aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gem/i915_gem_object_types.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/gem/i915_gem_object_types.h')
-rw-r--r--drivers/gpu/drm/i915/gem/i915_gem_object_types.h57
1 files changed, 49 insertions, 8 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_object_types.h b/drivers/gpu/drm/i915/gem/i915_gem_object_types.h
index 2471f36aaff3..da85169006d4 100644
--- a/drivers/gpu/drm/i915/gem/i915_gem_object_types.h
+++ b/drivers/gpu/drm/i915/gem/i915_gem_object_types.h
@@ -288,17 +288,23 @@ struct drm_i915_gem_object {
I915_SELFTEST_DECLARE(struct list_head st_link);
unsigned long flags;
-#define I915_BO_ALLOC_CONTIGUOUS BIT(0)
-#define I915_BO_ALLOC_VOLATILE BIT(1)
-#define I915_BO_ALLOC_CPU_CLEAR BIT(2)
-#define I915_BO_ALLOC_USER BIT(3)
+#define I915_BO_ALLOC_CONTIGUOUS BIT(0)
+#define I915_BO_ALLOC_VOLATILE BIT(1)
+#define I915_BO_ALLOC_CPU_CLEAR BIT(2)
+#define I915_BO_ALLOC_USER BIT(3)
+/* Object is allowed to lose its contents on suspend / resume, even if pinned */
+#define I915_BO_ALLOC_PM_VOLATILE BIT(4)
+/* Object needs to be restored early using memcpy during resume */
+#define I915_BO_ALLOC_PM_EARLY BIT(5)
#define I915_BO_ALLOC_FLAGS (I915_BO_ALLOC_CONTIGUOUS | \
I915_BO_ALLOC_VOLATILE | \
I915_BO_ALLOC_CPU_CLEAR | \
- I915_BO_ALLOC_USER)
-#define I915_BO_READONLY BIT(4)
-#define I915_TILING_QUIRK_BIT 5 /* unknown swizzling; do not release! */
-
+ I915_BO_ALLOC_USER | \
+ I915_BO_ALLOC_PM_VOLATILE | \
+ I915_BO_ALLOC_PM_EARLY)
+#define I915_BO_READONLY BIT(6)
+#define I915_TILING_QUIRK_BIT 7 /* unknown swizzling; do not release! */
+#define I915_BO_PROTECTED BIT(8)
/**
* @mem_flags - Mutable placement-related flags
*
@@ -421,6 +427,33 @@ struct drm_i915_gem_object {
* can freely bypass the CPU cache when touching the pages with the GPU,
* where the kernel is completely unaware. On such platform we need
* apply the sledgehammer-on-acquire regardless of the @cache_coherent.
+ *
+ * Special care is taken on non-LLC platforms, to prevent potential
+ * information leak. The driver currently ensures:
+ *
+ * 1. All userspace objects, by default, have @cache_level set as
+ * I915_CACHE_NONE. The only exception is userptr objects, where we
+ * instead force I915_CACHE_LLC, but we also don't allow userspace to
+ * ever change the @cache_level for such objects. Another special case
+ * is dma-buf, which doesn't rely on @cache_dirty, but there we
+ * always do a forced flush when acquiring the pages, if there is a
+ * chance that the pages can be read directly from main memory with
+ * the GPU.
+ *
+ * 2. All I915_CACHE_NONE objects have @cache_dirty initially true.
+ *
+ * 3. All swapped-out objects(i.e shmem) have @cache_dirty set to
+ * true.
+ *
+ * 4. The @cache_dirty is never freely reset before the initial
+ * flush, even if userspace adjusts the @cache_level through the
+ * i915_gem_set_caching_ioctl.
+ *
+ * 5. All @cache_dirty objects(including swapped-in) are initially
+ * flushed with a synchronous call to drm_clflush_sg in
+ * __i915_gem_object_set_pages. The @cache_dirty can be freely reset
+ * at this point. All further asynchronous clfushes are never security
+ * critical, i.e userspace is free to race against itself.
*/
unsigned int cache_dirty:1;
@@ -534,9 +567,17 @@ struct drm_i915_gem_object {
struct {
struct sg_table *cached_io_st;
struct i915_gem_object_page_iter get_io_page;
+ struct drm_i915_gem_object *backup;
bool created:1;
} ttm;
+ /*
+ * Record which PXP key instance this object was created against (if
+ * any), so we can use it to determine if the encryption is valid by
+ * comparing against the current key instance.
+ */
+ u32 pxp_key_instance;
+
/** Record of address bit 17 of each page at last unbind. */
unsigned long *bit_17;