aboutsummaryrefslogtreecommitdiffstats
AgeCommit message (Collapse)AuthorFilesLines
2017-07-10mm/balloon_compaction.c: enqueue zero page to balloon devicezhenwei.pi1-1/+1
presently pages in the balloon device have random value, and these pages will be scanned by ksmd on the host. They usually cannot be merged. Enqueue zero pages will resolve this problem. Link: http://lkml.kernel.org/r/1498698637-26389-1-git-send-email-zhenwei.pi@youruncloud.com Signed-off-by: zhenwei.pi <zhenwei.pi@youruncloud.com> Cc: Gioh Kim <gi-oh.kim@profitbricks.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10cma: fix calculation of aligned offsetDoug Berger1-9/+6
The align_offset parameter is used by bitmap_find_next_zero_area_off() to represent the offset of map's base from the previous alignment boundary; the function ensures that the returned index, plus the align_offset, honors the specified align_mask. The logic introduced by commit b5be83e308f7 ("mm: cma: align to physical address, not CMA region position") has the cma driver calculate the offset to the *next* alignment boundary. In most cases, the base alignment is greater than that specified when making allocations, resulting in a zero offset whether we align up or down. In the example given with the commit, the base alignment (8MB) was half the requested alignment (16MB) so the math also happened to work since the offset is 8MB in both directions. However, when requesting allocations with an alignment greater than twice that of the base, the returned index would not be correctly aligned. Also, the align_order arguments of cma_bitmap_aligned_mask() and cma_bitmap_aligned_offset() should not be negative so the argument type was made unsigned. Fixes: b5be83e308f7 ("mm: cma: align to physical address, not CMA region position") Link: http://lkml.kernel.org/r/20170628170742.2895-1-opendmb@gmail.com Signed-off-by: Angus Clark <angus@angusclark.org> Signed-off-by: Doug Berger <opendmb@gmail.com> Acked-by: Gregory Fong <gregory.0xf0@gmail.com> Cc: Doug Berger <opendmb@gmail.com> Cc: Angus Clark <angus@angusclark.org> Cc: Laura Abbott <labbott@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Lucas Stach <l.stach@pengutronix.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Shiraz Hashim <shashim@codeaurora.org> Cc: Jaewon Kim <jaewon31.kim@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/memory_hotplug.c: remove unused local zone_type from __remove_zone()John Hubbard1-3/+0
__remove_zone() sets up up zone_type, but never uses it for anything. This does not cause a warning, due to the (necessary) use of -Wno-unused-but-set-variable. However, it's noise, so just delete it. Link: http://lkml.kernel.org/r/20170624043421.24465-2-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: document highmem_is_dirtyable sysctlMichal Hocko1-0/+20
It seems that there are still people using 32b kernels which a lot of memory and the IO tend to suck a lot for them by default. Mostly because writers are throttled too when the lowmem is used. We have highmem_is_dirtyable to work around that issue but it seems we never bothered to document it. Let's do it now, finally. Link: http://lkml.kernel.org/r/20170626093200.18958-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Alkis Georgopoulos <alkisg@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10include/linux/backing-dev.h: simplify wb_stat_sumNikolay Borisov1-14/+1
wb_stat_sum() disables interrupts and calls __wb_stat_sum() which eventually calls __percpu_counter_sum(). However, the percpu routine is already irq-safe. Simplify the code a bit by making wb_stat_sum() directly call percpu_counter_sum_positive() and not disable interrupts. Also remove the now-uneeded __wb_stat_sum() which was just a wrapper over percpu_counter_sum_positive(). Link: http://lkml.kernel.org/r/1498230681-29103-1-git-send-email-nborisov@suse.com Signed-off-by: Nikolay Borisov <nborisov@suse.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jens Axboe <axboe@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10include/linux/mmzone.h: remove ancient/ambiguous commentNikolay Borisov1-5/+2
Currently pg_data_t is just a struct which describes a NUMA node memory layout. Let's keep the comment simple and remove ambiguity. Link: http://lkml.kernel.org/r/1498220534-22717-1-git-send-email-nborisov@suse.com Signed-off-by: Nikolay Borisov <nborisov@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/swap_slots.c: don't disable preemption while taking the per-CPU cacheSebastian Andrzej Siewior1-3/+2
get_cpu_var() disables preemption and returns the per-CPU version of the variable. Disabling preemption is useful to ensure atomic access to the variable within the critical section. In this case however, after the per-CPU version of the variable is obtained the ->free_lock is acquired. For that reason it seems the raw accessor could be used. It only seems that ->slots_ret should be retested (because with disabled preemption this variable can not be set to NULL otherwise). This popped up during PREEMPT-RT testing because it tries to take spinlocks in a preempt disabled section. In RT, spinlocks can sleep. Link: http://lkml.kernel.org/r/20170623114755.2ebxdysacvgxzott@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ying Huang <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/page_alloc.c: eliminate unsigned confusion in __rmqueue_fallbackRasmus Villemoes1-4/+7
Since current_order starts as MAX_ORDER-1 and is then only decremented, the second half of the loop condition seems superfluous. However, if order is 0, we may decrement current_order past 0, making it UINT_MAX. This is obviously too subtle ([1], [2]). Since we need to add some comment anyway, change the two variables to signed, making the counting-down for loop look more familiar, and apparently also making gcc generate slightly smaller code. [1] https://lkml.org/lkml/2016/6/20/493 [2] https://lkml.org/lkml/2017/6/19/345 [akpm@linux-foundation.org: fix up reject fixupping] Link: http://lkml.kernel.org/r/20170621185529.2265-1-linux@rasmusvillemoes.dk Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Reported-by: Hao Lee <haolee.swjtu@gmail.com> Acked-by: Wei Yang <weiyang@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10fs/proc/task_mmu.c: remove obsolete comment in show_map_vma()Vasily Averin1-1/+0
