aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/intel_pstate.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2018-02-08cpufreq: intel_pstate: Enable HWP during system resume on CPU0Chen Yu1-0/+5
When maxcpus=1 is in the kernel command line, the BP is responsible for re-enabling the HWP - because currently only the APs invoke intel_pstate_hwp_enable() during their online process - which might put the system into unstable state after resume. Fix this by enabling the HWP explicitly on BP during resume. Reported-by: Doug Smythies <dsmythies@telus.net> Suggested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Yu Chen <yu.c.chen@intel.com> [ rjw: Subject/changelog, minor modifications ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-01-11cpufreq: intel_pstate: Add Skylake servers supportSrinivas Pandruvada1-0/+1
Currently intel_pstate can function only in HWP mode on Skylake servers. When HWP feature is not enabled on the processor then acpi-cpufreq is driver is used. Based on the power and performance tests using intel_pstate scaling algorithm the results are comparable. But intel_pstate brings in additional features: - Display of turbo frequency range, which many users like to see - Place limits in the turbo frequency range when platform allows Since these tests are done only using non PID algorithm introduced in kernel version 4.14, this patch is not a backport candidate. So each user has to carefully weigh the benefits before he backports. Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-01-11cpufreq: intel_pstate: Replace bxt_funcs with core_funcsSrinivas Pandruvada1-11/+2
Since core_funcs and bxt_funcs have same set of callbacks, replace bxt_funcs with core_funcs. Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-09-05Merge tag 'acpi-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pmLinus Torvalds1-39/+25
Pull ACPI updates from Rafael Wysocki: "These include a usual ACPICA code update (this time to upstream revision 20170728), a fix for a boot crash on some systems with Thunderbolt devices connected at boot time, a rework of the handling of PCI bridges when setting up device wakeup, new support for Apple device properties, support for DMA configurations reported via ACPI on ARM64, APEI-related updates, ACPI EC driver updates and assorted minor modifications in several places. Specifics: - Update the ACPICA code in the kernel to upstream revision 20170728 including: * Alias operator handling update (Bob Moore). * Deferred resolution of reference package elements (Bob Moore). * Support for the _DMA method in walk resources (Bob Moore). * Tables handling update and support for deferred table verification (Lv Zheng). * Update of SMMU models for IORT (Robin Murphy). * Compiler and disassembler updates (Alex James, Erik Schmauss, Ganapatrao Kulkarni, James Morse). * Tools updates (Erik Schmauss, Lv Zheng). * Assorted minor fixes and cleanups (Bob Moore, Kees Cook, Lv Zheng, Shao Ming). - Rework the initialization of non-wakeup GPEs with method handlers in order to address a boot crash on some systems with Thunderbolt devices connected at boot time where we miss an early hotplug event due to a delay in GPE enabling (Rafael Wysocki). - Rework the handling of PCI bridges when setting up ACPI-based device wakeup in order to avoid disabling wakeup for bridges prematurely (Rafael Wysocki). - Consolidate Apple DMI checks throughout the tree, add support for Apple device properties to the device properties framework and use these properties for the handling of I2C and SPI devices on Apple systems (Lukas Wunner). - Add support for _DMA to the ACPI-based device properties lookup code and make it possible to use the information from there to configure DMA regions on ARM64 systems (Lorenzo Pieralisi). - Fix several issues in the APEI code, add support for exporting the BERT error region over sysfs and update APEI MAINTAINERS entry with reviewers information (Borislav Petkov, Dongjiu Geng, Loc Ho, Punit Agrawal, Tony Luck, Yazen Ghannam). - Fix a potential initialization ordering issue in the ACPI EC driver and clean it up somewhat (Lv Zheng). - Update the ACPI SPCR driver to extend the existing XGENE 8250 workaround in it to a new platform (m400) and to work around an Xgene UART clock issue (Graeme