aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/842/842.h127
-rw-r--r--lib/842/842_compress.c626
-rw-r--r--lib/842/842_debugfs.h52
-rw-r--r--lib/842/842_decompress.c405
-rw-r--r--lib/842/Makefile2
-rw-r--r--lib/Kconfig6
-rw-r--r--lib/Kconfig.debug67
-rw-r--r--lib/Kconfig.kasan8
-rw-r--r--lib/Makefile2
-rw-r--r--lib/cpu_rmap.c2
-rw-r--r--lib/cpumask.c83
-rw-r--r--lib/crc-itu-t.c2
-rw-r--r--lib/find_last_bit.c41
-rw-r--r--lib/mpi/longlong.h4
-rw-r--r--lib/mpi/mpicoder.c87
-rw-r--r--lib/mpi/mpiutil.c6
-rw-r--r--lib/percpu_counter.c6
-rw-r--r--lib/radix-tree.c2
-rw-r--r--lib/raid6/Makefile2
-rw-r--r--lib/raid6/x86.h2
-rw-r--r--lib/rhashtable.c20
-rw-r--r--lib/scatterlist.c32
-rw-r--r--lib/strnlen_user.c18
-rw-r--r--lib/swiotlb.c16
-rw-r--r--lib/test_bpf.c2664
-rw-r--r--lib/test_rhashtable.c215
-rw-r--r--lib/timerqueue.c10
27 files changed, 4258 insertions, 249 deletions
diff --git a/lib/842/842.h b/lib/842/842.h
new file mode 100644
index 000000000000..7c200030acf7
--- /dev/null
+++ b/lib/842/842.h
@@ -0,0 +1,127 @@
+
+#ifndef __842_H__
+#define __842_H__
+
+/* The 842 compressed format is made up of multiple blocks, each of
+ * which have the format:
+ *
+ * <template>[arg1][arg2][arg3][arg4]
+ *
+ * where there are between 0 and 4 template args, depending on the specific
+ * template operation. For normal operations, each arg is either a specific
+ * number of data bytes to add to the output buffer, or an index pointing
+ * to a previously-written number of data bytes to copy to the output buffer.
+ *
+ * The template code is a 5-bit value. This code indicates what to do with
+ * the following data. Template codes from 0 to 0x19 should use the template
+ * table, the static "decomp_ops" table used in decompress. For each template
+ * (table row), there are between 1 and 4 actions; each action corresponds to
+ * an arg following the template code bits. Each action is either a "data"
+ * type action, or a "index" type action, and each action results in 2, 4, or 8
+ * bytes being written to the output buffer. Each template (i.e. all actions
+ * in the table row) will add up to 8 bytes being written to the output buffer.
+ * Any row with less than 4 actions is padded with noop actions, indicated by
+ * N0 (for which there is no corresponding arg in the compressed data buffer).
+ *
+ * "Data" actions, indicated in the table by D2, D4, and D8, mean that the
+ * corresponding arg is 2, 4, or 8 bytes, respectively, in the compressed data
+ * buffer should be copied directly to the output buffer.
+ *
+ * "Index" actions, indicated in the table by I2, I4, and I8, mean the
+ * corresponding arg is an index parameter that points to, respectively, a 2,
+ * 4, or 8 byte value already in the output buffer, that should be copied to
+ * the end of the output buffer. Essentially, the index points to a position
+ * in a ring buffer that contains the last N bytes of output buffer data.
+ * The number of bits for each index's arg are: 8 bits for I2, 9 bits for I4,
+ * and 8 bits for I8. Since each index points to a 2, 4, or 8 byte section,
+ * this means that I2 can reference 512 bytes ((2^8 bits = 256) * 2 bytes), I4
+ * can reference 2048 bytes ((2^9 = 512) * 4 bytes), and I8 can reference 2048
+ * bytes ((2^8 = 256) * 8 bytes). Think of it as a kind-of ring buffer for
+ * each of I2, I4, and I8 that are updated for each byte written to the output
+ * buffer. In this implementation, the output buffer is directly used for each
+ * index; there is no additional memory required. Note that the index is into
+ * a ring buffer, not a sliding window; for example, if there have been 260
+ * bytes written to the output buffer, an I2 index of 0 would index to byte 256
+ * in the output buffer, while an I2 index of 16 would index to byte 16 in the
+ * output buffer.
+ *
+ * There are also 3 special template codes; 0x1b for "repeat", 0x1c for
+ * "zeros", and 0x1e for "end". The "repeat" operation is followed by a 6 bit
+ * arg N indicating how many times to repeat. The last 8 bytes written to the
+ * output buffer are written again to the output buffer, N + 1 times. The
+ * "zeros" operation, which has no arg bits, writes 8 zeros to the output
+ * buffer. The "end" operation, which also has no arg bits, signals the end
+ * of the compressed data. There may be some number of padding (don't care,
+ * but usually 0) bits after the "end" operation bits, to fill the buffer
+ * length to a specific byte multiple (usually a multiple of 8, 16, or 32
+ * bytes).
+ *
+ * This software implementation also uses one of the undefined template values,
+ * 0x1d as a special "short data" template code, to represent less than 8 bytes
+ * of uncompressed data. It is followed by a 3 bit arg N indicating how many
+ * data bytes will follow, and then N bytes of data, which should be copied to
+ * the output buffer. This allows the software 842 compressor to accept input
+ * buffers that are not an exact multiple of 8 bytes long. However, those
+ * compressed buffers containing this sw-only template will be rejected by
+ * the 842 hardware decompressor, and must be decompressed with this software
+ * library. The 842 software compression module includes a parameter to
+ * disable using this sw-only "short data" template, and instead simply
+ * reject any input buffer that is not a multiple of 8 bytes long.
+ *
+ * After all actions for each operation code are processed, another template
+ * code is in the next 5 bits. The decompression ends once the "end" template
+ * code is detected.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <asm/unaligned.h>
+
+#include <linux/sw842.h>
+
+/* special templates */
+#define OP_REPEAT (0x1B)
+#define OP_ZEROS (0x1C)
+#define OP_END (0x1E)
+
+/* sw only template - this is not in the hw design; it's used only by this
+ * software compressor and decompressor, to allow input buffers that aren't
+ * a multiple of 8.
+ */
+#define OP_SHORT_DATA (0x1D)
+
+/* additional bits of each op param */
+#define OP_BITS (5)
+#define REPEAT_BITS (6)
+#define SHORT_DATA_BITS (3)
+#define I2_BITS (8)
+#define I4_BITS (9)
+#define I8_BITS (8)
+
+#define REPEAT_BITS_MAX (0x3f)
+#define SHORT_DATA_BITS_MAX (0x7)
+
+/* Arbitrary values used to indicate action */
+#define OP_ACTION (0x70)
+#define OP_ACTION_INDEX (0x10)
+#define OP_ACTION_DATA (0x20)
+#define OP_ACTION_NOOP (0x40)
+#define OP_AMOUNT (0x0f)
+#define OP_AMOUNT_0 (0x00)
+#define OP_AMOUNT_2 (0x02)
+#define OP_AMOUNT_4 (0x04)
+#define OP_AMOUNT_8 (0x08)
+
+#define D2 (OP_ACTION_DATA | OP_AMOUNT_2)
+#define D4 (OP_ACTION_DATA | OP_AMOUNT_4)
+#define D8 (OP_ACTION_DATA | OP_AMOUNT_8)
+#define I2 (OP_ACTION_INDEX | OP_AMOUNT_2)
+#define I4 (OP_ACTION_INDEX | OP_AMOUNT_4)
+#define I8 (OP_ACTION_INDEX | OP_AMOUNT_8)
+#define N0 (OP_ACTION_NOOP | OP_AMOUNT_0)
+
+/* the max of the regular templates - not including the special templates */
+#define OPS_MAX (0x1a)
+
+#endif
diff --git a/lib/842/842_compress.c b/lib/842/842_compress.c
new file mode 100644
index 000000000000..7ce68948e68c
--- /dev/null
+++ b/lib/842/842_compress.c
@@ -0,0 +1,626 @@
+/*
+ * 842 Software Compression
+ *
+ * Copyright (C) 2015 Dan Streetman, IBM Corp
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * See 842.h for details of the 842 compressed format.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#define MODULE_NAME "842_compress"
+
+#include <linux/hashtable.h>
+
+#include "842.h"
+#include "842_debugfs.h"
+
+#define SW842_HASHTABLE8_BITS (10)
+#define SW842_HASHTABLE4_BITS (11)
+#define SW842_HASHTABLE2_BITS (10)
+
+/* By default, we allow compressing input buffers of any length, but we must
+ * use the non-standard "short data" template so the decompressor can correctly
+ * reproduce the uncompressed data buffer at the right length. However the
+ * hardware 842 compressor will not recognize the "short data" template, and
+ * will fail to decompress any compressed buffer containing it (I have no idea
+ * why anyone would want to use software to compress and hardware to decompress
+ * but that's beside the point). This parameter forces the compression
+ * function to simply reject any input buffer that isn't a multiple of 8 bytes
+ * long, instead of using the "short data" template, so that all compressed
+ * buffers produced by this function will be decompressable by the 842 hardware
+ * decompressor. Unless you have a specific need for that, leave this disabled
+ * so that any length buffer can be compressed.
+ */
+static bool sw842_strict;
+module_param_named(strict, sw842_strict, bool, 0644);
+
+static u8 comp_ops[OPS_MAX][5] = { /* params size in bits */
+ { I8, N0, N0, N0, 0x19 }, /* 8 */
+ { I4, I4, N0, N0, 0x18 }, /* 18 */
+ { I4, I2, I2, N0, 0x17 }, /* 25 */
+ { I2, I2, I4, N0, 0x13 }, /* 25 */
+ { I2, I2, I2, I2, 0x12 }, /* 32 */
+ { I4, I2, D2, N0, 0x16 }, /* 33 */
+ { I4, D2, I2, N0, 0x15 }, /* 33 */
+ { I2, D2, I4, N0, 0x0e }, /* 33 */
+ { D2, I2, I4, N0, 0x09 }, /* 33 */
+ { I2, I2, I2, D2, 0x11 }, /* 40 */
+ { I2, I2, D2, I2, 0x10 }, /* 40 */
+ { I2, D2, I2, I2, 0x0d }, /* 40 */
+ { D2, I2, I2, I2, 0x08 }, /* 40 */
+ { I4, D4, N0, N0, 0x14 }, /* 41 */
+ { D4, I4, N0, N0, 0x04 }, /* 41 */
+ { I2, I2, D4, N0, 0x0f }, /* 48 */
+ { I2, D2, I2, D2, 0x0c }, /* 48 */
+ { I2, D4, I2, N0, 0x0b }, /* 48 */
+ { D2, I2, I2, D2, 0x07 }, /* 48 */
+ { D2, I2, D2, I2, 0x06 }, /* 48 */
+ { D4, I2, I2, N0, 0x03 }, /* 48 */
+ { I2, D2, D4, N0, 0x0a }, /* 56 */
+ { D2, I2, D4, N0, 0x05 }, /* 56 */
+ { D4, I2, D2, N0, 0x02 }, /* 56 */
+ { D4, D2, I2, N0, 0x01 }, /* 56 */
+ { D8, N0, N0, N0, 0x00 }, /* 64 */
+};
+
+struct sw842_hlist_node8 {
+ struct hlist_node node;
+ u64 data;
+ u8 index;
+};
+
+struct sw842_hlist_node4 {
+ struct hlist_node node;
+ u32 data;
+ u16 index;
+};
+
+struct sw842_hlist_node2 {
+ struct hlist_node node;
+ u16 data;
+ u8 index;
+};
+
+#define INDEX_NOT_FOUND (-1)
+#define INDEX_NOT_CHECKED (-2)
+
+struct sw842_param {
+ u8 *in;
+ u8 *instart;
+ u64 ilen;
+ u8 *out;
+ u64 olen;
+ u8 bit;
+ u64 data8[1];
+ u32 data4[2];
+ u16 data2[4];
+ int index8[1];
+ int index4[2];
+ int index2[4];
+ DECLARE_HASHTABLE(htable8, SW842_HASHTABLE8_BITS);
+ DECLARE_HASHTABLE(htable4, SW842_HASHTABLE4_BITS);
+ DECLARE_HASHTABLE(htable2, SW842_HASHTABLE2_BITS);
+ struct sw842_hlist_node8 node8[1 << I8_BITS];
+ struct sw842_hlist_node4 node4[1 << I4_BITS];
+ struct sw842_hlist_node2 node2[1 << I2_BITS];
+};
+
+#define get_input_data(p, o, b) \
+ be##b##_to_cpu(get_unaligned((__be##b *)((p)->in + (o))))
+
+#define init_hashtable_nodes(p, b) do { \
+ int _i; \
+ hash_init((p)->htable##b); \
+ for (_i = 0; _i < ARRAY_SIZE((p)->node##b); _i++) { \
+ (p)->node##b[_i].index = _i; \
+ (p)->node##b[_i].data = 0; \
+ INIT_HLIST_NODE(&(p)->node##b[_i].node); \
+ } \
+} while (0)
+
+#define find_index(p, b, n) ({ \
+ struct sw842_hlist_node##b *_n; \
+ p->index##b[n] = INDEX_NOT_FOUND; \
+ hash_for_each_possible(p->htable##b, _n, node, p->data##b[n]) { \
+ if (p->data##b[n] == _n->data) { \
+ p->index##b[n] = _n->index; \
+ break; \
+ } \
+ } \
+ p->index##b[n] >= 0; \
+})
+
+#define check_index(p, b, n) \
+ ((p)->index##b[n] == INDEX_NOT_CHECKED \
+ ? find_index(p, b, n) \
+ : (p)->index##b[n] >= 0)
+
+#define replace_hash(p, b, i, d) do { \
+ struct sw842_hlist_node##b *_n = &(p)->node##b[(i)+(d)]; \
+ hash_del(&_n->node); \
+ _n->data = (p)->data##b[d]; \
+ pr_debug("add hash index%x %x pos %x data %lx\n", b, \
+ (unsigned int)_n->index, \
+ (unsigned int)((p)->in - (p)->instart), \
+ (unsigned long)_n->data); \
+ hash_add((p)->htable##b, &_n->node, _n->data); \
