aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/devicetree/bindings/net/anarion-gmac.txt25
-rw-r--r--Documentation/devicetree/bindings/net/marvell-pp2.txt28
-rw-r--r--Documentation/devicetree/bindings/net/mediatek-net.txt12
-rw-r--r--Documentation/devicetree/bindings/net/renesas,ravb.txt29
-rw-r--r--Documentation/devicetree/bindings/net/xilinx_axienet.txt55
-rw-r--r--Documentation/networking/00-INDEX2
-rw-r--r--Documentation/networking/batman-adv.rst220
-rw-r--r--Documentation/networking/batman-adv.txt215
-rw-r--r--Documentation/networking/index.rst1
-rw-r--r--Documentation/networking/ip-sysctl.txt13
-rw-r--r--Documentation/networking/netvsc.txt63
-rw-r--r--Documentation/networking/strparser.txt207
12 files changed, 557 insertions, 313 deletions
diff --git a/Documentation/devicetree/bindings/net/anarion-gmac.txt b/Documentation/devicetree/bindings/net/anarion-gmac.txt
new file mode 100644
index 000000000000..fe678965ae69
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/anarion-gmac.txt
@@ -0,0 +1,25 @@
+* Adaptrum Anarion ethernet controller
+
+This device is a platform glue layer for stmmac.
+Please see stmmac.txt for the other unchanged properties.
+
+Required properties:
+ - compatible: Should be "adaptrum,anarion-gmac", "snps,dwmac"
+ - phy-mode: Should be "rgmii". Other modes are not currently supported.
+
+
+Examples:
+
+ gmac1: ethernet@f2014000 {
+ compatible = "adaptrum,anarion-gmac", "snps,dwmac";
+ reg = <0xf2014000 0x4000>, <0xf2018100 8>;
+
+ interrupt-parent = <&core_intc>;
+ interrupts = <21>;
+ interrupt-names = "macirq";
+
+ clocks = <&core_clk>;
+ clock-names = "stmmaceth";
+
+ phy-mode = "rgmii";
+ };
diff --git a/Documentation/devicetree/bindings/net/marvell-pp2.txt b/Documentation/devicetree/bindings/net/marvell-pp2.txt
index 6b4956beff8c..8918ad3ccf14 100644
--- a/Documentation/devicetree/bindings/net/marvell-pp2.txt
+++ b/Documentation/devicetree/bindings/net/marvell-pp2.txt
@@ -41,6 +41,10 @@ Optional properties (port):
- marvell,loopback: port is loopback mode
- phy: a phandle to a phy node defining the PHY address (as the reg
property, a single integer).
+- interrupt-names: if more than a single interrupt for rx is given, must
+ be the name associated to the interrupts listed. Valid
+ names are: "tx-cpu0", "tx-cpu1", "tx-cpu2", "tx-cpu3",
+ "rx-shared".
Example for marvell,armada-375-pp2:
@@ -80,19 +84,37 @@ cpm_ethernet: ethernet@0 {
clock-names = "pp_clk", "gop_clk", "gp_clk";
eth0: eth0 {
- interrupts = <GIC_SPI 37 IRQ_TYPE_LEVEL_HIGH>;
+ interrupts = <ICU_GRP_NSR 39 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 43 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 47 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 51 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 55 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "tx-cpu0", "tx-cpu1", "tx-cpu2",
+ "tx-cpu3", "rx-shared";
port-id = <0>;
gop-port-id = <0>;
};
eth1: eth1 {
- interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>;
+ interrupts = <ICU_GRP_NSR 40 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 44 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 48 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 52 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 56 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "tx-cpu0", "tx-cpu1", "tx-cpu2",
+ "tx-cpu3", "rx-shared";
port-id = <1>;
gop-port-id = <2>;
};
eth2: eth2 {
- interrupts = <GIC_SPI 39 IRQ_TYPE_LEVEL_HIGH>;
+ interrupts = <ICU_GRP_NSR 41 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 45 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 49 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 53 IRQ_TYPE_LEVEL_HIGH>,
+ <ICU_GRP_NSR 57 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "tx-cpu0", "tx-cpu1", "tx-cpu2",
+ "tx-cpu3", "rx-shared";
port-id = <2>;
gop-port-id = <3>;
};
diff --git a/Documentation/devicetree/bindings/net/mediatek-net.txt b/Documentation/devicetree/bindings/net/mediatek-net.txt
index c7194e87d5f4..1d1168b805cc 100644
--- a/Documentation/devicetree/bindings/net/mediatek-net.txt
+++ b/Documentation/devicetree/bindings/net/mediatek-net.txt
@@ -7,24 +7,30 @@ have dual GMAC each represented by a child node..
* Ethernet controller node
Required properties:
-- compatible: Should be "mediatek,mt2701-eth"
+- compatible: Should be
+ "mediatek,mt2701-eth": for MT2701 SoC
+ "mediatek,mt7623-eth", "mediatek,mt2701-eth": for MT7623 SoC
+ "mediatek,mt7622-eth": for MT7622 SoC
- reg: Address and length of the register set for the device
- interrupts: Should contain the three frame engines interrupts in numeric
order. These are fe_int0, fe_int1 and fe_int2.