After commit 1be7107fbe18 ("mm: larger stack guard gap, between vmas") we do not hide stack guard page in /proc/<pid>/maps Link: http://lkml.kernel.org/r/211f3c2a-f7ef-7c13-82bf-46fd426f6e1b@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: drop useless local parameters of __register_one_node()Dou Liyang1-7/+2
__register_one_node() initializes local parameters "p_node" & "parent" for register_node(). But, register_node() does not use them. Remove the related code of "parent" node, cleanup __register_one_node() and register_node(). Link: http://lkml.kernel.org/r/1498013846-20149-1-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: avoid taking zone lock in pagetypeinfo_showmixed()Vinayak Menon2-11/+19
pagetypeinfo_showmixedcount_print is found to take a lot of time to complete and it does this holding the zone lock and disabling interrupts. In some cases it is found to take more than a second (On a 2.4GHz,8Gb RAM,arm64 cpu). Avoid taking the zone lock similar to what is done by read_page_owner, which means possibility of inaccurate results. Link: http://lkml.kernel.org/r/1498045643-12257-1-git-send-email-vinmenon@codeaurora.org Signed-off-by: Vinayak Menon <vinmenon@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: zhongjiang <zhongjiang@huawei.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, hugetlb, soft_offline: use new_page_nodemask for soft offline migrationMichal Hocko1-9/+1
new_page is yet another duplication of the migration callback which has to handle hugetlb migration specially. We can safely use the generic new_page_nodemask for the same purpose. Please note that gigantic hugetlb pages do not need any special handling because alloc_huge_page_nodemask will make sure to check pages in all per node pools. The reason this was done previously was that alloc_huge_page_node treated NO_NUMA_NODE and a specific node differently and so alloc_huge_page_node(nid) would check on this specific node. Link: http://lkml.kernel.org/r/20170622193034.28972-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10hugetlb: add support for preferred node to alloc_huge_page_nodemaskMichal Hocko3-47/+48
alloc_huge_page_nodemask tries to allocate from any numa node in the allowed node mask starting from lower numa nodes. This might lead to filling up those low NUMA nodes while others are not used. We can reduce this risk by introducing a concept of the preferred node similar to what we have in the regular page allocator. We will start allocating from the preferred nid and then iterate over all allowed nodes in the zonelist order until we try them all. This is mimicing the page allocator logic except it operates on per-node mempools. dequeue_huge_page_vma already does this so distill the zonelist logic into a more generic dequeue_huge_page_nodemask and use it in alloc_huge_page_nodemask. This will allow us to use proper per numa distance fallback also for alloc_huge_page_node which can use alloc_huge_page_nodemask now and we can get rid of alloc_huge_page_node helper which doesn't have any user anymore. Link: http://lkml.kernel.org/r/20170622193034.28972-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, hugetlb: unclutter hugetlb allocation layersMichal Hocko2-105/+30
Patch series "mm, hugetlb: allow proper node fallback dequeue". While working on a hugetlb migration issue addressed in a separate patchset[1] I have noticed that the hugetlb allocations from the preallocated pool are quite subotimal. [1] //lkml.kernel.org/r/20170608074553.22152-1-mhocko@kernel.org There is no fallback mechanism implemented and no notion of preferred node. I have tried to work around it but Vlastimil was right to push back for a more robust solution. It seems that such a solution is to reuse zonelist approach we use for the page alloctor. This series has 3 patches. The first one tries to make hugetlb allocation layers more clear. The second one implements the zonelist hugetlb pool allocation and introduces a preferred node semantic which is used by the migration callbacks. The last patch is a clean up. This patch (of 3): Hugetlb allocation path for fresh huge pages is unnecessarily complex and it mixes different interfaces between layers. __alloc_buddy_huge_page is the central place to perform a new allocation. It checks for the hugetlb overcommit and then relies on __hugetlb_alloc_buddy_huge_page to invoke the page allocator. This is all good except that __alloc_buddy_huge_page pushes vma and address down the callchain and so __hugetlb_alloc_buddy_huge_page has to deal with two different allocation modes - one for memory policy and other node specific (or to make it more obscure node non-specific) requests. This just screams for a reorganization. This patch pulls out all the vma specific handling up to __alloc_buddy_huge_page_with_mpol where it belongs. __alloc_buddy_huge_page will get nodemask argument and __hugetlb_alloc_buddy_huge_page will become a trivial wrapper over the page allocator. In short: __alloc_buddy_huge_page_with_mpol - memory policy handling __alloc_buddy_huge_page - overcommit handling and accounting __hugetlb_alloc_buddy_huge_page - page allocator layer Also note that __hugetlb_alloc_buddy_huge_page and its cpuset retry loop is not really needed because the page allocator already handles the cpusets update. Finally __hugetlb_alloc_buddy_huge_page had a special case for node specific allocations (when no policy is applied and there is a node given). This has relied on __GFP_THISNODE to not fallback to a different node. alloc_huge_page_node is the only caller which relies on this behavior so move the __GFP_THISNODE there. Not only does this remove quite some code it also should make those layers easier to follow and clear wrt responsibilities. Link: http://lkml.kernel.org/r/20170622193034.28972-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/oom_kill.c: add tracepoints for oom reaper-related eventsRoman Gushchin2-0/+87