+} while (0)
+
+static u8 bmask[8] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
+
+static int add_bits(struct sw842_param *p, u64 d, u8 n);
+
+static int __split_add_bits(struct sw842_param *p, u64 d, u8 n, u8 s)
+{
+ int ret;
+
+ if (n <= s)
+ return -EINVAL;
+
+ ret = add_bits(p, d >> s, n - s);
+ if (ret)
+ return ret;
+ return add_bits(p, d & GENMASK_ULL(s - 1, 0), s);
+}
+
+static int add_bits(struct sw842_param *p, u64 d, u8 n)
+{
+ int b = p->bit, bits = b + n, s = round_up(bits, 8) - bits;
+ u64 o;
+ u8 *out = p->out;
+
+ pr_debug("add %u bits %lx\n", (unsigned char)n, (unsigned long)d);
+
+ if (n > 64)
+ return -EINVAL;
+
+ /* split this up if writing to > 8 bytes (i.e. n == 64 && p->bit > 0),
+ * or if we're at the end of the output buffer and would write past end
+ */
+ if (bits > 64)
+ return __split_add_bits(p, d, n, 32);
+ else if (p->olen < 8 && bits > 32 && bits <= 56)
+ return __split_add_bits(p, d, n, 16);
+ else if (p->olen < 4 && bits > 16 && bits <= 24)
+ return __split_add_bits(p, d, n, 8);
+
+ if (DIV_ROUND_UP(bits, 8) > p->olen)
+ return -ENOSPC;
+
+ o = *out & bmask[b];
+ d <<= s;
+
+ if (bits <= 8)
+ *out = o | d;
+ else if (bits <= 16)
+ put_unaligned(cpu_to_be16(o << 8 | d), (__be16 *)out);
+ else if (bits <= 24)
+ put_unaligned(cpu_to_be32(o << 24 | d << 8), (__be32 *)out);
+ else if (bits <= 32)
+ put_unaligned(cpu_to_be32(o << 24 | d), (__be32 *)out);
+ else if (bits <= 40)
+ put_unaligned(cpu_to_be64(o << 56 | d << 24), (__be64 *)out);
+ else if (bits <= 48)
+ put_unaligned(cpu_to_be64(o << 56 | d << 16), (__be64 *)out);
+ else if (bits <= 56)
+ put_unaligned(cpu_to_be64(o << 56 | d << 8), (__be64 *)out);
+ else
+ put_unaligned(cpu_to_be64(o << 56 | d), (__be64 *)out);
+
+ p->bit += n;
+
+ if (p->bit > 7) {
+ p->out += p->bit / 8;
+ p->olen -= p->bit / 8;
+ p->bit %= 8;
+ }
+
+ return 0;
+}
+
+static int add_template(struct sw842_param *p, u8 c)
+{
+ int ret, i, b = 0;
+ u8 *t = comp_ops[c];
+ bool inv = false;
+
+ if (c >= OPS_MAX)
+ return -EINVAL;
+
+ pr_debug("template %x\n", t[4]);
+
+ ret = add_bits(p, t[4], OP_BITS);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < 4; i++) {
+ pr_debug("op %x\n", t[i]);
+
+ switch (t[i] & OP_AMOUNT) {
+ case OP_AMOUNT_8:
+ if (b)
+ inv = true;
+ else if (t[i] & OP_ACTION_INDEX)
+ ret = add_bits(p, p->index8[0], I8_BITS);
+ else if (t[i] & OP_ACTION_DATA)
+ ret = add_bits(p, p->data8[0], 64);
+ else
+ inv = true;
+ break;
+ case OP_AMOUNT_4:
+ if (b == 2 && t[i] & OP_ACTION_DATA)
+ ret = add_bits(p, get_input_data(p, 2, 32), 32);
+ else if (b != 0 && b != 4)
+ inv = true;
+ else if (t[i] & OP_ACTION_INDEX)
+ ret = add_bits(p, p->index4[b >> 2], I4_BITS);
+ else if (t[i] & OP_ACTION_DATA)
+ ret = add_bits(p, p->data4[b >> 2], 32);
+ else
+ inv = true;
+ break;
+ case OP_AMOUNT_2:
+ if (b != 0 && b != 2 && b != 4 && b != 6)
+ inv = true;
+ if (t[i] & OP_ACTION_INDEX)
+ ret = add_bits(p, p->index2[b >> 1], I2_BITS);
+ else if (t[i] & OP_ACTION_DATA)
+ ret = add_bits(p, p->data2[b >> 1], 16);
+ else
+ inv = true;
+ break;
+ case OP_AMOUNT_0:
+ inv = (b != 8) || !(t[i] & OP_ACTION_NOOP);
+ break;
+ default:
+ inv = true;
+ break;
+ }
+
+ if (ret)
+ return ret;
+
+ if (inv) {
+ pr_err("Invalid templ %x op %d : %x %x %x %x\n",
+ c, i, t[0], t[1], t[2], t[3]);
+ return -EINVAL;
+ }
+
+ b += t[i] & OP_AMOUNT;
+ }
+
+ if (b != 8) {
+ pr_err("Invalid template %x len %x : %x %x %x %x\n",
+ c, b, t[0], t[1], t[2], t[3]);
+ return -EINVAL;
+ }
+
+ if (sw842_template_counts)
+ atomic_inc(&template_count[t[4]]);
+
+ return 0;
+}
+
+static int add_repeat_template(struct sw842_param *p, u8 r)
+{
+ int ret;
+
+ /* repeat param is 0-based */
+ if (!r || --r > REPEAT_BITS_MAX)
+ return -EINVAL;
+
+ ret = add_bits(p, OP_REPEAT, OP_BITS);
+ if (ret)
+ return ret;
+
+ ret = add_bits(p, r, REPEAT_BITS);
+ if (ret)
+ return ret;
+
+ if (sw842_template_counts)
+ atomic_inc(&template_repeat_count);
+
+ return 0;
+}
+
+static int add_short_data_template(struct sw842_param *p, u8 b)
+{
+ int ret, i;
+
+ if (!b || b > SHORT_DATA_BITS_MAX)
+ return -EINVAL;
+
+ ret = add_bits(p, OP_SHORT_DATA, OP_BITS);
+ if (ret)
+ return ret;
+
+ ret = add_bits(p, b, SHORT_DATA_BITS);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < b; i++) {
+ ret = add_bits(p, p->in[i], 8);
+ if (ret)
+ return ret;
+ }
+
+ if (sw842_template_counts)
+ atomic_inc(&template_short_data_count);
+
+ return 0;
+}
+
+static int add_zeros_template(struct sw842_param *p)
+{
+ int ret = add_bits(p, OP_ZEROS, OP_BITS);
+
+ if (ret)
+ return ret;
+
+ if (sw842_template_counts)
+ atomic_inc(&template_zeros_count);
+
+ return 0;
+}
+
+static int add_end_template(struct sw842_param *p)
+{
+ int ret = add_bits(p, OP_END, OP_BITS);
+
+ if (ret)
+ return ret;
+
+ if (sw842_template_counts)
+ atomic_inc(&template_end_count);
+
+ return 0;
+}
+
+static bool check_template(struct sw842_param *p, u8 c)
+{
+ u8 *t = comp_ops[c];
+ int i, match, b = 0;
+
+ if (c >= OPS_MAX)
+ return false;
+
+ for (i = 0; i < 4; i++) {
+ if (t[i] & OP_ACTION_INDEX) {
+ if (t[i] & OP_AMOUNT_2)
+ match = check_index(p, 2, b >> 1);
+ else if (t[i] & OP_AMOUNT_4)
+ match = check_index(p, 4, b >> 2);
+ else if (t[i] & OP_AMOUNT_8)
+ match = check_index(p, 8, 0);
+ else
+ return false;
+ if (!match)
+ return false;
+ }
+
+ b += t[i] & OP_AMOUNT;
+ }
+
+ return true;
+}
+
+static void get_next_data(struct sw842_param *p)
+{
+ p->data8[0] = get_input_data(p, 0, 64);
+ p->data4[0] = get_input_data(p, 0, 32);
+ p->data4[1] = get_input_data(p, 4, 32);
+ p->data2[0] = get_input_data(p, 0, 16);
+ p->data2[1] = get_input_data(p, 2, 16);
+ p->data2[2] = get_input_data(p, 4, 16);
+ p->data2[3] = get_input_data(p, 6, 16);
+}
+
+/* update the hashtable entries.
+ * only call this after finding/adding the current template
+ * the dataN fields for the current 8 byte block must be already updated
+ */
+static void update_hashtables(struct sw842_param *p)
+{
+ u64 pos = p->in - p->instart;
+ u64 n8 = (pos >> 3) % (1 << I8_BITS);
+ u64 n4 = (pos >> 2) % (1 << I4_BITS);
+ u64 n2 = (pos >> 1) % (1 << I2_BITS);
+
+ replace_hash(p, 8, n8, 0);
+ replace_hash(p, 4, n4, 0);
+ replace_hash(p, 4, n4, 1);
+ replace_hash(p, 2, n2, 0);
+ replace_hash(p, 2, n2, 1);
+ replace_hash(p, 2, n2, 2);
+ replace_hash(p, 2, n2, 3);
+}
+
+/* find the next template to use, and add it
+ * the p->dataN fields must already be set for the current 8 byte block
+ */
+static int process_next(struct sw842_param *p)
+{
+ int ret, i;
+
+ p->index8[0] = INDEX_NOT_CHECKED;
+ p->index4[0] = INDEX_NOT_CHECKED;
+ p->index4[1] = INDEX_NOT_CHECKED;
+ p->index2[0] = INDEX_NOT_CHECKED;
+ p->index2[1] = INDEX_NOT_CHECKED;
+ p->index2[2] = INDEX_NOT_CHECKED;
+ p->index2[3] = INDEX_NOT_CHECKED;
+
+ /* check up to OPS_MAX - 1; last op is our fallback */
+ for (i = 0; i < OPS_MAX - 1; i++) {
+ if (check_template(p, i))
+ break;
+ }
+
+ ret = add_template(p, i);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+/**
+ * sw842_compress
+ *
+ * Compress the uncompressed buffer of length @ilen at @in to the output buffer
+ * @out, using no more than @olen bytes, using the 842 compression format.
+ *
+ * Returns: 0 on success, error on failure. The @olen parameter
+ * will contain the number of output bytes written on success, or
+ * 0 on error.
+ */
+int sw842_compress(const u8 *in, unsigned int ilen,
+ u8 *out, unsigned int *olen, void *wmem)
+{
+ struct sw842_param *p = (struct sw842_param *)wmem;
+ int ret;
+ u64 last, next, pad, total;
+ u8 repeat_count = 0;
+
+ BUILD_BUG_ON(sizeof(*p) > SW842_MEM_COMPRESS);
+
+ init_hashtable_nodes(p, 8);
+ init_hashtable_nodes(p, 4);
+ init_hashtable_nodes(p, 2);
+
+ p->in = (u8 *)in;
+ p->instart = p->in;
+ p->ilen = ilen;
+ p->out = out;
+ p->olen = *olen;
+ p->bit = 0;
+
+ total = p->olen;
+
+ *olen = 0;
+
+ /* if using strict mode, we can only compress a multiple of 8 */
+ if (sw842_strict && (ilen % 8)) {
+ pr_err("Using strict mode, can't compress len %d\n", ilen);
+ return -EINVAL;
+ }
+
+ /* let's compress at least 8 bytes, mkay? */
+ if (unlikely(ilen < 8))
+ goto skip_comp;
+
+ /* make initial 'last' different so we don't match the first time */
+ last = ~get_unaligned((u64 *)p->in);
+
+ while (p->ilen > 7) {
+ next = get_unaligned((u64 *)p->in);
+
+ /* must get the next data, as we need to update the hashtable
+ * entries with the new data every time
+ */
+ get_next_data(p);
+
+ /* we don't care about endianness in last or next;
+ * we're just comparing 8 bytes to another 8 bytes,
+ * they're both the same endianness
+ */
+ if (next == last) {
+ /* repeat count bits are 0-based, so we stop at +1 */
+ if (++repeat_count <= REPEAT_BITS_MAX)
+ goto repeat;
+ }
+ if (repeat_count) {
+ ret = add_repeat_template(p, repeat_count);
+ repeat_count = 0;
+ if (next == last) /* reached max repeat bits */
+ goto repeat;
+ }
+
+ if (next == 0)
+ ret = add_zeros_template(p);
+ else
+ ret = process_next(p);
+
+ if (ret)
+ return ret;
+
+repeat:
+ last = next;
+ update_hashtables(p);
+ p->in += 8;
+ p->ilen -= 8;
+ }
+
+ if (repeat_count) {
+ ret = add_repeat_template(p, repeat_count);
+ if (ret)
+ return ret;
+ }
+
+skip_comp:
+ if (p->ilen > 0) {
+ ret = add_short_data_template(p, p->ilen);
+ if (ret)
+ return ret;
+
+ p->in += p->ilen;
+ p->ilen = 0;
+ }
+
+ ret = add_end_template(p);
+ if (ret)
+ return ret;
+
+ if (p->bit) {
+ p->out++;
+ p->olen--;
+ p->bit = 0;
+ }
+
+ /* pad compressed length to multiple of 8 */
+ pad = (8 - ((total - p->olen) % 8)) % 8;
+ if (pad) {
+ if (pad > p->olen) /* we were so close! */
+ return -ENOSPC;
+ memset(p->out, 0, pad);
+ p->out += pad;
+ p->olen -= pad;
+ }
+
+ if (unlikely((total - p->olen) > UINT_MAX))
+ return -ENOSPC;
+
+ *olen = total - p->olen;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(sw842_compress);
+
+static int __init sw842_init(void)
+{
+ if (sw842_template_counts)
+ sw842_debugfs_create();
+
+ return 0;
+}
+module_init(sw842_init);
+
+static void __exit sw842_exit(void)
+{
+ if (sw842_template_counts)
+ sw842_debugfs_remove();
+}
+module_exit(sw842_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Software 842 Compressor");
+MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
diff --git a/lib/842/842_debugfs.h b/lib/842/842_debugfs.h
new file mode 100644
index 000000000000..e7f3bffaf255
--- /dev/null
+++ b/lib/842/842_debugfs.h
@@ -0,0 +1,52 @@
+
+#ifndef __842_DEBUGFS_H__
+#define __842_DEBUGFS_H__
+
+#include <linux/debugfs.h>
+
+static bool sw842_template_counts;
+module_param_named(template_counts, sw842_template_counts, bool, 0444);
+
+static atomic_t template_count[OPS_MAX], template_repeat_count,
+ template_zeros_count, template_short_data_count, template_end_count;
+
+static struct dentry *sw842_debugfs_root;
+
+static int __init sw842_debugfs_create(void)
+{
+ umode_t m = S_IRUGO | S_IWUSR;
+ int i;
+
+ if (!debugfs_initialized())
+ return -ENODEV;
+
+ sw842_debugfs_root = debugfs_create_dir(MODULE_NAME, NULL);
+ if (IS_ERR(sw842_debugfs_root))
+ return PTR_ERR(sw842_debugfs_root);
+
+ for (i = 0; i < ARRAY_SIZE(template_count); i++) {
+ char name[32];
+
+ snprintf(name, 32, "template_%02x", i);
+ debugfs_create_atomic_t(name, m, sw842_debugfs_root,
+ &template_count[i]);
+ }
+ debugfs_create_atomic_t("template_repeat", m, sw842_debugfs_root,
+ &template_repeat_count);
+ debugfs_create_atomic_t("template_zeros", m, sw842_debugfs_root,
+ &template_zeros_count);
+ debugfs_create_atomic_t("template_short_data", m, sw842_debugfs_root,
+ &template_short_data_count);
+ debugfs_create_atomic_t("template_end", m, sw842_debugfs_root,
