aboutsummaryrefslogtreecommitdiffstats
path: root/arch/s390/kernel/asm-offsets.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2018-05-07s390/ftrace: use expoline for indirect branchesMartin Schwidefsky1-0/+1
The return from the ftrace_stub, _mcount, ftrace_caller and return_to_handler functions is done with "br %r14" and "br %r1". These are indirect branches as well and need to use execute trampolines for CONFIG_EXPOLINE=y. The ftrace_caller function is a special case as it returns to the start of a function and may only use %r0 and %r1. For a pre z10 machine the standard execute trampoline uses a LARL + EX to do this, but this requires *two* registers in the range %r1..%r15. To get around this the 'br %r1' located in the lowcore is used, then the EX instruction does not need an address register. But the lowcore trick may only be used for pre z14 machines, with noexec=on the mapping for the first page may not contain instructions. The solution for that is an ALTERNATIVE in the expoline THUNK generated by 'GEN_BR_THUNK %r1' to switch to EXRL, this relies on the fact that a machine that supports noexec=on has EXRL as well. Cc: stable@vger.kernel.org # 4.16 Fixes: f19fbd5ed6 ("s390: introduce execute-trampolines for branches") Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-04-16s390/kexec_file: Add purgatoryPhilipp Rudo1-0/+5
The common code expects the architecture to have a purgatory that runs between the two kernels. Add it now. For simplicity first skip crash support. Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-03-28s390/kvm: improve stack frame constants in entry.SMartin Schwidefsky1-0/+1
The code in sie64a uses the stack frame passed to the function to store some temporary data in the empty1 array (see struct stack_frame in asm/processor.h. Replace the __SF_EMPTY+x constants with a properly defined offset: s/__SF_EMPTY/__SF_SIE_CONTROL/, s/__SF_EMPTY+8/__SF_SIE_SAVEAREA/, s/__SF_EMPTY+16/__SF_SIE_REASON/, s/__SF_EMPTY+24/__SF_SIE_FLAGS/. Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-11-14s390: remove all code using the access register modeMartin Schwidefsky1-1/+1
The vdso code for the getcpu() and the clock_gettime() call use the access register mode to access the per-CPU vdso data page with the current code. An alternative to the complicated AR mode is to use the secondary space mode. This makes the vdso faster and quite a bit simpler. The downside is that the uaccess code has to be changed quite a bit. Which instructions are used depends on the machine and what kind of uaccess operation is requested. The instruction dictates which ASCE value needs to be loaded into %cr1 and %cr7. The different cases: * User copy with MVCOS for z10 and newer machines The MVCOS instruction can copy between the primary space (aka user) and the home space (aka kernel) directly. For set_fs(KERNEL_DS) the kernel ASCE is loaded into %cr1. For set_fs(USER_DS) the user space is already loaded in %cr1. * User copy with MVCP/MVCS for older machines To be able to execute the MVCP/MVCS instructions the kernel needs to switch to primary mode. The control register %cr1 has to be set to the kernel ASCE and %cr7 to either the kernel ASCE or the user ASCE dependent on set_fs(KERNEL_DS) vs set_fs(USER_DS). * Data access in the user address space for strnlen / futex To use "normal" instruction with data from the user address space the secondary space mode is used. The kernel needs to switch to primary mode, %cr1 has to contain the kernel ASCE and %cr7 either the user ASCE or the kernel ASCE, dependent on set_fs. To load a new value into %cr1 or %cr7 is an expensive operation, the kernel tries to be lazy about it. E.g. for multiple user copies in a row with MVCP/MVCS the replacement of the vdso ASCE in %cr7 with the user ASCE is done only once. On return to user space a CPU bit is checked that loads the vdso ASCE again. To enable and disable the data access via the secondary space two new functions are added, enable_sacf_uaccess and disable_sacf_uaccess. The fact that a context is in secondary space uaccess mode is stored in the mm_segment_t value for the task. The code of an interrupt may use set_fs as long as it returns to the previous state it got with get_fs with another call to set_fs. The code in finish_arch_post_lock_switch simply has to do a set_fs with the current mm_segment_t value for the task. For CPUs with MVCOS: CPU running in | %cr1 ASCE | %cr7 ASCE | --------------------------------------|-----------|-----------| user space | user | vdso | kernel, USER_DS, normal-mode | user | vdso | kernel, USER_DS, normal-mode, lazy | user | user | kernel, USER_DS, sacf-mode | kernel | user | kernel, KERNEL_DS, normal-mode | kernel | vdso | kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel | kernel, KERNEL_DS, sacf-mode | kernel | kernel | For CPUs without MVCOS: CPU running in | %cr1 ASCE | %cr7 ASCE | --------------------------------------|-----------|-----------| user space | user | vdso | kernel, USER_DS, normal-mode | user | vdso | kernel, USER_DS, normal-mode lazy | kernel | user | kernel, USER_DS, sacf-mode | kernel | user | kernel, KERNEL_DS, normal-mode | kernel | vdso | kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel | kernel, KERNEL_DS, sacf-mode | kernel | kernel | The lines with "lazy" refer to the state after a copy via the secondary space with a delayed reload of %cr1 and %cr7. There are three hardware address spaces that can cause a DAT exception, primary, secondary and home space. The exception can be related to four different fault types: user space fault, vdso fault, kernel fault, and the gmap faults. Dependent on the set_fs state and normal vs. sacf mode there are a number of fault combinations: 1) user address space fault via the primary ASCE 2) gmap address space fault via the primary ASCE 3) kernel address space fault via the primary ASCE for machines with MVCOS and set_fs(KERNEL_DS) 4) vdso address space faults via the secondary ASCE with an invalid address while running in secondary space in problem state 5) user address space fault via the secondary ASCE for user-copy based on the secondary space mode, e.g. futex_ops or strnlen_user 6) kernel address space fault via the secondary ASCE for user-copy with secondary space mode with set_fs(KERNEL_DS) 7) kernel address space fault via the primary ASCE for user-copy with secondary space mode with set_fs(USER_DS) on machines without MVCOS. 8) kernel address space fault via the home space ASCE Replace user_space_fault() with a new function get_fault_type() that can distinguish all four different fault types. With these changes the futex atomic ops from the kernel and the strnlen_user will get a little bit slower, as well as the old style uaccess with MVCP/MVCS. All user accesses based on MVCOS will be as fast as before. On the positive side, the user space vdso code is a lot faster and Linux ceases to use the complicated AR mode. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2017-11-13Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linuxLinus Torvalds1-0/+5
Pull s390 updates from Heiko Carstens: "Since Martin is on vacation you get the s390 pull request for the v4.15 merge window this time from me. Besides a lot of cleanups and bug fixes these are the most important changes: - a new regset for runtime instrumentation registers - hardware accelerated AES-GCM support for the aes_s390 module - support for the new CEX6S crypto cards - support for FORTIFY_SOURCE - addition of missing z13 and new z14 instructions to the in-kernel disassembler - generate opcode tables for the in-kernel disassembler out of a simple text file instead of having to manually maintain those tables - fast memset16, memset32 and memset64 implementations - removal of named saved segment support - hardware counter support for z14 - queued spinlocks and queued rwlocks implementations for s390 - use the stack_depth tracking feature for s390 BPF JIT - a new s390_sthyi system call which emulates the sthyi (store hypervisor information) instruction - removal of the old KVM virtio transport - an s390 specific CPU alternatives implementation which is used in the new spinlock code" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (88 commits) MAINTAINERS: add virtio-ccw.h to virtio/s390 section s390/noexec: execute kexec datamover without DAT s390: fix transactional execution control register handling s390/bpf: take advantage of stack_depth tracking s390: simplify transactional execution elf hwcap handling s390/zcrypt: Rework struct ap_qact_ap_info. s390/virtio: remove unused header file kvm_virtio.h s390: avoid undefined behaviour s390/disassembler: generate opcode tables from text file s390/disassembler: remove insn_to_mnemonic() s390/dasd: avoid calling do_gettimeofday() s390: vfio-ccw: Do not attempt to free no-op, test and tic cda. s390: remove named saved segment support s390/archrandom: Reconsider s390 arch random implementation s390/pci: do not require AIS facility s390/qdio: sanitize put_indicator s390/qdio: use atomic_cmpxchg s390/nmi: avoid using long-displacement facility s390: pass endianness info to sparse s390/decompressor: remove informational messages ...
