aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/mpt3sas/mpt3sas_base.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/mpt3sas/mpt3sas_base.c')
-rw-r--r--drivers/scsi/mpt3sas/mpt3sas_base.c658
1 files changed, 644 insertions, 14 deletions
diff --git a/drivers/scsi/mpt3sas/mpt3sas_base.c b/drivers/scsi/mpt3sas/mpt3sas_base.c
index 3d36deee8285..8027de465d47 100644
--- a/drivers/scsi/mpt3sas/mpt3sas_base.c
+++ b/drivers/scsi/mpt3sas/mpt3sas_base.c
@@ -59,6 +59,7 @@
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/kthread.h>
+#include <asm/page.h> /* To get host page size per arch */
#include <linux/aer.h>
@@ -556,6 +557,11 @@ _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
func_str = "smp_passthru";
break;
+ case MPI2_FUNCTION_NVME_ENCAPSULATED:
+ frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
+ ioc->sge_size;
+ func_str = "nvme_encapsulated";
+ break;
default:
frame_sz = 32;
func_str = "unknown";
@@ -655,7 +661,27 @@ _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
desc = "Temperature Threshold";
break;
case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
- desc = "Active cable exception";
+ desc = "Cable Event";
+ break;
+ case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
+ desc = "PCIE Device Status Change";
+ break;
+ case MPI2_EVENT_PCIE_ENUMERATION:
+ {
+ Mpi26EventDataPCIeEnumeration_t *event_data =
+ (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
+ pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
+ (event_data->ReasonCode ==
+ MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
+ "start" : "stop");
+ if (event_data->EnumerationStatus)
+ pr_info("enumeration_status(0x%08x)",
+ le32_to_cpu(event_data->EnumerationStatus));
+ pr_info("\n");
+ return;
+ }
+ case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
+ desc = "PCIE Topology Change List";
break;
}
@@ -984,7 +1010,9 @@ _base_interrupt(int irq, void *bus_id)
if (request_desript_type ==
MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
request_desript_type ==
- MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
+ MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
+ request_desript_type ==
+ MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
@@ -1347,6 +1375,433 @@ _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
/* IEEE format sgls */
/**
+ * _base_build_nvme_prp - This function is called for NVMe end devices to build
+ * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
+ * entry of the NVMe message (PRP1). If the data buffer is small enough to be
+ * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
+ * used to describe a larger data buffer. If the data buffer is too large to
+ * describe using the two PRP entriess inside the NVMe message, then PRP1
+ * describes the first data memory segment, and PRP2 contains a pointer to a PRP
+ * list located elsewhere in memory to describe the remaining data memory
+ * segments. The PRP list will be contiguous.
+
+ * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
+ * consists of a list of PRP entries to describe a number of noncontigous
+ * physical memory segments as a single memory buffer, just as a SGL does. Note
+ * however, that this function is only used by the IOCTL call, so the memory
+ * given will be guaranteed to be contiguous. There is no need to translate
+ * non-contiguous SGL into a PRP in this case. All PRPs will describe
+ * contiguous space that is one page size each.
+ *
+ * Each NVMe message contains two PRP entries. The first (PRP1) either contains
+ * a PRP list pointer or a PRP element, depending upon the command. PRP2
+ * contains the second PRP element if the memory being described fits within 2
+ * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
+ *
+ * A PRP list pointer contains the address of a PRP list, structured as a linear
+ * array of PRP entries. Each PRP entry in this list describes a segment of
+ * physical memory.
+ *
+ * Each 64-bit PRP entry comprises an address and an offset field. The address
+ * always points at the beginning of a 4KB physical memory page, and the offset
+ * describes where within that 4KB page the memory segment begins. Only the
+ * first element in a PRP list may contain a non-zero offest, implying that all
+ * memory segments following the first begin at the start of a 4KB page.
+ *
+ * Each PRP element normally describes 4KB of physical memory, with exceptions
+ * for the first and last elements in the list. If the memory being described
+ * by the list begins at a non-zero offset within the first 4KB page, then the
+ * first PRP element will contain a non-zero offset indicating where the region
+ * begins within the 4KB page. The last memory segment may end before the end
+ * of the 4KB segment, depending upon the overall size of the memory being
+ * described by the PRP list.
+ *
+ * Since PRP entries lack any indication of size, the overall data buffer length
+ * is used to determine where the end of the data memory buffer is located, and
+ * how many PRP entries are required to describe it.