+ &template_end_count);
+
+ return 0;
+}
+
+static void __exit sw842_debugfs_remove(void)
+{
+ if (sw842_debugfs_root && !IS_ERR(sw842_debugfs_root))
+ debugfs_remove_recursive(sw842_debugfs_root);
+}
+
+#endif
diff --git a/lib/842/842_decompress.c b/lib/842/842_decompress.c
new file mode 100644
index 000000000000..5446ff0c9ba0
--- /dev/null
+++ b/lib/842/842_decompress.c
@@ -0,0 +1,405 @@
+/*
+ * 842 Software Decompression
+ *
+ * Copyright (C) 2015 Dan Streetman, IBM Corp
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * See 842.h for details of the 842 compressed format.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#define MODULE_NAME "842_decompress"
+
+#include "842.h"
+#include "842_debugfs.h"
+
+/* rolling fifo sizes */
+#define I2_FIFO_SIZE (2 * (1 << I2_BITS))
+#define I4_FIFO_SIZE (4 * (1 << I4_BITS))
+#define I8_FIFO_SIZE (8 * (1 << I8_BITS))
+
+static u8 decomp_ops[OPS_MAX][4] = {
+ { D8, N0, N0, N0 },
+ { D4, D2, I2, N0 },
+ { D4, I2, D2, N0 },
+ { D4, I2, I2, N0 },
+ { D4, I4, N0, N0 },
+ { D2, I2, D4, N0 },
+ { D2, I2, D2, I2 },
+ { D2, I2, I2, D2 },
+ { D2, I2, I2, I2 },
+ { D2, I2, I4, N0 },
+ { I2, D2, D4, N0 },
+ { I2, D4, I2, N0 },
+ { I2, D2, I2, D2 },
+ { I2, D2, I2, I2 },
+ { I2, D2, I4, N0 },
+ { I2, I2, D4, N0 },
+ { I2, I2, D2, I2 },
+ { I2, I2, I2, D2 },
+ { I2, I2, I2, I2 },
+ { I2, I2, I4, N0 },
+ { I4, D4, N0, N0 },
+ { I4, D2, I2, N0 },
+ { I4, I2, D2, N0 },
+ { I4, I2, I2, N0 },
+ { I4, I4, N0, N0 },
+ { I8, N0, N0, N0 }
+};
+
+struct sw842_param {
+ u8 *in;
+ u8 bit;
+ u64 ilen;
+ u8 *out;
+ u8 *ostart;
+ u64 olen;
+};
+
+#define beN_to_cpu(d, s) \
+ ((s) == 2 ? be16_to_cpu(get_unaligned((__be16 *)d)) : \
+ (s) == 4 ? be32_to_cpu(get_unaligned((__be32 *)d)) : \
+ (s) == 8 ? be64_to_cpu(get_unaligned((__be64 *)d)) : \
+ WARN(1, "pr_debug param err invalid size %x\n", s))
+
+static int next_bits(struct sw842_param *p, u64 *d, u8 n);
+
+static int __split_next_bits(struct sw842_param *p, u64 *d, u8 n, u8 s)
+{
+ u64 tmp = 0;
+ int ret;
+
+ if (n <= s) {
+ pr_debug("split_next_bits invalid n %u s %u\n", n, s);
+ return -EINVAL;
+ }
+
+ ret = next_bits(p, &tmp, n - s);
+ if (ret)
+ return ret;
+ ret = next_bits(p, d, s);
+ if (ret)
+ return ret;
+ *d |= tmp << s;
+ return 0;
+}
+
+static int next_bits(struct sw842_param *p, u64 *d, u8 n)
+{
+ u8 *in = p->in, b = p->bit, bits = b + n;
+
+ if (n > 64) {
+ pr_debug("next_bits invalid n %u\n", n);
+ return -EINVAL;
+ }
+
+ /* split this up if reading > 8 bytes, or if we're at the end of
+ * the input buffer and would read past the end
+ */
+ if (bits > 64)
+ return __split_next_bits(p, d, n, 32);
+ else if (p->ilen < 8 && bits > 32 && bits <= 56)
+ return __split_next_bits(p, d, n, 16);
+ else if (p->ilen < 4 && bits > 16 && bits <= 24)
+ return __split_next_bits(p, d, n, 8);
+
+ if (DIV_ROUND_UP(bits, 8) > p->ilen)
+ return -EOVERFLOW;
+
+ if (bits <= 8)
+ *d = *in >> (8 - bits);
+ else if (bits <= 16)
+ *d = be16_to_cpu(get_unaligned((__be16 *)in)) >> (16 - bits);
+ else if (bits <= 32)
+ *d = be32_to_cpu(get_unaligned((__be32 *)in)) >> (32 - bits);
+ else
+ *d = be64_to_cpu(get_unaligned((__be64 *)in)) >> (64 - bits);
+
+ *d &= GENMASK_ULL(n - 1, 0);
+
+ p->bit += n;
+
+ if (p->bit > 7) {
+ p->in += p->bit / 8;
+ p->ilen -= p->bit / 8;
+ p->bit %= 8;
+ }
+
+ return 0;
+}
+
+static int do_data(struct sw842_param *p, u8 n)
+{
+ u64 v;
+ int ret;
+
+ if (n > p->olen)
+ return -ENOSPC;
+
+ ret = next_bits(p, &v, n * 8);
+ if (ret)
+ return ret;
+
+ switch (n) {
+ case 2:
+ put_unaligned(cpu_to_be16((u16)v), (__be16 *)p->out);
+ break;
+ case 4:
+ put_unaligned(cpu_to_be32((u32)v), (__be32 *)p->out);
+ break;
+ case 8:
+ put_unaligned(cpu_to_be64((u64)v), (__be64 *)p->out);
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ p->out += n;
+ p->olen -= n;
+
+ return 0;
+}
+
+static int __do_index(struct sw842_param *p, u8 size, u8 bits, u64 fsize)
+{
+ u64 index, offset, total = round_down(p->out - p->ostart, 8);
+ int ret;
+
+ ret = next_bits(p, &index, bits);
+ if (ret)
+ return ret;
+
+ offset = index * size;
+
+ /* a ring buffer of fsize is used; correct the offset */
+ if (total > fsize) {
+ /* this is where the current fifo is */
+ u64 section = round_down(total, fsize);
+ /* the current pos in the fifo */
+ u64 pos = total - section;
+
+ /* if the offset is past/at the pos, we need to
+ * go back to the last fifo section
+ */
+ if (offset >= pos)
+ section -= fsize;
+
+ offset += section;
+ }
+
+ if (offset + size > total) {
+ pr_debug("index%x %lx points past end %lx\n", size,
+ (unsigned long)offset, (unsigned long)total);
+ return -EINVAL;
+ }
+
+ pr_debug("index%x to %lx off %lx adjoff %lx tot %lx data %lx\n",
+ size, (unsigned long)index, (unsigned long)(index * size),
+ (unsigned long)offset, (unsigned long)total,
+ (unsigned long)beN_to_cpu(&p->ostart[offset], size));
+
+ memcpy(p->out, &p->ostart[offset], size);
+ p->out += size;
+ p->olen -= size;
+
+ return 0;
+}
+
+static int do_index(struct sw842_param *p, u8 n)
+{
+ switch (n) {
+ case 2:
+ return __do_index(p, 2, I2_BITS, I2_FIFO_SIZE);
+ case 4:
+ return __do_index(p, 4, I4_BITS, I4_FIFO_SIZE);
+ case 8:
+ return __do_index(p, 8, I8_BITS, I8_FIFO_SIZE);
+ default:
+ return -EINVAL;
+ }
+}
+
+static int do_op(struct sw842_param *p, u8 o)
+{
+ int i, ret = 0;
+
+ if (o >= OPS_MAX)
+ return -EINVAL;
+
+ for (i = 0; i < 4; i++) {
+ u8 op = decomp_ops[o][i];
+
+ pr_debug("op is %x\n", op);
+
+ switch (op & OP_ACTION) {
+ case OP_ACTION_DATA:
+ ret = do_data(p, op & OP_AMOUNT);
+ break;
+ case OP_ACTION_INDEX:
+ ret = do_index(p, op & OP_AMOUNT);
+ break;
+ case OP_ACTION_NOOP:
+ break;
+ default:
+ pr_err("Interal error, invalid op %x\n", op);
+ return -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+ }
+
+ if (sw842_template_counts)
+ atomic_inc(&template_count[o]);
+
+ return 0;
+}
+
+/**
+ * sw842_decompress
+ *
+ * Decompress the 842-compressed buffer of length @ilen at @in
+ * to the output buffer @out, using no more than @olen bytes.
+ *
+ * The compressed buffer must be only a single 842-compressed buffer,
+ * with the standard format described in the comments in 842.h
+ * Processing will stop when the 842 "END" template is detected,
+ * not the end of the buffer.
+ *
+ * Returns: 0 on success, error on failure. The @olen parameter
+ * will contain the number of output bytes written on success, or
+ * 0 on error.
+ */
+int sw842_decompress(const u8 *in, unsigned int ilen,
+ u8 *out, unsigned int *olen)
+{
+ struct sw842_param p;
+ int ret;
+ u64 op, rep, tmp, bytes, total;
+
+ p.in = (u8 *)in;
+ p.bit = 0;
+ p.ilen = ilen;
+ p.out = out;
+ p.ostart = out;
+ p.olen = *olen;
+
+ total = p.olen;
+
+ *olen = 0;
+
+ do {
+ ret = next_bits(&p, &op, OP_BITS);
+ if (ret)
+ return ret;
+
+ pr_debug("template is %lx\n", (unsigned long)op);
+
+ switch (op) {
+ case OP_REPEAT:
+ ret = next_bits(&p, &rep, REPEAT_BITS);
+ if (ret)
+ return ret;
+
+ if (p.out == out) /* no previous bytes */
+ return -EINVAL;
+
+ /* copy rep + 1 */
+ rep++;
+
+ if (rep * 8 > p.olen)
+ return -ENOSPC;
+
+ while (rep-- > 0) {
+ memcpy(p.out, p.out - 8, 8);
+ p.out += 8;
+ p.olen -= 8;
+ }
+
+ if (sw842_template_counts)
+ atomic_inc(&template_repeat_count);
+
+ break;
+ case OP_ZEROS:
+ if (8 > p.olen)
+ return -ENOSPC;
+
+ memset(p.out, 0, 8);
+ p.out += 8;
+ p.olen -= 8;
+
+ if (sw842_template_counts)
+ atomic_inc(&template_zeros_count);
+
+ break;
+ case OP_SHORT_DATA:
+ ret = next_bits(&p, &bytes, SHORT_DATA_BITS);
+ if (ret)
+ return ret;
+
+ if (!bytes || bytes > SHORT_DATA_BITS_MAX)
+ return -EINVAL;
+
+ while (bytes-- > 0) {
+ ret = next_bits(&p, &tmp, 8);
+ if (ret)
+ return ret;
+ *p.out = (u8)tmp;
+ p.out++;
+ p.olen--;
+ }
+
+ if (sw842_template_counts)
+ atomic_inc(&template_short_data_count);
+
+ break;
+ case OP_END:
+ if (sw842_template_counts)
+ atomic_inc(&template_end_count);
+
+ break;
+ default: /* use template */
+ ret = do_op(&p, op);
+ if (ret)
+ return ret;
+ break;
+ }
+ } while (op != OP_END);
+
+ if (unlikely((total - p.olen) > UINT_MAX))
+ return -ENOSPC;
+
+ *olen = total - p.olen;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(sw842_decompress);
+
+static int __init sw842_init(void)
+{
+ if (sw842_template_counts)
+ sw842_debugfs_create();
+
+ return 0;
+}
+module_init(sw842_init);
+
+static void __exit sw842_exit(void)
+{
+ if (sw842_template_counts)
+ sw842_debugfs_remove();
+}
+module_exit(sw842_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Software 842 Decompressor");
+MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
diff --git a/lib/842/Makefile b/lib/842/Makefile
new file mode 100644
index 000000000000..5d24c0baff2e
--- /dev/null
+++ b/lib/842/Makefile
@@ -0,0 +1,2 @@
+obj-$(CONFIG_842_COMPRESS) += 842_compress.o
+obj-$(CONFIG_842_DECOMPRESS) += 842_decompress.o
diff --git a/lib/Kconfig b/lib/Kconfig
index 601965a948e8..34e332b8d326 100644
--- a/lib/Kconfig
+++ b/lib/Kconfig
@@ -212,6 +212,12 @@ config RANDOM32_SELFTEST
#
# compression support is select'ed if needed
#
+config 842_COMPRESS
+ tristate
+
+config 842_DECOMPRESS
+ tristate
+
config ZLIB_INFLATE
tristate
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index 17670573dda8..b908048f8d6a 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -1233,6 +1233,7 @@ config RCU_TORTURE_TEST
depends on DEBUG_KERNEL
select TORTURE_TEST
select SRCU
+ select TASKS_RCU
default n
help
This option provides a kernel module that runs torture tests
@@ -1261,12 +1262,38 @@ config RCU_TORTURE_TEST_RUNNABLE
Say N here if you want the RCU torture tests to start only
after being manually enabled via /proc.
+config RCU_TORTURE_TEST_SLOW_PREINIT
+ bool "Slow down RCU grace-period pre-initialization to expose races"
+ depends on RCU_TORTURE_TEST
+ help
+ This option delays grace-period pre-initialization (the
+ propagation of CPU-hotplug changes up the rcu_node combining
+ tree) for a few jiffies between initializing each pair of
+ consecutive rcu_node structures. This helps to expose races
+ involving grace-period pre-initialization, in other words, it
+ makes your kernel less stable. It can also greatly increase
+ grace-period latency, especially on systems with large numbers
+ of CPUs. This is useful when torture-testing RCU, but in
+ almost no other circumstance.
+
+ Say Y here if you want your system to crash and hang more often.
+ Say N if you want a sane system.
+
+config RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
+ int "How much to slow down RCU grace-period pre-initialization"
+ range 0 5
+ default 3
+ depends on RCU_TORTURE_TEST_SLOW_PREINIT
+ help
+ This option specifies the number of jiffies to wait between
+ each rcu_node structure pre-initialization step.
+
config RCU_TORTURE_TEST_SLOW_INIT
bool "Slow down RCU grace-period initialization to expose races"
depends on RCU_TORTURE_TEST
help
- This option makes grace-period initialization block for a
- few jiffies between initializing each pair of consecutive
+ This option delays grace-period initialization for a few
+ jiffies between initializing each pair of consecutive
rcu_node structures. This helps to expose races involving
grace-period initialization, in other words, it makes your
kernel less stable. It can also greatly increase grace-period
@@ -1281,10 +1308,35 @@ config RCU_TORTURE_TEST_SLOW_INIT_DELAY
int "How much to slow down RCU grace-period initialization"
range 0 5
default 3
+ depends on RCU_TORTURE_TEST_SLOW_INIT
help
This option specifies the number of jiffies to wait between
each rcu_node structure initialization.
