aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c414
1 files changed, 214 insertions, 200 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 1c52ddbc839b..bf5e89457149 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -54,10 +54,12 @@
#include <linux/page_cgroup.h>
#include <linux/cpu.h>
#include <linux/oom.h>
+#include <linux/lockdep.h>
#include "internal.h"
#include <net/sock.h>
#include <net/ip.h>
#include <net/tcp_memcontrol.h>
+#include "slab.h"
#include <asm/uaccess.h>
@@ -311,7 +313,7 @@ struct mem_cgroup {
atomic_t dead_count;
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
- struct tcp_memcontrol tcp_mem;
+ struct cg_proto tcp_mem;
#endif
#if defined(CONFIG_MEMCG_KMEM)
/* analogous to slab_common's slab_caches list. per-memcg */
@@ -498,6 +500,29 @@ static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
return (memcg == root_mem_cgroup);
}
+/*
+ * We restrict the id in the range of [1, 65535], so it can fit into
+ * an unsigned short.
+ */
+#define MEM_CGROUP_ID_MAX USHRT_MAX
+
+static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
+{
+ /*
+ * The ID of the root cgroup is 0, but memcg treat 0 as an
+ * invalid ID, so we return (cgroup_id + 1).
+ */
+ return memcg->css.cgroup->id + 1;
+}
+
+static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
+{
+ struct cgroup_subsys_state *css;
+
+ css = css_from_id(id - 1, &mem_cgroup_subsys);
+ return mem_cgroup_from_css(css);
+}
+
/* Writing them here to avoid exposing memcg's inner layout */
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
@@ -550,13 +575,13 @@ struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
if (!memcg || mem_cgroup_is_root(memcg))
return NULL;
- return &memcg->tcp_mem.cg_proto;
+ return &memcg->tcp_mem;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
- if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
+ if (!memcg_proto_activated(&memcg->tcp_mem))
return;
static_key_slow_dec(&memcg_socket_limit_enabled);
}
@@ -569,16 +594,11 @@ static void disarm_sock_keys(struct mem_cgroup *memcg)
#ifdef CONFIG_MEMCG_KMEM
/*
* This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
- * There are two main reasons for not using the css_id for this:
- * 1) this works better in sparse environments, where we have a lot of memcgs,
- * but only a few kmem-limited. Or also, if we have, for instance, 200
- * memcgs, and none but the 200th is kmem-limited, we'd have to have a
- * 200 entry array for that.
- *
- * 2) In order not to violate the cgroup API, we would like to do all memory
- * allocation in ->create(). At that point, we haven't yet allocated the
- * css_id. Having a separate index prevents us from messing with the cgroup
- * core for this
+ * The main reason for not using cgroup id for this:
+ * this works better in sparse environments, where we have a lot of memcgs,
+ * but only a few kmem-limited. Or also, if we have, for instance, 200
+ * memcgs, and none but the 200th is kmem-limited, we'd have to have a
+ * 200 entry array for that.
*
* The current size of the caches array is stored in
* memcg_limited_groups_array_size. It will double each time we have to
@@ -593,14 +613,14 @@ int memcg_limited_groups_array_size;
* cgroups is a reasonable guess. In the future, it could be a parameter or
* tunable, but that is strictly not necessary.
*
- * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
+ * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
* this constant directly from cgroup, but it is understandable that this is
* better kept as an internal representation in cgroup.c. In any case, the
- * css_id space is not getting any smaller, and we don't have to necessarily
+ * cgrp_id space is not getting any smaller, and we don't have to necessarily
* increase ours as well if it increases.
