Age | Commit message (Collapse) | Author | Files | Lines |
|
Compute the number of PTEs to be filled for the 32-bit PSE page tables
using the page size and the size of each entry. While using the MMU's
PT32_ENT_PER_PAGE macro is arguably better in isolation, removing VMX's
usage will allow a future namespacing cleanup to move the guest page
table macros into paging_tmpl.h, out of the reach of code that isn't
directly related to shadow paging.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the per-vCPU apicv_active flag into KVM's local APIC instance.
APICv is fully dependent on an in-kernel local APIC, but that's not at
all clear when reading the current code due to the flag being stored in
the generic kvm_vcpu_arch struct.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop the unused @vcpu parameter from hwapic_isr_update(). AMD/AVIC is
unlikely to implement the helper, and VMX/APICv doesn't need the vCPU as
it operates on the current VMCS. The result is somewhat odd, but allows
for a decent amount of (future) cleanup in the APIC code.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Update vmcs12->guest_bndcfgs on intercepted writes to BNDCFGS from L2
instead of waiting until vmcs02 is synchronized to vmcs12. KVM always
intercepts BNDCFGS accesses, so the only way the value in vmcs02 can
change is via KVM's explicit VMWRITE during emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Save BNDCFGS to vmcs12 (from vmcs02) if and only if at least of one of
the load-on-entry or clear-on-exit fields for BNDCFGS is enumerated as an
allowed-1 bit in vmcs12. Skipping the field avoids an unnecessary VMREAD
when MPX is supported but not exposed to L1.
Per Intel's SDM:
If the processor supports either the 1-setting of the "load IA32_BNDCFGS"
VM-entry control or that of the "clear IA32_BNDCFGS" VM-exit control, the
contents of the IA32_BNDCFGS MSR are saved into the corresponding field.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename the fields in struct nested_vmx used to snapshot pre-VM-Enter
values to reflect that they can hold L2's values when restoring nested
state, e.g. if userspace restores MSRs before nested state. As crazy as
it seems, restoring MSRs before nested state actually works (because KVM
goes out if it's way to make it work), even though the initial MSR writes
will hit vmcs01 despite holding L2 values.
Add a related comment to vmx_enter_smm() to call out that using the
common VM-Exit and VM-Enter helpers to emulate SMI and RSM is wrong and
broken. The few MSRs that have snapshots _could_ be fixed by taking a
snapshot prior to the forced VM-Exit instead of at forced VM-Enter, but
that's just the tip of the iceberg as the rather long list of MSRs that
aren't snapshotted (hello, VM-Exit MSR load list) can't be handled this
way.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If a nested run isn't pending, snapshot vmcs01.GUEST_IA32_DEBUGCTL
irrespective of whether or not VM_ENTRY_LOAD_DEBUG_CONTROLS is set in
vmcs12. When restoring nested state, e.g. after migration, without a
nested run pending, prepare_vmcs02() will propagate
nested.vmcs01_debugctl to vmcs02, i.e. will load garbage/zeros into
vmcs02.GUEST_IA32_DEBUGCTL.
If userspace restores nested state before MSRs, then loading garbage is a
non-issue as loading DEBUGCTL will also update vmcs02. But if usersepace
restores MSRs first, then KVM is responsible for propagating L2's value,
which is actually thrown into vmcs01, into vmcs02.
Restoring L2 MSRs into vmcs01, i.e. loading all MSRs before nested state
is all kinds of bizarre and ideally would not be supported. Sadly, some
VMMs do exactly that and rely on KVM to make things work.
Note, there's still a lurking SMM bug, as propagating vmcs01's DEBUGCTL
to vmcs02 across RSM may corrupt L2's DEBUGCTL. But KVM's entire VMX+SMM
emulation is flawed as SMI+RSM should not toouch _any_ VMCS when use the
"default treatment of SMIs", i.e. when not using an SMI Transfer Monitor.
Link: https://lore.kernel.org/all/Yobt1XwOfb5M6Dfa@google.com
Fixes: 8fcc4b5923af ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If a nested run isn't pending, snapshot vmcs01.GUEST_BNDCFGS irrespective
of whether or not VM_ENTRY_LOAD_BNDCFGS is set in vmcs12. When restoring
nested state, e.g. after migration, without a nested run pending,
prepare_vmcs02() will propagate nested.vmcs01_guest_bndcfgs to vmcs02,
i.e. will load garbage/zeros into vmcs02.GUEST_BNDCFGS.
