aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/misc/habanalabs/common/mmu/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/misc/habanalabs/common/mmu/mmu.c')
-rw-r--r--drivers/misc/habanalabs/common/mmu/mmu.c612
1 files changed, 612 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/mmu/mmu.c b/drivers/misc/habanalabs/common/mmu/mmu.c
new file mode 100644
index 000000000000..71703a32350f
--- /dev/null
+++ b/drivers/misc/habanalabs/common/mmu/mmu.c
@@ -0,0 +1,612 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2020 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include <linux/slab.h>
+
+#include "../habanalabs.h"
+
+bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+}
+
+/**
+ * hl_mmu_init() - initialize the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * Return: 0 for success, non-zero for failure.
+ */
+int hl_mmu_init(struct hl_device *hdev)
+{
+ int rc = -EOPNOTSUPP;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
+ rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
+ if (rc)
+ return rc;
+ }
+
+ if (hdev->mmu_func[MMU_HR_PGT].init != NULL)
+ rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
+
+ return rc;
+}
+
+/**
+ * hl_mmu_fini() - release the MMU module.
+ * @hdev: habanalabs device structure.
+ *
+ * This function does the following:
+ * - Disable MMU in H/W.
+ * - Free the pgt_infos pool.
+ *
+ * All contexts should be freed before calling this function.
+ */
+void hl_mmu_fini(struct hl_device *hdev)
+{
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].fini(hdev);
+
+ if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
+ hdev->mmu_func[MMU_HR_PGT].fini(hdev);
+}
+
+/**
+ * hl_mmu_ctx_init() - initialize a context for using the MMU module.
+ * @ctx: pointer to the context structure to initialize.
+ *
+ * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
+ * page tables hops related to this context.
+ * Return: 0 on success, non-zero otherwise.
+ */
+int hl_mmu_ctx_init(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+ int rc = -EOPNOTSUPP;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ mutex_init(&ctx->mmu_lock);
+
+ if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
+ rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
+ if (rc)
+ return rc;
+ }
+
+ if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL)
+ rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_ctx_fini - disable a ctx from using the mmu module
+ *
+ * @ctx: pointer to the context structure
+ *
+ * This function does the following:
+ * - Free any pgts which were not freed yet
+ * - Free the mutex
+ * - Free DRAM default page mapping hops
+ */
+void hl_mmu_ctx_fini(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
+ hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
+
+ if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
+ hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
+
+ mutex_destroy(&ctx->mmu_lock);
+}
+
+/*
+ * hl_mmu_unmap_page - unmaps a virtual addr
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @page_size: size of the page to unmap
+ * @flush_pte: whether to do a PCI flush
+ *
+ * This function does the following:
+ * - Check that the virt addr is mapped
+ * - Unmap the virt addr and frees pgts if possible
+ * - Returns 0 on success, -EINVAL if the given addr is not mapped
+ *
+ * Because this function changes the page tables in the device and because it
+ * changes the MMU hash, it must be protected by a lock.
+ * However, because it maps only a single page, the lock should be implemented
+ * in a higher level in order to protect the entire mapping of the memory area
+ *
+ * For optimization reasons PCI flush may be requested once after unmapping of
+ * large area.
+ */
+int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
+ bool flush_pte)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ u64 real_virt_addr;
+ u32 real_page_size, npages;
+ int i, rc = 0, pgt_residency;
+ bool is_dram_addr;
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ is_dram_addr = hl_is_dram_va(hdev, virt_addr);
+
+ if (is_dram_addr)
+ mmu_prop = &prop->dmmu;
+ else if ((page_size % prop->pmmu_huge.page_size) == 0)
+ mmu_prop = &prop->pmmu_huge;
+ else
+ mmu_prop = &prop->pmmu;
+
+ pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
+ /*
+ * The H/W handles mapping of specific page sizes. Hence if the page
+ * size is bigger, we break it to sub-pages and unmap them separately.
+ */
+ if ((page_size % mmu_prop->page_size) == 0) {
+ real_page_size = mmu_prop->page_size;
+ } else {
+ /*
+ * MMU page size may differ from DRAM page size.
+ * In such case work with the DRAM page size and let the MMU
+ * scrambling routine to handle this mismatch when
+ * calculating the address to remove from the MMU page table
+ */
+ if (is_dram_addr && ((page_size % prop->dram_page_size) == 0)) {
+ real_page_size = prop->dram_page_size;
+ } else {
+ dev_err(hdev->dev,
+ "page size of %u is not %uKB aligned, can't unmap\n",
+ page_size, mmu_prop->page_size >> 10);
+
+ return -EFAULT;
+ }
+ }
+
+ npages = page_size / real_page_size;
+ real_virt_addr = virt_addr;
+
+ for (i = 0 ; i < npages ; i++) {
+ rc = hdev->mmu_func[pgt_residency].unmap(ctx,
+ real_virt_addr, is_dram_addr);
+ if (rc)
+ break;
+
+ real_virt_addr += real_page_size;
+ }
+
+ if (flush_pte)
+ hdev->mmu_func[pgt_residency].flush(ctx);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_map_page - maps a virtual addr to physical addr
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @phys_addr: phys addr to map to
+ * @page_size: physical page size
+ * @flush_pte: whether to do a PCI flush
+ *
+ * This function does the following:
+ * - Check that the virt addr is not mapped
+ * - Allocate pgts as necessary in order to map the virt addr to the phys
+ * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
+ *
+ * Because this function changes the page tables in the device and because it
+ * changes the MMU hash, it must be protected by a lock.
