aboutsummaryrefslogtreecommitdiffstats
path: root/arch/tile/kernel/process.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/tile/kernel/process.c')
-rw-r--r--arch/tile/kernel/process.c671
1 files changed, 671 insertions, 0 deletions
diff --git a/arch/tile/kernel/process.c b/arch/tile/kernel/process.c
new file mode 100644
index 000000000000..ed590ad0acdc
--- /dev/null
+++ b/arch/tile/kernel/process.c
@@ -0,0 +1,671 @@
+/*
+ * Copyright 2010 Tilera Corporation. All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, version 2.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ * NON INFRINGEMENT. See the GNU General Public License for
+ * more details.
+ */
+
+#include <linux/sched.h>
+#include <linux/preempt.h>
+#include <linux/module.h>
+#include <linux/fs.h>
+#include <linux/kprobes.h>
+#include <linux/elfcore.h>
+#include <linux/tick.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/compat.h>
+#include <linux/hardirq.h>
+#include <linux/syscalls.h>
+#include <linux/kernel.h>
+#include <asm/system.h>
+#include <asm/stack.h>
+#include <asm/homecache.h>
+#include <asm/syscalls.h>
+#ifdef CONFIG_HARDWALL
+#include <asm/hardwall.h>
+#endif
+#include <arch/chip.h>
+#include <arch/abi.h>
+
+
+/*
+ * Use the (x86) "idle=poll" option to prefer low latency when leaving the
+ * idle loop over low power while in the idle loop, e.g. if we have
+ * one thread per core and we want to get threads out of futex waits fast.
+ */
+static int no_idle_nap;
+static int __init idle_setup(char *str)
+{
+ if (!str)
+ return -EINVAL;
+
+ if (!strcmp(str, "poll")) {
+ pr_info("using polling idle threads.\n");
+ no_idle_nap = 1;
+ } else if (!strcmp(str, "halt"))
+ no_idle_nap = 0;
+ else
+ return -1;
+
+ return 0;
+}
+early_param("idle", idle_setup);
+
+/*
+ * The idle thread. There's no useful work to be
+ * done, so just try to conserve power and have a
+ * low exit latency (ie sit in a loop waiting for
+ * somebody to say that they'd like to reschedule)
+ */
+void cpu_idle(void)
+{
+ int cpu = smp_processor_id();
+
+
+ current_thread_info()->status |= TS_POLLING;
+
+ if (no_idle_nap) {
+ while (1) {
+ while (!need_resched())
+ cpu_relax();
+ schedule();
+ }
+ }
+
+ /* endless idle loop with no priority at all */
+ while (1) {
+ tick_nohz_stop_sched_tick(1);
+ while (!need_resched()) {
+ if (cpu_is_offline(cpu))
+ BUG(); /* no HOTPLUG_CPU */
+
+ local_irq_disable();
+ __get_cpu_var(irq_stat).idle_timestamp = jiffies;
+ current_thread_info()->status &= ~TS_POLLING;
+ /*
+ * TS_POLLING-cleared state must be visible before we
+ * test NEED_RESCHED:
+ */
+ smp_mb();
+
+ if (!need_resched())
+ _cpu_idle();
+ else
+ local_irq_enable();
+ current_thread_info()->status |= TS_POLLING;
+ }
+ tick_nohz_restart_sched_tick();
+ preempt_enable_no_resched();
+ schedule();
+ preempt_disable();
+ }
+}
+
+struct thread_info *alloc_thread_info(struct task_struct *task)
+{
+ struct page *page;
+ gfp_t flags = GFP_KERNEL;
+
+#ifdef CONFIG_DEBUG_STACK_USAGE
+ flags |= __GFP_ZERO;
+#endif
+
+ page = alloc_pages(flags, THREAD_SIZE_ORDER);
+ if (!page)
+ return NULL;
+
+ return (struct thread_info *)page_address(page);
+}
+
+/*
+ * Free a thread_info node, and all of its derivative
+ * data structures.
+ */
+void free_thread_info(struct thread_info *info)
+{
+ struct single_step_state *step_state = info->step_state;
+
+#ifdef CONFIG_HARDWALL
+ /*
+ * We free a thread_info from the context of the task that has
+ * been scheduled next, so the original task is already dead.
+ * Calling deactivate here just frees up the data structures.
+ * If the task we're freeing held the last reference to a
+ * hardwall fd, it would have been released prior to this point
+ * anyway via exit_files(), and "hardwall" would be NULL by now.
+ */
+ if (info->task->thread.hardwall)
+ hardwall_deactivate(info->task);
+#endif
+
+ if (step_state) {
+
+ /*
+ * FIXME: we don't munmap step_state->buffer
+ * because the mm_struct for this process (info->task->mm)
+ * has already been zeroed in exit_mm(). Keeping a
+ * reference to it here seems like a bad move, so this
+ * means we can't munmap() the buffer, and therefore if we
+ * ptrace multiple threads in a process, we will slowly
+ * leak user memory. (Note that as soon as the last
+ * thread in a process dies, we will reclaim all user
+ * memory including single-step buffers in the usual way.)
