aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/stm32_fmc2_nand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw/stm32_fmc2_nand.c')
-rw-r--r--drivers/mtd/nand/raw/stm32_fmc2_nand.c2073
1 files changed, 2073 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
new file mode 100644
index 000000000000..999ca6a66036
--- /dev/null
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -0,0 +1,2073 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) STMicroelectronics 2018
+ * Author: Christophe Kerello <christophe.kerello@st.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/pinctrl/consumer.h>
+#include <linux/platform_device.h>
+#include <linux/reset.h>
+
+/* Bad block marker length */
+#define FMC2_BBM_LEN 2
+
+/* ECC step size */
+#define FMC2_ECC_STEP_SIZE 512
+
+/* BCHDSRx registers length */
+#define FMC2_BCHDSRS_LEN 20
+
+/* HECCR length */
+#define FMC2_HECCR_LEN 4
+
+/* Max requests done for a 8k nand page size */
+#define FMC2_MAX_SG 16
+
+/* Max chip enable */
+#define FMC2_MAX_CE 2
+
+/* Max ECC buffer length */
+#define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
+
+/* Timings */
+#define FMC2_THIZ 1
+#define FMC2_TIO 8000
+#define FMC2_TSYNC 3000
+#define FMC2_PCR_TIMING_MASK 0xf
+#define FMC2_PMEM_PATT_TIMING_MASK 0xff
+
+/* FMC2 Controller Registers */
+#define FMC2_BCR1 0x0
+#define FMC2_PCR 0x80
+#define FMC2_SR 0x84
+#define FMC2_PMEM 0x88
+#define FMC2_PATT 0x8c
+#define FMC2_HECCR 0x94
+#define FMC2_CSQCR 0x200
+#define FMC2_CSQCFGR1 0x204
+#define FMC2_CSQCFGR2 0x208
+#define FMC2_CSQCFGR3 0x20c
+#define FMC2_CSQAR1 0x210
+#define FMC2_CSQAR2 0x214
+#define FMC2_CSQIER 0x220
+#define FMC2_CSQISR 0x224
+#define FMC2_CSQICR 0x228
+#define FMC2_CSQEMSR 0x230
+#define FMC2_BCHIER 0x250
+#define FMC2_BCHISR 0x254
+#define FMC2_BCHICR 0x258
+#define FMC2_BCHPBR1 0x260
+#define FMC2_BCHPBR2 0x264
+#define FMC2_BCHPBR3 0x268
+#define FMC2_BCHPBR4 0x26c
+#define FMC2_BCHDSR0 0x27c
+#define FMC2_BCHDSR1 0x280
+#define FMC2_BCHDSR2 0x284
+#define FMC2_BCHDSR3 0x288
+#define FMC2_BCHDSR4 0x28c
+
+/* Register: FMC2_BCR1 */
+#define FMC2_BCR1_FMC2EN BIT(31)
+
+/* Register: FMC2_PCR */
+#define FMC2_PCR_PWAITEN BIT(1)
+#define FMC2_PCR_PBKEN BIT(2)
+#define FMC2_PCR_PWID_MASK GENMASK(5, 4)
+#define FMC2_PCR_PWID(x) (((x) & 0x3) << 4)
+#define FMC2_PCR_PWID_BUSWIDTH_8 0
+#define FMC2_PCR_PWID_BUSWIDTH_16 1
+#define FMC2_PCR_ECCEN BIT(6)
+#define FMC2_PCR_ECCALG BIT(8)
+#define FMC2_PCR_TCLR_MASK GENMASK(12, 9)
+#define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9)
+#define FMC2_PCR_TCLR_DEFAULT 0xf
+#define FMC2_PCR_TAR_MASK GENMASK(16, 13)
+#define FMC2_PCR_TAR(x) (((x) & 0xf) << 13)
+#define FMC2_PCR_TAR_DEFAULT 0xf
+#define FMC2_PCR_ECCSS_MASK GENMASK(19, 17)
+#define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17)
+#define FMC2_PCR_ECCSS_512 1
+#define FMC2_PCR_ECCSS_2048 3
+#define FMC2_PCR_BCHECC BIT(24)
+#define FMC2_PCR_WEN BIT(25)
+
+/* Register: FMC2_SR */
+#define FMC2_SR_NWRF BIT(6)
+
+/* Register: FMC2_PMEM */
+#define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0)
+#define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8)
+#define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16)
+#define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24)
+#define FMC2_PMEM_DEFAULT 0x0a0a0a0a
+
+/* Register: FMC2_PATT */
+#define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0)
+#define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8)
+#define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16)
+#define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24)
+#define FMC2_PATT_DEFAULT 0x0a0a0a0a
+
+/* Register: FMC2_CSQCR */
+#define FMC2_CSQCR_CSQSTART BIT(0)
+
+/* Register: FMC2_CSQCFGR1 */
+#define FMC2_CSQCFGR1_CMD2EN BIT(1)
+#define FMC2_CSQCFGR1_DMADEN BIT(2)
+#define FMC2_CSQCFGR1_ACYNBR(x) (((x) & 0x7) << 4)
+#define FMC2_CSQCFGR1_CMD1(x) (((x) & 0xff) << 8)
+#define FMC2_CSQCFGR1_CMD2(x) (((x) & 0xff) << 16)
+#define FMC2_CSQCFGR1_CMD1T BIT(24)
+#define FMC2_CSQCFGR1_CMD2T BIT(25)
+
+/* Register: FMC2_CSQCFGR2 */
+#define FMC2_CSQCFGR2_SQSDTEN BIT(0)
+#define FMC2_CSQCFGR2_RCMD2EN BIT(1)
+#define FMC2_CSQCFGR2_DMASEN BIT(2)
+#define FMC2_CSQCFGR2_RCMD1(x) (((x) & 0xff) << 8)
+#define FMC2_CSQCFGR2_RCMD2(x) (((x) & 0xff) << 16)
+#define FMC2_CSQCFGR2_RCMD1T BIT(24)
+#define FMC2_CSQCFGR2_RCMD2T BIT(25)
+
+/* Register: FMC2_CSQCFGR3 */
+#define FMC2_CSQCFGR3_SNBR(x) (((x) & 0x1f) << 8)
+#define FMC2_CSQCFGR3_AC1T BIT(16)
+#define FMC2_CSQCFGR3_AC2T BIT(17)
+#define FMC2_CSQCFGR3_AC3T BIT(18)
+#define FMC2_CSQCFGR3_AC4T BIT(19)
+#define FMC2_CSQCFGR3_AC5T BIT(20)
+#define FMC2_CSQCFGR3_SDT BIT(21)
+#define FMC2_CSQCFGR3_RAC1T BIT(22)
+#define FMC2_CSQCFGR3_RAC2T BIT(23)
+
+/* Register: FMC2_CSQCAR1 */
+#define FMC2_CSQCAR1_ADDC1(x) (((x) & 0xff) << 0)
+#define FMC2_CSQCAR1_ADDC2(x) (((x) & 0xff) << 8)
+#define FMC2_CSQCAR1_ADDC3(x) (((x) & 0xff) << 16)
+#define FMC2_CSQCAR1_ADDC4(x) (((x) & 0xff) << 24)
+
+/* Register: FMC2_CSQCAR2 */
+#define FMC2_CSQCAR2_ADDC5(x) (((x) & 0xff) << 0)
+#define FMC2_CSQCAR2_NANDCEN(x) (((x) & 0x3) << 10)
+#define FMC2_CSQCAR2_SAO(x) (((x) & 0xffff) << 16)
+
+/* Register: FMC2_CSQIER */
+#define FMC2_CSQIER_TCIE BIT(0)
+
+/* Register: FMC2_CSQICR */
+#define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0)
+
+/* Register: FMC2_CSQEMSR */
+#define FMC2_CSQEMSR_SEM GENMASK(15, 0)
+
+/* Register: FMC2_BCHIER */
+#define FMC2_BCHIER_DERIE BIT(1)
+#define FMC2_BCHIER_EPBRIE BIT(4)
+
+/* Register: FMC2_BCHICR */
+#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0)
+
+/* Register: FMC2_BCHDSR0 */
+#define FMC2_BCHDSR0_DUE BIT(0)
+#define FMC2_BCHDSR0_DEF BIT(1)
+#define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4)
+#define FMC2_BCHDSR0_DEN_SHIFT 4
+
+/* Register: FMC2_BCHDSR1 */
+#define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR1_EBP2_SHIFT 16
+
+/* Register: FMC2_BCHDSR2 */
+#define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR2_EBP4_SHIFT 16
+
+/* Register: FMC2_BCHDSR3 */
+#define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR3_EBP6_SHIFT 16
+
+/* Register: FMC2_BCHDSR4 */
+#define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0)
+#define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16)
+#define FMC2_BCHDSR4_EBP8_SHIFT 16
+
+enum stm32_fmc2_ecc {
+ FMC2_ECC_HAM = 1,
+ FMC2_ECC_BCH4 = 4,
+ FMC2_ECC_BCH8 = 8
+};
+
+enum stm32_fmc2_irq_state {
+ FMC2_IRQ_UNKNOWN = 0,
+ FMC2_IRQ_BCH,
+ FMC2_IRQ_SEQ
+};
+
+struct stm32_fmc2_timings {
+ u8 tclr;
+ u8 tar;
+ u8 thiz;
+ u8 twait;
+ u8 thold_mem;
+ u8 tset_mem;
+ u8 thold_att;
+ u8 tset_att;