+ *
+ * @ioc: per adapter object
+ * @smid: system request message index for getting asscociated SGL
+ * @nvme_encap_request: the NVMe request msg frame pointer
+ * @data_out_dma: physical address for WRITES
+ * @data_out_sz: data xfer size for WRITES
+ * @data_in_dma: physical address for READS
+ * @data_in_sz: data xfer size for READS
+ *
+ * Returns nothing.
+ */
+static void
+_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
+ Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
+ dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
+ size_t data_in_sz)
+{
+ int prp_size = NVME_PRP_SIZE;
+ __le64 *prp_entry, *prp1_entry, *prp2_entry;
+ __le64 *prp_page;
+ dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
+ u32 offset, entry_len;
+ u32 page_mask_result, page_mask;
+ size_t length;
+
+ /*
+ * Not all commands require a data transfer. If no data, just return
+ * without constructing any PRP.
+ */
+ if (!data_in_sz && !data_out_sz)
+ return;
+ /*
+ * Set pointers to PRP1 and PRP2, which are in the NVMe command.
+ * PRP1 is located at a 24 byte offset from the start of the NVMe
+ * command. Then set the current PRP entry pointer to PRP1.
+ */
+ prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
+ NVME_CMD_PRP1_OFFSET);
+ prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
+ NVME_CMD_PRP2_OFFSET);
+ prp_entry = prp1_entry;
+ /*
+ * For the PRP entries, use the specially allocated buffer of
+ * contiguous memory.
+ */
+ prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
+ prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
+
+ /*
+ * Check if we are within 1 entry of a page boundary we don't
+ * want our first entry to be a PRP List entry.
+ */
+ page_mask = ioc->page_size - 1;
+ page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
+ if (!page_mask_result) {
+ /* Bump up to next page boundary. */
+ prp_page = (__le64 *)((u8 *)prp_page + prp_size);
+ prp_page_dma = prp_page_dma + prp_size;
+ }
+
+ /*
+ * Set PRP physical pointer, which initially points to the current PRP
+ * DMA memory page.
+ */
+ prp_entry_dma = prp_page_dma;
+
+ /* Get physical address and length of the data buffer. */
+ if (data_in_sz) {
+ dma_addr = data_in_dma;
+ length = data_in_sz;
+ } else {
+ dma_addr = data_out_dma;
+ length = data_out_sz;
+ }
+
+ /* Loop while the length is not zero. */
+ while (length) {
+ /*
+ * Check if we need to put a list pointer here if we are at
+ * page boundary - prp_size (8 bytes).
+ */
+ page_mask_result = (prp_entry_dma + prp_size) & page_mask;
+ if (!page_mask_result) {
+ /*
+ * This is the last entry in a PRP List, so we need to
+ * put a PRP list pointer here. What this does is:
+ * - bump the current memory pointer to the next
+ * address, which will be the next full page.
+ * - set the PRP Entry to point to that page. This
+ * is now the PRP List pointer.
+ * - bump the PRP Entry pointer the start of the
+ * next page. Since all of this PRP memory is
+ * contiguous, no need to get a new page - it's
+ * just the next address.
+ */
+ prp_entry_dma++;
+ *prp_entry = cpu_to_le64(prp_entry_dma);
+ prp_entry++;
+ }
+
+ /* Need to handle if entry will be part of a page. */
+ offset = dma_addr & page_mask;
+ entry_len = ioc->page_size - offset;
+
+ if (prp_entry == prp1_entry) {
+ /*
+ * Must fill in the first PRP pointer (PRP1) before
+ * moving on.
+ */
+ *prp1_entry = cpu_to_le64(dma_addr);
+
+ /*
+ * Now point to the second PRP entry within the
+ * command (PRP2).
+ */
+ prp_entry = prp2_entry;
+ } else if (prp_entry == prp2_entry) {
+ /*
+ * Should the PRP2 entry be a PRP List pointer or just
+ * a regular PRP pointer? If there is more than one
+ * more page of data, must use a PRP List pointer.
+ */
+ if (length > ioc->page_size) {
+ /*
+ * PRP2 will contain a PRP List pointer because
+ * more PRP's are needed with this command. The
+ * list will start at the beginning of the
+ * contiguous buffer.
+ */
+ *prp2_entry = cpu_to_le64(prp_entry_dma);
+
+ /*
+ * The next PRP Entry will be the start of the
+ * first PRP List.
