diff options
Diffstat (limited to '')
-rw-r--r-- | mm/vmalloc.c | 2142 |
1 files changed, 1320 insertions, 822 deletions
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 6b8eeb0ecee5..ccaa461998f3 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -1,12 +1,11 @@ // SPDX-License-Identifier: GPL-2.0-only /* - * linux/mm/vmalloc.c - * * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 + * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 */ #include <linux/vmalloc.h> @@ -25,25 +24,57 @@ #include <linux/list.h> #include <linux/notifier.h> #include <linux/rbtree.h> -#include <linux/radix-tree.h> +#include <linux/xarray.h> +#include <linux/io.h> #include <linux/rcupdate.h> #include <linux/pfn.h> #include <linux/kmemleak.h> #include <linux/atomic.h> #include <linux/compiler.h> +#include <linux/memcontrol.h> #include <linux/llist.h> #include <linux/bitops.h> #include <linux/rbtree_augmented.h> - +#include <linux/overflow.h> +#include <linux/pgtable.h> #include <linux/uaccess.h> +#include <linux/hugetlb.h> +#include <linux/sched/mm.h> #include <asm/tlbflush.h> #include <asm/shmparam.h> #include "internal.h" +#include "pgalloc-track.h" + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP +static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; + +static int __init set_nohugeiomap(char *str) +{ + ioremap_max_page_shift = PAGE_SHIFT; + return 0; +} +early_param("nohugeiomap", set_nohugeiomap); +#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ +static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; +#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC +static bool __ro_after_init vmap_allow_huge = true; + +static int __init set_nohugevmalloc(char *str) +{ + vmap_allow_huge = false; + return 0; +} +early_param("nohugevmalloc", set_nohugevmalloc); +#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ +static const bool vmap_allow_huge = false; +#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ bool is_vmalloc_addr(const void *x) { - unsigned long addr = (unsigned long)x; + unsigned long addr = (unsigned long)kasan_reset_tag(x); return addr >= VMALLOC_START && addr < VMALLOC_END; } @@ -67,8 +98,236 @@ static void free_work(struct work_struct *w) } /*** Page table manipulation functions ***/ +static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + pte_t *pte; + u64 pfn; + unsigned long size = PAGE_SIZE; + + pfn = phys_addr >> PAGE_SHIFT; + pte = pte_alloc_kernel_track(pmd, addr, mask); + if (!pte) + return -ENOMEM; + do { + BUG_ON(!pte_none(*pte)); + +#ifdef CONFIG_HUGETLB_PAGE + size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); + if (size != PAGE_SIZE) { + pte_t entry = pfn_pte(pfn, prot); + + entry = arch_make_huge_pte(entry, ilog2(size), 0); + set_huge_pte_at(&init_mm, addr, pte, entry); + pfn += PFN_DOWN(size); + continue; + } +#endif + set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); + pfn++; + } while (pte += PFN_DOWN(size), addr += size, addr != end); + *mask |= PGTBL_PTE_MODIFIED; + return 0; +} + +static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) +{ + if (max_page_shift < PMD_SHIFT) + return 0; + + if (!arch_vmap_pmd_supported(prot)) + return 0; + + if ((end - addr) != PMD_SIZE) + return 0; + + if (!IS_ALIGNED(addr, PMD_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, PMD_SIZE)) + return 0; + + if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) + return 0; + + return pmd_set_huge(pmd, phys_addr, prot); +} + +static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + pmd_t *pmd; + unsigned long next; + + pmd = pmd_alloc_track(&init_mm, pud, addr, mask); + if (!pmd) + return -ENOMEM; + do { + next = pmd_addr_end(addr, end); + + if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, + max_page_shift)) { + *mask |= PGTBL_PMD_MODIFIED; + continue; + } + + if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) + return -ENOMEM; + } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); + return 0; +} + +static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) +{ + if (max_page_shift < PUD_SHIFT) + return 0; + + if (!arch_vmap_pud_supported(prot)) + return 0; + + if ((end - addr) != PUD_SIZE) + return 0; + + if (!IS_ALIGNED(addr, PUD_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, PUD_SIZE)) + return 0; + + if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) + return 0; + + return pud_set_huge(pud, phys_addr, prot); +} + +static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + pud_t *pud; + unsigned long next; + + pud = pud_alloc_track(&init_mm, p4d, addr, mask); + if (!pud) + return -ENOMEM; + do { + next = pud_addr_end(addr, end); + + if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, + max_page_shift)) { + *mask |= PGTBL_PUD_MODIFIED; + continue; + } -static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) + if (vmap_pmd_range(pud, addr, next, phys_addr, prot, + max_page_shift, mask)) + return -ENOMEM; + } while (pud++, phys_addr += (next - addr), addr = next, addr != end); + return 0; +} + +static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) +{ + if (max_page_shift < P4D_SHIFT) + return 0; + + if (!arch_vmap_p4d_supported(prot)) + return 0; + + if ((end - addr) != P4D_SIZE) + return 0; + + if (!IS_ALIGNED(addr, P4D_SIZE)) + return 0; + + if (!IS_ALIGNED(phys_addr, P4D_SIZE)) + return 0; + + if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) + return 0; + + return p4d_set_huge(p4d, phys_addr, prot); +} + +static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift, pgtbl_mod_mask *mask) +{ + p4d_t *p4d; + unsigned long next; + + p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); + if (!p4d) + return -ENOMEM; + do { + next = p4d_addr_end(addr, end); + + if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, + max_page_shift)) { + *mask |= PGTBL_P4D_MODIFIED; + continue; + } + + if (vmap_pud_range(p4d, addr, next, phys_addr, prot, + max_page_shift, mask)) + return -ENOMEM; + } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); + return 0; +} + +static int vmap_range_noflush(unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot, + unsigned int max_page_shift) +{ + pgd_t *pgd; + unsigned long start; + unsigned long next; + int err; + pgtbl_mod_mask mask = 0; + + might_sleep(); + BUG_ON(addr >= end); + + start = addr; + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, end); + err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, + max_page_shift, &mask); + if (err) + break; + } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); + + if (mask & ARCH_PAGE_TABLE_SYNC_MASK) + arch_sync_kernel_mappings(start, end); + + return err; +} + +int ioremap_page_range(unsigned long addr, unsigned long end, + phys_addr_t phys_addr, pgprot_t prot) +{ + int err; + + err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), + ioremap_max_page_shift); + flush_cache_vmap(addr, end); + if (!err) + kmsan_ioremap_page_range(addr, end, phys_addr, prot, + ioremap_max_page_shift); + return err; +} + +static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { pte_t *pte; @@ -77,41 +336,59 @@ static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); } while (pte++, addr += PAGE_SIZE, addr != end); + *mask |= PGTBL_PTE_MODIFIED; } -static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) +static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; + int cleared; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); - if (pmd_clear_huge(pmd)) + + cleared = pmd_clear_huge(pmd); + if (cleared || pmd_bad(*pmd)) + *mask |= PGTBL_PMD_MODIFIED; + + if (cleared) continue; if (pmd_none_or_clear_bad(pmd)) continue; - vunmap_pte_range(pmd, addr, next); + vunmap_pte_range(pmd, addr, next, mask); + + cond_resched(); } while (pmd++, addr = next, addr != end); } -static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) +static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; + int cleared; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); - if (pud_clear_huge(pud)) + + cleared = pud_clear_huge(pud); + if (cleared || pud_bad(*pud)) + *mask |= PGTBL_PUD_MODIFIED; + + if (cleared) continue; if (pud_none_or_clear_bad(pud)) continue; - vunmap_pmd_range(pud, addr, next); + vunmap_pmd_range(pud, addr, next, mask); } while (pud++, addr = next, addr != end); } -static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) +static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, + pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; @@ -119,31 +396,76 @@ static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); - if (p4d_clear_huge(p4d)) - continue; + + p4d_clear_huge(p4d); + if (p4d_bad(*p4d)) + *mask |= PGTBL_P4D_MODIFIED; + if (p4d_none_or_clear_bad(p4d)) continue; - vunmap_pud_range(p4d, addr, next); + vunmap_pud_range(p4d, addr, next, mask); } while (p4d++, addr = next, addr != end); } -static void vunmap_page_range(unsigned long addr, unsigned long end) +/* + * vunmap_range_noflush is similar to vunmap_range, but does not + * flush caches or TLBs. + * + * The caller is responsible for calling flush_cache_vmap() before calling + * this function, and flush_tlb_kernel_range after it has returned + * successfully (and before the addresses are expected to cause a page fault + * or be re-mapped for something else, if TLB flushes are being delayed or + * coalesced). + * + * This is an internal function only. Do not use outside mm/. + */ +void __vunmap_range_noflush(unsigned long start, unsigned long end) { - pgd_t *pgd; unsigned long next; + pgd_t *pgd; + unsigned long addr = start; + pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); + if (pgd_bad(*pgd)) + mask |= PGTBL_PGD_MODIFIED; if (pgd_none_or_clear_bad(pgd)) continue; - vunmap_p4d_range(pgd, addr, next); + vunmap_p4d_range(pgd, addr, next, &mask); } while (pgd++, addr = next, addr != end); + + if (mask & ARCH_PAGE_TABLE_SYNC_MASK) + arch_sync_kernel_mappings(start, end); } -static int vmap_pte_range(pmd_t *pmd, unsigned long addr, - unsigned long end, pgprot_t prot, struct page **pages, int *nr) +void vunmap_range_noflush(unsigned long start, unsigned long end) +{ + kmsan_vunmap_range_noflush(start, end); + __vunmap_range_noflush(start, end); +} + +/** + * vunmap_range - unmap kernel virtual addresses + * @addr: start of the VM area to unmap + * @end: end of the VM area to unmap (non-inclusive) + * + * Clears any present PTEs in the virtual address range, flushes TLBs and + * caches. Any subsequent access to the address before it has been re-mapped + * is a kernel bug. + */ +void vunmap_range(unsigned long addr, unsigned long end) +{ + flush_cache_vunmap(addr, end); + vunmap_range_noflush(addr, end); + flush_tlb_kernel_range(addr, end); +} + +static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) { pte_t *pte; @@ -152,7 +474,7 @@ static int vmap_pte_range(pmd_t *pmd, unsigned long addr, * callers keep track of where we're up to. */ - pte = pte_alloc_kernel(pmd, addr); + pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { @@ -162,98 +484,159 @@ static int vmap_pte_range(pmd_t *pmd, unsigned long addr, return -EBUSY; if (WARN_ON(!page)) return -ENOMEM; + if (WARN_ON(!pfn_valid(page_to_pfn(page)))) + return -EINVAL; + set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*nr)++; } while (pte++, addr += PAGE_SIZE, addr != end); + *mask |= PGTBL_PTE_MODIFIED; return 0; } -static int vmap_pmd_range(pud_t *pud, unsigned long addr, - unsigned long end, pgprot_t prot, struct page **pages, int *nr) +static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; - pmd = pmd_alloc(&init_mm, pud, addr); + pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); - if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) + if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } -static int vmap_pud_range(p4d_t *p4d, unsigned long addr, - unsigned long end, pgprot_t prot, struct page **pages, int *nr) +static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; - pud = pud_alloc(&init_mm, p4d, addr); + pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); - if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) + if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } -static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, - unsigned long end, pgprot_t prot, struct page **pages, int *nr) +static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr, + pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; - p4d = p4d_alloc(&init_mm, pgd, addr); + p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); - if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) + if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (p4d++, addr = next, addr != end); return 0; } -/* - * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and - * will have pfns corresponding to the "pages" array. - * - * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] - */ -static int vmap_page_range_noflush(unsigned long start, unsigned long end, - pgprot_t prot, struct page **pages) +static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages) { + unsigned long start = addr; pgd_t *pgd; unsigned long next; - unsigned long addr = start; int err = 0; int nr = 0; + pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); - err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); + if (pgd_bad(*pgd)) + mask |= PGTBL_PGD_MODIFIED; + err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); if (err) return err; } while (pgd++, addr = next, addr != end); - return nr; + if (mask & ARCH_PAGE_TABLE_SYNC_MASK) + arch_sync_kernel_mappings(start, end); + + return 0; } -static int vmap_page_range(unsigned long start, unsigned long end, - pgprot_t prot, struct page **pages) +/* + * vmap_pages_range_noflush is similar to vmap_pages_range, but does not + * flush caches. + * + * The caller is responsible for calling flush_cache_vmap() after this + * function returns successfully and before the addresses are accessed. + * + * This is an internal function only. Do not use outside mm/. + */ +int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages, unsigned int page_shift) { - int ret; + unsigned int i, nr = (end - addr) >> PAGE_SHIFT; + + WARN_ON(page_shift < PAGE_SHIFT); + + if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || + page_shift == PAGE_SHIFT) + return vmap_small_pages_range_noflush(addr, end, prot, pages); + + for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { + int err; - ret = vmap_page_range_noflush(start, end, prot, pages); - flush_cache_vmap(start, end); - return ret; + err = vmap_range_noflush(addr, addr + (1UL << page_shift), + page_to_phys(pages[i]), prot, + page_shift); + if (err) + return err; + + addr += 1UL << page_shift; + } + + return 0; +} + +int vmap_pages_range_noflush(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages, unsigned int page_shift) +{ + kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift); + return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); +} + +/** + * vmap_pages_range - map pages to a kernel virtual address + * @addr: start of the VM area to map + * @end: end of the VM area to map (non-inclusive) + * @prot: page protection flags to use + * @pages: pages to map (always PAGE_SIZE pages) + * @page_shift: maximum shift that the pages may be mapped with, @pages must + * be aligned and contiguous up to at least this shift. + * + * RETURNS: + * 0 on success, -errno on failure. + */ +static int vmap_pages_range(unsigned long addr, unsigned long end, + pgprot_t prot, struct page **pages, unsigned int page_shift) +{ + int err; + + err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); + flush_cache_vmap(addr, end); + return err; } int is_vmalloc_or_module_addr(const void *x) @@ -264,7 +647,7 @@ int is_vmalloc_or_module_addr(const void *x) * just put it in the vmalloc space. */ #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) - unsigned long addr = (unsigned long)x; + unsigned long addr = (unsigned long)kasan_reset_tag(x); if (addr >= MODULES_VADDR && addr < MODULES_END) return 1; #endif @@ -272,7 +655,9 @@ int is_vmalloc_or_module_addr(const void *x) } /* - * Walk a vmap address to the struct page it maps. + * Walk a vmap address to the struct page it maps. Huge vmap mappings will + * return the tail page that corresponds to the base page address, which + * matches small vmap mappings. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { @@ -292,25 +677,33 @@ struct page *vmalloc_to_page(const void *vmalloc_addr) if (pgd_none(*pgd)) return NULL; + if (WARN_ON_ONCE(pgd_leaf(*pgd))) + return NULL; /* XXX: no allowance for huge pgd */ + if (WARN_ON_ONCE(pgd_bad(*pgd))) + return NULL; + p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return NULL; - pud = pud_offset(p4d, addr); + if (p4d_leaf(*p4d)) + return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); + if (WARN_ON_ONCE(p4d_bad(*p4d))) + return NULL; - /* - * Don't dereference bad PUD or PMD (below) entries. This will also - * identify huge mappings, which we may encounter on architectures - * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be - * identified as vmalloc addresses by is_vmalloc_addr(), but are - * not [unambiguously] associated with a struct page, so there is - * no correct value to return for them. - */ - WARN_ON_ONCE(pud_bad(*pud)); - if (pud_none(*pud) || pud_bad(*pud)) + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) + return NULL; + if (pud_leaf(*pud)) + return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); + if (WARN_ON_ONCE(pud_bad(*pud))) return NULL; + pmd = pmd_offset(pud, addr); - WARN_ON_ONCE(pmd_bad(*pmd)); - if (pmd_none(*pmd) || pmd_bad(*pmd)) + if (pmd_none(*pmd)) + return NULL; + if (pmd_leaf(*pmd)) + return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); + if (WARN_ON_ONCE(pmd_bad(*pmd))) return NULL; ptep = pte_offset_map(pmd, addr); @@ -318,6 +711,7 @@ struct page *vmalloc_to_page(const void *vmalloc_addr) if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); + return page; } EXPORT_SYMBOL(vmalloc_to_page); @@ -342,10 +736,13 @@ static DEFINE_SPINLOCK(vmap_area_lock); static DEFINE_SPINLOCK(free_vmap_area_lock); /* Export for kexec only */ LIST_HEAD(vmap_area_list); -static LLIST_HEAD(vmap_purge_list); static struct rb_root vmap_area_root = RB_ROOT; static bool vmap_initialized __read_mostly; +static struct rb_root purge_vmap_area_root = RB_ROOT; +static LIST_HEAD(purge_vmap_area_list); +static DEFINE_SPINLOCK(purge_vmap_area_lock); + /* * This kmem_cache is used for vmap_area objects. Instead of * allocating from slab we reuse an object from this cache to @@ -394,23 +791,13 @@ get_subtree_max_size(struct rb_node *node) return va ? va->subtree_max_size : 0; } -/* - * Gets called when remove the node and rotate. - */ -static __always_inline unsigned long -compute_subtree_max_size(struct vmap_area *va) -{ - return max3(va_size(va), - get_subtree_max_size(va->rb_node.rb_left), - get_subtree_max_size(va->rb_node.rb_right)); -} - RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) static void purge_vmap_area_lazy(void); static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); -static unsigned long lazy_max_pages(void); +static void drain_vmap_area_work(struct work_struct *work); +static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); static atomic_long_t nr_vmalloc_pages; @@ -419,10 +806,37 @@ unsigned long vmalloc_nr_pages(void) return atomic_long_read(&nr_vmalloc_pages); } -static struct vmap_area *__find_vmap_area(unsigned long addr) +/* Look up the first VA which satisfies addr < va_end, NULL if none. */ +static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) { + struct vmap_area *va = NULL; struct rb_node *n = vmap_area_root.rb_node; + addr = (unsigned long)kasan_reset_tag((void *)addr); + + while (n) { + struct vmap_area *tmp; + + tmp = rb_entry(n, struct vmap_area, rb_node); + if (tmp->va_end > addr) { + va = tmp; + if (tmp->va_start <= addr) + break; + + n = n->rb_left; + } else + n = n->rb_right; + } + + return va; +} + +static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) +{ + struct rb_node *n = root->rb_node; + + addr = (unsigned long)kasan_reset_tag((void *)addr); + while (n) { struct vmap_area *va; @@ -441,6 +855,10 @@ static struct vmap_area *__find_vmap_area(unsigned long addr) /* * This function returns back addresses of parent node * and its left or right link for further processing. + * + * Otherwise NULL is returned. In that case all further + * steps regarding inserting of conflicting overlap range + * have to be declined and actually considered as a bug. */ static __always_inline struct rb_node ** find_va_links(struct vmap_area *va, @@ -473,14 +891,16 @@ find_va_links(struct vmap_area *va, * Trigger the BUG() if there are sides(left/right) * or full overlaps. */ - if (va->va_start < tmp_va->va_end && - va->va_end <= tmp_va->va_start) + if (va->va_end <= tmp_va->va_start) link = &(*link)->rb_left; - else if (va->va_end > tmp_va->va_start && - va->va_start >= tmp_va->va_end) + else if (va->va_start >= tmp_va->va_end) link = &(*link)->rb_right; - else - BUG(); + else { + WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", + va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); + + return NULL; + } } while (*link); *parent = &tmp_va->rb_node; @@ -506,8 +926,9 @@ get_va_next_sibling(struct rb_node *parent, struct rb_node **link) } static __always_inline void -link_va(struct vmap_area *va, struct rb_root *root, - struct rb_node *parent, struct rb_node **link, struct list_head *head) +__link_va(struct vmap_area *va, struct rb_root *root, + struct rb_node *parent, struct rb_node **link, + struct list_head *head, bool augment) { /* * VA is still not in the list, but we can @@ -521,12 +942,12 @@ link_va(struct vmap_area *va, struct rb_root *root, /* Insert to the rb-tree */ rb_link_node(&va->rb_node, parent, link); - if (root == &free_vmap_area_root) { + if (augment) { /* * Some explanation here. Just perform simple insertion * to the tree. We do not set va->subtree_max_size to * its current size before calling rb_insert_augmented(). - * It is because of we populate the tree from the bottom + * It is because we populate the tree from the bottom * to parent levels when the node _is_ in the tree. * * Therefore we set subtree_max_size to zero after insertion, @@ -545,60 +966,73 @@ link_va(struct vmap_area *va, struct rb_root *root, } static __always_inline void -unlink_va(struct vmap_area *va, struct rb_root *root) +link_va(struct vmap_area *va, struct rb_root *root, + struct rb_node *parent, struct rb_node **link, + struct list_head *head) +{ + __link_va(va, root, parent, link, head, false); +} + +static __always_inline void +link_va_augment(struct vmap_area *va, struct rb_root *root, + struct rb_node *parent, struct rb_node **link, + struct list_head *head) +{ + __link_va(va, root, parent, link, head, true); +} + +static __always_inline void +__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) { if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) return; - if (root == &free_vmap_area_root) + if (augment) rb_erase_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); else rb_erase(&va->rb_node, root); - list_del(&va->list); + list_del_init(&va->list); RB_CLEAR_NODE(&va->rb_node); } -#if DEBUG_AUGMENT_PROPAGATE_CHECK -static void -augment_tree_propagate_check(struct rb_node *n) +static __always_inline void +unlink_va(struct vmap_area *va, struct rb_root *root) { - struct vmap_area *va; - struct rb_node *node; - unsigned long size; - bool found = false; - - if (n == NULL) - return; - - va = rb_entry(n, struct vmap_area, rb_node); - size = va->subtree_max_size; - node = n; + __unlink_va(va, root, false); +} - while (node) { - va = rb_entry(node, struct vmap_area, rb_node); +static __always_inline void +unlink_va_augment(struct vmap_area *va, struct rb_root *root) +{ + __unlink_va(va, root, true); +} - if (get_subtree_max_size(node->rb_left) == size) { - node = node->rb_left; - } else { - if (va_size(va) == size) { - found = true; - break; - } +#if DEBUG_AUGMENT_PROPAGATE_CHECK +/* + * Gets called when remove the node and rotate. + */ +static __always_inline unsigned long +compute_subtree_max_size(struct vmap_area *va) +{ + return max3(va_size(va), + get_subtree_max_size(va->rb_node.rb_left), + get_subtree_max_size(va->rb_node.rb_right)); +} - node = node->rb_right; - } - } +static void +augment_tree_propagate_check(void) +{ + struct vmap_area *va; + unsigned long computed_size; - if (!found) { - va = rb_entry(n, struct vmap_area, rb_node); - pr_emerg("tree is corrupted: %lu, %lu\n", - va_size(va), va->subtree_max_size); + list_for_each_entry(va, &free_vmap_area_list, list) { + computed_size = compute_subtree_max_size(va); + if (computed_size != va->subtree_max_size) + pr_emerg("tree is corrupted: %lu, %lu\n", + va_size(va), va->subtree_max_size); } - - augment_tree_propagate_check(n->rb_left); - augment_tree_propagate_check(n->rb_right); } #endif @@ -632,28 +1066,15 @@ augment_tree_propagate_check(struct rb_node *n) static __always_inline void augment_tree_propagate_from(struct vmap_area *va) { - struct rb_node *node = &va->rb_node; - unsigned long new_va_sub_max_size; - - while (node) { - va = rb_entry(node, struct vmap_area, rb_node); - new_va_sub_max_size = compute_subtree_max_size(va); - - /* - * If the newly calculated maximum available size of the - * subtree is equal to the current one, then it means that - * the tree is propagated correctly. So we have to stop at - * this point to save cycles. - */ - if (va->subtree_max_size == new_va_sub_max_size) - break; - - va->subtree_max_size = new_va_sub_max_size; - node = rb_parent(&va->rb_node); - } + /* + * Populate the tree from bottom towards the root until + * the calculated maximum available size of checked node + * is equal to its current one. + */ + free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); #if DEBUG_AUGMENT_PROPAGATE_CHECK - augment_tree_propagate_check(free_vmap_area_root.rb_node); + augment_tree_propagate_check(); #endif } @@ -665,7 +1086,8 @@ insert_vmap_area(struct vmap_area *va, struct rb_node *parent; link = find_va_links(va, root, NULL, &parent); - link_va(va, root, parent, link, head); + if (link) + link_va(va, root, parent, link, head); } static void @@ -681,8 +1103,10 @@ insert_vmap_area_augment(struct vmap_area *va, else link = find_va_links(va, root, NULL, &parent); - link_va(va, root, parent, link, head); - augment_tree_propagate_from(va); + if (link) { + link_va_augment(va, root, parent, link, head); + augment_tree_propagate_from(va); + } } /* @@ -690,10 +1114,15 @@ insert_vmap_area_augment(struct vmap_area *va, * and next free blocks. If coalesce is not done a new * free area is inserted. If VA has been merged, it is * freed. + * + * Please note, it can return NULL in case of overlap + * ranges, followed by WARN() report. Despite it is a + * buggy behaviour, a system can be alive and keep + * ongoing. */ static __always_inline struct vmap_area * -merge_or_add_vmap_area(struct vmap_area *va, - struct rb_root *root, struct list_head *head) +__merge_or_add_vmap_area(struct vmap_area *va, + struct rb_root *root, struct list_head *head, bool augment) { struct vmap_area *sibling; struct list_head *next; @@ -706,6 +1135,8 @@ merge_or_add_vmap_area(struct vmap_area *va, * inserted, unless it is merged with its sibling/siblings. */ link = find_va_links(va, root, NULL, &parent); + if (!link) + return NULL; /* * Get next node of VA to check if merging can be done. @@ -726,9 +1157,6 @@ merge_or_add_vmap_area(struct vmap_area *va, if (sibling->va_start == va->va_end) { sibling->va_start = va->va_start; - /* Check and update the tree if needed. */ - augment_tree_propagate_from(sibling); - /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); @@ -748,13 +1176,17 @@ merge_or_add_vmap_area(struct vmap_area *va, if (next->prev != head) { sibling = list_entry(next->prev, struct vmap_area, list); if (sibling->va_end == va->va_start) { - sibling->va_end = va->va_end; - - /* Check and update the tree if needed. */ - augment_tree_propagate_from(sibling); - + /* + * If both neighbors are coalesced, it is important + * to unlink the "next" node first, followed by merging + * with "previous" one. Otherwise the tree might not be + * fully populated if a sibling's augmented value is + * "normalized" because of rotation operations. + */ if (merged) - unlink_va(va, root); + __unlink_va(va, root, augment); + + sibling->va_end = va->va_end; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); @@ -766,10 +1198,26 @@ merge_or_add_vmap_area(struct vmap_area *va, } insert: - if (!merged) { - link_va(va, root, parent, link, head); + if (!merged) + __link_va(va, root, parent, link, head, augment); + + return va; +} + +static __always_inline struct vmap_area * +merge_or_add_vmap_area(struct vmap_area *va, + struct rb_root *root, struct list_head *head) +{ + return __merge_or_add_vmap_area(va, root, head, false); +} + +static __always_inline struct vmap_area * +merge_or_add_vmap_area_augment(struct vmap_area *va, + struct rb_root *root, struct list_head *head) +{ + va = __merge_or_add_vmap_area(va, root, head, true); + if (va) augment_tree_propagate_from(va); - } return va; } @@ -796,21 +1244,23 @@ is_within_this_va(struct vmap_area *va, unsigned long size, /* * Find the first free block(lowest start address) in the tree, * that will accomplish the request corresponding to passing - * parameters. + * parameters. Please note, with an alignment bigger than PAGE_SIZE, + * a search length is adjusted to account for worst case alignment + * overhead. */ static __always_inline struct vmap_area * -find_vmap_lowest_match(unsigned long size, - unsigned long align, unsigned long vstart) +find_vmap_lowest_match(struct rb_root *root, unsigned long size, + unsigned long align, unsigned long vstart, bool adjust_search_size) { struct vmap_area *va; struct rb_node *node; unsigned long length; /* Start from the root. */ - node = free_vmap_area_root.rb_node; + node = root->rb_node; /* Adjust the search size for alignment overhead. */ - length = size + align - 1; + length = adjust_search_size ? size + align - 1 : size; while (node) { va = rb_entry(node, struct vmap_area, rb_node); @@ -835,7 +1285,8 @@ find_vmap_lowest_match(unsigned long size, /* * OK. We roll back and find the first right sub-tree, * that will satisfy the search criteria. It can happen - * only once due to "vstart" restriction. + * due to "vstart" restriction or an alignment overhead + * that is bigger then PAGE_SIZE. */ while ((node = rb_parent(node))) { va = rb_entry(node, struct vmap_area, rb_node); @@ -844,6 +1295,13 @@ find_vmap_lowest_match(unsigned long size, if (get_subtree_max_size(node->rb_right) >= length && vstart <= va->va_start) { + /* + * Shift the vstart forward. Please note, we update it with + * parent's start address adding "1" because we do not want + * to enter same sub-tree after it has already been checked + * and no suitable free block found there. + */ + vstart = va->va_start + 1; node = node->rb_right; break; } @@ -858,12 +1316,12 @@ find_vmap_lowest_match(unsigned long size, #include <linux/random.h> static struct vmap_area * -find_vmap_lowest_linear_match(unsigned long size, +find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, unsigned long align, unsigned long vstart) { struct vmap_area *va; - list_for_each_entry(va, &free_vmap_area_list, list) { + list_for_each_entry(va, head, list) { if (!is_within_this_va(va, size, align, vstart)) continue; @@ -874,7 +1332,8 @@ find_vmap_lowest_linear_match(unsigned long size, } static void -find_vmap_lowest_match_check(unsigned long size) +find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, + unsigned long size, unsigned long align) { struct vmap_area *va_1, *va_2; unsigned long vstart; @@ -883,8 +1342,8 @@ find_vmap_lowest_match_check(unsigned long size) get_random_bytes(&rnd, sizeof(rnd)); vstart = VMALLOC_START + rnd; - va_1 = find_vmap_lowest_match(size, 1, vstart); - va_2 = find_vmap_lowest_linear_match(size, 1, vstart); + va_1 = find_vmap_lowest_match(root, size, align, vstart, false); + va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); if (va_1 != va_2) pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", @@ -927,11 +1386,12 @@ classify_va_fit_type(struct vmap_area *va, } static __always_inline int -adjust_va_to_fit_type(struct vmap_area *va, - unsigned long nva_start_addr, unsigned long size, - enum fit_type type) +adjust_va_to_fit_type(struct rb_root *root, struct list_head *head, + struct vmap_area *va, unsigned long nva_start_addr, + unsigned long size) { struct vmap_area *lva = NULL; + enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); if (type == FL_FIT_TYPE) { /* @@ -941,7 +1401,7 @@ adjust_va_to_fit_type(struct vmap_area *va, * V NVA V * |---------------| */ - unlink_va(va, &free_vmap_area_root); + unlink_va_augment(va, root); kmem_cache_free(vmap_area_cachep, va); } else if (type == LE_FIT_TYPE) { /* @@ -1019,8 +1479,7 @@ adjust_va_to_fit_type(struct vmap_area *va, augment_tree_propagate_from(va); if (lva) /* type == NE_FIT_TYPE */ - insert_vmap_area_augment(lva, &va->rb_node, - &free_vmap_area_root, &free_vmap_area_list); + insert_vmap_area_augment(lva, &va->rb_node, root, head); } return 0; @@ -1031,15 +1490,28 @@ adjust_va_to_fit_type(struct vmap_area *va, * Otherwise a vend is returned that indicates failure. */ static __always_inline unsigned long -__alloc_vmap_area(unsigned long size, unsigned long align, +__alloc_vmap_area(struct rb_root *root, struct list_head *head, + unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { + bool adjust_search_size = true; unsigned long nva_start_addr; struct vmap_area *va; - enum fit_type type; int ret; - va = find_vmap_lowest_match(size, align, vstart); + /* + * Do not adjust when: + * a) align <= PAGE_SIZE, because it does not make any sense. + * All blocks(their start addresses) are at least PAGE_SIZE + * aligned anyway; + * b) a short range where a requested size corresponds to exactly + * specified [vstart:vend] interval and an alignment > PAGE_SIZE. + * With adjusted search length an allocation would not succeed. + */ + if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) + adjust_search_size = false; + + va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); if (unlikely(!va)) return vend; @@ -1052,18 +1524,13 @@ __alloc_vmap_area(unsigned long size, unsigned long align, if (nva_start_addr + size > vend) return vend; - /* Classify what we have found. */ - type = classify_va_fit_type(va, nva_start_addr, size); - if (WARN_ON_ONCE(type == NOTHING_FIT)) - return vend; - /* Update the free vmap_area. */ - ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); - if (ret) + ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size); + if (WARN_ON_ONCE(ret)) return vend; #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK - find_vmap_lowest_match_check(size); + find_vmap_lowest_match_check(root, head, size, align); #endif return nva_start_addr; @@ -1085,10 +1552,33 @@ static void free_vmap_area(struct vmap_area *va) * Insert/Merge it back to the free tree/list. */ spin_lock(&free_vmap_area_lock); - merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); + merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } +static inline void +preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) +{ + struct vmap_area *va = NULL; + + /* + * Preload this CPU with one extra vmap_area object. It is used + * when fit type of free area is NE_FIT_TYPE. It guarantees that + * a CPU that does an allocation is preloaded. + * + * We