Gregory). - Add a new utility function to the ACPI core to support using ACPI OEM ID / OEM Table ID / Revision for system identification in blacklisting or similar and switch over the existing code already using this information to this new interface (Toshi Kani). - Fix an xpower PMIC issue related to GPADC reads that always return 0 without extra pin manipulations (Hans de Goede). - Add statements to print debug messages in a couple of places in the ACPI core for easier diagnostics (Rafael Wysocki). - Clean up the ACPI processor driver slightly (Colin Ian King, Hanjun Guo). - Clean up the ACPI x86 boot code somewhat (Andy Shevchenko). - Add a quirk for Dell OptiPlex 9020M to the ACPI backlight driver (Alex Hung). - Assorted fixes, cleanups and updates related to ACPI (Amitoj Kaur Chawla, Bhumika Goyal, Frank Rowand, Jean Delvare, Punit Agrawal, Ronald Tschalär, Sumeet Pawnikar)" * tag 'acpi-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (75 commits) ACPI / APEI: Suppress message if HEST not present intel_pstate: convert to use acpi_match_platform_list() ACPI / blacklist: add acpi_match_platform_list() ACPI, APEI, EINJ: Subtract any matching Register Region from Trigger resources ACPI: make device_attribute const ACPI / sysfs: Extend ACPI sysfs to provide access to boot error region ACPI: APEI: fix the wrong iteration of generic error status block ACPI / processor: make function acpi_processor_check_duplicates() static ACPI / EC: Clean up EC GPE mask flag ACPI: EC: Fix possible issues related to EC initialization order ACPI / PM: Add debug statements to acpi_pm_notify_handler() ACPI: Add debug statements to acpi_global_event_handler() ACPI / scan: Enable GPEs before scanning the namespace ACPICA: Make it possible to enable runtime GPEs earlier ACPICA: Dispatch active GPEs at init time ACPI: SPCR: work around clock issue on xgene UART ACPI: SPCR: extend XGENE 8250 workaround to m400 ACPI / LPSS: Don't abort ACPI scan on missing mem resource mailbox: pcc: Drop uninformative output during boot ACPI/IORT: Add IORT named component memory address limits ...
2017-09-04Merge branch 'intel_pstate'Rafael J. Wysocki1-300/+20
* intel_pstate: cpufreq: intel_pstate: Shorten a couple of long names cpufreq: intel_pstate: Simplify intel_pstate_adjust_pstate() cpufreq: intel_pstate: Improve IO performance with per-core P-states cpufreq: intel_pstate: Drop INTEL_PSTATE_HWP_SAMPLING_INTERVAL cpufreq: intel_pstate: Drop ->update_util from pstate_funcs cpufreq: intel_pstate: Do not use PID-based P-state selection
2017-09-04Merge branch 'pm-cpufreq-sched'Rafael J. Wysocki1-0/+8
* pm-cpufreq-sched: cpufreq: schedutil: Always process remote callback with slow switching cpufreq: schedutil: Don't restrict kthread to related_cpus unnecessarily cpufreq: Return 0 from ->fast_switch() on errors cpufreq: Simplify cpufreq_can_do_remote_dvfs() cpufreq: Process remote callbacks from any CPU if the platform permits sched: cpufreq: Allow remote cpufreq callbacks cpufreq: schedutil: Use unsigned int for iowait boost cpufreq: schedutil: Make iowait boost more energy efficient
2017-09-04Merge branch 'pm-cpufreq'Rafael J. Wysocki1-2/+0
* pm-cpufreq: (33 commits) cpufreq: imx6q: Fix imx6sx low frequency support cpufreq: speedstep-lib: make several arrays static, makes code smaller cpufreq: ti: Fix 'of_node_put' being called twice in error handling path cpufreq: dt-platdev: Drop few entries from whitelist cpufreq: dt-platdev: Automatically create cpufreq device with OPP v2 ARM: ux500: don't select CPUFREQ_DT cpufreq: Convert to using %pOF instead of full_name cpufreq: Cap the default transition delay value to 10 ms cpufreq: dbx500: Delete obsolete driver mfd: db8500-prcmu: Get rid of cpufreq dependency cpufreq: enable the DT cpufreq driver on the Ux500 cpufreq: Loongson2: constify platform_device_id cpufreq: dt: Add r8a7796 support to to use generic cpufreq driver cpufreq: remove setting of policy->cpu in policy->cpus during init cpufreq: mediatek: add support of cpufreq to MT7622 SoC cpufreq: mediatek: add cleanups with the more generic naming cpufreq: rcar: Add support for R8A7795 SoC cpufreq: dt: Add rk3328 compatible to use generic cpufreq driver cpufreq: s5pv210: add missing of_node_put() cpufreq: Allow dynamic switching with CPUFREQ_ETERNAL latency ...
