aboutsummaryrefslogtreecommitdiffstats
path: root/net/tls/tls_sw.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--net/tls/tls_sw.c1182
1 files changed, 674 insertions, 508 deletions
diff --git a/net/tls/tls_sw.c b/net/tls/tls_sw.c
index dfe623a4e72f..264cf367e265 100644
--- a/net/tls/tls_sw.c
+++ b/net/tls/tls_sw.c
@@ -44,6 +44,25 @@
#include <net/strparser.h>
#include <net/tls.h>
+#include "tls.h"
+
+struct tls_decrypt_arg {
+ struct_group(inargs,
+ bool zc;
+ bool async;
+ u8 tail;
+ );
+
+ struct sk_buff *skb;
+};
+
+struct tls_decrypt_ctx {
+ u8 iv[MAX_IV_SIZE];
+ u8 aad[TLS_MAX_AAD_SIZE];
+ u8 tail;
+ struct scatterlist sg[];
+};
+
noinline void tls_err_abort(struct sock *sk, int err)
{
WARN_ON_ONCE(err >= 0);
@@ -128,32 +147,32 @@ static int skb_nsg(struct sk_buff *skb, int offset, int len)
return __skb_nsg(skb, offset, len, 0);
}
-static int padding_length(struct tls_sw_context_rx *ctx,
- struct tls_prot_info *prot, struct sk_buff *skb)
+static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
+ struct tls_decrypt_arg *darg)
{
struct strp_msg *rxm = strp_msg(skb);
+ struct tls_msg *tlm = tls_msg(skb);
int sub = 0;
/* Determine zero-padding length */
if (prot->version == TLS_1_3_VERSION) {
- char content_type = 0;
+ int offset = rxm->full_len - TLS_TAG_SIZE - 1;
+ char content_type = darg->zc ? darg->tail : 0;
int err;
- int back = 17;
while (content_type == 0) {
- if (back > rxm->full_len - prot->prepend_size)
+ if (offset < prot->prepend_size)
return -EBADMSG;
- err = skb_copy_bits(skb,
- rxm->offset + rxm->full_len - back,
+ err = skb_copy_bits(skb, rxm->offset + offset,
&content_type, 1);
if (err)
return err;
if (content_type)
break;
sub++;
- back++;
+ offset--;
}
- ctx->control = content_type;
+ tlm->control = content_type;
}
return sub;
}
@@ -165,45 +184,22 @@ static void tls_decrypt_done(struct crypto_async_request *req, int err)
struct scatterlist *sgin = aead_req->src;
struct tls_sw_context_rx *ctx;
struct tls_context *tls_ctx;
- struct tls_prot_info *prot;
struct scatterlist *sg;
- struct sk_buff *skb;
unsigned int pages;
- int pending;
+ struct sock *sk;
- skb = (struct sk_buff *)req->data;
- tls_ctx = tls_get_ctx(skb->sk);
+ sk = (struct sock *)req->data;
+ tls_ctx = tls_get_ctx(sk);
ctx = tls_sw_ctx_rx(tls_ctx);
- prot = &tls_ctx->prot_info;
/* Propagate if there was an err */
if (err) {
if (err == -EBADMSG)
- TLS_INC_STATS(sock_net(skb->sk),
- LINUX_MIB_TLSDECRYPTERROR);
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
ctx->async_wait.err = err;
- tls_err_abort(skb->sk, err);
- } else {
- struct strp_msg *rxm = strp_msg(skb);
- int pad;
-
- pad = padding_length(ctx, prot, skb);
- if (pad < 0) {
- ctx->async_wait.err = pad;
- tls_err_abort(skb->sk, pad);
- } else {
- rxm->full_len -= pad;
- rxm->offset += prot->prepend_size;
- rxm->full_len -= prot->overhead_size;
- }
+ tls_err_abort(sk, err);
}
- /* After using skb->sk to propagate sk through crypto async callback
- * we need to NULL it again.
- */
- skb->sk = NULL;
-
-
/* Free the destination pages if skb was not decrypted inplace */
if (sgout != sgin) {
/* Skip the first S/G entry as it points to AAD */
@@ -217,21 +213,18 @@ static void tls_decrypt_done(struct crypto_async_request *req, int err)
kfree(aead_req);
spin_lock_bh(&ctx->decrypt_compl_lock);
- pending = atomic_dec_return(&ctx->decrypt_pending);
-
- if (!pending && ctx->async_notify)
+ if (!atomic_dec_return(&ctx->decrypt_pending))
complete(&ctx->async_wait.completion);
spin_unlock_bh(&ctx->decrypt_compl_lock);
}
static int tls_do_decryption(struct sock *sk,
- struct sk_buff *skb,
struct scatterlist *sgin,
struct scatterlist *sgout,
char *iv_recv,
size_t data_len,
struct aead_request *aead_req,
- bool async)
+ struct tls_decrypt_arg *darg)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
@@ -244,17 +237,10 @@ static int tls_do_decryption(struct sock *sk,
data_len + prot->tag_size,
(u8 *)iv_recv);
- if (async) {
- /* Using skb->sk to push sk through to crypto async callback
- * handler. This allows propagating errors up to the socket
- * if needed. It _must_ be cleared in the async handler
- * before consume_skb is called. We _know_ skb->sk is NULL
- * because it is a clone from strparser.