+ * However, because it maps only a single page, the lock should be implemented
+ * in a higher level in order to protect the entire mapping of the memory area
+ *
+ * For optimization reasons PCI flush may be requested once after mapping of
+ * large area.
+ */
+int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
+ u32 page_size, bool flush_pte)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ u64 real_virt_addr, real_phys_addr;
+ u32 real_page_size, npages;
+ int i, rc, pgt_residency, mapped_cnt = 0;
+ bool is_dram_addr;
+
+
+ if (!hdev->mmu_enable)
+ return 0;
+
+ is_dram_addr = hl_is_dram_va(hdev, virt_addr);
+
+ if (is_dram_addr)
+ mmu_prop = &prop->dmmu;
+ else if ((page_size % prop->pmmu_huge.page_size) == 0)
+ mmu_prop = &prop->pmmu_huge;
+ else
+ mmu_prop = &prop->pmmu;
+
+ pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
+
+ /*
+ * The H/W handles mapping of specific page sizes. Hence if the page
+ * size is bigger, we break it to sub-pages and map them separately.
+ */
+ if ((page_size % mmu_prop->page_size) == 0) {
+ real_page_size = mmu_prop->page_size;
+ } else if (is_dram_addr && ((page_size % prop->dram_page_size) == 0) &&
+ (prop->dram_page_size < mmu_prop->page_size)) {
+ /*
+ * MMU page size may differ from DRAM page size.
+ * In such case work with the DRAM page size and let the MMU
+ * scrambling routine handle this mismatch when calculating
+ * the address to place in the MMU page table. (in that case
+ * also make sure that the dram_page_size smaller than the
+ * mmu page size)
+ */
+ real_page_size = prop->dram_page_size;
+ } else {
+ dev_err(hdev->dev,
+ "page size of %u is not %uKB aligned, can't map\n",
+ page_size, mmu_prop->page_size >> 10);
+
+ return -EFAULT;
+ }
+
+ /*
+ * Verify that the phys and virt addresses are aligned with the
+ * MMU page size (in dram this means checking the address and MMU
+ * after scrambling)
+ */
+ if ((is_dram_addr &&
+ ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
+ (mmu_prop->page_size - 1)) ||
+ (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
+ (mmu_prop->page_size - 1)))) ||
+ (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
+ (virt_addr & (real_page_size - 1)))))
+ dev_crit(hdev->dev,
+ "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
+ phys_addr, virt_addr, real_page_size);
+
+ npages = page_size / real_page_size;
+ real_virt_addr = virt_addr;
+ real_phys_addr = phys_addr;
+
+ for (i = 0 ; i < npages ; i++) {
+ rc = hdev->mmu_func[pgt_residency].map(ctx,
+ real_virt_addr, real_phys_addr,
+ real_page_size, is_dram_addr);
+ if (rc)
+ goto err;
+
+ real_virt_addr += real_page_size;
+ real_phys_addr += real_page_size;
+ mapped_cnt++;
+ }
+
+ if (flush_pte)
+ hdev->mmu_func[pgt_residency].flush(ctx);
+
+ return 0;
+
+err:
+ real_virt_addr = virt_addr;
+ for (i = 0 ; i < mapped_cnt ; i++) {
+ if (hdev->mmu_func[pgt_residency].unmap(ctx,
+ real_virt_addr, is_dram_addr))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap va: 0x%llx\n", real_virt_addr);
+
+ real_virt_addr += real_page_size;
+ }
+
+ hdev->mmu_func[pgt_residency].flush(ctx);
+
+ return rc;
+}
+
+/*
+ * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
+ * for mapping contiguous physical memory
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to map from
+ * @phys_addr: phys addr to map to
+ * @size: size to map
+ *
+ */
+int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
+ u64 phys_addr, u32 size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 curr_va, curr_pa;
+ u32 page_size;
+ bool flush_pte;
+ int rc = 0, off;
+
+ if (hl_mem_area_inside_range(virt_addr, size,
+ prop->dmmu.start_addr, prop->dmmu.end_addr))
+ page_size = prop->dmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu.start_addr, prop->pmmu.end_addr))
+ page_size = prop->pmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
+ page_size = prop->pmmu_huge.page_size;
+ else
+ return -EINVAL;
+
+ for (off = 0 ; off < size ; off += page_size) {
+ curr_va = virt_addr + off;
+ curr_pa = phys_addr + off;
+ flush_pte = (off + page_size) >= size;
+ rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
+ flush_pte);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Map failed for va 0x%llx to pa 0x%llx\n",
+ curr_va, curr_pa);
+ goto unmap;
+ }
+ }
+
+ return rc;
+
+unmap:
+ for (; off >= 0 ; off -= page_size) {
+ curr_va = virt_addr + off;
+ flush_pte = (off - (s32) page_size) < 0;
+ if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap va 0x%llx\n", curr_va);
+ }
+
+ return rc;
+}
+
+/*
+ * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
+ * for unmapping contiguous physical memory
+ *
+ * @ctx: pointer to the context structure
+ * @virt_addr: virt addr to unmap
+ * @size: size to unmap
+ *
+ */