*/
#define MEMCG_CACHES_MIN_SIZE 4
-#define MEMCG_CACHES_MAX_SIZE 65535
+#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
/*
* A lot of the calls to the cache allocation functions are expected to be
@@ -866,6 +886,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
unsigned long val = 0;
int cpu;
+ get_online_cpus();
for_each_online_cpu(cpu)
val += per_cpu(memcg->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
@@ -873,6 +894,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
val += memcg->nocpu_base.events[idx];
spin_unlock(&memcg->pcp_counter_lock);
#endif
+ put_online_cpus();
return val;
}
@@ -1405,7 +1427,7 @@ bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
return true;
if (!root_memcg->use_hierarchy || !memcg)
return false;
- return css_is_ancestor(&memcg->css, &root_memcg->css);
+ return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
}
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
@@ -2044,6 +2066,12 @@ static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
return total;
}
+#ifdef CONFIG_LOCKDEP
+static struct lockdep_map memcg_oom_lock_dep_map = {
+ .name = "memcg_oom_lock",
+};
+#endif
+
static DEFINE_SPINLOCK(memcg_oom_lock);
/*
@@ -2081,7 +2109,8 @@ static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
}
iter->oom_lock = false;
}
- }
+ } else
+ mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
spin_unlock(&memcg_oom_lock);
@@ -2093,6 +2122,7 @@ static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
struct mem_cgroup *iter;
spin_lock(&memcg_oom_lock);
+ mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
spin_unlock(&memcg_oom_lock);
@@ -2159,110 +2189,59 @@ static void memcg_oom_recover(struct mem_cgroup *memcg)
memcg_wakeup_oom(memcg);
}
-/*
- * try to call OOM killer
- */
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{
- bool locked;
- int wakeups;
-
if (!current->memcg_oom.may_oom)
return;
-
- current->memcg_oom.in_memcg_oom = 1;
-
/*
- * As with any blocking lock, a contender needs to start
- * listening for wakeups before attempting the trylock,
- * otherwise it can miss the wakeup from the unlock and sleep
- * indefinitely. This is just open-coded because our locking
- * is so particular to memcg hierarchies.
+ * We are in the middle of the charge context here, so we
+ * don't want to block when potentially sitting on a callstack
+ * that holds all kinds of filesystem and mm locks.
+ *
+ * Also, the caller may handle a failed allocation gracefully
+ * (like optional page cache readahead) and so an OOM killer
+ * invocation might not even be necessary.
+ *
+ * That's why we don't do anything here except remember the
+ * OOM context and then deal with it at the end of the page
+ * fault when the stack is unwound, the locks are released,
+ * and when we know whether the fault was overall successful.
*/
- wakeups = atomic_read(&memcg->oom_wakeups);
- mem_cgroup_mark_under_oom(memcg);
-
- locked = mem_cgroup_oom_trylock(memcg);
-
- if (locked)
- mem_cgroup_oom_notify(memcg);
-
- if (locked && !memcg->oom_kill_disable) {
- mem_cgroup_unmark_under_oom(memcg);
- mem_cgroup_out_of_memory(memcg, mask, order);
- mem_cgroup_oom_unlock(memcg);
- /*
- * There is no guarantee that an OOM-lock contender
- * sees the wakeups triggered by the OOM kill
- * uncharges. Wake any sleepers explicitely.
- */
- memcg_oom_recover(memcg);
- } else {
- /*
- * A system call can just return -ENOMEM, but if this
- * is a page fault and somebody else is handling the
- * OOM already, we need to sleep on the OOM waitqueue
- * for this memcg until the situation is resolved.
- * Which can take some time because it might be
- * handled by a userspace task.
- *
- * However, this is the charge context, which means
- * that we may sit on a large call stack and hold
- * various filesystem locks, the mmap_sem etc. and we
- * don't want the OOM handler to deadlock on them
- * while we sit here and wait. Store the current OOM
- * context in the task_struct, then return -ENOMEM.
- * At the end of the page fault handler, with the
- * stack unwound, pagefault_out_of_memory() will check
- * back with us by calling
- * mem_cgroup_oom_synchronize(), possibly putting the
- * task to sleep.
- */
- current->memcg_oom.oom_locked = locked;
- current->memcg_oom.wakeups = wakeups;
- css_get(&memcg->css);
- current->memcg_oom.wait_on_memcg = memcg;
- }
+ css_get(&memcg->css);
+ current->memcg_oom.memcg = memcg;
+ current->memcg_oom.gfp_mask = mask;
+ current->memcg_oom.order = order;
}
/**
* mem_cgroup_oom_synchronize - complete memcg OOM handling
+ * @handle: actually kill/wait or just clean up the OOM state
*
- * This has to be called at the end of a page fault if the the memcg
- * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
+ * This has to be called at the end of a page fault if the memcg OOM
+ * handler was enabled.
