPAR, the AP bus will create the following
- sysfs device entries:
+ sysfs device entries::
/sys/devices/ap/card04
/sys/devices/ap/card0a
Symbolic links to these devices will also be created in the AP bus devices
- sub-directory:
+ sub-directory::
/sys/bus/ap/devices/[card04]
/sys/bus/ap/devices/[card04]
@@ -84,7 +89,7 @@ definitions:
the cross product of the AP adapter and usage domain numbers detected when the
AP bus module is loaded. For example, if adapters 4 and 10 (0x0a) and usage
domains 6 and 71 (0x47) are assigned to the LPAR, the AP bus will create the
- following sysfs entries:
+ following sysfs entries::
/sys/devices/ap/card04/04.0006
/sys/devices/ap/card04/04.0047
@@ -92,7 +97,7 @@ definitions:
/sys/devices/ap/card0a/0a.0047
The following symbolic links to these devices will be created in the AP bus
- devices subdirectory:
+ devices subdirectory::
/sys/bus/ap/devices/[04.0006]
/sys/bus/ap/devices/[04.0047]
@@ -112,7 +117,7 @@ definitions:
domain that is not one of the usage domains, but the modified domain
must be one of the control domains.
-AP and SIE:
+AP and SIE
==========
Let's now take a look at how AP instructions executed on a guest are interpreted
by the hardware.
@@ -153,7 +158,7 @@ and 2 and usage domains 5 and 6 are assigned to a guest, the APQNs (1,5), (1,6),
The APQNs can provide secure key functionality - i.e., a private key is stored
on the adapter card for each of its domains - so each APQN must be assigned to
-at most one guest or to the linux host.
+at most one guest or to the linux host::
Example 1: Valid configuration:
------------------------------
@@ -181,8 +186,8 @@ at most one guest or to the linux host.
This is an invalid configuration because both guests have access to
APQN (1,6).
-The Design:
-===========
+The Design
+==========
The design introduces three new objects:
1. AP matrix device
@@ -205,43 +210,43 @@ The VFIO AP (vfio_ap) device driver serves the following purposes:
Reserve APQNs for exclusive use of KVM guests
---------------------------------------------
The following block diagram illustrates the mechanism by which APQNs are
-reserved:
-
- +------------------+
- 7 remove | |
- +--------------------> cex4queue driver |
- | | |
- | +------------------+
- |
- |
- | +------------------+ +-----------------+
- | 5 register driver | | 3 create | |
- | +----------------> Device core +----------> matrix device |
- | | | | | |
- | | +--------^---------+ +-----------------+
- | | |
- | | +-------------------+
- | | +-----------------------------------+ |
- | | | 4 register AP driver | | 2 register device
- | | | | |
-+--------+---+-v---+ +--------+-------+-+
-| | | |
-| ap_bus +--------------------- > vfio_ap driver |
-| | 8 probe | |
-+--------^---------+ +--^--^------------+
-6 edit | | |
- apmask | +-----------------------------+ | 9 mdev create
- aqmask | | 1 modprobe |
-+--------+-----+---+ +----------------+-+ +------------------+
-| | | |8 create | mediated |
-| admin | | VFIO device core |---------> matrix |
-| + | | | device |
-+------+-+---------+ +--------^---------+ +--------^---------+
- | | | |
- | | 9 create vfio_ap-passthrough | |
- | +------------------------------+ |
- +-------------------------------------------------------------+
- 10 assign adapter/domain/control domain
+reserved::
+
+ +------------------+
+ 7 remove | |
+ +--------------------> cex4queue driver |
+ | | |
+ | +------------------+
+ |
+ |
+ | +------------------+ +----------------+
+ | 5 register driver | | 3 create | |
+ | +----------------> Device core +----------> matrix device |
+ | | | | | |
+ | | +--------^---------+ +----------------+
+ | | |
+ | | +-------------------+
+ | | +-----------------------------------+ |
+ | | | 4 register AP driver | | 2 register device
+ | | | | |
+ +--------+---+-v---+ +--------+-------+-+
+ | | | |
+ | ap_bus +--------------------- > vfio_ap driver |
+ | | 8 probe | |
+ +--------^---------+ +--^--^------------+
+ 6 edit | | |
+ apmask | +-----------------------------+ | 9 mdev create
+ aqmask | | 1 modprobe |
+ +--------+-----+---+ +----------------+-+ +----------------+
+ | | | |8 create | mediated |
+ | admin | | VFIO device core |---------> matrix |
+ | + | | | device |
+ +------+-+---------+ +--------^---------+ +--------^-------+
+ | | | |
+ | | 9 create vfio_ap-passthrough | |
+ | +------------------------------+ |
+ +-------------------------------------------------------------+
+ 10 assign adapter/domain/control domain
The process for reserving an AP queue for use by a KVM guest is:
@@ -250,7 +255,7 @@ The process for reserving an AP queue for use by a KVM guest is:
device with the device core. This will serve as the parent device for
all mediated matrix devices used to configure an AP matrix for a guest.
3. The /sys/devices/vfio_ap/matrix device is created by the device core
-4 The vfio_ap device driver will register with the AP bus for AP queue devices
+4. The vfio_ap device driver will register with the AP bus for AP queue devices
of type 10 and higher (CEX4 and newer). The driver will provide the vfio_ap
driver's probe and remove callback interfaces. Devices older than CEX4 queues
are not supported to simplify the implementation by not needlessly
@@ -266,13 +271,14 @@ The process for reserving an AP queue for use by a KVM guest is:
it.
9. The administrator creates a passthrough type mediated matrix device to be
used by a guest
-10 The administrator assigns the adapters, usage domains and control domains
- to be exclusively used by a guest.
+10. The administrator assigns the adapters, usage domains and control domains
+ to be exclusively used by a guest.
Set up the VFIO mediated device interfaces
------------------------------------------
The VFIO AP device driver utilizes the common interface of the VFIO mediated
device core driver to:
+
* Register an AP mediated bus driver to add a mediated matrix device to and
remove it from a VFIO group.
* Create and destroy a mediated matrix device
@@ -280,25 +286,25 @@ device core driver to:
* Add a mediated matrix device to and remove it from an IOMMU group
The following high-level block diagram shows the main components and interfaces
-of the VFIO AP mediated matrix device driver:
-
- +-------------+
- | |
- | +---------+ | mdev_register_driver() +--------------+
- | | Mdev | +<-----------------------+ |
- | | bus | | | vfio_mdev.ko |
- | | driver | +----------------------->+ |<-> VFIO user
- | +---------+ | probe()/remove() +--------------+ APIs
- | |
- | MDEV CORE |
- | MODULE |
- | mdev.ko |
- | +---------+ | mdev_register_device() +--------------+
- | |Physical | +<-----------------------+ |
- | | device | | | vfio_ap.ko |<-> matrix
- | |interface| +----------------------->+ | device
- | +---------+ | callback +--------------+
- +-------------+
+of the VFIO AP mediated matrix device driver::
+
+ +-------------+
+ | |
+ | +---------+ | mdev_register_driver() +--------------+
+ | | Mdev | +<-----------------------+ |
+ | | bus | | | vfio_mdev.ko |
+ | | driver | +----------------------->+ |<-> VFIO user
+ | +---------+ | probe()/remove() +--------------+ APIs
+ | |
+ | MDEV CORE |
+ | MODULE |
+ | mdev.ko |
+ | +---------+ | mdev_register_device() +--------------+
+ | |Physical | +<-----------------------+ |
+ | | device | | | vfio_ap.ko |<-> matrix
+ | |interface| +----------------------->+ | device
+ | +---------+ | callback +--------------+
+ +-------------+
During initialization of the vfio_ap module, the matrix device is registered
with an 'mdev_parent_ops' structure that provides the sysfs attribute
@@ -306,7 +312,8 @@ structures, mdev functions and callback interfaces for managing the mediated
matrix device.
* sysfs attribute structures:
- * supported_type_groups
+
+ supported_type_groups
The VFIO mediated device framework supports creation of user-defined
mediated device types. These mediated device types are specified
via the 'supported_type_groups' structure when a device is registered
@@ -318,61 +325,72 @@ matrix device.
The VFIO AP device driver will register one mediated device type for
passthrough devices:
+
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough
+
Only the read-only attributes required by the VFIO mdev framework will
- be provided:
- ... name
- ... device_api
- ... available_instances
- ... device_api
- Where:
- * name: specifies the name of the mediated device type
- * device_api: the mediated device type's API
- * available_instances: the number of mediated matrix passthrough devices
- that can be created
- * device_api: specifies the VFIO API
- * mdev_attr_groups
+ be provided::
+
+ ... name
+ ... device_api
+ ... available_instances
+ ... device_api
+
+ Where:
+
+ * name:
+ specifies the name of the mediated device type
+ * device_api:
+ the mediated device type's API
+ * available_instances:
+ the number of mediated matrix passthrough devices
+ that can be created
+ * device_api:
+ specifies the VFIO API
+ mdev_attr_groups
This attribute group identifies the user-defined sysfs attributes of the
mediated device. When a device is registered with the VFIO mediated device
framework, the sysfs attribute files identified in the 'mdev_attr_groups'
structure will be created in the mediated matrix device's directory. The
sysfs attributes for a mediated matrix device are:
- * assign_adapter:
- * unassign_adapter:
+
+ assign_adapter / unassign_adapter:
Write-only attributes for assigning/unassigning an AP adapter to/from the
mediated matrix device. To assign/unassign an adapter, the APID of the
adapter is echoed to the respective attribute file.
- * assign_domain:
- * unassign_domain:
+ assign_domain / unassign_domain:
Write-only attributes for assigning/unassigning an AP usage domain to/from
the mediated matrix device. To assign/unassign a domain, the domain
number of the the usage domain is echoed to the respective attribute
file.
- * matrix:
+ matrix:
A read-only file for displaying the APQNs derived from the cross product
of the adapter and domain numbers assigned to the mediated matrix device.
- * assign_control_domain:
- * unassign_control_domain:
+ assign_control_domain / unassign_control_domain:
Write-only attributes for assigning/unassigning an AP control domain
to/from the mediated matrix device. To assign/unassign a control domain,
the ID of the domain to be assigned/unassigned is echoed to the respective
attribute file.
- * control_domains:
+ control_domains:
A read-only file for displaying the control domain numbers assigned to the
mediated matrix device.
* functions:
- * create:
+
+ create:
allocates the ap_matrix_mdev structure used by the vfio_ap driver to:
+
* Store the reference to the KVM structure for the guest using the mdev
* Store the AP matrix configuration for the adapters, domains, and control
domains assigned via the corresponding sysfs attributes files
- * remove:
+
+ remove:
deallocates the mediated matrix device's ap_matrix_mdev structure. This will
be allowed only if a running guest is not using the mdev.
* callback interfaces
- * open:
+
+ open:
The vfio_ap driver uses this callback to register a
VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the mdev matrix
device. The open is invoked when QEMU connects the VFIO iommu group
@@ -380,16 +398,17 @@ matrix device.
to configure the KVM guest is provided via this callback. The KVM structure,
is used to configure the guest's access to the AP matrix defined via the
mediated matrix device's sysfs attribute files.
- * release:
+ release:
unregisters the VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the
mdev matrix device and deconfigures the guest's AP matrix.
-Configure the APM, AQM and ADM in the CRYCB:
+Configure the APM, AQM and ADM in the CRYCB
-------------------------------------------
Configuring the AP matrix for a KVM guest will be performed when the
VFIO_GROUP_NOTIFY_SET_KVM notifier callback is invoked. The notifier
function is called when QEMU connects to KVM. The guest's AP matrix is
configured via it's CRYCB by:
+
* Setting the bits in the APM corresponding to the APIDs assigned to the
mediated matrix device via its 'assign_adapter' interface.
* Setting the bits in the AQM corresponding to the domains assigned to the
@@ -418,12 +437,12 @@ available to a KVM guest via the following CPU model features:
Note: If the user chooses to specify a CPU model different than the 'host'
model to QEMU, the CPU model features and facilities need to be turned on
-explicitly; for example:
+explicitly; for example::
/usr/bin/qemu-system-s390x ... -cpu z13,ap=on,apqci=on,apft=on
A guest can be precluded from using AP features/facilities by turning them off
-explicitly; for example:
+explicitly; for example::
/usr/bin/qemu-system-s390x ... -cpu host,ap=off,apqci=off,apft=off
@@ -435,7 +454,7 @@ the APFT facility is not installed on the guest, then the probe of device
drivers will fail since only type 10 and newer devices can be configured for
guest use.
-Example:
+Example
=======
Let's now provide an example to illustrate how KVM guests may be given
access to AP facilities. For this example, we will show how to configure
@@ -444,30 +463,36 @@ look like this:
Guest1
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
05 CEX5C CCA-Coproc
05.0004 CEX5C CCA-Coproc
05.00ab CEX5C CCA-Coproc
06 CEX5A Accelerator
06.0004 CEX5A Accelerator
06.00ab CEX5C CCA-Coproc
+=========== ===== ============
Guest2
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
05 CEX5A Accelerator
05.0047 CEX5A Accelerator
05.00ff CEX5A Accelerator
+=========== ===== ============
Guest2
------
+=========== ===== ============
CARD.DOMAIN TYPE MODE
-------------------------------
+=========== ===== ============
06 CEX5A Accelerator
06.0047 CEX5A Accelerator
06.00ff CEX5A Accelerator
+=========== ===== ============
These are the steps:
@@ -492,25 +517,26 @@ These are the steps:
* VFIO_MDEV_DEVICE
* KVM
- If using make menuconfig select the following to build the vfio_ap module:
- -> Device Drivers
- -> IOMMU Hardware Support
- select S390 AP IOMMU Support
- -> VFIO Non-Privileged userspace driver framework
- -> Mediated device driver frramework
- -> VFIO driver for Mediated devices
- -> I/O subsystem
- -> VFIO support for AP devices
+ If using make menuconfig select the following to build the vfio_ap module::
+
+ -> Device Drivers
+ -> IOMMU Hardware Support
+ select S390 AP IOMMU Support
+ -> VFIO Non-Privileged userspace driver framework
+ -> Mediated device driver frramework
+ -> VFIO driver for Mediated devices
+ -> I/O subsystem
+ -> VFIO support for AP devices
2. Secure the AP queues to be used by the three guests so that the host can not
access them. To secure them, there are two sysfs files that specify
bitmasks marking a subset of the APQN range as 'usable by the default AP
queue device drivers' or 'not usable by the default device drivers' and thus
available for use by the vfio_ap device driver'. The location of the sysfs
- files containing the masks are:
+ files containing the masks are::
- /sys/bus/ap/apmask
- /sys/bus/ap/aqmask
+ /sys/bus/ap/apmask
+ /sys/bus/ap/aqmask
The 'apmask' is a 256-bit mask that identifies a set of AP adapter IDs
(APID). Each bit in the mask, from left to right (i.e., from most significant
@@ -526,7 +552,7 @@ These are the steps:
queue device drivers; otherwise, the APQI is usable by the vfio_ap device
driver.
- Take, for example, the following mask:
+ Take, for example, the following mask::
0x7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
@@ -548,68 +574,70 @@ These are the steps:
respective sysfs mask file in one of two formats:
* An absolute hex string starting with 0x - like "0x12345678" - sets
- the mask. If the given string is shorter than the mask, it is padded
- with 0s on the right; for example, specifying a mask value of 0x41 is
- the same as specifying:
+ the mask. If the given string is shorter than the mask, it is padded
+ with 0s on the right; for example, specifying a mask value of 0x41 is
+ the same as specifying::
- 0x4100000000000000000000000000000000000000000000000000000000000000
+ 0x4100000000000000000000000000000000000000000000000000000000000000
- Keep in mind that the mask reads from left to right (i.e., most
- significant to least significant bit in big endian order), so the mask
- above identifies device numbers 1 and 7 (01000001).
+ Keep in mind that the mask reads from left to right (i.e., most
+ significant to least significant bit in big endian order), so the mask
+ above identifies device numbers 1 and 7 (01000001).
- If the string is longer than the mask, the operation is terminated with
- an error (EINVAL).
+ If the string is longer than the mask, the operation is terminated with
+ an error (EINVAL).
* Individual bits in the mask can be switched on and off by specifying
- each bit number to be switched in a comma separated list. Each bit
- number string must be prepended with a ('+') or minus ('-') to indicate
- the corresponding bit is to be switched on ('+') or off ('-'). Some
- valid values are:
+ each bit number to be switched in a comma separated list. Each bit
+ number string must be prepended with a ('+') or minus ('-') to indicate
+ the corresponding bit is to be switched on ('+') or off ('-'). Some
+ valid values are:
- "+0" switches bit 0 on
- "-13" switches bit 13 off
- "+0x41" switches bit 65 on
- "-0xff" switches bit 255 off
+ - "+0" switches bit 0 on
+ - "-13" switches bit 13 off
+ - "+0x41" switches bit 65 on
+ - "-0xff" switches bit 255 off
- The following example:
- +0,-6,+0x47,-0xf0
+ The following example:
- Switches bits 0 and 71 (0x47) on
- Switches bits 6 and 240 (0xf0) off
+ +0,-6,+0x47,-0xf0
- Note that the bits not specified in the list remain as they were before
- the operation.
+ Switches bits 0 and 71 (0x47) on
+
+ Switches bits 6 and 240 (0xf0) off
+
+ Note that the bits not specified in the list remain as they were before
+ the operation.
2. The masks can also be changed at boot time via parameters on the kernel
command line like this:
- ap.apmask=0xffff ap.aqmask=0x40
+ ap.apmask=0xffff ap.aqmask=0x40
- This would create the following masks:
+ This would create the following masks::
- apmask:
- 0xffff000000000000000000000000000000000000000000000000000000000000
+ apmask:
+ 0xffff000000000000000000000000000000000000000000000000000000000000
- aqmask:
- 0x4000000000000000000000000000000000000000000000000000000000000000
+ aqmask:
+ 0x4000000000000000000000000000000000000000000000000000000000000000
- Resulting in these two pools:
+ Resulting in these two pools::
- default drivers pool: adapter 0-15, domain 1
- alternate drivers pool: adapter 16-255, domains 0, 2-255
+ default drivers pool: adapter 0-15, domain 1
+ alternate drivers pool: adapter 16-255, domains 0, 2-255
- Securing the APQNs for our example:
- ----------------------------------
+Securing the APQNs for our example
+----------------------------------
To secure the AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004, 06.0047,
06.00ab, and 06.00ff for use by the vfio_ap device driver, the corresponding
- APQNs can either be removed from the default masks:
+ APQNs can either be removed from the default masks::
echo -5,-6 > /sys/bus/ap/apmask
echo -4,-0x47,-0xab,-0xff > /sys/bus/ap/aqmask
- Or the masks can be set as follows:
+ Or the masks can be set as follows::
echo 0xf9ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff \
> apmask
@@ -620,19 +648,19 @@ These are the steps:
This will result in AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004,
06.0047, 06.00ab, and 06.00ff getting bound to the vfio_ap device driver. The
sysfs directory for the vfio_ap device driver will now contain symbolic links
- to the AP queue devices bound to it:
-
- /sys/bus/ap
- ... [drivers]
- ...... [vfio_ap]
- ......... [05.0004]
- ......... [05.0047]
- ......... [05.00ab]
- ......... [05.00ff]
- ......... [06.0004]
- ......... [06.0047]
- ......... [06.00ab]
- ......... [06.00ff]
+ to the AP queue devices bound to it::
+
+ /sys/bus/ap
+ ... [drivers]
+ ...... [vfio_ap]
+ ......... [05.0004]
+ ......... [05.0047]
+ ......... [05.00ab]
+ ......... [05.00ff]
+ ......... [06.0004]
+ ......... [06.0047]
+ ......... [06.00ab]
+ ......... [06.00ff]
Keep in mind that only type 10 and newer adapters (i.e., CEX4 and later)
can be bound to the vfio_ap device driver. The reason for this is to
@@ -645,96 +673,96 @@ These are the steps:
queue device can be read from the parent card's sysfs directory. For example,
to see the hardware type of the queue 05.0004:
- cat /sys/bus/ap/devices/card05/hwtype
+ cat /sys/bus/ap/devices/card05/hwtype
The hwtype must be 10 or higher (CEX4 or newer) in order to be bound to the
vfio_ap device driver.
3. Create the mediated devices needed to configure the AP matrixes for the
three guests and to provide an interface to the vfio_ap driver for
- use by the guests:
+ use by the guests::
- /sys/devices/vfio_ap/matrix/
- --- [mdev_supported_types]
- ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
- --------- create
- --------- [devices]
+ /sys/devices/vfio_ap/matrix/
+ --- [mdev_supported_types]
+ ------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
+ --------- create
+ --------- [devices]
- To create the mediated devices for the three guests:
+ To create the mediated devices for the three guests::
uuidgen > create
uuidgen > create
uuidgen > create
- or
+ or
- echo $uuid1 > create
- echo $uuid2 > create
- echo $uuid3 > create
+ echo $uuid1 > create
+ echo $uuid2 > create
+ echo $uuid3 > create
This will create three mediated devices in the [devices] subdirectory named
after the UUID written to the create attribute file. We call them $uuid1,
- $uuid2 and $uuid3 and this is the sysfs directory structure after creation:
-
- /sys/devices/vfio_ap/matrix/
- --- [mdev_supported_types]
- ------ [vfio_ap-passthrough]
- --------- [devices]
- ------------ [$uuid1]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- --------------- unassign_control_domain
- --------------- unassign_domain
-
- ------------ [$uuid2]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- ----------------unassign_control_domain
- ----------------unassign_domain
-
- ------------ [$uuid3]
- --------------- assign_adapter
- --------------- assign_control_domain
- --------------- assign_domain
- --------------- matrix
- --------------- unassign_adapter
- ----------------unassign_control_domain
- ----------------unassign_domain
+ $uuid2 and $uuid3 and this is the sysfs directory structure after creation::
+
+ /sys/devices/vfio_ap/matrix/
+ --- [mdev_supported_types]
+ ------ [vfio_ap-passthrough]
+ --------- [devices]
+ ------------ [$uuid1]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ --------------- unassign_control_domain
+ --------------- unassign_domain
+
+ ------------ [$uuid2]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ ----------------unassign_control_domain
+ ----------------unassign_domain
+
+ ------------ [$uuid3]
+ --------------- assign_adapter
+ --------------- assign_control_domain
+ --------------- assign_domain
+ --------------- matrix
+ --------------- unassign_adapter
+ ----------------unassign_control_domain
+ ----------------unassign_domain
4. The administrator now needs to configure the matrixes for the mediated
devices $uuid1 (for Guest1), $uuid2 (for Guest2) and $uuid3 (for Guest3).
- This is how the matrix is configured for Guest1:
+ This is how the matrix is configured for Guest1::
echo 5 > assign_adapter
echo 6 > assign_adapter
echo 4 > assign_domain
echo 0xab > assign_domain
- Control domains can similarly be assigned using the assign_control_domain
- sysfs file.
+ Control domains can similarly be assigned using the assign_control_domain
+ sysfs file.
- If a mistake is made configuring an adapter, domain or control domain,
- you can use the unassign_xxx files to unassign the adapter, domain or
- control domain.
+ If a mistake is made configuring an adapter, domain or control domain,
+ you can use the unassign_xxx files to unassign the adapter, domain or
+ control domain.
- To display the matrix configuration for Guest1:
+ To display the matrix configuration for Guest1::
- cat matrix
+ cat matrix
- This is how the matrix is configured for Guest2:
+ This is how the matrix is configured for Guest2::
echo 5 > assign_adapter
echo 0x47 > assign_domain
echo 0xff > assign_domain
- This is how the matrix is configured for Guest3:
+ This is how the matrix is configured for Guest3::
echo 6 > assign_adapter
echo 0x47 > assign_domain
@@ -783,24 +811,24 @@ These are the steps:
configured for the system. If a control domain number higher than the maximum
is specified, the operation will terminate with an error (ENODEV).
-5. Start Guest1:
+5. Start Guest1::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
-7. Start Guest2:
+7. Start Guest2::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
-7. Start Guest3:
+7. Start Guest3::
- /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
- -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
+ /usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
+ -device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
When the guest is shut down, the mediated matrix devices may be removed.
-Using our example again, to remove the mediated matrix device $uuid1:
+Using our example again, to remove the mediated matrix device $uuid1::
/sys/devices/vfio_ap/matrix/
--- [mdev_supported_types]
@@ -809,18 +837,19 @@ Using our example again, to remove the mediated matrix device $uuid1:
------------ [$uuid1]
--------------- remove
+::
echo 1 > remove
- This will remove all of the mdev matrix device's sysfs structures including
- the mdev device itself. To recreate and reconfigure the mdev matrix device,
- all of the steps starting with step 3 will have to be performed again. Note
- that the remove will fail if a guest using the mdev is still running.
+This will remove all of the mdev matrix device's sysfs structures including
+the mdev device itself. To recreate and reconfigure the mdev matrix device,
+all of the steps starting with step 3 will have to be performed again. Note
+that the remove will fail if a guest using the mdev is still running.
- It is not necessary to remove an mdev matrix device, but one may want to
- remove it if no guest will use it during the remaining lifetime of the linux
- host. If the mdev matrix device is removed, one may want to also reconfigure
- the pool of adapters and queues reserved for use by the default drivers.
+It is not necessary to remove an mdev matrix device, but one may want to
+remove it if no guest will use it during the remaining lifetime of the linux
+host. If the mdev matrix device is removed, one may want to also reconfigure
+the pool of adapters and queues reserved for use by the default drivers.
Limitations
===========
diff --git a/Documentation/s390/vfio-ccw.txt b/Documentation/s390/vfio-ccw.rst
index 2be11ad864ff..fca9c4f5bd9c 100644
--- a/Documentation/s390/vfio-ccw.txt
+++ b/Documentation/s390/vfio-ccw.rst
@@ -1,3 +1,4 @@
+==================================
vfio-ccw: the basic infrastructure
==================================
@@ -11,9 +12,11 @@ virtual machine, while vfio is the means.
Different than other hardware architectures, s390 has defined a unified
I/O access method, which is so called Channel I/O. It has its own access
patterns:
+
- Channel programs run asynchronously on a separate (co)processor.
- The channel subsystem will access any memory designated by the caller
in the channel program directly, i.e. there is no iommu involved.
+
Thus when we introduce vfio support for these devices, we realize it
with a mediated device (mdev) implementation. The vfio mdev will be
added to an iommu group, so as to make itself able to be managed by the
@@ -24,6 +27,7 @@ to perform I/O instructions.
This document does not intend to explain the s390 I/O architecture in
every detail. More information/reference could be found here:
+
- A good start to know Channel I/O in general:
https://en.wikipedia.org/wiki/Channel_I/O
- s390 architecture:
@@ -34,7 +38,7 @@ every detail. More information/reference could be found here:
qemu/hw/s390x/css.c
For vfio mediated device framework:
-- Documentation/vfio-mediated-device.txt
+- Documentation/driver-api/vfio-mediated-device.rst
Motivation of vfio-ccw
----------------------
@@ -80,6 +84,7 @@ until interrupted. The I/O completion result is received by the
interrupt handler in the form of interrupt response block (IRB).
Back to vfio-ccw, in short:
+
- ORBs and channel programs are built in guest kernel (with guest
physical addresses).
- ORBs and channel programs are passed to the host kernel.
@@ -106,6 +111,7 @@ it gets sent to hardware.
Within this implementation, we have two drivers for two types of
devices:
+
- The vfio_ccw driver for the physical subchannel device.
This is an I/O subchannel driver for the real subchannel device. It
realizes a group of callbacks and registers to the mdev framework as a
@@ -137,7 +143,7 @@ devices:
vfio_pin_pages and a vfio_unpin_pages interfaces from the vfio iommu
backend for the physical devices to pin and unpin pages by demand.
-Below is a high Level block diagram.
+Below is a high Level block diagram::
+-------------+
| |
@@ -158,6 +164,7 @@ Below is a high Level block diagram.
+-------------+
The process of how these work together.
+
1. vfio_ccw.ko drives the physical I/O subchannel, and registers the
physical device (with callbacks) to mdev framework.
When vfio_ccw probing the subchannel device, it registers device
@@ -173,22 +180,29 @@ The process of how these work together.
add it to an iommu_group and a vfio_group. Then we could pass through
the mdev to a guest.
+
+VFIO-CCW Regions
+----------------
+
+The vfio-ccw driver exposes MMIO regions to accept requests from and return
+results to userspace.
+
vfio-ccw I/O region
-------------------
An I/O region is used to accept channel program request from user
space and store I/O interrupt result for user space to retrieve. The
-definition of the region is:
-
-struct ccw_io_region {
-#define ORB_AREA_SIZE 12
- __u8 orb_area[ORB_AREA_SIZE];
-#define SCSW_AREA_SIZE 12
- __u8 scsw_area[SCSW_AREA_SIZE];
-#define IRB_AREA_SIZE 96
- __u8 irb_area[IRB_AREA_SIZE];
- __u32 ret_code;
-} __packed;
+definition of the region is::
+
+ struct ccw_io_region {
+ #define ORB_AREA_SIZE 12
+ __u8 orb_area[ORB_AREA_SIZE];
+ #define SCSW_AREA_SIZE 12
+ __u8 scsw_area[SCSW_AREA_SIZE];
+ #define IRB_AREA_SIZE 96
+ __u8 irb_area[IRB_AREA_SIZE];
+ __u32 ret_code;
+ } __packed;
While starting an I/O request, orb_area should be filled with the
guest ORB, and scsw_area should be filled with the SCSW of the Virtual
@@ -198,6 +212,25 @@ irb_area stores the I/O result.
ret_code stores a return code for each access of the region.
+This region is always available.
+
+vfio-ccw cmd region
+-------------------
+
+The vfio-ccw cmd region is used to accept asynchronous instructions
+from userspace::
+
+ #define VFIO_CCW_ASYNC_CMD_HSCH (1 << 0)
+ #define VFIO_CCW_ASYNC_CMD_CSCH (1 << 1)
+ struct ccw_cmd_region {
+ __u32 command;
+ __u32 ret_code;
+ } __packed;
+
+This region is exposed via region type VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD.
+
+Currently, CLEAR SUBCHANNEL and HALT SUBCHANNEL use this region.
+
vfio-ccw operation details
--------------------------
@@ -205,7 +238,7 @@ vfio-ccw follows what vfio-pci did on the s390 platform and uses
vfio-iommu-type1 as the vfio iommu backend.
* CCW translation APIs
- A group of APIs (start with 'cp_') to do CCW translation. The CCWs
+ A group of APIs (start with `cp_`) to do CCW translation. The CCWs
passed in by a user space program are organized with their guest
physical memory addresses. These APIs will copy the CCWs into kernel
space, and assemble a runnable kernel channel program by updating the
@@ -217,12 +250,14 @@ vfio-iommu-type1 as the vfio iommu backend.
This driver utilizes the CCW translation APIs and introduces
vfio_ccw, which is the driver for the I/O subchannel devices you want
to pass through.
- vfio_ccw implements the following vfio ioctls:
+ vfio_ccw implements the following vfio ioctls::
+
VFIO_DEVICE_GET_INFO
VFIO_DEVICE_GET_IRQ_INFO
VFIO_DEVICE_GET_REGION_INFO
VFIO_DEVICE_RESET
VFIO_DEVICE_SET_IRQS
+
This provides an I/O region, so that the user space program can pass a
channel program to the kernel, to do further CCW translation before
issuing them to a real device.
@@ -236,32 +271,49 @@ bit more detail how an I/O request triggered by the QEMU guest will be
handled (without error handling).
Explanation:
-Q1-Q7: QEMU side process.
-K1-K5: Kernel side process.
-Q1. Get I/O region info during initialization.
-Q2. Setup event notifier and handler to handle I/O completion.
+- Q1-Q7: QEMU side process.
+- K1-K5: Kernel side process.
+
+Q1.
+ Get I/O region info during initialization.
+
+Q2.
+ Setup event notifier and handler to handle I/O completion.
... ...
-Q3. Intercept a ssch instruction.
-Q4. Write the guest channel program and ORB to the I/O region.
- K1. Copy from guest to kernel.
- K2. Translate the guest channel program to a host kernel space
- channel program, which becomes runnable for a real device.
- K3. With the necessary information contained in the orb passed in
- by QEMU, issue the ccwchain to the device.
- K4. Return the ssch CC code.
-Q5. Return the CC code to the guest.
+Q3.
+ Intercept a ssch instruction.
+Q4.
+ Write the guest channel program and ORB to the I/O region.
+
+ K1.
+ Copy from guest to kernel.
+ K2.
+ Translate the guest channel program to a host kernel space
+ channel program, which becomes runnable for a real device.
+ K3.
+ With the necessary information contained in the orb passed in
+ by QEMU, issue the ccwchain to the device.
+ K4.
+ Return the ssch CC code.
+Q5.
+ Return the CC code to the guest.
... ...
- K5. Interrupt handler gets the I/O result and write the result to
- the I/O region.
- K6. Signal QEMU to retrieve the result.
-Q6. Get the signal and event handler reads out the result from the I/O
+ K5.
+ Interrupt handler gets the I/O result and write the result to
+ the I/O region.
+ K6.
+ Signal QEMU to retrieve the result.
+
+Q6.
+ Get the signal and event handler reads out the result from the I/O
region.
-Q7. Update the irb for the guest.
+Q7.
+ Update the irb for the guest.
Limitations
-----------
@@ -280,9 +332,8 @@ Together with the corresponding work in QEMU, we can bring the passed
through DASD/ECKD device online in a guest now and use it as a block
device.
-While the current code allows the guest to start channel programs via
-START SUBCHANNEL, support for HALT SUBCHANNEL or CLEAR SUBCHANNEL is
-not yet implemented.
+The current code allows the guest to start channel programs via
+START SUBCHANNEL, and to issue HALT SUBCHANNEL and CLEAR SUBCHANNEL.
vfio-ccw supports classic (command mode) channel I/O only. Transport
mode (HPF) is not supported.
@@ -295,6 +346,6 @@ Reference
1. ESA/s390 Principles of Operation manual (IBM Form. No. SA22-7832)
2. ESA/390 Common I/O Device Commands manual (IBM Form. No. SA22-7204)
3. https://en.wikipedia.org/wiki/Channel_I/O
-4. Documentation/s390/cds.txt
-5. Documentation/vfio.txt
-6. Documentation/vfio-mediated-device.txt
+4. Documentation/s390/cds.rst
+5. Documentation/driver-api/vfio.rst
+6. Documentation/driver-api/vfio-mediated-device.rst
diff --git a/Documentation/s390/zfcpdump.txt b/Documentation/s390/zfcpdump.rst
index b064aa59714d..54e8e7caf7e7 100644
--- a/Documentation/s390/zfcpdump.txt
+++ b/Documentation/s390/zfcpdump.rst
@@ -1,4 +1,6 @@
+==================================
The s390 SCSI dump tool (zfcpdump)
+==================================
System z machines (z900 or higher) provide hardware support for creating system
dumps on SCSI disks. The dump process is initiated by booting a dump tool, which
diff --git a/Documentation/scheduler/completion.txt b/Documentation/scheduler/completion.rst
index e5b9df4d8078..9f039b4f4b09 100644
--- a/Documentation/scheduler/completion.txt
+++ b/Documentation/scheduler/completion.rst
@@ -1,3 +1,4 @@
+================================================
Completions - "wait for completion" barrier APIs
================================================
@@ -46,7 +47,7 @@ it has to wait for it.
To use completions you need to #include <linux/completion.h> and
create a static or dynamic variable of type 'struct completion',
-which has only two fields:
+which has only two fields::
struct completion {
unsigned int done;
@@ -57,7 +58,7 @@ This provides the ->wait waitqueue to place tasks on for waiting (if any), and
the ->done completion flag for indicating whether it's completed or not.
Completions should be named to refer to the event that is being synchronized on.
-A good example is:
+A good example is::
wait_for_completion(&early_console_added);
@@ -81,7 +82,7 @@ have taken place, even if these wait functions return prematurely due to a timeo
or a signal triggering.
Initializing of dynamically allocated completion objects is done via a call to
-init_completion():
+init_completion()::
init_completion(&dynamic_object->done);
@@ -100,7 +101,8 @@ but be aware of other races.
For static declaration and initialization, macros are available.
-For static (or global) declarations in file scope you can use DECLARE_COMPLETION():
+For static (or global) declarations in file scope you can use
+DECLARE_COMPLETION()::
static DECLARE_COMPLETION(setup_done);
DECLARE_COMPLETION(setup_done);
@@ -111,7 +113,7 @@ initialized to 'not done' and doesn't require an init_completion() call.
When a completion is declared as a local variable within a function,
then the initialization should always use DECLARE_COMPLETION_ONSTACK()
explicitly, not just to make lockdep happy, but also to make it clear
-that limited scope had been considered and is intentional:
+that limited scope had been considered and is intentional::
DECLARE_COMPLETION_ONSTACK(setup_done)
@@ -140,11 +142,11 @@ Waiting for completions:
------------------------
For a thread to wait for some concurrent activity to finish, it
-calls wait_for_completion() on the initialized completion structure:
+calls wait_for_completion() on the initialized completion structure::
void wait_for_completion(struct completion *done)
-A typical usage scenario is:
+A typical usage scenario is::
CPU#1 CPU#2
@@ -192,17 +194,17 @@ A common problem that occurs is to have unclean assignment of return types,
so take care to assign return-values to variables of the proper type.
Checking for the specific meaning of return values also has been found
-to be quite inaccurate, e.g. constructs like:
+to be quite inaccurate, e.g. constructs like::
if (!wait_for_completion_interruptible_timeout(...))
... would execute the same code path for successful completion and for the
-interrupted case - which is probably not what you want.
+interrupted case - which is probably not what you want::
int wait_for_completion_interruptible(struct completion *done)
This function marks the task TASK_INTERRUPTIBLE while it is waiting.
-If a signal was received while waiting it will return -ERESTARTSYS; 0 otherwise.
+If a signal was received while waiting it will return -ERESTARTSYS; 0 otherwise::
unsigned long wait_for_completion_timeout(struct completion *done, unsigned long timeout)
@@ -214,7 +216,7 @@ Timeouts are preferably calculated with msecs_to_jiffies() or usecs_to_jiffies()
to make the code largely HZ-invariant.
If the returned timeout value is deliberately ignored a comment should probably explain
-why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc()).
+why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc())::
long wait_for_completion_interruptible_timeout(struct completion *done, unsigned long timeout)
@@ -225,14 +227,14 @@ jiffies if completion occurred.
Further variants include _killable which uses TASK_KILLABLE as the
designated tasks state and will return -ERESTARTSYS if it is interrupted,
-or 0 if completion was achieved. There is a _timeout variant as well:
+or 0 if completion was achieved. There is a _timeout variant as well::
long wait_for_completion_killable(struct completion *done)
long wait_for_completion_killable_timeout(struct completion *done, unsigned long timeout)
The _io variants wait_for_completion_io() behave the same as the non-_io
variants, except for accounting waiting time as 'waiting on IO', which has
-an impact on how the task is accounted in scheduling/IO stats:
+an impact on how the task is accounted in scheduling/IO stats::
void wait_for_completion_io(struct completion *done)
unsigned long wait_for_completion_io_timeout(struct completion *done, unsigned long timeout)
@@ -243,11 +245,11 @@ Signaling completions:
A thread that wants to signal that the conditions for continuation have been
achieved calls complete() to signal exactly one of the waiters that it can
-continue:
+continue::
void complete(struct completion *done)
-... or calls complete_all() to signal all current and future waiters:
+... or calls complete_all() to signal all current and future waiters::
void complete_all(struct completion *done)
@@ -268,7 +270,7 @@ probably are a design bug.
Signaling completion from IRQ context is fine as it will appropriately
lock with spin_lock_irqsave()/spin_unlock_irqrestore() and it will never
-sleep.
+sleep.
try_wait_for_completion()/completion_done():
@@ -276,14 +278,14 @@ try_wait_for_completion()/completion_done():
The try_wait_for_completion() function will not put the thread on the wait
queue but rather returns false if it would need to enqueue (block) the thread,
-else it consumes one posted completion and returns true.
+else it consumes one posted completion and returns true::
bool try_wait_for_completion(struct completion *done)
Finally, to check the state of a completion without changing it in any way,
call completion_done(), which returns false if there are no posted
completions that were not yet consumed by waiters (implying that there are
-waiters) and true otherwise;
+waiters) and true otherwise::
bool completion_done(struct completion *done)
diff --git a/Documentation/scheduler/index.rst b/Documentation/scheduler/index.rst
new file mode 100644
index 000000000000..69074e5de9c4
--- /dev/null
+++ b/Documentation/scheduler/index.rst
@@ -0,0 +1,27 @@
+===============
+Linux Scheduler
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+
+ completion
+ sched-arch
+ sched-bwc
+ sched-deadline
+ sched-design-CFS
+ sched-domains
+ sched-energy
+ sched-nice-design
+ sched-rt-group
+ sched-stats
+
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/scheduler/sched-arch.txt b/Documentation/scheduler/sched-arch.rst
index a2f27bbf2cba..0eaec669790a 100644
--- a/Documentation/scheduler/sched-arch.txt
+++ b/Documentation/scheduler/sched-arch.rst
@@ -1,4 +1,6 @@
- CPU Scheduler implementation hints for architecture specific code
+=================================================================
+CPU Scheduler implementation hints for architecture specific code
+=================================================================
Nick Piggin, 2005
@@ -35,9 +37,10 @@ Your cpu_idle routines need to obey the following rules:
4. The only time interrupts need to be disabled when checking
need_resched is if we are about to sleep the processor until
the next interrupt (this doesn't provide any protection of
- need_resched, it prevents losing an interrupt).
+ need_resched, it prevents losing an interrupt):
+
+ 4a. Common problem with this type of sleep appears to be::
- 4a. Common problem with this type of sleep appears to be:
local_irq_disable();
if (!need_resched()) {
local_irq_enable();
@@ -51,10 +54,10 @@ Your cpu_idle routines need to obey the following rules:
although it may be reasonable to do some background work or enter
a low CPU priority.
- 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
- an interrupt sleep, it needs to be cleared then a memory
- barrier issued (followed by a test of need_resched with
- interrupts disabled, as explained in 3).
+ - 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
+ an interrupt sleep, it needs to be cleared then a memory
+ barrier issued (followed by a test of need_resched with
+ interrupts disabled, as explained in 3).
arch/x86/kernel/process.c has examples of both polling and
sleeping idle functions.
@@ -71,4 +74,3 @@ sh64 - Is sleeping racy vs interrupts? (See #4a)
sparc - IRQs on at this point(?), change local_irq_save to _disable.
- TODO: needs secondary CPUs to disable preempt (See #1)
-
diff --git a/Documentation/scheduler/sched-bwc.rst b/Documentation/scheduler/sched-bwc.rst
new file mode 100644
index 000000000000..9801d6b284b1
--- /dev/null
+++ b/Documentation/scheduler/sched-bwc.rst
@@ -0,0 +1,174 @@
+=====================
+CFS Bandwidth Control
+=====================
+
+[ This document only discusses CPU bandwidth control for SCHED_NORMAL.
+ The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.rst ]
+
+CFS bandwidth control is a CONFIG_FAIR_GROUP_SCHED extension which allows the
+specification of the maximum CPU bandwidth available to a group or hierarchy.
+
+The bandwidth allowed for a group is specified using a quota and period. Within
+each given "period" (microseconds), a task group is allocated up to "quota"
+microseconds of CPU time. That quota is assigned to per-cpu run queues in
+slices as threads in the cgroup become runnable. Once all quota has been
+assigned any additional requests for quota will result in those threads being
+throttled. Throttled threads will not be able to run again until the next
+period when the quota is replenished.
+
+A group's unassigned quota is globally tracked, being refreshed back to
+cfs_quota units at each period boundary. As threads consume this bandwidth it
+is transferred to cpu-local "silos" on a demand basis. The amount transferred
+within each of these updates is tunable and described as the "slice".
+
+Management
+----------
+Quota and period are managed within the cpu subsystem via cgroupfs.
+
+cpu.cfs_quota_us: the total available run-time within a period (in microseconds)
+cpu.cfs_period_us: the length of a period (in microseconds)
+cpu.stat: exports throttling statistics [explained further below]
+
+The default values are::
+
+ cpu.cfs_period_us=100ms
+ cpu.cfs_quota=-1
+
+A value of -1 for cpu.cfs_quota_us indicates that the group does not have any
+bandwidth restriction in place, such a group is described as an unconstrained
+bandwidth group. This represents the traditional work-conserving behavior for
+CFS.
+
+Writing any (valid) positive value(s) will enact the specified bandwidth limit.
+The minimum quota allowed for the quota or period is 1ms. There is also an
+upper bound on the period length of 1s. Additional restrictions exist when
+bandwidth limits are used in a hierarchical fashion, these are explained in
+more detail below.
+
+Writing any negative value to cpu.cfs_quota_us will remove the bandwidth limit
+and return the group to an unconstrained state once more.
+
+Any updates to a group's bandwidth specification will result in it becoming
+unthrottled if it is in a constrained state.
+
+System wide settings
+--------------------
+For efficiency run-time is transferred between the global pool and CPU local
+"silos" in a batch fashion. This greatly reduces global accounting pressure
+on large systems. The amount transferred each time such an update is required
+is described as the "slice".
+
+This is tunable via procfs::
+
+ /proc/sys/kernel/sched_cfs_bandwidth_slice_us (default=5ms)
+
+Larger slice values will reduce transfer overheads, while smaller values allow
+for more fine-grained consumption.
+
+Statistics
+----------
+A group's bandwidth statistics are exported via 3 fields in cpu.stat.
+
+cpu.stat:
+
+- nr_periods: Number of enforcement intervals that have elapsed.
+- nr_throttled: Number of times the group has been throttled/limited.
+- throttled_time: The total time duration (in nanoseconds) for which entities
+ of the group have been throttled.
+
+This interface is read-only.
+
+Hierarchical considerations
+---------------------------
+The interface enforces that an individual entity's bandwidth is always
+attainable, that is: max(c_i) <= C. However, over-subscription in the
+aggregate case is explicitly allowed to enable work-conserving semantics
+within a hierarchy:
+
+ e.g. \Sum (c_i) may exceed C
+
+[ Where C is the parent's bandwidth, and c_i its children ]
+
+
+There are two ways in which a group may become throttled:
+
+ a. it fully consumes its own quota within a period
+ b. a parent's quota is fully consumed within its period
+
+In case b) above, even though the child may have runtime remaining it will not
+be allowed to until the parent's runtime is refreshed.
+
+CFS Bandwidth Quota Caveats
+---------------------------
+Once a slice is assigned to a cpu it does not expire. However all but 1ms of
+the slice may be returned to the global pool if all threads on that cpu become
+unrunnable. This is configured at compile time by the min_cfs_rq_runtime
+variable. This is a performance tweak that helps prevent added contention on
+the global lock.
+
+The fact that cpu-local slices do not expire results in some interesting corner
+cases that should be understood.
+
+For cgroup cpu constrained applications that are cpu limited this is a
+relatively moot point because they will naturally consume the entirety of their
+quota as well as the entirety of each cpu-local slice in each period. As a
+result it is expected that nr_periods roughly equal nr_throttled, and that
+cpuacct.usage will increase roughly equal to cfs_quota_us in each period.
+
+For highly-threaded, non-cpu bound applications this non-expiration nuance
+allows applications to briefly burst past their quota limits by the amount of
+unused slice on each cpu that the task group is running on (typically at most
+1ms per cpu or as defined by min_cfs_rq_runtime). This slight burst only
+applies if quota had been assigned to a cpu and then not fully used or returned
+in previous periods. This burst amount will not be transferred between cores.
+As a result, this mechanism still strictly limits the task group to quota
+average usage, albeit over a longer time window than a single period. This
+also limits the burst ability to no more than 1ms per cpu. This provides
+better more predictable user experience for highly threaded applications with
+small quota limits on high core count machines. It also eliminates the
+propensity to throttle these applications while simultanously using less than
+quota amounts of cpu. Another way to say this, is that by allowing the unused
+portion of a slice to remain valid across periods we have decreased the
+possibility of wastefully expiring quota on cpu-local silos that don't need a
+full slice's amount of cpu time.
+
+The interaction between cpu-bound and non-cpu-bound-interactive applications
+should also be considered, especially when single core usage hits 100%. If you
+gave each of these applications half of a cpu-core and they both got scheduled
+on the same CPU it is theoretically possible that the non-cpu bound application
+will use up to 1ms additional quota in some periods, thereby preventing the
+cpu-bound application from fully using its quota by that same amount. In these
+instances it will be up to the CFS algorithm (see sched-design-CFS.rst) to
+decide which application is chosen to run, as they will both be runnable and
+have remaining quota. This runtime discrepancy will be made up in the following
+periods when the interactive application idles.
+
+Examples
+--------
+1. Limit a group to 1 CPU worth of runtime::
+
+ If period is 250ms and quota is also 250ms, the group will get
+ 1 CPU worth of runtime every 250ms.
+
+ # echo 250000 > cpu.cfs_quota_us /* quota = 250ms */
+ # echo 250000 > cpu.cfs_period_us /* period = 250ms */
+
+2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine
+
+ With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
+ runtime every 500ms::
+
+ # echo 1000000 > cpu.cfs_quota_us /* quota = 1000ms */
+ # echo 500000 > cpu.cfs_period_us /* period = 500ms */
+
+ The larger period here allows for increased burst capacity.
+
+3. Limit a group to 20% of 1 CPU.
+
+ With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU::
+
+ # echo 10000 > cpu.cfs_quota_us /* quota = 10ms */
+ # echo 50000 > cpu.cfs_period_us /* period = 50ms */
+
+ By using a small period here we are ensuring a consistent latency
+ response at the expense of burst capacity.
diff --git a/Documentation/scheduler/sched-bwc.txt b/Documentation/scheduler/sched-bwc.txt
deleted file mode 100644
index f6b1873f68ab..000000000000
--- a/Documentation/scheduler/sched-bwc.txt
+++ /dev/null
@@ -1,122 +0,0 @@
-CFS Bandwidth Control
-=====================
-
-[ This document only discusses CPU bandwidth control for SCHED_NORMAL.
- The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.txt ]
-
-CFS bandwidth control is a CONFIG_FAIR_GROUP_SCHED extension which allows the
-specification of the maximum CPU bandwidth available to a group or hierarchy.
-
-The bandwidth allowed for a group is specified using a quota and period. Within
-each given "period" (microseconds), a group is allowed to consume only up to
-"quota" microseconds of CPU time. When the CPU bandwidth consumption of a
-group exceeds this limit (for that period), the tasks belonging to its
-hierarchy will be throttled and are not allowed to run again until the next
-period.
-
-A group's unused runtime is globally tracked, being refreshed with quota units
-above at each period boundary. As threads consume this bandwidth it is
-transferred to cpu-local "silos" on a demand basis. The amount transferred
-within each of these updates is tunable and described as the "slice".
-
-Management
-----------
-Quota and period are managed within the cpu subsystem via cgroupfs.
-
-cpu.cfs_quota_us: the total available run-time within a period (in microseconds)
-cpu.cfs_period_us: the length of a period (in microseconds)
-cpu.stat: exports throttling statistics [explained further below]
-
-The default values are:
- cpu.cfs_period_us=100ms
- cpu.cfs_quota=-1
-
-A value of -1 for cpu.cfs_quota_us indicates that the group does not have any
-bandwidth restriction in place, such a group is described as an unconstrained
-bandwidth group. This represents the traditional work-conserving behavior for
-CFS.
-
-Writing any (valid) positive value(s) will enact the specified bandwidth limit.
-The minimum quota allowed for the quota or period is 1ms. There is also an
-upper bound on the period length of 1s. Additional restrictions exist when
-bandwidth limits are used in a hierarchical fashion, these are explained in
-more detail below.
-
-Writing any negative value to cpu.cfs_quota_us will remove the bandwidth limit
-and return the group to an unconstrained state once more.
-
-Any updates to a group's bandwidth specification will result in it becoming
-unthrottled if it is in a constrained state.
-
-System wide settings
---------------------
-For efficiency run-time is transferred between the global pool and CPU local
-"silos" in a batch fashion. This greatly reduces global accounting pressure
-on large systems. The amount transferred each time such an update is required
-is described as the "slice".
-
-This is tunable via procfs:
- /proc/sys/kernel/sched_cfs_bandwidth_slice_us (default=5ms)
-
-Larger slice values will reduce transfer overheads, while smaller values allow
-for more fine-grained consumption.
-
-Statistics
-----------
-A group's bandwidth statistics are exported via 3 fields in cpu.stat.
-
-cpu.stat:
-- nr_periods: Number of enforcement intervals that have elapsed.
-- nr_throttled: Number of times the group has been throttled/limited.
-- throttled_time: The total time duration (in nanoseconds) for which entities
- of the group have been throttled.
-
-This interface is read-only.
-
-Hierarchical considerations
----------------------------
-The interface enforces that an individual entity's bandwidth is always
-attainable, that is: max(c_i) <= C. However, over-subscription in the
-aggregate case is explicitly allowed to enable work-conserving semantics
-within a hierarchy.
- e.g. \Sum (c_i) may exceed C
-[ Where C is the parent's bandwidth, and c_i its children ]
-
-
-There are two ways in which a group may become throttled:
- a. it fully consumes its own quota within a period
- b. a parent's quota is fully consumed within its period
-
-In case b) above, even though the child may have runtime remaining it will not
-be allowed to until the parent's runtime is refreshed.
-
-Examples
---------
-1. Limit a group to 1 CPU worth of runtime.
-
- If period is 250ms and quota is also 250ms, the group will get
- 1 CPU worth of runtime every 250ms.
-
- # echo 250000 > cpu.cfs_quota_us /* quota = 250ms */
- # echo 250000 > cpu.cfs_period_us /* period = 250ms */
-
-2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine.
-
- With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
- runtime every 500ms.
-
- # echo 1000000 > cpu.cfs_quota_us /* quota = 1000ms */
- # echo 500000 > cpu.cfs_period_us /* period = 500ms */
-
- The larger period here allows for increased burst capacity.
-
-3. Limit a group to 20% of 1 CPU.
-
- With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU.
-
- # echo 10000 > cpu.cfs_quota_us /* quota = 10ms */
- # echo 50000 > cpu.cfs_period_us /* period = 50ms */
-
- By using a small period here we are ensuring a consistent latency
- response at the expense of burst capacity.
-
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.rst
index b14e03ff3528..14a2f7bf63fe 100644
--- a/Documentation/scheduler/sched-deadline.txt
+++ b/Documentation/scheduler/sched-deadline.rst
@@ -1,29 +1,29 @@
- Deadline Task Scheduling
- ------------------------
-
-CONTENTS
-========
-
- 0. WARNING
- 1. Overview
- 2. Scheduling algorithm
- 2.1 Main algorithm
- 2.2 Bandwidth reclaiming
- 3. Scheduling Real-Time Tasks
- 3.1 Definitions
- 3.2 Schedulability Analysis for Uniprocessor Systems
- 3.3 Schedulability Analysis for Multiprocessor Systems
- 3.4 Relationship with SCHED_DEADLINE Parameters
- 4. Bandwidth management
- 4.1 System-wide settings
- 4.2 Task interface
- 4.3 Default behavior
- 4.4 Behavior of sched_yield()
- 5. Tasks CPU affinity
- 5.1 SCHED_DEADLINE and cpusets HOWTO
- 6. Future plans
- A. Test suite
- B. Minimal main()
+========================
+Deadline Task Scheduling
+========================
+
+.. CONTENTS
+
+ 0. WARNING
+ 1. Overview
+ 2. Scheduling algorithm
+ 2.1 Main algorithm
+ 2.2 Bandwidth reclaiming
+ 3. Scheduling Real-Time Tasks
+ 3.1 Definitions
+ 3.2 Schedulability Analysis for Uniprocessor Systems
+ 3.3 Schedulability Analysis for Multiprocessor Systems
+ 3.4 Relationship with SCHED_DEADLINE Parameters
+ 4. Bandwidth management
+ 4.1 System-wide settings
+ 4.2 Task interface
+ 4.3 Default behavior
+ 4.4 Behavior of sched_yield()
+ 5. Tasks CPU affinity
+ 5.1 SCHED_DEADLINE and cpusets HOWTO
+ 6. Future plans
+ A. Test suite
+ B. Minimal main()
0. WARNING
@@ -44,7 +44,7 @@ CONTENTS
2. Scheduling algorithm
-==================
+=======================
2.1 Main algorithm
------------------
@@ -80,7 +80,7 @@ CONTENTS
a "remaining runtime". These two parameters are initially set to 0;
- When a SCHED_DEADLINE task wakes up (becomes ready for execution),
- the scheduler checks if
+ the scheduler checks if::
remaining runtime runtime
---------------------------------- > ---------
@@ -97,7 +97,7 @@ CONTENTS
left unchanged;
- When a SCHED_DEADLINE task executes for an amount of time t, its
- remaining runtime is decreased as
+ remaining runtime is decreased as::
remaining runtime = remaining runtime - t
@@ -112,7 +112,7 @@ CONTENTS
- When the current time is equal to the replenishment time of a
throttled task, the scheduling deadline and the remaining runtime are
- updated as
+ updated as::
scheduling deadline = scheduling deadline + period
remaining runtime = remaining runtime + runtime
@@ -129,7 +129,7 @@ CONTENTS
Reclamation of Unused Bandwidth) algorithm [15, 16, 17] and it is enabled
when flag SCHED_FLAG_RECLAIM is set.
- The following diagram illustrates the state names for tasks handled by GRUB:
+ The following diagram illustrates the state names for tasks handled by GRUB::
------------
(d) | Active |
@@ -168,7 +168,7 @@ CONTENTS
breaking the real-time guarantees.
The 0-lag time for a task entering the ActiveNonContending state is
- computed as
+ computed as::
(runtime * dl_period)
deadline - ---------------------
@@ -183,7 +183,7 @@ CONTENTS
the task's utilization must be removed from the previous runqueue's active
utilization and must be added to the new runqueue's active utilization.
In order to avoid races between a task waking up on a runqueue while the
- "inactive timer" is running on a different CPU, the "dl_non_contending"
+ "inactive timer" is running on a different CPU, the "dl_non_contending"
flag is used to indicate that a task is not on a runqueue but is active
(so, the flag is set when the task blocks and is cleared when the
"inactive timer" fires or when the task wakes up).
@@ -222,36 +222,36 @@ CONTENTS
Let's now see a trivial example of two deadline tasks with runtime equal
- to 4 and period equal to 8 (i.e., bandwidth equal to 0.5):
-
- A Task T1
- |
- | |
- | |
- |-------- |----
- | | V
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
-
-
- A Task T2
- |
- | |
- | |
- | ------------------------|
- | | V
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
-
-
- A running_bw
- |
- 1 ----------------- ------
- | | |
- 0.5- -----------------
- | |
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
+ to 4 and period equal to 8 (i.e., bandwidth equal to 0.5)::
+
+ A Task T1
+ |
+ | |
+ | |
+ |-------- |----
+ | | V
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
+
+
+ A Task T2
+ |
+ | |
+ | |
+ | ------------------------|
+ | | V
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
+
+
+ A running_bw
+ |
+ 1 ----------------- ------
+ | | |
+ 0.5- -----------------
+ | |
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
- Time t = 0:
@@ -284,7 +284,7 @@ CONTENTS
2.3 Energy-aware scheduling
-------------------------
+---------------------------
When cpufreq's schedutil governor is selected, SCHED_DEADLINE implements the
GRUB-PA [19] algorithm, reducing the CPU operating frequency to the minimum
@@ -299,15 +299,20 @@ CONTENTS
3. Scheduling Real-Time Tasks
=============================
- * BIG FAT WARNING ******************************************************
- *
- * This section contains a (not-thorough) summary on classical deadline
- * scheduling theory, and how it applies to SCHED_DEADLINE.
- * The reader can "safely" skip to Section 4 if only interested in seeing
- * how the scheduling policy can be used. Anyway, we strongly recommend
- * to come back here and continue reading (once the urge for testing is
- * satisfied :P) to be sure of fully understanding all technical details.
- ************************************************************************
+
+
+ .. BIG FAT WARNING ******************************************************
+
+ .. warning::
+
+ This section contains a (not-thorough) summary on classical deadline
+ scheduling theory, and how it applies to SCHED_DEADLINE.
+ The reader can "safely" skip to Section 4 if only interested in seeing
+ how the scheduling policy can be used. Anyway, we strongly recommend
+ to come back here and continue reading (once the urge for testing is
+ satisfied :P) to be sure of fully understanding all technical details.
+
+ .. ************************************************************************
There are no limitations on what kind of task can exploit this new
scheduling discipline, even if it must be said that it is particularly
@@ -329,6 +334,7 @@ CONTENTS
sporadic with minimum inter-arrival time P is r_{j+1} >= r_j + P. Finally,
d_j = r_j + D, where D is the task's relative deadline.
Summing up, a real-time task can be described as
+
Task = (WCET, D, P)
The utilization of a real-time task is defined as the ratio between its
@@ -352,13 +358,15 @@ CONTENTS
between the finishing time of a job and its absolute deadline).
More precisely, it can be proven that using a global EDF scheduler the
maximum tardiness of each task is smaller or equal than
+
((M − 1) · WCET_max − WCET_min)/(M − (M − 2) · U_max) + WCET_max
+
where WCET_max = max{WCET_i} is the maximum WCET, WCET_min=min{WCET_i}
is the minimum WCET, and U_max = max{WCET_i/P_i} is the maximum
utilization[12].
3.2 Schedulability Analysis for Uniprocessor Systems
-------------------------
+----------------------------------------------------
If M=1 (uniprocessor system), or in case of partitioned scheduling (each
real-time task is statically assigned to one and only one CPU), it is
@@ -370,7 +378,9 @@ CONTENTS
a task as WCET_i/min{D_i,P_i}, and EDF is able to respect all the deadlines
of all the tasks running on a CPU if the sum of the densities of the tasks
running on such a CPU is smaller or equal than 1:
+
sum(WCET_i / min{D_i, P_i}) <= 1
+
It is important to notice that this condition is only sufficient, and not
necessary: there are task sets that are schedulable, but do not respect the
condition. For example, consider the task set {Task_1,Task_2} composed by
@@ -379,7 +389,9 @@ CONTENTS
(Task_1 is scheduled as soon as it is released, and finishes just in time
to respect its deadline; Task_2 is scheduled immediately after Task_1, hence
its response time cannot be larger than 50ms + 10ms = 60ms) even if
+
50 / min{50,100} + 10 / min{100, 100} = 50 / 50 + 10 / 100 = 1.1
+
Of course it is possible to test the exact schedulability of tasks with
D_i != P_i (checking a condition that is both sufficient and necessary),
but this cannot be done by comparing the total utilization or density with
@@ -399,7 +411,7 @@ CONTENTS
4 Linux uses an admission test based on the tasks' utilizations.
3.3 Schedulability Analysis for Multiprocessor Systems
-------------------------
+------------------------------------------------------
On multiprocessor systems with global EDF scheduling (non partitioned
systems), a sufficient test for schedulability can not be based on the
@@ -428,7 +440,9 @@ CONTENTS
between total utilization (or density) and a fixed constant. If all tasks
have D_i = P_i, a sufficient schedulability condition can be expressed in
a simple way:
+
sum(WCET_i / P_i) <= M - (M - 1) · U_max
+
where U_max = max{WCET_i / P_i}[10]. Notice that for U_max = 1,
M - (M - 1) · U_max becomes M - M + 1 = 1 and this schedulability condition
just confirms the Dhall's effect. A more complete survey of the literature
@@ -447,7 +461,7 @@ CONTENTS
the tasks are limited.