During the debugging of the problem described in https://lkml.org/lkml/2017/5/17/542 and fixed by Tetsuo Handa in https://lkml.org/lkml/2017/5/19/383 , I've found that the existing debug output is not really useful to understand issues related to the oom reaper. So, I assume, that adding some tracepoints might help with debugging of similar issues. Trace the following events: 1) a process is marked as an oom victim, 2) a process is added to the oom reaper list, 3) the oom reaper starts reaping process's mm, 4) the oom reaper finished reaping, 5) the oom reaper skips reaping. How it works in practice? Below is an example which show how the problem mentioned above can be found: one process is added twice to the oom_reaper list: $ cd /sys/kernel/debug/tracing $ echo "oom:mark_victim" > set_event $ echo "oom:wake_reaper" >> set_event $ echo "oom:skip_task_reaping" >> set_event $ echo "oom:start_task_reaping" >> set_event $ echo "oom:finish_task_reaping" >> set_event $ cat trace_pipe allocate-502 [001] .... 91.836405: mark_victim: pid=502 allocate-502 [001] .N.. 91.837356: wake_reaper: pid=502 allocate-502 [000] .N.. 91.871149: wake_reaper: pid=502 oom_reaper-23 [000] .... 91.871177: start_task_reaping: pid=502 oom_reaper-23 [000] .N.. 91.879511: finish_task_reaping: pid=502 oom_reaper-23 [000] .... 91.879580: skip_task_reaping: pid=502 Link: http://lkml.kernel.org/r/20170530185231.GA13412@castle Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10userfaultfd: non-cooperative: add madvise() event for MADV_FREE requestMike Rapoport1-20/+22
MADV_FREE is identical to MADV_DONTNEED from the point of view of uffd monitor. The monitor has to stop handling #PF events in the range being freed. We are reusing userfaultfd_remove callback along with the logic required to re-get and re-validate the VMA which may change or disappear because userfaultfd_remove releases mmap_sem. Link: http://lkml.kernel.org/r/1497876311-18615-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/truncate.c: fix THP handling in invalidate_mapping_pages()Jan Kara1-2/+8
The condition checking for THP straddling end of invalidated range is wrong - it checks 'index' against 'end' but 'index' has been already advanced to point to the end of THP and thus the condition can never be true. As a result THP straddling 'end' has been fully invalidated. Given the nature of invalidate_mapping_pages(), this could be only performance issue. In fact, we are lucky the condition is wrong because if it was ever true, we'd leave locked page behind. Fix the condition checking for THP straddling 'end' and also properly unlock the page. Also update the comment before the condition to explain why we decide not to invalidate the page as it was not clear to me and I had to ask Kirill. Link: http://lkml.kernel.org/r/20170619124723.21656-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/hugetlb.c: replace memfmt with string_get_sizeMatthew Wilcox1-14/+5
The hugetlb code has its own function to report human-readable sizes. Convert it to use the shared string_get_size() function. This will lead to a minor difference in user visible output (MiB/GiB instead of MB/GB), but some would argue that's desirable anyway. Link: http://lkml.kernel.org/r/20170606190350.GA20010@bombadil.infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, memcg: fix potential undefined behavior in mem_cgroup_event_ratelimit()Michal Hocko1-1/+1
Alice has reported the following UBSAN splat: UBSAN: Undefined behaviour in mm/memcontrol.c:661:17 signed integer overflow: -2147483644 - 2147483525 cannot be represented in type 'long int' CPU: 1 PID: 11758 Comm: mybibtex2filena Tainted: P O 4.9.25-gentoo #4 Hardware name: XXXXXX, BIOS YYYYYY Call Trace: dump_stack+0x59/0x87 ubsan_epilogue+0xe/0x40 handle_overflow+0xbb/0xf0 __ubsan_handle_sub_overflow+0x12/0x20 memcg_check_events.isra.36+0x223/0x360 mem_cgroup_commit_charge+0x55/0x140 wp_page_copy+0x34e/0xb80 do_wp_page+0x1e6/0x1300 handle_mm_fault+0x88b/0x1990 __do_page_fault+0x2de/0x8a0 do_page_fault+0x1a/0x20 error_code+0x67/0x6c The reason is that we subtract two signed types. Let's fix this by truly mimicing time_after and cast the result of the subtraction. Link: http://lkml.kernel.org/r/20170616150057.GQ30580@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Alice Ferrazzi <alicef@gentoo.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, hugetlb: schedule when potentially allocating many hugepagesDavid Rientjes1-0/+2
A few hugetlb allocators loop while calling the page allocator and can potentially prevent rescheduling if the page allocator slowpath is not utilized. Conditionally schedule when large numbers of hugepages can be allocated. Anshuman: "Fixes a task which was getting hung while writing like 10000 hugepages (16MB on POWER8) into /proc/sys/vm/nr_hugepages." Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1706091535300.66176@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: unify new_node_page and alloc_migrate_targetMichal Hocko3-26/+19
Commit 394e31d2ceb4 ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline") has duplicated a large part of alloc_migrate_target with some hotplug specific special casing. To be more precise it tried to enfore the allocation from a different node than the original page. As a result the two function diverged in their shared logic, e.g. the hugetlb allocation strategy. Let's unify the two and express different NUMA requirements by the given nodemask. new_node_page will simply exclude the node it doesn't care about and alloc_migrate_target will use all the available nodes. alloc_migrate_target will then learn to migrate hugetlb pages more sanely and use preallocated pool when possible. Please note that alloc_migrate_target used to call alloc_page resp. alloc_pages_current so the memory policy of the current context which is quite strange when we consider that it is used in the context of alloc_contig_range which just tries to migrate pages which stand in the way. Link: http://lkml.kernel.org/r/20170608074553.22152-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10hugetlb, memory_hotplug: prefer to use reserved pages for migrationMichal Hocko3-7/+31
