aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/physaddr.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-07-14x86/mm: Audit and remove any unnecessary uses of module.hPaul Gortmaker1-1/+1
Historically a lot of these existed because we did not have a distinction between what was modular code and what was providing support to modules via EXPORT_SYMBOL and friends. That changed when we forked out support for the latter into the export.h file. This means we should be able to reduce the usage of module.h in code that is obj-y Makefile or bool Kconfig. The advantage in doing so is that module.h itself sources about 15 other headers; adding significantly to what we feed cpp, and it can obscure what headers we are effectively using. Since module.h was the source for init.h (for __init) and for export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance for the presence of either and replace accordingly where needed. Note that some bool/obj-y instances remain since module.h is the header for some exception table entry stuff, and for things like __init_or_module (code that is tossed when MODULES=n). Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160714001901.31603-3-paul.gortmaker@windriver.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-01-25x86, mm: Make DEBUG_VIRTUAL work earlier in bootDave Hansen1-1/+8
The KVM code has some repeated bugs in it around use of __pa() on per-cpu data. Those data are not in an area on which using __pa() is valid. However, they are also called early enough in boot that __vmalloc_start_set is not set, and thus the CONFIG_DEBUG_VIRTUAL debugging does not catch them. This adds a check to also verify __pa() calls against max_low_pfn, which we can use earler in boot than is_vmalloc_addr(). However, if we are super-early in boot, max_low_pfn=0 and this will trip on every call, so also make sure that max_low_pfn is set before we try to use it. With this patch applied, CONFIG_DEBUG_VIRTUAL will actually catch the bug I was chasing (and fix later in this series). I'd love to find a generic way so that any __pa() call on percpu areas could do a BUG_ON(), but there don't appear to be any nice and easy ways to check if an address is a percpu one. Anybody have ideas on a way to do this? Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20130122212430.F46F8159@kernel.stglabs.ibm.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-16x86: Make it so that __pa_symbol can only process kernel symbols on x86_64Alexander Duyck1-0/+11
I submitted an earlier patch that make __phys_addr an inline. This obviously results in an increase in the code size. One step I can take to reduce that is to make it so that the __pa_symbol call does a direct translation for kernel addresses instead of covering all of virtual memory. On my system this reduced the size for __pa_symbol from 5 instructions totalling 30 bytes to 3 instructions totalling 16 bytes. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Link: http://lkml.kernel.org/r/20121116215356.8521.92472.stgit@ahduyck-cp1.jf.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-16x86: Improve __phys_addr performance by making use of carry flags and inliningAlexander Duyck1-15/+25
This patch is meant to improve overall system performance when making use of the __phys_addr call. To do this I have implemented several changes. First if CONFIG_DEBUG_VIRTUAL is not defined __phys_addr is made an inline, similar to how this is currently handled in 32 bit. However in order to do this it is required to export phys_base so that it is available if __phys_addr is used in kernel modules. The second change was to streamline the code by making use of the carry flag on an add operation instead of performing a compare on a 64 bit value. The advantage to this is that it allows us to significantly reduce the overall size of the call. On my Xeon E5 system the entire __phys_addr inline call consumes a little less than 32 bytes and 5 instructions. I also applied similar logic to the debug version of the function. My testing shows that the debug version of the function with this patch applied is slightly faster than the non-debug version without the patch. Finally I also applied the same logic changes to __virt_addr_valid since it used the same general code flow as __phys_addr and could achieve similar gains though these changes. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Link: http://lkml.kernel.org/r/20121116215315.8521.46270.stgit@ahduyck-cp1.jf.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2009-09-10x86: split __phys_addr out into separate fileJeremy Fitzhardinge1-0/+70
Split __phys_addr out into its own file so we can disable -fstack-protector in a fine-grained fashion. Also it doesn't have terribly much to do with the rest of ioremap.c. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>