+};
+
+struct stm32_fmc2_nand {
+ struct nand_chip chip;
+ struct stm32_fmc2_timings timings;
+ int ncs;
+ int cs_used[FMC2_MAX_CE];
+};
+
+static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
+{
+ return container_of(chip, struct stm32_fmc2_nand, chip);
+}
+
+struct stm32_fmc2_nfc {
+ struct nand_controller base;
+ struct stm32_fmc2_nand nand;
+ struct device *dev;
+ void __iomem *io_base;
+ void __iomem *data_base[FMC2_MAX_CE];
+ void __iomem *cmd_base[FMC2_MAX_CE];
+ void __iomem *addr_base[FMC2_MAX_CE];
+ phys_addr_t io_phys_addr;
+ phys_addr_t data_phys_addr[FMC2_MAX_CE];
+ struct clk *clk;
+ u8 irq_state;
+
+ struct dma_chan *dma_tx_ch;
+ struct dma_chan *dma_rx_ch;
+ struct dma_chan *dma_ecc_ch;
+ struct sg_table dma_data_sg;
+ struct sg_table dma_ecc_sg;
+ u8 *ecc_buf;
+ int dma_ecc_len;
+
+ struct completion complete;
+ struct completion dma_data_complete;
+ struct completion dma_ecc_complete;
+
+ u8 cs_assigned;
+ int cs_sel;
+};
+
+static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
+{
+ return container_of(base, struct stm32_fmc2_nfc, base);
+}
+
+/* Timings configuration */
+static void stm32_fmc2_timings_init(struct nand_chip *chip)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+ struct stm32_fmc2_timings *timings = &nand->timings;
+ u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+ u32 pmem, patt;
+
+ /* Set tclr/tar timings */
+ pcr &= ~FMC2_PCR_TCLR_MASK;
+ pcr |= FMC2_PCR_TCLR(timings->tclr);
+ pcr &= ~FMC2_PCR_TAR_MASK;
+ pcr |= FMC2_PCR_TAR(timings->tar);
+
+ /* Set tset/twait/thold/thiz timings in common bank */
+ pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
+ pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
+ pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
+ pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
+
+ /* Set tset/twait/thold/thiz timings in attribut bank */
+ patt = FMC2_PATT_ATTSET(timings->tset_att);
+ patt |= FMC2_PATT_ATTWAIT(timings->twait);
+ patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
+ patt |= FMC2_PATT_ATTHIZ(timings->thiz);
+
+ writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+ writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM);
+ writel_relaxed(patt, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller configuration */
+static void stm32_fmc2_setup(struct nand_chip *chip)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+ /* Configure ECC algorithm (default configuration is Hamming) */
+ pcr &= ~FMC2_PCR_ECCALG;
+ pcr &= ~FMC2_PCR_BCHECC;
+ if (chip->ecc.strength == FMC2_ECC_BCH8) {
+ pcr |= FMC2_PCR_ECCALG;
+ pcr |= FMC2_PCR_BCHECC;
+ } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
+ pcr |= FMC2_PCR_ECCALG;
+ }
+
+ /* Set buswidth */
+ pcr &= ~FMC2_PCR_PWID_MASK;
+ if (chip->options & NAND_BUSWIDTH_16)
+ pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+
+ /* Set ECC sector size */
+ pcr &= ~FMC2_PCR_ECCSS_MASK;
+ pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
+
+ writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Select target */
+static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+ struct dma_slave_config dma_cfg;
+ int ret;
+
+ if (nand->cs_used[chipnr] == fmc2->cs_sel)
+ return 0;
+
+ fmc2->cs_sel = nand->cs_used[chipnr];
+
+ /* FMC2 setup routine */
+ stm32_fmc2_setup(chip);
+
+ /* Apply timings */
+ stm32_fmc2_timings_init(chip);
+
+ if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) {
+ memset(&dma_cfg, 0, sizeof(dma_cfg));
+ dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel];
+ dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel];
+ dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ dma_cfg.src_maxburst = 32;
+ dma_cfg.dst_maxburst = 32;
+
+ ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg);
+ if (ret) {
+ dev_err(fmc2->dev, "tx DMA engine slave config failed\n");
+ return ret;
+ }
+
+ ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg);
+ if (ret) {
+ dev_err(fmc2->dev, "rx DMA engine slave config failed\n");
+ return ret;
+ }
+ }
+
+ if (fmc2->dma_ecc_ch) {
+ /*
+ * Hamming: we read HECCR register
+ * BCH4/BCH8: we read BCHDSRSx registers
+ */
+ memset(&dma_cfg, 0, sizeof(dma_cfg));
+ dma_cfg.src_addr = fmc2->io_phys_addr;
+ dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
+ FMC2_HECCR : FMC2_BCHDSR0;
+ dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+
+ ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg);
+ if (ret) {
+ dev_err(fmc2->dev, "ECC DMA engine slave config failed\n");
+ return ret;
+ }
+
+ /* Calculate ECC length needed for one sector */
+ fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
+ FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
+ }
+
+ return 0;
+}
+
+/* Set bus width to 16-bit or 8-bit */
+static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
+{
+ u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+ pcr &= ~FMC2_PCR_PWID_MASK;
+ if (set)
+ pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+ writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Enable/disable ECC */
+static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
+{
+ u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+
+ pcr &= ~FMC2_PCR_ECCEN;
+ if (enable)
+ pcr |= FMC2_PCR_ECCEN;
+ writel(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Enable irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+ u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
+
+ csqier |= FMC2_CSQIER_TCIE;
+
+ fmc2->irq_state = FMC2_IRQ_SEQ;
+
+ writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
+}
+
+/* Disable irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+ u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
+
+ csqier &= ~FMC2_CSQIER_TCIE;
+
+ writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
+
+ fmc2->irq_state = FMC2_IRQ_UNKNOWN;
+}
+
+/* Clear irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+ writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR);
+}
+
+/* Enable irq sources in case of bch is used */
+static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2,
+ int mode)
+{
+ u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
+
+ if (mode == NAND_ECC_WRITE)
+ bchier |= FMC2_BCHIER_EPBRIE;
+ else
+ bchier |= FMC2_BCHIER_DERIE;
+
+ fmc2->irq_state = FMC2_IRQ_BCH;
+
+ writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
+}
+
+/* Disable irq sources in case of bch is used */
+static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2)
+{
+ u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
+
+ bchier &= ~FMC2_BCHIER_DERIE;
+ bchier &= ~FMC2_BCHIER_EPBRIE;
+
+ writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
