aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Kconfig.preempt2
-rw-r--r--kernel/Makefile2
-rw-r--r--kernel/audit_watch.c2
-rw-r--r--kernel/bpf/Makefile1
-rw-r--r--kernel/bpf/arraymap.c263
-rw-r--r--kernel/bpf/btf.c796
-rw-r--r--kernel/bpf/cgroup.c8
-rw-r--r--kernel/bpf/core.c129
-rw-r--r--kernel/bpf/devmap.c74
-rw-r--r--kernel/bpf/helpers.c2
-rw-r--r--kernel/bpf/inode.c7
-rw-r--r--kernel/bpf/local_storage.c2
-rw-r--r--kernel/bpf/map_in_map.c7
-rw-r--r--kernel/bpf/offload.c4
-rw-r--r--kernel/bpf/stackmap.c9
-rw-r--r--kernel/bpf/syscall.c387
-rw-r--r--kernel/bpf/trampoline.c253
-rw-r--r--kernel/bpf/verifier.c543
-rw-r--r--kernel/bpf/xskmap.c118
-rw-r--r--kernel/cgroup/cgroup-internal.h5
-rw-r--r--kernel/cgroup/cgroup-v1.c5
-rw-r--r--kernel/cgroup/cgroup.c330
-rw-r--r--kernel/cgroup/cpuset.c2
-rw-r--r--kernel/cgroup/freezer.c9
-rw-r--r--kernel/cgroup/pids.c11
-rw-r--r--kernel/cgroup/rstat.c46
-rw-r--r--kernel/context_tracking.c6
-rw-r--r--kernel/cpu.c29
-rw-r--r--kernel/dma/debug.c2
-rw-r--r--kernel/dma/direct.c13
-rw-r--r--kernel/events/core.c404
-rw-r--r--kernel/events/internal.h1
-rw-r--r--kernel/events/ring_buffer.c60
-rw-r--r--kernel/exit.c32
-rw-r--r--kernel/extable.c2
-rw-r--r--kernel/fork.c179
-rw-r--r--kernel/futex.c326
-rw-r--r--kernel/irq/irqdomain.c2
-rw-r--r--kernel/livepatch/Makefile2
-rw-r--r--kernel/livepatch/core.c44
-rw-r--r--kernel/livepatch/core.h5
-rw-r--r--kernel/livepatch/state.c119
-rw-r--r--kernel/livepatch/state.h9
-rw-r--r--kernel/livepatch/transition.c12
-rw-r--r--kernel/locking/lockdep.c7
-rw-r--r--kernel/locking/locktorture.c9
-rw-r--r--kernel/locking/mutex.c8
-rw-r--r--kernel/locking/rtmutex.c6
-rw-r--r--kernel/locking/rwsem.c10
-rw-r--r--kernel/module.c2
-rw-r--r--kernel/panic.c11
-rw-r--r--kernel/pid.c86
-rw-r--r--kernel/pid_namespace.c2
-rw-r--r--kernel/power/qos.c8
-rw-r--r--kernel/power/snapshot.c9
-rw-r--r--kernel/printk/printk.c10
-rw-r--r--kernel/rcu/rcu.h4
-rw-r--r--kernel/rcu/rcu_segcblist.c6
-rw-r--r--kernel/rcu/rcuperf.c16
-rw-r--r--kernel/rcu/rcutorture.c44
-rw-r--r--kernel/rcu/tree.c73
-rw-r--r--kernel/rcu/tree.h1
-rw-r--r--kernel/rcu/tree_plugin.h2
-rw-r--r--kernel/sched/core.c64
-rw-r--r--kernel/sched/cputime.c288
-rw-r--r--kernel/sched/deadline.c52
-rw-r--r--kernel/sched/fair.c1431
-rw-r--r--kernel/sched/features.h1
-rw-r--r--kernel/sched/idle.c43
-rw-r--r--kernel/sched/rt.c49
-rw-r--r--kernel/sched/sched.h55
-rw-r--r--kernel/sched/stop_task.c25
-rw-r--r--kernel/sched/topology.c9
-rw-r--r--kernel/signal.c2
-rw-r--r--kernel/stacktrace.c6
-rw-r--r--kernel/stop_machine.c1
-rw-r--r--kernel/sysctl-test.c392
-rw-r--r--kernel/time/ntp.c2
-rw-r--r--kernel/time/tick-sched.c13
-rw-r--r--kernel/time/vsyscall.c9
-rw-r--r--kernel/trace/Kconfig1
-rw-r--r--kernel/trace/blktrace.c84
-rw-r--r--kernel/trace/bpf_trace.c227
-rw-r--r--kernel/trace/ftrace.c6
-rw-r--r--kernel/trace/trace_benchmark.c4
-rw-r--r--kernel/trace/trace_event_perf.c15
-rw-r--r--kernel/workqueue.c97
87 files changed, 5702 insertions, 1752 deletions
diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
index deff97217496..bf82259cff96 100644
--- a/kernel/Kconfig.preempt
+++ b/kernel/Kconfig.preempt
@@ -65,7 +65,7 @@ config PREEMPT_RT
preemptible priority-inheritance aware variants, enforcing
interrupt threading and introducing mechanisms to break up long
non-preemptible sections. This makes the kernel, except for very
- low level and critical code pathes (entry code, scheduler, low
+ low level and critical code paths (entry code, scheduler, low
level interrupt handling) fully preemptible and brings most
execution contexts under scheduler control.
diff --git a/kernel/Makefile b/kernel/Makefile
index daad787fb795..f0902a7bd1b3 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -115,6 +115,8 @@ obj-$(CONFIG_TORTURE_TEST) += torture.o
obj-$(CONFIG_HAS_IOMEM) += iomem.o
obj-$(CONFIG_RSEQ) += rseq.o
+obj-$(CONFIG_SYSCTL_KUNIT_TEST) += sysctl-test.o
+
obj-$(CONFIG_GCC_PLUGIN_STACKLEAK) += stackleak.o
KASAN_SANITIZE_stackleak.o := n
KCOV_INSTRUMENT_stackleak.o := n
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c
index 1f31c2f1e6fc..4508d5e0cf69 100644
--- a/kernel/audit_watch.c
+++ b/kernel/audit_watch.c
@@ -351,12 +351,12 @@ static int audit_get_nd(struct audit_watch *watch, struct path *parent)
struct dentry *d = kern_path_locked(watch->path, parent);
if (IS_ERR(d))
return PTR_ERR(d);
- inode_unlock(d_backing_inode(parent->dentry));
if (d_is_positive(d)) {
/* update watch filter fields */
watch->dev = d->d_sb->s_dev;
watch->ino = d_backing_inode(d)->i_ino;
}
+ inode_unlock(d_backing_inode(parent->dentry));
dput(d);
return 0;
}
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile
index e1d9adb212f9..3f671bf617e8 100644
--- a/kernel/bpf/Makefile
+++ b/kernel/bpf/Makefile
@@ -6,6 +6,7 @@ obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o tnum.o
obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o map_in_map.o
obj-$(CONFIG_BPF_SYSCALL) += local_storage.o queue_stack_maps.o
obj-$(CONFIG_BPF_SYSCALL) += disasm.o
+obj-$(CONFIG_BPF_JIT) += trampoline.o
obj-$(CONFIG_BPF_SYSCALL) += btf.o
ifeq ($(CONFIG_NET),y)
obj-$(CONFIG_BPF_SYSCALL) += devmap.o
diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c
index 1c65ce0098a9..f0d19bbb9211 100644
--- a/kernel/bpf/arraymap.c
+++ b/kernel/bpf/arraymap.c
@@ -14,7 +14,7 @@
#include "map_in_map.h"
#define ARRAY_CREATE_FLAG_MASK \
- (BPF_F_NUMA_NODE | BPF_F_ACCESS_MASK)
+ (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK)
static void bpf_array_free_percpu(struct bpf_array *array)
{
@@ -59,6 +59,10 @@ int array_map_alloc_check(union bpf_attr *attr)
(percpu && numa_node != NUMA_NO_NODE))
return -EINVAL;
+ if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
+ attr->map_flags & BPF_F_MMAPABLE)
+ return -EINVAL;
+
if (attr->value_size > KMALLOC_MAX_SIZE)
/* if value_size is bigger, the user space won't be able to
* access the elements.
@@ -102,10 +106,19 @@ static struct bpf_map *array_map_alloc(union bpf_attr *attr)
}
array_size = sizeof(*array);
- if (percpu)
+ if (percpu) {
array_size += (u64) max_entries * sizeof(void *);
- else
- array_size += (u64) max_entries * elem_size;
+ } else {
+ /* rely on vmalloc() to return page-aligned memory and
+ * ensure array->value is exactly page-aligned
+ */
+ if (attr->map_flags & BPF_F_MMAPABLE) {
+ array_size = PAGE_ALIGN(array_size);
+ array_size += PAGE_ALIGN((u64) max_entries * elem_size);
+ } else {
+ array_size += (u64) max_entries * elem_size;
+ }
+ }
/* make sure there is no u32 overflow later in round_up() */
cost = array_size;
@@ -117,7 +130,20 @@ static struct bpf_map *array_map_alloc(union bpf_attr *attr)
return ERR_PTR(ret);
/* allocate all map elements and zero-initialize them */
- array = bpf_map_area_alloc(array_size, numa_node);
+ if (attr->map_flags & BPF_F_MMAPABLE) {
+ void *data;
+
+ /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
+ data = bpf_map_area_mmapable_alloc(array_size, numa_node);
+ if (!data) {
+ bpf_map_charge_finish(&mem);
+ return ERR_PTR(-ENOMEM);
+ }
+ array = data + PAGE_ALIGN(sizeof(struct bpf_array))
+ - offsetof(struct bpf_array, value);
+ } else {
+ array = bpf_map_area_alloc(array_size, numa_node);
+ }
if (!array) {
bpf_map_charge_finish(&mem);
return ERR_PTR(-ENOMEM);
@@ -350,6 +376,11 @@ static int array_map_delete_elem(struct bpf_map *map, void *key)
return -EINVAL;
}
+static void *array_map_vmalloc_addr(struct bpf_array *array)
+{
+ return (void *)round_down((unsigned long)array, PAGE_SIZE);
+}
+
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
static void array_map_free(struct bpf_map *map)
{
@@ -365,7 +396,10 @@ static void array_map_free(struct bpf_map *map)
if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
bpf_array_free_percpu(array);
- bpf_map_area_free(array);
+ if (array->map.map_flags & BPF_F_MMAPABLE)
+ bpf_map_area_free(array_map_vmalloc_addr(array));
+ else
+ bpf_map_area_free(array);
}
static void array_map_seq_show_elem(struct bpf_map *map, void *key,
@@ -444,6 +478,17 @@ static int array_map_check_btf(const struct bpf_map *map,
return 0;
}
+static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
+
+ if (!(map->map_flags & BPF_F_MMAPABLE))
+ return -EINVAL;
+
+ return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), pgoff);
+}
+
const struct bpf_map_ops array_map_ops = {
.map_alloc_check = array_map_alloc_check,
.map_alloc = array_map_alloc,
@@ -455,6 +500,7 @@ const struct bpf_map_ops array_map_ops = {
.map_gen_lookup = array_map_gen_lookup,
.map_direct_value_addr = array_map_direct_value_addr,
.map_direct_value_meta = array_map_direct_value_meta,
+ .map_mmap = array_map_mmap,
.map_seq_show_elem = array_map_seq_show_elem,
.map_check_btf = array_map_check_btf,
};
@@ -540,10 +586,17 @@ int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
if (IS_ERR(new_ptr))
return PTR_ERR(new_ptr);
- old_ptr = xchg(array->ptrs + index, new_ptr);
+ if (map->ops->map_poke_run) {
+ mutex_lock(&array->aux->poke_mutex);
+ old_ptr = xchg(array->ptrs + index, new_ptr);
+ map->ops->map_poke_run(map, index, old_ptr, new_ptr);
+ mutex_unlock(&array->aux->poke_mutex);
+ } else {
+ old_ptr = xchg(array->ptrs + index, new_ptr);
+ }
+
if (old_ptr)
map->ops->map_fd_put_ptr(old_ptr);
-
return 0;
}
@@ -556,7 +609,15 @@ static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
if (index >= array->map.max_entries)
return -E2BIG;
- old_ptr = xchg(array->ptrs + index, NULL);
+ if (map->ops->map_poke_run) {
+ mutex_lock(&array->aux->poke_mutex);
+ old_ptr = xchg(array->ptrs + index, NULL);
+ map->ops->map_poke_run(map, index, old_ptr, NULL);
+ mutex_unlock(&array->aux->poke_mutex);
+ } else {
+ old_ptr = xchg(array->ptrs + index, NULL);
+ }
+
if (old_ptr) {
map->ops->map_fd_put_ptr(old_ptr);
return 0;
@@ -625,17 +686,195 @@ static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
rcu_read_unlock();
}
+struct prog_poke_elem {
+ struct list_head list;
+ struct bpf_prog_aux *aux;
+};
+
+static int prog_array_map_poke_track(struct bpf_map *map,
+ struct bpf_prog_aux *prog_aux)
+{
+ struct prog_poke_elem *elem;
+ struct bpf_array_aux *aux;
+ int ret = 0;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ mutex_lock(&aux->poke_mutex);
+ list_for_each_entry(elem, &aux->poke_progs, list) {
+ if (elem->aux == prog_aux)
+ goto out;
+ }
+
+ elem = kmalloc(sizeof(*elem), GFP_KERNEL);
+ if (!elem) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ INIT_LIST_HEAD(&elem->list);
+ /* We must track the program's aux info at this point in time
+ * since the program pointer itself may not be stable yet, see
+ * also comment in prog_array_map_poke_run().
+ */
+ elem->aux = prog_aux;
+
+ list_add_tail(&elem->list, &aux->poke_progs);
+out:
+ mutex_unlock(&aux->poke_mutex);
+ return ret;
+}
+
+static void prog_array_map_poke_untrack(struct bpf_map *map,
+ struct bpf_prog_aux *prog_aux)
+{
+ struct prog_poke_elem *elem, *tmp;
+ struct bpf_array_aux *aux;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ mutex_lock(&aux->poke_mutex);
+ list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
+ if (elem->aux == prog_aux) {
+ list_del_init(&elem->list);
+ kfree(elem);
+ break;
+ }
+ }
+ mutex_unlock(&aux->poke_mutex);
+}
+
+static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
+ struct bpf_prog *old,
+ struct bpf_prog *new)
+{
+ struct prog_poke_elem *elem;
+ struct bpf_array_aux *aux;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
+
+ list_for_each_entry(elem, &aux->poke_progs, list) {
+ struct bpf_jit_poke_descriptor *poke;
+ int i, ret;
+
+ for (i = 0; i < elem->aux->size_poke_tab; i++) {
+ poke = &elem->aux->poke_tab[i];
+
+ /* Few things to be aware of:
+ *
+ * 1) We can only ever access aux in this context, but
+ * not aux->prog since it might not be stable yet and
+ * there could be danger of use after free otherwise.
+ * 2) Initially when we start tracking aux, the program
+ * is not JITed yet and also does not have a kallsyms
+ * entry. We skip these as poke->ip_stable is not
+ * active yet. The JIT will do the final fixup before
+ * setting it stable. The various poke->ip_stable are
+ * successively activated, so tail call updates can
+ * arrive from here while JIT is still finishing its
+ * final fixup for non-activated poke entries.
+ * 3) On program teardown, the program's kallsym entry gets
+ * removed out of RCU callback, but we can only untrack
+ * from sleepable context, therefore bpf_arch_text_poke()
+ * might not see that this is in BPF text section and
+ * bails out with -EINVAL. As these are unreachable since
+ * RCU grace period already passed, we simply skip them.
+ * 4) Also programs reaching refcount of zero while patching
+ * is in progress is okay since we're protected under
+ * poke_mutex and untrack the programs before the JIT
+ * buffer is freed. When we're still in the middle of
+ * patching and suddenly kallsyms entry of the program
+ * gets evicted, we just skip the rest which is fine due
+ * to point 3).
+ * 5) Any other error happening below from bpf_arch_text_poke()
+ * is a unexpected bug.
+ */
+ if (!READ_ONCE(poke->ip_stable))
+ continue;
+ if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
+ continue;
+ if (poke->tail_call.map != map ||
+ poke->tail_call.key != key)
+ continue;
+
+ ret = bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP,
+ old ? (u8 *)old->bpf_func +
+ poke->adj_off : NULL,
+ new ? (u8 *)new->bpf_func +
+ poke->adj_off : NULL);
+ BUG_ON(ret < 0 && ret != -EINVAL);
+ }
+ }
+}
+
+static void prog_array_map_clear_deferred(struct work_struct *work)
+{
+ struct bpf_map *map = container_of(work, struct bpf_array_aux,
+ work)->map;
+ bpf_fd_array_map_clear(map);
+ bpf_map_put(map);
+}
+
+static void prog_array_map_clear(struct bpf_map *map)
+{
+ struct bpf_array_aux *aux = container_of(map, struct bpf_array,
+ map)->aux;
+ bpf_map_inc(map);
+ schedule_work(&aux->work);
+}
+
+static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_array_aux *aux;
+ struct bpf_map *map;
+
+ aux = kzalloc(sizeof(*aux), GFP_KERNEL);
+ if (!aux)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_WORK(&aux->work, prog_array_map_clear_deferred);
+ INIT_LIST_HEAD(&aux->poke_progs);
+ mutex_init(&aux->poke_mutex);
+
+ map = array_map_alloc(attr);
+ if (IS_ERR(map)) {
+ kfree(aux);
+ return map;
+ }
+
+ container_of(map, struct bpf_array, map)->aux = aux;
+ aux->map = map;
+
+ return map;
+}
+
+static void prog_array_map_free(struct bpf_map *map)
+{
+ struct prog_poke_elem *elem, *tmp;
+ struct bpf_array_aux *aux;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
+ list_del_init(&elem->list);
+ kfree(elem);
+ }
+ kfree(aux);
+ fd_array_map_free(map);
+}
+
const struct bpf_map_ops prog_array_map_ops = {
.map_alloc_check = fd_array_map_alloc_check,
- .map_alloc = array_map_alloc,
- .map_free = fd_array_map_free,
+ .map_alloc = prog_array_map_alloc,
+ .map_free = prog_array_map_free,
+ .map_poke_track = prog_array_map_poke_track,
+ .map_poke_untrack = prog_array_map_poke_untrack,
+ .map_poke_run = prog_array_map_poke_run,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = fd_array_map_lookup_elem,
.map_delete_elem = fd_array_map_delete_elem,
.map_fd_get_ptr = prog_fd_array_get_ptr,
.map_fd_put_ptr = prog_fd_array_put_ptr,
.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
- .map_release_uref = bpf_fd_array_map_clear,
+ .map_release_uref = prog_array_map_clear,
.map_seq_show_elem = prog_array_map_seq_show_elem,
};
diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c
index 29c7c06c6bd6..40efde5eedcb 100644
--- a/kernel/bpf/btf.c
+++ b/kernel/bpf/btf.c
@@ -2,6 +2,8 @@
/* Copyright (c) 2018 Facebook */
#include <uapi/linux/btf.h>
+#include <uapi/linux/bpf.h>
+#include <uapi/linux/bpf_perf_event.h>
#include <uapi/linux/types.h>
#include <linux/seq_file.h>
#include <linux/compiler.h>
@@ -16,6 +18,9 @@
#include <linux/sort.h>
#include <linux/bpf_verifier.h>
#include <linux/btf.h>
+#include <linux/skmsg.h>
+#include <linux/perf_event.h>
+#include <net/sock.h>
/* BTF (BPF Type Format) is the meta data format which describes
* the data types of BPF program/map. Hence, it basically focus
@@ -336,16 +341,6 @@ static bool btf_type_is_fwd(const struct btf_type *t)
return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
}
-static bool btf_type_is_func(const struct btf_type *t)
-{
- return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
-}
-
-static bool btf_type_is_func_proto(const struct btf_type *t)
-{
- return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
-}
-
static bool btf_type_nosize(const struct btf_type *t)
{
return btf_type_is_void(t) || btf_type_is_fwd(t) ||
@@ -377,16 +372,6 @@ static bool btf_type_is_array(const struct btf_type *t)
return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
}
-static bool btf_type_is_ptr(const struct btf_type *t)
-{
- return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
-}
-
-static bool btf_type_is_int(const struct btf_type *t)
-{
- return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
-}
-
static bool btf_type_is_var(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
@@ -698,6 +683,13 @@ __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
if (!bpf_verifier_log_needed(log))
return;
+ /* btf verifier prints all types it is processing via
+ * btf_verifier_log_type(..., fmt = NULL).
+ * Skip those prints for in-kernel BTF verification.
+ */
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
+
__btf_verifier_log(log, "[%u] %s %s%s",
env->log_type_id,
btf_kind_str[kind],
@@ -735,6 +727,8 @@ static void btf_verifier_log_member(struct btf_verifier_env *env,
if (!bpf_verifier_log_needed(log))
return;
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
/* The CHECK_META phase already did a btf dump.
*
* If member is logged again, it must hit an error in
@@ -777,6 +771,8 @@ static void btf_verifier_log_vsi(struct btf_verifier_env *env,
if (!bpf_verifier_log_needed(log))
return;
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
if (env->phase != CHECK_META)
btf_verifier_log_type(env, datasec_type, NULL);
@@ -802,6 +798,8 @@ static void btf_verifier_log_hdr(struct btf_verifier_env *env,
if (!bpf_verifier_log_needed(log))
return;
+ if (log->level == BPF_LOG_KERNEL)
+ return;
hdr = &btf->hdr;
__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
__btf_verifier_log(log, "version: %u\n", hdr->version);
@@ -1043,6 +1041,82 @@ static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
}
+/* Resolve the size of a passed-in "type"
+ *
+ * type: is an array (e.g. u32 array[x][y])
+ * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
+ * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
+ * corresponds to the return type.
+ * *elem_type: u32
+ * *total_nelems: (x * y). Hence, individual elem size is
+ * (*type_size / *total_nelems)
+ *
+ * type: is not an array (e.g. const struct X)
+ * return type: type "struct X"
+ * *type_size: sizeof(struct X)
+ * *elem_type: same as return type ("struct X")
+ * *total_nelems: 1
+ */
+static const struct btf_type *
+btf_resolve_size(const struct btf *btf, const struct btf_type *type,
+ u32 *type_size, const struct btf_type **elem_type,
+ u32 *total_nelems)
+{
+ const struct btf_type *array_type = NULL;
+ const struct btf_array *array;
+ u32 i, size, nelems = 1;
+
+ for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
+ switch (BTF_INFO_KIND(type->info)) {
+ /* type->size can be used */
+ case BTF_KIND_INT:
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ case BTF_KIND_ENUM:
+ size = type->size;
+ goto resolved;
+
+ case BTF_KIND_PTR:
+ size = sizeof(void *);
+ goto resolved;
+
+ /* Modifiers */
+ case BTF_KIND_TYPEDEF:
+ case BTF_KIND_VOLATILE:
+ case BTF_KIND_CONST:
+ case BTF_KIND_RESTRICT:
+ type = btf_type_by_id(btf, type->type);
+ break;
+
+ case BTF_KIND_ARRAY:
+ if (!array_type)
+ array_type = type;
+ array = btf_type_array(type);
+ if (nelems && array->nelems > U32_MAX / nelems)
+ return ERR_PTR(-EINVAL);
+ nelems *= array->nelems;
+ type = btf_type_by_id(btf, array->type);
+ break;
+
+ /* type without size */
+ default:
+ return ERR_PTR(-EINVAL);
+ }
+ }
+
+ return ERR_PTR(-EINVAL);
+
+resolved:
+ if (nelems && size > U32_MAX / nelems)
+ return ERR_PTR(-EINVAL);
+
+ *type_size = nelems * size;
+ *total_nelems = nelems;
+ *elem_type = type;
+
+ return array_type ? : type;
+}
+
/* The input param "type_id" must point to a needs_resolve type */
static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
u32 *type_id)
@@ -2405,7 +2479,8 @@ static s32 btf_enum_check_meta(struct btf_verifier_env *env,
return -EINVAL;
}
-
+ if (env->log.level == BPF_LOG_KERNEL)
+ continue;
btf_verifier_log(env, "\t%s val=%d\n",
__btf_name_by_offset(btf, enums[i].name_off),
enums[i].val);
@@ -3367,6 +3442,685 @@ errout:
return ERR_PTR(err);
}
+extern char __weak _binary__btf_vmlinux_bin_start[];
+extern char __weak _binary__btf_vmlinux_bin_end[];
+extern struct btf *btf_vmlinux;
+
+#define BPF_MAP_TYPE(_id, _ops)
+static union {
+ struct bpf_ctx_convert {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ prog_ctx_type _id##_prog; \
+ kern_ctx_type _id##_kern;
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+ } *__t;
+ /* 't' is written once under lock. Read many times. */
+ const struct btf_type *t;
+} bpf_ctx_convert;
+enum {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ __ctx_convert##_id,
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+};
+static u8 bpf_ctx_convert_map[] = {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ [_id] = __ctx_convert##_id,
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+};
+#undef BPF_MAP_TYPE
+
+static const struct btf_member *
+btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
+ const struct btf_type *t, enum bpf_prog_type prog_type)
+{
+ const struct btf_type *conv_struct;
+ const struct btf_type *ctx_struct;
+ const struct btf_member *ctx_type;
+ const char *tname, *ctx_tname;
+
+ conv_struct = bpf_ctx_convert.t;
+ if (!conv_struct) {
+ bpf_log(log, "btf_vmlinux is malformed\n");
+ return NULL;
+ }
+ t = btf_type_by_id(btf, t->type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_struct(t)) {
+ /* Only pointer to struct is supported for now.
+ * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
+ * is not supported yet.
+ * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
+ */
+ bpf_log(log, "BPF program ctx type is not a struct\n");
+ return NULL;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!tname) {
+ bpf_log(log, "BPF program ctx struct doesn't have a name\n");
+ return NULL;
+ }
+ /* prog_type is valid bpf program type. No need for bounds check. */
+ ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
+ /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
+ * Like 'struct __sk_buff'
+ */
+ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
+ if (!ctx_struct)
+ /* should not happen */
+ return NULL;
+ ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
+ if (!ctx_tname) {
+ /* should not happen */
+ bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
+ return NULL;
+ }
+ /* only compare that prog's ctx type name is the same as
+ * kernel expects. No need to compare field by field.
+ * It's ok for bpf prog to do:
+ * struct __sk_buff {};
+ * int socket_filter_bpf_prog(struct __sk_buff *skb)
+ * { // no fields of skb are ever used }
+ */
+ if (strcmp(ctx_tname, tname))
+ return NULL;
+ return ctx_type;
+}
+
+static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
+ struct btf *btf,
+ const struct btf_type *t,
+ enum bpf_prog_type prog_type)
+{
+ const struct btf_member *prog_ctx_type, *kern_ctx_type;
+
+ prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type);
+ if (!prog_ctx_type)
+ return -ENOENT;
+ kern_ctx_type = prog_ctx_type + 1;
+ return kern_ctx_type->type;
+}
+
+struct btf *btf_parse_vmlinux(void)
+{
+ struct btf_verifier_env *env = NULL;
+ struct bpf_verifier_log *log;
+ struct btf *btf = NULL;
+ int err, i;
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
+ if (!env)
+ return ERR_PTR(-ENOMEM);
+
+ log = &env->log;
+ log->level = BPF_LOG_KERNEL;
+
+ btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
+ if (!btf) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ env->btf = btf;
+
+ btf->data = _binary__btf_vmlinux_bin_start;
+ btf->data_size = _binary__btf_vmlinux_bin_end -
+ _binary__btf_vmlinux_bin_start;
+
+ err = btf_parse_hdr(env);
+ if (err)
+ goto errout;
+
+ btf->nohdr_data = btf->data + btf->hdr.hdr_len;
+
+ err = btf_parse_str_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_all_metas(env);
+ if (err)
+ goto errout;
+
+ /* find struct bpf_ctx_convert for type checking later */
+ for (i = 1; i <= btf->nr_types; i++) {
+ const struct btf_type *t;
+ const char *tname;
+
+ t = btf_type_by_id(btf, i);
+ if (!__btf_type_is_struct(t))
+ continue;
+ tname = __btf_name_by_offset(btf, t->name_off);
+ if (!strcmp(tname, "bpf_ctx_convert")) {
+ /* btf_parse_vmlinux() runs under bpf_verifier_lock */
+ bpf_ctx_convert.t = t;
+ break;
+ }
+ }
+ if (i > btf->nr_types) {
+ err = -ENOENT;
+ goto errout;
+ }
+
+ btf_verifier_env_free(env);
+ refcount_set(&btf->refcnt, 1);
+ return btf;
+
+errout:
+ btf_verifier_env_free(env);
+ if (btf) {
+ kvfree(btf->types);
+ kfree(btf);
+ }
+ return ERR_PTR(err);
+}
+
+struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
+{
+ struct bpf_prog *tgt_prog = prog->aux->linked_prog;
+
+ if (tgt_prog) {
+ return tgt_prog->aux->btf;
+ } else {
+ return btf_vmlinux;
+ }
+}
+
+bool btf_ctx_access(int off, int size, enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ const struct btf_type *t = prog->aux->attach_func_proto;
+ struct bpf_prog *tgt_prog = prog->aux->linked_prog;
+ struct btf *btf = bpf_prog_get_target_btf(prog);
+ const char *tname = prog->aux->attach_func_name;
+ struct bpf_verifier_log *log = info->log;
+ const struct btf_param *args;
+ u32 nr_args, arg;
+ int ret;
+
+ if (off % 8) {
+ bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
+ tname, off);
+ return false;
+ }
+ arg = off / 8;
+ args = (const struct btf_param *)(t + 1);
+ /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
+ nr_args = t ? btf_type_vlen(t) : 5;
+ if (prog->aux->attach_btf_trace) {
+ /* skip first 'void *__data' argument in btf_trace_##name typedef */
+ args++;
+ nr_args--;
+ }
+
+ if (prog->expected_attach_type == BPF_TRACE_FEXIT &&
+ arg == nr_args) {
+ if (!t)
+ /* Default prog with 5 args. 6th arg is retval. */
+ return true;
+ /* function return type */
+ t = btf_type_by_id(btf, t->type);
+ } else if (arg >= nr_args) {
+ bpf_log(log, "func '%s' doesn't have %d-th argument\n",
+ tname, arg + 1);
+ return false;
+ } else {
+ if (!t)
+ /* Default prog with 5 args */
+ return true;
+ t = btf_type_by_id(btf, args[arg].type);
+ }
+ /* skip modifiers */
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (btf_type_is_int(t))
+ /* accessing a scalar */
+ return true;
+ if (!btf_type_is_ptr(t)) {
+ bpf_log(log,
+ "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
+ tname, arg,
+ __btf_name_by_offset(btf, t->name_off),
+ btf_kind_str[BTF_INFO_KIND(t->info)]);
+ return false;
+ }
+ if (t->type == 0)
+ /* This is a pointer to void.
+ * It is the same as scalar from the verifier safety pov.
+ * No further pointer walking is allowed.
+ */
+ return true;
+
+ /* this is a pointer to another type */
+ info->reg_type = PTR_TO_BTF_ID;
+ info->btf_id = t->type;
+
+ if (tgt_prog) {
+ ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type);
+ if (ret > 0) {
+ info->btf_id = ret;
+ return true;
+ } else {
+ return false;
+ }
+ }
+ t = btf_type_by_id(btf, t->type);
+ /* skip modifiers */
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_struct(t)) {
+ bpf_log(log,
+ "func '%s' arg%d type %s is not a struct\n",
+ tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
+ return false;
+ }
+ bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
+ tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
+ __btf_name_by_offset(btf, t->name_off));
+ return true;
+}
+
+int btf_struct_access(struct bpf_verifier_log *log,
+ const struct btf_type *t, int off, int size,
+ enum bpf_access_type atype,
+ u32 *next_btf_id)
+{
+ u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
+ const struct btf_type *mtype, *elem_type = NULL;
+ const struct btf_member *member;
+ const char *tname, *mname;
+
+again:
+ tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
+ if (!btf_type_is_struct(t)) {
+ bpf_log(log, "Type '%s' is not a struct", tname);
+ return -EINVAL;
+ }
+
+ for_each_member(i, t, member) {
+ if (btf_member_bitfield_size(t, member))
+ /* bitfields are not supported yet */
+ continue;
+
+ /* offset of the field in bytes */
+ moff = btf_member_bit_offset(t, member) / 8;
+ if (off + size <= moff)
+ /* won't find anything, field is already too far */
+ break;
+ /* In case of "off" is pointing to holes of a struct */
+ if (off < moff)
+ continue;
+
+ /* type of the field */
+ mtype = btf_type_by_id(btf_vmlinux, member->type);
+ mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
+
+ mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
+ &elem_type, &total_nelems);
+ if (IS_ERR(mtype)) {
+ bpf_log(log, "field %s doesn't have size\n", mname);
+ return -EFAULT;
+ }
+
+ mtrue_end = moff + msize;
+ if (off >= mtrue_end)
+ /* no overlap with member, keep iterating */
+ continue;
+
+ if (btf_type_is_array(mtype)) {
+ u32 elem_idx;
+
+ /* btf_resolve_size() above helps to
+ * linearize a multi-dimensional array.
+ *
+ * The logic here is treating an array
+ * in a struct as the following way:
+ *
+ * struct outer {
+ * struct inner array[2][2];
+ * };
+ *
+ * looks like:
+ *
+ * struct outer {
+ * struct inner array_elem0;
+ * struct inner array_elem1;
+ * struct inner array_elem2;
+ * struct inner array_elem3;
+ * };
+ *
+ * When accessing outer->array[1][0], it moves
+ * moff to "array_elem2", set mtype to
+ * "struct inner", and msize also becomes
+ * sizeof(struct inner). Then most of the
+ * remaining logic will fall through without
+ * caring the current member is an array or
+ * not.
+ *
+ * Unlike mtype/msize/moff, mtrue_end does not
+ * change. The naming difference ("_true") tells
+ * that it is not always corresponding to
+ * the current mtype/msize/moff.
+ * It is the true end of the current
+ * member (i.e. array in this case). That
+ * will allow an int array to be accessed like
+ * a scratch space,
+ * i.e. allow access beyond the size of
+ * the array's element as long as it is
+ * within the mtrue_end boundary.
+ */
+
+ /* skip empty array */
+ if (moff == mtrue_end)
+ continue;
+
+ msize /= total_nelems;
+ elem_idx = (off - moff) / msize;
+ moff += elem_idx * msize;
+ mtype = elem_type;
+ }
+
+ /* the 'off' we're looking for is either equal to start
+ * of this field or inside of this struct
+ */
+ if (btf_type_is_struct(mtype)) {
+ /* our field must be inside that union or struct */
+ t = mtype;
+
+ /* adjust offset we're looking for */
+ off -= moff;
+ goto again;
+ }
+
+ if (btf_type_is_ptr(mtype)) {
+ const struct btf_type *stype;
+
+ if (msize != size || off != moff) {
+ bpf_log(log,
+ "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
+ mname, moff, tname, off, size);
+ return -EACCES;
+ }
+
+ stype = btf_type_by_id(btf_vmlinux, mtype->type);
+ /* skip modifiers */
+ while (btf_type_is_modifier(stype))
+ stype = btf_type_by_id(btf_vmlinux, stype->type);
+ if (btf_type_is_struct(stype)) {
+ *next_btf_id = mtype->type;
+ return PTR_TO_BTF_ID;
+ }
+ }
+
+ /* Allow more flexible access within an int as long as
+ * it is within mtrue_end.
+ * Since mtrue_end could be the end of an array,
+ * that also allows using an array of int as a scratch
+ * space. e.g. skb->cb[].
+ */
+ if (off + size > mtrue_end) {
+ bpf_log(log,
+ "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
+ mname, mtrue_end, tname, off, size);
+ return -EACCES;
+ }
+
+ return SCALAR_VALUE;
+ }
+ bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
+ return -EINVAL;
+}
+
+static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn,
+ int arg)
+{
+ char fnname[KSYM_SYMBOL_LEN + 4] = "btf_";
+ const struct btf_param *args;
+ const struct btf_type *t;
+ const char *tname, *sym;
+ u32 btf_id, i;
+
+ if (IS_ERR(btf_vmlinux)) {
+ bpf_log(log, "btf_vmlinux is malformed\n");
+ return -EINVAL;
+ }
+
+ sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4);
+ if (!sym) {
+ bpf_log(log, "kernel doesn't have kallsyms\n");
+ return -EFAULT;
+ }
+
+ for (i = 1; i <= btf_vmlinux->nr_types; i++) {
+ t = btf_type_by_id(btf_vmlinux, i);
+ if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF)
+ continue;
+ tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
+ if (!strcmp(tname, fnname))
+ break;
+ }
+ if (i > btf_vmlinux->nr_types) {
+ bpf_log(log, "helper %s type is not found\n", fnname);
+ return -ENOENT;
+ }
+
+ t = btf_type_by_id(btf_vmlinux, t->type);
+ if (!btf_type_is_ptr(t))
+ return -EFAULT;
+ t = btf_type_by_id(btf_vmlinux, t->type);
+ if (!btf_type_is_func_proto(t))
+ return -EFAULT;
+
+ args = (const struct btf_param *)(t + 1);
+ if (arg >= btf_type_vlen(t)) {
+ bpf_log(log, "bpf helper %s doesn't have %d-th argument\n",
+ fnname, arg);
+ return -EINVAL;
+ }
+
+ t = btf_type_by_id(btf_vmlinux, args[arg].type);
+ if (!btf_type_is_ptr(t) || !t->type) {
+ /* anything but the pointer to struct is a helper config bug */
+ bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n");
+ return -EFAULT;
+ }
+ btf_id = t->type;
+ t = btf_type_by_id(btf_vmlinux, t->type);
+ /* skip modifiers */
+ while (btf_type_is_modifier(t)) {
+ btf_id = t->type;
+ t = btf_type_by_id(btf_vmlinux, t->type);
+ }
+ if (!btf_type_is_struct(t)) {
+ bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n");
+ return -EFAULT;
+ }
+ bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4,
+ arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off));
+ return btf_id;
+}
+
+int btf_resolve_helper_id(struct bpf_verifier_log *log,
+ const struct bpf_func_proto *fn, int arg)
+{
+ int *btf_id = &fn->btf_id[arg];
+ int ret;
+
+ if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
+ return -EINVAL;
+
+ ret = READ_ONCE(*btf_id);
+ if (ret)
+ return ret;
+ /* ok to race the search. The result is the same */
+ ret = __btf_resolve_helper_id(log, fn->func, arg);
+ if (!ret) {
+ /* Function argument cannot be type 'void' */
+ bpf_log(log, "BTF resolution bug\n");
+ return -EFAULT;
+ }
+ WRITE_ONCE(*btf_id, ret);
+ return ret;
+}
+
+static int __get_type_size(struct btf *btf, u32 btf_id,
+ const struct btf_type **bad_type)
+{
+ const struct btf_type *t;
+
+ if (!btf_id)
+ /* void */
+ return 0;
+ t = btf_type_by_id(btf, btf_id);
+ while (t && btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!t)
+ return -EINVAL;
+ if (btf_type_is_ptr(t))
+ /* kernel size of pointer. Not BPF's size of pointer*/
+ return sizeof(void *);
+ if (btf_type_is_int(t) || btf_type_is_enum(t))
+ return t->size;
+ *bad_type = t;
+ return -EINVAL;
+}
+
+int btf_distill_func_proto(struct bpf_verifier_log *log,
+ struct btf *btf,
+ const struct btf_type *func,
+ const char *tname,
+ struct btf_func_model *m)
+{
+ const struct btf_param *args;
+ const struct btf_type *t;
+ u32 i, nargs;
+ int ret;
+
+ if (!func) {
+ /* BTF function prototype doesn't match the verifier types.
+ * Fall back to 5 u64 args.
+ */
+ for (i = 0; i < 5; i++)
+ m->arg_size[i] = 8;
+ m->ret_size = 8;
+ m->nr_args = 5;
+ return 0;
+ }
+ args = (const struct btf_param *)(func + 1);
+ nargs = btf_type_vlen(func);
+ if (nargs >= MAX_BPF_FUNC_ARGS) {
+ bpf_log(log,
+ "The function %s has %d arguments. Too many.\n",
+ tname, nargs);
+ return -EINVAL;
+ }
+ ret = __get_type_size(btf, func->type, &t);
+ if (ret < 0) {
+ bpf_log(log,
+ "The function %s return type %s is unsupported.\n",
+ tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
+ return -EINVAL;
+ }
+ m->ret_size = ret;
+
+ for (i = 0; i < nargs; i++) {
+ ret = __get_type_size(btf, args[i].type, &t);
+ if (ret < 0) {
+ bpf_log(log,
+ "The function %s arg%d type %s is unsupported.\n",
+ tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
+ return -EINVAL;
+ }
+ m->arg_size[i] = ret;
+ }
+ m->nr_args = nargs;
+ return 0;
+}
+
+int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog)
+{
+ struct bpf_verifier_state *st = env->cur_state;
+ struct bpf_func_state *func = st->frame[st->curframe];
+ struct bpf_reg_state *reg = func->regs;
+ struct bpf_verifier_log *log = &env->log;
+ struct bpf_prog *prog = env->prog;
+ struct btf *btf = prog->aux->btf;
+ const struct btf_param *args;
+ const struct btf_type *t;
+ u32 i, nargs, btf_id;
+ const char *tname;
+
+ if (!prog->aux->func_info)
+ return 0;
+
+ btf_id = prog->aux->func_info[subprog].type_id;
+ if (!btf_id)
+ return 0;
+
+ if (prog->aux->func_info_aux[subprog].unreliable)
+ return 0;
+
+ t = btf_type_by_id(btf, btf_id);
+ if (!t || !btf_type_is_func(t)) {
+ bpf_log(log, "BTF of subprog %d doesn't point to KIND_FUNC\n",
+ subprog);
+ return -EINVAL;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+
+ t = btf_type_by_id(btf, t->type);
+ if (!t || !btf_type_is_func_proto(t)) {
+ bpf_log(log, "Invalid type of func %s\n", tname);
+ return -EINVAL;
+ }
+ args = (const struct btf_param *)(t + 1);
+ nargs = btf_type_vlen(t);
+ if (nargs > 5) {
+ bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
+ goto out;
+ }
+ /* check that BTF function arguments match actual types that the
+ * verifier sees.
+ */
+ for (i = 0; i < nargs; i++) {
+ t = btf_type_by_id(btf, args[i].type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (btf_type_is_int(t) || btf_type_is_enum(t)) {
+ if (reg[i + 1].type == SCALAR_VALUE)
+ continue;
+ bpf_log(log, "R%d is not a scalar\n", i + 1);
+ goto out;
+ }
+ if (btf_type_is_ptr(t)) {
+ if (reg[i + 1].type == SCALAR_VALUE) {
+ bpf_log(log, "R%d is not a pointer\n", i + 1);
+ goto out;
+ }
+ /* If program is passing PTR_TO_CTX into subprogram
+ * check that BTF type matches.
+ */
+ if (reg[i + 1].type == PTR_TO_CTX &&
+ !btf_get_prog_ctx_type(log, btf, t, prog->type))
+ goto out;
+ /* All other pointers are ok */
+ continue;
+ }
+ bpf_log(log, "Unrecognized argument type %s\n",
+ btf_kind_str[BTF_INFO_KIND(t->info)]);
+ goto out;
+ }
+ return 0;
+out:
+ /* LLVM optimizations can remove arguments from static functions. */
+ bpf_log(log,
+ "Type info disagrees with actual arguments due to compiler optimizations\n");
+ prog->aux->func_info_aux[subprog].unreliable = true;
+ return 0;
+}
+
void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
struct seq_file *m)
{
diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c
index ddd8addcdb5c..9f90d3c92bda 100644
--- a/kernel/bpf/cgroup.c
+++ b/kernel/bpf/cgroup.c
@@ -180,8 +180,8 @@ static void activate_effective_progs(struct cgroup *cgrp,
enum bpf_attach_type type,
struct bpf_prog_array *old_array)
{
- rcu_swap_protected(cgrp->bpf.effective[type], old_array,
- lockdep_is_held(&cgroup_mutex));
+ old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
+ lockdep_is_held(&cgroup_mutex));
/* free prog array after grace period, since __cgroup_bpf_run_*()
* might be still walking the array
*/
@@ -1311,12 +1311,12 @@ static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
return false;
switch (off) {
- case offsetof(struct bpf_sysctl, write):
+ case bpf_ctx_range(struct bpf_sysctl, write):
if (type != BPF_READ)
return false;
bpf_ctx_record_field_size(info, size_default);
return bpf_ctx_narrow_access_ok(off, size, size_default);
- case offsetof(struct bpf_sysctl, file_pos):
+ case bpf_ctx_range(struct bpf_sysctl, file_pos):
if (type == BPF_READ) {
bpf_ctx_record_field_size(info, size_default);
return bpf_ctx_narrow_access_ok(off, size, size_default);
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
index ef0e1e3e66f4..49e32acad7d8 100644
--- a/kernel/bpf/core.c
+++ b/kernel/bpf/core.c
@@ -30,7 +30,8 @@
#include <linux/kallsyms.h>
#include <linux/rcupdate.h>
#include <linux/perf_event.h>
-
+#include <linux/extable.h>
+#include <linux/log2.h>
#include <asm/unaligned.h>
/* Registers */
@@ -255,6 +256,7 @@ void __bpf_prog_free(struct bpf_prog *fp)
{
if (fp->aux) {
free_percpu(fp->aux->stats);
+ kfree(fp->aux->poke_tab);
kfree(fp->aux);
}
vfree(fp);
@@ -668,9 +670,6 @@ static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
{
struct latch_tree_node *n;
- if (!bpf_jit_kallsyms_enabled())
- return NULL;
-
n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
return n ?
container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
@@ -712,6 +711,24 @@ bool is_bpf_text_address(unsigned long addr)
return ret;
}
+const struct exception_table_entry *search_bpf_extables(unsigned long addr)
+{
+ const struct exception_table_entry *e = NULL;
+ struct bpf_prog *prog;
+
+ rcu_read_lock();
+ prog = bpf_prog_kallsyms_find(addr);
+ if (!prog)
+ goto out;
+ if (!prog->aux->num_exentries)
+ goto out;
+
+ e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
+out:
+ rcu_read_unlock();
+ return e;
+}
+
int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *sym)
{
@@ -740,6 +757,39 @@ int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
return ret;
}
+int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
+ struct bpf_jit_poke_descriptor *poke)
+{
+ struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
+ static const u32 poke_tab_max = 1024;
+ u32 slot = prog->aux->size_poke_tab;
+ u32 size = slot + 1;
+
+ if (size > poke_tab_max)
+ return -ENOSPC;
+ if (poke->ip || poke->ip_stable || poke->adj_off)
+ return -EINVAL;
+
+ switch (poke->reason) {
+ case BPF_POKE_REASON_TAIL_CALL:
+ if (!poke->tail_call.map)
+ return -EINVAL;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
+ if (!tab)
+ return -ENOMEM;
+
+ memcpy(&tab[slot], poke, sizeof(*poke));
+ prog->aux->size_poke_tab = size;
+ prog->aux->poke_tab = tab;
+
+ return slot;
+}
+
static atomic_long_t bpf_jit_current;
/* Can be overridden by an arch's JIT compiler if it has a custom,
@@ -800,6 +850,9 @@ bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
struct bpf_binary_header *hdr;
u32 size, hole, start, pages;
+ WARN_ON_ONCE(!is_power_of_2(alignment) ||
+ alignment > BPF_IMAGE_ALIGNMENT);
+
/* Most of BPF filters are really small, but if some of them
* fill a page, allow at least 128 extra bytes to insert a
* random section of illegal instructions.
@@ -1291,6 +1344,12 @@ bool bpf_opcode_in_insntable(u8 code)
}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
+{
+ memset(dst, 0, size);
+ return -EFAULT;
+}
+
/**
* __bpf_prog_run - run eBPF program on a given context
* @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
@@ -1310,6 +1369,10 @@ static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u6
/* Non-UAPI available opcodes. */
[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
};
#undef BPF_INSN_3_LBL
#undef BPF_INSN_2_LBL
@@ -1542,6 +1605,16 @@ out:
LDST(W, u32)
LDST(DW, u64)
#undef LDST
+#define LDX_PROBE(SIZEOP, SIZE) \
+ LDX_PROBE_MEM_##SIZEOP: \
+ bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
+ CONT;
+ LDX_PROBE(B, 1)
+ LDX_PROBE(H, 2)
+ LDX_PROBE(W, 4)
+ LDX_PROBE(DW, 8)
+#undef LDX_PROBE
+
STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
atomic_add((u32) SRC, (atomic_t *)(unsigned long)
(DST + insn->off));
@@ -1652,18 +1725,17 @@ bool bpf_prog_array_compatible(struct bpf_array *array,
if (fp->kprobe_override)
return false;
- if (!array->owner_prog_type) {
+ if (!array->aux->type) {
/* There's no owner yet where we could check for
* compatibility.