new_node_page will try to use the origin's next NUMA node as the migration destination for hugetlb pages. If such a node doesn't have any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol to allocate a surplus page instead. This is quite subotpimal for any configuration when hugetlb pages are no distributed to all NUMA nodes evenly. Say we have a hotplugable node 4 and spare hugetlb pages are node 0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000 /sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0 Now we consume the whole pool on node 4 and try to offline this node. All the allocated pages should be moved to node0 which has enough preallocated pages to hold them. With the current implementation offlining very likely fails because hugetlb allocations during runtime are much less reliable. Fix this by reusing the nodemask which excludes migration source and try to find a first node which has a page in the preallocated pool first and fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is consumed. [akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub] Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, memory_hotplug: simplify empty node mask handling in new_node_pageMichal Hocko1-9/+10
new_node_page tries to allocate the target page on a different NUMA node than the source page. This makes sense in most cases during the hotplug because we are likely to offline the whole numa node. But there are cases where there are no other nodes to fallback (e.g. when offlining parts of the only existing node) and we have to fallback to allocating from the source node. The current code does that but it can be simplified by checking the nmask and updating it before we even try to allocate rather than special casing it. This patch shouldn't introduce any functional change. Link: http://lkml.kernel.org/r/20170608074553.22152-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, memory_hotplug: support movable_node for hotpluggable nodesMichal Hocko2-6/+25
movable_node kernel parameter allows making hotpluggable NUMA nodes to put all the hotplugable memory into movable zone which allows more or less reliable memory hotremove. At least this is the case for the NUMA nodes present during the boot (see find_zone_movable_pfns_for_nodes). This is not the case for the memory hotplug, though. echo online > /sys/devices/system/memory/memoryXYZ/state will default to a kernel zone (usually ZONE_NORMAL) unless the particular memblock is already in the movable zone range which is not the case normally when onlining the memory from the udev rule context for a freshly hotadded NUMA node. The only option currently is to have a special udev rule to echo online_movable to all memblocks belonging to such a node which is rather clumsy. Not to mention this is inconsistent as well because what ended up in the movable zone during the boot will end up in a kernel zone after hotremove & hotadd without special care. It would be nice to reuse memblock_is_hotpluggable but the runtime hotplug doesn't have that information available because the boot and hotplug paths are not shared and it would be really non trivial to make them use the same code path because the runtime hotplug doesn't play with the memblock allocator at all. Teach move_pfn_range that MMOP_ONLINE_KEEP can use the movable zone if movable_node is enabled and the range doesn't overlap with the existing normal zone. This should provide a reasonable default onlining strategy. Strictly speaking the semantic is not identical with the boot time initialization because find_zone_movable_pfns_for_nodes covers only the hotplugable range as described by the BIOS/FW. From my experience this is usually a full node though (except for Node0 which is special and never goes away completely). If this turns out to be a problem in the real life we can tweak the code to store hotplug flag into memblocks but let's keep this simple now. Link: http://lkml.kernel.org/r/20170612111227.GI7476@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com> Cc: <qiuxishi@huawei.com> Cc: Kani Toshimitsu <toshi.kani@hpe.com> Cc: <slaoub@gmail.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10zram: use __sysfs_match_string() helperAndy Shevchenko1-6/+4
Use __sysfs_match_string() helper instead of open coded variant. Link: http://lkml.kernel.org/r/20170609120835.22156-1-andriy.shevchenko@linux.intel.com Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/migrate.c: stabilise page count when migrating transparent hugepagesWill Deacon1-13/+2
When migrating a transparent hugepage, migrate_misplaced_transhuge_page guards itself against a concurrent fastgup of the page by checking that the page count is equal to 2 before and after installing the new pmd. If the page count changes, then the pmd is reverted back to the original entry, however there is a small window where the new (possibly writable) pmd is installed and the underlying page could be written by userspace. Restoring the old pmd could therefore result in loss of data. This patch fixes the problem by freezing the page count whilst updating the page tables, which protects against a concurrent fastgup without the need to restore the old pmd in the failure case (since the page count can no longer change under our feet). Link: http://lkml.kernel.org/r/1497349722-6731-4-git-send-email-will.deacon@arm.com Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10include/linux/page_ref.h: ensure page_ref_unfreeze is ordered against prior accessesWill Deacon1-0/+1
page_ref_freeze and page_ref_unfreeze are designed to be used as a pair, wrapping a critical section where struct pages can be modified without having to worry about consistency for a concurrent fast-GUP. Whilst page_ref_freeze has full barrier semantics due to its use of atomic_cmpxchg, page_ref_unfreeze is implemented using atomic_set, which doesn't provide any barrier semantics and allows the operation to be reordered with respect to page modifications in the critical section. This patch ensures that page_ref_unfreeze is ordered after any critical section updates, by invoking smp_mb() prior to the atomic_set. Link: http://lkml.kernel.org/r/1497349722-6731-3-git-send-email-will.deacon@arm.com Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: always enable thp for dax mappingsDan Williams3-5/+11