+
+ fmc2->irq_state = FMC2_IRQ_UNKNOWN;
+}
+
+/* Clear irq sources in case of bch is used */
+static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
+{
+ writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
+}
+
+/*
+ * Enable ECC logic and reset syndrome/parity bits previously calculated
+ * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
+ */
+static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ if (chip->ecc.strength != FMC2_ECC_HAM) {
+ u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+ if (mode == NAND_ECC_WRITE)
+ pcr |= FMC2_PCR_WEN;
+ else
+ pcr &= ~FMC2_PCR_WEN;
+ writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+
+ reinit_completion(&fmc2->complete);
+ stm32_fmc2_clear_bch_irq(fmc2);
+ stm32_fmc2_enable_bch_irq(fmc2, mode);
+ }
+
+ stm32_fmc2_set_ecc(fmc2, true);
+}
+
+/*
+ * ECC Hamming calculation
+ * ECC is 3 bytes for 512 bytes of data (supports error correction up to
+ * max of 1-bit)
+ */
+static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
+{
+ ecc[0] = ecc_sta;
+ ecc[1] = ecc_sta >> 8;
+ ecc[2] = ecc_sta >> 16;
+}
+
+static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data,
+ u8 *ecc)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 sr, heccr;
+ int ret;
+
+ ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR,
+ sr, sr & FMC2_SR_NWRF, 10, 1000);
+ if (ret) {
+ dev_err(fmc2->dev, "ham timeout\n");
+ return ret;
+ }
+
+ heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR);
+
+ stm32_fmc2_ham_set_ecc(heccr, ecc);
+
+ /* Disable ECC */
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ return 0;
+}
+
+static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat,
+ u8 *read_ecc, u8 *calc_ecc)
+{
+ u8 bit_position = 0, b0, b1, b2;
+ u32 byte_addr = 0, b;
+ u32 i, shifting = 1;
+
+ /* Indicate which bit and byte is faulty (if any) */
+ b0 = read_ecc[0] ^ calc_ecc[0];
+ b1 = read_ecc[1] ^ calc_ecc[1];
+ b2 = read_ecc[2] ^ calc_ecc[2];
+ b = b0 | (b1 << 8) | (b2 << 16);
+
+ /* No errors */
+ if (likely(!b))
+ return 0;
+
+ /* Calculate bit position */
+ for (i = 0; i < 3; i++) {
+ switch (b % 4) {
+ case 2:
+ bit_position += shifting;
+ case 1:
+ break;
+ default:
+ return -EBADMSG;
+ }
+ shifting <<= 1;
+ b >>= 2;
+ }
+
+ /* Calculate byte position */
+ shifting = 1;
+ for (i = 0; i < 9; i++) {
+ switch (b % 4) {
+ case 2:
+ byte_addr += shifting;
+ case 1:
+ break;
+ default:
+ return -EBADMSG;
+ }
+ shifting <<= 1;
+ b >>= 2;
+ }
+
+ /* Flip the bit */
+ dat[byte_addr] ^= (1 << bit_position);
+
+ return 1;
+}
+
+/*
+ * ECC BCH calculation and correction
+ * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
+ * max of 4-bit/8-bit)
+ */
+static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data,
+ u8 *ecc)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 bchpbr;
+
+ /* Wait until the BCH code is ready */
+ if (!wait_for_completion_timeout(&fmc2->complete,
+ msecs_to_jiffies(1000))) {
+ dev_err(fmc2->dev, "bch timeout\n");
+ stm32_fmc2_disable_bch_irq(fmc2);
+ return -ETIMEDOUT;
+ }
+
+ /* Read parity bits */
+ bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1);
+ ecc[0] = bchpbr;
+ ecc[1] = bchpbr >> 8;
+ ecc[2] = bchpbr >> 16;
+ ecc[3] = bchpbr >> 24;
+
+ bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2);
+ ecc[4] = bchpbr;
+ ecc[5] = bchpbr >> 8;
+ ecc[6] = bchpbr >> 16;
+
+ if (chip->ecc.strength == FMC2_ECC_BCH8) {
+ ecc[7] = bchpbr >> 24;
+
+ bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3);
+ ecc[8] = bchpbr;
+ ecc[9] = bchpbr >> 8;
+ ecc[10] = bchpbr >> 16;
+ ecc[11] = bchpbr >> 24;
+
+ bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4);
+ ecc[12] = bchpbr;
+ }
+
+ /* Disable ECC */
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ return 0;
+}
+
+/* BCH algorithm correction */
+static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
+{
+ u32 bchdsr0 = ecc_sta[0];
+ u32 bchdsr1 = ecc_sta[1];
+ u32 bchdsr2 = ecc_sta[2];
+ u32 bchdsr3 = ecc_sta[3];
+ u32 bchdsr4 = ecc_sta[4];
+ u16 pos[8];
+ int i, den;
+ unsigned int nb_errs = 0;
+
+ /* No errors found */
+ if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
+ return 0;
+
+ /* Too many errors detected */
+ if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
+ return -EBADMSG;
+
+ pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
+ pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
+ pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
+ pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
+ pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
+ pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
+ pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
+ pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
+
+ den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
+ for (i = 0; i < den; i++) {
+ if (pos[i] < eccsize * 8) {
+ change_bit(pos[i], (unsigned long *)dat);
+ nb_errs++;
+ }
+ }
+
+ return nb_errs;
+}
+
+static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat,
+ u8 *read_ecc, u8 *calc_ecc)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u32 ecc_sta[5];
+
+ /* Wait until the decoding error is ready */
+ if (!wait_for_completion_timeout(&fmc2->complete,
+ msecs_to_jiffies(1000))) {
+ dev_err(fmc2->dev, "bch timeout\n");
+ stm32_fmc2_disable_bch_irq(fmc2);
+ return -ETIMEDOUT;
+ }
+
+ ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0);
+ ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1);
+ ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2);
+ ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3);
+ ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4);
+
+ /* Disable ECC */
+ stm32_fmc2_set_ecc(fmc2, false);
+
+ return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta);
+}
+
+static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret, i, s, stat, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ int eccstrength = chip->ecc.strength;
+ u8 *p = buf;
+ u8 *ecc_calc = chip->ecc.calc_buf;
+ u8 *ecc_code = chip->ecc.code_buf;
+ unsigned int max_bitflips = 0;
+
+ ret = nand_read_page_op(chip, page, 0, NULL, 0);
+ if (ret)
+ return ret;
+
+ for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
+ s++, i += eccbytes, p += eccsize) {
+ chip->ecc.hwctl(chip, NAND_ECC_READ);
+
+ /* Read the nand page sector (512 bytes) */
+ ret = nand_change_read_column_op(chip, s * eccsize, p,
+ eccsize, false);
+ if (ret)
+ return ret;
+
+ /* Read the corresponding ECC bytes */
+ ret = nand_change_read_column_op(chip, i, ecc_code,
+ eccbytes, false);
+ if (ret)
+ return ret;
+
+ /* Correct the data */
+ stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