If userspace restores nested state before MSRs, then loading garbage is a
non-issue as loading BNDCFGS will also update vmcs02. But if usersepace
restores MSRs first, then KVM is responsible for propagating L2's value,
which is actually thrown into vmcs01, into vmcs02.
Restoring L2 MSRs into vmcs01, i.e. loading all MSRs before nested state
is all kinds of bizarre and ideally would not be supported. Sadly, some
VMMs do exactly that and rely on KVM to make things work.
Note, there's still a lurking SMM bug, as propagating vmcs01.GUEST_BNDFGS
to vmcs02 across RSM may corrupt L2's BNDCFGS. But KVM's entire VMX+SMM
emulation is flawed as SMI+RSM should not toouch _any_ VMCS when use the
"default treatment of SMIs", i.e. when not using an SMI Transfer Monitor.
Link: https://lore.kernel.org/all/Yobt1XwOfb5M6Dfa@google.com
Fixes: 62cf9bd8118c ("KVM: nVMX: Fix emulation of VM_ENTRY_LOAD_BNDCFGS")
Cc: stable@vger.kernel.org
Cc: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614215831.3762138-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use try_cmpxchg64 instead of cmpxchg64 (*ptr, old, new) != old
in pi_try_set_control. cmpxchg returns success in ZF flag, so this
change saves a compare after cmpxchg (and related move instruction
in front of cmpxchg):
b9: 88 44 24 60 mov %al,0x60(%rsp)
bd: 48 89 c8 mov %rcx,%rax
c0: c6 44 24 62 f2 movb $0xf2,0x62(%rsp)
c5: 48 8b 74 24 60 mov 0x60(%rsp),%rsi
ca: f0 49 0f b1 34 24 lock cmpxchg %rsi,(%r12)
d0: 48 39 c1 cmp %rax,%rcx
d3: 75 cf jne a4 <vmx_vcpu_pi_load+0xa4>
patched:
c1: 88 54 24 60 mov %dl,0x60(%rsp)
c5: c6 44 24 62 f2 movb $0xf2,0x62(%rsp)
ca: 48 8b 54 24 60 mov 0x60(%rsp),%rdx
cf: f0 48 0f b1 13 lock cmpxchg %rdx,(%rbx)
d4: 75 d5 jne ab <vmx_vcpu_pi_load+0xab>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Reported-by: kernel test robot <lkp@intel.com>
Message-Id: <20220520143737.62513-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When handling userspace MSR filter updates, recompute interception for
possible passthrough MSRs if and only if KVM wants to disabled
interception. If KVM wants to intercept accesses, i.e. the associated
bit is set in vmx->shadow_msr_intercept, then there's no need to set the
intercept again as KVM will intercept the MSR regardless of userspace's
wants.
No functional change intended, the call to vmx_enable_intercept_for_msr()
really is just a gigantic nop.
Suggested-by: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220610214140.612025-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm fixes from Paolo Bonzini:
"While last week's pull request contained miscellaneous fixes for x86,
this one covers other architectures, selftests changes, and a bigger
series for APIC virtualization bugs that were discovered during 5.20
development. The idea is to base 5.20 development for KVM on top of
this tag.
