aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/rcupdate.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/rcupdate.h')
-rw-r--r--include/linux/rcupdate.h45
1 files changed, 36 insertions, 9 deletions
diff --git a/include/linux/rcupdate.h b/include/linux/rcupdate.h
index 6a94cc8b1ca0..d231aa17b1d7 100644
--- a/include/linux/rcupdate.h
+++ b/include/linux/rcupdate.h
@@ -826,15 +826,14 @@ static inline void rcu_preempt_sleep_check(void)
* read-side critical section that would block in a !PREEMPT kernel.
* But if you want the full story, read on!
*
- * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
- * is illegal to block while in an RCU read-side critical section. In
- * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
- * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
- * be preempted, but explicit blocking is illegal. Finally, in preemptible
- * RCU implementations in real-time (with -rt patchset) kernel builds,
- * RCU read-side critical sections may be preempted and they may also
- * block, but only when acquiring spinlocks that are subject to priority
- * inheritance.
+ * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
+ * it is illegal to block while in an RCU read-side critical section.
+ * In preemptible RCU implementations (TREE_PREEMPT_RCU) in CONFIG_PREEMPT
+ * kernel builds, RCU read-side critical sections may be preempted,
+ * but explicit blocking is illegal. Finally, in preemptible RCU
+ * implementations in real-time (with -rt patchset) kernel builds, RCU
+ * read-side critical sections may be preempted and they may also block, but
+ * only when acquiring spinlocks that are subject to priority inheritance.
*/
static inline void rcu_read_lock(void)
{
@@ -858,6 +857,34 @@ static inline void rcu_read_lock(void)
/**
* rcu_read_unlock() - marks the end of an RCU read-side critical section.
*
+ * In most situations, rcu_read_unlock() is immune from deadlock.
+ * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
+ * is responsible for deboosting, which it does via rt_mutex_unlock().
+ * Unfortunately, this function acquires the scheduler's runqueue and
+ * priority-inheritance spinlocks. This means that deadlock could result
+ * if the caller of rcu_read_unlock() already holds one of these locks or
+ * any lock that is ever acquired while holding them.
+ *
+ * That said, RCU readers are never priority boosted unless they were
+ * preempted. Therefore, one way to avoid deadlock is to make sure
+ * that preemption never happens within any RCU read-side critical
+ * section whose outermost rcu_read_unlock() is called with one of
+ * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
+ * a number of ways, for example, by invoking preempt_disable() before
+ * critical section's outermost rcu_read_lock().
+ *
+ * Given that the set of locks acquired by rt_mutex_unlock() might change
+ * at any time, a somewhat more future-proofed approach is to make sure
+ * that that preemption never happens within any RCU read-side critical
+ * section whose outermost rcu_read_unlock() is called with irqs disabled.
+ * This approach relies on the fact that rt_mutex_unlock() currently only
+ * acquires irq-disabled locks.
+ *
+ * The second of these two approaches is best in most situations,
+ * however, the first approach can also be useful, at least to those
+ * developers willing to keep abreast of the set of locks acquired by
+ * rt_mutex_unlock().
+ *
* See rcu_read_lock() for more information.
*/
static inline void rcu_read_unlock(void)