2017-08-29intel_pstate: convert to use acpi_match_platform_list()Toshi Kani1-39/+25
Convert to use acpi_match_platform_list() for the platform check. There is no change in functionality. Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Reviewed-by: Borislav Petkov <bp@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-21Merge back intel_pstate material for v4.14.Rafael J. Wysocki1-296/+20
2017-08-18cpufreq: remove setting of policy->cpu in policy->cpus during initSudeep Holla1-1/+0
policy->cpu is copied into policy->cpus in cpufreq_online() before calling into cpufreq_driver->init(). So there's no need to set the same in the individual driver init() functions again. This patch removes the redundant setting of policy->cpu in policy->cpus in intel_pstate and cppc drivers. Reported-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-11cpufreq: intel_pstate: report correct CPU frequencies during traceDoug Smythies1-2/+1
The intel_pstate CPU frequency scaling driver has always calculated CPU frequency incorrectly. Recent changes have eliminted most of the issues, however the frequency reported in the trace buffer, if used, is incorrect. It remains desireable that cpu->pstate.scaling still be a nice round number for things such as when setting max and min frequencies. So the proposal is to just fix the reported frequency in the trace data. Fixes what remains of [1]. Link: https://bugzilla.kernel.org/show_bug.cgi?id=96521 # [1] Signed-off-by: Doug Smythies <dsmythies@telus.net> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-10cpufreq: intel_pstate: Shorten a couple of long namesRafael J. Wysocki1-4/+4
The names of the INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL symbol and the get_target_pstate_use_cpu_load() function don't need to be so long any more, so make them shorter. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-10cpufreq: intel_pstate: Simplify intel_pstate_adjust_pstate()Rafael J. Wysocki1-7/+5
Since there is only one P-state selection routine in intel_pstate now, make intel_pstate_adjust_pstate() call it directly and drop the target_pstate argument from that function. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-04Merge v4.13 intel_pstate fixes.Rafael J. Wysocki1-8/+0
2017-08-04cpufreq: intel_pstate: Improve IO performance with per-core P-statesSrinivas Pandruvada1-0/+10
In the current implementation, the response latency between seeing SCHED_CPUFREQ_IOWAIT set and the actual P-state adjustment can be up to 10ms. It can be reduced by bumping up the P-state to the max at the time SCHED_CPUFREQ_IOWAIT is passed to intel_pstate_update_util(). With this change, the IO performance improves significantly. For a simple "grep -r . linux" (Here linux is the kernel source folder) with caches dropped every time on a Broadwell Xeon workstation with per-core P-states, the user and system time is shorter by as much as 30% - 40%. The same performance difference was not observed on clients that don't support per-core P-state. Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-03Merge branches 'pm-cpufreq-x86', 'pm-cpufreq-docs' and 'intel_pstate'Rafael J. Wysocki1-8/+0
* pm-cpufreq-x86: cpufreq: x86: Make scaling_cur_freq behave more as expected * pm-cpufreq-docs: cpufreq: docs: Add missing cpuinfo_cur_freq description * intel_pstate: cpufreq: intel_pstate: Drop ->get from intel_pstate structure
2017-08-01sched: cpufreq: Allow remote cpufreq callbacksViresh Kumar1-0/+8
With Android UI and benchmarks the latency of cpufreq response to certain scheduling events can become very critical. Currently, callbacks into cpufreq governors are only made from the scheduler if the target CPU of the event is the same as the current CPU. This means there are certain situations where a target CPU may not run the cpufreq governor for some time. One testcase to show this behavior is where a task starts running on CPU0, then a new task is also spawned on CPU0 by a task on CPU1. If the system is configured such that the new tasks should receive maximum demand initially, this should result in CPU0 increasing frequency immediately. But because of the above mentioned limitation though, this does not occur. This patch updates the scheduler core to call the cpufreq callbacks for remote CPUs as well. The schedutil, ondemand and conservative governors are updated to process cpufreq utilization