ARM64:
- Properly reset the SVE/SME flags on vcpu load
- Fix a vgic-v2 regression regarding accessing the pending state of a
HW interrupt from userspace (and make the code common with vgic-v3)
- Fix access to the idreg range for protected guests
- Ignore 'kvm-arm.mode=protected' when using VHE
- Return an error from kvm_arch_init_vm() on allocation failure
- A bunch of small cleanups (comments, annotations, indentation)
RISC-V:
- Typo fix in arch/riscv/kvm/vmid.c
- Remove broken reference pattern from MAINTAINERS entry
x86-64:
- Fix error in page tables with MKTME enabled
- Dirty page tracking performance test extended to running a nested
guest
- Disable APICv/AVIC in cases that it cannot implement correctly"
[ This merge also fixes a misplaced end parenthesis bug introduced in
commit 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC
ID or APIC base") pointed out by Sean Christopherson ]
Link: https://lore.kernel.org/all/20220610191813.371682-1-seanjc@google.com/
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (34 commits)
KVM: selftests: Restrict test region to 48-bit physical addresses when using nested
KVM: selftests: Add option to run dirty_log_perf_test vCPUs in L2
KVM: selftests: Clean up LIBKVM files in Makefile
KVM: selftests: Link selftests directly with lib object files
KVM: selftests: Drop unnecessary rule for STATIC_LIBS
KVM: selftests: Add a helper to check EPT/VPID capabilities
KVM: selftests: Move VMX_EPT_VPID_CAP_AD_BITS to vmx.h
KVM: selftests: Refactor nested_map() to specify target level
KVM: selftests: Drop stale function parameter comment for nested_map()
KVM: selftests: Add option to create 2M and 1G EPT mappings
KVM: selftests: Replace x86_page_size with PG_LEVEL_XX
KVM: x86: SVM: fix nested PAUSE filtering when L0 intercepts PAUSE
KVM: x86: SVM: drop preempt-safe wrappers for avic_vcpu_load/put
KVM: x86: disable preemption around the call to kvm_arch_vcpu_{un|}blocking
KVM: x86: disable preemption while updating apicv inhibition
KVM: x86: SVM: fix avic_kick_target_vcpus_fast
KVM: x86: SVM: remove avic's broken code that updated APIC ID
KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base
KVM: x86: document AVIC/APICv inhibit reasons
KVM: x86/mmu: Set memory encryption "value", not "mask", in shadow PDPTRs
...
|
|
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
|
|
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to show tests
x86:
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Rewrite gfn-pfn cache refresh
* Refuse starting the module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit
|
|
Neither of these settings should be changed by the guest and it is
a burden to support it in the acceleration code, so just inhibit
this code instead.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM/riscv fixes for 5.19, take #1
- Typo fix in arch/riscv/kvm/vmid.c
- Remove broken reference pattern from MAINTAINERS entry
|
|
Add an on-by-default module param, error_on_inconsistent_vmcs_config, to
allow rejecting the load of kvm_intel if an inconsistent VMCS config is
detected. Continuing on with an inconsistent, degraded config is
undesirable in the vast majority of use cases, e.g. may result in a
misconfigured VM, poor performance due to lack of fast MSR switching, or
even security issues in the unlikely event the guest is relying on MPX.
Practically speaking, an inconsistent VMCS config should never be
encountered in a production quality environment, e.g. on bare metal it
indicates a silicon defect (or a disturbing lack of validation by the
hardware vendor), and in a virtualized machine (KVM as L1) it indicates a
buggy/misconfigured L0 VMM/hypervisor.
Provide a module param to override the behavior for testing purposes, or
in the unlikely scenario that KVM is deployed on a flawed-but-usable CPU
or virtual machine.
Note, what is or isn't an inconsistency is somewhat subjective, e.g. one
might argue that LOAD_EFER without SAVE_EFER is an inconsistency. KVM's
unofficial guideline for an "inconsistency" is either scenarios that are
completely nonsensical, e.g. the existing checks on having EPT/VPID knobs
without EPT/VPID, and/or scenarios that prevent KVM from virtualizing or
utilizing a feature, e.g. the unpaired entry/exit controls checks. Other
checks that fall into one or both of the covered scenarios could be added
in the future, e.g. asserting that a VMCS control exists available if and
only if the associated feature is supported in bare metal.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220527170658.3571367-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Sanitize the VM-Entry/VM-Exit control pairs (load+load or load+clear)
during setup instead of checking both controls in a pair at runtime. If
only one control is supported, KVM will report the associated feature as
not available, but will leave the supported control bit set in the VMCS
config, which could lead to corruption of host state. E.g. if only the
VM-Entry control is supported and the feature is not dynamically toggled,
KVM will set the control in all VMCSes and load zeros without restoring
host state.
Note, while this is technically a bug fix, practically speaking no sane
CPU or VMM would support only one control. KVM's behavior of checking
both controls is mostly pedantry.