3.4 Relationship with SCHED_DEADLINE Parameters
-------------------------
+-----------------------------------------------
Finally, it is important to understand the relationship between the
SCHED_DEADLINE scheduling parameters described in Section 2 (runtime,
@@ -473,6 +487,7 @@ CONTENTS
this task, as it is not possible to respect its temporal constraints.
References:
+
1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the Association for
Computing Machinery, 20(1), 1973.
@@ -550,7 +565,7 @@ CONTENTS
The interface used to control the CPU bandwidth that can be allocated
to -deadline tasks is similar to the one already used for -rt
tasks with real-time group scheduling (a.k.a. RT-throttling - see
- Documentation/scheduler/sched-rt-group.txt), and is based on readable/
+ Documentation/scheduler/sched-rt-group.rst), and is based on readable/
writable control files located in procfs (for system wide settings).
Notice that per-group settings (controlled through cgroupfs) are still not
defined for -deadline tasks, because more discussion is needed in order to
@@ -596,11 +611,13 @@ CONTENTS
Specifying a periodic/sporadic task that executes for a given amount of
runtime at each instance, and that is scheduled according to the urgency of
its own timing constraints needs, in general, a way of declaring:
+
- a (maximum/typical) instance execution time,
- a minimum interval between consecutive instances,
- a time constraint by which each instance must be completed.
Therefore:
+
* a new struct sched_attr, containing all the necessary fields is
provided;
* the new scheduling related syscalls that manipulate it, i.e.,
@@ -652,27 +669,27 @@ CONTENTS
-deadline tasks cannot have an affinity mask smaller that the entire
root_domain they are created on. However, affinities can be specified
- through the cpuset facility (Documentation/cgroup-v1/cpusets.txt).
+ through the cpuset facility (Documentation/admin-guide/cgroup-v1/cpusets.rst).
5.1 SCHED_DEADLINE and cpusets HOWTO
------------------------------------
An example of a simple configuration (pin a -deadline task to CPU0)
- follows (rt-app is used to create a -deadline task).
-
- mkdir /dev/cpuset
- mount -t cgroup -o cpuset cpuset /dev/cpuset
- cd /dev/cpuset
- mkdir cpu0
- echo 0 > cpu0/cpuset.cpus
- echo 0 > cpu0/cpuset.mems
- echo 1 > cpuset.cpu_exclusive
- echo 0 > cpuset.sched_load_balance
- echo 1 > cpu0/cpuset.cpu_exclusive
- echo 1 > cpu0/cpuset.mem_exclusive
- echo $$ > cpu0/tasks
- rt-app -t 100000:10000:d:0 -D5 (it is now actually superfluous to specify
- task affinity)
+ follows (rt-app is used to create a -deadline task)::
+
+ mkdir /dev/cpuset
+ mount -t cgroup -o cpuset cpuset /dev/cpuset
+ cd /dev/cpuset
+ mkdir cpu0
+ echo 0 > cpu0/cpuset.cpus
+ echo 0 > cpu0/cpuset.mems
+ echo 1 > cpuset.cpu_exclusive
+ echo 0 > cpuset.sched_load_balance
+ echo 1 > cpu0/cpuset.cpu_exclusive
+ echo 1 > cpu0/cpuset.mem_exclusive
+ echo $$ > cpu0/tasks
+ rt-app -t 100000:10000:d:0 -D5 # it is now actually superfluous to specify
+ # task affinity
6. Future plans
===============
@@ -711,7 +728,7 @@ Appendix A. Test suite
rt-app is available at: https://github.com/scheduler-tools/rt-app.
Thread parameters can be specified from the command line, with something like
- this:
+ this::
# rt-app -t 100000:10000:d -t 150000:20000:f:10 -D5
@@ -721,27 +738,27 @@ Appendix A. Test suite
of 5 seconds.
More interestingly, configurations can be described with a json file that
- can be passed as input to rt-app with something like this:
+ can be passed as input to rt-app with something like this::
# rt-app my_config.json
The parameters that can be specified with the second method are a superset
of the command line options. Please refer to rt-app documentation for more
- details (<rt-app-sources>/doc/*.json).
+ details (`<rt-app-sources>/doc/*.json`).
The second testing application is a modification of schedtool, called
schedtool-dl, which can be used to setup SCHED_DEADLINE parameters for a
certain pid/application. schedtool-dl is available at:
https://github.com/scheduler-tools/schedtool-dl.git.
- The usage is straightforward:
+ The usage is straightforward::
# schedtool -E -t 10000000:100000000 -e ./my_cpuhog_app
With this, my_cpuhog_app is put to run inside a SCHED_DEADLINE reservation
of 10ms every 100ms (note that parameters are expressed in microseconds).
You can also use schedtool to create a reservation for an already running
- application, given that you know its pid:
+ application, given that you know its pid::
# schedtool -E -t 10000000:100000000 my_app_pid
@@ -750,43 +767,43 @@ Appendix B. Minimal main()
We provide in what follows a simple (ugly) self-contained code snippet
showing how SCHED_DEADLINE reservations can be created by a real-time
- application developer.
-
- #define _GNU_SOURCE
- #include <unistd.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <time.h>
- #include <linux/unistd.h>
- #include <linux/kernel.h>
- #include <linux/types.h>
- #include <sys/syscall.h>
- #include <pthread.h>
-
- #define gettid() syscall(__NR_gettid)
-
- #define SCHED_DEADLINE 6
-
- /* XXX use the proper syscall numbers */
- #ifdef __x86_64__
- #define __NR_sched_setattr 314
- #define __NR_sched_getattr 315
- #endif
-
- #ifdef __i386__
- #define __NR_sched_setattr 351
- #define __NR_sched_getattr 352
- #endif
-
- #ifdef __arm__
- #define __NR_sched_setattr 380
- #define __NR_sched_getattr 381
- #endif
-
- static volatile int done;
-
- struct sched_attr {
+ application developer::
+
+ #define _GNU_SOURCE
+ #include <unistd.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <string.h>
+ #include <time.h>
+ #include <linux/unistd.h>
+ #include <linux/kernel.h>
+ #include <linux/types.h>
+ #include <sys/syscall.h>
+ #include <pthread.h>
+
+ #define gettid() syscall(__NR_gettid)
+
+ #define SCHED_DEADLINE 6
+
+ /* XXX use the proper syscall numbers */
+ #ifdef __x86_64__
+ #define __NR_sched_setattr 314
+ #define __NR_sched_getattr 315
+ #endif
+
+ #ifdef __i386__
+ #define __NR_sched_setattr 351
+ #define __NR_sched_getattr 352
+ #endif
+
+ #ifdef __arm__
+ #define __NR_sched_setattr 380
+ #define __NR_sched_getattr 381
+ #endif
+
+ static volatile int done;
+
+ struct sched_attr {
__u32 size;
__u32 sched_policy;
@@ -802,25 +819,25 @@ Appendix B. Minimal main()
__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;
- };
+ };
- int sched_setattr(pid_t pid,
+ int sched_setattr(pid_t pid,
const struct sched_attr *attr,
unsigned int flags)
- {
+ {
return syscall(__NR_sched_setattr, pid, attr, flags);
- }
+ }
- int sched_getattr(pid_t pid,
+ int sched_getattr(pid_t pid,
struct sched_attr *attr,
unsigned int size,
unsigned int flags)
- {
+ {
return syscall(__NR_sched_getattr, pid, attr, size, flags);
- }
+ }
- void *run_deadline(void *data)
- {
+ void *run_deadline(void *data)
+ {
struct sched_attr attr;
int x = 0;
int ret;
@@ -851,10 +868,10 @@ Appendix B. Minimal main()
printf("deadline thread dies [%ld]\n", gettid());
return NULL;
- }
+ }
- int main (int argc, char **argv)
- {
+ int main (int argc, char **argv)
+ {
pthread_t thread;
printf("main thread [%ld]\n", gettid());
@@ -868,4 +885,4 @@ Appendix B. Minimal main()
printf("main dies [%ld]\n", gettid());
return 0;
- }
+ }
diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.rst
index edd861c94c1b..a96c72651877 100644
--- a/Documentation/scheduler/sched-design-CFS.txt
+++ b/Documentation/scheduler/sched-design-CFS.rst
@@ -1,9 +1,10 @@
- =============
- CFS Scheduler
- =============
+=============
+CFS Scheduler
+=============
1. OVERVIEW
+============
CFS stands for "Completely Fair Scheduler," and is the new "desktop" process
scheduler implemented by Ingo Molnar and merged in Linux 2.6.23. It is the
@@ -27,6 +28,7 @@ is its actual runtime normalized to the total number of running tasks.
2. FEW IMPLEMENTATION DETAILS
+==============================
In CFS the virtual runtime is expressed and tracked via the per-task
p->se.vruntime (nanosec-unit) value. This way, it's possible to accurately
@@ -49,6 +51,7 @@ algorithm variants to recognize sleepers.
3. THE RBTREE
+==============
CFS's design is quite radical: it does not use the old data structures for the
runqueues, but it uses a time-ordered rbtree to build a "timeline" of future
@@ -84,6 +87,7 @@ picked and the current task is preempted.
4. SOME FEATURES OF CFS
+========================
CFS uses nanosecond granularity accounting and does not rely on any jiffies or
other HZ detail. Thus the CFS scheduler has no notion of "timeslices" in the
@@ -113,6 +117,7 @@ result.
5. Scheduling policies
+======================
CFS implements three scheduling policies:
@@ -137,6 +142,7 @@ SCHED_IDLE.
6. SCHEDULING CLASSES
+======================
The new CFS scheduler has been designed in such a way to introduce "Scheduling
Classes," an extensible hierarchy of scheduler modules. These modules
@@ -197,6 +203,7 @@ This is the (partial) list of the hooks:
7. GROUP SCHEDULER EXTENSIONS TO CFS
+=====================================
Normally, the scheduler operates on individual tasks and strives to provide
fair CPU time to each task. Sometimes, it may be desirable to group tasks and
@@ -215,11 +222,11 @@ SCHED_BATCH) tasks.
These options need CONFIG_CGROUPS to be defined, and let the administrator
create arbitrary groups of tasks, using the "cgroup" pseudo filesystem. See
- Documentation/cgroup-v1/cgroups.txt for more information about this filesystem.
+ Documentation/admin-guide/cgroup-v1/cgroups.rst for more information about this filesystem.
When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
group created using the pseudo filesystem. See example steps below to create
-task groups and modify their CPU share using the "cgroups" pseudo filesystem.
+task groups and modify their CPU share using the "cgroups" pseudo filesystem::
# mount -t tmpfs cgroup_root /sys/fs/cgroup
# mkdir /sys/fs/cgroup/cpu
diff --git a/Documentation/scheduler/sched-domains.txt b/Documentation/scheduler/sched-domains.rst
index 4af80b1c05aa..f7504226f445 100644
--- a/Documentation/scheduler/sched-domains.txt
+++ b/Documentation/scheduler/sched-domains.rst
@@ -1,3 +1,7 @@
+=================
+Scheduler Domains
+=================
+
Each CPU has a "base" scheduling domain (struct sched_domain). The domain
hierarchy is built from these base domains via the ->parent pointer. ->parent
MUST be NULL terminated, and domain structures should be per-CPU as they are
@@ -46,7 +50,9 @@ CPU's runqueue and the newly found busiest one and starts moving tasks from it
to our runqueue. The exact number of tasks amounts to an imbalance previously
computed while iterating over this sched domain's groups.
-*** Implementing sched domains ***
+Implementing sched domains
+==========================
+
The "base" domain will "span" the first level of the hierarchy. In the case
of SMT, you'll span all siblings of the physical CPU, with each group being
a single virtual CPU.
diff --git a/Documentation/scheduler/sched-energy.txt b/Documentation/scheduler/sched-energy.rst
index 197d81f4b836..9580c57a52bc 100644
--- a/Documentation/scheduler/sched-energy.txt
+++ b/Documentation/scheduler/sched-energy.rst
@@ -1,6 +1,6 @@
- =======================
- Energy Aware Scheduling
- =======================
+=======================
+Energy Aware Scheduling
+=======================
1. Introduction
---------------
@@ -12,7 +12,7 @@ with a minimal impact on throughput. This document aims at providing an
introduction on how EAS works, what are the main design decisions behind it, and
details what is needed to get it to run.
-Before going any further, please note that at the time of writing:
+Before going any further, please note that at the time of writing::
/!\ EAS does not support platforms with symmetric CPU topologies /!\
@@ -22,7 +22,7 @@ the highest.
The actual EM used by EAS is _not_ maintained by the scheduler, but by a
dedicated framework. For details about this framework and what it provides,
-please refer to its documentation (see Documentation/power/energy-model.txt).
+please refer to its documentation (see Documentation/power/energy-model.rst).
2. Background and Terminology
@@ -33,13 +33,13 @@ To make it clear from the start:
- power = energy/time = [joule/second] = [watt]
The goal of EAS is to minimize energy, while still getting the job done. That
-is, we want to maximize:
+is, we want to maximize::
performance [inst/s]
--------------------
power [W]
-which is equivalent to minimizing:
+which is equivalent to minimizing::
energy [J]
-----------
@@ -81,7 +81,7 @@ through the arch_scale_cpu_capacity() callback.
The rest of platform knowledge used by EAS is directly read from the Energy
Model (EM) framework. The EM of a platform is composed of a power cost table
-per 'performance domain' in the system (see Documentation/power/energy-model.txt
+per 'performance domain' in the system (see Documentation/power/energy-model.rst
for futher details about performance domains).
The scheduler manages references to the EM objects in the topology code when the
@@ -97,7 +97,7 @@ domains can contain duplicate elements.
Example 1.
Let us consider a platform with 12 CPUs, split in 3 performance domains
- (pd0, pd4 and pd8), organized as follows:
+ (pd0, pd4 and pd8), organized as follows::
CPUs: 0 1 2 3 4 5 6 7 8 9 10 11
PDs: |--pd0--|--pd4--|---pd8---|
@@ -108,6 +108,7 @@ Example 1.
containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the
above figure. Since pd4 intersects with both rd1 and rd2, it will be
present in the linked list '->pd' attached to each of them:
+
* rd1->pd: pd0 -> pd4
* rd2->pd: pd4 -> pd8
@@ -159,9 +160,9 @@ Example 2.
Each performance domain has three Operating Performance Points (OPPs).
The CPU capacity and power cost associated with each OPP is listed in
the Energy Model table. The util_avg of P is shown on the figures
- below as 'PP'.
+ below as 'PP'::
- CPU util.
+ CPU util.
1024 - - - - - - - Energy Model
+-----------+-------------+
| Little | Big |
@@ -188,8 +189,7 @@ Example 2.
(which is coherent with the behaviour of the schedutil CPUFreq
governor, see Section 6. for more details on this topic).
- Case 1. P is migrated to CPU1
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 1. P is migrated to CPU1**::
1024 - - - - - - -
@@ -207,8 +207,7 @@ Example 2.
CPU0 CPU1 CPU2 CPU3
- Case 2. P is migrated to CPU3
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 2. P is migrated to CPU3**::
1024 - - - - - - -
@@ -226,8 +225,7 @@ Example 2.
CPU0 CPU1 CPU2 CPU3
- Case 3. P stays on prev_cpu / CPU 0
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 3. P stays on prev_cpu / CPU 0**::
1024 - - - - - - -
@@ -324,7 +322,9 @@ hardware properties and on other features of the kernel being enabled. This
section lists these dependencies and provides hints as to how they can be met.
- 6.1 - Asymmetric CPU topology
+6.1 - Asymmetric CPU topology
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
As mentioned in the introduction, EAS is only supported on platforms with
asymmetric CPU topologies for now. This requirement is checked at run-time by
@@ -347,18 +347,20 @@ significant savings on SMP platforms have been observed yet. This restriction
could be amended in the future if proven otherwise.
- 6.2 - Energy Model presence
+6.2 - Energy Model presence
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
EAS uses the EM of a platform to estimate the impact of scheduling decisions on
energy. So, your platform must provide power cost tables to the EM framework in
order to make EAS start. To do so, please refer to documentation of the
-independent EM framework in Documentation/power/energy-model.txt.
+independent EM framework in Documentation/power/energy-model.rst.
Please also note that the scheduling domains need to be re-built after the
EM has been registered in order to start EAS.
- 6.3 - Energy Model complexity
+6.3 - Energy Model complexity
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The task wake-up path is very latency-sensitive. When the EM of a platform is
too complex (too many CPUs, too many performance domains, too many performance
@@ -388,7 +390,8 @@ two possible options:
hence enabling it to cope with larger EMs in reasonable time.
- 6.4 - Schedutil governor
+6.4 - Schedutil governor
+^^^^^^^^^^^^^^^^^^^^^^^^
EAS tries to predict at which OPP will the CPUs be running in the close future
in order to estimate their energy consumption. To do so, it is assumed that OPPs
@@ -405,7 +408,8 @@ frequency requests and energy predictions.
Using EAS with any other governor than schedutil is not supported.
- 6.5 Scale-invariant utilization signals
+6.5 Scale-invariant utilization signals
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In order to make accurate prediction across CPUs and for all performance
states, EAS needs frequency-invariant and CPU-invariant PELT signals. These can
@@ -416,7 +420,8 @@ Using EAS on a platform that doesn't implement these two callbacks is not
supported.
- 6.6 Multithreading (SMT)
+6.6 Multithreading (SMT)
+^^^^^^^^^^^^^^^^^^^^^^^^
EAS in its current form is SMT unaware and is not able to leverage
multithreaded hardware to save energy. EAS considers threads as independent
diff --git a/Documentation/scheduler/sched-nice-design.txt b/Documentation/scheduler/sched-nice-design.rst
index 3ac1e46d5365..0571f1b47e64 100644
--- a/Documentation/scheduler/sched-nice-design.txt
+++ b/Documentation/scheduler/sched-nice-design.rst
@@ -1,3 +1,7 @@
+=====================
+Scheduler Nice Design
+=====================
+
This document explains the thinking about the revamped and streamlined
nice-levels implementation in the new Linux scheduler.
@@ -14,7 +18,7 @@ much stronger than they were before in 2.4 (and people were happy about
that change), and we also intentionally calibrated the linear timeslice
rule so that nice +19 level would be _exactly_ 1 jiffy. To better
understand it, the timeslice graph went like this (cheesy ASCII art
-alert!):
+alert!)::
A
diff --git a/Documentation/scheduler/sched-pelt.c b/Documentation/scheduler/sched-pelt.c
index e4219139386a..7238b355919c 100644
--- a/Documentation/scheduler/sched-pelt.c
+++ b/Documentation/scheduler/sched-pelt.c
@@ -20,7 +20,8 @@ void calc_runnable_avg_yN_inv(void)
int i;
unsigned int x;
- printf("static const u32 runnable_avg_yN_inv[] = {");
+ /* To silence -Wunused-but-set-variable warnings. */
+ printf("static const u32 runnable_avg_yN_inv[] __maybe_unused = {");
for (i = 0; i < HALFLIFE; i++) {
x = ((1UL<<32)-1)*pow(y, i);
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.rst
index d8fce3e78457..655a096ec8fb 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.rst
@@ -1,18 +1,18 @@
- Real-Time group scheduling
- --------------------------
+==========================
+Real-Time group scheduling
+==========================
-CONTENTS
-========
+.. CONTENTS
-0. WARNING
-1. Overview
- 1.1 The problem
- 1.2 The solution
-2. The interface
- 2.1 System-wide settings
- 2.2 Default behaviour
- 2.3 Basis for grouping tasks
-3. Future plans
+ 0. WARNING
+ 1. Overview
+ 1.1 The problem
+ 1.2 The solution
+ 2. The interface
+ 2.1 System-wide settings
+ 2.2 Default behaviour
+ 2.3 Basis for grouping tasks
+ 3. Future plans
0. WARNING
@@ -133,7 +133,7 @@ This uses the cgroup virtual file system and "<cgroup>/cpu.rt_runtime_us"
to control the CPU time reserved for each control group.
For more information on working with control groups, you should read
-Documentation/cgroup-v1/cgroups.txt as well.
+Documentation/admin-guide/cgroup-v1/cgroups.rst as well.
Group settings are checked against the following limits in order to keep the
configuration schedulable:
@@ -159,9 +159,11 @@ Consider two sibling groups A and B; both have 50% bandwidth, but A's
period is twice the length of B's.
* group A: period=100000us, runtime=50000us
+
- this runs for 0.05s once every 0.1s
* group B: period= 50000us, runtime=25000us
+
- this runs for 0.025s twice every 0.1s (or once every 0.05 sec).
This means that currently a while (1) loop in A will run for the full period of
diff --git a/Documentation/scheduler/sched-stats.txt b/Documentation/scheduler/sched-stats.rst
index 8259b34a66ae..0cb0aa714545 100644
--- a/Documentation/scheduler/sched-stats.txt
+++ b/Documentation/scheduler/sched-stats.rst
@@ -1,3 +1,7 @@
+====================
+Scheduler Statistics
+====================
+
Version 15 of schedstats dropped counters for some sched_yield:
yld_exp_empty, yld_act_empty and yld_both_empty. Otherwise, it is
identical to version 14.
@@ -35,19 +39,23 @@ CPU statistics
cpu<N> 1 2 3 4 5 6 7 8 9
First field is a sched_yield() statistic:
+
1) # of times sched_yield() was called
Next three are schedule() statistics:
+
2) This field is a legacy array expiration count field used in the O(1)
scheduler. We kept it for ABI compatibility, but it is always set to zero.
3) # of times schedule() was called
4) # of times schedule() left the processor idle
Next two are try_to_wake_up() statistics:
+
5) # of times try_to_wake_up() was called
6) # of times try_to_wake_up() was called to wake up the local cpu
Next three are statistics describing scheduling latency:
+
7) sum of all time spent running by tasks on this processor (in jiffies)
8) sum of all time spent waiting to run by tasks on this processor (in
jiffies)
@@ -67,24 +75,23 @@ The first field is a bit mask indicating what cpus this domain operates over.
The next 24 are a variety of load_balance() statistics in grouped into types
of idleness (idle, busy, and newly idle):
- 1) # of times in this domain load_balance() was called when the
+ 1) # of times in this domain load_balance() was called when the
cpu was idle
- 2) # of times in this domain load_balance() checked but found
+ 2) # of times in this domain load_balance() checked but found
the load did not require balancing when the cpu was idle
- 3) # of times in this domain load_balance() tried to move one or
+ 3) # of times in this domain load_balance() tried to move one or
more tasks and failed, when the cpu was idle
- 4) sum of imbalances discovered (if any) with each call to
+ 4) sum of imbalances discovered (if any) with each call to
load_balance() in this domain when the cpu was idle
- 5) # of times in this domain pull_task() was called when the cpu
+ 5) # of times in this domain pull_task() was called when the cpu
was idle
- 6) # of times in this domain pull_task() was called even though
+ 6) # of times in this domain pull_task() was called even though
the target task was cache-hot when idle
- 7) # of times in this domain load_balance() was called but did
+ 7) # of times in this domain load_balance() was called but did
not find a busier queue while the cpu was idle
- 8) # of times in this domain a busier queue was found while the
+ 8) # of times in this domain a busier queue was found while the
cpu was idle but no busier group was found
-
- 9) # of times in this domain load_balance() was called when the
+ 9) # of times in this domain load_balance() was called when the
cpu was busy
10) # of times in this domain load_balance() checked but found the
load did not require balancing when busy
@@ -117,21 +124,25 @@ of idleness (idle, busy, and newly idle):
was just becoming idle but no busier group was found
Next three are active_load_balance() statistics:
+
25) # of times active_load_balance() was called
26) # of times active_load_balance() tried to move a task and failed
27) # of times active_load_balance() successfully moved a task
Next three are sched_balance_exec() statistics:
+
28) sbe_cnt is not used
29) sbe_balanced is not used
30) sbe_pushed is not used
Next three are sched_balance_fork() statistics:
+
31) sbf_cnt is not used
32) sbf_balanced is not used
33) sbf_pushed is not used
Next three are try_to_wake_up() statistics:
+
34) # of times in this domain try_to_wake_up() awoke a task that
last ran on a different cpu in this domain
35) # of times in this domain try_to_wake_up() moved a task to the
@@ -139,10 +150,11 @@ of idleness (idle, busy, and newly idle):
36) # of times in this domain try_to_wake_up() started passive balancing
/proc/<pid>/schedstat
-----------------
+---------------------
schedstats also adds a new /proc/<pid>/schedstat file to include some of
the same information on a per-process level. There are three fields in
this file correlating for that process to:
+
1) time spent on the cpu
2) time spent waiting on a runqueue
3) # of timeslices run on this cpu
@@ -151,4 +163,5 @@ A program could be easily written to make use of these extra fields to
report on how well a particular process or set of processes is faring
under the scheduler's policies. A simple version of such a program is
available at
+
http://eaglet.rain.com/rick/linux/schedstat/v12/latency.c
diff --git a/Documentation/scheduler/text_files.rst b/Documentation/scheduler/text_files.rst
new file mode 100644
index 000000000000..0bc50307b241
--- /dev/null
+++ b/Documentation/scheduler/text_files.rst
@@ -0,0 +1,5 @@
+Scheduler pelt c program
+------------------------
+
+.. literalinclude:: sched-pelt.c
+ :language: c
diff --git a/Documentation/scsi/osst.txt b/Documentation/scsi/osst.txt
deleted file mode 100644
index 00c8ebb2fd18..000000000000
--- a/Documentation/scsi/osst.txt
+++ /dev/null
@@ -1,218 +0,0 @@
-README file for the osst driver
-===============================
-(w) Kurt Garloff <garloff@suse.de> 12/2000
-
-This file describes the osst driver as of version 0.8.x/0.9.x, the released
-version of the osst driver.
-It is intended to help advanced users to understand the role of osst and to
-get them started using (and maybe debugging) it.
-It won't address issues like "How do I compile a kernel?" or "How do I load
-a module?", as these are too basic.
-Once the OnStream got merged into the official kernel, the distro makers
-will provide the OnStream support for those who are not familiar with
-hacking their kernels.
-
-
-Purpose
--------
-The osst driver was developed, because the standard SCSI tape driver in
-Linux, st, does not support the OnStream SC-x0 SCSI tape. The st is not to
-blame for that, as the OnStream tape drives do not support the standard SCSI
-command set for Serial Access Storage Devices (SASDs), which basically
-corresponds to the QIC-157 spec.
-Nevertheless, the OnStream tapes are nice pieces of hardware and therefore
-the osst driver has been written to make these tape devs supported by Linux.
-The driver is free software. It's released under the GNU GPL and planned to
-be integrated into the mainstream kernel.
-
-
-Implementation
---------------
-The osst is a new high-level SCSI driver, just like st, sr, sd and sg. It
-can be compiled into the kernel or loaded as a module.
-As it represents a new device, it got assigned a new device node: /dev/osstX
-are character devices with major no 206 and minor numbers like the /dev/stX
-devices. If those are not present, you may create them by calling
-Makedevs.sh as root (see below).
-The driver started being a copy of st and as such, the osst devices'
-behavior looks very much the same as st to the userspace applications.
-
-
-History
--------
-In the first place, osst shared its identity very much with st. That meant
-that it used the same kernel structures and the same device node as st.
-So you could only have either of them being present in the kernel. This has
-been fixed by registering an own device, now.
-st and osst can coexist, each only accessing the devices it can support by
-themselves.
-
-
-Installation
-------------
-osst got integrated into the linux kernel. Select it during kernel
-configuration as module or compile statically into the kernel.
-Compile your kernel and install the modules.
-
-Now, your osst driver is inside the kernel or available as a module,
-depending on your choice during kernel config. You may still need to create
-the device nodes by calling the Makedevs.sh script (see below) manually.
-
-To load your module, you may use the command
-modprobe osst
-as root. dmesg should show you, whether your OnStream tapes have been
-recognized.
-
-If you want to have the module autoloaded on access to /dev/osst, you may
-add something like
-alias char-major-206 osst
-to a file under /etc/modprobe.d/ directory.
-
-You may find it convenient to create a symbolic link
-ln -s nosst0 /dev/tape
-to make programs assuming a default name of /dev/tape more convenient to
-use.
-
-The device nodes for osst have to be created. Use the Makedevs.sh script
-attached to this file.
-
-
-Using it
---------
-You may use the OnStream tape driver with your standard backup software,
-which may be tar, cpio, amanda, arkeia, BRU, Lone Tar, ...
-by specifying /dev/(n)osst0 as the tape device to use or using the above
-symlink trick. The IOCTLs to control tape operation are also mostly
-supported and you may try the mt (or mt_st) program to jump between
-filemarks, eject the tape, ...
-
-There's one limitation: You need to use a block size of 32kB.
-
-(This limitation is worked on and will be fixed in version 0.8.8 of
- this driver.)
-
-If you just want to get started with standard software, here is an example
-for creating and restoring a full backup:
-# Backup
-tar cvf - / --exclude /proc | buffer -s 32k -m 24M -B -t -o /dev/nosst0
-# Restore
-buffer -s 32k -m 8M -B -t -i /dev/osst0 | tar xvf - -C /
-
-The buffer command has been used to buffer the data before it goes to the
-tape (or the file system) in order to smooth out the data stream and prevent
-the tape from needing to stop and rewind. The OnStream does have an internal
-buffer and a variable speed which help this, but especially on writing, the
-buffering still proves useful in most cases. It also pads the data to
-guarantees the block size of 32k. (Otherwise you may pass the -b64 option to
-tar.)
-Expect something like 1.8MB/s for the SC-x0 drives and 0.9MB/s for the DI-30.
-The USB drive will give you about 0.7MB/s.
-On a fast machine, you may profit from software data compression (z flag for
-tar).
-
-
-USB and IDE
------------
-Via the SCSI emulation layers usb-storage and ide-scsi, you can also use the
-osst driver to drive the USB-30 and the DI-30 drives. (Unfortunately, there
-is no such layer for the parallel port, otherwise the DP-30 would work as
-well.) For the USB support, you need the latest 2.4.0-test kernels and the
-latest usb-storage driver from
-http://www.linux-usb.org/
-http://sourceforge.net/cvs/?group_id=3581
-
-Note that the ide-tape driver as of 1.16f uses a slightly outdated on-tape
-format and therefore is not completely interoperable with osst tapes.
-
-The ADR-x0 line is fully SCSI-2 compliant and is supported by st, not osst.
-The on-tape format is supposed to be compatible with the one used by osst.
-
-
-Feedback and updates
---------------------
-The driver development is coordinated through a mailing list
-<osst@linux1.onstream.nl>
-a CVS repository and some web pages.
-The tester's pages which contain recent news and updated drivers to download
-can be found on
-http://sourceforge.net/projects/osst/
-
-If you find any problems, please have a look at the tester's page in order
-to see whether the problem is already known and solved. Otherwise, please
-report it to the mailing list. Your feedback is welcome. (This holds also
-for reports of successful usage, of course.)
-In case of trouble, please do always provide the following info:
-* driver and kernel version used (see syslog)
-* driver messages (syslog)
-* SCSI config and OnStream Firmware (/proc/scsi/scsi)
-* description of error. Is it reproducible?
-* software and commands used
-
-You may subscribe to the mailing list, BTW, it's a majordomo list.
-
-
-Status
-------
-0.8.0 was the first widespread BETA release. Since then a lot of reports
-have been sent, but mostly reported success or only minor trouble.
-All the issues have been addressed.
-Check the web pages for more info about the current developments.
-0.9.x is the tree for the 2.3/2.4 kernel.
-
-
-Acknowledgments
-----------------
-The driver has been started by making a copy of Kai Makisara's st driver.
-Most of the development has been done by Willem Riede. The presence of the
-userspace program osg (onstreamsg) from Terry Hardie has been rather
-helpful. The same holds for Gadi Oxman's ide-tape support for the DI-30.
-I did add some patches to those drivers as well and coordinated things a
-little bit.
-Note that most of them did mostly spend their spare time for the creation of
-this driver.
-The people from OnStream, especially Jack Bombeeck did support this project
-and always tried to answer HW or FW related questions. Furthermore, he
-pushed the FW developers to do the right things.
-SuSE did support this project by allowing me to work on it during my working
-time for them and by integrating the driver into their distro.
-
-More people did help by sending useful comments. Sorry to those who have
-been forgotten. Thanks to all the GNU/FSF and Linux developers who made this
-platform such an interesting, nice and stable platform.
-Thanks go to those who tested the drivers and did send useful reports. Your
-help is needed!
-
-
-Makedevs.sh
------------
-#!/bin/sh
-# Script to create OnStream SC-x0 device nodes (major 206)
-# Usage: Makedevs.sh [nos [path to dev]]
-# $Id: README.osst.kernel,v 1.4 2000/12/20 14:13:15 garloff Exp $
-major=206
-nrs=4
-dir=/dev
-test -z "$1" || nrs=$1
-test -z "$2" || dir=$2
-declare -i nr
-nr=0
-test -d $dir || mkdir -p $dir
-while test $nr -lt $nrs; do
- mknod $dir/osst$nr c $major $nr
- chown 0.disk $dir/osst$nr; chmod 660 $dir/osst$nr;
- mknod $dir/nosst$nr c $major $[nr+128]
- chown 0.disk $dir/nosst$nr; chmod 660 $dir/nosst$nr;
- mknod $dir/osst${nr}l c $major $[nr+32]
- chown 0.disk $dir/osst${nr}l; chmod 660 $dir/osst${nr}l;
- mknod $dir/nosst${nr}l c $major $[nr+160]
- chown 0.disk $dir/nosst${nr}l; chmod 660 $dir/nosst${nr}l;
- mknod $dir/osst${nr}m c $major $[nr+64]
- chown 0.disk $dir/osst${nr}m; chmod 660 $dir/osst${nr}m;
- mknod $dir/nosst${nr}m c $major $[nr+192]
- chown 0.disk $dir/nosst${nr}m; chmod 660 $dir/nosst${nr}m;
- mknod $dir/osst${nr}a c $major $[nr+96]
- chown 0.disk $dir/osst${nr}a; chmod 660 $dir/osst${nr}a;
- mknod $dir/nosst${nr}a c $major $[nr+224]
- chown 0.disk $dir/nosst${nr}a; chmod 660 $dir/nosst${nr}a;
- let nr+=1
-done
diff --git a/Documentation/scsi/ufs.txt b/Documentation/scsi/ufs.txt
index 1769f71c4c20..81842ec3e116 100644
--- a/Documentation/scsi/ufs.txt
+++ b/Documentation/scsi/ufs.txt
@@ -158,6 +158,13 @@ send SG_IO with the applicable sg_io_v4:
If you wish to read or write a descriptor, use the appropriate xferp of
sg_io_v4.
+The userspace tool that interacts with the ufs-bsg endpoint and uses its
+upiu-based protocol is available at:
+
+ https://github.com/westerndigitalcorporation/ufs-tool
+
+For more detailed information about the tool and its supported
+features, please see the tool's README.
UFS Specifications can be found at,
UFS - http://www.jedec.org/sites/default/files/docs/JESD220.pdf
diff --git a/Documentation/security/IMA-templates.rst b/Documentation/security/IMA-templates.rst
index 2cd0e273cc9a..c5a8432972ef 100644
--- a/Documentation/security/IMA-templates.rst
+++ b/Documentation/security/IMA-templates.rst
@@ -68,16 +68,20 @@ descriptors by adding their identifier to the format string
- 'd-ng': the digest of the event, calculated with an arbitrary hash
algorithm (field format: [<hash algo>:]digest, where the digest
prefix is shown only if the hash algorithm is not SHA1 or MD5);
+ - 'd-modsig': the digest of the event without the appended modsig;
- 'n-ng': the name of the event, without size limitations;
- - 'sig': the file signature.
+ - 'sig': the file signature;
+ - 'modsig' the appended file signature;
+ - 'buf': the buffer data that was used to generate the hash without size limitations;
Below, there is the list of defined template descriptors:
- "ima": its format is ``d|n``;
- "ima-ng" (default): its format is ``d-ng|n-ng``;
- - "ima-sig": its format is ``d-ng|n-ng|sig``.
-
+ - "ima-sig": its format is ``d-ng|n-ng|sig``;
+ - "ima-buf": its format is ``d-ng|n-ng|buf``;
+ - "ima-modsig": its format is ``d-ng|n-ng|sig|d-modsig|modsig``;
Use
diff --git a/Documentation/security/index.rst b/Documentation/security/index.rst
index aad6d92ffe31..fc503dd689a7 100644
--- a/Documentation/security/index.rst
+++ b/Documentation/security/index.rst
@@ -8,7 +8,10 @@ Security Documentation
credentials
IMA-templates
keys/index
- LSM
+ lsm
+ lsm-development
+ sak
SCTP
self-protection
+ siphash
tpm/index
diff --git a/Documentation/security/keys/core.rst b/Documentation/security/keys/core.rst
index 9521c4207f01..d6d8b0b756b6 100644
--- a/Documentation/security/keys/core.rst
+++ b/Documentation/security/keys/core.rst
@@ -433,6 +433,10 @@ The main syscalls are:
/sbin/request-key will be invoked in an attempt to obtain a key. The
callout_info string will be passed as an argument to the program.
+ To link a key into the destination keyring the key must grant link
+ permission on the key to the caller and the keyring must grant write
+ permission.
+
See also Documentation/security/keys/request-key.rst.
@@ -577,6 +581,27 @@ The keyctl syscall functions are:
added.
+ * Move a key from one keyring to another::
+
+ long keyctl(KEYCTL_MOVE,
+ key_serial_t id,
+ key_serial_t from_ring_id,
+ key_serial_t to_ring_id,
+ unsigned int flags);
+
+ Move the key specified by "id" from the keyring specified by
+ "from_ring_id" to the keyring specified by "to_ring_id". If the two
+ keyrings are the same, nothing is done.
+
+ "flags" can have KEYCTL_MOVE_EXCL set in it to cause the operation to fail
+ with EEXIST if a matching key exists in the destination keyring, otherwise
+ such a key will be replaced.
+
+ A process must have link permission on the key for this function to be
+ successful and write permission on both keyrings. Any errors that can
+ occur from KEYCTL_LINK also apply on the destination keyring here.
+
+
* Unlink a key or keyring from another keyring::
long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key);
@@ -1077,49 +1102,43 @@ payload contents" for more information.
See also Documentation/security/keys/request-key.rst.
+ * To search for a key in a specific domain, call:
+
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag,
+ const char *callout_info);
+
+ This is identical to request_key(), except that a domain tag may be
+ specifies that causes search algorithm to only match keys matching that
+ tag. The domain_tag may be NULL, specifying a global domain that is
+ separate from any nominated domain.
+
+
* To search for a key, passing auxiliary data to the upcaller, call::
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ struct key_tag *domain_tag,
const void *callout_info,
size_t callout_len,
void *aux);
- This is identical to request_key(), except that the auxiliary data is
- passed to the key_type->request_key() op if it exists, and the callout_info
- is a blob of length callout_len, if given (the length may be 0).
-
-
- * A key can be requested asynchronously by calling one of::
-
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const void *callout_info,
- size_t callout_len);
-
- or::
+ This is identical to request_key_tag(), except that the auxiliary data is
+ passed to the key_type->request_key() op if it exists, and the
+ callout_info is a blob of length callout_len, if given (the length may be
+ 0).
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
- which are asynchronous equivalents of request_key() and
- request_key_with_auxdata() respectively.
+ * To search for a key under RCU conditions, call::
- These two functions return with the key potentially still under
- construction. To wait for construction completion, the following should be
- called::
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag);
- int wait_for_key_construction(struct key *key, bool intr);
-
- The function will wait for the key to finish being constructed and then
- invokes key_validate() to return an appropriate value to indicate the state
- of the key (0 indicates the key is usable).
-
- If intr is true, then the wait can be interrupted by a signal, in which
- case error ERESTARTSYS will be returned.
+ which is similar to request_key_tag() except that it does not check for
+ keys that are under construction and it will not call out to userspace to
+ construct a key if it can't find a match.
* When it is no longer required, the key should be released using::
@@ -1159,11 +1178,13 @@ payload contents" for more information.
key_ref_t keyring_search(key_ref_t keyring_ref,
const struct key_type *type,
- const char *description)
+ const char *description,
+ bool recurse)
- This searches the keyring tree specified for a matching key. Error ENOKEY
- is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful,
- the returned key will need to be released.
+ This searches the specified keyring only (recurse == false) or keyring tree
+ (recurse == true) specified for a matching key. Error ENOKEY is returned
+ upon failure (use IS_ERR/PTR_ERR to determine). If successful, the returned
+ key will need to be released.
The possession attribute from the keyring reference is used to control
access through the permissions mask and is propagated to the returned key
@@ -1594,10 +1615,12 @@ The structure has a number of fields, some of which are mandatory:
attempted key link operation. If there is no match, -EINVAL is returned.
- * ``int (*asym_eds_op)(struct kernel_pkey_params *params,
- const void *in, void *out);``
- ``int (*asym_verify_signature)(struct kernel_pkey_params *params,
- const void *in, const void *in2);``
+ * ``asym_eds_op`` and ``asym_verify_signature``::
+
+ int (*asym_eds_op)(struct kernel_pkey_params *params,
+ const void *in, void *out);
+ int (*asym_verify_signature)(struct kernel_pkey_params *params,
+ const void *in, const void *in2);
These methods are optional. If provided the first allows a key to be
used to encrypt, decrypt or sign a blob of data, and the second allows a
@@ -1662,8 +1685,10 @@ The structure has a number of fields, some of which are mandatory:
required crypto isn't available.
- * ``int (*asym_query)(const struct kernel_pkey_params *params,
- struct kernel_pkey_query *info);``
+ * ``asym_query``::
+
+ int (*asym_query)(const struct kernel_pkey_params *params,
+ struct kernel_pkey_query *info);
This method is optional. If provided it allows information about the
public or asymmetric key held in the key to be determined.
diff --git a/Documentation/security/keys/request-key.rst b/Documentation/security/keys/request-key.rst
index 600ad67d1707..35f2296b704a 100644
--- a/Documentation/security/keys/request-key.rst
+++ b/Documentation/security/keys/request-key.rst
@@ -15,26 +15,25 @@ The process starts by either the kernel requesting a service by calling
or::
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag,
+ const char *callout_info);
+
+or::
+
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ const struct key_tag *domain_tag,
const char *callout_info,
size_t callout_len,
void *aux);
or::
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len);
-
-or::
-
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag);
Or by userspace invoking the request_key system call::
@@ -48,14 +47,18 @@ does not need to link the key to a keyring to prevent it from being immediately
destroyed. The kernel interface returns a pointer directly to the key, and
it's up to the caller to destroy the key.
-The request_key*_with_auxdata() calls are like the in-kernel request_key*()
-calls, except that they permit auxiliary data to be passed to the upcaller (the
-default is NULL). This is only useful for those key types that define their
-own upcall mechanism rather than using /sbin/request-key.
+The request_key_tag() call is like the in-kernel request_key(), except that it
+also takes a domain tag that allows keys to be separated by namespace and
+killed off as a group.
+
+The request_key_with_auxdata() calls is like the request_key_tag() call, except
+that they permit auxiliary data to be passed to the upcaller (the default is
+NULL). This is only useful for those key types that define their own upcall
+mechanism rather than using /sbin/request-key.
-The two async in-kernel calls may return keys that are still in the process of
-being constructed. The two non-async ones will wait for construction to
-complete first.
+The request_key_rcu() call is like the request_key_tag() call, except that it
+doesn't check for keys that are under construction and doesn't attempt to
+construct missing keys.
The userspace interface links the key to a keyring associated with the process
to prevent the key from going away, and returns the serial number of the key to
@@ -148,7 +151,7 @@ The Search Algorithm
A search of any particular keyring proceeds in the following fashion:
- 1) When the key management code searches for a key (keyring_search_aux) it
+ 1) When the key management code searches for a key (keyring_search_rcu) it
firstly calls key_permission(SEARCH) on the keyring it's starting with,
if this denies permission, it doesn't search further.
@@ -167,6 +170,9 @@ The process stops immediately a valid key is found with permission granted to
use it. Any error from a previous match attempt is discarded and the key is
returned.
+When request_key() is invoked, if CONFIG_KEYS_REQUEST_CACHE=y, a per-task
+one-key cache is first checked for a match.
+
When search_process_keyrings() is invoked, it performs the following searches
until one succeeds:
@@ -186,7 +192,9 @@ until one succeeds:
c) The calling process's session keyring is searched.
The moment one succeeds, all pending errors are discarded and the found key is
-returned.
+returned. If CONFIG_KEYS_REQUEST_CACHE=y, then that key is placed in the
+per-task cache, displacing the previous key. The cache is cleared on exit or
+just prior to resumption of userspace.
Only if all these fail does the whole thing fail with the highest priority
error. Note that several errors may have come from LSM.
diff --git a/Documentation/security/keys/trusted-encrypted.rst b/Documentation/security/keys/trusted-encrypted.rst
index 7b35fcb58933..50ac8bcd6970 100644
--- a/Documentation/security/keys/trusted-encrypted.rst
+++ b/Documentation/security/keys/trusted-encrypted.rst
@@ -107,12 +107,14 @@ Where::
Examples of trusted and encrypted key usage:
-Create and save a trusted key named "kmk" of length 32 bytes::
+Create and save a trusted key named "kmk" of length 32 bytes.
Note: When using a TPM 2.0 with a persistent key with handle 0x81000001,
append 'keyhandle=0x81000001' to statements between quotes, such as
"new 32 keyhandle=0x81000001".
+::
+
$ keyctl add trusted kmk "new 32" @u
440502848
diff --git a/Documentation/security/LSM.rst b/Documentation/security/lsm-development.rst
index 31d92bc5fdd2..31d92bc5fdd2 100644
--- a/Documentation/security/LSM.rst
+++ b/Documentation/security/lsm-development.rst
diff --git a/Documentation/lsm.txt b/Documentation/security/lsm.rst
index ad4dfd020e0d..ad4dfd020e0d 100644
--- a/Documentation/lsm.txt
+++ b/Documentation/security/lsm.rst
diff --git a/Documentation/SAK.txt b/Documentation/security/sak.rst
index 260e1d3687bd..260e1d3687bd 100644
--- a/Documentation/SAK.txt
+++ b/Documentation/security/sak.rst
diff --git a/Documentation/siphash.txt b/Documentation/security/siphash.rst
index 9965821ab333..9965821ab333 100644
--- a/Documentation/siphash.txt
+++ b/Documentation/security/siphash.rst
diff --git a/Documentation/security/tpm/index.rst b/Documentation/security/tpm/index.rst
index af77a7bbb070..fc40e9f23c85 100644
--- a/Documentation/security/tpm/index.rst
+++ b/Documentation/security/tpm/index.rst
@@ -4,4 +4,7 @@ Trusted Platform Module documentation
.. toctree::
+ tpm_event_log
tpm_vtpm_proxy
+ xen-tpmfront
+ tpm_ftpm_tee
diff --git a/Documentation/security/tpm/tpm_event_log.rst b/Documentation/security/tpm/tpm_event_log.rst
new file mode 100644
index 000000000000..f00f7a1d5e92
--- /dev/null
+++ b/Documentation/security/tpm/tpm_event_log.rst
@@ -0,0 +1,55 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+TPM Event Log
+=============
+
+This document briefly describes what TPM log is and how it is handed
+over from the preboot firmware to the operating system.
+
+Introduction
+============
+
+The preboot firmware maintains an event log that gets new entries every
+time something gets hashed by it to any of the PCR registers. The events
+are segregated by their type and contain the value of the hashed PCR
+register. Typically, the preboot firmware will hash the components to
+who execution is to be handed over or actions relevant to the boot
+process.
+
+The main application for this is remote attestation and the reason why
+it is useful is nicely put in the very first section of [1]:
+
+"Attestation is used to provide information about the platform’s state
+to a challenger. However, PCR contents are difficult to interpret;
+therefore, attestation is typically more useful when the PCR contents
+are accompanied by a measurement log. While not trusted on their own,
+the measurement log contains a richer set of information than do the PCR
+contents. The PCR contents are used to provide the validation of the
+measurement log."
+
+UEFI event log
+==============
+
+UEFI provided event log has a few somewhat weird quirks.
+
+Before calling ExitBootServices() Linux EFI stub copies the event log to
+a custom configuration table defined by the stub itself. Unfortunately,
+the events generated by ExitBootServices() don't end up in the table.
+
+The firmware provides so called final events configuration table to sort
+out this issue. Events gets mirrored to this table after the first time
+EFI_TCG2_PROTOCOL.GetEventLog() gets called.
+
+This introduces another problem: nothing guarantees that it is not called
+before the Linux EFI stub gets to run. Thus, it needs to calculate and save the
+final events table size while the stub is still running to the custom
+configuration table so that the TPM driver can later on skip these events when
+concatenating two halves of the event log from the custom configuration table
+and the final events table.
+
+References
+==========
+
+- [1] https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/
+- [2] The final concatenation is done in drivers/char/tpm/eventlog/efi.c
diff --git a/Documentation/security/tpm/tpm_ftpm_tee.rst b/Documentation/security/tpm/tpm_ftpm_tee.rst
new file mode 100644
index 000000000000..8c2bae16e3d9
--- /dev/null
+++ b/Documentation/security/tpm/tpm_ftpm_tee.rst
@@ -0,0 +1,27 @@
+=============================================
+Firmware TPM Driver
+=============================================
+
+This document describes the firmware Trusted Platform Module (fTPM)
+device driver.
+
+Introduction
+============
+
+This driver is a shim for firmware implemented in ARM's TrustZone
+environment. The driver allows programs to interact with the TPM in the same
+way they would interact with a hardware TPM.
+
+Design
+======
+
+The driver acts as a thin layer that passes commands to and from a TPM
+implemented in firmware. The driver itself doesn't contain much logic and is
+used more like a dumb pipe between firmware and kernel/userspace.
+
+The firmware itself is based on the following paper:
+https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/ftpm1.pdf
+
+When the driver is loaded it will expose ``/dev/tpmX`` character devices to
+userspace which will enable userspace to communicate with the firmware TPM
+through this device.
diff --git a/Documentation/security/tpm/xen-tpmfront.txt b/Documentation/security/tpm/xen-tpmfront.rst
index 69346de87ff3..00d5b1db227d 100644
--- a/Documentation/security/tpm/xen-tpmfront.txt
+++ b/Documentation/security/tpm/xen-tpmfront.rst
@@ -1,4 +1,6 @@
+=============================
Virtual TPM interface for Xen
+=============================
Authors: Matthew Fioravante (JHUAPL), Daniel De Graaf (NSA)
@@ -6,7 +8,8 @@ This document describes the virtual Trusted Platform Module (vTPM) subsystem for
Xen. The reader is assumed to have familiarity with building and installing Xen,
Linux, and a basic understanding of the TPM and vTPM concepts.
-INTRODUCTION
+Introduction
+------------
The goal of this work is to provide a TPM functionality to a virtual guest
operating system (in Xen terms, a DomU). This allows programs to interact with
@@ -24,81 +27,89 @@ This mini-os vTPM subsystem was built on top of the previous vTPM work done by
IBM and Intel corporation.
-DESIGN OVERVIEW
+Design Overview
---------------
-The architecture of vTPM is described below:
-
-+------------------+
-| Linux DomU | ...
-| | ^ |
-| v | |
-| xen-tpmfront |
-+------------------+
- | ^
- v |
-+------------------+
-| mini-os/tpmback |
-| | ^ |
-| v | |
-| vtpm-stubdom | ...
-| | ^ |
-| v | |
-| mini-os/tpmfront |
-+------------------+
- | ^
- v |
-+------------------+
-| mini-os/tpmback |
-| | ^ |
-| v | |
-| vtpmmgr-stubdom |
-| | ^ |
-| v | |
-| mini-os/tpm_tis |
-+------------------+
- | ^
- v |
-+------------------+
-| Hardware TPM |
-+------------------+
-
- * Linux DomU: The Linux based guest that wants to use a vTPM. There may be
+The architecture of vTPM is described below::
+
+ +------------------+
+ | Linux DomU | ...
+ | | ^ |
+ | v | |
+ | xen-tpmfront |
+ +------------------+
+ | ^
+ v |
+ +------------------+
+ | mini-os/tpmback |
+ | | ^ |
+ | v | |
+ | vtpm-stubdom | ...
+ | | ^ |
+ | v | |
+ | mini-os/tpmfront |
+ +------------------+
+ | ^
+ v |
+ +------------------+
+ | mini-os/tpmback |
+ | | ^ |
+ | v | |
+ | vtpmmgr-stubdom |
+ | | ^ |
+ | v | |
+ | mini-os/tpm_tis |
+ +------------------+
+ | ^
+ v |
+ +------------------+
+ | Hardware TPM |
+ +------------------+
+
+* Linux DomU:
+ The Linux based guest that wants to use a vTPM. There may be
more than one of these.
- * xen-tpmfront.ko: Linux kernel virtual TPM frontend driver. This driver
+* xen-tpmfront.ko:
+ Linux kernel virtual TPM frontend driver. This driver
provides vTPM access to a Linux-based DomU.
- * mini-os/tpmback: Mini-os TPM backend driver. The Linux frontend driver
+* mini-os/tpmback:
+ Mini-os TPM backend driver. The Linux frontend driver
connects to this backend driver to facilitate communications
between the Linux DomU and its vTPM. This driver is also
used by vtpmmgr-stubdom to communicate with vtpm-stubdom.
- * vtpm-stubdom: A mini-os stub domain that implements a vTPM. There is a
+* vtpm-stubdom:
+ A mini-os stub domain that implements a vTPM. There is a
one to one mapping between running vtpm-stubdom instances and
logical vtpms on the system. The vTPM Platform Configuration
Registers (PCRs) are normally all initialized to zero.
- * mini-os/tpmfront: Mini-os TPM frontend driver. The vTPM mini-os domain
+* mini-os/tpmfront:
+ Mini-os TPM frontend driver. The vTPM mini-os domain
vtpm-stubdom uses this driver to communicate with
vtpmmgr-stubdom. This driver is also used in mini-os
domains such as pv-grub that talk to the vTPM domain.
- * vtpmmgr-stubdom: A mini-os domain that implements the vTPM manager. There is
+* vtpmmgr-stubdom:
+ A mini-os domain that implements the vTPM manager. There is
only one vTPM manager and it should be running during the
entire lifetime of the machine. This domain regulates
access to the physical TPM on the system and secures the
persistent state of each vTPM.
- * mini-os/tpm_tis: Mini-os TPM version 1.2 TPM Interface Specification (TIS)
+* mini-os/tpm_tis:
+ Mini-os TPM version 1.2 TPM Interface Specification (TIS)
driver. This driver used by vtpmmgr-stubdom to talk directly to
the hardware TPM. Communication is facilitated by mapping
hardware memory pages into vtpmmgr-stubdom.
- * Hardware TPM: The physical TPM that is soldered onto the motherboard.
+* Hardware TPM:
+ The physical TPM that is soldered onto the motherboard.
-INTEGRATION WITH XEN
+Integration With Xen
--------------------
Support for the vTPM driver was added in Xen using the libxl toolstack in Xen
diff --git a/Documentation/sgi-ioc4.txt b/Documentation/sgi-ioc4.txt
deleted file mode 100644
index 72709222d3c0..000000000000
--- a/Documentation/sgi-ioc4.txt
+++ /dev/null
@@ -1,49 +0,0 @@
-====================================
-SGI IOC4 PCI (multi function) device
-====================================
-
-The SGI IOC4 PCI device is a bit of a strange beast, so some notes on
-it are in order.
-
-First, even though the IOC4 performs multiple functions, such as an
-IDE controller, a serial controller, a PS/2 keyboard/mouse controller,
-and an external interrupt mechanism, it's not implemented as a
-multifunction device. The consequence of this from a software
-standpoint is that all these functions share a single IRQ, and
-they can't all register to own the same PCI device ID. To make
-matters a bit worse, some of the register blocks (and even registers
-themselves) present in IOC4 are mixed-purpose between these several
-functions, meaning that there's no clear "owning" device driver.
-
-The solution is to organize the IOC4 driver into several independent
-drivers, "ioc4", "sgiioc4", and "ioc4_serial". Note that there is no
-PS/2 controller driver as this functionality has never been wired up
-on a shipping IO card.
-
-ioc4
-====
-This is the core (or shim) driver for IOC4. It is responsible for
-initializing the basic functionality of the chip, and allocating
-the PCI resources that are shared between the IOC4 functions.
-
-This driver also provides registration functions that the other
-IOC4 drivers can call to make their presence known. Each driver
-needs to provide a probe and remove function, which are invoked
-by the core driver at appropriate times. The interface of these
-IOC4 function probe and remove operations isn't precisely the same
-as PCI device probe and remove operations, but is logically the
-same operation.
-
-sgiioc4
-=======
-This is the IDE driver for IOC4. Its name isn't very descriptive
-simply for historical reasons (it used to be the only IOC4 driver
-component). There's not much to say about it other than it hooks
-up to the ioc4 driver via the appropriate registration, probe, and
-remove functions.
-
-ioc4_serial
-===========
-This is the serial driver for IOC4. There's not much to say about it
-other than it hooks up to the ioc4 driver via the appropriate registration,
-probe, and remove functions.
diff --git a/Documentation/sh/conf.py b/Documentation/sh/conf.py
deleted file mode 100644
index 1eb684a13ac8..000000000000
--- a/Documentation/sh/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "SuperH architecture implementation manual"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'sh.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/sound/alsa-configuration.rst b/Documentation/sound/alsa-configuration.rst
index 4a3cecc8ad38..02aacd69ab96 100644
--- a/Documentation/sound/alsa-configuration.rst
+++ b/Documentation/sound/alsa-configuration.rst
@@ -1001,6 +1001,8 @@ position_fix
2 = POSBUF: use position buffer,
3 = VIACOMBO: VIA-specific workaround for capture,
4 = COMBO: use LPIB for playback, auto for capture stream
+ 5 = SKL+: apply the delay calculation available on recent Intel chips
+ 6 = FIFO: correct the position with the fixed FIFO size, for recent AMD chips
probe_mask
Bitmask to probe codecs (default = -1, meaning all slots);
When the bit 8 (0x100) is set, the lower 8 bits are used
diff --git a/Documentation/sound/conf.py b/Documentation/sound/conf.py
deleted file mode 100644
index 3f1fc5e74e7b..000000000000
--- a/Documentation/sound/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Linux Sound Subsystem Documentation"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'sound.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/sound/hd-audio/models.rst b/Documentation/sound/hd-audio/models.rst
index 7d7c191102a7..11298f0ce44d 100644
--- a/Documentation/sound/hd-audio/models.rst
+++ b/Documentation/sound/hd-audio/models.rst
@@ -260,6 +260,9 @@ alc295-hp-x360
HP Spectre X360 fixups
alc-sense-combo
Headset button support for Chrome platform
+huawei-mbx-stereo
+ Enable initialization verbs for Huawei MBX stereo speakers;
+ might be risky, try this at your own risk
ALC66x/67x/892
==============
diff --git a/Documentation/sound/hd-audio/notes.rst b/Documentation/sound/hd-audio/notes.rst
index 9f7347830ba4..0f3109d9abc8 100644
--- a/Documentation/sound/hd-audio/notes.rst
+++ b/Documentation/sound/hd-audio/notes.rst
@@ -66,6 +66,11 @@ by comparing both LPIB and position-buffer values.
``position_fix=4`` is another combination available for all controllers,
and uses LPIB for the playback and the position-buffer for the capture
streams.
+``position_fix=5`` is specific to Intel platforms, so far, for Skylake
+and onward. It applies the delay calculation for the precise position
+reporting.
+``position_fix=6`` is to correct the position with the fixed FIFO
+size, mainly targeted for the recent AMD controllers.
0 is the default value for all other
controllers, the automatic check and fallback to LPIB as described in
the above. If you get a problem of repeated sounds, this option might
diff --git a/Documentation/sound/index.rst b/Documentation/sound/index.rst
index 47b89f014e69..4d7d42acf6df 100644
--- a/Documentation/sound/index.rst
+++ b/Documentation/sound/index.rst
@@ -12,7 +12,7 @@ Linux Sound Subsystem Documentation
hd-audio/index
cards/index
-.. only:: subproject
+.. only:: subproject and html
Indices
=======
diff --git a/Documentation/sparc/index.rst b/Documentation/sparc/index.rst
index 91f7d6643dd5..71cff621f243 100644
--- a/Documentation/sparc/index.rst
+++ b/Documentation/sparc/index.rst
@@ -1,5 +1,3 @@
-:orphan:
-
==================
Sparc Architecture
==================
diff --git a/Documentation/sphinx/automarkup.py b/Documentation/sphinx/automarkup.py
new file mode 100644
index 000000000000..5b6119ff69f4
--- /dev/null
+++ b/Documentation/sphinx/automarkup.py
@@ -0,0 +1,102 @@
+# SPDX-License-Identifier: GPL-2.0
+# Copyright 2019 Jonathan Corbet <corbet@lwn.net>
+#
+# Apply kernel-specific tweaks after the initial document processing
+# has been done.
+#
+from docutils import nodes
+from sphinx import addnodes
+from sphinx.environment import NoUri
+import re
+
+#
+# Regex nastiness. Of course.
+# Try to identify "function()" that's not already marked up some
+# other way. Sphinx doesn't like a lot of stuff right after a
+# :c:func: block (i.e. ":c:func:`mmap()`s" flakes out), so the last
+# bit tries to restrict matches to things that won't create trouble.
+#
+RE_function = re.compile(r'([\w_][\w\d_]+\(\))')
+
+#
+# Many places in the docs refer to common system calls. It is
+# pointless to try to cross-reference them and, as has been known
+# to happen, somebody defining a function by these names can lead
+# to the creation of incorrect and confusing cross references. So
+# just don't even try with these names.
+#
+Skipfuncs = [ 'open', 'close', 'read', 'write', 'fcntl', 'mmap',
+ 'select', 'poll', 'fork', 'execve', 'clone', 'ioctl',
+ 'socket' ]
+
+#
+# Find all occurrences of function() and try to replace them with
+# appropriate cross references.
+#
+def markup_funcs(docname, app, node):
+ cdom = app.env.domains['c']
+ t = node.astext()
+ done = 0
+ repl = [ ]
+ for m in RE_function.finditer(t):
+ #
+ # Include any text prior to function() as a normal text node.
+ #
+ if m.start() > done:
+ repl.append(nodes.Text(t[done:m.start()]))
+ #
+ # Go through the dance of getting an xref out of the C domain
+ #
+ target = m.group(1)[:-2]
+ target_text = nodes.Text(target + '()')
+ xref = None
+ if target not in Skipfuncs:
+ lit_text = nodes.literal(classes=['xref', 'c', 'c-func'])
+ lit_text += target_text
+ pxref = addnodes.pending_xref('', refdomain = 'c',
+ reftype = 'function',
+ reftarget = target, modname = None,
+ classname = None)
+ #
+ # XXX The Latex builder will throw NoUri exceptions here,
+ # work around that by ignoring them.