The madvise policy for transparent huge pages is meant to avoid unwanted allocations of transparent huge pages. It allows a policy of disabling the extra memory pressure and effort to arrange for a huge page when it is not needed. DAX by definition never incurs this overhead since it is statically allocated. The policy choice makes even less sense for device-dax which tries to guarantee a given tlb-fault size. Specifically, the following setting: echo never > /sys/kernel/mm/transparent_hugepage/enabled ...violates that guarantee and silently disables all device-dax instances with a 2M or 1G alignment. So, let's avoid that non-obvious side effect by force enabling thp for dax mappings in all cases. It is worth noting that the reason this uses vma_is_dax(), and the resulting header include changes, is that previous attempts to add a VM_DAX flag were NAKd. Link: http://lkml.kernel.org/r/149739531127.20686.15813586620597484283.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: improve readability of transparent_hugepage_enabled()Dan Williams1-12/+29
Turn the macro into a static inline and rewrite the condition checks for better readability in preparation for adding another condition. [ross.zwisler@linux.intel.com: fix logic to make conversion equivalent] [akpm@linux-foundation.org: resolve vs mm-make-pr_set_thp_disable-immediately-active.patch] [akpm@linux-foundation.org: include coredump.h for MMF_DISABLE_THP] Link: http://lkml.kernel.org/r/149739530612.20686.14760671150202647861.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Acked-by: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10oom, trace: remove ENUM evaluation of COMPACTION_FEEDBACKSteven Rostedt (VMware)1-1/+1
After enabling CONFIG_TRACE_ENUM_MAP_FILE (which will soon be renamed to CONFIG_TRACE_EVAL_MAP_FILE), I am able to examine the enums that have been evaluated: # cat /sys/kernel/debug/tracing/enum_map (which will soon be renamed to eval_map) And it showed some interesting results: [..] ZONE_MOVABLE 3 (oom) ZONE_NORMAL 2 (oom) ZONE_DMA32 1 (oom) ZONE_DMA 0 (oom) 3 3 (oom) 2 2 (oom) 1 1 (oom) COMPACT_PRIO_ASYNC 2 (oom) COMPACT_PRIO_SYNC_LIGHT 1 (oom) COMPACT_PRIO_SYNC_FULL 0 (oom) [..] ZONE_DMA 0 (vmscan) 3 3 (vmscan) 2 2 (vmscan) 1 1 (vmscan) COMPACT_PRIO_ASYNC 2 (vmscan) [..] ZONE_DMA 0 (kmem) 3 3 (kmem) 2 2 (kmem) 1 1 (kmem) COMPACT_PRIO_ASYNC 2 (kmem) [..] ZONE_DMA 0 (compaction) 3 3 (compaction) 2 2 (compaction) 1 1 (compaction) COMPACT_PRIO_ASYNC 2 (compaction) [..] The name within the parenthesis are the trace systems that the enum/eval maps are associated with. When there's a number evaluated to another number, that tells me that the TRACE_DEFINE_ENUM() was used on a #define and not an enum. As #defines get converted normally, they are not needed to be evaluated. Each of the above trace systems with the number to number evaluation included the file include/trace/events/mmflags.h which has: /* High-level compaction status feedback */ #define COMPACTION_FAILED 1 #define COMPACTION_WITHDRAWN 2 #define COMPACTION_PROGRESS 3 [..] #define COMPACTION_FEEDBACK \ EM(COMPACTION_FAILED, "failed") \ EM(COMPACTION_WITHDRAWN, "withdrawn") \ EMe(COMPACTION_PROGRESS, "progress") Which is still needed for the __print_symbolic() usage in the trace_event. But it is not needed to be evaluated. Removing the evaluation part removes the unnecessary evaluations of numbers to numbers. Link: http://lkml.kernel.org/r/20170615074944.7be9a647@gandalf.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/hugetlb.c: warn the user when issues arise on boot due to hugepagesLiam R. Howlett1-12/+24
When the user specifies too many hugepages or an invalid default_hugepagesz the communication to the user is implicit in the allocation message. This patch adds a warning when the desired page count is not allocated and prints an error when the default_hugepagesz is invalid on boot. During boot hugepages will allocate until there is a fraction of the hugepage size left. That is, we allocate until either the request is satisfied or memory for the pages is exhausted. When memory for the pages is exhausted, it will most likely lead to the system failing with the OOM manager not finding enough (or anything) to kill (unless you're using really big hugepages in the order of 100s of MB or in the GBs). The user will most likely see the OOM messages much later in the boot sequence than the implicitly stated message. Worse yet, you may even get an OOM for each processor which causes many pages of OOMs on modern systems. Although these messages will be printed earlier than the OOM messages, at least giving the user errors and warnings will highlight the configuration as an issue. I'm trying to point the user in the right direction by providing a more robust statement of what is failing. During the sysctl or echo command, the user can check the results much easier than if the system hangs during boot and the scenario of having nothing to OOM for kernel memory is highly unlikely. Mike said: "Before sending out this patch, I asked Liam off list why he was doing it. Was it something he just thought would be useful? Or, was there some type of user situation/need. He said that he had been called in to assist on several occasions when a system OOMed during boot. In almost all of these situations, the user had grossly misconfigured huge pages. DB users want to pre-allocate just the right amount of huge pages, but sometimes they can be really off. In such situations, the huge page init code just allocates as many huge pages as it can and reports the number allocated. There is no indication that it quit allocating because it ran out of memory. Of course, a user could compare the number in the message to what they requested on the command line to determine if they got all the huge pages they requested. The thought was that it would be useful to at least flag this situation. That way, the user might be able to better relate the huge page allocation failure to the OOM. I'm not sure if the e-mail discussion made it obvious that this is something he has seen on several occasions. I see Michal's point that this will only flag the situation where someone configures huge pages very badly. And, a more extensive look at the situation of misconfiguring huge pages might be in order. But, this has happened on several occasions which led to the creation of this patch" [akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration] Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: zhongjiang <zhongjiang@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/cma.c: warn if the CMA area could not be activatedAnshuman Khandual1-2/+3