*/
- array->owner_prog_type = fp->type;
- array->owner_jited = fp->jited;
-
+ array->aux->type = fp->type;
+ array->aux->jited = fp->jited;
return true;
}
- return array->owner_prog_type == fp->type &&
- array->owner_jited == fp->jited;
+ return array->aux->type == fp->type &&
+ array->aux->jited == fp->jited;
}
static int bpf_check_tail_call(const struct bpf_prog *fp)
@@ -1964,18 +2036,47 @@ int bpf_prog_array_copy_info(struct bpf_prog_array *array,
: 0;
}
+static void bpf_free_cgroup_storage(struct bpf_prog_aux *aux)
+{
+ enum bpf_cgroup_storage_type stype;
+
+ for_each_cgroup_storage_type(stype) {
+ if (!aux->cgroup_storage[stype])
+ continue;
+ bpf_cgroup_storage_release(aux->prog,
+ aux->cgroup_storage[stype]);
+ }
+}
+
+static void bpf_free_used_maps(struct bpf_prog_aux *aux)
+{
+ struct bpf_map *map;
+ int i;
+
+ bpf_free_cgroup_storage(aux);
+ for (i = 0; i < aux->used_map_cnt; i++) {
+ map = aux->used_maps[i];
+ if (map->ops->map_poke_untrack)
+ map->ops->map_poke_untrack(map, aux);
+ bpf_map_put(map);
+ }
+ kfree(aux->used_maps);
+}
+
static void bpf_prog_free_deferred(struct work_struct *work)
{
struct bpf_prog_aux *aux;
int i;
aux = container_of(work, struct bpf_prog_aux, work);
+ bpf_free_used_maps(aux);
if (bpf_prog_is_dev_bound(aux))
bpf_prog_offload_destroy(aux->prog);
#ifdef CONFIG_PERF_EVENTS
if (aux->prog->has_callchain_buf)
put_callchain_buffers();
#endif
+ bpf_trampoline_put(aux->trampoline);
for (i = 0; i < aux->func_cnt; i++)
bpf_jit_free(aux->func[i]);
if (aux->func_cnt) {
@@ -1991,6 +2092,8 @@ void bpf_prog_free(struct bpf_prog *fp)
{
struct bpf_prog_aux *aux = fp->aux;
+ if (aux->linked_prog)
+ bpf_prog_put(aux->linked_prog);
INIT_WORK(&aux->work, bpf_prog_free_deferred);
schedule_work(&aux->work);
}
@@ -2105,6 +2208,12 @@ int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
return -EFAULT;
}
+int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
+ void *addr1, void *addr2)
+{
+ return -ENOTSUPP;
+}
+
DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
EXPORT_SYMBOL(bpf_stats_enabled_key);
diff --git a/kernel/bpf/devmap.c b/kernel/bpf/devmap.c
index 3867864cdc2f..3d3d61b5985b 100644
--- a/kernel/bpf/devmap.c
+++ b/kernel/bpf/devmap.c
@@ -74,7 +74,7 @@ struct bpf_dtab_netdev {
struct bpf_dtab {
struct bpf_map map;
- struct bpf_dtab_netdev **netdev_map;
+ struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
struct list_head __percpu *flush_list;
struct list_head list;
@@ -101,6 +101,12 @@ static struct hlist_head *dev_map_create_hash(unsigned int entries)
return hash;
}
+static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
+ int idx)
+{
+ return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
+}
+
static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
{
int err, cpu;
@@ -120,8 +126,7 @@ static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
bpf_map_init_from_attr(&dtab->map, attr);
/* make sure page count doesn't overflow */
- cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
- cost += sizeof(struct list_head) * num_possible_cpus();
+ cost = (u64) sizeof(struct list_head) * num_possible_cpus();
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
@@ -129,6 +134,8 @@ static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
if (!dtab->n_buckets) /* Overflow check */
return -EINVAL;
cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
+ } else {
+ cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
}
/* if map size is larger than memlock limit, reject it */
@@ -143,24 +150,22 @@ static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
for_each_possible_cpu(cpu)
INIT_LIST_HEAD(per_cpu_ptr(dtab->flush_list, cpu));
- dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
- sizeof(struct bpf_dtab_netdev *),
- dtab->map.numa_node);
- if (!dtab->netdev_map)
- goto free_percpu;
-
if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
if (!dtab->dev_index_head)
- goto free_map_area;
+ goto free_percpu;
spin_lock_init(&dtab->index_lock);
+ } else {
+ dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
+ sizeof(struct bpf_dtab_netdev *),
+ dtab->map.numa_node);
+ if (!dtab->netdev_map)
+ goto free_percpu;
}
return 0;
-free_map_area:
- bpf_map_area_free(dtab->netdev_map);
free_percpu:
free_percpu(dtab->flush_list);
free_charge:
@@ -228,21 +233,40 @@ static void dev_map_free(struct bpf_map *map)
cond_resched();
}
- for (i = 0; i < dtab->map.max_entries; i++) {
- struct bpf_dtab_netdev *dev;
+ if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
+ for (i = 0; i < dtab->n_buckets; i++) {
+ struct bpf_dtab_netdev *dev;
+ struct hlist_head *head;
+ struct hlist_node *next;
- dev = dtab->netdev_map[i];
- if (!dev)
- continue;
+ head = dev_map_index_hash(dtab, i);
- free_percpu(dev->bulkq);
- dev_put(dev->dev);
- kfree(dev);
+ hlist_for_each_entry_safe(dev, next, head, index_hlist) {
+ hlist_del_rcu(&dev->index_hlist);
+ free_percpu(dev->bulkq);
+ dev_put(dev->dev);
+ kfree(dev);
+ }
+ }
+
+ kfree(dtab->dev_index_head);
+ } else {
+ for (i = 0; i < dtab->map.max_entries; i++) {
+ struct bpf_dtab_netdev *dev;
+
+ dev = dtab->netdev_map[i];
+ if (!dev)
+ continue;
+
+ free_percpu(dev->bulkq);
+ dev_put(dev->dev);
+ kfree(dev);
+ }
+
+ bpf_map_area_free(dtab->netdev_map);
}
free_percpu(dtab->flush_list);
- bpf_map_area_free(dtab->netdev_map);
- kfree(dtab->dev_index_head);
kfree(dtab);
}
@@ -263,12 +287,6 @@ static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
return 0;
}
-static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
- int idx)
-{
- return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
-}
-
struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
{
struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c
index 5e28718928ca..cada974c9f4e 100644
--- a/kernel/bpf/helpers.c
+++ b/kernel/bpf/helpers.c
@@ -317,7 +317,7 @@ BPF_CALL_0(bpf_get_current_cgroup_id)
{
struct cgroup *cgrp = task_dfl_cgroup(current);
- return cgrp->kn->id.id;
+ return cgroup_id(cgrp);
}
const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
diff --git a/kernel/bpf/inode.c b/kernel/bpf/inode.c
index a70f7209cda3..ecf42bec38c0 100644
--- a/kernel/bpf/inode.c
+++ b/kernel/bpf/inode.c
@@ -31,10 +31,10 @@ static void *bpf_any_get(void *raw, enum bpf_type type)
{
switch (type) {
case BPF_TYPE_PROG:
- raw = bpf_prog_inc(raw);
+ bpf_prog_inc(raw);
break;
case BPF_TYPE_MAP:
- raw = bpf_map_inc(raw, true);
+ bpf_map_inc_with_uref(raw);
break;
default:
WARN_ON_ONCE(1);
@@ -534,7 +534,8 @@ static struct bpf_prog *__get_prog_inode(struct inode *inode, enum bpf_prog_type
if (!bpf_prog_get_ok(prog, &type, false))
return ERR_PTR(-EINVAL);
- return bpf_prog_inc(prog);
+ bpf_prog_inc(prog);
+ return prog;
}
struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type)
diff --git a/kernel/bpf/local_storage.c b/kernel/bpf/local_storage.c
index addd6fdceec8..2ba750725cb2 100644
--- a/kernel/bpf/local_storage.c
+++ b/kernel/bpf/local_storage.c
@@ -569,7 +569,7 @@ void bpf_cgroup_storage_link(struct bpf_cgroup_storage *storage,
return;
storage->key.attach_type = type;
- storage->key.cgroup_inode_id = cgroup->kn->id.id;
+ storage->key.cgroup_inode_id = cgroup_id(cgroup);
map = storage->map;
diff --git a/kernel/bpf/map_in_map.c b/kernel/bpf/map_in_map.c
index fab4fb134547..5e9366b33f0f 100644
--- a/kernel/bpf/map_in_map.c
+++ b/kernel/bpf/map_in_map.c
@@ -17,9 +17,8 @@ struct bpf_map *bpf_map_meta_alloc(int inner_map_ufd)
if (IS_ERR(inner_map))
return inner_map;
- /* prog_array->owner_prog_type and owner_jited
- * is a runtime binding. Doing static check alone
- * in the verifier is not enough.
+ /* prog_array->aux->{type,jited} is a runtime binding.
+ * Doing static check alone in the verifier is not enough.
*/
if (inner_map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
inner_map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
@@ -98,7 +97,7 @@ void *bpf_map_fd_get_ptr(struct bpf_map *map,
return inner_map;
if (bpf_map_meta_equal(map->inner_map_meta, inner_map))
- inner_map = bpf_map_inc(inner_map, false);
+ bpf_map_inc(inner_map);
else
inner_map = ERR_PTR(-EINVAL);
diff --git a/kernel/bpf/offload.c b/kernel/bpf/offload.c
index ba635209ae9a..5b9da0954a27 100644
--- a/kernel/bpf/offload.c
+++ b/kernel/bpf/offload.c
@@ -678,8 +678,10 @@ bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv)
down_write(&bpf_devs_lock);
if (!offdevs_inited) {
err = rhashtable_init(&offdevs, &offdevs_params);
- if (err)
+ if (err) {
+ up_write(&bpf_devs_lock);
return ERR_PTR(err);
+ }
offdevs_inited = true;
}
up_write(&bpf_devs_lock);
diff --git a/kernel/bpf/stackmap.c b/kernel/bpf/stackmap.c
index 052580c33d26..caca752ee5e6 100644
--- a/kernel/bpf/stackmap.c
+++ b/kernel/bpf/stackmap.c
@@ -287,7 +287,7 @@ static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
bool irq_work_busy = false;
struct stack_map_irq_work *work = NULL;
- if (in_nmi()) {
+ if (irqs_disabled()) {
work = this_cpu_ptr(&up_read_work);
if (work->irq_work.flags & IRQ_WORK_BUSY)
/* cannot queue more up_read, fallback */
@@ -295,8 +295,9 @@ static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
}
/*
- * We cannot do up_read() in nmi context. To do build_id lookup
- * in nmi context, we need to run up_read() in irq_work. We use
+ * We cannot do up_read() when the irq is disabled, because of
+ * risk to deadlock with rq_lock. To do build_id lookup when the
+ * irqs are disabled, we need to run up_read() in irq_work. We use
* a percpu variable to do the irq_work. If the irq_work is
* already used by another lookup, we fall back to report ips.
*
@@ -338,7 +339,7 @@ static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
* up_read_non_owner(). The rwsem_release() is called
* here to release the lock from lockdep's perspective.
*/
- rwsem_release(&current->mm->mmap_sem.dep_map, 1, _RET_IP_);
+ rwsem_release(&current->mm->mmap_sem.dep_map, _RET_IP_);
}
}
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
index 0937719b87e2..e3461ec59570 100644
--- a/kernel/bpf/syscall.c
+++ b/kernel/bpf/syscall.c
@@ -23,13 +23,15 @@
#include <linux/timekeeping.h>
#include <linux/ctype.h>
#include <linux/nospec.h>
+#include <uapi/linux/btf.h>
-#define IS_FD_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PROG_ARRAY || \
- (map)->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY || \
- (map)->map_type == BPF_MAP_TYPE_CGROUP_ARRAY || \
- (map)->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS)
+#define IS_FD_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY || \
+ (map)->map_type == BPF_MAP_TYPE_CGROUP_ARRAY || \
+ (map)->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS)
+#define IS_FD_PROG_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PROG_ARRAY)
#define IS_FD_HASH(map) ((map)->map_type == BPF_MAP_TYPE_HASH_OF_MAPS)
-#define IS_FD_MAP(map) (IS_FD_ARRAY(map) || IS_FD_HASH(map))
+#define IS_FD_MAP(map) (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map) || \
+ IS_FD_HASH(map))
#define BPF_OBJ_FLAG_MASK (BPF_F_RDONLY | BPF_F_WRONLY)
@@ -42,7 +44,7 @@ static DEFINE_SPINLOCK(map_idr_lock);
int sysctl_unprivileged_bpf_disabled __read_mostly;
static const struct bpf_map_ops * const bpf_map_types[] = {
-#define BPF_PROG_TYPE(_id, _ops)
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
#define BPF_MAP_TYPE(_id, _ops) \
[_id] = &_ops,
#include <linux/bpf_types.h>
@@ -126,7 +128,7 @@ static struct bpf_map *find_and_alloc_map(union bpf_attr *attr)
return map;
}
-void *bpf_map_area_alloc(size_t size, int numa_node)
+static void *__bpf_map_area_alloc(u64 size, int numa_node, bool mmapable)
{
/* We really just want to fail instead of triggering OOM killer
* under memory pressure, therefore we set __GFP_NORETRY to kmalloc,
@@ -141,18 +143,36 @@ void *bpf_map_area_alloc(size_t size, int numa_node)
const gfp_t flags = __GFP_NOWARN | __GFP_ZERO;
void *area;
- if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
+ if (size >= SIZE_MAX)
+ return NULL;
+
+ /* kmalloc()'ed memory can't be mmap()'ed */
+ if (!mmapable && size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
area = kmalloc_node(size, GFP_USER | __GFP_NORETRY | flags,
numa_node);
if (area != NULL)
return area;
}
-
+ if (mmapable) {
+ BUG_ON(!PAGE_ALIGNED(size));
+ return vmalloc_user_node_flags(size, numa_node, GFP_KERNEL |
+ __GFP_RETRY_MAYFAIL | flags);
+ }
return __vmalloc_node_flags_caller(size, numa_node,
GFP_KERNEL | __GFP_RETRY_MAYFAIL |
flags, __builtin_return_address(0));
}
+void *bpf_map_area_alloc(u64 size, int numa_node)
+{
+ return __bpf_map_area_alloc(size, numa_node, false);
+}
+
+void *bpf_map_area_mmapable_alloc(u64 size, int numa_node)
+{
+ return __bpf_map_area_alloc(size, numa_node, true);
+}
+
void bpf_map_area_free(void *area)
{
kvfree(area);
@@ -197,7 +217,7 @@ static void bpf_uncharge_memlock(struct user_struct *user, u32 pages)
atomic_long_sub(pages, &user->locked_vm);
}
-int bpf_map_charge_init(struct bpf_map_memory *mem, size_t size)
+int bpf_map_charge_init(struct bpf_map_memory *mem, u64 size)
{
u32 pages = round_up(size, PAGE_SIZE) >> PAGE_SHIFT;
struct user_struct *user;
@@ -310,7 +330,7 @@ static void bpf_map_free_deferred(struct work_struct *work)
static void bpf_map_put_uref(struct bpf_map *map)
{
- if (atomic_dec_and_test(&map->usercnt)) {
+ if (atomic64_dec_and_test(&map->usercnt)) {
if (map->ops->map_release_uref)
map->ops->map_release_uref(map);
}
@@ -321,7 +341,7 @@ static void bpf_map_put_uref(struct bpf_map *map)
*/
static void __bpf_map_put(struct bpf_map *map, bool do_idr_lock)
{
- if (atomic_dec_and_test(&map->refcnt)) {
+ if (atomic64_dec_and_test(&map->refcnt)) {
/* bpf_map_free_id() must be called first */
bpf_map_free_id(map, do_idr_lock);
btf_put(map->btf);
@@ -370,13 +390,12 @@ static void bpf_map_show_fdinfo(struct seq_file *m, struct file *filp)
{
const struct bpf_map *map = filp->private_data;
const struct bpf_array *array;
- u32 owner_prog_type = 0;
- u32 owner_jited = 0;
+ u32 type = 0, jited = 0;
if (map->map_type == BPF_MAP_TYPE_PROG_ARRAY) {
array = container_of(map, struct bpf_array, map);
- owner_prog_type = array->owner_prog_type;
- owner_jited = array->owner_jited;
+ type = array->aux->type;
+ jited = array->aux->jited;
}
seq_printf(m,
@@ -396,12 +415,9 @@ static void bpf_map_show_fdinfo(struct seq_file *m, struct file *filp)
map->memory.pages * 1ULL << PAGE_SHIFT,
map->id,
READ_ONCE(map->frozen));
-
- if (owner_prog_type) {
- seq_printf(m, "owner_prog_type:\t%u\n",
- owner_prog_type);
- seq_printf(m, "owner_jited:\t%u\n",
- owner_jited);
+ if (type) {
+ seq_printf(m, "owner_prog_type:\t%u\n", type);
+ seq_printf(m, "owner_jited:\t%u\n", jited);
}
}
#endif
@@ -424,6 +440,74 @@ static ssize_t bpf_dummy_write(struct file *filp, const char __user *buf,
return -EINVAL;
}
+/* called for any extra memory-mapped regions (except initial) */
+static void bpf_map_mmap_open(struct vm_area_struct *vma)
+{
+ struct bpf_map *map = vma->vm_file->private_data;
+
+ bpf_map_inc_with_uref(map);
+
+ if (vma->vm_flags & VM_WRITE) {
+ mutex_lock(&map->freeze_mutex);
+ map->writecnt++;
+ mutex_unlock(&map->freeze_mutex);
+ }
+}
+
+/* called for all unmapped memory region (including initial) */
+static void bpf_map_mmap_close(struct vm_area_struct *vma)
+{
+ struct bpf_map *map = vma->vm_file->private_data;
+
+ if (vma->vm_flags & VM_WRITE) {
+ mutex_lock(&map->freeze_mutex);
+ map->writecnt--;
+ mutex_unlock(&map->freeze_mutex);
+ }
+
+ bpf_map_put_with_uref(map);
+}
+
+static const struct vm_operations_struct bpf_map_default_vmops = {
+ .open = bpf_map_mmap_open,
+ .close = bpf_map_mmap_close,
+};
+
+static int bpf_map_mmap(struct file *filp, struct vm_area_struct *vma)
+{
+ struct bpf_map *map = filp->private_data;
+ int err;
+
+ if (!map->ops->map_mmap || map_value_has_spin_lock(map))
+ return -ENOTSUPP;
+
+ if (!(vma->vm_flags & VM_SHARED))
+ return -EINVAL;
+
+ mutex_lock(&map->freeze_mutex);
+
+ if ((vma->vm_flags & VM_WRITE) && map->frozen) {
+ err = -EPERM;
+ goto out;
+ }
+
+ /* set default open/close callbacks */
+ vma->vm_ops = &bpf_map_default_vmops;
+ vma->vm_private_data = map;
+
+ err = map->ops->map_mmap(map, vma);
+ if (err)
+ goto out;
+
+ bpf_map_inc_with_uref(map);
+
+ if (vma->vm_flags & VM_WRITE)
+ map->writecnt++;
+out:
+ mutex_unlock(&map->freeze_mutex);
+ return err;
+}
+
const struct file_operations bpf_map_fops = {
#ifdef CONFIG_PROC_FS
.show_fdinfo = bpf_map_show_fdinfo,
@@ -431,6 +515,7 @@ const struct file_operations bpf_map_fops = {
.release = bpf_map_release,
.read = bpf_dummy_read,
.write = bpf_dummy_write,
+ .mmap = bpf_map_mmap,
};
int bpf_map_new_fd(struct bpf_map *map, int flags)
@@ -574,8 +659,9 @@ static int map_create(union bpf_attr *attr)
if (err)
goto free_map;
- atomic_set(&map->refcnt, 1);
- atomic_set(&map->usercnt, 1);
+ atomic64_set(&map->refcnt, 1);
+ atomic64_set(&map->usercnt, 1);
+ mutex_init(&map->freeze_mutex);
if (attr->btf_key_type_id || attr->btf_value_type_id) {
struct btf *btf;
@@ -652,21 +738,19 @@ struct bpf_map *__bpf_map_get(struct fd f)
return f.file->private_data;
}
-/* prog's and map's refcnt limit */
-#define BPF_MAX_REFCNT 32768
-
-struct bpf_map *bpf_map_inc(struct bpf_map *map, bool uref)
+void bpf_map_inc(struct bpf_map *map)
{
- if (atomic_inc_return(&map->refcnt) > BPF_MAX_REFCNT) {
- atomic_dec(&map->refcnt);
- return ERR_PTR(-EBUSY);
- }
- if (uref)
- atomic_inc(&map->usercnt);
- return map;
+ atomic64_inc(&map->refcnt);
}
EXPORT_SYMBOL_GPL(bpf_map_inc);
+void bpf_map_inc_with_uref(struct bpf_map *map)
+{
+ atomic64_inc(&map->refcnt);
+ atomic64_inc(&map->usercnt);
+}
+EXPORT_SYMBOL_GPL(bpf_map_inc_with_uref);
+
struct bpf_map *bpf_map_get_with_uref(u32 ufd)
{
struct fd f = fdget(ufd);
@@ -676,38 +760,30 @@ struct bpf_map *bpf_map_get_with_uref(u32 ufd)
if (IS_ERR(map))
return map;
- map = bpf_map_inc(map, true);
+ bpf_map_inc_with_uref(map);
fdput(f);
return map;
}
/* map_idr_lock should have been held */
-static struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map,
- bool uref)
+static struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref)
{
int refold;
- refold = atomic_fetch_add_unless(&map->refcnt, 1, 0);
-
- if (refold >= BPF_MAX_REFCNT) {
- __bpf_map_put(map, false);
- return ERR_PTR(-EBUSY);
- }
-
+ refold = atomic64_fetch_add_unless(&map->refcnt, 1, 0);
if (!refold)
return ERR_PTR(-ENOENT);
-
if (uref)
- atomic_inc(&map->usercnt);
+ atomic64_inc(&map->usercnt);
return map;
}
-struct bpf_map *bpf_map_inc_not_zero(struct bpf_map *map, bool uref)
+struct bpf_map *bpf_map_inc_not_zero(struct bpf_map *map)
{
spin_lock_bh(&map_idr_lock);
- map = __bpf_map_inc_not_zero(map, uref);
+ map = __bpf_map_inc_not_zero(map, false);
spin_unlock_bh(&map_idr_lock);
return map;
@@ -802,7 +878,7 @@ static int map_lookup_elem(union bpf_attr *attr)
err = bpf_percpu_cgroup_storage_copy(map, key, value);
} else if (map->map_type == BPF_MAP_TYPE_STACK_TRACE) {
err = bpf_stackmap_copy(map, key, value);
- } else if (IS_FD_ARRAY(map)) {
+ } else if (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map)) {
err = bpf_fd_array_map_lookup_elem(map, key, value);
} else if (IS_FD_HASH(map)) {
err = bpf_fd_htab_map_lookup_elem(map, key, value);
@@ -929,6 +1005,10 @@ static int map_update_elem(union bpf_attr *attr)
map->map_type == BPF_MAP_TYPE_SOCKMAP) {
err = map->ops->map_update_elem(map, key, value, attr->flags);
goto out;
+ } else if (IS_FD_PROG_ARRAY(map)) {
+ err = bpf_fd_array_map_update_elem(map, f.file, key, value,
+ attr->flags);
+ goto out;
}
/* must increment bpf_prog_active to avoid kprobe+bpf triggering from
@@ -1011,6 +1091,9 @@ static int map_delete_elem(union bpf_attr *attr)
if (bpf_map_is_dev_bound(map)) {
err = bpf_map_offload_delete_elem(map, key);
goto out;
+ } else if (IS_FD_PROG_ARRAY(map)) {
+ err = map->ops->map_delete_elem(map, key);
+ goto out;
}
preempt_disable();
@@ -1172,6 +1255,13 @@ static int map_freeze(const union bpf_attr *attr)
map = __bpf_map_get(f);
if (IS_ERR(map))
return PTR_ERR(map);
+
+ mutex_lock(&map->freeze_mutex);
+
+ if (map->writecnt) {
+ err = -EBUSY;
+ goto err_put;
+ }
if (READ_ONCE(map->frozen)) {
err = -EBUSY;
goto err_put;
@@ -1183,12 +1273,13 @@ static int map_freeze(const union bpf_attr *attr)
WRITE_ONCE(map->frozen, true);
err_put:
+ mutex_unlock(&map->freeze_mutex);
fdput(f);
return err;
}
static const struct bpf_prog_ops * const bpf_prog_types[] = {
-#define BPF_PROG_TYPE(_id, _name) \
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
[_id] = & _name ## _prog_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
@@ -1215,25 +1306,6 @@ static int find_prog_type(enum bpf_prog_type type, struct bpf_prog *prog)
return 0;
}
-/* drop refcnt on maps used by eBPF program and free auxilary data */
-static void free_used_maps(struct bpf_prog_aux *aux)
-{
- enum bpf_cgroup_storage_type stype;
- int i;
-
- for_each_cgroup_storage_type(stype) {
- if (!aux->cgroup_storage[stype])
- continue;
- bpf_cgroup_storage_release(aux->prog,
- aux->cgroup_storage[stype]);
- }
-
- for (i = 0; i < aux->used_map_cnt; i++)
- bpf_map_put(aux->used_maps[i]);
-
- kfree(aux->used_maps);
-}
-
int __bpf_prog_charge(struct user_struct *user, u32 pages)
{
unsigned long memlock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
@@ -1327,7 +1399,7 @@ static void __bpf_prog_put_rcu(struct rcu_head *rcu)
struct bpf_prog_aux *aux = container_of(rcu, struct bpf_prog_aux, rcu);
kvfree(aux->func_info);
- free_used_maps(aux);
+ kfree(aux->func_info_aux);
bpf_prog_uncharge_memlock(aux->prog);
security_bpf_prog_free(aux);
bpf_prog_free(aux->prog);
@@ -1347,7 +1419,7 @@ static void __bpf_prog_put_noref(struct bpf_prog *prog, bool deferred)
static void __bpf_prog_put(struct bpf_prog *prog, bool do_idr_lock)
{
- if (atomic_dec_and_test(&prog->aux->refcnt)) {
+ if (atomic64_dec_and_test(&prog->aux->refcnt)) {
perf_event_bpf_event(prog, PERF_BPF_EVENT_PROG_UNLOAD, 0);
/* bpf_prog_free_id() must be called first */
bpf_prog_free_id(prog, do_idr_lock);
@@ -1453,13 +1525,9 @@ static struct bpf_prog *____bpf_prog_get(struct fd f)
return f.file->private_data;
}
-struct bpf_prog *bpf_prog_add(struct bpf_prog *prog, int i)
+void bpf_prog_add(struct bpf_prog *prog, int i)
{
- if (atomic_add_return(i, &prog->aux->refcnt) > BPF_MAX_REFCNT) {
- atomic_sub(i, &prog->aux->refcnt);
- return ERR_PTR(-EBUSY);
- }
- return prog;
+ atomic64_add(i, &prog->aux->refcnt);
}
EXPORT_SYMBOL_GPL(bpf_prog_add);
@@ -1470,13 +1538,13 @@ void bpf_prog_sub(struct bpf_prog *prog, int i)
* path holds a reference to the program, thus atomic_sub() can
* be safely used in such cases!
*/
- WARN_ON(atomic_sub_return(i, &prog->aux->refcnt) == 0);
+ WARN_ON(atomic64_sub_return(i, &prog->aux->refcnt) == 0);
}
EXPORT_SYMBOL_GPL(bpf_prog_sub);
-struct bpf_prog *bpf_prog_inc(struct bpf_prog *prog)
+void bpf_prog_inc(struct bpf_prog *prog)
{
- return bpf_prog_add(prog, 1);
+ atomic64_inc(&prog->aux->refcnt);
}
EXPORT_SYMBOL_GPL(bpf_prog_inc);
@@ -1485,12 +1553,7 @@ struct bpf_prog *bpf_prog_inc_not_zero(struct bpf_prog *prog)
{
int refold;
- refold = atomic_fetch_add_unless(&prog->aux->refcnt, 1, 0);
-
- if (refold >= BPF_MAX_REFCNT) {
- __bpf_prog_put(prog, false);
- return ERR_PTR(-EBUSY);
- }
+ refold = atomic64_fetch_add_unless(&prog->aux->refcnt, 1, 0);
if (!refold)
return ERR_PTR(-ENOENT);
@@ -1528,7 +1591,7 @@ static struct bpf_prog *__bpf_prog_get(u32 ufd, enum bpf_prog_type *attach_type,
goto out;
}
- prog = bpf_prog_inc(prog);
+ bpf_prog_inc(prog);
out:
fdput(f);
return prog;
@@ -1573,10 +1636,22 @@ static void bpf_prog_load_fixup_attach_type(union bpf_attr *attr)
}
static int
-bpf_prog_load_check_attach_type(enum bpf_prog_type prog_type,
- enum bpf_attach_type expected_attach_type)
+bpf_prog_load_check_attach(enum bpf_prog_type prog_type,
+ enum bpf_attach_type expected_attach_type,
+ u32 btf_id, u32 prog_fd)
{
switch (prog_type) {
+ case BPF_PROG_TYPE_TRACING:
+ if (btf_id > BTF_MAX_TYPE)
+ return -EINVAL;
+ break;
+ default:
+ if (btf_id || prog_fd)
+ return -EINVAL;
+ break;
+ }
+
+ switch (prog_type) {
case BPF_PROG_TYPE_CGROUP_SOCK:
switch (expected_attach_type) {
case BPF_CGROUP_INET_SOCK_CREATE:
@@ -1622,7 +1697,7 @@ bpf_prog_load_check_attach_type(enum bpf_prog_type prog_type,
}
/* last field in 'union bpf_attr' used by this command */
-#define BPF_PROG_LOAD_LAST_FIELD line_info_cnt
+#define BPF_PROG_LOAD_LAST_FIELD attach_prog_fd
static int bpf_prog_load(union bpf_attr *attr, union bpf_attr __user *uattr)
{
@@ -1664,7 +1739,9 @@ static int bpf_prog_load(union bpf_attr *attr, union bpf_attr __user *uattr)
return -EPERM;
bpf_prog_load_fixup_attach_type(attr);
- if (bpf_prog_load_check_attach_type(type, attr->expected_attach_type))
+ if (bpf_prog_load_check_attach(type, attr->expected_attach_type,
+ attr->attach_btf_id,
+ attr->attach_prog_fd))
return -EINVAL;
/* plain bpf_prog allocation */
@@ -1673,6 +1750,17 @@ static int bpf_prog_load(union bpf_attr *attr, union bpf_attr __user *uattr)
return -ENOMEM;
prog->expected_attach_type = attr->expected_attach_type;
+ prog->aux->attach_btf_id = attr->attach_btf_id;
+ if (attr->attach_prog_fd) {
+ struct bpf_prog *tgt_prog;
+
+ tgt_prog = bpf_prog_get(attr->attach_prog_fd);
+ if (IS_ERR(tgt_prog)) {
+ err = PTR_ERR(tgt_prog);
+ goto free_prog_nouncharge;
+ }
+ prog->aux->linked_prog = tgt_prog;
+ }
prog->aux->offload_requested = !!attr->prog_ifindex;
@@ -1694,7 +1782,7 @@ static int bpf_prog_load(union bpf_attr *attr, union bpf_attr __user *uattr)
prog->orig_prog = NULL;
prog->jited = 0;
- atomic_set(&prog->aux->refcnt, 1);
+ atomic64_set(&prog->aux->refcnt, 1);
prog->gpl_compatible = is_gpl ? 1 : 0;
if (bpf_prog_is_dev_bound(prog->aux)) {
@@ -1784,6 +1872,49 @@ static int bpf_obj_get(const union bpf_attr *attr)
attr->file_flags);
}
+static int bpf_tracing_prog_release(struct inode *inode, struct file *filp)
+{
+ struct bpf_prog *prog = filp->private_data;
+
+ WARN_ON_ONCE(bpf_trampoline_unlink_prog(prog));
+ bpf_prog_put(prog);
+ return 0;
+}
+
+static const struct file_operations bpf_tracing_prog_fops = {
+ .release = bpf_tracing_prog_release,
+ .read = bpf_dummy_read,
+ .write = bpf_dummy_write,
+};
+
+static int bpf_tracing_prog_attach(struct bpf_prog *prog)
+{
+ int tr_fd, err;
+
+ if (prog->expected_attach_type != BPF_TRACE_FENTRY &&
+ prog->expected_attach_type != BPF_TRACE_FEXIT) {
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+
+ err = bpf_trampoline_link_prog(prog);
+ if (err)
+ goto out_put_prog;
+
+ tr_fd = anon_inode_getfd("bpf-tracing-prog", &bpf_tracing_prog_fops,
+ prog, O_CLOEXEC);
+ if (tr_fd < 0) {
+ WARN_ON_ONCE(bpf_trampoline_unlink_prog(prog));
+ err = tr_fd;
+ goto out_put_prog;
+ }
+ return tr_fd;
+
+out_put_prog:
+ bpf_prog_put(prog);
+ return err;
+}
+
struct bpf_raw_tracepoint {
struct bpf_raw_event_map *btp;
struct bpf_prog *prog;
@@ -1815,17 +1946,52 @@ static int bpf_raw_tracepoint_open(const union bpf_attr *attr)
struct bpf_raw_tracepoint *raw_tp;
struct bpf_raw_event_map *btp;
struct bpf_prog *prog;
- char tp_name[128];
+ const char *tp_name;
+ char buf[128];
int tp_fd, err;
- if (strncpy_from_user(tp_name, u64_to_user_ptr(attr->raw_tracepoint.name),
- sizeof(tp_name) - 1) < 0)
- return -EFAULT;
- tp_name[sizeof(tp_name) - 1] = 0;
+ if (CHECK_ATTR(BPF_RAW_TRACEPOINT_OPEN))
+ return -EINVAL;
+
+ prog = bpf_prog_get(attr->raw_tracepoint.prog_fd);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ if (prog->type != BPF_PROG_TYPE_RAW_TRACEPOINT &&
+ prog->type != BPF_PROG_TYPE_TRACING &&
+ prog->type != BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE) {
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+
+ if (prog->type == BPF_PROG_TYPE_TRACING) {
+ if (attr->raw_tracepoint.name) {
+ /* The attach point for this category of programs
+ * should be specified via btf_id during program load.
+ */
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+ if (prog->expected_attach_type == BPF_TRACE_RAW_TP)
+ tp_name = prog->aux->attach_func_name;
+ else
+ return bpf_tracing_prog_attach(prog);
+ } else {
+ if (strncpy_from_user(buf,
+ u64_to_user_ptr(attr->raw_tracepoint.name),
+ sizeof(buf) - 1) < 0) {
+ err = -EFAULT;
+ goto out_put_prog;
+ }
+ buf[sizeof(buf) - 1] = 0;
+ tp_name = buf;
+ }
btp = bpf_get_raw_tracepoint(tp_name);
- if (!btp)
- return -ENOENT;
+ if (!btp) {
+ err = -ENOENT;
+ goto out_put_prog;
+ }
raw_tp = kzalloc(sizeof(*raw_tp), GFP_USER);
if (!raw_tp) {
@@ -1833,38 +1999,27 @@ static int bpf_raw_tracepoint_open(const union bpf_attr *attr)
goto out_put_btp;
}
raw_tp->btp = btp;
-
- prog = bpf_prog_get(attr->raw_tracepoint.prog_fd);
- if (IS_ERR(prog)) {
- err = PTR_ERR(prog);
- goto out_free_tp;
- }
- if (prog->type != BPF_PROG_TYPE_RAW_TRACEPOINT &&
- prog->type != BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE) {
- err = -EINVAL;
- goto out_put_prog;
- }
+ raw_tp->prog = prog;
err = bpf_probe_register(raw_tp->btp, prog);
if (err)
- goto out_put_prog;
+ goto out_free_tp;
- raw_tp->prog = prog;
tp_fd = anon_inode_getfd("bpf-raw-tracepoint", &bpf_raw_tp_fops, raw_tp,
O_CLOEXEC);
if (tp_fd < 0) {
bpf_probe_unregister(raw_tp->btp, prog);
err = tp_fd;
- goto out_put_prog;
+ goto out_free_tp;
}
return tp_fd;
-out_put_prog:
- bpf_prog_put(prog);
out_free_tp:
kfree(raw_tp);
out_put_btp:
bpf_put_raw_tracepoint(btp);
+out_put_prog:
+ bpf_prog_put(prog);
return err;
}
diff --git a/kernel/bpf/trampoline.c b/kernel/bpf/trampoline.c
new file mode 100644
index 000000000000..7e89f1f49d77
--- /dev/null
+++ b/kernel/bpf/trampoline.c
@@ -0,0 +1,253 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2019 Facebook */
+#include <linux/hash.h>
+#include <linux/bpf.h>
+#include <linux/filter.h>
+
+/* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
+#define TRAMPOLINE_HASH_BITS 10
+#define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
+
+static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
+
+/* serializes access to trampoline_table */
+static DEFINE_MUTEX(trampoline_mutex);
+
+struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
+{
+ struct bpf_trampoline *tr;
+ struct hlist_head *head;
+ void *image;
+ int i;
+
+ mutex_lock(&trampoline_mutex);
+ head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
+ hlist_for_each_entry(tr, head, hlist) {
+ if (tr->key == key) {
+ refcount_inc(&tr->refcnt);
+ goto out;
+ }
+ }
+ tr = kzalloc(sizeof(*tr), GFP_KERNEL);
+ if (!tr)
+ goto out;
+
+ /* is_root was checked earlier. No need for bpf_jit_charge_modmem() */
+ image = bpf_jit_alloc_exec(PAGE_SIZE);
+ if (!image) {
+ kfree(tr);
+ tr = NULL;
+ goto out;
+ }
+
+ tr->key = key;
+ INIT_HLIST_NODE(&tr->hlist);
+ hlist_add_head(&tr->hlist, head);
+ refcount_set(&tr->refcnt, 1);
+ mutex_init(&tr->mutex);
+ for (i = 0; i < BPF_TRAMP_MAX; i++)
+ INIT_HLIST_HEAD(&tr->progs_hlist[i]);
+
+ set_vm_flush_reset_perms(image);
+ /* Keep image as writeable. The alternative is to keep flipping ro/rw
+ * everytime new program is attached or detached.
+ */
+ set_memory_x((long)image, 1);
+ tr->image = image;
+out:
+ mutex_unlock(&trampoline_mutex);
+ return tr;
+}
+
+/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
+ * bytes on x86. Pick a number to fit into PAGE_SIZE / 2
+ */
+#define BPF_MAX_TRAMP_PROGS 40
+
+static int bpf_trampoline_update(struct bpf_trampoline *tr)
+{
+ void *old_image = tr->image + ((tr->selector + 1) & 1) * PAGE_SIZE/2;
+ void *new_image = tr->image + (tr->selector & 1) * PAGE_SIZE/2;
+ struct bpf_prog *progs_to_run[BPF_MAX_TRAMP_PROGS];
+ int fentry_cnt = tr->progs_cnt[BPF_TRAMP_FENTRY];
+ int fexit_cnt = tr->progs_cnt[BPF_TRAMP_FEXIT];
+ struct bpf_prog **progs, **fentry, **fexit;
+ u32 flags = BPF_TRAMP_F_RESTORE_REGS;
+ struct bpf_prog_aux *aux;
+ int err;
+
+ if (fentry_cnt + fexit_cnt == 0) {
+ err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_CALL,
+ old_image, NULL);
+ tr->selector = 0;
+ goto out;
+ }
+
+ /* populate fentry progs */
+ fentry = progs = progs_to_run;
+ hlist_for_each_entry(aux, &tr->progs_hlist[BPF_TRAMP_FENTRY], tramp_hlist)
+ *progs++ = aux->prog;
+
+ /* populate fexit progs */
+ fexit = progs;
+ hlist_for_each_entry(aux, &tr->progs_hlist[BPF_TRAMP_FEXIT], tramp_hlist)
+ *progs++ = aux->prog;
+
+ if (fexit_cnt)
+ flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
+
+ err = arch_prepare_bpf_trampoline(new_image, &tr->func.model, flags,
+ fentry, fentry_cnt,
+ fexit, fexit_cnt,
+ tr->func.addr);
+ if (err)
+ goto out;
+
+ if (tr->selector)
+ /* progs already running at this address */
+ err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_CALL,
+ old_image, new_image);
+ else
+ /* first time registering */
+ err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_CALL, NULL,
+ new_image);
+ if (err)
+ goto out;
+ tr->selector++;
+out:
+ return err;
+}
+
+static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(enum bpf_attach_type t)
+{
+ switch (t) {
+ case BPF_TRACE_FENTRY:
+ return BPF_TRAMP_FENTRY;
+ default:
+ return BPF_TRAMP_FEXIT;
+ }
+}
+
+int bpf_trampoline_link_prog(struct bpf_prog *prog)
+{
+ enum bpf_tramp_prog_type kind;
+ struct bpf_trampoline *tr;
+ int err = 0;
+
+ tr = prog->aux->trampoline;
+ kind = bpf_attach_type_to_tramp(prog->expected_attach_type);
+ mutex_lock(&tr->mutex);
+ if (tr->progs_cnt[BPF_TRAMP_FENTRY] + tr->progs_cnt[BPF_TRAMP_FEXIT]
+ >= BPF_MAX_TRAMP_PROGS) {
+ err = -E2BIG;
+ goto out;
+ }
+ if (!hlist_unhashed(&prog->aux->tramp_hlist)) {
+ /* prog already linked */
+ err = -EBUSY;
+ goto out;
+ }
+ hlist_add_head(&prog->aux->tramp_hlist, &tr->progs_hlist[kind]);
+ tr->progs_cnt[kind]++;
+ err = bpf_trampoline_update(prog->aux->trampoline);
+ if (err) {
+ hlist_del(&prog->aux->tramp_hlist);
+ tr->progs_cnt[kind]--;
+ }
+out:
+ mutex_unlock(&tr->mutex);
+ return err;
+}
+
+/* bpf_trampoline_unlink_prog() should never fail. */
+int bpf_trampoline_unlink_prog(struct bpf_prog *prog)
+{
+ enum bpf_tramp_prog_type kind;
+ struct bpf_trampoline *tr;
+ int err;
+
+ tr = prog->aux->trampoline;
+ kind = bpf_attach_type_to_tramp(prog->expected_attach_type);
+ mutex_lock(&tr->mutex);
+ hlist_del(&prog->aux->tramp_hlist);
+ tr->progs_cnt[kind]--;
+ err = bpf_trampoline_update(prog->aux->trampoline);
+ mutex_unlock(&tr->mutex);
+ return err;
+}
+
+void bpf_trampoline_put(struct bpf_trampoline *tr)
+{
+ if (!tr)
+ return;
+ mutex_lock(&trampoline_mutex);
+ if (!refcount_dec_and_test(&tr->refcnt))
+ goto out;
+ WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
+ if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FENTRY])))
+ goto out;
+ if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FEXIT])))
+ goto out;
+ bpf_jit_free_exec(tr->image);
+ hlist_del(&tr->hlist);
+ kfree(tr);
+out:
+ mutex_unlock(&trampoline_mutex);
+}
+
+/* The logic is similar to BPF_PROG_RUN, but with explicit rcu and preempt that
+ * are needed for trampoline. The macro is split into
+ * call _bpf_prog_enter
+ * call prog->bpf_func
+ * call __bpf_prog_exit
+ */
+u64 notrace __bpf_prog_enter(void)
+{
+ u64 start = 0;
+
+ rcu_read_lock();
+ preempt_disable();
+ if (static_branch_unlikely(&bpf_stats_enabled_key))
+ start = sched_clock();
+ return start;
+}
+
+void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start)
+{
+ struct bpf_prog_stats *stats;
+
+ if (static_branch_unlikely(&bpf_stats_enabled_key) &&
+ /* static_key could be enabled in __bpf_prog_enter
+ * and disabled in __bpf_prog_exit.
+ * And vice versa.
+ * Hence check that 'start' is not zero.
+ */
+ start) {
+ stats = this_cpu_ptr(prog->aux->stats);
+ u64_stats_update_begin(&stats->syncp);
+ stats->cnt++;
+ stats->nsecs += sched_clock() - start;
+ u64_stats_update_end(&stats->syncp);
+ }
+ preempt_enable();
+ rcu_read_unlock();
+}
+
+int __weak
+arch_prepare_bpf_trampoline(void *image, struct btf_func_model *m, u32 flags,
+ struct bpf_prog **fentry_progs, int fentry_cnt,
+ struct bpf_prog **fexit_progs, int fexit_cnt,
+ void *orig_call)
+{
+ return -ENOTSUPP;
+}
+
+static int __init init_trampolines(void)
+{
+ int i;
+
+ for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
+ INIT_HLIST_HEAD(&trampoline_table[i]);
+ return 0;
+}
+late_initcall(init_trampolines);
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index ffc3e53f5300..a0482e1c4a77 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -23,7 +23,7 @@
#include "disasm.h"
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
-#define BPF_PROG_TYPE(_id, _name) \
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
@@ -171,6 +171,9 @@ struct bpf_verifier_stack_elem {
#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
#define BPF_COMPLEXITY_LIMIT_STATES 64
+#define BPF_MAP_KEY_POISON (1ULL << 63)
+#define BPF_MAP_KEY_SEEN (1ULL << 62)
+
#define BPF_MAP_PTR_UNPRIV 1UL
#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
POISON_POINTER_DELTA))
@@ -178,12 +181,12 @@ struct bpf_verifier_stack_elem {
static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
{
- return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
+ return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
}
static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
{
- return aux->map_state & BPF_MAP_PTR_UNPRIV;
+ return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
}
static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
@@ -191,8 +194,31 @@ static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
{
BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
unpriv |= bpf_map_ptr_unpriv(aux);
- aux->map_state = (unsigned long)map |
- (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
+ aux->map_ptr_state = (unsigned long)map |
+ (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
+}
+
+static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
+{
+ return aux->map_key_state & BPF_MAP_KEY_POISON;
+}
+
+static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
+{
+ return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
+}
+
+static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
+{
+ return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
+}
+
+static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
+{
+ bool poisoned = bpf_map_key_poisoned(aux);
+
+ aux->map_key_state = state | BPF_MAP_KEY_SEEN |
+ (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
}
struct bpf_call_arg_meta {
@@ -205,8 +231,11 @@ struct bpf_call_arg_meta {
u64 msize_umax_value;
int ref_obj_id;
int func_id;
+ u32 btf_id;
};
+struct btf *btf_vmlinux;
+
static DEFINE_MUTEX(bpf_verifier_lock);
static const struct bpf_line_info *
@@ -243,6 +272,10 @@ void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
n = min(log->len_total - log->len_used - 1, n);
log->kbuf[n] = '\0';
+ if (log->level == BPF_LOG_KERNEL) {
+ pr_err("BPF:%s\n", log->kbuf);
+ return;
+ }
if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
log->len_used += n;
else
@@ -280,6 +313,19 @@ __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
va_end(args);
}
+__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
+ const char *fmt, ...)