+config RCU_TORTURE_TEST_SLOW_CLEANUP
+ bool "Slow down RCU grace-period cleanup to expose races"
+ depends on RCU_TORTURE_TEST
+ help
+ This option delays grace-period cleanup for a few jiffies
+ between cleaning up each pair of consecutive rcu_node
+ structures. This helps to expose races involving grace-period
+ cleanup, in other words, it makes your kernel less stable.
+ It can also greatly increase grace-period latency, especially
+ on systems with large numbers of CPUs. This is useful when
+ torture-testing RCU, but in almost no other circumstance.
+
+ Say Y here if you want your system to crash and hang more often.
+ Say N if you want a sane system.
+
+config RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
+ int "How much to slow down RCU grace-period cleanup"
+ range 0 5
+ default 3
+ depends on RCU_TORTURE_TEST_SLOW_CLEANUP
+ help
+ This option specifies the number of jiffies to wait between
+ each rcu_node structure cleanup operation.
+
config RCU_CPU_STALL_TIMEOUT
int "RCU CPU stall timeout in seconds"
depends on RCU_STALL_COMMON
@@ -1321,6 +1373,17 @@ config RCU_TRACE
Say Y here if you want to enable RCU tracing
Say N if you are unsure.
+config RCU_EQS_DEBUG
+ bool "Use this when adding any sort of NO_HZ support to your arch"
+ depends on DEBUG_KERNEL
+ help
+ This option provides consistency checks in RCU's handling of
+ NO_HZ. These checks have proven quite helpful in detecting
+ bugs in arch-specific NO_HZ code.
+
+ Say N here if you need ultimate kernel/user switch latencies
+ Say Y if you are unsure
+
endmenu # "RCU Debugging"
config DEBUG_BLOCK_EXT_DEVT
diff --git a/lib/Kconfig.kasan b/lib/Kconfig.kasan
index 4fecaedc80a2..777eda7d1ab4 100644
--- a/lib/Kconfig.kasan
+++ b/lib/Kconfig.kasan
@@ -10,8 +10,11 @@ config KASAN
help
Enables kernel address sanitizer - runtime memory debugger,
designed to find out-of-bounds accesses and use-after-free bugs.
- This is strictly debugging feature. It consumes about 1/8
- of available memory and brings about ~x3 performance slowdown.
+ This is strictly a debugging feature and it requires a gcc version
+ of 4.9.2 or later. Detection of out of bounds accesses to stack or
+ global variables requires gcc 5.0 or later.
+ This feature consumes about 1/8 of available memory and brings about
+ ~x3 performance slowdown.
For better error detection enable CONFIG_STACKTRACE,
and add slub_debug=U to boot cmdline.
@@ -40,6 +43,7 @@ config KASAN_INLINE
memory accesses. This is faster than outline (in some workloads
it gives about x2 boost over outline instrumentation), but
make kernel's .text size much bigger.
+ This requires a gcc version of 5.0 or later.
endchoice
diff --git a/lib/Makefile b/lib/Makefile
index 6c37933336a0..ff37c8c2f7b2 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -78,6 +78,8 @@ obj-$(CONFIG_LIBCRC32C) += libcrc32c.o
obj-$(CONFIG_CRC8) += crc8.o
obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o
+obj-$(CONFIG_842_COMPRESS) += 842/
+obj-$(CONFIG_842_DECOMPRESS) += 842/
obj-$(CONFIG_ZLIB_INFLATE) += zlib_inflate/
obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate/
obj-$(CONFIG_REED_SOLOMON) += reed_solomon/
diff --git a/lib/cpu_rmap.c b/lib/cpu_rmap.c
index 4f134d8907a7..f610b2a10b3e 100644
--- a/lib/cpu_rmap.c
+++ b/lib/cpu_rmap.c
@@ -191,7 +191,7 @@ int cpu_rmap_update(struct cpu_rmap *rmap, u16 index,
/* Update distances based on topology */
for_each_cpu(cpu, update_mask) {
if (cpu_rmap_copy_neigh(rmap, cpu,
- topology_thread_cpumask(cpu), 1))
+ topology_sibling_cpumask(cpu), 1))
continue;
if (cpu_rmap_copy_neigh(rmap, cpu,
topology_core_cpumask(cpu), 2))
diff --git a/lib/cpumask.c b/lib/cpumask.c
index 830dd5dec40f..5a70f6196f57 100644
--- a/lib/cpumask.c
+++ b/lib/cpumask.c
@@ -16,11 +16,10 @@
int cpumask_next_and(int n, const struct cpumask *src1p,
const struct cpumask *src2p)
{
- struct cpumask tmp;
-
- if (cpumask_and(&tmp, src1p, src2p))
- return cpumask_next(n, &tmp);
- return nr_cpu_ids;
+ while ((n = cpumask_next(n, src1p)) < nr_cpu_ids)
+ if (cpumask_test_cpu(n, src2p))
+ break;
+ return n;
}
EXPORT_SYMBOL(cpumask_next_and);
@@ -139,64 +138,42 @@ void __init free_bootmem_cpumask_var(cpumask_var_t mask)
#endif
/**
- * cpumask_set_cpu_local_first - set i'th cpu with local numa cpu's first
- *
+ * cpumask_local_spread - select the i'th cpu with local numa cpu's first
* @i: index number
- * @numa_node: local numa_node
- * @dstp: cpumask with the relevant cpu bit set according to the policy
+ * @node: local numa_node
*
- * This function sets the cpumask according to a numa aware policy.
- * cpumask could be used as an affinity hint for the IRQ related to a
- * queue. When the policy is to spread queues across cores - local cores
- * first.
+ * This function selects an online CPU according to a numa aware policy;
+ * local cpus are returned first, followed by non-local ones, then it
+ * wraps around.
*
- * Returns 0 on success, -ENOMEM for no memory, and -EAGAIN when failed to set
- * the cpu bit and need to re-call the function.
+ * It's not very efficient, but useful for setup.
*/
-int cpumask_set_cpu_local_first(int i, int numa_node, cpumask_t *dstp)
+unsigned int cpumask_local_spread(unsigned int i, int node)
{
- cpumask_var_t mask;
int cpu;
- int ret = 0;
-
- if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
- return -ENOMEM;
+ /* Wrap: we always want a cpu. */
i %= num_online_cpus();
- if (numa_node == -1 || !cpumask_of_node(numa_node)) {
- /* Use all online cpu's for non numa aware system */
- cpumask_copy(mask, cpu_online_mask);
+ if (node == -1) {
+ for_each_cpu(cpu, cpu_online_mask)
+ if (i-- == 0)
+ return cpu;
} else {
- int n;
-
- cpumask_and(mask,
- cpumask_of_node(numa_node), cpu_online_mask);
-
- n = cpumask_weight(mask);
- if (i >= n) {
- i -= n;
-
- /* If index > number of local cpu's, mask out local
- * cpu's
- */
- cpumask_andnot(mask, cpu_online_mask, mask);
+ /* NUMA first. */
+ for_each_cpu_and(cpu, cpumask_of_node(node), cpu_online_mask)
+ if (i-- == 0)
+ return cpu;
+
+ for_each_cpu(cpu, cpu_online_mask) {
+ /* Skip NUMA nodes, done above. */
+ if (cpumask_test_cpu(cpu, cpumask_of_node(node)))
+ continue;
+
+ if (i-- == 0)
+ return cpu;
}
}
-
- for_each_cpu(cpu, mask) {
- if (--i < 0)
- goto out;
- }
-
- ret = -EAGAIN;
-
-out:
- free_cpumask_var(mask);
-
- if (!ret)
- cpumask_set_cpu(cpu, dstp);
-
- return ret;
+ BUG();
}
-EXPORT_SYMBOL(cpumask_set_cpu_local_first);
+EXPORT_SYMBOL(cpumask_local_spread);
diff --git a/lib/crc-itu-t.c b/lib/crc-itu-t.c
index a63472b82416..b3219d0abfb4 100644
--- a/lib/crc-itu-t.c
+++ b/lib/crc-itu-t.c
@@ -9,7 +9,7 @@
#include <linux/module.h>
#include <linux/crc-itu-t.h>
-/** CRC table for the CRC ITU-T V.41 0x0x1021 (x^16 + x^12 + x^15 + 1) */
+/** CRC table for the CRC ITU-T V.41 0x1021 (x^16 + x^12 + x^15 + 1) */
const u16 crc_itu_t_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
diff --git a/lib/find_last_bit.c b/lib/find_last_bit.c
deleted file mode 100644
index 3e3be40c6a6e..000000000000
--- a/lib/find_last_bit.c
+++ /dev/null
@@ -1,41 +0,0 @@
-/* find_last_bit.c: fallback find next bit implementation
- *
- * Copyright (C) 2008 IBM Corporation
- * Written by Rusty Russell <rusty@rustcorp.com.au>
- * (Inspired by David Howell's find_next_bit implementation)
- *
- * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
- * size and improve performance, 2015.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
-
-#include <linux/bitops.h>
-#include <linux/bitmap.h>
-#include <linux/export.h>
-#include <linux/kernel.h>
-
-#ifndef find_last_bit
-
-unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
-{
- if (size) {
- unsigned long val = BITMAP_LAST_WORD_MASK(size);
- unsigned long idx = (size-1) / BITS_PER_LONG;
-
- do {
- val &= addr[idx];
- if (val)
- return idx * BITS_PER_LONG + __fls(val);
-
- val = ~0ul;
- } while (idx--);
- }
- return size;
-}
-EXPORT_SYMBOL(find_last_bit);
-
-#endif
diff --git a/lib/mpi/longlong.h b/lib/mpi/longlong.h
index aac511417ad1..a89d041592c8 100644
--- a/lib/mpi/longlong.h
+++ b/lib/mpi/longlong.h
@@ -639,7 +639,7 @@ do { \
************** MIPS *****************
***************************************/
#if defined(__mips__) && W_TYPE_SIZE == 32
-#if __GNUC__ >= 4 && __GNUC_MINOR__ >= 4
+#if (__GNUC__ >= 5) || (__GNUC__ >= 4 && __GNUC_MINOR__ >= 4)
#define umul_ppmm(w1, w0, u, v) \
do { \
UDItype __ll = (UDItype)(u) * (v); \
@@ -671,7 +671,7 @@ do { \
************** MIPS/64 **************
***************************************/
#if (defined(__mips) && __mips >= 3) && W_TYPE_SIZE == 64
-#if __GNUC__ >= 4 && __GNUC_MINOR__ >= 4
+#if (__GNUC__ >= 5) || (__GNUC__ >= 4 && __GNUC_MINOR__ >= 4)
#define umul_ppmm(w1, w0, u, v) \
do { \
typedef unsigned int __ll_UTItype __attribute__((mode(TI))); \
diff --git a/lib/mpi/mpicoder.c b/lib/mpi/mpicoder.c
index 4cc6442733f4..bc0a1da8afba 100644
--- a/lib/mpi/mpicoder.c
+++ b/lib/mpi/mpicoder.c
@@ -128,28 +128,36 @@ leave:
}
EXPORT_SYMBOL_GPL(mpi_read_from_buffer);
-/****************
- * Return an allocated buffer with the MPI (msb first).
- * NBYTES receives the length of this buffer. Caller must free the
- * return string (This function does return a 0 byte buffer with NBYTES
- * set to zero if the value of A is zero. If sign is not NULL, it will
- * be set to the sign of the A.
+/**
+ * mpi_read_buffer() - read MPI to a bufer provided by user (msb first)
+ *
+ * @a: a multi precision integer
+ * @buf: bufer to which the output will be written to. Needs to be at
+ * leaset mpi_get_size(a) long.
+ * @buf_len: size of the buf.
+ * @nbytes: receives the actual length of the data written.
+ * @sign: if not NULL, it will be set to the sign of a.
+ *
+ * Return: 0 on success or error code in case of error
*/
-void *mpi_get_buffer(MPI a, unsigned *nbytes, int *sign)
+int mpi_read_buffer(MPI a, uint8_t *buf, unsigned buf_len, unsigned *nbytes,
+ int *sign)
{
- uint8_t *p, *buffer;
+ uint8_t *p;
mpi_limb_t alimb;
+ unsigned int n = mpi_get_size(a);
int i;
- unsigned int n;
+
+ if (buf_len < n || !buf)
+ return -EINVAL;
if (sign)
*sign = a->sign;
- *nbytes = n = a->nlimbs * BYTES_PER_MPI_LIMB;
- if (!n)
- n++; /* avoid zero length allocation */
- p = buffer = kmalloc(n, GFP_KERNEL);
- if (!p)
- return NULL;
+
+ if (nbytes)
+ *nbytes = n;
+
+ p = buf;
for (i = a->nlimbs - 1; i >= 0; i--) {
alimb = a->d[i];
@@ -171,15 +179,56 @@ void *mpi_get_buffer(MPI a, unsigned *nbytes, int *sign)
#error please implement for this limb size.
#endif
}
+ return 0;
+}
+EXPORT_SYMBOL_GPL(mpi_read_buffer);
+
+/*
+ * mpi_get_buffer() - Returns an allocated buffer with the MPI (msb first).
+ * Caller must free the return string.
+ * This function does return a 0 byte buffer with nbytes set to zero if the
+ * value of A is zero.
+ *
+ * @a: a multi precision integer.
+ * @nbytes: receives the length of this buffer.
+ * @sign: if not NULL, it will be set to the sign of the a.
+ *
+ * Return: Pointer to MPI buffer or NULL on error
+ */
+void *mpi_get_buffer(MPI a, unsigned *nbytes, int *sign)
+{
+ uint8_t *buf, *p;
+ unsigned int n;
+ int ret;
+
+ if (!nbytes)
+ return NULL;
+
+ n = mpi_get_size(a);
+
+ if (!n)
+ n++;
+
+ buf = kmalloc(n, GFP_KERNEL);
+
+ if (!buf)
+ return NULL;
+
+ ret = mpi_read_buffer(a, buf, n, nbytes, sign);
+
+ if (ret) {
+ kfree(buf);
+ return NULL;
+ }
/* this is sub-optimal but we need to do the shift operation
* because the caller has to free the returned buffer */
- for (p = buffer; !*p && *nbytes; p++, --*nbytes)
+ for (p = buf; !*p && *nbytes; p++, --*nbytes)
;
- if (p != buffer)
- memmove(buffer, p, *nbytes);
+ if (p != buf)
+ memmove(buf, p, *nbytes);
- return buffer;
+ return buf;
}
EXPORT_SYMBOL_GPL(mpi_get_buffer);
diff --git a/lib/mpi/mpiutil.c b/lib/mpi/mpiutil.c
index bf076d281d40..314f4dfa603e 100644
--- a/lib/mpi/mpiutil.c
+++ b/lib/mpi/mpiutil.c
@@ -69,7 +69,7 @@ void mpi_free_limb_space(mpi_ptr_t a)
if (!a)
return;
- kfree(a);
+ kzfree(a);
}
void mpi_assign_limb_space(MPI a, mpi_ptr_t ap, unsigned nlimbs)
@@ -95,7 +95,7 @@ int mpi_resize(MPI a, unsigned nlimbs)
if (!p)
return -ENOMEM;
memcpy(p, a->d, a->alloced * sizeof(mpi_limb_t));
- kfree(a->d);
+ kzfree(a->d);
a->d = p;
} else {
a->d = kzalloc(nlimbs * sizeof(mpi_limb_t), GFP_KERNEL);
@@ -112,7 +112,7 @@ void mpi_free(MPI a)
return;
if (a->flags & 4)
- kfree(a->d);
+ kzfree(a->d);
else
mpi_free_limb_space(a->d);
diff --git a/lib/percpu_counter.c b/lib/percpu_counter.c
index 48144cdae819..f051d69f0910 100644
--- a/lib/percpu_counter.c
+++ b/lib/percpu_counter.c
@@ -197,13 +197,13 @@ static int percpu_counter_hotcpu_callback(struct notifier_block *nb,
* Compare counter against given value.