+int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 curr_va;
+ u32 page_size;
+ bool flush_pte;
+ int rc = 0, off;
+
+ if (hl_mem_area_inside_range(virt_addr, size,
+ prop->dmmu.start_addr, prop->dmmu.end_addr))
+ page_size = prop->dmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu.start_addr, prop->pmmu.end_addr))
+ page_size = prop->pmmu.page_size;
+ else if (hl_mem_area_inside_range(virt_addr, size,
+ prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
+ page_size = prop->pmmu_huge.page_size;
+ else
+ return -EINVAL;
+
+ for (off = 0 ; off < size ; off += page_size) {
+ curr_va = virt_addr + off;
+ flush_pte = (off + page_size) >= size;
+ rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
+ if (rc)
+ dev_warn_ratelimited(hdev->dev,
+ "Unmap failed for va 0x%llx\n", curr_va);
+ }
+
+ return rc;
+}
+
+/*
+ * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+void hl_mmu_swap_out(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
+ hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
+
+ if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
+ hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
+}
+
+/*
+ * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
+ *
+ * @ctx: pointer to the context structure
+ *
+ */
+void hl_mmu_swap_in(struct hl_ctx *ctx)
+{
+ struct hl_device *hdev = ctx->hdev;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
+ hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
+
+ if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
+ hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
+}
+
+static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops,
+ u64 *phys_addr)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
+ u32 hop0_shift_off;
+ void *p;
+
+ /* last hop holds the phys address and flags */
+ if (hops->unscrambled_paddr)
+ tmp_phys_addr = hops->unscrambled_paddr;
+ else
+ tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
+
+ if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
+ p = &prop->pmmu_huge;
+ else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
+ p = &prop->pmmu;
+ else /* HL_VA_RANGE_TYPE_DRAM */
+ p = &prop->dmmu;
+
+ /*
+ * find the correct hop shift field in hl_mmu_properties structure
+ * in order to determine the right maks for the page offset.
+ */
+ hop0_shift_off = offsetof(struct hl_mmu_properties, hop0_shift);
+ p = (char *)p + hop0_shift_off;
+ p = (char *)p + ((hops->used_hops - 1) * sizeof(u64));
+ hop_shift = *(u64 *)p;
+ offset_mask = (1ull << hop_shift) - 1;
+ addr_mask = ~(offset_mask);
+ *phys_addr = (tmp_phys_addr & addr_mask) |
+ (virt_addr & offset_mask);
+}
+
+int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
+{
+ struct hl_mmu_hop_info hops;
+ int rc;
+
+ rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
+ if (rc)
+ return rc;
+
+ hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
+
+ return 0;
+}
+
+int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
+ struct hl_mmu_hop_info *hops)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_mmu_properties *mmu_prop;
+ int rc;
+ bool is_dram_addr;
+
+ if (!hdev->mmu_enable)
+ return -EOPNOTSUPP;
+
+ hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
+
+ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
+ prop->dmmu.start_addr,
+ prop->dmmu.end_addr);
+
+ /* host-residency is the same in PMMU and HPMMU, use one of them */
+ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
+
+ mutex_lock(&ctx->mmu_lock);
+
+ if (mmu_prop->host_resident)
+ rc = hdev->mmu_func[MMU_HR_PGT].get_tlb_info(ctx,
+ virt_addr, hops);
+ else
+ rc = hdev->mmu_func[MMU_DR_PGT].get_tlb_info(ctx,
+ virt_addr, hops);
+
+ mutex_unlock(&ctx->mmu_lock);
+
+ /* add page offset to physical address */
+ if (hops->unscrambled_paddr)
+ hl_mmu_pa_page_with_offset(ctx, virt_addr, hops,
+ &hops->unscrambled_paddr);
+
+ return rc;
+}
+
+int hl_mmu_if_set_funcs(struct hl_device *hdev)
+{
+ if (!hdev->mmu_enable)
+ return 0;
+
+ switch (hdev->asic_type) {
+ case ASIC_GOYA:
+ case ASIC_GAUDI:
+ hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
+ break;
+ default:
+ dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
+ hdev->asic_type);
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+/**
+ * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
+ * @hdev: pointer to device data.
+ * @addr: The address to scramble.
+ *
+ * Return: The scrambled address.
+ */
+u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
+{
+ return addr;
+}
+
+/**
+ * hl_mmu_descramble_addr() - The generic mmu address descrambling
+ * routine.
+ * @hdev: pointer to device data.
+ * @addr: The address to descramble.
+ *
+ * Return: The un-scrambled address.
+ */
+u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
+{
+ return addr;
+}