- */
- skb->sk = sk;
+ if (darg->async) {
aead_request_set_callback(aead_req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
- tls_decrypt_done, skb);
+ tls_decrypt_done, sk);
atomic_inc(&ctx->decrypt_pending);
} else {
aead_request_set_callback(aead_req,
@@ -264,14 +250,12 @@ static int tls_do_decryption(struct sock *sk,
ret = crypto_aead_decrypt(aead_req);
if (ret == -EINPROGRESS) {
- if (async)
- return ret;
+ if (darg->async)
+ return 0;
ret = crypto_wait_req(ret, &ctx->async_wait);
}
-
- if (async)
- atomic_dec(&ctx->decrypt_pending);
+ darg->async = false;
return ret;
}
@@ -521,7 +505,8 @@ static int tls_do_encryption(struct sock *sk,
memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
prot->iv_size + prot->salt_size);
- xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
+ tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
+ tls_ctx->tx.rec_seq);
sge->offset += prot->prepend_size;
sge->length -= prot->prepend_size;
@@ -958,7 +943,7 @@ int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
lock_sock(sk);
if (unlikely(msg->msg_controllen)) {
- ret = tls_proccess_cmsg(sk, msg, &record_type);
+ ret = tls_process_cmsg(sk, msg, &record_type);
if (ret) {
if (ret == -EINPROGRESS)
num_async++;
@@ -1296,65 +1281,67 @@ int tls_sw_sendpage(struct sock *sk, struct page *page,
return ret;
}
-static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
- bool nonblock, long timeo, int *err)
+static int
+tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
+ bool released)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
- struct sk_buff *skb;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
+ long timeo;
- while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
- if (sk->sk_err) {
- *err = sock_error(sk);
- return NULL;
- }
+ timeo = sock_rcvtimeo(sk, nonblock);
+
+ while (!tls_strp_msg_ready(ctx)) {
+ if (!sk_psock_queue_empty(psock))
+ return 0;
+
+ if (sk->sk_err)
+ return sock_error(sk);
if (!skb_queue_empty(&sk->sk_receive_queue)) {
- __strp_unpause(&ctx->strp);
- if (ctx->recv_pkt)
- return ctx->recv_pkt;
+ tls_strp_check_rcv(&ctx->strp);
+ if (tls_strp_msg_ready(ctx))
+ break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
- return NULL;
+ return 0;
if (sock_flag(sk, SOCK_DONE))
- return NULL;
+ return 0;
- if (nonblock || !timeo) {
- *err = -EAGAIN;
- return NULL;
- }
+ if (!timeo)
+ return -EAGAIN;
+ released = true;
add_wait_queue(sk_sleep(sk), &wait);
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
sk_wait_event(sk, &timeo,
- ctx->recv_pkt != skb ||
+ tls_strp_msg_ready(ctx) ||
!sk_psock_queue_empty(psock),
&wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
remove_wait_queue(sk_sleep(sk), &wait);
/* Handle signals */
- if (signal_pending(current)) {
- *err = sock_intr_errno(timeo);
- return NULL;
- }
+ if (signal_pending(current))
+ return sock_intr_errno(timeo);
}
- return skb;
+ tls_strp_msg_load(&ctx->strp, released);
+
+ return 1;
}
-static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
+static int tls_setup_from_iter(struct iov_iter *from,
int length, int *pages_used,
- unsigned int *size_used,
struct scatterlist *to,
int to_max_pages)
{
int rc = 0, i = 0, num_elem = *pages_used, maxpages;
struct page *pages[MAX_SKB_FRAGS];
- unsigned int size = *size_used;
+ unsigned int size = 0;
ssize_t copied, use;
size_t offset;
@@ -1365,7 +1352,7 @@ static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
rc = -EFAULT;
goto out;
}
- copied = iov_iter_get_pages(from, pages,
+ copied = iov_iter_get_pages2(from, pages,
length,
maxpages, &offset);
if (copied <= 0) {
@@ -1373,8 +1360,6 @@ static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
goto out;
}
- iov_iter_advance(from, copied);
-
length -= copied;
size += copied;
while (copied) {
@@ -1397,246 +1382,363 @@ static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
sg_mark_end(&to[num_elem - 1]);
out:
if (rc)
- iov_iter_revert(from, size - *size_used);
- *size_used = size;
+ iov_iter_revert(from, size);
*pages_used = num_elem;
return rc;
}
+static struct sk_buff *
+tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
+ unsigned int full_len)
+{
+ struct strp_msg *clr_rxm;
+ struct sk_buff *clr_skb;
+ int err;
+
+ clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
+ &err, sk->sk_allocation);
+ if (!clr_skb)
+ return NULL;
+
+ skb_copy_header(clr_skb, skb);
+ clr_skb->len = full_len;
+ clr_skb->data_len = full_len;
+
+ clr_rxm = strp_msg(clr_skb);
+ clr_rxm->offset = 0;
+
+ return clr_skb;
+}
+
+/* Decrypt handlers
+ *
+ * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
+ * They must transform the darg in/out argument are as follows:
+ * | Input | Output
+ * -------------------------------------------------------------------
+ * zc | Zero-copy decrypt allowed | Zero-copy performed
+ * async | Async decrypt allowed | Async crypto used / in progress
+ * skb | * | Output skb
+ *
+ * If ZC decryption was performed darg.skb will point to the input skb.
+ */
+
/* This function decrypts the input skb into either out_iov or in out_sg
- * or in skb buffers itself. The input parameter 'zc' indicates if
+ * or in skb buffers itself. The input parameter 'darg->zc' indicates if
* zero-copy mode needs to be tried or not. With zero-copy mode, either
* out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
* NULL, then the decryption happens inside skb buffers itself, i.e.
- * zero-copy gets disabled and 'zc' is updated.
+ * zero-copy gets disabled and 'darg->zc' is updated.
*/
-
-static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
- struct iov_iter *out_iov,
- struct scatterlist *out_sg,
- int *chunk, bool *zc, bool async)
+static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
+ struct scatterlist *out_sg,
+ struct tls_decrypt_arg *darg)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
- struct strp_msg *rxm = strp_msg(skb);
- int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
+ int n_sgin, n_sgout, aead_size, err, pages = 0;
+ struct sk_buff *skb = tls_strp_msg(ctx);
+ const struct strp_msg *rxm = strp_msg(skb);
+ const struct tls_msg *tlm = tls_msg(skb);
struct aead_request *aead_req;
- struct sk_buff *unused;
- u8 *aad, *iv, *mem = NULL;
struct scatterlist *sgin = NULL;
struct scatterlist *sgout = NULL;
- const int data_len = rxm->full_len - prot->overhead_size +
- prot->tail_size;
+ const int data_len = rxm->full_len - prot->overhead_size;
+ int tail_pages = !!prot->tail_size;
+ struct tls_decrypt_ctx *dctx;
+ struct sk_buff *clear_skb;
int iv_offset = 0;
+ u8 *mem;
+
+ n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
+ rxm->full_len - prot->prepend_size);
+ if (n_sgin < 1)
+ return n_sgin ?: -EBADMSG;
+
+ if (darg->zc && (out_iov || out_sg)) {
+ clear_skb = NULL;
- if (*zc && (out_iov || out_sg)) {
if (out_iov)
- n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
+ n_sgout = 1 + tail_pages +
+ iov_iter_npages_cap(out_iov, INT_MAX, data_len);
else
n_sgout = sg_nents(out_sg);
- n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
- rxm->full_len - prot->prepend_size);
} else {
- n_sgout = 0;
- *zc = false;
- n_sgin = skb_cow_data(skb, 0, &unused);
- }
+ darg->zc = false;
- if (n_sgin < 1)
- return -EBADMSG;
+ clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
+ if (!clear_skb)
+ return -ENOMEM;
+
+ n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
+ }
/* Increment to accommodate AAD */
n_sgin = n_sgin + 1;
- nsg = n_sgin + n_sgout;
-
- aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
- mem_size = aead_size + (nsg * sizeof(struct scatterlist));
- mem_size = mem_size + prot->aad_size;
- mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
-
/* Allocate a single block of memory which contains
- * aead_req || sgin[] || sgout[] || aad || iv.