*
- * Memcg supports userspace OOM handling, so failed allocations must
+ * Memcg supports userspace OOM handling where failed allocations must
* sleep on a waitqueue until the userspace task resolves the
* situation. Sleeping directly in the charge context with all kinds
* of locks held is not a good idea, instead we remember an OOM state
* in the task and mem_cgroup_oom_synchronize() has to be called at
- * the end of the page fault to put the task to sleep and clean up the
- * OOM state.
+ * the end of the page fault to complete the OOM handling.
*
* Returns %true if an ongoing memcg OOM situation was detected and
- * finalized, %false otherwise.
+ * completed, %false otherwise.
*/
-bool mem_cgroup_oom_synchronize(void)
+bool mem_cgroup_oom_synchronize(bool handle)
{
+ struct mem_cgroup *memcg = current->memcg_oom.memcg;
struct oom_wait_info owait;
- struct mem_cgroup *memcg;
+ bool locked;
/* OOM is global, do not handle */
- if (!current->memcg_oom.in_memcg_oom)
- return false;
-
- /*
- * We invoked the OOM killer but there is a chance that a kill
- * did not free up any charges. Everybody else might already
- * be sleeping, so restart the fault and keep the rampage
- * going until some charges are released.
- */
- memcg = current->memcg_oom.wait_on_memcg;
if (!memcg)
- goto out;
+ return false;
- if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
- goto out_memcg;
+ if (!handle)
+ goto cleanup;
owait.memcg = memcg;
owait.wait.flags = 0;
@@ -2271,13 +2250,25 @@ bool mem_cgroup_oom_synchronize(void)
INIT_LIST_HEAD(&owait.wait.task_list);
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
- /* Only sleep if we didn't miss any wakeups since OOM */
- if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
+ mem_cgroup_mark_under_oom(memcg);
+
+ locked = mem_cgroup_oom_trylock(memcg);
+
+ if (locked)
+ mem_cgroup_oom_notify(memcg);
+
+ if (locked && !memcg->oom_kill_disable) {
+ mem_cgroup_unmark_under_oom(memcg);
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
+ current->memcg_oom.order);
+ } else {
schedule();
- finish_wait(&memcg_oom_waitq, &owait.wait);
-out_memcg:
- mem_cgroup_unmark_under_oom(memcg);
- if (current->memcg_oom.oom_locked) {
+ mem_cgroup_unmark_under_oom(memcg);
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ }
+
+ if (locked) {
mem_cgroup_oom_unlock(memcg);
/*
* There is no guarantee that an OOM-lock contender
@@ -2286,10 +2277,9 @@ out_memcg:
*/
memcg_oom_recover(memcg);
}
+cleanup:
+ current->memcg_oom.memcg = NULL;
css_put(&memcg->css);
- current->memcg_oom.wait_on_memcg = NULL;
-out:
- current->memcg_oom.in_memcg_oom = 0;
return true;
}
@@ -2703,6 +2693,12 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
|| fatal_signal_pending(current)))
goto bypass;
+ if (unlikely(task_in_memcg_oom(current)))
+ goto nomem;
+
+ if (gfp_mask & __GFP_NOFAIL)
+ oom = false;
+
/*
* We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the
@@ -2800,8 +2796,10 @@ done:
*ptr = memcg;
return 0;
nomem:
- *ptr = NULL;
- return -ENOMEM;
+ if (!(gfp_mask & __GFP_NOFAIL)) {
+ *ptr = NULL;
+ return -ENOMEM;
+ }
bypass:
*ptr = root_mem_cgroup;
return -EINTR;
@@ -2850,15 +2848,10 @@ static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
*/
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
- struct cgroup_subsys_state *css;
-
/* ID 0 is unused ID */
if (!id)
return NULL;
- css = css_lookup(&mem_cgroup_subsys, id);
- if (!css)
- return NULL;
- return mem_cgroup_from_css(css);
+ return mem_cgroup_from_id(id);
}
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
@@ -2979,7 +2972,7 @@ static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
VM_BUG_ON(p->is_root_cache);
cachep = p->root_cache;
- return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
+ return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
}
#ifdef CONFIG_SLABINFO
@@ -3008,21 +3001,14 @@ static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
struct res_counter *fail_res;
struct mem_cgroup *_memcg;
int ret = 0;
- bool may_oom;
ret = res_counter_charge(&memcg->kmem, size, &fail_res);
if (ret)
return ret;
- /*
- * Conditions under which we can wait for the oom_killer. Those are
- * the same conditions tested by the core page allocator
- */
- may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
-
_memcg = memcg;
ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
- &_memcg, may_oom);
+ &_memcg, oom_gfp_allowed(gfp));
if (ret == -EINTR) {
/*
@@ -3162,7 +3148,7 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
struct memcg_cache_params *cur_params = s->memcg_params;
- VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
+ VM_BUG_ON(!is_root_cache(s));
if (num_groups > memcg_limited_groups_array_size) {
int i;
@@ -3423,7 +3409,7 @@ static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
idx = memcg_cache_id(memcg);
mutex_lock(&memcg_cache_mutex);
- new_cachep = cachep->memcg_params->memcg_caches[idx];
+ new_cachep = cache_from_memcg_idx(cachep, idx);
if (new_cachep) {
css_put(&memcg->css);
goto out;
@@ -3469,8 +3455,8 @@ void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
* we'll take the set_limit_mutex to protect ourselves against this.