+{
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+}
+
static const char *ltrim(const char *s)
{
while (isspace(*s))
@@ -400,6 +446,7 @@ static const char * const reg_type_str[] = {
[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
[PTR_TO_TP_BUFFER] = "tp_buffer",
[PTR_TO_XDP_SOCK] = "xdp_sock",
+ [PTR_TO_BTF_ID] = "ptr_",
};
static char slot_type_char[] = {
@@ -430,6 +477,12 @@ static struct bpf_func_state *func(struct bpf_verifier_env *env,
return cur->frame[reg->frameno];
}
+const char *kernel_type_name(u32 id)
+{
+ return btf_name_by_offset(btf_vmlinux,
+ btf_type_by_id(btf_vmlinux, id)->name_off);
+}
+
static void print_verifier_state(struct bpf_verifier_env *env,
const struct bpf_func_state *state)
{
@@ -454,6 +507,8 @@ static void print_verifier_state(struct bpf_verifier_env *env,
/* reg->off should be 0 for SCALAR_VALUE */
verbose(env, "%lld", reg->var_off.value + reg->off);
} else {
+ if (t == PTR_TO_BTF_ID)
+ verbose(env, "%s", kernel_type_name(reg->btf_id));
verbose(env, "(id=%d", reg->id);
if (reg_type_may_be_refcounted_or_null(t))
verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
@@ -978,6 +1033,17 @@ static void __reg_bound_offset(struct bpf_reg_state *reg)
reg->umax_value));
}
+static void __reg_bound_offset32(struct bpf_reg_state *reg)
+{
+ u64 mask = 0xffffFFFF;
+ struct tnum range = tnum_range(reg->umin_value & mask,
+ reg->umax_value & mask);
+ struct tnum lo32 = tnum_cast(reg->var_off, 4);
+ struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
+
+ reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
+}
+
/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
@@ -2331,10 +2397,12 @@ static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
- enum bpf_access_type t, enum bpf_reg_type *reg_type)
+ enum bpf_access_type t, enum bpf_reg_type *reg_type,
+ u32 *btf_id)
{
struct bpf_insn_access_aux info = {
.reg_type = *reg_type,
+ .log = &env->log,
};
if (env->ops->is_valid_access &&
@@ -2348,7 +2416,10 @@ static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off,
*/
*reg_type = info.reg_type;
- env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
+ if (*reg_type == PTR_TO_BTF_ID)
+ *btf_id = info.btf_id;
+ else
+ env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
/* remember the offset of last byte accessed in ctx */
if (env->prog->aux->max_ctx_offset < off + size)
env->prog->aux->max_ctx_offset = off + size;
@@ -2739,6 +2810,88 @@ static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
reg->smax_value = reg->umax_value;
}
+static bool bpf_map_is_rdonly(const struct bpf_map *map)
+{
+ return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
+}
+
+static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
+{
+ void *ptr;
+ u64 addr;
+ int err;
+
+ err = map->ops->map_direct_value_addr(map, &addr, off);
+ if (err)
+ return err;
+ ptr = (void *)(long)addr + off;
+
+ switch (size) {
+ case sizeof(u8):
+ *val = (u64)*(u8 *)ptr;
+ break;
+ case sizeof(u16):
+ *val = (u64)*(u16 *)ptr;
+ break;
+ case sizeof(u32):
+ *val = (u64)*(u32 *)ptr;
+ break;
+ case sizeof(u64):
+ *val = *(u64 *)ptr;
+ break;
+ default:
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs,
+ int regno, int off, int size,
+ enum bpf_access_type atype,
+ int value_regno)
+{
+ struct bpf_reg_state *reg = regs + regno;
+ const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
+ const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
+ u32 btf_id;
+ int ret;
+
+ if (atype != BPF_READ) {
+ verbose(env, "only read is supported\n");
+ return -EACCES;
+ }
+
+ if (off < 0) {
+ verbose(env,
+ "R%d is ptr_%s invalid negative access: off=%d\n",
+ regno, tname, off);
+ return -EACCES;
+ }
+ if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env,
+ "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
+ regno, tname, off, tn_buf);
+ return -EACCES;
+ }
+
+ ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
+ if (ret < 0)
+ return ret;
+
+ if (ret == SCALAR_VALUE) {
+ mark_reg_unknown(env, regs, value_regno);
+ return 0;
+ }
+ mark_reg_known_zero(env, regs, value_regno);
+ regs[value_regno].type = PTR_TO_BTF_ID;
+ regs[value_regno].btf_id = btf_id;
+ return 0;
+}
+
/* check whether memory at (regno + off) is accessible for t = (read | write)
* if t==write, value_regno is a register which value is stored into memory
* if t==read, value_regno is a register which will receive the value from memory
@@ -2776,11 +2929,30 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
if (err)
return err;
err = check_map_access(env, regno, off, size, false);
- if (!err && t == BPF_READ && value_regno >= 0)
- mark_reg_unknown(env, regs, value_regno);
+ if (!err && t == BPF_READ && value_regno >= 0) {
+ struct bpf_map *map = reg->map_ptr;
+
+ /* if map is read-only, track its contents as scalars */
+ if (tnum_is_const(reg->var_off) &&
+ bpf_map_is_rdonly(map) &&
+ map->ops->map_direct_value_addr) {
+ int map_off = off + reg->var_off.value;
+ u64 val = 0;
+
+ err = bpf_map_direct_read(map, map_off, size,
+ &val);
+ if (err)
+ return err;
+ regs[value_regno].type = SCALAR_VALUE;
+ __mark_reg_known(&regs[value_regno], val);
+ } else {
+ mark_reg_unknown(env, regs, value_regno);
+ }
+ }
} else if (reg->type == PTR_TO_CTX) {
enum bpf_reg_type reg_type = SCALAR_VALUE;
+ u32 btf_id = 0;
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
@@ -2792,7 +2964,9 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
if (err < 0)
return err;
- err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
+ err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
+ if (err)
+ verbose_linfo(env, insn_idx, "; ");
if (!err && t == BPF_READ && value_regno >= 0) {
/* ctx access returns either a scalar, or a
* PTR_TO_PACKET[_META,_END]. In the latter
@@ -2811,6 +2985,8 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
* a sub-register.
*/
regs[value_regno].subreg_def = DEF_NOT_SUBREG;
+ if (reg_type == PTR_TO_BTF_ID)
+ regs[value_regno].btf_id = btf_id;
}
regs[value_regno].type = reg_type;
}
@@ -2870,6 +3046,9 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
err = check_tp_buffer_access(env, reg, regno, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
+ } else if (reg->type == PTR_TO_BTF_ID) {
+ err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
+ value_regno);
} else {
verbose(env, "R%d invalid mem access '%s'\n", regno,
reg_type_str[reg->type]);
@@ -3298,6 +3477,22 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
expected_type = PTR_TO_SOCKET;
if (type != expected_type)
goto err_type;
+ } else if (arg_type == ARG_PTR_TO_BTF_ID) {
+ expected_type = PTR_TO_BTF_ID;
+ if (type != expected_type)
+ goto err_type;
+ if (reg->btf_id != meta->btf_id) {
+ verbose(env, "Helper has type %s got %s in R%d\n",
+ kernel_type_name(meta->btf_id),
+ kernel_type_name(reg->btf_id), regno);
+
+ return -EACCES;
+ }
+ if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
+ verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
+ regno);
+ return -EACCES;
+ }
} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
if (meta->func_id == BPF_FUNC_spin_lock) {
if (process_spin_lock(env, regno, true))
@@ -3445,6 +3640,7 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env,
case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
if (func_id != BPF_FUNC_perf_event_read &&
func_id != BPF_FUNC_perf_event_output &&
+ func_id != BPF_FUNC_skb_output &&
func_id != BPF_FUNC_perf_event_read_value)
goto error;
break;
@@ -3532,6 +3728,7 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env,
case BPF_FUNC_perf_event_read:
case BPF_FUNC_perf_event_output:
case BPF_FUNC_perf_event_read_value:
+ case BPF_FUNC_skb_output:
if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
goto error;
break;
@@ -3810,6 +4007,9 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
/* only increment it after check_reg_arg() finished */
state->curframe++;
+ if (btf_check_func_arg_match(env, subprog))
+ return -EINVAL;
+
/* and go analyze first insn of the callee */
*insn_idx = target_insn;
@@ -3916,15 +4116,49 @@ record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
return -EACCES;
}
- if (!BPF_MAP_PTR(aux->map_state))
+ if (!BPF_MAP_PTR(aux->map_ptr_state))
bpf_map_ptr_store(aux, meta->map_ptr,
meta->map_ptr->unpriv_array);
- else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
+ else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
meta->map_ptr->unpriv_array);
return 0;
}
+static int
+record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
+ int func_id, int insn_idx)
+{
+ struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
+ struct bpf_reg_state *regs = cur_regs(env), *reg;
+ struct bpf_map *map = meta->map_ptr;
+ struct tnum range;
+ u64 val;
+
+ if (func_id != BPF_FUNC_tail_call)
+ return 0;
+ if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
+ verbose(env, "kernel subsystem misconfigured verifier\n");
+ return -EINVAL;
+ }
+
+ range = tnum_range(0, map->max_entries - 1);
+ reg = &regs[BPF_REG_3];
+
+ if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
+ bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
+ return 0;
+ }
+
+ val = reg->var_off.value;
+ if (bpf_map_key_unseen(aux))
+ bpf_map_key_store(aux, val);
+ else if (!bpf_map_key_poisoned(aux) &&
+ bpf_map_key_immediate(aux) != val)
+ bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
+ return 0;
+}
+
static int check_reference_leak(struct bpf_verifier_env *env)
{
struct bpf_func_state *state = cur_func(env);
@@ -3986,23 +4220,20 @@ static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn
meta.func_id = func_id;
/* check args */
- err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
- if (err)
- return err;
- err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
- if (err)
- return err;
- err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
- if (err)
- return err;
- err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
- if (err)
- return err;
- err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
+ for (i = 0; i < 5; i++) {
+ err = btf_resolve_helper_id(&env->log, fn, i);
+ if (err > 0)
+ meta.btf_id = err;
+ err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
+ if (err)
+ return err;
+ }
+
+ err = record_func_map(env, &meta, func_id, insn_idx);
if (err)
return err;
- err = record_func_map(env, &meta, func_id, insn_idx);
+ err = record_func_key(env, &meta, func_id, insn_idx);
if (err)
return err;
@@ -5433,6 +5664,10 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
/* We might have learned some bits from the bounds. */
__reg_bound_offset(false_reg);
__reg_bound_offset(true_reg);
+ if (is_jmp32) {
+ __reg_bound_offset32(false_reg);
+ __reg_bound_offset32(true_reg);
+ }
/* Intersecting with the old var_off might have improved our bounds
* slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
* then new var_off is (0; 0x7f...fc) which improves our umax.
@@ -5542,6 +5777,10 @@ static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
/* We might have learned some bits from the bounds. */
__reg_bound_offset(false_reg);
__reg_bound_offset(true_reg);
+ if (is_jmp32) {
+ __reg_bound_offset32(false_reg);
+ __reg_bound_offset32(true_reg);
+ }
/* Intersecting with the old var_off might have improved our bounds
* slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
* then new var_off is (0; 0x7f...fc) which improves our umax.
@@ -6124,6 +6363,11 @@ static int check_return_code(struct bpf_verifier_env *env)
case BPF_PROG_TYPE_CGROUP_SYSCTL:
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
break;
+ case BPF_PROG_TYPE_RAW_TRACEPOINT:
+ if (!env->prog->aux->attach_btf_id)
+ return 0;
+ range = tnum_const(0);
+ break;
default:
return 0;
}
@@ -6406,6 +6650,7 @@ static int check_btf_func(struct bpf_verifier_env *env,
u32 i, nfuncs, urec_size, min_size;
u32 krec_size = sizeof(struct bpf_func_info);
struct bpf_func_info *krecord;
+ struct bpf_func_info_aux *info_aux = NULL;
const struct btf_type *type;
struct bpf_prog *prog;
const struct btf *btf;
@@ -6439,6 +6684,9 @@ static int check_btf_func(struct bpf_verifier_env *env,
krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
if (!krecord)
return -ENOMEM;
+ info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
+ if (!info_aux)
+ goto err_free;
for (i = 0; i < nfuncs; i++) {
ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
@@ -6490,29 +6738,31 @@ static int check_btf_func(struct bpf_verifier_env *env,
ret = -EINVAL;
goto err_free;
}
-
prev_offset = krecord[i].insn_off;
urecord += urec_size;
}
prog->aux->func_info = krecord;
prog->aux->func_info_cnt = nfuncs;
+ prog->aux->func_info_aux = info_aux;
return 0;
err_free:
kvfree(krecord);
+ kfree(info_aux);
return ret;
}
static void adjust_btf_func(struct bpf_verifier_env *env)
{
+ struct bpf_prog_aux *aux = env->prog->aux;
int i;
- if (!env->prog->aux->func_info)
+ if (!aux->func_info)
return;
for (i = 0; i < env->subprog_cnt; i++)
- env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
+ aux->func_info[i].insn_off = env->subprog_info[i].start;
}
#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
@@ -7440,6 +7690,7 @@ static bool reg_type_mismatch_ok(enum bpf_reg_type type)
case PTR_TO_TCP_SOCK:
case PTR_TO_TCP_SOCK_OR_NULL:
case PTR_TO_XDP_SOCK:
+ case PTR_TO_BTF_ID:
return false;
default:
return true;
@@ -7492,6 +7743,9 @@ static int do_check(struct bpf_verifier_env *env)
0 /* frameno */,
0 /* subprogno, zero == main subprog */);
+ if (btf_check_func_arg_match(env, 0))
+ return -EINVAL;
+
for (;;) {
struct bpf_insn *insn;
u8 class;
@@ -8008,11 +8262,7 @@ static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
* will be used by the valid program until it's unloaded
* and all maps are released in free_used_maps()
*/
- map = bpf_map_inc(map, false);
- if (IS_ERR(map)) {
- fdput(f);
- return PTR_ERR(map);
- }
+ bpf_map_inc(map);
aux->map_index = env->used_map_cnt;
env->used_maps[env->used_map_cnt++] = map;
@@ -8581,6 +8831,14 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
case PTR_TO_XDP_SOCK:
convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
break;
+ case PTR_TO_BTF_ID:
+ if (type == BPF_WRITE) {
+ verbose(env, "Writes through BTF pointers are not allowed\n");
+ return -EINVAL;
+ }
+ insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code);
+ env->prog->aux->num_exentries++;
+ continue;
default:
continue;
}
@@ -8871,6 +9129,7 @@ static int fixup_call_args(struct bpf_verifier_env *env)
static int fixup_bpf_calls(struct bpf_verifier_env *env)
{
struct bpf_prog *prog = env->prog;
+ bool expect_blinding = bpf_jit_blinding_enabled(prog);
struct bpf_insn *insn = prog->insnsi;
const struct bpf_func_proto *fn;
const int insn_cnt = prog->len;
@@ -8879,7 +9138,7 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env)
struct bpf_insn insn_buf[16];
struct bpf_prog *new_prog;
struct bpf_map *map_ptr;
- int i, cnt, delta = 0;
+ int i, ret, cnt, delta = 0;
for (i = 0; i < insn_cnt; i++, insn++) {
if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
@@ -9023,6 +9282,26 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env)
insn->code = BPF_JMP | BPF_TAIL_CALL;
aux = &env->insn_aux_data[i + delta];
+ if (prog->jit_requested && !expect_blinding &&
+ !bpf_map_key_poisoned(aux) &&
+ !bpf_map_ptr_poisoned(aux) &&
+ !bpf_map_ptr_unpriv(aux)) {
+ struct bpf_jit_poke_descriptor desc = {
+ .reason = BPF_POKE_REASON_TAIL_CALL,
+ .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
+ .tail_call.key = bpf_map_key_immediate(aux),
+ };
+
+ ret = bpf_jit_add_poke_descriptor(prog, &desc);
+ if (ret < 0) {
+ verbose(env, "adding tail call poke descriptor failed\n");
+ return ret;
+ }
+
+ insn->imm = ret + 1;
+ continue;
+ }
+
if (!bpf_map_ptr_unpriv(aux))
continue;
@@ -9037,7 +9316,7 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env)
return -EINVAL;
}
- map_ptr = BPF_MAP_PTR(aux->map_state);
+ map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
map_ptr->max_entries, 2);
insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
@@ -9071,7 +9350,7 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env)
if (bpf_map_ptr_poisoned(aux))
goto patch_call_imm;
- map_ptr = BPF_MAP_PTR(aux->map_state);
+ map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
ops = map_ptr->ops;
if (insn->imm == BPF_FUNC_map_lookup_elem &&
ops->map_gen_lookup) {
@@ -9151,6 +9430,23 @@ patch_call_imm:
insn->imm = fn->func - __bpf_call_base;
}
+ /* Since poke tab is now finalized, publish aux to tracker. */
+ for (i = 0; i < prog->aux->size_poke_tab; i++) {
+ map_ptr = prog->aux->poke_tab[i].tail_call.map;
+ if (!map_ptr->ops->map_poke_track ||
+ !map_ptr->ops->map_poke_untrack ||
+ !map_ptr->ops->map_poke_run) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+
+ ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
+ if (ret < 0) {
+ verbose(env, "tracking tail call prog failed\n");
+ return ret;
+ }
+ }
+
return 0;
}
@@ -9208,6 +9504,161 @@ static void print_verification_stats(struct bpf_verifier_env *env)
env->peak_states, env->longest_mark_read_walk);
}
+static int check_attach_btf_id(struct bpf_verifier_env *env)
+{
+ struct bpf_prog *prog = env->prog;
+ struct bpf_prog *tgt_prog = prog->aux->linked_prog;
+ u32 btf_id = prog->aux->attach_btf_id;
+ const char prefix[] = "btf_trace_";
+ int ret = 0, subprog = -1, i;
+ struct bpf_trampoline *tr;
+ const struct btf_type *t;
+ bool conservative = true;
+ const char *tname;
+ struct btf *btf;
+ long addr;
+ u64 key;
+
+ if (prog->type != BPF_PROG_TYPE_TRACING)
+ return 0;
+
+ if (!btf_id) {
+ verbose(env, "Tracing programs must provide btf_id\n");
+ return -EINVAL;
+ }
+ btf = bpf_prog_get_target_btf(prog);
+ if (!btf) {
+ verbose(env,
+ "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
+ return -EINVAL;
+ }
+ t = btf_type_by_id(btf, btf_id);
+ if (!t) {
+ verbose(env, "attach_btf_id %u is invalid\n", btf_id);
+ return -EINVAL;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!tname) {
+ verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
+ return -EINVAL;
+ }
+ if (tgt_prog) {
+ struct bpf_prog_aux *aux = tgt_prog->aux;
+
+ for (i = 0; i < aux->func_info_cnt; i++)
+ if (aux->func_info[i].type_id == btf_id) {
+ subprog = i;
+ break;
+ }
+ if (subprog == -1) {
+ verbose(env, "Subprog %s doesn't exist\n", tname);
+ return -EINVAL;
+ }
+ conservative = aux->func_info_aux[subprog].unreliable;
+ key = ((u64)aux->id) << 32 | btf_id;
+ } else {
+ key = btf_id;
+ }
+
+ switch (prog->expected_attach_type) {
+ case BPF_TRACE_RAW_TP:
+ if (tgt_prog) {
+ verbose(env,
+ "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
+ return -EINVAL;
+ }
+ if (!btf_type_is_typedef(t)) {
+ verbose(env, "attach_btf_id %u is not a typedef\n",
+ btf_id);
+ return -EINVAL;
+ }
+ if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
+ verbose(env, "attach_btf_id %u points to wrong type name %s\n",
+ btf_id, tname);
+ return -EINVAL;
+ }
+ tname += sizeof(prefix) - 1;
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_ptr(t))
+ /* should never happen in valid vmlinux build */
+ return -EINVAL;
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_func_proto(t))
+ /* should never happen in valid vmlinux build */
+ return -EINVAL;
+
+ /* remember two read only pointers that are valid for
+ * the life time of the kernel
+ */
+ prog->aux->attach_func_name = tname;
+ prog->aux->attach_func_proto = t;
+ prog->aux->attach_btf_trace = true;
+ return 0;
+ case BPF_TRACE_FENTRY:
+ case BPF_TRACE_FEXIT:
+ if (!btf_type_is_func(t)) {
+ verbose(env, "attach_btf_id %u is not a function\n",
+ btf_id);
+ return -EINVAL;
+ }
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_func_proto(t))
+ return -EINVAL;
+ tr = bpf_trampoline_lookup(key);
+ if (!tr)
+ return -ENOMEM;
+ prog->aux->attach_func_name = tname;
+ /* t is either vmlinux type or another program's type */
+ prog->aux->attach_func_proto = t;
+ mutex_lock(&tr->mutex);
+ if (tr->func.addr) {
+ prog->aux->trampoline = tr;
+ goto out;
+ }
+ if (tgt_prog && conservative) {
+ prog->aux->attach_func_proto = NULL;
+ t = NULL;
+ }
+ ret = btf_distill_func_proto(&env->log, btf, t,
+ tname, &tr->func.model);
+ if (ret < 0)
+ goto out;
+ if (tgt_prog) {
+ if (!tgt_prog->jited) {
+ /* for now */
+ verbose(env, "Can trace only JITed BPF progs\n");
+ ret = -EINVAL;
+ goto out;
+ }
+ if (tgt_prog->type == BPF_PROG_TYPE_TRACING) {
+ /* prevent cycles */
+ verbose(env, "Cannot recursively attach\n");
+ ret = -EINVAL;
+ goto out;
+ }
+ addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
+ } else {
+ addr = kallsyms_lookup_name(tname);
+ if (!addr) {
+ verbose(env,
+ "The address of function %s cannot be found\n",
+ tname);
+ ret = -ENOENT;
+ goto out;
+ }
+ }
+ tr->func.addr = (void *)addr;
+ prog->aux->trampoline = tr;
+out:
+ mutex_unlock(&tr->mutex);
+ if (ret)
+ bpf_trampoline_put(tr);
+ return ret;
+ default:
+ return -EINVAL;
+ }
+}
+
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
union bpf_attr __user *uattr)
{
@@ -9241,6 +9692,13 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
env->ops = bpf_verifier_ops[env->prog->type];
is_priv = capable(CAP_SYS_ADMIN);
+ if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
+ mutex_lock(&bpf_verifier_lock);
+ if (!btf_vmlinux)
+ btf_vmlinux = btf_parse_vmlinux();
+ mutex_unlock(&bpf_verifier_lock);
+ }
+
/* grab the mutex to protect few globals used by verifier */
if (!is_priv)
mutex_lock(&bpf_verifier_lock);
@@ -9260,6 +9718,17 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
goto err_unlock;
}
+ if (IS_ERR(btf_vmlinux)) {
+ /* Either gcc or pahole or kernel are broken. */
+ verbose(env, "in-kernel BTF is malformed\n");
+ ret = PTR_ERR(btf_vmlinux);
+ goto skip_full_check;
+ }
+
+ ret = check_attach_btf_id(env);
+ if (ret)
+ goto skip_full_check;
+
env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
env->strict_alignment = true;
diff --git a/kernel/bpf/xskmap.c b/kernel/bpf/xskmap.c
index 82a1ffe15dfa..90c4fce1c981 100644
--- a/kernel/bpf/xskmap.c
+++ b/kernel/bpf/xskmap.c
@@ -9,19 +9,10 @@
#include <linux/slab.h>
#include <linux/sched.h>
-struct xsk_map {
- struct bpf_map map;
- struct xdp_sock **xsk_map;
- struct list_head __percpu *flush_list;
- spinlock_t lock; /* Synchronize map updates */
-};
-
int xsk_map_inc(struct xsk_map *map)
{
- struct bpf_map *m = &map->map;
-
- m = bpf_map_inc(m, false);
- return PTR_ERR_OR_ZERO(m);
+ bpf_map_inc(&map->map);
+ return 0;
}
void xsk_map_put(struct xsk_map *map)
@@ -80,9 +71,10 @@ static void xsk_map_sock_delete(struct xdp_sock *xs,
static struct bpf_map *xsk_map_alloc(union bpf_attr *attr)
{
+ struct bpf_map_memory mem;
+ int cpu, err, numa_node;
struct xsk_map *m;
- int cpu, err;
- u64 cost;
+ u64 cost, size;
if (!capable(CAP_NET_ADMIN))
return ERR_PTR(-EPERM);
@@ -92,44 +84,35 @@ static struct bpf_map *xsk_map_alloc(union bpf_attr *attr)
attr->map_flags & ~(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY))
return ERR_PTR(-EINVAL);
- m = kzalloc(sizeof(*m), GFP_USER);
- if (!m)
+ numa_node = bpf_map_attr_numa_node(attr);
+ size = struct_size(m, xsk_map, attr->max_entries);
+ cost = size + array_size(sizeof(*m->flush_list), num_possible_cpus());
+
+ err = bpf_map_charge_init(&mem, cost);
+ if (err < 0)
+ return ERR_PTR(err);
+
+ m = bpf_map_area_alloc(size, numa_node);
+ if (!m) {
+ bpf_map_charge_finish(&mem);
return ERR_PTR(-ENOMEM);
+ }
bpf_map_init_from_attr(&m->map, attr);
+ bpf_map_charge_move(&m->map.memory, &mem);
spin_lock_init(&m->lock);
- cost = (u64)m->map.max_entries * sizeof(struct xdp_sock *);
- cost += sizeof(struct list_head) * num_possible_cpus();
-
- /* Notice returns -EPERM on if map size is larger than memlock limit */
- err = bpf_map_charge_init(&m->map.memory, cost);
- if (err)
- goto free_m;
-
- err = -ENOMEM;
-
m->flush_list = alloc_percpu(struct list_head);
- if (!m->flush_list)
- goto free_charge;
+ if (!m->flush_list) {
+ bpf_map_charge_finish(&m->map.memory);
+ bpf_map_area_free(m);
+ return ERR_PTR(-ENOMEM);
+ }
for_each_possible_cpu(cpu)
INIT_LIST_HEAD(per_cpu_ptr(m->flush_list, cpu));
- m->xsk_map = bpf_map_area_alloc(m->map.max_entries *
- sizeof(struct xdp_sock *),
- m->map.numa_node);
- if (!m->xsk_map)
- goto free_percpu;
return &m->map;
-
-free_percpu:
- free_percpu(m->flush_list);
-free_charge:
- bpf_map_charge_finish(&m->map.memory);
-free_m:
- kfree(m);
- return ERR_PTR(err);
}
static void xsk_map_free(struct bpf_map *map)
@@ -139,8 +122,7 @@ static void xsk_map_free(struct bpf_map *map)
bpf_clear_redirect_map(map);
synchronize_net();
free_percpu(m->flush_list);
- bpf_map_area_free(m->xsk_map);
- kfree(m);
+ bpf_map_area_free(m);
}
static int xsk_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
@@ -160,45 +142,20 @@ static int xsk_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
return 0;
}
-struct xdp_sock *__xsk_map_lookup_elem(struct bpf_map *map, u32 key)
-{
- struct xsk_map *m = container_of(map, struct xsk_map, map);
- struct xdp_sock *xs;
-
- if (key >= map->max_entries)
- return NULL;
-
- xs = READ_ONCE(m->xsk_map[key]);
- return xs;
-}
-
-int __xsk_map_redirect(struct bpf_map *map, struct xdp_buff *xdp,
- struct xdp_sock *xs)
-{
- struct xsk_map *m = container_of(map, struct xsk_map, map);
- struct list_head *flush_list = this_cpu_ptr(m->flush_list);
- int err;
-
- err = xsk_rcv(xs, xdp);
- if (err)
- return err;
-
- if (!xs->flush_node.prev)
- list_add(&xs->flush_node, flush_list);
-
- return 0;
-}
-
-void __xsk_map_flush(struct bpf_map *map)
+static u32 xsk_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
{
- struct xsk_map *m = container_of(map, struct xsk_map, map);
- struct list_head *flush_list = this_cpu_ptr(m->flush_list);
- struct xdp_sock *xs, *tmp;
-
- list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
- xsk_flush(xs);
- __list_del_clearprev(&xs->flush_node);
- }
+ const int ret = BPF_REG_0, mp = BPF_REG_1, index = BPF_REG_2;
+ struct bpf_insn *insn = insn_buf;
+
+ *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
+ *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
+ *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(sizeof(struct xsk_sock *)));
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, mp, offsetof(struct xsk_map, xsk_map));
+ *insn++ = BPF_ALU64_REG(BPF_ADD, ret, mp);
+ *insn++ = BPF_LDX_MEM(BPF_SIZEOF(struct xsk_sock *), ret, ret, 0);
+ *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *insn++ = BPF_MOV64_IMM(ret, 0);
+ return insn - insn_buf;
}
static void *xsk_map_lookup_elem(struct bpf_map *map, void *key)
@@ -312,6 +269,7 @@ const struct bpf_map_ops xsk_map_ops = {
.map_free = xsk_map_free,
.map_get_next_key = xsk_map_get_next_key,
.map_lookup_elem = xsk_map_lookup_elem,
+ .map_gen_lookup = xsk_map_gen_lookup,
.map_lookup_elem_sys_only = xsk_map_lookup_elem_sys_only,
.map_update_elem = xsk_map_update_elem,
.map_delete_elem = xsk_map_delete_elem,
diff --git a/kernel/cgroup/cgroup-internal.h b/kernel/cgroup/cgroup-internal.h
index 809e34a3c017..90d1710fef6c 100644
--- a/kernel/cgroup/cgroup-internal.h
+++ b/kernel/cgroup/cgroup-internal.h
@@ -231,9 +231,10 @@ int cgroup_migrate(struct task_struct *leader, bool threadgroup,
int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
bool threadgroup);
-struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
+struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
+ bool *locked)
__acquires(&cgroup_threadgroup_rwsem);
-void cgroup_procs_write_finish(struct task_struct *task)
+void cgroup_procs_write_finish(struct task_struct *task, bool locked)
__releases(&cgroup_threadgroup_rwsem);
void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
diff --git a/kernel/cgroup/cgroup-v1.c b/kernel/cgroup/cgroup-v1.c
index 7f83f4121d8d..09f3a413f6f8 100644
--- a/kernel/cgroup/cgroup-v1.c
+++ b/kernel/cgroup/cgroup-v1.c
@@ -495,12 +495,13 @@ static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
struct task_struct *task;
const struct cred *cred, *tcred;
ssize_t ret;
+ bool locked;
cgrp = cgroup_kn_lock_live(of->kn, false);
if (!cgrp)
return -ENODEV;
- task = cgroup_procs_write_start(buf, threadgroup);
+ task = cgroup_procs_write_start(buf, threadgroup, &locked);
ret = PTR_ERR_OR_ZERO(task);
if (ret)
goto out_unlock;
@@ -522,7 +523,7 @@ static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
ret = cgroup_attach_task(cgrp, task, threadgroup);
out_finish:
- cgroup_procs_write_finish(task);
+ cgroup_procs_write_finish(task, locked);
out_unlock:
cgroup_kn_unlock(of->kn);
diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c
index 080561bb8a4b..735af8f15f95 100644
--- a/kernel/cgroup/cgroup.c
+++ b/kernel/cgroup/cgroup.c
@@ -899,8 +899,7 @@ static void css_set_move_task(struct task_struct *task,
/*
* We are synchronized through cgroup_threadgroup_rwsem
* against PF_EXITING setting such that we can't race
- * against cgroup_exit() changing the css_set to
- * init_css_set and dropping the old one.
+ * against cgroup_exit()/cgroup_free() dropping the css_set.
*/
WARN_ON_ONCE(task->flags & PF_EXITING);
@@ -1309,10 +1308,7 @@ static void cgroup_exit_root_id(struct cgroup_root *root)
void cgroup_free_root(struct cgroup_root *root)
{
- if (root) {
- idr_destroy(&root->cgroup_idr);
- kfree(root);
- }
+ kfree(root);
}
static void cgroup_destroy_root(struct cgroup_root *root)
@@ -1374,6 +1370,8 @@ current_cgns_cgroup_from_root(struct cgroup_root *root)
cset = current->nsproxy->cgroup_ns->root_cset;
if (cset == &init_css_set) {
res = &root->cgrp;
+ } else if (root == &cgrp_dfl_root) {
+ res = cset->dfl_cgrp;
} else {
struct cgrp_cset_link *link;
@@ -1430,9 +1428,8 @@ struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroup_root *root)
{
/*
- * No need to lock the task - since we hold cgroup_mutex the
- * task can't change groups, so the only thing that can happen
- * is that it exits and its css is set back to init_css_set.
+ * No need to lock the task - since we hold css_set_lock the
+ * task can't change groups.
*/
return cset_cgroup_from_root(task_css_set(task), root);
}
@@ -1883,65 +1880,6 @@ static int cgroup_reconfigure(struct fs_context *fc)
return 0;
}
-/*
- * To reduce the fork() overhead for systems that are not actually using
- * their cgroups capability, we don't maintain the lists running through
- * each css_set to its tasks until we see the list actually used - in other
- * words after the first mount.
- */
-static bool use_task_css_set_links __read_mostly;
-
-void cgroup_enable_task_cg_lists(void)
-{
- struct task_struct *p, *g;
-
- /*
- * We need tasklist_lock because RCU is not safe against
- * while_each_thread(). Besides, a forking task that has passed
- * cgroup_post_fork() without seeing use_task_css_set_links = 1
- * is not guaranteed to have its child immediately visible in the
- * tasklist if we walk through it with RCU.
- */
- read_lock(&tasklist_lock);
- spin_lock_irq(&css_set_lock);
-
- if (use_task_css_set_links)
- goto out_unlock;
-
- use_task_css_set_links = true;
-
- do_each_thread(g, p) {
- WARN_ON_ONCE(!list_empty(&p->cg_list) ||
- task_css_set(p) != &init_css_set);
-
- /*
- * We should check if the process is exiting, otherwise
- * it will race with cgroup_exit() in that the list
- * entry won't be deleted though the process has exited.
- * Do it while holding siglock so that we don't end up
- * racing against cgroup_exit().
- *
- * Interrupts were already disabled while acquiring
- * the css_set_lock, so we do not need to disable it
- * again when acquiring the sighand->siglock here.
- */
- spin_lock(&p->sighand->siglock);
- if (!(p->flags & PF_EXITING)) {
- struct css_set *cset = task_css_set(p);
-
- if (!css_set_populated(cset))
- css_set_update_populated(cset, true);
- list_add_tail(&p->cg_list, &cset->tasks);
- get_css_set(cset);
- cset->nr_tasks++;
- }
- spin_unlock(&p->sighand->siglock);
- } while_each_thread(g, p);
-out_unlock:
- spin_unlock_irq(&css_set_lock);
- read_unlock(&tasklist_lock);
-}
-
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
struct cgroup_subsys *ss;
@@ -1976,7 +1914,6 @@ void init_cgroup_root(struct cgroup_fs_context *ctx)
atomic_set(&root->nr_cgrps, 1);
cgrp->root = root;
init_cgroup_housekeeping(cgrp);
- idr_init(&root->cgroup_idr);
root->flags = ctx->flags;
if (ctx->release_agent)
@@ -1997,12 +1934,6 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
lockdep_assert_held(&cgroup_mutex);
- ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
- if (ret < 0)
- goto out;
- root_cgrp->id = ret;
- root_cgrp->ancestor_ids[0] = ret;
-
ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
0, GFP_KERNEL);
if (ret)
@@ -2035,6 +1966,8 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
goto exit_root_id;
}
root_cgrp->kn = root->kf_root->kn;
+ WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
+ root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
ret = css_populate_dir(&root_cgrp->self);
if (ret)
@@ -2119,11 +2052,12 @@ int cgroup_do_get_tree(struct fs_context *fc)
nsdentry = kernfs_node_dentry(cgrp->kn, sb);
dput(fc->root);
- fc->root = nsdentry;
if (IS_ERR(nsdentry)) {
- ret = PTR_ERR(nsdentry);
deactivate_locked_super(sb);
+ ret = PTR_ERR(nsdentry);
+ nsdentry = NULL;
}
+ fc->root = nsdentry;
}
if (!ctx->kfc.new_sb_created)
@@ -2187,13 +2121,6 @@ static int cgroup_init_fs_context(struct fs_context *fc)
if (!ctx)
return -ENOMEM;
- /*
- * The first time anyone tries to mount a cgroup, enable the list
- * linking each css_set to its tasks and fix up all existing tasks.
- */
- if (!use_task_css_set_links)
- cgroup_enable_task_cg_lists();
-
ctx->ns = current->nsproxy->cgroup_ns;
get_cgroup_ns(ctx->ns);
fc->fs_private = &ctx->kfc;
@@ -2371,9 +2298,8 @@ static void cgroup_migrate_add_task(struct task_struct *task,
if (task->flags & PF_EXITING)
return;
- /* leave @task alone if post_fork() hasn't linked it yet */
- if (list_empty(&task->cg_list))
- return;
+ /* cgroup_threadgroup_rwsem protects racing against forks */
+ WARN_ON_ONCE(list_empty(&task->cg_list));
cset = task_css_set(task);
if (!cset->mg_src_cgrp)
@@ -2824,7 +2750,8 @@ int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
return ret;
}
-struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
+struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
+ bool *locked)
__acquires(&cgroup_threadgroup_rwsem)
{
struct task_struct *tsk;
@@ -2833,7 +2760,21 @@ struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
return ERR_PTR(-EINVAL);
- percpu_down_write(&cgroup_threadgroup_rwsem);
+ /*
+ * If we migrate a single thread, we don't care about threadgroup
+ * stability. If the thread is `current`, it won't exit(2) under our
+ * hands or change PID through exec(2). We exclude
+ * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
+ * callers by cgroup_mutex.
+ * Therefore, we can skip the global lock.
+ */
+ lockdep_assert_held(&cgroup_mutex);
+ if (pid || threadgroup) {
+ percpu_down_write(&cgroup_threadgroup_rwsem);
+ *locked = true;
+ } else {
+ *locked = false;
+ }
rcu_read_lock();
if (pid) {
@@ -2864,13 +2805,16 @@ struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
goto out_unlock_rcu;
out_unlock_threadgroup:
- percpu_up_write(&cgroup_threadgroup_rwsem);
+ if (*locked) {
+ percpu_up_write(&cgroup_threadgroup_rwsem);
+ *locked = false;
+ }
out_unlock_rcu:
rcu_read_unlock();
return tsk;
}
-void cgroup_procs_write_finish(struct task_struct *task)
+void cgroup_procs_write_finish(struct task_struct *task, bool locked)
__releases(&cgroup_threadgroup_rwsem)
{
struct cgroup_subsys *ss;
@@ -2879,7 +2823,8 @@ void cgroup_procs_write_finish(struct task_struct *task)
/* release reference from cgroup_procs_write_start() */
put_task_struct(task);
- percpu_up_write(&cgroup_threadgroup_rwsem);
+ if (locked)
+ percpu_up_write(&cgroup_threadgroup_rwsem);
for_each_subsys(ss, ssid)
if (ss->post_attach)
ss->post_attach();
@@ -3600,22 +3545,22 @@ static int cpu_stat_show(struct seq_file *seq, void *v)
#ifdef CONFIG_PSI
static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
{
- struct cgroup *cgroup = seq_css(seq)->cgroup;
- struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
+ struct cgroup *cgrp = seq_css(seq)->cgroup;
+ struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
return psi_show(seq, psi, PSI_IO);
}
static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
{
- struct cgroup *cgroup = seq_css(seq)->cgroup;
- struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
+ struct cgroup *cgrp = seq_css(seq)->cgroup;
+ struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
return psi_show(seq, psi, PSI_MEM);
}
static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
{
- struct cgroup *cgroup = seq_css(seq)->cgroup;
- struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
+ struct cgroup *cgrp = seq_css(seq)->cgroup;
+ struct psi_group *psi = cgroup_id(cgrp) == 1 ? &psi_system : &cgrp->psi;
return psi_show(seq, psi, PSI_CPU);
}
@@ -4567,9 +4512,6 @@ repeat:
void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
struct css_task_iter *it)
{
- /* no one should try to iterate before mounting cgroups */
- WARN_ON_ONCE(!use_task_css_set_links);
-
memset(it, 0, sizeof(*it));
spin_lock_irq(&css_set_lock);
@@ -4754,12 +4696,13 @@ static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
struct cgroup *src_cgrp, *dst_cgrp;
struct task_struct *task;
ssize_t ret;
+ bool locked;
dst_cgrp = cgroup_kn_lock_live(of->kn, false);
if (!dst_cgrp)
return -ENODEV;
- task = cgroup_procs_write_start(buf, true);
+ task = cgroup_procs_write_start(buf, true, &locked);
ret = PTR_ERR_OR_ZERO(task);
if (ret)
goto out_unlock;
@@ -4777,7 +4720,7 @@ static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
ret = cgroup_attach_task(dst_cgrp, task, true);
out_finish:
- cgroup_procs_write_finish(task);
+ cgroup_procs_write_finish(task, locked);
out_unlock:
cgroup_kn_unlock(of->kn);
@@ -4795,6 +4738,7 @@ static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
struct cgroup *src_cgrp, *dst_cgrp;
struct task_struct *task;
ssize_t ret;
+ bool locked;
buf = strstrip(buf);
@@ -4802,7 +4746,7 @@ static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
if (!dst_cgrp)
return -ENODEV;
- task = cgroup_procs_write_start(buf, false);
+ task = cgroup_procs_write_start(buf, false, &locked);
ret = PTR_ERR_OR_ZERO(task);
if (ret)
goto out_unlock;
@@ -4826,7 +4770,7 @@ static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
ret = cgroup_attach_task(dst_cgrp, task, false);
out_finish:
- cgroup_procs_write_finish(task);
+ cgroup_procs_write_finish(task, locked);
out_unlock:
cgroup_kn_unlock(of->kn);
@@ -5036,9 +4980,6 @@ static void css_release_work_fn(struct work_struct *work)
tcgrp->nr_dying_descendants--;
spin_unlock_irq(&css_set_lock);
- cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
- cgrp->id = -1;
-
/*
* There are two control paths which try to determine
* cgroup from dentry without going through kernfs -
@@ -5203,10 +5144,12 @@ err_free_css:
* it isn't associated with its kernfs_node and doesn't have the control
* mask applied.
*/
-static struct cgroup *cgroup_create(struct cgroup *parent)
+static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
+ umode_t mode)
{
struct cgroup_root *root = parent->root;
struct cgroup *cgrp, *tcgrp;
+ struct kernfs_node *kn;
int level = parent->level + 1;
int ret;
@@ -5226,15 +5169,13 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
goto out_cancel_ref;
}
- /*
- * Temporarily set the pointer to NULL, so idr_find() won't return
- * a half-baked cgroup.
- */
- cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
- if (cgrp->id < 0) {
- ret = -ENOMEM;
+ /* create the directory */
+ kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
+ if (IS_ERR(kn)) {
+ ret = PTR_ERR(kn);
goto out_stat_exit;
}
+ cgrp->kn = kn;
init_cgroup_housekeeping(cgrp);
@@ -5244,7 +5185,7 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
ret = psi_cgroup_alloc(cgrp);
if (ret)
- goto out_idr_free;
+ goto out_kernfs_remove;
ret = cgroup_bpf_inherit(cgrp);
if (ret)
@@ -5268,7 +5209,7 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
spin_lock_irq(&css_set_lock);
for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
- cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
+ cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
if (tcgrp != cgrp) {
tcgrp->nr_descendants++;
@@ -5298,12 +5239,6 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
cgroup_get_live(parent);
/*
- * @cgrp is now fully operational. If something fails after this
- * point, it'll be released via the normal destruction path.
- */
- cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
-
- /*
* On the default hierarchy, a child doesn't automatically inherit
* subtree_control from the parent. Each is configured manually.
*/
@@ -5316,8 +5251,8 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
out_psi_free:
psi_cgroup_free(cgrp);
-out_idr_free:
- cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
+out_kernfs_remove:
+ kernfs_remove(cgrp->kn);
out_stat_exit:
if (cgroup_on_dfl(parent))
cgroup_rstat_exit(cgrp);
@@ -5354,7 +5289,6 @@ fail:
int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
{
struct cgroup *parent, *cgrp;
- struct kernfs_node *kn;
int ret;
/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
@@ -5370,27 +5304,19 @@ int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
goto out_unlock;
}
- cgrp = cgroup_create(parent);
+ cgrp = cgroup_create(parent, name, mode);
if (IS_ERR(cgrp)) {
ret = PTR_ERR(cgrp);
goto out_unlock;
}
- /* create the directory */
- kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
- if (IS_ERR(kn)) {
- ret = PTR_ERR(kn);
- goto out_destroy;
- }
- cgrp->kn = kn;
-
/*
* This extra ref will be put in cgroup_free_fn() and guarantees
* that @cgrp->kn is always accessible.
*/
- kernfs_get(kn);
+ kernfs_get(cgrp->kn);
- ret = cgroup_kn_set_ugid(kn);
+ ret = cgroup_kn_set_ugid(cgrp->kn);
if (ret)
goto out_destroy;
@@ -5405,7 +5331,7 @@ int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
TRACE_CGROUP_PATH(mkdir, cgrp);
/* let's create and online css's */
- kernfs_activate(kn);
+ kernfs_activate(cgrp->kn);
ret = 0;
goto out_unlock;
@@ -5835,12 +5761,11 @@ static int __init cgroup_wq_init(void)
}
core_initcall(cgroup_wq_init);
-void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
- char *buf, size_t buflen)
+void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
{
struct kernfs_node *kn;
- kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
+ kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
if (!kn)
return;
kernfs_path(kn, buf, buflen);
@@ -6001,62 +5926,38 @@ void cgroup_cancel_fork(struct task_struct *child)
void cgroup_post_fork(struct task_struct *child)
{
struct cgroup_subsys *ss;
+ struct css_set *cset;
int i;
+ spin_lock_irq(&css_set_lock);
+
+ WARN_ON_ONCE(!list_empty(&child->cg_list));
+ cset = task_css_set(current); /* current is @child's parent */
+ get_css_set(cset);
+ cset->nr_tasks++;
+ css_set_move_task(child, NULL, cset, false);
+
/*
- * This may race against cgroup_enable_task_cg_lists(). As that
- * function sets use_task_css_set_links before grabbing
- * tasklist_lock and we just went through tasklist_lock to add
- * @child, it's guaranteed that either we see the set
- * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
- * @child during its iteration.
- *
- * If we won the race, @child is associated with %current's
- * css_set. Grabbing css_set_lock guarantees both that the
- * association is stable, and, on completion of the parent's
- * migration, @child is visible in the source of migration or
- * already in the destination cgroup. This guarantee is necessary
- * when implementing operations which need to migrate all tasks of
- * a cgroup to another.
- *
- * Note that if we lose to cgroup_enable_task_cg_lists(), @child
- * will remain in init_css_set. This is safe because all tasks are
- * in the init_css_set before cg_links is enabled and there's no
- * operation which transfers all tasks out of init_css_set.
+ * If the cgroup has to be frozen, the new task has too. Let's set
+ * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
+ * frozen state.
*/
- if (use_task_css_set_links) {
- struct css_set *cset;
-
- spin_lock_irq(&css_set_lock);
- cset = task_css_set(current);
- if (list_empty(&child->cg_list)) {
- get_css_set(cset);
- cset->nr_tasks++;
- css_set_move_task(child, NULL, cset, false);
- }
+ if (unlikely(cgroup_task_freeze(child))) {
+ spin_lock(&child->sighand->siglock);
+ WARN_ON_ONCE(child->frozen);
+ child->jobctl |= JOBCTL_TRAP_FREEZE;
+ spin_unlock(&child->sighand->siglock);
/*
- * If the cgroup has to be frozen, the new task has too.
- * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
- * the task into the frozen state.
+ * Calling cgroup_update_frozen() isn't required here,
+ * because it will be called anyway a bit later from
+ * do_freezer_trap(). So we avoid cgroup's transient switch
+ * from the frozen state and back.
*/
- if (unlikely(cgroup_task_freeze(child))) {
- spin_lock(&child->sighand->siglock);
- WARN_ON_ONCE(child->frozen);
- child->jobctl |= JOBCTL_TRAP_FREEZE;
- spin_unlock(&child->sighand->siglock);
-
- /*
- * Calling cgroup_update_frozen() isn't required here,
- * because it will be called anyway a bit later
- * from do_freezer_trap(). So we avoid cgroup's
- * transient switch from the frozen state and back.
- */
- }
-
- spin_unlock_irq(&css_set_lock);
}
+ spin_unlock_irq(&css_set_lock);
+
/*
* Call ss->fork(). This must happen after @child is linked on
* css_set; otherwise, @child might change state between ->fork()
@@ -6071,20 +5972,8 @@ void cgroup_post_fork(struct task_struct *child)
* cgroup_exit - detach cgroup from exiting task
* @tsk: pointer to task_struct of exiting process
*
- * Description: Detach cgroup from @tsk and release it.
- *
- * Note that cgroups marked notify_on_release force every task in
- * them to take the global cgroup_mutex mutex when exiting.
- * This could impact scaling on very large systems. Be reluctant to
- * use notify_on_release cgroups where very high task exit scaling
- * is required on large systems.
+ * Description: Detach cgroup from @tsk.
*
- * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
- * call cgroup_exit() while the task is still competent to handle
- * notify_on_release(), then leave the task attached to the root cgroup in
- * each hierarchy for the remainder of its exit. No need to bother with
- * init_css_set refcnting. init_css_set never goes away and we can't race
- * with migration path - PF_EXITING is visible to migration path.