Cc: Chenyi Qiang <chenyi.qiang@intel.com>
Cc: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220527170658.3571367-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Once vPMU is disabled, the KVM would not expose features like:
PEBS (via clear kvm_pmu_cap.pebs_ept), legacy LBR and ARCH_LBR,
CPUID 0xA leaf, PDCM bit and MSR_IA32_PERF_CAPABILITIES, plus
PT_MODE_HOST_GUEST mode.
What this group of features has in common is that their use
relies on the underlying PMU counter and the host perf_event as a
back-end resource requester or sharing part of the irq delivery path.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220601031925.59693-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The BTS feature (including the ability to set the BTS and BTINT
bits in the DEBUGCTL MSR) is currently unsupported on KVM.
But we may try using the BTS facility on a PEBS enabled guest like this:
perf record -e branches:u -c 1 -d ls
and then we would encounter the following call trace:
[] unchecked MSR access error: WRMSR to 0x1d9 (tried to write 0x00000000000003c0)
at rIP: 0xffffffff810745e4 (native_write_msr+0x4/0x20)
[] Call Trace:
[] intel_pmu_enable_bts+0x5d/0x70
[] bts_event_add+0x54/0x70
[] event_sched_in+0xee/0x290
As it lacks any CPUID indicator or perf_capabilities valid bit
fields to prompt for this information, the platform would hint
the Intel BTS feature unavailable to guest by setting the
BTS_UNAVAIL bit in the IA32_MISC_ENABLE.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220601031925.59693-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull KVM fixes from Paolo Bonzini:
- syzkaller NULL pointer dereference
- TDP MMU performance issue with disabling dirty logging
- 5.14 regression with SVM TSC scaling
- indefinite stall on applying live patches
- unstable selftest
- memory leak from wrong copy-and-paste
- missed PV TLB flush when racing with emulation
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: do not report a vCPU as preempted outside instruction boundaries
KVM: x86: do not set st->preempted when going back to user space
KVM: SVM: fix tsc scaling cache logic
KVM: selftests: Make hyperv_clock selftest more stable
KVM: x86/MMU: Zap non-leaf SPTEs when disabling dirty logging
x86: drop bogus "cc" clobber from __try_cmpxchg_user_asm()
KVM: x86/mmu: Check every prev_roots in __kvm_mmu_free_obsolete_roots()
entry/kvm: Exit to user mode when TIF_NOTIFY_SIGNAL is set
KVM: Don't null dereference ops->destroy
|
|
There are cases that malicious virtual machines can cause CPU stuck (due
to event windows don't open up), e.g., infinite loop in microcode when
nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and
IRQ) can be delivered. It leads the CPU to be unavailable to host or
other VMs.
VMM can enable notify VM exit that a VM exit generated if no event
window occurs in VM non-root mode for a specified amount of time (notify
window).
Feature enabling:
- The new vmcs field SECONDARY_EXEC_NOTIFY_VM_EXITING is introduced to
enable this feature. VMM can set NOTIFY_WINDOW vmcs field to adjust
the expected notify window.
- Add a new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT so that user space
can query and enable this feature in per-VM scope. The argument is a
64bit value: bits 63:32 are used for notify window, and bits 31:0 are
for flags. Current supported flags:
- KVM_X86_NOTIFY_VMEXIT_ENABLED: enable the feature with the notify
window provided.
- KVM_X86_NOTIFY_VMEXIT_USER: exit to userspace once the exits happen.
- It's safe to even set notify window to zero since an internal hardware
threshold is added to vmcs.notify_window.
VM exit handling:
- Introduce a vcpu state notify_window_exits to records the count of
notify VM exits and expose it through the debugfs.
- Notify VM exit can happen incident to delivery of a vector event.
Allow it in KVM.
- Exit to userspace unconditionally for handling when VM_CONTEXT_INVALID
bit is set.
Nested handling
- Nested notify VM exits are not supported yet. Keep the same notify
window control in vmcs02 as vmcs01, so that L1 can't escape the
restriction of notify VM exits through launching L2 VM.
Notify VM exit is defined in latest Intel Architecture Instruction Set
Extensions Programming Reference, chapter 9.2.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Co-developed-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-5-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature. The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
All gp or fixed counters have been reprogrammed using PERF_TYPE_RAW,
which means that the table that maps perf_hw_id to event select values is
no longer useful, at least for AMD.
