aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-i386/topology.h (follow)
AgeCommit message (Collapse)AuthorFilesLines
2007-07-21x86-64: introduce struct pci_sysdata to facilitate sharing of ->sysdataMuli Ben-Yehuda1-1/+1
This patch introduces struct pci_sysdata to x86 and x86-64, and converts the existing two users (NUMA, Calgary) to use it. This lays the groundwork for having other users of sysdata, such as the PCI domains work. The Calgary bits are tested, the NUMA bits just look ok. Signed-off-by: Jeff Garzik <jeff@garzik.org> Signed-off-by: Muli Ben-Yehuda <muli@il.ibm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-05[PATCH] sched: remove SMT niceCon Kolivas1-1/+0
Remove the SMT-nice feature which idles sibling cpus on SMT cpus to facilitiate nice working properly where cpu power is shared. The idling of cpus in the presence of runnable tasks is considered too fragile, easy to break with outside code, and the complexity of managing this system if an architecture comes along with many logical cores sharing cpu power will be unworkable. Remove the associated per_cpu_gain variable in sched_domains used only by this code. Also: The reason is that with dynticks enabled, this code breaks without yet further tweaks so dynticks brought on the rapid demise of this code. So either we tweak this code or kill it off entirely. It was Ingo's preference to kill it off. Either way this needs to happen for 2.6.21 since dynticks has gone in. Signed-off-by: Con Kolivas <kernel@kolivas.org> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-12-10[PATCH] sched: add option to serialize load balancingChristoph Lameter1-0/+1
Large sched domains can be very expensive to scan. Add an option SD_SERIALIZE to the sched domain flags. If that flag is set then we make sure that no other such domain is being balanced. [akpm@osdl.org: build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Peter Williams <pwil3058@bigpond.net.au> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <clameter@sgi.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03[PATCH] sched: introduce child field in sched_domainSiddha, Suresh B1-0/+1
Introduce the child field in sched_domain struct and use it in sched_balance_self(). We will also use this field in cleaning up the sched group cpu_power setup(done in a different patch) code. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27[PATCH] sched: mc/smt power savings sched policySiddha, Suresh B1-0/+5
sysfs entries 'sched_mc_power_savings' and 'sched_smt_power_savings' in /sys/devices/system/cpu/ control the MC/SMT power savings policy for the scheduler. Based on the values (1-enable, 0-disable) for these controls, sched groups cpu power will be determined for different domains. When power savings policy is enabled and under light load conditions, scheduler will minimize the physical packages/cpu cores carrying the load and thus conserving power(with a perf impact based on the workload characteristics... see OLS 2005 CMP kernel scheduler paper for more details..) Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Con Kolivas <kernel@kolivas.org> Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27[PATCH] i386: move phys_proc_id and cpu_core_id to cpuinfo_x86Rohit Seth1-4/+2
Move the phys_core_id and cpu_core_id to cpuinfo_x86 structure. Similar patch for x86_64 is already accepted by Andi earlier this week. [akpm@osdl.org: fix warning] Signed-off-by: Rohit Seth <rohitseth@google.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] sched: new sched domain for representing multi-coreSiddha, Suresh B1-0/+2
Add a new sched domain for representing multi-core with shared caches between cores. Consider a dual package system, each package containing two cores and with last level cache shared between cores with in a package. If there are two runnable processes, with this appended patch those two processes will be scheduled on different packages. On such systems, with this patch we have observed 8% perf improvement with specJBB(2 warehouse) benchmark and 35% improvement with CFP2000 rate(with 2 users). This new domain will come into play only on multi-core systems with shared caches. On other systems, this sched domain will be removed by domain degeneration code. This new domain can be also used for implementing power savings policy (see OLS 2005 CMP kernel scheduler paper for more details.. I will post another patch for power savings policy soon) Most of the arch/* file changes are for cpu_coregroup_map() implementation. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-14[PATCH] fix x86 topology export in sysfs for subarchitecturesJames Bottomley1-1/+1
The correct way to export hyperthreading based functions is to predicate them on CONFIG_X86_HT. Without this, the topology exporting patch breaks the build on all non-PC x86 subarchitectures. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-03[PATCH] Export cpu topology in sysfsZhang, Yanmin1-0/+9
The patch implements cpu topology exportation by sysfs. Items (attributes) are similar to /proc/cpuinfo. 1) /sys/devices/system/cpu/cpuX/topology/physical_package_id: represent the physical package id of cpu X; 2) /sys/devices/system/cpu/cpuX/topology/core_id: represent the cpu core id to cpu X; 3) /sys/devices/system/cpu/cpuX/topology/thread_siblings: represent the thread siblings to cpu X in the same core; 4) /sys/devices/system/cpu/cpuX/topology/core_siblings: represent the thread siblings to cpu X in the same physical package; To implement it in an architecture-neutral way, a new source file, driver/base/topology.c, is to export the 5 attributes. If one architecture wants to support this feature, it just needs to implement 4 defines, typically in file include/asm-XXX/topology.h. The 4 defines are: #define topology_physical_package_id(cpu) #define topology_core_id(cpu) #define topology_thread_siblings(cpu) #define topology_core_siblings(cpu) The type of **_id is int. The type of siblings is cpumask_t. To be consistent on all architectures, the 4 attributes should have deafult values if their values are unavailable. Below is the rule. 1) physical_package_id: If cpu has no physical package id, -1 is the default value. 2) core_id: If cpu doesn't support multi-core, its core id is 0. 3) thread_siblings: Just include itself, if the cpu doesn't support HT/multi-thread. 4) core_siblings: Just include itself, if the cpu doesn't support multi-core and HT/Multi-thread. So be careful when declaring the 4 defines in include/asm-XXX/topology.h. If an attribute isn't defined on an architecture, it won't be exported. Thank Nathan, Greg, Andi, Paul and Venki. The patch provides defines for i386/x86_64/ia64. Signed-off-by: Zhang, Yanmin <yanmin.zhang@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-12[PATCH] scheduler cache-hot-autodetectakpm@osdl.org1-1/+0