*/
void cgroup_exit(struct task_struct *tsk)
{
@@ -6092,26 +5981,19 @@ void cgroup_exit(struct task_struct *tsk)
struct css_set *cset;
int i;
- /*
- * Unlink from @tsk from its css_set. As migration path can't race
- * with us, we can check css_set and cg_list without synchronization.
- */
- cset = task_css_set(tsk);
+ spin_lock_irq(&css_set_lock);
- if (!list_empty(&tsk->cg_list)) {
- spin_lock_irq(&css_set_lock);
- css_set_move_task(tsk, cset, NULL, false);
- list_add_tail(&tsk->cg_list, &cset->dying_tasks);
- cset->nr_tasks--;
+ WARN_ON_ONCE(list_empty(&tsk->cg_list));
+ cset = task_css_set(tsk);
+ css_set_move_task(tsk, cset, NULL, false);
+ list_add_tail(&tsk->cg_list, &cset->dying_tasks);
+ cset->nr_tasks--;
- WARN_ON_ONCE(cgroup_task_frozen(tsk));
- if (unlikely(cgroup_task_freeze(tsk)))
- cgroup_update_frozen(task_dfl_cgroup(tsk));
+ WARN_ON_ONCE(cgroup_task_frozen(tsk));
+ if (unlikely(cgroup_task_freeze(tsk)))
+ cgroup_update_frozen(task_dfl_cgroup(tsk));
- spin_unlock_irq(&css_set_lock);
- } else {
- get_css_set(cset);
- }
+ spin_unlock_irq(&css_set_lock);
/* see cgroup_post_fork() for details */
do_each_subsys_mask(ss, i, have_exit_callback) {
@@ -6128,12 +6010,10 @@ void cgroup_release(struct task_struct *task)
ss->release(task);
} while_each_subsys_mask();
- if (use_task_css_set_links) {
- spin_lock_irq(&css_set_lock);
- css_set_skip_task_iters(task_css_set(task), task);
- list_del_init(&task->cg_list);
- spin_unlock_irq(&css_set_lock);
- }
+ spin_lock_irq(&css_set_lock);
+ css_set_skip_task_iters(task_css_set(task), task);
+ list_del_init(&task->cg_list);
+ spin_unlock_irq(&css_set_lock);
}
void cgroup_free(struct task_struct *task)
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index c87ee6412b36..58f5073acff7 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -929,8 +929,6 @@ static void rebuild_root_domains(void)
lockdep_assert_cpus_held();
lockdep_assert_held(&sched_domains_mutex);
- cgroup_enable_task_cg_lists();
-
rcu_read_lock();
/*
diff --git a/kernel/cgroup/freezer.c b/kernel/cgroup/freezer.c
index 8cf010680678..3984dd6b8ddb 100644
--- a/kernel/cgroup/freezer.c
+++ b/kernel/cgroup/freezer.c
@@ -231,6 +231,15 @@ void cgroup_freezer_migrate_task(struct task_struct *task,
return;
/*
+ * It's not necessary to do changes if both of the src and dst cgroups
+ * are not freezing and task is not frozen.
+ */
+ if (!test_bit(CGRP_FREEZE, &src->flags) &&
+ !test_bit(CGRP_FREEZE, &dst->flags) &&
+ !task->frozen)
+ return;
+
+ /*
* Adjust counters of freezing and frozen tasks.
* Note, that if the task is frozen, but the destination cgroup is not
* frozen, we bump both counters to keep them balanced.
diff --git a/kernel/cgroup/pids.c b/kernel/cgroup/pids.c
index 8e513a573fe9..138059eb730d 100644
--- a/kernel/cgroup/pids.c
+++ b/kernel/cgroup/pids.c
@@ -45,7 +45,7 @@ struct pids_cgroup {
* %PIDS_MAX = (%PID_MAX_LIMIT + 1).
*/
atomic64_t counter;
- int64_t limit;
+ atomic64_t limit;
/* Handle for "pids.events" */
struct cgroup_file events_file;
@@ -73,8 +73,8 @@ pids_css_alloc(struct cgroup_subsys_state *parent)
if (!pids)
return ERR_PTR(-ENOMEM);
- pids->limit = PIDS_MAX;
atomic64_set(&pids->counter, 0);
+ atomic64_set(&pids->limit, PIDS_MAX);
atomic64_set(&pids->events_limit, 0);
return &pids->css;
}
@@ -146,13 +146,14 @@ static int pids_try_charge(struct pids_cgroup *pids, int num)
for (p = pids; parent_pids(p); p = parent_pids(p)) {
int64_t new = atomic64_add_return(num, &p->counter);
+ int64_t limit = atomic64_read(&p->limit);
/*
* Since new is capped to the maximum number of pid_t, if
* p->limit is %PIDS_MAX then we know that this test will never
* fail.
*/
- if (new > p->limit)
+ if (new > limit)
goto revert;
}
@@ -277,7 +278,7 @@ set_limit:
* Limit updates don't need to be mutex'd, since it isn't
* critical that any racing fork()s follow the new limit.
*/
- pids->limit = limit;
+ atomic64_set(&pids->limit, limit);
return nbytes;
}
@@ -285,7 +286,7 @@ static int pids_max_show(struct seq_file *sf, void *v)
{
struct cgroup_subsys_state *css = seq_css(sf);
struct pids_cgroup *pids = css_pids(css);
- int64_t limit = pids->limit;
+ int64_t limit = atomic64_read(&pids->limit);
if (limit >= PIDS_MAX)
seq_printf(sf, "%s\n", PIDS_MAX_STR);
diff --git a/kernel/cgroup/rstat.c b/kernel/cgroup/rstat.c
index ca19b4c8acf5..b48b22d4deb6 100644
--- a/kernel/cgroup/rstat.c
+++ b/kernel/cgroup/rstat.c
@@ -304,44 +304,48 @@ void __init cgroup_rstat_boot(void)
* Functions for cgroup basic resource statistics implemented on top of
* rstat.
*/
-static void cgroup_base_stat_accumulate(struct cgroup_base_stat *dst_bstat,
- struct cgroup_base_stat *src_bstat)
+static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
+ struct cgroup_base_stat *src_bstat)
{
dst_bstat->cputime.utime += src_bstat->cputime.utime;
dst_bstat->cputime.stime += src_bstat->cputime.stime;
dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
}
+static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
+ struct cgroup_base_stat *src_bstat)
+{
+ dst_bstat->cputime.utime -= src_bstat->cputime.utime;
+ dst_bstat->cputime.stime -= src_bstat->cputime.stime;
+ dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
+}
+
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
{
struct cgroup *parent = cgroup_parent(cgrp);
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
- struct task_cputime *last_cputime = &rstatc->last_bstat.cputime;
- struct task_cputime cputime;
- struct cgroup_base_stat delta;
+ struct cgroup_base_stat cur, delta;
unsigned seq;
/* fetch the current per-cpu values */
do {
seq = __u64_stats_fetch_begin(&rstatc->bsync);
- cputime = rstatc->bstat.cputime;
+ cur.cputime = rstatc->bstat.cputime;
} while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
- /* calculate the delta to propgate */
- delta.cputime.utime = cputime.utime - last_cputime->utime;
- delta.cputime.stime = cputime.stime - last_cputime->stime;
- delta.cputime.sum_exec_runtime = cputime.sum_exec_runtime -
- last_cputime->sum_exec_runtime;
- *last_cputime = cputime;
-
- /* transfer the pending stat into delta */
- cgroup_base_stat_accumulate(&delta, &cgrp->pending_bstat);
- memset(&cgrp->pending_bstat, 0, sizeof(cgrp->pending_bstat));
-
- /* propagate delta into the global stat and the parent's pending */
- cgroup_base_stat_accumulate(&cgrp->bstat, &delta);
- if (parent)
- cgroup_base_stat_accumulate(&parent->pending_bstat, &delta);
+ /* propagate percpu delta to global */
+ delta = cur;
+ cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
+ cgroup_base_stat_add(&cgrp->bstat, &delta);
+ cgroup_base_stat_add(&rstatc->last_bstat, &delta);
+
+ /* propagate global delta to parent */
+ if (parent) {
+ delta = cgrp->bstat;
+ cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
+ cgroup_base_stat_add(&parent->bstat, &delta);
+ cgroup_base_stat_add(&cgrp->last_bstat, &delta);
+ }
}
static struct cgroup_rstat_cpu *
diff --git a/kernel/context_tracking.c b/kernel/context_tracking.c
index be01a4d627c9..0296b4bda8f1 100644
--- a/kernel/context_tracking.c
+++ b/kernel/context_tracking.c
@@ -25,8 +25,8 @@
#define CREATE_TRACE_POINTS
#include <trace/events/context_tracking.h>
-DEFINE_STATIC_KEY_FALSE(context_tracking_enabled);
-EXPORT_SYMBOL_GPL(context_tracking_enabled);
+DEFINE_STATIC_KEY_FALSE(context_tracking_key);
+EXPORT_SYMBOL_GPL(context_tracking_key);
DEFINE_PER_CPU(struct context_tracking, context_tracking);
EXPORT_SYMBOL_GPL(context_tracking);
@@ -192,7 +192,7 @@ void __init context_tracking_cpu_set(int cpu)
if (!per_cpu(context_tracking.active, cpu)) {
per_cpu(context_tracking.active, cpu) = true;
- static_branch_inc(&context_tracking_enabled);
+ static_branch_inc(&context_tracking_key);
}
if (initialized)
diff --git a/kernel/cpu.c b/kernel/cpu.c
index fc28e17940e0..a59cc980adad 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -336,7 +336,7 @@ static void lockdep_acquire_cpus_lock(void)
static void lockdep_release_cpus_lock(void)
{
- rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
+ rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, _THIS_IP_);
}
/*
@@ -2373,7 +2373,18 @@ void __init boot_cpu_hotplug_init(void)
this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
}
-enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
+/*
+ * These are used for a global "mitigations=" cmdline option for toggling
+ * optional CPU mitigations.
+ */
+enum cpu_mitigations {
+ CPU_MITIGATIONS_OFF,
+ CPU_MITIGATIONS_AUTO,
+ CPU_MITIGATIONS_AUTO_NOSMT,
+};
+
+static enum cpu_mitigations cpu_mitigations __ro_after_init =
+ CPU_MITIGATIONS_AUTO;
static int __init mitigations_parse_cmdline(char *arg)
{
@@ -2390,3 +2401,17 @@ static int __init mitigations_parse_cmdline(char *arg)
return 0;
}
early_param("mitigations", mitigations_parse_cmdline);
+
+/* mitigations=off */
+bool cpu_mitigations_off(void)
+{
+ return cpu_mitigations == CPU_MITIGATIONS_OFF;
+}
+EXPORT_SYMBOL_GPL(cpu_mitigations_off);
+
+/* mitigations=auto,nosmt */
+bool cpu_mitigations_auto_nosmt(void)
+{
+ return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
+}
+EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
diff --git a/kernel/dma/debug.c b/kernel/dma/debug.c
index 099002d84f46..a26170469543 100644
--- a/kernel/dma/debug.c
+++ b/kernel/dma/debug.c
@@ -161,7 +161,7 @@ static inline void dump_entry_trace(struct dma_debug_entry *entry)
{
#ifdef CONFIG_STACKTRACE
if (entry) {
- pr_warning("Mapped at:\n");
+ pr_warn("Mapped at:\n");
stack_trace_print(entry->stack_entries, entry->stack_len, 0);
}
#endif
diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c
index 8402b29c280f..0b67c04e531b 100644
--- a/kernel/dma/direct.c
+++ b/kernel/dma/direct.c
@@ -16,12 +16,11 @@
#include <linux/swiotlb.h>
/*
- * Most architectures use ZONE_DMA for the first 16 Megabytes, but
- * some use it for entirely different regions:
+ * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
+ * it for entirely different regions. In that case the arch code needs to
+ * override the variable below for dma-direct to work properly.
*/
-#ifndef ARCH_ZONE_DMA_BITS
-#define ARCH_ZONE_DMA_BITS 24
-#endif
+unsigned int zone_dma_bits __ro_after_init = 24;
static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
{
@@ -69,7 +68,7 @@ static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
- if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
+ if (*phys_mask <= DMA_BIT_MASK(zone_dma_bits))
return GFP_DMA;
if (*phys_mask <= DMA_BIT_MASK(32))
return GFP_DMA32;
@@ -395,7 +394,7 @@ int dma_direct_supported(struct device *dev, u64 mask)
u64 min_mask;
if (IS_ENABLED(CONFIG_ZONE_DMA))
- min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
+ min_mask = DMA_BIT_MASK(zone_dma_bits);
else
min_mask = DMA_BIT_MASK(32);
diff --git a/kernel/events/core.c b/kernel/events/core.c
index aec8dba2bea4..4ff86d57f9e5 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -1031,7 +1031,7 @@ perf_cgroup_set_timestamp(struct task_struct *task,
{
}
-void
+static inline void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}
@@ -1941,6 +1941,11 @@ static void perf_put_aux_event(struct perf_event *event)
}
}
+static bool perf_need_aux_event(struct perf_event *event)
+{
+ return !!event->attr.aux_output || !!event->attr.aux_sample_size;
+}
+
static int perf_get_aux_event(struct perf_event *event,
struct perf_event *group_leader)
{
@@ -1953,7 +1958,17 @@ static int perf_get_aux_event(struct perf_event *event,
if (!group_leader)
return 0;
- if (!perf_aux_output_match(event, group_leader))
+ /*
+ * aux_output and aux_sample_size are mutually exclusive.
+ */
+ if (event->attr.aux_output && event->attr.aux_sample_size)
+ return 0;
+
+ if (event->attr.aux_output &&
+ !perf_aux_output_match(event, group_leader))
+ return 0;
+
+ if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
return 0;
if (!atomic_long_inc_not_zero(&group_leader->refcount))
@@ -2666,6 +2681,25 @@ perf_install_in_context(struct perf_event_context *ctx,
*/
smp_store_release(&event->ctx, ctx);
+ /*
+ * perf_event_attr::disabled events will not run and can be initialized
+ * without IPI. Except when this is the first event for the context, in
+ * that case we need the magic of the IPI to set ctx->is_active.
+ *
+ * The IOC_ENABLE that is sure to follow the creation of a disabled
+ * event will issue the IPI and reprogram the hardware.
+ */
+ if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
+ raw_spin_lock_irq(&ctx->lock);
+ if (ctx->task == TASK_TOMBSTONE) {
+ raw_spin_unlock_irq(&ctx->lock);
+ return;
+ }
+ add_event_to_ctx(event, ctx);
+ raw_spin_unlock_irq(&ctx->lock);
+ return;
+ }
+
if (!task) {
cpu_function_call(cpu, __perf_install_in_context, event);
return;
@@ -3204,10 +3238,21 @@ static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
raw_spin_lock(&ctx->lock);
raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
if (context_equiv(ctx, next_ctx)) {
+ struct pmu *pmu = ctx->pmu;
+
WRITE_ONCE(ctx->task, next);
WRITE_ONCE(next_ctx->task, task);
- swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
+ /*
+ * PMU specific parts of task perf context can require
+ * additional synchronization. As an example of such
+ * synchronization see implementation details of Intel
+ * LBR call stack data profiling;
+ */
+ if (pmu->swap_task_ctx)
+ pmu->swap_task_ctx(ctx, next_ctx);
+ else
+ swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
/*
* RCU_INIT_POINTER here is safe because we've not
@@ -4229,8 +4274,9 @@ find_get_context(struct pmu *pmu, struct task_struct *task,
if (!task) {
/* Must be root to operate on a CPU event: */
- if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
- return ERR_PTR(-EACCES);
+ err = perf_allow_cpu(&event->attr);
+ if (err)
+ return ERR_PTR(err);
cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
ctx = &cpuctx->ctx;
@@ -4539,6 +4585,8 @@ static void _free_event(struct perf_event *event)
unaccount_event(event);
+ security_perf_event_free(event);
+
if (event->rb) {
/*
* Can happen when we close an event with re-directed output.
@@ -4992,6 +5040,10 @@ perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
struct perf_event_context *ctx;
int ret;
+ ret = security_perf_event_read(event);
+ if (ret)
+ return ret;
+
ctx = perf_event_ctx_lock(event);
ret = __perf_read(event, buf, count);
perf_event_ctx_unlock(event, ctx);
@@ -5029,6 +5081,24 @@ static void _perf_event_reset(struct perf_event *event)
perf_event_update_userpage(event);
}
+/* Assume it's not an event with inherit set. */
+u64 perf_event_pause(struct perf_event *event, bool reset)
+{
+ struct perf_event_context *ctx;
+ u64 count;
+
+ ctx = perf_event_ctx_lock(event);
+ WARN_ON_ONCE(event->attr.inherit);
+ _perf_event_disable(event);
+ count = local64_read(&event->count);
+ if (reset)
+ local64_set(&event->count, 0);
+ perf_event_ctx_unlock(event, ctx);
+
+ return count;
+}
+EXPORT_SYMBOL_GPL(perf_event_pause);
+
/*
* Holding the top-level event's child_mutex means that any
* descendant process that has inherited this event will block
@@ -5106,16 +5176,11 @@ static int perf_event_check_period(struct perf_event *event, u64 value)
return event->pmu->check_period(event, value);
}
-static int perf_event_period(struct perf_event *event, u64 __user *arg)
+static int _perf_event_period(struct perf_event *event, u64 value)
{
- u64 value;
-
if (!is_sampling_event(event))
return -EINVAL;
- if (copy_from_user(&value, arg, sizeof(value)))
- return -EFAULT;
-
if (!value)
return -EINVAL;
@@ -5133,6 +5198,19 @@ static int perf_event_period(struct perf_event *event, u64 __user *arg)
return 0;
}
+int perf_event_period(struct perf_event *event, u64 value)
+{
+ struct perf_event_context *ctx;
+ int ret;
+
+ ctx = perf_event_ctx_lock(event);
+ ret = _perf_event_period(event, value);
+ perf_event_ctx_unlock(event, ctx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(perf_event_period);
+
static const struct file_operations perf_fops;
static inline int perf_fget_light(int fd, struct fd *p)
@@ -5176,8 +5254,14 @@ static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned lon
return _perf_event_refresh(event, arg);
case PERF_EVENT_IOC_PERIOD:
- return perf_event_period(event, (u64 __user *)arg);
+ {
+ u64 value;
+
+ if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
+ return -EFAULT;
+ return _perf_event_period(event, value);
+ }
case PERF_EVENT_IOC_ID:
{
u64 id = primary_event_id(event);
@@ -5256,6 +5340,11 @@ static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
struct perf_event_context *ctx;
long ret;
+ /* Treat ioctl like writes as it is likely a mutating operation. */
+ ret = security_perf_event_write(event);
+ if (ret)
+ return ret;
+
ctx = perf_event_ctx_lock(event);
ret = _perf_ioctl(event, cmd, arg);
perf_event_ctx_unlock(event, ctx);
@@ -5607,10 +5696,8 @@ static void perf_mmap_close(struct vm_area_struct *vma)
perf_pmu_output_stop(event);
/* now it's safe to free the pages */
- if (!rb->aux_mmap_locked)
- atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
- else
- atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
+ atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
+ atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
/* this has to be the last one */
rb_free_aux(rb);
@@ -5721,6 +5808,10 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma)
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
+ ret = security_perf_event_read(event);
+ if (ret)
+ return ret;
+
vma_size = vma->vm_end - vma->vm_start;
if (vma->vm_pgoff == 0) {
@@ -5827,13 +5918,7 @@ accounting:
user_locked = atomic_long_read(&user->locked_vm) + user_extra;
- if (user_locked <= user_lock_limit) {
- /* charge all to locked_vm */
- } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
- /* charge all to pinned_vm */
- extra = user_extra;
- user_extra = 0;
- } else {
+ if (user_locked > user_lock_limit) {
/*
* charge locked_vm until it hits user_lock_limit;
* charge the rest from pinned_vm
@@ -5846,7 +5931,7 @@ accounting:
lock_limit >>= PAGE_SHIFT;
locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
- if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
+ if ((locked > lock_limit) && perf_is_paranoid() &&
!capable(CAP_IPC_LOCK)) {
ret = -EPERM;
goto unlock;
@@ -6176,6 +6261,122 @@ perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
}
}
+static unsigned long perf_prepare_sample_aux(struct perf_event *event,
+ struct perf_sample_data *data,
+ size_t size)
+{
+ struct perf_event *sampler = event->aux_event;
+ struct ring_buffer *rb;
+
+ data->aux_size = 0;
+
+ if (!sampler)
+ goto out;
+
+ if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
+ goto out;
+
+ if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
+ goto out;
+
+ rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
+ if (!rb)
+ goto out;
+
+ /*
+ * If this is an NMI hit inside sampling code, don't take
+ * the sample. See also perf_aux_sample_output().
+ */
+ if (READ_ONCE(rb->aux_in_sampling)) {
+ data->aux_size = 0;
+ } else {
+ size = min_t(size_t, size, perf_aux_size(rb));
+ data->aux_size = ALIGN(size, sizeof(u64));
+ }
+ ring_buffer_put(rb);
+
+out:
+ return data->aux_size;
+}
+
+long perf_pmu_snapshot_aux(struct ring_buffer *rb,
+ struct perf_event *event,
+ struct perf_output_handle *handle,
+ unsigned long size)
+{
+ unsigned long flags;
+ long ret;
+
+ /*
+ * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
+ * paths. If we start calling them in NMI context, they may race with
+ * the IRQ ones, that is, for example, re-starting an event that's just
+ * been stopped, which is why we're using a separate callback that
+ * doesn't change the event state.
+ *
+ * IRQs need to be disabled to prevent IPIs from racing with us.
+ */
+ local_irq_save(flags);
+ /*
+ * Guard against NMI hits inside the critical section;
+ * see also perf_prepare_sample_aux().
+ */
+ WRITE_ONCE(rb->aux_in_sampling, 1);
+ barrier();
+
+ ret = event->pmu->snapshot_aux(event, handle, size);
+
+ barrier();
+ WRITE_ONCE(rb->aux_in_sampling, 0);
+ local_irq_restore(flags);
+
+ return ret;
+}
+
+static void perf_aux_sample_output(struct perf_event *event,
+ struct perf_output_handle *handle,
+ struct perf_sample_data *data)
+{
+ struct perf_event *sampler = event->aux_event;
+ unsigned long pad;
+ struct ring_buffer *rb;
+ long size;
+
+ if (WARN_ON_ONCE(!sampler || !data->aux_size))
+ return;
+
+ rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
+ if (!rb)
+ return;
+
+ size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
+
+ /*
+ * An error here means that perf_output_copy() failed (returned a
+ * non-zero surplus that it didn't copy), which in its current
+ * enlightened implementation is not possible. If that changes, we'd
+ * like to know.
+ */
+ if (WARN_ON_ONCE(size < 0))
+ goto out_put;
+
+ /*
+ * The pad comes from ALIGN()ing data->aux_size up to u64 in
+ * perf_prepare_sample_aux(), so should not be more than that.
+ */
+ pad = data->aux_size - size;
+ if (WARN_ON_ONCE(pad >= sizeof(u64)))
+ pad = 8;
+
+ if (pad) {
+ u64 zero = 0;
+ perf_output_copy(handle, &zero, pad);
+ }
+
+out_put:
+ ring_buffer_put(rb);
+}
+
static void __perf_event_header__init_id(struct perf_event_header *header,
struct perf_sample_data *data,
struct perf_event *event)
@@ -6495,6 +6696,13 @@ void perf_output_sample(struct perf_output_handle *handle,
if (sample_type & PERF_SAMPLE_PHYS_ADDR)
perf_output_put(handle, data->phys_addr);
+ if (sample_type & PERF_SAMPLE_AUX) {
+ perf_output_put(handle, data->aux_size);
+
+ if (data->aux_size)
+ perf_aux_sample_output(event, handle, data);
+ }
+
if (!event->attr.watermark) {
int wakeup_events = event->attr.wakeup_events;
@@ -6683,6 +6891,35 @@ void perf_prepare_sample(struct perf_event_header *header,
if (sample_type & PERF_SAMPLE_PHYS_ADDR)
data->phys_addr = perf_virt_to_phys(data->addr);
+
+ if (sample_type & PERF_SAMPLE_AUX) {
+ u64 size;
+
+ header->size += sizeof(u64); /* size */
+
+ /*
+ * Given the 16bit nature of header::size, an AUX sample can
+ * easily overflow it, what with all the preceding sample bits.
+ * Make sure this doesn't happen by using up to U16_MAX bytes
+ * per sample in total (rounded down to 8 byte boundary).
+ */
+ size = min_t(size_t, U16_MAX - header->size,
+ event->attr.aux_sample_size);
+ size = rounddown(size, 8);
+ size = perf_prepare_sample_aux(event, data, size);
+
+ WARN_ON_ONCE(size + header->size > U16_MAX);
+ header->size += size;
+ }
+ /*
+ * If you're adding more sample types here, you likely need to do
+ * something about the overflowing header::size, like repurpose the
+ * lowest 3 bits of size, which should be always zero at the moment.
+ * This raises a more important question, do we really need 512k sized
+ * samples and why, so good argumentation is in order for whatever you
+ * do here next.
+ */
+ WARN_ON_ONCE(header->size & 7);
}
static __always_inline int
@@ -10034,7 +10271,7 @@ static struct lock_class_key cpuctx_lock;
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
{
- int cpu, ret;
+ int cpu, ret, max = PERF_TYPE_MAX;
mutex_lock(&pmus_lock);
ret = -ENOMEM;
@@ -10047,12 +10284,17 @@ int perf_pmu_register(struct pmu *pmu, const char *name, int type)
goto skip_type;
pmu->name = name;
- if (type < 0) {
- type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
- if (type < 0) {
- ret = type;
+ if (type != PERF_TYPE_SOFTWARE) {
+ if (type >= 0)
+ max = type;
+
+ ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
+ if (ret < 0)
goto free_pdc;
- }
+
+ WARN_ON(type >= 0 && ret != type);
+
+ type = ret;
}
pmu->type = type;
@@ -10129,7 +10371,16 @@ got_cpu_context:
if (!pmu->event_idx)
pmu->event_idx = perf_event_idx_default;
- list_add_rcu(&pmu->entry, &pmus);
+ /*
+ * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
+ * since these cannot be in the IDR. This way the linear search
+ * is fast, provided a valid software event is provided.
+ */
+ if (type == PERF_TYPE_SOFTWARE || !name)
+ list_add_rcu(&pmu->entry, &pmus);
+ else
+ list_add_tail_rcu(&pmu->entry, &pmus);
+
atomic_set(&pmu->exclusive_cnt, 0);
ret = 0;
unlock:
@@ -10142,7 +10393,7 @@ free_dev:
put_device(pmu->dev);
free_idr:
- if (pmu->type >= PERF_TYPE_MAX)
+ if (pmu->type != PERF_TYPE_SOFTWARE)
idr_remove(&pmu_idr, pmu->type);
free_pdc:
@@ -10164,7 +10415,7 @@ void perf_pmu_unregister(struct pmu *pmu)
synchronize_rcu();
free_percpu(pmu->pmu_disable_count);
- if (pmu->type >= PERF_TYPE_MAX)
+ if (pmu->type != PERF_TYPE_SOFTWARE)
idr_remove(&pmu_idr, pmu->type);
if (pmu_bus_running) {
if (pmu->nr_addr_filters)
@@ -10234,9 +10485,8 @@ static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
static struct pmu *perf_init_event(struct perf_event *event)
{
+ int idx, type, ret;
struct pmu *pmu;
- int idx;
- int ret;
idx = srcu_read_lock(&pmus_srcu);
@@ -10248,13 +10498,28 @@ static struct pmu *perf_init_event(struct perf_event *event)
goto unlock;
}
+ /*
+ * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
+ * are often aliases for PERF_TYPE_RAW.
+ */
+ type = event->attr.type;
+ if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
+ type = PERF_TYPE_RAW;
+
+again:
rcu_read_lock();
- pmu = idr_find(&pmu_idr, event->attr.type);
+ pmu = idr_find(&pmu_idr, type);
rcu_read_unlock();
if (pmu) {
ret = perf_try_init_event(pmu, event);
+ if (ret == -ENOENT && event->attr.type != type) {
+ type = event->attr.type;
+ goto again;
+ }
+
if (ret)
pmu = ERR_PTR(ret);
+
goto unlock;
}
@@ -10477,12 +10742,9 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
context = parent_event->overflow_handler_context;
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
if (overflow_handler == bpf_overflow_handler) {
- struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
+ struct bpf_prog *prog = parent_event->prog;
- if (IS_ERR(prog)) {
- err = PTR_ERR(prog);
- goto err_ns;
- }
+ bpf_prog_inc(prog);
event->prog = prog;
event->orig_overflow_handler =
parent_event->orig_overflow_handler;
@@ -10535,6 +10797,15 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
goto err_ns;
}
+ /*
+ * Disallow uncore-cgroup events, they don't make sense as the cgroup will
+ * be different on other CPUs in the uncore mask.
+ */
+ if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
+ err = -EINVAL;
+ goto err_pmu;
+ }
+
if (event->attr.aux_output &&
!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
err = -EOPNOTSUPP;
@@ -10580,11 +10851,20 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
}
}
+ err = security_perf_event_alloc(event);
+ if (err)
+ goto err_callchain_buffer;
+
/* symmetric to unaccount_event() in _free_event() */
account_event(event);
return event;
+err_callchain_buffer:
+ if (!event->parent) {
+ if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
+ put_callchain_buffers();
+ }
err_addr_filters:
kfree(event->addr_filter_ranges);
@@ -10635,7 +10915,7 @@ static int perf_copy_attr(struct perf_event_attr __user *uattr,
attr->size = size;
- if (attr->__reserved_1 || attr->__reserved_2)
+ if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
return -EINVAL;
if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
@@ -10673,9 +10953,11 @@ static int perf_copy_attr(struct perf_event_attr __user *uattr,
attr->branch_sample_type = mask;
}
/* privileged levels capture (kernel, hv): check permissions */
- if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
- && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
- return -EACCES;
+ if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
+ ret = perf_allow_kernel(attr);
+ if (ret)
+ return ret;
+ }
}
if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
@@ -10888,13 +11170,19 @@ SYSCALL_DEFINE5(perf_event_open,
if (flags & ~PERF_FLAG_ALL)
return -EINVAL;
+ /* Do we allow access to perf_event_open(2) ? */
+ err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
+ if (err)
+ return err;
+
err = perf_copy_attr(attr_uptr, &attr);
if (err)
return err;
if (!attr.exclude_kernel) {
- if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
- return -EACCES;
+ err = perf_allow_kernel(&attr);
+ if (err)
+ return err;
}
if (attr.namespaces) {
@@ -10911,9 +11199,11 @@ SYSCALL_DEFINE5(perf_event_open,
}
/* Only privileged users can get physical addresses */
- if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
- perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
- return -EACCES;
+ if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
+ err = perf_allow_kernel(&attr);
+ if (err)
+ return err;
+ }
err = security_locked_down(LOCKDOWN_PERF);
if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
@@ -11175,7 +11465,7 @@ SYSCALL_DEFINE5(perf_event_open,
}
}
- if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
+ if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader))
goto err_locked;
/*
@@ -11323,8 +11613,11 @@ perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
int err;
/*
- * Get the target context (task or percpu):
+ * Grouping is not supported for kernel events, neither is 'AUX',
+ * make sure the caller's intentions are adjusted.
*/
+ if (attr->aux_output)
+ return ERR_PTR(-EINVAL);
event = perf_event_alloc(attr, cpu, task, NULL, NULL,
overflow_handler, context, -1);
@@ -11336,6 +11629,9 @@ perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
/* Mark owner so we could distinguish it from user events. */
event->owner = TASK_TOMBSTONE;
+ /*
+ * Get the target context (task or percpu):
+ */
ctx = find_get_context(event->pmu, task, event);
if (IS_ERR(ctx)) {
err = PTR_ERR(ctx);
@@ -11787,7 +12083,7 @@ inherit_event(struct perf_event *parent_event,
GFP_KERNEL);
if (!child_ctx->task_ctx_data) {
free_event(child_event);
- return NULL;
+ return ERR_PTR(-ENOMEM);
}
}
@@ -11890,7 +12186,7 @@ static int inherit_group(struct perf_event *parent_event,
if (IS_ERR(child_ctr))
return PTR_ERR(child_ctr);
- if (sub->aux_event == parent_event &&
+ if (sub->aux_event == parent_event && child_ctr &&
!perf_get_aux_event(child_ctr, leader))
return -EINVAL;
}
diff --git a/kernel/events/internal.h b/kernel/events/internal.h
index 3aef4191798c..747d67f130cb 100644
--- a/kernel/events/internal.h
+++ b/kernel/events/internal.h
@@ -50,6 +50,7 @@ struct ring_buffer {
unsigned long aux_mmap_locked;
void (*free_aux)(void *);
refcount_t aux_refcount;
+ int aux_in_sampling;
void **aux_pages;
void *aux_priv;
diff --git a/kernel/events/ring_buffer.c b/kernel/events/ring_buffer.c
index ffb59a4ef4ff..7ffd5c763f93 100644
--- a/kernel/events/ring_buffer.c
+++ b/kernel/events/ring_buffer.c
@@ -562,6 +562,42 @@ void *perf_get_aux(struct perf_output_handle *handle)
}
EXPORT_SYMBOL_GPL(perf_get_aux);
+/*
+ * Copy out AUX data from an AUX handle.
+ */
+long perf_output_copy_aux(struct perf_output_handle *aux_handle,
+ struct perf_output_handle *handle,
+ unsigned long from, unsigned long to)
+{
+ unsigned long tocopy, remainder, len = 0;
+ struct ring_buffer *rb = aux_handle->rb;
+ void *addr;
+
+ from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
+ to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
+
+ do {
+ tocopy = PAGE_SIZE - offset_in_page(from);
+ if (to > from)
+ tocopy = min(tocopy, to - from);
+ if (!tocopy)
+ break;
+
+ addr = rb->aux_pages[from >> PAGE_SHIFT];
+ addr += offset_in_page(from);
+
+ remainder = perf_output_copy(handle, addr, tocopy);
+ if (remainder)
+ return -EFAULT;
+
+ len += tocopy;
+ from += tocopy;
+ from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
+ } while (to != from);
+
+ return len;
+}
+
#define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
static struct page *rb_alloc_aux_page(int node, int order)
@@ -754,6 +790,14 @@ static void *perf_mmap_alloc_page(int cpu)
return page_address(page);
}
+static void perf_mmap_free_page(void *addr)
+{
+ struct page *page = virt_to_page(addr);
+
+ page->mapping = NULL;
+ __free_page(page);
+}
+
struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
struct ring_buffer *rb;
@@ -788,9 +832,9 @@ struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
fail_data_pages:
for (i--; i >= 0; i--)
- free_page((unsigned long)rb->data_pages[i]);
+ perf_mmap_free_page(rb->data_pages[i]);
- free_page((unsigned long)rb->user_page);
+ perf_mmap_free_page(rb->user_page);
fail_user_page:
kfree(rb);
@@ -799,21 +843,13 @@ fail:
return NULL;
}
-static void perf_mmap_free_page(unsigned long addr)
-{
- struct page *page = virt_to_page((void *)addr);
-
- page->mapping = NULL;
- __free_page(page);
-}
-
void rb_free(struct ring_buffer *rb)
{
int i;
- perf_mmap_free_page((unsigned long)rb->user_page);
+ perf_mmap_free_page(rb->user_page);
for (i = 0; i < rb->nr_pages; i++)
- perf_mmap_free_page((unsigned long)rb->data_pages[i]);
+ perf_mmap_free_page(rb->data_pages[i]);
kfree(rb);
}
diff --git a/kernel/exit.c b/kernel/exit.c
index a46a50d67002..0bac4b60d5f3 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -437,7 +437,7 @@ static void exit_mm(void)
struct mm_struct *mm = current->mm;
struct core_state *core_state;
- mm_release(current, mm);
+ exit_mm_release(current, mm);
if (!mm)
return;
sync_mm_rss(mm);
@@ -746,32 +746,12 @@ void __noreturn do_exit(long code)
*/
if (unlikely(tsk->flags & PF_EXITING)) {
pr_alert("Fixing recursive fault but reboot is needed!\n");
- /*
- * We can do this unlocked here. The futex code uses
- * this flag just to verify whether the pi state
- * cleanup has been done or not. In the worst case it
- * loops once more. We pretend that the cleanup was
- * done as there is no way to return. Either the
- * OWNER_DIED bit is set by now or we push the blocked
- * task into the wait for ever nirwana as well.
- */
- tsk->flags |= PF_EXITPIDONE;
+ futex_exit_recursive(tsk);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
}
exit_signals(tsk); /* sets PF_EXITING */
- /*
- * Ensure that all new tsk->pi_lock acquisitions must observe
- * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
- */
- smp_mb();
- /*
- * Ensure that we must observe the pi_state in exit_mm() ->
- * mm_release() -> exit_pi_state_list().
- */
- raw_spin_lock_irq(&tsk->pi_lock);
- raw_spin_unlock_irq(&tsk->pi_lock);
if (unlikely(in_atomic())) {
pr_info("note: %s[%d] exited with preempt_count %d\n",
@@ -846,12 +826,6 @@ void __noreturn do_exit(long code)
* Make sure we are holding no locks:
*/
debug_check_no_locks_held();
- /*
- * We can do this unlocked here. The futex code uses this flag
- * just to verify whether the pi state cleanup has been done
- * or not. In the worst case it loops once more.
- */
- tsk->flags |= PF_EXITPIDONE;
if (tsk->io_context)
exit_io_context(tsk);
@@ -1457,7 +1431,7 @@ repeat:
*/
wo->notask_error = -ECHILD;
if ((wo->wo_type < PIDTYPE_MAX) &&
- (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
+ (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
goto notask;
set_current_state(TASK_INTERRUPTIBLE);
diff --git a/kernel/extable.c b/kernel/extable.c
index f6c9406eec7d..f6920a11e28a 100644
--- a/kernel/extable.c
+++ b/kernel/extable.c
@@ -56,6 +56,8 @@ const struct exception_table_entry *search_exception_tables(unsigned long addr)
e = search_kernel_exception_table(addr);
if (!e)
e = search_module_extables(addr);
+ if (!e)
+ e = search_bpf_extables(addr);
return e;
}
diff --git a/kernel/fork.c b/kernel/fork.c
index bcdf53125210..00b64f41c2b4 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1283,24 +1283,8 @@ static int wait_for_vfork_done(struct task_struct *child,
* restoring the old one. . .
* Eric Biederman 10 January 1998
*/
-void mm_release(struct task_struct *tsk, struct mm_struct *mm)
+static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
- /* Get rid of any futexes when releasing the mm */
-#ifdef CONFIG_FUTEX
- if (unlikely(tsk->robust_list)) {
- exit_robust_list(tsk);
- tsk->robust_list = NULL;
- }
-#ifdef CONFIG_COMPAT
- if (unlikely(tsk->compat_robust_list)) {
- compat_exit_robust_list(tsk);
- tsk->compat_robust_list = NULL;
- }
-#endif
- if (unlikely(!list_empty(&tsk->pi_state_list)))
- exit_pi_state_list(tsk);
-#endif
-
uprobe_free_utask(tsk);
/* Get rid of any cached register state */
@@ -1333,6 +1317,18 @@ void mm_release(struct task_struct *tsk, struct mm_struct *mm)
complete_vfork_done(tsk);
}
+void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
+{
+ futex_exit_release(tsk);
+ mm_release(tsk, mm);
+}
+
+void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
+{
+ futex_exec_release(tsk);
+ mm_release(tsk, mm);
+}
+
/**
* dup_mm() - duplicates an existing mm structure
* @tsk: the task_struct with which the new mm will be associated.
@@ -1517,6 +1513,11 @@ static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
spin_lock_irq(&current->sighand->siglock);
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
spin_unlock_irq(&current->sighand->siglock);
+
+ /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
+ if (clone_flags & CLONE_CLEAR_SIGHAND)
+ flush_signal_handlers(tsk, 0);
+
return 0;
}
@@ -1695,12 +1696,68 @@ static int pidfd_release(struct inode *inode, struct file *file)
}
#ifdef CONFIG_PROC_FS
+/**
+ * pidfd_show_fdinfo - print information about a pidfd
+ * @m: proc fdinfo file
+ * @f: file referencing a pidfd
+ *
+ * Pid:
+ * This function will print the pid that a given pidfd refers to in the
+ * pid namespace of the procfs instance.
+ * If the pid namespace of the process is not a descendant of the pid
+ * namespace of the procfs instance 0 will be shown as its pid. This is
+ * similar to calling getppid() on a process whose parent is outside of
+ * its pid namespace.
+ *
+ * NSpid:
+ * If pid namespaces are supported then this function will also print
+ * the pid of a given pidfd refers to for all descendant pid namespaces
+ * starting from the current pid namespace of the instance, i.e. the
+ * Pid field and the first entry in the NSpid field will be identical.
+ * If the pid namespace of the process is not a descendant of the pid
+ * namespace of the procfs instance 0 will be shown as its first NSpid
+ * entry and no others will be shown.
+ * Note that this differs from the Pid and NSpid fields in
+ * /proc/<pid>/status where Pid and NSpid are always shown relative to
+ * the pid namespace of the procfs instance. The difference becomes
+ * obvious when sending around a pidfd between pid namespaces from a
+ * different branch of the tree, i.e. where no ancestoral relation is
+ * present between the pid namespaces:
+ * - create two new pid namespaces ns1 and ns2 in the initial pid
+ * namespace (also take care to create new mount namespaces in the
+ * new pid namespace and mount procfs)
+ * - create a process with a pidfd in ns1
+ * - send pidfd from ns1 to ns2
+ * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
+ * have exactly one entry, which is 0
+ */
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
- struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
struct pid *pid = f->private_data;
+ struct pid_namespace *ns;
+ pid_t nr = -1;
+
+ if (likely(pid_has_task(pid, PIDTYPE_PID))) {
+ ns = proc_pid_ns(file_inode(m->file));
+ nr = pid_nr_ns(pid, ns);
+ }
+
+ seq_put_decimal_ll(m, "Pid:\t", nr);
+
+#ifdef CONFIG_PID_NS
+ seq_put_decimal_ll(m, "\nNSpid:\t", nr);
+ if (nr > 0) {
+ int i;
- seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
+ /* If nr is non-zero it means that 'pid' is valid and that
+ * ns, i.e. the pid namespace associated with the procfs
+ * instance, is in the pid namespace hierarchy of pid.
+ * Start at one below the already printed level.
+ */
+ for (i = ns->level + 1; i <= pid->level; i++)
+ seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
+ }
+#endif
seq_putc(m, '\n');
}
#endif
@@ -1708,11 +1765,11 @@ static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
/*
* Poll support for process exit notification.
*/
-static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
+static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
struct task_struct *task;
struct pid *pid = file->private_data;
- int poll_flags = 0;
+ __poll_t poll_flags = 0;
poll_wait(file, &pid->wait_pidfd, pts);
@@ -1724,7 +1781,7 @@ static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
* group, then poll(2) should block, similar to the wait(2) family.
*/
if (!task || (task->exit_state && thread_group_empty(task)))
- poll_flags = POLLIN | POLLRDNORM;
+ poll_flags = EPOLLIN | EPOLLRDNORM;
rcu_read_unlock();
return poll_flags;
@@ -2026,7 +2083,8 @@ static __latent_entropy struct task_struct *copy_process(
stackleak_task_init(p);
if (pid != &init_struct_pid) {
- pid = alloc_pid(p->nsproxy->pid_ns_for_children);
+ pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
+ args->set_tid_size);
if (IS_ERR(pid)) {
retval = PTR_ERR(pid);
goto bad_fork_cleanup_thread;
@@ -2062,14 +2120,8 @@ static __latent_entropy struct task_struct *copy_process(
#ifdef CONFIG_BLOCK
p->plug = NULL;
#endif
-#ifdef CONFIG_FUTEX
- p->robust_list = NULL;
-#ifdef CONFIG_COMPAT
- p->compat_robust_list = NULL;
-#endif
- INIT_LIST_HEAD(&p->pi_state_list);
- p->pi_state_cache = NULL;
-#endif
+ futex_init_task(p);
+
/*
* sigaltstack should be cleared when sharing the same VM
*/
@@ -2529,6 +2581,7 @@ noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
{
int err;
struct clone_args args;
+ pid_t *kset_tid = kargs->set_tid;
if (unlikely(usize > PAGE_SIZE))
return -E2BIG;
@@ -2539,6 +2592,15 @@ noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
if (err)
return err;
+ if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
+ return -EINVAL;
+
+ if (unlikely(!args.set_tid && args.set_tid_size > 0))
+ return -EINVAL;
+
+ if (unlikely(args.set_tid && args.set_tid_size == 0))
+ return -EINVAL;
+
/*
* Verify that higher 32bits of exit_signal are unset and that
* it is a valid signal
@@ -2556,18 +2618,51 @@ noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
.stack = args.stack,
.stack_size = args.stack_size,
.tls = args.tls,
+ .set_tid_size = args.set_tid_size,
};
+ if (args.set_tid &&
+ copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
+ (kargs->set_tid_size * sizeof(pid_t))))
+ return -EFAULT;
+
+ kargs->set_tid = kset_tid;
+
return 0;
}
-static bool clone3_args_valid(const struct kernel_clone_args *kargs)
+/**
+ * clone3_stack_valid - check and prepare stack
+ * @kargs: kernel clone args
+ *
+ * Verify that the stack arguments userspace gave us are sane.
+ * In addition, set the stack direction for userspace since it's easy for us to
+ * determine.
+ */
+static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
{
- /*
- * All lower bits of the flag word are taken.
- * Verify that no other unknown flags are passed along.
- */
- if (kargs->flags & ~CLONE_LEGACY_FLAGS)
+ if (kargs->stack == 0) {
+ if (kargs->stack_size > 0)
+ return false;
+ } else {
+ if (kargs->stack_size == 0)
+ return false;
+
+ if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
+ return false;
+
+#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
+ kargs->stack += kargs->stack_size;
+#endif
+ }
+
+ return true;
+}
+
+static bool clone3_args_valid(struct kernel_clone_args *kargs)
+{
+ /* Verify that no unknown flags are passed along. */
+ if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND))
return false;
/*
@@ -2577,10 +2672,17 @@ static bool clone3_args_valid(const struct kernel_clone_args *kargs)
if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
return false;
+ if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
+ (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
+ return false;
+
if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
kargs->exit_signal)
return false;
+ if (!clone3_stack_valid(kargs))
+ return false;
+
return true;
}
@@ -2600,6 +2702,9 @@ SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
int err;
struct kernel_clone_args kargs;
+ pid_t set_tid[MAX_PID_NS_LEVEL];
+
+ kargs.set_tid = set_tid;
err = copy_clone_args_from_user(&kargs, uargs, size);
if (err)
diff --git a/kernel/futex.c b/kernel/futex.c
index bd18f60e4c6c..03c518e9747e 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -325,6 +325,12 @@ static inline bool should_fail_futex(bool fshared)
}
#endif /* CONFIG_FAIL_FUTEX */
+#ifdef CONFIG_COMPAT
+static void compat_exit_robust_list(struct task_struct *curr);
+#else
+static inline void compat_exit_robust_list(struct task_struct *curr) { }
+#endif
+
static inline void futex_get_mm(union futex_key *key)
{
mmgrab(key->private.mm);
@@ -890,7 +896,7 @@ static void put_pi_state(struct futex_pi_state *pi_state)
* Kernel cleans up PI-state, but userspace is likely hosed.
* (Robust-futex cleanup is separate and might save the day for userspace.)
*/
-void exit_pi_state_list(struct task_struct *curr)
+static void exit_pi_state_list(struct task_struct *curr)
{
struct list_head *next, *head = &curr->pi_state_list;
struct futex_pi_state *pi_state;
@@ -960,7 +966,8 @@ void exit_pi_state_list(struct task_struct *curr)
}
raw_spin_unlock_irq(&curr->pi_lock);
}
-
+#else
+static inline void exit_pi_state_list(struct task_struct *curr) { }
#endif
/*
@@ -1169,16 +1176,47 @@ out_error:
return ret;
}
+/**
+ * wait_for_owner_exiting - Block until the owner has exited
+ * @exiting: Pointer to the exiting task
+ *
+ * Caller must hold a refcount on @exiting.