- * This order achieves correct alignment for aead_req, sgin, sgout.
+ * aead_req || tls_decrypt_ctx.
+ * Both structs are variable length.
*/
- mem = kmalloc(mem_size, sk->sk_allocation);
- if (!mem)
- return -ENOMEM;
+ aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
+ mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
+ sk->sk_allocation);
+ if (!mem) {
+ err = -ENOMEM;
+ goto exit_free_skb;
+ }
/* Segment the allocated memory */
aead_req = (struct aead_request *)mem;
- sgin = (struct scatterlist *)(mem + aead_size);
- sgout = sgin + n_sgin;
- aad = (u8 *)(sgout + n_sgout);
- iv = aad + prot->aad_size;
+ dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
+ sgin = &dctx->sg[0];
+ sgout = &dctx->sg[n_sgin];
/* For CCM based ciphers, first byte of nonce+iv is a constant */
switch (prot->cipher_type) {
case TLS_CIPHER_AES_CCM_128:
- iv[0] = TLS_AES_CCM_IV_B0_BYTE;
+ dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
iv_offset = 1;
break;
case TLS_CIPHER_SM4_CCM:
- iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
+ dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
iv_offset = 1;
break;
}
/* Prepare IV */
- err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
- iv + iv_offset + prot->salt_size,
- prot->iv_size);
- if (err < 0) {
- kfree(mem);
- return err;
- }
if (prot->version == TLS_1_3_VERSION ||
- prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
- memcpy(iv + iv_offset, tls_ctx->rx.iv,
- crypto_aead_ivsize(ctx->aead_recv));
- else
- memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
-
- xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
+ prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
+ memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
+ prot->iv_size + prot->salt_size);
+ } else {
+ err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
+ &dctx->iv[iv_offset] + prot->salt_size,
+ prot->iv_size);
+ if (err < 0)
+ goto exit_free;
+ memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
+ }
+ tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
/* Prepare AAD */
- tls_make_aad(aad, rxm->full_len - prot->overhead_size +
+ tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
prot->tail_size,
- tls_ctx->rx.rec_seq, ctx->control, prot);
+ tls_ctx->rx.rec_seq, tlm->control, prot);
/* Prepare sgin */
sg_init_table(sgin, n_sgin);
- sg_set_buf(&sgin[0], aad, prot->aad_size);
+ sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
err = skb_to_sgvec(skb, &sgin[1],
rxm->offset + prot->prepend_size,
rxm->full_len - prot->prepend_size);
- if (err < 0) {
- kfree(mem);
- return err;
- }
-
- if (n_sgout) {
- if (out_iov) {
- sg_init_table(sgout, n_sgout);
- sg_set_buf(&sgout[0], aad, prot->aad_size);
-
- *chunk = 0;
- err = tls_setup_from_iter(sk, out_iov, data_len,
- &pages, chunk, &sgout[1],
- (n_sgout - 1));
- if (err < 0)
- goto fallback_to_reg_recv;
- } else if (out_sg) {
- memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
- } else {
- goto fallback_to_reg_recv;
+ if (err < 0)
+ goto exit_free;
+
+ if (clear_skb) {
+ sg_init_table(sgout, n_sgout);
+ sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
+
+ err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
+ data_len + prot->tail_size);
+ if (err < 0)
+ goto exit_free;
+ } else if (out_iov) {
+ sg_init_table(sgout, n_sgout);
+ sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
+
+ err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
+ (n_sgout - 1 - tail_pages));
+ if (err < 0)
+ goto exit_free_pages;
+
+ if (prot->tail_size) {
+ sg_unmark_end(&sgout[pages]);
+ sg_set_buf(&sgout[pages + 1], &dctx->tail,
+ prot->tail_size);
+ sg_mark_end(&sgout[pages + 1]);
}
- } else {
-fallback_to_reg_recv:
- sgout = sgin;
- pages = 0;
- *chunk = data_len;
- *zc = false;
+ } else if (out_sg) {
+ memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
}
/* Prepare and submit AEAD request */
- err = tls_do_decryption(sk, skb, sgin, sgout, iv,
- data_len, aead_req, async);
- if (err == -EINPROGRESS)
+ err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
+ data_len + prot->tail_size, aead_req, darg);
+ if (err)
+ goto exit_free_pages;
+
+ darg->skb = clear_skb ?: tls_strp_msg(ctx);
+ clear_skb = NULL;
+
+ if (unlikely(darg->async)) {
+ err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
+ if (err)
+ __skb_queue_tail(&ctx->async_hold, darg->skb);
return err;
+ }
+
+ if (prot->tail_size)
+ darg->tail = dctx->tail;
+exit_free_pages:
/* Release the pages in case iov was mapped to pages */
for (; pages > 0; pages--)
put_page(sg_page(&sgout[pages]));
-
+exit_free:
kfree(mem);
+exit_free_skb:
+ consume_skb(clear_skb);
return err;
}
-static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
- struct iov_iter *dest, int *chunk, bool *zc,
- bool async)
+static int
+tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
+ struct msghdr *msg, struct tls_decrypt_arg *darg)
{
- struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
- struct strp_msg *rxm = strp_msg(skb);
- int pad, err = 0;
-
- if (!ctx->decrypted) {
- if (tls_ctx->rx_conf == TLS_HW) {
- err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
- if (err < 0)
- return err;
- }
+ struct strp_msg *rxm;
+ int pad, err;
- /* Still not decrypted after tls_device */
- if (!ctx->decrypted) {
- err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
- async);
- if (err < 0) {
- if (err == -EINPROGRESS)
- tls_advance_record_sn(sk, prot,
- &tls_ctx->rx);