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-19s390/nmi: do register validation as early as possibleMartin Schwidefsky1-0/+5
The validation of the CPU registers in the machine check handler is currently split into two parts. The first part is done at the start of the low level mcck_int_handler function, this includes the CPU timer register and the general purpose registers. The second part is done a bit later in s390_do_machine_check for all the other registers, including the control registers, floating pointer control, vector or floating pointer registers, the access registers, the guarded storage registers, the TOD programmable registers and the clock comparator. This is working fine to far but in theory a future extensions could cause the C code to use registers that are not validated yet. A better approach is to validate all CPU registers in "safe" assembler code before any C function is called. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-07-26s390/time: add support for the TOD clock epoch extensionMartin Schwidefsky1-0/+1
The TOD epoch extension adds 8 epoch bits to the TOD clock to provide a continuous clock after 2042/09/17. The store-clock-extended (STCKE) instruction will store the epoch index in the first byte of the 16 bytes stored by the instruction. The read_boot_clock64 and the read_presistent_clock64 functions need to take the additional bits into account to give the correct result after 2042/09/17. The clock-comparator register will stay 64 bit wide. The comparison of the clock-comparator with the TOD clock is limited to bytes 1 to 8 of the extended TOD format. To deal with the overflow problem due to an epoch change the clock-comparator sign control in CR0 can be used to switch the comparison of the 64-bit TOD clock with the clock-comparator to a signed comparison. The decision between the signed vs. unsigned clock-comparator comparisons is done at boot time. Only if the TOD clock is in the second half of a 142 year epoch the signed comparison is used. This solves the epoch overflow issue as long as the machine is booted at least once in an epoch. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-06-27s390/nmi: s390: New low level handling for machine check happening in guestQingFeng Hao1-0/+3
Add the logic to check if the machine check happens when the guest is running. If yes, set the exit reason -EINTR in the machine check's interrupt handler. Refactor s390_do_machine_check to avoid panicing the host for some kinds of machine checks which happen when guest is running. Reinject the instruction processing damage's machine checks including Delayed Access Exception instead of damaging the host if it happens in the guest because it could be caused by improper update on TLB entry or other software case and impacts the guest only. Signed-off-by: QingFeng Hao <haoqf@linux.vnet.ibm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2017-03-22s390: add a system call for guarded storageMartin Schwidefsky1-1/+1
This adds a new system call to enable the use of guarded storage for user space processes. The system call takes two arguments, a command and pointer to a guarded storage control block: s390_guarded_storage(int command, struct gs_cb *gs_cb); The second argument is relevant only for the GS_SET_BC_CB command. The commands in detail: 0 - GS_ENABLE Enable the guarded storage facility for the current task. The initial content of the guarded storage control block will be all zeros. After the enablement the user space code can use load-guarded-storage-controls instruction (LGSC) to load an arbitrary control block. While a task is enabled the kernel will save and restore the current content of the guarded storage registers on context switch. 1 - GS_DISABLE Disables the use of the guarded storage facility for the current task. The kernel will cease to save and restore the content of the guarded storage registers, the task specific content of these registers is lost. 2 - GS_SET_BC_CB Set a broadcast guarded storage control block. This is called per thread and stores a specific guarded storage control block in the task struct of the current task. This control block will be used for the broadcast event GS_BROADCAST. 3 - GS_CLEAR_BC_CB Clears the broadcast guarded storage control block. The guarded- storage control block is removed from the task struct that was established by GS_SET_BC_CB. 4 - GS_BROADCAST Sends a broadcast to all thread siblings of the current task. Every sibling that has established a broadcast guarded storage control block will load this control block and will be enabled for guarded storage. The broadcast guarded storage control block is used up, a second broadcast without a refresh of the stored control block with GS_SET_BC_CB will not have any effect. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-11-15s390: move sys_call_table and last_break from thread_info to thread_structMartin Schwidefsky1-2/+2
Move the last two architecture specific fields from the thread_info structure to the thread_struct. All that is left in thread_info is the flags field. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-11-11s390: move cputime accounting fields from thread_info to thread_structMartin Schwidefsky1-2/+0