+ */
+static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
+{
+ if (ret != -EBUSY) {
+ WARN_ON_ONCE(exiting);
+ return;
+ }
+
+ if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
+ return;
+
+ mutex_lock(&exiting->futex_exit_mutex);
+ /*
+ * No point in doing state checking here. If the waiter got here
+ * while the task was in exec()->exec_futex_release() then it can
+ * have any FUTEX_STATE_* value when the waiter has acquired the
+ * mutex. OK, if running, EXITING or DEAD if it reached exit()
+ * already. Highly unlikely and not a problem. Just one more round
+ * through the futex maze.
+ */
+ mutex_unlock(&exiting->futex_exit_mutex);
+
+ put_task_struct(exiting);
+}
+
static int handle_exit_race(u32 __user *uaddr, u32 uval,
struct task_struct *tsk)
{
u32 uval2;
/*
- * If PF_EXITPIDONE is not yet set, then try again.
+ * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
+ * caller that the alleged owner is busy.
*/
- if (tsk && !(tsk->flags & PF_EXITPIDONE))
- return -EAGAIN;
+ if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
+ return -EBUSY;
/*
* Reread the user space value to handle the following situation:
@@ -1196,8 +1234,9 @@ static int handle_exit_race(u32 __user *uaddr, u32 uval,
* *uaddr = 0xC0000000; tsk = get_task(PID);
* } if (!tsk->flags & PF_EXITING) {
* ... attach();
- * tsk->flags |= PF_EXITPIDONE; } else {
- * if (!(tsk->flags & PF_EXITPIDONE))
+ * tsk->futex_state = } else {
+ * FUTEX_STATE_DEAD; if (tsk->futex_state !=
+ * FUTEX_STATE_DEAD)
* return -EAGAIN;
* return -ESRCH; <--- FAIL
* }
@@ -1228,7 +1267,8 @@ static int handle_exit_race(u32 __user *uaddr, u32 uval,
* it after doing proper sanity checks.
*/
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
- struct futex_pi_state **ps)
+ struct futex_pi_state **ps,
+ struct task_struct **exiting)
{
pid_t pid = uval & FUTEX_TID_MASK;
struct futex_pi_state *pi_state;
@@ -1253,22 +1293,33 @@ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
}
/*
- * We need to look at the task state flags to figure out,
- * whether the task is exiting. To protect against the do_exit
- * change of the task flags, we do this protected by
- * p->pi_lock:
+ * We need to look at the task state to figure out, whether the
+ * task is exiting. To protect against the change of the task state
+ * in futex_exit_release(), we do this protected by p->pi_lock:
*/
raw_spin_lock_irq(&p->pi_lock);
- if (unlikely(p->flags & PF_EXITING)) {
+ if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
/*
- * The task is on the way out. When PF_EXITPIDONE is
- * set, we know that the task has finished the
- * cleanup:
+ * The task is on the way out. When the futex state is
+ * FUTEX_STATE_DEAD, we know that the task has finished
+ * the cleanup:
*/
int ret = handle_exit_race(uaddr, uval, p);
raw_spin_unlock_irq(&p->pi_lock);
- put_task_struct(p);
+ /*
+ * If the owner task is between FUTEX_STATE_EXITING and
+ * FUTEX_STATE_DEAD then store the task pointer and keep
+ * the reference on the task struct. The calling code will
+ * drop all locks, wait for the task to reach
+ * FUTEX_STATE_DEAD and then drop the refcount. This is
+ * required to prevent a live lock when the current task
+ * preempted the exiting task between the two states.
+ */
+ if (ret == -EBUSY)
+ *exiting = p;
+ else
+ put_task_struct(p);
return ret;
}
@@ -1307,7 +1358,8 @@ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
struct futex_hash_bucket *hb,
- union futex_key *key, struct futex_pi_state **ps)
+ union futex_key *key, struct futex_pi_state **ps,
+ struct task_struct **exiting)
{
struct futex_q *top_waiter = futex_top_waiter(hb, key);
@@ -1322,7 +1374,7 @@ static int lookup_pi_state(u32 __user *uaddr, u32 uval,
* We are the first waiter - try to look up the owner based on
* @uval and attach to it.
*/
- return attach_to_pi_owner(uaddr, uval, key, ps);
+ return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
}
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
@@ -1350,6 +1402,8 @@ static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
* lookup
* @task: the task to perform the atomic lock work for. This will
* be "current" except in the case of requeue pi.
+ * @exiting: Pointer to store the task pointer of the owner task
+ * which is in the middle of exiting
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
*
* Return:
@@ -1358,11 +1412,17 @@ static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
* - <0 - error
*
* The hb->lock and futex_key refs shall be held by the caller.
+ *
+ * @exiting is only set when the return value is -EBUSY. If so, this holds
+ * a refcount on the exiting task on return and the caller needs to drop it
+ * after waiting for the exit to complete.
*/
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
union futex_key *key,
struct futex_pi_state **ps,
- struct task_struct *task, int set_waiters)
+ struct task_struct *task,
+ struct task_struct **exiting,
+ int set_waiters)
{
u32 uval, newval, vpid = task_pid_vnr(task);
struct futex_q *top_waiter;
@@ -1432,7 +1492,7 @@ static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
* attach to the owner. If that fails, no harm done, we only
* set the FUTEX_WAITERS bit in the user space variable.
*/
- return attach_to_pi_owner(uaddr, newval, key, ps);
+ return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
}
/**
@@ -1480,7 +1540,7 @@ static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
/*
* Queue the task for later wakeup for after we've released
- * the hb->lock. wake_q_add() grabs reference to p.
+ * the hb->lock.
*/
wake_q_add_safe(wake_q, p);
}
@@ -1850,6 +1910,8 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
* @key1: the from futex key
* @key2: the to futex key
* @ps: address to store the pi_state pointer
+ * @exiting: Pointer to store the task pointer of the owner task
+ * which is in the middle of exiting
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
*
* Try and get the lock on behalf of the top waiter if we can do it atomically.
@@ -1857,16 +1919,20 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
* then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
* hb1 and hb2 must be held by the caller.
*
+ * @exiting is only set when the return value is -EBUSY. If so, this holds
+ * a refcount on the exiting task on return and the caller needs to drop it
+ * after waiting for the exit to complete.
+ *
* Return:
* - 0 - failed to acquire the lock atomically;
* - >0 - acquired the lock, return value is vpid of the top_waiter
* - <0 - error
*/
-static int futex_proxy_trylock_atomic(u32 __user *pifutex,
- struct futex_hash_bucket *hb1,
- struct futex_hash_bucket *hb2,
- union futex_key *key1, union futex_key *key2,
- struct futex_pi_state **ps, int set_waiters)
+static int
+futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
+ struct futex_hash_bucket *hb2, union futex_key *key1,
+ union futex_key *key2, struct futex_pi_state **ps,
+ struct task_struct **exiting, int set_waiters)
{
struct futex_q *top_waiter = NULL;
u32 curval;
@@ -1903,7 +1969,7 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex,
*/
vpid = task_pid_vnr(top_waiter->task);
ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
- set_waiters);
+ exiting, set_waiters);
if (ret == 1) {
requeue_pi_wake_futex(top_waiter, key2, hb2);
return vpid;
@@ -2032,6 +2098,8 @@ retry_private:
}
if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
+ struct task_struct *exiting = NULL;
+
/*
* Attempt to acquire uaddr2 and wake the top waiter. If we
* intend to requeue waiters, force setting the FUTEX_WAITERS
@@ -2039,7 +2107,8 @@ retry_private:
* faults rather in the requeue loop below.
*/
ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
- &key2, &pi_state, nr_requeue);
+ &key2, &pi_state,
+ &exiting, nr_requeue);
/*
* At this point the top_waiter has either taken uaddr2 or is
@@ -2066,7 +2135,8 @@ retry_private:
* If that call succeeds then we have pi_state and an
* initial refcount on it.
*/
- ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
+ ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
+ &pi_state, &exiting);
}
switch (ret) {
@@ -2084,17 +2154,24 @@ retry_private:
if (!ret)
goto retry;
goto out;
+ case -EBUSY:
case -EAGAIN:
/*
* Two reasons for this:
- * - Owner is exiting and we just wait for the
+ * - EBUSY: Owner is exiting and we just wait for the
* exit to complete.
- * - The user space value changed.
+ * - EAGAIN: The user space value changed.
*/
double_unlock_hb(hb1, hb2);
hb_waiters_dec(hb2);
put_futex_key(&key2);
put_futex_key(&key1);
+ /*
+ * Handle the case where the owner is in the middle of
+ * exiting. Wait for the exit to complete otherwise
+ * this task might loop forever, aka. live lock.
+ */
+ wait_for_owner_exiting(ret, exiting);
cond_resched();
goto retry;
default:
@@ -2801,6 +2878,7 @@ static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
{
struct hrtimer_sleeper timeout, *to;
struct futex_pi_state *pi_state = NULL;
+ struct task_struct *exiting = NULL;
struct rt_mutex_waiter rt_waiter;
struct futex_hash_bucket *hb;
struct futex_q q = futex_q_init;
@@ -2822,7 +2900,8 @@ retry:
retry_private:
hb = queue_lock(&q);
- ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
+ ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
+ &exiting, 0);
if (unlikely(ret)) {
/*
* Atomic work succeeded and we got the lock,
@@ -2835,15 +2914,22 @@ retry_private:
goto out_unlock_put_key;
case -EFAULT:
goto uaddr_faulted;
+ case -EBUSY:
case -EAGAIN:
/*
* Two reasons for this:
- * - Task is exiting and we just wait for the
+ * - EBUSY: Task is exiting and we just wait for the
* exit to complete.
- * - The user space value changed.
+ * - EAGAIN: The user space value changed.
*/
queue_unlock(hb);
put_futex_key(&q.key);
+ /*
+ * Handle the case where the owner is in the middle of
+ * exiting. Wait for the exit to complete otherwise
+ * this task might loop forever, aka. live lock.
+ */
+ wait_for_owner_exiting(ret, exiting);
cond_resched();
goto retry;
default:
@@ -3452,11 +3538,16 @@ err_unlock:
return ret;
}
+/* Constants for the pending_op argument of handle_futex_death */
+#define HANDLE_DEATH_PENDING true
+#define HANDLE_DEATH_LIST false
+
/*
* Process a futex-list entry, check whether it's owned by the
* dying task, and do notification if so:
*/
-static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
+static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
+ bool pi, bool pending_op)
{
u32 uval, uninitialized_var(nval), mval;
int err;
@@ -3469,6 +3560,42 @@ retry:
if (get_user(uval, uaddr))
return -1;
+ /*
+ * Special case for regular (non PI) futexes. The unlock path in
+ * user space has two race scenarios:
+ *
+ * 1. The unlock path releases the user space futex value and
+ * before it can execute the futex() syscall to wake up
+ * waiters it is killed.
+ *
+ * 2. A woken up waiter is killed before it can acquire the
+ * futex in user space.
+ *
+ * In both cases the TID validation below prevents a wakeup of
+ * potential waiters which can cause these waiters to block
+ * forever.
+ *
+ * In both cases the following conditions are met:
+ *
+ * 1) task->robust_list->list_op_pending != NULL
+ * @pending_op == true
+ * 2) User space futex value == 0
+ * 3) Regular futex: @pi == false
+ *
+ * If these conditions are met, it is safe to attempt waking up a
+ * potential waiter without touching the user space futex value and
+ * trying to set the OWNER_DIED bit. The user space futex value is
+ * uncontended and the rest of the user space mutex state is
+ * consistent, so a woken waiter will just take over the
+ * uncontended futex. Setting the OWNER_DIED bit would create
+ * inconsistent state and malfunction of the user space owner died
+ * handling.
+ */
+ if (pending_op && !pi && !uval) {
+ futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
+ return 0;
+ }
+
if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
return 0;
@@ -3547,7 +3674,7 @@ static inline int fetch_robust_entry(struct robust_list __user **entry,
*
* We silently return on any sign of list-walking problem.
*/
-void exit_robust_list(struct task_struct *curr)
+static void exit_robust_list(struct task_struct *curr)
{
struct robust_list_head __user *head = curr->robust_list;
struct robust_list __user *entry, *next_entry, *pending;
@@ -3588,10 +3715,11 @@ void exit_robust_list(struct task_struct *curr)
* A pending lock might already be on the list, so
* don't process it twice:
*/
- if (entry != pending)
+ if (entry != pending) {
if (handle_futex_death((void __user *)entry + futex_offset,
- curr, pi))
+ curr, pi, HANDLE_DEATH_LIST))
return;
+ }
if (rc)
return;
entry = next_entry;
@@ -3605,9 +3733,118 @@ void exit_robust_list(struct task_struct *curr)
cond_resched();
}
- if (pending)
+ if (pending) {
handle_futex_death((void __user *)pending + futex_offset,
- curr, pip);
+ curr, pip, HANDLE_DEATH_PENDING);
+ }
+}
+
+static void futex_cleanup(struct task_struct *tsk)
+{
+ if (unlikely(tsk->robust_list)) {
+ exit_robust_list(tsk);
+ tsk->robust_list = NULL;
+ }
+
+#ifdef CONFIG_COMPAT
+ if (unlikely(tsk->compat_robust_list)) {
+ compat_exit_robust_list(tsk);
+ tsk->compat_robust_list = NULL;
+ }
+#endif
+
+ if (unlikely(!list_empty(&tsk->pi_state_list)))
+ exit_pi_state_list(tsk);
+}
+
+/**
+ * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
+ * @tsk: task to set the state on
+ *
+ * Set the futex exit state of the task lockless. The futex waiter code
+ * observes that state when a task is exiting and loops until the task has
+ * actually finished the futex cleanup. The worst case for this is that the
+ * waiter runs through the wait loop until the state becomes visible.
+ *
+ * This is called from the recursive fault handling path in do_exit().
+ *
+ * This is best effort. Either the futex exit code has run already or
+ * not. If the OWNER_DIED bit has been set on the futex then the waiter can
+ * take it over. If not, the problem is pushed back to user space. If the
+ * futex exit code did not run yet, then an already queued waiter might
+ * block forever, but there is nothing which can be done about that.
+ */
+void futex_exit_recursive(struct task_struct *tsk)
+{
+ /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
+ if (tsk->futex_state == FUTEX_STATE_EXITING)
+ mutex_unlock(&tsk->futex_exit_mutex);
+ tsk->futex_state = FUTEX_STATE_DEAD;
+}
+
+static void futex_cleanup_begin(struct task_struct *tsk)
+{
+ /*
+ * Prevent various race issues against a concurrent incoming waiter
+ * including live locks by forcing the waiter to block on
+ * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
+ * attach_to_pi_owner().
+ */
+ mutex_lock(&tsk->futex_exit_mutex);
+
+ /*
+ * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
+ *
+ * This ensures that all subsequent checks of tsk->futex_state in
+ * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
+ * tsk->pi_lock held.
+ *
+ * It guarantees also that a pi_state which was queued right before
+ * the state change under tsk->pi_lock by a concurrent waiter must
+ * be observed in exit_pi_state_list().
+ */
+ raw_spin_lock_irq(&tsk->pi_lock);
+ tsk->futex_state = FUTEX_STATE_EXITING;
+ raw_spin_unlock_irq(&tsk->pi_lock);
+}
+
+static void futex_cleanup_end(struct task_struct *tsk, int state)
+{
+ /*
+ * Lockless store. The only side effect is that an observer might
+ * take another loop until it becomes visible.
+ */
+ tsk->futex_state = state;
+ /*
+ * Drop the exit protection. This unblocks waiters which observed
+ * FUTEX_STATE_EXITING to reevaluate the state.
+ */
+ mutex_unlock(&tsk->futex_exit_mutex);
+}
+
+void futex_exec_release(struct task_struct *tsk)
+{
+ /*
+ * The state handling is done for consistency, but in the case of
+ * exec() there is no way to prevent futher damage as the PID stays
+ * the same. But for the unlikely and arguably buggy case that a
+ * futex is held on exec(), this provides at least as much state
+ * consistency protection which is possible.
+ */
+ futex_cleanup_begin(tsk);
+ futex_cleanup(tsk);
+ /*
+ * Reset the state to FUTEX_STATE_OK. The task is alive and about
+ * exec a new binary.
+ */
+ futex_cleanup_end(tsk, FUTEX_STATE_OK);
+}
+
+void futex_exit_release(struct task_struct *tsk)
+{
+ futex_cleanup_begin(tsk);
+ futex_cleanup(tsk);
+ futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
}
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
@@ -3737,7 +3974,7 @@ static void __user *futex_uaddr(struct robust_list __user *entry,
*
* We silently return on any sign of list-walking problem.
*/
-void compat_exit_robust_list(struct task_struct *curr)
+static void compat_exit_robust_list(struct task_struct *curr)
{
struct compat_robust_list_head __user *head = curr->compat_robust_list;
struct robust_list __user *entry, *next_entry, *pending;
@@ -3784,7 +4021,8 @@ void compat_exit_robust_list(struct task_struct *curr)
if (entry != pending) {
void __user *uaddr = futex_uaddr(entry, futex_offset);
- if (handle_futex_death(uaddr, curr, pi))
+ if (handle_futex_death(uaddr, curr, pi,
+ HANDLE_DEATH_LIST))
return;
}
if (rc)
@@ -3803,7 +4041,7 @@ void compat_exit_robust_list(struct task_struct *curr)
if (pending) {
void __user *uaddr = futex_uaddr(pending, futex_offset);
- handle_futex_death(uaddr, curr, pip);
+ handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
}
}
diff --git a/kernel/irq/irqdomain.c b/kernel/irq/irqdomain.c
index 132672b74e4b..dd822fd8a7d5 100644
--- a/kernel/irq/irqdomain.c
+++ b/kernel/irq/irqdomain.c
@@ -51,7 +51,7 @@ EXPORT_SYMBOL_GPL(irqchip_fwnode_ops);
* @type: Type of irqchip_fwnode. See linux/irqdomain.h
* @name: Optional user provided domain name
* @id: Optional user provided id if name != NULL
- * @data: Optional user-provided data
+ * @pa: Optional user-provided physical address
*
* Allocate a struct irqchip_fwid, and return a poiner to the embedded
* fwnode_handle (or NULL on failure).
diff --git a/kernel/livepatch/Makefile b/kernel/livepatch/Makefile
index cf9b5bcdb952..cf03d4bdfc66 100644
--- a/kernel/livepatch/Makefile
+++ b/kernel/livepatch/Makefile
@@ -1,4 +1,4 @@
# SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_LIVEPATCH) += livepatch.o
-livepatch-objs := core.o patch.o shadow.o transition.o
+livepatch-objs := core.o patch.o shadow.o state.o transition.o
diff --git a/kernel/livepatch/core.c b/kernel/livepatch/core.c
index ab4a4606d19b..c3512e7e0801 100644
--- a/kernel/livepatch/core.c
+++ b/kernel/livepatch/core.c
@@ -22,6 +22,7 @@
#include <asm/cacheflush.h>
#include "core.h"
#include "patch.h"
+#include "state.h"
#include "transition.h"
/*
@@ -632,7 +633,7 @@ static void klp_free_objects_dynamic(struct klp_patch *patch)
* The operation must be completed by calling klp_free_patch_finish()
* outside klp_mutex.
*/
-void klp_free_patch_start(struct klp_patch *patch)
+static void klp_free_patch_start(struct klp_patch *patch)
{
if (!list_empty(&patch->list))
list_del(&patch->list);
@@ -677,6 +678,23 @@ static void klp_free_patch_work_fn(struct work_struct *work)
klp_free_patch_finish(patch);
}
+void klp_free_patch_async(struct klp_patch *patch)
+{
+ klp_free_patch_start(patch);
+ schedule_work(&patch->free_work);
+}
+
+void klp_free_replaced_patches_async(struct klp_patch *new_patch)
+{
+ struct klp_patch *old_patch, *tmp_patch;
+
+ klp_for_each_patch_safe(old_patch, tmp_patch) {
+ if (old_patch == new_patch)
+ return;
+ klp_free_patch_async(old_patch);
+ }
+}
+
static int klp_init_func(struct klp_object *obj, struct klp_func *func)
{
if (!func->old_name)
@@ -992,6 +1010,13 @@ int klp_enable_patch(struct klp_patch *patch)
mutex_lock(&klp_mutex);
+ if (!klp_is_patch_compatible(patch)) {
+ pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
+ patch->mod->name);
+ mutex_unlock(&klp_mutex);
+ return -EINVAL;
+ }
+
ret = klp_init_patch_early(patch);
if (ret) {
mutex_unlock(&klp_mutex);
@@ -1022,12 +1047,13 @@ err:
EXPORT_SYMBOL_GPL(klp_enable_patch);
/*
- * This function removes replaced patches.
+ * This function unpatches objects from the replaced livepatches.
*
* We could be pretty aggressive here. It is called in the situation where
- * these structures are no longer accessible. All functions are redirected
- * by the klp_transition_patch. They use either a new code or they are in
- * the original code because of the special nop function patches.
+ * these structures are no longer accessed from the ftrace handler.
+ * All functions are redirected by the klp_transition_patch. They
+ * use either a new code or they are in the original code because
+ * of the special nop function patches.
*
* The only exception is when the transition was forced. In this case,
* klp_ftrace_handler() might still see the replaced patch on the stack.
@@ -1035,18 +1061,16 @@ EXPORT_SYMBOL_GPL(klp_enable_patch);
* thanks to RCU. We only have to keep the patches on the system. Also
* this is handled transparently by patch->module_put.
*/
-void klp_discard_replaced_patches(struct klp_patch *new_patch)
+void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
{
- struct klp_patch *old_patch, *tmp_patch;
+ struct klp_patch *old_patch;
- klp_for_each_patch_safe(old_patch, tmp_patch) {
+ klp_for_each_patch(old_patch) {
if (old_patch == new_patch)
return;
old_patch->enabled = false;
klp_unpatch_objects(old_patch);
- klp_free_patch_start(old_patch);
- schedule_work(&old_patch->free_work);
}
}
diff --git a/kernel/livepatch/core.h b/kernel/livepatch/core.h
index ec43a40b853f..38209c7361b6 100644
--- a/kernel/livepatch/core.h
+++ b/kernel/livepatch/core.h
@@ -13,8 +13,9 @@ extern struct list_head klp_patches;
#define klp_for_each_patch(patch) \
list_for_each_entry(patch, &klp_patches, list)
-void klp_free_patch_start(struct klp_patch *patch);
-void klp_discard_replaced_patches(struct klp_patch *new_patch);
+void klp_free_patch_async(struct klp_patch *patch);
+void klp_free_replaced_patches_async(struct klp_patch *new_patch);
+void klp_unpatch_replaced_patches(struct klp_patch *new_patch);
void klp_discard_nops(struct klp_patch *new_patch);
static inline bool klp_is_object_loaded(struct klp_object *obj)
diff --git a/kernel/livepatch/state.c b/kernel/livepatch/state.c
new file mode 100644
index 000000000000..7ee19476de9d
--- /dev/null
+++ b/kernel/livepatch/state.c
@@ -0,0 +1,119 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * system_state.c - State of the system modified by livepatches
+ *
+ * Copyright (C) 2019 SUSE
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/livepatch.h>
+#include "core.h"
+#include "state.h"
+#include "transition.h"
+
+#define klp_for_each_state(patch, state) \
+ for (state = patch->states; state && state->id; state++)
+
+/**
+ * klp_get_state() - get information about system state modified by
+ * the given patch
+ * @patch: livepatch that modifies the given system state
+ * @id: custom identifier of the modified system state
+ *
+ * Checks whether the given patch modifies the given system state.
+ *
+ * The function can be called either from pre/post (un)patch
+ * callbacks or from the kernel code added by the livepatch.
+ *
+ * Return: pointer to struct klp_state when found, otherwise NULL.
+ */
+struct klp_state *klp_get_state(struct klp_patch *patch, unsigned long id)
+{
+ struct klp_state *state;
+
+ klp_for_each_state(patch, state) {
+ if (state->id == id)
+ return state;
+ }
+
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(klp_get_state);
+
+/**
+ * klp_get_prev_state() - get information about system state modified by
+ * the already installed livepatches
+ * @id: custom identifier of the modified system state
+ *
+ * Checks whether already installed livepatches modify the given
+ * system state.
+ *
+ * The same system state can be modified by more non-cumulative
+ * livepatches. It is expected that the latest livepatch has
+ * the most up-to-date information.
+ *
+ * The function can be called only during transition when a new
+ * livepatch is being enabled or when such a transition is reverted.
+ * It is typically called only from from pre/post (un)patch
+ * callbacks.
+ *
+ * Return: pointer to the latest struct klp_state from already
+ * installed livepatches, NULL when not found.
+ */
+struct klp_state *klp_get_prev_state(unsigned long id)
+{
+ struct klp_patch *patch;
+ struct klp_state *state, *last_state = NULL;
+
+ if (WARN_ON_ONCE(!klp_transition_patch))
+ return NULL;
+
+ klp_for_each_patch(patch) {
+ if (patch == klp_transition_patch)
+ goto out;
+
+ state = klp_get_state(patch, id);
+ if (state)
+ last_state = state;
+ }
+
+out:
+ return last_state;
+}
+EXPORT_SYMBOL_GPL(klp_get_prev_state);
+
+/* Check if the patch is able to deal with the existing system state. */
+static bool klp_is_state_compatible(struct klp_patch *patch,
+ struct klp_state *old_state)
+{
+ struct klp_state *state;
+
+ state = klp_get_state(patch, old_state->id);
+
+ /* A cumulative livepatch must handle all already modified states. */
+ if (!state)
+ return !patch->replace;
+
+ return state->version >= old_state->version;
+}
+
+/*
+ * Check that the new livepatch will not break the existing system states.
+ * Cumulative patches must handle all already modified states.
+ * Non-cumulative patches can touch already modified states.
+ */
+bool klp_is_patch_compatible(struct klp_patch *patch)
+{
+ struct klp_patch *old_patch;
+ struct klp_state *old_state;
+
+ klp_for_each_patch(old_patch) {
+ klp_for_each_state(old_patch, old_state) {
+ if (!klp_is_state_compatible(patch, old_state))
+ return false;
+ }
+ }
+
+ return true;
+}
diff --git a/kernel/livepatch/state.h b/kernel/livepatch/state.h
new file mode 100644
index 000000000000..49d9c16e8762
--- /dev/null
+++ b/kernel/livepatch/state.h
@@ -0,0 +1,9 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LIVEPATCH_STATE_H
+#define _LIVEPATCH_STATE_H
+
+#include <linux/livepatch.h>
+
+bool klp_is_patch_compatible(struct klp_patch *patch);
+
+#endif /* _LIVEPATCH_STATE_H */
diff --git a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
index cdf318d86dd6..f6310f848f34 100644
--- a/kernel/livepatch/transition.c
+++ b/kernel/livepatch/transition.c
@@ -78,7 +78,7 @@ static void klp_complete_transition(void)
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
- klp_discard_replaced_patches(klp_transition_patch);
+ klp_unpatch_replaced_patches(klp_transition_patch);
klp_discard_nops(klp_transition_patch);
}
@@ -446,14 +446,14 @@ void klp_try_complete_transition(void)
klp_complete_transition();
/*
- * It would make more sense to free the patch in
+ * It would make more sense to free the unused patches in
* klp_complete_transition() but it is called also
* from klp_cancel_transition().
*/
- if (!patch->enabled) {
- klp_free_patch_start(patch);
- schedule_work(&patch->free_work);
- }
+ if (!patch->enabled)
+ klp_free_patch_async(patch);
+ else if (patch->replace)
+ klp_free_replaced_patches_async(patch);
}
/*
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index 233459c03b5a..32282e7112d3 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -4208,11 +4208,9 @@ static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
}
/*
- * Remove the lock to the list of currently held locks - this gets
+ * Remove the lock from the list of currently held locks - this gets
* called on mutex_unlock()/spin_unlock*() (or on a failed
* mutex_lock_interruptible()).
- *
- * @nested is an hysterical artifact, needs a tree wide cleanup.
*/
static int
__lock_release(struct lockdep_map *lock, unsigned long ip)
@@ -4491,8 +4489,7 @@ void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
}
EXPORT_SYMBOL_GPL(lock_acquire);
-void lock_release(struct lockdep_map *lock, int nested,
- unsigned long ip)
+void lock_release(struct lockdep_map *lock, unsigned long ip)
{
unsigned long flags;
diff --git a/kernel/locking/locktorture.c b/kernel/locking/locktorture.c
index c513031cd7e3..99475a66c94f 100644
--- a/kernel/locking/locktorture.c
+++ b/kernel/locking/locktorture.c
@@ -16,7 +16,6 @@
#include <linux/kthread.h>
#include <linux/sched/rt.h>
#include <linux/spinlock.h>
-#include <linux/rwlock.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/smp.h>
@@ -889,16 +888,16 @@ static int __init lock_torture_init(void)
cxt.nrealwriters_stress = 2 * num_online_cpus();
#ifdef CONFIG_DEBUG_MUTEXES
- if (strncmp(torture_type, "mutex", 5) == 0)
+ if (str_has_prefix(torture_type, "mutex"))
cxt.debug_lock = true;
#endif
#ifdef CONFIG_DEBUG_RT_MUTEXES
- if (strncmp(torture_type, "rtmutex", 7) == 0)
+ if (str_has_prefix(torture_type, "rtmutex"))
cxt.debug_lock = true;
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
- if ((strncmp(torture_type, "spin", 4) == 0) ||
- (strncmp(torture_type, "rw_lock", 7) == 0))
+ if ((str_has_prefix(torture_type, "spin")) ||
+ (str_has_prefix(torture_type, "rw_lock")))
cxt.debug_lock = true;
#endif
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index 468a9b8422e3..54cc5f9286e9 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -733,6 +733,9 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
*/
void __sched mutex_unlock(struct mutex *lock)
{
+#ifdef CONFIG_DEBUG_MUTEXES
+ WARN_ON(in_interrupt());
+#endif
#ifndef CONFIG_DEBUG_LOCK_ALLOC
if (__mutex_unlock_fast(lock))
return;
@@ -1091,7 +1094,7 @@ err:
err_early_kill:
spin_unlock(&lock->wait_lock);
debug_mutex_free_waiter(&waiter);
- mutex_release(&lock->dep_map, 1, ip);
+ mutex_release(&lock->dep_map, ip);
preempt_enable();
return ret;
}
@@ -1225,7 +1228,7 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
DEFINE_WAKE_Q(wake_q);
unsigned long owner;
- mutex_release(&lock->dep_map, 1, ip);
+ mutex_release(&lock->dep_map, ip);
/*
* Release the lock before (potentially) taking the spinlock such that
@@ -1413,6 +1416,7 @@ int __sched mutex_trylock(struct mutex *lock)
#ifdef CONFIG_DEBUG_MUTEXES
DEBUG_LOCKS_WARN_ON(lock->magic != lock);
+ WARN_ON(in_interrupt());
#endif
locked = __mutex_trylock(lock);
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index 2874bf556162..851bbb10819d 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -1517,7 +1517,7 @@ int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
if (ret)
- mutex_release(&lock->dep_map, 1, _RET_IP_);
+ mutex_release(&lock->dep_map, _RET_IP_);
return ret;
}
@@ -1561,7 +1561,7 @@ rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
RT_MUTEX_MIN_CHAINWALK,
rt_mutex_slowlock);
if (ret)
- mutex_release(&lock->dep_map, 1, _RET_IP_);
+ mutex_release(&lock->dep_map, _RET_IP_);
return ret;
}
@@ -1600,7 +1600,7 @@ EXPORT_SYMBOL_GPL(rt_mutex_trylock);
*/
void __sched rt_mutex_unlock(struct rt_mutex *lock)
{
- mutex_release(&lock->dep_map, 1, _RET_IP_);
+ mutex_release(&lock->dep_map, _RET_IP_);
rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_unlock);
diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c
index eef04551eae7..44e68761f432 100644
--- a/kernel/locking/rwsem.c
+++ b/kernel/locking/rwsem.c
@@ -1504,7 +1504,7 @@ int __sched down_read_killable(struct rw_semaphore *sem)
rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
- rwsem_release(&sem->dep_map, 1, _RET_IP_);
+ rwsem_release(&sem->dep_map, _RET_IP_);
return -EINTR;
}
@@ -1546,7 +1546,7 @@ int __sched down_write_killable(struct rw_semaphore *sem)
if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
__down_write_killable)) {
- rwsem_release(&sem->dep_map, 1, _RET_IP_);
+ rwsem_release(&sem->dep_map, _RET_IP_);
return -EINTR;
}
@@ -1573,7 +1573,7 @@ EXPORT_SYMBOL(down_write_trylock);
*/
void up_read(struct rw_semaphore *sem)
{
- rwsem_release(&sem->dep_map, 1, _RET_IP_);
+ rwsem_release(&sem->dep_map, _RET_IP_);
__up_read(sem);
}
EXPORT_SYMBOL(up_read);
@@ -1583,7 +1583,7 @@ EXPORT_SYMBOL(up_read);
*/
void up_write(struct rw_semaphore *sem)
{
- rwsem_release(&sem->dep_map, 1, _RET_IP_);
+ rwsem_release(&sem->dep_map, _RET_IP_);
__up_write(sem);
}
EXPORT_SYMBOL(up_write);
@@ -1639,7 +1639,7 @@ int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
__down_write_killable)) {
- rwsem_release(&sem->dep_map, 1, _RET_IP_);
+ rwsem_release(&sem->dep_map, _RET_IP_);
return -EINTR;
}
diff --git a/kernel/module.c b/kernel/module.c
index 6e2fd40a6ed9..052a40212b8e 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -3222,7 +3222,7 @@ static int find_module_sections(struct module *mod, struct load_info *info)
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
/* sechdrs[0].sh_size is always zero */
- mod->ftrace_callsites = section_objs(info, "__mcount_loc",
+ mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
sizeof(*mod->ftrace_callsites),
&mod->num_ftrace_callsites);
#endif
diff --git a/kernel/panic.c b/kernel/panic.c
index f470a038b05b..b69ee9e76cb2 100644
--- a/kernel/panic.c
+++ b/kernel/panic.c
@@ -671,17 +671,6 @@ EXPORT_SYMBOL(__stack_chk_fail);
#endif
-#ifdef CONFIG_ARCH_HAS_REFCOUNT
-void refcount_error_report(struct pt_regs *regs, const char *err)
-{
- WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
- err, (void *)instruction_pointer(regs),
- current->comm, task_pid_nr(current),
- from_kuid_munged(&init_user_ns, current_uid()),
- from_kuid_munged(&init_user_ns, current_euid()));
-}
-#endif
-
core_param(panic, panic_timeout, int, 0644);
core_param(panic_print, panic_print, ulong, 0644);
core_param(pause_on_oops, pause_on_oops, int, 0644);
diff --git a/kernel/pid.c b/kernel/pid.c
index 0a9f2e437217..2278e249141d 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -157,7 +157,8 @@ void free_pid(struct pid *pid)
call_rcu(&pid->rcu, delayed_put_pid);
}
-struct pid *alloc_pid(struct pid_namespace *ns)
+struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
+ size_t set_tid_size)
{
struct pid *pid;
enum pid_type type;
@@ -166,6 +167,17 @@ struct pid *alloc_pid(struct pid_namespace *ns)
struct upid *upid;
int retval = -ENOMEM;
+ /*
+ * set_tid_size contains the size of the set_tid array. Starting at
+ * the most nested currently active PID namespace it tells alloc_pid()
+ * which PID to set for a process in that most nested PID namespace
+ * up to set_tid_size PID namespaces. It does not have to set the PID
+ * for a process in all nested PID namespaces but set_tid_size must
+ * never be greater than the current ns->level + 1.
+ */
+ if (set_tid_size > ns->level + 1)
+ return ERR_PTR(-EINVAL);
+
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
if (!pid)
return ERR_PTR(retval);
@@ -174,24 +186,54 @@ struct pid *alloc_pid(struct pid_namespace *ns)
pid->level = ns->level;
for (i = ns->level; i >= 0; i--) {
- int pid_min = 1;
+ int tid = 0;
+
+ if (set_tid_size) {
+ tid = set_tid[ns->level - i];
+
+ retval = -EINVAL;
+ if (tid < 1 || tid >= pid_max)
+ goto out_free;
+ /*
+ * Also fail if a PID != 1 is requested and
+ * no PID 1 exists.
+ */
+ if (tid != 1 && !tmp->child_reaper)
+ goto out_free;
+ retval = -EPERM;
+ if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
+ goto out_free;
+ set_tid_size--;
+ }
idr_preload(GFP_KERNEL);
spin_lock_irq(&pidmap_lock);
- /*
- * init really needs pid 1, but after reaching the maximum
- * wrap back to RESERVED_PIDS
- */
- if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
- pid_min = RESERVED_PIDS;
-
- /*
- * Store a null pointer so find_pid_ns does not find
- * a partially initialized PID (see below).
- */
- nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
- pid_max, GFP_ATOMIC);
+ if (tid) {
+ nr = idr_alloc(&tmp->idr, NULL, tid,
+ tid + 1, GFP_ATOMIC);
+ /*
+ * If ENOSPC is returned it means that the PID is
+ * alreay in use. Return EEXIST in that case.
+ */
+ if (nr == -ENOSPC)
+ nr = -EEXIST;
+ } else {
+ int pid_min = 1;
+ /*
+ * init really needs pid 1, but after reaching the
+ * maximum wrap back to RESERVED_PIDS
+ */
+ if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
+ pid_min = RESERVED_PIDS;
+
+ /*
+ * Store a null pointer so find_pid_ns does not find
+ * a partially initialized PID (see below).
+ */
+ nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
+ pid_max, GFP_ATOMIC);
+ }
spin_unlock_irq(&pidmap_lock);
idr_preload_end();
@@ -299,7 +341,7 @@ static void __change_pid(struct task_struct *task, enum pid_type type,
*pid_ptr = new;
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
- if (!hlist_empty(&pid->tasks[tmp]))
+ if (pid_has_task(pid, tmp))
return;
free_pid(pid);
@@ -497,7 +539,7 @@ static int pidfd_create(struct pid *pid)
*/
SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
{
- int fd, ret;
+ int fd;
struct pid *p;
if (flags)
@@ -510,13 +552,11 @@ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
if (!p)
return -ESRCH;
- ret = 0;
- rcu_read_lock();
- if (!pid_task(p, PIDTYPE_TGID))
- ret = -EINVAL;
- rcu_read_unlock();
+ if (pid_has_task(p, PIDTYPE_TGID))
+ fd = pidfd_create(p);
+ else
+ fd = -EINVAL;
- fd = ret ?: pidfd_create(p);
put_pid(p);
return fd;
}
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c
index a6a79f85c81a..d40017e79ebe 100644
--- a/kernel/pid_namespace.c
+++ b/kernel/pid_namespace.c
@@ -26,8 +26,6 @@
static DEFINE_MUTEX(pid_caches_mutex);
static struct kmem_cache *pid_ns_cachep;
-/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
-#define MAX_PID_NS_LEVEL 32
/* Write once array, filled from the beginning. */
static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
diff --git a/kernel/power/qos.c b/kernel/power/qos.c
index 04e83fdfbe80..a45cba7df0ae 100644
--- a/kernel/power/qos.c
+++ b/kernel/power/qos.c
@@ -814,6 +814,8 @@ EXPORT_SYMBOL_GPL(freq_qos_update_request);
*/
int freq_qos_remove_request(struct freq_qos_request *req)
{
+ int ret;
+
if (!req)
return -EINVAL;
@@ -821,7 +823,11 @@ int freq_qos_remove_request(struct freq_qos_request *req)
"%s() called for unknown object\n", __func__))
return -EINVAL;
- return freq_qos_apply(req, PM_QOS_REMOVE_REQ, PM_QOS_DEFAULT_VALUE);
+ ret = freq_qos_apply(req, PM_QOS_REMOVE_REQ, PM_QOS_DEFAULT_VALUE);
+ req->qos = NULL;
+ req->type = 0;
+
+ return ret;
}
EXPORT_SYMBOL_GPL(freq_qos_remove_request);
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 83105874f255..26b9168321e7 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -734,8 +734,15 @@ zone_found:
* We have found the zone. Now walk the radix tree to find the leaf node
* for our PFN.
*/
+
+ /*
+ * If the zone we wish to scan is the the current zone and the
+ * pfn falls into the current node then we do not need to walk
+ * the tree.
+ */
node = bm->cur.node;
- if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
+ if (zone == bm->cur.zone &&
+ ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
goto node_found;
node = zone->rtree;
diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
index ca65327a6de8..c8be5a0f5259 100644
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -248,7 +248,7 @@ static void __up_console_sem(unsigned long ip)
{
unsigned long flags;
- mutex_release(&console_lock_dep_map, 1, ip);
+ mutex_release(&console_lock_dep_map, ip);
printk_safe_enter_irqsave(flags);
up(&console_sem);
@@ -1679,20 +1679,20 @@ static int console_lock_spinning_disable_and_check(void)
raw_spin_unlock(&console_owner_lock);
if (!waiter) {
- spin_release(&console_owner_dep_map, 1, _THIS_IP_);
+ spin_release(&console_owner_dep_map, _THIS_IP_);
return 0;
}
/* The waiter is now free to continue */
WRITE_ONCE(console_waiter, false);
- spin_release(&console_owner_dep_map, 1, _THIS_IP_);
+ spin_release(&console_owner_dep_map, _THIS_IP_);
/*
* Hand off console_lock to waiter. The waiter will perform
* the up(). After this, the waiter is the console_lock owner.
*/
- mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
+ mutex_release(&console_lock_dep_map, _THIS_IP_);
return 1;
}
@@ -1746,7 +1746,7 @@ static int console_trylock_spinning(void)
/* Owner will clear console_waiter on hand off */
while (READ_ONCE(console_waiter))
cpu_relax();
- spin_release(&console_owner_dep_map, 1, _THIS_IP_);
+ spin_release(&console_owner_dep_map, _THIS_IP_);
printk_safe_exit_irqrestore(flags);
/*
diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h
index 8fd4f82c9b3d..ab504fbc76ca 100644
--- a/kernel/rcu/rcu.h
+++ b/kernel/rcu/rcu.h
@@ -299,6 +299,8 @@ static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
{
int i;
+ for (i = 0; i < RCU_NUM_LVLS; i++)
+ levelspread[i] = INT_MIN;
if (rcu_fanout_exact) {
levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
for (i = rcu_num_lvls - 2; i >= 0; i--)
@@ -455,7 +457,6 @@ enum rcutorture_type {
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
unsigned long *gp_seq);
-void rcutorture_record_progress(unsigned long vernum);
void do_trace_rcu_torture_read(const char *rcutorturename,
struct rcu_head *rhp,
unsigned long secs,
@@ -468,7 +469,6 @@ static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
*flags = 0;
*gp_seq = 0;
}
-static inline void rcutorture_record_progress(unsigned long vernum) { }
#ifdef CONFIG_RCU_TRACE
void do_trace_rcu_torture_read(const char *rcutorturename,
struct rcu_head *rhp,
diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c
index 495c58ce1640..cbc87b804db9 100644
--- a/kernel/rcu/rcu_segcblist.c
+++ b/kernel/rcu/rcu_segcblist.c
@@ -88,7 +88,7 @@ struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
}
/* Set the length of an rcu_segcblist structure. */
-void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
+static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
{
#ifdef CONFIG_RCU_NOCB_CPU
atomic_long_set(&rsclp->len, v);
@@ -104,7 +104,7 @@ void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
* This increase is fully ordered with respect to the callers accesses
* both before and after.
*/
-void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v)
+static void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v)
{
#ifdef CONFIG_RCU_NOCB_CPU
smp_mb__before_atomic(); /* Up to the caller! */
@@ -134,7 +134,7 @@ void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp)
* with the actual number of callbacks on the structure. This exchange is
* fully ordered with respect to the callers accesses both before and after.
*/
-long rcu_segcblist_xchg_len(struct rcu_segcblist *rsclp, long v)
+static long rcu_segcblist_xchg_len(struct rcu_segcblist *rsclp, long v)
{
#ifdef CONFIG_RCU_NOCB_CPU
return atomic_long_xchg(&rsclp->len, v);
diff --git a/kernel/rcu/rcuperf.c b/kernel/rcu/rcuperf.c
index 5a879d073c1c..5f884d560384 100644
--- a/kernel/rcu/rcuperf.c
+++ b/kernel/rcu/rcuperf.c
@@ -109,15 +109,6 @@ static unsigned long b_rcu_perf_writer_started;
static unsigned long b_rcu_perf_writer_finished;
static DEFINE_PER_CPU(atomic_t, n_async_inflight);
-static int rcu_perf_writer_state;
-#define RTWS_INIT 0
-#define RTWS_ASYNC 1
-#define RTWS_BARRIER 2
-#define RTWS_EXP_SYNC 3
-#define RTWS_SYNC 4
-#define RTWS_IDLE 5
-#define RTWS_STOPPING 6
-
#define MAX_MEAS 10000
#define MIN_MEAS 100
@@ -404,25 +395,20 @@ retry:
if (!rhp)
rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
- rcu_perf_writer_state = RTWS_ASYNC;
atomic_inc(this_cpu_ptr(&n_async_inflight));
cur_ops->async(rhp, rcu_perf_async_cb);
rhp = NULL;
} else if (!kthread_should_stop()) {
- rcu_perf_writer_state = RTWS_BARRIER;
cur_ops->gp_barrier();
goto retry;
} else {
kfree(rhp); /* Because we are stopping. */
}
} else if (gp_exp) {
- rcu_perf_writer_state = RTWS_EXP_SYNC;
cur_ops->exp_sync();
} else {
- rcu_perf_writer_state = RTWS_SYNC;
cur_ops->sync();
}
- rcu_perf_writer_state = RTWS_IDLE;
t = ktime_get_mono_fast_ns();
*wdp = t - *wdp;
i_max = i;
@@ -463,10 +449,8 @@ retry:
rcu_perf_wait_shutdown();
} while (!torture_must_stop());
if (gp_async) {
- rcu_perf_writer_state = RTWS_BARRIER;
cur_ops->gp_barrier();
}
- rcu_perf_writer_state = RTWS_STOPPING;
writer_n_durations[me] = i_max;
torture_kthread_stopping("rcu_perf_writer");
return 0;
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index 3c9feca1eab1..dee043feb71f 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -44,6 +44,7 @@
#include <linux/sched/debug.h>
#include <linux/sched/sysctl.h>
#include <linux/oom.h>
+#include <linux/tick.h>
#include "rcu.h"
@@ -1363,15 +1364,15 @@ rcu_torture_reader(void *arg)
set_user_nice(current, MAX_NICE);
if (irqreader && cur_ops->irq_capable)
timer_setup_on_stack(&t, rcu_torture_timer, 0);
-
+ tick_dep_set_task(current, TICK_DEP_BIT_RCU);
do {
if (irqreader && cur_ops->irq_capable) {
if (!timer_pending(&t))
mod_timer(&t, jiffies + 1);
}
- if (!rcu_torture_one_read(&rand))
+ if (!rcu_torture_one_read(&rand) && !torture_must_stop())
schedule_timeout_interruptible(HZ);
- if (time_after(jiffies, lastsleep)) {
+ if (time_after(jiffies, lastsleep) && !torture_must_stop()) {
schedule_timeout_interruptible(1);
lastsleep = jiffies + 10;
}
@@ -1383,6 +1384,7 @@ rcu_torture_reader(void *arg)
del_timer_sync(&t);
destroy_timer_on_stack(&t);
}
+ tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
torture_kthread_stopping("rcu_torture_reader");
return 0;
}
@@ -1442,15 +1444,18 @@ rcu_torture_stats_print(void)
n_rcu_torture_barrier_error);
pr_alert("%s%s ", torture_type, TORTURE_FLAG);
- if (atomic_read(&n_rcu_torture_mberror) != 0 ||
- n_rcu_torture_barrier_error != 0 ||
- n_rcu_torture_boost_ktrerror != 0 ||
- n_rcu_torture_boost_rterror != 0 ||
- n_rcu_torture_boost_failure != 0 ||
+ if (atomic_read(&n_rcu_torture_mberror) ||
+ n_rcu_torture_barrier_error || n_rcu_torture_boost_ktrerror ||
+ n_rcu_torture_boost_rterror || n_rcu_torture_boost_failure ||
i > 1) {
pr_cont("%s", "!!! ");
atomic_inc(&n_rcu_torture_error);
- WARN_ON_ONCE(1);
+ WARN_ON_ONCE(atomic_read(&n_rcu_torture_mberror));
+ WARN_ON_ONCE(n_rcu_torture_barrier_error); // rcu_barrier()
+ WARN_ON_ONCE(n_rcu_torture_boost_ktrerror); // no boost kthread
+ WARN_ON_ONCE(n_rcu_torture_boost_rterror); // can't set RT prio
+ WARN_ON_ONCE(n_rcu_torture_boost_failure); // RCU boost failed
+ WARN_ON_ONCE(i > 1); // Too-short grace period
}
pr_cont("Reader Pipe: ");
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++)
@@ -1729,10 +1734,10 @@ static void rcu_torture_fwd_prog_cond_resched(unsigned long iter)
// Real call_rcu() floods hit userspace, so emulate that.
if (need_resched() || (iter & 0xfff))
schedule();
- } else {
- // No userspace emulation: CB invocation throttles call_rcu()
- cond_resched();
+ return;
}
+ // No userspace emulation: CB invocation throttles call_rcu()
+ cond_resched();
}
/*
@@ -1759,6 +1764,11 @@ static unsigned long rcu_torture_fwd_prog_cbfree(void)
kfree(rfcp);
freed++;
rcu_torture_fwd_prog_cond_resched(freed);
+ if (tick_nohz_full_enabled()) {
+ local_irq_save(flags);
+ rcu_momentary_dyntick_idle();
+ local_irq_restore(flags);
+ }
}
return freed;
}
@@ -1803,7 +1813,7 @@ static void rcu_torture_fwd_prog_nr(int *tested, int *tested_tries)
udelay(10);
cur_ops->readunlock(idx);
if (!fwd_progress_need_resched || need_resched())
- rcu_torture_fwd_prog_cond_resched(1);
+ cond_resched();
}
(*tested_tries)++;
if (!time_before(jiffies, stopat) &&
@@ -1833,6 +1843,7 @@ static void rcu_torture_fwd_prog_nr(int *tested, int *tested_tries)
static void rcu_torture_fwd_prog_cr(void)
{
unsigned long cver;
+ unsigned long flags;
unsigned long gps;
int i;
long n_launders;
@@ -1865,6 +1876,7 @@ static void rcu_torture_fwd_prog_cr(void)
cver = READ_ONCE(rcu_torture_current_version);
gps = cur_ops->get_gp_seq();
rcu_launder_gp_seq_start = gps;
+ tick_dep_set_task(current, TICK_DEP_BIT_RCU);
while (time_before(jiffies, stopat) &&
!shutdown_time_arrived() &&
!READ_ONCE(rcu_fwd_emergency_stop) && !torture_must_stop()) {
@@ -1891,6 +1903,11 @@ static void rcu_torture_fwd_prog_cr(void)
}
cur_ops->call(&rfcp->rh, rcu_torture_fwd_cb_cr);
rcu_torture_fwd_prog_cond_resched(n_launders + n_max_cbs);
+ if (tick_nohz_full_enabled()) {
+ local_irq_save(flags);
+ rcu_momentary_dyntick_idle();
+ local_irq_restore(flags);
+ }
}
stoppedat = jiffies;
n_launders_cb_snap = READ_ONCE(n_launders_cb);
@@ -1911,6 +1928,7 @@ static void rcu_torture_fwd_prog_cr(void)
rcu_torture_fwd_cb_hist();
}
schedule_timeout_uninterruptible(HZ); /* Let CBs drain. */
+ tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
WRITE_ONCE(rcu_fwd_cb_nodelay, false);
}
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index 81105141b6a8..1694a6b57ad8 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -364,7 +364,7 @@ bool rcu_eqs_special_set(int cpu)
*
* The caller must have disabled interrupts and must not be idle.
