aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/process.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2018-11-28x86/speculation: Add prctl() control for indirect branch speculationThomas Gleixner1-0/+5
Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of indirect branch speculation via STIBP and IBPB. Invocations: Check indirect branch speculation status with - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0); Enable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0); Disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0); Force disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0); See Documentation/userspace-api/spec_ctrl.rst. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de
2018-11-28x86/speculation: Prevent stale SPEC_CTRL msr contentThomas Gleixner1-1/+29
The seccomp speculation control operates on all tasks of a process, but only the current task of a process can update the MSR immediately. For the other threads the update is deferred to the next context switch. This creates the following situation with Process A and B: Process A task 2 and Process B task 1 are pinned on CPU1. Process A task 2 does not have the speculation control TIF bit set. Process B task 1 has the speculation control TIF bit set. CPU0 CPU1 MSR bit is set ProcB.T1 schedules out ProcA.T2 schedules in MSR bit is cleared ProcA.T1 seccomp_update() set TIF bit on ProcA.T2 ProcB.T1 schedules in MSR is not updated <-- FAIL This happens because the context switch code tries to avoid the MSR update if the speculation control TIF bits of the incoming and the outgoing task are the same. In the worst case ProcB.T1 and ProcA.T2 are the only tasks scheduling back and forth on CPU1, which keeps the MSR stale forever. In theory this could be remedied by IPIs, but chasing the remote task which could be migrated is complex and full of races. The straight forward solution is to avoid the asychronous update of the TIF bit and defer it to the next context switch. The speculation control state is stored in task_struct::atomic_flags by the prctl and seccomp updates already. Add a new TIF_SPEC_FORCE_UPDATE bit and set this after updating the atomic_flags. Check the bit on context switch and force a synchronous update of the speculation control if set. Use the same mechanism for updating the current task. Reported-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811272247140.1875@nanos.tec.linutronix.de
2018-11-28x86/process: Consolidate and simplify switch_to_xtra() codeThomas Gleixner1-5/+7
Move the conditional invocation of __switch_to_xtra() into an inline function so the logic can be shared between 32 and 64 bit. Remove the handthrough of the TSS pointer and retrieve the pointer directly in the bitmap handling function. Use this_cpu_ptr() instead of the per_cpu() indirection. This is a preparatory change so integration of conditional indirect branch speculation optimization happens only in one place. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.280855518@linutronix.de
2018-11-28x86/speculation: Prepare for per task indirect branch speculation controlTim Chen1-2/+18
To avoid the overhead of STIBP always on, it's necessary to allow per task control of STIBP. Add a new task flag TIF_SPEC_IB and evaluate it during context switch if SMT is active and flag evaluation is enabled by the speculation control code. Add the conditional evaluation to x86_virt_spec_ctrl() as well so the guest/host switch works properly. This has no effect because TIF_SPEC_IB cannot be set yet and the static key which controls evaluation is off. Preparatory patch for adding the control code. [ tglx: Simplify the context switch logic and make the TIF evaluation depend on SMP=y and on the static key controlling the conditional update. Rename it to TIF_SPEC_IB because it controls both STIBP and IBPB ] Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.176917199@linutronix.de
2018-11-28x86/speculation: Reorganize speculation control MSRs updateTim Chen1-17/+29
The logic to detect whether there's a change in the previous and next task's flag relevant to update speculation control MSRs is spread out across multiple functions. Consolidate all checks needed for updating speculation control MSRs into the new __speculation_ctrl_update() helper function. This makes it easy to pick the right speculation control MSR and the bits in MSR_IA32_SPEC_CTRL that need updating based on TIF flags changes. Originally-by: Thomas Lendacky <Thomas.Lendacky@amd.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.151077005@linutronix.de
2018-11-28x86/speculation: Rename SSBD update functionsThomas Gleixner1-6/+6
During context switch, the SSBD bit in SPEC_CTRL MSR is updated according to changes of the TIF_SSBD flag in the current and next running task. Currently, only the bit controlling speculative store bypass disable in SPEC_CTRL MSR is updated and the related update functions all have "speculative_store" or "ssb" in their names. For enhanced mitigation control other bits in SPEC_CTRL MSR need to be updated as well, which makes the SSB names inadequate. Rename the "speculative_store*" functions to a more generic name. No functional change. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.058866968@linutronix.de