The user_timer and system_timer fields are used for the per-thread cputime accounting code. The access to these values is simpler if they are moved to the thread_struct as the task_thread_info(tsk) indirection is not needed anymore. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-11-11s390: move thread_info into task_structHeiko Carstens1-9/+6
This is the s390 variant of commit 15f4eae70d36 ("x86: Move thread_info into task_struct"). Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-11-11s390/preempt: move preempt_count to the lowcoreMartin Schwidefsky1-1/+1
Convert s390 to use a field in the struct lowcore for the CPU preemption count. It is a bit cheaper to access a lowcore field compared to a thread_info variable and it removes the depencency on a task related structure. bloat-o-meter on the vmlinux image for the default configuration (CONFIG_PREEMPT_NONE=y) reports a small reduction in text size: add/remove: 0/0 grow/shrink: 18/578 up/down: 228/-5448 (-5220) A larger improvement is achieved with the default configuration but with CONFIG_PREEMPT=y and CONFIG_DEBUG_PREEMPT=n: add/remove: 2/6 grow/shrink: 59/4477 up/down: 1618/-228762 (-227144) Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-10-28s390/time: steer clocksource on STP sync eventsMartin Schwidefsky1-0/+2
On STP sync events the TOD clock will jump in time, either forward or backward. The TOD clocksource claims to be continuous but in case of an STP sync with a negative offset it is not. Subtract the offset injected by the STP sync check from the result of the TOD clocksource to make it continuous again. Add code to drift the offset towards zero with a fixed rate, steering 1 second in ~9 hours. Suggested-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-09-08KVM: s390: write external damage code on machine checksDavid Hildenbrand1-0/+1
Let's also write the external damage code already provided by struct kvm_s390_mchk_info. Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2016-03-08s390/mm: split arch/s390/mm/pgtable.cMartin Schwidefsky1-0/+1
The pgtable.c file is quite big, before it grows any larger split it into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related header definitions into the new gmap.h header and all of the pgste helpers from pgtable.h to pgtable.c. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-01-11s390/vdso: optimize getcpu system callMartin Schwidefsky1-0/+2
Add the CPU number to the per-cpu vdso data page and add the __kernel_getcpu function to the vdso object to retrieve the CPU number in user space. Suggested-by: Heiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-01-11s390: rename struct _lowcore to struct lowcoreHeiko Carstens1-87/+87
Finally get rid of the leading underscore. I tried this already two or three years ago, however Michael Holzheu objected since this would break the crash utility (again). However Michael integrated support for the new name into the crash utility back then, so it doesn't break if the name will be changed now. So finally get rid of the ever confusing leading underscore. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-12-18s390/facilities: always use lowcore's stfle field for storing facility bitsHeiko Carstens1-0/+1
head.s contains an stfle instruction which stores it result at the storage location that is assigned to the stfl instruction. This is currently no problem, since we only care about one double word. However if the number of double words in the ALS bitfield grows the current code is not very stable. E.g. before issuing the stfle command the memory to which it stores must be cleared, since the instruction may or may not clear memory contents where no bits are set. In order to simplify the code a bit always use the storage location that we reserved for the stfle result. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-11-27s390/dump: remove SAVE_AREA_BASEMartin Schwidefsky1-1/+0
Replace the SAVE_AREA_BASE offset calculations in reipl.S with the assembler constant for the location of each register status area. Use __LC_FPREGS_SAVE_AREA instead of SAVE_AREA_BASE in the three remaining code locations and remove the definition of SAVE_AREA_BASE. Acked-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-11-27s390/kvm: remove dependency on struct save_area definitionMartin Schwidefsky1-0/+1
Replace the offsets based on the struct area_area with the offset constants from asm-offsets.c based on the struct _lowcore. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-10-14s390/cpumf: rework program parameter setting to detect guest samplesChristian Borntraeger1-0/+1
The program parameter can be used to mark hardware samples with some token. Previously, it was used to mark guest samples only. Improve the program parameter doubleword by combining two parts, the leftmost LPP part and the rightmost PID part. Set the PID part for processes by using the task PID. To distinguish host and guest samples for the kernel (PID part is zero), the guest must always set the program paramater to a non-zero value. Use the leftmost bit in the LPP part of the program parameter to be able to detect guest kernel samples. [brueckner@linux.vnet.ibm.com]: Split __LC_CURRENT and introduced __LC_LPP. Corrected __LC_CURRENT users and adjusted assembler parts. And updated the commit message accordingly. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-10-14s390/asm: make use of the OFFSET macro to define assember constantsMartin Schwidefsky1-140/+148