- clocks: the clock used by the core
- clock-names: the names of the clock listed in the clocks property. These are
- "ethif", "esw", "gp2", "gp1"
+ "ethif", "esw", "gp2", "gp1" : For MT2701 and MT7623 SoC
+ "ethif", "esw", "gp0", "gp1", "gp2", "sgmii_tx250m", "sgmii_rx250m",
+ "sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii_ck", "eth2pll" : For MT7622 SoC
- power-domains: phandle to the power domain that the ethernet is part of
- resets: Should contain a phandle to the ethsys reset signal
- reset-names: Should contain the reset signal name "eth"
- mediatek,ethsys: phandle to the syscon node that handles the port setup
+- mediatek,sgmiisys: phandle to the syscon node that handles the SGMII setup
+ which is required for those SoCs equipped with SGMII such as MT7622 SoC.
- mediatek,pctl: phandle to the syscon node that handles the ports slew rate
and driver current
Optional properties:
- interrupt-parent: Should be the phandle for the interrupt controller
that services interrupts for this device
-
* Ethernet MAC node
Required properties:
diff --git a/Documentation/devicetree/bindings/net/renesas,ravb.txt b/Documentation/devicetree/bindings/net/renesas,ravb.txt
index b519503be51a..4717bc24eada 100644
--- a/Documentation/devicetree/bindings/net/renesas,ravb.txt
+++ b/Documentation/devicetree/bindings/net/renesas,ravb.txt
@@ -4,19 +4,24 @@ This file provides information on what the device node for the Ethernet AVB
interface contains.
Required properties:
-- compatible: "renesas,etheravb-r8a7790" if the device is a part of R8A7790 SoC.
- "renesas,etheravb-r8a7791" if the device is a part of R8A7791 SoC.
- "renesas,etheravb-r8a7792" if the device is a part of R8A7792 SoC.
- "renesas,etheravb-r8a7793" if the device is a part of R8A7793 SoC.
- "renesas,etheravb-r8a7794" if the device is a part of R8A7794 SoC.
- "renesas,etheravb-r8a7795" if the device is a part of R8A7795 SoC.
- "renesas,etheravb-r8a7796" if the device is a part of R8A7796 SoC.
- "renesas,etheravb-rcar-gen2" for generic R-Car Gen 2 compatible interface.
- "renesas,etheravb-rcar-gen3" for generic R-Car Gen 3 compatible interface.
+- compatible: Must contain one or more of the following:
+ - "renesas,etheravb-r8a7743" for the R8A7743 SoC.
+ - "renesas,etheravb-r8a7790" for the R8A7790 SoC.
+ - "renesas,etheravb-r8a7791" for the R8A7791 SoC.
+ - "renesas,etheravb-r8a7792" for the R8A7792 SoC.
+ - "renesas,etheravb-r8a7793" for the R8A7793 SoC.
+ - "renesas,etheravb-r8a7794" for the R8A7794 SoC.
+ - "renesas,etheravb-rcar-gen2" as a fallback for the above
+ R-Car Gen2 and RZ/G1 devices.
- When compatible with the generic version, nodes must list the
- SoC-specific version corresponding to the platform first
- followed by the generic version.
+ - "renesas,etheravb-r8a7795" for the R8A7795 SoC.
+ - "renesas,etheravb-r8a7796" for the R8A7796 SoC.
+ - "renesas,etheravb-rcar-gen3" as a fallback for the above
+ R-Car Gen3 devices.
+
+ When compatible with the generic version, nodes must list the
+ SoC-specific version corresponding to the platform first followed by
+ the generic version.
- reg: offset and length of (1) the register block and (2) the stream buffer.
- interrupts: A list of interrupt-specifiers, one for each entry in
diff --git a/Documentation/devicetree/bindings/net/xilinx_axienet.txt b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
new file mode 100644
index 000000000000..38f9ec076743
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
@@ -0,0 +1,55 @@
+XILINX AXI ETHERNET Device Tree Bindings
+--------------------------------------------------------
+
+Also called AXI 1G/2.5G Ethernet Subsystem, the xilinx axi ethernet IP core
+provides connectivity to an external ethernet PHY supporting different
+interfaces: MII, GMII, RGMII, SGMII, 1000BaseX. It also includes two
+segments of memory for buffering TX and RX, as well as the capability of
+offloading TX/RX checksum calculation off the processor.
+
+Management configuration is done through the AXI interface, while payload is
+sent and received through means of an AXI DMA controller. This driver
+includes the DMA driver code, so this driver is incompatible with AXI DMA
+driver.
+
+For more details about mdio please refer phy.txt file in the same directory.
+
+Required properties:
+- compatible : Must be one of "xlnx,axi-ethernet-1.00.a",
+ "xlnx,axi-ethernet-1.01.a", "xlnx,axi-ethernet-2.01.a"
+- reg : Address and length of the IO space.
+- interrupts : Should be a list of two interrupt, TX and RX.
+- phy-handle : Should point to the external phy device.
+ See ethernet.txt file in the same directory.
+- xlnx,rxmem : Set to allocated memory buffer for Rx/Tx in the hardware
+
+Optional properties:
+- phy-mode : See ethernet.txt
+- xlnx,phy-type : Deprecated, do not use, but still accepted in preference
+ to phy-mode.