+ if (stat == -EBADMSG)
+ /* Check for empty pages with bitflips */
+ stat = nand_check_erased_ecc_chunk(p, eccsize,
+ ecc_code, eccbytes,
+ NULL, 0,
+ eccstrength);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+
+ /* Read oob */
+ if (oob_required) {
+ ret = nand_change_read_column_op(chip, mtd->writesize,
+ chip->oob_poi, mtd->oobsize,
+ false);
+ if (ret)
+ return ret;
+ }
+
+ return max_bitflips;
+}
+
+/* Sequencer read/write configuration */
+static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page,
+ int raw, bool write_data)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 csqcfgr1, csqcfgr2, csqcfgr3;
+ u32 csqar1, csqar2;
+ u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
+ u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+ if (write_data)
+ pcr |= FMC2_PCR_WEN;
+ else
+ pcr &= ~FMC2_PCR_WEN;
+ writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+
+ /*
+ * - Set Program Page/Page Read command
+ * - Enable DMA request data
+ * - Set timings
+ */
+ csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
+ if (write_data)
+ csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN);
+ else
+ csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) |
+ FMC2_CSQCFGR1_CMD2EN |
+ FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) |
+ FMC2_CSQCFGR1_CMD2T;
+
+ /*
+ * - Set Random Data Input/Random Data Read command
+ * - Enable the sequencer to access the Spare data area
+ * - Enable DMA request status decoding for read
+ * - Set timings
+ */
+ if (write_data)
+ csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN);
+ else
+ csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) |
+ FMC2_CSQCFGR2_RCMD2EN |
+ FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) |
+ FMC2_CSQCFGR2_RCMD1T |
+ FMC2_CSQCFGR2_RCMD2T;
+ if (!raw) {
+ csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
+ csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
+ }
+
+ /*
+ * - Set the number of sectors to be written
+ * - Set timings
+ */
+ csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1);
+ if (write_data) {
+ csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
+ if (chip->options & NAND_ROW_ADDR_3)
+ csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
+ else
+ csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
+ }
+
+ /*
+ * Set the fourth first address cycles
+ * Byte 1 and byte 2 => column, we start at 0x0
+ * Byte 3 and byte 4 => page
+ */
+ csqar1 = FMC2_CSQCAR1_ADDC3(page);
+ csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8);
+
+ /*
+ * - Set chip enable number
+ * - Set ECC byte offset in the spare area
+ * - Calculate the number of address cycles to be issued
+ * - Set byte 5 of address cycle if needed
+ */
+ csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel);
+ if (chip->options & NAND_BUSWIDTH_16)
+ csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1);
+ else
+ csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset);
+ if (chip->options & NAND_ROW_ADDR_3) {
+ csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5);
+ csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16);
+ } else {
+ csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4);
+ }
+
+ writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1);
+ writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2);
+ writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3);
+ writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1);
+ writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2);
+}
+
+static void stm32_fmc2_dma_callback(void *arg)
+{
+ complete((struct completion *)arg);
+}
+
+/* Read/write data from/to a page */
+static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
+ int raw, bool write_data)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct dma_async_tx_descriptor *desc_data, *desc_ecc;
+ struct scatterlist *sg;
+ struct dma_chan *dma_ch = fmc2->dma_rx_ch;
+ enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
+ enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
+ u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR);
+ int eccsteps = chip->ecc.steps;
+ int eccsize = chip->ecc.size;
+ const u8 *p = buf;
+ int s, ret;
+
+ /* Configure DMA data */
+ if (write_data) {
+ dma_data_dir = DMA_TO_DEVICE;
+ dma_transfer_dir = DMA_MEM_TO_DEV;
+ dma_ch = fmc2->dma_tx_ch;
+ }
+
+ for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) {
+ sg_set_buf(sg, p, eccsize);
+ p += eccsize;
+ }
+
+ ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl,
+ eccsteps, dma_data_dir);
+ if (ret < 0)
+ return ret;
+
+ desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl,
+ eccsteps, dma_transfer_dir,
+ DMA_PREP_INTERRUPT);
+ if (!desc_data) {
+ ret = -ENOMEM;
+ goto err_unmap_data;
+ }
+
+ reinit_completion(&fmc2->dma_data_complete);
+ reinit_completion(&fmc2->complete);
+ desc_data->callback = stm32_fmc2_dma_callback;
+ desc_data->callback_param = &fmc2->dma_data_complete;
+ ret = dma_submit_error(dmaengine_submit(desc_data));
+ if (ret)
+ goto err_unmap_data;
+
+ dma_async_issue_pending(dma_ch);
+
+ if (!write_data && !raw) {
+ /* Configure DMA ECC status */
+ p = fmc2->ecc_buf;
+ for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) {
+ sg_set_buf(sg, p, fmc2->dma_ecc_len);
+ p += fmc2->dma_ecc_len;
+ }
+
+ ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
+ eccsteps, dma_data_dir);
+ if (ret < 0)
+ goto err_unmap_data;
+
+ desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch,
+ fmc2->dma_ecc_sg.sgl,
+ eccsteps, dma_transfer_dir,
+ DMA_PREP_INTERRUPT);
+ if (!desc_ecc) {
+ ret = -ENOMEM;
+ goto err_unmap_ecc;
+ }
+
+ reinit_completion(&fmc2->dma_ecc_complete);
+ desc_ecc->callback = stm32_fmc2_dma_callback;
+ desc_ecc->callback_param = &fmc2->dma_ecc_complete;
+ ret = dma_submit_error(dmaengine_submit(desc_ecc));
+ if (ret)
+ goto err_unmap_ecc;
+
+ dma_async_issue_pending(fmc2->dma_ecc_ch);
+ }
+
+ stm32_fmc2_clear_seq_irq(fmc2);
+ stm32_fmc2_enable_seq_irq(fmc2);
+
+ /* Start the transfer */
+ csqcr |= FMC2_CSQCR_CSQSTART;
+ writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR);
+
+ /* Wait end of sequencer transfer */
+ if (!wait_for_completion_timeout(&fmc2->complete,
+ msecs_to_jiffies(1000))) {
+ dev_err(fmc2->dev, "seq timeout\n");
+ stm32_fmc2_disable_seq_irq(fmc2);
+ dmaengine_terminate_all(dma_ch);
+ if (!write_data && !raw)
+ dmaengine_terminate_all(fmc2->dma_ecc_ch);
+ ret = -ETIMEDOUT;
+ goto err_unmap_ecc;
+ }
+
+ /* Wait DMA data transfer completion */
+ if (!wait_for_completion_timeout(&fmc2->dma_data_complete,
+ msecs_to_jiffies(100))) {
+ dev_err(fmc2->dev, "data DMA timeout\n");
+ dmaengine_terminate_all(dma_ch);