The use of OFFSET instead of DEFINE makes the definitions in asm-offsets.c more readable. While we are at it sort the defines for struct _lowcore according to the field order and remove some unneeded defines. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-10-14s390/fpu: always enable the vector facility if it is availableHendrik Brueckner1-1/+0
If the kernel detects that the s390 hardware supports the vector facility, it is enabled by default at an early stage. To force it off, use the novx kernel parameter. Note that there is a small time window, where the vector facility is enabled before it is forced to be off. With enabling the vector facility by default, the FPU save and restore functions can be improved. They do not longer require to manage expensive control register updates to enable or disable the vector enablement control for particular processes. Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-09-30s390/vtime: correct scaled cputime of partially idle CPUsMartin Schwidefsky1-0/+1
The calculation for the SMT scaling factor for a hardware thread which has been partially idle needs to disregard the cycles spent by the other threads of the core while the thread is idle. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-08-03s390/kernel: remove save_fpu_regs() parameter and use __LC_CURRENT insteadHendrik Brueckner1-5/+3
All calls to save_fpu_regs() specify the fpu structure of the current task pointer as parameter. The task pointer of the current task can also be retrieved from the CPU lowcore directly. Remove the parameter definition, load the __LC_CURRENT task pointer from the CPU lowcore, and rebase the FPU structure onto the task structure. Apply the same approach for the load_fpu_regs() function. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-07-22s390/kernel: lazy restore fpu registersHendrik Brueckner1-0/+5
Improve the save and restore behavior of FPU register contents to use the vector extension within the kernel. The kernel does not use floating-point or vector registers and, therefore, saving and restoring the FPU register contents are performed for handling signals or switching processes only. To prepare for using vector instructions and vector registers within the kernel, enhance the save behavior and implement a lazy restore at return to user space from a system call or interrupt. To implement the lazy restore, the save_fpu_regs() sets a CPU information flag, CIF_FPU, to indicate that the FPU registers must be restored. Saving and setting CIF_FPU is performed in an atomic fashion to be interrupt-safe. When the kernel wants to use the vector extension or wants to change the FPU register state for a task during signal handling, the save_fpu_regs() must be called first. The CIF_FPU flag is also set at process switch. At return to user space, the FPU state is restored. In particular, the FPU state includes the floating-point or vector register contents, as well as, vector-enablement and floating-point control. The FPU state restore and clearing CIF_FPU is also performed in an atomic fashion. For KVM, the restore of the FPU register state is performed when restoring the general-purpose guest registers before the SIE instructions is started. Because the path towards the SIE instruction is interruptible, the CIF_FPU flag must be checked again right before going into SIE. If set, the guest registers must be reloaded again by re-entering the outer SIE loop. This is the same behavior as if the SIE critical section is interrupted. Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-07-20s390: adapt entry.S to the move of thread_structMartin Schwidefsky1-8/+7
git commit 0c8c0f03e3a292e031596484275c14cf39c0ab7a "x86/fpu, sched: Dynamically allocate 'struct fpu'" moved the thread_struct to the end of the task_struct. This causes some of the offsets used in entry.S to overflow their instruction operand field. To fix this use aghi to create a dedicated pointer for the thread_struct. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-04-15Merge branch 'exec_domain_rip_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/miscLinus Torvalds1-1/+0
Pull exec domain removal from Richard Weinberger: "This series removes execution domain support from Linux. The idea behind exec domains was to support different ABIs. The feature was never complete nor stable. Let's rip it out and make the kernel signal handling code less complicated" * 'exec_domain_rip_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/misc: (27 commits) arm64: Removed unused variable sparc: Fix execution domain removal Remove rest of exec domains. arch: Remove exec_domain from remaining archs arc: Remove signal translation and exec_domain xtensa: Remove signal translation and exec_domain xtensa: Autogenerate offsets in struct thread_info x86: Remove signal translation and exec_domain unicore32: Remove signal translation and exec_domain um: Remove signal translation and exec_domain tile: Remove signal translation and exec_domain sparc: Remove signal translation and exec_domain sh: Remove signal translation and exec_domain s390: Remove signal translation and exec_domain mn10300: Remove signal translation and exec_domain microblaze: Remove signal translation and exec_domain m68k: Remove signal translation and exec_domain m32r: Remove signal translation and exec_domain m32r: Autogenerate offsets in struct thread_info frv: Remove signal translation and exec_domain ...