+- xlnx,txcsum : 0 or empty for disabling TX checksum offload,
+ 1 to enable partial TX checksum offload,
+ 2 to enable full TX checksum offload
+- xlnx,rxcsum : Same values as xlnx,txcsum but for RX checksum offload
+
+Example:
+ axi_ethernet_eth: ethernet@40c00000 {
+ compatible = "xlnx,axi-ethernet-1.00.a";
+ device_type = "network";
+ interrupt-parent = <&microblaze_0_axi_intc>;
+ interrupts = <2 0>;
+ phy-mode = "mii";
+ reg = <0x40c00000 0x40000>;
+ xlnx,rxcsum = <0x2>;
+ xlnx,rxmem = <0x800>;
+ xlnx,txcsum = <0x2>;
+ phy-handle = <&phy0>;
+ axi_ethernetlite_0_mdio: mdio {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ phy0: phy@0 {
+ device_type = "ethernet-phy";
+ reg = <1>;
+ };
+ };
+ };
diff --git a/Documentation/networking/00-INDEX b/Documentation/networking/00-INDEX
index c6beb5f1637f..7a79b3587dd3 100644
--- a/Documentation/networking/00-INDEX
+++ b/Documentation/networking/00-INDEX
@@ -30,8 +30,6 @@ atm.txt
- info on where to get ATM programs and support for Linux.
ax25.txt
- info on using AX.25 and NET/ROM code for Linux
-batman-adv.txt
- - B.A.T.M.A.N routing protocol on top of layer 2 Ethernet Frames.
baycom.txt
- info on the driver for Baycom style amateur radio modems
bonding.txt
diff --git a/Documentation/networking/batman-adv.rst b/Documentation/networking/batman-adv.rst
new file mode 100644
index 000000000000..a342b2cc3dc6
--- /dev/null
+++ b/Documentation/networking/batman-adv.rst
@@ -0,0 +1,220 @@
+==========
+batman-adv
+==========
+
+Batman advanced is a new approach to wireless networking which does no longer
+operate on the IP basis. Unlike the batman daemon, which exchanges information
+using UDP packets and sets routing tables, batman-advanced operates on ISO/OSI
+Layer 2 only and uses and routes (or better: bridges) Ethernet Frames. It
+emulates a virtual network switch of all nodes participating. Therefore all
+nodes appear to be link local, thus all higher operating protocols won't be
+affected by any changes within the network. You can run almost any protocol
+above batman advanced, prominent examples are: IPv4, IPv6, DHCP, IPX.
+
+Batman advanced was implemented as a Linux kernel driver to reduce the overhead
+to a minimum. It does not depend on any (other) network driver, and can be used
+on wifi as well as ethernet lan, vpn, etc ... (anything with ethernet-style
+layer 2).
+
+
+Configuration
+=============
+
+Load the batman-adv module into your kernel::
+
+ $ insmod batman-adv.ko
+
+The module is now waiting for activation. You must add some interfaces on which
+batman can operate. After loading the module batman advanced will scan your
+systems interfaces to search for compatible interfaces. Once found, it will
+create subfolders in the ``/sys`` directories of each supported interface,
+e.g.::
+
+ $ ls /sys/class/net/eth0/batman_adv/
+ elp_interval iface_status mesh_iface throughput_override
+
+If an interface does not have the ``batman_adv`` subfolder, it probably is not
+supported. Not supported interfaces are: loopback, non-ethernet and batman's
+own interfaces.
+
+Note: After the module was loaded it will continuously watch for new
+interfaces to verify the compatibility. There is no need to reload the module
+if you plug your USB wifi adapter into your machine after batman advanced was
+initially loaded.
+
+The batman-adv soft-interface can be created using the iproute2 tool ``ip``::
+
+ $ ip link add name bat0 type batadv
+
+To activate a given interface simply attach it to the ``bat0`` interface::
+
+ $ ip link set dev eth0 master bat0
+
+Repeat this step for all interfaces you wish to add. Now batman starts
+using/broadcasting on this/these interface(s).
+
+By reading the "iface_status" file you can check its status::
+
+ $ cat /sys/class/net/eth0/batman_adv/iface_status
+ active
+
+To deactivate an interface you have to detach it from the "bat0" interface::
+
+ $ ip link set dev eth0 nomaster
+
+
+All mesh wide settings can be found in batman's own interface folder::
+
+ $ ls /sys/class/net/bat0/mesh/
+ aggregated_ogms fragmentation isolation_mark routing_algo
+ ap_isolation gw_bandwidth log_level vlan0
+ bonding gw_mode multicast_mode
+ bridge_loop_avoidance gw_sel_class network_coding
+ distributed_arp_table hop_penalty orig_interval
+
+There is a special folder for debugging information::
+
+ $ ls /sys/kernel/debug/batman_adv/bat0/
+ bla_backbone_table log neighbors transtable_local
+ bla_claim_table mcast_flags originators
+ dat_cache nc socket
+ gateways nc_nodes transtable_global
+
+Some of the files contain all sort of status information regarding the mesh
+network. For example, you can view the table of originators (mesh
+participants) with::
+
+ $ cat /sys/kernel/debug/batman_adv/bat0/originators
+
+Other files allow to change batman's behaviour to better fit your requirements.
+For instance, you can check the current originator interval (value in
+milliseconds which determines how often batman sends its broadcast packets)::
+
+ $ cat /sys/class/net/bat0/mesh/orig_interval
+ 1000
+
+and also change its value::
+
+ $ echo 3000 > /sys/class/net/bat0/mesh/orig_interval
+
+In very mobile scenarios, you might want to adjust the originator interval to a
+lower value. This will make the mesh more responsive to topology changes, but
+will also increase the overhead.