+ * We should either assign a kernel VA to this buffer
+ * somehow, or we should associate the buffer(s) with the
+ * mm itself so we can clean them up that way.
+ */
+ kfree(step_state);
+ }
+
+ free_page((unsigned long)info);
+}
+
+static void save_arch_state(struct thread_struct *t);
+
+int copy_thread(unsigned long clone_flags, unsigned long sp,
+ unsigned long stack_size,
+ struct task_struct *p, struct pt_regs *regs)
+{
+ struct pt_regs *childregs;
+ unsigned long ksp;
+
+ /*
+ * When creating a new kernel thread we pass sp as zero.
+ * Assign it to a reasonable value now that we have the stack.
+ */
+ if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
+ sp = KSTK_TOP(p);
+
+ /*
+ * Do not clone step state from the parent; each thread
+ * must make its own lazily.
+ */
+ task_thread_info(p)->step_state = NULL;
+
+ /*
+ * Start new thread in ret_from_fork so it schedules properly
+ * and then return from interrupt like the parent.
+ */
+ p->thread.pc = (unsigned long) ret_from_fork;
+
+ /* Save user stack top pointer so we can ID the stack vm area later. */
+ p->thread.usp0 = sp;
+
+ /* Record the pid of the process that created this one. */
+ p->thread.creator_pid = current->pid;
+
+ /*
+ * Copy the registers onto the kernel stack so the
+ * return-from-interrupt code will reload it into registers.
+ */
+ childregs = task_pt_regs(p);
+ *childregs = *regs;
+ childregs->regs[0] = 0; /* return value is zero */
+ childregs->sp = sp; /* override with new user stack pointer */
+
+ /*
+ * Copy the callee-saved registers from the passed pt_regs struct
+ * into the context-switch callee-saved registers area.
+ * We have to restore the callee-saved registers since we may
+ * be cloning a userspace task with userspace register state,
+ * and we won't be unwinding the same kernel frames to restore them.
+ * Zero out the C ABI save area to mark the top of the stack.
+ */
+ ksp = (unsigned long) childregs;
+ ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
+ ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
+ ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
+ memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
+ CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
+ ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
+ ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
+ p->thread.ksp = ksp;
+
+#if CHIP_HAS_TILE_DMA()
+ /*
+ * No DMA in the new thread. We model this on the fact that
+ * fork() clears the pending signals, alarms, and aio for the child.
+ */
+ memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
+ memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
+#endif
+
+#if CHIP_HAS_SN_PROC()
+ /* Likewise, the new thread is not running static processor code. */
+ p->thread.sn_proc_running = 0;
+ memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
+#endif
+
+#if CHIP_HAS_PROC_STATUS_SPR()
+ /* New thread has its miscellaneous processor state bits clear. */
+ p->thread.proc_status = 0;
+#endif
+
+#ifdef CONFIG_HARDWALL
+ /* New thread does not own any networks. */
+ p->thread.hardwall = NULL;
+#endif
+
+
+ /*
+ * Start the new thread with the current architecture state
+ * (user interrupt masks, etc.).
+ */
+ save_arch_state(&p->thread);
+
+ return 0;
+}
+
+/*
+ * Return "current" if it looks plausible, or else a pointer to a dummy.
+ * This can be helpful if we are just trying to emit a clean panic.
+ */
+struct task_struct *validate_current(void)
+{
+ static struct task_struct corrupt = { .comm = "<corrupt>" };
+ struct task_struct *tsk = current;
+ if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
+ (void *)tsk > high_memory ||
+ ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
+ pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
+ tsk = &corrupt;
+ }
+ return tsk;
+}
+
+/* Take and return the pointer to the previous task, for schedule_tail(). */
+struct task_struct *sim_notify_fork(struct task_struct *prev)
+{
+ struct task_struct *tsk = current;
+ __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
+ (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
+ __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
+ (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
+ return prev;
+}
+
+int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
+{
+ struct pt_regs *ptregs = task_pt_regs(tsk);
+ elf_core_copy_regs(regs, ptregs);
+ return 1;
+}
+
+#if CHIP_HAS_TILE_DMA()
+
+/* Allow user processes to access the DMA SPRs */
+void grant_dma_mpls(void)
+{
+ __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
+ __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
+}
+
+/* Forbid user processes from accessing the DMA SPRs */
+void restrict_dma_mpls(void)
+{
+ __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
+ __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
+}
+
+/* Pause the DMA engine, then save off its state registers. */
+static void save_tile_dma_state(struct tile_dma_state *dma)
+{
+ unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
+ unsigned long post_suspend_state;
+
+ /* If we're running, suspend the engine. */
+ if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
+ __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
+
+ /*
+ * Wait for the engine to idle, then save regs. Note that we
+ * want to record the "running" bit from before suspension,
+ * and the "done" bit from after, so that we can properly
+ * distinguish a case where the user suspended the engine from
+ * the case where the kernel suspended as part of the context
+ * swap.