+ ret = -ETIMEDOUT;
+ }
+
+ /* Wait DMA ECC transfer completion */
+ if (!write_data && !raw) {
+ if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete,
+ msecs_to_jiffies(100))) {
+ dev_err(fmc2->dev, "ECC DMA timeout\n");
+ dmaengine_terminate_all(fmc2->dma_ecc_ch);
+ ret = -ETIMEDOUT;
+ }
+ }
+
+err_unmap_ecc:
+ if (!write_data && !raw)
+ dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
+ eccsteps, dma_data_dir);
+
+err_unmap_data:
+ dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir);
+
+ return ret;
+}
+
+static int stm32_fmc2_sequencer_write(struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page, int raw)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ /* Configure the sequencer */
+ stm32_fmc2_rw_page_init(chip, page, raw, true);
+
+ /* Write the page */
+ ret = stm32_fmc2_xfer(chip, buf, raw, true);
+ if (ret)
+ return ret;
+
+ /* Write oob */
+ if (oob_required) {
+ ret = nand_change_write_column_op(chip, mtd->writesize,
+ chip->oob_poi, mtd->oobsize,
+ false);
+ if (ret)
+ return ret;
+ }
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip,
+ const u8 *buf,
+ int oob_required,
+ int page)
+{
+ int ret;
+
+ /* Select the target */
+ ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+ if (ret)
+ return ret;
+
+ return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false);
+}
+
+static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip,
+ const u8 *buf,
+ int oob_required,
+ int page)
+{
+ int ret;
+
+ /* Select the target */
+ ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+ if (ret)
+ return ret;
+
+ return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true);
+}
+
+/* Get a status indicating which sectors have errors */
+static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2)
+{
+ u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR);
+
+ return csqemsr & FMC2_CSQEMSR_SEM;
+}
+
+static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat,
+ u8 *read_ecc, u8 *calc_ecc)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ int eccstrength = chip->ecc.strength;
+ int i, s, eccsize = chip->ecc.size;
+ u32 *ecc_sta = (u32 *)fmc2->ecc_buf;
+ u16 sta_map = stm32_fmc2_get_mapping_status(fmc2);
+ unsigned int max_bitflips = 0;
+
+ for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
+ int stat = 0;
+
+ if (eccstrength == FMC2_ECC_HAM) {
+ /* Ecc_sta = FMC2_HECCR */
+ if (sta_map & BIT(s)) {
+ stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]);
+ stat = stm32_fmc2_ham_correct(chip, dat,
+ &read_ecc[i],
+ &calc_ecc[i]);
+ }
+ ecc_sta++;
+ } else {
+ /*
+ * Ecc_sta[0] = FMC2_BCHDSR0
+ * Ecc_sta[1] = FMC2_BCHDSR1
+ * Ecc_sta[2] = FMC2_BCHDSR2
+ * Ecc_sta[3] = FMC2_BCHDSR3
+ * Ecc_sta[4] = FMC2_BCHDSR4
+ */
+ if (sta_map & BIT(s))
+ stat = stm32_fmc2_bch_decode(eccsize, dat,
+ ecc_sta);
+ ecc_sta += 5;
+ }
+
+ if (stat == -EBADMSG)
+ /* Check for empty pages with bitflips */
+ stat = nand_check_erased_ecc_chunk(dat, eccsize,
+ &read_ecc[i],
+ eccbytes,
+ NULL, 0,
+ eccstrength);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+
+ return max_bitflips;
+}
+
+static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ u8 *ecc_calc = chip->ecc.calc_buf;
+ u8 *ecc_code = chip->ecc.code_buf;
+ u16 sta_map;
+ int ret;
+
+ /* Select the target */
+ ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+ if (ret)
+ return ret;
+
+ /* Configure the sequencer */
+ stm32_fmc2_rw_page_init(chip, page, 0, false);
+
+ /* Read the page */
+ ret = stm32_fmc2_xfer(chip, buf, 0, false);
+ if (ret)
+ return ret;
+
+ sta_map = stm32_fmc2_get_mapping_status(fmc2);
+
+ /* Check if errors happen */
+ if (likely(!sta_map)) {
+ if (oob_required)
+ return nand_change_read_column_op(chip, mtd->writesize,
+ chip->oob_poi,
+ mtd->oobsize, false);
+
+ return 0;
+ }
+
+ /* Read oob */
+ ret = nand_change_read_column_op(chip, mtd->writesize,
+ chip->oob_poi, mtd->oobsize, false);
+ if (ret)
+ return ret;
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ /* Correct data */
+ return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
+}
+
+static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ /* Select the target */
+ ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+ if (ret)
+ return ret;
+
+ /* Configure the sequencer */
+ stm32_fmc2_rw_page_init(chip, page, 1, false);
+
+ /* Read the page */
+ ret = stm32_fmc2_xfer(chip, buf, 1, false);
+ if (ret)
+ return ret;
+
+ /* Read oob */
+ if (oob_required)
+ return nand_change_read_column_op(chip, mtd->writesize,
+ chip->oob_poi, mtd->oobsize,
+ false);
+
+ return 0;
+}
+
+static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id)
+{
+ struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id;
+
+ if (fmc2->irq_state == FMC2_IRQ_SEQ)
+ /* Sequencer is used */
+ stm32_fmc2_disable_seq_irq(fmc2);
+ else if (fmc2->irq_state == FMC2_IRQ_BCH)
+ /* BCH is used */
+ stm32_fmc2_disable_bch_irq(fmc2);
+
+ complete(&fmc2->complete);
+
+ return IRQ_HANDLED;
+}
+
+static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf,
+ unsigned int len, bool force_8bit)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel];
+
+ if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+ /* Reconfigure bus width to 8-bit */
+ stm32_fmc2_set_buswidth_16(fmc2, false);
+
+ if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
+ if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
+ *(u8 *)buf = readb_relaxed(io_addr_r);
+ buf += sizeof(u8);
+ len -= sizeof(u8);
+ }
+
+ if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+ len >= sizeof(u16)) {
+ *(u16 *)buf = readw_relaxed(io_addr_r);
+ buf += sizeof(u16);
+ len -= sizeof(u16);
+ }
+ }
+
+ /* Buf is aligned */
+ while (len >= sizeof(u32)) {
+ *(u32 *)buf = readl_relaxed(io_addr_r);
+ buf += sizeof(u32);
+ len -= sizeof(u32);
+ }
+
+ /* Read remaining bytes */
+ if (len >= sizeof(u16)) {
+ *(u16 *)buf = readw_relaxed(io_addr_r);
+ buf += sizeof(u16);
+ len -= sizeof(u16);
+ }
+
+ if (len)
+ *(u8 *)buf = readb_relaxed(io_addr_r);
+
+ if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+ /* Reconfigure bus width to 16-bit */
+ stm32_fmc2_set_buswidth_16(fmc2, true);
+}
+
+static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf,
+ unsigned int len, bool force_8bit)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel];
+
+ if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+ /* Reconfigure bus width to 8-bit */
+ stm32_fmc2_set_buswidth_16(fmc2, false);
+
+ if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
+ if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
+ writeb_relaxed(*(u8 *)buf, io_addr_w);
+ buf += sizeof(u8);