*/
mutex_lock(&set_limit_mutex);
- for (i = 0; i < memcg_limited_groups_array_size; i++) {
- c = s->memcg_params->memcg_caches[i];
+ for_each_memcg_cache_index(i) {
+ c = cache_from_memcg_idx(s, i);
if (!c)
continue;
@@ -3603,8 +3589,8 @@ struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
* code updating memcg_caches will issue a write barrier to match this.
*/
read_barrier_depends();
- if (likely(cachep->memcg_params->memcg_caches[idx])) {
- cachep = cachep->memcg_params->memcg_caches[idx];
+ if (likely(cache_from_memcg_idx(cachep, idx))) {
+ cachep = cache_from_memcg_idx(cachep, idx);
goto out;
}
@@ -3806,8 +3792,7 @@ void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
{
/* Update stat data for mem_cgroup */
preempt_disable();
- WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
- __this_cpu_add(from->stat->count[idx], -nr_pages);
+ __this_cpu_sub(from->stat->count[idx], nr_pages);
__this_cpu_add(to->stat->count[idx], nr_pages);
preempt_enable();
}
@@ -4375,7 +4360,7 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
* css_get() was called in uncharge().
*/
if (do_swap_account && swapout && memcg)
- swap_cgroup_record(ent, css_id(&memcg->css));
+ swap_cgroup_record(ent, mem_cgroup_id(memcg));
}
#endif
@@ -4427,8 +4412,8 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry,
{
unsigned short old_id, new_id;
- old_id = css_id(&from->css);
- new_id = css_id(&to->css);
+ old_id = mem_cgroup_id(from);
+ new_id = mem_cgroup_id(to);
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
mem_cgroup_swap_statistics(from, false);
@@ -4983,31 +4968,18 @@ static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
} while (usage > 0);
}
-/*
- * This mainly exists for tests during the setting of set of use_hierarchy.
- * Since this is the very setting we are changing, the current hierarchy value
- * is meaningless
- */
-static inline bool __memcg_has_children(struct mem_cgroup *memcg)
-{
- struct cgroup_subsys_state *pos;
-
- /* bounce at first found */
- css_for_each_child(pos, &memcg->css)
- return true;
- return false;
-}
-
-/*
- * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
- * to be already dead (as in mem_cgroup_force_empty, for instance). This is
- * from mem_cgroup_count_children(), in the sense that we don't really care how
- * many children we have; we only need to know if we have any. It also counts
- * any memcg without hierarchy as infertile.
- */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
- return memcg->use_hierarchy && __memcg_has_children(memcg);
+ lockdep_assert_held(&memcg_create_mutex);
+ /*
+ * The lock does not prevent addition or deletion to the list
+ * of children, but it prevents a new child from being
+ * initialized based on this parent in css_online(), so it's
+ * enough to decide whether hierarchically inherited
+ * attributes can still be changed or not.
