aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/kvm/coproc.h (follow)
AgeCommit message (Collapse)AuthorFilesLines
2015-01-29arm/arm64: KVM: Use set/way op trapping to track the state of the cachesMarc Zyngier1-3/+3
Trying to emulate the behaviour of set/way cache ops is fairly pointless, as there are too many ways we can end-up missing stuff. Also, there is some system caches out there that simply ignore set/way operations. So instead of trying to implement them, let's convert it to VA ops, and use them as a way to re-enable the trapping of VM ops. That way, we can detect the point when the MMU/caches are turned off, and do a full VM flush (which is what the guest was trying to do anyway). This allows a 32bit zImage to boot on the APM thingy, and will probably help bootloaders in general. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-03-03ARM: KVM: trap VM system registers until MMU and caches are ONMarc Zyngier1-0/+4
In order to be able to detect the point where the guest enables its MMU and caches, trap all the VM related system registers. Once we see the guest enabling both the MMU and the caches, we can go back to a saner mode of operation, which is to leave these registers in complete control of the guest. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-03-03ARM: KVM: fix ordering of 64bit coprocessor accessesMarc Zyngier1-3/+3
Commit 240e99cbd00a (ARM: KVM: Fix 64-bit coprocessor handling) added an ordering dependency for the 64bit registers. The order described is: CRn, CRm, Op1, Op2, 64bit-first. Unfortunately, the implementation is: CRn, 64bit-first, CRm... Move the 64bit test to be last in order to match the documentation. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com>
2014-03-03ARM: KVM: fix handling of trapped 64bit coprocessor accessesMarc Zyngier1-2/+2
Commit 240e99cbd00a (ARM: KVM: Fix 64-bit coprocessor handling) changed the way we match the 64bit coprocessor access from user space, but didn't update the trap handler for the same set of registers. The effect is that a trapped 64bit access is never matched, leading to a fault being injected into the guest. This went unnoticed as we didn't really trap any 64bit register so far. Placing the CRm field of the access into the CRn field of the matching structure fixes the problem. Also update the debug feature to emit the expected string in case of failing match. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com>
2013-08-06ARM: KVM: Fix 64-bit coprocessor handlingChristoffer Dall1-0/+3
The PAR was exported as CRn == 7 and CRm == 0, but in fact the primary coprocessor register number was determined by CRm for 64-bit coprocessor registers as the user space API was modeled after the coprocessor access instructions (see the ARM ARM rev. C - B3-1445). However, just changing the CRn to CRm breaks the sorting check when booting the kernel, because the internal kernel logic always treats CRn as the primary register number, and it makes the table sorting impossible to understand for humans. Alternatively we could change the logic to always have CRn == CRm, but that becomes unclear in the number of ways we do look up of a coprocessor register. We could also have a separate 64-bit table but that feels somewhat over-engineered. Instead, keep CRn the primary representation of the primary coproc. register number in-kernel and always export the primary number as CRm as per the existing user space ABI. Note: The TTBR registers just magically worked because they happened to follow the CRn(0) regs and were considered CRn(0) in the in-kernel representation. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2013-03-06ARM: KVM: convert GP registers from u32 to unsigned longMarc Zyngier1-2/+2
On 32bit ARM, unsigned long is guaranteed to be a 32bit quantity. On 64bit ARM, it is a 64bit quantity. In order to be able to share code between the two architectures, convert the registers to be unsigned long, so the core code can be oblivious of the change. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-01-23KVM: ARM: Emulation framework and CP15 emulationChristoffer Dall1-0/+153
Adds a new important function in the main KVM/ARM code called handle_exit() which is called from kvm_arch_vcpu_ioctl_run() on returns from guest execution. This function examines the Hyp-Syndrome-Register (HSR), which contains information telling KVM what caused the exit from the guest. Some of the reasons for an exit are CP15 accesses, which are not allowed from the guest and this commit handles these exits by emulating the intended operation in software and skipping the guest instruction. Minor notes about the coproc register reset: 1) We reserve a value of 0 as an invalid cp15 offset, to catch bugs in our table, at cost of 4 bytes per vcpu. 2) Added comments on the table indicating how we handle each register, for simplicity of understanding. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>