2018-07-20x86/entry/32: Enter the kernel via trampoline stackJoerg Roedel1-2/+0
Use the entry-stack as a trampoline to enter the kernel. The entry-stack is already in the cpu_entry_area and will be mapped to userspace when PTI is enabled. Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Pavel Machek <pavel@ucw.cz> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: linux-mm@kvack.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Waiman Long <llong@redhat.com> Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca> Cc: joro@8bytes.org Link: https://lkml.kernel.org/r/1531906876-13451-8-git-send-email-joro@8bytes.org
2018-05-17x86/speculation: Rework speculative_store_bypass_update()Thomas Gleixner1-2/+2
The upcoming support for the virtual SPEC_CTRL MSR on AMD needs to reuse speculative_store_bypass_update() to avoid code duplication. Add an argument for supplying a thread info (TIF) value and create a wrapper speculative_store_bypass_update_current() which is used at the existing call site. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/speculation: Add virtualized speculative store bypass disable supportTom Lendacky1-1/+12
Some AMD processors only support a non-architectural means of enabling speculative store bypass disable (SSBD). To allow a simplified view of this to a guest, an architectural definition has been created through a new CPUID bit, 0x80000008_EBX[25], and a new MSR, 0xc001011f. With this, a hypervisor can virtualize the existence of this definition and provide an architectural method for using SSBD to a guest. Add the new CPUID feature, the new MSR and update the existing SSBD support to use this MSR when present. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de>
2018-05-17x86/speculation: Handle HT correctly on AMDThomas Gleixner1-6/+119
The AMD64_LS_CFG MSR is a per core MSR on Family 17H CPUs. That means when hyperthreading is enabled the SSBD bit toggle needs to take both cores into account. Otherwise the following situation can happen: CPU0 CPU1 disable SSB disable SSB enable SSB <- Enables it for the Core, i.e. for CPU0 as well So after the SSB enable on CPU1 the task on CPU0 runs with SSB enabled again. On Intel the SSBD control is per core as well, but the synchronization logic is implemented behind the per thread SPEC_CTRL MSR. It works like this: CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL i.e. if one of the threads enables a mitigation then this affects both and the mitigation is only disabled in the core when both threads disabled it. Add the necessary synchronization logic for AMD family 17H. Unfortunately that requires a spinlock to serialize the access to the MSR, but the locks are only shared between siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/cpufeatures: Disentangle SSBD enumerationThomas Gleixner1-1/+1
The SSBD enumeration is similarly to the other bits magically shared between Intel and AMD though the mechanisms are different. Make X86_FEATURE_SSBD synthetic and set it depending on the vendor specific features or family dependent setup. Change the Intel bit to X86_FEATURE_SPEC_CTRL_SSBD to denote that SSBD is controlled via MSR_SPEC_CTRL and fix up the usage sites. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-09x86/bugs: Rename _RDS to _SSBDKonrad Rzeszutek Wilk1-4/+4
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2] as SSBD (Speculative Store Bypass Disable). Hence changing it. It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name is going to be. Following the rename it would be SSBD_NO but that rolls out to Speculative Store Bypass Disable No. Also fixed the missing space in X86_FEATURE_AMD_SSBD. [ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-03x86/process: Allow runtime control of Speculative Store BypassThomas Gleixner1-0/+22
The Speculative Store Bypass vulnerability can be mitigated with the Reduced Data Speculation (RDS) feature. To allow finer grained control of this eventually expensive mitigation a per task mitigation control is required. Add a new TIF_RDS flag and put it into the group of TIF flags which are evaluated for mismatch in switch_to(). If these bits differ in the previous and the next task, then the slow path function __switch_to_xtra() is invoked. Implement the TIF_RDS dependent mitigation control in the slow path. If the prctl for controlling Speculative Store Bypass is disabled or no task uses the prctl then there is no overhead in the switch_to() fast path. Update the KVM related speculation control functions to take TID_RDS into account as well. Based on a patch from Tim Chen. Completely rewritten. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-01-30Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-1/+0
Pull x86 cleanups from Ingo Molnar: "Misc cleanups" * 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86: Remove unused IOMMU_STRESS Kconfig x86/extable: Mark exception handler functions visible x86/timer: Don't inline __const_udelay x86/headers: Remove duplicate #includes
2018-01-18x86/mm: Rework wbinvd, hlt operation in stop_this_cpu()Tom Lendacky1-10/+15