2015-04-14Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linuxLinus Torvalds1-4/+0
Pull s390 updates from Martin Schwidefsky: "The major change in this merge is the removal of the support for 31-bit kernels. Naturally 31-bit user space will continue to work via the compat layer. And then some cleanup, some improvements and bug fixes" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (23 commits) s390/smp: wait until secondaries are active & online s390/hibernate: fix save and restore of kernel text section s390/cacheinfo: add missing facility check s390/syscalls: simplify syscall_get_arch() s390/irq: enforce correct irqclass_sub_desc array size s390: remove "64" suffix from mem64.S and swsusp_asm64.S s390/ipl: cleanup macro usage s390/ipl: cleanup shutdown_action attributes s390/ipl: cleanup bin attr usage s390/uprobes: fix address space annotation s390: add missing arch_release_task_struct() declaration s390: make couple of functions and variables static s390/maccess: improve s390_kernel_write() s390/maccess: remove potentially broken probe_kernel_write() s390/watchdog: support for KVM hypervisors and delete pr_info messages s390/watchdog: enable KEEPALIVE for /dev/watchdog s390/dasd: remove setting of scheduler from driver s390/traps: panic() instead of die() on translation exception s390: remove test_facility(2) (== z/Architecture mode active) checks s390/cmpxchg: simplify cmpxchg_double ...
2015-04-12s390: Remove signal translation and exec_domainRichard Weinberger1-1/+0
As execution domain support is gone we can remove signal translation from the signal code and remove exec_domain from thread_info. Signed-off-by: Richard Weinberger <richard@nod.at>
2015-03-25s390: remove 31 bit supportHeiko Carstens1-4/+0
Remove the 31 bit support in order to reduce maintenance cost and effectively remove dead code. Since a couple of years there is no distribution left that comes with a 31 bit kernel. The 31 bit kernel also has been broken since more than a year before anybody noticed. In addition I added a removal warning to the kernel shown at ipl for 5 minutes: a960062e5826 ("s390: add 31 bit warning message") which let everybody know about the plan to remove 31 bit code. We didn't get any response. Given that the last 31 bit only machine was introduced in 1999 let's remove the code. Anybody with 31 bit user space code can still use the compat mode. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2015-03-06KVM: s390: Machine CheckEric Farman1-0/+1
Store additional status in the machine check handler, in order to collect status (such as vector registers) that is not defined by store status. Signed-off-by: Eric Farman <farman@linux.vnet.ibm.com> Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-03s390/cmpxchg: use compiler builtinsMartin Schwidefsky1-2/+2
The kernel build for s390 fails for gcc compilers with version 3.x, set the minimum required version of gcc to version 4.3. As the atomic builtins are available with all gcc 4.x compilers, use the __sync_val_compare_and_swap and __sync_bool_compare_and_swap functions to replace the complex macro and inline assembler magic in include/asm/cmpxchg.h. The compiler can just-do-it and generates better code with the builtins. While we are at it use __sync_bool_compare_and_swap for the _raw_compare_and_swap function in the spinlock code as well. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-27s390/ftrace,kprobes: allow to patch first instructionHeiko Carstens1-1/+0
If the function tracer is enabled, allow to set kprobes on the first instruction of a function (which is the function trace caller): If no kprobe is set handling of enabling and disabling function tracing of a function simply patches the first instruction. Either it is a nop (right now it's an unconditional branch, which skips the mcount block), or it's a branch to the ftrace_caller() function. If a kprobe is being placed on a function tracer calling instruction we encode if we actually have a nop or branch in the remaining bytes after the breakpoint instruction (illegal opcode). This is possible, since the size of the instruction used for the nop and branch is six bytes, while the size of the breakpoint is only two bytes. Therefore the first two bytes contain the illegal opcode and the last four bytes contain either "0" for nop or "1" for branch. The kprobes code will then execute/simulate the correct instruction. Instruction patching for kprobes and function tracer is always done with stop_machine(). Therefore we don't have any races where an instruction is patched concurrently on a different cpu. Besides that also the program check handler which executes the function trace caller instruction won't be executed concurrently to any stop_machine() execution. This allows to keep full fault based kprobes handling which generates correct pt_regs contents automatically. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-09s390/idle: consolidate idle functions and definitionsMartin Schwidefsky1-1/+1
Move the C functions and definitions related to the idle state handling to arch/s390/include/asm/idle.h and arch/s390/kernel/idle.c. The function s390_get_idle_time is renamed to arch_cpu_idle_time and vtime_stop_cpu to enabled_wait. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-09-09s390/vdso: add vdso support for coarse clocksMartin Schwidefsky1-0/+7