do it in non-atomic context, thus it allows us to use more + * permissive allocation masks to be more stable under low memory + * condition and high memory pressure. + */ + if (!this_cpu_read(ne_fit_preload_node)) + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); + + spin_lock(lock); + + if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) + kmem_cache_free(vmap_area_cachep, va); +} + /* * Allocate a region of KVA of the specified size and alignment, within the * vstart and vend. @@ -1098,7 +1588,8 @@ static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask) { - struct vmap_area *va, *pva; + struct vmap_area *va; + unsigned long freed; unsigned long addr; int purged = 0; int ret; @@ -1124,43 +1615,15 @@ static struct vmap_area *alloc_vmap_area(unsigned long size, kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); retry: - /* - * Preload this CPU with one extra vmap_area object. It is used - * when fit type of free area is NE_FIT_TYPE. Please note, it - * does not guarantee that an allocation occurs on a CPU that - * is preloaded, instead we minimize the case when it is not. - * It can happen because of cpu migration, because there is a - * race until the below spinlock is taken. - * - * The preload is done in non-atomic context, thus it allows us - * to use more permissive allocation masks to be more stable under - * low memory condition and high memory pressure. In rare case, - * if not preloaded, GFP_NOWAIT is used. - * - * Set "pva" to NULL here, because of "retry" path. - */ - pva = NULL; - - if (!this_cpu_read(ne_fit_preload_node)) - /* - * Even if it fails we do not really care about that. - * Just proceed as it is. If needed "overflow" path - * will refill the cache we allocate from. - */ - pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); - - spin_lock(&free_vmap_area_lock); - - if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) - kmem_cache_free(vmap_area_cachep, pva); + preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); + addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, + size, align, vstart, vend); + spin_unlock(&free_vmap_area_lock); /* * If an allocation fails, the "vend" address is * returned. Therefore trigger the overflow path. */ - addr = __alloc_vmap_area(size, align, vstart, vend); - spin_unlock(&free_vmap_area_lock); - if (unlikely(addr == vend)) goto overflow; @@ -1168,7 +1631,6 @@ retry: va->va_end = addr + size; va->vm = NULL; - spin_lock(&vmap_area_lock); insert_vmap_area(va, &vmap_area_root, &vmap_area_list); spin_unlock(&vmap_area_lock); @@ -1192,13 +1654,12 @@ overflow: goto retry; } - if (gfpflags_allow_blocking(gfp_mask)) { - unsigned long freed = 0; - blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); - if (freed > 0) { - purged = 0; - goto retry; - } + freed = 0; + blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); + + if (freed > 0) { + purged = 0; + goto retry; } if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) @@ -1222,14 +1683,6 @@ int unregister_vmap_purge_notifier(struct notifier_block *nb) EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); /* - * Clear the pagetable entries of a given vmap_area - */ -static void unmap_vmap_area(struct vmap_area *va) -{ - vunmap_page_range(va->va_start, va->va_end); -} - -/* * lazy_max_pages is the maximum amount of virtual address space we gather up * before attempting to purge with a TLB flush. * @@ -1257,8 +1710,8 @@ static unsigned long lazy_max_pages(void) static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); /* - * Serialize vmap purging. There is no actual criticial section protected - * by this look, but we want to avoid concurrent calls for performance + * Serialize vmap purging. There is no actual critical section protected + * by this lock, but we want to avoid concurrent calls for performance * reasons and to make the pcpu_get_vm_areas more deterministic. */ static DEFINE_MUTEX(vmap_purge_lock); @@ -1267,52 +1720,37 @@ static DEFINE_MUTEX(vmap_purge_lock); static void purge_fragmented_blocks_allcpus(void); /* - * called before a call to iounmap() if the caller wants vm_area_struct's - * immediately freed. - */ -void set_iounmap_nonlazy(void) -{ - atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); -} - -/* * Purges all lazily-freed vmap areas. */ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) { unsigned long resched_threshold; - struct llist_node *valist; - struct vmap_area *va; - struct vmap_area *n_va; + struct list_head local_purge_list; + struct vmap_area *va, *n_va; lockdep_assert_held(&vmap_purge_lock); - valist = llist_del_all(&vmap_purge_list); - if (unlikely(valist == NULL)) + spin_lock(&purge_vmap_area_lock); + purge_vmap_area_root = RB_ROOT; + list_replace_init(&purge_vmap_area_list, &local_purge_list); + spin_unlock(&purge_vmap_area_lock); + + if (unlikely(list_empty(&local_purge_list))) return false; - /* - * First make sure the mappings are removed from all page-tables - * before they are freed. - */ - vmalloc_sync_unmappings(); + start = min(start, + list_first_entry(&local_purge_list, + struct vmap_area, list)->va_start); - /* - * TODO: to calculate a flush range without looping. - * The list can be up to lazy_max_pages() elements. - */ - llist_for_each_entry(va, valist, purge_list) { - if (va->va_start < start) - start = va->va_start; - if (va->va_end > end) - end = va->va_end; - } + end = max(end, + list_last_entry(&local_purge_list, + struct vmap_area, list)->va_end); flush_tlb_kernel_range(start, end); resched_threshold = lazy_max_pages() << 1; spin_lock(&free_vmap_area_lock); - llist_for_each_entry_safe(va, n_va, valist, purge_list) { + list_for_each_entry_safe(va, n_va, &local_purge_list, list) { unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; unsigned long orig_start = va->va_start; unsigned long orig_end = va->va_end; @@ -1322,8 +1760,11 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) * detached and there is no need to "unlink" it from * anything. */ - va = merge_or_add_vmap_area(va, &free_vmap_area_root, - &free_vmap_area_list); + va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, + &free_vmap_area_list); + + if (!va) + continue; if (is_vmalloc_or_module_addr((void *)orig_start)) kasan_release_vmalloc(orig_start, orig_end, @@ -1339,18 +1780,6 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) } /* - * Kick off a purge of the outstanding lazy areas. Don't bother if somebody - * is already purging. - */ -static void try_purge_vmap_area_lazy(void) -{ - if (mutex_trylock(&vmap_purge_lock)) { - __purge_vmap_area_lazy(ULONG_MAX, 0); - mutex_unlock(&vmap_purge_lock); - } -} - -/* * Kick off a purge of the outstanding lazy areas. */ static void purge_vmap_area_lazy(void) @@ -1361,6 +1790,20 @@ static void purge_vmap_area_lazy(void) mutex_unlock(&vmap_purge_lock); } +static void drain_vmap_area_work(struct work_struct *work) +{ + unsigned long nr_lazy; + + do { + mutex_lock(&vmap_purge_lock); + __purge_vmap_area_lazy(ULONG_MAX, 0); + mutex_unlock(&vmap_purge_lock); + + /* Recheck if further work is required. */ + nr_lazy = atomic_long_read(&vmap_lazy_nr); + } while (nr_lazy > lazy_max_pages()); +} + /* * Free a vmap area, caller ensuring that the area has been unmapped * and flush_cache_vunmap had been called for the correct range @@ -1377,11 +1820,17 @@ static void free_vmap_area_noflush(struct vmap_area *va) nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); - /* After this point, we may free va at any time */ - llist_add(&va->purge_list, &vmap_purge_list); + /* + * Merge or place it to the purge tree/list. + */ + spin_lock(&purge_vmap_area_lock); + merge_or_add_vmap_area(va, + &purge_vmap_area_root, &purge_vmap_area_list); + spin_unlock(&purge_vmap_area_lock); + /* After this point, we may free va at any time */ if (unlikely(nr_lazy > lazy_max_pages())) - try_purge_vmap_area_lazy(); + schedule_work(&drain_vmap_work); } /* @@ -1390,19 +1839,19 @@ static void free_vmap_area_noflush(struct vmap_area *va) static void free_unmap_vmap_area(struct vmap_area *va) { flush_cache_vunmap(va->va_start, va->va_end); - unmap_vmap_area(va); + vunmap_range_noflush(va->va_start, va->va_end); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(va->va_start, va->va_end); free_vmap_area_noflush(va); } -static struct vmap_area *find_vmap_area(unsigned long addr) +struct vmap_area *find_vmap_area(unsigned long addr) { struct vmap_area *va; spin_lock(&vmap_area_lock); - va = __find_vmap_area(addr); + va = __find_vmap_area(addr, &vmap_area_root); spin_unlock(&vmap_area_lock); return va; @@ -1457,12 +1906,11 @@ struct vmap_block { static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* - * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block + * XArray of vmap blocks, indexed by address, to quickly find a vmap block * in the free path. Could get rid of this if we change the API to return a * "cookie" from alloc, to be passed to free. But no big deal yet. */ -static DEFINE_SPINLOCK(vmap_block_tree_lock); -static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); +static DEFINE_XARRAY(vmap_blocks); /* * We should probably have a fallback mechanism to allocate virtual memory @@ -1519,13 +1967,6 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) return ERR_CAST(va); } - err = radix_tree_preload(gfp_mask); - if (unlikely(err)) { - kfree(vb); - free_vmap_area(va); - return ERR_PTR(err); - } - vaddr = vmap_block_vaddr(va->va_start, 0); spin_lock_init(&vb->lock); vb->va = va; @@ -1538,17 +1979,17 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) INIT_LIST_HEAD(&vb->free_list); vb_idx = addr_to_vb_idx(va->va_start); - spin_lock(&vmap_block_tree_lock); - err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); - spin_unlock(&vmap_block_tree_lock); - BUG_ON(err); - radix_tree_preload_end(); + err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); + if (err) { + kfree(vb); + free_vmap_area(va); + return ERR_PTR(err); + } - vbq = &get_cpu_var(vmap_block_queue); + vbq = raw_cpu_ptr(&vmap_block_queue); spin_lock(&vbq->lock); list_add_tail_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); - put_cpu_var(vmap_block_queue); return vaddr; } @@ -1556,12 +1997,8 @@ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) static void free_vmap_block(struct vmap_block *vb) { struct vmap_block *tmp; - unsigned long vb_idx; - vb_idx = addr_to_vb_idx(vb->va->va_start); - spin_lock(&vmap_block_tree_lock); - tmp = radix_tree_delete(&vmap_block_tree, vb_idx); - spin_unlock(&vmap_block_tree_lock); + tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); BUG_ON(tmp != vb); free_vmap_area_noflush(vb->va); @@ -1631,7 +2068,7 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) order = get_order(size); rcu_read_lock(); - vbq = &get_cpu_var(vmap_block_queue); + vbq = raw_cpu_ptr(&vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long pages_off; @@ -1654,7 +2091,6 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) break; } - put_cpu_var(vmap_block_queue); rcu_read_unlock(); /* Allocate new block if nothing was found */ @@ -1664,34 +2100,25 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) return vaddr; } -static void vb_free(const void *addr, unsigned long size) +static void vb_free(unsigned long addr, unsigned long size) { unsigned long offset; - unsigned long vb_idx; unsigned int order; struct vmap_block *vb; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); - flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); + flush_cache_vunmap(addr, addr + size); order = get_order(size); + offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; + vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); - offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); - offset >>= PAGE_SHIFT; - - vb_idx = addr_to_vb_idx((unsigned long)addr); - rcu_read_lock(); - vb = radix_tree_lookup(&vmap_block_tree, vb_idx); - rcu_read_unlock(); - BUG_ON(!vb); - - vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); + vunmap_range_noflush(addr, addr + size); if (debug_pagealloc_enabled_static()) - flush_tlb_kernel_range((unsigned long)addr, - (unsigned long)addr + size); + flush_tlb_kernel_range(addr, addr + size); spin_lock(&vb->lock); @@ -1724,7 +2151,7 @@ static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { spin_lock(&vb->lock); - if (vb->dirty) { + if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { unsigned long va_start = vb->va->va_start; unsigned long s, e; @@ -1778,7 +2205,7 @@ EXPORT_SYMBOL_GPL(vm_unmap_aliases); void vm_unmap_ram(const void *mem, unsigned int count) { unsigned long size = (unsigned long)count << PAGE_SHIFT; - unsigned long addr = (unsigned long)mem; + unsigned long addr = (unsigned long)kasan_reset_tag(mem); struct vmap_area *va; might_sleep(); @@ -1791,7 +2218,7 @@ void vm_unmap_ram(const void *mem, unsigned int count) if (likely(count <= VMAP_MAX_ALLOC)) { debug_check_no_locks_freed(mem, size); - vb_free(mem, size); + vb_free(addr, size); return; } @@ -1808,7 +2235,6 @@ EXPORT_SYMBOL(vm_unmap_ram); * @pages: an array of pointers to the pages to be mapped * @count: number of pages * @node: prefer to allocate data structures on this node - * @prot: memory protection to use. PAGE_KERNEL for regular RAM * * If you use this function for less than VMAP_MAX_ALLOC pages, it could be * faster than vmap so it's good. But if you mix long-life and short-life @@ -1818,7 +2244,7 @@ EXPORT_SYMBOL(vm_unmap_ram); * * Returns: a pointer to the address that has been mapped, or %NULL on failure */ -void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) +void *vm_map_ram(struct page **pages, unsigned int count, int node) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr; @@ -1840,18 +2266,43 @@ void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t pro mem = (void *)addr; } - kasan_unpoison_vmalloc(mem, size); - - if (vmap_page_range(addr, addr + size, prot, pages) < 0) { + if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, + pages, PAGE_SHIFT) < 0) { vm_unmap_ram(mem, count); return NULL; } + + /* + * Mark the pages as accessible, now that they are mapped. + * With hardware tag-based KASAN, marking is skipped for + * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). + */ + mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); + return mem; } EXPORT_SYMBOL(vm_map_ram); static struct vm_struct *vmlist __initdata; +static inline unsigned int vm_area_page_order(struct vm_struct *vm) +{ +#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC + return vm->page_order; +#else + return 0; +#endif +} + +static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) +{ +#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC + vm->page_order = order; +#else + BUG_ON(order != 0); +#endif +} + /** * vm_area_add_early - add vmap area early during boot * @vm: vm_struct to add @@ -1892,15 +2343,22 @@ void __init vm_area_add_early(struct vm_struct *vm) */ void __init vm_area_register_early(struct vm_struct *vm, size_t align) { - static size_t vm_init_off __initdata; - unsigned long addr; + unsigned long addr = ALIGN(VMALLOC_START, align); + struct vm_struct *cur, **p; - addr = ALIGN(VMALLOC_START + vm_init_off, align); - vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; + BUG_ON(vmap_initialized); - vm->addr = (void *)addr; + for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { + if ((unsigned long)cur->addr - addr >= vm->size) + break; + addr = ALIGN((unsigned long)cur->addr + cur->size, align); + } - vm_area_add_early(vm); + BUG_ON(addr > VMALLOC_END - vm->size); + vm->addr = (void *)addr; + vm->next = *p; + *p = vm; + kasan_populate_early_vm_area_shadow(vm->addr, vm->size); } static void vmap_init_free_space(void) @@ -1986,81 +2444,6 @@ void __init vmalloc_init(void) vmap_initialized = true; } -/** - * map_kernel_range_noflush - map kernel VM area with the specified pages - * @addr: start of the VM area to map - * @size: size of the VM area to map - * @prot: page protection flags to use - * @pages: pages to map - * - * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size - * specify should have been allocated using get_vm_area() and its - * friends. - * - * NOTE: - * This function does NOT do any cache flushing. The caller is - * responsible for calling flush_cache_vmap() on to-be-mapped areas - * before calling this function. - * - * RETURNS: - * The number of pages mapped on success, -errno on failure. - */ -int map_kernel_range_noflush(unsigned long addr, unsigned long size, - pgprot_t prot, struct page **pages) -{ - return vmap_page_range_noflush(addr, addr + size, prot, pages); -} - -/** - * unmap_kernel_range_noflush - unmap kernel VM area - * @addr: start of the VM area to unmap - * @size: size of the VM area to unmap - * - * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size - * specify should have been allocated using get_vm_area() and its - * friends. - * - * NOTE: - * This function does NOT do any cache flushing. The caller is - * responsible for calling flush_cache_vunmap() on to-be-mapped areas - * before calling this function and flush_tlb_kernel_range() after. - */ -void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) -{ - vunmap_page_range(addr, addr + size); -} -EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); - -/** - * unmap_kernel_range - unmap kernel VM area and flush cache and TLB - * @addr: start of the VM area to unmap - * @size: size of the VM area to unmap - * - * Similar to unmap_kernel_range_noflush() but flushes vcache before - * the unmapping and tlb after. - */ -void unmap_kernel_range(unsigned long addr, unsigned long size) -{ - unsigned long end = addr + size; - - flush_cache_vunmap(addr, end); - vunmap_page_range(addr, end); - flush_tlb_kernel_range(addr, end); -} -EXPORT_SYMBOL_GPL(unmap_kernel_range); - -int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) -{ - unsigned long addr = (unsigned long)area->addr; - unsigned long end = addr + get_vm_area_size(area); - int err; - - err = vmap_page_range(addr, end, prot, pages); - - return err > 0 ? 0 : err; -} -EXPORT_SYMBOL_GPL(map_vm_area); - static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, const void *caller) { @@ -2091,15 +2474,16 @@ static void clear_vm_uninitialized_flag(struct vm_struct *vm) } static struct vm_struct *__get_vm_area_node(unsigned long size, - unsigned long align, unsigned long flags, unsigned long start, - unsigned long end, int node, gfp_t gfp_mask, const void *caller) + unsigned long align, unsigned long shift, unsigned long flags, + unsigned long start, unsigned long end, int node, + gfp_t gfp_mask, const void *caller) { struct vmap_area *va; struct vm_struct *area; unsigned long requested_size = size; BUG_ON(in_interrupt()); - size = PAGE_ALIGN(size); + size = ALIGN(size, 1ul << shift); if (unlikely(!size)) return NULL; @@ -2120,27 +2504,29 @@ static struct vm_struct *__get_vm_area_node(unsigned long size, return NULL; } - kasan_unpoison_vmalloc((void *)va->va_start, requested_size); - setup_vmalloc_vm(area, va, flags, caller); - return area; -} + /* + * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a + * best-effort approach, as they can be mapped outside of vmalloc code. + * For VM_ALLOC mappings, the pages are marked as accessible after + * getting mapped in __vmalloc_node_range(). + * With hardware tag-based KASAN, marking is skipped for + * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). + */ + if (!(flags & VM_ALLOC)) + area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, + KASAN_VMALLOC_PROT_NORMAL); -struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, - unsigned long start, unsigned long end) -{ - return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, - GFP_KERNEL, __builtin_return_address(0)); + return area; } -EXPORT_SYMBOL_GPL(__get_vm_area); struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller) { - return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, - GFP_KERNEL, caller); + return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, + NUMA_NO_NODE, GFP_KERNEL, caller); } /** @@ -2156,7 +2542,8 @@ struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { - return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, + return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, + VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); } @@ -2164,7 +2551,8 @@ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller) { - return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, + return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, + VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, caller); } @@ -2176,7 +2564,7 @@ struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, * It is up to the caller to do all required locking to keep the returned * pointer valid. * - * Return: pointer to the found area or %NULL on faulure + * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *find_vm_area(const void *addr) { @@ -2197,7 +2585,7 @@ struct vm_struct *find_vm_area(const void *addr) * This function returns the found VM area, but using it is NOT safe * on SMP machines, except for its size or flags. * - * Return: pointer to the found area or %NULL on faulure + * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *remove_vm_area(const void *addr) { @@ -2206,14 +2594,14 @@ struct vm_struct *remove_vm_area(const void *addr) might_sleep(); spin_lock(&vmap_area_lock); - va = __find_vmap_area((unsigned long)addr); + va = __find_vmap_area((unsigned long)addr, &vmap_area_root); if (va && va->vm) { struct vm_struct *vm = va->vm; va->vm = NULL; spin_unlock(&vmap_area_lock); - kasan_free_shadow(vm); + kasan_free_module_shadow(vm); free_unmap_vmap_area(va); return vm; @@ -2228,6 +2616,7 @@ static inline void set_area_direct_map(const struct vm_struct *area, { int i; + /* HUGE_VMALLOC passes small pages to set_direct_map */ for (i = 0; i < area->nr_pages; i++) if (page_address(area->pages[i])) set_direct_map(area->pages[i]); @@ -2237,6 +2626,7 @@ static inline void set_area_direct_map(const struct vm_struct *area, static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) { unsigned long start = ULONG_MAX, end = 0; + unsigned int page_order = vm_area_page_order(area); int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; int flush_dmap = 0; int i; @@ -2261,11 +2651,14 @@ static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) * map. Find the start and end range of the direct mappings to make sure * the vm_unmap_aliases() flush includes the direct map. */ - for (i = 0; i < area->nr_pages; i++) { + for (i = 0; i < area->nr_pages; i += 1U << page_order) { unsigned long addr = (unsigned long)page_address(area->pages[i]); if (addr) { + unsigned long page_size; + + page_size = PAGE_SIZE << page_order; start = min(addr, start); - end = max(addr + PAGE_SIZE, end); + end = max(addr + page_size, end); flush_dmap = 1; } } @@ -2301,7 +2694,7 @@ static void __vunmap(const void *addr, int deallocate_pages) debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); - kasan_poison_vmalloc(area->addr, area->size); + kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); vm_remove_mappings(area, deallocate_pages); @@ -2312,7 +2705,13 @@ static void __vunmap(const void *addr, int deallocate_pages) struct page *page = area->pages[i]; BUG_ON(!page); + mod_memcg_page_state(page, MEMCG_VMALLOC, -1); + /* + * High-order allocs for huge vmallocs are split, so + * can be freed as an array of order-0 allocations + */ __free_pages(page, 0); + cond_resched(); } atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); @@ -2320,7 +2719,6 @@ static void __vunmap(const void *addr, int deallocate_pages) } kfree(area); - return; } static inline void __vfree_deferred(const void *addr) @@ -2329,7 +2727,7 @@ static inline void __vfree_deferred(const void *addr) * Use raw_cpu_ptr() because this can be called from preemptible * context. Preemption is absolutely fine here, because the llist_add() * implementation is lockless, so it works even if we are adding to - * nother cpu's list. schedule_work() should be fine with this too. + * another cpu's list. schedule_work() should be fine with this too. */ struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); @@ -2364,20 +2762,21 @@ static void __vfree(const void *addr) } /** - * vfree - release memory allocated by vmalloc() - * @addr: memory base address + * vfree - Release memory allocated by vmalloc() + * @addr: Memory base address * - * Free the virtually continuous memory area starting at @addr, as - * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is - * NULL, no operation is performed. + * Free the virtually continuous memory area starting at @addr, as obtained + * from one of the vmalloc() family of APIs. This will usually also free the + * physical memory underlying the virtual allocation, but that memory is + * reference counted, so it will not be freed until the last user goes away. * - * Must not be called in NMI context (strictly speaking, only if we don't - * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling - * conventions for vfree() arch-depenedent would be a really bad idea) + * If @addr is NULL, no operation is performed. * + * Context: * May sleep if called *not* from interrupt context. - * - * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) + * Must not be called in NMI context (strictly speaking, it could be + * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling + * conventions for vfree() arch-dependent would be a really bad idea). */ void vfree(const void *addr) { @@ -2419,8 +2818,11 @@ EXPORT_SYMBOL(vunmap); * @flags: vm_area->flags * @prot: page protection for the mapping * - * Maps @count pages from @pages into contiguous kernel virtual - * space. + * Maps @count pages from @pages into contiguous kernel virtual space. + * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself + * (which must be kmalloc or vmalloc memory) and one reference per pages in it + * are transferred from the caller to vmap(), and will be freed / dropped when + * vfree() is called on the return value. * * Return: the address of the area or %NULL on failure */ @@ -2428,10 +2830,18 @@ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; + unsigned long addr; unsigned long size; /* In bytes */ might_sleep(); + /* + * Your top guard is someone else's bottom guard. Not having a top + * guard compromises someone else's mappings too. + */ + if (WARN_ON_ONCE(flags & VM_NO_GUARD)) + flags &= ~VM_NO_GUARD; + if (count > totalram_pages()) return NULL; @@ -2440,77 +2850,249 @@ void *vmap(struct page **pages, unsigned int count, if (!area) return NULL; - if (map_vm_area(area, prot, pages)) { + addr = (unsigned long)area->addr; + if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), + pages, PAGE_SHIFT) < 0) { vunmap(area->addr); return NULL; } + if (flags & VM_MAP_PUT_PAGES) { + area->pages = pages; + area->nr_pages = count; + } return area->addr; } EXPORT_SYMBOL(vmap); -static void *__vmalloc_node(unsigned long size, unsigned long align, - gfp_t gfp_mask, pgprot_t prot, - int node, const void *caller); +#ifdef CONFIG_VMAP_PFN +struct vmap_pfn_data { + unsigned long *pfns; + pgprot_t prot; + unsigned int idx; +}; + +static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) +{ + struct vmap_pfn_data *data = private; + + if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) + return -EINVAL; + *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); + return 0; +} + +/** + * vmap_pfn - map an array of PFNs into virtually contiguous space + * @pfns: array of PFNs + * @count: number of pages to map + * @prot: page protection for the mapping + * + * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns + * the start address of the mapping. + */ +void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) +{ + struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; + struct vm_struct *area; + + area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, + __builtin_return_address(0)); + if (!area) + return NULL; + if (apply_to_page_range(&init_mm, (unsigned long)area->addr, + count * PAGE_SIZE, vmap_pfn_apply, &data)) { + free_vm_area(area); + return NULL; + } + return area->addr; +} +EXPORT_SYMBOL_GPL(vmap_pfn); +#endif /* CONFIG_VMAP_PFN */ + +static inline unsigned int +vm_area_alloc_pages(gfp_t gfp, int nid, + unsigned int order, unsigned int nr_pages, struct page **pages) +{ + unsigned int nr_allocated = 0; + struct page *page; + int i; + + /* + * For order-0 pages we make use of bulk allocator, if + * the page array is partly or not at all populated due + * to fails, fallback to a single page allocator that is + * more permissive. + */ + if (!order) { + gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; + + while (nr_allocated < nr_pages) { + unsigned int nr, nr_pages_request; + + /* + * A maximum allowed request is hard-coded and is 100 + * pages per call. That is done in order to prevent a + * long preemption off scenario in the bulk-allocator + * so the range is [1:100]. + */ + nr_pages_request = min(100U, nr_pages - nr_allocated); + + /* memory allocation should consider mempolicy, we can't + * wrongly use nearest node when nid == NUMA_NO_NODE, + * otherwise memory may be allocated in only one node, + * but mempolicy wants to alloc memory by interleaving. + */ + if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) + nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, + nr_pages_request, + pages + nr_allocated); + + else + nr = alloc_pages_bulk_array_node(bulk_gfp, nid, + nr_pages_request, + pages + nr_allocated); + + nr_allocated += nr; + cond_resched(); + + /* + * If zero or pages were obtained partly, + * fallback to a single page allocator. + */ + if (nr != nr_pages_request) + break; + } + } + + /* High-order pages or fallback path if "bulk" fails. */ + + while (nr_allocated < nr_pages) { + if (fatal_signal_pending(current)) + break; + + if (nid == NUMA_NO_NODE) + page = alloc_pages(gfp, order); + else + page = alloc_pages_node(nid, gfp, order); + if (unlikely(!page)) + break; + /* + * Higher order allocations must be able to be treated as + * indepdenent small pages by callers (as they can with + * small-page vmallocs). Some drivers do their own refcounting + * on vmalloc_to_page() pages, some use page->mapping, + * page->lru, etc. + */ + if (order) + split_page(page, order); + + /* + * Careful, we allocate and map page-order pages, but + * tracking is done per PAGE_SIZE page so as to keep the + * vm_struct APIs independent of the physical/mapped size. + */ + for (i = 0; i < (1U << order); i++) + pages[nr_allocated + i] = page + i; + + cond_resched(); + nr_allocated += 1U << order; + } + + return nr_allocated; +} + static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, - pgprot_t prot, int node) + pgprot_t prot, unsigned int page_shift, + int node) { - struct page **pages; - unsigned int nr_pages, array_size, i; const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; - const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; - const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? - 0 : - __GFP_HIGHMEM; + bool nofail = gfp_mask & __GFP_NOFAIL; + unsigned long addr = (unsigned long)area->addr; + unsigned long size = get_vm_area_size(area); + unsigned long array_size; + unsigned int nr_small_pages = size >> PAGE_SHIFT; + unsigned int page_order; + unsigned int flags; + int ret; - nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; - array_size = (nr_pages * sizeof(struct page *)); + array_size = (unsigned long)nr_small_pages * sizeof(struct page *); + gfp_mask |= __GFP_NOWARN; + if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) + gfp_mask |= __GFP_HIGHMEM; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { - pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, - PAGE_KERNEL, node, area->caller); + area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, + area->caller); } else { - pages = kmalloc_node(array_size, nested_gfp, node); + area->pages = kmalloc_node(array_size, nested_gfp, node); } - if (!pages) { - remove_vm_area(area->addr); - kfree(area); + if (!area->pages) { + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, failed to allocated page array size %lu", + nr_small_pages * PAGE_SIZE, array_size); + free_vm_area(area); return NULL; } - area->pages = pages; - area->nr_pages = nr_pages; + set_vm_area_page_order(area, page_shift - PAGE_SHIFT); + page_order = vm_area_page_order(area); - for (i = 0; i < area->nr_pages; i++) { - struct page *page; + area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, + node, page_order, nr_small_pages, area->pages); - if (node == NUMA_NO_NODE) - page = alloc_page(alloc_mask|highmem_mask); - else - page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); + atomic_long_add(area->nr_pages, &nr_vmalloc_pages); + if (gfp_mask & __GFP_ACCOUNT) { + int i; - if (unlikely(!page)) { - /* Successfully allocated i pages, free them in __vunmap() */ - area->nr_pages = i; - atomic_long_add(area->nr_pages, &nr_vmalloc_pages); - goto fail; - } - area->pages[i] = page; - if (gfpflags_allow_blocking(gfp_mask)) - cond_resched(); + for (i = 0; i < area->nr_pages; i++) + mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); } - atomic_long_add(area->nr_pages, &nr_vmalloc_pages); - if (map_vm_area(area, prot, pages)) + /* + * If not enough pages were obtained to accomplish an + * allocation request, free them via __vfree() if any. + */ + if (area->nr_pages != nr_small_pages) { + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, page order %u, failed to allocate pages", + area->nr_pages * PAGE_SIZE, page_order); goto fail; + } + + /* + * page tables allocations ignore external gfp mask, enforce it + * by the scope API + */ + if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) + flags = memalloc_nofs_save(); + else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) + flags = memalloc_noio_save(); + + do { + ret = vmap_pages_range(addr, addr + size, prot, area->pages, + page_shift); + if (nofail && (ret < 0)) + schedule_timeout_uninterruptible(1); + } while (nofail && (ret < 0)); + + if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) + memalloc_nofs_restore(flags); + else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) + memalloc_noio_restore(flags); + + if (ret < 0) { + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, failed to map pages", + area->nr_pages * PAGE_SIZE); + goto fail; + } + return area->addr; fail: - warn_alloc(gfp_mask, NULL, - "vmalloc: allocation failure, allocated %ld of %ld bytes", - (area->nr_pages*PAGE_SIZE), area->size); __vfree(area->addr); return NULL; } @@ -2528,8 +3110,18 @@ fail: * @caller: caller's return address * * Allocate enough pages to cover @size from the page level - * allocator with @gfp_mask flags. Map them into contiguous - * kernel virtual space, using a pagetable protection of @prot. + * allocator with @gfp_mask flags. Please note that the full set of gfp + * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all + * supported. + * Zone modifiers are not supported. From the reclaim modifiers + * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) + * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and + * __GFP_RETRY_MAYFAIL are not supported). + * + * __GFP_NOWARN can be used to suppress failures messages. + * + * Map them into contiguous kernel virtual space, using a pagetable + * protection of @prot. * * Return: the address of the area or %NULL on failure */ @@ -2539,21 +3131,103 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align, const void *caller) { struct vm_struct *area; - void *addr; + void *ret; + kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; unsigned long real_size = size; + unsigned long real_align = align; + unsigned int shift = PAGE_SHIFT; - size = PAGE_ALIGN(size); - if (!size || (size >> PAGE_SHIFT) > totalram_pages()) + if (WARN_ON_ONCE(!size)) + return NULL; + + if ((size >> PAGE_SHIFT) > totalram_pages()) { + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, exceeds total pages", + real_size); + return NULL; + } + + if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { + unsigned long size_per_node; + + /* + * Try huge pages. Only try for PAGE_KERNEL allocations, + * others like modules don't yet expect huge pages in + * their allocations due to apply_to_page_range not + * supporting them. + */ + + size_per_node = size; + if (node == NUMA_NO_NODE) + size_per_node /= num_online_nodes(); + if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) + shift = PMD_SHIFT; + else + shift = arch_vmap_pte_supported_shift(size_per_node); + + align = max(real_align, 1UL << shift); + size = ALIGN(real_size, 1UL << shift); + } + +again: + area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | + VM_UNINITIALIZED | vm_flags, start, end, node, + gfp_mask, caller); + if (!area) { + bool nofail = gfp_mask & __GFP_NOFAIL; + warn_alloc(gfp_mask, NULL, + "vmalloc error: size %lu, vm_struct allocation failed%s", + real_size, (nofail) ? ". Retrying." : ""); + if (nofail) { + schedule_timeout_uninterruptible(1); + goto again; + } goto fail; + } - area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED | - vm_flags, start, end, node, gfp_mask, caller); - if (!area) + /* + * Prepare arguments for __vmalloc_area_node() and + * kasan_unpoison_vmalloc(). + */ + if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { + if (kasan_hw_tags_enabled()) { + /* + * Modify protection bits to allow tagging. + * This must be done before mapping. + */ + prot = arch_vmap_pgprot_tagged(prot); + + /* + * Skip page_alloc poisoning and zeroing for physical + * pages backing VM_ALLOC mapping. Memory is instead + * poisoned and zeroed by kasan_unpoison_vmalloc(). + */ + gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; + } + + /* Take note that the mapping is PAGE_KERNEL. */ + kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; + } + + /* Allocate physical pages and map them into vmalloc space. */ + ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); + if (!ret) goto fail; - addr = __vmalloc_area_node(area, gfp_mask, prot, node); - if (!addr) - return NULL; + /* + * Mark the pages as accessible, now that they are mapped. + * The condition for setting KASAN_VMALLOC_INIT should complement the + * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check + * to make sure that memory is initialized under the same conditions. + * Tag-based KASAN modes only assign tags to normal non-executable + * allocations, see __kasan_unpoison_vmalloc(). + */ + kasan_flags |= KASAN_VMALLOC_VM_ALLOC; + if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && + (gfp_mask & __GFP_SKIP_ZERO)) + kasan_flags |= KASAN_VMALLOC_INIT; + /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ + area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); /* * In this function, newly allocated vm_struct has VM_UNINITIALIZED @@ -2562,37 +3236,33 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align, */ clear_vm_uninitialized_flag(area); - kmemleak_vmalloc(area, size, gfp_mask); + size = PAGE_ALIGN(size); + if (!(vm_flags & VM_DEFER_KMEMLEAK)) + kmemleak_vmalloc(area, size, gfp_mask); - return addr; + return area->addr; fail: - warn_alloc(gfp_mask, NULL, - "vmalloc: allocation failure: %lu bytes", real_size); + if (shift > PAGE_SHIFT) { + shift = PAGE_SHIFT; + align = real_align; + size = real_size; + goto again; + } + return NULL; } -/* - * This is only for performance analysis of vmalloc and stress purpose. - * It is required by vmalloc test module, therefore do not use it other - * than that. - */ -#ifdef CONFIG_TEST_VMALLOC_MODULE -EXPORT_SYMBOL_GPL(__vmalloc_node_range); -#endif - /** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @gfp_mask: flags for the page level allocator - * @prot: protection mask for the allocated pages * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * - * Allocate enough pages to cover @size from the page level - * allocator with @gfp_mask flags. Map them into contiguous - * kernel virtual space, using a pagetable protection of @prot. + * Allocate enough pages to cover @size from the page level allocator with + * @gfp_mask flags. Map them into contiguous kernel virtual space. * * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL * and __GFP_NOFAIL are not supported @@ -2602,35 +3272,28 @@ EXPORT_SYMBOL_GPL(__vmalloc_node_range); * * Return: pointer to the allocated memory or %NULL on error */ -static void *__vmalloc_node(unsigned long size, unsigned long align, - gfp_t gfp_mask, pgprot_t prot, - int node, const void *caller) +void *__vmalloc_node(unsigned long size, unsigned long align, + gfp_t gfp_mask, int node, const void *caller) { return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, - gfp_mask, prot, 0, node, caller); + gfp_mask, PAGE_KERNEL, 0, node, caller); } +/* + * This is only for performance analysis of vmalloc and stress purpose. + * It is required by vmalloc test module, therefore do not use it other + * than that. + */ +#ifdef CONFIG_TEST_VMALLOC_MODULE +EXPORT_SYMBOL_GPL(__vmalloc_node); +#endif -void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) +void *__vmalloc(unsigned long size, gfp_t gfp_mask) { - return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, + return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(__vmalloc); -static inline void *__vmalloc_node_flags(unsigned long size, - int node, gfp_t flags) -{ - return __vmalloc_node(size, 1, flags, PAGE_KERNEL, - node, __builtin_return_address(0)); -} - - -void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, - void *caller) -{ - return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); -} - /** * vmalloc - allocate virtually contiguous memory * @size: allocation size @@ -2645,12 +3308,32 @@ void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, */ void *vmalloc(unsigned long size) { - return __vmalloc_node_flags(size, NUMA_NO_NODE, - GFP_KERNEL); + return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, + __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc); /** + * vmalloc_huge - allocate virtually contiguous memory, allow huge pages + * @size: allocation size + * @gfp_mask: flags for the page level allocator + * + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * If @size is greater than or equal to PMD_SIZE, allow using + * huge pages for the memory + * + * Return: pointer to the allocated memory or %NULL on error + */ +void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) +{ + return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, + gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, + NUMA_NO_NODE, __builtin_return_address(0)); +} +EXPORT_SYMBOL_GPL(vmalloc_huge); + +/** * vzalloc - allocate virtually contiguous memory with zero fill * @size: allocation size * @@ -2665,8 +3348,8 @@ EXPORT_SYMBOL(vmalloc); */ void *vzalloc(unsigned long size) { - return __vmalloc_node_flags(size, NUMA_NO_NODE, - GFP_KERNEL | __GFP_ZERO); + return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, + __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc); @@ -2703,8 +3386,8 @@ EXPORT_SYMBOL(vmalloc_user); */ void *vmalloc_node(unsigned long size, int node) { - return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, - node, __builtin_return_address(0)); + return __vmalloc_node(size, 1, GFP_KERNEL, node, + __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_node); @@ -2717,58 +3400,15 @@ EXPORT_SYMBOL(vmalloc_node); * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * - * For tight control over page level allocator and protection flags - * use __vmalloc_node() instead. - * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc_node(unsigned long size, int node) { - return __vmalloc_node_flags(size, node, - GFP_KERNEL | __GFP_ZERO); + return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, + __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc_node); -/** - * vmalloc_user_node_flags - allocate memory for userspace on a specific node - * @size: allocation size - * @node: numa node - * @flags: flags for the page level allocator - * - * The resulting memory area is zeroed so it can be mapped to userspace - * without leaking data. - * - * Return: pointer to the allocated memory or %NULL on error - */ -void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags) -{ - return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, - flags | __GFP_ZERO, PAGE_KERNEL, - VM_USERMAP, node, - __builtin_return_address(0)); -} -EXPORT_SYMBOL(vmalloc_user_node_flags); - -/** - * vmalloc_exec - allocate virtually contiguous, executable memory - * @size: allocation size - * - * Kernel-internal function to allocate enough pages to cover @size - * the page level allocator and map them into contiguous and - * executable kernel virtual space. - * - * For tight control over page level allocator and protection flags - * use __vmalloc() instead. - * - * Return: pointer to the allocated memory or %NULL on error - */ -void *vmalloc_exec(unsigned long size) -{ - return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, - GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, - NUMA_NO_NODE, __builtin_return_address(0)); -} - #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) @@ -2778,7 +3418,7 @@ void *vmalloc_exec(unsigned long size) * 64b systems should always have either DMA or DMA32 zones. For others * GFP_DMA32 should do the right thing and use the normal zone. */ -#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL +#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #endif /** @@ -2792,8 +3432,8 @@ void *vmalloc_exec(unsigned long size) */ void *vmalloc_32(unsigned long size) { - return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, - NUMA_NO_NODE, __builtin_return_address(0)); + return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, + __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32); @@ -2836,15 +3476,12 @@ static int aligned_vread(char *buf, char *addr, unsigned long count) /* * To do safe access to this _mapped_ area, we need * lock. But adding lock here means that we need to add - * overhead of vmalloc()/vfree() calles for this _debug_ + * overhead of vmalloc()/vfree() calls for this _debug_ * interface, rarely used. Instead of that, we'll use * kmap() and get small overhead in this access function. */ if (p) { - /* - * we can expect USER0 is not used (see vread/vwrite's - * function description) - */ + /* We can expect USER0 is not used -- see vread() */ void *map = kmap_atomic(p); memcpy(buf, map + offset, length); kunmap_atomic(map); @@ -2859,43 +3496,6 @@ static int aligned_vread(char *buf, char *addr, unsigned long count) return copied; } -static int aligned_vwrite(char *buf, char *addr, unsigned long count) -{ - struct page *p; - int copied = 0; - - while (count) { - unsigned long offset, length; - - offset = offset_in_page(addr); - length = PAGE_SIZE - offset; - if (length > count) - length = count; - p = vmalloc_to_page(addr); - /* - * To do safe access to this _mapped_ area, we need - * lock. But adding lock here means that we need to add - * overhead of vmalloc()/vfree() calles for this _debug_ - * interface, rarely used. Instead of that, we'll use - * kmap() and get small overhead in this access function. - */ - if (p) { - /* - * we can expect USER0 is not used (see vread/vwrite's - * function description) - */ - void *map = kmap_atomic(p); - memcpy(map + offset, buf, length); - kunmap_atomic(map); - } - addr += length; - buf += length; - copied += length; - count -= length; - } - return copied; -} - /** * vread() - read vmalloc area in a safe way. * @buf: buffer for reading data @@ -2914,7 +3514,7 @@ static int aligned_vwrite(char *buf, char *addr, unsigned long count) * Note: In usual ops, vread() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without - * any information, as /dev/kmem. + * any information, as /proc/kcore. * * Return: number of bytes for which addr and buf should be increased * (same number as @count) or %0 if [addr...addr+count) doesn't @@ -2928,12 +3528,22 @@ long vread(char *buf, char *addr, unsigned long count) unsigned long buflen = count; unsigned long n; + addr = kasan_reset_tag(addr); + /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; spin_lock(&vmap_area_lock); - list_for_each_entry(va, &vmap_area_list, list) { + va = find_vmap_area_exceed_addr((unsigned long)addr); + if (!va) + goto finished; + + /* no intersects with alive vmap_area */ + if ((unsigned long)addr + count <= va->va_start) + goto finished; + + list_for_each_entry_from(va, &vmap_area_list, list) { if (!count) break; @@ -2976,84 +3586,11 @@ finished: } /** - * vwrite() - write vmalloc area in a safe way. - * @buf: buffer for source data - * @addr: vm address. - * @count: number of bytes to be read. - * - * This function checks that addr is a valid vmalloc'ed area, and - * copy data from a buffer to the given addr. If specified range of - * [addr...addr+count) includes some valid address, data is copied from - * proper area of @buf. If there are memory holes, no copy to hole. - * IOREMAP area is treated as memory hole and no copy is done. - * - * If [addr...addr+count) doesn't includes any intersects with alive - * vm_struct area, returns 0. @buf should be kernel's buffer. - * - * Note: In usual ops, vwrite() is never necessary because the caller - * should know vmalloc() area is valid and can use memcpy(). - * This is for routines which have to access vmalloc area without - * any information, as /dev/kmem. - * - * Return: number of bytes for which addr and buf should be - * increased (same number as @count) or %0 if [addr...addr+count) - * doesn't include any intersection with valid vmalloc area - */ -long vwrite(char *buf, char *addr, unsigned long count) -{ - struct vmap_area *va; - struct vm_struct *vm; - char *vaddr; - unsigned long n, buflen; - int copied = 0; - - /* Don't allow overflow */ - if ((unsigned long) addr + count < count) - count = -(unsigned long) addr; - buflen = count; - - spin_lock(&vmap_area_lock); - list_for_each_entry(va, &vmap_area_list, list) { - if (!count) - break; - - if (!va->vm) - continue; - - vm = va->vm; - vaddr = (char *) vm->addr; - if (addr >= vaddr + get_vm_area_size(vm)) - continue; - while (addr < vaddr) { - if (count == 0) - goto finished; - buf++; - addr++; - count--; - } - n = vaddr + get_vm_area_size(vm) - addr; - if (n > count) - n = count; - if (!(vm->flags & VM_IOREMAP)) { - aligned_vwrite(buf, addr, n); - copied++; - } - buf += n; - addr += n; - count -= n; - } -finished: - spin_unlock(&vmap_area_lock); - if (!copied) - return 0; - return buflen; -} - -/** * remap_vmalloc_range_partial - map vmalloc pages to userspace * @vma: vma to cover * @uaddr: target user address to start at * @kaddr: virtual address of vmalloc kernel memory + * @pgoff: offset from @kaddr to start at * @size: size of map area * * Returns: 0 for success, -Exxx on failure @@ -3066,9 +3603,15 @@ finished: * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, - void *kaddr, unsigned long size) + void *kaddr, unsigned long pgoff, + unsigned long size) { struct vm_struct *area; + unsigned long off; + unsigned long end_index; + + if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) + return -EINVAL; size = PAGE_ALIGN(size); @@ -3082,8 +3625,10 @@ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) return -EINVAL; - if (kaddr + size > area->addr + get_vm_area_size(area)) + if (check_add_overflow(size, off, &end_index) || + end_index > get_vm_area_size(area)) return -EINVAL; + kaddr += off; do { struct page *page = vmalloc_to_page(kaddr); @@ -3102,7 +3647,6 @@ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, return 0; } -EXPORT_SYMBOL(remap_vmalloc_range_partial); /** * remap_vmalloc_range - map vmalloc pages to userspace @@ -3122,74 +3666,11 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { return remap_vmalloc_range_partial(vma, vma->vm_start, - addr + (pgoff << PAGE_SHIFT), + addr, pgoff, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(remap_vmalloc_range); -/* - * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose - * not to have one. - * - * The purpose of this function is to make sure the vmalloc area - * mappings are identical in all page-tables in the system. - */ -void __weak vmalloc_sync_mappings(void) -{ -} - -void __weak vmalloc_sync_unmappings(void) -{ -} - -static int f(pte_t *pte, unsigned long addr, void *data) -{ - pte_t ***p = data; - - if (p) { - *(*p) = pte; - (*p)++; - } - return 0; -} - -/** - * alloc_vm_area - allocate a range of kernel address space - * @size: size of the area - * @ptes: returns the PTEs for the address space - * - * Returns: NULL on failure, vm_struct on success - * - * This function reserves a range of kernel address space, and - * allocates pagetables to map that range. No actual mappings - * are created. - * - * If @ptes is non-NULL, pointers to the PTEs (in init_mm) - * allocated for the VM area are returned. - */ -struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) -{ - struct vm_struct *area; - - area = get_vm_area_caller(size, VM_IOREMAP, - __builtin_return_address(0)); - if (area == NULL) - return NULL; - - /* - * This ensures that page tables are constructed for this region - * of kernel virtual address space and mapped into init_mm. - */ - if (apply_to_page_range(&init_mm, (unsigned long)area->addr, - size, f, ptes ? &ptes : NULL)) { - free_vm_area(area); - return NULL; - } - - return area; -} -EXPORT_SYMBOL_GPL(alloc_vm_area); - void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; @@ -3245,6 +3726,7 @@ pvm_find_va_enclose_addr(unsigned long addr) * @va: * in - the VA we start the search(reverse order); * out - the VA with the highest aligned end address. + * @align: alignment for required highest address * * Returns: determined end address within vmap_area */ @@ -3301,7 +3783,6 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, int area, area2, last_area, term_area; unsigned long base, start, size, end, last_end, orig_start, orig_end; bool purged = false; - enum fit_type type; /* verify parameters and allocate data structures */ BUG_ON(offset_in_page(align) || !is_power_of_2(align)); @@ -3368,7 +3849,7 @@ retry: goto overflow; /* - * If required width exeeds current VA block, move + * If required width exceeds current VA block, move * base downwards and then recheck. */ if (base + end > va->va_end) { @@ -3412,15 +3893,13 @@ retry: /* It is a BUG(), but trigger recovery instead. */ goto recovery; - type = classify_va_fit_type(va, start, size); - if (WARN_ON_ONCE(type == NOTHING_FIT)) + ret = adjust_va_to_fit_type(&free_vmap_area_root, + &free_vmap_area_list, + va, start, size); + if (WARN_ON_ONCE(unlikely(ret))) /* It is a BUG(), but trigger recovery instead. */ goto recovery; - ret = adjust_va_to_fit_type(va, start, size, type); - if (unlikely(ret)) - goto recovery; - /* Allocated area. */ va = vas[area]; va->va_start = start; @@ -3433,9 +3912,6 @@ retry: for (area = 0; area < nr_vms; area++) { if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) goto err_free_shadow; - - kasan_unpoison_vmalloc((void *)vas[area]->va_start, - sizes[area]); } /* insert all vm's */ @@ -3448,6 +3924,16 @@ retry: } spin_unlock(&vmap_area_lock); + /* + * Mark allocated areas as accessible. Do it now as a best-effort + * approach, as they can be mapped outside of vmalloc code. + * With hardware tag-based KASAN, marking is skipped for + * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). + */ + for (area = 0; area < nr_vms; area++) + vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, + vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); + kfree(vas); return vms; @@ -3461,10 +3947,11 @@ recovery: while (area--) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; - va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, - &free_vmap_area_list); - kasan_release_vmalloc(orig_start, orig_end, - va->va_start, va->va_end); + va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, + &free_vmap_area_list); + if (va) + kasan_release_vmalloc(orig_start, orig_end, + va->va_start, va->va_end); vas[area] = NULL; } @@ -3510,10 +3997,11 @@ err_free_shadow: for (area = 0; area < nr_vms; area++) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; - va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, - &free_vmap_area_list); - kasan_release_vmalloc(orig_start, orig_end, - va->va_start, va->va_end); + va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, + &free_vmap_area_list); + if (va) + kasan_release_vmalloc(orig_start, orig_end, + va->va_start, va->va_end); vas[area] = NULL; kfree(vms[area]); } @@ -3540,6 +4028,21 @@ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) } #endif /* CONFIG_SMP */ +#ifdef CONFIG_PRINTK +bool vmalloc_dump_obj(void *object) +{ + struct vm_struct *vm; + void *objp = (void *)PAGE_ALIGN((unsigned long)object); + + vm = find_vm_area(objp); + if (!vm) + return false; + pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", + vm->nr_pages, (unsigned long)vm->addr, vm->caller); + return true; +} +#endif + #ifdef CONFIG_PROC_FS static void *s_start(struct seq_file *m, loff_t *pos) __acquires(&vmap_purge_lock) @@ -3557,17 +4060,18 @@ static void *s_next(struct seq_file *m, void *p, loff_t *pos) } static void s_stop(struct seq_file *m, void *p) - __releases(&vmap_purge_lock) __releases(&vmap_area_lock) + __releases(&vmap_purge_lock) { - mutex_unlock(&vmap_purge_lock); spin_unlock(&vmap_area_lock); + mutex_unlock(&vmap_purge_lock); } static void show_numa_info(struct seq_file *m, struct vm_struct *v) { if (IS_ENABLED(CONFIG_NUMA)) { unsigned int nr, *counters = m->private; + unsigned int step = 1U << vm_area_page_order(v); if (!counters) return; @@ -3579,9 +4083,8 @@ static void show_numa_info(struct seq_file *m, struct vm_struct *v) memset(counters, 0, nr_node_ids * sizeof(unsigned int)); - for (nr = 0; nr < v->nr_pages; nr++) - counters[page_to_nid(v->pages[nr])]++; - + for (nr = 0; nr < v->nr_pages; nr += step) + counters[page_to_nid(v->pages[nr])] += step; for_each_node_state(nr, N_HIGH_MEMORY) if (counters[nr]) seq_printf(m, " N%u=%u", nr, counters[nr]); @@ -3590,18 +4093,15 @@ static void show_numa_info(struct seq_file *m, struct vm_struct *v) static void show_purge_info(struct seq_file *m) { - struct llist_node *head; struct vmap_area *va; - head = READ_ONCE(vmap_purge_list.first); - if (head == NULL) - return; - - llist_for_each_entry(va, head, purge_list) { + spin_lock(&purge_vmap_area_lock); + list_for_each_entry(va, &purge_vmap_area_list, list) { seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); } + spin_unlock(&purge_vmap_area_lock); } static int s_show(struct seq_file *m, void *p) @@ -3620,7 +4120,7 @@ static int s_show(struct seq_file *m, void *p) (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); - return 0; + goto final; } v = va->vm; @@ -3659,11 +4159,9 @@ static int s_show(struct seq_file *m, void *p) seq_putc(m, '\n'); /* - * As a final step, dump "unpurged" areas. Note, - * that entire "/proc/vmallocinfo" output will not - * be address sorted, because the purge list is not - * sorted. + * As a final step, dump "unpurged" areas. */ +final: if (list_is_last(&va->list, &vmap_area_list)) show_purge_info(m); |