* Return 1 if greater, 0 if equal and -1 if less
*/
-int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs)
+int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch)
{
s64 count;
count = percpu_counter_read(fbc);
/* Check to see if rough count will be sufficient for comparison */
- if (abs(count - rhs) > (percpu_counter_batch*num_online_cpus())) {
+ if (abs(count - rhs) > (batch * num_online_cpus())) {
if (count > rhs)
return 1;
else
@@ -218,7 +218,7 @@ int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs)
else
return 0;
}
-EXPORT_SYMBOL(percpu_counter_compare);
+EXPORT_SYMBOL(__percpu_counter_compare);
static int __init percpu_counter_startup(void)
{
diff --git a/lib/radix-tree.c b/lib/radix-tree.c
index 3d2aa27b845b..061550de77bc 100644
--- a/lib/radix-tree.c
+++ b/lib/radix-tree.c
@@ -33,7 +33,7 @@
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/rcupdate.h>
-#include <linux/preempt_mask.h> /* in_interrupt() */
+#include <linux/preempt.h> /* in_interrupt() */
/*
diff --git a/lib/raid6/Makefile b/lib/raid6/Makefile
index c7dab0645554..3b10a48fa040 100644
--- a/lib/raid6/Makefile
+++ b/lib/raid6/Makefile
@@ -15,7 +15,7 @@ quiet_cmd_unroll = UNROLL $@
< $< > $@ || ( rm -f $@ && exit 1 )
ifeq ($(CONFIG_ALTIVEC),y)
-altivec_flags := -maltivec -mabi=altivec
+altivec_flags := -maltivec $(call cc-option,-mabi=altivec)
endif
# The GCC option -ffreestanding is required in order to compile code containing
diff --git a/lib/raid6/x86.h b/lib/raid6/x86.h
index b7595484a815..8fe9d9662abb 100644
--- a/lib/raid6/x86.h
+++ b/lib/raid6/x86.h
@@ -23,7 +23,7 @@
#ifdef __KERNEL__ /* Real code */
-#include <asm/i387.h>
+#include <asm/fpu/api.h>
#else /* Dummy code for user space testing */
diff --git a/lib/rhashtable.c b/lib/rhashtable.c
index b28df4019ade..a60a6d335a91 100644
--- a/lib/rhashtable.c
+++ b/lib/rhashtable.c
@@ -14,6 +14,7 @@
* published by the Free Software Foundation.
*/
+#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
@@ -25,6 +26,7 @@
#include <linux/random.h>
#include <linux/rhashtable.h>
#include <linux/err.h>
+#include <linux/export.h>
#define HASH_DEFAULT_SIZE 64UL
#define HASH_MIN_SIZE 4U
@@ -446,6 +448,10 @@ int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
if (key && rhashtable_lookup_fast(ht, key, ht->p))
goto exit;
+ err = -E2BIG;
+ if (unlikely(rht_grow_above_max(ht, tbl)))
+ goto exit;
+
err = -EAGAIN;
if (rhashtable_check_elasticity(ht, tbl, hash) ||
rht_grow_above_100(ht, tbl))
@@ -579,7 +585,6 @@ void *rhashtable_walk_next(struct rhashtable_iter *iter)
struct bucket_table *tbl = iter->walker->tbl;
struct rhashtable *ht = iter->ht;
struct rhash_head *p = iter->p;
- void *obj = NULL;
if (p) {
p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
@@ -599,8 +604,7 @@ next:
if (!rht_is_a_nulls(p)) {
iter->skip++;
iter->p = p;
- obj = rht_obj(ht, p);
- goto out;
+ return rht_obj(ht, p);
}
iter->skip = 0;
@@ -618,9 +622,7 @@ next:
iter->p = NULL;
-out:
-
- return obj;
+ return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);
@@ -738,6 +740,12 @@ int rhashtable_init(struct rhashtable *ht,
if (params->max_size)
ht->p.max_size = rounddown_pow_of_two(params->max_size);
+ if (params->insecure_max_entries)
+ ht->p.insecure_max_entries =
+ rounddown_pow_of_two(params->insecure_max_entries);
+ else
+ ht->p.insecure_max_entries = ht->p.max_size * 2;
+
ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
/* The maximum (not average) chain length grows with the
diff --git a/lib/scatterlist.c b/lib/scatterlist.c
index c9f2e8c6ccc9..99fbc2f238c4 100644
--- a/lib/scatterlist.c
+++ b/lib/scatterlist.c
@@ -56,6 +56,38 @@ int sg_nents(struct scatterlist *sg)
}
EXPORT_SYMBOL(sg_nents);
+/**
+ * sg_nents_for_len - return total count of entries in scatterlist
+ * needed to satisfy the supplied length
+ * @sg: The scatterlist
+ * @len: The total required length
+ *
+ * Description:
+ * Determines the number of entries in sg that are required to meet
+ * the supplied length, taking into acount chaining as well
+ *
+ * Returns:
+ * the number of sg entries needed, negative error on failure
+ *
+ **/
+int sg_nents_for_len(struct scatterlist *sg, u64 len)
+{
+ int nents;
+ u64 total;
+
+ if (!len)
+ return 0;
+
+ for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
+ nents++;
+ total += sg->length;
+ if (total >= len)
+ return nents;
+ }
+
+ return -EINVAL;
+}
+EXPORT_SYMBOL(sg_nents_for_len);
/**
* sg_last - return the last scatterlist entry in a list
diff --git a/lib/strnlen_user.c b/lib/strnlen_user.c
index a28df5206d95..3a5f2b366d84 100644
--- a/lib/strnlen_user.c
+++ b/lib/strnlen_user.c
@@ -57,7 +57,8 @@ static inline long do_strnlen_user(const char __user *src, unsigned long count,
return res + find_zero(data) + 1 - align;
}
res += sizeof(unsigned long);
- if (unlikely(max < sizeof(unsigned long)))
+ /* We already handled 'unsigned long' bytes. Did we do it all ? */
+ if (unlikely(max <= sizeof(unsigned long)))
break;
max -= sizeof(unsigned long);
if (unlikely(__get_user(c,(unsigned long __user *)(src+res))))
@@ -84,13 +85,21 @@ static inline long do_strnlen_user(const char __user *src, unsigned long count,
* @str: The string to measure.
* @count: Maximum count (including NUL character)
*
- * Context: User context only. This function may sleep.
+ * Context: User context only. This function may sleep if pagefaults are
+ * enabled.
*
* Get the size of a NUL-terminated string in user space.
*
* Returns the size of the string INCLUDING the terminating NUL.
- * If the string is too long, returns 'count+1'.
+ * If the string is too long, returns a number larger than @count. User
+ * has to check the return value against "> count".
* On exception (or invalid count), returns 0.
+ *
+ * NOTE! You should basically never use this function. There is
+ * almost never any valid case for using the length of a user space
+ * string, since the string can be changed at any time by other
+ * threads. Use "strncpy_from_user()" instead to get a stable copy
+ * of the string.
*/
long strnlen_user(const char __user *str, long count)
{
@@ -113,7 +122,8 @@ EXPORT_SYMBOL(strnlen_user);
* strlen_user: - Get the size of a user string INCLUDING final NUL.
* @str: The string to measure.
*
- * Context: User context only. This function may sleep.
+ * Context: User context only. This function may sleep if pagefaults are
+ * enabled.
*
* Get the size of a NUL-terminated string in user space.
*
diff --git a/lib/swiotlb.c b/lib/swiotlb.c
index 341268841b31..76f29ecba8f4 100644
--- a/lib/swiotlb.c
+++ b/lib/swiotlb.c
@@ -537,8 +537,9 @@ EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
* Allocates bounce buffer and returns its kernel virtual address.
*/
-phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
- enum dma_data_direction dir)
+static phys_addr_t
+map_single(struct device *hwdev, phys_addr_t phys, size_t size,
+ enum dma_data_direction dir)
{
dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
@@ -655,7 +656,7 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
*/
phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
if (paddr == SWIOTLB_MAP_ERROR)
- return NULL;
+ goto err_warn;
ret = phys_to_virt(paddr);
dev_addr = phys_to_dma(hwdev, paddr);
@@ -669,7 +670,7 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
swiotlb_tbl_unmap_single(hwdev, paddr,
size, DMA_TO_DEVICE);
- return NULL;
+ goto err_warn;
}
}
@@ -677,6 +678,13 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
memset(ret, 0, size);
return ret;
+
+err_warn:
+ pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
+ dev_name(hwdev), size);
+ dump_stack();
+
+ return NULL;
}
EXPORT_SYMBOL(swiotlb_alloc_coherent);
diff --git a/lib/test_bpf.c b/lib/test_bpf.c
index 80d78c51f65f..7f58c735d745 100644
--- a/lib/test_bpf.c
+++ b/lib/test_bpf.c
@@ -21,6 +21,7 @@
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
+#include <linux/random.h>
/* General test specific settings */
#define MAX_SUBTESTS 3
@@ -67,6 +68,10 @@ struct bpf_test {
union {
struct sock_filter insns[MAX_INSNS];
struct bpf_insn insns_int[MAX_INSNS];
+ struct {
+ void *insns;
+ unsigned int len;
+ } ptr;
} u;
__u8 aux;
__u8 data[MAX_DATA];
@@ -74,8 +79,282 @@ struct bpf_test {
int data_size;
__u32 result;
} test[MAX_SUBTESTS];
+ int (*fill_helper)(struct bpf_test *self);
};
+/* Large test cases need separate allocation and fill handler. */
+
+static int bpf_fill_maxinsns1(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct sock_filter *insn;
+ __u32 k = ~0;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ for (i = 0; i < len; i++, k--)
+ insn[i] = __BPF_STMT(BPF_RET | BPF_K, k);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns2(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct sock_filter *insn;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ for (i = 0; i < len; i++)
+ insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns3(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct sock_filter *insn;
+ struct rnd_state rnd;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ prandom_seed_state(&rnd, 3141592653589793238ULL);
+
+ for (i = 0; i < len - 1; i++) {
+ __u32 k = prandom_u32_state(&rnd);
+
+ insn[i] = __BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, k);
+ }
+
+ insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns4(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS + 1;
+ struct sock_filter *insn;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ for (i = 0; i < len; i++)
+ insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns5(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct sock_filter *insn;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ insn[0] = __BPF_JUMP(BPF_JMP | BPF_JA, len - 2, 0, 0);
+
+ for (i = 1; i < len - 1; i++)
+ insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
+
+ insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xabababab);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns6(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct sock_filter *insn;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ for (i = 0; i < len - 1; i++)
+ insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
+ SKF_AD_VLAN_TAG_PRESENT);
+
+ insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns7(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct sock_filter *insn;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ for (i = 0; i < len - 4; i++)
+ insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
+ SKF_AD_CPU);
+
+ insn[len - 4] = __BPF_STMT(BPF_MISC | BPF_TAX, 0);
+ insn[len - 3] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
+ SKF_AD_CPU);
+ insn[len - 2] = __BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0);
+ insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns8(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct sock_filter *insn;
+ int i, jmp_off = len - 3;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ insn[0] = __BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff);
+
+ for (i = 1; i < len - 1; i++)
+ insn[i] = __BPF_JUMP(BPF_JMP | BPF_JGT, 0xffffffff, jmp_off--, 0);
+
+ insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns9(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS;
+ struct bpf_insn *insn;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ insn[0] = BPF_JMP_IMM(BPF_JA, 0, 0, len - 2);
+ insn[1] = BPF_ALU32_IMM(BPF_MOV, R0, 0xcbababab);
+ insn[2] = BPF_EXIT_INSN();
+
+ for (i = 3; i < len - 2; i++)
+ insn[i] = BPF_ALU32_IMM(BPF_MOV, R0, 0xfefefefe);
+
+ insn[len - 2] = BPF_EXIT_INSN();
+ insn[len - 1] = BPF_JMP_IMM(BPF_JA, 0, 0, -(len - 1));
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns10(struct bpf_test *self)
+{
+ unsigned int len = BPF_MAXINSNS, hlen = len - 2;
+ struct bpf_insn *insn;
+ int i;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ for (i = 0; i < hlen / 2; i++)
+ insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 2 - 2 * i);
+ for (i = hlen - 1; i > hlen / 2; i--)
+ insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 1 - 2 * i);
+
+ insn[hlen / 2] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen / 2 - 1);
+ insn[hlen] = BPF_ALU32_IMM(BPF_MOV, R0, 0xabababac);
+ insn[hlen + 1] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int __bpf_fill_ja(struct bpf_test *self, unsigned int len,
+ unsigned int plen)
+{
+ struct sock_filter *insn;
+ unsigned int rlen;
+ int i, j;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ rlen = (len % plen) - 1;
+
+ for (i = 0; i + plen < len; i += plen)
+ for (j = 0; j < plen; j++)
+ insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA,
+ plen - 1 - j, 0, 0);
+ for (j = 0; j < rlen; j++)
+ insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA, rlen - 1 - j,
+ 0, 0);
+
+ insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xababcbac);
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+static int bpf_fill_maxinsns11(struct bpf_test *self)
+{
+ /* Hits 70 passes on x86_64, so cannot get JITed there. */
+ return __bpf_fill_ja(self, BPF_MAXINSNS, 68);
+}
+
+static int bpf_fill_ja(struct bpf_test *self)
+{
+ /* Hits exactly 11 passes on x86_64 JIT. */
+ return __bpf_fill_ja(self, 12, 9);
+}
+
static struct bpf_test tests[] = {
{
"TAX",
@@ -1755,7 +2034,8 @@ static struct bpf_test tests[] = {
BPF_EXIT_INSN(),
BPF_JMP_IMM(BPF_JEQ, R3, 0x1234, 1),
BPF_EXIT_INSN(),
- BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_LD_IMM64(R0, 0x1ffffffffLL),
+ BPF_ALU64_IMM(BPF_RSH, R0, 32), /* R0 = 1 */
BPF_EXIT_INSN(),
},
INTERNAL,
@@ -1805,6 +2085,2313 @@ static struct bpf_test tests[] = {
0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6},
{ { 38, 256 } }
},
+ /* BPF_ALU | BPF_MOV | BPF_X */
+ {
+ "ALU_MOV_X: dst = 2",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU32_REG(BPF_MOV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_MOV_X: dst = 4294967295",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
+ BPF_ALU32_REG(BPF_MOV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 4294967295U } },
+ },
+ {
+ "ALU64_MOV_X: dst = 2",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU64_REG(BPF_MOV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_MOV_X: dst = 4294967295",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
+ BPF_ALU64_REG(BPF_MOV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 4294967295U } },
+ },
+ /* BPF_ALU | BPF_MOV | BPF_K */
+ {
+ "ALU_MOV_K: dst = 2",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_MOV_K: dst = 4294967295",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 4294967295U),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 4294967295U } },
+ },
+ {
+ "ALU_MOV_K: 0x0000ffffffff0000 = 0x00000000ffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0x00000000ffffffffLL),
+ BPF_ALU32_IMM(BPF_MOV, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_MOV_K: dst = 2",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_MOV_K: dst = 2147483647",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 2147483647),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2147483647 } },
+ },
+ {
+ "ALU64_OR_K: dst = 0x0",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0x0),