While activating a CMA area we check to make sure that all the PFNs in the range are inside the same zone. This is a requirement for alloc_contig_range() to work. Any CMA area failing the check is disabled for good. This happens silently right now making all future cma_alloc() allocations failure inevitable. Here we add an error message stating that the CMA area could not be activated which makes it easier to explain any future cma_alloc() failures on it. While in there, change the bail out goto label from 'err' to 'not_in_zone' which makes more sense. Link: http://lkml.kernel.org/r/20170605023729.26303-1-khandual@linux.vnet.ibm.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10vmalloc: show lazy-purged vma info in vmallocinfoYisheng Xie1-1/+9
When ioremap a 67112960 bytes vm_area with the vmallocinfo: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap we get the result: 0xf1000000-0xf5001000 67112960 devm_ioremap+0x38/0x7c phys=40000000 ioremap For the align for ioremap must be less than '1 << IOREMAP_MAX_ORDER': if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); So it makes idiot like me a litte puzzled why this was a jump the vm_area from 0xec800000-0xecbe1000 to 0xf1000000-0xf5001000, and leaving 0xed000000-0xf1000000 as a big hole. This patch is to show all of vm_area, including vmas which are freeing but still in the vmap_area_list, to make it more clear about why we will get 0xf1000000-0xf5001000 in the above case. And we will get a vmallocinfo like: [..] 0xec79b000-0xec7fa000 389120 ftl_add_mtd+0x4d0/0x754 pages=94 vmalloc 0xec800000-0xecbe1000 4067328 kbox_proc_mem_write+0x104/0x1c4 phys=8b520000 ioremap [..] 0xece7c000-0xece7e000 8192 unpurged vm_area 0xece7e000-0xece83000 20480 vm_map_ram 0xf0099000-0xf00aa000 69632 vm_map_ram after this patch. Link: http://lkml.kernel.org/r/1496649682-20710-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zijun_hu <zijun_hu@htc.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/memcontrol: exclude @root from checks in mem_cgroup_lowSean Christopherson1-18/+32
Make @root exclusive in mem_cgroup_low; it is never considered low when looked at directly and is not checked when traversing the tree. In effect, @root is handled identically to how root_mem_cgroup was previously handled by mem_cgroup_low. If @root is not excluded from the checks, a cgroup underneath @root will never be considered low during targeted reclaim of @root, e.g. due to memory.current > memory.high, unless @root is misconfigured to have memory.low > memory.high. Excluding @root enables using memory.low to prioritize memory usage between cgroups within a subtree of the hierarchy that is limited by memory.high or memory.max, e.g. when ROOT owns @root's controls but delegates the @root directory to a USER so that USER can create and administer children of @root. For example, given cgroup A with children B and C: A / \ B C and 1. A/memory.current > A/memory.high 2. A/B/memory.current < A/B/memory.low 3. A/C/memory.current >= A/C/memory.low As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we should reclaim from 'C' until 'A' is no longer high or until we can no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by mem_cgroup_low when reclaming from 'A', then 'B' won't be considered low and we will reclaim indiscriminately from both 'B' and 'C'. Here is the test I used to confirm the bug and the patch. 20:00:55@sjchrist-vm ? ~ $ cat ~/.bin/memcg_low_test #!/bin/bash x62mb=$((62<<20)) x66mb=$((66<<20)) x94mb=$((94<<20)) x98mb=$((98<<20)) setup() { set -e if [[ -n $DEBUG ]]; then set -x fi trap teardown EXIT HUP INT TERM if [[ ! -e /mnt/1gb.swap ]]; then sudo fallocate -l 1G /mnt/1gb.swap > /dev/null sudo mkswap /mnt/1gb.swap > /dev/null fi if ! swapon --show=NAME | grep -q "/mnt/1gb.swap"; then sudo swapon /mnt/1gb.swap fi if [[ ! -e /cgroup/cgroup.controllers ]]; then sudo mount -t cgroup2 none /cgroup fi grep -q memory /cgroup/cgroup.controllers sudo sh -c "echo '+memory' > /cgroup/cgroup.subtree_control" sudo mkdir /cgroup/A && sudo chown $USER:$USER /cgroup/A sudo sh -c "echo '+memory' > /cgroup/A/cgroup.subtree_control" sudo sh -c "echo '96m' > /cgroup/A/memory.high" mkdir /cgroup/A/0 mkdir /cgroup/A/1 echo 64m > /cgroup/A/0/memory.low } teardown() { set +e trap - EXIT HUP INT TERM if [[ -z $1 ]]; then printf "\n" printf "%0.s*" {1..35} printf "\nFAILED!\n\n" tail /cgroup/A/**/memory.current printf "%0.s*" {1..35} printf "\n\n" fi ps | grep stress | tr -s ' ' | cut -f 2 -d ' ' | xargs -I % kill % sleep 2 if [[ -e /cgroup/A/0 ]]; then rmdir /cgroup/A/0 fi if [[ -e /cgroup/A/1 ]]; then rmdir /cgroup/A/1 fi if [[ -e /cgroup/A ]]; then sudo rmdir /cgroup/A fi } stress_test() { sudo sh -c "echo $$ > /cgroup/A/$1/cgroup.procs" stress --vm 1 --vm-bytes 64M --vm-keep > /dev/null & sudo sh -c "echo $$ > /cgroup/A/$2/cgroup.procs" stress --vm 1 --vm-bytes 64M --vm-keep > /dev/null & sudo sh -c "echo $$ > /cgroup/cgroup.procs" sleep 1 # A/0 should be consuming more memory than A/1 [[ $(cat /cgroup/A/0/memory.current) -ge $(cat /cgroup/A/1/memory.current) ]] # A/0 should be consuming ~64mb [[ $(cat /cgroup/A/0/memory.current) -ge $x62mb ]] && [[ $(cat /cgroup/A/0/memory.current) -le $x66mb ]] # A should cumulatively be consuming ~96mb [[ $(cat /cgroup/A/memory.current) -ge $x94mb ]] && [[ $(cat /cgroup/A/memory.current) -le $x98mb ]] # Stop the stressors ps | grep stress | tr -s ' ' | cut -f 2 -d ' ' | xargs -I % kill % } teardown 1 setup for ((i=1;i<=$1;i++)); do printf "ITERATION $i of $1 - stress_test 0 1" stress_test 0 1 printf "\x1b[2K\r" printf "ITERATION $i of $1 - stress_test 1 0" stress_test 1 0 printf "\x1b[2K\r" printf "ITERATION $i of $1 - PASSED\n" done teardown 1 echo PASSED! 20:11:26@sjchrist-vm ? ~ $ memcg_low_test 10 Link: http://lkml.kernel.org/r/1496434412-21005-1-git-send-email-sean.j.christopherson@intel.com Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: make PR_SET_THP_DISABLE immediately activeMichal Hocko6-9/+17
