aboutsummaryrefslogtreecommitdiffstats
path: root/block/keyslot-manager.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2020-11-20block/keyslot-manager: prevent crash when num_slots=1Eric Biggers1-0/+7
If there is only one keyslot, then blk_ksm_init() computes slot_hashtable_size=1 and log_slot_ht_size=0. This causes blk_ksm_find_keyslot() to crash later because it uses hash_ptr(key, log_slot_ht_size) to find the hash bucket containing the key, and hash_ptr() doesn't support the bits == 0 case. Fix this by making the hash table always have at least 2 buckets. Tested by running: kvm-xfstests -c ext4 -g encrypt -m inlinecrypt \ -o blk-crypto-fallback.num_keyslots=1 Fixes: 1b2628397058 ("block: Keyslot Manager for Inline Encryption") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-06-29block/keyslot-manager: use kvfree_sensitive()Eric Biggers1-2/+1
Make blk_ksm_destroy() use the kvfree_sensitive() function (which was introduced in v5.8-rc1) instead of open-coding it. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-05-14block: Make blk-integrity preclude hardware inline encryptionSatya Tangirala1-0/+19
Whenever a device supports blk-integrity, make the kernel pretend that the device doesn't support inline encryption (essentially by setting the keyslot manager in the request queue to NULL). There's no hardware currently that supports both integrity and inline encryption. However, it seems possible that there will be such hardware in the near future (like the NVMe key per I/O support that might support both inline encryption and PI). But properly integrating both features is not trivial, and without real hardware that implements both, it is difficult to tell if it will be done correctly by the majority of hardware that support both. So it seems best not to support both features together right now, and to decide what to do at probe time. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-05-14block: Keyslot Manager for Inline EncryptionSatya Tangirala1-0/+378
Inline Encryption hardware allows software to specify an encryption context (an encryption key, crypto algorithm, data unit num, data unit size) along with a data transfer request to a storage device, and the inline encryption hardware will use that context to en/decrypt the data. The inline encryption hardware is part of the storage device, and it conceptually sits on the data path between system memory and the storage device. Inline Encryption hardware implementations often function around the concept of "keyslots". These implementations often have a limited number of "keyslots", each of which can hold a key (we say that a key can be "programmed" into a keyslot). Requests made to the storage device may have a keyslot and a data unit number associated with them, and the inline encryption hardware will en/decrypt the data in the requests using the key programmed into that associated keyslot and the data unit number specified with the request. As keyslots are limited, and programming keys may be expensive in many implementations, and multiple requests may use exactly the same encryption contexts, we introduce a Keyslot Manager to efficiently manage keyslots. We also introduce a blk_crypto_key, which will represent the key that's programmed into keyslots managed by keyslot managers. The keyslot manager also functions as the interface that upper layers will use to program keys into inline encryption hardware. For more information on the Keyslot Manager, refer to documentation found in block/keyslot-manager.c and linux/keyslot-manager.h. Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>