update hooks called for remote CPUs where the remote CPU is managed by the cpufreq policy of the local CPU. The intel_pstate driver is updated to always reject remote callbacks. This is tested with couple of usecases (Android: hackbench, recentfling, galleryfling, vellamo, Ubuntu: hackbench) on ARM hikey board (64 bit octa-core, single policy). Only galleryfling showed minor improvements, while others didn't had much deviation. The reason being that this patch only targets a corner case, where following are required to be true to improve performance and that doesn't happen too often with these tests: - Task is migrated to another CPU. - The task has high demand, and should take the target CPU to higher OPPs. - And the target CPU doesn't call into the cpufreq governor until the next tick. Based on initial work from Steve Muckle. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Saravana Kannan <skannan@codeaurora.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-08-01cpufreq: intel_pstate: Drop INTEL_PSTATE_HWP_SAMPLING_INTERVALRafael J. Wysocki1-1/+0
After commit 62611cb912f7 (intel_pstate: delete scheduler hook in HWP mode) the INTEL_PSTATE_HWP_SAMPLING_INTERVAL is not used anywhere in the code, so drop it. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-27cpufreq: intel_pstate: Drop ->get from intel_pstate structureRafael J. Wysocki1-8/+0
The ->get callback in the intel_pstate structure was mostly there for the scaling_cur_freq sysfs attribute to work, but after commit f8475cef9008 (x86: use common aperfmperf_khz_on_cpu() to calculate KHz using APERF/MPERF) that attribute uses arch_freq_get_on_cpu() provided by the x86 arch code on all processors supported by intel_pstate, so it doesn't need the ->get callback from the driver any more. Moreover, the very presence of the ->get callback in the intel_pstate structure causes the cpuinfo_cur_freq attribute to be present when intel_pstate operates in the active mode, which is bogus, because the role of that attribute is to return the current CPU frequency as seen by the hardware. For intel_pstate, though, this is just an average frequency and not really current, but computed for the previous sampling interval (the actual current frequency may be way different at the point this value is obtained by reading from cpuinfo_cur_freq), and after commit 82b4e03e01bc (intel_pstate: skip scheduler hook when in "performance" mode) the value in cpuinfo_cur_freq may be stale or just 0, depending on the driver's operation mode. In fact, however, on the hardware supported by intel_pstate there is no way to read the current CPU frequency from it, so the cpuinfo_cur_freq attribute should not be present at all when this driver is in use. For this reason, drop intel_pstate_get() and clear the ->get callback pointer pointing to it, so that the cpuinfo_cur_freq is not present for intel_pstate in the active mode any more. Fixes: 82b4e03e01bc (intel_pstate: skip scheduler hook when in "performance" mode) Reported-by: Huaisheng Ye <yehs1@lenovo.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2017-07-26cpufreq: intel_pstate: Drop ->update_util from pstate_funcsRafael J. Wysocki1-13/+2
All systems use the same P-state selection "powersave" algorithm in the active mode if HWP is not used, so there's no need to provide a pointer for it in struct pstate_funcs any more. Drop ->update_util from struct pstate_funcs and make intel_pstate_set_update_util_hook() use intel_pstate_update_util() directly. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-26cpufreq: intel_pstate: Do not use PID-based P-state selectionRafael J. Wysocki1-274/+2
All systems with a defined ACPI preferred profile that are not "servers" have been using the load-based P-state selection algorithm in intel_pstate since 4.12-rc1 (mobile systems and laptops have been using it since 4.10-rc1) and no problems with it have been reported to date. In particular, no regressions with respect to the PID-based P-state selection have been reported. Also testing indicates that the P-state selection algorithm based on CPU load is generally on par with the PID-based algorithm performance-wise, and for some workloads it turns out to be better than the other one, while being more straightforward and easier to understand at the same time. Moreover, the PID-based P-state selection algorithm in intel_pstate is known to be unstable in some situation and generally problematic, the issues with it are hard to address and it has become a significant maintenance burden. For these reasons, make intel_pstate use the "powersave" P-state selection algorithm based on CPU load in the active mode on all systems and drop the PID-based P-state selection code along with all things related to it from the driver. Also update the documentation accordingly. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-26cpufreq: Don't set transition_latency for setpolicy driversViresh Kumar1-1/+0
