aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/cpu_entry_area.h (follow)
AgeCommit message (Collapse)AuthorFilesLines
2019-11-26x86/doublefault/32: Move #DF stack and TSS to cpu_entry_areaAndy Lutomirski1-0/+12
There are three problems with the current layout of the doublefault stack and TSS. First, the TSS is only cacheline-aligned, which is not enough -- if the hardware portion of the TSS (struct x86_hw_tss) crosses a page boundary, horrible things happen [0]. Second, the stack and TSS are global, so simultaneous double faults on different CPUs will cause massive corruption. Third, the whole mechanism won't work if user CR3 is loaded, resulting in a triple fault [1]. Let the doublefault stack and TSS share a page (which prevents the TSS from spanning a page boundary), make it percpu, and move it into cpu_entry_area. Teach the stack dump code about the doublefault stack. [0] Real hardware will read past the end of the page onto the next *physical* page if a task switch happens. Virtual machines may have any number of bugs, and I would consider it reasonable for a VM to summarily kill the guest if it tries to task-switch to a page-spanning TSS. [1] Real hardware triple faults. At least some VMs seem to hang. I'm not sure what's going on. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-25x86/pti/32: Calculate the various PTI cpu_entry_area sizes correctly, make the CPU_ENTRY_AREA_PAGES assert preciseIngo Molnar1-5/+7
When two recent commits that increased the size of the 'struct cpu_entry_area' were merged in -tip, the 32-bit defconfig build started failing on the following build time assert: ./include/linux/compiler.h:391:38: error: call to ‘__compiletime_assert_189’ declared with attribute error: BUILD_BUG_ON failed: CPU_ENTRY_AREA_PAGES * PAGE_SIZE < CPU_ENTRY_AREA_MAP_SIZE arch/x86/mm/cpu_entry_area.c:189:2: note: in expansion of macro ‘BUILD_BUG_ON’ In function ‘setup_cpu_entry_area_ptes’, Which corresponds to the following build time assert: BUILD_BUG_ON(CPU_ENTRY_AREA_PAGES * PAGE_SIZE < CPU_ENTRY_AREA_MAP_SIZE); The purpose of this assert is to sanity check the fixed-value definition of CPU_ENTRY_AREA_PAGES arch/x86/include/asm/pgtable_32_types.h: #define CPU_ENTRY_AREA_PAGES (NR_CPUS * 41) The '41' is supposed to match sizeof(struct cpu_entry_area)/PAGE_SIZE, which value we didn't want to define in such a low level header, because it would cause dependency hell. Every time the size of cpu_entry_area is changed, we have to adjust CPU_ENTRY_AREA_PAGES accordingly - and this assert is checking that constraint. But the assert is both imprecise and buggy, primarily because it doesn't include the single readonly IDT page that is mapped at CPU_ENTRY_AREA_BASE (which begins at a PMD boundary). This bug was hidden by the fact that by accident CPU_ENTRY_AREA_PAGES is defined too large upstream (v5.4-rc8): #define CPU_ENTRY_AREA_PAGES (NR_CPUS * 40) While 'struct cpu_entry_area' is 155648 bytes, or 38 pages. So we had two extra pages, which hid the bug. The following commit (not yet upstream) increased the size to 40 pages: x86/iopl: ("Restrict iopl() permission scope") ... but increased CPU_ENTRY_AREA_PAGES only 41 - i.e. shortening the gap to just 1 extra page. Then another not-yet-upstream commit changed the size again: 880a98c33996: ("x86/cpu_entry_area: Add guard page for entry stack on 32bit") Which increased the cpu_entry_area size from 38 to 39 pages, but didn't change CPU_ENTRY_AREA_PAGES (kept it at 40). This worked fine, because we still had a page left from the accidental 'reserve'. But when these two commits were merged into the same tree, the combined size of cpu_entry_area grew from 38 to 40 pages, while CPU_ENTRY_AREA_PAGES finally caught up to 40 as well. Which is fine in terms of functionality, but the assert broke: BUILD_BUG_ON(CPU_ENTRY_AREA_PAGES * PAGE_SIZE < CPU_ENTRY_AREA_MAP_SIZE); because CPU_ENTRY_AREA_MAP_SIZE is the total size of the area, which is 1 page larger due to the IDT page. To fix all this, change the assert to two precise asserts: BUILD_BUG_ON((CPU_ENTRY_AREA_PAGES+1)*PAGE_SIZE != CPU_ENTRY_AREA_MAP_SIZE); BUILD_BUG_ON(CPU_ENTRY_AREA_TOTAL_SIZE != CPU_ENTRY_AREA_MAP_SIZE); This takes the IDT page into account, and also connects the size-based define of CPU_ENTRY_AREA_TOTAL_SIZE with the address-subtraction based define of CPU_ENTRY_AREA_MAP_SIZE. Also clean up some of the names which made it rather confusing: - 'CPU_ENTRY_AREA_TOT_SIZE' wasn't actually the 'total' size of the cpu-entry-area, but the per-cpu array size, so rename this to CPU_ENTRY_AREA_ARRAY_SIZE. - Introduce CPU_ENTRY_AREA_TOTAL_SIZE that _is_ the total mapping size, with the IDT included. - Add comments where '+1' denotes the IDT mapping - it wasn't obvious and took me about 3 hours to decode... Finally, because this particular commit is actually applied after this patch: 880a98c33996: ("x86/cpu_entry_area: Add guard page for entry stack on 32bit") Fix the CPU_ENTRY_AREA_PAGES value from 40 pages to the correct 39 pages. All future commits that change cpu_entry_area will have to adjust this value precisely. As a side note, we should probably attempt to remove CPU_ENTRY_AREA_PAGES and derive its value directly from the structure, without causing header hell - but that is an adventure for another day! :-) Fixes: 880a98c33996: ("x86/cpu_entry_area: Add guard page for entry stack on 32bit") Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: stable@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-21x86/cpu_entry_area: Add guard page for entry stack on 32bitThomas Gleixner1-1/+5