+ #
+ try:
+ xref = cdom.resolve_xref(app.env, docname, app.builder,
+ 'function', target, pxref, lit_text)
+ except NoUri:
+ xref = None
+ #
+ # Toss the xref into the list if we got it; otherwise just put
+ # the function text.
+ #
+ if xref:
+ repl.append(xref)
+ else:
+ repl.append(target_text)
+ done = m.end()
+ if done < len(t):
+ repl.append(nodes.Text(t[done:]))
+ return repl
+
+def auto_markup(app, doctree, name):
+ #
+ # This loop could eventually be improved on. Someday maybe we
+ # want a proper tree traversal with a lot of awareness of which
+ # kinds of nodes to prune. But this works well for now.
+ #
+ # The nodes.literal test catches ``literal text``, its purpose is to
+ # avoid adding cross-references to functions that have been explicitly
+ # marked with cc:func:.
+ #
+ for para in doctree.traverse(nodes.paragraph):
+ for node in para.traverse(nodes.Text):
+ if not isinstance(node.parent, nodes.literal):
+ node.parent.replace(node, markup_funcs(name, app, node))
+
+def setup(app):
+ app.connect('doctree-resolved', auto_markup)
+ return {
+ 'parallel_read_safe': True,
+ 'parallel_write_safe': True,
+ }
diff --git a/Documentation/sphinx/cdomain.py b/Documentation/sphinx/cdomain.py
index cf13ff3a656c..cbac8e608dc4 100644
--- a/Documentation/sphinx/cdomain.py
+++ b/Documentation/sphinx/cdomain.py
@@ -48,7 +48,10 @@ major, minor, patch = sphinx.version_info[:3]
def setup(app):
- app.override_domain(CDomain)
+ if (major == 1 and minor < 8):
+ app.override_domain(CDomain)
+ else:
+ app.add_domain(CDomain, override=True)
return dict(
version = __version__,
diff --git a/Documentation/sphinx/load_config.py b/Documentation/sphinx/load_config.py
index 301a21aa4f63..eeb394b39e2c 100644
--- a/Documentation/sphinx/load_config.py
+++ b/Documentation/sphinx/load_config.py
@@ -21,6 +21,29 @@ def loadConfig(namespace):
and os.path.normpath(namespace["__file__"]) != os.path.normpath(config_file) ):
config_file = os.path.abspath(config_file)
+ # Let's avoid one conf.py file just due to latex_documents
+ start = config_file.find('Documentation/')
+ if start >= 0:
+ start = config_file.find('/', start + 1)
+
+ end = config_file.rfind('/')
+ if start >= 0 and end > 0:
+ dir = config_file[start + 1:end]
+
+ print("source directory: %s" % dir)
+ new_latex_docs = []
+ latex_documents = namespace['latex_documents']
+
+ for l in latex_documents:
+ if l[0].find(dir + '/') == 0:
+ has = True
+ fn = l[0][len(dir) + 1:]
+ new_latex_docs.append((fn, l[1], l[2], l[3], l[4]))
+ break
+
+ namespace['latex_documents'] = new_latex_docs
+
+ # If there is an extra conf.py file, load it
if os.path.isfile(config_file):
sys.stdout.write("load additional sphinx-config: %s\n" % config_file)
config = namespace.copy()
@@ -29,4 +52,6 @@ def loadConfig(namespace):
del config['__file__']
namespace.update(config)
else:
- sys.stderr.write("WARNING: additional sphinx-config not found: %s\n" % config_file)
+ config = namespace.copy()
+ config['tags'].add("subproject")
+ namespace.update(config)
diff --git a/Documentation/sphinx/requirements.txt b/Documentation/sphinx/requirements.txt
index 742be3e12619..14e29a0ae480 100644
--- a/Documentation/sphinx/requirements.txt
+++ b/Documentation/sphinx/requirements.txt
@@ -1,3 +1,3 @@
-docutils==0.12
-Sphinx==1.4.9
+docutils
+Sphinx==1.7.9
sphinx_rtd_theme
diff --git a/Documentation/spi/butterfly b/Documentation/spi/butterfly.rst
index 9927af7a629c..e614a589547c 100644
--- a/Documentation/spi/butterfly
+++ b/Documentation/spi/butterfly.rst
@@ -1,3 +1,4 @@
+===================================================
spi_butterfly - parport-to-butterfly adapter driver
===================================================
@@ -27,25 +28,29 @@ need to reflash the firmware, and the pins are the standard Atmel "ISP"
connector pins (used also on non-Butterfly AVR boards). On the parport
side this is like "sp12" programming cables.
+ ====== ============= ===================
Signal Butterfly Parport (DB-25)
- ------ --------- ---------------
- SCK = J403.PB1/SCK = pin 2/D0
- RESET = J403.nRST = pin 3/D1
- VCC = J403.VCC_EXT = pin 8/D6
- MOSI = J403.PB2/MOSI = pin 9/D7
- MISO = J403.PB3/MISO = pin 11/S7,nBUSY
- GND = J403.GND = pin 23/GND
+ ====== ============= ===================
+ SCK J403.PB1/SCK pin 2/D0
+ RESET J403.nRST pin 3/D1
+ VCC J403.VCC_EXT pin 8/D6
+ MOSI J403.PB2/MOSI pin 9/D7
+ MISO J403.PB3/MISO pin 11/S7,nBUSY
+ GND J403.GND pin 23/GND
+ ====== ============= ===================
Then to let Linux master that bus to talk to the DataFlash chip, you must
(a) flash new firmware that disables SPI (set PRR.2, and disable pullups
by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and
(c) cable in the chipselect.
+ ====== ============ ===================
Signal Butterfly Parport (DB-25)
- ------ --------- ---------------
- VCC = J400.VCC_EXT = pin 7/D5
- SELECT = J400.PB0/nSS = pin 17/C3,nSELECT
- GND = J400.GND = pin 24/GND
+ ====== ============ ===================
+ VCC J400.VCC_EXT pin 7/D5
+ SELECT J400.PB0/nSS pin 17/C3,nSELECT
+ GND J400.GND pin 24/GND
+ ====== ============ ===================
Or you could flash firmware making the AVR into an SPI slave (keeping the
DataFlash in reset) and tweak the spi_butterfly driver to make it bind to
@@ -56,13 +61,14 @@ That would let you talk to the AVR using custom SPI-with-USI firmware,
while letting either Linux or the AVR use the DataFlash. There are plenty
of spare parport pins to wire this one up, such as:
+ ====== ============= ===================
Signal Butterfly Parport (DB-25)
- ------ --------- ---------------
- SCK = J403.PE4/USCK = pin 5/D3
- MOSI = J403.PE5/DI = pin 6/D4
- MISO = J403.PE6/DO = pin 12/S5,nPAPEROUT
- GND = J403.GND = pin 22/GND
-
- IRQ = J402.PF4 = pin 10/S6,ACK
- GND = J402.GND(P2) = pin 25/GND
+ ====== ============= ===================
+ SCK J403.PE4/USCK pin 5/D3
+ MOSI J403.PE5/DI pin 6/D4
+ MISO J403.PE6/DO pin 12/S5,nPAPEROUT
+ GND J403.GND pin 22/GND
+ IRQ J402.PF4 pin 10/S6,ACK
+ GND J402.GND(P2) pin 25/GND
+ ====== ============= ===================
diff --git a/Documentation/spi/index.rst b/Documentation/spi/index.rst
new file mode 100644
index 000000000000..06c34ea11bcf
--- /dev/null
+++ b/Documentation/spi/index.rst
@@ -0,0 +1,22 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=================================
+Serial Peripheral Interface (SPI)
+=================================
+
+.. toctree::
+ :maxdepth: 1
+
+ spi-summary
+ spidev
+ butterfly
+ pxa2xx
+ spi-lm70llp
+ spi-sc18is602
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/spi/pxa2xx b/Documentation/spi/pxa2xx.rst
index 551325b66b23..882d3cc72cc2 100644
--- a/Documentation/spi/pxa2xx
+++ b/Documentation/spi/pxa2xx.rst
@@ -1,8 +1,10 @@
+==============================
PXA2xx SPI on SSP driver HOWTO
-===================================================
+==============================
+
This a mini howto on the pxa2xx_spi driver. The driver turns a PXA2xx
synchronous serial port into a SPI master controller
-(see Documentation/spi/spi-summary). The driver has the following features
+(see Documentation/spi/spi-summary.rst). The driver has the following features
- Support for any PXA2xx SSP
- SSP PIO and SSP DMA data transfers.
@@ -19,12 +21,12 @@ Declaring PXA2xx Master Controllers
-----------------------------------
Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a
"platform device". The master configuration is passed to the driver via a table
-found in include/linux/spi/pxa2xx_spi.h:
+found in include/linux/spi/pxa2xx_spi.h::
-struct pxa2xx_spi_controller {
+ struct pxa2xx_spi_controller {
u16 num_chipselect;
u8 enable_dma;
-};
+ };
The "pxa2xx_spi_controller.num_chipselect" field is used to determine the number of
slave device (chips) attached to this SPI master.
@@ -36,9 +38,9 @@ See the "PXA2xx Developer Manual" section "DMA Controller".
NSSP MASTER SAMPLE
------------------
-Below is a sample configuration using the PXA255 NSSP.
+Below is a sample configuration using the PXA255 NSSP::
-static struct resource pxa_spi_nssp_resources[] = {
+ static struct resource pxa_spi_nssp_resources[] = {
[0] = {
.start = __PREG(SSCR0_P(2)), /* Start address of NSSP */
.end = __PREG(SSCR0_P(2)) + 0x2c, /* Range of registers */
@@ -49,14 +51,14 @@ static struct resource pxa_spi_nssp_resources[] = {
.end = IRQ_NSSP,
.flags = IORESOURCE_IRQ,
},
-};
+ };
-static struct pxa2xx_spi_controller pxa_nssp_master_info = {
+ static struct pxa2xx_spi_controller pxa_nssp_master_info = {
.num_chipselect = 1, /* Matches the number of chips attached to NSSP */
.enable_dma = 1, /* Enables NSSP DMA */
-};
+ };
-static struct platform_device pxa_spi_nssp = {
+ static struct platform_device pxa_spi_nssp = {
.name = "pxa2xx-spi", /* MUST BE THIS VALUE, so device match driver */
.id = 2, /* Bus number, MUST MATCH SSP number 1..n */
.resource = pxa_spi_nssp_resources,
@@ -64,22 +66,22 @@ static struct platform_device pxa_spi_nssp = {
.dev = {
.platform_data = &pxa_nssp_master_info, /* Passed to driver */
},
-};
+ };
-static struct platform_device *devices[] __initdata = {
+ static struct platform_device *devices[] __initdata = {
&pxa_spi_nssp,
-};
+ };
-static void __init board_init(void)
-{
+ static void __init board_init(void)
+ {
(void)platform_add_device(devices, ARRAY_SIZE(devices));
-}
+ }
Declaring Slave Devices
-----------------------
Typically each SPI slave (chip) is defined in the arch/.../mach-*/board-*.c
using the "spi_board_info" structure found in "linux/spi/spi.h". See
-"Documentation/spi/spi-summary" for additional information.
+"Documentation/spi/spi-summary.rst" for additional information.
Each slave device attached to the PXA must provide slave specific configuration
information via the structure "pxa2xx_spi_chip" found in
@@ -87,19 +89,21 @@ information via the structure "pxa2xx_spi_chip" found in
will uses the configuration whenever the driver communicates with the slave
device. All fields are optional.
-struct pxa2xx_spi_chip {
+::
+
+ struct pxa2xx_spi_chip {
u8 tx_threshold;
u8 rx_threshold;
u8 dma_burst_size;
u32 timeout;
u8 enable_loopback;
void (*cs_control)(u32 command);
-};
+ };
The "pxa2xx_spi_chip.tx_threshold" and "pxa2xx_spi_chip.rx_threshold" fields are
used to configure the SSP hardware fifo. These fields are critical to the
performance of pxa2xx_spi driver and misconfiguration will result in rx
-fifo overruns (especially in PIO mode transfers). Good default values are
+fifo overruns (especially in PIO mode transfers). Good default values are::
.tx_threshold = 8,
.rx_threshold = 8,
@@ -141,41 +145,43 @@ The pxa2xx_spi_chip structure is passed to the pxa2xx_spi driver in the
"spi_board_info.controller_data" field. Below is a sample configuration using
the PXA255 NSSP.
-/* Chip Select control for the CS8415A SPI slave device */
-static void cs8415a_cs_control(u32 command)
-{
+::
+
+ /* Chip Select control for the CS8415A SPI slave device */
+ static void cs8415a_cs_control(u32 command)
+ {
if (command & PXA2XX_CS_ASSERT)
GPCR(2) = GPIO_bit(2);
else
GPSR(2) = GPIO_bit(2);
-}
+ }
-/* Chip Select control for the CS8405A SPI slave device */
-static void cs8405a_cs_control(u32 command)
-{
+ /* Chip Select control for the CS8405A SPI slave device */
+ static void cs8405a_cs_control(u32 command)
+ {
if (command & PXA2XX_CS_ASSERT)
GPCR(3) = GPIO_bit(3);
else
GPSR(3) = GPIO_bit(3);
-}
+ }
-static struct pxa2xx_spi_chip cs8415a_chip_info = {
+ static struct pxa2xx_spi_chip cs8415a_chip_info = {
.tx_threshold = 8, /* SSP hardward FIFO threshold */
.rx_threshold = 8, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout = 235, /* See Intel documentation */
.cs_control = cs8415a_cs_control, /* Use external chip select */
-};
+ };
-static struct pxa2xx_spi_chip cs8405a_chip_info = {
+ static struct pxa2xx_spi_chip cs8405a_chip_info = {
.tx_threshold = 8, /* SSP hardward FIFO threshold */
.rx_threshold = 8, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout = 235, /* See Intel documentation */
.cs_control = cs8405a_cs_control, /* Use external chip select */
-};
+ };
-static struct spi_board_info streetracer_spi_board_info[] __initdata = {
+ static struct spi_board_info streetracer_spi_board_info[] __initdata = {
{
.modalias = "cs8415a", /* Name of spi_driver for this device */
.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
@@ -193,13 +199,13 @@ static struct spi_board_info streetracer_spi_board_info[] __initdata = {
.controller_data = &cs8405a_chip_info, /* Master chip config */
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
},
-};
+ };
-static void __init streetracer_init(void)
-{
+ static void __init streetracer_init(void)
+ {
spi_register_board_info(streetracer_spi_board_info,
ARRAY_SIZE(streetracer_spi_board_info));
-}
+ }
DMA and PIO I/O Support
@@ -210,26 +216,25 @@ by setting the "enable_dma" flag in the "pxa2xx_spi_controller" structure. The
mode supports both coherent and stream based DMA mappings.
The following logic is used to determine the type of I/O to be used on
-a per "spi_transfer" basis:
+a per "spi_transfer" basis::
-if !enable_dma then
+ if !enable_dma then
always use PIO transfers
-if spi_message.len > 8191 then
+ if spi_message.len > 8191 then
print "rate limited" warning
use PIO transfers
-if spi_message.is_dma_mapped and rx_dma_buf != 0 and tx_dma_buf != 0 then
+ if spi_message.is_dma_mapped and rx_dma_buf != 0 and tx_dma_buf != 0 then
use coherent DMA mode
-if rx_buf and tx_buf are aligned on 8 byte boundary then
+ if rx_buf and tx_buf are aligned on 8 byte boundary then
use streaming DMA mode
-otherwise
+ otherwise
use PIO transfer
THANKS TO
---------
David Brownell and others for mentoring the development of this driver.
-
diff --git a/Documentation/spi/spi-lm70llp b/Documentation/spi/spi-lm70llp.rst
index 463f6d01fa15..07631aef4343 100644
--- a/Documentation/spi/spi-lm70llp
+++ b/Documentation/spi/spi-lm70llp.rst
@@ -1,8 +1,11 @@
+==============================================
spi_lm70llp : LM70-LLP parport-to-SPI adapter
==============================================
Supported board/chip:
+
* National Semiconductor LM70 LLP evaluation board
+
Datasheet: http://www.national.com/pf/LM/LM70.html
Author:
@@ -29,9 +32,10 @@ available (on page 4) here:
The hardware interfacing on the LM70 LLP eval board is as follows:
+ ======== == ========= ==========
Parallel LM70 LLP
- Port Direction JP2 Header
- ----------- --------- ----------------
+ Port . Direction JP2 Header
+ ======== == ========= ==========
D0 2 - -
D1 3 --> V+ 5
D2 4 --> V+ 5
@@ -42,7 +46,7 @@ The hardware interfacing on the LM70 LLP eval board is as follows:
D7 9 --> SI/O 5
GND 25 - GND 7
Select 13 <-- SI/O 1
- ----------- --------- ----------------
+ ======== == ========= ==========
Note that since the LM70 uses a "3-wire" variant of SPI, the SI/SO pin
is connected to both pin D7 (as Master Out) and Select (as Master In)
@@ -74,6 +78,7 @@ inverting the value read at pin 13.
Thanks to
---------
-o David Brownell for mentoring the SPI-side driver development.
-o Dr.Craig Hollabaugh for the (early) "manual" bitbanging driver version.
-o Nadir Billimoria for help interpreting the circuit schematic.
+
+- David Brownell for mentoring the SPI-side driver development.
+- Dr.Craig Hollabaugh for the (early) "manual" bitbanging driver version.
+- Nadir Billimoria for help interpreting the circuit schematic.
diff --git a/Documentation/spi/spi-sc18is602 b/Documentation/spi/spi-sc18is602.rst
index a45702865a38..2a31dc722321 100644
--- a/Documentation/spi/spi-sc18is602
+++ b/Documentation/spi/spi-sc18is602.rst
@@ -1,8 +1,11 @@
+===========================
Kernel driver spi-sc18is602
===========================
Supported chips:
+
* NXP SI18IS602/602B/603
+
Datasheet: http://www.nxp.com/documents/data_sheet/SC18IS602_602B_603.pdf
Author:
@@ -17,7 +20,7 @@ kernel's SPI core subsystem.
The driver does not probe for supported chips, since the SI18IS602/603 does not
support Chip ID registers. You will have to instantiate the devices explicitly.
-Please see Documentation/i2c/instantiating-devices for details.
+Please see Documentation/i2c/instantiating-devices.rst for details.
Usage Notes
diff --git a/Documentation/spi/spi-summary b/Documentation/spi/spi-summary.rst
index 1a63194b74d7..f1daffe10d78 100644
--- a/Documentation/spi/spi-summary
+++ b/Documentation/spi/spi-summary.rst
@@ -1,3 +1,4 @@
+====================================
Overview of Linux kernel SPI support
====================================
@@ -139,12 +140,14 @@ a command and then reading its response.
There are two types of SPI driver, here called:
- Controller drivers ... controllers may be built into System-On-Chip
+ Controller drivers ...
+ controllers may be built into System-On-Chip
processors, and often support both Master and Slave roles.
These drivers touch hardware registers and may use DMA.
Or they can be PIO bitbangers, needing just GPIO pins.
- Protocol drivers ... these pass messages through the controller
+ Protocol drivers ...
+ these pass messages through the controller
driver to communicate with a Slave or Master device on the
other side of an SPI link.
@@ -160,7 +163,7 @@ those two types of drivers.
There is a minimal core of SPI programming interfaces, focussing on
using the driver model to connect controller and protocol drivers using
device tables provided by board specific initialization code. SPI
-shows up in sysfs in several locations:
+shows up in sysfs in several locations::
/sys/devices/.../CTLR ... physical node for a given SPI controller
@@ -168,7 +171,7 @@ shows up in sysfs in several locations:
chipselect C, accessed through CTLR.
/sys/bus/spi/devices/spiB.C ... symlink to that physical
- .../CTLR/spiB.C device
+ .../CTLR/spiB.C device
/sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
that should be used with this device (for hotplug/coldplug)
@@ -206,7 +209,8 @@ Linux needs several kinds of information to properly configure SPI devices.
That information is normally provided by board-specific code, even for
chips that do support some of automated discovery/enumeration.
-DECLARE CONTROLLERS
+Declare Controllers
+^^^^^^^^^^^^^^^^^^^
The first kind of information is a list of what SPI controllers exist.
For System-on-Chip (SOC) based boards, these will usually be platform
@@ -221,7 +225,7 @@ same basic controller setup code. This is because most SOCs have several
SPI-capable controllers, and only the ones actually usable on a given
board should normally be set up and registered.
-So for example arch/.../mach-*/board-*.c files might have code like:
+So for example arch/.../mach-*/board-*.c files might have code like::
#include <mach/spi.h> /* for mysoc_spi_data */
@@ -238,7 +242,7 @@ So for example arch/.../mach-*/board-*.c files might have code like:
...
}
-And SOC-specific utility code might look something like:
+And SOC-specific utility code might look something like::
#include <mach/spi.h>
@@ -269,8 +273,8 @@ same SOC controller is used. For example, on one board SPI might use
an external clock, where another derives the SPI clock from current
settings of some master clock.
-
-DECLARE SLAVE DEVICES
+Declare Slave Devices
+^^^^^^^^^^^^^^^^^^^^^
The second kind of information is a list of what SPI slave devices exist
on the target board, often with some board-specific data needed for the
@@ -278,7 +282,7 @@ driver to work correctly.
Normally your arch/.../mach-*/board-*.c files would provide a small table
listing the SPI devices on each board. (This would typically be only a
-small handful.) That might look like:
+small handful.) That might look like::
static struct ads7846_platform_data ads_info = {
.vref_delay_usecs = 100,
@@ -316,7 +320,7 @@ not possible until the infrastructure knows how to deselect it.
Then your board initialization code would register that table with the SPI
infrastructure, so that it's available later when the SPI master controller
-driver is registered:
+driver is registered::
spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info));
@@ -324,12 +328,13 @@ Like with other static board-specific setup, you won't unregister those.
The widely used "card" style computers bundle memory, cpu, and little else
onto a card that's maybe just thirty square centimeters. On such systems,
-your arch/.../mach-.../board-*.c file would primarily provide information
+your ``arch/.../mach-.../board-*.c`` file would primarily provide information
about the devices on the mainboard into which such a card is plugged. That
certainly includes SPI devices hooked up through the card connectors!
-NON-STATIC CONFIGURATIONS
+Non-static Configurations
+^^^^^^^^^^^^^^^^^^^^^^^^^
Developer boards often play by different rules than product boards, and one
example is the potential need to hotplug SPI devices and/or controllers.
@@ -349,7 +354,7 @@ How do I write an "SPI Protocol Driver"?
Most SPI drivers are currently kernel drivers, but there's also support
for userspace drivers. Here we talk only about kernel drivers.
-SPI protocol drivers somewhat resemble platform device drivers:
+SPI protocol drivers somewhat resemble platform device drivers::
static struct spi_driver CHIP_driver = {
.driver = {
@@ -367,6 +372,8 @@ device whose board_info gave a modalias of "CHIP". Your probe() code
might look like this unless you're creating a device which is managing
a bus (appearing under /sys/class/spi_master).
+::
+
static int CHIP_probe(struct spi_device *spi)
{
struct CHIP *chip;
@@ -479,6 +486,8 @@ The main task of this type of driver is to provide an "spi_master".
Use spi_alloc_master() to allocate the master, and spi_master_get_devdata()
to get the driver-private data allocated for that device.
+::
+
struct spi_master *master;
struct CONTROLLER *c;
@@ -503,7 +512,8 @@ If you need to remove your SPI controller driver, spi_unregister_master()
will reverse the effect of spi_register_master().
-BUS NUMBERING
+Bus Numbering
+^^^^^^^^^^^^^
Bus numbering is important, since that's how Linux identifies a given
SPI bus (shared SCK, MOSI, MISO). Valid bus numbers start at zero. On
@@ -517,9 +527,10 @@ then be replaced by a dynamically assigned number. You'd then need to treat
this as a non-static configuration (see above).
-SPI MASTER METHODS
+SPI Master Methods
+^^^^^^^^^^^^^^^^^^
- master->setup(struct spi_device *spi)
+``master->setup(struct spi_device *spi)``
This sets up the device clock rate, SPI mode, and word sizes.
Drivers may change the defaults provided by board_info, and then
call spi_setup(spi) to invoke this routine. It may sleep.
@@ -528,37 +539,37 @@ SPI MASTER METHODS
change them right away ... otherwise drivers could corrupt I/O
that's in progress for other SPI devices.
- ** BUG ALERT: for some reason the first version of
- ** many spi_master drivers seems to get this wrong.
- ** When you code setup(), ASSUME that the controller
- ** is actively processing transfers for another device.
+ .. note::
+
+ BUG ALERT: for some reason the first version of
+ many spi_master drivers seems to get this wrong.
+ When you code setup(), ASSUME that the controller
+ is actively processing transfers for another device.
- master->cleanup(struct spi_device *spi)
+``master->cleanup(struct spi_device *spi)``
Your controller driver may use spi_device.controller_state to hold
state it dynamically associates with that device. If you do that,
be sure to provide the cleanup() method to free that state.
- master->prepare_transfer_hardware(struct spi_master *master)
+``master->prepare_transfer_hardware(struct spi_master *master)``
This will be called by the queue mechanism to signal to the driver
that a message is coming in soon, so the subsystem requests the
driver to prepare the transfer hardware by issuing this call.
This may sleep.
- master->unprepare_transfer_hardware(struct spi_master *master)
+``master->unprepare_transfer_hardware(struct spi_master *master)``
This will be called by the queue mechanism to signal to the driver
that there are no more messages pending in the queue and it may
relax the hardware (e.g. by power management calls). This may sleep.
- master->transfer_one_message(struct spi_master *master,
- struct spi_message *mesg)
+``master->transfer_one_message(struct spi_master *master, struct spi_message *mesg)``
The subsystem calls the driver to transfer a single message while
queuing transfers that arrive in the meantime. When the driver is
finished with this message, it must call
spi_finalize_current_message() so the subsystem can issue the next
message. This may sleep.
- master->transfer_one(struct spi_master *master, struct spi_device *spi,
- struct spi_transfer *transfer)
+``master->transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *transfer)``
The subsystem calls the driver to transfer a single transfer while
queuing transfers that arrive in the meantime. When the driver is
finished with this transfer, it must call
@@ -568,19 +579,20 @@ SPI MASTER METHODS
not call your transfer_one callback.
Return values:
- negative errno: error
- 0: transfer is finished
- 1: transfer is still in progress
- master->set_cs_timing(struct spi_device *spi, u8 setup_clk_cycles,
- u8 hold_clk_cycles, u8 inactive_clk_cycles)
+ * negative errno: error
+ * 0: transfer is finished
+ * 1: transfer is still in progress
+
+``master->set_cs_timing(struct spi_device *spi, u8 setup_clk_cycles, u8 hold_clk_cycles, u8 inactive_clk_cycles)``
This method allows SPI client drivers to request SPI master controller
for configuring device specific CS setup, hold and inactive timing
requirements.
- DEPRECATED METHODS
+Deprecated Methods
+^^^^^^^^^^^^^^^^^^
- master->transfer(struct spi_device *spi, struct spi_message *message)
+``master->transfer(struct spi_device *spi, struct spi_message *message)``
This must not sleep. Its responsibility is to arrange that the
transfer happens and its complete() callback is issued. The two
will normally happen later, after other transfers complete, and
@@ -590,7 +602,8 @@ SPI MASTER METHODS
implemented.
-SPI MESSAGE QUEUE
+SPI Message Queue
+^^^^^^^^^^^^^^^^^
If you are happy with the standard queueing mechanism provided by the
SPI subsystem, just implement the queued methods specified above. Using
@@ -619,13 +632,13 @@ THANKS TO
Contributors to Linux-SPI discussions include (in alphabetical order,
by last name):
-Mark Brown
-David Brownell
-Russell King
-Grant Likely
-Dmitry Pervushin
-Stephen Street
-Mark Underwood
-Andrew Victor
-Linus Walleij
-Vitaly Wool
+- Mark Brown
+- David Brownell
+- Russell King
+- Grant Likely
+- Dmitry Pervushin
+- Stephen Street
+- Mark Underwood
+- Andrew Victor
+- Linus Walleij
+- Vitaly Wool
diff --git a/Documentation/spi/spidev b/Documentation/spi/spidev.rst
index 3d14035b1766..f05dbc5ccdbc 100644
--- a/Documentation/spi/spidev
+++ b/Documentation/spi/spidev.rst
@@ -1,7 +1,13 @@
+=================
+SPI userspace API
+=================
+
SPI devices have a limited userspace API, supporting basic half-duplex
read() and write() access to SPI slave devices. Using ioctl() requests,
full duplex transfers and device I/O configuration are also available.
+::
+
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
@@ -39,14 +45,17 @@ device node with a "dev" attribute that will be understood by udev or mdev.
busybox; it's less featureful, but often enough.) For a SPI device with
chipselect C on bus B, you should see:
- /dev/spidevB.C ... character special device, major number 153 with
+ /dev/spidevB.C ...
+ character special device, major number 153 with
a dynamically chosen minor device number. This is the node
that userspace programs will open, created by "udev" or "mdev".
- /sys/devices/.../spiB.C ... as usual, the SPI device node will
+ /sys/devices/.../spiB.C ...
+ as usual, the SPI device node will
be a child of its SPI master controller.
- /sys/class/spidev/spidevB.C ... created when the "spidev" driver
+ /sys/class/spidev/spidevB.C ...
+ created when the "spidev" driver
binds to that device. (Directory or symlink, based on whether
or not you enabled the "deprecated sysfs files" Kconfig option.)
@@ -80,7 +89,8 @@ the SPI_IOC_MESSAGE(N) request.
Several ioctl() requests let your driver read or override the device's current
settings for data transfer parameters:
- SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ... pass a pointer to a byte which will
+ SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ...
+ pass a pointer to a byte which will
return (RD) or assign (WR) the SPI transfer mode. Use the constants
SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL
(clock polarity, idle high iff this is set) or SPI_CPHA (clock phase,
@@ -88,22 +98,26 @@ settings for data transfer parameters:
Note that this request is limited to SPI mode flags that fit in a
single byte.
- SPI_IOC_RD_MODE32, SPI_IOC_WR_MODE32 ... pass a pointer to a uin32_t
+ SPI_IOC_RD_MODE32, SPI_IOC_WR_MODE32 ...
+ pass a pointer to a uin32_t
which will return (RD) or assign (WR) the full SPI transfer mode,
not limited to the bits that fit in one byte.
- SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte
+ SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ...
+ pass a pointer to a byte
which will return (RD) or assign (WR) the bit justification used to
transfer SPI words. Zero indicates MSB-first; other values indicate
the less common LSB-first encoding. In both cases the specified value
is right-justified in each word, so that unused (TX) or undefined (RX)
bits are in the MSBs.
- SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ... pass a pointer to
+ SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ...
+ pass a pointer to
a byte which will return (RD) or assign (WR) the number of bits in
each SPI transfer word. The value zero signifies eight bits.
- SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ... pass a pointer to a
+ SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ...
+ pass a pointer to a
u32 which will return (RD) or assign (WR) the maximum SPI transfer
speed, in Hz. The controller can't necessarily assign that specific
clock speed.
diff --git a/Documentation/sysctl/abi.txt b/Documentation/sysctl/abi.txt
deleted file mode 100644
index 63f4ebcf652c..000000000000
--- a/Documentation/sysctl/abi.txt
+++ /dev/null
@@ -1,54 +0,0 @@
-Documentation for /proc/sys/abi/* kernel version 2.6.0.test2
- (c) 2003, Fabian Frederick <ffrederick@users.sourceforge.net>
-
-For general info : README.
-
-==============================================================
-
-This path is binary emulation relevant aka personality types aka abi.
-When a process is executed, it's linked to an exec_domain whose
-personality is defined using values available from /proc/sys/abi.
-You can find further details about abi in include/linux/personality.h.
-
-Here are the files featuring in 2.6 kernel :
-
-- defhandler_coff
-- defhandler_elf
-- defhandler_lcall7
-- defhandler_libcso
-- fake_utsname
-- trace
-
-===========================================================
-defhandler_coff:
-defined value :
-PER_SCOSVR3
-0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE
-
-===========================================================
-defhandler_elf:
-defined value :
-PER_LINUX
-0
-
-===========================================================
-defhandler_lcall7:
-defined value :
-PER_SVR4
-0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
-
-===========================================================
-defhandler_libsco:
-defined value:
-PER_SVR4
-0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
-
-===========================================================
-fake_utsname:
-Unused
-
-===========================================================
-trace:
-Unused
-
-===========================================================
diff --git a/Documentation/target/index.rst b/Documentation/target/index.rst
new file mode 100644
index 000000000000..4b24f81f747e
--- /dev/null
+++ b/Documentation/target/index.rst
@@ -0,0 +1,19 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================
+TCM Virtual Device
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ tcmu-design
+ tcm_mod_builder
+ scripts
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/target/scripts.rst b/Documentation/target/scripts.rst
new file mode 100644
index 000000000000..172d42b522e4
--- /dev/null
+++ b/Documentation/target/scripts.rst
@@ -0,0 +1,11 @@
+TCM mod builder script
+----------------------
+
+.. literalinclude:: tcm_mod_builder.py
+ :language: perl
+
+Target export device script
+---------------------------
+
+.. literalinclude:: target-export-device
+ :language: shell
diff --git a/Documentation/target/tcm_mod_builder.rst b/Documentation/target/tcm_mod_builder.rst
new file mode 100644
index 000000000000..9bfc9822e2bd
--- /dev/null
+++ b/Documentation/target/tcm_mod_builder.rst
@@ -0,0 +1,149 @@
+=========================================
+The TCM v4 fabric module script generator
+=========================================
+
+Greetings all,
+
+This document is intended to be a mini-HOWTO for using the tcm_mod_builder.py
+script to generate a brand new functional TCM v4 fabric .ko module of your very own,
+that once built can be immediately be loaded to start access the new TCM/ConfigFS
+fabric skeleton, by simply using::
+
+ modprobe $TCM_NEW_MOD
+ mkdir -p /sys/kernel/config/target/$TCM_NEW_MOD
+
+This script will create a new drivers/target/$TCM_NEW_MOD/, and will do the following
+
+ 1) Generate new API callers for drivers/target/target_core_fabric_configs.c logic
+ ->make_tpg(), ->drop_tpg(), ->make_wwn(), ->drop_wwn(). These are created
+ into $TCM_NEW_MOD/$TCM_NEW_MOD_configfs.c
+ 2) Generate basic infrastructure for loading/unloading LKMs and TCM/ConfigFS fabric module
+ using a skeleton struct target_core_fabric_ops API template.
+ 3) Based on user defined T10 Proto_Ident for the new fabric module being built,
+ the TransportID / Initiator and Target WWPN related handlers for
+ SPC-3 persistent reservation are automatically generated in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
+ using drivers/target/target_core_fabric_lib.c logic.
+ 4) NOP API calls for all other Data I/O path and fabric dependent attribute logic
+ in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
+
+tcm_mod_builder.py depends upon the mandatory '-p $PROTO_IDENT' and '-m
+$FABRIC_MOD_name' parameters, and actually running the script looks like::
+
+ target:/mnt/sdb/lio-core-2.6.git/Documentation/target# python tcm_mod_builder.py -p iSCSI -m tcm_nab5000
+ tcm_dir: /mnt/sdb/lio-core-2.6.git/Documentation/target/../../
+ Set fabric_mod_name: tcm_nab5000
+ Set fabric_mod_dir:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
+ Using proto_ident: iSCSI
+ Creating fabric_mod_dir:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_base.h
+ Using tcm_mod_scan_fabric_ops:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../include/target/target_core_fabric_ops.h
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.c
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.h
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_configfs.c
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kbuild
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kconfig
+ Would you like to add tcm_nab5000to drivers/target/Kbuild..? [yes,no]: yes
+ Would you like to add tcm_nab5000to drivers/target/Kconfig..? [yes,no]: yes
+
+At the end of tcm_mod_builder.py. the script will ask to add the following
+line to drivers/target/Kbuild::
+
+ obj-$(CONFIG_TCM_NAB5000) += tcm_nab5000/
+
+and the same for drivers/target/Kconfig::
+
+ source "drivers/target/tcm_nab5000/Kconfig"
+
+#) Run 'make menuconfig' and select the new CONFIG_TCM_NAB5000 item::
+
+ <M> TCM_NAB5000 fabric module
+
+#) Build using 'make modules', once completed you will have::
+
+ target:/mnt/sdb/lio-core-2.6.git# ls -la drivers/target/tcm_nab5000/
+ total 1348
+ drwxr-xr-x 2 root root 4096 2010-10-05 03:23 .
+ drwxr-xr-x 9 root root 4096 2010-10-05 03:22 ..
+ -rw-r--r-- 1 root root 282 2010-10-05 03:22 Kbuild
+ -rw-r--r-- 1 root root 171 2010-10-05 03:22 Kconfig
+ -rw-r--r-- 1 root root 49 2010-10-05 03:23 modules.order
+ -rw-r--r-- 1 root root 738 2010-10-05 03:22 tcm_nab5000_base.h
+ -rw-r--r-- 1 root root 9096 2010-10-05 03:22 tcm_nab5000_configfs.c
+ -rw-r--r-- 1 root root 191200 2010-10-05 03:23 tcm_nab5000_configfs.o
+ -rw-r--r-- 1 root root 40504 2010-10-05 03:23 .tcm_nab5000_configfs.o.cmd
+ -rw-r--r-- 1 root root 5414 2010-10-05 03:22 tcm_nab5000_fabric.c
+ -rw-r--r-- 1 root root 2016 2010-10-05 03:22 tcm_nab5000_fabric.h
+ -rw-r--r-- 1 root root 190932 2010-10-05 03:23 tcm_nab5000_fabric.o
+ -rw-r--r-- 1 root root 40713 2010-10-05 03:23 .tcm_nab5000_fabric.o.cmd
+ -rw-r--r-- 1 root root 401861 2010-10-05 03:23 tcm_nab5000.ko
+ -rw-r--r-- 1 root root 265 2010-10-05 03:23 .tcm_nab5000.ko.cmd
+ -rw-r--r-- 1 root root 459 2010-10-05 03:23 tcm_nab5000.mod.c
+ -rw-r--r-- 1 root root 23896 2010-10-05 03:23 tcm_nab5000.mod.o
+ -rw-r--r-- 1 root root 22655 2010-10-05 03:23 .tcm_nab5000.mod.o.cmd
+ -rw-r--r-- 1 root root 379022 2010-10-05 03:23 tcm_nab5000.o
+ -rw-r--r-- 1 root root 211 2010-10-05 03:23 .tcm_nab5000.o.cmd
+
+#) Load the new module, create a lun_0 configfs group, and add new TCM Core
+ IBLOCK backstore symlink to port::
+
+ target:/mnt/sdb/lio-core-2.6.git# insmod drivers/target/tcm_nab5000.ko
+ target:/mnt/sdb/lio-core-2.6.git# mkdir -p /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0
+ target:/mnt/sdb/lio-core-2.6.git# cd /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0/
+ target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# ln -s /sys/kernel/config/target/core/iblock_0/lvm_test0 nab5000_port
+
+ target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# cd -
+ target:/mnt/sdb/lio-core-2.6.git# tree /sys/kernel/config/target/nab5000/
+ /sys/kernel/config/target/nab5000/
+ |-- discovery_auth
+ |-- iqn.foo
+ | `-- tpgt_1
+ | |-- acls
+ | |-- attrib
+ | |-- lun
+ | | `-- lun_0
+ | | |-- alua_tg_pt_gp
+ | | |-- alua_tg_pt_offline
+ | | |-- alua_tg_pt_status
+ | | |-- alua_tg_pt_write_md
+ | | `-- nab5000_port -> ../../../../../../target/core/iblock_0/lvm_test0
+ | |-- np
+ | `-- param
+ `-- version
+
+ target:/mnt/sdb/lio-core-2.6.git# lsmod
+ Module Size Used by
+ tcm_nab5000 3935 4
+ iscsi_target_mod 193211 0
+ target_core_stgt 8090 0
+ target_core_pscsi 11122 1
+ target_core_file 9172 2
+ target_core_iblock 9280 1
+ target_core_mod 228575 31
+ tcm_nab5000,iscsi_target_mod,target_core_stgt,target_core_pscsi,target_core_file,target_core_iblock
+ libfc 73681 0
+ scsi_debug 56265 0
+ scsi_tgt 8666 1 target_core_stgt
+ configfs 20644 2 target_core_mod
+
+----------------------------------------------------------------------
+
+Future TODO items
+=================
+
+ 1) Add more T10 proto_idents
+ 2) Make tcm_mod_dump_fabric_ops() smarter and generate function pointer
+ defs directly from include/target/target_core_fabric_ops.h:struct target_core_fabric_ops
+ structure members.
+
+October 5th, 2010
+
+Nicholas A. Bellinger <nab@linux-iscsi.org>
diff --git a/Documentation/target/tcm_mod_builder.txt b/Documentation/target/tcm_mod_builder.txt
deleted file mode 100644
index ae22f7005540..000000000000
--- a/Documentation/target/tcm_mod_builder.txt
+++ /dev/null
@@ -1,145 +0,0 @@
->>>>>>>>>> The TCM v4 fabric module script generator <<<<<<<<<<
-
-Greetings all,
-
-This document is intended to be a mini-HOWTO for using the tcm_mod_builder.py
-script to generate a brand new functional TCM v4 fabric .ko module of your very own,
-that once built can be immediately be loaded to start access the new TCM/ConfigFS
-fabric skeleton, by simply using:
-
- modprobe $TCM_NEW_MOD
- mkdir -p /sys/kernel/config/target/$TCM_NEW_MOD
-
-This script will create a new drivers/target/$TCM_NEW_MOD/, and will do the following
-
- *) Generate new API callers for drivers/target/target_core_fabric_configs.c logic
- ->make_tpg(), ->drop_tpg(), ->make_wwn(), ->drop_wwn(). These are created
- into $TCM_NEW_MOD/$TCM_NEW_MOD_configfs.c
- *) Generate basic infrastructure for loading/unloading LKMs and TCM/ConfigFS fabric module
- using a skeleton struct target_core_fabric_ops API template.
- *) Based on user defined T10 Proto_Ident for the new fabric module being built,
- the TransportID / Initiator and Target WWPN related handlers for
- SPC-3 persistent reservation are automatically generated in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
- using drivers/target/target_core_fabric_lib.c logic.
- *) NOP API calls for all other Data I/O path and fabric dependent attribute logic
- in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
-
-tcm_mod_builder.py depends upon the mandatory '-p $PROTO_IDENT' and '-m
-$FABRIC_MOD_name' parameters, and actually running the script looks like:
-
-target:/mnt/sdb/lio-core-2.6.git/Documentation/target# python tcm_mod_builder.py -p iSCSI -m tcm_nab5000
-tcm_dir: /mnt/sdb/lio-core-2.6.git/Documentation/target/../../
-Set fabric_mod_name: tcm_nab5000
-Set fabric_mod_dir:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
-Using proto_ident: iSCSI
-Creating fabric_mod_dir:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_base.h
-Using tcm_mod_scan_fabric_ops:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../include/target/target_core_fabric_ops.h
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.c
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.h
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_configfs.c
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kbuild
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kconfig
-Would you like to add tcm_nab5000to drivers/target/Kbuild..? [yes,no]: yes
-Would you like to add tcm_nab5000to drivers/target/Kconfig..? [yes,no]: yes
-
-At the end of tcm_mod_builder.py. the script will ask to add the following
-line to drivers/target/Kbuild:
-
- obj-$(CONFIG_TCM_NAB5000) += tcm_nab5000/
-
-and the same for drivers/target/Kconfig:
-
- source "drivers/target/tcm_nab5000/Kconfig"
-
-*) Run 'make menuconfig' and select the new CONFIG_TCM_NAB5000 item:
-
- <M> TCM_NAB5000 fabric module
-
-*) Build using 'make modules', once completed you will have:
-
-target:/mnt/sdb/lio-core-2.6.git# ls -la drivers/target/tcm_nab5000/
-total 1348
-drwxr-xr-x 2 root root 4096 2010-10-05 03:23 .
-drwxr-xr-x 9 root root 4096 2010-10-05 03:22 ..
--rw-r--r-- 1 root root 282 2010-10-05 03:22 Kbuild
--rw-r--r-- 1 root root 171 2010-10-05 03:22 Kconfig
--rw-r--r-- 1 root root 49 2010-10-05 03:23 modules.order
--rw-r--r-- 1 root root 738 2010-10-05 03:22 tcm_nab5000_base.h
--rw-r--r-- 1 root root 9096 2010-10-05 03:22 tcm_nab5000_configfs.c
--rw-r--r-- 1 root root 191200 2010-10-05 03:23 tcm_nab5000_configfs.o
--rw-r--r-- 1 root root 40504 2010-10-05 03:23 .tcm_nab5000_configfs.o.cmd
--rw-r--r-- 1 root root 5414 2010-10-05 03:22 tcm_nab5000_fabric.c
--rw-r--r-- 1 root root 2016 2010-10-05 03:22 tcm_nab5000_fabric.h
--rw-r--r-- 1 root root 190932 2010-10-05 03:23 tcm_nab5000_fabric.o
--rw-r--r-- 1 root root 40713 2010-10-05 03:23 .tcm_nab5000_fabric.o.cmd
--rw-r--r-- 1 root root 401861 2010-10-05 03:23 tcm_nab5000.ko
--rw-r--r-- 1 root root 265 2010-10-05 03:23 .tcm_nab5000.ko.cmd
--rw-r--r-- 1 root root 459 2010-10-05 03:23 tcm_nab5000.mod.c
--rw-r--r-- 1 root root 23896 2010-10-05 03:23 tcm_nab5000.mod.o
--rw-r--r-- 1 root root 22655 2010-10-05 03:23 .tcm_nab5000.mod.o.cmd
--rw-r--r-- 1 root root 379022 2010-10-05 03:23 tcm_nab5000.o
--rw-r--r-- 1 root root 211 2010-10-05 03:23 .tcm_nab5000.o.cmd
-
-*) Load the new module, create a lun_0 configfs group, and add new TCM Core
- IBLOCK backstore symlink to port:
-
-target:/mnt/sdb/lio-core-2.6.git# insmod drivers/target/tcm_nab5000.ko
-target:/mnt/sdb/lio-core-2.6.git# mkdir -p /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0
-target:/mnt/sdb/lio-core-2.6.git# cd /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0/
-target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# ln -s /sys/kernel/config/target/core/iblock_0/lvm_test0 nab5000_port
-
-target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# cd -
-target:/mnt/sdb/lio-core-2.6.git# tree /sys/kernel/config/target/nab5000/
-/sys/kernel/config/target/nab5000/
-|-- discovery_auth
-|-- iqn.foo
-| `-- tpgt_1
-| |-- acls
-| |-- attrib
-| |-- lun
-| | `-- lun_0
-| | |-- alua_tg_pt_gp
-| | |-- alua_tg_pt_offline
-| | |-- alua_tg_pt_status
-| | |-- alua_tg_pt_write_md
-| | `-- nab5000_port -> ../../../../../../target/core/iblock_0/lvm_test0
-| |-- np
-| `-- param
-`-- version
-
-target:/mnt/sdb/lio-core-2.6.git# lsmod
-Module Size Used by
-tcm_nab5000 3935 4
-iscsi_target_mod 193211 0
-target_core_stgt 8090 0
-target_core_pscsi 11122 1
-target_core_file 9172 2
-target_core_iblock 9280 1
-target_core_mod 228575 31
-tcm_nab5000,iscsi_target_mod,target_core_stgt,target_core_pscsi,target_core_file,target_core_iblock
-libfc 73681 0
-scsi_debug 56265 0
-scsi_tgt 8666 1 target_core_stgt
-configfs 20644 2 target_core_mod
-
-----------------------------------------------------------------------
-
-Future TODO items:
-
- *) Add more T10 proto_idents
- *) Make tcm_mod_dump_fabric_ops() smarter and generate function pointer
- defs directly from include/target/target_core_fabric_ops.h:struct target_core_fabric_ops
- structure members.
-
-October 5th, 2010
-Nicholas A. Bellinger <nab@linux-iscsi.org>
diff --git a/Documentation/target/tcmu-design.txt b/Documentation/target/tcmu-design.rst
index 4cebc1ebf99a..a7b426707bf6 100644
--- a/Documentation/target/tcmu-design.txt
+++ b/Documentation/target/tcmu-design.rst
@@ -1,25 +1,30 @@
-Contents:
-
-1) TCM Userspace Design
- a) Background
- b) Benefits
- c) Design constraints
- d) Implementation overview
- i. Mailbox
- ii. Command ring
- iii. Data Area
- e) Device discovery
- f) Device events
- g) Other contingencies
-2) Writing a user pass-through handler
- a) Discovering and configuring TCMU uio devices
- b) Waiting for events on the device(s)
- c) Managing the command ring
-3) A final note
+====================
+TCM Userspace Design
+====================
+
+
+.. Contents:
+
+ 1) TCM Userspace Design
+ a) Background
+ b) Benefits
+ c) Design constraints
+ d) Implementation overview
+ i. Mailbox
+ ii. Command ring
+ iii. Data Area
+ e) Device discovery
+ f) Device events
+ g) Other contingencies
+ 2) Writing a user pass-through handler
+ a) Discovering and configuring TCMU uio devices
+ b) Waiting for events on the device(s)
+ c) Managing the command ring
+ 3) A final note
TCM Userspace Design
---------------------
+====================
TCM is another name for LIO, an in-kernel iSCSI target (server).
Existing TCM targets run in the kernel. TCMU (TCM in Userspace)
@@ -32,7 +37,8 @@ modules for file, block device, RAM or using another SCSI device as
storage. These are called "backstores" or "storage engines". These
built-in modules are implemented entirely as kernel code.
-Background:
+Background
+----------
In addition to modularizing the transport protocol used for carrying
SCSI commands ("fabrics"), the Linux kernel target, LIO, also modularizes
@@ -60,7 +66,8 @@ kernel, another approach is to create a userspace pass-through
backstore for LIO, "TCMU".
-Benefits:
+Benefits
+--------
In addition to allowing relatively easy support for RBD and GLFS, TCMU
will also allow easier development of new backstores. TCMU combines
@@ -72,21 +79,25 @@ The disadvantage is there are more distinct components to configure, and
potentially to malfunction. This is unavoidable, but hopefully not
fatal if we're careful to keep things as simple as possible.
-Design constraints:
+Design constraints
+------------------
- Good performance: high throughput, low latency
- Cleanly handle if userspace:
+
1) never attaches
2) hangs
3) dies
4) misbehaves
+
- Allow future flexibility in user & kernel implementations
- Be reasonably memory-efficient
- Simple to configure & run
- Simple to write a userspace backend
-Implementation overview:
+Implementation overview
+-----------------------
The core of the TCMU interface is a memory region that is shared
between kernel and userspace. Within this region is: a control area
@@ -108,7 +119,8 @@ the region mapped at a different virtual address.
See target_core_user.h for the struct definitions.
-The Mailbox:
+The Mailbox
+-----------
The mailbox is always at the start of the shared memory region, and
contains a version, details about the starting offset and size of the
@@ -117,19 +129,27 @@ userspace (respectively) to put commands on the ring, and indicate
when the commands are completed.
version - 1 (userspace should abort if otherwise)
+
flags:
-- TCMU_MAILBOX_FLAG_CAP_OOOC: indicates out-of-order completion is
- supported. See "The Command Ring" for details.
-cmdr_off - The offset of the start of the command ring from the start
-of the memory region, to account for the mailbox size.
-cmdr_size - The size of the command ring. This does *not* need to be a
-power of two.
-cmd_head - Modified by the kernel to indicate when a command has been
-placed on the ring.
-cmd_tail - Modified by userspace to indicate when it has completed
-processing of a command.
-
-The Command Ring:
+ - TCMU_MAILBOX_FLAG_CAP_OOOC:
+ indicates out-of-order completion is supported.
+ See "The Command Ring" for details.
+
+cmdr_off
+ The offset of the start of the command ring from the start
+ of the memory region, to account for the mailbox size.
+cmdr_size
+ The size of the command ring. This does *not* need to be a
+ power of two.
+cmd_head
+ Modified by the kernel to indicate when a command has been
+ placed on the ring.
+cmd_tail
+ Modified by userspace to indicate when it has completed
+ processing of a command.
+
+The Command Ring
+----------------
Commands are placed on the ring by the kernel incrementing
mailbox.cmd_head by the size of the command, modulo cmdr_size, and
@@ -180,29 +200,31 @@ opcode it does not handle, it must set UNKNOWN_OP bit (bit 0) in
hdr.uflags, update cmd_tail, and proceed with processing additional
commands, if any.
-The Data Area:
+The Data Area
+-------------
This is shared-memory space after the command ring. The organization
of this area is not defined in the TCMU interface, and userspace
should access only the parts referenced by pending iovs.
-Device Discovery:
+Device Discovery
+----------------
Other devices may be using UIO besides TCMU. Unrelated user processes
may also be handling different sets of TCMU devices. TCMU userspace
processes must find their devices by scanning sysfs
class/uio/uio*/name. For TCMU devices, these names will be of the
-format:
+format::
-tcm-user/<hba_num>/<device_name>/<subtype>/<path>
+ tcm-user/<hba_num>/<device_name>/<subtype>/<path>
where "tcm-user" is common for all TCMU-backed UIO devices. <hba_num>
and <device_name> allow userspace to find the device's path in the
kernel target's configfs tree. Assuming the usual mount point, it is
-found at:
+found at::
-/sys/kernel/config/target/core/user_<hba_num>/<device_name>
+ /sys/kernel/config/target/core/user_<hba_num>/<device_name>
This location contains attributes such as "hw_block_size", that
userspace needs to know for correct operation.
@@ -214,15 +236,16 @@ configure the device, if needed. The name cannot contain ':', due to
LIO limitations.
For all devices so discovered, the user handler opens /dev/uioX and
-calls mmap():
+calls mmap()::
-mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
+ mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
where size must be equal to the value read from
/sys/class/uio/uioX/maps/map0/size.
-Device Events:
+Device Events
+-------------
If a new device is added or removed, a notification will be broadcast
over netlink, using a generic netlink family name of "TCM-USER" and a
@@ -233,7 +256,8 @@ the LIO device, so that after determining the device is supported
(based on subtype) it can take the appropriate action.
-Other contingencies:
+Other contingencies
+-------------------
Userspace handler process never attaches:
@@ -258,7 +282,7 @@ Userspace handler process is malicious:
Writing a user pass-through handler (with example code)
--------------------------------------------------------
+=======================================================
A user process handing a TCMU device must support the following:
@@ -277,103 +301,103 @@ TCMU is designed so that multiple unrelated processes can manage TCMU
devices separately. All handlers should make sure to only open their
devices, based opon a known subtype string.
-a) Discovering and configuring TCMU UIO devices:
+a) Discovering and configuring TCMU UIO devices::
-(error checking omitted for brevity)
+ /* error checking omitted for brevity */
-int fd, dev_fd;
-char buf[256];
-unsigned long long map_len;
-void *map;
+ int fd, dev_fd;
+ char buf[256];
+ unsigned long long map_len;
+ void *map;
-fd = open("/sys/class/uio/uio0/name", O_RDONLY);
-ret = read(fd, buf, sizeof(buf));
-close(fd);
-buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
+ fd = open("/sys/class/uio/uio0/name", O_RDONLY);
+ ret = read(fd, buf, sizeof(buf));
+ close(fd);
+ buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
-/* we only want uio devices whose name is a format we expect */
-if (strncmp(buf, "tcm-user", 8))
+ /* we only want uio devices whose name is a format we expect */
+ if (strncmp(buf, "tcm-user", 8))
exit(-1);
-/* Further checking for subtype also needed here */
-
-fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY);
-ret = read(fd, buf, sizeof(buf));
-close(fd);
-str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
+ /* Further checking for subtype also needed here */
-map_len = strtoull(buf, NULL, 0);
+ fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY);
+ ret = read(fd, buf, sizeof(buf));
+ close(fd);
+ str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
-dev_fd = open("/dev/uio0", O_RDWR);
-map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0);
+ map_len = strtoull(buf, NULL, 0);
+ dev_fd = open("/dev/uio0", O_RDWR);
+ map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0);
-b) Waiting for events on the device(s)
-
-while (1) {
- char buf[4];
- int ret = read(dev_fd, buf, 4); /* will block */
+ b) Waiting for events on the device(s)
- handle_device_events(dev_fd, map);
-}
+ while (1) {
+ char buf[4];
+ int ret = read(dev_fd, buf, 4); /* will block */
-c) Managing the command ring
-
-#include <linux/target_core_user.h>
-
-int handle_device_events(int fd, void *map)
-{
- struct tcmu_mailbox *mb = map;
- struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
- int did_some_work = 0;
-
- /* Process events from cmd ring until we catch up with cmd_head */
- while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) {
-
- if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) {
- uint8_t *cdb = (void *)mb + ent->req.cdb_off;
- bool success = true;
-
- /* Handle command here. */
- printf("SCSI opcode: 0x%x\n", cdb[0]);
-
- /* Set response fields */
- if (success)
- ent->rsp.scsi_status = SCSI_NO_SENSE;
- else {
- /* Also fill in rsp->sense_buffer here */
- ent->rsp.scsi_status = SCSI_CHECK_CONDITION;
+ handle_device_events(dev_fd, map);
}
- }
- else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) {
- /* Tell the kernel we didn't handle unknown opcodes */
- ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP;
- }
- else {
- /* Do nothing for PAD entries except update cmd_tail */
- }
-
- /* update cmd_tail */
- mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size;
- ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
- did_some_work = 1;
- }
- /* Notify the kernel that work has been finished */
- if (did_some_work) {
- uint32_t buf = 0;
- write(fd, &buf, 4);
- }
-
- return 0;
-}
+c) Managing the command ring::
+
+ #include <linux/target_core_user.h>
+
+ int handle_device_events(int fd, void *map)
+ {
+ struct tcmu_mailbox *mb = map;
+ struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
+ int did_some_work = 0;
+
+ /* Process events from cmd ring until we catch up with cmd_head */
+ while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) {
+
+ if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) {
+ uint8_t *cdb = (void *)mb + ent->req.cdb_off;
+ bool success = true;
+
+ /* Handle command here. */
+ printf("SCSI opcode: 0x%x\n", cdb[0]);
+
+ /* Set response fields */
+ if (success)
+ ent->rsp.scsi_status = SCSI_NO_SENSE;
+ else {
+ /* Also fill in rsp->sense_buffer here */
+ ent->rsp.scsi_status = SCSI_CHECK_CONDITION;
+ }
+ }
+ else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) {
+ /* Tell the kernel we didn't handle unknown opcodes */
+ ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP;
+ }
+ else {
+ /* Do nothing for PAD entries except update cmd_tail */
+ }
+
+ /* update cmd_tail */
+ mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size;
+ ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
+ did_some_work = 1;
+ }
+
+ /* Notify the kernel that work has been finished */
+ if (did_some_work) {
+ uint32_t buf = 0;
+
+ write(fd, &buf, 4);
+ }
+
+ return 0;
+ }
A final note
-------------
+============
Please be careful to return codes as defined by the SCSI
specifications. These are different than some values defined in the
diff --git a/Documentation/tee.txt b/Documentation/tee.txt
index 56ea85ffebf2..afacdf2fd1de 100644
--- a/Documentation/tee.txt
+++ b/Documentation/tee.txt
@@ -32,7 +32,7 @@ User space (the client) connects to the driver by opening /dev/tee[0-9]* or
memory.
- TEE_IOC_VERSION lets user space know which TEE this driver handles and
- the its capabilities.
+ its capabilities.
- TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application.
diff --git a/Documentation/thermal/exynos_thermal_emulation b/Documentation/thermal/exynos_thermal_emulation
deleted file mode 100644
index b15efec6ca28..000000000000
--- a/Documentation/thermal/exynos_thermal_emulation
+++ /dev/null
@@ -1,53 +0,0 @@
-EXYNOS EMULATION MODE
-========================
-
-Copyright (C) 2012 Samsung Electronics
-
-Written by Jonghwa Lee <jonghwa3.lee@samsung.com>
-
-Description
------------
-
-Exynos 4x12 (4212, 4412) and 5 series provide emulation mode for thermal management unit.
-Thermal emulation mode supports software debug for TMU's operation. User can set temperature
-manually with software code and TMU will read current temperature from user value not from
-sensor's value.
-
-Enabling CONFIG_THERMAL_EMULATION option will make this support available.
-When it's enabled, sysfs node will be created as
-/sys/devices/virtual/thermal/thermal_zone'zone id'/emul_temp.
-
-The sysfs node, 'emul_node', will contain value 0 for the initial state. When you input any
-temperature you want to update to sysfs node, it automatically enable emulation mode and
-current temperature will be changed into it.
-(Exynos also supports user changeable delay time which would be used to delay of
- changing temperature. However, this node only uses same delay of real sensing time, 938us.)
-
-Exynos emulation mode requires synchronous of value changing and enabling. It means when you
-want to update the any value of delay or next temperature, then you have to enable emulation
-mode at the same time. (Or you have to keep the mode enabling.) If you don't, it fails to
-change the value to updated one and just use last succeessful value repeatedly. That's why
-this node gives users the right to change termerpature only. Just one interface makes it more
-simply to use.
-
-Disabling emulation mode only requires writing value 0 to sysfs node.
-
-
-TEMP 120 |
- |
- 100 |
- |
- 80 |
- | +-----------
- 60 | | |
- | +-------------| |
- 40 | | | |
- | | | |
- 20 | | | +----------
- | | | | |
- 0 |______________|_____________|__________|__________|_________
- A A A A TIME
- |<----->| |<----->| |<----->| |
- | 938us | | | | | |
-emulation : 0 50 | 70 | 20 | 0
-current temp : sensor 50 70 20 sensor
diff --git a/Documentation/timers/highres.txt b/Documentation/timers/highres.rst
index 8f9741592123..bde5eb7e5c9e 100644
--- a/Documentation/timers/highres.txt
+++ b/Documentation/timers/highres.rst
@@ -1,5 +1,6 @@
+=====================================================
High resolution timers and dynamic ticks design notes
------------------------------------------------------
+=====================================================
Further information can be found in the paper of the OLS 2006 talk "hrtimers
and beyond". The paper is part of the OLS 2006 Proceedings Volume 1, which can
@@ -30,11 +31,12 @@ hrtimer base infrastructure
---------------------------
The hrtimer base infrastructure was merged into the 2.6.16 kernel. Details of
-the base implementation are covered in Documentation/timers/hrtimers.txt. See
+the base implementation are covered in Documentation/timers/hrtimers.rst. See
also figure #2 (OLS slides p. 15)
The main differences to the timer wheel, which holds the armed timer_list type
timers are:
+
- time ordered enqueueing into a rb-tree
- independent of ticks (the processing is based on nanoseconds)
@@ -55,7 +57,8 @@ merged into the 2.6.18 kernel.