+ */
+ prp_entry = prp_page;
+ } else {
+ /*
+ * After this, the PRP Entries are complete.
+ * This command uses 2 PRP's and no PRP list.
+ */
+ *prp2_entry = cpu_to_le64(dma_addr);
+ }
+ } else {
+ /*
+ * Put entry in list and bump the addresses.
+ *
+ * After PRP1 and PRP2 are filled in, this will fill in
+ * all remaining PRP entries in a PRP List, one per
+ * each time through the loop.
+ */
+ *prp_entry = cpu_to_le64(dma_addr);
+ prp_entry++;
+ prp_entry_dma++;
+ }
+
+ /*
+ * Bump the phys address of the command's data buffer by the
+ * entry_len.
+ */
+ dma_addr += entry_len;
+
+ /* Decrement length accounting for last partial page. */
+ if (entry_len > length)
+ length = 0;
+ else
+ length -= entry_len;
+ }
+}
+
+/**
+ * base_make_prp_nvme -
+ * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
+ *
+ * @ioc: per adapter object
+ * @scmd: SCSI command from the mid-layer
+ * @mpi_request: mpi request
+ * @smid: msg Index
+ * @sge_count: scatter gather element count.
+ *
+ * Returns: true: PRPs are built
+ * false: IEEE SGLs needs to be built
+ */
+static void
+base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
+ struct scsi_cmnd *scmd,
+ Mpi25SCSIIORequest_t *mpi_request,
+ u16 smid, int sge_count)
+{
+ int sge_len, num_prp_in_chain = 0;
+ Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
+ __le64 *curr_buff;
+ dma_addr_t msg_dma, sge_addr, offset;
+ u32 page_mask, page_mask_result;
+ struct scatterlist *sg_scmd;
+ u32 first_prp_len;
+ int data_len = scsi_bufflen(scmd);
+ u32 nvme_pg_size;
+
+ nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
+ /*
+ * Nvme has a very convoluted prp format. One prp is required
+ * for each page or partial page. Driver need to split up OS sg_list
+ * entries if it is longer than one page or cross a page
+ * boundary. Driver also have to insert a PRP list pointer entry as
+ * the last entry in each physical page of the PRP list.
+ *
+ * NOTE: The first PRP "entry" is actually placed in the first
+ * SGL entry in the main message as IEEE 64 format. The 2nd
+ * entry in the main message is the chain element, and the rest
+ * of the PRP entries are built in the contiguous pcie buffer.
+ */
+ page_mask = nvme_pg_size - 1;
+
+ /*
+ * Native SGL is needed.
+ * Put a chain element in main message frame that points to the first
+ * chain buffer.
+ *
+ * NOTE: The ChainOffset field must be 0 when using a chain pointer to
+ * a native SGL.
+ */
+
+ /* Set main message chain element pointer */
+ main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
+ /*
+ * For NVMe the chain element needs to be the 2nd SG entry in the main
+ * message.
+ */
+ main_chain_element = (Mpi25IeeeSgeChain64_t *)
+ ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
+
+ /*
+ * For the PRP entries, use the specially allocated buffer of
+ * contiguous memory. Normal chain buffers can't be used
+ * because each chain buffer would need to be the size of an OS
+ * page (4k).