+ BPF_ALU64_IMM(BPF_MOV, R2, 0x0),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_MOV_K: dst = -1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ALU64_IMM(BPF_MOV, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_ADD | BPF_X */
+ {
+ "ALU_ADD_X: 1 + 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU32_REG(BPF_ADD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_ADD_X: 1 + 4294967294 = 4294967295",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
+ BPF_ALU32_REG(BPF_ADD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 4294967295U } },
+ },
+ {
+ "ALU64_ADD_X: 1 + 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU64_REG(BPF_ADD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_ADD_X: 1 + 4294967294 = 4294967295",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
+ BPF_ALU64_REG(BPF_ADD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 4294967295U } },
+ },
+ /* BPF_ALU | BPF_ADD | BPF_K */
+ {
+ "ALU_ADD_K: 1 + 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_ADD_K: 3 + 0 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_ADD, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_ADD_K: 1 + 4294967294 = 4294967295",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 4294967294U),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 4294967295U } },
+ },
+ {
+ "ALU_ADD_K: 0 + (-1) = 0x00000000ffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0),
+ BPF_LD_IMM64(R3, 0x00000000ffffffff),
+ BPF_ALU32_IMM(BPF_ADD, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_ADD_K: 1 + 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_ADD, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_ADD_K: 3 + 0 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_ADD, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_ADD_K: 1 + 2147483646 = 2147483647",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_ADD, R0, 2147483646),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2147483647 } },
+ },
+ {
+ "ALU64_ADD_K: 2147483646 + -2147483647 = -1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2147483646),
+ BPF_ALU64_IMM(BPF_ADD, R0, -2147483647),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, -1 } },
+ },
+ {
+ "ALU64_ADD_K: 1 + 0 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x1),
+ BPF_LD_IMM64(R3, 0x1),
+ BPF_ALU64_IMM(BPF_ADD, R2, 0x0),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_ADD_K: 0 + (-1) = 0xffffffffffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ALU64_IMM(BPF_ADD, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_SUB | BPF_X */
+ {
+ "ALU_SUB_X: 3 - 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOV, R1, 1),
+ BPF_ALU32_REG(BPF_SUB, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_SUB_X: 4294967295 - 4294967294 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967295U),
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
+ BPF_ALU32_REG(BPF_SUB, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_SUB_X: 3 - 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOV, R1, 1),
+ BPF_ALU64_REG(BPF_SUB, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_SUB_X: 4294967295 - 4294967294 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967295U),
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
+ BPF_ALU64_REG(BPF_SUB, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_ALU | BPF_SUB | BPF_K */
+ {
+ "ALU_SUB_K: 3 - 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_SUB, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_SUB_K: 3 - 0 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_SUB, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_SUB_K: 4294967295 - 4294967294 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967295U),
+ BPF_ALU32_IMM(BPF_SUB, R0, 4294967294U),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_SUB_K: 3 - 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_SUB, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_SUB_K: 3 - 0 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_SUB, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_SUB_K: 4294967294 - 4294967295 = -1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967294U),
+ BPF_ALU64_IMM(BPF_SUB, R0, 4294967295U),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, -1 } },
+ },
+ {
+ "ALU64_ADD_K: 2147483646 - 2147483647 = -1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2147483646),
+ BPF_ALU64_IMM(BPF_SUB, R0, 2147483647),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, -1 } },
+ },
+ /* BPF_ALU | BPF_MUL | BPF_X */
+ {
+ "ALU_MUL_X: 2 * 3 = 6",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_MOV, R1, 3),
+ BPF_ALU32_REG(BPF_MUL, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 6 } },
+ },
+ {
+ "ALU_MUL_X: 2 * 0x7FFFFFF8 = 0xFFFFFFF0",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_MOV, R1, 0x7FFFFFF8),
+ BPF_ALU32_REG(BPF_MUL, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xFFFFFFF0 } },
+ },
+ {
+ "ALU_MUL_X: -1 * -1 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, -1),
+ BPF_ALU32_IMM(BPF_MOV, R1, -1),
+ BPF_ALU32_REG(BPF_MUL, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_MUL_X: 2 * 3 = 6",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_MOV, R1, 3),
+ BPF_ALU64_REG(BPF_MUL, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 6 } },
+ },
+ {
+ "ALU64_MUL_X: 1 * 2147483647 = 2147483647",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2147483647),
+ BPF_ALU64_REG(BPF_MUL, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2147483647 } },
+ },
+ /* BPF_ALU | BPF_MUL | BPF_K */
+ {
+ "ALU_MUL_K: 2 * 3 = 6",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_MUL, R0, 3),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 6 } },
+ },
+ {
+ "ALU_MUL_K: 3 * 1 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MUL, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_MUL_K: 2 * 0x7FFFFFF8 = 0xFFFFFFF0",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_MUL, R0, 0x7FFFFFF8),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xFFFFFFF0 } },
+ },
+ {
+ "ALU_MUL_K: 1 * (-1) = 0x00000000ffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x1),
+ BPF_LD_IMM64(R3, 0x00000000ffffffff),
+ BPF_ALU32_IMM(BPF_MUL, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_MUL_K: 2 * 3 = 6",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU64_IMM(BPF_MUL, R0, 3),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 6 } },
+ },
+ {
+ "ALU64_MUL_K: 3 * 1 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_MUL, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_MUL_K: 1 * 2147483647 = 2147483647",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_MUL, R0, 2147483647),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2147483647 } },
+ },
+ {
+ "ALU64_MUL_K: 1 * -2147483647 = -2147483647",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_MUL, R0, -2147483647),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, -2147483647 } },
+ },
+ {
+ "ALU64_MUL_K: 1 * (-1) = 0xffffffffffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x1),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ALU64_IMM(BPF_MUL, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_DIV | BPF_X */
+ {
+ "ALU_DIV_X: 6 / 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 6),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU32_REG(BPF_DIV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_DIV_X: 4294967295 / 4294967295 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967295U),
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
+ BPF_ALU32_REG(BPF_DIV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_DIV_X: 6 / 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 6),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU64_REG(BPF_DIV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_DIV_X: 2147483647 / 2147483647 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2147483647),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2147483647),
+ BPF_ALU64_REG(BPF_DIV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_DIV_X: 0xffffffffffffffff / (-1) = 0x0000000000000001",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
+ BPF_LD_IMM64(R4, 0xffffffffffffffffLL),
+ BPF_LD_IMM64(R3, 0x0000000000000001LL),
+ BPF_ALU64_REG(BPF_DIV, R2, R4),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_DIV | BPF_K */
+ {
+ "ALU_DIV_K: 6 / 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 6),
+ BPF_ALU32_IMM(BPF_DIV, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_DIV_K: 3 / 1 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_DIV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_DIV_K: 4294967295 / 4294967295 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967295U),
+ BPF_ALU32_IMM(BPF_DIV, R0, 4294967295U),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU_DIV_K: 0xffffffffffffffff / (-1) = 0x1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
+ BPF_LD_IMM64(R3, 0x1UL),
+ BPF_ALU32_IMM(BPF_DIV, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_DIV_K: 6 / 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 6),
+ BPF_ALU64_IMM(BPF_DIV, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_DIV_K: 3 / 1 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_DIV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_DIV_K: 2147483647 / 2147483647 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2147483647),
+ BPF_ALU64_IMM(BPF_DIV, R0, 2147483647),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_DIV_K: 0xffffffffffffffff / (-1) = 0x0000000000000001",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
+ BPF_LD_IMM64(R3, 0x0000000000000001LL),
+ BPF_ALU64_IMM(BPF_DIV, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_MOD | BPF_X */
+ {
+ "ALU_MOD_X: 3 % 2 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU32_REG(BPF_MOD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU_MOD_X: 4294967295 % 4294967293 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967295U),
+ BPF_ALU32_IMM(BPF_MOV, R1, 4294967293U),
+ BPF_ALU32_REG(BPF_MOD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_MOD_X: 3 % 2 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU64_REG(BPF_MOD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_MOD_X: 2147483647 % 2147483645 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2147483647),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2147483645),
+ BPF_ALU64_REG(BPF_MOD, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ /* BPF_ALU | BPF_MOD | BPF_K */
+ {
+ "ALU_MOD_K: 3 % 2 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOD, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU_MOD_K: 3 % 1 = 0",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOD, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "ALU_MOD_K: 4294967295 % 4294967293 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 4294967295U),
+ BPF_ALU32_IMM(BPF_MOD, R0, 4294967293U),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_MOD_K: 3 % 2 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_MOD, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_MOD_K: 3 % 1 = 0",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_MOD, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "ALU64_MOD_K: 2147483647 % 2147483645 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2147483647),
+ BPF_ALU64_IMM(BPF_MOD, R0, 2147483645),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ /* BPF_ALU | BPF_AND | BPF_X */
+ {
+ "ALU_AND_X: 3 & 2 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU32_REG(BPF_AND, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_AND_X: 0xffffffff & 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xffffffff),
+ BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
+ BPF_ALU32_REG(BPF_AND, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ALU64_AND_X: 3 & 2 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU64_REG(BPF_AND, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_AND_X: 0xffffffff & 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xffffffff),
+ BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
+ BPF_ALU64_REG(BPF_AND, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ /* BPF_ALU | BPF_AND | BPF_K */
+ {
+ "ALU_AND_K: 3 & 2 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU32_IMM(BPF_AND, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_AND_K: 0xffffffff & 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xffffffff),
+ BPF_ALU32_IMM(BPF_AND, R0, 0xffffffff),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ALU64_AND_K: 3 & 2 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_AND, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_AND_K: 0xffffffff & 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xffffffff),
+ BPF_ALU64_IMM(BPF_AND, R0, 0xffffffff),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ALU64_AND_K: 0x0000ffffffff0000 & 0x0 = 0x0000ffff00000000",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0x0000000000000000LL),
+ BPF_ALU64_IMM(BPF_AND, R2, 0x0),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_AND_K: 0x0000ffffffff0000 & -1 = 0x0000ffffffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
+ BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_AND_K: 0xffffffffffffffff & -1 = 0xffffffffffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_OR | BPF_X */
+ {
+ "ALU_OR_X: 1 | 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU32_REG(BPF_OR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_OR_X: 0x0 | 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
+ BPF_ALU32_REG(BPF_OR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ALU64_OR_X: 1 | 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 2),
+ BPF_ALU64_REG(BPF_OR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_OR_X: 0 | 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
+ BPF_ALU64_REG(BPF_OR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ /* BPF_ALU | BPF_OR | BPF_K */
+ {
+ "ALU_OR_K: 1 | 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_OR, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_OR_K: 0 & 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_ALU32_IMM(BPF_OR, R0, 0xffffffff),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ALU64_OR_K: 1 | 2 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_OR, R0, 2),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_OR_K: 0 & 0xffffffff = 0xffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_ALU64_IMM(BPF_OR, R0, 0xffffffff),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ALU64_OR_K: 0x0000ffffffff0000 | 0x0 = 0x0000ffff00000000",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
+ BPF_ALU64_IMM(BPF_OR, R2, 0x0),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_OR_K: 0x0000ffffffff0000 | -1 = 0xffffffffffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_OR_K: 0x000000000000000 | -1 = 0xffffffffffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000000000000000LL),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_XOR | BPF_X */
+ {
+ "ALU_XOR_X: 5 ^ 6 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 5),
+ BPF_ALU32_IMM(BPF_MOV, R1, 6),
+ BPF_ALU32_REG(BPF_XOR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_XOR_X: 0x1 ^ 0xffffffff = 0xfffffffe",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
+ BPF_ALU32_REG(BPF_XOR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xfffffffe } },