The transition_latency field isn't used for drivers with ->setpolicy() callback present and there is no point setting it from the drivers. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-20Merge branches 'intel_pstate' and 'pm-domains'Rafael J. Wysocki1-2/+19
* intel_pstate: cpufreq: intel_pstate: Correct the busy calculation for KNL * pm-domains: PM / Domains: defer dev_pm_domain_set() until genpd->attach_dev succeeds if present
2017-07-14Merge branches 'pm-cpufreq-sched' and 'intel_pstate'Rafael J. Wysocki1-1/+1
* pm-cpufreq-sched: cpufreq: schedutil: Fix sugov_start() versus sugov_update_shared() race * intel_pstate: cpufreq: intel_pstate: Fix ratio setting for min_perf_pct
2017-07-14cpufreq: intel_pstate: Correct the busy calculation for KNLSrinivas Pandruvada1-2/+19
The busy percent calculated for the Knights Landing (KNL) platform is 1024 times smaller than the correct busy value. This causes performance to get stuck at the lowest ratio. The scaling algorithm used for KNL is performance-based, but it still looks at the CPU load to set the scaled busy factor to 0 when the load is less than 1 percent. In this case, since the computed load is 1024x smaller than it should be, the scaled busy factor will always be 0, irrespective of CPU business. This needs a fix similar to the turbostat one in commit b2b34dfe4d9a (tools/power turbostat: KNL workaround for %Busy and Avg_MHz). For this reason, add one more callback to processor-specific callbacks to specify an MPERF multiplier represented by a number of bit positions to shift the value of that register to the left to copmensate for its rate difference with respect to the TSC. This shift value is used during CPU busy calculations. Fixes: ffb810563c (intel_pstate: Avoid getting stuck in high P-states when idle) Reported-and-tested-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: 4.6+ <stable@vger.kernel.org> # 4.6+ [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-12cpufreq: intel_pstate: Fix ratio setting for min_perf_pctSrinivas Pandruvada1-1/+1
When the minimum performance limit percentage is set to the power-up default, it is possible that minimum performance ratio is off by one. In the set_policy() callback the minimum ratio is calculated by applying global.min_perf_pct to turbo_ratio and rounding up, but the power-up default global.min_perf_pct is already rounded up to the next percent in min_perf_pct_min(). That results in two round up operations, so for the default min_perf_pct one of them is not required. It is better to remove rounding up in min_perf_pct_min() as this matches the displayed min_perf_pct prior to commit c5a2ee7dde89 (cpufreq: intel_pstate: Active mode P-state limits rework) in 4.12. For example on a platform with max turbo ratio of 37 and minimum ratio of 10, the min_perf_pct resulted in 28 with the above commit. Before this commit it was 27 and it will be the same after this change. Fixes: 1a4fe38add8b (cpufreq: intel_pstate: Remove max/min fractions to limit performance) Reported-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-10Merge branches 'pm-domains', 'pm-sleep' and 'pm-cpufreq'Rafael J. Wysocki1-1/+1
* pm-domains: PM / Domains: provide pm_genpd_poweroff_noirq() stub Revert "PM / Domains: Handle safely genpd_syscore_switch() call on non-genpd device" * pm-sleep: PM / sleep: constify attribute_group structures * pm-cpufreq: cpufreq: intel_pstate: constify attribute_group structures cpufreq: cpufreq_stats: constify attribute_group structures
2017-07-04cpufreq: intel_pstate: constify attribute_group structuresArvind Yadav1-1/+1