+ */
+ return memcg->use_hierarchy &&
+ !list_empty(&memcg->css.cgroup->children);
}
/*
@@ -5087,7 +5059,7 @@ static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
*/
if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
(val == 1 || val == 0)) {
- if (!__memcg_has_children(memcg))
+ if (list_empty(&memcg->css.cgroup->children))
memcg->use_hierarchy = val;
else
retval = -EBUSY;
@@ -5414,45 +5386,50 @@ static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
struct cftype *cft, struct seq_file *m)
{
+ struct numa_stat {
+ const char *name;
+ unsigned int lru_mask;
+ };
+
+ static const struct numa_stat stats[] = {
+ { "total", LRU_ALL },
+ { "file", LRU_ALL_FILE },
+ { "anon", LRU_ALL_ANON },
+ { "unevictable", BIT(LRU_UNEVICTABLE) },
+ };
+ const struct numa_stat *stat;
int nid;
- unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
- unsigned long node_nr;
+ unsigned long nr;
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
- seq_printf(m, "total=%lu", total_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
-
- file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
- seq_printf(m, "file=%lu", file_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_FILE);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
-
- anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
- seq_printf(m, "anon=%lu", anon_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_ANON);
- seq_printf(m, " N%d=%lu", nid, node_nr);
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
+ seq_printf(m, "%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
+ stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
+ }
+
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ struct mem_cgroup *iter;
+
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
+ seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_node_nr_lru_pages(
+ iter, nid, stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
}
- seq_putc(m, '\n');
- unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
- seq_printf(m, "unevictable=%lu", unevictable_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- BIT(LRU_UNEVICTABLE));
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
return 0;
}
#endif /* CONFIG_NUMA */
@@ -6204,7 +6181,6 @@ static void __mem_cgroup_free(struct mem_cgroup *memcg)
size_t size = memcg_size();
mem_cgroup_remove_from_trees(memcg);
- free_css_id(&mem_cgroup_subsys, &memcg->css);
for_each_node(node)
free_mem_cgroup_per_zone_info(memcg, node);
@@ -6307,6 +6283,9 @@ mem_cgroup_css_online(struct cgroup_subsys_state *css)
struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
int error = 0;
+ if (css->cgroup->id > MEM_CGROUP_ID_MAX)
+ return -ENOSPC;
+
if (!parent)
return 0;
@@ -6376,6 +6355,42 @@ static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ /*
+ * XXX: css_offline() would be where we should reparent all
+ * memory to prepare the cgroup for destruction. However,
+ * memcg does not do css_tryget() and res_counter charging
+ * under the same RCU lock region, which means that charging
+ * could race with offlining. Offlining only happens to
+ * cgroups with no tasks in them but charges can show up
+ * without any tasks from the swapin path when the target
+ * memcg is looked up from the swapout record and not from the
+ * current task as it usually is. A race like this can leak
+ * charges and put pages with stale cgroup pointers into
+ * circulation:
+ *
+ * #0 #1
+ * lookup_swap_cgroup_id()
+ * rcu_read_lock()
+ * mem_cgroup_lookup()
+ * css_tryget()
+ * rcu_read_unlock()
+ * disable css_tryget()
+ * call_rcu()
+ * offline_css()
+ * reparent_charges()
+ * res_counter_charge()
+ * css_put()
+ * css_free()
+ * pc->mem_cgroup = dead memcg
+ * add page to lru
+ *
+ * The bulk of the charges are still moved in offline_css() to
+ * avoid pinning a lot of pages in case a long-term reference
+ * like a swapout record is deferring the css_free() to long
+ * after offlining. But this makes sure we catch any charges
+ * made after offlining:
+ */
+ mem_cgroup_reparent_charges(memcg);
memcg_destroy_kmem(memcg);
__mem_cgroup_free(memcg);
@@ -6578,7 +6593,7 @@ static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
}
/* There is a swap entry and a page doesn't exist or isn't charged */
if (ent.val && !ret &&
- css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
+ mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
ret = MC_TARGET_SWAP;
if (target)
target->ent = ent;
@@ -6629,10 +6644,10 @@ static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
pte_t *pte;
spinlock_t *ptl;
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
mc.precharge += HPAGE_PMD_NR;
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
@@ -6821,9 +6836,9 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
* to be unlocked in __split_huge_page_splitting(), where the main
* part of thp split is not executed yet.
*/
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
if (mc.precharge < HPAGE_PMD_NR) {
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
@@ -6840,7 +6855,7 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
}
put_page(page);
}
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
@@ -6998,7 +7013,6 @@ struct cgroup_subsys mem_cgroup_subsys = {
.bind = mem_cgroup_bind,
.base_cftypes = mem_cgroup_files,
.early_init = 0,
- .use_id = 1,
};
#ifdef CONFIG_MEMCG_SWAP