Add CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE optimization to the 64-bit and 31-bit vdso. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-06-04Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into nextLinus Torvalds1-3/+11
Pull KVM updates from Paolo Bonzini: "At over 200 commits, covering almost all supported architectures, this was a pretty active cycle for KVM. Changes include: - a lot of s390 changes: optimizations, support for migration, GDB support and more - ARM changes are pretty small: support for the PSCI 0.2 hypercall interface on both the guest and the host (the latter acked by Catalin) - initial POWER8 and little-endian host support - support for running u-boot on embedded POWER targets - pretty large changes to MIPS too, completing the userspace interface and improving the handling of virtualized timer hardware - for x86, a larger set of changes is scheduled for 3.17. Still, we have a few emulator bugfixes and support for running nested fully-virtualized Xen guests (para-virtualized Xen guests have always worked). And some optimizations too. The only missing architecture here is ia64. It's not a coincidence that support for KVM on ia64 is scheduled for removal in 3.17" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (203 commits) KVM: add missing cleanup_srcu_struct KVM: PPC: Book3S PR: Rework SLB switching code KVM: PPC: Book3S PR: Use SLB entry 0 KVM: PPC: Book3S HV: Fix machine check delivery to guest KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs KVM: PPC: Book3S HV: Make sure we don't miss dirty pages KVM: PPC: Book3S HV: Fix dirty map for hugepages KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base address KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates() KVM: PPC: Book3S: Move KVM_REG_PPC_WORT to an unused register number KVM: PPC: Book3S: Add ONE_REG register names that were missed KVM: PPC: Add CAP to indicate hcall fixes KVM: PPC: MPIC: Reset IRQ source private members KVM: PPC: Graciously fail broken LE hypercalls PPC: ePAPR: Fix hypercall on LE guest KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handler KVM: PPC: BOOK3S: Always use the saved DAR value PPC: KVM: Make NX bit available with magic page KVM: PPC: Disable NX for old magic page using guests KVM: PPC: BOOK3S: HV: Add mixed page-size support for guest ...
2014-05-28s390/lowcore: replace lowcore irb array with a per-cpu variableMartin Schwidefsky1-1/+0
Remove the 96-byte irb array from the lowcore and create a per-cpu variable instead. That way we will pick up any change in the definition of the struct irb automatically. Acked-By: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-05-20s390: split TIF bits into CIF, PIF and TIF bitsMartin Schwidefsky1-0/+2
The oi and ni instructions used in entry[64].S to set and clear bits in the thread-flags are not guaranteed to be atomic in regard to other CPUs. Split the TIF bits into CPU, pt_regs and thread-info specific bits. Updates on the TIF bits are done with atomic instructions, updates on CPU and pt_regs bits are done with non-atomic instructions. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-04-22s390: add fields to lowcore definitionJens Freimann1-0/+7
This patch adds fields which are currently missing but needed for the correct injection of interrupts. This is based on a patch by David Hildenbrand Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-04-22s390: rename and split lowcore field per_perc_atmidJens Freimann1-2/+3
per_perc_atmid is currently a two-byte field that combines two fields, the PER code and the PER Addressing-and-Translation-Mode Identification (ATMID) Let's make them accessible indepently and also rename per_cause to per_code. Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-04-22s390: fix name of lowcore field at offset 0xa3Jens Freimann1-1/+1
According to the Principles of Operation, at offset 0xA3 in the lowcore we have the "Architectural-Mode identification", not an "access identification". Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-04-03s390/uaccess: rework uaccess code - fix locking issuesHeiko Carstens1-0/+1
The current uaccess code uses a page table walk in some circumstances, e.g. in case of the in atomic futex operations or if running on old hardware which doesn't support the mvcos instruction. However it turned out that the page table walk code does not correctly lock page tables when accessing page table entries. In other words: a different cpu may invalidate a page table entry while the current cpu inspects the pte. This may lead to random data corruption. Adding correct locking however isn't trivial for all uaccess operations. Especially copy_in_user() is problematic since that requires to hold at least two locks, but must be protected against ABBA deadlock when a different cpu also performs a copy_in_user() operation. So the solution is a different approach where we change address spaces: User space runs in primary address mode, or access register mode within vdso code, like it currently already does. The kernel usually also runs in home space mode, however when accessing