attribute_groups are not supposed to change at runtime. All functions working with attribute_groups provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const. File size before: text data bss dec hex filename 15197 2552 40 17789 457d drivers/cpufreq/intel_pstate.o File size After adding 'const': text data bss dec hex filename 15261 2488 40 17789 457d drivers/cpufreq/intel_pstate.o Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-03Merge branches 'pm-cpufreq', 'intel_pstate' and 'pm-cpuidle'Rafael J. Wysocki1-70/+68
* pm-cpufreq: cpufreq / CPPC: Initialize policy->min to lowest nonlinear performance cpufreq: sfi: make freq_table static cpufreq: exynos5440: Fix inconsistent indenting cpufreq: imx6q: imx6ull should use the same flow as imx6ul cpufreq: dt: Add support for hi3660 * intel_pstate: cpufreq: Update scaling_cur_freq documentation cpufreq: intel_pstate: Clean up after performance governor changes intel_pstate: skip scheduler hook when in "performance" mode intel_pstate: delete scheduler hook in HWP mode x86: use common aperfmperf_khz_on_cpu() to calculate KHz using APERF/MPERF cpufreq: intel_pstate: Remove max/min fractions to limit performance x86: do not use cpufreq_quick_get() for /proc/cpuinfo "cpu MHz" * pm-cpuidle: cpuidle: menu: allow state 0 to be disabled intel_idle: Use more common logging style x86/ACPI/cstate: Allow ACPI C1 FFH MWAIT use on AMD systems ARM: cpuidle: Support asymmetric idle definition
2017-07-03Merge branch 'pm-tools'Rafael J. Wysocki1-19/+15
* pm-tools: cpupower: Add support for new AMD family 0x17 cpupower: Fix bug where return value was not used tools/power turbostat: update version number tools/power turbostat: decode MSR_IA32_MISC_ENABLE only on Intel tools/power turbostat: stop migrating, unless '-m' tools/power turbostat: if --debug, print sampling overhead tools/power turbostat: hide SKL counters, when not requested intel_pstate: use updated msr-index.h HWP.EPP values tools/power x86_energy_perf_policy: support HWP.EPP x86: msr-index.h: fix shifts to ULL results in HWP macros. x86: msr-index.h: define HWP.EPP values x86: msr-index.h: define EPB mid-points
2017-06-29cpufreq: intel_pstate: Clean up after performance governor changesRafael J. Wysocki1-6/+0
After commit 82b4e03e01bc (intel_pstate: skip scheduler hook when in "performance" mode) get_target_pstate_use_performance() and get_target_pstate_use_cpu_load() are never called if scaling_governor is "performance", so drop the CPUFREQ_POLICY_PERFORMANCE checks from them as they will never trigger anyway. Moreover, the documentation needs to be updated to reflect the change made by the above commit, so do that too. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2017-06-27intel_pstate: skip scheduler hook when in "performance" modeLen Brown1-2/+2
When the governor is set to "performance", intel_pstate does not need the scheduler hook for doing any calculations. Under these conditions, its only purpose is to continue to maintain cpufreq/scaling_cur_freq. The cpufreq/scaling_cur_freq sysfs attribute is now provided by shared x86 cpufreq code on modern x86 systems, including all systems supported by the intel_pstate driver. So in "performance" governor mode, the scheduler hook can be skipped. This applies to both in Software and Hardware P-state control modes. Suggested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-27intel_pstate: delete scheduler hook in HWP modeLen Brown1-11/+3
The cpufreq/scaling_cur_freq sysfs attribute is now provided by shared x86 cpufreq code on modern x86 systems, including all systems supported by the intel_pstate driver. In HWP mode, maintaining that value was the sole purpose of the scheduler hook, intel_pstate_update_util_hwp(), so it can now be removed. Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-24cpufreq: intel_pstate: Remove max/min fractions to limit performanceSrinivas Pandruvada1-51/+63
In the current model the max/min perf limits are a fraction of current user space limits to the allowed max_freq or 100% for global limits. This results in wrong ratio limits calculation because of rounding issues for some user space limits. Initially we tried to solve this issue by issue by having more shift bits to increase precision. Still there are isolated cases where we still have error. This can be avoided by using ratios all together. Since the way we get cpuinfo.max_freq is by multiplying scaling factor to max ratio, we can easily keep the max/min ratios in terms of ratios and not fractions. For example: if the max ratio = 36 cpuinfo.max_freq = 36 * 100000 = 3600000 Suppose user space sets a limit of 1200000, then we can calculate max ratio limit as = 36 * 1200000 / 3600000 = 12 This will be correct for any user limits. The other advantage is that, we don't need to do any calculation in the fast path as ratio limit is already calculated via set_policy() callback. Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-06-05cpufreq: intel_pstate: Avoid division by 0 in min_perf_pct_min()Rafael J. Wysocki1-2/+3