+
+
+Usage
+=====
+
+To make use of your newly created mesh, batman advanced provides a new
+interface "bat0" which you should use from this point on. All interfaces added
+to batman advanced are not relevant any longer because batman handles them for
+you. Basically, one "hands over" the data by using the batman interface and
+batman will make sure it reaches its destination.
+
+The "bat0" interface can be used like any other regular interface. It needs an
+IP address which can be either statically configured or dynamically (by using
+DHCP or similar services)::
+
+ NodeA: ip link set up dev bat0
+ NodeA: ip addr add 192.168.0.1/24 dev bat0
+
+ NodeB: ip link set up dev bat0
+ NodeB: ip addr add 192.168.0.2/24 dev bat0
+ NodeB: ping 192.168.0.1
+
+Note: In order to avoid problems remove all IP addresses previously assigned to
+interfaces now used by batman advanced, e.g.::
+
+ $ ip addr flush dev eth0
+
+
+Logging/Debugging
+=================
+
+All error messages, warnings and information messages are sent to the kernel
+log. Depending on your operating system distribution this can be read in one of
+a number of ways. Try using the commands: ``dmesg``, ``logread``, or looking in
+the files ``/var/log/kern.log`` or ``/var/log/syslog``. All batman-adv messages
+are prefixed with "batman-adv:" So to see just these messages try::
+
+ $ dmesg | grep batman-adv
+
+When investigating problems with your mesh network, it is sometimes necessary to
+see more detail debug messages. This must be enabled when compiling the
+batman-adv module. When building batman-adv as part of kernel, use "make
+menuconfig" and enable the option ``B.A.T.M.A.N. debugging``
+(``CONFIG_BATMAN_ADV_DEBUG=y``).
+
+Those additional debug messages can be accessed using a special file in
+debugfs::
+
+ $ cat /sys/kernel/debug/batman_adv/bat0/log
+
+The additional debug output is by default disabled. It can be enabled during
+run time. Following log_levels are defined:
+
+.. flat-table::
+
+ * - 0
+ - All debug output disabled
+ * - 1
+ - Enable messages related to routing / flooding / broadcasting
+ * - 2
+ - Enable messages related to route added / changed / deleted
+ * - 4
+ - Enable messages related to translation table operations
+ * - 8
+ - Enable messages related to bridge loop avoidance
+ * - 16
+ - Enable messages related to DAT, ARP snooping and parsing
+ * - 32
+ - Enable messages related to network coding
+ * - 64
+ - Enable messages related to multicast
+ * - 128
+ - Enable messages related to throughput meter
+ * - 255
+ - Enable all messages
+
+The debug output can be changed at runtime using the file
+``/sys/class/net/bat0/mesh/log_level``. e.g.::
+
+ $ echo 6 > /sys/class/net/bat0/mesh/log_level
+
+will enable debug messages for when routes change.
+
+Counters for different types of packets entering and leaving the batman-adv
+module are available through ethtool::
+
+ $ ethtool --statistics bat0
+
+
+batctl
+======
+
+As batman advanced operates on layer 2, all hosts participating in the virtual
+switch are completely transparent for all protocols above layer 2. Therefore
+the common diagnosis tools do not work as expected. To overcome these problems,
+batctl was created. At the moment the batctl contains ping, traceroute, tcpdump
+and interfaces to the kernel module settings.
+
+For more information, please see the manpage (``man batctl``).
+
+batctl is available on https://www.open-mesh.org/
+
+
+Contact
+=======
+
+Please send us comments, experiences, questions, anything :)
+
+IRC:
+ #batman on irc.freenode.org
+Mailing-list:
+ b.a.t.m.a.n@open-mesh.org (optional subscription at
+ https://lists.open-mesh.org/mm/listinfo/b.a.t.m.a.n)
+
+You can also contact the Authors:
+
+* Marek Lindner <mareklindner@neomailbox.ch>
+* Simon Wunderlich <sw@simonwunderlich.de>
diff --git a/Documentation/networking/batman-adv.txt b/Documentation/networking/batman-adv.txt
deleted file mode 100644
index ccf94677b240..000000000000
--- a/Documentation/networking/batman-adv.txt
+++ /dev/null
@@ -1,215 +0,0 @@
-BATMAN-ADV
-----------
-
-Batman advanced is a new approach to wireless networking which
-does no longer operate on the IP basis. Unlike the batman daemon,
-which exchanges information using UDP packets and sets routing
-tables, batman-advanced operates on ISO/OSI Layer 2 only and uses
-and routes (or better: bridges) Ethernet Frames. It emulates a
-virtual network switch of all nodes participating. Therefore all
-nodes appear to be link local, thus all higher operating proto-
-cols won't be affected by any changes within the network. You can
-run almost any protocol above batman advanced, prominent examples
-are: IPv4, IPv6, DHCP, IPX.
-
-Batman advanced was implemented as a Linux kernel driver to re-
-duce the overhead to a minimum. It does not depend on any (other)
-network driver, and can be used on wifi as well as ethernet lan,
-vpn, etc ... (anything with ethernet-style layer 2).
-
-
-CONFIGURATION
--------------
-
-Load the batman-adv module into your kernel:
-
-# insmod batman-adv.ko
-
-The module is now waiting for activation. You must add some in-
-terfaces on which batman can operate. After loading the module
-batman advanced will scan your systems interfaces to search for
-compatible interfaces. Once found, it will create subfolders in
-the /sys directories of each supported interface, e.g.