Some issues have been reported with the for loop in stop_this_cpu() that issues the 'wbinvd; hlt' sequence. Reverting this sequence to halt() has been shown to resolve the issue. However, the wbinvd is needed when running with SME. The reason for the wbinvd is to prevent cache flush races between encrypted and non-encrypted entries that have the same physical address. This can occur when kexec'ing from memory encryption active to inactive or vice-versa. The important thing is to not have outside of kernel text memory references (such as stack usage), so the usage of the native_*() functions is needed since these expand as inline asm sequences. So instead of reverting the change, rework the sequence. Move the wbinvd instruction outside of the for loop as native_wbinvd() and make its execution conditional on X86_FEATURE_SME. In the for loop, change the asm 'wbinvd; hlt' sequence back to a halt sequence but use the native_halt() call. Fixes: bba4ed011a52 ("x86/mm, kexec: Allow kexec to be used with SME") Reported-by: Dave Young <dyoung@redhat.com> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Dave Young <dyoung@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yu Chen <yu.c.chen@intel.com> Cc: Baoquan He <bhe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: kexec@lists.infradead.org Cc: ebiederm@redhat.com Cc: Borislav Petkov <bp@alien8.de> Cc: Rui Zhang <rui.zhang@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180117234141.21184.44067.stgit@tlendack-t1.amdoffice.net
2018-01-03Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-1/+1
Pull x86 page table isolation fixes from Thomas Gleixner: "A couple of urgent fixes for PTI: - Fix a PTE mismatch between user and kernel visible mapping of the cpu entry area (differs vs. the GLB bit) and causes a TLB mismatch MCE on older AMD K8 machines - Fix the misplaced CR3 switch in the SYSCALL compat entry code which causes access to unmapped kernel memory resulting in double faults. - Fix the section mismatch of the cpu_tss_rw percpu storage caused by using a different mechanism for declaration and definition. - Two fixes for dumpstack which help to decode entry stack issues better - Enable PTI by default in Kconfig. We should have done that earlier, but it slipped through the cracks. - Exclude AMD from the PTI enforcement. Not necessarily a fix, but if AMD is so confident that they are not affected, then we should not burden users with the overhead" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/process: Define cpu_tss_rw in same section as declaration x86/pti: Switch to kernel CR3 at early in entry_SYSCALL_compat() x86/dumpstack: Print registers for first stack frame x86/dumpstack: Fix partial register dumps x86/pti: Make sure the user/kernel PTEs match x86/cpu, x86/pti: Do not enable PTI on AMD processors x86/pti: Enable PTI by default
2018-01-03x86/process: Define cpu_tss_rw in same section as declarationNick Desaulniers1-1/+1
cpu_tss_rw is declared with DECLARE_PER_CPU_PAGE_ALIGNED but then defined with DEFINE_PER_CPU_SHARED_ALIGNED leading to section mismatch warnings. Use DEFINE_PER_CPU_PAGE_ALIGNED consistently. This is necessary because it's mapped to the cpu entry area and must be page aligned. [ tglx: Massaged changelog a bit ] Fixes: 1a935bc3d4ea ("x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct") Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: thomas.lendacky@amd.com Cc: Borislav Petkov <bpetkov@suse.de> Cc: tklauser@distanz.ch Cc: minipli@googlemail.com Cc: me@kylehuey.com Cc: namit@vmware.com Cc: luto@kernel.org Cc: jpoimboe@redhat.com Cc: tj@kernel.org Cc: cl@linux.com Cc: bp@suse.de Cc: thgarnie@google.com Cc: kirill.shutemov@linux.intel.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180103203954.183360-1-ndesaulniers@google.com
2017-12-18Merge branch 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-6/+13
Pull x86 syscall entry code changes for PTI from Ingo Molnar: "The main changes here are Andy Lutomirski's changes to switch the x86-64 entry code to use the 'per CPU entry trampoline stack'. This, besides helping fix KASLR leaks (the pending Page Table Isolation (PTI) work), also robustifies the x86 entry code" * 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits) x86/cpufeatures: Make CPU bugs sticky x86/paravirt: Provide a way to check for hypervisors x86/paravirt: Dont patch flush_tlb_single x86/entry/64: Make cpu_entry_area.tss read-only x86/entry: Clean up the SYSENTER_stack code x86/entry/64: Remove the SYSENTER stack canary x86/entry/64: Move the IST stacks into struct cpu_entry_area x86/entry/64: Create a per-CPU SYSCALL entry trampoline x86/entry/64: Return to userspace from the trampoline stack x86/entry/64: Use a per-CPU trampoline stack for IDT entries x86/espfix/64: Stop assuming that pt_regs is on the entry stack x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0 x86/entry: Remap the TSS into the CPU entry area x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct x86/dumpstack: Handle stack overflow on all stacks x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss x86/kasan/64: Teach KASAN about the cpu_entry_area x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area x86/entry/gdt: Put per-CPU GDT remaps in ascending order x86/dumpstack: Add get_stack_info() support for the SYSENTER stack ...