Further information about the Generic Time Of Day framework is available in the
OLS 2005 Proceedings Volume 1:
-http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf
+
+ http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf
The paper "We Are Not Getting Any Younger: A New Approach to Time and
Timers" was written by J. Stultz, D.V. Hart, & N. Aravamudan.
@@ -100,6 +103,7 @@ accounting, profiling, and high resolution timers.
The management layer assigns one or more of the following functions to a clock
event device:
+
- system global periodic tick (jiffies update)
- cpu local update_process_times
- cpu local profiling
@@ -244,6 +248,3 @@ extended to x86_64 and ARM already. Initial (work in progress) support is also
available for MIPS and PowerPC.
Thomas, Ingo
-
-
-
diff --git a/Documentation/timers/hpet.txt b/Documentation/timers/hpet.rst
index 895345ec513b..c9d05d3caaca 100644
--- a/Documentation/timers/hpet.txt
+++ b/Documentation/timers/hpet.rst
@@ -1,4 +1,6 @@
- High Precision Event Timer Driver for Linux
+===========================================
+High Precision Event Timer Driver for Linux
+===========================================
The High Precision Event Timer (HPET) hardware follows a specification
by Intel and Microsoft, revision 1.
diff --git a/Documentation/timers/hrtimers.txt b/Documentation/timers/hrtimers.rst
index 588d85724f10..c1c20a693e8f 100644
--- a/Documentation/timers/hrtimers.txt
+++ b/Documentation/timers/hrtimers.rst
@@ -1,6 +1,6 @@
-
+======================================================
hrtimers - subsystem for high-resolution kernel timers
-----------------------------------------------------
+======================================================
This patch introduces a new subsystem for high-resolution kernel timers.
@@ -146,7 +146,7 @@ the clock_getres() interface. This will return whatever real resolution
a given clock has - be it low-res, high-res, or artificially-low-res.
hrtimers - testing and verification
-----------------------------------
+-----------------------------------
We used the high-resolution clock subsystem ontop of hrtimers to verify
the hrtimer implementation details in praxis, and we also ran the posix
diff --git a/Documentation/timers/index.rst b/Documentation/timers/index.rst
new file mode 100644
index 000000000000..df510ad0c989
--- /dev/null
+++ b/Documentation/timers/index.rst
@@ -0,0 +1,22 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======
+timers
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ highres
+ hpet
+ hrtimers
+ no_hz
+ timekeeping
+ timers-howto
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/timers/NO_HZ.txt b/Documentation/timers/no_hz.rst
index 9591092da5e0..065db217cb04 100644
--- a/Documentation/timers/NO_HZ.txt
+++ b/Documentation/timers/no_hz.rst
@@ -1,4 +1,6 @@
- NO_HZ: Reducing Scheduling-Clock Ticks
+======================================
+NO_HZ: Reducing Scheduling-Clock Ticks
+======================================
This document describes Kconfig options and boot parameters that can
@@ -28,7 +30,8 @@ by a third section on RCU-specific considerations, a fourth section
discussing testing, and a fifth and final section listing known issues.
-NEVER OMIT SCHEDULING-CLOCK TICKS
+Never Omit Scheduling-Clock Ticks
+=================================
Very old versions of Linux from the 1990s and the very early 2000s
are incapable of omitting scheduling-clock ticks. It turns out that
@@ -59,7 +62,8 @@ degrade your applications performance. If this describes your workload,
you should read the following two sections.
-OMIT SCHEDULING-CLOCK TICKS FOR IDLE CPUs
+Omit Scheduling-Clock Ticks For Idle CPUs
+=========================================
If a CPU is idle, there is little point in sending it a scheduling-clock
interrupt. After all, the primary purpose of a scheduling-clock interrupt
@@ -97,7 +101,8 @@ By default, CONFIG_NO_HZ_IDLE=y kernels boot with "nohz=on", enabling
dyntick-idle mode.
-OMIT SCHEDULING-CLOCK TICKS FOR CPUs WITH ONLY ONE RUNNABLE TASK
+Omit Scheduling-Clock Ticks For CPUs With Only One Runnable Task
+================================================================
If a CPU has only one runnable task, there is little point in sending it
a scheduling-clock interrupt because there is no other task to switch to.
@@ -174,7 +179,8 @@ However, the drawbacks listed above mean that adaptive ticks should not
(yet) be enabled by default.
-RCU IMPLICATIONS
+RCU Implications
+================
There are situations in which idle CPUs cannot be permitted to
enter either dyntick-idle mode or adaptive-tick mode, the most
@@ -199,7 +205,8 @@ scheduler will decide where to run them, which might or might not be
where you want them to run.
-TESTING
+Testing
+=======
So you enable all the OS-jitter features described in this document,
but do not see any change in your workload's behavior. Is this because
@@ -222,9 +229,10 @@ We do not currently have a good way to remove OS jitter from single-CPU
systems.
-KNOWN ISSUES
+Known Issues
+============
-o Dyntick-idle slows transitions to and from idle slightly.
+* Dyntick-idle slows transitions to and from idle slightly.
In practice, this has not been a problem except for the most
aggressive real-time workloads, which have the option of disabling
dyntick-idle mode, an option that most of them take. However,
@@ -248,13 +256,13 @@ o Dyntick-idle slows transitions to and from idle slightly.
this parameter effectively disables Turbo Mode on Intel
CPUs, which can significantly reduce maximum performance.
-o Adaptive-ticks slows user/kernel transitions slightly.
+* Adaptive-ticks slows user/kernel transitions slightly.
This is not expected to be a problem for computationally intensive
workloads, which have few such transitions. Careful benchmarking
will be required to determine whether or not other workloads
are significantly affected by this effect.
-o Adaptive-ticks does not do anything unless there is only one
+* Adaptive-ticks does not do anything unless there is only one
runnable task for a given CPU, even though there are a number
of other situations where the scheduling-clock tick is not
needed. To give but one example, consider a CPU that has one
@@ -275,7 +283,7 @@ o Adaptive-ticks does not do anything unless there is only one
Better handling of these sorts of situations is future work.
-o A reboot is required to reconfigure both adaptive idle and RCU
+* A reboot is required to reconfigure both adaptive idle and RCU
callback offloading. Runtime reconfiguration could be provided
if needed, however, due to the complexity of reconfiguring RCU at
runtime, there would need to be an earthshakingly good reason.
@@ -283,12 +291,12 @@ o A reboot is required to reconfigure both adaptive idle and RCU
simply offloading RCU callbacks from all CPUs and pinning them
where you want them whenever you want them pinned.
-o Additional configuration is required to deal with other sources
+* Additional configuration is required to deal with other sources
of OS jitter, including interrupts and system-utility tasks
and processes. This configuration normally involves binding
interrupts and tasks to particular CPUs.
-o Some sources of OS jitter can currently be eliminated only by
+* Some sources of OS jitter can currently be eliminated only by
constraining the workload. For example, the only way to eliminate
OS jitter due to global TLB shootdowns is to avoid the unmapping
operations (such as kernel module unload operations) that
@@ -299,17 +307,17 @@ o Some sources of OS jitter can currently be eliminated only by
helpful, especially when combined with the mlock() and mlockall()
system calls.
-o Unless all CPUs are idle, at least one CPU must keep the
+* Unless all CPUs are idle, at least one CPU must keep the
scheduling-clock interrupt going in order to support accurate
timekeeping.
-o If there might potentially be some adaptive-ticks CPUs, there
+* If there might potentially be some adaptive-ticks CPUs, there
will be at least one CPU keeping the scheduling-clock interrupt
going, even if all CPUs are otherwise idle.
Better handling of this situation is ongoing work.
-o Some process-handling operations still require the occasional
+* Some process-handling operations still require the occasional
scheduling-clock tick. These operations include calculating CPU
load, maintaining sched average, computing CFS entity vruntime,
computing avenrun, and carrying out load balancing. They are
diff --git a/Documentation/timers/timekeeping.txt b/Documentation/timers/timekeeping.rst
index 2d1732b0a868..f83e98852e2c 100644
--- a/Documentation/timers/timekeeping.txt
+++ b/Documentation/timers/timekeeping.rst
@@ -1,5 +1,6 @@
+===========================================================
Clock sources, Clock events, sched_clock() and delay timers
------------------------------------------------------------
+===========================================================
This document tries to briefly explain some basic kernel timekeeping
abstractions. It partly pertains to the drivers usually found in
diff --git a/Documentation/timers/timers-howto.txt b/Documentation/timers/timers-howto.rst
index 038f8c77a076..7e3167bec2b1 100644
--- a/Documentation/timers/timers-howto.txt
+++ b/Documentation/timers/timers-howto.rst
@@ -1,5 +1,6 @@
+===================================================================
delays - Information on the various kernel delay / sleep mechanisms
--------------------------------------------------------------------
+===================================================================
This document seeks to answer the common question: "What is the
RightWay (TM) to insert a delay?"
@@ -17,7 +18,7 @@ code in an atomic context?" This should be followed closely by "Does
it really need to delay in atomic context?" If so...
ATOMIC CONTEXT:
- You must use the *delay family of functions. These
+ You must use the `*delay` family of functions. These
functions use the jiffie estimation of clock speed
and will busy wait for enough loop cycles to achieve
the desired delay:
@@ -35,21 +36,26 @@ ATOMIC CONTEXT:
be refactored to allow for the use of msleep.
NON-ATOMIC CONTEXT:
- You should use the *sleep[_range] family of functions.
+ You should use the `*sleep[_range]` family of functions.
There are a few more options here, while any of them may
work correctly, using the "right" sleep function will
help the scheduler, power management, and just make your
driver better :)
-- Backed by busy-wait loop:
+
udelay(unsigned long usecs)
+
-- Backed by hrtimers:
+
usleep_range(unsigned long min, unsigned long max)
+
-- Backed by jiffies / legacy_timers
+
msleep(unsigned long msecs)
msleep_interruptible(unsigned long msecs)
- Unlike the *delay family, the underlying mechanism
+ Unlike the `*delay` family, the underlying mechanism
driving each of these calls varies, thus there are
quirks you should be aware of.
@@ -70,6 +76,7 @@ NON-ATOMIC CONTEXT:
- Why not msleep for (1ms - 20ms)?
Explained originally here:
http://lkml.org/lkml/2007/8/3/250
+
msleep(1~20) may not do what the caller intends, and
will often sleep longer (~20 ms actual sleep for any
value given in the 1~20ms range). In many cases this
diff --git a/Documentation/trace/coresight-cpu-debug.txt b/Documentation/trace/coresight-cpu-debug.rst
index f07e38094b40..993dd294b81b 100644
--- a/Documentation/trace/coresight-cpu-debug.txt
+++ b/Documentation/trace/coresight-cpu-debug.rst
@@ -1,8 +1,9 @@
- Coresight CPU Debug Module
- ==========================
+==========================
+Coresight CPU Debug Module
+==========================
- Author: Leo Yan <leo.yan@linaro.org>
- Date: April 5th, 2017
+ :Author: Leo Yan <leo.yan@linaro.org>
+ :Date: April 5th, 2017
Introduction
------------
@@ -69,6 +70,7 @@ Before accessing debug registers, we should ensure the clock and power domain
have been enabled properly. In ARMv8-a ARM (ARM DDI 0487A.k) chapter 'H9.1
Debug registers', the debug registers are spread into two domains: the debug
domain and the CPU domain.
+::
+---------------+
| |
@@ -125,18 +127,21 @@ If you want to enable debugging functionality at boot time, you can add
"coresight_cpu_debug.enable=1" to the kernel command line parameter.
The driver also can work as module, so can enable the debugging when insmod
-module:
-# insmod coresight_cpu_debug.ko debug=1
+module::
+
+ # insmod coresight_cpu_debug.ko debug=1
When boot time or insmod module you have not enabled the debugging, the driver
uses the debugfs file system to provide a knob to dynamically enable or disable
debugging:
-To enable it, write a '1' into /sys/kernel/debug/coresight_cpu_debug/enable:
-# echo 1 > /sys/kernel/debug/coresight_cpu_debug/enable
+To enable it, write a '1' into /sys/kernel/debug/coresight_cpu_debug/enable::
+
+ # echo 1 > /sys/kernel/debug/coresight_cpu_debug/enable
+
+To disable it, write a '0' into /sys/kernel/debug/coresight_cpu_debug/enable::
-To disable it, write a '0' into /sys/kernel/debug/coresight_cpu_debug/enable:
-# echo 0 > /sys/kernel/debug/coresight_cpu_debug/enable
+ # echo 0 > /sys/kernel/debug/coresight_cpu_debug/enable
As explained in chapter "Clock and power domain", if you are working on one
platform which has idle states to power off debug logic and the power
@@ -151,37 +156,37 @@ At the runtime you can disable idle states with below methods:
It is possible to disable CPU idle states by way of the PM QoS
subsystem, more specifically by using the "/dev/cpu_dma_latency"
-interface (see Documentation/power/pm_qos_interface.txt for more
+interface (see Documentation/power/pm_qos_interface.rst for more
details). As specified in the PM QoS documentation the requested
parameter will stay in effect until the file descriptor is released.
-For example:
+For example::
-# exec 3<> /dev/cpu_dma_latency; echo 0 >&3
-...
-Do some work...
-...
-# exec 3<>-
+ # exec 3<> /dev/cpu_dma_latency; echo 0 >&3
+ ...
+ Do some work...
+ ...
+ # exec 3<>-
The same can also be done from an application program.
Disable specific CPU's specific idle state from cpuidle sysfs (see
-Documentation/admin-guide/pm/cpuidle.rst):
-# echo 1 > /sys/devices/system/cpu/cpu$cpu/cpuidle/state$state/disable
+Documentation/admin-guide/pm/cpuidle.rst)::
+ # echo 1 > /sys/devices/system/cpu/cpu$cpu/cpuidle/state$state/disable
Output format
-------------
-Here is an example of the debugging output format:
-
-ARM external debug module:
-coresight-cpu-debug 850000.debug: CPU[0]:
-coresight-cpu-debug 850000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
-coresight-cpu-debug 850000.debug: EDPCSR: handle_IPI+0x174/0x1d8
-coresight-cpu-debug 850000.debug: EDCIDSR: 00000000
-coresight-cpu-debug 850000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
-coresight-cpu-debug 852000.debug: CPU[1]:
-coresight-cpu-debug 852000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
-coresight-cpu-debug 852000.debug: EDPCSR: debug_notifier_call+0x23c/0x358
-coresight-cpu-debug 852000.debug: EDCIDSR: 00000000
-coresight-cpu-debug 852000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
+Here is an example of the debugging output format::
+
+ ARM external debug module:
+ coresight-cpu-debug 850000.debug: CPU[0]:
+ coresight-cpu-debug 850000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
+ coresight-cpu-debug 850000.debug: EDPCSR: handle_IPI+0x174/0x1d8
+ coresight-cpu-debug 850000.debug: EDCIDSR: 00000000
+ coresight-cpu-debug 850000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
+ coresight-cpu-debug 852000.debug: CPU[1]:
+ coresight-cpu-debug 852000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
+ coresight-cpu-debug 852000.debug: EDPCSR: debug_notifier_call+0x23c/0x358
+ coresight-cpu-debug 852000.debug: EDCIDSR: 00000000
+ coresight-cpu-debug 852000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
diff --git a/Documentation/trace/coresight.rst b/Documentation/trace/coresight.rst
new file mode 100644
index 000000000000..72f4b7ef1bad
--- /dev/null
+++ b/Documentation/trace/coresight.rst
@@ -0,0 +1,498 @@
+======================================
+Coresight - HW Assisted Tracing on ARM
+======================================
+
+ :Author: Mathieu Poirier <mathieu.poirier@linaro.org>
+ :Date: September 11th, 2014
+
+Introduction
+------------
+
+Coresight is an umbrella of technologies allowing for the debugging of ARM
+based SoC. It includes solutions for JTAG and HW assisted tracing. This
+document is concerned with the latter.
+
+HW assisted tracing is becoming increasingly useful when dealing with systems
+that have many SoCs and other components like GPU and DMA engines. ARM has
+developed a HW assisted tracing solution by means of different components, each
+being added to a design at synthesis time to cater to specific tracing needs.
+Components are generally categorised as source, link and sinks and are
+(usually) discovered using the AMBA bus.
+
+"Sources" generate a compressed stream representing the processor instruction
+path based on tracing scenarios as configured by users. From there the stream
+flows through the coresight system (via ATB bus) using links that are connecting
+the emanating source to a sink(s). Sinks serve as endpoints to the coresight
+implementation, either storing the compressed stream in a memory buffer or
+creating an interface to the outside world where data can be transferred to a
+host without fear of filling up the onboard coresight memory buffer.
+
+At typical coresight system would look like this::
+
+ *****************************************************************
+ **************************** AMBA AXI ****************************===||
+ ***************************************************************** ||
+ ^ ^ | ||
+ | | * **
+ 0000000 ::::: 0000000 ::::: ::::: @@@@@@@ ||||||||||||
+ 0 CPU 0<-->: C : 0 CPU 0<-->: C : : C : @ STM @ || System ||
+ |->0000000 : T : |->0000000 : T : : T :<--->@@@@@ || Memory ||
+ | #######<-->: I : | #######<-->: I : : I : @@@<-| ||||||||||||
+ | # ETM # ::::: | # PTM # ::::: ::::: @ |
+ | ##### ^ ^ | ##### ^ ! ^ ! . | |||||||||
+ | |->### | ! | |->### | ! | ! . | || DAP ||
+ | | # | ! | | # | ! | ! . | |||||||||
+ | | . | ! | | . | ! | ! . | | |
+ | | . | ! | | . | ! | ! . | | *
+ | | . | ! | | . | ! | ! . | | SWD/
+ | | . | ! | | . | ! | ! . | | JTAG
+ *****************************************************************<-|
+ *************************** AMBA Debug APB ************************
+ *****************************************************************
+ | . ! . ! ! . |
+ | . * . * * . |
+ *****************************************************************
+ ******************** Cross Trigger Matrix (CTM) *******************
+ *****************************************************************
+ | . ^ . . |
+ | * ! * * |
+ *****************************************************************
+ ****************** AMBA Advanced Trace Bus (ATB) ******************
+ *****************************************************************
+ | ! =============== |
+ | * ===== F =====<---------|
+ | ::::::::: ==== U ====
+ |-->:: CTI ::<!! === N ===
+ | ::::::::: ! == N ==
+ | ^ * == E ==
+ | ! &&&&&&&&& IIIIIII == L ==
+ |------>&& ETB &&<......II I =======
+ | ! &&&&&&&&& II I .
+ | ! I I .
+ | ! I REP I<..........
+ | ! I I
+ | !!>&&&&&&&&& II I *Source: ARM ltd.
+ |------>& TPIU &<......II I DAP = Debug Access Port
+ &&&&&&&&& IIIIIII ETM = Embedded Trace Macrocell
+ ; PTM = Program Trace Macrocell
+ ; CTI = Cross Trigger Interface
+ * ETB = Embedded Trace Buffer
+ To trace port TPIU= Trace Port Interface Unit
+ SWD = Serial Wire Debug
+
+While on target configuration of the components is done via the APB bus,
+all trace data are carried out-of-band on the ATB bus. The CTM provides
+a way to aggregate and distribute signals between CoreSight components.
+
+The coresight framework provides a central point to represent, configure and
+manage coresight devices on a platform. This first implementation centers on
+the basic tracing functionality, enabling components such ETM/PTM, funnel,
+replicator, TMC, TPIU and ETB. Future work will enable more
+intricate IP blocks such as STM and CTI.
+
+
+Acronyms and Classification
+---------------------------
+
+Acronyms:
+
+PTM:
+ Program Trace Macrocell
+ETM:
+ Embedded Trace Macrocell
+STM:
+ System trace Macrocell
+ETB:
+ Embedded Trace Buffer
+ITM:
+ Instrumentation Trace Macrocell
+TPIU:
+ Trace Port Interface Unit
+TMC-ETR:
+ Trace Memory Controller, configured as Embedded Trace Router
+TMC-ETF:
+ Trace Memory Controller, configured as Embedded Trace FIFO
+CTI:
+ Cross Trigger Interface
+
+Classification:
+
+Source:
+ ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
+Link:
+ Funnel, replicator (intelligent or not), TMC-ETR
+Sinks:
+ ETBv1.0, ETB1.1, TPIU, TMC-ETF
+Misc:
+ CTI
+
+
+Device Tree Bindings
+--------------------
+
+See Documentation/devicetree/bindings/arm/coresight.txt for details.
+
+As of this writing drivers for ITM, STMs and CTIs are not provided but are
+expected to be added as the solution matures.
+
+
+Framework and implementation
+----------------------------
+
+The coresight framework provides a central point to represent, configure and
+manage coresight devices on a platform. Any coresight compliant device can
+register with the framework for as long as they use the right APIs:
+
+.. c:function:: struct coresight_device *coresight_register(struct coresight_desc *desc);
+.. c:function:: void coresight_unregister(struct coresight_device *csdev);
+
+The registering function is taking a ``struct coresight_desc *desc`` and
+register the device with the core framework. The unregister function takes
+a reference to a ``struct coresight_device *csdev`` obtained at registration time.
+
+If everything goes well during the registration process the new devices will
+show up under /sys/bus/coresight/devices, as showns here for a TC2 platform::
+
+ root:~# ls /sys/bus/coresight/devices/
+ replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
+ 20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
+ root:~#
+
+The functions take a ``struct coresight_device``, which looks like this::
+
+ struct coresight_desc {
+ enum coresight_dev_type type;
+ struct coresight_dev_subtype subtype;
+ const struct coresight_ops *ops;
+ struct coresight_platform_data *pdata;
+ struct device *dev;
+ const struct attribute_group **groups;
+ };
+
+
+The "coresight_dev_type" identifies what the device is, i.e, source link or
+sink while the "coresight_dev_subtype" will characterise that type further.
+
+The ``struct coresight_ops`` is mandatory and will tell the framework how to
+perform base operations related to the components, each component having
+a different set of requirement. For that ``struct coresight_ops_sink``,
+``struct coresight_ops_link`` and ``struct coresight_ops_source`` have been
+provided.
+
+The next field ``struct coresight_platform_data *pdata`` is acquired by calling
+``of_get_coresight_platform_data()``, as part of the driver's _probe routine and
+``struct device *dev`` gets the device reference embedded in the ``amba_device``::
+
+ static int etm_probe(struct amba_device *adev, const struct amba_id *id)
+ {
+ ...
+ ...
+ drvdata->dev = &adev->dev;
+ ...
+ }
+
+Specific class of device (source, link, or sink) have generic operations
+that can be performed on them (see ``struct coresight_ops``). The ``**groups``
+is a list of sysfs entries pertaining to operations
+specific to that component only. "Implementation defined" customisations are
+expected to be accessed and controlled using those entries.
+
+Device Naming scheme
+--------------------
+
+The devices that appear on the "coresight" bus were named the same as their
+parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
+Thus the names were based on the Linux Open Firmware layer naming convention,
+which follows the base physical address of the device followed by the device
+type. e.g::
+
+ root:~# ls /sys/bus/coresight/devices/
+ 20010000.etf 20040000.funnel 20100000.stm 22040000.etm
+ 22140000.etm 230c0000.funnel 23240000.etm 20030000.tpiu
+ 20070000.etr 20120000.replicator 220c0000.funnel
+ 23040000.etm 23140000.etm 23340000.etm
+
+However, with the introduction of ACPI support, the names of the real
+devices are a bit cryptic and non-obvious. Thus, a new naming scheme was
+introduced to use more generic names based on the type of the device. The
+following rules apply::
+
+ 1) Devices that are bound to CPUs, are named based on the CPU logical
+ number.
+
+ e.g, ETM bound to CPU0 is named "etm0"
+
+ 2) All other devices follow a pattern, "<device_type_prefix>N", where :
+
+ <device_type_prefix> - A prefix specific to the type of the device
+ N - a sequential number assigned based on the order
+ of probing.
+
+ e.g, tmc_etf0, tmc_etr0, funnel0, funnel1
+
+Thus, with the new scheme the devices could appear as ::
+
+ root:~# ls /sys/bus/coresight/devices/
+ etm0 etm1 etm2 etm3 etm4 etm5 funnel0
+ funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0
+
+Some of the examples below might refer to old naming scheme and some
+to the newer scheme, to give a confirmation that what you see on your
+system is not unexpected. One must use the "names" as they appear on
+the system under specified locations.
+
+How to use the tracer modules
+-----------------------------
+
+There are two ways to use the Coresight framework:
+
+1. using the perf cmd line tools.
+2. interacting directly with the Coresight devices using the sysFS interface.
+
+Preference is given to the former as using the sysFS interface
+requires a deep understanding of the Coresight HW. The following sections
+provide details on using both methods.
+
+1) Using the sysFS interface:
+
+Before trace collection can start, a coresight sink needs to be identified.
+There is no limit on the amount of sinks (nor sources) that can be enabled at
+any given moment. As a generic operation, all device pertaining to the sink
+class will have an "active" entry in sysfs::
+
+ root:/sys/bus/coresight/devices# ls
+ replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
+ 20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
+ root:/sys/bus/coresight/devices# ls 20010000.etb
+ enable_sink status trigger_cntr
+ root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
+ root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
+ 1
+ root:/sys/bus/coresight/devices#
+
+At boot time the current etm3x driver will configure the first address
+comparator with "_stext" and "_etext", essentially tracing any instruction
+that falls within that range. As such "enabling" a source will immediately
+trigger a trace capture::
+
+ root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
+ root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
+ 1
+ root:/sys/bus/coresight/devices# cat 20010000.etb/status
+ Depth: 0x2000
+ Status: 0x1
+ RAM read ptr: 0x0
+ RAM wrt ptr: 0x19d3 <----- The write pointer is moving
+ Trigger cnt: 0x0
+ Control: 0x1
+ Flush status: 0x0
+ Flush ctrl: 0x2001
+ root:/sys/bus/coresight/devices#
+
+Trace collection is stopped the same way::
+
+ root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
+ root:/sys/bus/coresight/devices#
+
+The content of the ETB buffer can be harvested directly from /dev::
+
+ root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
+ of=~/cstrace.bin
+ 64+0 records in
+ 64+0 records out
+ 32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
+ root:/sys/bus/coresight/devices#
+
+The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
+
+Following is a DS-5 output of an experimental loop that increments a variable up
+to a certain value. The example is simple and yet provides a glimpse of the
+wealth of possibilities that coresight provides.
+::
+
+ Info Tracing enabled
+ Instruction 106378866 0x8026B53C E52DE004 false PUSH {lr}
+ Instruction 0 0x8026B540 E24DD00C false SUB sp,sp,#0xc
+ Instruction 0 0x8026B544 E3A03000 false MOV r3,#0
+ Instruction 0 0x8026B548 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Timestamp Timestamp: 17106715833
+ Instruction 319 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 9 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 10 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 6 0x8026B560 EE1D3F30 false MRC p15,#0x0,r3,c13,c0,#1
+ Instruction 0 0x8026B564 E1A0100D false MOV r1,sp
+ Instruction 0 0x8026B568 E3C12D7F false BIC r2,r1,#0x1fc0
+ Instruction 0 0x8026B56C E3C2203F false BIC r2,r2,#0x3f
+ Instruction 0 0x8026B570 E59D1004 false LDR r1,[sp,#4]
+ Instruction 0 0x8026B574 E59F0010 false LDR r0,[pc,#16] ; [0x8026B58C] = 0x80550368
+ Instruction 0 0x8026B578 E592200C false LDR r2,[r2,#0xc]
+ Instruction 0 0x8026B57C E59221D0 false LDR r2,[r2,#0x1d0]
+ Instruction 0 0x8026B580 EB07A4CF true BL {pc}+0x1e9344 ; 0x804548c4
+ Info Tracing enabled
+ Instruction 13570831 0x8026B584 E28DD00C false ADD sp,sp,#0xc
+ Instruction 0 0x8026B588 E8BD8000 true LDM sp!,{pc}
+ Timestamp Timestamp: 17107041535
+
+2) Using perf framework:
+
+Coresight tracers are represented using the Perf framework's Performance
+Monitoring Unit (PMU) abstraction. As such the perf framework takes charge of
+controlling when tracing gets enabled based on when the process of interest is
+scheduled. When configured in a system, Coresight PMUs will be listed when
+queried by the perf command line tool:
+
+ linaro@linaro-nano:~$ ./perf list pmu
+
+ List of pre-defined events (to be used in -e):
+
+ cs_etm// [Kernel PMU event]
+
+ linaro@linaro-nano:~$
+
+Regardless of the number of tracers available in a system (usually equal to the
+amount of processor cores), the "cs_etm" PMU will be listed only once.
+
+A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
+listed along with configuration options within forward slashes '/'. Since a
+Coresight system will typically have more than one sink, the name of the sink to
+work with needs to be specified as an event option.
+On newer kernels the available sinks are listed in sysFS under
+($SYSFS)/bus/event_source/devices/cs_etm/sinks/::
+
+ root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
+ tmc_etf0 tmc_etr0 tpiu0
+
+On older kernels, this may need to be found from the list of coresight devices,
+available under ($SYSFS)/bus/coresight/devices/::
+
+ root:~# ls /sys/bus/coresight/devices/
+ etm0 etm1 etm2 etm3 etm4 etm5 funnel0
+ funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0
+ root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program
+
+As mentioned above in section "Device Naming scheme", the names of the devices could
+look different from what is used in the example above. One must use the device names
+as it appears under the sysFS.
+
+The syntax within the forward slashes '/' is important. The '@' character
+tells the parser that a sink is about to be specified and that this is the sink
+to use for the trace session.
+
+More information on the above and other example on how to use Coresight with
+the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
+repository [#third]_.
+
+2.1) AutoFDO analysis using the perf tools:
+
+perf can be used to record and analyze trace of programs.
+
+Execution can be recorded using 'perf record' with the cs_etm event,
+specifying the name of the sink to record to, e.g::
+
+ perf record -e cs_etm/@tmc_etr0/u --per-thread
+
+The 'perf report' and 'perf script' commands can be used to analyze execution,
+synthesizing instruction and branch events from the instruction trace.
+'perf inject' can be used to replace the trace data with the synthesized events.
+The --itrace option controls the type and frequency of synthesized events
+(see perf documentation).
+
+Note that only 64-bit programs are currently supported - further work is
+required to support instruction decode of 32-bit Arm programs.
+
+
+Generating coverage files for Feedback Directed Optimization: AutoFDO
+---------------------------------------------------------------------
+
+'perf inject' accepts the --itrace option in which case tracing data is
+removed and replaced with the synthesized events. e.g.
+::
+
+ perf inject --itrace --strip -i perf.data -o perf.data.new
+
+Below is an example of using ARM ETM for autoFDO. It requires autofdo
+(https://github.com/google/autofdo) and gcc version 5. The bubble
+sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
+::
+
+ $ gcc-5 -O3 sort.c -o sort
+ $ taskset -c 2 ./sort
+ Bubble sorting array of 30000 elements
+ 5910 ms
+
+ $ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
+ Bubble sorting array of 30000 elements
+ 12543 ms
+ [ perf record: Woken up 35 times to write data ]
+ [ perf record: Captured and wrote 69.640 MB perf.data ]
+
+ $ perf inject -i perf.data -o inj.data --itrace=il64 --strip
+ $ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
+ $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
+ $ taskset -c 2 ./sort_autofdo
+ Bubble sorting array of 30000 elements
+ 5806 ms
+
+
+How to use the STM module
+-------------------------
+
+Using the System Trace Macrocell module is the same as the tracers - the only
+difference is that clients are driving the trace capture rather
+than the program flow through the code.
+
+As with any other CoreSight component, specifics about the STM tracer can be
+found in sysfs with more information on each entry being found in [#first]_::
+
+ root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
+ enable_source hwevent_select port_enable subsystem uevent
+ hwevent_enable mgmt port_select traceid
+ root@genericarmv8:~#
+
+Like any other source a sink needs to be identified and the STM enabled before
+being used::
+
+ root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_sink
+ root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source
+
+From there user space applications can request and use channels using the devfs
+interface provided for that purpose by the generic STM API::
+
+ root@genericarmv8:~# ls -l /dev/stm0
+ crw------- 1 root root 10, 61 Jan 3 18:11 /dev/stm0
+ root@genericarmv8:~#
+
+Details on how to use the generic STM API can be found here [#second]_.
+
+.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
+
+.. [#second] Documentation/trace/stm.rst
+
+.. [#third] https://github.com/Linaro/perf-opencsd
diff --git a/Documentation/trace/coresight.txt b/Documentation/trace/coresight.txt
deleted file mode 100644
index efbc832146e7..000000000000
--- a/Documentation/trace/coresight.txt
+++ /dev/null
@@ -1,430 +0,0 @@
- Coresight - HW Assisted Tracing on ARM
- ======================================
-
- Author: Mathieu Poirier <mathieu.poirier@linaro.org>
- Date: September 11th, 2014
-
-Introduction
-------------
-
-Coresight is an umbrella of technologies allowing for the debugging of ARM
-based SoC. It includes solutions for JTAG and HW assisted tracing. This
-document is concerned with the latter.
-
-HW assisted tracing is becoming increasingly useful when dealing with systems
-that have many SoCs and other components like GPU and DMA engines. ARM has
-developed a HW assisted tracing solution by means of different components, each
-being added to a design at synthesis time to cater to specific tracing needs.
-Components are generally categorised as source, link and sinks and are
-(usually) discovered using the AMBA bus.
-
-"Sources" generate a compressed stream representing the processor instruction
-path based on tracing scenarios as configured by users. From there the stream
-flows through the coresight system (via ATB bus) using links that are connecting
-the emanating source to a sink(s). Sinks serve as endpoints to the coresight
-implementation, either storing the compressed stream in a memory buffer or
-creating an interface to the outside world where data can be transferred to a
-host without fear of filling up the onboard coresight memory buffer.
-
-At typical coresight system would look like this:
-
- *****************************************************************
- **************************** AMBA AXI ****************************===||
- ***************************************************************** ||
- ^ ^ | ||
- | | * **
- 0000000 ::::: 0000000 ::::: ::::: @@@@@@@ ||||||||||||
- 0 CPU 0<-->: C : 0 CPU 0<-->: C : : C : @ STM @ || System ||
- |->0000000 : T : |->0000000 : T : : T :<--->@@@@@ || Memory ||
- | #######<-->: I : | #######<-->: I : : I : @@@<-| ||||||||||||
- | # ETM # ::::: | # PTM # ::::: ::::: @ |
- | ##### ^ ^ | ##### ^ ! ^ ! . | |||||||||
- | |->### | ! | |->### | ! | ! . | || DAP ||
- | | # | ! | | # | ! | ! . | |||||||||
- | | . | ! | | . | ! | ! . | | |
- | | . | ! | | . | ! | ! . | | *
- | | . | ! | | . | ! | ! . | | SWD/
- | | . | ! | | . | ! | ! . | | JTAG
- *****************************************************************<-|
- *************************** AMBA Debug APB ************************
- *****************************************************************
- | . ! . ! ! . |
- | . * . * * . |
- *****************************************************************
- ******************** Cross Trigger Matrix (CTM) *******************
- *****************************************************************
- | . ^ . . |
- | * ! * * |
- *****************************************************************
- ****************** AMBA Advanced Trace Bus (ATB) ******************
- *****************************************************************
- | ! =============== |
- | * ===== F =====<---------|
- | ::::::::: ==== U ====
- |-->:: CTI ::<!! === N ===
- | ::::::::: ! == N ==
- | ^ * == E ==
- | ! &&&&&&&&& IIIIIII == L ==
- |------>&& ETB &&<......II I =======
- | ! &&&&&&&&& II I .
- | ! I I .
- | ! I REP I<..........
- | ! I I
- | !!>&&&&&&&&& II I *Source: ARM ltd.
- |------>& TPIU &<......II I DAP = Debug Access Port
- &&&&&&&&& IIIIIII ETM = Embedded Trace Macrocell
- ; PTM = Program Trace Macrocell
- ; CTI = Cross Trigger Interface
- * ETB = Embedded Trace Buffer
- To trace port TPIU= Trace Port Interface Unit
- SWD = Serial Wire Debug
-
-While on target configuration of the components is done via the APB bus,
-all trace data are carried out-of-band on the ATB bus. The CTM provides
-a way to aggregate and distribute signals between CoreSight components.
-
-The coresight framework provides a central point to represent, configure and
-manage coresight devices on a platform. This first implementation centers on
-the basic tracing functionality, enabling components such ETM/PTM, funnel,
-replicator, TMC, TPIU and ETB. Future work will enable more
-intricate IP blocks such as STM and CTI.
-
-
-Acronyms and Classification
----------------------------
-
-Acronyms:
-
-PTM: Program Trace Macrocell
-ETM: Embedded Trace Macrocell
-STM: System trace Macrocell
-ETB: Embedded Trace Buffer
-ITM: Instrumentation Trace Macrocell
-TPIU: Trace Port Interface Unit
-TMC-ETR: Trace Memory Controller, configured as Embedded Trace Router
-TMC-ETF: Trace Memory Controller, configured as Embedded Trace FIFO
-CTI: Cross Trigger Interface
-
-Classification:
-
-Source:
- ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
-Link:
- Funnel, replicator (intelligent or not), TMC-ETR
-Sinks:
- ETBv1.0, ETB1.1, TPIU, TMC-ETF
-Misc:
- CTI
-
-
-Device Tree Bindings
-----------------------
-
-See Documentation/devicetree/bindings/arm/coresight.txt for details.
-
-As of this writing drivers for ITM, STMs and CTIs are not provided but are
-expected to be added as the solution matures.
-
-
-Framework and implementation
-----------------------------
-
-The coresight framework provides a central point to represent, configure and
-manage coresight devices on a platform. Any coresight compliant device can
-register with the framework for as long as they use the right APIs:
-
-struct coresight_device *coresight_register(struct coresight_desc *desc);
-void coresight_unregister(struct coresight_device *csdev);
-
-The registering function is taking a "struct coresight_device *csdev" and
-register the device with the core framework. The unregister function takes
-a reference to a "struct coresight_device", obtained at registration time.
-
-If everything goes well during the registration process the new devices will
-show up under /sys/bus/coresight/devices, as showns here for a TC2 platform:
-
-root:~# ls /sys/bus/coresight/devices/
-replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
-20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
-root:~#
-
-The functions take a "struct coresight_device", which looks like this:
-
-struct coresight_desc {
- enum coresight_dev_type type;
- struct coresight_dev_subtype subtype;
- const struct coresight_ops *ops;
- struct coresight_platform_data *pdata;
- struct device *dev;
- const struct attribute_group **groups;
-};
-
-
-The "coresight_dev_type" identifies what the device is, i.e, source link or
-sink while the "coresight_dev_subtype" will characterise that type further.
-
-The "struct coresight_ops" is mandatory and will tell the framework how to
-perform base operations related to the components, each component having
-a different set of requirement. For that "struct coresight_ops_sink",
-"struct coresight_ops_link" and "struct coresight_ops_source" have been
-provided.
-
-The next field, "struct coresight_platform_data *pdata" is acquired by calling
-"of_get_coresight_platform_data()", as part of the driver's _probe routine and
-"struct device *dev" gets the device reference embedded in the "amba_device":
-
-static int etm_probe(struct amba_device *adev, const struct amba_id *id)
-{
- ...
- ...
- drvdata->dev = &adev->dev;
- ...
-}
-
-Specific class of device (source, link, or sink) have generic operations
-that can be performed on them (see "struct coresight_ops"). The
-"**groups" is a list of sysfs entries pertaining to operations
-specific to that component only. "Implementation defined" customisations are
-expected to be accessed and controlled using those entries.
-
-
-How to use the tracer modules
------------------------------
-
-There are two ways to use the Coresight framework: 1) using the perf cmd line
-tools and 2) interacting directly with the Coresight devices using the sysFS
-interface. Preference is given to the former as using the sysFS interface
-requires a deep understanding of the Coresight HW. The following sections
-provide details on using both methods.
-
-1) Using the sysFS interface:
-
-Before trace collection can start, a coresight sink needs to be identified.
-There is no limit on the amount of sinks (nor sources) that can be enabled at
-any given moment. As a generic operation, all device pertaining to the sink
-class will have an "active" entry in sysfs:
-
-root:/sys/bus/coresight/devices# ls
-replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
-20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
-root:/sys/bus/coresight/devices# ls 20010000.etb
-enable_sink status trigger_cntr
-root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
-root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
-1
-root:/sys/bus/coresight/devices#
-
-At boot time the current etm3x driver will configure the first address
-comparator with "_stext" and "_etext", essentially tracing any instruction
-that falls within that range. As such "enabling" a source will immediately
-trigger a trace capture:
-
-root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
-root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
-1
-root:/sys/bus/coresight/devices# cat 20010000.etb/status
-Depth: 0x2000
-Status: 0x1
-RAM read ptr: 0x0
-RAM wrt ptr: 0x19d3 <----- The write pointer is moving
-Trigger cnt: 0x0
-Control: 0x1
-Flush status: 0x0
-Flush ctrl: 0x2001
-root:/sys/bus/coresight/devices#
-
-Trace collection is stopped the same way:
-
-root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
-root:/sys/bus/coresight/devices#
-
-The content of the ETB buffer can be harvested directly from /dev:
-
-root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
-of=~/cstrace.bin
-
-64+0 records in
-64+0 records out
-32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
-root:/sys/bus/coresight/devices#
-
-The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
-
-Following is a DS-5 output of an experimental loop that increments a variable up
-to a certain value. The example is simple and yet provides a glimpse of the
-wealth of possibilities that coresight provides.
-
-Info Tracing enabled
-Instruction 106378866 0x8026B53C E52DE004 false PUSH {lr}
-Instruction 0 0x8026B540 E24DD00C false SUB sp,sp,#0xc
-Instruction 0 0x8026B544 E3A03000 false MOV r3,#0
-Instruction 0 0x8026B548 E58D3004 false STR r3,[sp,#4]
-Instruction 0 0x8026B54C E59D3004 false LDR r3,[sp,#4]
-Instruction 0 0x8026B550 E3530004 false CMP r3,#4
-Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
-Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
-Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
-Timestamp Timestamp: 17106715833
-Instruction 319 0x8026B54C E59D3004 false LDR r3,[sp,#4]
-Instruction 0 0x8026B550 E3530004 false CMP r3,#4
-Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
-Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
-Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
-Instruction 9 0x8026B54C E59D3004 false LDR r3,[sp,#4]
-Instruction 0 0x8026B550 E3530004 false CMP r3,#4
-Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
-Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
-Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
-Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
-Instruction 0 0x8026B550 E3530004 false CMP r3,#4
-Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
-Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
-Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
-Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
-Instruction 0 0x8026B550 E3530004 false CMP r3,#4
-Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
-Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
-Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
-Instruction 10 0x8026B54C E59D3004 false LDR r3,[sp,#4]
-Instruction 0 0x8026B550 E3530004 false CMP r3,#4
-Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
-Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
-Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
-Instruction 6 0x8026B560 EE1D3F30 false MRC p15,#0x0,r3,c13,c0,#1
-Instruction 0 0x8026B564 E1A0100D false MOV r1,sp
-Instruction 0 0x8026B568 E3C12D7F false BIC r2,r1,#0x1fc0
-Instruction 0 0x8026B56C E3C2203F false BIC r2,r2,#0x3f
-Instruction 0 0x8026B570 E59D1004 false LDR r1,[sp,#4]
-Instruction 0 0x8026B574 E59F0010 false LDR r0,[pc,#16] ; [0x8026B58C] = 0x80550368
-Instruction 0 0x8026B578 E592200C false LDR r2,[r2,#0xc]
-Instruction 0 0x8026B57C E59221D0 false LDR r2,[r2,#0x1d0]
-Instruction 0 0x8026B580 EB07A4CF true BL {pc}+0x1e9344 ; 0x804548c4
-Info Tracing enabled
-Instruction 13570831 0x8026B584 E28DD00C false ADD sp,sp,#0xc
-Instruction 0 0x8026B588 E8BD8000 true LDM sp!,{pc}
-Timestamp Timestamp: 17107041535
-
-2) Using perf framework:
-
-Coresight tracers are represented using the Perf framework's Performance
-Monitoring Unit (PMU) abstraction. As such the perf framework takes charge of
-controlling when tracing gets enabled based on when the process of interest is
-scheduled. When configured in a system, Coresight PMUs will be listed when
-queried by the perf command line tool:
-
- linaro@linaro-nano:~$ ./perf list pmu
-
- List of pre-defined events (to be used in -e):
-
- cs_etm// [Kernel PMU event]
-
- linaro@linaro-nano:~$
-
-Regardless of the number of tracers available in a system (usually equal to the
-amount of processor cores), the "cs_etm" PMU will be listed only once.
-
-A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
-listed along with configuration options within forward slashes '/'. Since a
-Coresight system will typically have more than one sink, the name of the sink to
-work with needs to be specified as an event option. Names for sink to choose
-from are listed in sysFS under ($SYSFS)/bus/coresight/devices:
-
- root@linaro-nano:~# ls /sys/bus/coresight/devices/
- 20010000.etf 20040000.funnel 20100000.stm 22040000.etm
- 22140000.etm 230c0000.funnel 23240000.etm 20030000.tpiu
- 20070000.etr 20120000.replicator 220c0000.funnel
- 23040000.etm 23140000.etm 23340000.etm
-
- root@linaro-nano:~# perf record -e cs_etm/@20070000.etr/u --per-thread program
-
-The syntax within the forward slashes '/' is important. The '@' character
-tells the parser that a sink is about to be specified and that this is the sink
-to use for the trace session.
-
-More information on the above and other example on how to use Coresight with
-the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
-repository [3].
-
-2.1) AutoFDO analysis using the perf tools:
-
-perf can be used to record and analyze trace of programs.
-
-Execution can be recorded using 'perf record' with the cs_etm event,
-specifying the name of the sink to record to, e.g:
-
- perf record -e cs_etm/@20070000.etr/u --per-thread
-
-The 'perf report' and 'perf script' commands can be used to analyze execution,
-synthesizing instruction and branch events from the instruction trace.
-'perf inject' can be used to replace the trace data with the synthesized events.
-The --itrace option controls the type and frequency of synthesized events
-(see perf documentation).
-
-Note that only 64-bit programs are currently supported - further work is
-required to support instruction decode of 32-bit Arm programs.
-
-
-Generating coverage files for Feedback Directed Optimization: AutoFDO
----------------------------------------------------------------------
-
-'perf inject' accepts the --itrace option in which case tracing data is
-removed and replaced with the synthesized events. e.g.
-
- perf inject --itrace --strip -i perf.data -o perf.data.new
-
-Below is an example of using ARM ETM for autoFDO. It requires autofdo
-(https://github.com/google/autofdo) and gcc version 5. The bubble
-sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
-
- $ gcc-5 -O3 sort.c -o sort
- $ taskset -c 2 ./sort
- Bubble sorting array of 30000 elements
- 5910 ms
-
- $ perf record -e cs_etm/@20070000.etr/u --per-thread taskset -c 2 ./sort
- Bubble sorting array of 30000 elements
- 12543 ms
- [ perf record: Woken up 35 times to write data ]
- [ perf record: Captured and wrote 69.640 MB perf.data ]
-
- $ perf inject -i perf.data -o inj.data --itrace=il64 --strip
- $ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
- $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
- $ taskset -c 2 ./sort_autofdo
- Bubble sorting array of 30000 elements
- 5806 ms
-
-
-How to use the STM module
--------------------------
-
-Using the System Trace Macrocell module is the same as the tracers - the only
-difference is that clients are driving the trace capture rather
-than the program flow through the code.
-
-As with any other CoreSight component, specifics about the STM tracer can be
-found in sysfs with more information on each entry being found in [1]:
-
-root@genericarmv8:~# ls /sys/bus/coresight/devices/20100000.stm
-enable_source hwevent_select port_enable subsystem uevent
-hwevent_enable mgmt port_select traceid
-root@genericarmv8:~#
-
-Like any other source a sink needs to be identified and the STM enabled before
-being used:
-
-root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20010000.etf/enable_sink
-root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20100000.stm/enable_source
-
-From there user space applications can request and use channels using the devfs
-interface provided for that purpose by the generic STM API:
-
-root@genericarmv8:~# ls -l /dev/20100000.stm
-crw------- 1 root root 10, 61 Jan 3 18:11 /dev/20100000.stm
-root@genericarmv8:~#
-
-Details on how to use the generic STM API can be found here [2].
-
-[1]. Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
-[2]. Documentation/trace/stm.rst
-[3]. https://github.com/Linaro/perf-opencsd
diff --git a/Documentation/trace/ftrace.rst b/Documentation/trace/ftrace.rst
index f60079259669..e3060eedb22d 100644
--- a/Documentation/trace/ftrace.rst
+++ b/Documentation/trace/ftrace.rst
@@ -125,7 +125,8 @@ of ftrace. Here is a list of some of the key files:
This file holds the output of the trace in a human
readable format (described below). Note, tracing is temporarily
- disabled while this file is being read (opened).
+ disabled when the file is open for reading. Once all readers
+ are closed, tracing is re-enabled.
trace_pipe:
@@ -139,8 +140,9 @@ of ftrace. Here is a list of some of the key files:
will not be read again with a sequential read. The
"trace" file is static, and if the tracer is not
adding more data, it will display the same
- information every time it is read. This file will not
- disable tracing while being read.
+ information every time it is read. Unlike the
+ "trace" file, opening this file for reading will not
+ temporarily disable tracing.
trace_options:
@@ -3153,7 +3155,10 @@ different. The trace is live.
Note, reading the trace_pipe file will block until more input is
-added.
+added. This is contrary to the trace file. If any process opened
+the trace file for reading, it will actually disable tracing and
+prevent new entries from being added. The trace_pipe file does
+not have this limitation.
trace entries
-------------
diff --git a/Documentation/trace/histogram.rst b/Documentation/trace/histogram.rst
index fb621a1c2638..8408670d0328 100644
--- a/Documentation/trace/histogram.rst
+++ b/Documentation/trace/histogram.rst
@@ -1010,7 +1010,7 @@ Extended error information
For example, suppose we wanted to take a look at the relative
weights in terms of skb length for each callpath that leads to a
- netif_receieve_skb event when downloading a decent-sized file using
+ netif_receive_skb event when downloading a decent-sized file using
wget.
First we set up an initially paused stacktrace trigger on the
@@ -1843,7 +1843,7 @@ practice, not every handler.action combination is currently supported;
if a given handler.action combination isn't supported, the hist
trigger will fail with -EINVAL;
-The default 'handler.action' if none is explicity specified is as it
+The default 'handler.action' if none is explicitly specified is as it
always has been, to simply update the set of values associated with an
entry. Some applications, however, may want to perform additional
actions at that point, such as generate another event, or compare and
@@ -2088,7 +2088,7 @@ The following commonly-used handler.action pairs are available:
and the saved values corresponding to the max are displayed
following the rest of the fields.
- If a snaphot was taken, there is also a message indicating that,
+ If a snapshot was taken, there is also a message indicating that,
along with the value and event that triggered the global maximum:
# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
@@ -2176,7 +2176,7 @@ The following commonly-used handler.action pairs are available:
hist trigger entry.
Note that in this case the changed value is a global variable
- associated withe current trace instance. The key of the specific
+ associated with current trace instance. The key of the specific
trace event that caused the value to change and the global value
itself are displayed, along with a message stating that a snapshot
has been taken and where to find it. The user can use the key
@@ -2203,7 +2203,7 @@ The following commonly-used handler.action pairs are available:
and the saved values corresponding to that value are displayed
following the rest of the fields.
- If a snaphot was taken, there is also a message indicating that,
+ If a snapshot was taken, there is also a message indicating that,
along with the value and event that triggered the snapshot::
# cat /sys/kernel/debug/tracing/events/tcp/tcp_probe/hist
diff --git a/Documentation/trace/index.rst b/Documentation/trace/index.rst
index 6b4107cf4b98..b7891cb1ab4d 100644
--- a/Documentation/trace/index.rst
+++ b/Documentation/trace/index.rst
@@ -23,3 +23,5 @@ Linux Tracing Technologies
intel_th
stm
sys-t
+ coresight
+ coresight-cpu-debug
diff --git a/Documentation/trace/kprobetrace.rst b/Documentation/trace/kprobetrace.rst
index 235ce2ab131a..55993055902c 100644
--- a/Documentation/trace/kprobetrace.rst
+++ b/Documentation/trace/kprobetrace.rst
@@ -51,15 +51,18 @@ Synopsis of kprobe_events
$argN : Fetch the Nth function argument. (N >= 1) (\*1)
$retval : Fetch return value.(\*2)
$comm : Fetch current task comm.
- +|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(\*3)
+ +|-[u]OFFS(FETCHARG) : Fetch memory at FETCHARG +|- OFFS address.(\*3)(\*4)
+ \IMM : Store an immediate value to the argument.
NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
(u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
- (x8/x16/x32/x64), "string" and bitfield are supported.
+ (x8/x16/x32/x64), "string", "ustring" and bitfield
+ are supported.
(\*1) only for the probe on function entry (offs == 0).
(\*2) only for return probe.
(\*3) this is useful for fetching a field of data structures.
+ (\*4) "u" means user-space dereference. See :ref:`user_mem_access`.
Types
-----
@@ -77,7 +80,8 @@ apply it to registers/stack-entries etc. (for example, '$stack1:x8[8]' is
wrong, but '+8($stack):x8[8]' is OK.)
String type is a special type, which fetches a "null-terminated" string from
kernel space. This means it will fail and store NULL if the string container
-has been paged out.
+has been paged out. "ustring" type is an alternative of string for user-space.
+See :ref:`user_mem_access` for more info..
The string array type is a bit different from other types. For other base
types, <base-type>[1] is equal to <base-type> (e.g. +0(%di):x32[1] is same
as +0(%di):x32.) But string[1] is not equal to string. The string type itself
@@ -92,6 +96,25 @@ Symbol type('symbol') is an alias of u32 or u64 type (depends on BITS_PER_LONG)
which shows given pointer in "symbol+offset" style.
For $comm, the default type is "string"; any other type is invalid.
+.. _user_mem_access:
+User Memory Access
+------------------
+Kprobe events supports user-space memory access. For that purpose, you can use
+either user-space dereference syntax or 'ustring' type.
+
+The user-space dereference syntax allows you to access a field of a data
+structure in user-space. This is done by adding the "u" prefix to the
+dereference syntax. For example, +u4(%si) means it will read memory from the
+address in the register %si offset by 4, and the memory is expected to be in
+user-space. You can use this for strings too, e.g. +u0(%si):string will read
+a string from the address in the register %si that is expected to be in user-
+space. 'ustring' is a shortcut way of performing the same task. That is,
++0(%si):ustring is equivalent to +u0(%si):string.
+
+Note that kprobe-event provides the user-memory access syntax but it doesn't
+use it transparently. This means if you use normal dereference or string type
+for user memory, it might fail, and may always fail on some archs. The user
+has to carefully check if the target data is in kernel or user space.
Per-Probe Event Filtering
-------------------------
@@ -124,6 +147,20 @@ You can check the total number of probe hits and probe miss-hits via
The first column is event name, the second is the number of probe hits,
the third is the number of probe miss-hits.
+Kernel Boot Parameter
+---------------------
+You can add and enable new kprobe events when booting up the kernel by
+"kprobe_event=" parameter. The parameter accepts a semicolon-delimited
+kprobe events, which format is similar to the kprobe_events.
+The difference is that the probe definition parameters are comma-delimited
+instead of space. For example, adding myprobe event on do_sys_open like below
+
+ p:myprobe do_sys_open dfd=%ax filename=%dx flags=%cx mode=+4($stack)
+
+should be below for kernel boot parameter (just replace spaces with comma)
+
+ p:myprobe,do_sys_open,dfd=%ax,filename=%dx,flags=%cx,mode=+4($stack)
+
Usage examples
--------------
@@ -189,6 +226,13 @@ events, you need to enable it.
echo 1 > /sys/kernel/debug/tracing/events/kprobes/myprobe/enable
echo 1 > /sys/kernel/debug/tracing/events/kprobes/myretprobe/enable
+Use the following command to start tracing in an interval.
+::
+
+ # echo 1 > tracing_on
+ Open something...
+ # echo 0 > tracing_on
+
And you can see the traced information via /sys/kernel/debug/tracing/trace.
::
diff --git a/Documentation/trace/uprobetracer.rst b/Documentation/trace/uprobetracer.rst
index 4346e23e3ae7..98cde99939d7 100644
--- a/Documentation/trace/uprobetracer.rst
+++ b/Documentation/trace/uprobetracer.rst
@@ -42,16 +42,19 @@ Synopsis of uprobe_tracer
@+OFFSET : Fetch memory at OFFSET (OFFSET from same file as PATH)
$stackN : Fetch Nth entry of stack (N >= 0)
$stack : Fetch stack address.
- $retval : Fetch return value.(*)
+ $retval : Fetch return value.(\*1)
$comm : Fetch current task comm.
- +|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
+ +|-[u]OFFS(FETCHARG) : Fetch memory at FETCHARG +|- OFFS address.(\*2)(\*3)
+ \IMM : Store an immediate value to the argument.
NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
(u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
(x8/x16/x32/x64), "string" and bitfield are supported.
- (*) only for return probe.
- (**) this is useful for fetching a field of data structures.
+ (\*1) only for return probe.
+ (\*2) this is useful for fetching a field of data structures.
+ (\*3) Unlike kprobe event, "u" prefix will just be ignored, becuse uprobe
+ events can access only user-space memory.
Types
-----
@@ -152,10 +155,15 @@ events, you need to enable it by::
# echo 1 > events/uprobes/enable
-Lets disable the event after sleeping for some time.
+Lets start tracing, sleep for some time and stop tracing.
::
+ # echo 1 > tracing_on
# sleep 20
+ # echo 0 > tracing_on
+
+Also, you can disable the event by::
+
# echo 0 > events/uprobes/enable
And you can see the traced information via /sys/kernel/debug/tracing/trace.
diff --git a/Documentation/translations/it_IT/admin-guide/kernel-parameters.rst b/Documentation/translations/it_IT/admin-guide/kernel-parameters.rst
new file mode 100644
index 000000000000..0e36d82a92be
--- /dev/null
+++ b/Documentation/translations/it_IT/admin-guide/kernel-parameters.rst
@@ -0,0 +1,12 @@
+.. include:: ../disclaimer-ita.rst
+
+:Original: :ref:`Documentation/admin-guide/kernel-parameters.rst <kernelparameters>`
+
+.. _it_kernelparameters:
+
+I parametri da linea di comando del kernel
+==========================================
+
+.. warning::
+
+ TODO ancora da tradurre
diff --git a/Documentation/translations/it_IT/doc-guide/sphinx.rst b/Documentation/translations/it_IT/doc-guide/sphinx.rst
index 793b5cc33403..f1ad4504b734 100644
--- a/Documentation/translations/it_IT/doc-guide/sphinx.rst
+++ b/Documentation/translations/it_IT/doc-guide/sphinx.rst
@@ -35,8 +35,7 @@ Installazione Sphinx
====================
I marcatori ReST utilizzati nei file in Documentation/ sono pensati per essere
-processati da ``Sphinx`` nella versione 1.3 o superiore. Se desiderate produrre
-un documento PDF è raccomandato l'utilizzo di una versione superiore alle 1.4.6.
+processati da ``Sphinx`` nella versione 1.3 o superiore.
Esiste uno script che verifica i requisiti Sphinx. Per ulteriori dettagli
consultate :ref:`it_sphinx-pre-install`.
@@ -68,13 +67,13 @@ pacchettizzato dalla vostra distribuzione.
utilizzando LaTeX. Per una corretta interpretazione, è necessario aver
installato texlive con i pacchetti amdfonts e amsmath.
-Riassumendo, se volete installare la versione 1.4.9 di Sphinx dovete eseguire::
+Riassumendo, se volete installare la versione 1.7.9 di Sphinx dovete eseguire::
- $ virtualenv sphinx_1.4
- $ . sphinx_1.4/bin/activate
- (sphinx_1.4) $ pip install -r Documentation/sphinx/requirements.txt
+ $ virtualenv sphinx_1.7.9
+ $ . sphinx_1.7.9/bin/activate
+ (sphinx_1.7.9) $ pip install -r Documentation/sphinx/requirements.txt
-Dopo aver eseguito ``. sphinx_1.4/bin/activate``, il prompt cambierà per
+Dopo aver eseguito ``. sphinx_1.7.9/bin/activate``, il prompt cambierà per
indicare che state usando il nuovo ambiente. Se aprite un nuova sessione,
prima di generare la documentazione, dovrete rieseguire questo comando per
rientrare nell'ambiente virtuale.
@@ -120,8 +119,8 @@ l'installazione::
You should run:
sudo dnf install -y texlive-luatex85
- /usr/bin/virtualenv sphinx_1.4
- . sphinx_1.4/bin/activate
+ /usr/bin/virtualenv sphinx_1.7.9
+ . sphinx_1.7.9/bin/activate
pip install -r Documentation/sphinx/requirements.txt
Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.
@@ -243,8 +242,9 @@ del kernel:
* Per inserire blocchi di testo con caratteri a dimensione fissa (codici di
esempio, casi d'uso, eccetera): utilizzate ``::`` quando non è necessario
evidenziare la sintassi, specialmente per piccoli frammenti; invece,
- utilizzate ``.. code-block:: <language>`` per blocchi di più lunghi che
- potranno beneficiare dell'avere la sintassi evidenziata.
+ utilizzate ``.. code-block:: <language>`` per blocchi più lunghi che
+ beneficeranno della sintassi evidenziata. Per un breve pezzo di codice da
+ inserire nel testo, usate \`\`.
Il dominio C
@@ -268,12 +268,14 @@ molto comune come ``open`` o ``ioctl``:
Il nome della funzione (per esempio ioctl) rimane nel testo ma il nome del suo
riferimento cambia da ``ioctl`` a ``VIDIOC_LOG_STATUS``. Anche la voce
-nell'indice cambia in ``VIDIOC_LOG_STATUS`` e si potrà quindi fare riferimento
-a questa funzione scrivendo:
-
-.. code-block:: rst
-
- :c:func:`VIDIOC_LOG_STATUS`
+nell'indice cambia in ``VIDIOC_LOG_STATUS``.
+
+Notate che per una funzione non c'è bisogno di usare ``c:func:`` per generarne
+i riferimenti nella documentazione. Grazie a qualche magica estensione a
+Sphinx, il sistema di generazione della documentazione trasformerà
+automaticamente un riferimento ad una ``funzione()`` in un riferimento
+incrociato quando questa ha una voce nell'indice. Se trovate degli usi di
+``c:func:`` nella documentazione del kernel, sentitevi liberi di rimuoverli.
Tabelle a liste
diff --git a/Documentation/translations/it_IT/kernel-hacking/hacking.rst b/Documentation/translations/it_IT/kernel-hacking/hacking.rst
index 7178e517af0a..24c592852bf1 100644
--- a/Documentation/translations/it_IT/kernel-hacking/hacking.rst
+++ b/Documentation/translations/it_IT/kernel-hacking/hacking.rst
@@ -755,7 +755,7 @@ anche per avere patch pulite, c'è del lavoro amministrativo da fare:
- Solitamente vorrete un'opzione di configurazione per la vostra modifica
al kernel. Modificate ``Kconfig`` nella cartella giusta. Il linguaggio
Config è facile con copia ed incolla, e c'è una completa documentazione
- nel file ``Documentation/kbuild/kconfig-language.txt``.