+ */
+ do {
+ post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
+ } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
+
+ dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
+ dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
+ dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
+ dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
+ dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
+ dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
+ dma->byte = __insn_mfspr(SPR_DMA_BYTE);
+ dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
+ (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
+}
+
+/* Restart a DMA that was running before we were context-switched out. */
+static void restore_tile_dma_state(struct thread_struct *t)
+{
+ const struct tile_dma_state *dma = &t->tile_dma_state;
+
+ /*
+ * The only way to restore the done bit is to run a zero
+ * length transaction.
+ */
+ if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
+ !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
+ __insn_mtspr(SPR_DMA_BYTE, 0);
+ __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
+ while (__insn_mfspr(SPR_DMA_USER_STATUS) &
+ SPR_DMA_STATUS__BUSY_MASK)
+ ;
+ }
+
+ __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
+ __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
+ __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
+ __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
+ __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
+ __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
+ __insn_mtspr(SPR_DMA_BYTE, dma->byte);
+
+ /*
+ * Restart the engine if we were running and not done.
+ * Clear a pending async DMA fault that we were waiting on return
+ * to user space to execute, since we expect the DMA engine
+ * to regenerate those faults for us now. Note that we don't
+ * try to clear the TIF_ASYNC_TLB flag, since it's relatively
+ * harmless if set, and it covers both DMA and the SN processor.
+ */
+ if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
+ t->dma_async_tlb.fault_num = 0;
+ __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
+ }
+}
+
+#endif
+
+static void save_arch_state(struct thread_struct *t)
+{
+#if CHIP_HAS_SPLIT_INTR_MASK()
+ t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
+ ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
+#else
+ t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
+#endif
+ t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
+ t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
+ t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
+ t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
+ t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
+ t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
+ t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
+#if CHIP_HAS_PROC_STATUS_SPR()
+ t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
+#endif
+}
+
+static void restore_arch_state(const struct thread_struct *t)
+{
+#if CHIP_HAS_SPLIT_INTR_MASK()
+ __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
+ __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
+#else
+ __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
+#endif
+ __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
+ __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
+ __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
+ __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
+ __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
+ __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
+ __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
+#if CHIP_HAS_PROC_STATUS_SPR()
+ __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
+#endif
+#if CHIP_HAS_TILE_RTF_HWM()
+ /*
+ * Clear this whenever we switch back to a process in case
+ * the previous process was monkeying with it. Even if enabled
+ * in CBOX_MSR1 via TILE_RTF_HWM_MIN, it's still just a
+ * performance hint, so isn't worth a full save/restore.
+ */
+ __insn_mtspr(SPR_TILE_RTF_HWM, 0);
+#endif
+}
+
+
+void _prepare_arch_switch(struct task_struct *next)
+{
+#if CHIP_HAS_SN_PROC()
+ int snctl;
+#endif
+#if CHIP_HAS_TILE_DMA()
+ struct tile_dma_state *dma = &current->thread.tile_dma_state;
+ if (dma->enabled)
+ save_tile_dma_state(dma);
+#endif
+#if CHIP_HAS_SN_PROC()
+ /*
+ * Suspend the static network processor if it was running.
+ * We do not suspend the fabric itself, just like we don't
+ * try to suspend the UDN.
+ */
+ snctl = __insn_mfspr(SPR_SNCTL);
+ current->thread.sn_proc_running =
+ (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
+ if (current->thread.sn_proc_running)
+ __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
+#endif
+}
+
+
+struct task_struct *__sched _switch_to(struct task_struct *prev,
+ struct task_struct *next)
+{
+ /* DMA state is already saved; save off other arch state. */
+ save_arch_state(&prev->thread);
+
+#if CHIP_HAS_TILE_DMA()
+ /*
+ * Restore DMA in new task if desired.
+ * Note that it is only safe to restart here since interrupts
+ * are disabled, so we can't take any DMATLB miss or access
+ * interrupts before we have finished switching stacks.
+ */
+ if (next->thread.tile_dma_state.enabled) {
+ restore_tile_dma_state(&next->thread);
+ grant_dma_mpls();
+ } else {
+ restrict_dma_mpls();
+ }
+#endif
+
+ /* Restore other arch state. */
+ restore_arch_state(&next->thread);
+
+#if CHIP_HAS_SN_PROC()
+ /*
+ * Restart static network processor in the new process
+ * if it was running before.