+ },
+ {
+ "ALU64_XOR_X: 5 ^ 6 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 5),
+ BPF_ALU32_IMM(BPF_MOV, R1, 6),
+ BPF_ALU64_REG(BPF_XOR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_XOR_X: 1 ^ 0xffffffff = 0xfffffffe",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
+ BPF_ALU64_REG(BPF_XOR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xfffffffe } },
+ },
+ /* BPF_ALU | BPF_XOR | BPF_K */
+ {
+ "ALU_XOR_K: 5 ^ 6 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 5),
+ BPF_ALU32_IMM(BPF_XOR, R0, 6),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU_XOR_K: 1 ^ 0xffffffff = 0xfffffffe",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_XOR, R0, 0xffffffff),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xfffffffe } },
+ },
+ {
+ "ALU64_XOR_K: 5 ^ 6 = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 5),
+ BPF_ALU64_IMM(BPF_XOR, R0, 6),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_XOR_K: 1 & 0xffffffff = 0xfffffffe",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_XOR, R0, 0xffffffff),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xfffffffe } },
+ },
+ {
+ "ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
+ BPF_ALU64_IMM(BPF_XOR, R2, 0x0),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_XOR_K: 0x0000ffffffff0000 ^ -1 = 0xffff00000000ffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
+ BPF_LD_IMM64(R3, 0xffff00000000ffffLL),
+ BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ALU64_XOR_K: 0x000000000000000 ^ -1 = 0xffffffffffffffff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0x0000000000000000LL),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ /* BPF_ALU | BPF_LSH | BPF_X */
+ {
+ "ALU_LSH_X: 1 << 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 1),
+ BPF_ALU32_REG(BPF_LSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_LSH_X: 1 << 31 = 0x80000000",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 31),
+ BPF_ALU32_REG(BPF_LSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x80000000 } },
+ },
+ {
+ "ALU64_LSH_X: 1 << 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 1),
+ BPF_ALU64_REG(BPF_LSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_LSH_X: 1 << 31 = 0x80000000",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_MOV, R1, 31),
+ BPF_ALU64_REG(BPF_LSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x80000000 } },
+ },
+ /* BPF_ALU | BPF_LSH | BPF_K */
+ {
+ "ALU_LSH_K: 1 << 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_LSH, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU_LSH_K: 1 << 31 = 0x80000000",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU32_IMM(BPF_LSH, R0, 31),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x80000000 } },
+ },
+ {
+ "ALU64_LSH_K: 1 << 1 = 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_LSH, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 2 } },
+ },
+ {
+ "ALU64_LSH_K: 1 << 31 = 0x80000000",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 1),
+ BPF_ALU64_IMM(BPF_LSH, R0, 31),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x80000000 } },
+ },
+ /* BPF_ALU | BPF_RSH | BPF_X */
+ {
+ "ALU_RSH_X: 2 >> 1 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_MOV, R1, 1),
+ BPF_ALU32_REG(BPF_RSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU_RSH_X: 0x80000000 >> 31 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x80000000),
+ BPF_ALU32_IMM(BPF_MOV, R1, 31),
+ BPF_ALU32_REG(BPF_RSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_RSH_X: 2 >> 1 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_MOV, R1, 1),
+ BPF_ALU64_REG(BPF_RSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_RSH_X: 0x80000000 >> 31 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x80000000),
+ BPF_ALU32_IMM(BPF_MOV, R1, 31),
+ BPF_ALU64_REG(BPF_RSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_ALU | BPF_RSH | BPF_K */
+ {
+ "ALU_RSH_K: 2 >> 1 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU32_IMM(BPF_RSH, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU_RSH_K: 0x80000000 >> 31 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x80000000),
+ BPF_ALU32_IMM(BPF_RSH, R0, 31),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_RSH_K: 2 >> 1 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 2),
+ BPF_ALU64_IMM(BPF_RSH, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "ALU64_RSH_K: 0x80000000 >> 31 = 1",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x80000000),
+ BPF_ALU64_IMM(BPF_RSH, R0, 31),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_ALU | BPF_ARSH | BPF_X */
+ {
+ "ALU_ARSH_X: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xff00ff0000000000LL),
+ BPF_ALU32_IMM(BPF_MOV, R1, 40),
+ BPF_ALU64_REG(BPF_ARSH, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffff00ff } },
+ },
+ /* BPF_ALU | BPF_ARSH | BPF_K */
+ {
+ "ALU_ARSH_K: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xff00ff0000000000LL),
+ BPF_ALU64_IMM(BPF_ARSH, R0, 40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffff00ff } },
+ },
+ /* BPF_ALU | BPF_NEG */
+ {
+ "ALU_NEG: -(3) = -3",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 3),
+ BPF_ALU32_IMM(BPF_NEG, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, -3 } },
+ },
+ {
+ "ALU_NEG: -(-3) = 3",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, -3),
+ BPF_ALU32_IMM(BPF_NEG, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ {
+ "ALU64_NEG: -(3) = -3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 3),
+ BPF_ALU64_IMM(BPF_NEG, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, -3 } },
+ },
+ {
+ "ALU64_NEG: -(-3) = 3",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, -3),
+ BPF_ALU64_IMM(BPF_NEG, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 3 } },
+ },
+ /* BPF_ALU | BPF_END | BPF_FROM_BE */
+ {
+ "ALU_END_FROM_BE 16: 0x0123456789abcdef -> 0xcdef",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 16),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_be16(0xcdef) } },
+ },
+ {
+ "ALU_END_FROM_BE 32: 0x0123456789abcdef -> 0x89abcdef",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 32),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_be32(0x89abcdef) } },
+ },
+ {
+ "ALU_END_FROM_BE 64: 0x0123456789abcdef -> 0x89abcdef",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 64),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) cpu_to_be64(0x0123456789abcdefLL) } },
+ },
+ /* BPF_ALU | BPF_END | BPF_FROM_LE */
+ {
+ "ALU_END_FROM_LE 16: 0x0123456789abcdef -> 0xefcd",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 16),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_le16(0xcdef) } },
+ },
+ {
+ "ALU_END_FROM_LE 32: 0x0123456789abcdef -> 0xefcdab89",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 32),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_le32(0x89abcdef) } },
+ },
+ {
+ "ALU_END_FROM_LE 64: 0x0123456789abcdef -> 0x67452301",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 64),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) cpu_to_le64(0x0123456789abcdefLL) } },
+ },
+ /* BPF_ST(X) | BPF_MEM | BPF_B/H/W/DW */
+ {
+ "ST_MEM_B: Store/Load byte: max negative",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_B, R10, -40, 0xff),
+ BPF_LDX_MEM(BPF_B, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xff } },
+ },
+ {
+ "ST_MEM_B: Store/Load byte: max positive",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_H, R10, -40, 0x7f),
+ BPF_LDX_MEM(BPF_H, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x7f } },
+ },
+ {
+ "STX_MEM_B: Store/Load byte: max negative",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_LD_IMM64(R1, 0xffLL),
+ BPF_STX_MEM(BPF_B, R10, R1, -40),
+ BPF_LDX_MEM(BPF_B, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xff } },
+ },
+ {
+ "ST_MEM_H: Store/Load half word: max negative",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_H, R10, -40, 0xffff),
+ BPF_LDX_MEM(BPF_H, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffff } },
+ },
+ {
+ "ST_MEM_H: Store/Load half word: max positive",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_H, R10, -40, 0x7fff),
+ BPF_LDX_MEM(BPF_H, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x7fff } },
+ },
+ {
+ "STX_MEM_H: Store/Load half word: max negative",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_LD_IMM64(R1, 0xffffLL),
+ BPF_STX_MEM(BPF_H, R10, R1, -40),
+ BPF_LDX_MEM(BPF_H, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffff } },
+ },
+ {
+ "ST_MEM_W: Store/Load word: max negative",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_W, R10, -40, 0xffffffff),
+ BPF_LDX_MEM(BPF_W, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ST_MEM_W: Store/Load word: max positive",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_W, R10, -40, 0x7fffffff),
+ BPF_LDX_MEM(BPF_W, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x7fffffff } },
+ },
+ {
+ "STX_MEM_W: Store/Load word: max negative",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_LD_IMM64(R1, 0xffffffffLL),
+ BPF_STX_MEM(BPF_W, R10, R1, -40),
+ BPF_LDX_MEM(BPF_W, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ST_MEM_DW: Store/Load double word: max negative",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff),
+ BPF_LDX_MEM(BPF_DW, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ {
+ "ST_MEM_DW: Store/Load double word: max negative 2",
+ .u.insns_int = {
+ BPF_LD_IMM64(R2, 0xffff00000000ffffLL),
+ BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
+ BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff),
+ BPF_LDX_MEM(BPF_DW, R2, R10, -40),
+ BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
+ BPF_MOV32_IMM(R0, 2),
+ BPF_EXIT_INSN(),
+ BPF_MOV32_IMM(R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x1 } },
+ },
+ {
+ "ST_MEM_DW: Store/Load double word: max positive",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_ST_MEM(BPF_DW, R10, -40, 0x7fffffff),
+ BPF_LDX_MEM(BPF_DW, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x7fffffff } },
+ },
+ {
+ "STX_MEM_DW: Store/Load double word: max negative",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0),
+ BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
+ BPF_STX_MEM(BPF_W, R10, R1, -40),
+ BPF_LDX_MEM(BPF_W, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0xffffffff } },
+ },
+ /* BPF_STX | BPF_XADD | BPF_W/DW */
+ {
+ "STX_XADD_W: Test: 0x12 + 0x10 = 0x22",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
+ BPF_ST_MEM(BPF_W, R10, -40, 0x10),
+ BPF_STX_XADD(BPF_W, R10, R0, -40),
+ BPF_LDX_MEM(BPF_W, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x22 } },
+ },
+ {
+ "STX_XADD_DW: Test: 0x12 + 0x10 = 0x22",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
+ BPF_ST_MEM(BPF_DW, R10, -40, 0x10),
+ BPF_STX_XADD(BPF_DW, R10, R0, -40),
+ BPF_LDX_MEM(BPF_DW, R0, R10, -40),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x22 } },
+ },
+ /* BPF_JMP | BPF_EXIT */
+ {
+ "JMP_EXIT",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0x4711),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 0x4712),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0x4711 } },
+ },
+ /* BPF_JMP | BPF_JA */
+ {
+ "JMP_JA: Unconditional jump: if (true) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_JMP_IMM(BPF_JA, 0, 0, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JSGT | BPF_K */
+ {
+ "JMP_JSGT_K: Signed jump: if (-1 > -2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
+ BPF_JMP_IMM(BPF_JSGT, R1, -2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSGT_K: Signed jump: if (-1 > -1) return 0",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
+ BPF_JMP_IMM(BPF_JSGT, R1, -1, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JSGE | BPF_K */
+ {
+ "JMP_JSGE_K: Signed jump: if (-1 >= -2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
+ BPF_JMP_IMM(BPF_JSGE, R1, -2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSGE_K: Signed jump: if (-1 >= -1) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
+ BPF_JMP_IMM(BPF_JSGE, R1, -1, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JGT | BPF_K */
+ {
+ "JMP_JGT_K: if (3 > 2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_JMP_IMM(BPF_JGT, R1, 2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JGE | BPF_K */
+ {
+ "JMP_JGE_K: if (3 >= 2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_JMP_IMM(BPF_JGE, R1, 2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JGT | BPF_K jump backwards */
+ {
+ "JMP_JGT_K: if (3 > 2) return 1 (jump backwards)",
+ .u.insns_int = {
+ BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* goto start */
+ BPF_ALU32_IMM(BPF_MOV, R0, 1), /* out: */
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 0), /* start: */
+ BPF_LD_IMM64(R1, 3), /* note: this takes 2 insns */
+ BPF_JMP_IMM(BPF_JGT, R1, 2, -6), /* goto out */
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JGE_K: if (3 >= 3) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_JMP_IMM(BPF_JGE, R1, 3, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JNE | BPF_K */
+ {
+ "JMP_JNE_K: if (3 != 2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_JMP_IMM(BPF_JNE, R1, 2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JEQ | BPF_K */
+ {
+ "JMP_JEQ_K: if (3 == 3) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_JMP_IMM(BPF_JEQ, R1, 3, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JSET | BPF_K */
+ {
+ "JMP_JSET_K: if (0x3 & 0x2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_JMP_IMM(BPF_JNE, R1, 2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSET_K: if (0x3 & 0xffffffff) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_JMP_IMM(BPF_JNE, R1, 0xffffffff, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JSGT | BPF_X */
+ {
+ "JMP_JSGT_X: Signed jump: if (-1 > -2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, -1),
+ BPF_LD_IMM64(R2, -2),
+ BPF_JMP_REG(BPF_JSGT, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSGT_X: Signed jump: if (-1 > -1) return 0",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_LD_IMM64(R1, -1),
+ BPF_LD_IMM64(R2, -1),
+ BPF_JMP_REG(BPF_JSGT, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JSGE | BPF_X */
+ {
+ "JMP_JSGE_X: Signed jump: if (-1 >= -2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, -1),
+ BPF_LD_IMM64(R2, -2),
+ BPF_JMP_REG(BPF_JSGE, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSGE_X: Signed jump: if (-1 >= -1) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, -1),
+ BPF_LD_IMM64(R2, -1),
+ BPF_JMP_REG(BPF_JSGE, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JGT | BPF_X */
+ {
+ "JMP_JGT_X: if (3 > 2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_LD_IMM64(R2, 2),
+ BPF_JMP_REG(BPF_JGT, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JGE | BPF_X */
+ {
+ "JMP_JGE_X: if (3 >= 2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_LD_IMM64(R2, 2),
+ BPF_JMP_REG(BPF_JGE, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JGE_X: if (3 >= 3) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_LD_IMM64(R2, 3),
+ BPF_JMP_REG(BPF_JGE, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JNE | BPF_X */
+ {
+ "JMP_JNE_X: if (3 != 2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_LD_IMM64(R2, 2),
+ BPF_JMP_REG(BPF_JNE, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JEQ | BPF_X */