+ */
+ curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
+ msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
+
+ main_chain_element->Address = cpu_to_le64(msg_dma);
+ main_chain_element->NextChainOffset = 0;
+ main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
+ MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
+ MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
+
+ /* Build first prp, sge need not to be page aligned*/
+ ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
+ sg_scmd = scsi_sglist(scmd);
+ sge_addr = sg_dma_address(sg_scmd);
+ sge_len = sg_dma_len(sg_scmd);
+
+ offset = sge_addr & page_mask;
+ first_prp_len = nvme_pg_size - offset;
+
+ ptr_first_sgl->Address = cpu_to_le64(sge_addr);
+ ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
+
+ data_len -= first_prp_len;
+
+ if (sge_len > first_prp_len) {
+ sge_addr += first_prp_len;
+ sge_len -= first_prp_len;
+ } else if (data_len && (sge_len == first_prp_len)) {
+ sg_scmd = sg_next(sg_scmd);
+ sge_addr = sg_dma_address(sg_scmd);
+ sge_len = sg_dma_len(sg_scmd);
+ }
+
+ for (;;) {
+ offset = sge_addr & page_mask;
+
+ /* Put PRP pointer due to page boundary*/
+ page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
+ if (unlikely(!page_mask_result)) {
+ scmd_printk(KERN_NOTICE,
+ scmd, "page boundary curr_buff: 0x%p\n",
+ curr_buff);
+ msg_dma += 8;
+ *curr_buff = cpu_to_le64(msg_dma);
+ curr_buff++;
+ num_prp_in_chain++;
+ }
+
+ *curr_buff = cpu_to_le64(sge_addr);
+ curr_buff++;
+ msg_dma += 8;
+ num_prp_in_chain++;
+
+ sge_addr += nvme_pg_size;
+ sge_len -= nvme_pg_size;
+ data_len -= nvme_pg_size;
+
+ if (data_len <= 0)
+ break;
+
+ if (sge_len > 0)
+ continue;
+
+ sg_scmd = sg_next(sg_scmd);
+ sge_addr = sg_dma_address(sg_scmd);
+ sge_len = sg_dma_len(sg_scmd);
+ }
+
+ main_chain_element->Length =
+ cpu_to_le32(num_prp_in_chain * sizeof(u64));
+ return;
+}
+
+static bool
+base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
+ struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
+{
+ u32 data_length = 0;
+ struct scatterlist *sg_scmd;
+ bool build_prp = true;
+
+ data_length = scsi_bufflen(scmd);
+ sg_scmd = scsi_sglist(scmd);
+
+ /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
+ * we built IEEE SGL
+ */
+ if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
+ build_prp = false;
+
+ return build_prp;
+}
+
+/**
+ * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
+ * determine if the driver needs to build a native SGL. If so, that native
+ * SGL is built in the special contiguous buffers allocated especially for
+ * PCIe SGL creation. If the driver will not build a native SGL, return
+ * TRUE and a normal IEEE SGL will be built. Currently this routine
+ * supports NVMe.
+ * @ioc: per adapter object
+ * @mpi_request: mf request pointer
+ * @smid: system request message index
+ * @scmd: scsi command
+ * @pcie_device: points to the PCIe device's info
+ *
+ * Returns 0 if native SGL was built, 1 if no SGL was built
+ */
+static int
+_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
+ Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
+ struct _pcie_device *pcie_device)
+{
+ struct scatterlist *sg_scmd;
+ int sges_left;
+
+ /* Get the SG list pointer and info. */
+ sg_scmd = scsi_sglist(scmd);
+ sges_left = scsi_dma_map(scmd);
+ if (sges_left < 0) {
+ sdev_printk(KERN_ERR, scmd->device,
+ "scsi_dma_map failed: request for %d bytes!\n",
+ scsi_bufflen(scmd));
+ return 1;
+ }
+
+ /* Check if we need to build a native SG list. */
+ if (base_is_prp_possible(ioc, pcie_device,
+ scmd, sges_left) == 0) {
+ /* We built a native SG list, just return. */
+ goto out;
+ }
+
+ /*
+ * Build native NVMe PRP.
+ */
+ base_make_prp_nvme(ioc, scmd, mpi_request,
+ smid, sges_left);
+
+ return 0;
+out:
+ scsi_dma_unmap(scmd);
+ return 1;
+}
+
+/**
* _base_add_sg_single_ieee - add sg element for IEEE format
* @paddr: virtual address for SGE
* @flags: SGE flags
@@ -1391,9 +1846,11 @@ _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
/**
* _base_build_sg_scmd - main sg creation routine
+ * pcie_device is unused here!
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
+ * @unused: unused pcie_device pointer
* Context: none.
*
* The main routine that builds scatter gather table from a given
@@ -1403,7 +1860,7 @@ _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
*/
static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
- struct scsi_cmnd *scmd, u16 smid)
+ struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
{
Mpi2SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
@@ -1537,6 +1994,8 @@ _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
+ * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
+ * constructed on need.
* Context: none.