*/
-static void __maybe_unused rcu_momentary_dyntick_idle(void)
+void rcu_momentary_dyntick_idle(void)
{
int special;
@@ -375,6 +375,7 @@ static void __maybe_unused rcu_momentary_dyntick_idle(void)
WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
rcu_preempt_deferred_qs(current);
}
+EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
/**
* rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
@@ -496,7 +497,7 @@ module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next
module_param(rcu_kick_kthreads, bool, 0644);
static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
-static int rcu_pending(void);
+static int rcu_pending(int user);
/*
* Return the number of RCU GPs completed thus far for debug & stats.
@@ -824,6 +825,11 @@ static __always_inline void rcu_nmi_enter_common(bool irq)
rcu_cleanup_after_idle();
incby = 1;
+ } else if (tick_nohz_full_cpu(rdp->cpu) &&
+ rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE &&
+ READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
+ rdp->rcu_forced_tick = true;
+ tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
}
trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
rdp->dynticks_nmi_nesting,
@@ -885,6 +891,21 @@ void rcu_irq_enter_irqson(void)
local_irq_restore(flags);
}
+/*
+ * If any sort of urgency was applied to the current CPU (for example,
+ * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
+ * to get to a quiescent state, disable it.
+ */
+static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
+{
+ WRITE_ONCE(rdp->rcu_urgent_qs, false);
+ WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
+ if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
+ tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
+ rdp->rcu_forced_tick = false;
+ }
+}
+
/**
* rcu_is_watching - see if RCU thinks that the current CPU is not idle
*
@@ -1073,6 +1094,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
if (tick_nohz_full_cpu(rdp->cpu) &&
time_after(jiffies,
READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
+ WRITE_ONCE(*ruqp, true);
resched_cpu(rdp->cpu);
WRITE_ONCE(rdp->last_fqs_resched, jiffies);
}
@@ -1968,7 +1990,6 @@ rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
return;
}
mask = rdp->grpmask;
- rdp->core_needs_qs = false;
if ((rnp->qsmask & mask) == 0) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
} else {
@@ -1979,6 +2000,7 @@ rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
if (!offloaded)
needwake = rcu_accelerate_cbs(rnp, rdp);
+ rcu_disable_urgency_upon_qs(rdp);
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
/* ^^^ Released rnp->lock */
if (needwake)
@@ -2101,6 +2123,9 @@ int rcutree_dead_cpu(unsigned int cpu)
rcu_boost_kthread_setaffinity(rnp, -1);
/* Do any needed no-CB deferred wakeups from this CPU. */
do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
+
+ // Stop-machine done, so allow nohz_full to disable tick.
+ tick_dep_clear(TICK_DEP_BIT_RCU);
return 0;
}
@@ -2151,6 +2176,7 @@ static void rcu_do_batch(struct rcu_data *rdp)
rcu_nocb_unlock_irqrestore(rdp, flags);
/* Invoke callbacks. */
+ tick_dep_set_task(current, TICK_DEP_BIT_RCU);
rhp = rcu_cblist_dequeue(&rcl);
for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
debug_rcu_head_unqueue(rhp);
@@ -2217,6 +2243,7 @@ static void rcu_do_batch(struct rcu_data *rdp)
/* Re-invoke RCU core processing if there are callbacks remaining. */
if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
invoke_rcu_core();
+ tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
}
/*
@@ -2241,7 +2268,7 @@ void rcu_sched_clock_irq(int user)
__this_cpu_write(rcu_data.rcu_urgent_qs, false);
}
rcu_flavor_sched_clock_irq(user);
- if (rcu_pending())
+ if (rcu_pending(user))
invoke_rcu_core();
trace_rcu_utilization(TPS("End scheduler-tick"));
@@ -2259,6 +2286,7 @@ static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
int cpu;
unsigned long flags;
unsigned long mask;
+ struct rcu_data *rdp;
struct rcu_node *rnp;
rcu_for_each_leaf_node(rnp) {
@@ -2283,8 +2311,11 @@ static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
for_each_leaf_node_possible_cpu(rnp, cpu) {
unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
if ((rnp->qsmask & bit) != 0) {
- if (f(per_cpu_ptr(&rcu_data, cpu)))
+ rdp = per_cpu_ptr(&rcu_data, cpu);
+ if (f(rdp)) {
mask |= bit;
+ rcu_disable_urgency_upon_qs(rdp);
+ }
}
}
if (mask != 0) {
@@ -2312,7 +2343,7 @@ void rcu_force_quiescent_state(void)
rnp = __this_cpu_read(rcu_data.mynode);
for (; rnp != NULL; rnp = rnp->parent) {
ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
- !raw_spin_trylock(&rnp->fqslock);
+ !raw_spin_trylock(&rnp->fqslock);
if (rnp_old != NULL)
raw_spin_unlock(&rnp_old->fqslock);
if (ret)
@@ -2786,8 +2817,9 @@ EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
* CPU-local state are performed first. However, we must check for CPU
* stalls first, else we might not get a chance.
*/
-static int rcu_pending(void)
+static int rcu_pending(int user)
{
+ bool gp_in_progress;
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
struct rcu_node *rnp = rdp->mynode;
@@ -2798,12 +2830,13 @@ static int rcu_pending(void)
if (rcu_nocb_need_deferred_wakeup(rdp))
return 1;
- /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
- if (rcu_nohz_full_cpu())
+ /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
+ if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
return 0;
/* Is the RCU core waiting for a quiescent state from this CPU? */
- if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
+ gp_in_progress = rcu_gp_in_progress();
+ if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
return 1;
/* Does this CPU have callbacks ready to invoke? */
@@ -2811,8 +2844,7 @@ static int rcu_pending(void)
return 1;
/* Has RCU gone idle with this CPU needing another grace period? */
- if (!rcu_gp_in_progress() &&
- rcu_segcblist_is_enabled(&rdp->cblist) &&
+ if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
!rcu_segcblist_is_offloaded(&rdp->cblist)) &&
!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
@@ -2845,7 +2877,7 @@ static void rcu_barrier_callback(struct rcu_head *rhp)
{
if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
rcu_barrier_trace(TPS("LastCB"), -1,
- rcu_state.barrier_sequence);
+ rcu_state.barrier_sequence);
complete(&rcu_state.barrier_completion);
} else {
rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
@@ -2869,7 +2901,7 @@ static void rcu_barrier_func(void *unused)
} else {
debug_rcu_head_unqueue(&rdp->barrier_head);
rcu_barrier_trace(TPS("IRQNQ"), -1,
- rcu_state.barrier_sequence);
+ rcu_state.barrier_sequence);
}
rcu_nocb_unlock(rdp);
}
@@ -2896,7 +2928,7 @@ void rcu_barrier(void)
/* Did someone else do our work for us? */
if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
rcu_barrier_trace(TPS("EarlyExit"), -1,
- rcu_state.barrier_sequence);
+ rcu_state.barrier_sequence);
smp_mb(); /* caller's subsequent code after above check. */
mutex_unlock(&rcu_state.barrier_mutex);
return;
@@ -2928,11 +2960,11 @@ void rcu_barrier(void)
continue;
if (rcu_segcblist_n_cbs(&rdp->cblist)) {
rcu_barrier_trace(TPS("OnlineQ"), cpu,
- rcu_state.barrier_sequence);
+ rcu_state.barrier_sequence);
smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
} else {
rcu_barrier_trace(TPS("OnlineNQ"), cpu,
- rcu_state.barrier_sequence);
+ rcu_state.barrier_sequence);
}
}
put_online_cpus();
@@ -3083,6 +3115,9 @@ int rcutree_online_cpu(unsigned int cpu)
return 0; /* Too early in boot for scheduler work. */
sync_sched_exp_online_cleanup(cpu);
rcutree_affinity_setting(cpu, -1);
+
+ // Stop-machine done, so allow nohz_full to disable tick.
+ tick_dep_clear(TICK_DEP_BIT_RCU);
return 0;
}
@@ -3103,6 +3138,9 @@ int rcutree_offline_cpu(unsigned int cpu)
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
rcutree_affinity_setting(cpu, cpu);
+
+ // nohz_full CPUs need the tick for stop-machine to work quickly
+ tick_dep_set(TICK_DEP_BIT_RCU);
return 0;
}
@@ -3148,6 +3186,7 @@ void rcu_cpu_starting(unsigned int cpu)
rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
+ rcu_disable_urgency_upon_qs(rdp);
/* Report QS -after- changing ->qsmaskinitnext! */
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
} else {
diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h
index c612f306fe89..055c31781d3a 100644
--- a/kernel/rcu/tree.h
+++ b/kernel/rcu/tree.h
@@ -181,6 +181,7 @@ struct rcu_data {
atomic_t dynticks; /* Even value for idle, else odd. */
bool rcu_need_heavy_qs; /* GP old, so heavy quiescent state! */
bool rcu_urgent_qs; /* GP old need light quiescent state. */
+ bool rcu_forced_tick; /* Forced tick to provide QS. */
#ifdef CONFIG_RCU_FAST_NO_HZ
bool all_lazy; /* All CPU's CBs lazy at idle start? */
unsigned long last_accelerate; /* Last jiffy CBs were accelerated. */
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index 2defc7fe74c3..fa08d55f7040 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -1946,7 +1946,7 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
int __maybe_unused cpu = my_rdp->cpu;
unsigned long cur_gp_seq;
unsigned long flags;
- bool gotcbs;
+ bool gotcbs = false;
unsigned long j = jiffies;
bool needwait_gp = false; // This prevents actual uninitialized use.
bool needwake;
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index dd05a378631a..90e4b00ace89 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -16,6 +16,7 @@
#include <asm/tlb.h>
#include "../workqueue_internal.h"
+#include "../../fs/io-wq.h"
#include "../smpboot.h"
#include "pelt.h"
@@ -810,7 +811,7 @@ static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
}
-static inline enum uclamp_id uclamp_none(enum uclamp_id clamp_id)
+static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
{
if (clamp_id == UCLAMP_MIN)
return 0;
@@ -853,7 +854,7 @@ static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
}
static inline
-enum uclamp_id uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
+unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
unsigned int clamp_value)
{
struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
@@ -918,7 +919,7 @@ uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
return uc_req;
}
-enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
+unsigned int uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
{
struct uclamp_se uc_eff;
@@ -1065,7 +1066,7 @@ uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
* affecting a valid clamp bucket, the next time it's enqueued,
* it will already see the updated clamp bucket value.
*/
- if (!p->uclamp[clamp_id].active) {
+ if (p->uclamp[clamp_id].active) {
uclamp_rq_dec_id(rq, p, clamp_id);
uclamp_rq_inc_id(rq, p, clamp_id);
}
@@ -1073,6 +1074,7 @@ uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
task_rq_unlock(rq, p, &rf);
}
+#ifdef CONFIG_UCLAMP_TASK_GROUP
static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state *css,
unsigned int clamps)
@@ -1091,7 +1093,6 @@ uclamp_update_active_tasks(struct cgroup_subsys_state *css,
css_task_iter_end(&it);
}
-#ifdef CONFIG_UCLAMP_TASK_GROUP
static void cpu_util_update_eff(struct cgroup_subsys_state *css);
static void uclamp_update_root_tg(void)
{
@@ -3105,7 +3106,7 @@ prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf
* do an early lockdep release here:
*/
rq_unpin_lock(rq, rf);
- spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
+ spin_release(&rq->lock.dep_map, _THIS_IP_);
#ifdef CONFIG_DEBUG_SPINLOCK
/* this is a valid case when another task releases the spinlock */
rq->lock.owner = next;
@@ -3917,28 +3918,39 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
prev->sched_class == &fair_sched_class) &&
rq->nr_running == rq->cfs.h_nr_running)) {
- p = fair_sched_class.pick_next_task(rq, prev, rf);
+ p = pick_next_task_fair(rq, prev, rf);
if (unlikely(p == RETRY_TASK))
goto restart;
/* Assumes fair_sched_class->next == idle_sched_class */
- if (unlikely(!p))
- p = idle_sched_class.pick_next_task(rq, prev, rf);
+ if (!p) {
+ put_prev_task(rq, prev);
+ p = pick_next_task_idle(rq);
+ }
return p;
}
restart:
+#ifdef CONFIG_SMP
/*
- * Ensure that we put DL/RT tasks before the pick loop, such that they
- * can PULL higher prio tasks when we lower the RQ 'priority'.
+ * We must do the balancing pass before put_next_task(), such
+ * that when we release the rq->lock the task is in the same
+ * state as before we took rq->lock.
+ *
+ * We can terminate the balance pass as soon as we know there is
+ * a runnable task of @class priority or higher.
*/
- prev->sched_class->put_prev_task(rq, prev, rf);
- if (!rq->nr_running)
- newidle_balance(rq, rf);
+ for_class_range(class, prev->sched_class, &idle_sched_class) {
+ if (class->balance(rq, prev, rf))
+ break;
+ }
+#endif
+
+ put_prev_task(rq, prev);
for_each_class(class) {
- p = class->pick_next_task(rq, NULL, NULL);
+ p = class->pick_next_task(rq);
if (p)
return p;
}
@@ -4103,9 +4115,12 @@ static inline void sched_submit_work(struct task_struct *tsk)
* we disable preemption to avoid it calling schedule() again
* in the possible wakeup of a kworker.
*/
- if (tsk->flags & PF_WQ_WORKER) {
+ if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
preempt_disable();
- wq_worker_sleeping(tsk);
+ if (tsk->flags & PF_WQ_WORKER)
+ wq_worker_sleeping(tsk);
+ else
+ io_wq_worker_sleeping(tsk);
preempt_enable_no_resched();
}
@@ -4122,8 +4137,12 @@ static inline void sched_submit_work(struct task_struct *tsk)
static void sched_update_worker(struct task_struct *tsk)
{
- if (tsk->flags & PF_WQ_WORKER)
- wq_worker_running(tsk);
+ if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
+ if (tsk->flags & PF_WQ_WORKER)
+ wq_worker_running(tsk);
+ else
+ io_wq_worker_running(tsk);
+ }
}
asmlinkage __visible void __sched schedule(void)
@@ -6010,10 +6029,11 @@ void init_idle(struct task_struct *idle, int cpu)
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
+ __sched_fork(0, idle);
+
raw_spin_lock_irqsave(&idle->pi_lock, flags);
raw_spin_lock(&rq->lock);
- __sched_fork(0, idle);
idle->state = TASK_RUNNING;
idle->se.exec_start = sched_clock();
idle->flags |= PF_IDLE;
@@ -6199,9 +6219,9 @@ static struct task_struct *__pick_migrate_task(struct rq *rq)
struct task_struct *next;
for_each_class(class) {
- next = class->pick_next_task(rq, NULL, NULL);
+ next = class->pick_next_task(rq);
if (next) {
- next->sched_class->put_prev_task(rq, next, NULL);
+ next->sched_class->put_prev_task(rq, next);
return next;
}
}
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 46ed4e1383e2..d43318a489f2 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -405,27 +405,25 @@ static inline void irqtime_account_process_tick(struct task_struct *p, int user_
/*
* Use precise platform statistics if available:
*/
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
+
# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
-void vtime_common_task_switch(struct task_struct *prev)
+void vtime_task_switch(struct task_struct *prev)
{
if (is_idle_task(prev))
vtime_account_idle(prev);
else
- vtime_account_system(prev);
+ vtime_account_kernel(prev);
vtime_flush(prev);
arch_vtime_task_switch(prev);
}
# endif
-#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
-
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
/*
* Archs that account the whole time spent in the idle task
* (outside irq) as idle time can rely on this and just implement
- * vtime_account_system() and vtime_account_idle(). Archs that
+ * vtime_account_kernel() and vtime_account_idle(). Archs that
* have other meaning of the idle time (s390 only includes the
* time spent by the CPU when it's in low power mode) must override
* vtime_account().
@@ -436,7 +434,7 @@ void vtime_account_irq_enter(struct task_struct *tsk)
if (!in_interrupt() && is_idle_task(tsk))
vtime_account_idle(tsk);
else
- vtime_account_system(tsk);
+ vtime_account_kernel(tsk);
}
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
@@ -477,7 +475,7 @@ void account_process_tick(struct task_struct *p, int user_tick)
u64 cputime, steal;
struct rq *rq = this_rq();
- if (vtime_accounting_cpu_enabled())
+ if (vtime_accounting_enabled_this_cpu())
return;
if (sched_clock_irqtime) {
@@ -711,8 +709,8 @@ static u64 get_vtime_delta(struct vtime *vtime)
return delta - other;
}
-static void __vtime_account_system(struct task_struct *tsk,
- struct vtime *vtime)
+static void vtime_account_system(struct task_struct *tsk,
+ struct vtime *vtime)
{
vtime->stime += get_vtime_delta(vtime);
if (vtime->stime >= TICK_NSEC) {
@@ -731,7 +729,17 @@ static void vtime_account_guest(struct task_struct *tsk,
}
}
-void vtime_account_system(struct task_struct *tsk)
+static void __vtime_account_kernel(struct task_struct *tsk,
+ struct vtime *vtime)
+{
+ /* We might have scheduled out from guest path */
+ if (vtime->state == VTIME_GUEST)
+ vtime_account_guest(tsk, vtime);
+ else
+ vtime_account_system(tsk, vtime);
+}
+
+void vtime_account_kernel(struct task_struct *tsk)
{
struct vtime *vtime = &tsk->vtime;
@@ -739,11 +747,7 @@ void vtime_account_system(struct task_struct *tsk)
return;
write_seqcount_begin(&vtime->seqcount);
- /* We might have scheduled out from guest path */
- if (tsk->flags & PF_VCPU)
- vtime_account_guest(tsk, vtime);
- else
- __vtime_account_system(tsk, vtime);
+ __vtime_account_kernel(tsk, vtime);
write_seqcount_end(&vtime->seqcount);
}
@@ -752,7 +756,7 @@ void vtime_user_enter(struct task_struct *tsk)
struct vtime *vtime = &tsk->vtime;
write_seqcount_begin(&vtime->seqcount);
- __vtime_account_system(tsk, vtime);
+ vtime_account_system(tsk, vtime);
vtime->state = VTIME_USER;
write_seqcount_end(&vtime->seqcount);
}
@@ -782,8 +786,9 @@ void vtime_guest_enter(struct task_struct *tsk)
* that can thus safely catch up with a tickless delta.
*/
write_seqcount_begin(&vtime->seqcount);
- __vtime_account_system(tsk, vtime);
+ vtime_account_system(tsk, vtime);
tsk->flags |= PF_VCPU;
+ vtime->state = VTIME_GUEST;
write_seqcount_end(&vtime->seqcount);
}
EXPORT_SYMBOL_GPL(vtime_guest_enter);
@@ -795,6 +800,7 @@ void vtime_guest_exit(struct task_struct *tsk)
write_seqcount_begin(&vtime->seqcount);
vtime_account_guest(tsk, vtime);
tsk->flags &= ~PF_VCPU;
+ vtime->state = VTIME_SYS;
write_seqcount_end(&vtime->seqcount);
}
EXPORT_SYMBOL_GPL(vtime_guest_exit);
@@ -804,19 +810,30 @@ void vtime_account_idle(struct task_struct *tsk)
account_idle_time(get_vtime_delta(&tsk->vtime));
}
-void arch_vtime_task_switch(struct task_struct *prev)
+void vtime_task_switch_generic(struct task_struct *prev)
{
struct vtime *vtime = &prev->vtime;
write_seqcount_begin(&vtime->seqcount);
+ if (vtime->state == VTIME_IDLE)
+ vtime_account_idle(prev);
+ else
+ __vtime_account_kernel(prev, vtime);
vtime->state = VTIME_INACTIVE;
+ vtime->cpu = -1;
write_seqcount_end(&vtime->seqcount);
vtime = &current->vtime;
write_seqcount_begin(&vtime->seqcount);
- vtime->state = VTIME_SYS;
+ if (is_idle_task(current))
+ vtime->state = VTIME_IDLE;
+ else if (current->flags & PF_VCPU)
+ vtime->state = VTIME_GUEST;
+ else
+ vtime->state = VTIME_SYS;
vtime->starttime = sched_clock();
+ vtime->cpu = smp_processor_id();
write_seqcount_end(&vtime->seqcount);
}
@@ -827,8 +844,9 @@ void vtime_init_idle(struct task_struct *t, int cpu)
local_irq_save(flags);
write_seqcount_begin(&vtime->seqcount);
- vtime->state = VTIME_SYS;
+ vtime->state = VTIME_IDLE;
vtime->starttime = sched_clock();
+ vtime->cpu = cpu;
write_seqcount_end(&vtime->seqcount);
local_irq_restore(flags);
}
@@ -846,7 +864,7 @@ u64 task_gtime(struct task_struct *t)
seq = read_seqcount_begin(&vtime->seqcount);
gtime = t->gtime;
- if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
+ if (vtime->state == VTIME_GUEST)
gtime += vtime->gtime + vtime_delta(vtime);
} while (read_seqcount_retry(&vtime->seqcount, seq));
@@ -877,20 +895,230 @@ void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
*utime = t->utime;
*stime = t->stime;
- /* Task is sleeping, nothing to add */
- if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
+ /* Task is sleeping or idle, nothing to add */
+ if (vtime->state < VTIME_SYS)
continue;
delta = vtime_delta(vtime);
/*
- * Task runs either in user or kernel space, add pending nohz time to
- * the right place.
+ * Task runs either in user (including guest) or kernel space,
+ * add pending nohz time to the right place.
*/
- if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
- *utime += vtime->utime + delta;
- else if (vtime->state == VTIME_SYS)
+ if (vtime->state == VTIME_SYS)
*stime += vtime->stime + delta;
+ else
+ *utime += vtime->utime + delta;
+ } while (read_seqcount_retry(&vtime->seqcount, seq));
+}
+
+static int vtime_state_check(struct vtime *vtime, int cpu)
+{
+ /*
+ * We raced against a context switch, fetch the
+ * kcpustat task again.
+ */
+ if (vtime->cpu != cpu && vtime->cpu != -1)
+ return -EAGAIN;
+
+ /*
+ * Two possible things here:
+ * 1) We are seeing the scheduling out task (prev) or any past one.
+ * 2) We are seeing the scheduling in task (next) but it hasn't
+ * passed though vtime_task_switch() yet so the pending
+ * cputime of the prev task may not be flushed yet.
+ *
+ * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
+ */
+ if (vtime->state == VTIME_INACTIVE)
+ return -EAGAIN;
+
+ return 0;
+}
+
+static u64 kcpustat_user_vtime(struct vtime *vtime)
+{
+ if (vtime->state == VTIME_USER)
+ return vtime->utime + vtime_delta(vtime);
+ else if (vtime->state == VTIME_GUEST)
+ return vtime->gtime + vtime_delta(vtime);
+ return 0;
+}
+
+static int kcpustat_field_vtime(u64 *cpustat,
+ struct task_struct *tsk,
+ enum cpu_usage_stat usage,
+ int cpu, u64 *val)
+{
+ struct vtime *vtime = &tsk->vtime;
+ unsigned int seq;
+ int err;
+
+ do {
+ seq = read_seqcount_begin(&vtime->seqcount);
+
+ err = vtime_state_check(vtime, cpu);
+ if (err < 0)
+ return err;
+
+ *val = cpustat[usage];
+
+ /*
+ * Nice VS unnice cputime accounting may be inaccurate if
+ * the nice value has changed since the last vtime update.
+ * But proper fix would involve interrupting target on nice
+ * updates which is a no go on nohz_full (although the scheduler
+ * may still interrupt the target if rescheduling is needed...)
+ */
+ switch (usage) {
+ case CPUTIME_SYSTEM:
+ if (vtime->state == VTIME_SYS)
+ *val += vtime->stime + vtime_delta(vtime);
+ break;
+ case CPUTIME_USER:
+ if (task_nice(tsk) <= 0)
+ *val += kcpustat_user_vtime(vtime);
+ break;
+ case CPUTIME_NICE:
+ if (task_nice(tsk) > 0)
+ *val += kcpustat_user_vtime(vtime);
+ break;
+ case CPUTIME_GUEST:
+ if (vtime->state == VTIME_GUEST && task_nice(tsk) <= 0)
+ *val += vtime->gtime + vtime_delta(vtime);
+ break;
+ case CPUTIME_GUEST_NICE:
+ if (vtime->state == VTIME_GUEST && task_nice(tsk) > 0)
+ *val += vtime->gtime + vtime_delta(vtime);
+ break;
+ default:
+ break;
+ }
+ } while (read_seqcount_retry(&vtime->seqcount, seq));
+
+ return 0;
+}
+
+u64 kcpustat_field(struct kernel_cpustat *kcpustat,
+ enum cpu_usage_stat usage, int cpu)
+{
+ u64 *cpustat = kcpustat->cpustat;
+ struct rq *rq;
+ u64 val;
+ int err;
+
+ if (!vtime_accounting_enabled_cpu(cpu))
+ return cpustat[usage];
+
+ rq = cpu_rq(cpu);
+
+ for (;;) {
+ struct task_struct *curr;
+
+ rcu_read_lock();
+ curr = rcu_dereference(rq->curr);
+ if (WARN_ON_ONCE(!curr)) {
+ rcu_read_unlock();
+ return cpustat[usage];
+ }
+
+ err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
+ rcu_read_unlock();
+
+ if (!err)
+ return val;
+
+ cpu_relax();
+ }
+}
+EXPORT_SYMBOL_GPL(kcpustat_field);
+
+static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
+ const struct kernel_cpustat *src,
+ struct task_struct *tsk, int cpu)
+{
+ struct vtime *vtime = &tsk->vtime;
+ unsigned int seq;
+ int err;
+
+ do {
+ u64 *cpustat;
+ u64 delta;
+
+ seq = read_seqcount_begin(&vtime->seqcount);
+
+ err = vtime_state_check(vtime, cpu);
+ if (err < 0)
+ return err;
+
+ *dst = *src;
+ cpustat = dst->cpustat;
+
+ /* Task is sleeping, dead or idle, nothing to add */
+ if (vtime->state < VTIME_SYS)
+ continue;
+
+ delta = vtime_delta(vtime);
+
+ /*
+ * Task runs either in user (including guest) or kernel space,
+ * add pending nohz time to the right place.
+ */
+ if (vtime->state == VTIME_SYS) {
+ cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
+ } else if (vtime->state == VTIME_USER) {
+ if (task_nice(tsk) > 0)
+ cpustat[CPUTIME_NICE] += vtime->utime + delta;
+ else
+ cpustat[CPUTIME_USER] += vtime->utime + delta;
+ } else {
+ WARN_ON_ONCE(vtime->state != VTIME_GUEST);
+ if (task_nice(tsk) > 0) {
+ cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
+ cpustat[CPUTIME_NICE] += vtime->gtime + delta;
+ } else {
+ cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
+ cpustat[CPUTIME_USER] += vtime->gtime + delta;
+ }
+ }
} while (read_seqcount_retry(&vtime->seqcount, seq));
+
+ return err;
+}
+
+void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
+{
+ const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
+ struct rq *rq;
+ int err;
+
+ if (!vtime_accounting_enabled_cpu(cpu)) {
+ *dst = *src;
+ return;
+ }
+
+ rq = cpu_rq(cpu);
+
+ for (;;) {
+ struct task_struct *curr;
+
+ rcu_read_lock();
+ curr = rcu_dereference(rq->curr);
+ if (WARN_ON_ONCE(!curr)) {
+ rcu_read_unlock();
+ *dst = *src;
+ return;
+ }
+
+ err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
+ rcu_read_unlock();
+
+ if (!err)
+ return;
+
+ cpu_relax();
+ }
}
+EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
+
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 2dc48720f189..43323f875cb9 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -1691,6 +1691,22 @@ static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
resched_curr(rq);
}
+static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+{
+ if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
+ /*
+ * This is OK, because current is on_cpu, which avoids it being
+ * picked for load-balance and preemption/IRQs are still
+ * disabled avoiding further scheduler activity on it and we've
+ * not yet started the picking loop.
+ */
+ rq_unpin_lock(rq, rf);
+ pull_dl_task(rq);
+ rq_repin_lock(rq, rf);
+ }
+
+ return sched_stop_runnable(rq) || sched_dl_runnable(rq);
+}
#endif /* CONFIG_SMP */
/*
@@ -1727,13 +1743,16 @@ static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
}
#endif
-static void set_next_task_dl(struct rq *rq, struct task_struct *p)
+static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
{
p->se.exec_start = rq_clock_task(rq);
/* You can't push away the running task */
dequeue_pushable_dl_task(rq, p);
+ if (!first)
+ return;
+
if (hrtick_enabled(rq))
start_hrtick_dl(rq, p);
@@ -1754,49 +1773,29 @@ static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
return rb_entry(left, struct sched_dl_entity, rb_node);
}
-static struct task_struct *
-pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+static struct task_struct *pick_next_task_dl(struct rq *rq)
{
struct sched_dl_entity *dl_se;
+ struct dl_rq *dl_rq = &rq->dl;
struct task_struct *p;
- struct dl_rq *dl_rq;
- WARN_ON_ONCE(prev || rf);
-
- dl_rq = &rq->dl;
-
- if (unlikely(!dl_rq->dl_nr_running))
+ if (!sched_dl_runnable(rq))
return NULL;
dl_se = pick_next_dl_entity(rq, dl_rq);
BUG_ON(!dl_se);
-
p = dl_task_of(dl_se);
-
- set_next_task_dl(rq, p);
-
+ set_next_task_dl(rq, p, true);
return p;
}
-static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
{
update_curr_dl(rq);
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
enqueue_pushable_dl_task(rq, p);
-
- if (rf && !on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
- /*
- * This is OK, because current is on_cpu, which avoids it being
- * picked for load-balance and preemption/IRQs are still
- * disabled avoiding further scheduler activity on it and we've
- * not yet started the picking loop.
- */
- rq_unpin_lock(rq, rf);
- pull_dl_task(rq);
- rq_repin_lock(rq, rf);
- }
}
/*
@@ -2442,6 +2441,7 @@ const struct sched_class dl_sched_class = {
.set_next_task = set_next_task_dl,
#ifdef CONFIG_SMP
+ .balance = balance_dl,
.select_task_rq = select_task_rq_dl,
.migrate_task_rq = migrate_task_rq_dl,
.set_cpus_allowed = set_cpus_allowed_dl,
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 682a754ea3e1..08a233e97a01 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -229,8 +229,7 @@ static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight
}
}
- /* hint to use a 32x32->64 mul */
- fact = (u64)(u32)fact * lw->inv_weight;
+ fact = mul_u32_u32(fact, lw->inv_weight);
while (fact >> 32) {
fact >>= 1;
@@ -1474,7 +1473,12 @@ bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
}
-static unsigned long cpu_runnable_load(struct rq *rq);
+static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
+
+static unsigned long cpu_runnable_load(struct rq *rq)
+{
+ return cfs_rq_runnable_load_avg(&rq->cfs);
+}
/* Cached statistics for all CPUs within a node */
struct numa_stats {
@@ -3504,9 +3508,6 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
- if (decayed)
- cfs_rq_util_change(cfs_rq, 0);
-
return decayed;
}
@@ -3616,8 +3617,12 @@ static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
update_tg_load_avg(cfs_rq, 0);
- } else if (decayed && (flags & UPDATE_TG))
- update_tg_load_avg(cfs_rq, 0);
+ } else if (decayed) {
+ cfs_rq_util_change(cfs_rq, 0);
+
+ if (flags & UPDATE_TG)
+ update_tg_load_avg(cfs_rq, 0);
+ }
}
#ifndef CONFIG_64BIT
@@ -3764,10 +3769,21 @@ util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
return;
/*
+ * Reset EWMA on utilization increases, the moving average is used only
+ * to smooth utilization decreases.
+ */
+ ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
+ if (sched_feat(UTIL_EST_FASTUP)) {
+ if (ue.ewma < ue.enqueued) {
+ ue.ewma = ue.enqueued;
+ goto done;
+ }
+ }
+
+ /*
* Skip update of task's estimated utilization when its EWMA is
* already ~1% close to its last activation value.
*/
- ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
last_ewma_diff = ue.enqueued - ue.ewma;
if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
return;
@@ -3800,6 +3816,7 @@ util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
ue.ewma += last_ewma_diff;
ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
+done:
WRITE_ONCE(p->se.avg.util_est, ue);
}
@@ -5370,26 +5387,45 @@ static int sched_idle_cpu(int cpu)
rq->nr_running);
}
-static unsigned long cpu_runnable_load(struct rq *rq)
+static unsigned long cpu_load(struct rq *rq)
{
- return cfs_rq_runnable_load_avg(&rq->cfs);
+ return cfs_rq_load_avg(&rq->cfs);
}
-static unsigned long capacity_of(int cpu)
+/*
+ * cpu_load_without - compute CPU load without any contributions from *p
+ * @cpu: the CPU which load is requested
+ * @p: the task which load should be discounted
+ *
+ * The load of a CPU is defined by the load of tasks currently enqueued on that
+ * CPU as well as tasks which are currently sleeping after an execution on that
+ * CPU.
+ *
+ * This method returns the load of the specified CPU by discounting the load of
+ * the specified task, whenever the task is currently contributing to the CPU
+ * load.
+ */
+static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
{
- return cpu_rq(cpu)->cpu_capacity;
-}
+ struct cfs_rq *cfs_rq;
+ unsigned int load;
-static unsigned long cpu_avg_load_per_task(int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
- unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
- unsigned long load_avg = cpu_runnable_load(rq);
+ /* Task has no contribution or is new */
+ if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
+ return cpu_load(rq);
- if (nr_running)
- return load_avg / nr_running;
+ cfs_rq = &rq->cfs;
+ load = READ_ONCE(cfs_rq->avg.load_avg);
- return 0;
+ /* Discount task's util from CPU's util */
+ lsub_positive(&load, task_h_load(p));
+
+ return load;
+}
+
+static unsigned long capacity_of(int cpu)
+{
+ return cpu_rq(cpu)->cpu_capacity;
}
static void record_wakee(struct task_struct *p)
@@ -5482,7 +5518,7 @@ wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
s64 this_eff_load, prev_eff_load;
unsigned long task_load;
- this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
+ this_eff_load = cpu_load(cpu_rq(this_cpu));
if (sync) {
unsigned long current_load = task_h_load(current);
@@ -5500,7 +5536,7 @@ wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
this_eff_load *= 100;
this_eff_load *= capacity_of(prev_cpu);
- prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
+ prev_eff_load = cpu_load(cpu_rq(prev_cpu));
prev_eff_load -= task_load;
if (sched_feat(WA_BIAS))
prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
@@ -5538,149 +5574,9 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
return target;
}
-static unsigned long cpu_util_without(int cpu, struct task_struct *p);
-
-static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
-{
- return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
-}
-
-/*
- * find_idlest_group finds and returns the least busy CPU group within the
- * domain.
- *
- * Assumes p is allowed on at least one CPU in sd.
- */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
- int this_cpu, int sd_flag)
-{
- struct sched_group *idlest = NULL, *group = sd->groups;
- struct sched_group *most_spare_sg = NULL;
- unsigned long min_runnable_load = ULONG_MAX;
- unsigned long this_runnable_load = ULONG_MAX;
- unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
- unsigned long most_spare = 0, this_spare = 0;
- int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
- unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
- (sd->imbalance_pct-100) / 100;
-
- do {
- unsigned long load, avg_load, runnable_load;
- unsigned long spare_cap, max_spare_cap;
- int local_group;
- int i;
-
- /* Skip over this group if it has no CPUs allowed */
- if (!cpumask_intersects(sched_group_span(group),
- p->cpus_ptr))
- continue;
-
- local_group = cpumask_test_cpu(this_cpu,
- sched_group_span(group));
-
- /*
- * Tally up the load of all CPUs in the group and find
- * the group containing the CPU with most spare capacity.
- */
- avg_load = 0;
- runnable_load = 0;
- max_spare_cap = 0;
-
- for_each_cpu(i, sched_group_span(group)) {
- load = cpu_runnable_load(cpu_rq(i));
- runnable_load += load;
-
- avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
-
- spare_cap = capacity_spare_without(i, p);
-
- if (spare_cap > max_spare_cap)
- max_spare_cap = spare_cap;
- }
-
- /* Adjust by relative CPU capacity of the group */
- avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
- group->sgc->capacity;
- runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
- group->sgc->capacity;
-
- if (local_group) {
- this_runnable_load = runnable_load;
- this_avg_load = avg_load;
- this_spare = max_spare_cap;
- } else {
- if (min_runnable_load > (runnable_load + imbalance)) {
- /*
- * The runnable load is significantly smaller
- * so we can pick this new CPU:
- */
- min_runnable_load = runnable_load;
- min_avg_load = avg_load;
- idlest = group;
- } else if ((runnable_load < (min_runnable_load + imbalance)) &&
- (100*min_avg_load > imbalance_scale*avg_load)) {
- /*
- * The runnable loads are close so take the
- * blocked load into account through avg_load:
- */
- min_avg_load = avg_load;
- idlest = group;
- }
-
- if (most_spare < max_spare_cap) {
- most_spare = max_spare_cap;
- most_spare_sg = group;
- }
- }
- } while (group = group->next, group != sd->groups);
-
- /*
- * The cross-over point between using spare capacity or least load
- * is too conservative for high utilization tasks on partially
- * utilized systems if we require spare_capacity > task_util(p),
- * so we allow for some task stuffing by using
- * spare_capacity > task_util(p)/2.
- *
- * Spare capacity can't be used for fork because the utilization has
- * not been set yet, we must first select a rq to compute the initial
- * utilization.
- */
- if (sd_flag & SD_BALANCE_FORK)
- goto skip_spare;
-
- if (this_spare > task_util(p) / 2 &&
- imbalance_scale*this_spare > 100*most_spare)
- return NULL;
-
- if (most_spare > task_util(p) / 2)
- return most_spare_sg;
-
-skip_spare:
- if (!idlest)
- return NULL;
-
- /*
- * When comparing groups across NUMA domains, it's possible for the
- * local domain to be very lightly loaded relative to the remote
- * domains but "imbalance" skews the comparison making remote CPUs
- * look much more favourable. When considering cross-domain, add
- * imbalance to the runnable load on the remote node and consider
- * staying local.
- */
- if ((sd->flags & SD_NUMA) &&
- min_runnable_load + imbalance >= this_runnable_load)
- return NULL;
-
- if (min_runnable_load > (this_runnable_load + imbalance))
- return NULL;
-
- if ((this_runnable_load < (min_runnable_load + imbalance)) &&
- (100*this_avg_load < imbalance_scale*min_avg_load))
- return NULL;
-
- return idlest;
-}
+ int this_cpu, int sd_flag);
/*
* find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
@@ -5729,7 +5625,7 @@ find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this
continue;
}
- load = cpu_runnable_load(cpu_rq(i));
+ load = cpu_load(cpu_rq(i));
if (load < min_load) {
min_load = load;
least_loaded_cpu = i;
@@ -5753,7 +5649,7 @@ static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p
return prev_cpu;
/*
- * We need task's util for capacity_spare_without, sync it up to
+ * We need task's util for cpu_util_without, sync it up to
* prev_cpu's last_update_time.
*/
if (!(sd_flag & SD_BALANCE_FORK))
@@ -6570,6 +6466,15 @@ static void task_dead_fair(struct task_struct *p)
{
remove_entity_load_avg(&p->se);
}
+
+static int
+balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+{
+ if (rq->nr_running)
+ return 1;
+
+ return newidle_balance(rq, rf) != 0;
+}
#endif /* CONFIG_SMP */
static unsigned long wakeup_gran(struct sched_entity *se)
@@ -6737,7 +6642,7 @@ preempt:
set_last_buddy(se);
}
-static struct task_struct *
+struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct cfs_rq *cfs_rq = &rq->cfs;
@@ -6746,7 +6651,7 @@ pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
int new_tasks;
again:
- if (!cfs_rq->nr_running)
+ if (!sched_fair_runnable(rq))
goto idle;
#ifdef CONFIG_FAIR_GROUP_SCHED
@@ -6881,10 +6786,15 @@ idle:
return NULL;
}
+static struct task_struct *__pick_next_task_fair(struct rq *rq)
+{
+ return pick_next_task_fair(rq, NULL, NULL);
+}
+
/*
* Account for a descheduled task:
*/
-static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
{
struct sched_entity *se = &prev->se;
struct cfs_rq *cfs_rq;
@@ -7070,11 +6980,49 @@ static unsigned long __read_mostly max_load_balance_interval = HZ/10;
enum fbq_type { regular, remote, all };
+/*
+ * 'group_type' describes the group of CPUs at the moment of load balancing.
+ *
+ * The enum is ordered by pulling priority, with the group with lowest priority
+ * first so the group_type can simply be compared when selecting the busiest
+ * group. See update_sd_pick_busiest().
+ */
enum group_type {
- group_other = 0,
+ /* The group has spare capacity that can be used to run more tasks. */
+ group_has_spare = 0,
+ /*
+ * The group is fully used and the tasks don't compete for more CPU
+ * cycles. Nevertheless, some tasks might wait before running.
+ */
+ group_fully_busy,
+ /*
+ * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
+ * and must be migrated to a more powerful CPU.
+ */
group_misfit_task,
+ /*
+ * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
+ * and the task should be migrated to it instead of running on the
+ * current CPU.
+ */
+ group_asym_packing,
+ /*
+ * The tasks' affinity constraints previously prevented the scheduler
+ * from balancing the load across the system.
+ */
group_imbalanced,
- group_overloaded,
+ /*
+ * The CPU is overloaded and can't provide expected CPU cycles to all
+ * tasks.
+ */
+ group_overloaded
+};
+
+enum migration_type {
+ migrate_load = 0,
+ migrate_util,
+ migrate_task,
+ migrate_misfit
};
#define LBF_ALL_PINNED 0x01
@@ -7107,7 +7055,7 @@ struct lb_env {
unsigned int loop_max;
enum fbq_type fbq_type;
- enum group_type src_grp_type;
+ enum migration_type migration_type;
struct list_head tasks;
};
@@ -7330,7 +7278,7 @@ static struct task_struct *detach_one_task(struct lb_env *env)
static const unsigned int sched_nr_migrate_break = 32;
/*
- * detach_tasks() -- tries to detach up to imbalance runnable load from
+ * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
* busiest_rq, as part of a balancing operation within domain "sd".
*
* Returns number of detached tasks if successful and 0 otherwise.
@@ -7338,8 +7286,8 @@ static const unsigned int sched_nr_migrate_break = 32;
static int detach_tasks(struct lb_env *env)
{
struct list_head *tasks = &env->src_rq->cfs_tasks;
+ unsigned long util, load;
struct task_struct *p;
- unsigned long load;
int detached = 0;
lockdep_assert_held(&env->src_rq->lock);
@@ -7372,19 +7320,46 @@ static int detach_tasks(struct lb_env *env)
if (!can_migrate_task(p, env))
goto next;
- load = task_h_load(p);
+ switch (env->migration_type) {
+ case migrate_load:
+ load = task_h_load(p);
- if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
- goto next;
+ if (sched_feat(LB_MIN) &&
+ load < 16 && !env->sd->nr_balance_failed)
+ goto next;
- if ((load / 2) > env->imbalance)
- goto next;
+ if (load/2 > env->imbalance)
+ goto next;
+
+ env->imbalance -= load;
+ break;
+
+ case migrate_util:
+ util = task_util_est(p);
+
+ if (util > env->imbalance)
+ goto next;
+
+ env->imbalance -= util;
+ break;
+
+ case migrate_task:
+ env->imbalance--;
+ break;
+
+ case migrate_misfit:
+ /* This is not a misfit task */
+ if (task_fits_capacity(p, capacity_of(env->src_cpu)))
+ goto next;
+
+ env->imbalance = 0;
+ break;
+ }
detach_task(p, env);
list_add(&p->se.group_node, &env->tasks);
detached++;
- env->imbalance -= load;
#ifdef CONFIG_PREEMPTION
/*
@@ -7398,7 +7373,7 @@ static int detach_tasks(struct lb_env *env)
/*
* We only want to steal up to the prescribed amount of
- * runnable load.
+ * load/util/tasks.
*/
if (env->imbalance <= 0)
break;
@@ -7508,6 +7483,28 @@ static inline bool others_have_blocked(struct rq *rq) { return false; }
static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
#endif
+static bool __update_blocked_others(struct rq *rq, bool *done)
+{
+ const struct sched_class *curr_class;
+ u64 now = rq_clock_pelt(rq);
+ bool decayed;
+
+ /*
+ * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
+ * DL and IRQ signals have been updated before updating CFS.