+ len -= sizeof(u8);
+ }
+
+ if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+ len >= sizeof(u16)) {
+ writew_relaxed(*(u16 *)buf, io_addr_w);
+ buf += sizeof(u16);
+ len -= sizeof(u16);
+ }
+ }
+
+ /* Buf is aligned */
+ while (len >= sizeof(u32)) {
+ writel_relaxed(*(u32 *)buf, io_addr_w);
+ buf += sizeof(u32);
+ len -= sizeof(u32);
+ }
+
+ /* Write remaining bytes */
+ if (len >= sizeof(u16)) {
+ writew_relaxed(*(u16 *)buf, io_addr_w);
+ buf += sizeof(u16);
+ len -= sizeof(u16);
+ }
+
+ if (len)
+ writeb_relaxed(*(u8 *)buf, io_addr_w);
+
+ if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+ /* Reconfigure bus width to 16-bit */
+ stm32_fmc2_set_buswidth_16(fmc2, true);
+}
+
+static int stm32_fmc2_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ const struct nand_op_instr *instr = NULL;
+ unsigned int op_id, i;
+ int ret;
+
+ ret = stm32_fmc2_select_chip(chip, op->cs);
+ if (ret)
+ return ret;
+
+ if (check_only)
+ return ret;
+
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ instr = &op->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ writeb_relaxed(instr->ctx.cmd.opcode,
+ fmc2->cmd_base[fmc2->cs_sel]);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ for (i = 0; i < instr->ctx.addr.naddrs; i++)
+ writeb_relaxed(instr->ctx.addr.addrs[i],
+ fmc2->addr_base[fmc2->cs_sel]);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ stm32_fmc2_read_data(chip, instr->ctx.data.buf.in,
+ instr->ctx.data.len,
+ instr->ctx.data.force_8bit);
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ stm32_fmc2_write_data(chip, instr->ctx.data.buf.out,
+ instr->ctx.data.len,
+ instr->ctx.data.force_8bit);
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ ret = nand_soft_waitrdy(chip,
+ instr->ctx.waitrdy.timeout_ms);
+ break;
+ }
+ }
+
+ return ret;
+}
+
+/* Controller initialization */
+static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
+{
+ u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+ u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1);
+
+ /* Set CS used to undefined */
+ fmc2->cs_sel = -1;
+
+ /* Enable wait feature and nand flash memory bank */
+ pcr |= FMC2_PCR_PWAITEN;
+ pcr |= FMC2_PCR_PBKEN;
+
+ /* Set buswidth to 8 bits mode for identification */
+ pcr &= ~FMC2_PCR_PWID_MASK;
+
+ /* ECC logic is disabled */
+ pcr &= ~FMC2_PCR_ECCEN;
+
+ /* Default mode */
+ pcr &= ~FMC2_PCR_ECCALG;
+ pcr &= ~FMC2_PCR_BCHECC;
+ pcr &= ~FMC2_PCR_WEN;
+
+ /* Set default ECC sector size */
+ pcr &= ~FMC2_PCR_ECCSS_MASK;
+ pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
+
+ /* Set default tclr/tar timings */
+ pcr &= ~FMC2_PCR_TCLR_MASK;
+ pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
+ pcr &= ~FMC2_PCR_TAR_MASK;
+ pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
+
+ /* Enable FMC2 controller */
+ bcr1 |= FMC2_BCR1_FMC2EN;
+
+ writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1);
+ writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+ writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
+ writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller timings */
+static void stm32_fmc2_calc_timings(struct nand_chip *chip,
+ const struct nand_sdr_timings *sdrt)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+ struct stm32_fmc2_timings *tims = &nand->timings;
+ unsigned long hclk = clk_get_rate(fmc2->clk);
+ unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
+ int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att;
+
+ tar = hclkp;
+ if (tar < sdrt->tAR_min)
+ tar = sdrt->tAR_min;
+ tims->tar = DIV_ROUND_UP(tar, hclkp) - 1;
+ if (tims->tar > FMC2_PCR_TIMING_MASK)
+ tims->tar = FMC2_PCR_TIMING_MASK;
+
+ tclr = hclkp;
+ if (tclr < sdrt->tCLR_min)
+ tclr = sdrt->tCLR_min;
+ tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1;
+ if (tims->tclr > FMC2_PCR_TIMING_MASK)
+ tims->tclr = FMC2_PCR_TIMING_MASK;
+
+ tims->thiz = FMC2_THIZ;
+ thiz = (tims->thiz + 1) * hclkp;
+
+ /*
+ * tWAIT > tRP
+ * tWAIT > tWP
+ * tWAIT > tREA + tIO
+ */
+ twait = hclkp;
+ if (twait < sdrt->tRP_min)
+ twait = sdrt->tRP_min;
+ if (twait < sdrt->tWP_min)
+ twait = sdrt->tWP_min;
+ if (twait < sdrt->tREA_max + FMC2_TIO)
+ twait = sdrt->tREA_max + FMC2_TIO;
+ tims->twait = DIV_ROUND_UP(twait, hclkp);
+ if (tims->twait == 0)
+ tims->twait = 1;
+ else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->twait = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tSETUP_MEM > tCS - tWAIT
+ * tSETUP_MEM > tALS - tWAIT
+ * tSETUP_MEM > tDS - (tWAIT - tHIZ)
+ */
+ tset_mem = hclkp;
+ if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
+ tset_mem = sdrt->tCS_min - twait;
+ if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
+ tset_mem = sdrt->tALS_min - twait;
+ if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+ (tset_mem < sdrt->tDS_min - (twait - thiz)))
+ tset_mem = sdrt->tDS_min - (twait - thiz);
+ tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp);
+ if (tims->tset_mem == 0)
+ tims->tset_mem = 1;
+ else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tHOLD_MEM > tCH
+ * tHOLD_MEM > tREH - tSETUP_MEM
+ * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
+ */
+ thold_mem = hclkp;
+ if (thold_mem < sdrt->tCH_min)
+ thold_mem = sdrt->tCH_min;
+ if (sdrt->tREH_min > tset_mem &&
+ (thold_mem < sdrt->tREH_min - tset_mem))
+ thold_mem = sdrt->tREH_min - tset_mem;
+ if ((sdrt->tRC_min > tset_mem + twait) &&
+ (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
+ thold_mem = sdrt->tRC_min - (tset_mem + twait);
+ if ((sdrt->tWC_min > tset_mem + twait) &&
+ (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
+ thold_mem = sdrt->tWC_min - (tset_mem + twait);
+ tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp);
+ if (tims->thold_mem == 0)
+ tims->thold_mem = 1;
+ else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tSETUP_ATT > tCS - tWAIT
+ * tSETUP_ATT > tCLS - tWAIT
+ * tSETUP_ATT > tALS - tWAIT
+ * tSETUP_ATT > tRHW - tHOLD_MEM
+ * tSETUP_ATT > tDS - (tWAIT - tHIZ)
+ */
+ tset_att = hclkp;
+ if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
+ tset_att = sdrt->tCS_min - twait;
+ if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
+ tset_att = sdrt->tCLS_min - twait;
+ if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
+ tset_att = sdrt->tALS_min - twait;
+ if (sdrt->tRHW_min > thold_mem &&
+ (tset_att < sdrt->tRHW_min - thold_mem))
+ tset_att = sdrt->tRHW_min - thold_mem;
+ if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+ (tset_att < sdrt->tDS_min - (twait - thiz)))
+ tset_att = sdrt->tDS_min - (twait - thiz);
+ tims->tset_att = DIV_ROUND_UP(tset_att, hclkp);
+ if (tims->tset_att == 0)
+ tims->tset_att = 1;