2017-12-17x86/entry/64: Make cpu_entry_area.tss read-onlyAndy Lutomirski1-3/+3
The TSS is a fairly juicy target for exploits, and, now that the TSS is in the cpu_entry_area, it's no longer protected by kASLR. Make it read-only on x86_64. On x86_32, it can't be RO because it's written by the CPU during task switches, and we use a task gate for double faults. I'd also be nervous about errata if we tried to make it RO even on configurations without double fault handling. [ tglx: AMD confirmed that there is no problem on 64-bit with TSS RO. So it's probably safe to assume that it's a non issue, though Intel might have been creative in that area. Still waiting for confirmation. ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bpetkov@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.733700132@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17x86/entry/64: Remove the SYSENTER stack canaryAndy Lutomirski1-1/+0
Now that the SYSENTER stack has a guard page, there's no need for a canary to detect overflow after the fact. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.572577316@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0Andy Lutomirski1-0/+10
On 64-bit kernels, we used to assume that TSS.sp0 was the current top of stack. With the addition of an entry trampoline, this will no longer be the case. Store the current top of stack in TSS.sp1, which is otherwise unused but shares the same cacheline. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.050864668@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17x86/entry/64: Allocate and enable the SYSENTER stackAndy Lutomirski1-2/+0
This will simplify future changes that want scratch variables early in the SYSENTER handler -- they'll be able to spill registers to the stack. It also lets us get rid of a SWAPGS_UNSAFE_STACK user. This does not depend on CONFIG_IA32_EMULATION=y because we'll want the stack space even without IA32 emulation. As far as I can tell, the reason that this wasn't done from day 1 is that we use IST for #DB and #BP, which is IMO rather nasty and causes a lot more problems than it solves. But, since #DB uses IST, we don't actually need a real stack for SYSENTER (because SYSENTER with TF set will invoke #DB on the IST stack rather than the SYSENTER stack). I want to remove IST usage from these vectors some day, and this patch is a prerequisite for that as well. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17Merge commit 'upstream-x86-entry' into WIP.x86/mmIngo Molnar1-1/+7
Pull in a minimal set of v4.15 entry code changes, for a base for the MM isolation patches. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-12x86/headers: Remove duplicate #includesPravin Shedge1-1/+0
These duplicate includes have been found with scripts/checkincludes.pl but they have been removed manually to avoid removing false positives. Signed-off-by: Pravin Shedge <pravin.shedge4linux@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: boris.ostrovsky@oracle.com Cc: geert@linux-m68k.org Cc: jgross@suse.com Cc: linux-efi@vger.kernel.org Cc: luto@kernel.org Cc: matt@codeblueprint.co.uk Cc: thomas.lendacky@amd.com Cc: tim.c.chen@linux.intel.com Cc: xen-devel@lists.xenproject.org Link: http://lkml.kernel.org/r/1513024951-9221-1-git-send-email-pravin.shedge4linux@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-25x86/tlb: Disable interrupts when changing CR4Nadav Amit1-1/+1
CR4 modifications are implemented as RMW operations which update a shadow variable and write the result to CR4. The RMW operation is protected by preemption disable, but there is no enforcement or debugging mechanism. CR4 modifications happen also in interrupt context via __native_flush_tlb_global(). This implementation does not affect a interrupted thread context CR4 operation, because the CR4 toggle restores the original content and does not modify the shadow variable. So the current situation seems to be safe, but a recent patch tried to add an actual RMW operation in interrupt context, which will cause subtle corruptions. To prevent that and make the CR4 handling future proof: - Add a lockdep assertion to __cr4_set() which will catch interrupt enabled invocations - Disable interrupts in the cr4 manipulator inlines - Rename cr4_toggle_bits() to cr4_toggle_bits_irqsoff(). This is called from __switch_to_xtra() where interrupts are already disabled and performance matters. All other call sites are not performance critical, so the extra overhead of an additional local_irq_save/restore() pair is not a problem. If new call sites care about performance then the necessary _irqsoff() variants can be added. [ tglx: Condensed the patch by moving the irq protection inside the manipulator functions. Updated changelog ] Signed-off-by: Nadav Amit <namit@vmware.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Luck <tony.luck@intel.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: nadav.amit@gmail.com Cc: linux-edac@vger.kernel.org Link: https://lkml.kernel.org/r/20171125032907.2241-3-namit@vmware.com