+ {
+ "JMP_JEQ_X: if (3 == 3) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_LD_IMM64(R2, 3),
+ BPF_JMP_REG(BPF_JEQ, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ /* BPF_JMP | BPF_JSET | BPF_X */
+ {
+ "JMP_JSET_X: if (0x3 & 0x2) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_LD_IMM64(R2, 2),
+ BPF_JMP_REG(BPF_JNE, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSET_X: if (0x3 & 0xffffffff) return 1",
+ .u.insns_int = {
+ BPF_ALU32_IMM(BPF_MOV, R0, 0),
+ BPF_LD_IMM64(R1, 3),
+ BPF_LD_IMM64(R2, 0xffffffff),
+ BPF_JMP_REG(BPF_JNE, R1, R2, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, 1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JA: Jump, gap, jump, ...",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 0, 0xababcbac } },
+ .fill_helper = bpf_fill_ja,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Maximum possible literals",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 0, 0xffffffff } },
+ .fill_helper = bpf_fill_maxinsns1,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Single literal",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 0, 0xfefefefe } },
+ .fill_helper = bpf_fill_maxinsns2,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Run/add until end",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 0, 0x947bf368 } },
+ .fill_helper = bpf_fill_maxinsns3,
+ },
+ {
+ "BPF_MAXINSNS: Too many instructions",
+ { },
+ CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
+ { },
+ { },
+ .fill_helper = bpf_fill_maxinsns4,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Very long jump",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 0, 0xabababab } },
+ .fill_helper = bpf_fill_maxinsns5,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Ctx heavy transformations",
+ { },
+ CLASSIC,
+ { },
+ {
+ { 1, !!(SKB_VLAN_TCI & VLAN_TAG_PRESENT) },
+ { 10, !!(SKB_VLAN_TCI & VLAN_TAG_PRESENT) }
+ },
+ .fill_helper = bpf_fill_maxinsns6,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Call heavy transformations",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 1, 0 }, { 10, 0 } },
+ .fill_helper = bpf_fill_maxinsns7,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Jump heavy test",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 0, 0xffffffff } },
+ .fill_helper = bpf_fill_maxinsns8,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Very long jump backwards",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0xcbababab } },
+ .fill_helper = bpf_fill_maxinsns9,
+ },
+ { /* Mainly checking JIT here. */
+ "BPF_MAXINSNS: Edge hopping nuthouse",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0xabababac } },
+ .fill_helper = bpf_fill_maxinsns10,
+ },
+ {
+ "BPF_MAXINSNS: Jump, gap, jump, ...",
+ { },
+ CLASSIC | FLAG_NO_DATA,
+ { },
+ { { 0, 0xababcbac } },
+ .fill_helper = bpf_fill_maxinsns11,
+ },
};
static struct net_device dev;
@@ -1858,10 +4445,15 @@ static void release_test_data(const struct bpf_test *test, void *data)
kfree_skb(data);
}
-static int probe_filter_length(struct sock_filter *fp)
+static int filter_length(int which)
{
- int len = 0;
+ struct sock_filter *fp;
+ int len;
+ if (tests[which].fill_helper)
+ return tests[which].u.ptr.len;
+
+ fp = tests[which].u.insns;
for (len = MAX_INSNS - 1; len > 0; --len)
if (fp[len].code != 0 || fp[len].k != 0)
break;
@@ -1869,16 +4461,25 @@ static int probe_filter_length(struct sock_filter *fp)
return len + 1;
}
+static void *filter_pointer(int which)
+{
+ if (tests[which].fill_helper)
+ return tests[which].u.ptr.insns;
+ else
+ return tests[which].u.insns;
+}
+
static struct bpf_prog *generate_filter(int which, int *err)
{
- struct bpf_prog *fp;
- struct sock_fprog_kern fprog;
- unsigned int flen = probe_filter_length(tests[which].u.insns);
__u8 test_type = tests[which].aux & TEST_TYPE_MASK;
+ unsigned int flen = filter_length(which);
+ void *fptr = filter_pointer(which);
+ struct sock_fprog_kern fprog;
+ struct bpf_prog *fp;
switch (test_type) {
case CLASSIC:
- fprog.filter = tests[which].u.insns;
+ fprog.filter = fptr;
fprog.len = flen;
*err = bpf_prog_create(&fp, &fprog);
@@ -1914,8 +4515,7 @@ static struct bpf_prog *generate_filter(int which, int *err)
}
fp->len = flen;
- memcpy(fp->insnsi, tests[which].u.insns_int,
- fp->len * sizeof(struct bpf_insn));
+ memcpy(fp->insnsi, fptr, fp->len * sizeof(struct bpf_insn));
bpf_prog_select_runtime(fp);
break;
@@ -1987,9 +4587,33 @@ static int run_one(const struct bpf_prog *fp, struct bpf_test *test)
return err_cnt;
}
+static __init int prepare_bpf_tests(void)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ if (tests[i].fill_helper &&
+ tests[i].fill_helper(&tests[i]) < 0)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static __init void destroy_bpf_tests(void)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ if (tests[i].fill_helper)
+ kfree(tests[i].u.ptr.insns);
+ }
+}
+
static __init int test_bpf(void)
{
int i, err_cnt = 0, pass_cnt = 0;
+ int jit_cnt = 0, run_cnt = 0;
for (i = 0; i < ARRAY_SIZE(tests); i++) {
struct bpf_prog *fp;
@@ -2006,6 +4630,13 @@ static __init int test_bpf(void)
return err;
}
+
+ pr_cont("jited:%u ", fp->jited);
+
+ run_cnt++;
+ if (fp->jited)
+ jit_cnt++;
+
err = run_one(fp, &tests[i]);
release_filter(fp, i);
@@ -2018,13 +4649,24 @@ static __init int test_bpf(void)
}
}
- pr_info("Summary: %d PASSED, %d FAILED\n", pass_cnt, err_cnt);
+ pr_info("Summary: %d PASSED, %d FAILED, [%d/%d JIT'ed]\n",
+ pass_cnt, err_cnt, jit_cnt, run_cnt);
+
return err_cnt ? -EINVAL : 0;
}
static int __init test_bpf_init(void)
{
- return test_bpf();
+ int ret;
+
+ ret = prepare_bpf_tests();
+ if (ret < 0)
+ return ret;
+
+ ret = test_bpf();
+
+ destroy_bpf_tests();
+ return ret;
}
static void __exit test_bpf_exit(void)
diff --git a/lib/test_rhashtable.c b/lib/test_rhashtable.c
index b2957540d3c7..c90777eae1f8 100644
--- a/lib/test_rhashtable.c
+++ b/lib/test_rhashtable.c
@@ -1,14 +1,9 @@
/*
* Resizable, Scalable, Concurrent Hash Table
*
- * Copyright (c) 2014 Thomas Graf <tgraf@suug.ch>
+ * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
* Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
*
- * Based on the following paper:
- * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
- *
- * Code partially derived from nft_hash
- *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
@@ -26,20 +21,37 @@
#include <linux/rhashtable.h>
#include <linux/slab.h>
+#define MAX_ENTRIES 1000000
+#define TEST_INSERT_FAIL INT_MAX
+
+static int entries = 50000;
+module_param(entries, int, 0);
+MODULE_PARM_DESC(entries, "Number of entries to add (default: 50000)");
+
+static int runs = 4;
+module_param(runs, int, 0);
+MODULE_PARM_DESC(runs, "Number of test runs per variant (default: 4)");
+
+static int max_size = 65536;
+module_param(max_size, int, 0);
+MODULE_PARM_DESC(runs, "Maximum table size (default: 65536)");
-#define TEST_HT_SIZE 8
-#define TEST_ENTRIES 2048
-#define TEST_PTR ((void *) 0xdeadbeef)
-#define TEST_NEXPANDS 4
+static bool shrinking = false;
+module_param(shrinking, bool, 0);
+MODULE_PARM_DESC(shrinking, "Enable automatic shrinking (default: off)");
+
+static int size = 8;
+module_param(size, int, 0);
+MODULE_PARM_DESC(size, "Initial size hint of table (default: 8)");
struct test_obj {
- void *ptr;
int value;
struct rhash_head node;
};
-static const struct rhashtable_params test_rht_params = {
- .nelem_hint = TEST_HT_SIZE,
+static struct test_obj array[MAX_ENTRIES];
+
+static struct rhashtable_params test_rht_params = {
.head_offset = offsetof(struct test_obj, node),
.key_offset = offsetof(struct test_obj, value),
.key_len = sizeof(int),
@@ -51,11 +63,14 @@ static int __init test_rht_lookup(struct rhashtable *ht)
{
unsigned int i;
- for (i = 0; i < TEST_ENTRIES * 2; i++) {
+ for (i = 0; i < entries * 2; i++) {
struct test_obj *obj;
bool expected = !(i % 2);
u32 key = i;
+ if (array[i / 2].value == TEST_INSERT_FAIL)
+ expected = false;
+
obj = rhashtable_lookup_fast(ht, &key, test_rht_params);
if (expected && !obj) {
@@ -66,9 +81,9 @@ static int __init test_rht_lookup(struct rhashtable *ht)
key);
return -EEXIST;
} else if (expected && obj) {
- if (obj->ptr != TEST_PTR || obj->value != i) {
- pr_warn("Test failed: Lookup value mismatch %p!=%p, %u!=%u\n",
- obj->ptr, TEST_PTR, obj->value, i);
+ if (obj->value != i) {
+ pr_warn("Test failed: Lookup value mismatch %u!=%u\n",
+ obj->value, i);
return -EINVAL;
}
}
@@ -77,129 +92,147 @@ static int __init test_rht_lookup(struct rhashtable *ht)
return 0;
}
-static void test_bucket_stats(struct rhashtable *ht, bool quiet)
+static void test_bucket_stats(struct rhashtable *ht)
{
- unsigned int cnt, rcu_cnt, i, total = 0;
+ unsigned int err, total = 0, chain_len = 0;
+ struct rhashtable_iter hti;
struct rhash_head *pos;
- struct test_obj *obj;
- struct bucket_table *tbl;
- tbl = rht_dereference_rcu(ht->tbl, ht);
- for (i = 0; i < tbl->size; i++) {
- rcu_cnt = cnt = 0;
+ err = rhashtable_walk_init(ht, &hti);
+ if (err) {
+ pr_warn("Test failed: allocation error");
+ return;
+ }
- if (!quiet)
- pr_info(" [%#4x/%u]", i, tbl->size);
+ err = rhashtable_walk_start(&hti);
+ if (err && err != -EAGAIN) {
+ pr_warn("Test failed: iterator failed: %d\n", err);
+ return;
+ }
- rht_for_each_entry_rcu(obj, pos, tbl, i, node) {
- cnt++;
- total++;
- if (!quiet)
- pr_cont(" [%p],", obj);
+ while ((pos = rhashtable_walk_next(&hti))) {
+ if (PTR_ERR(pos) == -EAGAIN) {
+ pr_info("Info: encountered resize\n");
+ chain_len++;
+ continue;
+ } else if (IS_ERR(pos)) {
+ pr_warn("Test failed: rhashtable_walk_next() error: %ld\n",
+ PTR_ERR(pos));
+ break;
}
- rht_for_each_entry_rcu(obj, pos, tbl, i, node)
- rcu_cnt++;
-
- if (rcu_cnt != cnt)
- pr_warn("Test failed: Chain count mismach %d != %d",
- cnt, rcu_cnt);
-
- if (!quiet)
- pr_cont("\n [%#x] first element: %p, chain length: %u\n",
- i, tbl->buckets[i], cnt);
+ total++;
}
- pr_info(" Traversal complete: counted=%u, nelems=%u, entries=%d\n",
- total, atomic_read(&ht->nelems), TEST_ENTRIES);
+ rhashtable_walk_stop(&hti);
+ rhashtable_walk_exit(&hti);
+
+ pr_info(" Traversal complete: counted=%u, nelems=%u, entries=%d, table-jumps=%u\n",
+ total, atomic_read(&ht->nelems), entries, chain_len);
- if (total != atomic_read(&ht->nelems) || total != TEST_ENTRIES)
+ if (total != atomic_read(&ht->nelems) || total != entries)
pr_warn("Test failed: Total count mismatch ^^^");
}
-static int __init test_rhashtable(struct rhashtable *ht)
+static s64 __init test_rhashtable(struct rhashtable *ht)
{
- struct bucket_table *tbl;
struct test_obj *obj;
- struct rhash_head *pos, *next;
int err;
- unsigned int i;
+ unsigned int i, insert_fails = 0;
+ s64 start, end;
/*
* Insertion Test:
- * Insert TEST_ENTRIES into table with all keys even numbers
+ * Insert entries into table with all keys even numbers
*/
- pr_info(" Adding %d keys\n", TEST_ENTRIES);
- for (i = 0; i < TEST_ENTRIES; i++) {
- struct test_obj *obj;
-
- obj = kzalloc(sizeof(*obj), GFP_KERNEL);
- if (!obj) {
- err = -ENOMEM;
- goto error;
- }
+ pr_info(" Adding %d keys\n", entries);
+ start = ktime_get_ns();
+ for (i = 0; i < entries; i++) {
+ struct test_obj *obj = &array[i];
- obj->ptr = TEST_PTR;
obj->value = i * 2;
err = rhashtable_insert_fast(ht, &obj->node, test_rht_params);
- if (err) {
- kfree(obj);
- goto error;
+ if (err == -ENOMEM || err == -EBUSY) {
+ /* Mark failed inserts but continue */
+ obj->value = TEST_INSERT_FAIL;
+ insert_fails++;
+ } else if (err) {
+ return err;
}
}
+ if (insert_fails)
+ pr_info(" %u insertions failed due to memory pressure\n",
+ insert_fails);
+
+ test_bucket_stats(ht);
rcu_read_lock();
- test_bucket_stats(ht, true);
test_rht_lookup(ht);
rcu_read_unlock();
- rcu_read_lock();
- test_bucket_stats(ht, true);
- rcu_read_unlock();
+ test_bucket_stats(ht);
- pr_info(" Deleting %d keys\n", TEST_ENTRIES);
- for (i = 0; i < TEST_ENTRIES; i++) {
+ pr_info(" Deleting %d keys\n", entries);
+ for (i = 0; i < entries; i++) {
u32 key = i * 2;
- obj = rhashtable_lookup_fast(ht, &key, test_rht_params);
- BUG_ON(!obj);
+ if (array[i].value != TEST_INSERT_FAIL) {
+ obj = rhashtable_lookup_fast(ht, &key, test_rht_params);
+ BUG_ON(!obj);
- rhashtable_remove_fast(ht, &obj->node, test_rht_params);
- kfree(obj);
+ rhashtable_remove_fast(ht, &obj->node, test_rht_params);
+ }
}
- return 0;
-
-error:
- tbl = rht_dereference_rcu(ht->tbl, ht);
- for (i = 0; i < tbl->size; i++)
- rht_for_each_entry_safe(obj, pos, next, tbl, i, node)
- kfree(obj);
+ end = ktime_get_ns();
+ pr_info(" Duration of test: %lld ns\n", end - start);
- return err;
+ return end - start;
}
static struct rhashtable ht;
static int __init test_rht_init(void)
{
- int err;
+ int i, err;
+ u64 total_time = 0;
- pr_info("Running resizable hashtable tests...\n");
+ entries = min(entries, MAX_ENTRIES);
- err = rhashtable_init(&ht, &test_rht_params);
- if (err < 0) {
- pr_warn("Test failed: Unable to initialize hashtable: %d\n",
- err);
- return err;
- }
+ test_rht_params.automatic_shrinking = shrinking;
+ test_rht_params.max_size = max_size;
+ test_rht_params.nelem_hint = size;
- err = test_rhashtable(&ht);
+ pr_info("Running rhashtable test nelem=%d, max_size=%d, shrinking=%d\n",
+ size, max_size, shrinking);
- rhashtable_destroy(&ht);
+ for (i = 0; i < runs; i++) {
+ s64 time;
- return err;
+ pr_info("Test %02d:\n", i);
+ memset(&array, 0, sizeof(array));
+ err = rhashtable_init(&ht, &test_rht_params);
+ if (err < 0) {
+ pr_warn("Test failed: Unable to initialize hashtable: %d\n",
+ err);
+ continue;
+ }
+
+ time = test_rhashtable(&ht);
+ rhashtable_destroy(&ht);
+ if (time < 0) {
+ pr_warn("Test failed: return code %lld\n", time);
+ return -EINVAL;
+ }
+
+ total_time += time;
+ }
+
+ do_div(total_time, runs);
+ pr_info("Average test time: %llu\n", total_time);
+
+ return 0;
}
static void __exit test_rht_exit(void)
diff --git a/lib/timerqueue.c b/lib/timerqueue.c
index a382e4a32609..782ae8ca2c06 100644
--- a/lib/timerqueue.c
+++ b/lib/timerqueue.c
@@ -36,7 +36,7 @@
* Adds the timer node to the timerqueue, sorted by the
* node's expires value.
*/
-void timerqueue_add(struct timerqueue_head *head, struct timerqueue_node *node)
+bool timerqueue_add(struct timerqueue_head *head, struct timerqueue_node *node)
{
struct rb_node **p = &head->head.rb_node;
struct rb_node *parent = NULL;
@@ -56,8 +56,11 @@ void timerqueue_add(struct timerqueue_head *head, struct timerqueue_node *node)
rb_link_node(&node->node, parent, p);
rb_insert_color(&node->node, &head->head);
- if (!head->next || node->expires.tv64 < head->next->expires.tv64)
+ if (!head->next || node->expires.tv64 < head->next->expires.tv64) {
head->next = node;
+ return true;
+ }
+ return false;
}
EXPORT_SYMBOL_GPL(timerqueue_add);
@@ -69,7 +72,7 @@ EXPORT_SYMBOL_GPL(timerqueue_add);
*
* Removes the timer node from the timerqueue.
*/
-void timerqueue_del(struct timerqueue_head *head, struct timerqueue_node *node)
+bool timerqueue_del(struct timerqueue_head *head, struct timerqueue_node *node)
{
WARN_ON_ONCE(RB_EMPTY_NODE(&node->node));
@@ -82,6 +85,7 @@ void timerqueue_del(struct timerqueue_head *head, struct timerqueue_node *node)
}
rb_erase(&node->node, &head->head);
RB_CLEAR_NODE(&node->node);
+ return head->next != NULL;
}
EXPORT_SYMBOL_GPL(timerqueue_del);