PR_SET_THP_DISABLE has a rather subtle semantic. It doesn't affect any existing mapping because it only updated mm->def_flags which is a template for new mappings. The mappings created after prctl(PR_SET_THP_DISABLE) have VM_NOHUGEPAGE flag set. This can be quite surprising for all those applications which do not do prctl(); fork() & exec() and want to control their own THP behavior. Another usecase when the immediate semantic of the prctl might be useful is a combination of pre- and post-copy migration of containers with CRIU. In this case CRIU populates a part of a memory region with data that was saved during the pre-copy stage. Afterwards, the region is registered with userfaultfd and CRIU expects to get page faults for the parts of the region that were not yet populated. However, khugepaged collapses the pages and the expected page faults do not occur. In more general case, the prctl(PR_SET_THP_DISABLE) could be used as a temporary mechanism for enabling/disabling THP process wide. Implementation wise, a new MMF_DISABLE_THP flag is added. This flag is tested when decision whether to use huge pages is taken either during page fault of at the time of THP collapse. It should be noted, that the new implementation makes PR_SET_THP_DISABLE master override to any per-VMA setting, which was not the case previously. Fixes: a0715cc22601 ("mm, thp: add VM_INIT_DEF_MASK and PRCTL_THP_DISABLE") Link: http://lkml.kernel.org/r/1496415802-30944-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, vmpressure: pass-through notification supportDavid Rientjes2-41/+128
By default, vmpressure events are not pass-through, i.e. they propagate up through the memcg hierarchy until an event notifier is found for any threshold level. This presents a difficulty when a thread waiting on a read(2) for a vmpressure event cannot distinguish between local memory pressure and memory pressure in a descendant memcg, especially when that thread may not control the memcg hierarchy. Consider a user-controlled child memcg with a smaller limit than a top-level memcg controlled by the "Activity Manager" specified in Documentation/cgroup-v1/memory.txt. It may register for memory pressure notification for descendant memcgs to make a policy decision: oom kill a low priority job, increase the limit, decrease other limits, etc. If it registers for memory pressure notification on the top-level memcg, it currently cannot distinguish between memory pressure in its own memcg or a descendant memcg, which is user-controlled. Conversely, if a user registers for memory pressure notification on their own descendant memcg, the Activity Manager does not receive any pressure notification for that child memcg hierarchy. Vmpressure events are not received for ancestor memcgs if the memcg experiencing pressure have notifiers registered, perhaps outside the knowledge of the thread waiting on read(2) at the top level. Both of these are consequences of vmpressure notification not being pass-through. This implements a pass-through behavior for vmpressure events. When writing to control.event_control, vmpressure event handlers may optionally specify a mode. There are two new modes: - "hierarchy": always propagate memory pressure events up the hierarchy regardless if descendant memcgs have their own notifiers registered, and - "local": only receive notifications when the memcg for which the event is registered experiences memory pressure. Of course, processes may register for one notification of "low,local", for example, and another for "low". If no mode is specified, the current behavior is maintained for backwards compatibility. See the change to Documentation/cgroup-v1/memory.txt for full specification. [dan.carpenter@oracle.com: free the same pointer we allocated] Link: http://lkml.kernel.org/r/20170613191820.GA20003@elgon.mountain Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1705311421320.8946@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Anton Vorontsov <anton@enomsg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hwpoison: introduce idenfity_page_stateNaoya Horiguchi1-32/+25
Factoring duplicate code into a function. Link: http://lkml.kernel.org/r/1496305019-5493-10-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hugetlb: delete dequeue_hwpoisoned_huge_page()Naoya Horiguchi3-50/+0
dequeue_hwpoisoned_huge_page() is no longer used, so let's remove it. Link: http://lkml.kernel.org/r/1496305019-5493-9-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hwpoison: dissolve in-use hugepage in unrecoverable memory errorNaoya Horiguchi2-40/+64
Currently me_huge_page() relies on dequeue_hwpoisoned_huge_page() to keep the error hugepage away from the system, which is OK but not good enough because the hugepage still has a refcount and unpoison doesn't work on the error hugepage (PageHWPoison flags are cleared but pages are still leaked.) And there's "wasting health subpages" issue too. This patch reworks on me_huge_page() to solve these issues. For hugetlb file, recently we have truncating code so let's use it in hugetlbfs specific ->error_remove_page(). For anonymous hugepage, it's helpful to dissolve the error page after freeing it into free hugepage list. Migration entry and PageHWPoison in the head page prevent the access to it. TODO: dissolve_free_huge_page() can fail but we don't considered it yet. It's not critical (and at least no worse that now) because in such case the error hugepage just stays in free hugepage list without being dissolved. By virtue of PageHWPoison in head page, it's never allocated to processes. [akpm@linux-foundation.org: fix unused var warnings] Fixes: 23a003bfd23ea9ea0b7756b920e51f64b284b468 ("mm/madvise: pass return code of memory_failure() to userspace") Link: http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop Link: http://lkml.kernel.org/r/1496305019-5493-8-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hwpoison: introduce memory_failure_hugetlb()Naoya Horiguchi1-52/+82
memory_failure() is a big function and hard to maintain. Handling hugetlb- and non-hugetlb- case in a single function is not good, so this patch separates PageHuge() branch into a new function, which saves many PageHuge() check. Link: http://lkml.kernel.org/r/1496305019-5493-7-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: soft-offline: dissolve free hugepage if soft-offlinedNaoya Horiguchi1-1/+1
Now we have code to rescue most of healthy pages from a hwpoisoned hugepage. So let's apply it to soft_offline_free_page too. Link: http://lkml.kernel.org/r/1496305019-5493-6-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hugetlb: soft-offline: dissolve source hugepage after successful migrationAnshuman Khandual4-9/+39