+ else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK;
+
+ /*
+ * tHOLD_ATT > tALH
+ * tHOLD_ATT > tCH
+ * tHOLD_ATT > tCLH
+ * tHOLD_ATT > tCOH
+ * tHOLD_ATT > tDH
+ * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
+ * tHOLD_ATT > tADL - tSETUP_MEM
+ * tHOLD_ATT > tWH - tSETUP_MEM
+ * tHOLD_ATT > tWHR - tSETUP_MEM
+ * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
+ * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
+ */
+ thold_att = hclkp;
+ if (thold_att < sdrt->tALH_min)
+ thold_att = sdrt->tALH_min;
+ if (thold_att < sdrt->tCH_min)
+ thold_att = sdrt->tCH_min;
+ if (thold_att < sdrt->tCLH_min)
+ thold_att = sdrt->tCLH_min;
+ if (thold_att < sdrt->tCOH_min)
+ thold_att = sdrt->tCOH_min;
+ if (thold_att < sdrt->tDH_min)
+ thold_att = sdrt->tDH_min;
+ if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
+ (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
+ thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
+ if (sdrt->tADL_min > tset_mem &&
+ (thold_att < sdrt->tADL_min - tset_mem))
+ thold_att = sdrt->tADL_min - tset_mem;
+ if (sdrt->tWH_min > tset_mem &&
+ (thold_att < sdrt->tWH_min - tset_mem))
+ thold_att = sdrt->tWH_min - tset_mem;
+ if (sdrt->tWHR_min > tset_mem &&
+ (thold_att < sdrt->tWHR_min - tset_mem))
+ thold_att = sdrt->tWHR_min - tset_mem;
+ if ((sdrt->tRC_min > tset_att + twait) &&
+ (thold_att < sdrt->tRC_min - (tset_att + twait)))
+ thold_att = sdrt->tRC_min - (tset_att + twait);
+ if ((sdrt->tWC_min > tset_att + twait) &&
+ (thold_att < sdrt->tWC_min - (tset_att + twait)))
+ thold_att = sdrt->tWC_min - (tset_att + twait);
+ tims->thold_att = DIV_ROUND_UP(thold_att, hclkp);
+ if (tims->thold_att == 0)
+ tims->thold_att = 1;
+ else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK)
+ tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK;
+}
+
+static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ const struct nand_sdr_timings *sdrt;
+
+ sdrt = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdrt))
+ return PTR_ERR(sdrt);
+
+ if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ stm32_fmc2_calc_timings(chip, sdrt);
+
+ /* Apply timings */
+ stm32_fmc2_timings_init(chip);
+
+ return 0;
+}
+
+/* DMA configuration */
+static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
+{
+ int ret;
+
+ fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx");
+ fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx");
+ fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc");
+
+ if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) {
+ dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n");
+ return 0;
+ }
+
+ ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ /* Allocate a buffer to store ECC status registers */
+ fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN,
+ GFP_KERNEL);
+ if (!fmc2->ecc_buf)
+ return -ENOMEM;
+
+ ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ init_completion(&fmc2->dma_data_complete);
+ init_completion(&fmc2->dma_ecc_complete);
+
+ return 0;
+}
+
+/* NAND callbacks setup */
+static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+ /*
+ * Specific callbacks to read/write a page depending on
+ * the mode (polling/sequencer) and the algo used (Hamming, BCH).
+ */
+ if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) {
+ /* DMA => use sequencer mode callbacks */
+ chip->ecc.correct = stm32_fmc2_sequencer_correct;
+ chip->ecc.write_page = stm32_fmc2_sequencer_write_page;
+ chip->ecc.read_page = stm32_fmc2_sequencer_read_page;
+ chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw;
+ chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw;
+ } else {
+ /* No DMA => use polling mode callbacks */
+ chip->ecc.hwctl = stm32_fmc2_hwctl;
+ if (chip->ecc.strength == FMC2_ECC_HAM) {
+ /* Hamming is used */
+ chip->ecc.calculate = stm32_fmc2_ham_calculate;
+ chip->ecc.correct = stm32_fmc2_ham_correct;
+ chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
+ } else {
+ /* BCH is used */
+ chip->ecc.calculate = stm32_fmc2_bch_calculate;
+ chip->ecc.correct = stm32_fmc2_bch_correct;
+ chip->ecc.read_page = stm32_fmc2_read_page;
+ }
+ }
+
+ /* Specific configurations depending on the algo used */
+ if (chip->ecc.strength == FMC2_ECC_HAM)
+ chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
+ else if (chip->ecc.strength == FMC2_ECC_BCH8)
+ chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
+ else
+ chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
+}
+
+/* FMC2 layout */
+static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = ecc->total;
+ oobregion->offset = FMC2_BBM_LEN;
+
+ return 0;
+}
+
+static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
+ oobregion->offset = ecc->total + FMC2_BBM_LEN;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = {
+ .ecc = stm32_fmc2_nand_ooblayout_ecc,
+ .free = stm32_fmc2_nand_ooblayout_free,
+};
+
+/* FMC2 caps */
+static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
+{
+ /* Hamming */
+ if (strength == FMC2_ECC_HAM)
+ return 4;
+
+ /* BCH8 */
+ if (strength == FMC2_ECC_BCH8)
+ return 14;
+
+ /* BCH4 */
+ return 8;
+}
+
+NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
+ FMC2_ECC_STEP_SIZE,
+ FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
+
+/* FMC2 controller ops */
+static int stm32_fmc2_attach_chip(struct nand_chip *chip)
+{
+ struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ /*
+ * Only NAND_ECC_HW mode is actually supported
+ * Hamming => ecc.strength = 1
+ * BCH4 => ecc.strength = 4
+ * BCH8 => ecc.strength = 8
+ * ECC sector size = 512
+ */
+ if (chip->ecc.mode != NAND_ECC_HW) {
+ dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n");
+ return -EINVAL;
+ }
+
+ ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps,
+ mtd->oobsize - FMC2_BBM_LEN);
+ if (ret) {
+ dev_err(fmc2->dev, "no valid ECC settings set\n");
+ return ret;
+ }
+
+ if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
+ dev_err(fmc2->dev, "nand page size is not supported\n");
+ return -EINVAL;
+ }
+
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+
+ /* NAND callbacks setup */
+ stm32_fmc2_nand_callbacks_setup(chip);
+
+ /* Define ECC layout */
+ mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops);
+
+ /* Configure bus width to 16-bit */
+ if (chip->options & NAND_BUSWIDTH_16)
+ stm32_fmc2_set_buswidth_16(fmc2, true);
+
+ return 0;
+}
+
+static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = {
+ .attach_chip = stm32_fmc2_attach_chip,
+ .exec_op = stm32_fmc2_exec_op,
+ .setup_data_interface = stm32_fmc2_setup_interface,
+};
+
+/* FMC2 probe */
+static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
