aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/x86/kvm/mmu.h231
1 files changed, 79 insertions, 152 deletions
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h
index 9ae6168d381e..6bdaacb6faa0 100644
--- a/arch/x86/kvm/mmu.h
+++ b/arch/x86/kvm/mmu.h
@@ -6,10 +6,7 @@
#include "kvm_cache_regs.h"
#include "cpuid.h"
-#define PT64_PT_BITS 9
-#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
-#define PT32_PT_BITS 10
-#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
+extern bool __read_mostly enable_mmio_caching;
#define PT_WRITABLE_SHIFT 1
#define PT_USER_SHIFT 2
@@ -34,11 +31,6 @@
#define PT_DIR_PAT_SHIFT 12
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
-#define PT32_DIR_PSE36_SIZE 4
-#define PT32_DIR_PSE36_SHIFT 13
-#define PT32_DIR_PSE36_MASK \
- (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
-
#define PT64_ROOT_5LEVEL 5
#define PT64_ROOT_4LEVEL 4
#define PT32_ROOT_LEVEL 2
@@ -48,6 +40,7 @@
X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
+#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
static __always_inline u64 rsvd_bits(int s, int e)
{
@@ -64,26 +57,72 @@ static __always_inline u64 rsvd_bits(int s, int e)
return ((2ULL << (e - s)) - 1) << s;
}
+/*
+ * The number of non-reserved physical address bits irrespective of features
+ * that repurpose legal bits, e.g. MKTME.
+ */
+extern u8 __read_mostly shadow_phys_bits;
+
+static inline gfn_t kvm_mmu_max_gfn(void)
+{
+ /*
+ * Note that this uses the host MAXPHYADDR, not the guest's.
+ * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
+ * assuming KVM is running on bare metal, guest accesses beyond
+ * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
+ * (either EPT Violation/Misconfig or #NPF), and so KVM will never
+ * install a SPTE for such addresses. If KVM is running as a VM
+ * itself, on the other hand, it might see a MAXPHYADDR that is less
+ * than hardware's real MAXPHYADDR. Using the host MAXPHYADDR
+ * disallows such SPTEs entirely and simplifies the TDP MMU.
+ */
+ int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
+
+ return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
+}
+
+static inline u8 kvm_get_shadow_phys_bits(void)
+{
+ /*
+ * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
+ * in CPU detection code, but the processor treats those reduced bits as
+ * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
+ * the physical address bits reported by CPUID.
+ */
+ if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
+ return cpuid_eax(0x80000008) & 0xff;
+
+ /*
+ * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
+ * custom CPUID. Proceed with whatever the kernel found since these features
+ * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
+ */
+ return boot_cpu_data.x86_phys_bits;
+}
+
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
+void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
void kvm_init_mmu(struct kvm_vcpu *vcpu);
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
unsigned long cr4, u64 efer, gpa_t nested_cr3);
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
- bool accessed_dirty, gpa_t new_eptp);
+ int huge_page_level, bool accessed_dirty,
+ gpa_t new_eptp);
bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
u64 fault_address, char *insn, int insn_len);
int kvm_mmu_load(struct kvm_vcpu *vcpu);
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
+void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
{
- if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
+ if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
return 0;
return kvm_mmu_load(vcpu);
@@ -105,138 +144,13 @@ static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
{
- u64 root_hpa = vcpu->arch.mmu->root_hpa;
+ u64 root_hpa = vcpu->arch.mmu->root.hpa;
if (!VALID_PAGE(root_hpa))
return;
static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
- vcpu->arch.mmu->shadow_root_level);
-}
-
-struct kvm_page_fault {
- /* arguments to kvm_mmu_do_page_fault. */
- const gpa_t addr;
- const u32 error_code;
- const bool prefetch;
-
- /* Derived from error_code. */
- const bool exec;
- const bool write;
- const bool present;
- const bool rsvd;
- const bool user;
-
- /* Derived from mmu and global state. */
- const bool is_tdp;
- const bool nx_huge_page_workaround_enabled;
-
- /*
- * Whether a >4KB mapping can be created or is forbidden due to NX
- * hugepages.
- */
- bool huge_page_disallowed;
-
- /*
- * Maximum page size that can be created for this fault; input to
- * FNAME(fetch), __direct_map and kvm_tdp_mmu_map.
- */
- u8 max_level;
-
- /*
- * Page size that can be created based on the max_level and the
- * page size used by the host mapping.
- */
- u8 req_level;
-
- /*
- * Page size that will be created based on the req_level and
- * huge_page_disallowed.