+ nel file ``Documentation/kbuild/kconfig-language.rst``.
Nella descrizione della vostra opzione, assicuratevi di parlare sia agli
utenti esperti sia agli utente che non sanno nulla del vostro lavoro.
@@ -767,7 +767,7 @@ anche per avere patch pulite, c'è del lavoro amministrativo da fare:
- Modificate il file ``Makefile``: le variabili CONFIG sono esportate qui,
quindi potete solitamente aggiungere una riga come la seguete
"obj-$(CONFIG_xxx) += xxx.o". La sintassi è documentata nel file
- ``Documentation/kbuild/makefiles.txt``.
+ ``Documentation/kbuild/makefiles.rst``.
- Aggiungete voi stessi in ``CREDITS`` se avete fatto qualcosa di notevole,
solitamente qualcosa che supera il singolo file (comunque il vostro nome
diff --git a/Documentation/translations/it_IT/kernel-hacking/locking.rst b/Documentation/translations/it_IT/kernel-hacking/locking.rst
index 0ef31666663b..b9a6be4b8499 100644
--- a/Documentation/translations/it_IT/kernel-hacking/locking.rst
+++ b/Documentation/translations/it_IT/kernel-hacking/locking.rst
@@ -468,7 +468,7 @@ e tutti gli oggetti che contiene. Ecco il codice::
if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
return -ENOMEM;
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
@@ -678,7 +678,7 @@ Ecco il codice::
}
@@ -63,6 +94,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
+ obj->refcnt = 1; /* The cache holds a reference */
@@ -792,7 +792,7 @@ contatore stesso.
}
@@ -94,7 +76,7 @@
- strlcpy(obj->name, name, sizeof(obj->name));
+ strscpy(obj->name, name, sizeof(obj->name));
obj->id = id;
obj->popularity = 0;
- obj->refcnt = 1; /* The cache holds a reference */
@@ -1404,7 +1404,7 @@ Riferimento per l'API dei Futex
Approfondimenti
===============
-- ``Documentation/locking/spinlocks.txt``: la guida di Linus Torvalds agli
+- ``Documentation/locking/spinlocks.rst``: la guida di Linus Torvalds agli
spinlock del kernel.
- Unix Systems for Modern Architectures: Symmetric Multiprocessing and
diff --git a/Documentation/translations/it_IT/process/4.Coding.rst b/Documentation/translations/it_IT/process/4.Coding.rst
index c05b89e616dd..a5e36aa60448 100644
--- a/Documentation/translations/it_IT/process/4.Coding.rst
+++ b/Documentation/translations/it_IT/process/4.Coding.rst
@@ -314,7 +314,7 @@ di allocazione di memoria sarà destinata al fallimento; questi fallimenti
possono essere ridotti ad uno specifico pezzo di codice. Procedere con
l'inserimento dei fallimenti attivo permette al programmatore di verificare
come il codice risponde quando le cose vanno male. Consultate:
-Documentation/fault-injection/fault-injection.txt per avere maggiori
+Documentation/fault-injection/fault-injection.rst per avere maggiori
informazioni su come utilizzare questo strumento.
Altre tipologie di errori possono essere riscontrati con lo strumento di
diff --git a/Documentation/translations/it_IT/process/adding-syscalls.rst b/Documentation/translations/it_IT/process/adding-syscalls.rst
index e0a64b0688a7..c3a3439595a6 100644
--- a/Documentation/translations/it_IT/process/adding-syscalls.rst
+++ b/Documentation/translations/it_IT/process/adding-syscalls.rst
@@ -39,7 +39,7 @@ vostra interfaccia.
un qualche modo opaca.
- Se dovete esporre solo delle informazioni sul sistema, un nuovo nodo in
- sysfs (vedere ``Documentation/translations/it_IT/filesystems/sysfs.txt``) o
+ sysfs (vedere ``Documentation/filesystems/sysfs.txt``) o
in procfs potrebbe essere sufficiente. Tuttavia, l'accesso a questi
meccanismi richiede che il filesystem sia montato, il che potrebbe non
essere sempre vero (per esempio, in ambienti come namespace/sandbox/chroot).
diff --git a/Documentation/translations/it_IT/process/changes.rst b/Documentation/translations/it_IT/process/changes.rst
index d0874327f301..94a6499742ac 100644
--- a/Documentation/translations/it_IT/process/changes.rst
+++ b/Documentation/translations/it_IT/process/changes.rst
@@ -26,16 +26,15 @@ Prima di pensare d'avere trovato un baco, aggiornate i seguenti programmi
usando, il comando indicato dovrebbe dirvelo.
Questa lista presume che abbiate già un kernel Linux funzionante. In aggiunta,
-non tutti gli strumenti sono necessari ovunque; ovviamente, se non avete un
-modem ISDN, per esempio, probabilmente non dovreste preoccuparvi di
-isdn4k-utils.
+non tutti gli strumenti sono necessari ovunque; ovviamente, se non avete una
+PC Card, per esempio, probabilmente non dovreste preoccuparvi di pcmciautils.
====================== ================= ========================================
Programma Versione minima Comando per verificare la versione
====================== ================= ========================================
GNU C 4.6 gcc --version
GNU make 3.81 make --version
-binutils 2.20 ld -v
+binutils 2.21 ld -v
flex 2.5.35 flex --version
bison 2.0 bison --version
util-linux 2.10o fdformat --version
@@ -49,7 +48,6 @@ btrfs-progs 0.18 btrfsck
pcmciautils 004 pccardctl -V
quota-tools 3.09 quota -V
PPP 2.4.0 pppd --version
-isdn4k-utils 3.1pre1 isdnctrl 2>&1|grep version
nfs-utils 1.0.5 showmount --version
procps 3.2.0 ps --version
oprofile 0.9 oprofiled --version
@@ -81,10 +79,7 @@ Per compilare il kernel vi servirà GNU make 3.81 o successivo.
Binutils
--------
-Il sistema di compilazione, dalla versione 4.13, per la produzione dei passi
-intermedi, si è convertito all'uso di *thin archive* (`ar T`) piuttosto che
-all'uso del *linking* incrementale (`ld -r`). Questo richiede binutils 2.20 o
-successivo.
+Per generare il kernel è necessario avere Binutils 2.21 o superiore.
pkg-config
----------
@@ -286,11 +281,6 @@ col seguente comando::
mknod /dev/ppp c 108 0
-Isdn4k-utils
-------------
-
-Per via della modifica del campo per il numero di telefono, il pacchetto
-isdn4k-utils dev'essere ricompilato o (preferibilmente) aggiornato.
NFS-utils
---------
@@ -456,10 +446,6 @@ PPP
- <ftp://ftp.samba.org/pub/ppp/>
-Isdn4k-utils
-------------
-
-- <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>
NFS-utils
---------
diff --git a/Documentation/translations/it_IT/process/coding-style.rst b/Documentation/translations/it_IT/process/coding-style.rst
index 5ef534c95e69..8995d2d19f20 100644
--- a/Documentation/translations/it_IT/process/coding-style.rst
+++ b/Documentation/translations/it_IT/process/coding-style.rst
@@ -696,7 +696,7 @@ nella stringa di titolo::
...
Per la documentazione completa sui file di configurazione, consultate
-il documento Documentation/translations/it_IT/kbuild/kconfig-language.txt
+il documento Documentation/kbuild/kconfig-language.rst
11) Strutture dati
diff --git a/Documentation/translations/it_IT/process/howto.rst b/Documentation/translations/it_IT/process/howto.rst
index 9903ac7c566b..1db5a1082389 100644
--- a/Documentation/translations/it_IT/process/howto.rst
+++ b/Documentation/translations/it_IT/process/howto.rst
@@ -129,9 +129,9 @@ Di seguito una lista di file che sono presenti nei sorgente del kernel e che
https://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
- http://linux.yyz.us/patch-format.html
+ https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html
- :ref:`Documentation/process/translations/it_IT/stable-api-nonsense.rst <it_stable_api_nonsense>`
+ :ref:`Documentation/translations/it_IT/process/stable-api-nonsense.rst <it_stable_api_nonsense>`
Questo file descrive la motivazioni sottostanti la conscia decisione di
non avere un API stabile all'interno del kernel, incluso cose come:
diff --git a/Documentation/translations/it_IT/process/index.rst b/Documentation/translations/it_IT/process/index.rst
index 2eda85d5cd1e..012de0f3154a 100644
--- a/Documentation/translations/it_IT/process/index.rst
+++ b/Documentation/translations/it_IT/process/index.rst
@@ -27,6 +27,7 @@ Di seguito le guide che ogni sviluppatore dovrebbe leggere.
code-of-conduct
development-process
submitting-patches
+ programming-language
coding-style
maintainer-pgp-guide
email-clients
diff --git a/Documentation/translations/it_IT/process/kernel-docs.rst b/Documentation/translations/it_IT/process/kernel-docs.rst
index 7bd70d661737..38e0a955121a 100644
--- a/Documentation/translations/it_IT/process/kernel-docs.rst
+++ b/Documentation/translations/it_IT/process/kernel-docs.rst
@@ -1,6 +1,7 @@
.. include:: ../disclaimer-ita.rst
:Original: :ref:`Documentation/process/kernel-docs.rst <kernel_docs>`
+:Translator: Federico Vaga <federico.vaga@vaga.pv.it>
.. _it_kernel_docs:
@@ -8,6 +9,10 @@
Indice di documenti per le persone interessate a capire e/o scrivere per il kernel Linux
========================================================================================
-.. warning::
-
- TODO ancora da tradurre
+.. note::
+ Questo documento contiene riferimenti a documenti in lingua inglese; inoltre
+ utilizza dai campi *ReStructuredText* di supporto alla ricerca e che per
+ questo motivo è meglio non tradurre al fine di garantirne un corretto
+ utilizzo.
+ Per questi motivi il documento non verrà tradotto. Per favore fate
+ riferimento al documento originale in lingua inglese.
diff --git a/Documentation/translations/it_IT/process/license-rules.rst b/Documentation/translations/it_IT/process/license-rules.rst
index f058e06996dc..4cd87a3a7bf9 100644
--- a/Documentation/translations/it_IT/process/license-rules.rst
+++ b/Documentation/translations/it_IT/process/license-rules.rst
@@ -303,7 +303,7 @@ essere categorizzate in:
LICENSES/dual
I file in questa cartella contengono il testo completo della rispettiva
- licenza e i suoi `Metatags`_. I nomi dei file sono identici agli
+ licenza e i suoi `Metatag`_. I nomi dei file sono identici agli
identificatori di licenza SPDX che dovrebbero essere usati nei file
sorgenti.
@@ -326,19 +326,19 @@ essere categorizzate in:
Esempio del formato del file::
- Valid-License-Identifier: MPL-1.1
- SPDX-URL: https://spdx.org/licenses/MPL-1.1.html
- Usage-Guide:
- Do NOT use. The MPL-1.1 is not GPL2 compatible. It may only be used for
- dual-licensed files where the other license is GPL2 compatible.
- If you end up using this it MUST be used together with a GPL2 compatible
- license using "OR".
- To use the Mozilla Public License version 1.1 put the following SPDX
- tag/value pair into a comment according to the placement guidelines in
- the licensing rules documentation:
- SPDX-License-Identifier: MPL-1.1
- License-Text:
- Full license text
+ Valid-License-Identifier: MPL-1.1
+ SPDX-URL: https://spdx.org/licenses/MPL-1.1.html
+ Usage-Guide:
+ Do NOT use. The MPL-1.1 is not GPL2 compatible. It may only be used for
+ dual-licensed files where the other license is GPL2 compatible.
+ If you end up using this it MUST be used together with a GPL2 compatible
+ license using "OR".
+ To use the Mozilla Public License version 1.1 put the following SPDX
+ tag/value pair into a comment according to the placement guidelines in
+ the licensing rules documentation:
+ SPDX-License-Identifier: MPL-1.1
+ License-Text:
+ Full license text
|
diff --git a/Documentation/translations/it_IT/process/magic-number.rst b/Documentation/translations/it_IT/process/magic-number.rst
index 5281d53e57ee..ed1121d0ba84 100644
--- a/Documentation/translations/it_IT/process/magic-number.rst
+++ b/Documentation/translations/it_IT/process/magic-number.rst
@@ -1,6 +1,6 @@
.. include:: ../disclaimer-ita.rst
-:Original: :ref:`Documentation/process/magic-numbers.rst <magicnumbers>`
+:Original: :ref:`Documentation/process/magic-number.rst <magicnumbers>`
:Translator: Federico Vaga <federico.vaga@vaga.pv.it>
.. _it_magicnumbers:
diff --git a/Documentation/translations/it_IT/process/maintainer-pgp-guide.rst b/Documentation/translations/it_IT/process/maintainer-pgp-guide.rst
index 276db0e37f43..118fb4153e8f 100644
--- a/Documentation/translations/it_IT/process/maintainer-pgp-guide.rst
+++ b/Documentation/translations/it_IT/process/maintainer-pgp-guide.rst
@@ -248,7 +248,10 @@ possano ricevere la vostra nuova sottochiave::
kernel.
Se per qualche ragione preferite rimanere con sottochiavi RSA, nel comando
- precedente, sostituite "ed25519" con "rsa2048".
+ precedente, sostituite "ed25519" con "rsa2048". In aggiunta, se avete
+ intenzione di usare un dispositivo hardware che non supporta le chiavi
+ ED25519 ECC, come la Nitrokey Pro o la Yubikey, allora dovreste usare
+ "nistp256" al posto di "ed25519".
Copia di riserva della chiave primaria per gestire il recupero da disastro
--------------------------------------------------------------------------
@@ -449,23 +452,27 @@ implementi le funzionalità delle smartcard. Sul mercato ci sono diverse
soluzioni disponibili:
- `Nitrokey Start`_: è Open hardware e Free Software, è basata sul progetto
- `GnuK`_ della FSIJ. Ha il supporto per chiavi ECC, ma meno funzionalità di
- sicurezza (come la resistenza alla manomissione o alcuni attacchi ad un
- canale laterale).
+ `GnuK`_ della FSIJ. Questo è uno dei pochi dispositivi a supportare le chiavi
+ ECC ED25519, ma offre meno funzionalità di sicurezza (come la resistenza
+ alla manomissione o alcuni attacchi ad un canale laterale).
- `Nitrokey Pro`_: è simile alla Nitrokey Start, ma è più resistente alla
- manomissione e offre più funzionalità di sicurezza, ma l'ECC.
-- `Yubikey 4`_: l'hardware e il software sono proprietari, ma è più economica
+ manomissione e offre più funzionalità di sicurezza. La Pro 2 supporta la
+ crittografia ECC (NISTP).
+- `Yubikey 5`_: l'hardware e il software sono proprietari, ma è più economica
della Nitrokey Pro ed è venduta anche con porta USB-C il che è utile con i
computer portatili più recenti. In aggiunta, offre altre funzionalità di
- sicurezza come FIDO, U2F, ma non l'ECC
+ sicurezza come FIDO, U2F, e ora supporta anche le chiavi ECC (NISTP)
`Su LWN c'è una buona recensione`_ dei modelli elencati qui sopra e altri.
+La scelta dipenderà dal costo, dalla disponibilità nella vostra area
+geografica e vostre considerazioni sull'hardware aperto/proprietario.
+
Se volete usare chiavi ECC, la vostra migliore scelta sul mercato è la
Nitrokey Start.
.. _`Nitrokey Start`: https://shop.nitrokey.com/shop/product/nitrokey-start-6
-.. _`Nitrokey Pro`: https://shop.nitrokey.com/shop/product/nitrokey-pro-3
-.. _`Yubikey 4`: https://www.yubico.com/product/yubikey-4-series/
+.. _`Nitrokey Pro 2`: https://shop.nitrokey.com/shop/product/nitrokey-pro-2-3
+.. _`Yubikey 5`: https://www.yubico.com/product/yubikey-5-overview/
.. _Gnuk: http://www.fsij.org/doc-gnuk/
.. _`Su LWN c'è una buona recensione`: https://lwn.net/Articles/736231/
diff --git a/Documentation/translations/it_IT/process/programming-language.rst b/Documentation/translations/it_IT/process/programming-language.rst
new file mode 100644
index 000000000000..f4b006395849
--- /dev/null
+++ b/Documentation/translations/it_IT/process/programming-language.rst
@@ -0,0 +1,51 @@
+.. include:: ../disclaimer-ita.rst
+
+:Original: :ref:`Documentation/process/programming-language.rst <programming_language>`
+:Translator: Federico Vaga <federico.vaga@vaga.pv.it>
+
+.. _it_programming_language:
+
+Linguaggio di programmazione
+============================
+
+Il kernel è scritto nel linguaggio di programmazione C [c-language]_.
+Più precisamente, il kernel viene compilato con ``gcc`` [gcc]_ usando
+l'opzione ``-std=gnu89`` [gcc-c-dialect-options]_: il dialetto GNU
+dello standard ISO C90 (con l'aggiunta di alcune funzionalità da C99)
+
+Questo dialetto contiene diverse estensioni al linguaggio [gnu-extensions]_,
+e molte di queste vengono usate sistematicamente dal kernel.
+
+Il kernel offre un certo livello di supporto per la compilazione con ``clang``
+[clang]_ e ``icc`` [icc]_ su diverse architetture, tuttavia in questo momento
+il supporto non è completo e richiede delle patch aggiuntive.
+
+Attributi
+---------
+
+Una delle estensioni più comuni e usate nel kernel sono gli attributi
+[gcc-attribute-syntax]_. Gli attributi permettono di aggiungere una semantica,
+definita dell'implementazione, alle entità del linguaggio (come le variabili,
+le funzioni o i tipi) senza dover fare importanti modifiche sintattiche al
+linguaggio stesso (come l'aggiunta di nuove parole chiave) [n2049]_.
+
+In alcuni casi, gli attributi sono opzionali (ovvero un compilatore che non
+dovesse supportarli dovrebbe produrre comunque codice corretto, anche se
+più lento o che non esegue controlli aggiuntivi durante la compilazione).
+
+Il kernel definisce alcune pseudo parole chiave (per esempio ``__pure``)
+in alternativa alla sintassi GNU per gli attributi (per esempio
+``__attribute__((__pure__))``) allo scopo di mostrare quali funzionalità si
+possono usare e/o per accorciare il codice.
+
+Per maggiori informazioni consultate il file d'intestazione
+``include/linux/compiler_attributes.h``.
+
+.. [c-language] http://www.open-std.org/jtc1/sc22/wg14/www/standards
+.. [gcc] https://gcc.gnu.org
+.. [clang] https://clang.llvm.org
+.. [icc] https://software.intel.com/en-us/c-compilers
+.. [gcc-c-dialect-options] https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
+.. [gnu-extensions] https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
+.. [gcc-attribute-syntax] https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
+.. [n2049] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
diff --git a/Documentation/translations/it_IT/process/stable-kernel-rules.rst b/Documentation/translations/it_IT/process/stable-kernel-rules.rst
index 48e88e5ad2c5..4f206cee31a7 100644
--- a/Documentation/translations/it_IT/process/stable-kernel-rules.rst
+++ b/Documentation/translations/it_IT/process/stable-kernel-rules.rst
@@ -33,7 +33,7 @@ Regole sul tipo di patch che vengono o non vengono accettate nei sorgenti
- Non deve includere alcuna correzione "banale" (correzioni grammaticali,
pulizia dagli spazi bianchi, eccetera).
- Deve rispettare le regole scritte in
- :ref:`Documentation/translation/it_IT/process/submitting-patches.rst <it_submittingpatches>`
+ :ref:`Documentation/translations/it_IT/process/submitting-patches.rst <it_submittingpatches>`
- Questa patch o una equivalente deve esistere già nei sorgenti principali di
Linux
@@ -43,7 +43,7 @@ Procedura per sottomettere patch per i sorgenti -stable
- Se la patch contiene modifiche a dei file nelle cartelle net/ o drivers/net,
allora seguite le linee guida descritte in
- :ref:`Documentation/translation/it_IT/networking/netdev-FAQ.rst <it_netdev-FAQ>`;
+ :ref:`Documentation/translations/it_IT/networking/netdev-FAQ.rst <it_netdev-FAQ>`;
ma solo dopo aver verificato al seguente indirizzo che la patch non sia
già in coda:
https://patchwork.ozlabs.org/bundle/davem/stable/?series=&submitter=&state=*&q=&archive=
diff --git a/Documentation/translations/it_IT/process/submit-checklist.rst b/Documentation/translations/it_IT/process/submit-checklist.rst
index 70e65a7b3620..995ee69fab11 100644
--- a/Documentation/translations/it_IT/process/submit-checklist.rst
+++ b/Documentation/translations/it_IT/process/submit-checklist.rst
@@ -43,7 +43,7 @@ sottomissione delle patch, in particolare
6) Le opzioni ``CONFIG``, nuove o modificate, non scombussolano il menu
di configurazione e sono preimpostate come disabilitate a meno che non
- soddisfino i criteri descritti in ``Documentation/kbuild/kconfig-language.txt``
+ soddisfino i criteri descritti in ``Documentation/kbuild/kconfig-language.rst``
alla punto "Voci di menu: valori predefiniti".
7) Tutte le nuove opzioni ``Kconfig`` hanno un messaggio di aiuto.
@@ -117,7 +117,7 @@ sottomissione delle patch, in particolare
sorgenti che ne spieghi la logica: cosa fanno e perché.
25) Se la patch aggiunge nuove chiamate ioctl, allora aggiornate
- ``Documentation/ioctl/ioctl-number.txt``.
+ ``Documentation/ioctl/ioctl-number.rst``.
26) Se il codice che avete modificato dipende o usa una qualsiasi interfaccia o
funzionalità del kernel che è associata a uno dei seguenti simboli
diff --git a/Documentation/translations/it_IT/process/submitting-patches.rst b/Documentation/translations/it_IT/process/submitting-patches.rst
index 7d7ea92c5c5a..cba1f8cb61ed 100644
--- a/Documentation/translations/it_IT/process/submitting-patches.rst
+++ b/Documentation/translations/it_IT/process/submitting-patches.rst
@@ -868,7 +868,7 @@ Andrew Morton, "La patch perfetta" (tpp).
<http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, "Formato per la sottomissione di patch per il kernel Linux"
- <http://linux.yyz.us/patch-format.html>
+ <https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html>
Greg Kroah-Hartman, "Come scocciare un manutentore di un sottosistema"
<http://www.kroah.com/log/linux/maintainer.html>
diff --git a/Documentation/translations/ja_JP/SubmittingPatches b/Documentation/translations/ja_JP/SubmittingPatches
index ad979c3c06a6..dd0c3280ba5a 100644
--- a/Documentation/translations/ja_JP/SubmittingPatches
+++ b/Documentation/translations/ja_JP/SubmittingPatches
@@ -693,7 +693,7 @@ Andrew Morton, "The perfect patch" (tpp).
<http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, "Linux kernel patch submission format".
- <http://linux.yyz.us/patch-format.html>
+ <https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html>
Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/2005/03/31/>
diff --git a/Documentation/translations/ja_JP/howto.rst b/Documentation/translations/ja_JP/howto.rst
index 2621b770a745..73ebdab4ced7 100644
--- a/Documentation/translations/ja_JP/howto.rst
+++ b/Documentation/translations/ja_JP/howto.rst
@@ -139,7 +139,7 @@ linux-api@vger.kernel.org に送ることを勧めます。
"The Perfect Patch"
http://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
- http://linux.yyz.us/patch-format.html
+ https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html
:ref:`Documentation/process/stable-api-nonsense.rst <stable_api_nonsense>`
このファイルはカーネルの中に不変の API を持たないことにした意識的
diff --git a/Documentation/translations/ko_KR/howto.rst b/Documentation/translations/ko_KR/howto.rst
index bcd63731b80a..b3f51b19de7c 100644
--- a/Documentation/translations/ko_KR/howto.rst
+++ b/Documentation/translations/ko_KR/howto.rst
@@ -135,7 +135,7 @@ mtk.manpages@gmail.com의 메인테이너에게 보낼 것을 권장한다.
https://www.ozlabs.org/~akpm/stuff/tpp.txt
"Linux kernel patch submission format"
- http://linux.yyz.us/patch-format.html
+ https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html
:ref:`Documentation/process/stable-api-nonsense.rst <stable_api_nonsense>`
이 문서는 의도적으로 커널이 불변하는 API를 갖지 않도록 결정한
diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt
index db0b9d8619f1..2774624ee843 100644
--- a/Documentation/translations/ko_KR/memory-barriers.txt
+++ b/Documentation/translations/ko_KR/memory-barriers.txt
@@ -24,7 +24,7 @@ Documentation/memory-barriers.txt
=========================
저자: David Howells <dhowells@redhat.com>
- Paul E. McKenney <paulmck@linux.vnet.ibm.com>
+ Paul E. McKenney <paulmck@linux.ibm.com>
Will Deacon <will.deacon@arm.com>
Peter Zijlstra <peterz@infradead.org>
@@ -569,7 +569,7 @@ ACQUIRE 는 해당 오퍼레이션의 로드 부분에만 적용되고 RELEASE
[*] 버스 마스터링 DMA 와 일관성에 대해서는 다음을 참고하시기 바랍니다:
- Documentation/PCI/pci.txt
+ Documentation/driver-api/pci/pci.rst
Documentation/DMA-API-HOWTO.txt
Documentation/DMA-API.txt
diff --git a/Documentation/translations/zh_CN/arm/Booting b/Documentation/translations/zh_CN/arm/Booting
index 1fe866f8218f..562e9a2957e6 100644
--- a/Documentation/translations/zh_CN/arm/Booting
+++ b/Documentation/translations/zh_CN/arm/Booting
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm/Booting
+Chinese translated version of Documentation/arm/booting.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Russell King <linux@arm.linux.org.uk>
Chinese maintainer: Fu Wei <tekkamanninja@gmail.com>
---------------------------------------------------------------------
-Documentation/arm/Booting 的中文翻译
+Documentation/arm/booting.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt b/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt
index cd7fc8f34cf9..99af4363984d 100644
--- a/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt
+++ b/Documentation/translations/zh_CN/arm/kernel_user_helpers.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm/kernel_user_helpers.txt
+Chinese translated version of Documentation/arm/kernel_user_helpers.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ Maintainer: Nicolas Pitre <nicolas.pitre@linaro.org>
Dave Martin <dave.martin@linaro.org>
Chinese maintainer: Fu Wei <tekkamanninja@gmail.com>
---------------------------------------------------------------------
-Documentation/arm/kernel_user_helpers.txt 的中文翻译
+Documentation/arm/kernel_user_helpers.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/booting.txt b/Documentation/translations/zh_CN/arm64/booting.txt
index c1dd968c5ee9..5b0164132c71 100644
--- a/Documentation/translations/zh_CN/arm64/booting.txt
+++ b/Documentation/translations/zh_CN/arm64/booting.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/booting.txt
+Chinese translated version of Documentation/arm64/booting.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ M: Will Deacon <will.deacon@arm.com>
zh_CN: Fu Wei <wefu@redhat.com>
C: 55f058e7574c3615dea4615573a19bdb258696c6
---------------------------------------------------------------------
-Documentation/arm64/booting.txt 的中文翻译
+Documentation/arm64/booting.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
@@ -67,8 +67,8 @@ RAM,或可能使用对这个设备已知的 RAM 信息,还可能是引导装
必要性: 强制
设备树数据块(dtb)必须 8 字节对齐,且大小不能超过 2MB。由于设备树
-数据块将在使能缓存的情况下以 2MB 粒度被映射,故其不能被置于带任意
-特定属性被映射的 2MB 区域内。
+数据块将在使能缓存的情况下以 2MB 粒度被映射,故其不能被置于必须以特定
+属性映射的2M区域内。
注: v4.2 之前的版本同时要求设备树数据块被置于从内核映像以下
text_offset 字节处算起第一个 512MB 内。
@@ -236,7 +236,7 @@ AArch64 内核当前没有提供自解压代码,因此如果使用了压缩内
*译者注: ARM DEN 0022A 已更新到 ARM DEN 0022C。
设备树必须包含一个 ‘psci’ 节点,请参考以下文档:
- Documentation/devicetree/bindings/arm/psci.txt
+ Documentation/devicetree/bindings/arm/psci.yaml
- 辅助 CPU 通用寄存器设置
diff --git a/Documentation/translations/zh_CN/arm64/legacy_instructions.txt b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
index 68362a1ab717..e295cf75f606 100644
--- a/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
+++ b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/legacy_instructions.txt
+Chinese translated version of Documentation/arm64/legacy_instructions.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ Maintainer: Punit Agrawal <punit.agrawal@arm.com>
Suzuki K. Poulose <suzuki.poulose@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/legacy_instructions.txt 的中文翻译
+Documentation/arm64/legacy_instructions.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/memory.txt b/Documentation/translations/zh_CN/arm64/memory.txt
index 19b3a52d5d94..be20f8228b91 100644
--- a/Documentation/translations/zh_CN/arm64/memory.txt
+++ b/Documentation/translations/zh_CN/arm64/memory.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/memory.txt
+Chinese translated version of Documentation/arm64/memory.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Catalin Marinas <catalin.marinas@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/memory.txt 的中文翻译
+Documentation/arm64/memory.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/silicon-errata.txt b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
index 39477c75c4a4..440c59ac7dce 100644
--- a/Documentation/translations/zh_CN/arm64/silicon-errata.txt
+++ b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/silicon-errata.txt
+Chinese translated version of Documentation/arm64/silicon-errata.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ M: Will Deacon <will.deacon@arm.com>
zh_CN: Fu Wei <wefu@redhat.com>
C: 1926e54f115725a9248d0c4c65c22acaf94de4c4
---------------------------------------------------------------------
-Documentation/arm64/silicon-errata.txt 的中文翻译
+Documentation/arm64/silicon-errata.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/tagged-pointers.txt b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
index 2664d1bd5a1c..77ac3548a16d 100644
--- a/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
+++ b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/tagged-pointers.txt
+Chinese translated version of Documentation/arm64/tagged-pointers.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Will Deacon <will.deacon@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/tagged-pointers.txt 的中文翻译
+Documentation/arm64/tagged-pointers.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/basic_profiling.txt b/Documentation/translations/zh_CN/basic_profiling.txt
deleted file mode 100644
index 1e6bf0bdf8f5..000000000000
--- a/Documentation/translations/zh_CN/basic_profiling.txt
+++ /dev/null
@@ -1,71 +0,0 @@
-Chinese translated version of Documentation/basic_profiling
-
-If you have any comment or update to the content, please post to LKML directly.
-However, if you have problem communicating in English you can also ask the
-Chinese maintainer for help. Contact the Chinese maintainer, if this
-translation is outdated or there is problem with translation.
-
-Chinese maintainer: Liang Xie <xieliang@xiaomi.com>
----------------------------------------------------------------------
-Documentation/basic_profiling的中文翻译
-
-如果想评论或更新本文的内容,请直接发信到LKML。如果你使用英文交流有困难的话,也可
-以向中文版维护者求助。如果本翻译更新不及时或者翻译存在问题,请联系中文版维护者。
-
-中文版维护者: 谢良 Liang Xie <xieliang007@gmail.com>
-中文版翻译者: 谢良 Liang Xie <xieliang007@gmail.com>
-中文版校译者:
-以下为正文
----------------------------------------------------------------------
-
-下面这些说明指令都是非常基础的,如果你想进一步了解请阅读相关专业文档:)
-请不要再在本文档增加新的内容,但可以修复文档中的错误:)(mbligh@aracnet.com)
-感谢John Levon,Dave Hansen等在撰写时的帮助
-
-<test> 用于表示要测量的目标
-请先确保您已经有正确的System.map / vmlinux配置!
-
-对于linux系统来说,配置vmlinuz最容易的方法可能就是使用“make install”,然后修改
-/sbin/installkernel将vmlinux拷贝到/boot目录,而System.map通常是默认安装好的
-
-Readprofile
------------
-2.6系列内核需要版本相对较新的readprofile,比如util-linux 2.12a中包含的,可以从:
-
-http://www.kernel.org/pub/linux/utils/util-linux/ 下载
-
-大部分linux发行版已经包含了.
-
-启用readprofile需要在kernel启动命令行增加”profile=2“
-
-clear readprofile -r
- <test>
-dump output readprofile -m /boot/System.map > captured_profile
-
-Oprofile
---------
-
-从http://oprofile.sourceforge.net/获取源代码(请参考Changes以获取匹配的版本)
-在kernel启动命令行增加“idle=poll”
-
-配置CONFIG_PROFILING=y和CONFIG_OPROFILE=y然后重启进入新kernel
-
-./configure --with-kernel-support
-make install
-
-想得到好的测量结果,请确保启用了本地APIC特性。如果opreport显示有0Hz CPU,
-说明APIC特性没有开启。另外注意idle=poll选项可能有损性能。
-
-One time setup:
- opcontrol --setup --vmlinux=/boot/vmlinux
-
-clear opcontrol --reset
-start opcontrol --start
- <test>
-stop opcontrol --stop
-dump output opreport > output_file
-
-如果只看kernel相关的报告结果,请运行命令 opreport -l /boot/vmlinux > output_file
-
-通过reset选项可以清理过期统计数据,相当于重启的效果。
-
diff --git a/Documentation/translations/zh_CN/filesystems/sysfs.txt b/Documentation/translations/zh_CN/filesystems/sysfs.txt
index 452271dda141..ee1f37da5b23 100644
--- a/Documentation/translations/zh_CN/filesystems/sysfs.txt
+++ b/Documentation/translations/zh_CN/filesystems/sysfs.txt
@@ -288,7 +288,7 @@ dev/ 包含两个子目录: char/ 和 block/。在这两个子目录中,有
中相应的设备。/sys/dev 提供一个通过一个 stat(2) 操作结果,查找
设备 sysfs 接口快捷的方法。
-更多有关 driver-model 的特性信息可以在 Documentation/driver-model/
+更多有关 driver-model 的特性信息可以在 Documentation/driver-api/driver-model/
中找到。
diff --git a/Documentation/translations/zh_CN/gpio.txt b/Documentation/translations/zh_CN/gpio.txt
index 4cb1ba8b8fed..a23ee14fc927 100644
--- a/Documentation/translations/zh_CN/gpio.txt
+++ b/Documentation/translations/zh_CN/gpio.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/gpio
+Chinese translated version of Documentation/admin-guide/gpio
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ Maintainer: Grant Likely <grant.likely@secretlab.ca>
Linus Walleij <linus.walleij@linaro.org>
Chinese maintainer: Fu Wei <tekkamanninja@gmail.com>
---------------------------------------------------------------------
-Documentation/gpio 的中文翻译
+Documentation/admin-guide/gpio 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/oops-tracing.txt b/Documentation/translations/zh_CN/oops-tracing.txt
index 93fa061cf9e4..c5f3bda7abcb 100644
--- a/Documentation/translations/zh_CN/oops-tracing.txt
+++ b/Documentation/translations/zh_CN/oops-tracing.txt
@@ -53,8 +53,8 @@ cat /proc/kmsg > file, 然而你必须介入中止传输, kmsg是一个“
(2)用串口终端启动(请参看Documentation/admin-guide/serial-console.rst),运行一个null
modem到另一台机器并用你喜欢的通讯工具获取输出。Minicom工作地很好。
-(3)使用Kdump(请参看Documentation/kdump/kdump.txt),
-使用在Documentation/kdump/gdbmacros.txt中定义的dmesg gdb宏,从旧的内存中提取内核
+(3)使用Kdump(请参看Documentation/admin-guide/kdump/kdump.rst),
+使用在Documentation/admin-guide/kdump/gdbmacros.txt中定义的dmesg gdb宏,从旧的内存中提取内核
环形缓冲区。
完整信息
diff --git a/Documentation/translations/zh_CN/process/4.Coding.rst b/Documentation/translations/zh_CN/process/4.Coding.rst
index 5301e9d55255..b82b1dde3122 100644
--- a/Documentation/translations/zh_CN/process/4.Coding.rst
+++ b/Documentation/translations/zh_CN/process/4.Coding.rst
@@ -205,7 +205,7 @@ Linus对这个问题给出了最佳答案:
启用故障注入后,内存分配的可配置百分比将失败;这些失败可以限制在特定的代码
范围内。在启用了故障注入的情况下运行,程序员可以看到当情况恶化时代码如何响
应。有关如何使用此工具的详细信息,请参阅
-Documentation/fault-injection/fault-injection.txt。
+Documentation/fault-injection/fault-injection.rst。
使用“sparse”静态分析工具可以发现其他类型的错误。对于sparse,可以警告程序员
用户空间和内核空间地址之间的混淆、big endian和small endian数量的混合、在需
@@ -241,7 +241,7 @@ scripts/coccinelle目录下已经打包了相当多的内核“语义补丁”
任何添加新用户空间界面的代码(包括新的sysfs或/proc文件)都应该包含该界面的
文档,该文档使用户空间开发人员能够知道他们在使用什么。请参阅
-Documentation/abi/readme,了解如何格式化此文档以及需要提供哪些信息。
+Documentation/ABI/README,了解如何格式化此文档以及需要提供哪些信息。
文件 :ref:`Documentation/admin-guide/kernel-parameters.rst <kernelparameters>`
描述了内核的所有引导时间参数。任何添加新参数的补丁都应该向该文件添加适当的
diff --git a/Documentation/translations/zh_CN/process/coding-style.rst b/Documentation/translations/zh_CN/process/coding-style.rst
index 5479c591c2f7..4f6237392e65 100644
--- a/Documentation/translations/zh_CN/process/coding-style.rst
+++ b/Documentation/translations/zh_CN/process/coding-style.rst
@@ -599,7 +599,7 @@ Documentation/doc-guide/ 和 scripts/kernel-doc 以获得详细信息。
depends on ADFS_FS
...
-要查看配置文件的完整文档,请看 Documentation/kbuild/kconfig-language.txt。
+要查看配置文件的完整文档,请看 Documentation/kbuild/kconfig-language.rst。
11) 数据结构
diff --git a/Documentation/translations/zh_CN/process/howto.rst b/Documentation/translations/zh_CN/process/howto.rst
index 5b671178b17b..a8e6ab818983 100644
--- a/Documentation/translations/zh_CN/process/howto.rst
+++ b/Documentation/translations/zh_CN/process/howto.rst
@@ -113,7 +113,7 @@ Linux内核代码中包含有大量的文档。这些文档对于学习如何与
"Linux kernel patch submission format"
- http://linux.yyz.us/patch-format.html
+ https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html
:ref:`Documentation/translations/zh_CN/process/stable-api-nonsense.rst <cn_stable_api_nonsense>`
论证内核为什么特意不包括稳定的内核内部API,也就是说不包括像这样的特
@@ -146,14 +146,18 @@ Linux内核代码中包含有大量的文档。这些文档对于学习如何与
:ref:`Documentation/process/applying-patches.rst <applying_patches>`
关于补丁是什么以及如何将它打在不同内核开发分支上的好介绍
-内核还拥有大量从代码自动生成的文档。它包含内核内部API的全面介绍以及如何
-妥善处理加锁的规则。生成的文档会放在 Documentation/DocBook/目录下。在内
-核源码的主目录中使用以下不同命令将会分别生成PDF、Postscript、HTML和手册
-页等不同格式的文档::
+内核还拥有大量从代码自动生成或者从 ReStructuredText(ReST) 标记生成的文档,
+比如这个文档,它包含内核内部API的全面介绍以及如何妥善处理加锁的规则。所有
+这些文档都可以通过运行以下命令从内核代码中生成为PDF或HTML文档::
make pdfdocs
make htmldocs
+ReST格式的文档会生成在 Documentation/output. 目录中。
+它们也可以用下列命令生成 LaTeX 和 ePub 格式文档::
+
+ make latexdocs
+ make epubdocs
如何成为内核开发者
------------------
diff --git a/Documentation/translations/zh_CN/process/management-style.rst b/Documentation/translations/zh_CN/process/management-style.rst
index a181fa56d19e..c6a5bb285797 100644
--- a/Documentation/translations/zh_CN/process/management-style.rst
+++ b/Documentation/translations/zh_CN/process/management-style.rst
@@ -28,7 +28,7 @@ Linux内核管理风格
不管怎样,这里是:
-.. _decisions:
+.. _cn_decisions:
1)决策
-------
@@ -108,7 +108,7 @@ Linux内核管理风格
但是,为了做好作为内核管理者的准备,最好记住不要烧掉任何桥梁,不要轰炸任何
无辜的村民,也不要疏远太多的内核开发人员。事实证明,疏远人是相当容易的,而
亲近一个疏远的人是很难的。因此,“疏远”立即属于“不可逆”的范畴,并根据
-:ref:`decisions` 成为绝不可以做的事情。
+:ref:`cn_decisions` 成为绝不可以做的事情。
这里只有几个简单的规则:
diff --git a/Documentation/translations/zh_CN/process/programming-language.rst b/Documentation/translations/zh_CN/process/programming-language.rst
index 51fd4ef48ea1..2a47a1d2ec20 100644
--- a/Documentation/translations/zh_CN/process/programming-language.rst
+++ b/Documentation/translations/zh_CN/process/programming-language.rst
@@ -8,21 +8,21 @@
程序设计语言
============
-内核是用C语言 [c-language]_ 编写的。更准确地说,内核通常是用 ``gcc`` [gcc]_
-在 ``-std=gnu89`` [gcc-c-dialect-options]_ 下编译的:ISO C90的 GNU 方言(
+内核是用C语言 :ref:`c-language <cn_c-language>` 编写的。更准确地说,内核通常是用 :ref:`gcc <cn_gcc>`
+在 ``-std=gnu89`` :ref:`gcc-c-dialect-options <cn_gcc-c-dialect-options>` 下编译的:ISO C90的 GNU 方言(
包括一些C99特性)
-这种方言包含对语言 [gnu-extensions]_ 的许多扩展,当然,它们许多都在内核中使用。
+这种方言包含对语言 :ref:`gnu-extensions <cn_gnu-extensions>` 的许多扩展,当然,它们许多都在内核中使用。
-对于一些体系结构,有一些使用 ``clang`` [clang]_ 和 ``icc`` [icc]_ 编译内核
+对于一些体系结构,有一些使用 :ref:`clang <cn_clang>` 和 :ref:`icc <cn_icc>` 编译内核
的支持,尽管在编写此文档时还没有完成,仍需要第三方补丁。
属性
----
-在整个内核中使用的一个常见扩展是属性(attributes) [gcc-attribute-syntax]_
+在整个内核中使用的一个常见扩展是属性(attributes) :ref:`gcc-attribute-syntax <cn_gcc-attribute-syntax>`
属性允许将实现定义的语义引入语言实体(如变量、函数或类型),而无需对语言进行
-重大的语法更改(例如添加新关键字) [n2049]_
+重大的语法更改(例如添加新关键字) :ref:`n2049 <cn_n2049>`
在某些情况下,属性是可选的(即不支持这些属性的编译器仍然应该生成正确的代码,
即使其速度较慢或执行的编译时检查/诊断次数不够)
@@ -31,11 +31,42 @@
``__attribute__((__pure__))`` ),以检测可以使用哪些关键字和/或缩短代码, 具体
请参阅 ``include/linux/compiler_attributes.h``
-.. [c-language] http://www.open-std.org/jtc1/sc22/wg14/www/standards
-.. [gcc] https://gcc.gnu.org
-.. [clang] https://clang.llvm.org
-.. [icc] https://software.intel.com/en-us/c-compilers
-.. [gcc-c-dialect-options] https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
-.. [gnu-extensions] https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
-.. [gcc-attribute-syntax] https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
-.. [n2049] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
+.. _cn_c-language:
+
+c-language
+ http://www.open-std.org/jtc1/sc22/wg14/www/standards
+
+.. _cn_gcc:
+
+gcc
+ https://gcc.gnu.org
+
+.. _cn_clang:
+
+clang
+ https://clang.llvm.org
+
+.. _cn_icc:
+
+icc
+ https://software.intel.com/en-us/c-compilers
+
+.. _cn_gcc-c-dialect-options:
+
+c-dialect-options
+ https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
+
+.. _cn_gnu-extensions:
+
+gnu-extensions
+ https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
+
+.. _cn_gcc-attribute-syntax:
+
+gcc-attribute-syntax
+ https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
+
+.. _cn_n2049:
+
+n2049
+ http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
diff --git a/Documentation/translations/zh_CN/process/submit-checklist.rst b/Documentation/translations/zh_CN/process/submit-checklist.rst
index 89061aa8fdbe..8738c55e42a2 100644
--- a/Documentation/translations/zh_CN/process/submit-checklist.rst
+++ b/Documentation/translations/zh_CN/process/submit-checklist.rst
@@ -38,7 +38,7 @@ Linux内核补丁提交清单
违规行为。
6) 任何新的或修改过的 ``CONFIG`` 选项都不会弄脏配置菜单,并默认为关闭,除非
- 它们符合 ``Documentation/kbuild/kconfig-language.txt`` 中记录的异常条件,
+ 它们符合 ``Documentation/kbuild/kconfig-language.rst`` 中记录的异常条件,
菜单属性:默认值.
7) 所有新的 ``kconfig`` 选项都有帮助文本。
@@ -97,7 +97,7 @@ Linux内核补丁提交清单
24) 所有内存屏障例如 ``barrier()``, ``rmb()``, ``wmb()`` 都需要源代码中的注
释来解释它们正在执行的操作及其原因的逻辑。
-25) 如果补丁添加了任何ioctl,那么也要更新 ``Documentation/ioctl/ioctl-number.txt``
+25) 如果补丁添加了任何ioctl,那么也要更新 ``Documentation/ioctl/ioctl-number.rst``
26) 如果修改后的源代码依赖或使用与以下 ``Kconfig`` 符号相关的任何内核API或
功能,则在禁用相关 ``Kconfig`` 符号和/或 ``=m`` (如果该选项可用)的情况
diff --git a/Documentation/translations/zh_CN/process/submitting-drivers.rst b/Documentation/translations/zh_CN/process/submitting-drivers.rst
index 72c6cd935821..d99885c27aed 100644
--- a/Documentation/translations/zh_CN/process/submitting-drivers.rst
+++ b/Documentation/translations/zh_CN/process/submitting-drivers.rst
@@ -22,7 +22,7 @@
兴趣的是显卡驱动程序,你也许应该访问 XFree86 项目(http://www.xfree86.org/)
和/或 X.org 项目 (http://x.org)。
-另请参阅 Documentation/Documentation/translations/zh_CN/process/submitting-patches.rst 文档。
+另请参阅 Documentation/translations/zh_CN/process/submitting-patches.rst 文档。
分配设备号
@@ -97,7 +97,7 @@ Linux 2.6:
函数定义成返回 -ENOSYS(功能未实现)错误。你还应该尝试确
保你的驱动在什么都不干的情况下将耗电降到最低。要获得驱动
程序测试的指导,请参阅
- Documentation/power/drivers-testing.txt。有关驱动程序电
+ Documentation/power/drivers-testing.rst。有关驱动程序电
源管理问题相对全面的概述,请参阅
Documentation/driver-api/pm/devices.rst。
diff --git a/Documentation/translations/zh_CN/process/submitting-patches.rst b/Documentation/translations/zh_CN/process/submitting-patches.rst
index 437c23b367bb..1bb4271ab420 100644
--- a/Documentation/translations/zh_CN/process/submitting-patches.rst
+++ b/Documentation/translations/zh_CN/process/submitting-patches.rst
@@ -652,7 +652,7 @@ Andrew Morton, "The perfect patch" (tpp).
<http://www.ozlabs.org/~akpm/stuff/tpp.txt>
Jeff Garzik, "Linux kernel patch submission format".
- <http://linux.yyz.us/patch-format.html>
+ <https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html>
Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/linux/maintainer.html>
diff --git a/Documentation/translations/zh_CN/sparse.txt b/Documentation/translations/zh_CN/sparse.txt
index 47fc4a06ebe8..0f444b83d639 100644
--- a/Documentation/translations/zh_CN/sparse.txt
+++ b/Documentation/translations/zh_CN/sparse.txt
@@ -73,10 +73,6 @@ __bitwise"类型。
git://git.kernel.org/pub/scm/linux/kernel/git/josh/sparse.git
-DaveJ 把每小时自动生成的 git 源码树 tar 包放在以下地址:
-
- http://www.codemonkey.org.uk/projects/git-snapshots/sparse/
-
一旦你下载了源码,只要以普通用户身份运行:
make
diff --git a/Documentation/usb/WUSB-Design-overview.txt b/Documentation/usb/WUSB-Design-overview.txt
deleted file mode 100644
index dc5e21609bb5..000000000000
--- a/Documentation/usb/WUSB-Design-overview.txt
+++ /dev/null
@@ -1,457 +0,0 @@
-================================
-Linux UWB + Wireless USB + WiNET
-================================
-
- Copyright (C) 2005-2006 Intel Corporation
-
- Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License version
- 2 as published by the Free Software Foundation.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- 02110-1301, USA.
-
-
-Please visit http://bughost.org/thewiki/Design-overview.txt-1.8 for
-updated content.
-
- * Design-overview.txt-1.8
-
-This code implements a Ultra Wide Band stack for Linux, as well as
-drivers for the USB based UWB radio controllers defined in the
-Wireless USB 1.0 specification (including Wireless USB host controller
-and an Intel WiNET controller).
-
-.. Contents
- 1. Introduction
- 1. HWA: Host Wire adapters, your Wireless USB dongle
-
- 2. DWA: Device Wired Adaptor, a Wireless USB hub for wired
- devices
- 3. WHCI: Wireless Host Controller Interface, the PCI WUSB host
- adapter
- 2. The UWB stack
- 1. Devices and hosts: the basic structure
-
- 2. Host Controller life cycle
-
- 3. On the air: beacons and enumerating the radio neighborhood
-
- 4. Device lists
- 5. Bandwidth allocation
-
- 3. Wireless USB Host Controller drivers
-
- 4. Glossary
-
-
-Introduction
-============
-
-UWB is a wide-band communication protocol that is to serve also as the
-low-level protocol for others (much like TCP sits on IP). Currently
-these others are Wireless USB and TCP/IP, but seems Bluetooth and
-Firewire/1394 are coming along.
-
-UWB uses a band from roughly 3 to 10 GHz, transmitting at a max of
-~-41dB (or 0.074 uW/MHz--geography specific data is still being
-negotiated w/ regulators, so watch for changes). That band is divided in
-a bunch of ~1.5 GHz wide channels (or band groups) composed of three
-subbands/subchannels (528 MHz each). Each channel is independent of each
-other, so you could consider them different "busses". Initially this
-driver considers them all a single one.
-
-Radio time is divided in 65536 us long /superframes/, each one divided
-in 256 256us long /MASs/ (Media Allocation Slots), which are the basic
-time/media allocation units for transferring data. At the beginning of
-each superframe there is a Beacon Period (BP), where every device
-transmit its beacon on a single MAS. The length of the BP depends on how
-many devices are present and the length of their beacons.
-
-Devices have a MAC (fixed, 48 bit address) and a device (changeable, 16
-bit address) and send periodic beacons to advertise themselves and pass
-info on what they are and do. They advertise their capabilities and a
-bunch of other stuff.
-
-The different logical parts of this driver are:
-
- *
-
- *UWB*: the Ultra-Wide-Band stack -- manages the radio and
- associated spectrum to allow for devices sharing it. Allows to
- control bandwidth assignment, beaconing, scanning, etc
-
- *
-
- *WUSB*: the layer that sits on top of UWB to provide Wireless USB.
- The Wireless USB spec defines means to control a UWB radio and to
- do the actual WUSB.
-
-
-HWA: Host Wire adapters, your Wireless USB dongle
--------------------------------------------------
-
-WUSB also defines a device called a Host Wire Adaptor (HWA), which in
-mere terms is a USB dongle that enables your PC to have UWB and Wireless
-USB. The Wireless USB Host Controller in a HWA looks to the host like a
-[Wireless] USB controller connected via USB (!)
-
-The HWA itself is broken in two or three main interfaces:
-
- *
-
- *RC*: Radio control -- this implements an interface to the
- Ultra-Wide-Band radio controller. The driver for this implements a
- USB-based UWB Radio Controller to the UWB stack.
-
- *
-
- *HC*: the wireless USB host controller. It looks like a USB host
- whose root port is the radio and the WUSB devices connect to it.
- To the system it looks like a separate USB host. The driver (will)
- implement a USB host controller (similar to UHCI, OHCI or EHCI)
- for which the root hub is the radio...To reiterate: it is a USB
- controller that is connected via USB instead of PCI.
-
- *
-
- *WINET*: some HW provide a WiNET interface (IP over UWB). This
- package provides a driver for it (it looks like a network
- interface, winetX). The driver detects when there is a link up for
- their type and kick into gear.
-
-
-DWA: Device Wired Adaptor, a Wireless USB hub for wired devices
----------------------------------------------------------------
-
-These are the complement to HWAs. They are a USB host for connecting
-wired devices, but it is connected to your PC connected via Wireless
-USB. To the system it looks like yet another USB host. To the untrained
-eye, it looks like a hub that connects upstream wirelessly.
-
-We still offer no support for this; however, it should share a lot of
-code with the HWA-RC driver; there is a bunch of factorization work that
-has been done to support that in upcoming releases.
-
-
-WHCI: Wireless Host Controller Interface, the PCI WUSB host adapter
--------------------------------------------------------------------
-
-This is your usual PCI device that implements WHCI. Similar in concept
-to EHCI, it allows your wireless USB devices (including DWAs) to connect
-to your host via a PCI interface. As in the case of the HWA, it has a
-Radio Control interface and the WUSB Host Controller interface per se.
-
-There is still no driver support for this, but will be in upcoming
-releases.
-
-
-The UWB stack
-=============
-
-The main mission of the UWB stack is to keep a tally of which devices
-are in radio proximity to allow drivers to connect to them. As well, it
-provides an API for controlling the local radio controllers (RCs from
-now on), such as to start/stop beaconing, scan, allocate bandwidth, etc.
-
-
-Devices and hosts: the basic structure
---------------------------------------
-
-The main building block here is the UWB device (struct uwb_dev). For
-each device that pops up in radio presence (ie: the UWB host receives a
-beacon from it) you get a struct uwb_dev that will show up in
-/sys/bus/uwb/devices.
-
-For each RC that is detected, a new struct uwb_rc and struct uwb_dev are
-created. An entry is also created in /sys/class/uwb_rc for each RC.
-
-Each RC driver is implemented by a separate driver that plugs into the
-interface that the UWB stack provides through a struct uwb_rc_ops. The
-spec creators have been nice enough to make the message format the same
-for HWA and WHCI RCs, so the driver is really a very thin transport that
-moves the requests from the UWB API to the device [/uwb_rc_ops->cmd()/]
-and sends the replies and notifications back to the API
-[/uwb_rc_neh_grok()/]. Notifications are handled to the UWB daemon, that
-is chartered, among other things, to keep the tab of how the UWB radio
-neighborhood looks, creating and destroying devices as they show up or
-disappear.
-
-Command execution is very simple: a command block is sent and a event
-block or reply is expected back. For sending/receiving command/events, a
-handle called /neh/ (Notification/Event Handle) is opened with
-/uwb_rc_neh_open()/.
-
-The HWA-RC (USB dongle) driver (drivers/uwb/hwa-rc.c) does this job for
-the USB connected HWA. Eventually, drivers/whci-rc.c will do the same
-for the PCI connected WHCI controller.
-
-
-Host Controller life cycle
---------------------------
-
-So let's say we connect a dongle to the system: it is detected and
-firmware uploaded if needed [for Intel's i1480
-/drivers/uwb/ptc/usb.c:ptc_usb_probe()/] and then it is reenumerated.
-Now we have a real HWA device connected and
-/drivers/uwb/hwa-rc.c:hwarc_probe()/ picks it up, that will set up the
-Wire-Adaptor environment and then suck it into the UWB stack's vision of
-the world [/drivers/uwb/lc-rc.c:uwb_rc_add()/].
-
- *
-
- [*] The stack should put a new RC to scan for devices
- [/uwb_rc_scan()/] so it finds what's available around and tries to
- connect to them, but this is policy stuff and should be driven
- from user space. As of now, the operator is expected to do it
- manually; see the release notes for documentation on the procedure.
-
-When a dongle is disconnected, /drivers/uwb/hwa-rc.c:hwarc_disconnect()/
-takes time of tearing everything down safely (or not...).
-
-
-On the air: beacons and enumerating the radio neighborhood
-----------------------------------------------------------
-
-So assuming we have devices and we have agreed for a channel to connect
-on (let's say 9), we put the new RC to beacon:
-
- *
-
- $ echo 9 0 > /sys/class/uwb_rc/uwb0/beacon
-
-Now it is visible. If there were other devices in the same radio channel
-and beacon group (that's what the zero is for), the dongle's radio
-control interface will send beacon notifications on its
-notification/event endpoint (NEEP). The beacon notifications are part of
-the event stream that is funneled into the API with
-/drivers/uwb/neh.c:uwb_rc_neh_grok()/ and delivered to the UWBD, the UWB
-daemon through a notification list.
-
-UWBD wakes up and scans the event list; finds a beacon and adds it to
-the BEACON CACHE (/uwb_beca/). If he receives a number of beacons from
-the same device, he considers it to be 'onair' and creates a new device
-[/drivers/uwb/lc-dev.c:uwbd_dev_onair()/]. Similarly, when no beacons
-are received in some time, the device is considered gone and wiped out
-[uwbd calls periodically /uwb/beacon.c:uwb_beca_purge()/ that will purge
-the beacon cache of dead devices].
-
-
-Device lists
-------------
-
-All UWB devices are kept in the list of the struct bus_type uwb_bus_type.
-
-
-Bandwidth allocation
---------------------
-
-The UWB stack maintains a local copy of DRP availability through
-processing of incoming *DRP Availability Change* notifications. This
-local copy is currently used to present the current bandwidth
-availability to the user through the sysfs file
-/sys/class/uwb_rc/uwbx/bw_avail. In the future the bandwidth
-availability information will be used by the bandwidth reservation
-routines.
-
-The bandwidth reservation routines are in progress and are thus not
-present in the current release. When completed they will enable a user
-to initiate DRP reservation requests through interaction with sysfs. DRP
-reservation requests from remote UWB devices will also be handled. The
-bandwidth management done by the UWB stack will include callbacks to the
-higher layers will enable the higher layers to use the reservations upon
-completion. [Note: The bandwidth reservation work is in progress and
-subject to change.]
-
-
-Wireless USB Host Controller drivers
-====================================
-
-*WARNING* This section needs a lot of work!
-
-As explained above, there are three different types of HCs in the WUSB
-world: HWA-HC, DWA-HC and WHCI-HC.
-
-HWA-HC and DWA-HC share that they are Wire-Adapters (USB or WUSB
-connected controllers), and their transfer management system is almost
-identical. So is their notification delivery system.
-
-HWA-HC and WHCI-HC share that they are both WUSB host controllers, so
-they have to deal with WUSB device life cycle and maintenance, wireless
-root-hub
-
-HWA exposes a Host Controller interface (HWA-HC 0xe0/02/02). This has
-three endpoints (Notifications, Data Transfer In and Data Transfer
-Out--known as NEP, DTI and DTO in the code).
-
-We reserve UWB bandwidth for our Wireless USB Cluster, create a Cluster
-ID and tell the HC to use all that. Then we start it. This means the HC
-starts sending MMCs.
-
- *
-
- The MMCs are blocks of data defined somewhere in the WUSB1.0 spec
- that define a stream in the UWB channel time allocated for sending
- WUSB IEs (host to device commands/notifications) and Device
- Notifications (device initiated to host). Each host defines a
- unique Wireless USB cluster through MMCs. Devices can connect to a
- single cluster at the time. The IEs are Information Elements, and
- among them are the bandwidth allocations that tell each device
- when can they transmit or receive.
-
-Now it all depends on external stimuli.
-
-New device connection
----------------------
-
-A new device pops up, it scans the radio looking for MMCs that give out
-the existence of Wireless USB channels. Once one (or more) are found,
-selects which one to connect to. Sends a /DN_Connect/ (device
-notification connect) during the DNTS (Device Notification Time
-Slot--announced in the MMCs
-
-HC picks the /DN_Connect/ out (nep module sends to notif.c for delivery
-into /devconnect/). This process starts the authentication process for
-the device. First we allocate a /fake port/ and assign an
-unauthenticated address (128 to 255--what we really do is
-0x80 | fake_port_idx). We fiddle with the fake port status and /hub_wq/
-sees a new connection, so he moves on to enable the fake port with a reset.
-
-So now we are in the reset path -- we know we have a non-yet enumerated
-device with an unauthorized address; we ask user space to authenticate
-(FIXME: not yet done, similar to bluetooth pairing), then we do the key
-exchange (FIXME: not yet done) and issue a /set address 0/ to bring the
-device to the default state. Device is authenticated.
-
-From here, the USB stack takes control through the usb_hcd ops. hub_wq
-has seen the port status changes, as we have been toggling them. It will
-start enumerating and doing transfers through usb_hcd->urb_enqueue() to
-read descriptors and move our data.
-
-Device life cycle and keep alives
----------------------------------
-
-Every time there is a successful transfer to/from a device, we update a
-per-device activity timestamp. If not, every now and then we check and
-if the activity timestamp gets old, we ping the device by sending it a
-Keep Alive IE; it responds with a /DN_Alive/ pong during the DNTS (this
-arrives to us as a notification through
-devconnect.c:wusb_handle_dn_alive(). If a device times out, we
-disconnect it from the system (cleaning up internal information and
-toggling the bits in the fake hub port, which kicks hub_wq into removing
-the rest of the stuff).
-
-This is done through devconnect:__wusb_check_devs(), which will scan the
-device list looking for whom needs refreshing.
-
-If the device wants to disconnect, it will either die (ugly) or send a
-/DN_Disconnect/ that will prompt a disconnection from the system.
-
-Sending and receiving data
---------------------------
-
-Data is sent and received through /Remote Pipes/ (rpipes). An rpipe is
-/aimed/ at an endpoint in a WUSB device. This is the same for HWAs and
-DWAs.
-
-Each HC has a number of rpipes and buffers that can be assigned to them;
-when doing a data transfer (xfer), first the rpipe has to be aimed and
-prepared (buffers assigned), then we can start queueing requests for
-data in or out.
-
-Data buffers have to be segmented out before sending--so we send first a
-header (segment request) and then if there is any data, a data buffer
-immediately after to the DTI interface (yep, even the request). If our
-buffer is bigger than the max segment size, then we just do multiple
-requests.
-
-[This sucks, because doing USB scatter gatter in Linux is resource
-intensive, if any...not that the current approach is not. It just has to
-be cleaned up a lot :)].
-
-If reading, we don't send data buffers, just the segment headers saying
-we want to read segments.
-
-When the xfer is executed, we receive a notification that says data is
-ready in the DTI endpoint (handled through
-xfer.c:wa_handle_notif_xfer()). In there we read from the DTI endpoint a
-descriptor that gives us the status of the transfer, its identification
-(given when we issued it) and the segment number. If it was a data read,
-we issue another URB to read into the destination buffer the chunk of
-data coming out of the remote endpoint. Done, wait for the next guy. The
-callbacks for the URBs issued from here are the ones that will declare
-the xfer complete at some point and call its callback.