Commit c5a2ee7dde89 (cpufreq: intel_pstate: Active mode P-state limits rework) incorrectly assumed that pstate.turbo_pstate would always be nonzero for CPU0 in min_perf_pct_min() if cpufreq_register_driver() had succeeded which may not be the case in virtualized environments. If that assumption doesn't hold, it leads to an early crash on boot in intel_pstate_register_driver(), so add a sanity check to min_perf_pct_min() to prevent the crash from happening. Fixes: c5a2ee7dde89 (cpufreq: intel_pstate: Active mode P-state limits rework) Reported-and-tested-by: Jongman Heo <jongman.heo@samsung.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-05-16Merge branch 'utilities' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linuxRafael J. Wysocki1-19/+15
Pull power management utilities updates from Len Brown. * 'utilities' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux: intel_pstate: use updated msr-index.h HWP.EPP values tools/power x86_energy_perf_policy: support HWP.EPP x86: msr-index.h: fix shifts to ULL results in HWP macros. x86: msr-index.h: define HWP.EPP values x86: msr-index.h: define EPB mid-points
2017-05-11intel_pstate: use updated msr-index.h HWP.EPP valuesLen Brown1-19/+15
intel_pstate exports sysfs attributes for setting and observing HWP.EPP. These attributes use strings to describe 4 operating states, and inside the driver, these strings are mapped to numerical register values. The authorative mapping between the strings and numerical HWP.EPP values are now globally defined in msr-index.h, replacing the out-dated mapping that were open-coded into intel_pstate.c new old string --- --- ------ 0 0 performance 128 64 balance_performance 192 128 balance_power 255 192 power Note that the HW and BIOS default value on most system is 128, which intel_pstate will now call "balance_performance" while it used to call it "balance_power". Signed-off-by: Len Brown <len.brown@intel.com>
2017-04-17cpufreq: schedutil: Use policy-dependent transition delaysRafael J. Wysocki1-0/+2
Make the schedutil governor take the initial (default) value of the rate_limit_us sysfs attribute from the (new) transition_delay_us policy parameter (to be set by the scaling driver). That will allow scaling drivers to make schedutil use smaller default values of rate_limit_us and reduce the default average time interval between consecutive frequency changes. Make intel_pstate set transition_delay_us to 500. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2017-03-29cpufreq: intel_pstate: Add support for Gemini LakeBox, David E1-0/+1
Use same parameters as INTEL_FAM6_ATOM_GOLDMONT to enable Gemini Lake. Signed-off-by: Box, David E <david.e.box@intel.com> Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Eliminate intel_pstate_get_min_max()Rafael J. Wysocki1-26/+14
Some computations in intel_pstate_get_min_max() are not necessary and one of its two callers doesn't even use the full result. First off, the fixed-point value of cpu->max_perf represents a non-negative number between 0 and 1 inclusive and cpu->min_perf cannot be greater than cpu->max_perf. It is not necessary to check those conditions every time the numbers in question are used. Moreover, since intel_pstate_max_within_limits() only needs the upper boundary, it doesn't make sense to compute the lower one in there and returning min and max from intel_pstate_get_min_max() via pointers doesn't look particularly nice. For the above reasons, drop intel_pstate_get_min_max(), add a helper to get the base P-state for min/max computations and carry out them directly in the previous callers of intel_pstate_get_min_max(). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Do not walk policy->cpusRafael J. Wysocki1-64/+60