*
* The main routine that builds scatter gather table from a given
@@ -1546,9 +2005,9 @@ _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
*/
static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
- struct scsi_cmnd *scmd, u16 smid)
+ struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
{
- Mpi2SCSIIORequest_t *mpi_request;
+ Mpi25SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
@@ -1571,6 +2030,13 @@ _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
+ /* Check if we need to build a native SG list. */
+ if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
+ smid, scmd, pcie_device) == 0)) {
+ /* We built a native SG list, just return. */
+ return 0;
+ }
+
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
@@ -1582,12 +2048,12 @@ _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
sg_local = &mpi_request->SGL;
sges_in_segment = (ioc->request_sz -
- offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
+ offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
- (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
+ (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
/* fill in main message segment when there is a chain following */
while (sges_in_segment > 1) {
@@ -1990,7 +2456,7 @@ _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
ioc->cpu_count, max_msix_vectors);
if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
- local_max_msix_vectors = 8;
+ local_max_msix_vectors = (reset_devices) ? 1 : 8;
else
local_max_msix_vectors = max_msix_vectors;
@@ -2267,6 +2733,32 @@ mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
}
/**
+ * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
+ * @ioc: per adapter object
+ * @smid: system request message index
+ *
+ * Returns virt pointer to a PCIe SGL.
+ */
+void *
+mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
+{
+ return (void *)(ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl);
+}
+
+/**
+ * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
+ * @ioc: per adapter object
+ * @smid: system request message index
+ *
+ * Returns phys pointer to the address of the PCIe buffer.
+ */
+dma_addr_t
+mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
+{
+ return ioc->scsi_lookup[smid - 1].pcie_sg_list.pcie_sgl_dma;
+}
+
+/**
* mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
* @ioc: per adapter object
* @phys_addr: lower 32 physical addr of the reply
@@ -2544,6 +3036,30 @@ _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
}
/**
+ * _base_put_smid_nvme_encap - send NVMe encapsulated request to
+ * firmware
+ * @ioc: per adapter object
+ * @smid: system request message index
+ *
+ * Return nothing.
+ */
+static void
+_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
+{
+ Mpi2RequestDescriptorUnion_t descriptor;
+ u64 *request = (u64 *)&descriptor;
+
+ descriptor.Default.RequestFlags =
+ MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
+ descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
+ descriptor.Default.SMID = cpu_to_le16(smid);
+ descriptor.Default.LMID = 0;
+ descriptor.Default.DescriptorTypeDependent = 0;
+ _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
+ &ioc->scsi_lookup_lock);
+}
+
+/**
* _base_put_smid_default - Default, primarily used for config pages
* @ioc: per adapter object
* @smid: system request message index
@@ -2634,6 +3150,27 @@ _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
}
/**
+ * _base_put_smid_nvme_encap_atomic - send NVMe encapsulated request to
+ * firmware using Atomic Request Descriptor
+ * @ioc: per adapter object
+ * @smid: system request message index
+ *
+ * Return nothing.
+ */
+static void
+_base_put_smid_nvme_encap_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
+{
+ Mpi26AtomicRequestDescriptor_t descriptor;
+ u32 *request = (u32 *)&descriptor;
+
+ descriptor.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
+ descriptor.MSIxIndex = _base_get_msix_index(ioc);
+ descriptor.SMID = cpu_to_le16(smid);
+
+ writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
+}
+
+/**
* _base_put_smid_default - Default, primarily used for config pages
* use Atomic Request Descriptor
* @ioc: per adapter object
@@ -2945,6 +3482,11 @@ _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
_base_display_OEMs_branding(ioc);
+ if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
+ pr_info("%sNVMe", i ? "," : "");
+ i++;
+ }
+
pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
@@ -3245,6 +3787,17 @@ _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
kfree(ioc->reply_post);
}
+ if (ioc->pcie_sgl_dma_pool) {
+ for (i = 0; i < ioc->scsiio_depth; i++) {
+ if (ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl)
+ pci_pool_free(ioc->pcie_sgl_dma_pool,
+ ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl,
+ ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl_dma);
+ }
+ if (ioc->pcie_sgl_dma_pool)
+ pci_pool_destroy(ioc->pcie_sgl_dma_pool);
+ }
+
if (ioc->config_page) {
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"config_page(0x%p): free\n", ioc->name,
@@ -3286,7 +3839,7 @@ _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
u16 chains_needed_per_io;
u32 sz, total_sz, reply_post_free_sz;
u32 retry_sz;
- u16 max_request_credit;
+ u16 max_request_credit, nvme_blocks_needed;
unsigned short sg_tablesize;
u16 sge_size;
int i;
@@ -3308,6 +3861,11 @@ _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
sg_tablesize = MPT3SAS_SG_DEPTH;
}
+ /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
+ if (reset_devices)
+ sg_tablesize = min_t(unsigned short, sg_tablesize,
+ MPT_KDUMP_MIN_PHYS_SEGMENTS);
+
if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
@@ -3340,7 +3898,10 @@ _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
ioc->internal_depth, facts->RequestCredit);
if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
max_request_credit = MAX_HBA_QUEUE_DEPTH;
- } else
+ } else if (reset_devices)
+ max_request_credit = min_t(u16, facts->RequestCredit,
+ (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
+ else
max_request_credit = min_t(u16, facts->RequestCredit,
MAX_HBA_QUEUE_DEPTH);
@@ -3622,7 +4183,52 @@ _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
"internal(0x%p): depth(%d), start smid(%d)\n",
ioc->name, ioc->internal,
ioc->internal_depth, ioc->internal_smid));
+ /*
+ * The number of NVMe page sized blocks needed is:
+ * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
+ * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
+ * that is placed in the main message frame. 8 is the size of each PRP
+ * entry or PRP list pointer entry. 8 is subtracted from page_size
+ * because of the PRP list pointer entry at the end of a page, so this
+ * is not counted as a PRP entry. The 1 added page is a round up.