2017-11-07Merge branch 'linus' into x86/asm, to pick up fixes and resolve conflictsIngo Molnar1-0/+1
Conflicts: arch/x86/kernel/cpu/Makefile Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02x86/entry/64: Stop initializing TSS.sp0 at bootAndy Lutomirski1-1/+7
In my quest to get rid of thread_struct::sp0, I want to clean up or remove all of its readers. Two of them are in cpu_init() (32-bit and 64-bit), and they aren't needed. This is because we never enter userspace at all on the threads that CPUs are initialized in. Poison the initial TSS.sp0 and stop initializing it on CPU init. The comment text mostly comes from Dave Hansen. Thanks! Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ee4a00540ad28c6cff475fbcc7769a4460acc861.1509609304.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18x86/mm, kexec: Allow kexec to be used with SMETom Lendacky1-2/+15
Provide support so that kexec can be used to boot a kernel when SME is enabled. Support is needed to allocate pages for kexec without encryption. This is needed in order to be able to reboot in the kernel in the same manner as originally booted. Additionally, when shutting down all of the CPUs we need to be sure to flush the caches and then halt. This is needed when booting from a state where SME was not active into a state where SME is active (or vice-versa). Without these steps, it is possible for cache lines to exist for the same physical location but tagged both with and without the encryption bit. This can cause random memory corruption when caches are flushed depending on which cacheline is written last. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: <kexec@lists.infradead.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b95ff075db3e7cd545313f2fb609a49619a09625.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-28arch: remove unused macro/function thread_saved_pc()Tobias Klauser1-11/+0
The only user of thread_saved_pc() in non-arch-specific code was removed in commit 8243d5597793 ("sched/core: Remove pointless printout in sched_show_task()"). Remove the implementations as well. Some architectures use thread_saved_pc() in their arch-specific code. Leave their thread_saved_pc() intact. Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-20x86/arch_prctl: Add ARCH_[GET|SET]_CPUIDKyle Huey1-0/+78
Intel supports faulting on the CPUID instruction beginning with Ivy Bridge. When enabled, the processor will fault on attempts to execute the CPUID instruction with CPL>0. Exposing this feature to userspace will allow a ptracer to trap and emulate the CPUID instruction. When supported, this feature is controlled by toggling bit 0 of MSR_MISC_FEATURES_ENABLES. It is documented in detail in Section 2.3.2 of https://bugzilla.kernel.org/attachment.cgi?id=243991 Implement a new pair of arch_prctls, available on both x86-32 and x86-64. ARCH_GET_CPUID: Returns the current CPUID state, either 0 if CPUID faulting is enabled (and thus the CPUID instruction is not available) or 1 if CPUID faulting is not enabled. ARCH_SET_CPUID: Set the CPUID state to the second argument. If cpuid_enabled is 0 CPUID faulting will be activated, otherwise it will be deactivated. Returns ENODEV if CPUID faulting is not supported on this system. The state of the CPUID faulting flag is propagated across forks, but reset upon exec. Signed-off-by: Kyle Huey <khuey@kylehuey.com> Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com> Cc: kvm@vger.kernel.org Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: linux-kselftest@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Robert O'Callahan <robert@ocallahan.org> Cc: Richard Weinberger <richard@nod.at> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Len Brown <len.brown@intel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: user-mode-linux-devel@lists.sourceforge.net Cc: Jeff Dike <jdike@addtoit.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: user-mode-linux-user@lists.sourceforge.net Cc: David Matlack <dmatlack@google.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: linux-fsdevel@vger.kernel.org Cc: Paolo Bonzini <pbonzini@redhat.com> Link: http://lkml.kernel.org/r/20170320081628.18952-9-khuey@kylehuey.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-20x86/arch_prctl: Add do_arch_prctl_common()Kyle Huey1-0/+6