-
-# ls /sys/class/net/eth0/batman_adv/
-# elp_interval iface_status mesh_iface throughput_override
-
-If an interface does not have the "batman_adv" subfolder it prob-
-ably is not supported. Not supported interfaces are: loopback,
-non-ethernet and batman's own interfaces.
-
-Note: After the module was loaded it will continuously watch for
-new interfaces to verify the compatibility. There is no need to
-reload the module if you plug your USB wifi adapter into your ma-
-chine after batman advanced was initially loaded.
-
-The batman-adv soft-interface can be created using the iproute2
-tool "ip"
-
-# ip link add name bat0 type batadv
-
-To activate a given interface simply attach it to the "bat0"
-interface
-
-# ip link set dev eth0 master bat0
-
-Repeat this step for all interfaces you wish to add. Now batman
-starts using/broadcasting on this/these interface(s).
-
-By reading the "iface_status" file you can check its status:
-
-# cat /sys/class/net/eth0/batman_adv/iface_status
-# active
-
-To deactivate an interface you have to detach it from the
-"bat0" interface:
-
-# ip link set dev eth0 nomaster
-
-
-All mesh wide settings can be found in batman's own interface
-folder:
-
-# ls /sys/class/net/bat0/mesh/
-# aggregated_ogms fragmentation isolation_mark routing_algo
-# ap_isolation gw_bandwidth log_level vlan0
-# bonding gw_mode multicast_mode
-# bridge_loop_avoidance gw_sel_class network_coding
-# distributed_arp_table hop_penalty orig_interval
-
-There is a special folder for debugging information:
-
-# ls /sys/kernel/debug/batman_adv/bat0/
-# bla_backbone_table log neighbors transtable_local
-# bla_claim_table mcast_flags originators
-# dat_cache nc socket
-# gateways nc_nodes transtable_global
-
-Some of the files contain all sort of status information regard-
-ing the mesh network. For example, you can view the table of
-originators (mesh participants) with:
-
-# cat /sys/kernel/debug/batman_adv/bat0/originators
-
-Other files allow to change batman's behaviour to better fit your
-requirements. For instance, you can check the current originator
-interval (value in milliseconds which determines how often batman
-sends its broadcast packets):
-
-# cat /sys/class/net/bat0/mesh/orig_interval
-# 1000
-
-and also change its value:
-
-# echo 3000 > /sys/class/net/bat0/mesh/orig_interval
-
-In very mobile scenarios, you might want to adjust the originator
-interval to a lower value. This will make the mesh more respon-
-sive to topology changes, but will also increase the overhead.
-
-
-USAGE
------
-
-To make use of your newly created mesh, batman advanced provides
-a new interface "bat0" which you should use from this point on.
-All interfaces added to batman advanced are not relevant any
-longer because batman handles them for you. Basically, one "hands
-over" the data by using the batman interface and batman will make
-sure it reaches its destination.
-
-The "bat0" interface can be used like any other regular inter-
-face. It needs an IP address which can be either statically con-
-figured or dynamically (by using DHCP or similar services):
-
-# NodeA: ip link set up dev bat0
-# NodeA: ip addr add 192.168.0.1/24 dev bat0
-
-# NodeB: ip link set up dev bat0
-# NodeB: ip addr add 192.168.0.2/24 dev bat0
-# NodeB: ping 192.168.0.1
-
-Note: In order to avoid problems remove all IP addresses previ-
-ously assigned to interfaces now used by batman advanced, e.g.
-
-# ip addr flush dev eth0
-
-
-LOGGING/DEBUGGING
------------------
-
-All error messages, warnings and information messages are sent to
-the kernel log. Depending on your operating system distribution
-this can be read in one of a number of ways. Try using the com-
-mands: dmesg, logread, or looking in the files /var/log/kern.log
-or /var/log/syslog. All batman-adv messages are prefixed with
-"batman-adv:" So to see just these messages try
-
-# dmesg | grep batman-adv
-
-When investigating problems with your mesh network it is some-
-times necessary to see more detail debug messages. This must be
-enabled when compiling the batman-adv module. When building bat-
-man-adv as part of kernel, use "make menuconfig" and enable the
-option "B.A.T.M.A.N. debugging".
-
-Those additional debug messages can be accessed using a special
-file in debugfs
-
-# cat /sys/kernel/debug/batman_adv/bat0/log
-
-The additional debug output is by default disabled. It can be en-
-abled during run time. Following log_levels are defined:
-
- 0 - All debug output disabled
- 1 - Enable messages related to routing / flooding / broadcasting
- 2 - Enable messages related to route added / changed / deleted
- 4 - Enable messages related to translation table operations
- 8 - Enable messages related to bridge loop avoidance
- 16 - Enable messages related to DAT, ARP snooping and parsing
- 32 - Enable messages related to network coding
- 64 - Enable messages related to multicast
-128 - Enable messages related to throughput meter
-255 - Enable all messages
-
-The debug output can be changed at runtime using the file
-/sys/class/net/bat0/mesh/log_level. e.g.
-
-# echo 6 > /sys/class/net/bat0/mesh/log_level
-
-will enable debug messages for when routes change.
