aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/staging/lustre/include/linux/libcfs/libcfs_heap.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/staging/lustre/include/linux/libcfs/libcfs_heap.h')
-rw-r--r--drivers/staging/lustre/include/linux/libcfs/libcfs_heap.h200
1 files changed, 200 insertions, 0 deletions
diff --git a/drivers/staging/lustre/include/linux/libcfs/libcfs_heap.h b/drivers/staging/lustre/include/linux/libcfs/libcfs_heap.h
new file mode 100644
index 000000000000..bfa6d7b245ea
--- /dev/null
+++ b/drivers/staging/lustre/include/linux/libcfs/libcfs_heap.h
@@ -0,0 +1,200 @@
+/*
+ * GPL HEADER START
+ *
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 only,
+ * as published by the Free Software Foundation.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License version 2 for more details. A copy is
+ * included in the COPYING file that accompanied this code.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * GPL HEADER END
+ */
+/*
+ * Copyright (c) 2011 Intel Corporation
+ */
+/*
+ * libcfs/include/libcfs/heap.h
+ *
+ * Author: Eric Barton <eeb@whamcloud.com>
+ * Liang Zhen <liang@whamcloud.com>
+ */
+
+#ifndef __LIBCFS_HEAP_H__
+#define __LIBCFS_HEAP_H__
+
+/** \defgroup heap Binary heap
+ *
+ * The binary heap is a scalable data structure created using a binary tree. It
+ * is capable of maintaining large sets of elements sorted usually by one or
+ * more element properties, but really based on anything that can be used as a
+ * binary predicate in order to determine the relevant ordering of any two nodes
+ * that belong to the set. There is no search operation, rather the intention is
+ * for the element of the lowest priority which will always be at the root of
+ * the tree (as this is an implementation of a min-heap) to be removed by users
+ * for consumption.
+ *
+ * Users of the heap should embed a \e cfs_binheap_node_t object instance on
+ * every object of the set that they wish the binary heap instance to handle,
+ * and (at a minimum) provide a cfs_binheap_ops_t::hop_compare() implementation
+ * which is used by the heap as the binary predicate during its internal sorting
+ * operations.
+ *
+ * The current implementation enforces no locking scheme, and so assumes the
+ * user caters for locking between calls to insert, delete and lookup
+ * operations. Since the only consumer for the data structure at this point
+ * are NRS policies, and these operate on a per-CPT basis, binary heap instances
+ * are tied to a specific CPT.
+ * @{
+ */
+
+/**
+ * Binary heap node.
+ *
+ * Objects of this type are embedded into objects of the ordered set that is to
+ * be maintained by a \e cfs_binheap_t instance.
+ */
+typedef struct {
+ /** Index into the binary tree */
+ unsigned int chn_index;
+} cfs_binheap_node_t;
+
+#define CBH_SHIFT 9
+#define CBH_SIZE (1 << CBH_SHIFT) /* # ptrs per level */
+#define CBH_MASK (CBH_SIZE - 1)
+#define CBH_NOB (CBH_SIZE * sizeof(cfs_binheap_node_t *))
+
+#define CBH_POISON 0xdeadbeef
+
+/**
+ * Binary heap flags.
+ */
+enum {
+ CBH_FLAG_ATOMIC_GROW = 1,
+};
+
+struct cfs_binheap;
+
+/**
+ * Binary heap operations.
+ */
+typedef struct {
+ /**
+ * Called right before inserting a node into the binary heap.
+ *
+ * Implementing this operation is optional.
+ *
+ * \param[in] h The heap
+ * \param[in] e The node
+ *
+ * \retval 0 success
+ * \retval != 0 error
+ */
+ int (*hop_enter)(struct cfs_binheap *h,
+ cfs_binheap_node_t *e);
+ /**
+ * Called right after removing a node from the binary heap.
+ *
+ * Implementing this operation is optional.
+ *
+ * \param[in] h The heap
+ * \param[in] e The node
+ */
+ void (*hop_exit)(struct cfs_binheap *h,
+ cfs_binheap_node_t *e);
+ /**
+ * A binary predicate which is called during internal heap sorting
+ * operations, and used in order to determine the relevant ordering of
+ * two heap nodes.
+ *
+ * Implementing this operation is mandatory.
+ *
+ * \param[in] a The first heap node
+ * \param[in] b The second heap node
+ *
+ * \retval 0 Node a > node b
+ * \retval 1 Node a < node b
+ *
+ * \see cfs_binheap_bubble()
+ * \see cfs_biheap_sink()
+ */
+ int (*hop_compare)(cfs_binheap_node_t *a,
+ cfs_binheap_node_t *b);
+} cfs_binheap_ops_t;
+
+/**
+ * Binary heap object.
+ *
+ * Sorts elements of type \e cfs_binheap_node_t
+ */
+typedef struct cfs_binheap {
+ /** Triple indirect */
+ cfs_binheap_node_t ****cbh_elements3;
+ /** double indirect */
+ cfs_binheap_node_t ***cbh_elements2;
+ /** single indirect */
+ cfs_binheap_node_t **cbh_elements1;
+ /** # elements referenced */
+ unsigned int cbh_nelements;
+ /** high water mark */
+ unsigned int cbh_hwm;
+ /** user flags */
+ unsigned int cbh_flags;
+ /** operations table */
+ cfs_binheap_ops_t *cbh_ops;
+ /** private data */
+ void *cbh_private;
+ /** associated CPT table */
+ struct cfs_cpt_table *cbh_cptab;
+ /** associated CPT id of this cfs_binheap_t::cbh_cptab */
+ int cbh_cptid;
+} cfs_binheap_t;
+
+void cfs_binheap_destroy(cfs_binheap_t *h);
+cfs_binheap_t *cfs_binheap_create(cfs_binheap_ops_t *ops, unsigned int flags,
+ unsigned count, void *arg,
+ struct cfs_cpt_table *cptab, int cptid);
+cfs_binheap_node_t *cfs_binheap_find(cfs_binheap_t *h, unsigned int idx);
+int cfs_binheap_insert(cfs_binheap_t *h, cfs_binheap_node_t *e);
+void cfs_binheap_remove(cfs_binheap_t *h, cfs_binheap_node_t *e);
+
+static inline int
+cfs_binheap_size(cfs_binheap_t *h)
+{
+ return h->cbh_nelements;
+}
+
+static inline int
+cfs_binheap_is_empty(cfs_binheap_t *h)
+{
+ return h->cbh_nelements == 0;
+}
+
+static inline cfs_binheap_node_t *
+cfs_binheap_root(cfs_binheap_t *h)
+{
+ return cfs_binheap_find(h, 0);
+}
+
+static inline cfs_binheap_node_t *
+cfs_binheap_remove_root(cfs_binheap_t *h)
+{
+ cfs_binheap_node_t *e = cfs_binheap_find(h, 0);
+
+ if (e != NULL)
+ cfs_binheap_remove(h, e);
+ return e;
+}
+
+/** @} heap */
+
+#endif /* __LIBCFS_HEAP_H__ */