The entry stack in the cpu entry area is protected against overflow by the readonly GDT on 64-bit, but on 32-bit the GDT needs to be writeable and therefore does not trigger a fault on stack overflow. Add a guard page. Fixes: c482feefe1ae ("x86/entry/64: Make cpu_entry_area.tss read-only") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@kernel.org
2019-10-01x86: Use the correct SPDX License Identifier in headersNishad Kamdar1-1/+1
Correct the SPDX License Identifier format in a couple of headers. Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Nishad Kamdar <nishadkamdar@gmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Cc: Waiman Long <longman@redhat.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/697848ff866ade29e78e872525d7a3067642fd37.1555427420.git.nishadkamdar@gmail.com
2019-04-17x86/exceptions: Split debug IST stackThomas Gleixner1-4/+10
The debug IST stack is actually two separate debug stacks to handle #DB recursion. This is required because the CPU starts always at top of stack on exception entry, which means on #DB recursion the second #DB would overwrite the stack of the first. The low level entry code therefore adjusts the top of stack on entry so a secondary #DB starts from a different stack page. But the stack pages are adjacent without a guard page between them. Split the debug stack into 3 stacks which are separated by guard pages. The 3rd stack is never mapped into the cpu_entry_area and is only there to catch triple #DB nesting: --- top of DB_stack <- Initial stack --- end of DB_stack guard page --- top of DB1_stack <- Top of stack after entering first #DB --- end of DB1_stack guard page --- top of DB2_stack <- Top of stack after entering second #DB --- end of DB2_stack guard page If DB2 would not act as the final guard hole, a second #DB would point the top of #DB stack to the stack below #DB1 which would be valid and not catch the not so desired triple nesting. The backing store does not allocate any memory for DB2 and its guard page as it is not going to be mapped into the cpu_entry_area. - Adjust the low level entry code so it adjusts top of #DB with the offset between the stacks instead of exception stack size. - Make the dumpstack code aware of the new stacks. - Adjust the in_debug_stack() implementation and move it into the NMI code where it belongs. As this is NMI hotpath code, it just checks the full area between top of DB_stack and bottom of DB1_stack without checking for the guard page. That's correct because the NMI cannot hit a stackpointer pointing to the guard page between DB and DB1 stack. Even if it would, then the NMI operation still is unaffected, but the resume of the debug exception on the topmost DB stack will crash by touching the guard page. [ bp: Make exception_stack_names static const char * const ] Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: linux-doc@vger.kernel.org Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qian Cai <cai@lca.pw> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
2019-04-17x86/exceptions: Enable IST guard pagesThomas Gleixner1-6/+2
All usage sites which expected that the exception stacks in the CPU entry area are mapped linearly are fixed up. Enable guard pages between the IST stacks. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.349862042@linutronix.de
2019-04-17x86/exceptions: Disconnect IST index and stack orderThomas Gleixner1-0/+11
The entry order of the TSS.IST array and the order of the stack storage/mapping are not required to be the same. With the upcoming split of the debug stack this is going to fall apart as the number of TSS.IST array entries stays the same while the actual stacks are increasing. Make them separate so that code like dumpstack can just utilize the mapping order. The IST index is solely required for the actual TSS.IST array initialization. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qian Cai <cai@lca.pw> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.241588113@linutronix.de
2019-04-17x86/cpu_entry_area: Provide exception stack accessorThomas Gleixner1-0/+4
Store a pointer to the per cpu entry area exception stack mappings to allow fast retrieval. Required for converting various places from using the shadow IST array to directly doing address calculations on the actual mapping address. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160144.680960459@linutronix.de