Add do_arch_prctl_common() to handle arch_prctls that are not specific to 64 bit mode. Call it from the syscall entry point, but not any of the other callsites in the kernel, which all want one of the existing 64 bit only arch_prctls. Signed-off-by: Kyle Huey <khuey@kylehuey.com> Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com> Cc: kvm@vger.kernel.org Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: linux-kselftest@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Robert O'Callahan <robert@ocallahan.org> Cc: Richard Weinberger <richard@nod.at> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Len Brown <len.brown@intel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: user-mode-linux-devel@lists.sourceforge.net Cc: Jeff Dike <jdike@addtoit.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: user-mode-linux-user@lists.sourceforge.net Cc: David Matlack <dmatlack@google.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: linux-fsdevel@vger.kernel.org Cc: Paolo Bonzini <pbonzini@redhat.com> Link: http://lkml.kernel.org/r/20170320081628.18952-6-khuey@kylehuey.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-11x86/process: Optimize TIF_NOTSC switchThomas Gleixner1-18/+4
Provide and use a toggle helper instead of doing it with a branch. x86_64: arch/x86/kernel/process.o text data bss dec hex 3008 8577 16 11601 2d51 Before 2976 8577 16 11569 2d31 After i386: arch/x86/kernel/process.o text data bss dec hex 2925 8673 8 11606 2d56 Before 2893 8673 8 11574 2d36 After Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Link: http://lkml.kernel.org/r/20170214081104.9244-4-khuey@kylehuey.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-11x86/process: Correct and optimize TIF_BLOCKSTEP switchKyle Huey1-5/+7
The debug control MSR is "highly magical" as the blockstep bit can be cleared by hardware under not well documented circumstances. So a task switch relying on the bit set by the previous task (according to the previous tasks thread flags) can trip over this and not update the flag for the next task. To fix this its required to handle DEBUGCTLMSR_BTF when either the previous or the next or both tasks have the TIF_BLOCKSTEP flag set. While at it avoid branching within the TIF_BLOCKSTEP case and evaluating boot_cpu_data twice in kernels without CONFIG_X86_DEBUGCTLMSR. x86_64: arch/x86/kernel/process.o text data bss dec hex 3024 8577 16 11617 2d61 Before 3008 8577 16 11601 2d51 After i386: No change [ tglx: Made the shift value explicit, use a local variable to make the code readable and massaged changelog] Originally-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Kyle Huey <khuey@kylehuey.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Link: http://lkml.kernel.org/r/20170214081104.9244-3-khuey@kylehuey.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-11x86/process: Optimize TIF checks in __switch_to_xtra()Kyle Huey1-29/+36
Help the compiler to avoid reevaluating the thread flags for each checked bit by reordering the bit checks and providing an explicit xor for evaluation. With default defconfigs for each arch, x86_64: arch/x86/kernel/process.o text data bss dec hex 3056 8577 16 11649 2d81 Before 3024 8577 16 11617 2d61 After i386: arch/x86/kernel/process.o text data bss dec hex 2957 8673 8 11638 2d76 Before 2925 8673 8 11606 2d56 After Originally-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Kyle Huey <khuey@kylehuey.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Link: http://lkml.kernel.org/r/20170214081104.9244-2-khuey@kylehuey.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-04Merge tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-3/+3
Pull more KVM updates from Radim Krčmář: "Second batch of KVM changes for the 4.11 merge window: PPC: - correct assumption about ASDR on POWER9 - fix MMIO emulation on POWER9 x86: - add a simple test for ioperm - cleanup TSS (going through KVM tree as the whole undertaking was caused by VMX's use of TSS) - fix nVMX interrupt delivery - fix some performance counters in the guest ... and two cleanup patches" * tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: nVMX: Fix pending events injection x86/kvm/vmx: remove unused variable in segment_base() selftests/x86: Add a basic selftest for ioperm x86/asm: Tidy up TSS limit code kvm: convert kvm.users_count from atomic_t to refcount_t KVM: x86: never specify a sample period for virtualized in_tx_cp counters KVM: PPC: Book3S HV: Don't use ASDR for real-mode HPT faults on POWER9 KVM: PPC: Book3S HV: Fix software walk of guest process page tables
2017-03-02sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task_stack.h>Ingo Molnar1-0/+1
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/task_stack.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task.h>Ingo Molnar1-0/+1
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/task.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to <linux/sched/debug.h>Ingo Molnar1-0/+1
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/debug.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to <linux/sched/idle.h>Ingo Molnar1-0/+1
We are going to split <linux/sched/idle.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/idle.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-01x86/asm: Tidy up TSS limit codeAndy Lutomirski1-3/+3