- else if (err == -EBADMSG)
- TLS_INC_STATS(sock_net(sk),
- LINUX_MIB_TLSDECRYPTERROR);
- return err;
- }
- } else {
- *zc = false;
- }
+ err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
+ if (err < 0) {
+ if (err == -EBADMSG)
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
+ return err;
+ }
+ /* keep going even for ->async, the code below is TLS 1.3 */
- pad = padding_length(ctx, prot, skb);
- if (pad < 0)
- return pad;
+ /* If opportunistic TLS 1.3 ZC failed retry without ZC */
+ if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
+ darg->tail != TLS_RECORD_TYPE_DATA)) {
+ darg->zc = false;
+ if (!darg->tail)
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
+ TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
+ return tls_decrypt_sw(sk, tls_ctx, msg, darg);
+ }
- rxm->full_len -= pad;
- rxm->offset += prot->prepend_size;
- rxm->full_len -= prot->overhead_size;
- tls_advance_record_sn(sk, prot, &tls_ctx->rx);
- ctx->decrypted = 1;
- ctx->saved_data_ready(sk);
- } else {
- *zc = false;
+ pad = tls_padding_length(prot, darg->skb, darg);
+ if (pad < 0) {
+ if (darg->skb != tls_strp_msg(ctx))
+ consume_skb(darg->skb);
+ return pad;
}
- return err;
+ rxm = strp_msg(darg->skb);
+ rxm->full_len -= pad;
+
+ return 0;
}
-int decrypt_skb(struct sock *sk, struct sk_buff *skb,
- struct scatterlist *sgout)
+static int
+tls_decrypt_device(struct sock *sk, struct msghdr *msg,
+ struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
{
- bool zc = true;
- int chunk;
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct strp_msg *rxm;
+ int pad, err;
- return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
+ if (tls_ctx->rx_conf != TLS_HW)
+ return 0;
+
+ err = tls_device_decrypted(sk, tls_ctx);
+ if (err <= 0)
+ return err;
+
+ pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
+ if (pad < 0)
+ return pad;
+
+ darg->async = false;
+ darg->skb = tls_strp_msg(ctx);
+ /* ->zc downgrade check, in case TLS 1.3 gets here */
+ darg->zc &= !(prot->version == TLS_1_3_VERSION &&
+ tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
+
+ rxm = strp_msg(darg->skb);
+ rxm->full_len -= pad;
+
+ if (!darg->zc) {
+ /* Non-ZC case needs a real skb */
+ darg->skb = tls_strp_msg_detach(ctx);
+ if (!darg->skb)
+ return -ENOMEM;
+ } else {
+ unsigned int off, len;
+
+ /* In ZC case nobody cares about the output skb.
+ * Just copy the data here. Note the skb is not fully trimmed.
+ */
+ off = rxm->offset + prot->prepend_size;
+ len = rxm->full_len - prot->overhead_size;
+
+ err = skb_copy_datagram_msg(darg->skb, off, msg, len);
+ if (err)
+ return err;
+ }
+ return 1;
}
-static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
- unsigned int len)
+static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
+ struct tls_decrypt_arg *darg)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
- struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct strp_msg *rxm;
+ int err;
- if (skb) {
- struct strp_msg *rxm = strp_msg(skb);
+ err = tls_decrypt_device(sk, msg, tls_ctx, darg);
+ if (!err)
+ err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
+ if (err < 0)
+ return err;
- if (len < rxm->full_len) {
- rxm->offset += len;
- rxm->full_len -= len;
- return false;
+ rxm = strp_msg(darg->skb);
+ rxm->offset += prot->prepend_size;
+ rxm->full_len -= prot->overhead_size;
+ tls_advance_record_sn(sk, prot, &tls_ctx->rx);
+
+ return 0;
+}
+
+int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
+{
+ struct tls_decrypt_arg darg = { .zc = true, };
+
+ return tls_decrypt_sg(sk, NULL, sgout, &darg);
+}
+
+static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
+ u8 *control)
+{
+ int err;
+
+ if (!*control) {
+ *control = tlm->control;
+ if (!*control)
+ return -EBADMSG;
+
+ err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
+ sizeof(*control), control);
+ if (*control != TLS_RECORD_TYPE_DATA) {
+ if (err || msg->msg_flags & MSG_CTRUNC)
+ return -EIO;
}
- consume_skb(skb);
+ } else if (*control != tlm->control) {
+ return 0;
}
- /* Finished with message */
- ctx->recv_pkt = NULL;
- __strp_unpause(&ctx->strp);
+ return 1;
+}
- return true;
+static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
+{
+ tls_strp_msg_done(&ctx->strp);
}
/* This function traverses the rx_list in tls receive context to copies the
@@ -1647,31 +1749,22 @@ static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
static int process_rx_list(struct tls_sw_context_rx *ctx,
struct msghdr *msg,
u8 *control,
- bool *cmsg,
size_t skip,
size_t len,
- bool zc,
bool is_peek)
{
struct sk_buff *skb = skb_peek(&ctx->rx_list);
- u8 ctrl = *control;
- u8 msgc = *cmsg;
struct tls_msg *tlm;
ssize_t copied = 0;
-
- /* Set the record type in 'control' if caller didn't pass it */
- if (!ctrl && skb) {
- tlm = tls_msg(skb);
- ctrl = tlm->control;
- }
+ int err;
while (skip && skb) {
struct strp_msg *rxm = strp_msg(skb);
tlm = tls_msg(skb);
- /* Cannot process a record of different type */
- if (ctrl != tlm->control)
- return 0;
+ err = tls_record_content_type(msg, tlm, control);
+ if (err <= 0)
+ goto out;
if (skip < rxm->full_len)
break;
@@ -1687,31 +1780,14 @@ static int process_rx_list(struct tls_sw_context_rx *ctx,
tlm = tls_msg(skb);
- /* Cannot process a record of different type */
- if (ctrl != tlm->control)
- return 0;
-
- /* Set record type if not already done. For a non-data record,
- * do not proceed if record type could not be copied.