-
-Seems simple, but the implementation is not trivial.
-
- *
-
- *WARNING* Old!!
-
-The main xfer descriptor, wa_xfer (equivalent to a URB) contains an
-array of segments, tallys on segments and buffers and callback
-information. Buried in there is a lot of URBs for executing the segments
-and buffer transfers.
-
-For OUT xfers, there is an array of segments, one URB for each, another
-one of buffer URB. When submitting, we submit URBs for segment request
-1, buffer 1, segment 2, buffer 2...etc. Then we wait on the DTI for xfer
-result data; when all the segments are complete, we call the callback to
-finalize the transfer.
-
-For IN xfers, we only issue URBs for the segments we want to read and
-then wait for the xfer result data.
-
-URB mapping into xfers
-^^^^^^^^^^^^^^^^^^^^^^
-
-This is done by hwahc_op_urb_[en|de]queue(). In enqueue() we aim an
-rpipe to the endpoint where we have to transmit, create a transfer
-context (wa_xfer) and submit it. When the xfer is done, our callback is
-called and we assign the status bits and release the xfer resources.
-
-In dequeue() we are basically cancelling/aborting the transfer. We issue
-a xfer abort request to the HC, cancel all the URBs we had submitted
-and not yet done and when all that is done, the xfer callback will be
-called--this will call the URB callback.
-
-
-Glossary
-========
-
-*DWA* -- Device Wire Adapter
-
-USB host, wired for downstream devices, upstream connects wirelessly
-with Wireless USB.
-
-*EVENT* -- Response to a command on the NEEP
-
-*HWA* -- Host Wire Adapter / USB dongle for UWB and Wireless USB
-
-*NEH* -- Notification/Event Handle
-
-Handle/file descriptor for receiving notifications or events. The WA
-code requires you to get one of this to listen for notifications or
-events on the NEEP.
-
-*NEEP* -- Notification/Event EndPoint
-
-Stuff related to the management of the first endpoint of a HWA USB
-dongle that is used to deliver an stream of events and notifications to
-the host.
-
-*NOTIFICATION* -- Message coming in the NEEP as response to something.
-
-*RC* -- Radio Control
-
-Design-overview.txt-1.8 (last edited 2006-11-04 12:22:24 by
-InakyPerezGonzalez)
diff --git a/Documentation/usb/acm.txt b/Documentation/usb/acm.rst
index e8bda98e9b51..e8bda98e9b51 100644
--- a/Documentation/usb/acm.txt
+++ b/Documentation/usb/acm.rst
diff --git a/Documentation/usb/authorization.txt b/Documentation/usb/authorization.rst
index 9e53909d04c2..9e53909d04c2 100644
--- a/Documentation/usb/authorization.txt
+++ b/Documentation/usb/authorization.rst
diff --git a/Documentation/usb/chipidea.txt b/Documentation/usb/chipidea.rst
index 68473abe2823..68473abe2823 100644
--- a/Documentation/usb/chipidea.txt
+++ b/Documentation/usb/chipidea.rst
diff --git a/Documentation/usb/dwc3.txt b/Documentation/usb/dwc3.rst
index f94a7ba16573..f94a7ba16573 100644
--- a/Documentation/usb/dwc3.txt
+++ b/Documentation/usb/dwc3.rst
diff --git a/Documentation/usb/ehci.txt b/Documentation/usb/ehci.rst
index 31f650e7c1b4..31f650e7c1b4 100644
--- a/Documentation/usb/ehci.txt
+++ b/Documentation/usb/ehci.rst
diff --git a/Documentation/usb/functionfs.txt b/Documentation/usb/functionfs.rst
index 7fdc6d840ac5..7fdc6d840ac5 100644
--- a/Documentation/usb/functionfs.txt
+++ b/Documentation/usb/functionfs.rst
diff --git a/Documentation/usb/gadget-testing.txt b/Documentation/usb/gadget-testing.rst
index 7d7f2340af42..2eeb3e9299e4 100644
--- a/Documentation/usb/gadget-testing.txt
+++ b/Documentation/usb/gadget-testing.rst
@@ -254,7 +254,7 @@ Device:
- connect the gadget to a host, preferably not the one used
to control the gadget
- run a program which writes to /dev/hidg<N>, e.g.
- a userspace program found in Documentation/usb/gadget_hid.txt::
+ a userspace program found in Documentation/usb/gadget_hid.rst::
$ ./hid_gadget_test /dev/hidg0 keyboard
@@ -886,7 +886,7 @@ host::
# cat /dev/usb/lp0
More advanced testing can be done with the prn_example
-described in Documentation/usb/gadget_printer.txt.
+described in Documentation/usb/gadget_printer.rst.
20. UAC1 function (virtual ALSA card, using u_audio API)
diff --git a/Documentation/usb/gadget_configfs.txt b/Documentation/usb/gadget_configfs.rst
index 54fb08baae22..54fb08baae22 100644
--- a/Documentation/usb/gadget_configfs.txt
+++ b/Documentation/usb/gadget_configfs.rst
diff --git a/Documentation/usb/gadget_hid.txt b/Documentation/usb/gadget_hid.rst
index 098d563040cc..098d563040cc 100644
--- a/Documentation/usb/gadget_hid.txt
+++ b/Documentation/usb/gadget_hid.rst
diff --git a/Documentation/usb/gadget_multi.txt b/Documentation/usb/gadget_multi.rst
index 9806b55af301..9806b55af301 100644
--- a/Documentation/usb/gadget_multi.txt
+++ b/Documentation/usb/gadget_multi.rst
diff --git a/Documentation/usb/gadget_printer.txt b/Documentation/usb/gadget_printer.rst
index 5e5516c69075..5e5516c69075 100644
--- a/Documentation/usb/gadget_printer.txt
+++ b/Documentation/usb/gadget_printer.rst
diff --git a/Documentation/usb/gadget_serial.txt b/Documentation/usb/gadget_serial.rst
index dce8bc1fb1f2..dce8bc1fb1f2 100644
--- a/Documentation/usb/gadget_serial.txt
+++ b/Documentation/usb/gadget_serial.rst
diff --git a/Documentation/usb/index.rst b/Documentation/usb/index.rst
new file mode 100644
index 000000000000..e55386a4abfb
--- /dev/null
+++ b/Documentation/usb/index.rst
@@ -0,0 +1,39 @@
+===========
+USB support
+===========
+
+.. toctree::
+ :maxdepth: 1
+
+ acm
+ authorization
+ chipidea
+ dwc3
+ ehci
+ functionfs
+ gadget_configfs
+ gadget_hid
+ gadget_multi
+ gadget_printer
+ gadget_serial
+ gadget-testing
+ iuu_phoenix
+ mass-storage
+ misc_usbsevseg
+ mtouchusb
+ ohci
+ rio
+ usbip_protocol
+ usbmon
+ usb-serial
+ wusb-design-overview
+
+ usb-help
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/usb/iuu_phoenix.txt b/Documentation/usb/iuu_phoenix.rst
index b76268728450..b76268728450 100644
--- a/Documentation/usb/iuu_phoenix.txt
+++ b/Documentation/usb/iuu_phoenix.rst
diff --git a/Documentation/usb/mass-storage.txt b/Documentation/usb/mass-storage.rst
index d181b47c3cb6..d181b47c3cb6 100644
--- a/Documentation/usb/mass-storage.txt
+++ b/Documentation/usb/mass-storage.rst
diff --git a/Documentation/usb/misc_usbsevseg.txt b/Documentation/usb/misc_usbsevseg.rst
index 6274aee083ed..6274aee083ed 100644
--- a/Documentation/usb/misc_usbsevseg.txt
+++ b/Documentation/usb/misc_usbsevseg.rst
diff --git a/Documentation/usb/mtouchusb.txt b/Documentation/usb/mtouchusb.rst
index d1111b74bf75..d1111b74bf75 100644
--- a/Documentation/usb/mtouchusb.txt
+++ b/Documentation/usb/mtouchusb.rst
diff --git a/Documentation/usb/ohci.txt b/Documentation/usb/ohci.rst
index bb3c49719e6b..bb3c49719e6b 100644
--- a/Documentation/usb/ohci.txt
+++ b/Documentation/usb/ohci.rst
diff --git a/Documentation/usb/rio.txt b/Documentation/usb/rio.rst
index ea73475471db..ea73475471db 100644
--- a/Documentation/usb/rio.txt
+++ b/Documentation/usb/rio.rst
diff --git a/Documentation/usb/text_files.rst b/Documentation/usb/text_files.rst
new file mode 100644
index 000000000000..6a8d3fcf64b6
--- /dev/null
+++ b/Documentation/usb/text_files.rst
@@ -0,0 +1,29 @@
+Linux CDC ACM inf
+-----------------
+
+.. include:: linux-cdc-acm.inf
+ :literal:
+
+Linux inf
+---------
+
+.. include:: linux.inf
+ :literal:
+
+USB devfs drop permissions source
+---------------------------------
+
+.. literalinclude:: usbdevfs-drop-permissions.c
+ :language: c
+
+WUSB command line script to manipulate auth credentials
+-------------------------------------------------------
+
+.. literalinclude:: wusb-cbaf
+ :language: shell
+
+Credits
+-------
+
+.. include:: CREDITS
+ :literal:
diff --git a/Documentation/usb/usb-help.txt b/Documentation/usb/usb-help.rst
index dc23ecd4d802..dc23ecd4d802 100644
--- a/Documentation/usb/usb-help.txt
+++ b/Documentation/usb/usb-help.rst
diff --git a/Documentation/usb/usb-serial.txt b/Documentation/usb/usb-serial.rst
index 8fa7dbd3da9a..8fa7dbd3da9a 100644
--- a/Documentation/usb/usb-serial.txt
+++ b/Documentation/usb/usb-serial.rst
diff --git a/Documentation/usb/usbip_protocol.txt b/Documentation/usb/usbip_protocol.rst
index 988c832166cd..988c832166cd 100644
--- a/Documentation/usb/usbip_protocol.txt
+++ b/Documentation/usb/usbip_protocol.rst
diff --git a/Documentation/usb/usbmon.txt b/Documentation/usb/usbmon.rst
index b0bd51080799..b0bd51080799 100644
--- a/Documentation/usb/usbmon.txt
+++ b/Documentation/usb/usbmon.rst
diff --git a/Documentation/usb/wusb-cbaf b/Documentation/usb/wusb-cbaf
deleted file mode 100644
index 8b3d43efce90..000000000000
--- a/Documentation/usb/wusb-cbaf
+++ /dev/null
@@ -1,130 +0,0 @@
-#! /bin/bash
-#
-
-set -e
-
-progname=$(basename $0)
-function help
-{
- cat <<EOF
-Usage: $progname COMMAND DEVICEs [ARGS]
-
-Command for manipulating the pairing/authentication credentials of a
-Wireless USB device that supports wired-mode Cable-Based-Association.
-
-Works in conjunction with the wusb-cba.ko driver from http://linuxuwb.org.
-
-
-DEVICE
-
- sysfs path to the device to authenticate; for example, both this
- guys are the same:
-
- /sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4/1-4.4/1-4.4:1.1
- /sys/bus/usb/drivers/wusb-cbaf/1-4.4:1.1
-
-COMMAND/ARGS are
-
- start
-
- Start a WUSB host controller (by setting up a CHID)
-
- set-chid DEVICE HOST-CHID HOST-BANDGROUP HOST-NAME
-
- Sets host information in the device; after this you can call the
- get-cdid to see how does this device report itself to us.
-
- get-cdid DEVICE
-
- Get the device ID associated to the HOST-CHID we sent with
- 'set-chid'. We might not know about it.
-
- set-cc DEVICE
-
- If we allow the device to connect, set a random new CDID and CK
- (connection key). Device saves them for the next time it wants to
- connect wireless. We save them for that next time also so we can
- authenticate the device (when we see the CDID he uses to id
- itself) and the CK to crypto talk to it.
-
-CHID is always 16 hex bytes in 'XX YY ZZ...' form
-BANDGROUP is almost always 0001
-
-Examples:
-
- You can default most arguments to '' to get a sane value:
-
- $ $progname set-chid '' '' '' "My host name"
-
- A full sequence:
-
- $ $progname set-chid '' '' '' "My host name"
- $ $progname get-cdid ''
- $ $progname set-cc ''
-
-EOF
-}
-
-
-# Defaults
-# FIXME: CHID should come from a database :), band group from the host
-host_CHID="00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff"
-host_band_group="0001"
-host_name=$(hostname)
-
-devs="$(echo /sys/bus/usb/drivers/wusb-cbaf/[0-9]*)"
-hdevs="$(for h in /sys/class/uwb_rc/*/wusbhc; do readlink -f $h; done)"
-
-result=0
-case $1 in
- start)
- for dev in ${2:-$hdevs}
- do
- echo $host_CHID > $dev/wusb_chid
- echo I: started host $(basename $dev) >&2
- done
- ;;
- stop)
- for dev in ${2:-$hdevs}
- do
- echo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 > $dev/wusb_chid
- echo I: stopped host $(basename $dev) >&2
- done
- ;;
- set-chid)
- shift
- for dev in ${2:-$devs}; do
- echo "${4:-$host_name}" > $dev/wusb_host_name
- echo "${3:-$host_band_group}" > $dev/wusb_host_band_groups
- echo ${2:-$host_CHID} > $dev/wusb_chid
- done
- ;;
- get-cdid)
- for dev in ${2:-$devs}
- do
- cat $dev/wusb_cdid
- done
- ;;
- set-cc)
- for dev in ${2:-$devs}; do
- shift
- CDID="$(head --bytes=16 /dev/urandom | od -tx1 -An)"
- CK="$(head --bytes=16 /dev/urandom | od -tx1 -An)"
- echo "$CDID" > $dev/wusb_cdid
- echo "$CK" > $dev/wusb_ck
-
- echo I: CC set >&2
- echo "CHID: $(cat $dev/wusb_chid)"
- echo "CDID:$CDID"
- echo "CK: $CK"
- done
- ;;
- help|h|--help|-h)
- help
- ;;
- *)
- echo "E: Unknown usage" 1>&2
- help 1>&2
- result=1
-esac
-exit $result
diff --git a/Documentation/accelerators/ocxl.rst b/Documentation/userspace-api/accelerators/ocxl.rst
index 14cefc020e2d..14cefc020e2d 100644
--- a/Documentation/accelerators/ocxl.rst
+++ b/Documentation/userspace-api/accelerators/ocxl.rst
diff --git a/Documentation/userspace-api/conf.py b/Documentation/userspace-api/conf.py
deleted file mode 100644
index 2eaf59f844e5..000000000000
--- a/Documentation/userspace-api/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "The Linux kernel user-space API guide"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'userspace-api.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/userspace-api/index.rst b/Documentation/userspace-api/index.rst
index a3233da7fa88..ad494da40009 100644
--- a/Documentation/userspace-api/index.rst
+++ b/Documentation/userspace-api/index.rst
@@ -20,6 +20,7 @@ place where this information is gathered.
seccomp_filter
unshare
spec_ctrl
+ accelerators/ocxl
.. only:: subproject and html
diff --git a/Documentation/userspace-api/spec_ctrl.rst b/Documentation/userspace-api/spec_ctrl.rst
index 1129c7550a48..7ddd8f667459 100644
--- a/Documentation/userspace-api/spec_ctrl.rst
+++ b/Documentation/userspace-api/spec_ctrl.rst
@@ -49,6 +49,8 @@ If PR_SPEC_PRCTL is set, then the per-task control of the mitigation is
available. If not set, prctl(PR_SET_SPECULATION_CTRL) for the speculation
misfeature will fail.
+.. _set_spec_ctrl:
+
PR_SET_SPECULATION_CTRL
-----------------------
diff --git a/Documentation/virt/index.rst b/Documentation/virt/index.rst
new file mode 100644
index 000000000000..062ffb527043
--- /dev/null
+++ b/Documentation/virt/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============================
+Linux Virtualization Support
+============================
+
+.. toctree::
+ :maxdepth: 2
+
+ kvm/index
+ paravirt_ops
+
+.. only:: html and subproject
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/virtual/kvm/amd-memory-encryption.rst b/Documentation/virt/kvm/amd-memory-encryption.rst
index 659bbc093b52..d18c97b4e140 100644
--- a/Documentation/virtual/kvm/amd-memory-encryption.rst
+++ b/Documentation/virt/kvm/amd-memory-encryption.rst
@@ -241,6 +241,9 @@ Returns: 0 on success, -negative on error
References
==========
+
+See [white-paper]_, [api-spec]_, [amd-apm]_ and [kvm-forum]_ for more info.
+
.. [white-paper] http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
.. [api-spec] http://support.amd.com/TechDocs/55766_SEV-KM_API_Specification.pdf
.. [amd-apm] http://support.amd.com/TechDocs/24593.pdf (section 15.34)
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virt/kvm/api.txt
index 2a4531bb06bd..4833904d32a5 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virt/kvm/api.txt
@@ -586,7 +586,7 @@ Capability: basic
Architectures: x86
Type: vcpu ioctl
Parameters: struct kvm_msrs (in)
-Returns: 0 on success, -1 on error
+Returns: number of msrs successfully set (see below), -1 on error
Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
data structures.
@@ -595,6 +595,11 @@ Application code should set the 'nmsrs' member (which indicates the
size of the entries array), and the 'index' and 'data' members of each
array entry.
+It tries to set the MSRs in array entries[] one by one. If setting an MSR
+fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated
+by KVM, etc..., it stops processing the MSR list and returns the number of
+MSRs that have been set successfully.
+
4.20 KVM_SET_CPUID
@@ -753,8 +758,8 @@ in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
use PPIs designated for specific cpus. The irq field is interpreted
like this:
-  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
- field: | irq_type | vcpu_index | irq_id |
+  bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 |
+ field: | vcpu2_index | irq_type | vcpu_index | irq_id |
The irq_type field has the following values:
- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
@@ -766,6 +771,14 @@ The irq_type field has the following values:
In both cases, level is used to assert/deassert the line.
+When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is
+identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index
+must be zero.
+
+Note that on arm/arm64, the KVM_CAP_IRQCHIP capability only conditions
+injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always
+be used for a userspace interrupt controller.
+
struct kvm_irq_level {
union {
__u32 irq; /* GSI */
@@ -2205,7 +2218,7 @@ max_vq. This is the maximum vector length available to the guest on
this vcpu, and determines which register slices are visible through
this ioctl interface.
-(See Documentation/arm64/sve.txt for an explanation of the "vq"
+(See Documentation/arm64/sve.rst for an explanation of the "vq"
nomenclature.)
KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT.
@@ -3079,12 +3092,14 @@ This exception is also raised directly at the corresponding VCPU if the
flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
The start address of the memory region has to be specified in the "gaddr"
-field, and the length of the region in the "size" field. "buf" is the buffer
-supplied by the userspace application where the read data should be written
-to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
-is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
-when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
-register number to be used.
+field, and the length of the region in the "size" field (which must not
+be 0). The maximum value for "size" can be obtained by checking the
+KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the
+userspace application where the read data should be written to for
+KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written is
+stored for a KVM_S390_MEMOP_LOGICAL_WRITE. When KVM_S390_MEMOP_F_CHECK_ONLY
+is specified, "buf" is unused and can be NULL. "ar" designates the access
+register number to be used; the valid range is 0..15.
The "reserved" field is meant for future extensions. It is not used by
KVM with the currently defined set of flags.
@@ -3781,7 +3796,7 @@ encrypted VMs.
Currently, this ioctl is used for issuing Secure Encrypted Virtualization
(SEV) commands on AMD Processors. The SEV commands are defined in
-Documentation/virtual/kvm/amd-memory-encryption.rst.
+Documentation/virt/kvm/amd-memory-encryption.rst.
4.111 KVM_MEMORY_ENCRYPT_REG_REGION
@@ -4081,6 +4096,37 @@ KVM_ARM_VCPU_FINALIZE call.
See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization
using this ioctl.
+4.120 KVM_SET_PMU_EVENT_FILTER
+
+Capability: KVM_CAP_PMU_EVENT_FILTER
+Architectures: x86
+Type: vm ioctl
+Parameters: struct kvm_pmu_event_filter (in)
+Returns: 0 on success, -1 on error
+
+struct kvm_pmu_event_filter {
+ __u32 action;
+ __u32 nevents;
+ __u32 fixed_counter_bitmap;
+ __u32 flags;
+ __u32 pad[4];
+ __u64 events[0];
+};
+
+This ioctl restricts the set of PMU events that the guest can program.
+The argument holds a list of events which will be allowed or denied.
+The eventsel+umask of each event the guest attempts to program is compared
+against the events field to determine whether the guest should have access.
+The events field only controls general purpose counters; fixed purpose
+counters are controlled by the fixed_counter_bitmap.
+
+No flags are defined yet, the field must be zero.
+
+Valid values for 'action':
+#define KVM_PMU_EVENT_ALLOW 0
+#define KVM_PMU_EVENT_DENY 1
+
+
5. The kvm_run structure
------------------------
@@ -4909,6 +4955,8 @@ Valid bits in args[0] are
#define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0)
#define KVM_X86_DISABLE_EXITS_HLT (1 << 1)
+#define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2)
+#define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3)
Enabling this capability on a VM provides userspace with a way to no
longer intercept some instructions for improved latency in some
@@ -5261,3 +5309,16 @@ Architectures: x86
This capability indicates that KVM supports paravirtualized Hyper-V IPI send
hypercalls:
HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx.
+8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH
+
+Architecture: x86
+
+This capability indicates that KVM running on top of Hyper-V hypervisor
+enables Direct TLB flush for its guests meaning that TLB flush
+hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM.
+Due to the different ABI for hypercall parameters between Hyper-V and
+KVM, enabling this capability effectively disables all hypercall
+handling by KVM (as some KVM hypercall may be mistakenly treated as TLB
+flush hypercalls by Hyper-V) so userspace should disable KVM identification
+in CPUID and only exposes Hyper-V identification. In this case, guest
+thinks it's running on Hyper-V and only use Hyper-V hypercalls.
diff --git a/Documentation/virtual/kvm/arm/hyp-abi.txt b/Documentation/virt/kvm/arm/hyp-abi.txt
index a20a0bee268d..a20a0bee268d 100644
--- a/Documentation/virtual/kvm/arm/hyp-abi.txt
+++ b/Documentation/virt/kvm/arm/hyp-abi.txt
diff --git a/Documentation/virt/kvm/arm/psci.txt b/Documentation/virt/kvm/arm/psci.txt
new file mode 100644
index 000000000000..559586fc9d37
--- /dev/null
+++ b/Documentation/virt/kvm/arm/psci.txt
@@ -0,0 +1,61 @@
+KVM implements the PSCI (Power State Coordination Interface)
+specification in order to provide services such as CPU on/off, reset
+and power-off to the guest.
+
+The PSCI specification is regularly updated to provide new features,
+and KVM implements these updates if they make sense from a virtualization
+point of view.
+
+This means that a guest booted on two different versions of KVM can
+observe two different "firmware" revisions. This could cause issues if
+a given guest is tied to a particular PSCI revision (unlikely), or if
+a migration causes a different PSCI version to be exposed out of the
+blue to an unsuspecting guest.
+
+In order to remedy this situation, KVM exposes a set of "firmware
+pseudo-registers" that can be manipulated using the GET/SET_ONE_REG
+interface. These registers can be saved/restored by userspace, and set
+to a convenient value if required.
+
+The following register is defined:
+
+* KVM_REG_ARM_PSCI_VERSION:
+
+ - Only valid if the vcpu has the KVM_ARM_VCPU_PSCI_0_2 feature set
+ (and thus has already been initialized)
+ - Returns the current PSCI version on GET_ONE_REG (defaulting to the
+ highest PSCI version implemented by KVM and compatible with v0.2)
+ - Allows any PSCI version implemented by KVM and compatible with
+ v0.2 to be set with SET_ONE_REG
+ - Affects the whole VM (even if the register view is per-vcpu)
+
+* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
+ Holds the state of the firmware support to mitigate CVE-2017-5715, as
+ offered by KVM to the guest via a HVC call. The workaround is described
+ under SMCCC_ARCH_WORKAROUND_1 in [1].
+ Accepted values are:
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL: KVM does not offer
+ firmware support for the workaround. The mitigation status for the
+ guest is unknown.
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL: The workaround HVC call is
+ available to the guest and required for the mitigation.
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED: The workaround HVC call
+ is available to the guest, but it is not needed on this VCPU.
+
+* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
+ Holds the state of the firmware support to mitigate CVE-2018-3639, as
+ offered by KVM to the guest via a HVC call. The workaround is described
+ under SMCCC_ARCH_WORKAROUND_2 in [1].
+ Accepted values are:
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: A workaround is not
+ available. KVM does not offer firmware support for the workaround.
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: The workaround state is
+ unknown. KVM does not offer firmware support for the workaround.
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: The workaround is available,
+ and can be disabled by a vCPU. If
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED is set, it is active for
+ this vCPU.
+ KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: The workaround is
+ always active on this vCPU or it is not needed.
+
+[1] https://developer.arm.com/-/media/developer/pdf/ARM_DEN_0070A_Firmware_interfaces_for_mitigating_CVE-2017-5715.pdf
diff --git a/Documentation/virt/kvm/cpuid.rst b/Documentation/virt/kvm/cpuid.rst
new file mode 100644
index 000000000000..01b081f6e7ea
--- /dev/null
+++ b/Documentation/virt/kvm/cpuid.rst
@@ -0,0 +1,107 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============
+KVM CPUID bits
+==============
+
+:Author: Glauber Costa <glommer@gmail.com>
+
+A guest running on a kvm host, can check some of its features using
+cpuid. This is not always guaranteed to work, since userspace can
+mask-out some, or even all KVM-related cpuid features before launching
+a guest.
+
+KVM cpuid functions are:
+
+function: KVM_CPUID_SIGNATURE (0x40000000)
+
+returns::
+
+ eax = 0x40000001
+ ebx = 0x4b4d564b
+ ecx = 0x564b4d56
+ edx = 0x4d
+
+Note that this value in ebx, ecx and edx corresponds to the string "KVMKVMKVM".
+The value in eax corresponds to the maximum cpuid function present in this leaf,
+and will be updated if more functions are added in the future.
+Note also that old hosts set eax value to 0x0. This should
+be interpreted as if the value was 0x40000001.
+This function queries the presence of KVM cpuid leafs.
+
+function: define KVM_CPUID_FEATURES (0x40000001)
+
+returns::
+
+ ebx, ecx
+ eax = an OR'ed group of (1 << flag)
+
+where ``flag`` is defined as below:
+
+================================= =========== ================================
+flag value meaning
+================================= =========== ================================
+KVM_FEATURE_CLOCKSOURCE 0 kvmclock available at msrs
+ 0x11 and 0x12
+
+KVM_FEATURE_NOP_IO_DELAY 1 not necessary to perform delays
+ on PIO operations
+
+KVM_FEATURE_MMU_OP 2 deprecated
+
+KVM_FEATURE_CLOCKSOURCE2 3 kvmclock available at msrs
+
+ 0x4b564d00 and 0x4b564d01
+KVM_FEATURE_ASYNC_PF 4 async pf can be enabled by
+ writing to msr 0x4b564d02
+
+KVM_FEATURE_STEAL_TIME 5 steal time can be enabled by
+ writing to msr 0x4b564d03
+
+KVM_FEATURE_PV_EOI 6 paravirtualized end of interrupt
+ handler can be enabled by
+ writing to msr 0x4b564d04
+
+KVM_FEATURE_PV_UNHAULT 7 guest checks this feature bit
+ before enabling paravirtualized
+ spinlock support
+
+KVM_FEATURE_PV_TLB_FLUSH 9 guest checks this feature bit
+ before enabling paravirtualized
+ tlb flush
+
+KVM_FEATURE_ASYNC_PF_VMEXIT 10 paravirtualized async PF VM EXIT
+ can be enabled by setting bit 2
+ when writing to msr 0x4b564d02
+
+KVM_FEATURE_PV_SEND_IPI 11 guest checks this feature bit
+ before enabling paravirtualized
+ sebd IPIs
+
+KVM_FEATURE_PV_POLL_CONTROL 12 host-side polling on HLT can
+ be disabled by writing
+ to msr 0x4b564d05.
+
+KVM_FEATURE_PV_SCHED_YIELD 13 guest checks this feature bit
+ before using paravirtualized
+ sched yield.
+
+KVM_FEATURE_CLOCSOURCE_STABLE_BIT 24 host will warn if no guest-side
+ per-cpu warps are expeced in
+ kvmclock
+================================= =========== ================================
+
+::
+
+ edx = an OR'ed group of (1 << flag)
+
+Where ``flag`` here is defined as below:
+
+================== ============ =================================
+flag value meaning
+================== ============ =================================
+KVM_HINTS_REALTIME 0 guest checks this feature bit to
+ determine that vCPUs are never
+ preempted for an unlimited time
+ allowing optimizations
+================== ============ =================================
diff --git a/Documentation/virtual/kvm/devices/README b/Documentation/virt/kvm/devices/README
index 34a69834124a..34a69834124a 100644
--- a/Documentation/virtual/kvm/devices/README
+++ b/Documentation/virt/kvm/devices/README
diff --git a/Documentation/virtual/kvm/devices/arm-vgic-its.txt b/Documentation/virt/kvm/devices/arm-vgic-its.txt
index 4f0c9fc40365..eeaa95b893a8 100644
--- a/Documentation/virtual/kvm/devices/arm-vgic-its.txt
+++ b/Documentation/virt/kvm/devices/arm-vgic-its.txt
@@ -103,7 +103,7 @@ Groups:
The following ordering must be followed when restoring the GIC and the ITS:
a) restore all guest memory and create vcpus
b) restore all redistributors
-c) provide the its base address
+c) provide the ITS base address
(KVM_DEV_ARM_VGIC_GRP_ADDR)
d) restore the ITS in the following order:
1. Restore GITS_CBASER
diff --git a/Documentation/virtual/kvm/devices/arm-vgic-v3.txt b/Documentation/virt/kvm/devices/arm-vgic-v3.txt
index ff290b43c8e5..ff290b43c8e5 100644
--- a/Documentation/virtual/kvm/devices/arm-vgic-v3.txt
+++ b/Documentation/virt/kvm/devices/arm-vgic-v3.txt
diff --git a/Documentation/virtual/kvm/devices/arm-vgic.txt b/Documentation/virt/kvm/devices/arm-vgic.txt
index 97b6518148f8..97b6518148f8 100644
--- a/Documentation/virtual/kvm/devices/arm-vgic.txt
+++ b/Documentation/virt/kvm/devices/arm-vgic.txt
diff --git a/Documentation/virtual/kvm/devices/mpic.txt b/Documentation/virt/kvm/devices/mpic.txt
index 8257397adc3c..8257397adc3c 100644
--- a/Documentation/virtual/kvm/devices/mpic.txt
+++ b/Documentation/virt/kvm/devices/mpic.txt
diff --git a/Documentation/virtual/kvm/devices/s390_flic.txt b/Documentation/virt/kvm/devices/s390_flic.txt
index a4e20a090174..a4e20a090174 100644
--- a/Documentation/virtual/kvm/devices/s390_flic.txt
+++ b/Documentation/virt/kvm/devices/s390_flic.txt
diff --git a/Documentation/virtual/kvm/devices/vcpu.txt b/Documentation/virt/kvm/devices/vcpu.txt
index 2b5dab16c4f2..2b5dab16c4f2 100644
--- a/Documentation/virtual/kvm/devices/vcpu.txt
+++ b/Documentation/virt/kvm/devices/vcpu.txt
diff --git a/Documentation/virtual/kvm/devices/vfio.txt b/Documentation/virt/kvm/devices/vfio.txt
index 528c77c8022c..528c77c8022c 100644
--- a/Documentation/virtual/kvm/devices/vfio.txt
+++ b/Documentation/virt/kvm/devices/vfio.txt
diff --git a/Documentation/virtual/kvm/devices/vm.txt b/Documentation/virt/kvm/devices/vm.txt
index 4ffb82b02468..4ffb82b02468 100644
--- a/Documentation/virtual/kvm/devices/vm.txt
+++ b/Documentation/virt/kvm/devices/vm.txt
diff --git a/Documentation/virtual/kvm/devices/xics.txt b/Documentation/virt/kvm/devices/xics.txt
index 42864935ac5d..42864935ac5d 100644
--- a/Documentation/virtual/kvm/devices/xics.txt
+++ b/Documentation/virt/kvm/devices/xics.txt
diff --git a/Documentation/virtual/kvm/devices/xive.txt b/Documentation/virt/kvm/devices/xive.txt
index 9a24a4525253..9a24a4525253 100644
--- a/Documentation/virtual/kvm/devices/xive.txt
+++ b/Documentation/virt/kvm/devices/xive.txt
diff --git a/Documentation/virtual/kvm/halt-polling.txt b/Documentation/virt/kvm/halt-polling.txt
index 4f791b128dd2..4f791b128dd2 100644
--- a/Documentation/virtual/kvm/halt-polling.txt
+++ b/Documentation/virt/kvm/halt-polling.txt
diff --git a/Documentation/virtual/kvm/hypercalls.txt b/Documentation/virt/kvm/hypercalls.txt
index da24c138c8d1..5f6d291bd004 100644
--- a/Documentation/virtual/kvm/hypercalls.txt
+++ b/Documentation/virt/kvm/hypercalls.txt
@@ -18,7 +18,7 @@ S390:
number in R1.
For further information on the S390 diagnose call as supported by KVM,
- refer to Documentation/virtual/kvm/s390-diag.txt.
+ refer to Documentation/virt/kvm/s390-diag.txt.
PowerPC:
It uses R3-R10 and hypercall number in R11. R4-R11 are used as output registers.
@@ -26,7 +26,7 @@ S390:
KVM hypercalls uses 4 byte opcode, that are patched with 'hypercall-instructions'
property inside the device tree's /hypervisor node.
- For more information refer to Documentation/virtual/kvm/ppc-pv.txt
+ For more information refer to Documentation/virt/kvm/ppc-pv.txt
MIPS:
KVM hypercalls use the HYPCALL instruction with code 0 and the hypercall
@@ -141,3 +141,14 @@ a0 corresponds to the APIC ID in the third argument (a2), bit 1
corresponds to the APIC ID a2+1, and so on.
Returns the number of CPUs to which the IPIs were delivered successfully.
+
+7. KVM_HC_SCHED_YIELD
+------------------------
+Architecture: x86
+Status: active
+Purpose: Hypercall used to yield if the IPI target vCPU is preempted
+
+a0: destination APIC ID
+
+Usage example: When sending a call-function IPI-many to vCPUs, yield if
+any of the IPI target vCPUs was preempted.
diff --git a/Documentation/virt/kvm/index.rst b/Documentation/virt/kvm/index.rst
new file mode 100644
index 000000000000..ada224a511fe
--- /dev/null
+++ b/Documentation/virt/kvm/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===
+KVM
+===
+
+.. toctree::
+ :maxdepth: 2
+
+ amd-memory-encryption
+ cpuid
+ vcpu-requests
diff --git a/Documentation/virtual/kvm/locking.txt b/Documentation/virt/kvm/locking.txt
index 1bb8bcaf8497..635cd6eaf714 100644
--- a/Documentation/virtual/kvm/locking.txt
+++ b/Documentation/virt/kvm/locking.txt
@@ -15,8 +15,6 @@ The acquisition orders for mutexes are as follows:
On x86, vcpu->mutex is taken outside kvm->arch.hyperv.hv_lock.
-For spinlocks, kvm_lock is taken outside kvm->mmu_lock.
-
Everything else is a leaf: no other lock is taken inside the critical
sections.
@@ -169,7 +167,7 @@ which time it will be set using the Dirty tracking mechanism described above.
------------
Name: kvm_lock
-Type: spinlock_t
+Type: mutex
Arch: any
Protects: - vm_list
diff --git a/Documentation/virtual/kvm/mmu.txt b/Documentation/virt/kvm/mmu.txt
index 2efe0efc516e..dadb29e8738f 100644
--- a/Documentation/virtual/kvm/mmu.txt
+++ b/Documentation/virt/kvm/mmu.txt
@@ -294,17 +294,17 @@ Handling a page fault is performed as follows:
- walk shadow page table
- check for valid generation number in the spte (see "Fast invalidation of
MMIO sptes" below)
- - cache the information to vcpu->arch.mmio_gva, vcpu->arch.access and
+ - cache the information to vcpu->arch.mmio_gva, vcpu->arch.mmio_access and
vcpu->arch.mmio_gfn, and call the emulator
- If both P bit and R/W bit of error code are set, this could possibly
be handled as a "fast page fault" (fixed without taking the MMU lock). See
- the description in Documentation/virtual/kvm/locking.txt.
+ the description in Documentation/virt/kvm/locking.txt.
- if needed, walk the guest page tables to determine the guest translation
(gva->gpa or ngpa->gpa)
- if permissions are insufficient, reflect the fault back to the guest
- determine the host page
- if this is an mmio request, there is no host page; cache the info to
- vcpu->arch.mmio_gva, vcpu->arch.access and vcpu->arch.mmio_gfn
+ vcpu->arch.mmio_gva, vcpu->arch.mmio_access and vcpu->arch.mmio_gfn
- walk the shadow page table to find the spte for the translation,
instantiating missing intermediate page tables as necessary
- If this is an mmio request, cache the mmio info to the spte and set some
diff --git a/Documentation/virtual/kvm/msr.txt b/Documentation/virt/kvm/msr.txt
index f3f0d57ced8e..df1f4338b3ca 100644
--- a/Documentation/virtual/kvm/msr.txt
+++ b/Documentation/virt/kvm/msr.txt
@@ -273,3 +273,12 @@ MSR_KVM_EOI_EN: 0x4b564d04
guest must both read the least significant bit in the memory area and
clear it using a single CPU instruction, such as test and clear, or
compare and exchange.
+
+MSR_KVM_POLL_CONTROL: 0x4b564d05
+ Control host-side polling.
+
+ data: Bit 0 enables (1) or disables (0) host-side HLT polling logic.
+
+ KVM guests can request the host not to poll on HLT, for example if
+ they are performing polling themselves.
+
diff --git a/Documentation/virtual/kvm/nested-vmx.txt b/Documentation/virt/kvm/nested-vmx.txt
index 97eb1353e962..97eb1353e962 100644
--- a/Documentation/virtual/kvm/nested-vmx.txt
+++ b/Documentation/virt/kvm/nested-vmx.txt
diff --git a/Documentation/virtual/kvm/ppc-pv.txt b/Documentation/virt/kvm/ppc-pv.txt
index e26115ce4258..e26115ce4258 100644
--- a/Documentation/virtual/kvm/ppc-pv.txt
+++ b/Documentation/virt/kvm/ppc-pv.txt
diff --git a/Documentation/virtual/kvm/review-checklist.txt b/Documentation/virt/kvm/review-checklist.txt
index a83b27635fdd..499af499e296 100644
--- a/Documentation/virtual/kvm/review-checklist.txt
+++ b/Documentation/virt/kvm/review-checklist.txt
@@ -7,7 +7,7 @@ Review checklist for kvm patches
2. Patches should be against kvm.git master branch.
3. If the patch introduces or modifies a new userspace API:
- - the API must be documented in Documentation/virtual/kvm/api.txt
+ - the API must be documented in Documentation/virt/kvm/api.txt
- the API must be discoverable using KVM_CHECK_EXTENSION
4. New state must include support for save/restore.
diff --git a/Documentation/virtual/kvm/s390-diag.txt b/Documentation/virt/kvm/s390-diag.txt
index 7c52e5f8b210..7c52e5f8b210 100644
--- a/Documentation/virtual/kvm/s390-diag.txt
+++ b/Documentation/virt/kvm/s390-diag.txt
diff --git a/Documentation/virtual/kvm/timekeeping.txt b/Documentation/virt/kvm/timekeeping.txt
index 76808a17ad84..76808a17ad84 100644
--- a/Documentation/virtual/kvm/timekeeping.txt
+++ b/Documentation/virt/kvm/timekeeping.txt
diff --git a/Documentation/virtual/kvm/vcpu-requests.rst b/Documentation/virt/kvm/vcpu-requests.rst
index 5feb3706a7ae..5feb3706a7ae 100644
--- a/Documentation/virtual/kvm/vcpu-requests.rst
+++ b/Documentation/virt/kvm/vcpu-requests.rst
diff --git a/Documentation/virtual/paravirt_ops.txt b/Documentation/virt/paravirt_ops.rst
index d4881c00e339..6b789d27cead 100644
--- a/Documentation/virtual/paravirt_ops.txt
+++ b/Documentation/virt/paravirt_ops.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============
Paravirt_ops
============
@@ -18,15 +21,15 @@ at boot time.
pv_ops operations are classified into three categories:
- simple indirect call
- These operations correspond to high level functionality where it is
- known that the overhead of indirect call isn't very important.
+ These operations correspond to high level functionality where it is
+ known that the overhead of indirect call isn't very important.
- indirect call which allows optimization with binary patch
- Usually these operations correspond to low level critical instructions. They
- are called frequently and are performance critical. The overhead is
- very important.
+ Usually these operations correspond to low level critical instructions. They
+ are called frequently and are performance critical. The overhead is
+ very important.
- a set of macros for hand written assembly code
- Hand written assembly codes (.S files) also need paravirtualization
- because they include sensitive instructions or some of code paths in
- them are very performance critical.
+ Hand written assembly codes (.S files) also need paravirtualization
+ because they include sensitive instructions or some of code paths in
+ them are very performance critical.
diff --git a/Documentation/virtual/uml/UserModeLinux-HOWTO.txt b/Documentation/virt/uml/UserModeLinux-HOWTO.txt
index 87b80f589e1c..87b80f589e1c 100644
--- a/Documentation/virtual/uml/UserModeLinux-HOWTO.txt
+++ b/Documentation/virt/uml/UserModeLinux-HOWTO.txt
diff --git a/Documentation/virtual/guest-halt-polling.txt b/Documentation/virtual/guest-halt-polling.txt
new file mode 100644
index 000000000000..b3a2a294532d
--- /dev/null
+++ b/Documentation/virtual/guest-halt-polling.txt
@@ -0,0 +1,78 @@
+Guest halt polling
+==================
+
+The cpuidle_haltpoll driver, with the haltpoll governor, allows
+the guest vcpus to poll for a specified amount of time before
+halting.
+This provides the following benefits to host side polling:
+
+ 1) The POLL flag is set while polling is performed, which allows
+ a remote vCPU to avoid sending an IPI (and the associated
+ cost of handling the IPI) when performing a wakeup.
+
+ 2) The VM-exit cost can be avoided.
+
+The downside of guest side polling is that polling is performed
+even with other runnable tasks in the host.
+
+The basic logic as follows: A global value, guest_halt_poll_ns,
+is configured by the user, indicating the maximum amount of
+time polling is allowed. This value is fixed.
+
+Each vcpu has an adjustable guest_halt_poll_ns
+("per-cpu guest_halt_poll_ns"), which is adjusted by the algorithm
+in response to events (explained below).
+
+Module Parameters
+=================
+
+The haltpoll governor has 5 tunable module parameters:
+
+1) guest_halt_poll_ns:
+Maximum amount of time, in nanoseconds, that polling is
+performed before halting.
+
+Default: 200000
+
+2) guest_halt_poll_shrink:
+Division factor used to shrink per-cpu guest_halt_poll_ns when
+wakeup event occurs after the global guest_halt_poll_ns.
+
+Default: 2
+
+3) guest_halt_poll_grow:
+Multiplication factor used to grow per-cpu guest_halt_poll_ns
+when event occurs after per-cpu guest_halt_poll_ns
+but before global guest_halt_poll_ns.
+
+Default: 2
+
+4) guest_halt_poll_grow_start:
+The per-cpu guest_halt_poll_ns eventually reaches zero
+in case of an idle system. This value sets the initial
+per-cpu guest_halt_poll_ns when growing. This can
+be increased from 10000, to avoid misses during the initial
+growth stage:
+
+10k, 20k, 40k, ... (example assumes guest_halt_poll_grow=2).
+
+Default: 50000
+
+5) guest_halt_poll_allow_shrink:
+
+Bool parameter which allows shrinking. Set to N
+to avoid it (per-cpu guest_halt_poll_ns will remain
+high once achieves global guest_halt_poll_ns value).
+
+Default: Y
+
+The module parameters can be set from the debugfs files in:
+
+ /sys/module/haltpoll/parameters/
+
+Further Notes
+=============
+
+- Care should be taken when setting the guest_halt_poll_ns parameter as a
+large value has the potential to drive the cpu usage to 100% on a machine which
+would be almost entirely idle otherwise.
diff --git a/Documentation/virtual/kvm/arm/psci.txt b/Documentation/virtual/kvm/arm/psci.txt
deleted file mode 100644
index aafdab887b04..000000000000
--- a/Documentation/virtual/kvm/arm/psci.txt
+++ /dev/null
@@ -1,30 +0,0 @@
-KVM implements the PSCI (Power State Coordination Interface)
-specification in order to provide services such as CPU on/off, reset
-and power-off to the guest.
-
-The PSCI specification is regularly updated to provide new features,
-and KVM implements these updates if they make sense from a virtualization
-point of view.
-
-This means that a guest booted on two different versions of KVM can
-observe two different "firmware" revisions. This could cause issues if
-a given guest is tied to a particular PSCI revision (unlikely), or if
-a migration causes a different PSCI version to be exposed out of the
-blue to an unsuspecting guest.
-
-In order to remedy this situation, KVM exposes a set of "firmware
-pseudo-registers" that can be manipulated using the GET/SET_ONE_REG
-interface. These registers can be saved/restored by userspace, and set
-to a convenient value if required.
-
-The following register is defined:
-
-* KVM_REG_ARM_PSCI_VERSION:
-
- - Only valid if the vcpu has the KVM_ARM_VCPU_PSCI_0_2 feature set
- (and thus has already been initialized)
- - Returns the current PSCI version on GET_ONE_REG (defaulting to the
- highest PSCI version implemented by KVM and compatible with v0.2)
- - Allows any PSCI version implemented by KVM and compatible with
- v0.2 to be set with SET_ONE_REG
- - Affects the whole VM (even if the register view is per-vcpu)
diff --git a/Documentation/virtual/kvm/cpuid.txt b/Documentation/virtual/kvm/cpuid.txt
deleted file mode 100644
index 97ca1940a0dc..000000000000
--- a/Documentation/virtual/kvm/cpuid.txt
+++ /dev/null
@@ -1,83 +0,0 @@
-KVM CPUID bits
-Glauber Costa <glommer@redhat.com>, Red Hat Inc, 2010
-=====================================================
-
-A guest running on a kvm host, can check some of its features using
-cpuid. This is not always guaranteed to work, since userspace can
-mask-out some, or even all KVM-related cpuid features before launching
-a guest.
-
-KVM cpuid functions are:
-
-function: KVM_CPUID_SIGNATURE (0x40000000)
-returns : eax = 0x40000001,
- ebx = 0x4b4d564b,
- ecx = 0x564b4d56,
- edx = 0x4d.
-Note that this value in ebx, ecx and edx corresponds to the string "KVMKVMKVM".
-The value in eax corresponds to the maximum cpuid function present in this leaf,
-and will be updated if more functions are added in the future.
-Note also that old hosts set eax value to 0x0. This should
-be interpreted as if the value was 0x40000001.
-This function queries the presence of KVM cpuid leafs.
-
-
-function: define KVM_CPUID_FEATURES (0x40000001)
-returns : ebx, ecx
- eax = an OR'ed group of (1 << flag), where each flags is:
-
-
-flag || value || meaning
-=============================================================================
-KVM_FEATURE_CLOCKSOURCE || 0 || kvmclock available at msrs
- || || 0x11 and 0x12.
-------------------------------------------------------------------------------
-KVM_FEATURE_NOP_IO_DELAY || 1 || not necessary to perform delays
- || || on PIO operations.
-------------------------------------------------------------------------------
-KVM_FEATURE_MMU_OP || 2 || deprecated.
-------------------------------------------------------------------------------
-KVM_FEATURE_CLOCKSOURCE2 || 3 || kvmclock available at msrs
- || || 0x4b564d00 and 0x4b564d01
-------------------------------------------------------------------------------
-KVM_FEATURE_ASYNC_PF || 4 || async pf can be enabled by
- || || writing to msr 0x4b564d02
-------------------------------------------------------------------------------
-KVM_FEATURE_STEAL_TIME || 5 || steal time can be enabled by
- || || writing to msr 0x4b564d03.
-------------------------------------------------------------------------------
-KVM_FEATURE_PV_EOI || 6 || paravirtualized end of interrupt
- || || handler can be enabled by writing
- || || to msr 0x4b564d04.
-------------------------------------------------------------------------------
-KVM_FEATURE_PV_UNHALT || 7 || guest checks this feature bit
- || || before enabling paravirtualized
- || || spinlock support.
-------------------------------------------------------------------------------
-KVM_FEATURE_PV_TLB_FLUSH || 9 || guest checks this feature bit
- || || before enabling paravirtualized
- || || tlb flush.
-------------------------------------------------------------------------------
-KVM_FEATURE_ASYNC_PF_VMEXIT || 10 || paravirtualized async PF VM exit
- || || can be enabled by setting bit 2
- || || when writing to msr 0x4b564d02
-------------------------------------------------------------------------------
-KVM_FEATURE_PV_SEND_IPI || 11 || guest checks this feature bit
- || || before using paravirtualized
- || || send IPIs.
-------------------------------------------------------------------------------
-KVM_FEATURE_CLOCKSOURCE_STABLE_BIT || 24 || host will warn if no guest-side
- || || per-cpu warps are expected in
- || || kvmclock.
-------------------------------------------------------------------------------
-
- edx = an OR'ed group of (1 << flag), where each flags is:
-
-
-flag || value || meaning
-==================================================================================
-KVM_HINTS_REALTIME || 0 || guest checks this feature bit to
- || || determine that vCPUs are never
- || || preempted for an unlimited time,
- || || allowing optimizations
-----------------------------------------------------------------------------------
diff --git a/Documentation/vm/conf.py b/Documentation/vm/conf.py
deleted file mode 100644
index 3b0b601af558..000000000000
--- a/Documentation/vm/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Linux Memory Management Documentation"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'memory-management.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/vm/hmm.rst b/Documentation/vm/hmm.rst
index 7cdf7282e022..0a5960beccf7 100644
--- a/Documentation/vm/hmm.rst
+++ b/Documentation/vm/hmm.rst
@@ -10,7 +10,7 @@ of this being specialized struct page for such memory (see sections 5 to 7 of
this document).
HMM also provides optional helpers for SVM (Share Virtual Memory), i.e.,
-allowing a device to transparently access program address coherently with
+allowing a device to transparently access program addresses coherently with
the CPU meaning that any valid pointer on the CPU is also a valid pointer
for the device. This is becoming mandatory to simplify the use of advanced
heterogeneous computing where GPU, DSP, or FPGA are used to perform various
@@ -22,8 +22,8 @@ expose the hardware limitations that are inherent to many platforms. The third
section gives an overview of the HMM design. The fourth section explains how
CPU page-table mirroring works and the purpose of HMM in this context. The
fifth section deals with how device memory is represented inside the kernel.
-Finally, the last section presents a new migration helper that allows lever-
-aging the device DMA engine.
+Finally, the last section presents a new migration helper that allows
+leveraging the device DMA engine.
.. contents:: :local:
@@ -39,20 +39,20 @@ address space. I use shared address space to refer to the opposite situation:
i.e., one in which any application memory region can be used by a device
transparently.
-Split address space happens because device can only access memory allocated
-through device specific API. This implies that all memory objects in a program
+Split address space happens because devices can only access memory allocated
+through a device specific API. This implies that all memory objects in a program
are not equal from the device point of view which complicates large programs
that rely on a wide set of libraries.
-Concretely this means that code that wants to leverage devices like GPUs needs
-to copy object between generically allocated memory (malloc, mmap private, mmap
+Concretely, this means that code that wants to leverage devices like GPUs needs
+to copy objects between generically allocated memory (malloc, mmap private, mmap
share) and memory allocated through the device driver API (this still ends up
with an mmap but of the device file).
For flat data sets (array, grid, image, ...) this isn't too hard to achieve but
-complex data sets (list, tree, ...) are hard to get right. Duplicating a
+for complex data sets (list, tree, ...) it's hard to get right. Duplicating a
complex data set needs to re-map all the pointer relations between each of its
-elements. This is error prone and program gets harder to debug because of the
+elements. This is error prone and programs get harder to debug because of the
duplicate data set and addresses.
Split address space also means that libraries cannot transparently use data
@@ -77,12 +77,12 @@ I/O bus, device memory characteristics
I/O buses cripple shared address spaces due to a few limitations. Most I/O
buses only allow basic memory access from device to main memory; even cache
-coherency is often optional. Access to device memory from CPU is even more
+coherency is often optional. Access to device memory from a CPU is even more
limited. More often than not, it is not cache coherent.
If we only consider the PCIE bus, then a device can access main memory (often
through an IOMMU) and be cache coherent with the CPUs. However, it only allows
-a limited set of atomic operations from device on main memory. This is worse
+a limited set of atomic operations from the device on main memory. This is worse
in the other direction: the CPU can only access a limited range of the device
memory and cannot perform atomic operations on it. Thus device memory cannot
be considered the same as regular memory from the kernel point of view.
@@ -93,20 +93,20 @@ The final limitation is latency. Access to main memory from the device has an
order of magnitude higher latency than when the device accesses its own memory.
Some platforms are developing new I/O buses or additions/modifications to PCIE
-to address some of these limitations (OpenCAPI, CCIX). They mainly allow two-
-way cache coherency between CPU and device and allow all atomic operations the
+to address some of these limitations (OpenCAPI, CCIX). They mainly allow
+two-way cache coherency between CPU and device and allow all atomic operations the
architecture supports. Sadly, not all platforms are following this trend and
some major architectures are left without hardware solutions to these problems.
So for shared address space to make sense, not only must we allow devices to
access any memory but we must also permit any memory to be migrated to device
-memory while device is using it (blocking CPU access while it happens).
+memory while the device is using it (blocking CPU access while it happens).
Shared address space and migration
==================================
-HMM intends to provide two main features. First one is to share the address
+HMM intends to provide two main features. The first one is to share the address
space by duplicating the CPU page table in the device page table so the same
address points to the same physical memory for any valid main memory address in
the process address space.
@@ -121,14 +121,14 @@ why HMM provides helpers to factor out everything that can be while leaving the
hardware specific details to the device driver.
The second mechanism HMM provides is a new kind of ZONE_DEVICE memory that
-allows allocating a struct page for each page of the device memory. Those pages
+allows allocating a struct page for each page of device memory. Those pages
are special because the CPU cannot map them. However, they allow migrating
main memory to device memory using existing migration mechanisms and everything
-looks like a page is swapped out to disk from the CPU point of view. Using a
-struct page gives the easiest and cleanest integration with existing mm mech-
-anisms. Here again, HMM only provides helpers, first to hotplug new ZONE_DEVICE
+looks like a page that is swapped out to disk from the CPU point of view. Using a
+struct page gives the easiest and cleanest integration with existing mm
+mechanisms. Here again, HMM only provides helpers, first to hotplug new ZONE_DEVICE
memory for the device memory and second to perform migration. Policy decisions
-of what and when to migrate things is left to the device driver.
+of what and when to migrate is left to the device driver.
Note that any CPU access to a device page triggers a page fault and a migration
back to main memory. For example, when a page backing a given CPU address A is
@@ -136,8 +136,8 @@ migrated from a main memory page to a device page, then any CPU access to
address A triggers a page fault and initiates a migration back to main memory.
With these two features, HMM not only allows a device to mirror process address
-space and keeping both CPU and device page table synchronized, but also lever-
-ages device memory by migrating the part of the data set that is actively being
+space and keeps both CPU and device page tables synchronized, but also
+leverages device memory by migrating the part of the data set that is actively being
used by the device.
@@ -151,21 +151,28 @@ registration of an hmm_mirror struct::
int hmm_mirror_register(struct hmm_mirror *mirror,
struct mm_struct *mm);
- int hmm_mirror_register_locked(struct hmm_mirror *mirror,
- struct mm_struct *mm);
-
-The locked variant is to be used when the driver is already holding mmap_sem
-of the mm in write mode. The mirror struct has a set of callbacks that are used
+The mirror struct has a set of callbacks that are used
to propagate CPU page tables::
struct hmm_mirror_ops {
+ /* release() - release hmm_mirror
+ *
+ * @mirror: pointer to struct hmm_mirror
+ *
+ * This is called when the mm_struct is being released. The callback
+ * must ensure that all access to any pages obtained from this mirror
+ * is halted before the callback returns. All future access should
+ * fault.
+ */
+ void (*release)(struct hmm_mirror *mirror);
+
/* sync_cpu_device_pagetables() - synchronize page tables
*
* @mirror: pointer to struct hmm_mirror
- * @update_type: type of update that occurred to the CPU page table
- * @start: virtual start address of the range to update
- * @end: virtual end address of the range to update
+ * @update: update information (see struct mmu_notifier_range)
+ * Return: -EAGAIN if update.blockable false and callback need to
+ * block, 0 otherwise.
*
* This callback ultimately originates from mmu_notifiers when the CPU
* page table is updated. The device driver must update its page table
@@ -176,35 +183,33 @@ to propagate CPU page tables::
* page tables are completely updated (TLBs flushed, etc); this is a
* synchronous call.
*/
- void (*update)(struct hmm_mirror *mirror,
- enum hmm_update action,
- unsigned long start,
- unsigned long end);
+ int (*sync_cpu_device_pagetables)(struct hmm_mirror *mirror,
+ const struct hmm_update *update);
};
The device driver must perform the update action to the range (mark range
-read only, or fully unmap, ...). The device must be done with the update before
+read only, or fully unmap, etc.). The device must complete the update before
the driver callback returns.
When the device driver wants to populate a range of virtual addresses, it can
-use either::
+use::
- long hmm_range_snapshot(struct hmm_range *range);
- long hmm_range_fault(struct hmm_range *range, bool block);
+ long hmm_range_fault(struct hmm_range *range, unsigned int flags);
-The first one (hmm_range_snapshot()) will only fetch present CPU page table
+With the HMM_RANGE_SNAPSHOT flag, it will only fetch present CPU page table
entries and will not trigger a page fault on missing or non-present entries.
-The second one does trigger a page fault on missing or read-only entry if the
-write parameter is true. Page faults use the generic mm page fault code path
-just like a CPU page fault.
+Without that flag, it does trigger a page fault on missing or read-only entries
+if write access is requested (see below). Page faults use the generic mm page
+fault code path just like a CPU page fault.
Both functions copy CPU page table entries into their pfns array argument. Each
entry in that array corresponds to an address in the virtual range. HMM
provides a set of flags to help the driver identify special CPU page table
entries.
-Locking with the update() callback is the most important aspect the driver must
-respect in order to keep things properly synchronized. The usage pattern is::
+Locking within the sync_cpu_device_pagetables() callback is the most important
+aspect the driver must respect in order to keep things properly synchronized.
+The usage pattern is::
int driver_populate_range(...)
{
@@ -217,33 +222,33 @@ respect in order to keep things properly synchronized. The usage pattern is::
range.flags = ...;
range.values = ...;
range.pfn_shift = ...;
- hmm_range_register(&range);
+ hmm_range_register(&range, mirror);
/*
* Just wait for range to be valid, safe to ignore return value as we
- * will use the return value of hmm_range_snapshot() below under the
+ * will use the return value of hmm_range_fault() below under the
* mmap_sem to ascertain the validity of the range.
*/
hmm_range_wait_until_valid(&range, TIMEOUT_IN_MSEC);
again:
down_read(&mm->mmap_sem);
- ret = hmm_range_snapshot(&range);
+ ret = hmm_range_fault(&range, HMM_RANGE_SNAPSHOT);
if (ret) {
up_read(&mm->mmap_sem);
- if (ret == -EAGAIN) {
+ if (ret == -EBUSY) {
/*
* No need to check hmm_range_wait_until_valid() return value
- * on retry we will get proper error with hmm_range_snapshot()
+ * on retry we will get proper error with hmm_range_fault()
*/
hmm_range_wait_until_valid(&range, TIMEOUT_IN_MSEC);
goto again;
}
- hmm_mirror_unregister(&range);
+ hmm_range_unregister(&range);
return ret;
}
take_lock(driver->update);
- if (!range.valid) {
+ if (!hmm_range_valid(&range)) {
release_lock(driver->update);
up_read(&mm->mmap_sem);
goto again;
@@ -251,15 +256,15 @@ respect in order to keep things properly synchronized. The usage pattern is::
// Use pfns array content to update device page table
- hmm_mirror_unregister(&range);
+ hmm_range_unregister(&range);
release_lock(driver->update);
up_read(&mm->mmap_sem);
return 0;
}
The driver->update lock is the same lock that the driver takes inside its
-update() callback. That lock must be held before checking the range.valid
-field to avoid any race with a concurrent CPU page table update.
+sync_cpu_device_pagetables() callback. That lock must be held before calling
+hmm_range_valid() to avoid any race with a concurrent CPU page table update.
HMM implements all this on top of the mmu_notifier API because we wanted a
simpler API and also to be able to perform optimizations latter on like doing
@@ -279,46 +284,47 @@ concurrently).
Leverage default_flags and pfn_flags_mask
=========================================
-The hmm_range struct has 2 fields default_flags and pfn_flags_mask that allows
-to set fault or snapshot policy for a whole range instead of having to set them
-for each entries in the range.
+The hmm_range struct has 2 fields, default_flags and pfn_flags_mask, that specify
+fault or snapshot policy for the whole range instead of having to set them
+for each entry in the pfns array.
+
+For instance, if the device flags for range.flags are::
-For instance if the device flags for device entries are:
- VALID (1 << 63)
- WRITE (1 << 62)
+ range.flags[HMM_PFN_VALID] = (1 << 63);
+ range.flags[HMM_PFN_WRITE] = (1 << 62);
-Now let say that device driver wants to fault with at least read a range then
-it does set::
+and the device driver wants pages for a range with at least read permission,
+it sets::
range->default_flags = (1 << 63);
range->pfn_flags_mask = 0;
-and calls hmm_range_fault() as described above. This will fill fault all page
+and calls hmm_range_fault() as described above. This will fill fault all pages
in the range with at least read permission.
-Now let say driver wants to do the same except for one page in the range for
-which its want to have write. Now driver set::
+Now let's say the driver wants to do the same except for one page in the range for
+which it wants to have write permission. Now driver set::
range->default_flags = (1 << 63);
range->pfn_flags_mask = (1 << 62);
range->pfns[index_of_write] = (1 << 62);
-With this HMM will fault in all page with at least read (ie valid) and for the
+With this, HMM will fault in all pages with at least read (i.e., valid) and for the
address == range->start + (index_of_write << PAGE_SHIFT) it will fault with
-write permission ie if the CPU pte does not have write permission set then HMM
+write permission i.e., if the CPU pte does not have write permission set then HMM
will call handle_mm_fault().