intel_pstate_hwp_set() is the only function walking policy->cpus in intel_pstate. The rest of the code simply assumes one CPU per policy, including the initialization code. Therefore it doesn't make sense for intel_pstate_hwp_set() to walk policy->cpus as it is guaranteed to have only one bit set for policy->cpu. For this reason, rearrange intel_pstate_hwp_set() to take the CPU number as the argument and drop the loop over policy->cpus from it. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Introduce pid_in_use()Rafael J. Wysocki1-5/+11
Add a new function pid_in_use() to return the information on whether or not the PID-based P-state selection algorithm is in use. That allows a couple of complicated conditions in the code to be reduced to simple checks against the new function's return value. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Drop struct cpu_defaultsRafael J. Wysocki1-87/+67
The cpu_defaults structure is redundant, because it only contains one member of type struct pstate_funcs which can be used directly instead of struct cpu_defaults. For this reason, drop struct cpu_defaults, use struct pstate_funcs directly instead of it where applicable and rename all of the variables of that type accordingly. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Move cpu_defaults definitionsRafael J. Wysocki1-67/+62
Move the definitions of the cpu_defaults structures after the definitions of utilization update callback routines to avoid extra declarations of the latter. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Add update_util callback to pstate_funcsRafael J. Wysocki1-38/+43
Avoid using extra function pointers during P-state selection by dropping the get_target_pstate member from struct pstate_funcs, adding a new update_util callback to it (to be registered with the CPU scheduler as the utilization update callback in the active mode) and reworking the utilization update callback routines to invoke specific P-state selection functions directly. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Use different utilization update callbacksRafael J. Wysocki1-25/+54
Notice that some overhead in the utilization update callbacks registered by intel_pstate in the active mode can be avoided if those callbacks are tailored to specific configurations of the driver. For example, the utilization update callback for the HWP enabled case only needs to update the average CPU performance periodically whereas the utilization update callback for the PID-based algorithm does not need to take IO-wait boosting into account and so on. With that in mind, define three utilization update callbacks for three different use cases: HWP enabled, the CPU load "powersave" P-state selection algorithm and the PID-based "powersave" P-state selection algorithm and modify the driver initialization to choose the callback matching its current configuration. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Modify check in intel_pstate_update_status()Rafael J. Wysocki1-1/+1
One of the checks in intel_pstate_update_status() implicitly relies on the information that there are only two struct cpufreq_driver objects available, but it is better to do it directly against the value it really is about (to make the code easier to follow if nothing else). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Drop driver_registered variableRafael J. Wysocki1-27/+19
The driver_registered variable in intel_pstate is used for checking whether or not the driver has been registered, but intel_pstate_driver can be used for that too (with the rule that the driver is not registered as long as it is NULL). That is a bit more straightforward and the code may be simplified a bit this way, so modify the driver accordingly. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Skip unnecessary PID resets on initRafael J. Wysocki1-2/+2
PID controller parameters only need to be initialized if the get_target_pstate_use_performance() P-state selection routine is going to be used. It is not necessary to initialize them otherwise, so don't do that. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-28cpufreq: intel_pstate: Set HWP sampling interval onceRafael J. Wysocki1-2/+1
In the HWP enabled case pid_params.sample_rate_ns only needs to be updated once, because it is global, so do that when setting hwp_active instead of doing it during the initialization of every CPU. Moreover, pid_params.sample_rate_ms is never used if HWP is enabled, so do not update it at all then. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>