- */
- u8 goal_level;
-
- /* Shifted addr, or result of guest page table walk if addr is a gva. */
- gfn_t gfn;
-
- /* The memslot containing gfn. May be NULL. */
- struct kvm_memory_slot *slot;
-
- /* Outputs of kvm_faultin_pfn. */
- kvm_pfn_t pfn;
- hva_t hva;
- bool map_writable;
-};
-
-int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
-
-extern int nx_huge_pages;
-static inline bool is_nx_huge_page_enabled(void)
-{
- return READ_ONCE(nx_huge_pages);
-}
-
-static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
- u32 err, bool prefetch)
-{
- struct kvm_page_fault fault = {
- .addr = cr2_or_gpa,
- .error_code = err,
- .exec = err & PFERR_FETCH_MASK,
- .write = err & PFERR_WRITE_MASK,
- .present = err & PFERR_PRESENT_MASK,
- .rsvd = err & PFERR_RSVD_MASK,
- .user = err & PFERR_USER_MASK,
- .prefetch = prefetch,
- .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
- .nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(),
-
- .max_level = KVM_MAX_HUGEPAGE_LEVEL,
- .req_level = PG_LEVEL_4K,
- .goal_level = PG_LEVEL_4K,
- };
-#ifdef CONFIG_RETPOLINE
- if (fault.is_tdp)
- return kvm_tdp_page_fault(vcpu, &fault);
-#endif
- return vcpu->arch.mmu->page_fault(vcpu, &fault);
-}
-
-/*
- * Currently, we have two sorts of write-protection, a) the first one
- * write-protects guest page to sync the guest modification, b) another one is
- * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
- * between these two sorts are:
- * 1) the first case clears MMU-writable bit.
- * 2) the first case requires flushing tlb immediately avoiding corrupting
- * shadow page table between all vcpus so it should be in the protection of
- * mmu-lock. And the another case does not need to flush tlb until returning
- * the dirty bitmap to userspace since it only write-protects the page
- * logged in the bitmap, that means the page in the dirty bitmap is not
- * missed, so it can flush tlb out of mmu-lock.
- *
- * So, there is the problem: the first case can meet the corrupted tlb caused
- * by another case which write-protects pages but without flush tlb
- * immediately. In order to making the first case be aware this problem we let
- * it flush tlb if we try to write-protect a spte whose MMU-writable bit
- * is set, it works since another case never touches MMU-writable bit.
- *
- * Anyway, whenever a spte is updated (only permission and status bits are
- * changed) we need to check whether the spte with MMU-writable becomes
- * readonly, if that happens, we need to flush tlb. Fortunately,
- * mmu_spte_update() has already handled it perfectly.
- *
- * The rules to use MMU-writable and PT_WRITABLE_MASK:
- * - if we want to see if it has writable tlb entry or if the spte can be
- * writable on the mmu mapping, check MMU-writable, this is the most
- * case, otherwise
- * - if we fix page fault on the spte or do write-protection by dirty logging,
- * check PT_WRITABLE_MASK.
- *
- * TODO: introduce APIs to split these two cases.
- */
-static inline bool is_writable_pte(unsigned long pte)
-{
- return pte & PT_WRITABLE_MASK;
+ vcpu->arch.mmu->root_role.level);
}
/*
@@ -249,27 +163,27 @@ static inline bool is_writable_pte(unsigned long pte)
*/
static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
unsigned pte_access, unsigned pte_pkey,
- unsigned pfec)
+ u64 access)
{
- int cpl = static_call(kvm_x86_get_cpl)(vcpu);
+ /* strip nested paging fault error codes */
+ unsigned int pfec = access;
unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
/*
- * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
+ * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
+ * For implicit supervisor accesses, SMAP cannot be overridden.
*
- * If CPL = 3, SMAP applies to all supervisor-mode data accesses
- * (these are implicit supervisor accesses) regardless of the value
- * of EFLAGS.AC.
+ * SMAP works on supervisor accesses only, and not_smap can
+ * be set or not set when user access with neither has any bearing
+ * on the result.
*
- * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
- * the result in X86_EFLAGS_AC. We then insert it in place of
- * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
- * but it will be one in index if SMAP checks are being overridden.
- * It is important to keep this branchless.
+ * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
+ * this bit will always be zero in pfec, but it will be one in index
+ * if SMAP checks are being disabled.
*/
- unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
- int index = (pfec >> 1) +
- (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
+ u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
+ bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
+ int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
bool fault = (mmu->permissions[index] >> pte_access) & 1;
u32 errcode = PFERR_PRESENT_MASK;
@@ -351,4 +265,17 @@ static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
{
atomic64_add(count, &kvm->stat.pages[level - 1]);
}
+
+gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
+ struct x86_exception *exception);
+
+static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *mmu,
+ gpa_t gpa, u64 access,
+ struct x86_exception *exception)
+{
+ if (mmu != &vcpu->arch.nested_mmu)
+ return gpa;
+ return translate_nested_gpa(vcpu, gpa, access, exception);
+}
#endif