-Note that HMM will populate the pfns array with write permission for any entry
-that have write permission within the CPU pte no matter what are the values set
+Note that HMM will populate the pfns array with write permission for any page
+that is mapped with CPU write permission no matter what values are set
in default_flags or pfn_flags_mask.
Represent and manage device memory from core kernel point of view
=================================================================
-Several different designs were tried to support device memory. First one used
-a device specific data structure to keep information about migrated memory and
-HMM hooked itself in various places of mm code to handle any access to
+Several different designs were tried to support device memory. The first one
+used a device specific data structure to keep information about migrated memory
+and HMM hooked itself in various places of mm code to handle any access to
addresses that were backed by device memory. It turns out that this ended up
replicating most of the fields of struct page and also needed many kernel code
paths to be updated to understand this new kind of memory.
@@ -329,97 +335,20 @@ directly using struct page for device memory which left most kernel code paths
unaware of the difference. We only need to make sure that no one ever tries to
map those pages from the CPU side.
-HMM provides a set of helpers to register and hotplug device memory as a new
-region needing a struct page. This is offered through a very simple API::
-
- struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
- struct device *device,
- unsigned long size);
- void hmm_devmem_remove(struct hmm_devmem *devmem);
-
-The hmm_devmem_ops is where most of the important things are::
-
- struct hmm_devmem_ops {
- void (*free)(struct hmm_devmem *devmem, struct page *page);
- int (*fault)(struct hmm_devmem *devmem,
- struct vm_area_struct *vma,
- unsigned long addr,
- struct page *page,
- unsigned flags,
- pmd_t *pmdp);
- };
-
-The first callback (free()) happens when the last reference on a device page is
-dropped. This means the device page is now free and no longer used by anyone.
-The second callback happens whenever the CPU tries to access a device page
-which it cannot do. This second callback must trigger a migration back to
-system memory.
-
-
Migration to and from device memory
===================================
Because the CPU cannot access device memory, migration must use the device DMA
-engine to perform copy from and to device memory. For this we need a new
-migration helper::
-
- int migrate_vma(const struct migrate_vma_ops *ops,
- struct vm_area_struct *vma,
- unsigned long mentries,
- unsigned long start,
- unsigned long end,
- unsigned long *src,
- unsigned long *dst,
- void *private);
-
-Unlike other migration functions it works on a range of virtual address, there
-are two reasons for that. First, device DMA copy has a high setup overhead cost
-and thus batching multiple pages is needed as otherwise the migration overhead
-makes the whole exercise pointless. The second reason is because the
-migration might be for a range of addresses the device is actively accessing.
-
-The migrate_vma_ops struct defines two callbacks. First one (alloc_and_copy())
-controls destination memory allocation and copy operation. Second one is there
-to allow the device driver to perform cleanup operations after migration::
-
- struct migrate_vma_ops {
- void (*alloc_and_copy)(struct vm_area_struct *vma,
- const unsigned long *src,
- unsigned long *dst,
- unsigned long start,
- unsigned long end,
- void *private);
- void (*finalize_and_map)(struct vm_area_struct *vma,
- const unsigned long *src,
- const unsigned long *dst,
- unsigned long start,
- unsigned long end,
- void *private);
- };
-
-It is important to stress that these migration helpers allow for holes in the
-virtual address range. Some pages in the range might not be migrated for all
-the usual reasons (page is pinned, page is locked, ...). This helper does not
-fail but just skips over those pages.
-
-The alloc_and_copy() might decide to not migrate all pages in the
-range (for reasons under the callback control). For those, the callback just
-has to leave the corresponding dst entry empty.
-
-Finally, the migration of the struct page might fail (for file backed page) for
-various reasons (failure to freeze reference, or update page cache, ...). If
-that happens, then the finalize_and_map() can catch any pages that were not
-migrated. Note those pages were still copied to a new page and thus we wasted
-bandwidth but this is considered as a rare event and a price that we are
-willing to pay to keep all the code simpler.
+engine to perform copy from and to device memory. For this we need to use
+migrate_vma_setup(), migrate_vma_pages(), and migrate_vma_finalize() helpers.
Memory cgroup (memcg) and rss accounting
========================================
-For now device memory is accounted as any regular page in rss counters (either
+For now, device memory is accounted as any regular page in rss counters (either
anonymous if device page is used for anonymous, file if device page is used for
-file backed page or shmem if device page is used for shared memory). This is a
+file backed page, or shmem if device page is used for shared memory). This is a
deliberate choice to keep existing applications, that might start using device
memory without knowing about it, running unimpacted.
@@ -439,6 +368,6 @@ get more experience in how device memory is used and its impact on memory
resource control.
-Note that device memory can never be pinned by device driver nor through GUP
+Note that device memory can never be pinned by a device driver nor through GUP
and thus such memory is always free upon process exit. Or when last reference
is dropped in case of shared memory or file backed memory.
diff --git a/Documentation/vm/hwpoison.rst b/Documentation/vm/hwpoison.rst
index 09bd24a92784..a5c884293dac 100644
--- a/Documentation/vm/hwpoison.rst
+++ b/Documentation/vm/hwpoison.rst
@@ -13,32 +13,32 @@ kill the processes associated with it and avoid using it in the future.
This patchkit implements the necessary infrastructure in the VM.
-To quote the overview comment:
-
- * High level machine check handler. Handles pages reported by the
- * hardware as being corrupted usually due to a 2bit ECC memory or cache
- * failure.
- *
- * This focusses on pages detected as corrupted in the background.
- * When the current CPU tries to consume corruption the currently
- * running process can just be killed directly instead. This implies
- * that if the error cannot be handled for some reason it's safe to
- * just ignore it because no corruption has been consumed yet. Instead
- * when that happens another machine check will happen.
- *
- * Handles page cache pages in various states. The tricky part
- * here is that we can access any page asynchronous to other VM
- * users, because memory failures could happen anytime and anywhere,
- * possibly violating some of their assumptions. This is why this code
- * has to be extremely careful. Generally it tries to use normal locking
- * rules, as in get the standard locks, even if that means the
- * error handling takes potentially a long time.
- *
- * Some of the operations here are somewhat inefficient and have non
- * linear algorithmic complexity, because the data structures have not
- * been optimized for this case. This is in particular the case
- * for the mapping from a vma to a process. Since this case is expected
- * to be rare we hope we can get away with this.
+To quote the overview comment::
+
+ High level machine check handler. Handles pages reported by the
+ hardware as being corrupted usually due to a 2bit ECC memory or cache
+ failure.
+
+ This focusses on pages detected as corrupted in the background.
+ When the current CPU tries to consume corruption the currently
+ running process can just be killed directly instead. This implies
+ that if the error cannot be handled for some reason it's safe to
+ just ignore it because no corruption has been consumed yet. Instead
+ when that happens another machine check will happen.
+
+ Handles page cache pages in various states. The tricky part
+ here is that we can access any page asynchronous to other VM
+ users, because memory failures could happen anytime and anywhere,
+ possibly violating some of their assumptions. This is why this code
+ has to be extremely careful. Generally it tries to use normal locking
+ rules, as in get the standard locks, even if that means the
+ error handling takes potentially a long time.
+
+ Some of the operations here are somewhat inefficient and have non
+ linear algorithmic complexity, because the data structures have not
+ been optimized for this case. This is in particular the case
+ for the mapping from a vma to a process. Since this case is expected
+ to be rare we hope we can get away with this.
The code consists of a the high level handler in mm/memory-failure.c,
a new page poison bit and various checks in the VM to handle poisoned
diff --git a/Documentation/vm/memory-model.rst b/Documentation/vm/memory-model.rst
index 382f72ace1fc..58a12376b7df 100644
--- a/Documentation/vm/memory-model.rst
+++ b/Documentation/vm/memory-model.rst
@@ -181,3 +181,43 @@ that is eventually passed to vmemmap_populate() through a long chain
of function calls. The vmemmap_populate() implementation may use the
`vmem_altmap` along with :c:func:`altmap_alloc_block_buf` helper to
allocate memory map on the persistent memory device.
+
+ZONE_DEVICE
+===========
+The `ZONE_DEVICE` facility builds upon `SPARSEMEM_VMEMMAP` to offer
+`struct page` `mem_map` services for device driver identified physical
+address ranges. The "device" aspect of `ZONE_DEVICE` relates to the fact
+that the page objects for these address ranges are never marked online,
+and that a reference must be taken against the device, not just the page
+to keep the memory pinned for active use. `ZONE_DEVICE`, via
+:c:func:`devm_memremap_pages`, performs just enough memory hotplug to
+turn on :c:func:`pfn_to_page`, :c:func:`page_to_pfn`, and
+:c:func:`get_user_pages` service for the given range of pfns. Since the
+page reference count never drops below 1 the page is never tracked as
+free memory and the page's `struct list_head lru` space is repurposed
+for back referencing to the host device / driver that mapped the memory.
+
+While `SPARSEMEM` presents memory as a collection of sections,
+optionally collected into memory blocks, `ZONE_DEVICE` users have a need
+for smaller granularity of populating the `mem_map`. Given that
+`ZONE_DEVICE` memory is never marked online it is subsequently never
+subject to its memory ranges being exposed through the sysfs memory
+hotplug api on memory block boundaries. The implementation relies on
+this lack of user-api constraint to allow sub-section sized memory
+ranges to be specified to :c:func:`arch_add_memory`, the top-half of
+memory hotplug. Sub-section support allows for 2MB as the cross-arch
+common alignment granularity for :c:func:`devm_memremap_pages`.
+
+The users of `ZONE_DEVICE` are:
+
+* pmem: Map platform persistent memory to be used as a direct-I/O target
+ via DAX mappings.
+
+* hmm: Extend `ZONE_DEVICE` with `->page_fault()` and `->page_free()`
+ event callbacks to allow a device-driver to coordinate memory management
+ events related to device-memory, typically GPU memory. See
+ Documentation/vm/hmm.rst.
+
+* p2pdma: Create `struct page` objects to allow peer devices in a
+ PCI/-E topology to coordinate direct-DMA operations between themselves,
+ i.e. bypass host memory.
diff --git a/Documentation/vm/numa.rst b/Documentation/vm/numa.rst
index 5cae13e9a08b..99fdeca917ca 100644
--- a/Documentation/vm/numa.rst
+++ b/Documentation/vm/numa.rst
@@ -67,7 +67,7 @@ nodes. Each emulated node will manage a fraction of the underlying cells'
physical memory. NUMA emluation is useful for testing NUMA kernel and
application features on non-NUMA platforms, and as a sort of memory resource
management mechanism when used together with cpusets.
-[see Documentation/cgroup-v1/cpusets.txt]
+[see Documentation/admin-guide/cgroup-v1/cpusets.rst]
For each node with memory, Linux constructs an independent memory management
subsystem, complete with its own free page lists, in-use page lists, usage
@@ -99,7 +99,7 @@ Local allocation will tend to keep subsequent access to the allocated memory
as long as the task on whose behalf the kernel allocated some memory does not
later migrate away from that memory. The Linux scheduler is aware of the
NUMA topology of the platform--embodied in the "scheduling domains" data
-structures [see Documentation/scheduler/sched-domains.txt]--and the scheduler
+structures [see Documentation/scheduler/sched-domains.rst]--and the scheduler
attempts to minimize task migration to distant scheduling domains. However,
the scheduler does not take a task's NUMA footprint into account directly.
Thus, under sufficient imbalance, tasks can migrate between nodes, remote
@@ -114,7 +114,7 @@ allocation behavior using Linux NUMA memory policy. [see
System administrators can restrict the CPUs and nodes' memories that a non-
privileged user can specify in the scheduling or NUMA commands and functions
-using control groups and CPUsets. [see Documentation/cgroup-v1/cpusets.txt]
+using control groups and CPUsets. [see Documentation/admin-guide/cgroup-v1/cpusets.rst]
On architectures that do not hide memoryless nodes, Linux will include only
zones [nodes] with memory in the zonelists. This means that for a memoryless
diff --git a/Documentation/vm/page_migration.rst b/Documentation/vm/page_migration.rst
index f68d61335abb..1d6cd7db4e43 100644
--- a/Documentation/vm/page_migration.rst
+++ b/Documentation/vm/page_migration.rst
@@ -41,7 +41,7 @@ locations.
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset (See
-Documentation/cgroup-v1/cpusets.txt).
+Documentation/admin-guide/cgroup-v1/cpusets.rst).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
diff --git a/Documentation/vm/split_page_table_lock.rst b/Documentation/vm/split_page_table_lock.rst
index 889b00be469f..ff51f4a5494d 100644
--- a/Documentation/vm/split_page_table_lock.rst
+++ b/Documentation/vm/split_page_table_lock.rst
@@ -54,9 +54,9 @@ Hugetlb-specific helpers:
Support of split page table lock by an architecture
===================================================
-There's no need in special enabling of PTE split page table lock:
-everything required is done by pgtable_page_ctor() and pgtable_page_dtor(),
-which must be called on PTE table allocation / freeing.
+There's no need in special enabling of PTE split page table lock: everything
+required is done by pgtable_pte_page_ctor() and pgtable_pte_page_dtor(), which
+must be called on PTE table allocation / freeing.
Make sure the architecture doesn't use slab allocator for page table
allocation: slab uses page->slab_cache for its pages.
@@ -74,7 +74,7 @@ paths: i.e X86_PAE preallocate few PMDs on pgd_alloc().
With everything in place you can set CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK.
-NOTE: pgtable_page_ctor() and pgtable_pmd_page_ctor() can fail -- it must
+NOTE: pgtable_pte_page_ctor() and pgtable_pmd_page_ctor() can fail -- it must
be handled properly.
page->ptl
@@ -94,7 +94,7 @@ trick:
split lock with enabled DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC, but costs
one more cache line for indirect access;
-The spinlock_t allocated in pgtable_page_ctor() for PTE table and in
+The spinlock_t allocated in pgtable_pte_page_ctor() for PTE table and in
pgtable_pmd_page_ctor() for PMD table.
Please, never access page->ptl directly -- use appropriate helper.
diff --git a/Documentation/vm/unevictable-lru.rst b/Documentation/vm/unevictable-lru.rst
index b8e29f977f2d..17d0861b0f1d 100644
--- a/Documentation/vm/unevictable-lru.rst
+++ b/Documentation/vm/unevictable-lru.rst
@@ -98,7 +98,7 @@ Memory Control Group Interaction
--------------------------------
The unevictable LRU facility interacts with the memory control group [aka
-memory controller; see Documentation/cgroup-v1/memory.txt] by extending the
+memory controller; see Documentation/admin-guide/cgroup-v1/memory.rst] by extending the
lru_list enum.
The memory controller data structure automatically gets a per-zone unevictable
@@ -439,7 +439,7 @@ Compacting MLOCKED Pages
The unevictable LRU can be scanned for compactable regions and the default
behavior is to do so. /proc/sys/vm/compact_unevictable_allowed controls
-this behavior (see Documentation/sysctl/vm.txt). Once scanning of the
+this behavior (see Documentation/admin-guide/sysctl/vm.rst). Once scanning of the
unevictable LRU is enabled, the work of compaction is mostly handled by
the page migration code and the same work flow as described in MIGRATING
MLOCKED PAGES will apply.
diff --git a/Documentation/w1/index.rst b/Documentation/w1/index.rst
new file mode 100644
index 000000000000..57cba81865e2
--- /dev/null
+++ b/Documentation/w1/index.rst
@@ -0,0 +1,21 @@
+. SPDX-License-Identifier: GPL-2.0
+
+================
+1-Wire Subsystem
+================
+
+.. toctree::
+ :maxdepth: 1
+
+
+ w1-generic.rst
+ w1-netlink.rst
+ masters/index
+ slaves/index
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/w1/masters/ds2482 b/Documentation/w1/masters/ds2482.rst
index 56f8edace6ac..17ebe8f660cd 100644
--- a/Documentation/w1/masters/ds2482
+++ b/Documentation/w1/masters/ds2482.rst
@@ -1,13 +1,19 @@
+====================
Kernel driver ds2482
====================
Supported chips:
+
* Maxim DS2482-100, Maxim DS2482-800
+
Prefix: 'ds2482'
+
Addresses scanned: None
+
Datasheets:
- http://datasheets.maxim-ic.com/en/ds/DS2482-100.pdf
- http://datasheets.maxim-ic.com/en/ds/DS2482-800.pdf
+
+ - http://datasheets.maxim-ic.com/en/ds/DS2482-100.pdf
+ - http://datasheets.maxim-ic.com/en/ds/DS2482-800.pdf
Author: Ben Gardner <bgardner@wabtec.com>
@@ -23,9 +29,11 @@ General Remarks
---------------
Valid addresses are 0x18, 0x19, 0x1a, and 0x1b.
+
However, the device cannot be detected without writing to the i2c bus, so no
detection is done. You should instantiate the device explicitly.
-$ modprobe ds2482
-$ echo ds2482 0x18 > /sys/bus/i2c/devices/i2c-0/new_device
+::
+ $ modprobe ds2482
+ $ echo ds2482 0x18 > /sys/bus/i2c/devices/i2c-0/new_device
diff --git a/Documentation/w1/masters/ds2490 b/Documentation/w1/masters/ds2490.rst
index 3e091151dd80..7e5b50f9c0f5 100644
--- a/Documentation/w1/masters/ds2490
+++ b/Documentation/w1/masters/ds2490.rst
@@ -1,7 +1,9 @@
+====================
Kernel driver ds2490
====================
Supported chips:
+
* Maxim DS2490 based
Author: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
@@ -18,6 +20,7 @@ which has 0x81 family ID integrated chip and DS2490
low-level operational chip.
Notes and limitations.
+
- The weak pullup current is a minimum of 0.9mA and maximum of 6.0mA.
- The 5V strong pullup is supported with a minimum of 5.9mA and a
maximum of 30.4 mA. (From DS2490.pdf)
@@ -65,4 +68,5 @@ Notes and limitations.
reattaching would clear the problem. usbmon output in the guest and
host did not explain the problem. My guess is a bug in either qemu
or the host OS and more likely the host OS.
--- 03-06-2008 David Fries <David@Fries.net>
+
+03-06-2008 David Fries <David@Fries.net>
diff --git a/Documentation/w1/masters/index.rst b/Documentation/w1/masters/index.rst
new file mode 100644
index 000000000000..4442a98850ad
--- /dev/null
+++ b/Documentation/w1/masters/index.rst
@@ -0,0 +1,14 @@
+. SPDX-License-Identifier: GPL-2.0
+
+=====================
+1-wire Master Drivers
+=====================
+
+.. toctree::
+ :maxdepth: 1
+
+ ds2482
+ ds2490
+ mxc-w1
+ omap-hdq
+ w1-gpio
diff --git a/Documentation/w1/masters/mxc-w1 b/Documentation/w1/masters/mxc-w1
deleted file mode 100644
index 38be1ad65532..000000000000
--- a/Documentation/w1/masters/mxc-w1
+++ /dev/null
@@ -1,12 +0,0 @@
-Kernel driver mxc_w1
-====================
-
-Supported chips:
- * Freescale MX27, MX31 and probably other i.MX SoCs
- Datasheets:
- http://www.freescale.com/files/32bit/doc/data_sheet/MCIMX31.pdf?fpsp=1
- http://cache.freescale.com/files/dsp/doc/archive/MCIMX27.pdf?fsrch=1&WT_TYPE=
- Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
-
-Author: Originally based on Freescale code, prepared for mainline by
- Sascha Hauer <s.hauer@pengutronix.de>
diff --git a/Documentation/w1/masters/mxc-w1.rst b/Documentation/w1/masters/mxc-w1.rst
new file mode 100644
index 000000000000..334f9893103f
--- /dev/null
+++ b/Documentation/w1/masters/mxc-w1.rst
@@ -0,0 +1,17 @@
+====================
+Kernel driver mxc_w1
+====================
+
+Supported chips:
+
+ * Freescale MX27, MX31 and probably other i.MX SoCs
+
+ Datasheets:
+
+ - http://www.freescale.com/files/32bit/doc/data_sheet/MCIMX31.pdf?fpsp=1
+ - http://cache.freescale.com/files/dsp/doc/archive/MCIMX27.pdf?fsrch=1&WT_TYPE=Data%20Sheets&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
+
+Author:
+
+ Originally based on Freescale code, prepared for mainline by
+ Sascha Hauer <s.hauer@pengutronix.de>
diff --git a/Documentation/w1/masters/omap-hdq b/Documentation/w1/masters/omap-hdq.rst
index 234522709a5f..345298a59e50 100644
--- a/Documentation/w1/masters/omap-hdq
+++ b/Documentation/w1/masters/omap-hdq.rst
@@ -1,9 +1,10 @@
-Kernel driver for omap HDQ/1-wire module.
+========================================
+Kernel driver for omap HDQ/1-wire module
========================================
Supported chips:
================
- HDQ/1-wire controller on the TI OMAP 2430/3430 platforms.
+HDQ/1-wire controller on the TI OMAP 2430/3430 platforms.
A useful link about HDQ basics:
===============================
@@ -40,9 +41,10 @@ driver(drivers/w1/slaves/w1_bq27000.c) sets the ID to 1.
Please note to load both the modules with a different ID if required, but note
that the ID used should be same for both master and slave driver loading.
-e.g:
-insmod omap_hdq.ko W1_ID=2
-inamod w1_bq27000.ko F_ID=2
+e.g::
+
+ insmod omap_hdq.ko W1_ID=2
+ inamod w1_bq27000.ko F_ID=2
The driver also supports 1-wire mode. In this mode, there is no need to
pass slave ID as parameter. The driver will auto-detect slaves connected
diff --git a/Documentation/w1/masters/w1-gpio b/Documentation/w1/masters/w1-gpio.rst
index 623961d9e83f..18fdb7366372 100644
--- a/Documentation/w1/masters/w1-gpio
+++ b/Documentation/w1/masters/w1-gpio.rst
@@ -1,3 +1,4 @@
+=====================
Kernel driver w1-gpio
=====================
@@ -16,28 +17,30 @@ Documentation/devicetree/bindings/w1/w1-gpio.txt
Example (mach-at91)
-------------------
-#include <linux/gpio/machine.h>
-#include <linux/w1-gpio.h>
+::
+
+ #include <linux/gpio/machine.h>
+ #include <linux/w1-gpio.h>
-static struct gpiod_lookup_table foo_w1_gpiod_table = {
+ static struct gpiod_lookup_table foo_w1_gpiod_table = {
.dev_id = "w1-gpio",
.table = {
GPIO_LOOKUP_IDX("at91-gpio", AT91_PIN_PB20, NULL, 0,
GPIO_ACTIVE_HIGH|GPIO_OPEN_DRAIN),
},
-};
+ };
-static struct w1_gpio_platform_data foo_w1_gpio_pdata = {
+ static struct w1_gpio_platform_data foo_w1_gpio_pdata = {
.ext_pullup_enable_pin = -EINVAL,
-};
+ };
-static struct platform_device foo_w1_device = {
+ static struct platform_device foo_w1_device = {
.name = "w1-gpio",
.id = -1,
.dev.platform_data = &foo_w1_gpio_pdata,
-};
+ };
-...
+ ...
at91_set_GPIO_periph(foo_w1_gpio_pdata.pin, 1);
at91_set_multi_drive(foo_w1_gpio_pdata.pin, 1);
gpiod_add_lookup_table(&foo_w1_gpiod_table);
diff --git a/Documentation/w1/slaves/index.rst b/Documentation/w1/slaves/index.rst
new file mode 100644
index 000000000000..d0697b202f09
--- /dev/null
+++ b/Documentation/w1/slaves/index.rst
@@ -0,0 +1,16 @@
+. SPDX-License-Identifier: GPL-2.0
+
+====================
+1-wire Slave Drivers
+====================
+
+.. toctree::
+ :maxdepth: 1
+
+ w1_ds2406
+ w1_ds2413
+ w1_ds2423
+ w1_ds2438
+ w1_ds28e04
+ w1_ds28e17
+ w1_therm
diff --git a/Documentation/w1/slaves/w1_ds2406 b/Documentation/w1/slaves/w1_ds2406.rst
index 8137fe6f6c3d..d3e68266084f 100644
--- a/Documentation/w1/slaves/w1_ds2406
+++ b/Documentation/w1/slaves/w1_ds2406.rst
@@ -1,7 +1,9 @@
+=======================
w1_ds2406 kernel driver
=======================
Supported chips:
+
* Maxim DS2406 (and other family 0x12) addressable switches
Author: Scott Alfter <scott@alfter.us>
@@ -9,7 +11,7 @@ Author: Scott Alfter <scott@alfter.us>
Description
-----------
-The w1_ds2406 driver allows connected devices to be switched on and off.
+The w1_ds2406 driver allows connected devices to be switched on and off.
These chips also provide 128 bytes of OTP EPROM, but reading/writing it is
not supported. In TSOC-6 form, the DS2406 provides two switch outputs and
can be provided with power on a dedicated input. In TO-92 form, it provides
diff --git a/Documentation/w1/slaves/w1_ds2413 b/Documentation/w1/slaves/w1_ds2413.rst
index 936263a8ccb4..c15bb5b919b7 100644
--- a/Documentation/w1/slaves/w1_ds2413
+++ b/Documentation/w1/slaves/w1_ds2413.rst
@@ -1,11 +1,16 @@
+=======================
Kernel driver w1_ds2413
=======================
Supported chips:
+
* Maxim DS2413 1-Wire Dual Channel Addressable Switch
supported family codes:
+
+ ================ ====
W1_FAMILY_DS2413 0x3A
+ ================ ====
Author: Mariusz Bialonczyk <manio@skyboo.net>
@@ -20,11 +25,13 @@ Reading state
The "state" file provides one-byte value which is in the same format as for
the chip PIO_ACCESS_READ command (refer the datasheet for details):
+======== =============================================================
Bit 0: PIOA Pin State
Bit 1: PIOA Output Latch State
Bit 2: PIOB Pin State
Bit 3: PIOB Output Latch State
Bit 4-7: Complement of Bit 3 to Bit 0 (verified by the kernel module)
+======== =============================================================
This file is readonly.
@@ -34,9 +41,11 @@ You can set the PIO pins using the "output" file.
It is writable, you can write one-byte value to this sysfs file.
Similarly the byte format is the same as for the PIO_ACCESS_WRITE command:
+======== ======================================
Bit 0: PIOA
Bit 1: PIOB
Bit 2-7: No matter (driver will set it to "1"s)
+======== ======================================
The chip has some kind of basic protection against transmission errors.
diff --git a/Documentation/w1/slaves/w1_ds2423 b/Documentation/w1/slaves/w1_ds2423
deleted file mode 100644
index 3f98b505a0ee..000000000000
--- a/Documentation/w1/slaves/w1_ds2423
+++ /dev/null
@@ -1,47 +0,0 @@
-Kernel driver w1_ds2423
-=======================
-
-Supported chips:
- * Maxim DS2423 based counter devices.
-
-supported family codes:
- W1_THERM_DS2423 0x1D
-
-Author: Mika Laitio <lamikr@pilppa.org>
-
-Description
------------
-
-Support is provided through the sysfs w1_slave file. Each opening and
-read sequence of w1_slave file initiates the read of counters and ram
-available in DS2423 pages 12 - 15.
-
-Result of each page is provided as an ASCII output where each counter
-value and associated ram buffer is outpputed to own line.
-
-Each lines will contain the values of 42 bytes read from the counter and
-memory page along the crc=YES or NO for indicating whether the read operation
-was successful and CRC matched.
-If the operation was successful, there is also in the end of each line
-a counter value expressed as an integer after c=
-
-Meaning of 42 bytes represented is following:
- - 1 byte from ram page
- - 4 bytes for the counter value
- - 4 zero bytes
- - 2 bytes for crc16 which was calculated from the data read since the previous crc bytes
- - 31 remaining bytes from the ram page
- - crc=YES/NO indicating whether read was ok and crc matched
- - c=<int> current counter value
-
-example from the successful read:
-00 02 00 00 00 00 00 00 00 6d 38 00 ff ff 00 00 fe ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
-00 02 00 00 00 00 00 00 00 e0 1f 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
-00 29 c6 5d 18 00 00 00 00 04 37 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=408798761
-00 05 00 00 00 00 00 00 00 8d 39 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff crc=YES c=5
-
-example from the read with crc errors:
-00 02 00 00 00 00 00 00 00 6d 38 00 ff ff 00 00 fe ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
-00 02 00 00 22 00 00 00 00 e0 1f 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=NO
-00 e1 61 5d 19 00 00 00 00 df 0b 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=NO
-00 05 00 00 20 00 00 00 00 8d 39 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff crc=NO
diff --git a/Documentation/w1/slaves/w1_ds2423.rst b/Documentation/w1/slaves/w1_ds2423.rst
new file mode 100644
index 000000000000..755d659ad997
--- /dev/null
+++ b/Documentation/w1/slaves/w1_ds2423.rst
@@ -0,0 +1,54 @@
+Kernel driver w1_ds2423
+=======================
+
+Supported chips:
+
+ * Maxim DS2423 based counter devices.
+
+supported family codes:
+
+ =============== ====
+ W1_THERM_DS2423 0x1D
+ =============== ====
+
+Author: Mika Laitio <lamikr@pilppa.org>
+
+Description
+-----------
+
+Support is provided through the sysfs w1_slave file. Each opening and
+read sequence of w1_slave file initiates the read of counters and ram
+available in DS2423 pages 12 - 15.
+
+Result of each page is provided as an ASCII output where each counter
+value and associated ram buffer is outpputed to own line.
+
+Each lines will contain the values of 42 bytes read from the counter and
+memory page along the crc=YES or NO for indicating whether the read operation
+was successful and CRC matched.
+If the operation was successful, there is also in the end of each line
+a counter value expressed as an integer after c=
+
+Meaning of 42 bytes represented is following:
+
+ - 1 byte from ram page
+ - 4 bytes for the counter value
+ - 4 zero bytes
+ - 2 bytes for crc16 which was calculated from the data read since the previous crc bytes
+ - 31 remaining bytes from the ram page
+ - crc=YES/NO indicating whether read was ok and crc matched
+ - c=<int> current counter value
+
+example from the successful read::
+
+ 00 02 00 00 00 00 00 00 00 6d 38 00 ff ff 00 00 fe ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
+ 00 02 00 00 00 00 00 00 00 e0 1f 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
+ 00 29 c6 5d 18 00 00 00 00 04 37 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=408798761
+ 00 05 00 00 00 00 00 00 00 8d 39 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff crc=YES c=5
+
+example from the read with crc errors::
+
+ 00 02 00 00 00 00 00 00 00 6d 38 00 ff ff 00 00 fe ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
+ 00 02 00 00 22 00 00 00 00 e0 1f 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=NO
+ 00 e1 61 5d 19 00 00 00 00 df 0b 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=NO
+ 00 05 00 00 20 00 00 00 00 8d 39 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff crc=NO
diff --git a/Documentation/w1/slaves/w1_ds2438 b/Documentation/w1/slaves/w1_ds2438.rst
index e64f65a09387..a29309a3f8e5 100644
--- a/Documentation/w1/slaves/w1_ds2438
+++ b/Documentation/w1/slaves/w1_ds2438.rst
@@ -2,10 +2,13 @@ Kernel driver w1_ds2438
=======================
Supported chips:
+
* Maxim DS2438 Smart Battery Monitor
supported family codes:
+ ================ ====
W1_FAMILY_DS2438 0x26
+ ================ ====
Author: Mariusz Bialonczyk <manio@skyboo.net>
@@ -56,8 +59,11 @@ Opening and reading this file initiates the CONVERT_V (voltage conversion)
command of the chip.
Depending on a sysfs filename a different input for the A/D will be selected:
-vad: general purpose A/D input (VAD)
-vdd: battery input (VDD)
+
+vad:
+ general purpose A/D input (VAD)
+vdd:
+ battery input (VDD)
After the voltage conversion the value is returned as decimal ASCII.
Note: To get a volts the value has to be divided by 100.
diff --git a/Documentation/w1/slaves/w1_ds28e04 b/Documentation/w1/slaves/w1_ds28e04.rst
index 7819b65cfa48..b12b118890d3 100644
--- a/Documentation/w1/slaves/w1_ds28e04
+++ b/Documentation/w1/slaves/w1_ds28e04.rst
@@ -1,11 +1,16 @@
+========================
Kernel driver w1_ds28e04
========================
Supported chips:
+
* Maxim DS28E04-100 4096-Bit Addressable 1-Wire EEPROM with PIO
supported family codes:
+
+ ================= ====
W1_FAMILY_DS28E04 0x1C
+ ================= ====
Author: Markus Franke, <franke.m@sebakmt.com> <franm@hrz.tu-chemnitz.de>
diff --git a/Documentation/w1/slaves/w1_ds28e17 b/Documentation/w1/slaves/w1_ds28e17.rst
index 7fcfad5b4a37..e2d9f96d8f2c 100644
--- a/Documentation/w1/slaves/w1_ds28e17
+++ b/Documentation/w1/slaves/w1_ds28e17.rst
@@ -1,11 +1,16 @@
+========================
Kernel driver w1_ds28e17
========================
Supported chips:
+
* Maxim DS28E17 1-Wire-to-I2C Master Bridge
supported family codes:
+
+ ================= ====
W1_FAMILY_DS28E17 0x19
+ ================= ====
Author: Jan Kandziora <jjj@gmx.de>
@@ -20,11 +25,11 @@ a DS28E17 can be accessed by the kernel or userspace tools as if they were
connected to a "native" I2C bus master.
-An udev rule like the following
--------------------------------------------------------------------------------
-SUBSYSTEM=="i2c-dev", KERNEL=="i2c-[0-9]*", ATTRS{name}=="w1-19-*", \
- SYMLINK+="i2c-$attr{name}"
--------------------------------------------------------------------------------
+An udev rule like the following::
+
+ SUBSYSTEM=="i2c-dev", KERNEL=="i2c-[0-9]*", ATTRS{name}=="w1-19-*", \
+ SYMLINK+="i2c-$attr{name}"
+
may be used to create stable /dev/i2c- entries based on the unique id of the
DS28E17 chip.
@@ -65,4 +70,3 @@ structure is created.
See https://github.com/ianka/w1_ds28e17 for even more information.
-
diff --git a/Documentation/w1/slaves/w1_therm b/Documentation/w1/slaves/w1_therm.rst
index d1f93af36f38..90531c340a07 100644
--- a/Documentation/w1/slaves/w1_therm
+++ b/Documentation/w1/slaves/w1_therm.rst
@@ -1,7 +1,9 @@
+======================
Kernel driver w1_therm
-====================
+======================
Supported chips:
+
* Maxim ds18*20 based temperature sensors.
* Maxim ds1825 based temperature sensors.
@@ -13,12 +15,16 @@ Description
w1_therm provides basic temperature conversion for ds18*20 devices, and the
ds28ea00 device.
-supported family codes:
+
+Supported family codes:
+
+==================== ====
W1_THERM_DS18S20 0x10
W1_THERM_DS1822 0x22
W1_THERM_DS18B20 0x28
W1_THERM_DS1825 0x3B
W1_THERM_DS28EA00 0x42
+==================== ====
Support is provided through the sysfs w1_slave file. Each open and
read sequence will initiate a temperature conversion then provide two
@@ -51,6 +57,7 @@ If so, it will activate the master's strong pullup.
In case the detection of parasite devices using this command fails
(seems to be the case with some DS18S20) the strong pullup can
be force-enabled.
+
If the strong pullup is enabled, the master's strong pullup will be
driven when the conversion is taking place, provided the master driver
does support the strong pullup (or it falls back to a pullup
diff --git a/Documentation/w1/w1.generic b/Documentation/w1/w1-generic.rst
index c51b1ab012d0..da4e8b4e9b01 100644
--- a/Documentation/w1/w1.generic
+++ b/Documentation/w1/w1-generic.rst
@@ -1,5 +1,7 @@
-The 1-wire (w1) subsystem
-------------------------------------------------------------------
+=========================================
+Introduction to the 1-wire (w1) subsystem
+=========================================
+
The 1-wire bus is a simple master-slave bus that communicates via a single
signal wire (plus ground, so two wires).
@@ -12,14 +14,16 @@ communication with slaves.
All w1 slave devices must be connected to a w1 bus master device.
Example w1 master devices:
- DS9490 usb device
- W1-over-GPIO
- DS2482 (i2c to w1 bridge)
- Emulated devices, such as a RS232 converter, parallel port adapter, etc
+
+ - DS9490 usb device
+ - W1-over-GPIO
+ - DS2482 (i2c to w1 bridge)
+ - Emulated devices, such as a RS232 converter, parallel port adapter, etc
What does the w1 subsystem do?
-------------------------------------------------------------------
+------------------------------
+
When a w1 master driver registers with the w1 subsystem, the following occurs:
- sysfs entries for that w1 master are created
@@ -43,24 +47,28 @@ be read, since no device was selected.
W1 device families
-------------------------------------------------------------------
+------------------
+
Slave devices are handled by a driver written for a family of w1 devices.
A family driver populates a struct w1_family_ops (see w1_family.h) and
registers with the w1 subsystem.
Current family drivers:
-w1_therm - (ds18?20 thermal sensor family driver)
+
+w1_therm
+ - (ds18?20 thermal sensor family driver)
provides temperature reading function which is bound to ->rbin() method
of the above w1_family_ops structure.
-w1_smem - driver for simple 64bit memory cell provides ID reading method.
+w1_smem
+ - driver for simple 64bit memory cell provides ID reading method.
You can call above methods by reading appropriate sysfs files.
What does a w1 master driver need to implement?
-------------------------------------------------------------------
+-----------------------------------------------
The driver for w1 bus master must provide at minimum two functions.
@@ -75,25 +83,26 @@ See struct w1_bus_master definition in w1.h for details.
w1 master sysfs interface
-------------------------------------------------------------------
-<xx-xxxxxxxxxxxx> - A directory for a found device. The format is family-serial
-bus - (standard) symlink to the w1 bus
-driver - (standard) symlink to the w1 driver
-w1_master_add - (rw) manually register a slave device
-w1_master_attempts - (ro) the number of times a search was attempted
-w1_master_max_slave_count
- - (rw) maximum number of slaves to search for at a time
-w1_master_name - (ro) the name of the device (w1_bus_masterX)
-w1_master_pullup - (rw) 5V strong pullup 0 enabled, 1 disabled
-w1_master_remove - (rw) manually remove a slave device
-w1_master_search - (rw) the number of searches left to do,
- -1=continual (default)
-w1_master_slave_count
- - (ro) the number of slaves found
-w1_master_slaves - (ro) the names of the slaves, one per line
-w1_master_timeout - (ro) the delay in seconds between searches
-w1_master_timeout_us
- - (ro) the delay in microseconds beetwen searches
+-------------------------
+
+========================= =====================================================
+<xx-xxxxxxxxxxxx> A directory for a found device. The format is
+ family-serial
+bus (standard) symlink to the w1 bus
+driver (standard) symlink to the w1 driver
+w1_master_add (rw) manually register a slave device
+w1_master_attempts (ro) the number of times a search was attempted
+w1_master_max_slave_count (rw) maximum number of slaves to search for at a time
+w1_master_name (ro) the name of the device (w1_bus_masterX)
+w1_master_pullup (rw) 5V strong pullup 0 enabled, 1 disabled
+w1_master_remove (rw) manually remove a slave device
+w1_master_search (rw) the number of searches left to do,
+ -1=continual (default)
+w1_master_slave_count (ro) the number of slaves found
+w1_master_slaves (ro) the names of the slaves, one per line
+w1_master_timeout (ro) the delay in seconds between searches
+w1_master_timeout_us (ro) the delay in microseconds beetwen searches
+========================= =====================================================
If you have a w1 bus that never changes (you don't add or remove devices),
you can set the module parameter search_count to a small positive number
@@ -111,11 +120,14 @@ decrements w1_master_search by 1 (down to 0) and increments
w1_master_attempts by 1.
w1 slave sysfs interface
-------------------------------------------------------------------
-bus - (standard) symlink to the w1 bus
-driver - (standard) symlink to the w1 driver
-name - the device name, usually the same as the directory name
-w1_slave - (optional) a binary file whose meaning depends on the
- family driver
-rw - (optional) created for slave devices which do not have
- appropriate family driver. Allows to read/write binary data.
+------------------------
+
+=================== ============================================================
+bus (standard) symlink to the w1 bus
+driver (standard) symlink to the w1 driver
+name the device name, usually the same as the directory name
+w1_slave (optional) a binary file whose meaning depends on the
+ family driver
+rw (optional) created for slave devices which do not have
+ appropriate family driver. Allows to read/write binary data.
+=================== ============================================================
diff --git a/Documentation/w1/w1.netlink b/Documentation/w1/w1-netlink.rst
index ef2727192d69..aaa13243a5e4 100644
--- a/Documentation/w1/w1.netlink
+++ b/Documentation/w1/w1-netlink.rst
@@ -1,22 +1,26 @@
-Userspace communication protocol over connector [1].
+===============================================
+Userspace communication protocol over connector
+===============================================
-
-Message types.
+Message types
=============
There are three types of messages between w1 core and userspace:
+
1. Events. They are generated each time a new master or slave device
- is found either due to automatic or requested search.
+ is found either due to automatic or requested search.
2. Userspace commands.
3. Replies to userspace commands.
-Protocol.
+Protocol
========
-[struct cn_msg] - connector header.
+::
+
+ [struct cn_msg] - connector header.
Its length field is equal to size of the attached data
-[struct w1_netlink_msg] - w1 netlink header.
+ [struct w1_netlink_msg] - w1 netlink header.
__u8 type - message type.
W1_LIST_MASTERS
list current bus masters
@@ -40,7 +44,7 @@ Protocol.
} mst;
} id;
-[struct w1_netlink_cmd] - command for given master or slave device.
+ [struct w1_netlink_cmd] - command for given master or slave device.
__u8 cmd - command opcode.
W1_CMD_READ - read command
W1_CMD_WRITE - write command
@@ -71,18 +75,18 @@ when it is added to w1 core.
Currently replies to userspace commands are only generated for read
command request. One reply is generated exactly for one w1_netlink_cmd
read request. Replies are not combined when sent - i.e. typical reply
-messages looks like the following:
+messages looks like the following::
-[cn_msg][w1_netlink_msg][w1_netlink_cmd]
-cn_msg.len = sizeof(struct w1_netlink_msg) +
+ [cn_msg][w1_netlink_msg][w1_netlink_cmd]
+ cn_msg.len = sizeof(struct w1_netlink_msg) +
sizeof(struct w1_netlink_cmd) +
cmd->len;
-w1_netlink_msg.len = sizeof(struct w1_netlink_cmd) + cmd->len;
-w1_netlink_cmd.len = cmd->len;
+ w1_netlink_msg.len = sizeof(struct w1_netlink_cmd) + cmd->len;
+ w1_netlink_cmd.len = cmd->len;
Replies to W1_LIST_MASTERS should send a message back to the userspace
which will contain list of all registered master ids in the following
-format:
+format::
cn_msg (CN_W1_IDX.CN_W1_VAL as id, len is equal to sizeof(struct
w1_netlink_msg) plus number of masters multiplied by 4)
@@ -90,39 +94,47 @@ format:
number of masters multiplied by 4 (u32 size))
id0 ... idN
- Each message is at most 4k in size, so if number of master devices
- exceeds this, it will be split into several messages.
+Each message is at most 4k in size, so if number of master devices
+exceeds this, it will be split into several messages.
W1 search and alarm search commands.
-request:
-[cn_msg]
- [w1_netlink_msg type = W1_MASTER_CMD
- id is equal to the bus master id to use for searching]
- [w1_netlink_cmd cmd = W1_CMD_SEARCH or W1_CMD_ALARM_SEARCH]
-reply:
+request::
+
+ [cn_msg]
+ [w1_netlink_msg type = W1_MASTER_CMD
+ id is equal to the bus master id to use for searching]
+ [w1_netlink_cmd cmd = W1_CMD_SEARCH or W1_CMD_ALARM_SEARCH]
+
+reply::
+
[cn_msg, ack = 1 and increasing, 0 means the last message,
- seq is equal to the request seq]
+ seq is equal to the request seq]
[w1_netlink_msg type = W1_MASTER_CMD]
[w1_netlink_cmd cmd = W1_CMD_SEARCH or W1_CMD_ALARM_SEARCH
len is equal to number of IDs multiplied by 8]
[64bit-id0 ... 64bit-idN]
+
Length in each header corresponds to the size of the data behind it, so
w1_netlink_cmd->len = N * 8; where N is number of IDs in this message.
- Can be zero.
-w1_netlink_msg->len = sizeof(struct w1_netlink_cmd) + N * 8;
-cn_msg->len = sizeof(struct w1_netlink_msg) +
+Can be zero.
+
+::
+
+ w1_netlink_msg->len = sizeof(struct w1_netlink_cmd) + N * 8;
+ cn_msg->len = sizeof(struct w1_netlink_msg) +
sizeof(struct w1_netlink_cmd) +
N*8;
-W1 reset command.
-[cn_msg]
- [w1_netlink_msg type = W1_MASTER_CMD
- id is equal to the bus master id to use for searching]
- [w1_netlink_cmd cmd = W1_CMD_RESET]
+W1 reset command::
+ [cn_msg]
+ [w1_netlink_msg type = W1_MASTER_CMD
+ id is equal to the bus master id to use for searching]
+ [w1_netlink_cmd cmd = W1_CMD_RESET]
-Command status replies.
+
+Command status replies
======================
Each command (either root, master or slave with or without w1_netlink_cmd
@@ -150,7 +162,7 @@ All w1_netlink_cmd command structures are handled in every w1_netlink_msg,
even if there were errors, only length mismatch interrupts message processing.
-Operation steps in w1 core when new command is received.
+Operation steps in w1 core when new command is received
=======================================================
When new message (w1_netlink_msg) is received w1 core detects if it is
@@ -167,7 +179,7 @@ When all commands (w1_netlink_cmd) are processed master device is unlocked
and next w1_netlink_msg header processing started.
-Connector [1] specific documentation.
+Connector [1] specific documentation
====================================
Each connector message includes two u32 fields as "address".
@@ -180,10 +192,11 @@ Sequence number for reply is the same as was in request, and
acknowledge number is set to seq+1.
-Additional documantion, source code examples.
-============================================
+Additional documentation, source code examples
+==============================================
-1. Documentation/connector
+1. Documentation/driver-api/connector.rst
2. http://www.ioremap.net/archive/w1
-This archive includes userspace application w1d.c which uses
-read/write/search commands for all master/slave devices found on the bus.
+
+ This archive includes userspace application w1d.c which uses
+ read/write/search commands for all master/slave devices found on the bus.
diff --git a/Documentation/watchdog/convert_drivers_to_kernel_api.txt b/Documentation/watchdog/convert_drivers_to_kernel_api.rst
index 9fffb2958d13..dd934cc08e40 100644
--- a/Documentation/watchdog/convert_drivers_to_kernel_api.txt
+++ b/Documentation/watchdog/convert_drivers_to_kernel_api.rst
@@ -1,7 +1,9 @@
+=========================================================
Converting old watchdog drivers to the watchdog framework
-by Wolfram Sang <w.sang@pengutronix.de>
=========================================================
+by Wolfram Sang <w.sang@pengutronix.de>
+
Before the watchdog framework came into the kernel, every driver had to
implement the API on its own. Now, as the framework factored out the common
components, those drivers can be lightened making it a user of the framework.
@@ -69,16 +71,16 @@ Here is a overview of the functions and probably needed actions:
-ENOIOCTLCMD, the IOCTLs of the framework will be tried, too. Any other error
is directly given to the user.
-Example conversion:
+Example conversion::
--static const struct file_operations s3c2410wdt_fops = {
-- .owner = THIS_MODULE,
-- .llseek = no_llseek,
-- .write = s3c2410wdt_write,
-- .unlocked_ioctl = s3c2410wdt_ioctl,
-- .open = s3c2410wdt_open,
-- .release = s3c2410wdt_release,
--};
+ -static const struct file_operations s3c2410wdt_fops = {
+ - .owner = THIS_MODULE,
+ - .llseek = no_llseek,
+ - .write = s3c2410wdt_write,
+ - .unlocked_ioctl = s3c2410wdt_ioctl,
+ - .open = s3c2410wdt_open,
+ - .release = s3c2410wdt_release,
+ -};
Check the functions for device-specific stuff and keep it for later
refactoring. The rest can go.
@@ -89,24 +91,24 @@ Remove the miscdevice
Since the file_operations are gone now, you can also remove the 'struct
miscdevice'. The framework will create it on watchdog_dev_register() called by
-watchdog_register_device().
+watchdog_register_device()::
--static struct miscdevice s3c2410wdt_miscdev = {
-- .minor = WATCHDOG_MINOR,
-- .name = "watchdog",
-- .fops = &s3c2410wdt_fops,
--};
+ -static struct miscdevice s3c2410wdt_miscdev = {
+ - .minor = WATCHDOG_MINOR,
+ - .name = "watchdog",
+ - .fops = &s3c2410wdt_fops,
+ -};
Remove obsolete includes and defines
------------------------------------
Because of the simplifications, a few defines are probably unused now. Remove
-them. Includes can be removed, too. For example:
+them. Includes can be removed, too. For example::
-- #include <linux/fs.h>
-- #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
-- #include <linux/uaccess.h> (if no custom IOCTLs are used)
+ - #include <linux/fs.h>
+ - #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
+ - #include <linux/uaccess.h> (if no custom IOCTLs are used)
Add the watchdog operations
@@ -121,30 +123,30 @@ change the function header. Other changes are most likely not needed, because
here simply happens the direct hardware access. If you have device-specific
code left from the above steps, it should be refactored into these callbacks.
-Here is a simple example:
+Here is a simple example::
-+static struct watchdog_ops s3c2410wdt_ops = {
-+ .owner = THIS_MODULE,
-+ .start = s3c2410wdt_start,
-+ .stop = s3c2410wdt_stop,
-+ .ping = s3c2410wdt_keepalive,
-+ .set_timeout = s3c2410wdt_set_heartbeat,
-+};
+ +static struct watchdog_ops s3c2410wdt_ops = {
+ + .owner = THIS_MODULE,
+ + .start = s3c2410wdt_start,
+ + .stop = s3c2410wdt_stop,
+ + .ping = s3c2410wdt_keepalive,
+ + .set_timeout = s3c2410wdt_set_heartbeat,
+ +};
-A typical function-header change looks like:
+A typical function-header change looks like::
--static void s3c2410wdt_keepalive(void)
-+static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
- {
-...
-+
-+ return 0;
- }
+ -static void s3c2410wdt_keepalive(void)
+ +static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
+ {
+ ...
+ +
+ + return 0;
+ }
-...
+ ...
-- s3c2410wdt_keepalive();
-+ s3c2410wdt_keepalive(&s3c2410_wdd);
+ - s3c2410wdt_keepalive();
+ + s3c2410wdt_keepalive(&s3c2410_wdd);
Add the watchdog device
@@ -159,12 +161,12 @@ static variables. Those have to be converted to use the members in
watchdog_device. Note that the timeout values are unsigned int. Some drivers
use signed int, so this has to be converted, too.
-Here is a simple example for a watchdog device:
+Here is a simple example for a watchdog device::
-+static struct watchdog_device s3c2410_wdd = {
-+ .info = &s3c2410_wdt_ident,
-+ .ops = &s3c2410wdt_ops,
-+};
+ +static struct watchdog_device s3c2410_wdd = {
+ + .info = &s3c2410_wdt_ident,
+ + .ops = &s3c2410wdt_ops,
+ +};
Handle the 'nowayout' feature
@@ -173,12 +175,12 @@ Handle the 'nowayout' feature
A few drivers use nowayout statically, i.e. there is no module parameter for it
and only CONFIG_WATCHDOG_NOWAYOUT determines if the feature is going to be
used. This needs to be converted by initializing the status variable of the
-watchdog_device like this:
+watchdog_device like this::
.status = WATCHDOG_NOWAYOUT_INIT_STATUS,
Most drivers, however, also allow runtime configuration of nowayout, usually
-by adding a module parameter. The conversion for this would be something like:
+by adding a module parameter. The conversion for this would be something like::
watchdog_set_nowayout(&s3c2410_wdd, nowayout);
@@ -191,15 +193,15 @@ Register the watchdog device
Replace misc_register(&miscdev) with watchdog_register_device(&watchdog_dev).
Make sure the return value gets checked and the error message, if present,
-still fits. Also convert the unregister case.
+still fits. Also convert the unregister case::
-- ret = misc_register(&s3c2410wdt_miscdev);
-+ ret = watchdog_register_device(&s3c2410_wdd);
+ - ret = misc_register(&s3c2410wdt_miscdev);
+ + ret = watchdog_register_device(&s3c2410_wdd);
-...
+ ...
-- misc_deregister(&s3c2410wdt_miscdev);
-+ watchdog_unregister_device(&s3c2410_wdd);
+ - misc_deregister(&s3c2410wdt_miscdev);
+ + watchdog_unregister_device(&s3c2410_wdd);
Update the Kconfig-entry
@@ -207,7 +209,7 @@ Update the Kconfig-entry
The entry for the driver now needs to select WATCHDOG_CORE:
-+ select WATCHDOG_CORE
+ + select WATCHDOG_CORE
Create a patch and send it to upstream
@@ -215,4 +217,3 @@ Create a patch and send it to upstream
Make sure you understood Documentation/process/submitting-patches.rst and send your patch to
linux-watchdog@vger.kernel.org. We are looking forward to it :)
-
diff --git a/Documentation/watchdog/hpwdt.txt b/Documentation/watchdog/hpwdt.rst
index 55df692c5595..c824cd7f6e32 100644
--- a/Documentation/watchdog/hpwdt.txt
+++ b/Documentation/watchdog/hpwdt.rst
@@ -1,7 +1,12 @@
+===========================
+HPE iLO NMI Watchdog Driver
+===========================
+
+for iLO based ProLiant Servers
+==============================
+
Last reviewed: 08/20/2018
- HPE iLO NMI Watchdog Driver
- for iLO based ProLiant Servers
The HPE iLO NMI Watchdog driver is a kernel module that provides basic
watchdog functionality and handler for the iLO "Generate NMI to System"
@@ -20,23 +25,30 @@ Last reviewed: 08/20/2018
The hpwdt driver also has the following module parameters:
- soft_margin - allows the user to set the watchdog timer value.
+ ============ ================================================================
+ soft_margin allows the user to set the watchdog timer value.
Default value is 30 seconds.
- timeout - an alias of soft_margin.
- pretimeout - allows the user to set the watchdog pretimeout value.
+ timeout an alias of soft_margin.
+ pretimeout allows the user to set the watchdog pretimeout value.
This is the number of seconds before timeout when an
NMI is delivered to the system. Setting the value to
zero disables the pretimeout NMI.
Default value is 9 seconds.
- nowayout - basic watchdog parameter that does not allow the timer to
+ nowayout basic watchdog parameter that does not allow the timer to
be restarted or an impending ASR to be escaped.
Default value is set when compiling the kernel. If it is set
to "Y", then there is no way of disabling the watchdog once
it has been started.
+ kdumptimeout Minimum timeout in seconds to apply upon receipt of an NMI
+ before calling panic. (-1) disables the watchdog. When value
+ is > 0, the timer is reprogrammed with the greater of
+ value or current timeout value.
+ ============ ================================================================
- NOTE: More information about watchdog drivers in general, including the ioctl
+ NOTE:
+ More information about watchdog drivers in general, including the ioctl
interface to /dev/watchdog can be found in
- Documentation/watchdog/watchdog-api.txt and Documentation/IPMI.txt.
+ Documentation/watchdog/watchdog-api.rst and Documentation/IPMI.txt.
Due to limitations in the iLO hardware, the NMI pretimeout if enabled,
can only be set to 9 seconds. Attempts to set pretimeout to other
@@ -51,7 +63,7 @@ Last reviewed: 08/20/2018
and loop forever. This is generally not what a watchdog user wants.
For those wishing to learn more please see:
- Documentation/kdump/kdump.txt
+ Documentation/admin-guide/kdump/kdump.rst
Documentation/admin-guide/kernel-parameters.txt (panic=)
Your Linux Distribution specific documentation.
@@ -63,4 +75,3 @@ Last reviewed: 08/20/2018
The HPE iLO NMI Watchdog Driver and documentation were originally developed
by Tom Mingarelli.
-
diff --git a/Documentation/watchdog/index.rst b/Documentation/watchdog/index.rst
new file mode 100644
index 000000000000..c177645081d8
--- /dev/null
+++ b/Documentation/watchdog/index.rst
@@ -0,0 +1,25 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================
+Linux Watchdog Support
+======================
+
+.. toctree::
+ :maxdepth: 1
+
+ hpwdt
+ mlx-wdt
+ pcwd-watchdog
+ watchdog-api
+ watchdog-kernel-api
+ watchdog-parameters
+ watchdog-pm
+ wdt
+ convert_drivers_to_kernel_api
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/watchdog/mlx-wdt.txt b/Documentation/watchdog/mlx-wdt.rst
index 66eeb78505c3..bf5bafac47f0 100644
--- a/Documentation/watchdog/mlx-wdt.txt
+++ b/Documentation/watchdog/mlx-wdt.rst
@@ -1,5 +1,9 @@
- Mellanox watchdog drivers
- for x86 based system switches
+=========================
+Mellanox watchdog drivers
+=========================
+
+for x86 based system switches
+=============================
This driver provides watchdog functionality for various Mellanox
Ethernet and Infiniband switch systems.
@@ -9,16 +13,16 @@ Mellanox watchdog device is implemented in a programmable logic device.
There are 2 types of HW watchdog implementations.
Type 1:
-Actual HW timeout can be defined as a power of 2 msec.
-e.g. timeout 20 sec will be rounded up to 32768 msec.
-The maximum timeout period is 32 sec (32768 msec.),
-Get time-left isn't supported
+ Actual HW timeout can be defined as a power of 2 msec.
+ e.g. timeout 20 sec will be rounded up to 32768 msec.
+ The maximum timeout period is 32 sec (32768 msec.),
+ Get time-left isn't supported
Type 2:
-Actual HW timeout is defined in sec. and it's the same as
-a user-defined timeout.
-Maximum timeout is 255 sec.
-Get time-left is supported.
+ Actual HW timeout is defined in sec. and it's the same as
+ a user-defined timeout.
+ Maximum timeout is 255 sec.
+ Get time-left is supported.
Type 1 HW watchdog implementation exist in old systems and
all new systems have type 2 HW watchdog.
diff --git a/Documentation/watchdog/pcwd-watchdog.txt b/Documentation/watchdog/pcwd-watchdog.rst
index b8e60a441a43..405e2a370082 100644
--- a/Documentation/watchdog/pcwd-watchdog.txt
+++ b/Documentation/watchdog/pcwd-watchdog.rst
@@ -1,8 +1,13 @@
+===================================
+Berkshire Products PC Watchdog Card
+===================================
+
Last reviewed: 10/05/2007
- Berkshire Products PC Watchdog Card
- Support for ISA Cards Revision A and C
- Documentation and Driver by Ken Hollis <kenji@bitgate.com>
+Support for ISA Cards Revision A and C
+=======================================
+
+Documentation and Driver by Ken Hollis <kenji@bitgate.com>
The PC Watchdog is a card that offers the same type of functionality that
the WDT card does, only it doesn't require an IRQ to run. Furthermore,
@@ -33,6 +38,7 @@ Last reviewed: 10/05/2007
WDIOC_GETSUPPORT
This returns the support of the card itself. This
returns in structure "PCWDS" which returns:
+
options = WDIOS_TEMPPANIC
(This card supports temperature)
firmware_version = xxxx
@@ -63,4 +69,3 @@ Last reviewed: 10/05/2007
-- Ken Hollis
(kenji@bitgate.com)
-
diff --git a/Documentation/watchdog/watchdog-api.txt b/Documentation/watchdog/watchdog-api.rst
index 0e62ba33b7fb..c6c1e9fa9f73 100644
--- a/Documentation/watchdog/watchdog-api.txt
+++ b/Documentation/watchdog/watchdog-api.rst
@@ -1,7 +1,10 @@
+=============================
+The Linux Watchdog driver API
+=============================
+
Last reviewed: 10/05/2007
-The Linux Watchdog driver API.
Copyright 2002 Christer Weingel <wingel@nano-system.com>
@@ -10,7 +13,8 @@ driver which is (c) Copyright 2000 Jakob Oestergaard <jakob@ostenfeld.dk>
This document describes the state of the Linux 2.4.18 kernel.
-Introduction:
+Introduction
+============
A Watchdog Timer (WDT) is a hardware circuit that can reset the
computer system in case of a software fault. You probably knew that
@@ -30,7 +34,8 @@ drivers implement different, and sometimes incompatible, parts of it.
This file is an attempt to document the existing usage and allow
future driver writers to use it as a reference.
-The simplest API:
+The simplest API
+================
All drivers support the basic mode of operation, where the watchdog
activates as soon as /dev/watchdog is opened and will reboot unless
@@ -54,7 +59,8 @@ after the timeout has passed. Watchdog devices also usually support
the nowayout module parameter so that this option can be controlled at
runtime.
-Magic Close feature:
+Magic Close feature
+===================
If a driver supports "Magic Close", the driver will not disable the
watchdog unless a specific magic character 'V' has been sent to
@@ -64,7 +70,8 @@ will assume that the daemon (and userspace in general) died, and will
stop pinging the watchdog without disabling it first. This will then
cause a reboot if the watchdog is not re-opened in sufficient time.
-The ioctl API:
+The ioctl API
+=============
All conforming drivers also support an ioctl API.
@@ -73,7 +80,7 @@ Pinging the watchdog using an ioctl:
All drivers that have an ioctl interface support at least one ioctl,
KEEPALIVE. This ioctl does exactly the same thing as a write to the
watchdog device, so the main loop in the above program could be
-replaced with:
+replaced with::
while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
@@ -82,14 +89,15 @@ replaced with:
the argument to the ioctl is ignored.
-Setting and getting the timeout:
+Setting and getting the timeout
+===============================
For some drivers it is possible to modify the watchdog timeout on the
fly with the SETTIMEOUT ioctl, those drivers have the WDIOF_SETTIMEOUT
flag set in their option field. The argument is an integer
representing the timeout in seconds. The driver returns the real
timeout used in the same variable, and this timeout might differ from
-the requested one due to limitation of the hardware.
+the requested one due to limitation of the hardware::
int timeout = 45;
ioctl(fd, WDIOC_SETTIMEOUT, &timeout);
@@ -99,18 +107,19 @@ This example might actually print "The timeout was set to 60 seconds"
if the device has a granularity of minutes for its timeout.
Starting with the Linux 2.4.18 kernel, it is possible to query the
-current timeout using the GETTIMEOUT ioctl.
+current timeout using the GETTIMEOUT ioctl::
ioctl(fd, WDIOC_GETTIMEOUT, &timeout);
printf("The timeout was is %d seconds\n", timeout);
-Pretimeouts:
+Pretimeouts
+===========
Some watchdog timers can be set to have a trigger go off before the
actual time they will reset the system. This can be done with an NMI,
interrupt, or other mechanism. This allows Linux to record useful
information (like panic information and kernel coredumps) before it
-resets.