In an earlier version of the patch ("x86/kvm/vmx: Defer TR reload after VM exit") that introduced TSS limit validity tracking, I confused which helper was which. On reflection, the names I chose sucked. Rename the helpers to make it more obvious what's going on and add some comments. While I'm at it, clear __tss_limit_invalid when force-reloading as well as when contitionally reloading, since any TR reload fixes the limit. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-02-21x86/kvm/vmx: Defer TR reload after VM exitAndy Lutomirski1-0/+10
Intel's VMX is daft and resets the hidden TSS limit register to 0x67 on VMX reload, and the 0x67 is not configurable. KVM currently reloads TR using the LTR instruction on every exit, but this is quite slow because LTR is serializing. The 0x67 limit is entirely harmless unless ioperm() is in use, so defer the reload until a task using ioperm() is actually running. Here's some poorly done benchmarking using kvm-unit-tests: Before: cpuid 1313 vmcall 1195 mov_from_cr8 11 mov_to_cr8 17 inl_from_pmtimer 6770 inl_from_qemu 6856 inl_from_kernel 2435 outl_to_kernel 1402 After: cpuid 1291 vmcall 1181 mov_from_cr8 11 mov_to_cr8 16 inl_from_pmtimer 6457 inl_from_qemu 6209 inl_from_kernel 2339 outl_to_kernel 1391 Signed-off-by: Andy Lutomirski <luto@kernel.org> [Force-reload TR in invalidate_tss_limit. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-12-24Replace <asm/uaccess.h> with <linux/uaccess.h> globallyLinus Torvalds1-1/+1
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-18Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-0/+1
Pull timer updates from Thomas Gleixner: "This is the last functional update from the tip tree for 4.10. It got delayed due to a newly reported and anlyzed variant of BIOS bug and the resulting wreckage: - Seperation of TSC being marked realiable and the fact that the platform provides the TSC frequency via CPUID/MSRs and making use for it for GOLDMONT. - TSC adjust MSR validation and sanitizing: The TSC adjust MSR contains the offset to the hardware counter. The sum of the adjust MSR and the counter is the TSC value which is read via RDTSC. On at least two machines from different vendors the BIOS sets the TSC adjust MSR to negative values. This happens on cold and warm boot. While on cold boot the offset is a few milliseconds, on warm boot it basically compensates the power on time of the system. The BIOSes are not even using the adjust MSR to set all CPUs in the package to the same offset. The offsets are different which renders the TSC unusable, What's worse is that the TSC deadline timer has a HW feature^Wbug. It malfunctions when the TSC adjust value is negative or greater equal 0x80000000 resulting in silent boot failures, hard lockups or non firing timers. This looks like some hardware internal 32/64bit issue with a sign extension problem. Intel has been silent so far on the issue. The update contains sanity checks and keeps the adjust register within working limits and in sync on the package. As it looks like this disease is spreading via BIOS crapware, we need to address this urgently as the boot failures are hard to debug for users" * 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/tsc: Limit the adjust value further x86/tsc: Annotate printouts as firmware bug x86/tsc: Force TSC_ADJUST register to value >= zero x86/tsc: Validate TSC_ADJUST after resume x86/tsc: Validate cpumask pointer before accessing it x86/tsc: Fix broken CONFIG_X86_TSC=n build x86/tsc: Try to adjust TSC if sync test fails x86/tsc: Prepare warp test for TSC adjustment x86/tsc: Move sync cleanup to a safe place x86/tsc: Sync test only for the first cpu in a package x86/tsc: Verify TSC_ADJUST from idle x86/tsc: Store and check TSC ADJUST MSR x86/tsc: Detect random warps x86/tsc: Use X86_FEATURE_TSC_ADJUST in detect_art() x86/tsc: Finalize the split of the TSC_RELIABLE flag x86/tsc: Set TSC_KNOWN_FREQ and TSC_RELIABLE flags on Intel Atom SoCs x86/tsc: Mark Intel ATOM_GOLDMONT TSC reliable x86/tsc: Mark TSC frequency determined by CPUID as known x86/tsc: Add X86_FEATURE_TSC_KNOWN_FREQ flag
2016-12-15x86/tsc: Validate TSC_ADJUST after resumeThomas Gleixner1-1/+1
Some 'feature' BIOSes fiddle with the TSC_ADJUST register during suspend/resume which renders the TSC unusable. Add sanity checks into the resume path and restore the original value if it was adjusted. Reported-and-tested-by: Roland Scheidegger <rscheidegger_lists@hispeed.ch> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Bruce Schlobohm <bruce.schlobohm@intel.com> Cc: Kevin Stanton <kevin.b.stanton@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Allen Hung <allen_hung@dell.com> Cc: Borislav Petkov <bp@alien8.de> Link: http://lkml.kernel.org/r/20161213131211.317654500@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-09x86: Remove empty idle.h headerThomas Gleixner1-1/+0
One include less is always a good thing(tm). Good riddance. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/20161209182912.2726-6-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-09x86/amd: Simplify AMD E400 aware idle routineBorislav Petkov1-49/+26