+ */
+ curr_class = rq->curr->sched_class;
+
+ decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
+ update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
+ update_irq_load_avg(rq, 0);
+
+ if (others_have_blocked(rq))
+ *done = false;
+
+ return decayed;
+}
+
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
@@ -7527,16 +7524,11 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
return true;
}
-static void update_blocked_averages(int cpu)
+static bool __update_blocked_fair(struct rq *rq, bool *done)
{
- struct rq *rq = cpu_rq(cpu);
struct cfs_rq *cfs_rq, *pos;
- const struct sched_class *curr_class;
- struct rq_flags rf;
- bool done = true;
-
- rq_lock_irqsave(rq, &rf);
- update_rq_clock(rq);
+ bool decayed = false;
+ int cpu = cpu_of(rq);
/*
* Iterates the task_group tree in a bottom up fashion, see
@@ -7545,9 +7537,13 @@ static void update_blocked_averages(int cpu)
for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
struct sched_entity *se;
- if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
+ if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
update_tg_load_avg(cfs_rq, 0);
+ if (cfs_rq == &rq->cfs)
+ decayed = true;
+ }
+
/* Propagate pending load changes to the parent, if any: */
se = cfs_rq->tg->se[cpu];
if (se && !skip_blocked_update(se))
@@ -7562,19 +7558,10 @@ static void update_blocked_averages(int cpu)
/* Don't need periodic decay once load/util_avg are null */
if (cfs_rq_has_blocked(cfs_rq))
- done = false;
+ *done = false;
}
- curr_class = rq->curr->sched_class;
- update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
- update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
- update_irq_load_avg(rq, 0);
- /* Don't need periodic decay once load/util_avg are null */
- if (others_have_blocked(rq))
- done = false;
-
- update_blocked_load_status(rq, !done);
- rq_unlock_irqrestore(rq, &rf);
+ return decayed;
}
/*
@@ -7624,23 +7611,16 @@ static unsigned long task_h_load(struct task_struct *p)
cfs_rq_load_avg(cfs_rq) + 1);
}
#else
-static inline void update_blocked_averages(int cpu)
+static bool __update_blocked_fair(struct rq *rq, bool *done)
{
- struct rq *rq = cpu_rq(cpu);
struct cfs_rq *cfs_rq = &rq->cfs;
- const struct sched_class *curr_class;
- struct rq_flags rf;
+ bool decayed;
- rq_lock_irqsave(rq, &rf);
- update_rq_clock(rq);
- update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
+ decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
+ if (cfs_rq_has_blocked(cfs_rq))
+ *done = false;
- curr_class = rq->curr->sched_class;
- update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
- update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
- update_irq_load_avg(rq, 0);
- update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
- rq_unlock_irqrestore(rq, &rf);
+ return decayed;
}
static unsigned long task_h_load(struct task_struct *p)
@@ -7649,6 +7629,24 @@ static unsigned long task_h_load(struct task_struct *p)
}
#endif
+static void update_blocked_averages(int cpu)
+{
+ bool decayed = false, done = true;
+ struct rq *rq = cpu_rq(cpu);
+ struct rq_flags rf;
+
+ rq_lock_irqsave(rq, &rf);
+ update_rq_clock(rq);
+
+ decayed |= __update_blocked_others(rq, &done);
+ decayed |= __update_blocked_fair(rq, &done);
+
+ update_blocked_load_status(rq, !done);
+ if (decayed)
+ cpufreq_update_util(rq, 0);
+ rq_unlock_irqrestore(rq, &rf);
+}
+
/********** Helpers for find_busiest_group ************************/
/*
@@ -7657,14 +7655,14 @@ static unsigned long task_h_load(struct task_struct *p)
struct sg_lb_stats {
unsigned long avg_load; /*Avg load across the CPUs of the group */
unsigned long group_load; /* Total load over the CPUs of the group */
- unsigned long load_per_task;
unsigned long group_capacity;
unsigned long group_util; /* Total utilization of the group */
- unsigned int sum_nr_running; /* Nr tasks running in the group */
+ unsigned int sum_nr_running; /* Nr of tasks running in the group */
+ unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
unsigned int idle_cpus;
unsigned int group_weight;
enum group_type group_type;
- int group_no_capacity;
+ unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
@@ -7679,10 +7677,10 @@ struct sg_lb_stats {
struct sd_lb_stats {
struct sched_group *busiest; /* Busiest group in this sd */
struct sched_group *local; /* Local group in this sd */
- unsigned long total_running;
unsigned long total_load; /* Total load of all groups in sd */
unsigned long total_capacity; /* Total capacity of all groups in sd */
unsigned long avg_load; /* Average load across all groups in sd */
+ unsigned int prefer_sibling; /* tasks should go to sibling first */
struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
struct sg_lb_stats local_stat; /* Statistics of the local group */
@@ -7693,19 +7691,18 @@ static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
/*
* Skimp on the clearing to avoid duplicate work. We can avoid clearing
* local_stat because update_sg_lb_stats() does a full clear/assignment.
- * We must however clear busiest_stat::avg_load because
- * update_sd_pick_busiest() reads this before assignment.
+ * We must however set busiest_stat::group_type and
+ * busiest_stat::idle_cpus to the worst busiest group because
+ * update_sd_pick_busiest() reads these before assignment.
*/
*sds = (struct sd_lb_stats){
.busiest = NULL,
.local = NULL,
- .total_running = 0UL,
.total_load = 0UL,
.total_capacity = 0UL,
.busiest_stat = {
- .avg_load = 0UL,
- .sum_nr_running = 0,
- .group_type = group_other,
+ .idle_cpus = UINT_MAX,
+ .group_type = group_has_spare,
},
};
}
@@ -7893,13 +7890,13 @@ static inline int sg_imbalanced(struct sched_group *group)
* any benefit for the load balance.
*/
static inline bool
-group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
+group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running < sgs->group_weight)
return true;
if ((sgs->group_capacity * 100) >
- (sgs->group_util * env->sd->imbalance_pct))
+ (sgs->group_util * imbalance_pct))
return true;
return false;
@@ -7914,13 +7911,13 @@ group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
* false.
*/
static inline bool
-group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
+group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running <= sgs->group_weight)
return false;
if ((sgs->group_capacity * 100) <
- (sgs->group_util * env->sd->imbalance_pct))
+ (sgs->group_util * imbalance_pct))
return true;
return false;
@@ -7947,19 +7944,26 @@ group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
}
static inline enum
-group_type group_classify(struct sched_group *group,
+group_type group_classify(unsigned int imbalance_pct,
+ struct sched_group *group,
struct sg_lb_stats *sgs)
{
- if (sgs->group_no_capacity)
+ if (group_is_overloaded(imbalance_pct, sgs))
return group_overloaded;
if (sg_imbalanced(group))
return group_imbalanced;
+ if (sgs->group_asym_packing)
+ return group_asym_packing;
+
if (sgs->group_misfit_task_load)
return group_misfit_task;
- return group_other;
+ if (!group_has_capacity(imbalance_pct, sgs))
+ return group_fully_busy;
+
+ return group_has_spare;
}
static bool update_nohz_stats(struct rq *rq, bool force)
@@ -7996,21 +8000,25 @@ static inline void update_sg_lb_stats(struct lb_env *env,
struct sg_lb_stats *sgs,
int *sg_status)
{
- int i, nr_running;
+ int i, nr_running, local_group;
memset(sgs, 0, sizeof(*sgs));
+ local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
+
for_each_cpu_and(i, sched_group_span(group), env->cpus) {
struct rq *rq = cpu_rq(i);
if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
env->flags |= LBF_NOHZ_AGAIN;
- sgs->group_load += cpu_runnable_load(rq);
+ sgs->group_load += cpu_load(rq);
sgs->group_util += cpu_util(i);
- sgs->sum_nr_running += rq->cfs.h_nr_running;
+ sgs->sum_h_nr_running += rq->cfs.h_nr_running;
nr_running = rq->nr_running;
+ sgs->sum_nr_running += nr_running;
+
if (nr_running > 1)
*sg_status |= SG_OVERLOAD;
@@ -8024,9 +8032,16 @@ static inline void update_sg_lb_stats(struct lb_env *env,
/*
* No need to call idle_cpu() if nr_running is not 0
*/
- if (!nr_running && idle_cpu(i))
+ if (!nr_running && idle_cpu(i)) {
sgs->idle_cpus++;
+ /* Idle cpu can't have misfit task */
+ continue;
+ }
+ if (local_group)
+ continue;
+
+ /* Check for a misfit task on the cpu */
if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
sgs->group_misfit_task_load < rq->misfit_task_load) {
sgs->group_misfit_task_load = rq->misfit_task_load;
@@ -8034,17 +8049,24 @@ static inline void update_sg_lb_stats(struct lb_env *env,
}
}
- /* Adjust by relative CPU capacity of the group */
- sgs->group_capacity = group->sgc->capacity;
- sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
+ /* Check if dst CPU is idle and preferred to this group */
+ if (env->sd->flags & SD_ASYM_PACKING &&
+ env->idle != CPU_NOT_IDLE &&
+ sgs->sum_h_nr_running &&
+ sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
+ sgs->group_asym_packing = 1;
+ }
- if (sgs->sum_nr_running)
- sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
+ sgs->group_capacity = group->sgc->capacity;
sgs->group_weight = group->group_weight;
- sgs->group_no_capacity = group_is_overloaded(env, sgs);
- sgs->group_type = group_classify(group, sgs);
+ sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
+
+ /* Computing avg_load makes sense only when group is overloaded */
+ if (sgs->group_type == group_overloaded)
+ sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
+ sgs->group_capacity;
}
/**
@@ -8067,6 +8089,10 @@ static bool update_sd_pick_busiest(struct lb_env *env,
{
struct sg_lb_stats *busiest = &sds->busiest_stat;
+ /* Make sure that there is at least one task to pull */
+ if (!sgs->sum_h_nr_running)
+ return false;
+
/*
* Don't try to pull misfit tasks we can't help.
* We can use max_capacity here as reduction in capacity on some
@@ -8075,7 +8101,7 @@ static bool update_sd_pick_busiest(struct lb_env *env,
*/
if (sgs->group_type == group_misfit_task &&
(!group_smaller_max_cpu_capacity(sg, sds->local) ||
- !group_has_capacity(env, &sds->local_stat)))
+ sds->local_stat.group_type != group_has_spare))
return false;
if (sgs->group_type > busiest->group_type)
@@ -8084,62 +8110,88 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (sgs->group_type < busiest->group_type)
return false;
- if (sgs->avg_load <= busiest->avg_load)
- return false;
-
- if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
- goto asym_packing;
-
/*
- * Candidate sg has no more than one task per CPU and
- * has higher per-CPU capacity. Migrating tasks to less
- * capable CPUs may harm throughput. Maximize throughput,
- * power/energy consequences are not considered.
+ * The candidate and the current busiest group are the same type of
+ * group. Let check which one is the busiest according to the type.
*/
- if (sgs->sum_nr_running <= sgs->group_weight &&
- group_smaller_min_cpu_capacity(sds->local, sg))
- return false;
- /*
- * If we have more than one misfit sg go with the biggest misfit.
- */
- if (sgs->group_type == group_misfit_task &&
- sgs->group_misfit_task_load < busiest->group_misfit_task_load)
+ switch (sgs->group_type) {
+ case group_overloaded:
+ /* Select the overloaded group with highest avg_load. */
+ if (sgs->avg_load <= busiest->avg_load)
+ return false;
+ break;
+
+ case group_imbalanced:
+ /*
+ * Select the 1st imbalanced group as we don't have any way to
+ * choose one more than another.
+ */
return false;
-asym_packing:
- /* This is the busiest node in its class. */
- if (!(env->sd->flags & SD_ASYM_PACKING))
- return true;
+ case group_asym_packing:
+ /* Prefer to move from lowest priority CPU's work */
+ if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
+ return false;
+ break;
- /* No ASYM_PACKING if target CPU is already busy */
- if (env->idle == CPU_NOT_IDLE)
- return true;
- /*
- * ASYM_PACKING needs to move all the work to the highest
- * prority CPUs in the group, therefore mark all groups
- * of lower priority than ourself as busy.
- */
- if (sgs->sum_nr_running &&
- sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
- if (!sds->busiest)
- return true;
+ case group_misfit_task:
+ /*
+ * If we have more than one misfit sg go with the biggest
+ * misfit.
+ */
+ if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
+ return false;
+ break;
- /* Prefer to move from lowest priority CPU's work */
- if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
- sg->asym_prefer_cpu))
- return true;
+ case group_fully_busy:
+ /*
+ * Select the fully busy group with highest avg_load. In
+ * theory, there is no need to pull task from such kind of
+ * group because tasks have all compute capacity that they need
+ * but we can still improve the overall throughput by reducing
+ * contention when accessing shared HW resources.
+ *
+ * XXX for now avg_load is not computed and always 0 so we
+ * select the 1st one.
+ */
+ if (sgs->avg_load <= busiest->avg_load)
+ return false;
+ break;
+
+ case group_has_spare:
+ /*
+ * Select not overloaded group with lowest number of
+ * idle cpus. We could also compare the spare capacity
+ * which is more stable but it can end up that the
+ * group has less spare capacity but finally more idle
+ * CPUs which means less opportunity to pull tasks.
+ */
+ if (sgs->idle_cpus >= busiest->idle_cpus)
+ return false;
+ break;
}
- return false;
+ /*
+ * Candidate sg has no more than one task per CPU and has higher
+ * per-CPU capacity. Migrating tasks to less capable CPUs may harm
+ * throughput. Maximize throughput, power/energy consequences are not
+ * considered.
+ */
+ if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
+ (sgs->group_type <= group_fully_busy) &&
+ (group_smaller_min_cpu_capacity(sds->local, sg)))
+ return false;
+
+ return true;
}
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
- if (sgs->sum_nr_running > sgs->nr_numa_running)
+ if (sgs->sum_h_nr_running > sgs->nr_numa_running)
return regular;
- if (sgs->sum_nr_running > sgs->nr_preferred_running)
+ if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
return remote;
return all;
}
@@ -8164,18 +8216,310 @@ static inline enum fbq_type fbq_classify_rq(struct rq *rq)
}
#endif /* CONFIG_NUMA_BALANCING */
+
+struct sg_lb_stats;
+
+/*
+ * task_running_on_cpu - return 1 if @p is running on @cpu.
+ */
+
+static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
+{
+ /* Task has no contribution or is new */
+ if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
+ return 0;
+
+ if (task_on_rq_queued(p))
+ return 1;
+
+ return 0;
+}
+
+/**
+ * idle_cpu_without - would a given CPU be idle without p ?
+ * @cpu: the processor on which idleness is tested.
+ * @p: task which should be ignored.
+ *
+ * Return: 1 if the CPU would be idle. 0 otherwise.
+ */
+static int idle_cpu_without(int cpu, struct task_struct *p)
+{
+ struct rq *rq = cpu_rq(cpu);
+
+ if (rq->curr != rq->idle && rq->curr != p)
+ return 0;
+
+ /*
+ * rq->nr_running can't be used but an updated version without the
+ * impact of p on cpu must be used instead. The updated nr_running
+ * be computed and tested before calling idle_cpu_without().
+ */
+
+#ifdef CONFIG_SMP
+ if (!llist_empty(&rq->wake_list))
+ return 0;
+#endif
+
+ return 1;
+}
+
+/*
+ * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
+ * @sd: The sched_domain level to look for idlest group.
+ * @group: sched_group whose statistics are to be updated.
+ * @sgs: variable to hold the statistics for this group.
+ * @p: The task for which we look for the idlest group/CPU.
+ */
+static inline void update_sg_wakeup_stats(struct sched_domain *sd,
+ struct sched_group *group,
+ struct sg_lb_stats *sgs,
+ struct task_struct *p)
+{
+ int i, nr_running;
+
+ memset(sgs, 0, sizeof(*sgs));
+
+ for_each_cpu(i, sched_group_span(group)) {
+ struct rq *rq = cpu_rq(i);
+ unsigned int local;
+
+ sgs->group_load += cpu_load_without(rq, p);
+ sgs->group_util += cpu_util_without(i, p);
+ local = task_running_on_cpu(i, p);
+ sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
+
+ nr_running = rq->nr_running - local;
+ sgs->sum_nr_running += nr_running;
+
+ /*
+ * No need to call idle_cpu_without() if nr_running is not 0
+ */
+ if (!nr_running && idle_cpu_without(i, p))
+ sgs->idle_cpus++;
+
+ }
+
+ /* Check if task fits in the group */
+ if (sd->flags & SD_ASYM_CPUCAPACITY &&
+ !task_fits_capacity(p, group->sgc->max_capacity)) {
+ sgs->group_misfit_task_load = 1;
+ }
+
+ sgs->group_capacity = group->sgc->capacity;
+
+ sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
+
+ /*
+ * Computing avg_load makes sense only when group is fully busy or
+ * overloaded
+ */
+ if (sgs->group_type < group_fully_busy)
+ sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
+ sgs->group_capacity;
+}
+
+static bool update_pick_idlest(struct sched_group *idlest,
+ struct sg_lb_stats *idlest_sgs,
+ struct sched_group *group,
+ struct sg_lb_stats *sgs)
+{
+ if (sgs->group_type < idlest_sgs->group_type)
+ return true;
+
+ if (sgs->group_type > idlest_sgs->group_type)
+ return false;
+
+ /*
+ * The candidate and the current idlest group are the same type of
+ * group. Let check which one is the idlest according to the type.
+ */
+
+ switch (sgs->group_type) {
+ case group_overloaded:
+ case group_fully_busy:
+ /* Select the group with lowest avg_load. */
+ if (idlest_sgs->avg_load <= sgs->avg_load)
+ return false;
+ break;
+
+ case group_imbalanced:
+ case group_asym_packing:
+ /* Those types are not used in the slow wakeup path */
+ return false;
+
+ case group_misfit_task:
+ /* Select group with the highest max capacity */
+ if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
+ return false;
+ break;
+
+ case group_has_spare:
+ /* Select group with most idle CPUs */
+ if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
+ return false;
+ break;
+ }
+
+ return true;
+}
+
+/*
+ * find_idlest_group() finds and returns the least busy CPU group within the
+ * domain.
+ *
+ * Assumes p is allowed on at least one CPU in sd.
+ */
+static struct sched_group *
+find_idlest_group(struct sched_domain *sd, struct task_struct *p,
+ int this_cpu, int sd_flag)
+{
+ struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
+ struct sg_lb_stats local_sgs, tmp_sgs;
+ struct sg_lb_stats *sgs;
+ unsigned long imbalance;
+ struct sg_lb_stats idlest_sgs = {
+ .avg_load = UINT_MAX,
+ .group_type = group_overloaded,
+ };
+
+ imbalance = scale_load_down(NICE_0_LOAD) *
+ (sd->imbalance_pct-100) / 100;
+
+ do {
+ int local_group;
+
+ /* Skip over this group if it has no CPUs allowed */
+ if (!cpumask_intersects(sched_group_span(group),
+ p->cpus_ptr))
+ continue;
+
+ local_group = cpumask_test_cpu(this_cpu,
+ sched_group_span(group));
+
+ if (local_group) {
+ sgs = &local_sgs;
+ local = group;
+ } else {
+ sgs = &tmp_sgs;
+ }
+
+ update_sg_wakeup_stats(sd, group, sgs, p);
+
+ if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
+ idlest = group;
+ idlest_sgs = *sgs;
+ }
+
+ } while (group = group->next, group != sd->groups);
+
+
+ /* There is no idlest group to push tasks to */
+ if (!idlest)
+ return NULL;
+
+ /*
+ * If the local group is idler than the selected idlest group
+ * don't try and push the task.
+ */
+ if (local_sgs.group_type < idlest_sgs.group_type)
+ return NULL;
+
+ /*
+ * If the local group is busier than the selected idlest group
+ * try and push the task.
+ */
+ if (local_sgs.group_type > idlest_sgs.group_type)
+ return idlest;
+
+ switch (local_sgs.group_type) {
+ case group_overloaded:
+ case group_fully_busy:
+ /*
+ * When comparing groups across NUMA domains, it's possible for
+ * the local domain to be very lightly loaded relative to the
+ * remote domains but "imbalance" skews the comparison making
+ * remote CPUs look much more favourable. When considering
+ * cross-domain, add imbalance to the load on the remote node
+ * and consider staying local.
+ */
+
+ if ((sd->flags & SD_NUMA) &&
+ ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
+ return NULL;
+
+ /*
+ * If the local group is less loaded than the selected
+ * idlest group don't try and push any tasks.
+ */
+ if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
+ return NULL;
+
+ if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
+ return NULL;
+ break;
+
+ case group_imbalanced:
+ case group_asym_packing:
+ /* Those type are not used in the slow wakeup path */
+ return NULL;
+
+ case group_misfit_task:
+ /* Select group with the highest max capacity */
+ if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
+ return NULL;
+ break;
+
+ case group_has_spare:
+ if (sd->flags & SD_NUMA) {
+#ifdef CONFIG_NUMA_BALANCING
+ int idlest_cpu;
+ /*
+ * If there is spare capacity at NUMA, try to select
+ * the preferred node
+ */
+ if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
+ return NULL;
+
+ idlest_cpu = cpumask_first(sched_group_span(idlest));
+ if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
+ return idlest;
+#endif
+ /*
+ * Otherwise, keep the task on this node to stay close
+ * its wakeup source and improve locality. If there is
+ * a real need of migration, periodic load balance will
+ * take care of it.
+ */
+ if (local_sgs.idle_cpus)
+ return NULL;
+ }
+
+ /*
+ * Select group with highest number of idle CPUs. We could also
+ * compare the utilization which is more stable but it can end
+ * up that the group has less spare capacity but finally more
+ * idle CPUs which means more opportunity to run task.
+ */
+ if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
+ return NULL;
+ break;
+ }
+
+ return idlest;
+}
+
/**
* update_sd_lb_stats - Update sched_domain's statistics for load balancing.
* @env: The load balancing environment.
* @sds: variable to hold the statistics for this sched_domain.
*/
+
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
{
struct sched_domain *child = env->sd->child;
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats *local = &sds->local_stat;
struct sg_lb_stats tmp_sgs;
- bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
int sg_status = 0;
#ifdef CONFIG_NO_HZ_COMMON
@@ -8202,22 +8546,6 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
if (local_group)
goto next_group;
- /*
- * In case the child domain prefers tasks go to siblings
- * first, lower the sg capacity so that we'll try
- * and move all the excess tasks away. We lower the capacity
- * of a group only if the local group has the capacity to fit
- * these excess tasks. The extra check prevents the case where
- * you always pull from the heaviest group when it is already
- * under-utilized (possible with a large weight task outweighs
- * the tasks on the system).
- */
- if (prefer_sibling && sds->local &&
- group_has_capacity(env, local) &&
- (sgs->sum_nr_running > local->sum_nr_running + 1)) {
- sgs->group_no_capacity = 1;
- sgs->group_type = group_classify(sg, sgs);
- }
if (update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
@@ -8226,13 +8554,15 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
next_group:
/* Now, start updating sd_lb_stats */
- sds->total_running += sgs->sum_nr_running;
sds->total_load += sgs->group_load;
sds->total_capacity += sgs->group_capacity;
sg = sg->next;
} while (sg != env->sd->groups);
+ /* Tag domain that child domain prefers tasks go to siblings first */
+ sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
+
#ifdef CONFIG_NO_HZ_COMMON
if ((env->flags & LBF_NOHZ_AGAIN) &&
cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
@@ -8263,203 +8593,160 @@ next_group:
}
/**
- * check_asym_packing - Check to see if the group is packed into the
- * sched domain.
- *
- * This is primarily intended to used at the sibling level. Some
- * cores like POWER7 prefer to use lower numbered SMT threads. In the
- * case of POWER7, it can move to lower SMT modes only when higher
- * threads are idle. When in lower SMT modes, the threads will
- * perform better since they share less core resources. Hence when we
- * have idle threads, we want them to be the higher ones.
- *
- * This packing function is run on idle threads. It checks to see if
- * the busiest CPU in this domain (core in the P7 case) has a higher
- * CPU number than the packing function is being run on. Here we are
- * assuming lower CPU number will be equivalent to lower a SMT thread
- * number.
- *
- * Return: 1 when packing is required and a task should be moved to
- * this CPU. The amount of the imbalance is returned in env->imbalance.
- *
- * @env: The load balancing environment.
- * @sds: Statistics of the sched_domain which is to be packed
- */
-static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
-{
- int busiest_cpu;
-
- if (!(env->sd->flags & SD_ASYM_PACKING))
- return 0;
-
- if (env->idle == CPU_NOT_IDLE)
- return 0;
-
- if (!sds->busiest)
- return 0;
-
- busiest_cpu = sds->busiest->asym_prefer_cpu;
- if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
- return 0;
-
- env->imbalance = sds->busiest_stat.group_load;
-
- return 1;
-}
-
-/**
- * fix_small_imbalance - Calculate the minor imbalance that exists
- * amongst the groups of a sched_domain, during
- * load balancing.
- * @env: The load balancing environment.
- * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
+ * calculate_imbalance - Calculate the amount of imbalance present within the
+ * groups of a given sched_domain during load balance.
+ * @env: load balance environment
+ * @sds: statistics of the sched_domain whose imbalance is to be calculated.
*/
-static inline
-void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
+static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
- unsigned long tmp, capa_now = 0, capa_move = 0;
- unsigned int imbn = 2;
- unsigned long scaled_busy_load_per_task;
struct sg_lb_stats *local, *busiest;
local = &sds->local_stat;
busiest = &sds->busiest_stat;
- if (!local->sum_nr_running)
- local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
- else if (busiest->load_per_task > local->load_per_task)
- imbn = 1;
+ if (busiest->group_type == group_misfit_task) {
+ /* Set imbalance to allow misfit tasks to be balanced. */
+ env->migration_type = migrate_misfit;
+ env->imbalance = 1;
+ return;
+ }
- scaled_busy_load_per_task =
- (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
- busiest->group_capacity;
+ if (busiest->group_type == group_asym_packing) {
+ /*
+ * In case of asym capacity, we will try to migrate all load to
+ * the preferred CPU.
+ */
+ env->migration_type = migrate_task;
+ env->imbalance = busiest->sum_h_nr_running;
+ return;
+ }
- if (busiest->avg_load + scaled_busy_load_per_task >=
- local->avg_load + (scaled_busy_load_per_task * imbn)) {
- env->imbalance = busiest->load_per_task;
+ if (busiest->group_type == group_imbalanced) {
+ /*
+ * In the group_imb case we cannot rely on group-wide averages
+ * to ensure CPU-load equilibrium, try to move any task to fix
+ * the imbalance. The next load balance will take care of
+ * balancing back the system.
+ */
+ env->migration_type = migrate_task;
+ env->imbalance = 1;
return;
}
/*
- * OK, we don't have enough imbalance to justify moving tasks,
- * however we may be able to increase total CPU capacity used by
- * moving them.
+ * Try to use spare capacity of local group without overloading it or
+ * emptying busiest.
+ * XXX Spreading tasks across NUMA nodes is not always the best policy
+ * and special care should be taken for SD_NUMA domain level before
+ * spreading the tasks. For now, load_balance() fully relies on
+ * NUMA_BALANCING and fbq_classify_group/rq to override the decision.
*/
+ if (local->group_type == group_has_spare) {
+ if (busiest->group_type > group_fully_busy) {
+ /*
+ * If busiest is overloaded, try to fill spare
+ * capacity. This might end up creating spare capacity
+ * in busiest or busiest still being overloaded but
+ * there is no simple way to directly compute the
+ * amount of load to migrate in order to balance the
+ * system.
+ */
+ env->migration_type = migrate_util;
+ env->imbalance = max(local->group_capacity, local->group_util) -
+ local->group_util;
- capa_now += busiest->group_capacity *
- min(busiest->load_per_task, busiest->avg_load);
- capa_now += local->group_capacity *
- min(local->load_per_task, local->avg_load);
- capa_now /= SCHED_CAPACITY_SCALE;
-
- /* Amount of load we'd subtract */
- if (busiest->avg_load > scaled_busy_load_per_task) {
- capa_move += busiest->group_capacity *
- min(busiest->load_per_task,
- busiest->avg_load - scaled_busy_load_per_task);
- }
-
- /* Amount of load we'd add */
- if (busiest->avg_load * busiest->group_capacity <
- busiest->load_per_task * SCHED_CAPACITY_SCALE) {
- tmp = (busiest->avg_load * busiest->group_capacity) /
- local->group_capacity;
- } else {
- tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
- local->group_capacity;
- }
- capa_move += local->group_capacity *
- min(local->load_per_task, local->avg_load + tmp);
- capa_move /= SCHED_CAPACITY_SCALE;
-
- /* Move if we gain throughput */
- if (capa_move > capa_now)
- env->imbalance = busiest->load_per_task;
-}
+ /*
+ * In some cases, the group's utilization is max or even
+ * higher than capacity because of migrations but the
+ * local CPU is (newly) idle. There is at least one
+ * waiting task in this overloaded busiest group. Let's
+ * try to pull it.
+ */
+ if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
+ env->migration_type = migrate_task;
+ env->imbalance = 1;
+ }
-/**
- * calculate_imbalance - Calculate the amount of imbalance present within the
- * groups of a given sched_domain during load balance.
- * @env: load balance environment
- * @sds: statistics of the sched_domain whose imbalance is to be calculated.
- */
-static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
-{
- unsigned long max_pull, load_above_capacity = ~0UL;
- struct sg_lb_stats *local, *busiest;
+ return;
+ }
- local = &sds->local_stat;
- busiest = &sds->busiest_stat;
+ if (busiest->group_weight == 1 || sds->prefer_sibling) {
+ unsigned int nr_diff = busiest->sum_nr_running;
+ /*
+ * When prefer sibling, evenly spread running tasks on
+ * groups.
+ */
+ env->migration_type = migrate_task;
+ lsub_positive(&nr_diff, local->sum_nr_running);
+ env->imbalance = nr_diff >> 1;
+ return;
+ }
- if (busiest->group_type == group_imbalanced) {
/*
- * In the group_imb case we cannot rely on group-wide averages
- * to ensure CPU-load equilibrium, look at wider averages. XXX
+ * If there is no overload, we just want to even the number of
+ * idle cpus.
*/
- busiest->load_per_task =
- min(busiest->load_per_task, sds->avg_load);
+ env->migration_type = migrate_task;
+ env->imbalance = max_t(long, 0, (local->idle_cpus -
+ busiest->idle_cpus) >> 1);
+ return;
}
/*
- * Avg load of busiest sg can be less and avg load of local sg can
- * be greater than avg load across all sgs of sd because avg load
- * factors in sg capacity and sgs with smaller group_type are
- * skipped when updating the busiest sg:
+ * Local is fully busy but has to take more load to relieve the
+ * busiest group
*/
- if (busiest->group_type != group_misfit_task &&
- (busiest->avg_load <= sds->avg_load ||
- local->avg_load >= sds->avg_load)) {
- env->imbalance = 0;
- return fix_small_imbalance(env, sds);
- }
+ if (local->group_type < group_overloaded) {
+ /*
+ * Local will become overloaded so the avg_load metrics are
+ * finally needed.
+ */
- /*
- * If there aren't any idle CPUs, avoid creating some.
- */
- if (busiest->group_type == group_overloaded &&
- local->group_type == group_overloaded) {
- load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
- if (load_above_capacity > busiest->group_capacity) {
- load_above_capacity -= busiest->group_capacity;
- load_above_capacity *= scale_load_down(NICE_0_LOAD);
- load_above_capacity /= busiest->group_capacity;
- } else
- load_above_capacity = ~0UL;
+ local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
+ local->group_capacity;
+
+ sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
+ sds->total_capacity;
}
/*
- * We're trying to get all the CPUs to the average_load, so we don't
- * want to push ourselves above the average load, nor do we wish to
- * reduce the max loaded CPU below the average load. At the same time,
- * we also don't want to reduce the group load below the group
- * capacity. Thus we look for the minimum possible imbalance.
+ * Both group are or will become overloaded and we're trying to get all
+ * the CPUs to the average_load, so we don't want to push ourselves
+ * above the average load, nor do we wish to reduce the max loaded CPU
+ * below the average load. At the same time, we also don't want to
+ * reduce the group load below the group capacity. Thus we look for
+ * the minimum possible imbalance.
*/
- max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
-
- /* How much load to actually move to equalise the imbalance */
+ env->migration_type = migrate_load;
env->imbalance = min(
- max_pull * busiest->group_capacity,
+ (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
(sds->avg_load - local->avg_load) * local->group_capacity
) / SCHED_CAPACITY_SCALE;
-
- /* Boost imbalance to allow misfit task to be balanced. */
- if (busiest->group_type == group_misfit_task) {
- env->imbalance = max_t(long, env->imbalance,
- busiest->group_misfit_task_load);
- }
-
- /*
- * if *imbalance is less than the average load per runnable task
- * there is no guarantee that any tasks will be moved so we'll have
- * a think about bumping its value to force at least one task to be
- * moved
- */
- if (env->imbalance < busiest->load_per_task)
- return fix_small_imbalance(env, sds);
}
/******* find_busiest_group() helpers end here *********************/
+/*
+ * Decision matrix according to the local and busiest group type:
+ *
+ * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
+ * has_spare nr_idle balanced N/A N/A balanced balanced
+ * fully_busy nr_idle nr_idle N/A N/A balanced balanced
+ * misfit_task force N/A N/A N/A force force
+ * asym_packing force force N/A N/A force force
+ * imbalanced force force N/A N/A force force
+ * overloaded force force N/A N/A force avg_load
+ *
+ * N/A : Not Applicable because already filtered while updating
+ * statistics.
+ * balanced : The system is balanced for these 2 groups.
+ * force : Calculate the imbalance as load migration is probably needed.
+ * avg_load : Only if imbalance is significant enough.
+ * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
+ * different in groups.
+ */
+
/**
* find_busiest_group - Returns the busiest group within the sched_domain
* if there is an imbalance.
@@ -8479,7 +8766,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
init_sd_lb_stats(&sds);
/*
- * Compute the various statistics relavent for load balancing at
+ * Compute the various statistics relevant for load balancing at
* this level.
*/
update_sd_lb_stats(env, &sds);
@@ -8494,17 +8781,17 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
local = &sds.local_stat;
busiest = &sds.busiest_stat;
- /* ASYM feature bypasses nice load balance check */
- if (check_asym_packing(env, &sds))
- return sds.busiest;
-
/* There is no busy sibling group to pull tasks from */
- if (!sds.busiest || busiest->sum_nr_running == 0)
+ if (!sds.busiest)
goto out_balanced;
- /* XXX broken for overlapping NUMA groups */
- sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
- / sds.total_capacity;
+ /* Misfit tasks should be dealt with regardless of the avg load */
+ if (busiest->group_type == group_misfit_task)
+ goto force_balance;
+
+ /* ASYM feature bypasses nice load balance check */
+ if (busiest->group_type == group_asym_packing)
+ goto force_balance;
/*
* If the busiest group is imbalanced the below checks don't
@@ -8515,55 +8802,80 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
goto force_balance;
/*
- * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
- * capacities from resulting in underutilization due to avg_load.
- */
- if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
- busiest->group_no_capacity)
- goto force_balance;
-
- /* Misfit tasks should be dealt with regardless of the avg load */
- if (busiest->group_type == group_misfit_task)
- goto force_balance;
-
- /*
* If the local group is busier than the selected busiest group
* don't try and pull any tasks.
*/
- if (local->avg_load >= busiest->avg_load)
+ if (local->group_type > busiest->group_type)
goto out_balanced;
/*
- * Don't pull any tasks if this group is already above the domain
- * average load.
+ * When groups are overloaded, use the avg_load to ensure fairness
+ * between tasks.
*/
- if (local->avg_load >= sds.avg_load)
- goto out_balanced;
+ if (local->group_type == group_overloaded) {
+ /*
+ * If the local group is more loaded than the selected
+ * busiest group don't try to pull any tasks.
+ */
+ if (local->avg_load >= busiest->avg_load)
+ goto out_balanced;
+
+ /* XXX broken for overlapping NUMA groups */
+ sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
+ sds.total_capacity;
- if (env->idle == CPU_IDLE) {
/*
- * This CPU is idle. If the busiest group is not overloaded
- * and there is no imbalance between this and busiest group
- * wrt idle CPUs, it is balanced. The imbalance becomes
- * significant if the diff is greater than 1 otherwise we
- * might end up to just move the imbalance on another group
+ * Don't pull any tasks if this group is already above the
+ * domain average load.
*/
- if ((busiest->group_type != group_overloaded) &&
- (local->idle_cpus <= (busiest->idle_cpus + 1)))
+ if (local->avg_load >= sds.avg_load)
goto out_balanced;
- } else {
+
/*
- * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
- * imbalance_pct to be conservative.
+ * If the busiest group is more loaded, use imbalance_pct to be
+ * conservative.
*/
if (100 * busiest->avg_load <=
env->sd->imbalance_pct * local->avg_load)
goto out_balanced;
}
+ /* Try to move all excess tasks to child's sibling domain */
+ if (sds.prefer_sibling && local->group_type == group_has_spare &&
+ busiest->sum_nr_running > local->sum_nr_running + 1)
+ goto force_balance;
+
+ if (busiest->group_type != group_overloaded) {
+ if (env->idle == CPU_NOT_IDLE)
+ /*
+ * If the busiest group is not overloaded (and as a
+ * result the local one too) but this CPU is already
+ * busy, let another idle CPU try to pull task.
+ */
+ goto out_balanced;
+
+ if (busiest->group_weight > 1 &&
+ local->idle_cpus <= (busiest->idle_cpus + 1))
+ /*
+ * If the busiest group is not overloaded
+ * and there is no imbalance between this and busiest
+ * group wrt idle CPUs, it is balanced. The imbalance
+ * becomes significant if the diff is greater than 1
+ * otherwise we might end up to just move the imbalance
+ * on another group. Of course this applies only if
+ * there is more than 1 CPU per group.
+ */
+ goto out_balanced;
+
+ if (busiest->sum_h_nr_running == 1)
+ /*
+ * busiest doesn't have any tasks waiting to run
+ */
+ goto out_balanced;
+ }
+
force_balance:
/* Looks like there is an imbalance. Compute it */
- env->src_grp_type = busiest->group_type;
calculate_imbalance(env, &sds);
return env->imbalance ? sds.busiest : NULL;
@@ -8579,11 +8891,13 @@ static struct rq *find_busiest_queue(struct lb_env *env,
struct sched_group *group)
{
struct rq *busiest = NULL, *rq;
- unsigned long busiest_load = 0, busiest_capacity = 1;
+ unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
+ unsigned int busiest_nr = 0;
int i;
for_each_cpu_and(i, sched_group_span(group), env->cpus) {
- unsigned long capacity, load;
+ unsigned long capacity, load, util;
+ unsigned int nr_running;
enum fbq_type rt;
rq = cpu_rq(i);
@@ -8611,20 +8925,8 @@ static struct rq *find_busiest_queue(struct lb_env *env,
if (rt > env->fbq_type)
continue;
- /*
- * For ASYM_CPUCAPACITY domains with misfit tasks we simply
- * seek the "biggest" misfit task.
- */
- if (env->src_grp_type == group_misfit_task) {
- if (rq->misfit_task_load > busiest_load) {
- busiest_load = rq->misfit_task_load;
- busiest = rq;
- }
-
- continue;
- }
-
capacity = capacity_of(i);
+ nr_running = rq->cfs.h_nr_running;
/*
* For ASYM_CPUCAPACITY domains, don't pick a CPU that could
@@ -8634,35 +8936,69 @@ static struct rq *find_busiest_queue(struct lb_env *env,
*/
if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
capacity_of(env->dst_cpu) < capacity &&
- rq->nr_running == 1)
+ nr_running == 1)
continue;
- load = cpu_runnable_load(rq);
+ switch (env->migration_type) {
+ case migrate_load:
+ /*
+ * When comparing with load imbalance, use cpu_load()
+ * which is not scaled with the CPU capacity.
+ */
+ load = cpu_load(rq);
- /*
- * When comparing with imbalance, use cpu_runnable_load()
- * which is not scaled with the CPU capacity.
- */
+ if (nr_running == 1 && load > env->imbalance &&
+ !check_cpu_capacity(rq, env->sd))
+ break;
- if (rq->nr_running == 1 && load > env->imbalance &&
- !check_cpu_capacity(rq, env->sd))
- continue;
+ /*
+ * For the load comparisons with the other CPUs,
+ * consider the cpu_load() scaled with the CPU
+ * capacity, so that the load can be moved away
+ * from the CPU that is potentially running at a
+ * lower capacity.
+ *
+ * Thus we're looking for max(load_i / capacity_i),
+ * crosswise multiplication to rid ourselves of the
+ * division works out to:
+ * load_i * capacity_j > load_j * capacity_i;
+ * where j is our previous maximum.
+ */
+ if (load * busiest_capacity > busiest_load * capacity) {
+ busiest_load = load;
+ busiest_capacity = capacity;
+ busiest = rq;
+ }
+ break;
+
+ case migrate_util:
+ util = cpu_util(cpu_of(rq));
+
+ if (busiest_util < util) {
+ busiest_util = util;
+ busiest = rq;
+ }
+ break;
+
+ case migrate_task:
+ if (busiest_nr < nr_running) {
+ busiest_nr = nr_running;
+ busiest = rq;
+ }
+ break;
+
+ case migrate_misfit:
+ /*
+ * For ASYM_CPUCAPACITY domains with misfit tasks we
+ * simply seek the "biggest" misfit task.
+ */
+ if (rq->misfit_task_load > busiest_load) {
+ busiest_load = rq->misfit_task_load;
+ busiest = rq;
+ }
+
+ break;
- /*
- * For the load comparisons with the other CPU's, consider
- * the cpu_runnable_load() scaled with the CPU capacity, so
- * that the load can be moved away from the CPU that is
- * potentially running at a lower capacity.
- *
- * Thus we're looking for max(load_i / capacity_i), crosswise
- * multiplication to rid ourselves of the division works out
- * to: load_i * capacity_j > load_j * capacity_i; where j is
- * our previous maximum.
- */
- if (load * busiest_capacity > busiest_load * capacity) {
- busiest_load = load;
- busiest_capacity = capacity;
- busiest = rq;
}
}
@@ -8708,7 +9044,7 @@ voluntary_active_balance(struct lb_env *env)
return 1;
}
- if (env->src_grp_type == group_misfit_task)
+ if (env->migration_type == migrate_misfit)
return 1;
return 0;
@@ -9737,6 +10073,11 @@ static inline void nohz_newidle_balance(struct rq *this_rq) { }
/*
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
+ *
+ * Returns:
+ * < 0 - we released the lock and there are !fair tasks present
+ * 0 - failed, no new tasks
+ * > 0 - success, new (fair) tasks present
*/
int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
{
@@ -10131,7 +10472,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p)
* This routine is mostly called to set cfs_rq->curr field when a task
* migrates between groups/classes.
*/
-static void set_next_task_fair(struct rq *rq, struct task_struct *p)
+static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
{
struct sched_entity *se = &p->se;
@@ -10413,12 +10754,12 @@ const struct sched_class fair_sched_class = {
.check_preempt_curr = check_preempt_wakeup,
- .pick_next_task = pick_next_task_fair,
-
+ .pick_next_task = __pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
.set_next_task = set_next_task_fair,
#ifdef CONFIG_SMP
+ .balance = balance_fair,
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 2410db5e9a35..7481cd96f391 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -89,3 +89,4 @@ SCHED_FEAT(WA_BIAS, true)
* UtilEstimation. Use estimated CPU utilization.
*/
SCHED_FEAT(UTIL_EST, true)
+SCHED_FEAT(UTIL_EST_FASTUP, true)
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 8dad5aa600ea..ffa959e91227 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -104,7 +104,7 @@ static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* update no idle residency and return.
*/
if (current_clr_polling_and_test()) {
- dev->last_residency = 0;
+ dev->last_residency_ns = 0;
local_irq_enable();
return -EBUSY;
}
@@ -165,7 +165,9 @@ static void cpuidle_idle_call(void)
* until a proper wakeup interrupt happens.
*/
- if (idle_should_enter_s2idle() || dev->use_deepest_state) {
+ if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
+ u64 max_latency_ns;
+
if (idle_should_enter_s2idle()) {
rcu_idle_enter();
@@ -176,12 +178,16 @@ static void cpuidle_idle_call(void)
}
rcu_idle_exit();
+
+ max_latency_ns = U64_MAX;
+ } else {
+ max_latency_ns = dev->forced_idle_latency_limit_ns;
}
tick_nohz_idle_stop_tick();
rcu_idle_enter();
- next_state = cpuidle_find_deepest_state(drv, dev);
+ next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
call_cpuidle(drv, dev, next_state);
} else {
bool stop_tick = true;
@@ -311,7 +317,7 @@ static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
return HRTIMER_NORESTART;
}
-void play_idle(unsigned long duration_us)
+void play_idle_precise(u64 duration_ns, u64 latency_ns)
{
struct idle_timer it;
@@ -323,29 +329,29 @@ void play_idle(unsigned long duration_us)
WARN_ON_ONCE(current->nr_cpus_allowed != 1);
WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
- WARN_ON_ONCE(!duration_us);
+ WARN_ON_ONCE(!duration_ns);
rcu_sleep_check();
preempt_disable();
current->flags |= PF_IDLE;
- cpuidle_use_deepest_state(true);
+ cpuidle_use_deepest_state(latency_ns);
it.done = 0;
hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
it.timer.function = idle_inject_timer_fn;
- hrtimer_start(&it.timer, ns_to_ktime(duration_us * NSEC_PER_USEC),
+ hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
HRTIMER_MODE_REL_PINNED);
while (!READ_ONCE(it.done))
do_idle();
- cpuidle_use_deepest_state(false);
+ cpuidle_use_deepest_state(0);
current->flags &= ~PF_IDLE;
preempt_fold_need_resched();
preempt_enable();
}
-EXPORT_SYMBOL_GPL(play_idle);
+EXPORT_SYMBOL_GPL(play_idle_precise);
void cpu_startup_entry(enum cpuhp_state state)
{
@@ -365,6 +371,12 @@ select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags)
{
return task_cpu(p); /* IDLE tasks as never migrated */
}
+
+static int
+balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+{
+ return WARN_ON_ONCE(1);
+}
#endif
/*
@@ -375,25 +387,21 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl
resched_curr(rq);
}
-static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
{
}
-static void set_next_task_idle(struct rq *rq, struct task_struct *next)
+static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
{
update_idle_core(rq);
schedstat_inc(rq->sched_goidle);
}
-static struct task_struct *
-pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+struct task_struct *pick_next_task_idle(struct rq *rq)
{
struct task_struct *next = rq->idle;
- if (prev)
- put_prev_task(rq, prev);
-
- set_next_task_idle(rq, next);
+ set_next_task_idle(rq, next, true);
return next;
}
@@ -460,6 +468,7 @@ const struct sched_class idle_sched_class = {
.set_next_task = set_next_task_idle,
#ifdef CONFIG_SMP
+ .balance = balance_idle,
.select_task_rq = select_task_rq_idle,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index ebaa4e619684..e591d40fd645 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -1469,6 +1469,22 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
resched_curr(rq);
}
+static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+{
+ if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
+ /*
+ * This is OK, because current is on_cpu, which avoids it being
+ * picked for load-balance and preemption/IRQs are still
+ * disabled avoiding further scheduler activity on it and we've
+ * not yet started the picking loop.
+ */
+ rq_unpin_lock(rq, rf);
+ pull_rt_task(rq);
+ rq_repin_lock(rq, rf);
+ }
+
+ return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
+}
#endif /* CONFIG_SMP */
/*
@@ -1499,13 +1515,16 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flag
#endif
}
-static inline void set_next_task_rt(struct rq *rq, struct task_struct *p)
+static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
{
p->se.exec_start = rq_clock_task(rq);
/* The running task is never eligible for pushing */
dequeue_pushable_task(rq, p);
+ if (!first)
+ return;
+
/*
* If prev task was rt, put_prev_task() has already updated the
* utilization. We only care of the case where we start to schedule a
@@ -1548,25 +1567,19 @@ static struct task_struct *_pick_next_task_rt(struct rq *rq)
return rt_task_of(rt_se);
}
-static struct task_struct *
-pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct task_struct *p;
- struct rt_rq *rt_rq = &rq->rt;
-
- WARN_ON_ONCE(prev || rf);
- if (!rt_rq->rt_queued)
+ if (!sched_rt_runnable(rq))
return NULL;
p = _pick_next_task_rt(rq);
-
- set_next_task_rt(rq, p);
-
+ set_next_task_rt(rq, p, true);
return p;
}
-static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
@@ -1578,18 +1591,6 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct rq_fla
*/
if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
-
- if (rf && !on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
- /*
- * This is OK, because current is on_cpu, which avoids it being
- * picked for load-balance and preemption/IRQs are still
- * disabled avoiding further scheduler activity on it and we've
- * not yet started the picking loop.
- */
- rq_unpin_lock(rq, rf);
- pull_rt_task(rq);
- rq_repin_lock(rq, rf);
- }
}
#ifdef CONFIG_SMP
@@ -2366,8 +2367,8 @@ const struct sched_class rt_sched_class = {
.set_next_task = set_next_task_rt,
#ifdef CONFIG_SMP
+ .balance = balance_rt,
.select_task_rq = select_task_rq_rt,
-
.set_cpus_allowed = set_cpus_allowed_common,
.rq_online = rq_online_rt,
.rq_offline = rq_offline_rt,
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 0db2c1b3361e..280a3c735935 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -1713,24 +1713,13 @@ struct sched_class {
void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
- /*
- * Both @prev and @rf are optional and may be NULL, in which case the
- * caller must already have invoked put_prev_task(rq, prev, rf).