-
-Counters for different types of packets entering and leaving the
-batman-adv module are available through ethtool:
-
-# ethtool --statistics bat0
-
-
-BATCTL
-------
-
-As batman advanced operates on layer 2 all hosts participating in
-the virtual switch are completely transparent for all protocols
-above layer 2. Therefore the common diagnosis tools do not work
-as expected. To overcome these problems batctl was created. At
-the moment the batctl contains ping, traceroute, tcpdump and
-interfaces to the kernel module settings.
-
-For more information, please see the manpage (man batctl).
-
-batctl is available on https://www.open-mesh.org/
-
-
-CONTACT
--------
-
-Please send us comments, experiences, questions, anything :)
-
-IRC: #batman on irc.freenode.org
-Mailing-list: b.a.t.m.a.n@open-mesh.org (optional subscription
- at https://lists.open-mesh.org/mm/listinfo/b.a.t.m.a.n)
-
-You can also contact the Authors:
-
-Marek Lindner <mareklindner@neomailbox.ch>
-Simon Wunderlich <sw@simonwunderlich.de>
diff --git a/Documentation/networking/index.rst b/Documentation/networking/index.rst
index b5bd87e01f52..66e620866245 100644
--- a/Documentation/networking/index.rst
+++ b/Documentation/networking/index.rst
@@ -6,6 +6,7 @@ Contents:
.. toctree::
:maxdepth: 2
+ batman-adv
kapi
z8530book
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index 974ab47ae53a..84c9b8cee780 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -353,12 +353,7 @@ tcp_l3mdev_accept - BOOLEAN
compiled with CONFIG_NET_L3_MASTER_DEV.
tcp_low_latency - BOOLEAN
- If set, the TCP stack makes decisions that prefer lower
- latency as opposed to higher throughput. By default, this
- option is not set meaning that higher throughput is preferred.
- An example of an application where this default should be
- changed would be a Beowulf compute cluster.
- Default: 0
+ This is a legacy option, it has no effect anymore.
tcp_max_orphans - INTEGER
Maximal number of TCP sockets not attached to any user file handle,
@@ -1291,8 +1286,7 @@ tag - INTEGER
xfrm4_gc_thresh - INTEGER
The threshold at which we will start garbage collecting for IPv4
destination cache entries. At twice this value the system will
- refuse new allocations. The value must be set below the flowcache
- limit (4096 * number of online cpus) to take effect.
+ refuse new allocations.
igmp_link_local_mcast_reports - BOOLEAN
Enable IGMP reports for link local multicast groups in the
@@ -1778,8 +1772,7 @@ ratelimit - INTEGER
xfrm6_gc_thresh - INTEGER
The threshold at which we will start garbage collecting for IPv6
destination cache entries. At twice this value the system will
- refuse new allocations. The value must be set below the flowcache
- limit (4096 * number of online cpus) to take effect.
+ refuse new allocations.
IPv6 Update by:
diff --git a/Documentation/networking/netvsc.txt b/Documentation/networking/netvsc.txt
new file mode 100644
index 000000000000..4ddb4e4b0426
--- /dev/null
+++ b/Documentation/networking/netvsc.txt
@@ -0,0 +1,63 @@
+Hyper-V network driver
+======================
+
+Compatibility
+=============
+
+This driver is compatible with Windows Server 2012 R2, 2016 and
+Windows 10.
+
+Features
+========
+
+ Checksum offload
+ ----------------
+ The netvsc driver supports checksum offload as long as the
+ Hyper-V host version does. Windows Server 2016 and Azure
+ support checksum offload for TCP and UDP for both IPv4 and
+ IPv6. Windows Server 2012 only supports checksum offload for TCP.
+
+ Receive Side Scaling
+ --------------------
+ Hyper-V supports receive side scaling. For TCP, packets are
+ distributed among available queues based on IP address and port
+ number. Current versions of Hyper-V host, only distribute UDP
+ packets based on the IP source and destination address.
+ The port number is not used as part of the hash value for UDP.
+ Fragmented IP packets are not distributed between queues;
+ all fragmented packets arrive on the first channel.
+
+ Generic Receive Offload, aka GRO
+ --------------------------------
+ The driver supports GRO and it is enabled by default. GRO coalesces
+ like packets and significantly reduces CPU usage under heavy Rx
+ load.
+
+ SR-IOV support
+ --------------
+ Hyper-V supports SR-IOV as a hardware acceleration option. If SR-IOV
+ is enabled in both the vSwitch and the guest configuration, then the
+ Virtual Function (VF) device is passed to the guest as a PCI
+ device. In this case, both a synthetic (netvsc) and VF device are
+ visible in the guest OS and both NIC's have the same MAC address.
+
+ The VF is enslaved by netvsc device. The netvsc driver will transparently
+ switch the data path to the VF when it is available and up.
+ Network state (addresses, firewall, etc) should be applied only to the
+ netvsc device; the slave device should not be accessed directly in
+ most cases. The exceptions are if some special queue discipline or
+ flow direction is desired, these should be applied directly to the
+ VF slave device.
+
+ Receive Buffer
+ --------------
+ Packets are received into a receive area which is created when device
+ is probed. The receive area is broken into MTU sized chunks and each may
+ contain one or more packets. The number of receive sections may be changed
+ via ethtool Rx ring parameters.
+
+ There is a similar send buffer which is used to aggregate packets for sending.