- */
- if (!msgc) {
- int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
- sizeof(ctrl), &ctrl);
- msgc = true;
- if (ctrl != TLS_RECORD_TYPE_DATA) {
- if (cerr || msg->msg_flags & MSG_CTRUNC)
- return -EIO;
-
- *cmsg = msgc;
- }
- }
+ err = tls_record_content_type(msg, tlm, control);
+ if (err <= 0)
+ goto out;
- if (!zc || (rxm->full_len - skip) > len) {
- int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
- msg, chunk);
- if (err < 0)
- return err;
- }
+ err = skb_copy_datagram_msg(skb, rxm->offset + skip,
+ msg, chunk);
+ if (err < 0)
+ goto out;
len = len - chunk;
copied = copied + chunk;
@@ -1737,127 +1813,186 @@ static int process_rx_list(struct tls_sw_context_rx *ctx,
next_skb = skb_peek_next(skb, &ctx->rx_list);
if (!is_peek) {
- skb_unlink(skb, &ctx->rx_list);
+ __skb_unlink(skb, &ctx->rx_list);
consume_skb(skb);
}
skb = next_skb;
}
+ err = 0;
+
+out:
+ return copied ? : err;
+}
+
+static bool
+tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
+ size_t len_left, size_t decrypted, ssize_t done,
+ size_t *flushed_at)
+{
+ size_t max_rec;
+
+ if (len_left <= decrypted)
+ return false;
+
+ max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
+ if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
+ return false;
+
+ *flushed_at = done;
+ return sk_flush_backlog(sk);
+}
+
+static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
+ bool nonblock)
+{
+ long timeo;
+ int err;
+
+ lock_sock(sk);
+
+ timeo = sock_rcvtimeo(sk, nonblock);
+
+ while (unlikely(ctx->reader_present)) {
+ DEFINE_WAIT_FUNC(wait, woken_wake_function);
+
+ ctx->reader_contended = 1;
+
+ add_wait_queue(&ctx->wq, &wait);
+ sk_wait_event(sk, &timeo,
+ !READ_ONCE(ctx->reader_present), &wait);
+ remove_wait_queue(&ctx->wq, &wait);
+
+ if (timeo <= 0) {
+ err = -EAGAIN;
+ goto err_unlock;
+ }
+ if (signal_pending(current)) {
+ err = sock_intr_errno(timeo);
+ goto err_unlock;
+ }
+ }
- *control = ctrl;
- return copied;
+ WRITE_ONCE(ctx->reader_present, 1);
+
+ return 0;
+
+err_unlock:
+ release_sock(sk);
+ return err;
+}
+
+static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
+{
+ if (unlikely(ctx->reader_contended)) {
+ if (wq_has_sleeper(&ctx->wq))
+ wake_up(&ctx->wq);
+ else
+ ctx->reader_contended = 0;
+
+ WARN_ON_ONCE(!ctx->reader_present);
+ }
+
+ WRITE_ONCE(ctx->reader_present, 0);
+ release_sock(sk);
}
int tls_sw_recvmsg(struct sock *sk,
struct msghdr *msg,
size_t len,
- int nonblock,
int flags,
int *addr_len)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
+ ssize_t decrypted = 0, async_copy_bytes = 0;
struct sk_psock *psock;
unsigned char control = 0;
- ssize_t decrypted = 0;
+ size_t flushed_at = 0;
struct strp_msg *rxm;
struct tls_msg *tlm;
- struct sk_buff *skb;
ssize_t copied = 0;
- bool cmsg = false;
- int target, err = 0;
- long timeo;
+ bool async = false;
+ int target, err;
bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
bool is_peek = flags & MSG_PEEK;
+ bool released = true;
bool bpf_strp_enabled;
- int num_async = 0;
- int pending;
-
- flags |= nonblock;
+ bool zc_capable;
if (unlikely(flags & MSG_ERRQUEUE))
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
psock = sk_psock_get(sk);
- lock_sock(sk);
+ err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
+ if (err < 0)
+ return err;
bpf_strp_enabled = sk_psock_strp_enabled(psock);
+ /* If crypto failed the connection is broken */
+ err = ctx->async_wait.err;
+ if (err)
+ goto end;
+
/* Process pending decrypted records. It must be non-zero-copy */
- err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
- is_peek);
- if (err < 0) {
- tls_err_abort(sk, err);
+ err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
+ if (err < 0)
goto end;
- } else {
- copied = err;
- }
+ copied = err;
if (len <= copied)
- goto recv_end;
+ goto end;
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
len = len - copied;
- timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
-
- while (len && (decrypted + copied < target || ctx->recv_pkt)) {
- bool retain_skb = false;
- bool zc = false;
- int to_decrypt;
- int chunk = 0;
- bool async_capable;
- bool async = false;
-
- skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
- if (!skb) {
- if (psock) {
- int ret = sk_msg_recvmsg(sk, psock, msg, len,
- flags);
- if (ret > 0) {
- decrypted += ret;
- len -= ret;
+ zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
+ ctx->zc_capable;
+ decrypted = 0;
+ while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
+ struct tls_decrypt_arg darg;
+ int to_decrypt, chunk;
+
+ err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
+ released);
+ if (err <= 0) {
+ if (psock) {
+ chunk = sk_msg_recvmsg(sk, psock, msg, len,
+ flags);
+ if (chunk > 0) {
+ decrypted += chunk;
+ len -= chunk;
continue;
}
}
goto recv_end;
- } else {
- tlm = tls_msg(skb);
- if (prot->version == TLS_1_3_VERSION)
- tlm->control = 0;
- else
- tlm->control = ctx->control;
}
- rxm = strp_msg(skb);
+ memset(&darg.inargs, 0, sizeof(darg.inargs));
+
+ rxm = strp_msg(tls_strp_msg(ctx));
+ tlm = tls_msg(tls_strp_msg(ctx));
to_decrypt = rxm->full_len - prot->overhead_size;
- if (to_decrypt <= len && !is_kvec && !is_peek &&
- ctx->control == TLS_RECORD_TYPE_DATA &&
- prot->version != TLS_1_3_VERSION &&
- !bpf_strp_enabled)
- zc = true;
+ if (zc_capable && to_decrypt <= len &&
+ tlm->control == TLS_RECORD_TYPE_DATA)
+ darg.zc = true;
/* Do not use async mode if record is non-data */
- if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
- async_capable = ctx->async_capable;
+ if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
+ darg.async = ctx->async_capable;
else
- async_capable = false;
+ darg.async = false;
- err = decrypt_skb_update(sk, skb, &msg->msg_iter,
- &chunk, &zc, async_capable);
- if (err < 0 && err != -EINPROGRESS) {
+ err = tls_rx_one_record(sk, msg, &darg);
+ if (err < 0) {
tls_err_abort(sk, -EBADMSG);
goto recv_end;
}
- if (err == -EINPROGRESS) {
- async = true;
- num_async++;
- } else if (prot->version == TLS_1_3_VERSION) {
- tlm->control = ctx->control;
- }
+ async |= darg.async;
/* If the type of records being processed is not known yet,
* set it to record type just dequeued. If it is already known,
@@ -1866,130 +2001,120 @@ int tls_sw_recvmsg(struct sock *sk,
* is known just after record is dequeued from stream parser.