+ *
+ * To avoid allocation failures due to the amount of memory that could
+ * be required for NVMe PRP's, only each set of NVMe blocks will be
+ * contiguous, so a new set is allocated for each possible I/O.
+ */
+ if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
+ nvme_blocks_needed =
+ (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
+ nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
+ nvme_blocks_needed++;
+
+ sz = nvme_blocks_needed * ioc->page_size;
+ ioc->pcie_sgl_dma_pool =
+ pci_pool_create("PCIe SGL pool", ioc->pdev, sz, 16, 0);
+ if (!ioc->pcie_sgl_dma_pool) {
+ pr_info(MPT3SAS_FMT
+ "PCIe SGL pool: pci_pool_create failed\n",
+ ioc->name);
+ goto out;
+ }
+ for (i = 0; i < ioc->scsiio_depth; i++) {
+ ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl =
+ pci_pool_alloc(ioc->pcie_sgl_dma_pool,
+ GFP_KERNEL,
+ &ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl_dma);
+ if (!ioc->scsi_lookup[i].pcie_sg_list.pcie_sgl) {
+ pr_info(MPT3SAS_FMT
+ "PCIe SGL pool: pci_pool_alloc failed\n",
+ ioc->name);
+ goto out;
+ }
+ }
+ dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
+ "element_size(%d), pool_size(%d kB)\n", ioc->name,
+ ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
+ total_sz += sz * ioc->scsiio_depth;
+ }
/* sense buffers, 4 byte align */
sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
@@ -4446,7 +5052,7 @@ _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
ioc->ir_firmware = 1;
if ((facts->IOCCapabilities &
- MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
+ MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
ioc->rdpq_array_capable = 1;
if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
ioc->atomic_desc_capable = 1;
@@ -4467,6 +5073,19 @@ _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
le16_to_cpu(mpi_reply.HighPriorityCredit);
facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
+ facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
+
+ /*
+ * Get the Page Size from IOC Facts. If it's 0, default to 4k.
+ */
+ ioc->page_size = 1 << facts->CurrentHostPageSize;
+ if (ioc->page_size == 1) {
+ pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
+ "default host page size to 4k\n", ioc->name);
+ ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
+ }
+ dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
+ ioc->name, facts->CurrentHostPageSize));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"hba queue depth(%d), max chains per io(%d)\n",
@@ -4506,6 +5125,7 @@ _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
mpi_request.VP_ID = 0;
mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
+ mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
if (_base_is_controller_msix_enabled(ioc))
mpi_request.HostMSIxVectors = ioc->reply_queue_count;
@@ -5374,6 +5994,7 @@ mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
*/
ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
ioc->build_sg = &_base_build_sg_ieee;
+ ioc->build_nvme_prp = &_base_build_nvme_prp;
ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
@@ -5385,11 +6006,13 @@ mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
+ ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap_atomic;
} else {
ioc->put_smid_default = &_base_put_smid_default;
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
ioc->put_smid_fast_path = &_base_put_smid_fast_path;
ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
+ ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap;
}
@@ -5517,9 +6140,16 @@ mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
- if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
- _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
-
+ _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
+ if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
+ if (ioc->is_gen35_ioc) {
+ _base_unmask_events(ioc,
+ MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
+ _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
+ _base_unmask_events(ioc,
+ MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
+ }
+ }
r = _base_make_ioc_operational(ioc);
if (r)
goto out_free_resources;