) From: Ingo Molnar <mingo@elte.hu> This is the latest version of the scheduler cache-hot-auto-tune patch. The first problem was that detection time scaled with O(N^2), which is unacceptable on larger SMP and NUMA systems. To solve this: - I've added a 'domain distance' function, which is used to cache measurement results. Each distance is only measured once. This means that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT distances 0 and 1, and on SMP distance 0 is measured. The code walks the domain tree to determine the distance, so it automatically follows whatever hierarchy an architecture sets up. This cuts down on the boot time significantly and removes the O(N^2) limit. The only assumption is that migration costs can be expressed as a function of domain distance - this covers the overwhelming majority of existing systems, and is a good guess even for more assymetric systems. [ People hacking systems that have assymetries that break this assumption (e.g. different CPU speeds) should experiment a bit with the cpu_distance() function. Adding a ->migration_distance factor to the domain structure would be one possible solution - but lets first see the problem systems, if they exist at all. Lets not overdesign. ] Another problem was that only a single cache-size was used for measuring the cost of migration, and most architectures didnt set that variable up. Furthermore, a single cache-size does not fit NUMA hierarchies with L3 caches and does not fit HT setups, where different CPUs will often have different 'effective cache sizes'. To solve this problem: - Instead of relying on a single cache-size provided by the platform and sticking to it, the code now auto-detects the 'effective migration cost' between two measured CPUs, via iterating through a wide range of cachesizes. The code searches for the maximum migration cost, which occurs when the working set of the test-workload falls just below the 'effective cache size'. I.e. real-life optimized search is done for the maximum migration cost, between two real CPUs. This, amongst other things, has the positive effect hat if e.g. two CPUs share a L2/L3 cache, a different (and accurate) migration cost will be found than between two CPUs on the same system that dont share any caches. (The reliable measurement of migration costs is tricky - see the source for details.) Furthermore i've added various boot-time options to override/tune migration behavior. Firstly, there's a blanket override for autodetection: migration_cost=1000,2000,3000 will override the depth 0/1/2 values with 1msec/2msec/3msec values. Secondly, there's a global factor that can be used to increase (or decrease) the autodetected values: migration_factor=120 will increase the autodetected values by 20%. This option is useful to tune things in a workload-dependent way - e.g. if a workload is cache-insensitive then CPU utilization can be maximized by specifying migration_factor=0. I've tested the autodetection code quite extensively on x86, on 3 P3/Xeon/2MB, and the autodetected values look pretty good: Dual Celeron (128K L2 cache): --------------------- migration cost matrix (max_cache_size: 131072, cpu: 467 MHz): --------------------- [00] [01] [00]: - 1.7(1) [01]: 1.7(1) - --------------------- cacheflush times [2]: 0.0 (0) 1.7 (1784008) --------------------- Here the slow memory subsystem dominates system performance, and even though caches are small, the migration cost is 1.7 msecs. Dual HT P4 (512K L2 cache): --------------------- migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz): --------------------- [00] [01] [02] [03] [00]: - 0.4(1) 0.0(0) 0.4(1) [01]: 0.4(1) - 0.4(1) 0.0(0) [02]: 0.0(0) 0.4(1) - 0.4(1) [03]: 0.4(1) 0.0(0) 0.4(1) - --------------------- cacheflush times [2]: 0.0 (33900) 0.4 (448514) --------------------- Here it can be seen that there is no migration cost between two HT siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory system makes inter-physical-CPU migration pretty cheap: 0.4 msecs. 8-way P3/Xeon [2MB L2 cache]: --------------------- migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz): --------------------- [00] [01] [02] [03] [04] [05] [06] [07] [00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) [04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) [05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) [06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) [07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - --------------------- cacheflush times [2]: 0.0 (0) 19.2 (19281756) --------------------- This one has huge caches and a relatively slow memory subsystem - so the migration cost is 19 msecs. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Cc: <wilder@us.ibm.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-12[PATCH] x86-64: Use ACPI PXM to parse PCI<->node assignmentsAndi Kleen1-1/+1
Since this is shared code I had to implement it for i386 too Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] sched: sched tuningNick Piggin1-1/+1
Do some basic initial tuning. Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] sched: no aggressive idle balancingNick Piggin1-1/+0
Remove the very aggressive idle stuff that has recently gone into 2.6 - it is going against the direction we are trying to go. Hopefully we can regain performance through other methods. Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] sched: balance timersNick Piggin1-0/+4
Do CPU load averaging over a number of different intervals. Allow each interval to be chosen by sending a parameter to source_load and target_load. 0 is instantaneous, idx > 0 returns a decaying average with the most recent sample weighted at 2^(idx-1). To a maximum of 3 (could be easily increased). So generally a higher number will result in more conservative balancing. Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23[PATCH] x86/x86_64: pcibus_to_nodeChristoph Lameter1-6/+2
Define pcibus_to_node to be able to figure out which NUMA node contains a given PCI device. This defines pcibus_to_node(bus) in include/linux/topology.h and adjusts the macros for i386 and x86_64 that already provided a way to determine the cpumask of a pci device. x86_64 was changed to not build an array of cpumasks anymore. Instead an array of nodes is build which can be used to generate the cpumask via node_to_cpumask. Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds1-0/+108
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!