For Intel, the logic to check if the pmu event reported by Intel cpuid is
not available is still required, in which case pmc_perf_hw_id() could be
renamed to hw_event_is_unavail() and a bool value is returned to replace
the semantics of "PERF_COUNT_HW_MAX+1".
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Since reprogram_counter(), reprogram_{gp, fixed}_counter() currently have
the same incoming parameter "struct kvm_pmc *pmc", the callers can simplify
the conetxt by using uniformly exported interface, which makes reprogram_
{gp, fixed}_counter() static and eliminates EXPORT_SYMBOL_GPL.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Since afrer reprogram_fixed_counter() is called, it's bound to assign
the requested fixed_ctr_ctrl to pmu->fixed_ctr_ctrl, this assignment step
can be moved forward (the stale value for diff is saved extra early),
thus simplifying the passing of parameters.
No functional change intended.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-7-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Because inside reprogram_gp_counter() it is bound to assign the requested
eventel to pmc->eventsel, this assignment step can be moved forward, thus
simplifying the passing of parameters to "struct kvm_pmc *pmc" only.
No functional change intended.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Passing the reference "struct kvm_pmc *pmc" when creating
pmc->perf_event is sufficient. This change helps to simplify the
calling convention by replacing reprogram_{gp, fixed}_counter()
with reprogram_counter() seamlessly.
No functional change intended.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Whenever an MSR is part of KVM_GET_MSR_INDEX_LIST, it has to be always
retrievable and settable with KVM_GET_MSR and KVM_SET_MSR. Accept
the PMU MSRs unconditionally in intel_is_valid_msr, if the access was
host-initiated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Whenever an MSR is part of KVM_GET_MSR_INDEX_LIST, as is the case
for MSR_IA32_DS_AREA, it has to be always settable with KVM_SET_MSR.
Accept a zero value for these MSRs to obey the contract.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
MSR_CORE_PERF_GLOBAL_CTRL is introduced as part of Architecture PMU V2,
as indicated by Intel SDM 19.2.2 and the intel_is_valid_msr() function.
So in the absence of global_ctrl support, all PMCs are enabled as AMD does.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220509102204.62389-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Assigning a value to pmu->global_ctrl just to set the value of
pmu->global_ctrl_mask is more readable but does not conform to the
specification. The value is reset to zero on Power up and Reset but
stays unchanged on INIT, like most other MSRs.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220510044407.26445-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The CPUID features PDCM, DS and DTES64 are required for PEBS feature.
KVM would expose CPUID feature PDCM, DS and DTES64 to guest when PEBS
is supported in the KVM on the Ice Lake server platforms.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-18-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
For the same purpose, the leagcy intel_pmu_lbr_is_compatible() can be
renamed for reuse by more callers, and remove the comment about LBR
use case can be deleted by the way.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-17-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The information obtained from the interface perf_get_x86_pmu_capability()
doesn't change, so an exported "struct x86_pmu_capability" is introduced
for all guests in the KVM, and it's initialized before hardware_setup().
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-16-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The guest PEBS will be disabled when some users try to perf KVM and
its user-space through the same PEBS facility OR when the host perf
doesn't schedule the guest PEBS counter in a one-to-one mapping manner
(neither of these are typical scenarios).
The PEBS records in the guest DS buffer are still accurate and the
above two restrictions will be checked before each vm-entry only if
guest PEBS is deemed to be enabled.
Suggested-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-15-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The bit 12 represents "Processor Event Based Sampling Unavailable (RO)" :
1 = PEBS is not supported.
0 = PEBS is supported.
A write to this PEBS_UNAVL available bit will bring #GP(0) when guest PEBS
is enabled. Some PEBS drivers in guest may care about this bit.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20220411101946.20262-13-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the adaptive
PEBS is supported. The PEBS_DATA_CFG MSR and adaptive record enable
bits (IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.
FCx_Adaptive_Record) are also supported.
Adaptive PEBS provides software the capability to configure the PEBS
records to capture only the data of interest, keeping the record size
compact. An overflow of PMCx results in generation of an adaptive PEBS
record with state information based on the selections specified in
MSR_PEBS_DATA_CFG.By default, the record only contain the Basic group.