user space the kernel switches to primary or secondary address mode if the mvcos instruction is not available or if a compare-and-swap (futex) instruction on a user space address is performed. KVM however is special, since that requires the kernel to run in home address space while implicitly accessing user space with the sie instruction. So we end up with: User space: - runs in primary or access register mode - cr1 contains the user asce - cr7 contains the user asce - cr13 contains the kernel asce Kernel space: - runs in home space mode - cr1 contains the user or kernel asce -> the kernel asce is loaded when a uaccess requires primary or secondary address mode - cr7 contains the user or kernel asce, (changed with set_fs()) - cr13 contains the kernel asce In case of uaccess the kernel changes to: - primary space mode in case of a uaccess (copy_to_user) and uses e.g. the mvcp instruction to access user space. However the kernel will stay in home space mode if the mvcos instruction is available - secondary space mode in case of futex atomic operations, so that the instructions come from primary address space and data from secondary space In case of kvm the kernel runs in home space mode, but cr1 gets switched to contain the gmap asce before the sie instruction gets executed. When the sie instruction is finished cr1 will be switched back to contain the user asce. A context switch between two processes will always load the kernel asce for the next process in cr1. So the first exit to user space is a bit more expensive (one extra load control register instruction) than before, however keeps the code rather simple. In sum this means there is no need to perform any error prone page table walks anymore when accessing user space. The patch seems to be rather large, however it mainly removes the the page table walk code and restores the previously deleted "standard" uaccess code, with a couple of changes. The uaccess without mvcos mode can be enforced with the "uaccess_primary" kernel parameter. Reported-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-12-02s390/vdso: ectg gettime support for CLOCK_THREAD_CPUTIME_IDMartin Schwidefsky1-0/+1
The code to use the ECTG instruction to calculate the cputime for the current thread is currently used only for the per-thread CPU-clock with the clockid -2 (PID=0, VIRT=1). Use the same code for the clockid CLOCK_THREAD_CPUTIME_ID to speed up the more common clockid as well. Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-11-25s390/time,vdso: convert to the new update_vsyscall interfaceMartin Schwidefsky1-1/+2
Switch to the improved update_vsyscall interface that provides sub-nanosecond precision for gettimeofday and clock_gettime. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-07-03Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-0/+3
Pull KVM fixes from Paolo Bonzini: "On the x86 side, there are some optimizations and documentation updates. The big ARM/KVM change for 3.11, support for AArch64, will come through Catalin Marinas's tree. s390 and PPC have misc cleanups and bugfixes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (87 commits) KVM: PPC: Ignore PIR writes KVM: PPC: Book3S PR: Invalidate SLB entries properly KVM: PPC: Book3S PR: Allow guest to use 1TB segments KVM: PPC: Book3S PR: Don't keep scanning HPTEG after we find a match KVM: PPC: Book3S PR: Fix invalidation of SLB entry 0 on guest entry KVM: PPC: Book3S PR: Fix proto-VSID calculations KVM: PPC: Guard doorbell exception with CONFIG_PPC_DOORBELL KVM: Fix RTC interrupt coalescing tracking kvm: Add a tracepoint write_tsc_offset KVM: MMU: Inform users of mmio generation wraparound KVM: MMU: document fast invalidate all mmio sptes KVM: MMU: document fast invalidate all pages KVM: MMU: document fast page fault KVM: MMU: document mmio page fault KVM: MMU: document write_flooding_count KVM: MMU: document clear_spte_count KVM: MMU: drop kvm_mmu_zap_mmio_sptes KVM: MMU: init kvm generation close to mmio wrap-around value KVM: MMU: add tracepoint for check_mmio_spte KVM: MMU: fast invalidate all mmio sptes ...
2013-06-26s390/irq: store interrupt information in pt_regsMartin Schwidefsky1-0/+1
Copy the interrupt parameters from the lowcore to the pt_regs structure in entry[64].S and reduce the arguments of the low level interrupt handler to the pt_regs pointer only. In addition move the test-pending-interrupt loop from do_IRQ to entry[64].S to make sure that interrupt information is always delivered via pt_regs. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2013-05-21s390/kvm: Provide a way to prevent reentering SIEChristian Borntraeger1-0/+1
Lets provide functions to prevent KVM from reentering SIE and to kick cpus out of SIE. We cannot use the common kvm_vcpu_kick code, since we need to kick out guests in places that hold architecture specific locks (e.g. pgste lock) which might be necessary on the other cpus - so no waiting possible. So lets provide a bit in a private field of the sie control block that acts as a gate keeper, after we claimed we are in SIE. Please note that we do not reuse prog0c, since we want to access that bit without atomic ops. Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Gleb Natapov <gleb@redhat.com>