- *
- * Otherwise it is the responsibility of the pick_next_task() to call
- * put_prev_task() on the @prev task or something equivalent, IFF it
- * returns a next task.
- *
- * In that case (@rf != NULL) it may return RETRY_TASK when it finds a
- * higher prio class has runnable tasks.
- */
- struct task_struct * (*pick_next_task)(struct rq *rq,
- struct task_struct *prev,
- struct rq_flags *rf);
- void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct rq_flags *rf);
- void (*set_next_task)(struct rq *rq, struct task_struct *p);
+ struct task_struct *(*pick_next_task)(struct rq *rq);
+
+ void (*put_prev_task)(struct rq *rq, struct task_struct *p);
+ void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
#ifdef CONFIG_SMP
+ int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
@@ -1773,13 +1762,13 @@ struct sched_class {
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
WARN_ON_ONCE(rq->curr != prev);
- prev->sched_class->put_prev_task(rq, prev, NULL);
+ prev->sched_class->put_prev_task(rq, prev);
}
static inline void set_next_task(struct rq *rq, struct task_struct *next)
{
WARN_ON_ONCE(rq->curr != next);
- next->sched_class->set_next_task(rq, next);
+ next->sched_class->set_next_task(rq, next, false);
}
#ifdef CONFIG_SMP
@@ -1787,8 +1776,12 @@ static inline void set_next_task(struct rq *rq, struct task_struct *next)
#else
#define sched_class_highest (&dl_sched_class)
#endif
+
+#define for_class_range(class, _from, _to) \
+ for (class = (_from); class != (_to); class = class->next)
+
#define for_each_class(class) \
- for (class = sched_class_highest; class; class = class->next)
+ for_class_range(class, sched_class_highest, NULL)
extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
@@ -1796,6 +1789,28 @@ extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;
+static inline bool sched_stop_runnable(struct rq *rq)
+{
+ return rq->stop && task_on_rq_queued(rq->stop);
+}
+
+static inline bool sched_dl_runnable(struct rq *rq)
+{
+ return rq->dl.dl_nr_running > 0;
+}
+
+static inline bool sched_rt_runnable(struct rq *rq)
+{
+ return rq->rt.rt_queued > 0;
+}
+
+static inline bool sched_fair_runnable(struct rq *rq)
+{
+ return rq->cfs.nr_running > 0;
+}
+
+extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
+extern struct task_struct *pick_next_task_idle(struct rq *rq);
#ifdef CONFIG_SMP
@@ -2285,7 +2300,7 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
#endif /* CONFIG_CPU_FREQ */
#ifdef CONFIG_UCLAMP_TASK
-enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
+unsigned int uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
static __always_inline
unsigned int uclamp_util_with(struct rq *rq, unsigned int util,
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index 7e1cee4e65b2..4c9e9975684f 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -15,6 +15,12 @@ select_task_rq_stop(struct task_struct *p, int cpu, int sd_flag, int flags)
{
return task_cpu(p); /* stop tasks as never migrate */
}
+
+static int
+balance_stop(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+{
+ return sched_stop_runnable(rq);
+}
#endif /* CONFIG_SMP */
static void
@@ -23,24 +29,18 @@ check_preempt_curr_stop(struct rq *rq, struct task_struct *p, int flags)
/* we're never preempted */
}
-static void set_next_task_stop(struct rq *rq, struct task_struct *stop)
+static void set_next_task_stop(struct rq *rq, struct task_struct *stop, bool first)
{
stop->se.exec_start = rq_clock_task(rq);
}
-static struct task_struct *
-pick_next_task_stop(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+static struct task_struct *pick_next_task_stop(struct rq *rq)
{
- struct task_struct *stop = rq->stop;
-
- WARN_ON_ONCE(prev || rf);
-
- if (!stop || !task_on_rq_queued(stop))
+ if (!sched_stop_runnable(rq))
return NULL;
- set_next_task_stop(rq, stop);
-
- return stop;
+ set_next_task_stop(rq, rq->stop, true);
+ return rq->stop;
}
static void
@@ -60,7 +60,7 @@ static void yield_task_stop(struct rq *rq)
BUG(); /* the stop task should never yield, its pointless. */
}
-static void put_prev_task_stop(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
+static void put_prev_task_stop(struct rq *rq, struct task_struct *prev)
{
struct task_struct *curr = rq->curr;
u64 delta_exec;
@@ -129,6 +129,7 @@ const struct sched_class stop_sched_class = {
.set_next_task = set_next_task_stop,
#ifdef CONFIG_SMP
+ .balance = balance_stop,
.select_task_rq = select_task_rq_stop,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 49b835f1305f..6ec1e595b1d4 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -1201,16 +1201,13 @@ static void set_domain_attribute(struct sched_domain *sd,
if (!attr || attr->relax_domain_level < 0) {
if (default_relax_domain_level < 0)
return;
- else
- request = default_relax_domain_level;
+ request = default_relax_domain_level;
} else
request = attr->relax_domain_level;
- if (request < sd->level) {
+
+ if (sd->level > request) {
/* Turn off idle balance on this domain: */
sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- } else {
- /* Turn on idle balance on this domain: */
- sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
}
}
diff --git a/kernel/signal.c b/kernel/signal.c
index c4da1ef56fdf..bcd46f547db3 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -2205,8 +2205,8 @@ static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t
*/
preempt_disable();
read_unlock(&tasklist_lock);
- preempt_enable_no_resched();
cgroup_enter_frozen();
+ preempt_enable_no_resched();
freezable_schedule();
cgroup_leave_frozen(true);
} else {
diff --git a/kernel/stacktrace.c b/kernel/stacktrace.c
index 6d1f68b7e528..2af66e449aa6 100644
--- a/kernel/stacktrace.c
+++ b/kernel/stacktrace.c
@@ -141,7 +141,8 @@ unsigned int stack_trace_save_tsk(struct task_struct *tsk, unsigned long *store,
struct stacktrace_cookie c = {
.store = store,
.size = size,
- .skip = skipnr + 1,
+ /* skip this function if they are tracing us */
+ .skip = skipnr + (current == tsk),
};
if (!try_get_task_stack(tsk))
@@ -298,7 +299,8 @@ unsigned int stack_trace_save_tsk(struct task_struct *task,
struct stack_trace trace = {
.entries = store,
.max_entries = size,
- .skip = skipnr + 1,
+ /* skip this function if they are tracing us */
+ .skip = skipnr + (current == task),
};
save_stack_trace_tsk(task, &trace);
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c
index 998d50ee2d9b..1fe34a9fabc2 100644
--- a/kernel/stop_machine.c
+++ b/kernel/stop_machine.c
@@ -235,6 +235,7 @@ static int multi_cpu_stop(void *data)
*/
touch_nmi_watchdog();
}
+ rcu_momentary_dyntick_idle();
} while (curstate != MULTI_STOP_EXIT);
local_irq_restore(flags);
diff --git a/kernel/sysctl-test.c b/kernel/sysctl-test.c
new file mode 100644
index 000000000000..2a63241a8453
--- /dev/null
+++ b/kernel/sysctl-test.c
@@ -0,0 +1,392 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * KUnit test of proc sysctl.
+ */
+
+#include <kunit/test.h>
+#include <linux/sysctl.h>
+
+#define KUNIT_PROC_READ 0
+#define KUNIT_PROC_WRITE 1
+
+static int i_zero;
+static int i_one_hundred = 100;
+
+/*
+ * Test that proc_dointvec will not try to use a NULL .data field even when the
+ * length is non-zero.
+ */
+static void sysctl_test_api_dointvec_null_tbl_data(struct kunit *test)
+{
+ struct ctl_table null_data_table = {
+ .procname = "foo",
+ /*
+ * Here we are testing that proc_dointvec behaves correctly when
+ * we give it a NULL .data field. Normally this would point to a
+ * piece of memory where the value would be stored.
+ */
+ .data = NULL,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ /*
+ * proc_dointvec expects a buffer in user space, so we allocate one. We
+ * also need to cast it to __user so sparse doesn't get mad.
+ */
+ void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
+ GFP_USER);
+ size_t len;
+ loff_t pos;
+
+ /*
+ * We don't care what the starting length is since proc_dointvec should
+ * not try to read because .data is NULL.
+ */
+ len = 1234;
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&null_data_table,
+ KUNIT_PROC_READ, buffer, &len,
+ &pos));
+ KUNIT_EXPECT_EQ(test, (size_t)0, len);
+
+ /*
+ * See above.
+ */
+ len = 1234;
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&null_data_table,
+ KUNIT_PROC_WRITE, buffer, &len,
+ &pos));
+ KUNIT_EXPECT_EQ(test, (size_t)0, len);
+}
+
+/*
+ * Similar to the previous test, we create a struct ctrl_table that has a .data
+ * field that proc_dointvec cannot do anything with; however, this time it is
+ * because we tell proc_dointvec that the size is 0.
+ */
+static void sysctl_test_api_dointvec_table_maxlen_unset(struct kunit *test)
+{
+ int data = 0;
+ struct ctl_table data_maxlen_unset_table = {
+ .procname = "foo",
+ .data = &data,
+ /*
+ * So .data is no longer NULL, but we tell proc_dointvec its
+ * length is 0, so it still shouldn't try to use it.
+ */
+ .maxlen = 0,
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
+ GFP_USER);
+ size_t len;
+ loff_t pos;
+
+ /*
+ * As before, we don't care what buffer length is because proc_dointvec
+ * cannot do anything because its internal .data buffer has zero length.
+ */
+ len = 1234;
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&data_maxlen_unset_table,
+ KUNIT_PROC_READ, buffer, &len,
+ &pos));
+ KUNIT_EXPECT_EQ(test, (size_t)0, len);
+
+ /*
+ * See previous comment.
+ */
+ len = 1234;
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&data_maxlen_unset_table,
+ KUNIT_PROC_WRITE, buffer, &len,
+ &pos));
+ KUNIT_EXPECT_EQ(test, (size_t)0, len);
+}
+
+/*
+ * Here we provide a valid struct ctl_table, but we try to read and write from
+ * it using a buffer of zero length, so it should still fail in a similar way as
+ * before.
+ */
+static void sysctl_test_api_dointvec_table_len_is_zero(struct kunit *test)
+{
+ int data = 0;
+ /* Good table. */
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
+ GFP_USER);
+ /*
+ * However, now our read/write buffer has zero length.
+ */
+ size_t len = 0;
+ loff_t pos;
+
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ, buffer,
+ &len, &pos));
+ KUNIT_EXPECT_EQ(test, (size_t)0, len);
+
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_WRITE, buffer,
+ &len, &pos));
+ KUNIT_EXPECT_EQ(test, (size_t)0, len);
+}
+
+/*
+ * Test that proc_dointvec refuses to read when the file position is non-zero.
+ */
+static void sysctl_test_api_dointvec_table_read_but_position_set(
+ struct kunit *test)
+{
+ int data = 0;
+ /* Good table. */
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ void __user *buffer = (void __user *)kunit_kzalloc(test, sizeof(int),
+ GFP_USER);
+ /*
+ * We don't care about our buffer length because we start off with a
+ * non-zero file position.
+ */
+ size_t len = 1234;
+ /*
+ * proc_dointvec should refuse to read into the buffer since the file
+ * pos is non-zero.
+ */
+ loff_t pos = 1;
+
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ, buffer,
+ &len, &pos));
+ KUNIT_EXPECT_EQ(test, (size_t)0, len);
+}
+
+/*
+ * Test that we can read a two digit number in a sufficiently size buffer.
+ * Nothing fancy.
+ */
+static void sysctl_test_dointvec_read_happy_single_positive(struct kunit *test)
+{
+ int data = 0;
+ /* Good table. */
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ size_t len = 4;
+ loff_t pos = 0;
+ char *buffer = kunit_kzalloc(test, len, GFP_USER);
+ char __user *user_buffer = (char __user *)buffer;
+ /* Store 13 in the data field. */
+ *((int *)table.data) = 13;
+
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ,
+ user_buffer, &len, &pos));
+ KUNIT_ASSERT_EQ(test, (size_t)3, len);
+ buffer[len] = '\0';
+ /* And we read 13 back out. */
+ KUNIT_EXPECT_STREQ(test, "13\n", buffer);
+}
+
+/*
+ * Same as previous test, just now with negative numbers.
+ */
+static void sysctl_test_dointvec_read_happy_single_negative(struct kunit *test)
+{
+ int data = 0;
+ /* Good table. */
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ size_t len = 5;
+ loff_t pos = 0;
+ char *buffer = kunit_kzalloc(test, len, GFP_USER);
+ char __user *user_buffer = (char __user *)buffer;
+ *((int *)table.data) = -16;
+
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_READ,
+ user_buffer, &len, &pos));
+ KUNIT_ASSERT_EQ(test, (size_t)4, len);
+ buffer[len] = '\0';
+ KUNIT_EXPECT_STREQ(test, "-16\n", (char *)buffer);
+}
+
+/*
+ * Test that a simple positive write works.
+ */
+static void sysctl_test_dointvec_write_happy_single_positive(struct kunit *test)
+{
+ int data = 0;
+ /* Good table. */
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ char input[] = "9";
+ size_t len = sizeof(input) - 1;
+ loff_t pos = 0;
+ char *buffer = kunit_kzalloc(test, len, GFP_USER);
+ char __user *user_buffer = (char __user *)buffer;
+
+ memcpy(buffer, input, len);
+
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_WRITE,
+ user_buffer, &len, &pos));
+ KUNIT_EXPECT_EQ(test, sizeof(input) - 1, len);
+ KUNIT_EXPECT_EQ(test, sizeof(input) - 1, (size_t)pos);
+ KUNIT_EXPECT_EQ(test, 9, *((int *)table.data));
+}
+
+/*
+ * Same as previous test, but now with negative numbers.
+ */
+static void sysctl_test_dointvec_write_happy_single_negative(struct kunit *test)
+{
+ int data = 0;
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ char input[] = "-9";
+ size_t len = sizeof(input) - 1;
+ loff_t pos = 0;
+ char *buffer = kunit_kzalloc(test, len, GFP_USER);
+ char __user *user_buffer = (char __user *)buffer;
+
+ memcpy(buffer, input, len);
+
+ KUNIT_EXPECT_EQ(test, 0, proc_dointvec(&table, KUNIT_PROC_WRITE,
+ user_buffer, &len, &pos));
+ KUNIT_EXPECT_EQ(test, sizeof(input) - 1, len);
+ KUNIT_EXPECT_EQ(test, sizeof(input) - 1, (size_t)pos);
+ KUNIT_EXPECT_EQ(test, -9, *((int *)table.data));
+}
+
+/*
+ * Test that writing a value smaller than the minimum possible value is not
+ * allowed.
+ */
+static void sysctl_test_api_dointvec_write_single_less_int_min(
+ struct kunit *test)
+{
+ int data = 0;
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ size_t max_len = 32, len = max_len;
+ loff_t pos = 0;
+ char *buffer = kunit_kzalloc(test, max_len, GFP_USER);
+ char __user *user_buffer = (char __user *)buffer;
+ unsigned long abs_of_less_than_min = (unsigned long)INT_MAX
+ - (INT_MAX + INT_MIN) + 1;
+
+ /*
+ * We use this rigmarole to create a string that contains a value one
+ * less than the minimum accepted value.
+ */
+ KUNIT_ASSERT_LT(test,
+ (size_t)snprintf(buffer, max_len, "-%lu",
+ abs_of_less_than_min),
+ max_len);
+
+ KUNIT_EXPECT_EQ(test, -EINVAL, proc_dointvec(&table, KUNIT_PROC_WRITE,
+ user_buffer, &len, &pos));
+ KUNIT_EXPECT_EQ(test, max_len, len);
+ KUNIT_EXPECT_EQ(test, 0, *((int *)table.data));
+}
+
+/*
+ * Test that writing the maximum possible value works.
+ */
+static void sysctl_test_api_dointvec_write_single_greater_int_max(
+ struct kunit *test)
+{
+ int data = 0;
+ struct ctl_table table = {
+ .procname = "foo",
+ .data = &data,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ .extra1 = &i_zero,
+ .extra2 = &i_one_hundred,
+ };
+ size_t max_len = 32, len = max_len;
+ loff_t pos = 0;
+ char *buffer = kunit_kzalloc(test, max_len, GFP_USER);
+ char __user *user_buffer = (char __user *)buffer;
+ unsigned long greater_than_max = (unsigned long)INT_MAX + 1;
+
+ KUNIT_ASSERT_GT(test, greater_than_max, (unsigned long)INT_MAX);
+ KUNIT_ASSERT_LT(test, (size_t)snprintf(buffer, max_len, "%lu",
+ greater_than_max),
+ max_len);
+ KUNIT_EXPECT_EQ(test, -EINVAL, proc_dointvec(&table, KUNIT_PROC_WRITE,
+ user_buffer, &len, &pos));
+ KUNIT_ASSERT_EQ(test, max_len, len);
+ KUNIT_EXPECT_EQ(test, 0, *((int *)table.data));
+}
+
+static struct kunit_case sysctl_test_cases[] = {
+ KUNIT_CASE(sysctl_test_api_dointvec_null_tbl_data),
+ KUNIT_CASE(sysctl_test_api_dointvec_table_maxlen_unset),
+ KUNIT_CASE(sysctl_test_api_dointvec_table_len_is_zero),
+ KUNIT_CASE(sysctl_test_api_dointvec_table_read_but_position_set),
+ KUNIT_CASE(sysctl_test_dointvec_read_happy_single_positive),
+ KUNIT_CASE(sysctl_test_dointvec_read_happy_single_negative),
+ KUNIT_CASE(sysctl_test_dointvec_write_happy_single_positive),
+ KUNIT_CASE(sysctl_test_dointvec_write_happy_single_negative),
+ KUNIT_CASE(sysctl_test_api_dointvec_write_single_less_int_min),
+ KUNIT_CASE(sysctl_test_api_dointvec_write_single_greater_int_max),
+ {}
+};
+
+static struct kunit_suite sysctl_test_suite = {
+ .name = "sysctl_test",
+ .test_cases = sysctl_test_cases,
+};
+
+kunit_test_suite(sysctl_test_suite);
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 65eb796610dc..069ca78fb0bf 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -771,7 +771,7 @@ int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
/* fill PPS status fields */
pps_fill_timex(txc);
- txc->time.tv_sec = (time_t)ts->tv_sec;
+ txc->time.tv_sec = ts->tv_sec;
txc->time.tv_usec = ts->tv_nsec;
if (!(time_status & STA_NANO))
txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index 955851748dc3..8b192e67aabc 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -172,6 +172,7 @@ static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
#ifdef CONFIG_NO_HZ_FULL
cpumask_var_t tick_nohz_full_mask;
bool tick_nohz_full_running;
+EXPORT_SYMBOL_GPL(tick_nohz_full_running);
static atomic_t tick_dep_mask;
static bool check_tick_dependency(atomic_t *dep)
@@ -198,6 +199,11 @@ static bool check_tick_dependency(atomic_t *dep)
return true;
}
+ if (val & TICK_DEP_MASK_RCU) {
+ trace_tick_stop(0, TICK_DEP_MASK_RCU);
+ return true;
+ }
+
return false;
}
@@ -324,6 +330,7 @@ void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
preempt_enable();
}
}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
@@ -331,6 +338,7 @@ void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
atomic_andnot(BIT(bit), &ts->tick_dep_mask);
}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
/*
* Set a per-task tick dependency. Posix CPU timers need this in order to elapse
@@ -344,11 +352,13 @@ void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
*/
tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
/*
* Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
@@ -397,6 +407,7 @@ void __init tick_nohz_full_setup(cpumask_var_t cpumask)
cpumask_copy(tick_nohz_full_mask, cpumask);
tick_nohz_full_running = true;
}
+EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
static int tick_nohz_cpu_down(unsigned int cpu)
{
@@ -1119,7 +1130,7 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
unsigned long ticks;
- if (vtime_accounting_cpu_enabled())
+ if (vtime_accounting_enabled_this_cpu())
return;
/*
* We stopped the tick in idle. Update process times would miss the
diff --git a/kernel/time/vsyscall.c b/kernel/time/vsyscall.c
index 4bc37ac3bb05..5ee0f7709410 100644
--- a/kernel/time/vsyscall.c
+++ b/kernel/time/vsyscall.c
@@ -110,8 +110,7 @@ void update_vsyscall(struct timekeeper *tk)
nsec = nsec + tk->wall_to_monotonic.tv_nsec;
vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
- if (__arch_use_vsyscall(vdata))
- update_vdso_data(vdata, tk);
+ update_vdso_data(vdata, tk);
__arch_update_vsyscall(vdata, tk);
@@ -124,10 +123,8 @@ void update_vsyscall_tz(void)
{
struct vdso_data *vdata = __arch_get_k_vdso_data();
- if (__arch_use_vsyscall(vdata)) {
- vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
- vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
- }
+ vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest;
+ vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime;
__arch_sync_vdso_data(vdata);
}
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig
index f67620499faa..cdf5afa87f65 100644
--- a/kernel/trace/Kconfig
+++ b/kernel/trace/Kconfig
@@ -109,7 +109,6 @@ config PREEMPTIRQ_TRACEPOINTS
config TRACING
bool
- select DEBUG_FS
select RING_BUFFER
select STACKTRACE if STACKTRACE_SUPPORT
select TRACEPOINTS
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c
index 2d6e93ab0478..475e29498bca 100644
--- a/kernel/trace/blktrace.c
+++ b/kernel/trace/blktrace.c
@@ -64,8 +64,7 @@ static void blk_unregister_tracepoints(void);
* Send out a notify message.
*/
static void trace_note(struct blk_trace *bt, pid_t pid, int action,
- const void *data, size_t len,
- union kernfs_node_id *cgid)
+ const void *data, size_t len, u64 cgid)
{
struct blk_io_trace *t;
struct ring_buffer_event *event = NULL;
@@ -73,7 +72,7 @@ static void trace_note(struct blk_trace *bt, pid_t pid, int action,
int pc = 0;
int cpu = smp_processor_id();
bool blk_tracer = blk_tracer_enabled;
- ssize_t cgid_len = cgid ? sizeof(*cgid) : 0;
+ ssize_t cgid_len = cgid ? sizeof(cgid) : 0;
if (blk_tracer) {
buffer = blk_tr->trace_buffer.buffer;
@@ -100,8 +99,8 @@ record_it:
t->pid = pid;
t->cpu = cpu;
t->pdu_len = len + cgid_len;
- if (cgid)
- memcpy((void *)t + sizeof(*t), cgid, cgid_len);
+ if (cgid_len)
+ memcpy((void *)t + sizeof(*t), &cgid, cgid_len);
memcpy((void *) t + sizeof(*t) + cgid_len, data, len);
if (blk_tracer)
@@ -122,7 +121,7 @@ static void trace_note_tsk(struct task_struct *tsk)
spin_lock_irqsave(&running_trace_lock, flags);
list_for_each_entry(bt, &running_trace_list, running_list) {
trace_note(bt, tsk->pid, BLK_TN_PROCESS, tsk->comm,
- sizeof(tsk->comm), NULL);
+ sizeof(tsk->comm), 0);
}
spin_unlock_irqrestore(&running_trace_lock, flags);
}
@@ -139,7 +138,7 @@ static void trace_note_time(struct blk_trace *bt)
words[1] = now.tv_nsec;
local_irq_save(flags);
- trace_note(bt, 0, BLK_TN_TIMESTAMP, words, sizeof(words), NULL);
+ trace_note(bt, 0, BLK_TN_TIMESTAMP, words, sizeof(words), 0);
local_irq_restore(flags);
}
@@ -172,9 +171,9 @@ void __trace_note_message(struct blk_trace *bt, struct blkcg *blkcg,
blkcg = NULL;
#ifdef CONFIG_BLK_CGROUP
trace_note(bt, 0, BLK_TN_MESSAGE, buf, n,
- blkcg ? cgroup_get_kernfs_id(blkcg->css.cgroup) : NULL);
+ blkcg ? cgroup_id(blkcg->css.cgroup) : 1);
#else
- trace_note(bt, 0, BLK_TN_MESSAGE, buf, n, NULL);
+ trace_note(bt, 0, BLK_TN_MESSAGE, buf, n, 0);
#endif
local_irq_restore(flags);
}
@@ -212,7 +211,7 @@ static const u32 ddir_act[2] = { BLK_TC_ACT(BLK_TC_READ),
*/
static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes,
int op, int op_flags, u32 what, int error, int pdu_len,
- void *pdu_data, union kernfs_node_id *cgid)
+ void *pdu_data, u64 cgid)
{
struct task_struct *tsk = current;
struct ring_buffer_event *event = NULL;
@@ -223,7 +222,7 @@ static void __blk_add_trace(struct blk_trace *bt, sector_t sector, int bytes,
pid_t pid;
int cpu, pc = 0;
bool blk_tracer = blk_tracer_enabled;
- ssize_t cgid_len = cgid ? sizeof(*cgid) : 0;
+ ssize_t cgid_len = cgid ? sizeof(cgid) : 0;
if (unlikely(bt->trace_state != Blktrace_running && !blk_tracer))
return;
@@ -294,7 +293,7 @@ record_it:
t->pdu_len = pdu_len + cgid_len;
if (cgid_len)
- memcpy((void *)t + sizeof(*t), cgid, cgid_len);
+ memcpy((void *)t + sizeof(*t), &cgid, cgid_len);
if (pdu_len)
memcpy((void *)t + sizeof(*t) + cgid_len, pdu_data, pdu_len);
@@ -751,31 +750,29 @@ void blk_trace_shutdown(struct request_queue *q)
}
#ifdef CONFIG_BLK_CGROUP
-static union kernfs_node_id *
-blk_trace_bio_get_cgid(struct request_queue *q, struct bio *bio)
+static u64 blk_trace_bio_get_cgid(struct request_queue *q, struct bio *bio)
{
struct blk_trace *bt = q->blk_trace;
if (!bt || !(blk_tracer_flags.val & TRACE_BLK_OPT_CGROUP))
- return NULL;
+ return 0;
if (!bio->bi_blkg)
- return NULL;
- return cgroup_get_kernfs_id(bio_blkcg(bio)->css.cgroup);
+ return 0;
+ return cgroup_id(bio_blkcg(bio)->css.cgroup);
}
#else
-static union kernfs_node_id *
-blk_trace_bio_get_cgid(struct request_queue *q, struct bio *bio)
+u64 blk_trace_bio_get_cgid(struct request_queue *q, struct bio *bio)
{
- return NULL;
+ return 0;
}
#endif
-static union kernfs_node_id *
+static u64
blk_trace_request_get_cgid(struct request_queue *q, struct request *rq)
{
if (!rq->bio)
- return NULL;
+ return 0;
/* Use the first bio */
return blk_trace_bio_get_cgid(q, rq->bio);
}
@@ -797,8 +794,7 @@ blk_trace_request_get_cgid(struct request_queue *q, struct request *rq)
*
**/
static void blk_add_trace_rq(struct request *rq, int error,
- unsigned int nr_bytes, u32 what,
- union kernfs_node_id *cgid)
+ unsigned int nr_bytes, u32 what, u64 cgid)
{
struct blk_trace *bt = rq->q->blk_trace;
@@ -913,7 +909,7 @@ static void blk_add_trace_getrq(void *ignore,
if (bt)
__blk_add_trace(bt, 0, 0, rw, 0, BLK_TA_GETRQ, 0, 0,
- NULL, NULL);
+ NULL, 0);
}
}
@@ -929,7 +925,7 @@ static void blk_add_trace_sleeprq(void *ignore,
if (bt)
__blk_add_trace(bt, 0, 0, rw, 0, BLK_TA_SLEEPRQ,
- 0, 0, NULL, NULL);
+ 0, 0, NULL, 0);
}
}
@@ -938,7 +934,7 @@ static void blk_add_trace_plug(void *ignore, struct request_queue *q)
struct blk_trace *bt = q->blk_trace;
if (bt)
- __blk_add_trace(bt, 0, 0, 0, 0, BLK_TA_PLUG, 0, 0, NULL, NULL);
+ __blk_add_trace(bt, 0, 0, 0, 0, BLK_TA_PLUG, 0, 0, NULL, 0);
}
static void blk_add_trace_unplug(void *ignore, struct request_queue *q,
@@ -955,7 +951,7 @@ static void blk_add_trace_unplug(void *ignore, struct request_queue *q,
else
what = BLK_TA_UNPLUG_TIMER;
- __blk_add_trace(bt, 0, 0, 0, 0, what, 0, sizeof(rpdu), &rpdu, NULL);
+ __blk_add_trace(bt, 0, 0, 0, 0, what, 0, sizeof(rpdu), &rpdu, 0);
}
}
@@ -1172,19 +1168,17 @@ const struct blk_io_trace *te_blk_io_trace(const struct trace_entry *ent)
static inline const void *pdu_start(const struct trace_entry *ent, bool has_cg)
{
- return (void *)(te_blk_io_trace(ent) + 1) +
- (has_cg ? sizeof(union kernfs_node_id) : 0);
+ return (void *)(te_blk_io_trace(ent) + 1) + (has_cg ? sizeof(u64) : 0);
}
-static inline const void *cgid_start(const struct trace_entry *ent)
+static inline u64 t_cgid(const struct trace_entry *ent)
{
- return (void *)(te_blk_io_trace(ent) + 1);
+ return *(u64 *)(te_blk_io_trace(ent) + 1);
}
static inline int pdu_real_len(const struct trace_entry *ent, bool has_cg)
{
- return te_blk_io_trace(ent)->pdu_len -
- (has_cg ? sizeof(union kernfs_node_id) : 0);
+ return te_blk_io_trace(ent)->pdu_len - (has_cg ? sizeof(u64) : 0);
}
static inline u32 t_action(const struct trace_entry *ent)
@@ -1257,7 +1251,7 @@ static void blk_log_action(struct trace_iterator *iter, const char *act,
fill_rwbs(rwbs, t);
if (has_cg) {
- const union kernfs_node_id *id = cgid_start(iter->ent);
+ u64 id = t_cgid(iter->ent);
if (blk_tracer_flags.val & TRACE_BLK_OPT_CGNAME) {
char blkcg_name_buf[NAME_MAX + 1] = "<...>";
@@ -1267,11 +1261,25 @@ static void blk_log_action(struct trace_iterator *iter, const char *act,
trace_seq_printf(&iter->seq, "%3d,%-3d %s %2s %3s ",
MAJOR(t->device), MINOR(t->device),
blkcg_name_buf, act, rwbs);
- } else
+ } else {
+ /*
+ * The cgid portion used to be "INO,GEN". Userland
+ * builds a FILEID_INO32_GEN fid out of them and
+ * opens the cgroup using open_by_handle_at(2).
+ * While 32bit ino setups are still the same, 64bit
+ * ones now use the 64bit ino as the whole ID and
+ * no longer use generation.
+ *
+ * Regarldess of the content, always output
+ * "LOW32,HIGH32" so that FILEID_INO32_GEN fid can
+ * be mapped back to @id on both 64 and 32bit ino
+ * setups. See __kernfs_fh_to_dentry().
+ */
trace_seq_printf(&iter->seq,
- "%3d,%-3d %x,%-x %2s %3s ",
+ "%3d,%-3d %llx,%-llx %2s %3s ",
MAJOR(t->device), MINOR(t->device),
- id->ino, id->generation, act, rwbs);
+ id & U32_MAX, id >> 32, act, rwbs);
+ }
} else
trace_seq_printf(&iter->seq, "%3d,%-3d %2s %3s ",
MAJOR(t->device), MINOR(t->device), act, rwbs);
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index 44bd08f2443b..ffc91d4935ac 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -138,24 +138,140 @@ static const struct bpf_func_proto bpf_override_return_proto = {
};
#endif
-BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
+BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
+ const void __user *, unsafe_ptr)
{
- int ret;
+ int ret = probe_user_read(dst, unsafe_ptr, size);
- ret = security_locked_down(LOCKDOWN_BPF_READ);
- if (ret < 0)
- goto out;
+ if (unlikely(ret < 0))
+ memset(dst, 0, size);
+
+ return ret;
+}
+
+static const struct bpf_func_proto bpf_probe_read_user_proto = {
+ .func = bpf_probe_read_user,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+};
+
+BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
+ const void __user *, unsafe_ptr)
+{
+ int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size);
+
+ if (unlikely(ret < 0))
+ memset(dst, 0, size);
+
+ return ret;
+}
+
+static const struct bpf_func_proto bpf_probe_read_user_str_proto = {
+ .func = bpf_probe_read_user_str,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+};
- ret = probe_kernel_read(dst, unsafe_ptr, size);
+static __always_inline int
+bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr,
+ const bool compat)
+{
+ int ret = security_locked_down(LOCKDOWN_BPF_READ);
+
+ if (unlikely(ret < 0))
+ goto out;
+ ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) :
+ probe_kernel_read_strict(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
out:
memset(dst, 0, size);
+ return ret;
+}
+
+BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
+ const void *, unsafe_ptr)
+{
+ return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false);
+}
+
+static const struct bpf_func_proto bpf_probe_read_kernel_proto = {
+ .func = bpf_probe_read_kernel,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+};
+BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
+ const void *, unsafe_ptr)
+{
+ return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true);
+}
+
+static const struct bpf_func_proto bpf_probe_read_compat_proto = {
+ .func = bpf_probe_read_compat,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+};
+
+static __always_inline int
+bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr,
+ const bool compat)
+{
+ int ret = security_locked_down(LOCKDOWN_BPF_READ);
+
+ if (unlikely(ret < 0))
+ goto out;
+ /*
+ * The strncpy_from_unsafe_*() call will likely not fill the entire
+ * buffer, but that's okay in this circumstance as we're probing
+ * arbitrary memory anyway similar to bpf_probe_read_*() and might
+ * as well probe the stack. Thus, memory is explicitly cleared
+ * only in error case, so that improper users ignoring return
+ * code altogether don't copy garbage; otherwise length of string
+ * is returned that can be used for bpf_perf_event_output() et al.
+ */
+ ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) :
+ strncpy_from_unsafe_strict(dst, unsafe_ptr, size);
+ if (unlikely(ret < 0))
+out:
+ memset(dst, 0, size);
return ret;
}
-static const struct bpf_func_proto bpf_probe_read_proto = {
- .func = bpf_probe_read,
+BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
+ const void *, unsafe_ptr)
+{
+ return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false);
+}
+
+static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
+ .func = bpf_probe_read_kernel_str,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+};
+
+BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
+ const void *, unsafe_ptr)
+{
+ return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true);
+}
+
+static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
+ .func = bpf_probe_read_compat_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
@@ -163,7 +279,7 @@ static const struct bpf_func_proto bpf_probe_read_proto = {
.arg3_type = ARG_ANYTHING,
};
-BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
+BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
u32, size)
{
/*
@@ -186,10 +302,8 @@ BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
return -EPERM;
if (unlikely(!nmi_uaccess_okay()))
return -EPERM;
- if (!access_ok(unsafe_ptr, size))
- return -EPERM;
- return probe_kernel_write(unsafe_ptr, src, size);
+ return probe_user_write(unsafe_ptr, src, size);
}
static const struct bpf_func_proto bpf_probe_write_user_proto = {
@@ -585,41 +699,6 @@ static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
.arg2_type = ARG_ANYTHING,
};
-BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
- const void *, unsafe_ptr)
-{
- int ret;
-
- ret = security_locked_down(LOCKDOWN_BPF_READ);
- if (ret < 0)
- goto out;
-
- /*
- * The strncpy_from_unsafe() call will likely not fill the entire
- * buffer, but that's okay in this circumstance as we're probing
- * arbitrary memory anyway similar to bpf_probe_read() and might
- * as well probe the stack. Thus, memory is explicitly cleared
- * only in error case, so that improper users ignoring return
- * code altogether don't copy garbage; otherwise length of string
- * is returned that can be used for bpf_perf_event_output() et al.
- */
- ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
- if (unlikely(ret < 0))
-out:
- memset(dst, 0, size);
-
- return ret;
-}
-
-static const struct bpf_func_proto bpf_probe_read_str_proto = {
- .func = bpf_probe_read_str,
- .gpl_only = true,
- .ret_type = RET_INTEGER,
- .arg1_type = ARG_PTR_TO_UNINIT_MEM,
- .arg2_type = ARG_CONST_SIZE_OR_ZERO,
- .arg3_type = ARG_ANYTHING,
-};
-
struct send_signal_irq_work {
struct irq_work irq_work;
struct task_struct *task;
@@ -699,8 +778,6 @@ tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_map_pop_elem_proto;
case BPF_FUNC_map_peek_elem:
return &bpf_map_peek_elem_proto;
- case BPF_FUNC_probe_read:
- return &bpf_probe_read_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_tail_call:
@@ -727,8 +804,18 @@ tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_current_task_under_cgroup_proto;
case BPF_FUNC_get_prandom_u32:
return &bpf_get_prandom_u32_proto;
+ case BPF_FUNC_probe_read_user:
+ return &bpf_probe_read_user_proto;
+ case BPF_FUNC_probe_read_kernel:
+ return &bpf_probe_read_kernel_proto;
+ case BPF_FUNC_probe_read:
+ return &bpf_probe_read_compat_proto;
+ case BPF_FUNC_probe_read_user_str:
+ return &bpf_probe_read_user_str_proto;
+ case BPF_FUNC_probe_read_kernel_str:
+ return &bpf_probe_read_kernel_str_proto;
case BPF_FUNC_probe_read_str:
- return &bpf_probe_read_str_proto;
+ return &bpf_probe_read_compat_str_proto;
#ifdef CONFIG_CGROUPS
case BPF_FUNC_get_current_cgroup_id:
return &bpf_get_current_cgroup_id_proto;
@@ -995,6 +1082,8 @@ static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
+extern const struct bpf_func_proto bpf_skb_output_proto;
+
BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
struct bpf_map *, map, u64, flags)
{
@@ -1062,13 +1151,25 @@ raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
}
}
+static const struct bpf_func_proto *
+tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ switch (func_id) {
+#ifdef CONFIG_NET
+ case BPF_FUNC_skb_output:
+ return &bpf_skb_output_proto;
+#endif
+ default:
+ return raw_tp_prog_func_proto(func_id, prog);
+ }
+}
+
static bool raw_tp_prog_is_valid_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
- /* largest tracepoint in the kernel has 12 args */
- if (off < 0 || off >= sizeof(__u64) * 12)
+ if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
return false;
if (type != BPF_READ)
return false;
@@ -1077,6 +1178,20 @@ static bool raw_tp_prog_is_valid_access(int off, int size,
return true;
}
+static bool tracing_prog_is_valid_access(int off, int size,
+ enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
+ return false;
+ if (type != BPF_READ)
+ return false;
+ if (off % size != 0)
+ return false;
+ return btf_ctx_access(off, size, type, prog, info);
+}
+
const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
.get_func_proto = raw_tp_prog_func_proto,
.is_valid_access = raw_tp_prog_is_valid_access,
@@ -1085,6 +1200,14 @@ const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
const struct bpf_prog_ops raw_tracepoint_prog_ops = {
};
+const struct bpf_verifier_ops tracing_verifier_ops = {
+ .get_func_proto = tracing_prog_func_proto,
+ .is_valid_access = tracing_prog_is_valid_access,
+};
+
+const struct bpf_prog_ops tracing_prog_ops = {
+};
+
static bool raw_tp_writable_prog_is_valid_access(int off, int size,
enum bpf_access_type type,
const struct bpf_prog *prog,
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index caae523f4ef3..74439ab5c2b6 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -2618,14 +2618,14 @@ struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
}
static int
-ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec)
+ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
{
int ret;
if (unlikely(ftrace_disabled))
return 0;
- ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR);
+ ret = ftrace_init_nop(mod, rec);
if (ret) {
ftrace_bug_type = FTRACE_BUG_INIT;
ftrace_bug(ret, rec);
@@ -3069,7 +3069,7 @@ static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
* to the NOP instructions.
*/
if (!__is_defined(CC_USING_NOP_MCOUNT) &&
- !ftrace_code_disable(mod, p))
+ !ftrace_nop_initialize(mod, p))
break;
update_cnt++;
diff --git a/kernel/trace/trace_benchmark.c b/kernel/trace/trace_benchmark.c
index 80e0b2aca703..2e9a4746ea85 100644
--- a/kernel/trace/trace_benchmark.c
+++ b/kernel/trace/trace_benchmark.c
@@ -178,14 +178,14 @@ static int benchmark_event_kthread(void *arg)
int trace_benchmark_reg(void)
{
if (!ok_to_run) {
- pr_warning("trace benchmark cannot be started via kernel command line\n");
+ pr_warn("trace benchmark cannot be started via kernel command line\n");
return -EBUSY;
}
bm_event_thread = kthread_run(benchmark_event_kthread,
NULL, "event_benchmark");
if (IS_ERR(bm_event_thread)) {
- pr_warning("trace benchmark failed to create kernel thread\n");
+ pr_warn("trace benchmark failed to create kernel thread\n");
return PTR_ERR(bm_event_thread);
}
diff --git a/kernel/trace/trace_event_perf.c b/kernel/trace/trace_event_perf.c
index a9dfa04ffa44..643e0b19920d 100644
--- a/kernel/trace/trace_event_perf.c
+++ b/kernel/trace/trace_event_perf.c
@@ -8,6 +8,7 @@
#include <linux/module.h>
#include <linux/kprobes.h>
+#include <linux/security.h>
#include "trace.h"
#include "trace_probe.h"
@@ -26,8 +27,10 @@ static int total_ref_count;
static int perf_trace_event_perm(struct trace_event_call *tp_event,
struct perf_event *p_event)
{
+ int ret;
+
if (tp_event->perf_perm) {
- int ret = tp_event->perf_perm(tp_event, p_event);
+ ret = tp_event->perf_perm(tp_event, p_event);
if (ret)
return ret;
}
@@ -46,8 +49,9 @@ static int perf_trace_event_perm(struct trace_event_call *tp_event,
/* The ftrace function trace is allowed only for root. */
if (ftrace_event_is_function(tp_event)) {
- if (perf_paranoid_tracepoint_raw() && !capable(CAP_SYS_ADMIN))
- return -EPERM;
+ ret = perf_allow_tracepoint(&p_event->attr);
+ if (ret)
+ return ret;
if (!is_sampling_event(p_event))
return 0;
@@ -82,8 +86,9 @@ static int perf_trace_event_perm(struct trace_event_call *tp_event,
* ...otherwise raw tracepoint data can be a severe data leak,
* only allow root to have these.
*/
- if (perf_paranoid_tracepoint_raw() && !capable(CAP_SYS_ADMIN))
- return -EPERM;
+ ret = perf_allow_tracepoint(&p_event->attr);
+ if (ret)
+ return ret;
return 0;
}
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index bc2e09a8ea61..bc88fd939f4e 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -248,7 +248,7 @@ struct workqueue_struct {
struct list_head flusher_overflow; /* WQ: flush overflow list */
struct list_head maydays; /* MD: pwqs requesting rescue */
- struct worker *rescuer; /* I: rescue worker */
+ struct worker *rescuer; /* MD: rescue worker */
int nr_drainers; /* WQ: drain in progress */
int saved_max_active; /* WQ: saved pwq max_active */
@@ -355,6 +355,7 @@ EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
static int worker_thread(void *__worker);
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
+static void show_pwq(struct pool_workqueue *pwq);
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>
@@ -364,11 +365,6 @@ static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
!lockdep_is_held(&wq_pool_mutex), \
"RCU or wq_pool_mutex should be held")
-#define assert_rcu_or_wq_mutex(wq) \
- RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
- !lockdep_is_held(&wq->mutex), \
- "RCU or wq->mutex should be held")
-
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
!lockdep_is_held(&wq->mutex) && \
@@ -425,9 +421,8 @@ static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
* ignored.
*/
#define for_each_pwq(pwq, wq) \
- list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
- if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
- else
+ list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
+ lockdep_is_held(&(wq->mutex)))
#ifdef CONFIG_DEBUG_OBJECTS_WORK
@@ -2532,8 +2527,14 @@ repeat:
*/
if (need_to_create_worker(pool)) {
spin_lock(&wq_mayday_lock);
- get_pwq(pwq);
- list_move_tail(&pwq->mayday_node, &wq->maydays);
+ /*
+ * Queue iff we aren't racing destruction
+ * and somebody else hasn't queued it already.
+ */
+ if (wq->rescuer && list_empty(&pwq->mayday_node)) {
+ get_pwq(pwq);
+ list_add_tail(&pwq->mayday_node, &wq->maydays);
+ }
spin_unlock(&wq_mayday_lock);
}
}
@@ -4314,6 +4315,22 @@ err_destroy:
}
EXPORT_SYMBOL_GPL(alloc_workqueue);
+static bool pwq_busy(struct pool_workqueue *pwq)
+{
+ int i;
+
+ for (i = 0; i < WORK_NR_COLORS; i++)
+ if (pwq->nr_in_flight[i])
+ return true;
+
+ if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
+ return true;
+ if (pwq->nr_active || !list_empty(&pwq->delayed_works))
+ return true;
+
+ return false;
+}
+
/**
* destroy_workqueue - safely terminate a workqueue
* @wq: target workqueue
@@ -4325,31 +4342,51 @@ void destroy_workqueue(struct workqueue_struct *wq)
struct pool_workqueue *pwq;
int node;
+ /*
+ * Remove it from sysfs first so that sanity check failure doesn't
+ * lead to sysfs name conflicts.
+ */
+ workqueue_sysfs_unregister(wq);
+
/* drain it before proceeding with destruction */
drain_workqueue(wq);
- /* sanity checks */
- mutex_lock(&wq->mutex);
- for_each_pwq(pwq, wq) {
- int i;
+ /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
+ if (wq->rescuer) {
+ struct worker *rescuer = wq->rescuer;
- for (i = 0; i < WORK_NR_COLORS; i++) {
- if (WARN_ON(pwq->nr_in_flight[i])) {
- mutex_unlock(&wq->mutex);
- show_workqueue_state();
- return;
- }
- }
+ /* this prevents new queueing */
+ spin_lock_irq(&wq_mayday_lock);
+ wq->rescuer = NULL;
+ spin_unlock_irq(&wq_mayday_lock);
+
+ /* rescuer will empty maydays list before exiting */
+ kthread_stop(rescuer->task);
+ kfree(rescuer);
+ }
- if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
- WARN_ON(pwq->nr_active) ||
- WARN_ON(!list_empty(&pwq->delayed_works))) {
+ /*
+ * Sanity checks - grab all the locks so that we wait for all
+ * in-flight operations which may do put_pwq().
+ */
+ mutex_lock(&wq_pool_mutex);
+ mutex_lock(&wq->mutex);
+ for_each_pwq(pwq, wq) {
+ spin_lock_irq(&pwq->pool->lock);
+ if (WARN_ON(pwq_busy(pwq))) {
+ pr_warning("%s: %s has the following busy pwq\n",
+ __func__, wq->name);
+ show_pwq(pwq);
+ spin_unlock_irq(&pwq->pool->lock);
mutex_unlock(&wq->mutex);
+ mutex_unlock(&wq_pool_mutex);
show_workqueue_state();
return;
}
+ spin_unlock_irq(&pwq->pool->lock);
}
mutex_unlock(&wq->mutex);
+ mutex_unlock(&wq_pool_mutex);
/*
* wq list is used to freeze wq, remove from list after
@@ -4359,11 +4396,6 @@ void destroy_workqueue(struct workqueue_struct *wq)
list_del_rcu(&wq->list);
mutex_unlock(&wq_pool_mutex);
- workqueue_sysfs_unregister(wq);
-
- if (wq->rescuer)
- kthread_stop(wq->rescuer->task);
-
if (!(wq->flags & WQ_UNBOUND)) {
wq_unregister_lockdep(wq);
/*
@@ -4638,7 +4670,8 @@ static void show_pwq(struct pool_workqueue *pwq)
pr_info(" pwq %d:", pool->id);
pr_cont_pool_info(pool);
- pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
+ pr_cont(" active=%d/%d refcnt=%d%s\n",
+ pwq->nr_active, pwq->max_active, pwq->refcnt,
!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
hash_for_each(pool->busy_hash, bkt, worker, hentry) {
@@ -4657,7 +4690,7 @@ static void show_pwq(struct pool_workqueue *pwq)
pr_cont("%s %d%s:%ps", comma ? "," : "",
task_pid_nr(worker->task),
- worker == pwq->wq->rescuer ? "(RESCUER)" : "",
+ worker->rescue_wq ? "(RESCUER)" : "",
worker->current_func);
list_for_each_entry(work, &worker->scheduled, entry)
pr_cont_work(false, work);