Currently hugepage migrated by soft-offline (i.e. due to correctable memory errors) is contained as a hugepage, which means many non-error pages in it are unreusable, i.e. wasted. This patch solves this issue by dissolving source hugepages into buddy. As done in previous patch, PageHWPoison is set only on a head page of the error hugepage. Then in dissoliving we move the PageHWPoison flag to the raw error page so that all healthy subpages return back to buddy. [arnd@arndb.de: fix warnings: replace some macros with inline functions] Link: http://lkml.kernel.org/r/20170609102544.2947326-1-arnd@arndb.de Link: http://lkml.kernel.org/r/1496305019-5493-5-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hwpoison: change PageHWPoison behavior on hugetlb pagesNaoya Horiguchi2-72/+24
We'd like to narrow down the error region in memory error on hugetlb pages. However, currently we set PageHWPoison flags on all subpages in the error hugepage and add # of subpages to num_hwpoison_pages, which doesn't fit our purpose. So this patch changes the behavior and we only set PageHWPoison on the head page then increase num_hwpoison_pages only by 1. This is a preparation for narrow-down part which comes in later patches. Link: http://lkml.kernel.org/r/1496305019-5493-4-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hugetlb: return immediately for hugetlb page in __delete_from_page_cache()Naoya Horiguchi1-3/+5
We avoid calling __mod_node_page_state(NR_FILE_PAGES) for hugetlb page now, but it's not enough because later code doesn't handle hugetlb properly. Actually in our testing, WARN_ON_ONCE(PageDirty(page)) at the end of this function fires for hugetlb, which makes no sense. So we should return immediately for hugetlb pages. Link: http://lkml.kernel.org/r/1496305019-5493-3-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm: hugetlb: prevent reuse of hwpoisoned free hugepagesNaoya Horiguchi2-3/+1
Patch series "mm: hwpoison: fixlet for hugetlb migration". This patchset updates the hwpoison/hugetlb code to address 2 reported issues. One is madvise(MADV_HWPOISON) failure reported by Intel's lkp robot (see http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop.) First half was already fixed in mainline, and another half about hugetlb cases are solved in this series. Another issue is "narrow-down error affected region into a single 4kB page instead of a whole hugetlb page" issue, which was tried by Anshuman (http://lkml.kernel.org/r/20170420110627.12307-1-khandual@linux.vnet.ibm.com) and I updated it to apply it more widely. This patch (of 9): We no longer use MIGRATE_ISOLATE to prevent reuse of hwpoison hugepages as we did before. So current dequeue_huge_page_node() doesn't work as intended because it still uses is_migrate_isolate_page() for this check. This patch fixes it with PageHWPoison flag. Link: http://lkml.kernel.org/r/1496305019-5493-2-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10fs/buffer.c: make bh_lru_install() more efficientEric Biggers1-28/+15
To install a buffer_head into the cpu's LRU queue, bh_lru_install() would construct a new copy of the queue and then memcpy it over the real queue. But it's easily possible to do the update in-place, which is faster and simpler. Some work can also be skipped if the buffer_head was already in the queue. As a microbenchmark I timed how long it takes to run sb_getblk() 10,000,000 times alternating between BH_LRU_SIZE + 1 blocks. Effectively, this benchmarks looking up buffer_heads that are in the page cache but not in the LRU: Before this patch: 1.758s After this patch: 1.653s This patch also removes about 350 bytes of compiled code (on x86_64), partly due to removal of the memcpy() which was being inlined+unrolled. Link: http://lkml.kernel.org/r/20161229193445.1913-1-ebiggers3@gmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/zsmalloc.c: fix -Wunneeded-internal-declaration warningNick Desaulniers1-1/+1
is_first_page() is only called from the macro VM_BUG_ON_PAGE() which is only compiled in as a runtime check when CONFIG_DEBUG_VM is set, otherwise is checked at compile time and not actually compiled in. Fixes the following warning, found with Clang: mm/zsmalloc.c:472:12: warning: function 'is_first_page' is not needed and will not be emitted [-Wunneeded-internal-declaration] static int is_first_page(struct page *page) ^ Link: http://lkml.kernel.org/r/20170524053859.29059-1-nick.desaulniers@gmail.com Signed-off-by: Nick Desaulniers <nick.desaulniers@gmail.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/memory_hotplug.c: add NULL check to avoid potential NULL pointer dereferenceGustavo A. R. Silva1-1/+1
The NULL check at line 1226: if (!pgdat), implies that pointer pgdat might be NULL. rollback_node_hotadd() dereferences this pointer. Add NULL check to avoid a potential NULL pointer dereference. Addresses-Coverity-ID: 1369133 Link: http://lkml.kernel.org/r/20170530212436.GA6195@embeddedgus Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm, vmscan: avoid thrashing anon lru when free + file is lowDavid Rientjes1-2/+11
The purpose of the code that commit 623762517e23 ("revert 'mm: vmscan: do not swap anon pages just because free+file is low'") reintroduces is to prefer swapping anonymous memory rather than trashing the file lru. If the anonymous inactive lru for the set of eligible zones is considered low, however, or the length of the list for the given reclaim priority does not allow for effective anonymous-only reclaiming, then avoid forcing SCAN_ANON. Forcing SCAN_ANON will end up thrashing the small list and leave unreclaimed memory on the file lrus. If the inactive list is insufficient, fallback to balanced reclaim so the file lru doesn't remain untouched. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1705011432220.137835@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10mm/memory.c: convert to DEFINE_DEBUGFS_ATTRIBUTEYevgen Pronenko1-2/+2
The preferred strategy to define debugfs attributes is to use the DEFINE_DEBUGFS_ATTRIBUTE() macro and to use debugfs_create_file_unsafe(). Link: http://lkml.kernel.org/r/20170528145948.32127-1-y.pronenko@gmail.com Signed-off-by: Yevgen Pronenko <y.pronenko@gmail.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>