Reorganize the E400 detection now that we have everything in place: switch the CPUs to broadcast mode after the LAPIC has been initialized and remove the facilities that were used previously on the idle path. Unfortunately static_cpu_has_bug() cannpt be used in the E400 idle routine because alternatives have been applied when the actual detection happens, so the static switching does not take effect and the test will stay false. Use boot_cpu_has_bug() instead which is definitely an improvement over the RDMSR and the cpumask handling. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/20161209182912.2726-5-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-09x86/amd: Check for the C1E bug post ACPI subsystem initThomas Gleixner1-0/+23
AMD CPUs affected by the E400 erratum suffer from the issue that the local APIC timer stops when the CPU goes into C1E. Unfortunately there is no way to detect the affected CPUs on early boot. It's only possible to determine the range of possibly affected CPUs from the family/model range. The actual decision whether to enter C1E and thus cause the bug is done by the firmware and we need to detect that case late, after ACPI has been initialized. The current solution is to check in the idle routine whether the CPU is affected by reading the MSR_K8_INT_PENDING_MSG MSR and checking for the K8_INTP_C1E_ACTIVE_MASK bits. If one of the bits is set then the CPU is affected and the system is switched into forced broadcast mode. This is ineffective and on non-affected CPUs every entry to idle does the extra RDMSR. After doing some research it turns out that the bits are visible on the boot CPU right after the ACPI subsystem is initialized in the early boot process. So instead of polling for the bits in the idle loop, add a detection function after acpi_subsystem_init() and check for the MSR bits. If set, then the X86_BUG_AMD_APIC_C1E is set on the boot CPU and the TSC is marked unstable when X86_FEATURE_NONSTOP_TSC is not set as it will stop in C1E state as well. The switch to broadcast mode cannot be done at this point because the boot CPU still uses HPET as a clockevent device and the local APIC timer is not yet calibrated and installed. The switch to broadcast mode on the affected CPUs needs to be done when the local APIC timer is actually set up. This allows to cleanup the amd_e400_idle() function in the next step. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/20161209182912.2726-4-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-09x86/bugs: Separate AMD E400 erratum and C1E bugThomas Gleixner1-2/+1
The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E state) is a two step process: - Selection of the E400 aware idle routine - Detection whether the platform is affected The idle routine selection happens for possibly affected CPUs depending on family/model/stepping information. These range of CPUs is not necessarily affected as the decision whether to enable the C1E feature is made by the firmware. Unfortunately there is no way to query this at early boot. The current implementation polls a MSR in the E400 aware idle routine to detect whether the CPU is affected. This is inefficient on non affected CPUs because every idle entry has to do the MSR read. There is a better way to detect this before going idle for the first time which requires to seperate the bug flags: X86_BUG_AMD_E400 - Selects the E400 aware idle routine and enables the detection X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400 Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400 bug bit to select the idle routine which currently does an unconditional detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches to remove the MSR polling and simplify the handling of this misfeature. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/20161209182912.2726-3-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-29x86/tsc: Verify TSC_ADJUST from idleThomas Gleixner1-0/+1
When entering idle, it's a good oportunity to verify that the TSC_ADJUST MSR has not been tampered with (BIOS hiding SMM cycles). If tampering is detected, emit a warning and restore it to the previous value. This is especially important for machines, which mark the TSC reliable because there is no watchdog clocksource available (SoCs). This is not sufficient for HPC (NOHZ_FULL) situations where a CPU never goes idle, but adding a timer to do the check periodically is not an option either. On a machine, which has this issue, the check triggeres right during boot, so there is a decent chance that the sysadmin will notice. Rate limit the check to once per second and warn only once per cpu. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Link: http://lkml.kernel.org/r/20161119134017.732180441@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>