+resets::
pretimeout = 10;
ioctl(fd, WDIOC_SETPRETIMEOUT, &pretimeout);
@@ -121,89 +130,113 @@ the pretimeout. So, for instance, if you set the timeout to 60 seconds
and the pretimeout to 10 seconds, the pretimeout will go off in 50
seconds. Setting a pretimeout to zero disables it.
-There is also a get function for getting the pretimeout:
+There is also a get function for getting the pretimeout::
ioctl(fd, WDIOC_GETPRETIMEOUT, &timeout);
printf("The pretimeout was is %d seconds\n", timeout);
Not all watchdog drivers will support a pretimeout.
-Get the number of seconds before reboot:
+Get the number of seconds before reboot
+=======================================
Some watchdog drivers have the ability to report the remaining time
before the system will reboot. The WDIOC_GETTIMELEFT is the ioctl
-that returns the number of seconds before reboot.
+that returns the number of seconds before reboot::
ioctl(fd, WDIOC_GETTIMELEFT, &timeleft);
printf("The timeout was is %d seconds\n", timeleft);
-Environmental monitoring:
+Environmental monitoring
+========================
All watchdog drivers are required return more information about the system,
some do temperature, fan and power level monitoring, some can tell you
the reason for the last reboot of the system. The GETSUPPORT ioctl is
-available to ask what the device can do:
+available to ask what the device can do::
struct watchdog_info ident;
ioctl(fd, WDIOC_GETSUPPORT, &ident);
the fields returned in the ident struct are:
+ ================ =============================================
identity a string identifying the watchdog driver
firmware_version the firmware version of the card if available
options a flags describing what the device supports
+ ================ =============================================
the options field can have the following bits set, and describes what
kind of information that the GET_STATUS and GET_BOOT_STATUS ioctls can
return. [FIXME -- Is this correct?]
+ ================ =========================
WDIOF_OVERHEAT Reset due to CPU overheat
+ ================ =========================
The machine was last rebooted by the watchdog because the thermal limit was
-exceeded
+exceeded:
+ ============== ==========
WDIOF_FANFAULT Fan failed
+ ============== ==========
A system fan monitored by the watchdog card has failed
+ ============= ================
WDIOF_EXTERN1 External relay 1
+ ============= ================
External monitoring relay/source 1 was triggered. Controllers intended for
real world applications include external monitoring pins that will trigger
a reset.
+ ============= ================
WDIOF_EXTERN2 External relay 2
+ ============= ================
External monitoring relay/source 2 was triggered
+ ================ =====================
WDIOF_POWERUNDER Power bad/power fault
+ ================ =====================
The machine is showing an undervoltage status
+ =============== =============================
WDIOF_CARDRESET Card previously reset the CPU
+ =============== =============================
The last reboot was caused by the watchdog card
+ ================ =====================
WDIOF_POWEROVER Power over voltage
+ ================ =====================
The machine is showing an overvoltage status. Note that if one level is
under and one over both bits will be set - this may seem odd but makes
sense.
+ =================== =====================
WDIOF_KEEPALIVEPING Keep alive ping reply
+ =================== =====================
The watchdog saw a keepalive ping since it was last queried.
+ ================ =======================
WDIOF_SETTIMEOUT Can set/get the timeout
+ ================ =======================
The watchdog can do pretimeouts.
+ ================ ================================
WDIOF_PRETIMEOUT Pretimeout (in seconds), get/set
+ ================ ================================
For those drivers that return any bits set in the option field, the
GETSTATUS and GETBOOTSTATUS ioctls can be used to ask for the current
-status, and the status at the last reboot, respectively.
+status, and the status at the last reboot, respectively::
int flags;
ioctl(fd, WDIOC_GETSTATUS, &flags);
@@ -216,22 +249,23 @@ Note that not all devices support these two calls, and some only
support the GETBOOTSTATUS call.
Some drivers can measure the temperature using the GETTEMP ioctl. The
-returned value is the temperature in degrees fahrenheit.
+returned value is the temperature in degrees fahrenheit::
int temperature;
ioctl(fd, WDIOC_GETTEMP, &temperature);
Finally the SETOPTIONS ioctl can be used to control some aspects of
-the cards operation.
+the cards operation::
int options = 0;
ioctl(fd, WDIOC_SETOPTIONS, &options);
The following options are available:
+ ================= ================================
WDIOS_DISABLECARD Turn off the watchdog timer
WDIOS_ENABLECARD Turn on the watchdog timer
WDIOS_TEMPPANIC Kernel panic on temperature trip
+ ================= ================================
[FIXME -- better explanations]
-
diff --git a/Documentation/watchdog/watchdog-kernel-api.txt b/Documentation/watchdog/watchdog-kernel-api.rst
index 3a91ef5af044..864edbe932c1 100644
--- a/Documentation/watchdog/watchdog-kernel-api.txt
+++ b/Documentation/watchdog/watchdog-kernel-api.rst
@@ -1,5 +1,7 @@
-The Linux WatchDog Timer Driver Core kernel API.
===============================================
+The Linux WatchDog Timer Driver Core kernel API
+===============================================
+
Last reviewed: 12-Feb-2013
Wim Van Sebroeck <wim@iguana.be>
@@ -9,7 +11,7 @@ Introduction
This document does not describe what a WatchDog Timer (WDT) Driver or Device is.
It also does not describe the API which can be used by user space to communicate
with a WatchDog Timer. If you want to know this then please read the following
-file: Documentation/watchdog/watchdog-api.txt .
+file: Documentation/watchdog/watchdog-api.rst .
So what does this document describe? It describes the API that can be used by
WatchDog Timer Drivers that want to use the WatchDog Timer Driver Core
@@ -23,10 +25,10 @@ The API
Each watchdog timer driver that wants to use the WatchDog Timer Driver Core
must #include <linux/watchdog.h> (you would have to do this anyway when
writing a watchdog device driver). This include file contains following
-register/unregister routines:
+register/unregister routines::
-extern int watchdog_register_device(struct watchdog_device *);
-extern void watchdog_unregister_device(struct watchdog_device *);
+ extern int watchdog_register_device(struct watchdog_device *);
+ extern void watchdog_unregister_device(struct watchdog_device *);
The watchdog_register_device routine registers a watchdog timer device.
The parameter of this routine is a pointer to a watchdog_device structure.
@@ -40,9 +42,9 @@ The watchdog subsystem includes an registration deferral mechanism,
which allows you to register an watchdog as early as you wish during
the boot process.
-The watchdog device structure looks like this:
+The watchdog device structure looks like this::
-struct watchdog_device {
+ struct watchdog_device {
int id;
struct device *parent;
const struct attribute_group **groups;
@@ -62,9 +64,10 @@ struct watchdog_device {
struct watchdog_core_data *wd_data;
unsigned long status;
struct list_head deferred;
-};
+ };
It contains following fields:
+
* id: set by watchdog_register_device, id 0 is special. It has both a
/dev/watchdog0 cdev (dynamic major, minor 0) as well as the old
/dev/watchdog miscdev. The id is set automatically when calling
@@ -114,9 +117,9 @@ It contains following fields:
* deferred: entry in wtd_deferred_reg_list which is used to
register early initialized watchdogs.
-The list of watchdog operations is defined as:
+The list of watchdog operations is defined as::
-struct watchdog_ops {
+ struct watchdog_ops {
struct module *owner;
/* mandatory operations */
int (*start)(struct watchdog_device *);
@@ -129,7 +132,7 @@ struct watchdog_ops {
unsigned int (*get_timeleft)(struct watchdog_device *);
int (*restart)(struct watchdog_device *);
long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
-};
+ };
It is important that you first define the module owner of the watchdog timer
driver's operations. This module owner will be used to lock the module when
@@ -138,6 +141,7 @@ module and /dev/watchdog is still open).
Some operations are mandatory and some are optional. The mandatory operations
are:
+
* start: this is a pointer to the routine that starts the watchdog timer
device.
The routine needs a pointer to the watchdog timer device structure as a
@@ -146,51 +150,64 @@ are:
Not all watchdog timer hardware supports the same functionality. That's why
all other routines/operations are optional. They only need to be provided if
they are supported. These optional routines/operations are:
+
* stop: with this routine the watchdog timer device is being stopped.
+
The routine needs a pointer to the watchdog timer device structure as a
parameter. It returns zero on success or a negative errno code for failure.
Some watchdog timer hardware can only be started and not be stopped. A
driver supporting such hardware does not have to implement the stop routine.
+
If a driver has no stop function, the watchdog core will set WDOG_HW_RUNNING
and start calling the driver's keepalive pings function after the watchdog
device is closed.
+
If a watchdog driver does not implement the stop function, it must set
max_hw_heartbeat_ms.
* ping: this is the routine that sends a keepalive ping to the watchdog timer
hardware.
+
The routine needs a pointer to the watchdog timer device structure as a
parameter. It returns zero on success or a negative errno code for failure.
+
Most hardware that does not support this as a separate function uses the
start function to restart the watchdog timer hardware. And that's also what
the watchdog timer driver core does: to send a keepalive ping to the watchdog
timer hardware it will either use the ping operation (when available) or the
start operation (when the ping operation is not available).
+
(Note: the WDIOC_KEEPALIVE ioctl call will only be active when the
WDIOF_KEEPALIVEPING bit has been set in the option field on the watchdog's
info structure).
* status: this routine checks the status of the watchdog timer device. The
status of the device is reported with watchdog WDIOF_* status flags/bits.
+
WDIOF_MAGICCLOSE and WDIOF_KEEPALIVEPING are reported by the watchdog core;
it is not necessary to report those bits from the driver. Also, if no status
function is provided by the driver, the watchdog core reports the status bits
provided in the bootstatus variable of struct watchdog_device.
+
* set_timeout: this routine checks and changes the timeout of the watchdog
timer device. It returns 0 on success, -EINVAL for "parameter out of range"
and -EIO for "could not write value to the watchdog". On success this
routine should set the timeout value of the watchdog_device to the
achieved timeout value (which may be different from the requested one
because the watchdog does not necessarily have a 1 second resolution).
+
Drivers implementing max_hw_heartbeat_ms set the hardware watchdog heartbeat
to the minimum of timeout and max_hw_heartbeat_ms. Those drivers set the
timeout value of the watchdog_device either to the requested timeout value
(if it is larger than max_hw_heartbeat_ms), or to the achieved timeout value.
(Note: the WDIOF_SETTIMEOUT needs to be set in the options field of the
watchdog's info structure).
+
If the watchdog driver does not have to perform any action but setting the
watchdog_device.timeout, this callback can be omitted.
+
If set_timeout is not provided but, WDIOF_SETTIMEOUT is set, the watchdog
infrastructure updates the timeout value of the watchdog_device internally
to the requested value.
+
If the pretimeout feature is used (WDIOF_PRETIMEOUT), then set_timeout must
also take care of checking if pretimeout is still valid and set up the timer
accordingly. This can't be done in the core without races, so it is the
@@ -201,13 +218,16 @@ they are supported. These optional routines/operations are:
seconds before the actual timeout would happen. It returns 0 on success,
-EINVAL for "parameter out of range" and -EIO for "could not write value to
the watchdog". A value of 0 disables pretimeout notification.
+
(Note: the WDIOF_PRETIMEOUT needs to be set in the options field of the
watchdog's info structure).
+
If the watchdog driver does not have to perform any action but setting the
watchdog_device.pretimeout, this callback can be omitted. That means if
set_pretimeout is not provided but WDIOF_PRETIMEOUT is set, the watchdog
infrastructure updates the pretimeout value of the watchdog_device internally
to the requested value.
+
* get_timeleft: this routines returns the time that's left before a reset.
* restart: this routine restarts the machine. It returns 0 on success or a
negative errno code for failure.
@@ -218,6 +238,7 @@ they are supported. These optional routines/operations are:
The status bits should (preferably) be set with the set_bit and clear_bit alike
bit-operations. The status bits that are defined are:
+
* WDOG_ACTIVE: this status bit indicates whether or not a watchdog timer device
is active or not from user perspective. User space is expected to send
heartbeat requests to the driver while this flag is set.
@@ -235,22 +256,30 @@ bit-operations. The status bits that are defined are:
To set the WDOG_NO_WAY_OUT status bit (before registering your watchdog
timer device) you can either:
+
* set it statically in your watchdog_device struct with
+
.status = WATCHDOG_NOWAYOUT_INIT_STATUS,
+
(this will set the value the same as CONFIG_WATCHDOG_NOWAYOUT) or
- * use the following helper function:
- static inline void watchdog_set_nowayout(struct watchdog_device *wdd, int nowayout)
+ * use the following helper function::
+
+ static inline void watchdog_set_nowayout(struct watchdog_device *wdd,
+ int nowayout)
+
+Note:
+ The WatchDog Timer Driver Core supports the magic close feature and
+ the nowayout feature. To use the magic close feature you must set the
+ WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
-Note: The WatchDog Timer Driver Core supports the magic close feature and
-the nowayout feature. To use the magic close feature you must set the
-WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
The nowayout feature will overrule the magic close feature.
To get or set driver specific data the following two helper functions should be
-used:
+used::
-static inline void watchdog_set_drvdata(struct watchdog_device *wdd, void *data)
-static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
+ static inline void watchdog_set_drvdata(struct watchdog_device *wdd,
+ void *data)
+ static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
The watchdog_set_drvdata function allows you to add driver specific data. The
arguments of this function are the watchdog device where you want to add the
@@ -260,10 +289,11 @@ The watchdog_get_drvdata function allows you to retrieve driver specific data.
The argument of this function is the watchdog device where you want to retrieve
data from. The function returns the pointer to the driver specific data.
-To initialize the timeout field, the following function can be used:
+To initialize the timeout field, the following function can be used::
-extern int watchdog_init_timeout(struct watchdog_device *wdd,
- unsigned int timeout_parm, struct device *dev);
+ extern int watchdog_init_timeout(struct watchdog_device *wdd,
+ unsigned int timeout_parm,
+ struct device *dev);
The watchdog_init_timeout function allows you to initialize the timeout field
using the module timeout parameter or by retrieving the timeout-sec property from
@@ -272,30 +302,33 @@ to set the default timeout value as timeout value in the watchdog_device and
then use this function to set the user "preferred" timeout value.
This routine returns zero on success and a negative errno code for failure.
-To disable the watchdog on reboot, the user must call the following helper:
+To disable the watchdog on reboot, the user must call the following helper::
-static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd);
+ static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd);
To disable the watchdog when unregistering the watchdog, the user must call
the following helper. Note that this will only stop the watchdog if the
nowayout flag is not set.
-static inline void watchdog_stop_on_unregister(struct watchdog_device *wdd);
+::
+
+ static inline void watchdog_stop_on_unregister(struct watchdog_device *wdd);
To change the priority of the restart handler the following helper should be
-used:
+used::
-void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
+ void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
User should follow the following guidelines for setting the priority:
+
* 0: should be called in last resort, has limited restart capabilities
* 128: default restart handler, use if no other handler is expected to be
available, and/or if restart is sufficient to restart the entire system
* 255: highest priority, will preempt all other restart handlers
-To raise a pretimeout notification, the following function should be used:
+To raise a pretimeout notification, the following function should be used::
-void watchdog_notify_pretimeout(struct watchdog_device *wdd)
+ void watchdog_notify_pretimeout(struct watchdog_device *wdd)
The function can be called in the interrupt context. If watchdog pretimeout
governor framework (kbuild CONFIG_WATCHDOG_PRETIMEOUT_GOV symbol) is enabled,
diff --git a/Documentation/watchdog/watchdog-parameters.rst b/Documentation/watchdog/watchdog-parameters.rst
new file mode 100644
index 000000000000..223c99361a30
--- /dev/null
+++ b/Documentation/watchdog/watchdog-parameters.rst
@@ -0,0 +1,728 @@
+==========================
+WatchDog Module Parameters
+==========================
+
+This file provides information on the module parameters of many of
+the Linux watchdog drivers. Watchdog driver parameter specs should
+be listed here unless the driver has its own driver-specific information
+file.
+
+See Documentation/admin-guide/kernel-parameters.rst for information on
+providing kernel parameters for builtin drivers versus loadable
+modules.
+
+-------------------------------------------------
+
+watchdog core:
+ open_timeout:
+ Maximum time, in seconds, for which the watchdog framework will take
+ care of pinging a running hardware watchdog until userspace opens the
+ corresponding /dev/watchdogN device. A value of 0 means an infinite
+ timeout. Setting this to a non-zero value can be useful to ensure that
+ either userspace comes up properly, or the board gets reset and allows
+ fallback logic in the bootloader to try something else.
+
+-------------------------------------------------
+
+acquirewdt:
+ wdt_stop:
+ Acquire WDT 'stop' io port (default 0x43)
+ wdt_start:
+ Acquire WDT 'start' io port (default 0x443)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+advantechwdt:
+ wdt_stop:
+ Advantech WDT 'stop' io port (default 0x443)
+ wdt_start:
+ Advantech WDT 'start' io port (default 0x443)
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=63, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+alim1535_wdt:
+ timeout:
+ Watchdog timeout in seconds. (0 < timeout < 18000, default=60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+alim7101_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30
+ use_gpio:
+ Use the gpio watchdog (required by old cobalt boards).
+ default=0/off/no
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ar7_wdt:
+ margin:
+ Watchdog margin in seconds (default=60)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+armada_37xx_wdt:
+ timeout:
+ Watchdog timeout in seconds. (default=120)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+at91rm9200_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=5)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+at91sam9_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+bcm47xx_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+coh901327_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+
+-------------------------------------------------
+
+cpu5wdt:
+ port:
+ base address of watchdog card, default is 0x91
+ verbose:
+ be verbose, default is 0 (no)
+ ticks:
+ count down ticks, default is 10000
+
+-------------------------------------------------
+
+cpwd:
+ wd0_timeout:
+ Default watchdog0 timeout in 1/10secs
+ wd1_timeout:
+ Default watchdog1 timeout in 1/10secs
+ wd2_timeout:
+ Default watchdog2 timeout in 1/10secs
+
+-------------------------------------------------
+
+da9052wdt:
+ timeout:
+ Watchdog timeout in seconds. 2<= timeout <=131, default=2.048s
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+davinci_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 600, default 60
+
+-------------------------------------------------
+
+ebc-c384_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=15300, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+
+-------------------------------------------------
+
+ep93xx_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=TBD)
+
+-------------------------------------------------
+
+eurotechwdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ io:
+ Eurotech WDT io port (default=0x3f0)
+ irq:
+ Eurotech WDT irq (default=10)
+ ev:
+ Eurotech WDT event type (default is `int`)
+
+-------------------------------------------------
+
+gef_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+geodewdt:
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=131, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+i6300esb:
+ heartbeat:
+ Watchdog heartbeat in seconds. (1<heartbeat<2046, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iTCO_wdt:
+ heartbeat:
+ Watchdog heartbeat in seconds.
+ (2<heartbeat<39 (TCO v1) or 613 (TCO v2), default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iTCO_vendor_support:
+ vendorsupport:
+ iTCO vendor specific support mode, default=0 (none),
+ 1=SuperMicro Pent3, 2=SuperMicro Pent4+, 911=Broken SMI BIOS
+
+-------------------------------------------------
+
+ib700wdt:
+ timeout:
+ Watchdog timeout in seconds. 0<= timeout <=30, default=30.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ibmasr:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+imx2_wdt:
+ timeout:
+ Watchdog timeout in seconds (default 60 s)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+indydog:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iop_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+it8712f_wdt:
+ margin:
+ Watchdog margin in seconds (default 60)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+it87_wdt:
+ nogameport:
+ Forbid the activation of game port, default=0
+ nocir:
+ Forbid the use of CIR (workaround for some buggy setups); set to 1 if
+system resets despite watchdog daemon running, default=0
+ exclusive:
+ Watchdog exclusive device open, default=1
+ timeout:
+ Watchdog timeout in seconds, default=60
+ testmode:
+ Watchdog test mode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ixp4xx_wdt:
+ heartbeat:
+ Watchdog heartbeat in seconds (default 60s)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+machzwd:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ action:
+ after watchdog resets, generate:
+ 0 = RESET(*) 1 = SMI 2 = NMI 3 = SCI
+
+-------------------------------------------------
+
+max63xx_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 60, default 60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ nodelay:
+ Force selection of a timeout setting without initial delay
+ (max6373/74 only, default=0)
+
+-------------------------------------------------
+
+mixcomwd:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+mpc8xxx_wdt:
+ timeout:
+ Watchdog timeout in ticks. (0<timeout<65536, default=65535)
+ reset:
+ Watchdog Interrupt/Reset Mode. 0 = interrupt, 1 = reset
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+mv64x60_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ni903x_wdt:
+ timeout:
+ Initial watchdog timeout in seconds (0<timeout<516, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+nic7018_wdt:
+ timeout:
+ Initial watchdog timeout in seconds (0<timeout<464, default=80)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+omap_wdt:
+ timer_margin:
+ initial watchdog timeout (in seconds)
+ early_enable:
+ Watchdog is started on module insertion (default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+orion_wdt:
+ heartbeat:
+ Initial watchdog heartbeat in seconds
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pc87413_wdt:
+ io:
+ pc87413 WDT I/O port (default: io).
+ timeout:
+ Watchdog timeout in minutes (default=timeout).
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pika_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pnx4008_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 60, default 19
+ nowayout:
+ Set to 1 to keep watchdog running after device release
+
+-------------------------------------------------
+
+pnx833x_wdt:
+ timeout:
+ Watchdog timeout in Mhz. (68Mhz clock), default=2040000000 (30 seconds)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ start_enabled:
+ Watchdog is started on module insertion (default=1)
+
+-------------------------------------------------
+
+rc32434_wdt:
+ timeout:
+ Watchdog timeout value, in seconds (default=20)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+riowd:
+ riowd_timeout:
+ Watchdog timeout in minutes (default=1)
+
+-------------------------------------------------
+
+s3c2410_wdt:
+ tmr_margin:
+ Watchdog tmr_margin in seconds. (default=15)
+ tmr_atboot:
+ Watchdog is started at boot time if set to 1, default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ soft_noboot:
+ Watchdog action, set to 1 to ignore reboots, 0 to reboot
+ debug:
+ Watchdog debug, set to >1 for debug, (default 0)
+
+-------------------------------------------------
+
+sa1100_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+
+-------------------------------------------------
+
+sb_wdog:
+ timeout:
+ Watchdog timeout in microseconds (max/default 8388607 or 8.3ish secs)
+
+-------------------------------------------------
+
+sbc60xxwdt:
+ wdt_stop:
+ SBC60xx WDT 'stop' io port (default 0x45)
+ wdt_start:
+ SBC60xx WDT 'start' io port (default 0x443)
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc7240_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=255, default=30)
+ nowayout:
+ Disable watchdog when closing device file
+
+-------------------------------------------------
+
+sbc8360:
+ timeout:
+ Index into timeout table (0-63) (default=27 (60s))
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc_epx_c3:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc_fitpc2_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+ nowayout:
+ Watchdog cannot be stopped once started
+
+-------------------------------------------------
+
+sbsa_gwdt:
+ timeout:
+ Watchdog timeout in seconds. (default 10s)
+ action:
+ Watchdog action at the first stage timeout,
+ set to 0 to ignore, 1 to panic. (default=0)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sc1200wdt:
+ isapnp:
+ When set to 0 driver ISA PnP support will be disabled (default=1)
+ io:
+ io port
+ timeout:
+ range is 0-255 minutes, default is 1
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sc520_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1 <= timeout <= 3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sch311x_wdt:
+ force_id:
+ Override the detected device ID
+ therm_trip:
+ Should a ThermTrip trigger the reset generator
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=15300, default=60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+scx200_wdt:
+ margin:
+ Watchdog margin in seconds
+ nowayout:
+ Disable watchdog shutdown on close
+
+-------------------------------------------------
+
+shwdt:
+ clock_division_ratio:
+ Clock division ratio. Valid ranges are from 0x5 (1.31ms)
+ to 0x7 (5.25ms). (default=7)
+ heartbeat:
+ Watchdog heartbeat in seconds. (1 <= heartbeat <= 3600, default=30
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+smsc37b787_wdt:
+ timeout:
+ range is 1-255 units, default is 60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+softdog:
+ soft_margin:
+ Watchdog soft_margin in seconds.
+ (0 < soft_margin < 65536, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ soft_noboot:
+ Softdog action, set to 1 to ignore reboots, 0 to reboot
+ (default=0)
+
+-------------------------------------------------
+
+stmp3xxx_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 4194304, default 19
+
+-------------------------------------------------
+
+tegra_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 120)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ts72xx_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
+ nowayout:
+ Disable watchdog shutdown on close
+
+-------------------------------------------------
+
+twl4030_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+txx9wdt:
+ timeout:
+ Watchdog timeout in seconds. (0<timeout<N, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+uniphier_wdt:
+ timeout:
+ Watchdog timeout in power of two seconds.
+ (1 <= timeout <= 128, default=64)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83627hf_wdt:
+ wdt_io:
+ w83627hf/thf WDT io port (default 0x2E)
+ timeout:
+ Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83877f_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83977f_wdt:
+ timeout:
+ Watchdog timeout in seconds (15..7635), default=45)
+ testmode:
+ Watchdog testmode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wafer5823wdt:
+ timeout:
+ Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wdt285:
+ soft_margin:
+ Watchdog timeout in seconds (default=60)
+
+-------------------------------------------------
+
+wdt977:
+ timeout:
+ Watchdog timeout in seconds (60..15300, default=60)
+ testmode:
+ Watchdog testmode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wm831x_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wm8350_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sun4v_wdt:
+ timeout_ms:
+ Watchdog timeout in milliseconds 1..180000, default=60000)
+ nowayout:
+ Watchdog cannot be stopped once started
diff --git a/Documentation/watchdog/watchdog-parameters.txt b/Documentation/watchdog/watchdog-parameters.txt
deleted file mode 100644
index 0b88e333f9e1..000000000000
--- a/Documentation/watchdog/watchdog-parameters.txt
+++ /dev/null
@@ -1,410 +0,0 @@
-This file provides information on the module parameters of many of
-the Linux watchdog drivers. Watchdog driver parameter specs should
-be listed here unless the driver has its own driver-specific information
-file.
-
-
-See Documentation/admin-guide/kernel-parameters.rst for information on
-providing kernel parameters for builtin drivers versus loadable
-modules.
-
-
--------------------------------------------------
-acquirewdt:
-wdt_stop: Acquire WDT 'stop' io port (default 0x43)
-wdt_start: Acquire WDT 'start' io port (default 0x443)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-advantechwdt:
-wdt_stop: Advantech WDT 'stop' io port (default 0x443)
-wdt_start: Advantech WDT 'start' io port (default 0x443)
-timeout: Watchdog timeout in seconds. 1<= timeout <=63, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-alim1535_wdt:
-timeout: Watchdog timeout in seconds. (0 < timeout < 18000, default=60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-alim7101_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30
-use_gpio: Use the gpio watchdog (required by old cobalt boards).
- default=0/off/no
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ar7_wdt:
-margin: Watchdog margin in seconds (default=60)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-armada_37xx_wdt:
-timeout: Watchdog timeout in seconds. (default=120)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-at91rm9200_wdt:
-wdt_time: Watchdog time in seconds. (default=5)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-at91sam9_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-bcm47xx_wdt:
-wdt_time: Watchdog time in seconds. (default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-coh901327_wdt:
-margin: Watchdog margin in seconds (default 60s)
--------------------------------------------------
-cpu5wdt:
-port: base address of watchdog card, default is 0x91
-verbose: be verbose, default is 0 (no)
-ticks: count down ticks, default is 10000
--------------------------------------------------
-cpwd:
-wd0_timeout: Default watchdog0 timeout in 1/10secs
-wd1_timeout: Default watchdog1 timeout in 1/10secs
-wd2_timeout: Default watchdog2 timeout in 1/10secs
--------------------------------------------------
-da9052wdt:
-timeout: Watchdog timeout in seconds. 2<= timeout <=131, default=2.048s
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-davinci_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 600, default 60
--------------------------------------------------
-ebc-c384_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=15300, default=60)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
-ep93xx_wdt:
-nowayout: Watchdog cannot be stopped once started
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=TBD)
--------------------------------------------------
-eurotechwdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-io: Eurotech WDT io port (default=0x3f0)
-irq: Eurotech WDT irq (default=10)
-ev: Eurotech WDT event type (default is `int')
--------------------------------------------------
-gef_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-geodewdt:
-timeout: Watchdog timeout in seconds. 1<= timeout <=131, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-i6300esb:
-heartbeat: Watchdog heartbeat in seconds. (1<heartbeat<2046, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iTCO_wdt:
-heartbeat: Watchdog heartbeat in seconds.
- (2<heartbeat<39 (TCO v1) or 613 (TCO v2), default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iTCO_vendor_support:
-vendorsupport: iTCO vendor specific support mode, default=0 (none),
- 1=SuperMicro Pent3, 2=SuperMicro Pent4+, 911=Broken SMI BIOS
--------------------------------------------------
-ib700wdt:
-timeout: Watchdog timeout in seconds. 0<= timeout <=30, default=30.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ibmasr:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-imx2_wdt:
-timeout: Watchdog timeout in seconds (default 60 s)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-indydog:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iop_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-it8712f_wdt:
-margin: Watchdog margin in seconds (default 60)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-it87_wdt:
-nogameport: Forbid the activation of game port, default=0
-nocir: Forbid the use of CIR (workaround for some buggy setups); set to 1 if
-system resets despite watchdog daemon running, default=0
-exclusive: Watchdog exclusive device open, default=1
-timeout: Watchdog timeout in seconds, default=60
-testmode: Watchdog test mode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ixp4xx_wdt:
-heartbeat: Watchdog heartbeat in seconds (default 60s)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ks8695_wdt:
-wdt_time: Watchdog time in seconds. (default=5)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-machzwd:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-action: after watchdog resets, generate:
- 0 = RESET(*) 1 = SMI 2 = NMI 3 = SCI
--------------------------------------------------
-max63xx_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 60, default 60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-nodelay: Force selection of a timeout setting without initial delay
- (max6373/74 only, default=0)
--------------------------------------------------
-mixcomwd:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-mpc8xxx_wdt:
-timeout: Watchdog timeout in ticks. (0<timeout<65536, default=65535)
-reset: Watchdog Interrupt/Reset Mode. 0 = interrupt, 1 = reset
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-mv64x60_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ni903x_wdt:
-timeout: Initial watchdog timeout in seconds (0<timeout<516, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-nic7018_wdt:
-timeout: Initial watchdog timeout in seconds (0<timeout<464, default=80)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-nuc900_wdt:
-heartbeat: Watchdog heartbeats in seconds.
- (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-omap_wdt:
-timer_margin: initial watchdog timeout (in seconds)
-early_enable: Watchdog is started on module insertion (default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-orion_wdt:
-heartbeat: Initial watchdog heartbeat in seconds
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pc87413_wdt:
-io: pc87413 WDT I/O port (default: io).
-timeout: Watchdog timeout in minutes (default=timeout).
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pika_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pnx4008_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 60, default 19
-nowayout: Set to 1 to keep watchdog running after device release
--------------------------------------------------
-pnx833x_wdt:
-timeout: Watchdog timeout in Mhz. (68Mhz clock), default=2040000000 (30 seconds)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-start_enabled: Watchdog is started on module insertion (default=1)
--------------------------------------------------
-rc32434_wdt:
-timeout: Watchdog timeout value, in seconds (default=20)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-riowd:
-riowd_timeout: Watchdog timeout in minutes (default=1)
--------------------------------------------------
-s3c2410_wdt:
-tmr_margin: Watchdog tmr_margin in seconds. (default=15)
-tmr_atboot: Watchdog is started at boot time if set to 1, default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-soft_noboot: Watchdog action, set to 1 to ignore reboots, 0 to reboot
-debug: Watchdog debug, set to >1 for debug, (default 0)
--------------------------------------------------
-sa1100_wdt:
-margin: Watchdog margin in seconds (default 60s)
--------------------------------------------------
-sb_wdog:
-timeout: Watchdog timeout in microseconds (max/default 8388607 or 8.3ish secs)
--------------------------------------------------
-sbc60xxwdt:
-wdt_stop: SBC60xx WDT 'stop' io port (default 0x45)
-wdt_start: SBC60xx WDT 'start' io port (default 0x443)
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc7240_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=255, default=30)
-nowayout: Disable watchdog when closing device file
--------------------------------------------------
-sbc8360:
-timeout: Index into timeout table (0-63) (default=27 (60s))
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc_epx_c3:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc_fitpc2_wdt:
-margin: Watchdog margin in seconds (default 60s)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
-sbsa_gwdt:
-timeout: Watchdog timeout in seconds. (default 10s)
-action: Watchdog action at the first stage timeout,
- set to 0 to ignore, 1 to panic. (default=0)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sc1200wdt:
-isapnp: When set to 0 driver ISA PnP support will be disabled (default=1)
-io: io port
-timeout: range is 0-255 minutes, default is 1
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sc520_wdt:
-timeout: Watchdog timeout in seconds. (1 <= timeout <= 3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sch311x_wdt:
-force_id: Override the detected device ID
-therm_trip: Should a ThermTrip trigger the reset generator
-timeout: Watchdog timeout in seconds. 1<= timeout <=15300, default=60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-scx200_wdt:
-margin: Watchdog margin in seconds
-nowayout: Disable watchdog shutdown on close
--------------------------------------------------
-shwdt:
-clock_division_ratio: Clock division ratio. Valid ranges are from 0x5 (1.31ms)
- to 0x7 (5.25ms). (default=7)
-heartbeat: Watchdog heartbeat in seconds. (1 <= heartbeat <= 3600, default=30
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-smsc37b787_wdt:
-timeout: range is 1-255 units, default is 60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-softdog:
-soft_margin: Watchdog soft_margin in seconds.
- (0 < soft_margin < 65536, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-soft_noboot: Softdog action, set to 1 to ignore reboots, 0 to reboot
- (default=0)
--------------------------------------------------
-stmp3xxx_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 4194304, default 19
--------------------------------------------------
-tegra_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 120)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ts72xx_wdt:
-timeout: Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
-nowayout: Disable watchdog shutdown on close
--------------------------------------------------
-twl4030_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-txx9wdt:
-timeout: Watchdog timeout in seconds. (0<timeout<N, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-uniphier_wdt:
-timeout: Watchdog timeout in power of two seconds.
- (1 <= timeout <= 128, default=64)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83627hf_wdt:
-wdt_io: w83627hf/thf WDT io port (default 0x2E)
-timeout: Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83877f_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83977f_wdt:
-timeout: Watchdog timeout in seconds (15..7635), default=45)
-testmode: Watchdog testmode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wafer5823wdt:
-timeout: Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wdt285:
-soft_margin: Watchdog timeout in seconds (default=60)
--------------------------------------------------
-wdt977:
-timeout: Watchdog timeout in seconds (60..15300, default=60)
-testmode: Watchdog testmode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wm831x_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wm8350_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sun4v_wdt:
-timeout_ms: Watchdog timeout in milliseconds 1..180000, default=60000)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
diff --git a/Documentation/watchdog/watchdog-pm.txt b/Documentation/watchdog/watchdog-pm.rst
index 7a4dd46e0d24..646e1f28f31f 100644
--- a/Documentation/watchdog/watchdog-pm.txt
+++ b/Documentation/watchdog/watchdog-pm.rst
@@ -1,5 +1,7 @@
+===============================================
The Linux WatchDog Timer Power Management Guide
===============================================
+
Last reviewed: 17-Dec-2018
Wolfram Sang <wsa+renesas@sang-engineering.com>
@@ -16,4 +18,5 @@ On resume, a watchdog timer shall be reset to its selected value to give
userspace enough time to resume. [1] [2]
[1] https://patchwork.kernel.org/patch/10252209/
+
[2] https://patchwork.kernel.org/patch/10711625/
diff --git a/Documentation/watchdog/wdt.txt b/Documentation/watchdog/wdt.rst
index ed2f0b860869..d97b0361535b 100644
--- a/Documentation/watchdog/wdt.txt
+++ b/Documentation/watchdog/wdt.rst
@@ -1,11 +1,14 @@
+============================================================
+WDT Watchdog Timer Interfaces For The Linux Operating System
+============================================================
+
Last Reviewed: 10/05/2007
- WDT Watchdog Timer Interfaces For The Linux Operating System
- Alan Cox <alan@lxorguk.ukuu.org.uk>
+Alan Cox <alan@lxorguk.ukuu.org.uk>
- ICS WDT501-P
- ICS WDT501-P (no fan tachometer)
- ICS WDT500-P
+ - ICS WDT501-P
+ - ICS WDT501-P (no fan tachometer)
+ - ICS WDT500-P
All the interfaces provide /dev/watchdog, which when open must be written
to within a timeout or the machine will reboot. Each write delays the reboot
@@ -21,19 +24,26 @@ degrees Fahrenheit. Each read returns a single byte giving the temperature.
The third interface logs kernel messages on additional alert events.
The ICS ISA-bus wdt card cannot be safely probed for. Instead you need to
-pass IO address and IRQ boot parameters. E.g.:
+pass IO address and IRQ boot parameters. E.g.::
+
wdt.io=0x240 wdt.irq=11
Other "wdt" driver parameters are:
+
+ =========== ======================================================
heartbeat Watchdog heartbeat in seconds (default 60)
nowayout Watchdog cannot be stopped once started (kernel
- build parameter)
+ build parameter)
tachometer WDT501-P Fan Tachometer support (0=disable, default=0)
type WDT501-P Card type (500 or 501, default=500)
+ =========== ======================================================
Features
--------
- WDT501P WDT500P
+
+================ ======= =======
+ WDT501P WDT500P
+================ ======= =======
Reboot Timer X X
External Reboot X X
I/O Port Monitor o o
@@ -42,9 +52,12 @@ Fan Speed X o
Power Under X o
Power Over X o
Overheat X o
+================ ======= =======
The external event interfaces on the WDT boards are not currently supported.
Minor numbers are however allocated for it.
-Example Watchdog Driver: see samples/watchdog/watchdog-simple.c
+Example Watchdog Driver:
+
+ see samples/watchdog/watchdog-simple.c
diff --git a/Documentation/x86/conf.py b/Documentation/x86/conf.py
deleted file mode 100644
index 33c5c3142e20..000000000000
--- a/Documentation/x86/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "X86 architecture specific documentation"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'x86.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/x86/exception-tables.rst b/Documentation/x86/exception-tables.rst
index 24596c8210b5..ed6d4b0cf62c 100644
--- a/Documentation/x86/exception-tables.rst
+++ b/Documentation/x86/exception-tables.rst
@@ -35,7 +35,7 @@ page fault handler::
void do_page_fault(struct pt_regs *regs, unsigned long error_code)
in arch/x86/mm/fault.c. The parameters on the stack are set up by
-the low level assembly glue in arch/x86/kernel/entry_32.S. The parameter
+the low level assembly glue in arch/x86/entry/entry_32.S. The parameter
regs is a pointer to the saved registers on the stack, error_code
contains a reason code for the exception.
diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst
index ae36fc5fc649..af64c4bb4447 100644
--- a/Documentation/x86/index.rst
+++ b/Documentation/x86/index.rst
@@ -19,8 +19,9 @@ x86-specific Documentation
tlb
mtrr
pat
- protection-keys
intel_mpx
+ intel-iommu
+ intel_txt
amd-memory-encryption
pti
mds
diff --git a/Documentation/Intel-IOMMU.txt b/Documentation/x86/intel-iommu.rst
index 9dae6b47e398..9dae6b47e398 100644
--- a/Documentation/Intel-IOMMU.txt
+++ b/Documentation/x86/intel-iommu.rst
diff --git a/Documentation/intel_txt.txt b/Documentation/x86/intel_txt.rst
index d83c1a2122c9..d83c1a2122c9 100644
--- a/Documentation/intel_txt.txt
+++ b/Documentation/x86/intel_txt.rst
diff --git a/Documentation/x86/resctrl_ui.rst b/Documentation/x86/resctrl_ui.rst
index 225cfd4daaee..5368cedfb530 100644
--- a/Documentation/x86/resctrl_ui.rst
+++ b/Documentation/x86/resctrl_ui.rst
@@ -40,7 +40,7 @@ mount options are:
Enable the MBA Software Controller(mba_sc) to specify MBA
bandwidth in MBps
-L2 and L3 CDP are controlled seperately.
+L2 and L3 CDP are controlled separately.
RDT features are orthogonal. A particular system may support only
monitoring, only control, or both monitoring and control. Cache
@@ -118,7 +118,7 @@ related to allocation:
Corresponding region is pseudo-locked. No
sharing allowed.
-Memory bandwitdh(MB) subdirectory contains the following files
+Memory bandwidth(MB) subdirectory contains the following files
with respect to allocation:
"min_bandwidth":
@@ -209,7 +209,7 @@ All groups contain the following files:
CPUs to/from this group. As with the tasks file a hierarchy is
maintained where MON groups may only include CPUs owned by the
parent CTRL_MON group.
- When the resouce group is in pseudo-locked mode this file will
+ When the resource group is in pseudo-locked mode this file will
only be readable, reflecting the CPUs associated with the
pseudo-locked region.
@@ -342,7 +342,7 @@ For cache resources we describe the portion of the cache that is available
for allocation using a bitmask. The maximum value of the mask is defined
by each cpu model (and may be different for different cache levels). It
is found using CPUID, but is also provided in the "info" directory of
-the resctrl file system in "info/{resource}/cbm_mask". X86 hardware
+the resctrl file system in "info/{resource}/cbm_mask". Intel hardware
requires that these masks have all the '1' bits in a contiguous block. So
0x3, 0x6 and 0xC are legal 4-bit masks with two bits set, but 0x5, 0x9
and 0xA are not. On a system with a 20-bit mask each bit represents 5%
@@ -380,7 +380,7 @@ where L2 external is 10GBps (hence aggregate L2 external bandwidth is
240GBps) and L3 external bandwidth is 100GBps. Now a workload with '20
threads, having 50% bandwidth, each consuming 5GBps' consumes the max L3
bandwidth of 100GBps although the percentage value specified is only 50%
-<< 100%. Hence increasing the bandwidth percentage will not yeild any
+<< 100%. Hence increasing the bandwidth percentage will not yield any
more bandwidth. This is because although the L2 external bandwidth still
has capacity, the L3 external bandwidth is fully used. Also note that
this would be dependent on number of cores the benchmark is run on.
@@ -398,7 +398,7 @@ In order to mitigate this and make the interface more user friendly,
resctrl added support for specifying the bandwidth in MBps as well. The
kernel underneath would use a software feedback mechanism or a "Software
Controller(mba_sc)" which reads the actual bandwidth using MBM counters
-and adjust the memowy bandwidth percentages to ensure::
+and adjust the memory bandwidth percentages to ensure::
"actual bandwidth < user specified bandwidth".
@@ -418,16 +418,22 @@ L3 schemata file details (CDP enabled via mount option to resctrl)
When CDP is enabled L3 control is split into two separate resources
so you can specify independent masks for code and data like this::
- L3data:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
- L3code:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+ L3DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+ L3CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
L2 schemata file details
------------------------
-L2 cache does not support code and data prioritization, so the
-schemata format is always::
+CDP is supported at L2 using the 'cdpl2' mount option. The schemata
+format is either::
L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+or
+
+ L2DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+ L2CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
+
+
Memory bandwidth Allocation (default mode)
------------------------------------------
@@ -671,8 +677,8 @@ allocations can overlap or not. The allocations specifies the maximum
b/w that the group may be able to use and the system admin can configure
the b/w accordingly.
-If the MBA is specified in MB(megabytes) then user can enter the max b/w in MB
-rather than the percentage values.
+If resctrl is using the software controller (mba_sc) then user can enter the
+max b/w in MB rather than the percentage values.
::
# echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
diff --git a/Documentation/x86/topology.rst b/Documentation/x86/topology.rst
index 6e28dbe818ab..e29739904e37 100644
--- a/Documentation/x86/topology.rst
+++ b/Documentation/x86/topology.rst
@@ -9,7 +9,7 @@ representation in the kernel. Update/change when doing changes to the
respective code.
The architecture-agnostic topology definitions are in
-Documentation/cputopology.txt. This file holds x86-specific
+Documentation/admin-guide/cputopology.rst. This file holds x86-specific
differences/specialities which must not necessarily apply to the generic
definitions. Thus, the way to read up on Linux topology on x86 is to start
with the generic one and look at this one in parallel for the x86 specifics.
@@ -49,6 +49,10 @@ Package-related topology information in the kernel:
The number of cores in a package. This information is retrieved via CPUID.
+ - cpuinfo_x86.x86_max_dies:
+
+ The number of dies in a package. This information is retrieved via CPUID.
+
- cpuinfo_x86.phys_proc_id:
The physical ID of the package. This information is retrieved via CPUID
diff --git a/Documentation/x86/x86_64/5level-paging.rst b/Documentation/x86/x86_64/5level-paging.rst
index ab88a4514163..44856417e6a5 100644
--- a/Documentation/x86/x86_64/5level-paging.rst
+++ b/Documentation/x86/x86_64/5level-paging.rst
@@ -20,7 +20,7 @@ physical address space. This "ought to be enough for anybody" ©.
QEMU 2.9 and later support 5-level paging.
Virtual memory layout for 5-level paging is described in
-Documentation/x86/x86_64/mm.txt
+Documentation/x86/x86_64/mm.rst
Enabling 5-level paging
diff --git a/Documentation/x86/x86_64/boot-options.rst b/Documentation/x86/x86_64/boot-options.rst
index 2f69836b8445..2b98efb5ba7f 100644
--- a/Documentation/x86/x86_64/boot-options.rst
+++ b/Documentation/x86/x86_64/boot-options.rst
@@ -9,7 +9,7 @@ only the AMD64 specific ones are listed here.
Machine check
=============
-Please see Documentation/x86/x86_64/machinecheck for sysfs runtime tunables.
+Please see Documentation/x86/x86_64/machinecheck.rst for sysfs runtime tunables.
mce=off
Disable machine check
@@ -89,7 +89,7 @@ APICs
Don't use the local APIC (alias for i386 compatibility)
pirq=...
- See Documentation/x86/i386/IO-APIC.txt
+ See Documentation/x86/i386/IO-APIC.rst
noapictimer
Don't set up the APIC timer
@@ -230,7 +230,7 @@ IOMMU (input/output memory management unit)
===========================================
Multiple x86-64 PCI-DMA mapping implementations exist, for example:
- 1. <lib/dma-direct.c>: use no hardware/software IOMMU at all
+ 1. <kernel/dma/direct.c>: use no hardware/software IOMMU at all
(e.g. because you have < 3 GB memory).
Kernel boot message: "PCI-DMA: Disabling IOMMU"
diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets.rst b/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
index 74fbb78b3c67..ff9bcfd2cc14 100644
--- a/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
+++ b/Documentation/x86/x86_64/fake-numa-for-cpusets.rst
@@ -15,10 +15,10 @@ assign them to cpusets and their attached tasks. This is a way of limiting the
amount of system memory that are available to a certain class of tasks.
For more information on the features of cpusets, see
-Documentation/cgroup-v1/cpusets.txt.
+Documentation/admin-guide/cgroup-v1/cpusets.rst.
There are a number of different configurations you can use for your needs. For
more information on the numa=fake command line option and its various ways of
-configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt.
+configuring fake nodes, see Documentation/x86/x86_64/boot-options.rst.
For the purposes of this introduction, we'll assume a very primitive NUMA
emulation setup of "numa=fake=4*512,". This will split our system memory into
@@ -40,7 +40,7 @@ A machine may be split as follows with "numa=fake=4*512," as reported by dmesg::
On node 3 totalpages: 131072
Now following the instructions for mounting the cpusets filesystem from
-Documentation/cgroup-v1/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
+Documentation/admin-guide/cgroup-v1/cpusets.rst, you can assign fake nodes (i.e. contiguous memory
address spaces) to individual cpusets::
[root@xroads /]# mkdir exampleset
diff --git a/Documentation/xtensa/atomctl.txt b/Documentation/xtensa/atomctl.rst
index 1da783ac200c..1ecbd0ba9a2e 100644
--- a/Documentation/xtensa/atomctl.txt
+++ b/Documentation/xtensa/atomctl.rst
@@ -1,3 +1,7 @@
+===========================================
+Atomic Operation Control (ATOMCTL) Register
+===========================================
+
We Have Atomic Operation Control (ATOMCTL) Register.
This register determines the effect of using a S32C1I instruction
with various combinations of:
@@ -8,7 +12,7 @@ with various combinations of:
2. With and without An Intelligent Memory Controller which
can do Atomic Transactions itself.
-The Core comes up with a default value of for the three types of cache ops:
+The Core comes up with a default value of for the three types of cache ops::
0x28: (WB: Internal, WT: Internal, BY:Exception)
@@ -30,15 +34,18 @@ CUSTOMER-WARNING:
Developers might find using RCW in Bypass mode convenient when testing
with the cache being bypassed; for example studying cache alias problems.
-See Section 4.3.12.4 of ISA; Bits:
+See Section 4.3.12.4 of ISA; Bits::
WB WT BY
5 4 | 3 2 | 1 0
+
+========= ================== ================== ===============
2 Bit
Field
Values WB - Write Back WT - Write Thru BY - Bypass
---------- --------------- ----------------- ----------------
+========= ================== ================== ===============
0 Exception Exception Exception
1 RCW Transaction RCW Transaction RCW Transaction
2 Internal Operation Internal Operation Reserved
3 Reserved Reserved Reserved
+========= ================== ================== ===============
diff --git a/Documentation/xtensa/booting.txt b/Documentation/xtensa/booting.rst
index 402b33a2619f..e1b83707e5b6 100644
--- a/Documentation/xtensa/booting.txt
+++ b/Documentation/xtensa/booting.rst
@@ -1,10 +1,13 @@
-Passing boot parameters to the kernel.
+=====================================
+Passing boot parameters to the kernel
+=====================================
Boot parameters are represented as a TLV list in the memory. Please see
arch/xtensa/include/asm/bootparam.h for definition of the bp_tag structure and
tag value constants. First entry in the list must have type BP_TAG_FIRST, last
entry must have type BP_TAG_LAST. The address of the first list entry is
passed to the kernel in the register a2. The address type depends on MMU type:
+
- For configurations without MMU, with region protection or with MPU the
address must be the physical address.
- For configurations with region translarion MMU or with MMUv3 and CONFIG_MMU=n
diff --git a/Documentation/xtensa/index.rst b/Documentation/xtensa/index.rst
new file mode 100644
index 000000000000..52fa04eb39a3
--- /dev/null
+++ b/Documentation/xtensa/index.rst
@@ -0,0 +1,12 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================
+Xtensa Architecture
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ atomctl
+ booting
+ mmu
diff --git a/Documentation/xtensa/mmu.rst b/Documentation/xtensa/mmu.rst
new file mode 100644
index 000000000000..e52a12960fdc
--- /dev/null
+++ b/Documentation/xtensa/mmu.rst
@@ -0,0 +1,195 @@
+=============================
+MMUv3 initialization sequence
+=============================
+
+The code in the initialize_mmu macro sets up MMUv3 memory mapping
+identically to MMUv2 fixed memory mapping. Depending on
+CONFIG_INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX symbol this code is
+located in addresses it was linked for (symbol undefined), or not
+(symbol defined), so it needs to be position-independent.
+
+The code has the following assumptions:
+
+ - This code fragment is run only on an MMU v3.
+ - TLBs are in their reset state.
+ - ITLBCFG and DTLBCFG are zero (reset state).
+ - RASID is 0x04030201 (reset state).
+ - PS.RING is zero (reset state).
+ - LITBASE is zero (reset state, PC-relative literals); required to be PIC.
+
+TLB setup proceeds along the following steps.
+
+ Legend:
+
+ - VA = virtual address (two upper nibbles of it);
+ - PA = physical address (two upper nibbles of it);
+ - pc = physical range that contains this code;
+
+After step 2, we jump to virtual address in the range 0x40000000..0x5fffffff
+or 0x00000000..0x1fffffff, depending on whether the kernel was loaded below
+0x40000000 or above. That address corresponds to next instruction to execute
+in this code. After step 4, we jump to intended (linked) address of this code.
+The scheme below assumes that the kernel is loaded below 0x40000000.
+
+ ====== ===== ===== ===== ===== ====== ===== =====
+ - Step0 Step1 Step2 Step3 Step4 Step5
+
+ VA PA PA PA PA VA PA PA
+ ====== ===== ===== ===== ===== ====== ===== =====
+ E0..FF -> E0 -> E0 -> E0 F0..FF -> F0 -> F0
+ C0..DF -> C0 -> C0 -> C0 E0..EF -> F0 -> F0
+ A0..BF -> A0 -> A0 -> A0 D8..DF -> 00 -> 00
+ 80..9F -> 80 -> 80 -> 80 D0..D7 -> 00 -> 00
+ 60..7F -> 60 -> 60 -> 60
+ 40..5F -> 40 -> pc -> pc 40..5F -> pc
+ 20..3F -> 20 -> 20 -> 20
+ 00..1F -> 00 -> 00 -> 00
+ ====== ===== ===== ===== ===== ====== ===== =====
+
+The default location of IO peripherals is above 0xf0000000. This may be changed
+using a "ranges" property in a device tree simple-bus node. See the Devicetree
+Specification, section 4.5 for details on the syntax and semantics of
+simple-bus nodes. The following limitations apply:
+
+1. Only top level simple-bus nodes are considered
+
+2. Only one (first) simple-bus node is considered
+
+3. Empty "ranges" properties are not supported
+
+4. Only the first triplet in the "ranges" property is considered
+
+5. The parent-bus-address value is rounded down to the nearest 256MB boundary
+
+6. The IO area covers the entire 256MB segment of parent-bus-address; the
+ "ranges" triplet length field is ignored
+
+
+MMUv3 address space layouts.
+============================
+
+Default MMUv2-compatible layout::
+
+ Symbol VADDR Size
+ +------------------+
+ | Userspace | 0x00000000 TASK_SIZE
+ +------------------+ 0x40000000
+ +------------------+
+ | Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
+ +------------------+
+ | KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
+ +------------------+ 0x8e400000
+ +------------------+
+ | VMALLOC area | VMALLOC_START 0xc0000000 128MB - 64KB
+ +------------------+ VMALLOC_END
+ | Cache aliasing | TLBTEMP_BASE_1 0xc7ff0000 DCACHE_WAY_SIZE
+ | remap area 1 |
+ +------------------+
+ | Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
+ | remap area 2 |
+ +------------------+
+ +------------------+
+ | KMAP area | PKMAP_BASE PTRS_PER_PTE *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ | | (4MB * DCACHE_N_COLORS)
+ +------------------+
+ | Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
+ | | NR_CPUS *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ +------------------+ FIXADDR_TOP 0xcffff000
+ +------------------+
+ | Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xd0000000 128MB
+ +------------------+
+ | Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xd8000000 128MB
+ +------------------+
+ | Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
+ +------------------+
+ | Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
+ +------------------+
+
+
+256MB cached + 256MB uncached layout::
+
+ Symbol VADDR Size
+ +------------------+
+ | Userspace | 0x00000000 TASK_SIZE
+ +------------------+ 0x40000000
+ +------------------+
+ | Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
+ +------------------+
+ | KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
+ +------------------+ 0x8e400000
+ +------------------+
+ | VMALLOC area | VMALLOC_START 0xa0000000 128MB - 64KB
+ +------------------+ VMALLOC_END
+ | Cache aliasing | TLBTEMP_BASE_1 0xa7ff0000 DCACHE_WAY_SIZE
+ | remap area 1 |
+ +------------------+
+ | Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
+ | remap area 2 |
+ +------------------+
+ +------------------+
+ | KMAP area | PKMAP_BASE PTRS_PER_PTE *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ | | (4MB * DCACHE_N_COLORS)
+ +------------------+
+ | Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
+ | | NR_CPUS *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ +------------------+ FIXADDR_TOP 0xaffff000
+ +------------------+
+ | Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xb0000000 256MB
+ +------------------+
+ | Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 256MB
+ +------------------+
+ +------------------+
+ | Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
+ +------------------+
+ | Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
+ +------------------+
+
+
+512MB cached + 512MB uncached layout::
+
+ Symbol VADDR Size
+ +------------------+
+ | Userspace | 0x00000000 TASK_SIZE
+ +------------------+ 0x40000000
+ +------------------+
+ | Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
+ +------------------+
+ | KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
+ +------------------+ 0x8e400000
+ +------------------+
+ | VMALLOC area | VMALLOC_START 0x90000000 128MB - 64KB
+ +------------------+ VMALLOC_END
+ | Cache aliasing | TLBTEMP_BASE_1 0x97ff0000 DCACHE_WAY_SIZE
+ | remap area 1 |
+ +------------------+
+ | Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
+ | remap area 2 |
+ +------------------+
+ +------------------+
+ | KMAP area | PKMAP_BASE PTRS_PER_PTE *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ | | (4MB * DCACHE_N_COLORS)
+ +------------------+
+ | Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
+ | | NR_CPUS *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ +------------------+ FIXADDR_TOP 0x9ffff000
+ +------------------+
+ | Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xa0000000 512MB
+ +------------------+
+ | Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 512MB
+ +------------------+
+ | Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
+ +------------------+
+ | Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
+ +------------------+
diff --git a/Documentation/xtensa/mmu.txt b/Documentation/xtensa/mmu.txt
deleted file mode 100644
index 318114de63f3..000000000000
--- a/Documentation/xtensa/mmu.txt
+++ /dev/null
@@ -1,189 +0,0 @@
-MMUv3 initialization sequence.
-
-The code in the initialize_mmu macro sets up MMUv3 memory mapping
-identically to MMUv2 fixed memory mapping. Depending on
-CONFIG_INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX symbol this code is
-located in addresses it was linked for (symbol undefined), or not
-(symbol defined), so it needs to be position-independent.
-
-The code has the following assumptions:
- This code fragment is run only on an MMU v3.
- TLBs are in their reset state.
- ITLBCFG and DTLBCFG are zero (reset state).
- RASID is 0x04030201 (reset state).
- PS.RING is zero (reset state).
- LITBASE is zero (reset state, PC-relative literals); required to be PIC.
-
-TLB setup proceeds along the following steps.
-
- Legend:
- VA = virtual address (two upper nibbles of it);
- PA = physical address (two upper nibbles of it);
- pc = physical range that contains this code;
-
-After step 2, we jump to virtual address in the range 0x40000000..0x5fffffff
-or 0x00000000..0x1fffffff, depending on whether the kernel was loaded below
-0x40000000 or above. That address corresponds to next instruction to execute
-in this code. After step 4, we jump to intended (linked) address of this code.
-The scheme below assumes that the kernel is loaded below 0x40000000.
-
- Step0 Step1 Step2 Step3 Step4 Step5
- ===== ===== ===== ===== ===== =====
- VA PA PA PA PA VA PA PA
- ------ -- -- -- -- ------ -- --
- E0..FF -> E0 -> E0 -> E0 F0..FF -> F0 -> F0
- C0..DF -> C0 -> C0 -> C0 E0..EF -> F0 -> F0
- A0..BF -> A0 -> A0 -> A0 D8..DF -> 00 -> 00
- 80..9F -> 80 -> 80 -> 80 D0..D7 -> 00 -> 00
- 60..7F -> 60 -> 60 -> 60
- 40..5F -> 40 -> pc -> pc 40..5F -> pc
- 20..3F -> 20 -> 20 -> 20
- 00..1F -> 00 -> 00 -> 00
-
-The default location of IO peripherals is above 0xf0000000. This may be changed
-using a "ranges" property in a device tree simple-bus node. See the Devicetree
-Specification, section 4.5 for details on the syntax and semantics of
-simple-bus nodes. The following limitations apply:
-
-1. Only top level simple-bus nodes are considered
-
-2. Only one (first) simple-bus node is considered
-
-3. Empty "ranges" properties are not supported
-
-4. Only the first triplet in the "ranges" property is considered
-
-5. The parent-bus-address value is rounded down to the nearest 256MB boundary
-
-6. The IO area covers the entire 256MB segment of parent-bus-address; the
- "ranges" triplet length field is ignored
-
-
-MMUv3 address space layouts.
-============================
-
-Default MMUv2-compatible layout.
-
- Symbol VADDR Size
-+------------------+
-| Userspace | 0x00000000 TASK_SIZE
-+------------------+ 0x40000000
-+------------------+
-| Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
-+------------------+
-| KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
-+------------------+ 0x8e400000
-+------------------+
-| VMALLOC area | VMALLOC_START 0xc0000000 128MB - 64KB
-+------------------+ VMALLOC_END
-| Cache aliasing | TLBTEMP_BASE_1 0xc7ff0000 DCACHE_WAY_SIZE
-| remap area 1 |
-+------------------+
-| Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
-| remap area 2 |
-+------------------+
-+------------------+
-| KMAP area | PKMAP_BASE PTRS_PER_PTE *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-| | (4MB * DCACHE_N_COLORS)
-+------------------+
-| Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
-| | NR_CPUS *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-+------------------+ FIXADDR_TOP 0xcffff000
-+------------------+
-| Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xd0000000 128MB
-+------------------+
-| Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xd8000000 128MB
-+------------------+
-| Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
-+------------------+
-| Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
-+------------------+
-
-
-256MB cached + 256MB uncached layout.
-
- Symbol VADDR Size
-+------------------+
-| Userspace | 0x00000000 TASK_SIZE
-+------------------+ 0x40000000
-+------------------+
-| Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
-+------------------+
-| KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
-+------------------+ 0x8e400000
-+------------------+
-| VMALLOC area | VMALLOC_START 0xa0000000 128MB - 64KB
-+------------------+ VMALLOC_END
-| Cache aliasing | TLBTEMP_BASE_1 0xa7ff0000 DCACHE_WAY_SIZE
-| remap area 1 |
-+------------------+
-| Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
-| remap area 2 |
-+------------------+
-+------------------+
-| KMAP area | PKMAP_BASE PTRS_PER_PTE *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-| | (4MB * DCACHE_N_COLORS)
-+------------------+
-| Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
-| | NR_CPUS *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-+------------------+ FIXADDR_TOP 0xaffff000
-+------------------+
-| Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xb0000000 256MB
-+------------------+
-| Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 256MB
-+------------------+
-+------------------+
-| Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
-+------------------+
-| Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
-+------------------+
-
-
-512MB cached + 512MB uncached layout.
-
- Symbol VADDR Size
-+------------------+
-| Userspace | 0x00000000 TASK_SIZE
-+------------------+ 0x40000000
-+------------------+
-| Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
-+------------------+
-| KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
-+------------------+ 0x8e400000
-+------------------+
-| VMALLOC area | VMALLOC_START 0x90000000 128MB - 64KB
-+------------------+ VMALLOC_END
-| Cache aliasing | TLBTEMP_BASE_1 0x97ff0000 DCACHE_WAY_SIZE
-| remap area 1 |
-+------------------+
-| Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
-| remap area 2 |
-+------------------+
-+------------------+
-| KMAP area | PKMAP_BASE PTRS_PER_PTE *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-| | (4MB * DCACHE_N_COLORS)
-+------------------+
-| Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
-| | NR_CPUS *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-+------------------+ FIXADDR_TOP 0x9ffff000
-+------------------+
-| Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xa0000000 512MB
-+------------------+
-| Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 512MB
-+------------------+
-| Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
-+------------------+
-| Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
-+------------------+