* For tls1.3, we disable async.
*/
-
- if (!control)
- control = tlm->control;
- else if (control != tlm->control)
+ err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
+ if (err <= 0) {
+ DEBUG_NET_WARN_ON_ONCE(darg.zc);
+ tls_rx_rec_done(ctx);
+put_on_rx_list_err:
+ __skb_queue_tail(&ctx->rx_list, darg.skb);
goto recv_end;
-
- if (!cmsg) {
- int cerr;
-
- cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
- sizeof(control), &control);
- cmsg = true;
- if (control != TLS_RECORD_TYPE_DATA) {
- if (cerr || msg->msg_flags & MSG_CTRUNC) {
- err = -EIO;
- goto recv_end;
- }
- }
}
- if (async)
- goto pick_next_record;
+ /* periodically flush backlog, and feed strparser */
+ released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
+ decrypted + copied,
+ &flushed_at);
+
+ /* TLS 1.3 may have updated the length by more than overhead */
+ rxm = strp_msg(darg.skb);
+ chunk = rxm->full_len;
+ tls_rx_rec_done(ctx);
+
+ if (!darg.zc) {
+ bool partially_consumed = chunk > len;
+ struct sk_buff *skb = darg.skb;
+
+ DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
+
+ if (async) {
+ /* TLS 1.2-only, to_decrypt must be text len */
+ chunk = min_t(int, to_decrypt, len);
+ async_copy_bytes += chunk;
+put_on_rx_list:
+ decrypted += chunk;
+ len -= chunk;
+ __skb_queue_tail(&ctx->rx_list, skb);
+ continue;
+ }
- if (!zc) {
if (bpf_strp_enabled) {
+ released = true;
err = sk_psock_tls_strp_read(psock, skb);
if (err != __SK_PASS) {
rxm->offset = rxm->offset + rxm->full_len;
rxm->full_len = 0;
if (err == __SK_DROP)
consume_skb(skb);
- ctx->recv_pkt = NULL;
- __strp_unpause(&ctx->strp);
continue;
}
}
- if (rxm->full_len > len) {
- retain_skb = true;
+ if (partially_consumed)
chunk = len;
- } else {
- chunk = rxm->full_len;
- }
err = skb_copy_datagram_msg(skb, rxm->offset,
msg, chunk);
if (err < 0)
- goto recv_end;
+ goto put_on_rx_list_err;
- if (!is_peek) {
- rxm->offset = rxm->offset + chunk;
- rxm->full_len = rxm->full_len - chunk;
+ if (is_peek)
+ goto put_on_rx_list;
+
+ if (partially_consumed) {
+ rxm->offset += chunk;
+ rxm->full_len -= chunk;
+ goto put_on_rx_list;
}
- }
-pick_next_record:
- if (chunk > len)
- chunk = len;
+ consume_skb(skb);
+ }
decrypted += chunk;
len -= chunk;
- /* For async or peek case, queue the current skb */
- if (async || is_peek || retain_skb) {
- skb_queue_tail(&ctx->rx_list, skb);
- skb = NULL;
- }
-
- if (tls_sw_advance_skb(sk, skb, chunk)) {
- /* Return full control message to
- * userspace before trying to parse
- * another message type
- */
- msg->msg_flags |= MSG_EOR;
- if (control != TLS_RECORD_TYPE_DATA)
- goto recv_end;
- } else {
+ /* Return full control message to userspace before trying
+ * to parse another message type
+ */
+ msg->msg_flags |= MSG_EOR;
+ if (control != TLS_RECORD_TYPE_DATA)
break;
- }
}
recv_end:
- if (num_async) {
+ if (async) {
+ int ret, pending;
+
/* Wait for all previously submitted records to be decrypted */
spin_lock_bh(&ctx->decrypt_compl_lock);
- ctx->async_notify = true;
+ reinit_completion(&ctx->async_wait.completion);
pending = atomic_read(&ctx->decrypt_pending);
spin_unlock_bh(&ctx->decrypt_compl_lock);
- if (pending) {
- err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
- if (err) {
- /* one of async decrypt failed */
- tls_err_abort(sk, err);
- copied = 0;
- decrypted = 0;
- goto end;
- }
- } else {
- reinit_completion(&ctx->async_wait.completion);
- }
+ ret = 0;
+ if (pending)
+ ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+ __skb_queue_purge(&ctx->async_hold);
- /* There can be no concurrent accesses, since we have no
- * pending decrypt operations
- */
- WRITE_ONCE(ctx->async_notify, false);
+ if (ret) {
+ if (err >= 0 || err == -EINPROGRESS)
+ err = ret;
+ decrypted = 0;
+ goto end;
+ }
/* Drain records from the rx_list & copy if required */
if (is_peek || is_kvec)
- err = process_rx_list(ctx, msg, &control, &cmsg, copied,
- decrypted, false, is_peek);
+ err = process_rx_list(ctx, msg, &control, copied,
+ decrypted, is_peek);
else
- err = process_rx_list(ctx, msg, &control, &cmsg, 0,
- decrypted, true, is_peek);
- if (err < 0) {
- tls_err_abort(sk, err);
- copied = 0;
- goto end;
- }
+ err = process_rx_list(ctx, msg, &control, 0,
+ async_copy_bytes, is_peek);
+ decrypted = max(err, 0);
}
copied += decrypted;
end:
- release_sock(sk);
+ tls_rx_reader_unlock(sk, ctx);
if (psock)
sk_psock_put(sk, psock);
return copied ? : err;
@@ -2003,62 +2128,67 @@ ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct strp_msg *rxm = NULL;
struct sock *sk = sock->sk;
+ struct tls_msg *tlm;
struct sk_buff *skb;
ssize_t copied = 0;
- bool from_queue;
- int err = 0;
- long timeo;