2019-04-17x86/exceptions: Add structs for exception stacksThomas Gleixner1-5/+47
At the moment everything assumes a full linear mapping of the various exception stacks. Adding guard pages to the cpu entry area mapping of the exception stacks will break that assumption. As a preparatory step convert both the real storage and the effective mapping in the cpu entry area from character arrays to structures. To ensure that both arrays have the same ordering and the same size of the individual stacks fill the members with a macro. The guard size is the only difference between the two resulting structures. For now both have guard size 0 until the preparation of all usage sites is done. Provide a couple of helper macros which are used in the following conversions. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160144.506807893@linutronix.de
2018-09-12x86/pti/64: Remove the SYSCALL64 entry trampolineAndy Lutomirski1-2/+0
The SYSCALL64 trampoline has a couple of nice properties: - The usual sequence of SWAPGS followed by two GS-relative accesses to set up RSP is somewhat slow because the GS-relative accesses need to wait for SWAPGS to finish. The trampoline approach allows RIP-relative accesses to set up RSP, which avoids the stall. - The trampoline avoids any percpu access before CR3 is set up, which means that no percpu memory needs to be mapped in the user page tables. This prevents using Meltdown to read any percpu memory outside the cpu_entry_area and prevents using timing leaks to directly locate the percpu areas. The downsides of using a trampoline may outweigh the upsides, however. It adds an extra non-contiguous I$ cache line to system calls, and it forces an indirect jump to transfer control back to the normal kernel text after CR3 is set up. The latter is because x86 lacks a 64-bit direct jump instruction that could jump from the trampoline to the entry text. With retpolines enabled, the indirect jump is extremely slow. Change the code to map the percpu TSS into the user page tables to allow the non-trampoline SYSCALL64 path to work under PTI. This does not add a new direct information leak, since the TSS is readable by Meltdown from the cpu_entry_area alias regardless. It does allow a timing attack to locate the percpu area, but KASLR is more or less a lost cause against local attack on CPUs vulnerable to Meltdown regardless. As far as I'm concerned, on current hardware, KASLR is only useful to mitigate remote attacks that try to attack the kernel without first gaining RCE against a vulnerable user process. On Skylake, with CONFIG_RETPOLINE=y and KPTI on, this reduces syscall overhead from ~237ns to ~228ns. There is a possible alternative approach: Move the trampoline within 2G of the entry text and make a separate copy for each CPU. This would allow a direct jump to rejoin the normal entry path. There are pro's and con's for this approach: + It avoids a pipeline stall - It executes from an extra page and read from another extra page during the syscall. The latter is because it needs to use a relative addressing mode to find sp1 -- it's the same *cacheline*, but accessed using an alias, so it's an extra TLB entry. - Slightly more memory. This would be one page per CPU for a simple implementation and 64-ish bytes per CPU or one page per node for a more complex implementation. - More code complexity. The current approach is chosen for simplicity and because the alternative does not provide a significant benefit, which makes it worth. [ tglx: Added the alternative discussion to the changelog ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/8c7c6e483612c3e4e10ca89495dc160b1aa66878.1536015544.git.luto@kernel.org
2017-12-23x86/cpu_entry_area: Add debugstore entries to cpu_entry_areaThomas Gleixner1-0/+13
The Intel PEBS/BTS debug store is a design trainwreck as it expects virtual addresses which must be visible in any execution context. So it is required to make these mappings visible to user space when kernel page table isolation is active. Provide enough room for the buffer mappings in the cpu_entry_area so the buffers are available in the user space visible page tables. At the point where the kernel side entry area is populated there is no buffer available yet, but the kernel PMD must be populated. To achieve this set the entries for these buffers to non present. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-22x86/cpu_entry_area: Move it out of the fixmapThomas Gleixner1-1/+17
Put the cpu_entry_area into a separate P4D entry. The fixmap gets too big and 0-day already hit a case where the fixmap PTEs were cleared by cleanup_highmap(). Aside of that the fixmap API is a pain as it's all backwards. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-22x86/cpu_entry_area: Move it to a separate unitThomas Gleixner1-0/+52
Separate the cpu_entry_area code out of cpu/common.c and the fixmap. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>