When guest adaptive PEBS is enabled, the IA32_PEBS_ENABLE MSR will
be added to the perf_guest_switch_msr() and switched during the VMX
transitions just like CORE_PERF_GLOBAL_CTRL MSR.
According to Intel SDM, software is recommended to PEBS Baseline
when the following is true. IA32_PERF_CAPABILITIES.PEBS_BASELINE[14]
&& IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When CPUID.01H:EDX.DS[21] is set, the IA32_DS_AREA MSR exists and points
to the linear address of the first byte of the DS buffer management area,
which is used to manage the PEBS records.
When guest PEBS is enabled, the MSR_IA32_DS_AREA MSR will be added to the
perf_guest_switch_msr() and switched during the VMX transitions just like
CORE_PERF_GLOBAL_CTRL MSR. The WRMSR to IA32_DS_AREA MSR brings a #GP(0)
if the source register contains a non-canonical address.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-11-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].
When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.
Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The mask value of fixed counter control register should be dynamic
adjusted with the number of fixed counters. This patch introduces a
variable that includes the reserved bits of fixed counter control
registers. This is a generic code refactoring.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
On Intel platforms, the software can use the IA32_MISC_ENABLE[7] bit to
detect whether the processor supports performance monitoring facility.
It depends on the PMU is enabled for the guest, and a software write
operation to this available bit will be ignored. The proposal to ignore
the toggle in KVM is the way to go and that behavior matches bare metal.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Splitting the logic for determining the guest values is unnecessarily
confusing, and potentially fragile. Perf should have full knowledge and
control of what values are loaded for the guest.
If we change .guest_get_msrs() to take a struct kvm_pmu pointer, then it
can generate the full set of guest values by grabbing guest ds_area and
pebs_data_cfg. Alternatively, .guest_get_msrs() could take the desired
guest MSR values directly (ds_area and pebs_data_cfg), but kvm_pmu is
vendor agnostic, so we don't see any reason to not just pass the pointer.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.
A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().
Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.
Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove the condition check cpu_has_secondary_exec_ctrls(). Calling
vmx_refresh_apicv_exec_ctrl() premises secondary controls activated
and VMCS fields related to APICv valid as well. If it's invoked in
wrong circumstance at the worst case, VMX operation will report
VMfailValid error without further harmful impact and just functions
as if all the secondary controls were 0.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153604.11786-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add tertiary_exec_control field report in dump_vmcs(). Meanwhile,
reorganize the dump output of VMCS category as follows.
Before change:
*** Control State ***
PinBased=0x000000ff CPUBased=0xb5a26dfa SecondaryExec=0x061037eb
EntryControls=0000d1ff ExitControls=002befff
After change:
*** Control State ***
CPUBased=0xb5a26dfa SecondaryExec=0x061037eb TertiaryExec=0x0000000000000010
PinBased=0x000000ff EntryControls=0000d1ff ExitControls=002befff
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153441.11687-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Check VMX features on tertiary execution control in VMCS config setup.
Sub-features in tertiary execution control to be enabled are adjusted
according to hardware capabilities although no sub-feature is enabled
in this patch.
EVMCSv1 doesn't support tertiary VM-execution control, so disable it
when EVMCSv1 is in use. And define the auxiliary functions for Tertiary
control field here, using the new BUILD_CONTROLS_SHADOW().
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153400.11642-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The Tertiary VM-Exec Control, different from previous control fields, is 64
bit. So extend BUILD_CONTROLS_SHADOW() by adding a 'bit' parameter, to
support both 32 bit and 64 bit fields' auxiliary functions building.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153318.11595-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In the IRQ injection tracepoint, differentiate between Hard IRQs and Soft
"IRQs", i.e. interrupts that are reinjected after incomplete delivery of
a software interrupt from an INTn instruction. Tag reinjected interrupts
as such, even though the information is usually redundant since soft
interrupts are only ever reinjected by KVM. Though rare in practice, a
hard IRQ can be reinjected.
Signed-off-by: Sean Christopherson <seanjc@google.com>
[MSS: change "kvm_inj_virq" event "reinjected" field type to bool]
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <9664d49b3bd21e227caa501cff77b0569bebffe2.1651440202.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|