int chunk;
- bool zc = false;
-
- lock_sock(sk);
+ int err;
- timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
+ err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
+ if (err < 0)
+ return err;
- from_queue = !skb_queue_empty(&ctx->rx_list);
- if (from_queue) {
+ if (!skb_queue_empty(&ctx->rx_list)) {
skb = __skb_dequeue(&ctx->rx_list);
} else {
- skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
- &err);
- if (!skb)
+ struct tls_decrypt_arg darg;
+
+ err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
+ true);
+ if (err <= 0)
goto splice_read_end;
- err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
+ memset(&darg.inargs, 0, sizeof(darg.inargs));
+
+ err = tls_rx_one_record(sk, NULL, &darg);
if (err < 0) {
tls_err_abort(sk, -EBADMSG);
goto splice_read_end;
}
+
+ tls_rx_rec_done(ctx);
+ skb = darg.skb;
}
+ rxm = strp_msg(skb);
+ tlm = tls_msg(skb);
+
/* splice does not support reading control messages */
- if (ctx->control != TLS_RECORD_TYPE_DATA) {
+ if (tlm->control != TLS_RECORD_TYPE_DATA) {
err = -EINVAL;
- goto splice_read_end;
+ goto splice_requeue;
}
- rxm = strp_msg(skb);
-
chunk = min_t(unsigned int, rxm->full_len, len);
copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
if (copied < 0)
- goto splice_read_end;
+ goto splice_requeue;
- if (!from_queue) {
- ctx->recv_pkt = NULL;
- __strp_unpause(&ctx->strp);
- }
if (chunk < rxm->full_len) {
- __skb_queue_head(&ctx->rx_list, skb);
rxm->offset += len;
rxm->full_len -= len;
- } else {
- consume_skb(skb);
+ goto splice_requeue;
}
+ consume_skb(skb);
+
splice_read_end:
- release_sock(sk);
+ tls_rx_reader_unlock(sk, ctx);
return copied ? : err;
+
+splice_requeue:
+ __skb_queue_head(&ctx->rx_list, skb);
+ goto splice_read_end;
}
bool tls_sw_sock_is_readable(struct sock *sk)
@@ -2074,23 +2204,21 @@ bool tls_sw_sock_is_readable(struct sock *sk)
ingress_empty = list_empty(&psock->ingress_msg);
rcu_read_unlock();
- return !ingress_empty || ctx->recv_pkt ||
+ return !ingress_empty || tls_strp_msg_ready(ctx) ||
!skb_queue_empty(&ctx->rx_list);
}
-static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
+int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
{
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
- struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct tls_prot_info *prot = &tls_ctx->prot_info;
char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
- struct strp_msg *rxm = strp_msg(skb);
size_t cipher_overhead;
size_t data_len = 0;
int ret;
/* Verify that we have a full TLS header, or wait for more data */
- if (rxm->offset + prot->prepend_size > skb->len)
+ if (strp->stm.offset + prot->prepend_size > skb->len)
return 0;
/* Sanity-check size of on-stack buffer. */
@@ -2100,12 +2228,11 @@ static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
}
/* Linearize header to local buffer */
- ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
-
+ ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
if (ret < 0)
goto read_failure;
- ctx->control = header[0];
+ strp->mark = header[0];
data_len = ((header[4] & 0xFF) | (header[3] << 8));
@@ -2132,7 +2259,7 @@ static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
}
tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
- TCP_SKB_CB(skb)->seq + rxm->offset);
+ TCP_SKB_CB(skb)->seq + strp->stm.offset);
return data_len + TLS_HEADER_SIZE;
read_failure:
@@ -2141,16 +2268,11 @@ read_failure:
return ret;
}
-static void tls_queue(struct strparser *strp, struct sk_buff *skb)
+void tls_rx_msg_ready(struct tls_strparser *strp)
{
- struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
- struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
-
- ctx->decrypted = 0;
-
- ctx->recv_pkt = skb;
- strp_pause(strp);
+ struct tls_sw_context_rx *ctx;
+ ctx = container_of(strp, struct tls_sw_context_rx, strp);
ctx->saved_data_ready(strp->sk);
}
@@ -2160,7 +2282,7 @@ static void tls_data_ready(struct sock *sk)
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
struct sk_psock *psock;
- strp_data_ready(&ctx->strp);
+ tls_strp_data_ready(&ctx->strp);
psock = sk_psock_get(sk);
if (psock) {
@@ -2236,13 +2358,11 @@ void tls_sw_release_resources_rx(struct sock *sk)
kfree(tls_ctx->rx.iv);
if (ctx->aead_recv) {
- kfree_skb(ctx->recv_pkt);
- ctx->recv_pkt = NULL;
- skb_queue_purge(&ctx->rx_list);
+ __skb_queue_purge(&ctx->rx_list);
crypto_free_aead(ctx->aead_recv);
- strp_stop(&ctx->strp);
+ tls_strp_stop(&ctx->strp);
/* If tls_sw_strparser_arm() was not called (cleanup paths)
- * we still want to strp_stop(), but sk->sk_data_ready was
+ * we still want to tls_strp_stop(), but sk->sk_data_ready was
* never swapped.