+ */
+ if (next->thread.sn_proc_running) {
+ int snctl = __insn_mfspr(SPR_SNCTL);
+ __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
+ }
+#endif
+
+#ifdef CONFIG_HARDWALL
+ /* Enable or disable access to the network registers appropriately. */
+ if (prev->thread.hardwall != NULL) {
+ if (next->thread.hardwall == NULL)
+ restrict_network_mpls();
+ } else if (next->thread.hardwall != NULL) {
+ grant_network_mpls();
+ }
+#endif
+
+ /*
+ * Switch kernel SP, PC, and callee-saved registers.
+ * In the context of the new task, return the old task pointer
+ * (i.e. the task that actually called __switch_to).
+ * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp.
+ */
+ return __switch_to(prev, next, next_current_ksp0(next));
+}
+
+long _sys_fork(struct pt_regs *regs)
+{
+ return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
+}
+
+long _sys_clone(unsigned long clone_flags, unsigned long newsp,
+ void __user *parent_tidptr, void __user *child_tidptr,
+ struct pt_regs *regs)
+{
+ if (!newsp)
+ newsp = regs->sp;
+ return do_fork(clone_flags, newsp, regs, 0,
+ parent_tidptr, child_tidptr);
+}
+
+long _sys_vfork(struct pt_regs *regs)
+{
+ return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp,
+ regs, 0, NULL, NULL);
+}
+
+/*
+ * sys_execve() executes a new program.
+ */
+long _sys_execve(char __user *path, char __user *__user *argv,
+ char __user *__user *envp, struct pt_regs *regs)
+{
+ long error;
+ char *filename;
+
+ filename = getname(path);
+ error = PTR_ERR(filename);
+ if (IS_ERR(filename))
+ goto out;
+ error = do_execve(filename, argv, envp, regs);
+ putname(filename);
+out:
+ return error;
+}
+
+#ifdef CONFIG_COMPAT
+long _compat_sys_execve(char __user *path, compat_uptr_t __user *argv,
+ compat_uptr_t __user *envp, struct pt_regs *regs)
+{
+ long error;
+ char *filename;
+
+ filename = getname(path);
+ error = PTR_ERR(filename);
+ if (IS_ERR(filename))
+ goto out;
+ error = compat_do_execve(filename, argv, envp, regs);
+ putname(filename);
+out:
+ return error;
+}
+#endif
+
+unsigned long get_wchan(struct task_struct *p)
+{
+ struct KBacktraceIterator kbt;
+
+ if (!p || p == current || p->state == TASK_RUNNING)
+ return 0;
+
+ for (KBacktraceIterator_init(&kbt, p, NULL);
+ !KBacktraceIterator_end(&kbt);
+ KBacktraceIterator_next(&kbt)) {
+ if (!in_sched_functions(kbt.it.pc))
+ return kbt.it.pc;
+ }
+
+ return 0;
+}
+
+/*
+ * We pass in lr as zero (cleared in kernel_thread) and the caller
+ * part of the backtrace ABI on the stack also zeroed (in copy_thread)
+ * so that backtraces will stop with this function.
+ * Note that we don't use r0, since copy_thread() clears it.
+ */
+static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
+{
+ do_exit(fn(arg));
+}
+
+/*
+ * Create a kernel thread
+ */
+int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
+{
+ struct pt_regs regs;
+
+ memset(&regs, 0, sizeof(regs));
+ regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
+ regs.pc = (long) start_kernel_thread;
+ regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
+ regs.regs[1] = (long) fn; /* function pointer */
+ regs.regs[2] = (long) arg; /* parameter register */
+
+ /* Ok, create the new process.. */
+ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
+ 0, NULL, NULL);
+}
+EXPORT_SYMBOL(kernel_thread);
+
+/* Flush thread state. */
+void flush_thread(void)
+{
+ /* Nothing */
+}
+
+/*
+ * Free current thread data structures etc..
+ */
+void exit_thread(void)
+{
+ /* Nothing */
+}
+
+void show_regs(struct pt_regs *regs)
+{
+ struct task_struct *tsk = validate_current();
+ int i;
+
+ pr_err("\n");
+ pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
+ tsk->pid, tsk->comm, smp_processor_id());
+#ifdef __tilegx__
+ for (i = 0; i < 51; i += 3)
+ pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
+ i, regs->regs[i], i+1, regs->regs[i+1],
+ i+2, regs->regs[i+2]);
+ pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
+ regs->regs[51], regs->regs[52], regs->tp);
+ pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
+#else
+ for (i = 0; i < 52; i += 3)
+ pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
+ " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
+ i, regs->regs[i], i+1, regs->regs[i+1],
+ i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
+ pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
+ regs->regs[52], regs->tp, regs->sp, regs->lr);
+#endif
+ pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
+ regs->pc, regs->ex1, regs->faultnum);
+
+ dump_stack_regs(regs);
+}