+ The send area is broken into chunks of 6144 bytes, each of section may
+ contain one or more packets. The send buffer is an optimization, the driver
+ will use slower method to handle very large packets or if the send buffer
+ area is exhausted.
diff --git a/Documentation/networking/strparser.txt b/Documentation/networking/strparser.txt
index a0bf573dfa61..fe01302471ae 100644
--- a/Documentation/networking/strparser.txt
+++ b/Documentation/networking/strparser.txt
@@ -1,45 +1,107 @@
-Stream Parser
--------------
+Stream Parser (strparser)
+
+Introduction
+============
The stream parser (strparser) is a utility that parses messages of an
-application layer protocol running over a TCP connection. The stream
+application layer protocol running over a data stream. The stream
parser works in conjunction with an upper layer in the kernel to provide
kernel support for application layer messages. For instance, Kernel
Connection Multiplexor (KCM) uses the Stream Parser to parse messages
using a BPF program.
+The strparser works in one of two modes: receive callback or general
+mode.
+
+In receive callback mode, the strparser is called from the data_ready
+callback of a TCP socket. Messages are parsed and delivered as they are
+received on the socket.
+
+In general mode, a sequence of skbs are fed to strparser from an
+outside source. Message are parsed and delivered as the sequence is
+processed. This modes allows strparser to be applied to arbitrary
+streams of data.
+
Interface
----------
+=========
The API includes a context structure, a set of callbacks, utility
-functions, and a data_ready function. The callbacks include
-a parse_msg function that is called to perform parsing (e.g.
-BPF parsing in case of KCM), and a rcv_msg function that is called
-when a full message has been completed.
+functions, and a data_ready function for receive callback mode. The
+callbacks include a parse_msg function that is called to perform
+parsing (e.g. BPF parsing in case of KCM), and a rcv_msg function
+that is called when a full message has been completed.
-A stream parser can be instantiated for a TCP connection. This is done
-by:
+Functions
+=========
-strp_init(struct strparser *strp, struct sock *csk,
+strp_init(struct strparser *strp, struct sock *sk,
struct strp_callbacks *cb)
-strp is a struct of type strparser that is allocated by the upper layer.
-csk is the TCP socket associated with the stream parser. Callbacks are
-called by the stream parser.
+ Called to initialize a stream parser. strp is a struct of type
+ strparser that is allocated by the upper layer. sk is the TCP
+ socket associated with the stream parser for use with receive
+ callback mode; in general mode this is set to NULL. Callbacks
+ are called by the stream parser (the callbacks are listed below).
+
+void strp_pause(struct strparser *strp)
+
+ Temporarily pause a stream parser. Message parsing is suspended
+ and no new messages are delivered to the upper layer.
+
+void strp_pause(struct strparser *strp)
+
+ Unpause a paused stream parser.
+
+void strp_stop(struct strparser *strp);
+
+ strp_stop is called to completely stop stream parser operations.
+ This is called internally when the stream parser encounters an
+ error, and it is called from the upper layer to stop parsing
+ operations.
+
+void strp_done(struct strparser *strp);
+
+ strp_done is called to release any resources held by the stream
+ parser instance. This must be called after the stream processor
+ has been stopped.
+
+int strp_process(struct strparser *strp, struct sk_buff *orig_skb,
+ unsigned int orig_offset, size_t orig_len,
+ size_t max_msg_size, long timeo)
+
+ strp_process is called in general mode for a stream parser to
+ parse an sk_buff. The number of bytes processed or a negative
+ error number is returned. Note that strp_process does not
+ consume the sk_buff. max_msg_size is maximum size the stream
+ parser will parse. timeo is timeout for completing a message.
+
+void strp_data_ready(struct strparser *strp);
+
+ The upper layer calls strp_tcp_data_ready when data is ready on
+ the lower socket for strparser to process. This should be called
+ from a data_ready callback that is set on the socket. Note that
+ maximum messages size is the limit of the receive socket
+ buffer and message timeout is the receive timeout for the socket.
+
+void strp_check_rcv(struct strparser *strp);
+
+ strp_check_rcv is called to check for new messages on the socket.
+ This is normally called at initialization of a stream parser
+ instance or after strp_unpause.
Callbacks
----------
+=========
-There are four callbacks:
+There are six callbacks:
int (*parse_msg)(struct strparser *strp, struct sk_buff *skb);
parse_msg is called to determine the length of the next message
in the stream. The upper layer must implement this function. It
should parse the sk_buff as containing the headers for the
- next application layer messages in the stream.
+ next application layer message in the stream.
- The skb->cb in the input skb is a struct strp_rx_msg. Only
+ The skb->cb in the input skb is a struct strp_msg. Only
the offset field is relevant in parse_msg and gives the offset
where the message starts in the skb.
@@ -50,26 +112,41 @@ int (*parse_msg)(struct strparser *strp, struct sk_buff *skb);
-ESTRPIPE : current message should not be processed by the
kernel, return control of the socket to userspace which
can proceed to read the messages itself
- other < 0 : Error is parsing, give control back to userspace
+ other < 0 : Error in parsing, give control back to userspace
assuming that synchronization is lost and the stream
is unrecoverable (application expected to close TCP socket)
In the case that an error is returned (return value is less than
- zero) the stream parser will set the error on TCP socket and wake
- it up. If parse_msg returned -ESTRPIPE and the stream parser had
- previously read some bytes for the current message, then the error
- set on the attached socket is ENODATA since the stream is
- unrecoverable in that case.