*/
if (ctx->saved_data_ready) {
@@ -2257,7 +2377,7 @@ void tls_sw_strparser_done(struct tls_context *tls_ctx)
{
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
- strp_done(&ctx->strp);
+ tls_strp_done(&ctx->strp);
}
void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
@@ -2301,12 +2421,23 @@ static void tx_work_handler(struct work_struct *work)
mutex_unlock(&tls_ctx->tx_lock);
}
+static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
+{
+ struct tls_rec *rec;
+
+ rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
+ if (!rec)
+ return false;
+
+ return READ_ONCE(rec->tx_ready);
+}
+
void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
{
struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
/* Schedule the transmission if tx list is ready */
- if (is_tx_ready(tx_ctx) &&
+ if (tls_is_tx_ready(tx_ctx) &&
!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
schedule_delayed_work(&tx_ctx->tx_work.work, 0);
}
@@ -2319,8 +2450,14 @@ void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
rx_ctx->saved_data_ready = sk->sk_data_ready;
sk->sk_data_ready = tls_data_ready;
write_unlock_bh(&sk->sk_callback_lock);
+}
- strp_check_rcv(&rx_ctx->strp);
+void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
+
+ rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
+ tls_ctx->prot_info.version != TLS_1_3_VERSION;
}
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
@@ -2328,15 +2465,10 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_crypto_info *crypto_info;
- struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
- struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
- struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
- struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
struct tls_sw_context_tx *sw_ctx_tx = NULL;
struct tls_sw_context_rx *sw_ctx_rx = NULL;
struct cipher_context *cctx;
struct crypto_aead **aead;
- struct strp_callbacks cb;
u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
struct crypto_tfm *tfm;
char *iv, *rec_seq, *key, *salt, *cipher_name;
@@ -2386,23 +2518,25 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
} else {
crypto_init_wait(&sw_ctx_rx->async_wait);
spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
+ init_waitqueue_head(&sw_ctx_rx->wq);
crypto_info = &ctx->crypto_recv.info;
cctx = &ctx->rx;
skb_queue_head_init(&sw_ctx_rx->rx_list);
+ skb_queue_head_init(&sw_ctx_rx->async_hold);
aead = &sw_ctx_rx->aead_recv;
}
switch (crypto_info->cipher_type) {
case TLS_CIPHER_AES_GCM_128: {
+ struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
+
+ gcm_128_info = (void *)crypto_info;
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
- iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
+ iv = gcm_128_info->iv;
rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
- rec_seq =
- ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
- gcm_128_info =
- (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
+ rec_seq = gcm_128_info->rec_seq;
keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
key = gcm_128_info->key;
salt = gcm_128_info->salt;
@@ -2411,15 +2545,15 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
break;
}
case TLS_CIPHER_AES_GCM_256: {
+ struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
+
+ gcm_256_info = (void *)crypto_info;
nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
- iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
+ iv = gcm_256_info->iv;
rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
- rec_seq =
- ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
- gcm_256_info =
- (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
+ rec_seq = gcm_256_info->rec_seq;
keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
key = gcm_256_info->key;
salt = gcm_256_info->salt;
@@ -2428,15 +2562,15 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
break;
}
case TLS_CIPHER_AES_CCM_128: {
+ struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
+
+ ccm_128_info = (void *)crypto_info;
nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
- iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
+ iv = ccm_128_info->iv;
rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
- rec_seq =
- ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
- ccm_128_info =
- (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
+ rec_seq = ccm_128_info->rec_seq;
keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
key = ccm_128_info->key;
salt = ccm_128_info->salt;
@@ -2445,6 +2579,8 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
break;
}
case TLS_CIPHER_CHACHA20_POLY1305: {
+ struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
+
chacha20_poly1305_info = (void *)crypto_info;
nonce_size = 0;
tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
@@ -2493,14 +2629,41 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
cipher_name = "ccm(sm4)";
break;
}
- default:
- rc = -EINVAL;
- goto free_priv;
+ case TLS_CIPHER_ARIA_GCM_128: {
+ struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
+
+ aria_gcm_128_info = (void *)crypto_info;
+ nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
+ tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
+ iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
+ iv = aria_gcm_128_info->iv;
+ rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
+ rec_seq = aria_gcm_128_info->rec_seq;
+ keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
+ key = aria_gcm_128_info->key;
+ salt = aria_gcm_128_info->salt;
+ salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
+ cipher_name = "gcm(aria)";
+ break;
}
-
- /* Sanity-check the sizes for stack allocations. */
- if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
- rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
+ case TLS_CIPHER_ARIA_GCM_256: {
+ struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
+
+ gcm_256_info = (void *)crypto_info;
+ nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
+ tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
+ iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
+ iv = gcm_256_info->iv;
+ rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
+ rec_seq = gcm_256_info->rec_seq;
+ keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
+ key = gcm_256_info->key;
+ salt = gcm_256_info->salt;
+ salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
+ cipher_name = "gcm(aria)";
+ break;
+ }
+ default:
rc = -EINVAL;
goto free_priv;
}
@@ -2514,6 +2677,14 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
prot->tail_size = 0;
}
+ /* Sanity-check the sizes for stack allocations. */
+ if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
+ rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
+ prot->aad_size > TLS_MAX_AAD_SIZE) {
+ rc = -EINVAL;
+ goto free_priv;
+ }
+
prot->version = crypto_info->version;
prot->cipher_type = crypto_info->cipher_type;
prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
@@ -2560,19 +2731,14 @@ int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
if (sw_ctx_rx) {
tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
- if (crypto_info->version == TLS_1_3_VERSION)
- sw_ctx_rx->async_capable = 0;
- else
- sw_ctx_rx->async_capable =
- !!(tfm->__crt_alg->cra_flags &
- CRYPTO_ALG_ASYNC);
-
- /* Set up strparser */
- memset(&cb, 0, sizeof(cb));
- cb.rcv_msg = tls_queue;
- cb.parse_msg = tls_read_size;
+ tls_update_rx_zc_capable(ctx);
+ sw_ctx_rx->async_capable =
+ crypto_info->version != TLS_1_3_VERSION &&
+ !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
- strp_init(&sw_ctx_rx->strp, sk, &cb);
+ rc = tls_strp_init(&sw_ctx_rx->strp, sk);
+ if (rc)
+ goto free_aead;
}
goto out;