+ struct device_node *dn)
+{
+ struct stm32_fmc2_nand *nand = &fmc2->nand;
+ u32 cs;
+ int ret, i;
+
+ if (!of_get_property(dn, "reg", &nand->ncs))
+ return -EINVAL;
+
+ nand->ncs /= sizeof(u32);
+ if (!nand->ncs) {
+ dev_err(fmc2->dev, "invalid reg property size\n");
+ return -EINVAL;
+ }
+
+ for (i = 0; i < nand->ncs; i++) {
+ ret = of_property_read_u32_index(dn, "reg", i, &cs);
+ if (ret) {
+ dev_err(fmc2->dev, "could not retrieve reg property: %d\n",
+ ret);
+ return ret;
+ }
+
+ if (cs > FMC2_MAX_CE) {
+ dev_err(fmc2->dev, "invalid reg value: %d\n", cs);
+ return -EINVAL;
+ }
+
+ if (fmc2->cs_assigned & BIT(cs)) {
+ dev_err(fmc2->dev, "cs already assigned: %d\n", cs);
+ return -EINVAL;
+ }
+
+ fmc2->cs_assigned |= BIT(cs);
+ nand->cs_used[i] = cs;
+ }
+
+ nand_set_flash_node(&nand->chip, dn);
+
+ return 0;
+}
+
+static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2)
+{
+ struct device_node *dn = fmc2->dev->of_node;
+ struct device_node *child;
+ int nchips = of_get_child_count(dn);
+ int ret = 0;
+
+ if (!nchips) {
+ dev_err(fmc2->dev, "NAND chip not defined\n");
+ return -EINVAL;
+ }
+
+ if (nchips > 1) {
+ dev_err(fmc2->dev, "too many NAND chips defined\n");
+ return -EINVAL;
+ }
+
+ for_each_child_of_node(dn, child) {
+ ret = stm32_fmc2_parse_child(fmc2, child);
+ if (ret < 0) {
+ of_node_put(child);
+ return ret;
+ }
+ }
+
+ return ret;
+}
+
+static int stm32_fmc2_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct reset_control *rstc;
+ struct stm32_fmc2_nfc *fmc2;
+ struct stm32_fmc2_nand *nand;
+ struct resource *res;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ int chip_cs, mem_region, ret, irq;
+
+ fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL);
+ if (!fmc2)
+ return -ENOMEM;
+
+ fmc2->dev = dev;
+ nand_controller_init(&fmc2->base);
+ fmc2->base.ops = &stm32_fmc2_nand_controller_ops;
+
+ ret = stm32_fmc2_parse_dt(fmc2);
+ if (ret)
+ return ret;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ fmc2->io_base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(fmc2->io_base))
+ return PTR_ERR(fmc2->io_base);
+
+ fmc2->io_phys_addr = res->start;
+
+ for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
+ chip_cs++, mem_region += 3) {
+ if (!(fmc2->cs_assigned & BIT(chip_cs)))
+ continue;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
+ fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(fmc2->data_base[chip_cs]))
+ return PTR_ERR(fmc2->data_base[chip_cs]);
+
+ fmc2->data_phys_addr[chip_cs] = res->start;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM,
+ mem_region + 1);
+ fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(fmc2->cmd_base[chip_cs]))
+ return PTR_ERR(fmc2->cmd_base[chip_cs]);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM,
+ mem_region + 2);
+ fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
+ if (IS_ERR(fmc2->addr_base[chip_cs]))
+ return PTR_ERR(fmc2->addr_base[chip_cs]);
+ }
+
+ irq = platform_get_irq(pdev, 0);
+ ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0,
+ dev_name(dev), fmc2);
+ if (ret) {
+ dev_err(dev, "failed to request irq\n");
+ return ret;
+ }
+
+ init_completion(&fmc2->complete);
+
+ fmc2->clk = devm_clk_get(dev, NULL);
+ if (IS_ERR(fmc2->clk))
+ return PTR_ERR(fmc2->clk);
+
+ ret = clk_prepare_enable(fmc2->clk);
+ if (ret) {
+ dev_err(dev, "can not enable the clock\n");
+ return ret;
+ }
+
+ rstc = devm_reset_control_get(dev, NULL);
+ if (!IS_ERR(rstc)) {
+ reset_control_assert(rstc);
+ reset_control_deassert(rstc);
+ }
+
+ /* DMA setup */
+ ret = stm32_fmc2_dma_setup(fmc2);
+ if (ret)
+ return ret;
+
+ /* FMC2 init routine */
+ stm32_fmc2_init(fmc2);
+
+ nand = &fmc2->nand;
+ chip = &nand->chip;
+ mtd = nand_to_mtd(chip);
+ mtd->dev.parent = dev;
+
+ chip->controller = &fmc2->base;
+ chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
+ NAND_USE_BOUNCE_BUFFER;
+
+ /* Default ECC settings */
+ chip->ecc.mode = NAND_ECC_HW;
+ chip->ecc.size = FMC2_ECC_STEP_SIZE;
+ chip->ecc.strength = FMC2_ECC_BCH8;
+
+ /* Scan to find existence of the device */
+ ret = nand_scan(chip, nand->ncs);
+ if (ret)
+ goto err_scan;
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret)
+ goto err_device_register;
+
+ platform_set_drvdata(pdev, fmc2);
+
+ return 0;
+
+err_device_register:
+ nand_cleanup(chip);
+
+err_scan:
+ if (fmc2->dma_ecc_ch)
+ dma_release_channel(fmc2->dma_ecc_ch);
+ if (fmc2->dma_tx_ch)
+ dma_release_channel(fmc2->dma_tx_ch);
+ if (fmc2->dma_rx_ch)
+ dma_release_channel(fmc2->dma_rx_ch);
+
+ sg_free_table(&fmc2->dma_data_sg);
+ sg_free_table(&fmc2->dma_ecc_sg);
+
+ clk_disable_unprepare(fmc2->clk);
+
+ return ret;
+}
+
+static int stm32_fmc2_remove(struct platform_device *pdev)
+{
+ struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev);
+ struct stm32_fmc2_nand *nand = &fmc2->nand;
+
+ nand_release(&nand->chip);
+
+ if (fmc2->dma_ecc_ch)
+ dma_release_channel(fmc2->dma_ecc_ch);
+ if (fmc2->dma_tx_ch)
+ dma_release_channel(fmc2->dma_tx_ch);
+ if (fmc2->dma_rx_ch)
+ dma_release_channel(fmc2->dma_rx_ch);
+
+ sg_free_table(&fmc2->dma_data_sg);
+ sg_free_table(&fmc2->dma_ecc_sg);
+
+ clk_disable_unprepare(fmc2->clk);
+
+ return 0;
+}
+
+static int __maybe_unused stm32_fmc2_suspend(struct device *dev)
+{
+ struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
+
+ clk_disable_unprepare(fmc2->clk);
+
+ pinctrl_pm_select_sleep_state(dev);
+
+ return 0;
+}
+
+static int __maybe_unused stm32_fmc2_resume(struct device *dev)
+{
+ struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
+ struct stm32_fmc2_nand *nand = &fmc2->nand;
+ int chip_cs, ret;
+
+ pinctrl_pm_select_default_state(dev);
+
+ ret = clk_prepare_enable(fmc2->clk);
+ if (ret) {
+ dev_err(dev, "can not enable the clock\n");
+ return ret;
+ }
+
+ stm32_fmc2_init(fmc2);
+
+ for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
+ if (!(fmc2->cs_assigned & BIT(chip_cs)))
+ continue;
+
+ nand_reset(&nand->chip, chip_cs);
+ }
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend,
+ stm32_fmc2_resume);
+
+static const struct of_device_id stm32_fmc2_match[] = {
+ {.compatible = "st,stm32mp15-fmc2"},
+ {}
+};
+MODULE_DEVICE_TABLE(of, stm32_fmc2_match);
+
+static struct platform_driver stm32_fmc2_driver = {
+ .probe = stm32_fmc2_probe,
+ .remove = stm32_fmc2_remove,
+ .driver = {
+ .name = "stm32_fmc2_nand",
+ .of_match_table = stm32_fmc2_match,
+ .pm = &stm32_fmc2_pm_ops,
+ },
+};
+module_platform_driver(stm32_fmc2_driver);
+
+MODULE_ALIAS("platform:stm32_fmc2_nand");
+MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
+MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver");
+MODULE_LICENSE("GPL v2");