+ zero) and the parser is in receive callback mode, then it will set
+ the error on TCP socket and wake it up. If parse_msg returned
+ -ESTRPIPE and the stream parser had previously read some bytes for
+ the current message, then the error set on the attached socket is
+ ENODATA since the stream is unrecoverable in that case.
+
+void (*lock)(struct strparser *strp)
+
+ The lock callback is called to lock the strp structure when
+ the strparser is performing an asynchronous operation (such as
+ processing a timeout). In receive callback mode the default
+ function is to lock_sock for the associated socket. In general
+ mode the callback must be set appropriately.
+
+void (*unlock)(struct strparser *strp)
+
+ The unlock callback is called to release the lock obtained
+ by the lock callback. In receive callback mode the default
+ function is release_sock for the associated socket. In general
+ mode the callback must be set appropriately.
void (*rcv_msg)(struct strparser *strp, struct sk_buff *skb);
rcv_msg is called when a full message has been received and
is queued. The callee must consume the sk_buff; it can
call strp_pause to prevent any further messages from being
- received in rcv_msg (see strp_pause below). This callback
+ received in rcv_msg (see strp_pause above). This callback
must be set.
- The skb->cb in the input skb is a struct strp_rx_msg. This
+ The skb->cb in the input skb is a struct strp_msg. This
struct contains two fields: offset and full_len. Offset is
where the message starts in the skb, and full_len is the
the length of the message. skb->len - offset may be greater
@@ -78,59 +155,53 @@ void (*rcv_msg)(struct strparser *strp, struct sk_buff *skb);
int (*read_sock_done)(struct strparser *strp, int err);
read_sock_done is called when the stream parser is done reading
- the TCP socket. The stream parser may read multiple messages
- in a loop and this function allows cleanup to occur when existing
- the loop. If the callback is not set (NULL in strp_init) a
- default function is used.
+ the TCP socket in receive callback mode. The stream parser may
+ read multiple messages in a loop and this function allows cleanup
+ to occur when exiting the loop. If the callback is not set (NULL
+ in strp_init) a default function is used.
void (*abort_parser)(struct strparser *strp, int err);
This function is called when stream parser encounters an error
- in parsing. The default function stops the stream parser for the
- TCP socket and sets the error in the socket. The default function
- can be changed by setting the callback to non-NULL in strp_init.
+ in parsing. The default function stops the stream parser and
+ sets the error in the socket if the parser is in receive callback
+ mode. The default function can be changed by setting the callback
+ to non-NULL in strp_init.
-Functions
----------
+Statistics
+==========
-The upper layer calls strp_tcp_data_ready when data is ready on the lower
-socket for strparser to process. This should be called from a data_ready
-callback that is set on the socket.
+Various counters are kept for each stream parser instance. These are in
+the strp_stats structure. strp_aggr_stats is a convenience structure for
+accumulating statistics for multiple stream parser instances.
+save_strp_stats and aggregate_strp_stats are helper functions to save
+and aggregate statistics.
-strp_stop is called to completely stop stream parser operations. This
-is called internally when the stream parser encounters an error, and
-it is called from the upper layer when unattaching a TCP socket.
+Message assembly limits
+=======================
-strp_done is called to unattach the stream parser from the TCP socket.
-This must be called after the stream processor has be stopped.
+The stream parser provide mechanisms to limit the resources consumed by
+message assembly.
-strp_check_rcv is called to check for new messages on the socket. This
-is normally called at initialization of the a stream parser instance
-of after strp_unpause.
+A timer is set when assembly starts for a new message. In receive
+callback mode the message timeout is taken from rcvtime for the
+associated TCP socket. In general mode, the timeout is passed as an
+argument in strp_process. If the timer fires before assembly completes
+the stream parser is aborted and the ETIMEDOUT error is set on the TCP
+socket if in receive callback mode.
-Statistics
-----------
+In receive callback mode, message length is limited to the receive
+buffer size of the associated TCP socket. If the length returned by
+parse_msg is greater than the socket buffer size then the stream parser
+is aborted with EMSGSIZE error set on the TCP socket. Note that this
+makes the maximum size of receive skbuffs for a socket with a stream
+parser to be 2*sk_rcvbuf of the TCP socket.
-Various counters are kept for each stream parser for a TCP socket.
-These are in the strp_stats structure. strp_aggr_stats is a convenience
-structure for accumulating statistics for multiple stream parser
-instances. save_strp_stats and aggregate_strp_stats are helper functions
-to save and aggregate statistics.
+In general mode the message length limit is passed in as an argument
+to strp_process.
-Message assembly limits
------------------------
+Author
+======
-The stream parser provide mechanisms to limit the resources consumed by
-message assembly.
+Tom Herbert (tom@quantonium.net)
-A timer is set when assembly starts for a new message. The message
-timeout is taken from rcvtime for the associated TCP socket. If the
-timer fires before assembly completes the stream parser is aborted
-and the ETIMEDOUT error is set on the TCP socket.
-
-Message length is limited to the receive buffer size of the associated
-TCP socket. If the length returned by parse_msg is greater than
-the socket buffer size then the stream parser is aborted with
-EMSGSIZE error set on the TCP socket. Note that this makes the
-maximum size of receive skbuffs for a socket with a stream parser
-to be 2*sk_rcvbuf of the TCP socket.